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Foreword by Herbert Walther

The Handbook of Atomic, Molecular and Optical
(AMO) Physics gives an in-depth survey of the present
status of this field of physics. It is an extended version
of the first issue to which new and emerging fields have
been added. The selection of topics thus traces the re-
cent historic development of AMO physics. The book
gives students, scientists, engineers, and other interested
people a comprehensive introduction and overview. It
combines introductory explanations with descriptions of
phenomena, discussions of results achieved, and gives
a useful selection of references to allow more detailed
studies, making the handbook very suitable as a desktop
reference.

AMO physics is an important and basic field of
physics. It provided the essential impulse leading to the
development of modern physics at the beginning of the
last century. We have to remember that at that time not
every physicist believed in the existence of atoms and
molecules. It was due to Albert Einstein, whose work we
commemorate this year with the world year of physics,
that this view changed. It was Einstein’s microscopic
view of molecular motion that led to a way of calculating
Avogadro’s number and the size of molecules by study-
ing their motion. This work was the basis of his PhD
thesis submitted to the University of Zurich in July 1905
and after publication became Einstein’s most quoted pa-
per. Furthermore, combining kinetic theory and classical
thermodynamics led him to the conclusion that the dis-
placement of a microparticle in Brownian motion varies
as the square root of time. The experimental demonstra-
tion of this law by Jean Perrin three years later finally
afforded striking proof that atoms and molecules are
a reality. The energy quantum postulated by Einstein in
order to explain the photoelectric effect was the basis
for the subsequently initiated development of quantum
physics, leading to a revolution in physics and many new
applications in science and technology.

The results of AMO physics initiated the devel-
opment of quantum mechanics and quantum electro-
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dynamics and as a consequence led
to a better understanding of the struc-
ture of atoms and molecules and their
respective interaction with radiation
and to the attainment of unprece-
dented accuracy. AMO physics also
influenced the development in other
fields of physics, chemistry, astron-
omy, and biology. It is an astonishing
fact that AMO physics constantly
went through periods where new phenomena were
found, giving rise to an enormous revival of this area.
Examples are the maser and laser and their many appli-
cations, leading to a better understanding of the basics
and the detection of new phenomena, and new possi-
bilities such as laser cooling of atoms, squeezing, and
other nonlinear behaviour. Recently, coherent interfer-
ence effects allowed slow or fast light to be produced.
Finally, the achievement of Bose–Einstein condensation
in dilute media has opened up a wide range of new
phenomena for study. Special quantum phenomena are
leading to new applications for transmission of infor-
mation and for computing. Control of photon emission
through specially designed cavities allows controlled
and deterministic generation of photons opening the way
for a secure information transfer.

Further new possibilities are emerging, such as the
techniques for producing attosecond laser pulses and
laser pulses with known and controlled phase relation
between the envelope and carrier wave, allowing syn-
thesis of even shorter pulses in a controlled manner.
Furthermore, laser pulses may soon be available that are
sufficiently intense to allow polarization of the vacuum
field. Another interesting development is the genera-
tion of artificial atoms, e.g., quantum dots, opening
a field where nanotechnology meets atomic physics. It
is thus evident that AMO physics is still going strong
and will also provide new and interesting opportunities
and results in the future.
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Preface

The year 2005 has been officially declared by the United
Nations to be the International Year of Physics to com-
memorate the three famous papers of Einstein published
in 1905. It is a fitting tribute to the impact of his work
that the Springer Handbook of Atomic, Molecular, and
Optical Physics should be published in coincidence with
this event. Virtually all of AMO Physics rests on the
foundations established by Einstein in 1905 (including
a fourth paper on relativity and his thesis) and his sub-
sequent work. In addition to the theory of relativity,
for which he is best known, Einstein ushered in the
era of quantum mechanics with his explanation of the
photoelectric effect, and he demonstrated the influence
of molecular collisions with his explanation of Brown-
ian motion. He also laid the theoretical foundations for
all of laser physics with his discovery (in 1917) of the
necessity of the process of stimulated emission, and his
discussions of the Einstein–Podolsky–Rosen Gedanken
experiment (in 1935) led, through Bell’s inequalities, to
current work on entangled states and quantum informa-
tion. The past century has been a Golden Age for physics
in every sense of the term.

Despite this history of unparalleled progress, the
field of AMO Physics continues to advance more rapidly
than ever. At the time of publication of an earlier Hand-
book published by AIP Press in 1996 I wrote “The
ever increasing power and versatility of lasers con-
tinues to open up new areas for study.” Since then,
two Nobel Prizes have been awarded for the cool-
ing and trapping of atoms with lasers (Steven Chu,
Claude Cohen-Tannoudji, William D. Phillips in 1997),
and for the subsequent achievement of Bose–Einstein
condensation in a dilute gas of trapped atoms (Eric
A. Cornell, Wolfgang Ketterle, Carl E. Wieman in 2001).
Although the topic of cooling and trapping was covered
in the AIP Handbook, Bose–Einstein condensation was
barely mentioned. Since then, the literature has exploded
to nearly 2500 papers on Bose–Einstein condensation
alone. Similarly, the topics of quantum information
and quantum computing barely existed in 1995, and
have since become rapidly growing segments of the
physics literature. Entirely new topics such as “fast light”
and “slow light” have emerged. Techniques for both
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high precision theory and measure-
ment are opening the possibility to
detect a cosmological variation of the
fundamental constants with time. All
of these topics hold the promise of
important engineering and techno-
logical applications that come with
advances in fundamental science.
The more established areas of AMO
Physics continue to provide the basic
data and broad understanding of a great wealth of under-
lying processes needed for studies of the environment,
and for astrophysics and plasma physics.

These changes and advances provide more than suf-
ficient justification to prepare a thoroughly revised and
updated Atomic, Molecular and Optical Physics Hand-
book for the Springer Handbook Program. The aim
is to present the basic ideas, methods, techniques and
results of the field at a level that is accessible to grad-
uate students and other researchers new to the field.
References are meant to be a guide to the literature,
rather than a comprehensive bibliography. Entirely new
chapters have been added on Bose–Einstein condensa-
tion, quantum information, variations of the fundamental
constants, and cavity ring-down spectroscopy. Other
chapters have been substantially expanded to include
new topics such as fast light and slow light. The intent
is to provide a book that will continue to be a valuable
resource and source of inspiration for both students and
established researchers.

I would like to acknowledge the important role
played by the members of the Advisory Board in their
continuing support of this project, and I would espe-
cially like to acknowledge the talents of Mark Cassar as
Assistant Editor. In addition to keeping track of the sub-
missions and corresponding with authors, he read and
edited the new material for every chapter to ensure uni-
formity in style and scientific content, and he composed
new material to be added to some of the chapters, as
noted in the text.

February 2005 Gordon W. F. Drake
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Organization of the Handbook

Part A gathers together the mathematical methods applicable to a wide
class of problems in atomic, molecular, and optical physics. The application
of angular momentum theory to quantum mechanics is presented. The
basic tenet that isolated physical systems are invariant to rotations of the
system is thereby implemented into physical theory. The powerful methods
of group theory and second quantization show how simplifications arise if
the atomic shell is treated as a basic structural unit. The well established
symmetry groups of quantum mechanical Hamiltonians are extended
to the larger compact and noncompact dynamical groups. Perturbation
theory is introduced as a bridge between an exactly solvable problem and
a corresponding real one, allowing approximate solutions of various systems
of differential equations. The consistent manner in which the density matrix
formalism deals with pure and mixed states is developed, showing how the
preparation of an initial state as well as the details regarding the observation
of the final state can be treated in a systematic way. The basic computational
techniques necessary for accurate and efficient numerical calculations
essential to all fields of physics are outlined and a summary of relevant
software packages is given. The ever present one-electron solutions of the
nonrelativistic Schrödinger equation and the relativistic Dirac equation for
the Coulomb potential are then summarized.
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Part B presents the main concepts in the theoretical and experimental
knowledge of atomic systems, including atomic structure and radiation.
Ionization energies for neutral atoms and transition probabilities of selected
neutral atoms are tabulated. The computational methods needed for very
high precision approximations for helium are summarized. The physical
and geometrical significance of simple multipoles is examined. The
basic nonrelativistic and relativistic theory of electrons and atoms in
external magnetic fields is given. Various properties of Rydberg atoms in
external fields and in collisions are investigated. The sources of hyperfine
structure in atomic and molecular spectra are outlined, and the resulting
energy splittings and isotope shifts given. Precision oscillator strength
and lifetime measurements, which provide stringent experimental tests
of fundamental atomic structure calculations, are discussed. Ion beam
spectroscopy is introduced, and individual applications of ion beam
techniques are detailed A basic description of neutral collisional line shapes
is given, along with a discussion of radiation transfer in a confined atomic
vapor. Many qualitative features of the Thomas–Fermi model are studied
and its later outgrowth into general density functional theory delineated.
The Hartree–Fock and multiconfiguration Hartree–Fock theories, along
with configuration interaction methods, are discussed in detail, and their
application to the calculation of various atomic properties presented.
Relativistic methods for the calculation of atomic structure for general
many-electron atoms are described. A consistent diagrammatic method for
calculating the structure of atoms and the characteristics of different atomic
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processes is given. An outline of the theory of atomic photoionization and
the dynamics of the photon–atom collision process is presented. Those kinds
of electron correlation that are most important in photoionization are em-
phasized. The process of autoionization is treated as a quasibound state
imbedded in the scattering continuum, and a brief description of the main
elements of the theory is given. Green’s function techniques are applied to
the calculation of higher order corrections to atomic energy levels, and also
of transition amplitudes for radiative transitions of atoms. Basic quantum
electrodynamic calculations, which are needed to explain small deviations
from the solution to the Schrödinger equation in simple systems, are pre-
sented. Comparisons of precise measurements and theoretical predictions
that provide tests of our knowledge of fundamental physics are made, fo-
cussing on several quantitative tests of quantum electrodynamics. Precise
measurements of parity nonconserving effects in atoms could lead to pos-
sible modifications of the Standard Model, and thus uncover new physics.
An approach to this fundamental problem is described. The problem of the
possible variation of the fundamental constants with time is discussed in re-
lation to atomic clocks and precision frequency measurements. The most
advanced atomic clocks are described, and the current laboratory constraints
on these variations are listed.
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28 Tests of Fundamental Physics
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Part C begins with a discussion of molecular structure from a theoreti-
cal/computational perspective using the Born–Oppenheimer approximation
as the point of departure. The key role that symmetry considerations play
in organizing and simplifying our knowledge of molecular dynamics and
spectra is described. The theory of radiative transition probabilities, which
determine the intensities of spectral lines, for the rotationally-resolved spec-
tra of certain model molecular systems is summarized. The ways in which
molecular photodissociation is studied in the gas phase are outlined. The
results presented are particularly relevant to the investigation of combus-
tion and atmospheric reactions. Modern experimental techniques allow the
detailed motions of the atomic constituents of a molecule to be resolved as
a function of time. A brief description of the basic ideas behind these tech-
niques is given, with an emphasis on gas phase molecules in collision-free
conditions. The semiclassical and quantal approaches to nonreactive scat-
tering are outlined. Various quantitative approaches toward a description of
the rates of gas phase chemical reactions are presented and then evaluated
for their reliability and range of application. Ionic reactions in the gas phase
are also considered. Clusters, which are important in many atmospheric and
industrial processes, are arranged into six general categories, and then the
physics and chemistry common to each category is described. The most im-
portant spectroscopic techniques used to study the properties of molecules
are presented in detail.
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Part D collects together the topics and approaches used in scattering
theory. A handy compendium of equations, formulae, and expressions for
the classical, quantal, and semiclassical approaches to elastic scattering
is given; reactive systems and model potentials are also considered. The
dependence of scattering processes on the angular orientation of the
reactants and products is discussed through the analysis of scattering
experiments which probe atomic collision theories at a fundamental level.
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The detailed quantum mechanical techniques available to perform accurate
calculations of scattering cross sections from first principles are presented.
The theory of elastic, inelastic, and ionizing collisions of electrons with
atoms and atomic ions is covered and then extended to include collisions
with molecules. The standard scattering theory for electrons is extended
to include positron collisions with atomic and molecular systems. Slow
collisions of atoms or molecules within the adiabatic approximation are dis-
cussed; important deviations from this model are presented in some detail
for the low energy case. The main methods in the theoretical treatment of
ion-atom and atom–atom collisions are summarized with a focus on inter-
mediate and high collision velocities. The molecular structure and collision
dynamics involved in ion–atom charge exchange reactions is studied. Both
the perturbative and variational capture theories of the continuum distorted
wave model are presented. The Wannier theory for threshold ionization is
then developed. Studies of the energy and angular distribution of electrons
ejected by the impact of high-velocity atomic or ionic projectiles on atomic
targets are overviewed. A useful collection of formulae, expressions, and
specific equations that cover the various approaches to electron-ion and
ion-ion recombination processes is given. A basic theoretical formulation of
dielectronic recombination is described, and its importance in the interpre-
tation of plasma spectral emission is presented. Many of the equations used
to study theoretically the collisional properties of both charged and neutral
particles with atoms and molecules in Rydberg states are collected together;
the primary approximations considered are the impulse approximation, the
binary encounter approximation, and the Born approximation. The Thomas
mass-transfer process is considered from both a classical and a quantal
perspective. Additional features of this process are also discussed. The the-
oretical background, region of validity, and applications of the classical
trajectory Monte Carlo method are then delineated. One-photon processes
are discussed and aspects of line broadening directly related to collisions
between an emitting, or absorbing, atom and an electron, a neutral atom or
an atomic ion are considered.

Part D Scattering Theory
48 Positron Collisions
49 Adiabatic and Diabatic Collision

Processes at Low Energies
50 Ion–Atom and Atom–Atom

Collisions
51 Ion–Atom Charge Transfer Reactions

at Low Energies
52 Continuum Distorted Wave

and Wannier Methods
53 Ionization in High Energy

Ion–Atom Collisions
54 Electron–Ion and Ion–Ion

Recombination
55 Dielectronic Recombination
56 Rydberg Collisions:

Binary Encounter, Born and Impulse
Approximations

57 Mass Transfer at High Energies:
Thomas Peak

58 Classical Trajectory
and Monte Carlo Techniques

59 Collisional Broadening
of Spectral Lines

Part E focuses on the experimental aspects of scattering processes. Recent
developments in the field of photodetachment are reviewed, with an
emphasis on accelerator-based investigations of the photodetachment of
atomic negative ions. The theoretical concepts and experimental methods
for the scattering of low-energy photons, proceeding primarily through the
photoelectric effect, are given. The main photon–atom interaction processes
in the intermediate energy range are outlined. The atomic response to
inelastic photon scattering is discussed; essential aspects of radiative
and radiationless transitions are described in the two-step approximation.
Advances such as cold-target recoil-ion momentum spectroscopy are also
touched upon. Electron–atom and electron–molecule collision processes,
which play a prominent role in a variety of systems, are presented. The
discussion is limited to electron collisions with gaseous targets, where
single collision conditions prevail, and to low-energy impact processes.
The physical principles and experimental methods used to investigate low
energy ion–atom collisions are outlined. Inelastic processes which occur in
collisions between fast, often highly charged, ions and atoms, are described.
A summary of the methods commonly employed in scattering experiments
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involving neutral molecules at chemical energies is presented. Applica-
tions of single-collision scattering methods to the study of reactive collision
dynamics of ionic species with neutral partners are discussed.

Part F presents a coherent collection of the main topics and issues
found in quantum optics. Optical physics, which is concerned with the
dynamical interactions of atoms and molecules with electromagnetic
fields, is first discussed within the context of semiclassical theories, and
then extended to a fully quantized version. The theoretical techniques
used to describe absorption and emission spectra using density matrix
methods are developed. Applications of the dark state in laser physics is
briefly mentioned. The basic concepts common to all lasers, such as gain,
threshold, and electromagnetic modes of oscillation are described. Recent
developments in laser physics, including single-atom lasers, two-photon
lasers, and the generation of attosecond pulses are also introduced. The
current status of the development of different types of lasers – including
nanocavity, quantum-cascade and free-electron lasers – are summarized.
The important operational characteristics, such as frequency range and
output power, are given for each of the types of lasers described. Nonlinear
processes arising from the modifications of the optical properties of
a medium due to the passage of intense light beams are discussed. Additional
processes that are enabled by the use of ultrashort or ultra-intense laser
pulses are presented. The concept of coherent optical transients in atomic and
molecular systems reviewed; homogeneous and inhomogeneous relaxation
in the theory are properly distinguished. Multiphoton and strong-field
processes are given a theoretical description. A discussion of the generation
of sub-femtosecond pulses is also included. General and specific theories
for the control of atomic motion by light are presented. Various traps used
for the cooling and trapping of charged and neutral particles and their
applications are discussed. The fundamental physics of dilute quantum
degenerate gases is outlined, especially in connection with Bose–Einstein
condensation. de Broglie optics, which concerns the propagation of matter
waves, is presented with a concentration on the underlying principles and
the illustration of these principles. The fundamentals of the quantized
electromagnetic field and applications to the broad area of quantum optics
are discussed. A detailed description of the changes in the atom–field
interaction that take place when the radiation field is modified by the
presence of a cavity is given. The basic concepts needed to understand
current research, such as the EPR experiment, Bell’s inequalities, squeezed
states of light, the properties of electromagnetic waves in cavities, and other
topics depending on the nonlocality of light are reviewed. Applications to
cryptography, tunneling times, and gravity wave detectors are included,
along with recent work on “fast light” and “slow light.” Correlations and
quantum superpositions which can be exploited in quantum information
processing and secure communication are delineated. Their link to quantum
computing and quantum cryptography is given explicitly.
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Part G is concerned with the various applications of atomic, molecular, and
optical physics. A summary of the processes that take place in photoionized
gases, collisionally ionized gases, the diffuse interstellar medium, molecular
clouds, circumstellar shells, supernova ejecta, shocked regions, and the early
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Universe are presented. The principal atomic and molecular processes that
lead to the observed cometary spectra, as well as the needs for basic atomic
and molecular data in the interpretation of these spectra, are focused on.
The basic methods used to understand planetary atmospheres are given.
The structure of atmospheres and their interaction with solar radiation are
detailed, with an emphasis on ionospheres. Atmospheric global change is
then studied in terms of the applicable atomic and molecular processes re-
sponsible for these changes. A summary of the well-known prescriptions
for atomic structure and ionization balance, and a discussion of the modi-
fied transition rates for ions in dense plasmas are given. A review of current
simulations being used to address a wide array of issues needed to accu-
rately describe atoms in dense plasmas is also presented. The main concepts
and processes of the physics and chemistry of the conduction of electricity
in ionized gases are described. The physical models and laser diagnostics
used to understand combustion systems are presented. Various applications
of atomic and molecular physics to phenomena that occur at surfaces are
reviewed; particular attention is placed on the application of electron- and
photon-atom scattering processes to obtain surface specific structural and
spectroscopic information. The effect of finite nuclear size on the electronic
energy levels of atoms is also detailed; and conversely, the electronic struc-
ture effects in nuclear physics are discussed. A discussion of the concepts
needed in the operation of charged particle detectors and in describing ra-
diation effects is introduced. The description is restricted to fast charged
particles. The key topics in basic radiation physics are then treated, and
illustrative examples are given.
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1

Units and Con1. Units and Constants

The currently accepted values for the physi-
cal constants are listed in Table 1.1, based on
the 2002 CODATA (Committee on Data for Sci-
ence and Technology) recommendations [1.1].
The quoted values are based on all data avail-
able through 31 December 2002, and replace
the earlier 1998 CODATA set. Because the uncer-
tainties are correlated, the correlation matrix,
given in Table 1.2, must be used in calculating

1.1 Electromagnetic Units .......................... 1

1.2 Atomic Units ....................................... 5

1.3 Mathematical Constants ....................... 5
1.3.1 Series Summation Formula ......... 5

References .................................................. 6

uncertainties for any quantities derived from those
tabulated [1.1].

1.1 Electromagnetic Units

The standard electromagnetic units adopted by most
scientific journals and elementary texts belong to the
système international (SI) or rationalized MKSA (me-
ters, kilograms, seconds, and amperes) units. However,
many authors working with microscopic phenomena
prefer Gaussian units, and theoretical physicists often
use Heaviside–Lorentz (H–L) units. In this Handbook,
SI units are used together with atomic units. The current
section is meant as a reference relating these different
systems.

The relations among different sets of units are not
simple conversions since the same symbol in differ-
ent systems can have different physical dimensions. To
clarify the meanings of the units, we summarize ba-
sic electromagnetic relations for SI, Gaussian, and H–L
systems below.

The Coulomb law for the magnitude F of the force
acting on each of two static charges q and Q separated by
a distance r in a homogeneous medium of permittivity
ε can be written as

F = 1

4πε

qQ

r2
, (1.1)

where in a vacuum, ε is

ε0 =

⎧
⎪⎪⎨

⎪⎪⎩

(
µ0c2

)−1
, SI

(4π)−1 , Gaussian

1, H–L

, (1.2)

with the closely related permeability of vacuum given
by

µ0 =

⎧
⎪⎪⎨

⎪⎪⎩

4π × 10−7N/A2 , SI

4π , Gaussian

1, H–L

. (1.3)

(We deviate here from Jackson [1.2] who takes ε0 =
µ0 = 1 in Gaussian units and must introduce additional
constants to relate the units. The physically important
quantities are the relative values εr ≡ ε/ε0 and µr ≡
µ/µ0, which in traditional Gaussian-unit notation are
written without the r subscript.)

Note that ε0 and µ0 are dimensionless in H–L and
Gaussian units, but not in the SI units. Current or electric
charge is an independent quantity in the MKSA system
but can be expressed in purely mechanical dimensions in
the H–L and Gaussian systems. Thus, in Gaussian units,
1 statcoulomb = 1 dyne(1/2) cm, but in SI, even though
the ampere is defined in terms of the attractive force be-
tween thin parallel wires carrying equal currents, there is
no mechanical equivalent for the ampere or the coulomb.
To establish such an equivalence, one can supplement
the SI units by assigning a dimensionless number to ε0
or to µ0. Gaussian and H–L units arise from two differ-
ent assignments. The result of assigning a number to ε0
is analogous to the relation 1 s = 3̇ × 108 m established
between time and distance units if one sets the speed of
light c = 1, a convention often used in conjunction with
H–L units. (Note that for simplicity, the pure number
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Table 1.1 Table of physical constants. Uncertainties are given in parentheses

Quantity Symbol Value Units

Speed of light in vacuum c 2.997 924 58 108 m s−1

Gravitational constant G 6.6742(10) 10−11 m3 kg−1 s−2

Planck constant h 6.626 0693(11) 10−34 J s

�= h/2π 1.054 571 68(18) 10−34 J s

Elementary charge e 1.602 176 53(14) 10−19 C

4.803 204 40(42) 10−10 esu

Inverse fine structure constant [4πε0]�c/e2 α−1 137.035 999 11(46)

Magnetic flux quantum h/2e Φ0 2.067 833 72(18) 10−15 Wb

Atomic mass constant 1
12 m

(
12C

)= 1 u mu 1.660 538 86(28) 10−27 kg

muc2 931.494 043(80) MeV

Electron mass me 9.109 3826(16) 10−31 kg

5.485 799 0945(24) 10−4 u

Muon mass mµ 0.113 428 9264(30) u

Proton mass mp 1.007 276 466 88(13) u

Neutron mass mn 1.008 664 915 60(55) u

Deuteron mass md 2.013 553 212 70(35) u

α-particle mass mα 4.001 506 179 149(56) u

Rydberg constant mecα22h R∞ 1.097 373 156 8525(73) 107 m−1

R∞c 3.289 841 960 360(22) 1015 Hz

R∞hc 13.605 692 3(1 2) eV
2.179 872 09(37) 10−18 J

Bohr radius α/4πR∞ a0 0.529 177 2108(18) 10−10 m

Hartree energy e2/[4πε0]a0 = 2R∞hc Eh 27.211 3845(23) eV

Eh/h 6.579 683 920 721(44) 1015 Hz
Eh/hc 2.194 746 313 705(15) 107 m−1

Compton wavelength αa0 λC = λC/2π 3.861 592 678(26) 10−13 m

Classical electron radius α2a0 re 2.817 940 325(28) 10−15 m

Thomson cross section 8πr2
e /3 σe 0.665 245 873(13) 10−28 m2

Bohr magneton [c]e�/2mec µB 9.274 009 49(80) 10−24 J T−1

5.788 381 804(39) 10−5 eV T−1

Electron magnetic moment µe/µB −1.001 159 652 1859(38)

Muon magnetic moment µµ/µB −4.841 970 45(13) 10−3

Proton magnetic moment µp/µB 1.521 032 206(15) 10−3

Neutron magnetic moment µn/µB −1.041 875 63(25) 10−3

Deuteron magnetic moment µd/µB 0.466 975 4567(50) 10−3

Electron g factor −2(1+ae) ge −2.002 319 304 3718(75)

Muon g factor −2(1+aµ) gµ −2.002 331 8396(12)

Proton gyromagnetic ratio 2µp/� γp 2.675 222 05(23) 108 s−1T−1

Avogadro constant NA 6.022 1415(10) 1023 mol−1

Faraday constant NAe F 9.648 533 83(83) 104 C mol−1

Boltzmann constant R/NA kB 1.380 6505(24) 10−23 J K−1

8.617 343(15) 10−5 eV K−1

kB/Eh 3.166 8153(55) 10−6 K−1

Molar gas constant R 8.314 472(15) J mol−1 K−1

Molar volume (ideal gas) RT/P

T = 273.15 K, P = 101.325 kPa Vm 0.022 413 996(39) m3 mol−1

T = 273.15 K, P = 100 kPa Vm 0.022 710 981(40) m3 mol−1
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Units and Constants 1.1 Electromagnetic Units 3

Table 1.1 Table of physical constants. Uncertainties are given in parentheses, cont.

Quantity Symbol Value Units

Stefan–Boltzmann constant π2k4
B/(60�3c2) σ 5.670 400(40) 10−8 W m−2 K−4

First radiation constant 2πhc2 c1 3.741 771 38(64) 10−16 W m2

Second radiation constant hc/kB c2 0.014 387 752(25) m K

Wien displacement law constant b 2.897 7685(51) 10−3 m K

λmaxT = c2
4.965 114 231...

Table 1.2 The correlation coefficients of a selected group of constants based on the 2002 CODATA [1.1]

α h e me NA me/mp F

α − − − − − − −
h 0.010 − − − − − −
e 0.029 1.000 − − − − −
me −0.029 0.999 0.998 − − − −
NA 0.029 −0.999 −0.998 −1.000 − − −
me/mp −0.249 −0.002 −0.007 0.007 −0.007 − −
F 0.087 −0.995 −0.993 −0.998 0.998 −0.022 −

2.997 924 58, equal numerically to the defined speed of
light in vacuum in units of 108 m/s, is represented by 3̇.)
Thus, although within the Gaussian system, where the
assignment 4πε0 = 1 is made, it is justified to assert that
1 coulomb equals 3̇ × 109 statcoulombs, this is not true
in pure SI, where there is no equivalent mechanical unit
for charge.

Maxwell’s macroscopic equations can be written as

λ∇ ·D = ρ ,
λc′∇ × H−λ∂D

∂t
= j ,

c′∇ × E+ ∂B
∂t

= 0 ,

∇ · B= 0 , (1.4)

with the macroscopic field variables related to the polar-
izations P and M by

λD = ε0 E+ P = εE

λH = µ−1
0 B−M= B/µ (1.5)

(the last equalities for D and H hold only for homoge-
neous media) and

λ=
⎧
⎨

⎩
1,SI

ε0 = µ−1
0 ,Gaussian or H–L ,

(1.6)

c′ =
⎧
⎨

⎩
1,SI

c,Gaussian or H–L .
(1.7)

In Gaussian or H–L units, the fields E, B, D, H,
and polarizations (dipole moments per unit volume)
P, M all have the same dimensions, whereas in SI
units the microscopic fields E and B have dimensions
that are generally distinct from each other as well as
from P (or D) and M (or H), respectively. In all three
unit systems, the dimensionless ratio ε/ε0 is called
the dielectric constant (or relative permittivity) of the
medium, and the (dimensionless) fine-structure constant
is

α= 1

4πε0

e2

�c
, (1.8)

with a numerical value α−1 = 137.035 999 11 (46).
In atomic units (Sect. 1.3), the factor e2/ (4πε0),

the electron mass me, and �, Planck’s constant di-
vided by 2π, are all equal to 1. In Gaussian and
H–L systems, these conditions determine a numerical
value for all electro-mechanical units. Thus in Gaussian
units, the electronic charge is e = 1, whereas in H–L
atomic units e =√

4π. In the SI system, on the other
hand, the three conditions e2/ (4πε0) = me = � = 1
determine numerical values for mechanical units but
not for electromagnetic ones. A complete determi-
nation of values requires that ε0 also be assigned
a value. The choice most consistent with previous
work is to take e = 1 = 4πε0. This choice is made
here.

Since a volt is a joule/coulomb and a statvolt is
an erg/statcoulomb, 1 volt corresponds to (but is not
generally equal to, since the physical dimensions may
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Table 1.3 Conversion factors for various physical quantities

Quantity SI units Gaussian units Natural H–L units: �= c = ε0 = 1

Length 1 m = 102 cm = 1 m

Mass 1 kg = 103 g ↔ 2.842 788 82(49) × 1042 m−1

Time 1 s = 1 s ↔ 3̇ × 108m

Velocity 1 m s−1 = 102 cm s−1 ↔ 3̇−1 × 10−8

Energy 1 J = 1 kg m2 s−2 = 107 erg ↔ 3.163 029 14(54)× 1025 m−1

Action 1 J s = 107 erg s ↔ 0.948 252 28(16)× 1034

Force 1 N = 1 J m−1 = 105 dyne ↔ 3.163 029 14(54)× 1025 m−2

Power 1 W = 1 J s−1 = 107 erg s−1 ↔ 1.055 072 95(18)× 1017 m−2

Intensity 1 W m−2 = 103 erg cm−2 ↔ 1.055 072 95(18)× 1017 m−4

Charge 1 C = 1 A s ↔ 3̇ × 109 statcoul ↔ 1.890 067 14(16)× 1018

Potential 1 V = 1 J C−1 ↔ (3̇ × 102)−1 statvolt ↔ 1.673 500 94(14)× 107 m−1

Electric field 1 V m−1 = 1 N C−1 ↔ (3̇ × 104)−1 statvolt cm−1 ↔ 1.673 500 94(14)× 107 m−2

Magnetic field 1 T = 1 N A−1 m−1 ↔ 104 gauss ↔ 5.017 029 61(43)× 1015 m−2

differ)

107 erg

3̇ × 109 statcoulomb
= 1

3̇ × 102
statvolt . (1.9)

In Gaussian units, the unit of magnetic field, namely the
Gauss (B) or Oersted (H) has the same physical size
and dimension as the unit of electric field, namely the
statvolt/cm, which in turn corresponds to an SI field
of 3̇ × 104 V/m. However, the tesla (1 T= 1 weber/m2),
the SI unit of magnetic field B (older texts refer to B as
the magnetic induction), has the physical dimensions of
V s/m2. To find the correspondence to Gaussian units,
one must multiply by the speed of light c:

1 T c = 3̇ × 108 V/m , (1.10)

which corresponds to 104 statvolt/cm and hence to
104 gauss.

Tables 1.3 and 1.4 related basic mechanical and
electromagnetic quantities in the different unit sys-
tems. Caution is required both because the same
symbol often stands for quantities of different phys-
ical dimensions in different systems of units, and
because factors of 2 π sometimes enter frequencies,
depending on whether the units are cycles/s (Hz)
or radians/s. The double-headed arrows (↔) indicate
a correspondence between quantities whose dimen-
sions are not necessarily equal. Thus for example, the
force on an electron due to a Gaussian electric field
of 1 statvolt/cm is the same as due to an SI elec-
tric field of 3̇ × 104 V/m. The correspondences between
Gaussian and SI electrostatic quantities become equal-
ities if and only if 4πε0 = 1. Thus they are equalities

within the Gaussian system but not within the less
constrained SI scheme. The SI and Gaussian units of
magnetic field have different dimensions unless both
ε0 and c are set equal to dimensionless numbers.
Natural H–L units can be considered SI units sup-
plemented by the conditions ε0 = c = �= 1. They are
listed here in units of meters, although eV are also of-
ten used: 1 eV = 5.067 731 04(43)× 106 m−1 ×�c. The
correspondences may be considered equalities within
the natural H–L system but not within SI. Note that
the electronic charge in the natural H–L system has
the magnitude e =√

4πα. More electromagnetic con-
versions can be found in Jackson [1.2]. The data
here are based on the 2002 adjustment by Mohr and
Taylor [1.1].

A few additional energy conversion factors are

1 eV= 1.602 176 53 (14)× 10−19 J

= 2.417 989 40 (21)× 1014 Hz × h

= 8065.544 45 (69) cm−1 × hc

= 3.674 932 45 (31)× 10−2 Eh

= 1.160 4505 (20)× 104 K × kB

= 96.485 3383 (83) kJ mol−1

The basic unit of temperature, the kelvin, is equiva-
lent to about 0.7 cm−1, i. e., the value of the Boltzmann
constant kB expressed in wavenumber units per kelvin is
0.695 0356(12) cm−1K−1. Since K is the internationally
accepted symbol for the Kelvin [1.3], this suggests that
the use of the letter K as a symbol for 1 cm−1 (1 Kayser)
should be discontinued.
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Units and Constants 1.3 Mathematical Constants 5

1.2 Atomic Units

Atomic and molecular calculations based on the
Schrödinger equation are most conveniently done in
atomic units (a.u.), and then the final result converted to
the correct SI units as listed in Table 1.4. In atomic units,
� = me = e = 4πε0 = 1. The atomic units of length,
velocity, time, and energy are then

length: a0 = 4πε0�2

mee2 = �

αmec
,

velocity: vB = e2

4πε0�
= αc ,

time: τ0 = 16π2ε2
0�

3

mee4
= �

α2mec2
,

energy: Eh = e2

4πε0a0
= α2mec2 ,

where, from the definition (1.8), the numerical value
of c is α−1 = 137.035 999 11(46) a.u. For the lowest
1s state of hydrogen (with infinite nuclear mass), a0 is
the Bohr radius, vB is the Bohr velocity, 2πτ0 is the
time to complete a Bohr orbit, and Eh (the Hartree
energy) is twice the ionization energy. To include the
effects of a finite nuclear mass M, one must replace
the electron mass me by the reduced electron mass
µ= me M/(M+me).

Atomic energies are often expressed in units of the
Rydberg (Ry). The Rydberg for an atom having nuclear
mass M is

1 Ry = RM = µ

me
R∞ = M(M+me)

−1 R∞ ,

(1.11)

Table 1.4 Physical quantities in atomic units with �= e =
me = 4πε0 = 1, and α−1 = 137.035 999 11(46)

Quantity Unit Value

Length a0 0.529 177 2108(18) × 10−10 m
Mass me 0.910 938 26(16) × 10−30 kg
Time �/Eh 2.418 884 326 505(16) × 10−17 s
Velocity vB ≡ αc 2.187 691 2633(73) × 106 m s−1

Energy Eh 4.359 744 17(75) × 10−18 J
Action � 1.054 571 68(18) × 10−34 J s
Force Eh/a0 0.823 872 25(14) × 10−7 N
Power E2

h/� 0.180 237 811(31) W
Intensity E2

h/�a2
0 64.364 091(11) × 1018 W m−2

Charge e 1.602 176 53(14) × 10−19 C
Electric Eh/e 27.211 3845(23) V
potential
Electric Eh/ea0 = 0.514 220 642(44) × 1012 V m−1

field α�c/ea2
0

Magnetic Eh/ea0αc 2.350 517 42(20) × 105 T
flux density

with

R∞ = mecα2

2h
= 10 973 731.568 525 (73)m−1 .

(1.12)

The Rydberg constant R∞ is thus the limiting value of
RM for infinite nuclear mass, and hcR∞ is 1

2 a.u., which
is equivalent to 13.605 6923(12) eV.

The energy equivalent of the electron mass, mec2,
is 0.510 998 918(44) MeV. This energy is a natural unit
for relativistic atomic theory. For example, for inner-
shell energies in the heaviest elements, the binding
energy of the 1s electron in hydrogenic Lr (Z = 103)
is 0.338 42 mec2.

1.3 Mathematical Constants

A selection of the most important mathematical con-
stants is listed in Table 1.5. More extensive tabulations
and formulas can be found in the standard mathematical
works [1.4, 5]

1.3.1 Series Summation Formula

The Riemann zeta function defined by ζ(n)=∑∞
i=1 i−n

(Table 1.5) is particularly useful in summing slowly

convergent series of the form

S =
∞∑

i=1

Ti . (1.13)

For example, suppose that the series

Ti = t2i−2+ t3i−3+· · · (1.14)

for the individual terms in S is rapidly convergent
for i > N , where N is some suitably large integer.
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Then

S =
N∑

i=1

Ti + t2ζ
N (2)+ t3ζ

N (3)+· · · , (1.15)

where ζN (n)= ζ(n)−∑N
i=1 i−n is the zeta function

with the first N terms subtracted. For N sufficiently
large, only the first few t j coefficients need be known,
and they can be adequately estimated by solving the
system of equations

TN = t2 N−2+ t3 N−3+· · ·
+ tk+2 N−k−2 , (1.16a)

TN−1 = t2(N −1)−2+ t3(N −1)−3+· · ·
+ tk+2(N −1)−k−2 , (1.16b)
...

TN−k = t2(N − k)−2+ t3(N − k)−3+· · ·
+ tk+2(N − k)−k−2 , (1.16c)

where k+1 ≤ N is the number of terms retained in
(1.14).

Table 1.5 Values of e, π, Euler’s constant γ , and the Rie-
mann zeta function ζ(n)

Constant Value

e 2.718 281 828 459 045 235 360 287 471 352 66

π 3.141 592 653 589 793 238 462 643 383 279 50

π1/2 1.772 453 850 905 516 027 298 167 483 341 14

γ 0.577 215 664 901 532 860 606 512 090 082 40

ζ(2) 1.644 934 066 848 226 436 472 415 166 646 02

ζ(3) 1.202 056 903 159 594 285 399 738 161 511 45

ζ(4) 1.082 323 233 711 138 191 516 003 696 541 16

ζ(5) 1.036 927 755 143 369 926 331 365 486 457 03

ζ(6) 1.017 343 061 984 449 139 714 517 929 790 92

ζ(7) 1.008 349 277 381 922 826 839 797 549 849 80

ζ(8) 1.004 077 356 197 944 339 378 685 238 508 65

ζ(9) 1.002 008 392 826 082 214 417 852 769 232 41

ζ(10) 1.000 994 575 127 818 085 337 145 958 900 31
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Angular Mom2. Angular Momentum Theory

Angular momentum theory is presented from the
viewpoint of the group SU(1) of unimodular unitary
matrices of order two. This is the basic quantum
mechanical rotation group for implementing the
consequences of rotational symmetry into isolated
complex physical systems, and gives the structure
of the angular momentum multiplets of such
systems. This entails the study of representation
functions of SU(2), the Lie algebra of SU(2) and
copies thereof, and the associated Wigner–
Clebsch–Gordan coefficients, Racah coefficients,
and 1n–j coefficients, with an almost boundless
set of inter-relations, and presentations of the
associated conceptual framework. The relationship
to the rotation group in physical 3-space is
given in detail. Formulas are often given in
a compendium format with brief introductions
on their physical and mathematical content.
A special effort is made to inter-relate the
material to the special functions of mathematics
and to the combinatorial foundations of the
subject.

2.1 Orbital Angular Momentum .................. 12
2.1.1 Cartesian Representation ........... 12
2.1.2 Spherical Polar Coordinate

Representation ......................... 15
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2.10.4 Symmetry Relations
for 9–j Coefficients
and Reductionto 6–j Coefficients 49

2.10.5 Explicit Algebraic Form
of 9–j Coefficients ..................... 49

2.10.6 Racah Operators ........................ 49
2.10.7 Schwinger–Wu

Generating Function
and its Combinatorics ................ 51

2.11 Tensor Spherical Harmonics .................. 52
2.11.1 Spinor Spherical Harmonics

as Matrix Functions ................... 53
2.11.2 Vector Spherical Harmonics

as Matrix Functions ................... 53
2.11.3 Vector Solid Harmonics

as Vector Functions ................... 53

2.12 Coupling and Recoupling Theory
and 3n–j Coefficients ........................... 54
2.12.1 Composite Angular Momentum

Systems ................................... 54
2.12.2 Binary Coupling Theory:

Combinatorics........................... 56

Angular momentum theory in its quantum mechani-
cal applications, which is the subject of this section,
is the study of the group of 2 × 2 unitary unimodular
matrices and its irreducible representations. It is the
mathematics of implementing into physical theory the
basic tenet that isolated physical systems are invariant to
rotations of the system in physical 3-space, denoted R3,
or, equivalently, to the orientation of a Cartesian ref-
erence system used to describe the system. That it is
the group of 2 × 2 unimodular matrices that is basic
in quantum theory in place of the more obvious group
of 3 × 3 real, orthogonal matrices representing transfor-
mations of the coordinates of the constituent particles
of the system, or of the reference frame, is a conse-
quence of the Hilbert space structure of the state space
of quantum systems and the impossibility of assigning
overall phase factors to such states because measure-
ments depend only on the absolute value of transition
amplitudes.

The exact relationship between the group SU(2)
of 2 × 2 unimodular unitary matrices and the group
SO(3, R) of 3 × 3 real, proper, orthogonal matrices is
an important one for keeping the quantum theory of an-
gular momentum, with its numerous conventions and
widespread applications across all fields of quantum

2.12.3 Implementation
of Binary Couplings ................... 57

2.12.4 Construction
of all Transformation Coefficients
in Binary Coupling Theory .......... 58

2.12.5 Unsolved Problems
in Recoupling Theory ................. 59

2.13 Supplement on Combinatorial
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2.13.2 Combinatorial Definition

of Wigner–Clebsch–Gordan
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2.13.3 Magic Square Realization
of the Addition
of Two Angular Momenta ........... 63
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physics, free of ambiguities. These notations and re-
lations are fixed at the outset.
Presentation of a point in R3:

x = col (x1, x2, x3) column matrix ,

xT = (x1, x2, x3) row matrix ,

X =
(

x3 x1− ix2

x1+ ix2 −x3

)

2 × 2 traceless Hermitian matrix ;
Cartan’s representation .

A one-to-one correspondence between the set R3 of
points in 3-space and the set H2 of 2 × 2 traceless Her-
mitian matrices is obtained from xi = 1

2 Tr (σi X), where
the σi denote the matrices (Pauli matrices)

σ1 =
(

0 1

1 0

)

, σ2 =
(

0 −i

i 0

)

, σ3 =
(

1 0

0 −1

)

.

(2.1)

Mappings of R3 onto itself:

x → x′ = Rx ,

X → X ′ =UXU† ,
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Angular Momentum Theory 11

where † denotes Hermitian conjugation of a matrix or
an operator.

Two-to-one homomorphism of SU(2)onto SO(3, R):

Rij = Rij(U )= 1

2
Tr

(
σiUσ jU

†
)
, (2.2)

(
ξ

x′

)

=

⎛

⎜⎜⎜
⎝

1 0 0 0

0

0 R(U )

0

⎞

⎟⎟⎟
⎠
=
(
ξ

x

)

= A†(U ×U∗)A
(
ξ

x

)

, (2.3)

where ξ is an indeterminate, A is the unitary matrix
given by

A = 1√
2

⎛

⎜⎜⎜
⎝

1 0 0 1

0 1 −i 0

0 1 i 0

1 0 0 −1

⎞

⎟⎟⎟
⎠
,

U ×U∗ denotes the matrix direct product, and ∗ denotes
complex conjugation. There is a simple unifying theme
in almost all the applications. The basic mathematical
notions that are implemented over and over again in
various contexts are: group action on the underlying
coordinates and momenta of the physical system and
the corresponding group action in the associated Hilbert
space of states; the determination of those subspaces
that are mapped irreducibly onto themselves by the
group action; the Lie algebra and its actions as derived
from the group actions, and conversely; the construction
of composite objects from elementary constituents, us-
ing the notion of tensor product space and Kronecker
products of representations, which are the basic pre-
cepts in quantum theory for building complex systems
from simpler ones; the reduction of the Kronecker prod-
uct of irreducible representations into irreducibles with
the associated Wigner–Clebsch–Gordan and Racah co-
efficients determining not only this reduction, but also
having a dual role in the construction of the irreducible
state spaces themselves; and, finally, the repetition of
this process for many-particle systems with the atten-
dant theory of 3n− j coefficients. The universality of
this methodology may be attributed to being able, in
favorable situations, to separate the particular conse-
quences of physical law (e.g., the Coulomb force) from
the implications of symmetry imposed on the system by
our underlying conceptions of space and time. Empiric-
al models based on symmetry that attempt to identify

the more important ingredients underlying observed
physical phenomena are also of great importance.

The group actions in complex systems are often
modeled after the following examples for the actions
of the groups SO(3, R) and SU(2) on functions defined
over the 2-sphere S2 ⊂ R3:
Hilbert space:

V = { f | f is a polynomial satisfying ∇2 f(x)= 0} .
Inner or scalar product:

(
f, f ′

)=
∫

unit sphere

f ∗(x) f ′(x)dS ,

where f(x)= f(X) for x presented in the Cartan matrix
form X.
Group actions:

(OR f )(x)= f
(
R−1x

)
, each f ∈ V ,

each x ∈ R3 ,

(TU f )(X)= f
(
U†XU

)
, each f ∈ V ,

each X ∈ H2 .

Operator properties:

• OR is a unitary operator on V; that is,
(OR f, OR f ′)= ( f, f ′).• TU is a unitary operator on V; that is, (TU f, TU f ′)=
( f, f ′).• R → OR is a unitary representation of SO(3, R);
that is, OR1 OR2 = OR1 R2 .• U → TU is a unitary representation of SU(2); that
is, TU1 TU2 = TU1U2 .• OR(U ) = TU = T−U is an operator identity on the
space V.

One parameter subgroups:

U j(t)= exp(−itσ j/2) , t ∈ R , j = 1, 2, 3 ;
R j(t)= R(U j(t))= exp(−itM j) ,

t ∈ R , j = 1, 2, 3 ;
where

M1 = i

⎛

⎜
⎝

0 0 0

0 0 −1

0 1 0

⎞

⎟
⎠ , M2 = i

⎛

⎜
⎝

0 0 1

0 0 0

−1 0 0

⎞

⎟
⎠ ,

M3 = i

⎛

⎜
⎝

0 −1 0

1 0 0

0 0 0

⎞

⎟
⎠ . (2.4)
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12 Part A Mathematical Methods

Infinitesimal generators:

L j = i(dOR j (t)/dt)t=0 ,

L j = i(dTU j (t)/dt)t=0 ,

(L j f )(x)=−i

(
xk
∂

∂xl
− xl

∂

∂xk

)
f(x) ,

j, k, l cyclic in 1, 2, 3 . (2.5)

Historically, the algebra of angular momentum came
about through the quantum rule of replacing the lin-
ear momentum p of a classical point particle, which
is located at position r, by p →−i�∇, thus replacing
the classical angular momentum r × p about the origin
of a chosen Cartesian inertial system by the angular

momentum operator:

L =−i r ×∇ (in units of �) . (2.6)

The quantal angular momentum properties of this sim-
ple one-particle system are then to be inferred from the
properties of these operators and their actions in the
associated Hilbert space. This remains the method of in-
troducing angular momentum theory in most textbooks
because of its simplicity and historical roots. It also
leads to focusing the developments of the theory on
the algebra of operators in contrast to emphasizing the
associated group transformations of the Hilbert space,
although the two viewpoints are intimately linked, as
illustrated above. Both perspectives will be presented
here.

2.1 Orbital Angular Momentum

The model provided by orbital angular momentum oper-
ators is the paradigm for standardizing many of the
conventions and relations used in more abstract and
general treatments. These basic results for the orbital
angular momentum operator L =−i r ×∇ acting in the
vector space V are given in this section both in Carte-
sian coordinates x= col (x1, x2, x3) and spherical polar
coordinates:

x = (r sin θ cosφ, r sin θ sinφ, r cos θ) ,

0 ≤ r <∞ , 0 ≤ φ < 2π , 0 ≤ θ ≤ π .

2.1.1 Cartesian Representation

Commutation relations:
Cartesian form:

[L1, L2] = iL3 , [L2, L3] = iL1 ,

[L3, L1] = iL2 .

Cartan form:

[L3, L+] = L+ , [L3, L−] = −L− ,
[L+, L−] = 2L3 .

Squared orbital angular momentum:

L2 = L2
1+ L2

2+ L2
3 = L−L++ L3(L3+1)

= L+L−+ L3(L3−1)

=−r2∇2+ (x ·∇)2+ (x ·∇) .

L2, L3 form a complete set of commuting Hermitian
operators in V with eigenfunctions

Ylm(x)=
[

2l+1

4π
(l+m)!(l−m)!

] 1
2

×
∑

k

(−x1−ix2)
k+m(x1−ix2)

kxl−m−2k
3

22k+m(k+m)!k!(l−m−2k)! ,

where l = 0, 1, 2, . . . , ; m = l, l−1, . . . ,−l.
Homogeneous polynomial solutions of Laplace’s equa-
tion:

Ylm(λx)= λlYlm(x) ,

(x ·∇)Ylm(x)= lYlm(x) ,

∇2Ylm(x)= 0 .

Complex conjugate:

Y∗
lm(x)= (−1)mYl,−m(x) .

Action of angular momentum operators:

L±Ylm(x)= [(l∓m)(l±m+1)] 1
2 Yl,m±1(x) ,

L3Ylm(x)= mYlm(x) ,

L2Ylm(x)= l(l+1)Ylm .

Highest weight eigenfunction:

L+Yll(x)= 0 , L3Yll(x)= lYll(x) ,

Yll(x)= 1

2ll!
(
(2l+1)!

4π

) 1
2

(−x1− ix2)
l .
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Angular Momentum Theory 2.1 Orbital Angular Momentum 13

Generation from highest weight:

Ylm(x)=
(

(l+m)

(2l)!(l−m)!
) 1

2

Ll−m− Yll(x) .

Relation to Gegenbauer and Jacobi polynomials:

Ylm(x)= rl−|m|Ym(x1, x2)

× [(2l+1)(l+m)!(l−m)!/2] 1
2

× Hl,|m|(x3/r) ,

Hlλ(z)= (2λ)!
2λλ! C

λ+ 1
2

l−λ (z)=
(l+λ)!

2λl! P(λ,λ)l−λ (z) ,

0 ≤ λ≤ l = 0, 1, 2, . . . ,

where the Ym(x1, x2) are homogeneous polynomial
solutions of degree |m| of Laplace’s equation in
2-space, R2:

Ym(x1, x2)=
⎧
⎨

⎩
(−x1− ix2)

m/
√

2π , m ≥ 0 ,

(x1− ix2)
−m/

√
2π , m ≤ 0 .

(Section 2.1.2 for the definition of Gegenbauer and
Jacobi polynomials.)
Orthogonal group action:

(ORYlm)(x)= Ylm(R
−1x)=

∑

m′
D l

m′m(R)Ylm′(x) ,

where the functions D l
m′m(R)= Dl

m′m(U(R)) are
defined in Sect. 2.3 for various parametrizations
of R.
Unitary group action:

(TUYlm)(X)= Ylm(U
†XU )

=
∑

m′
Dl

m′m(U )Ylm′(X) ,

where the functions Dl
m′m(U ) are defined in Sects. 2.2

and 2.3.
Orthogonality on the unit sphere:

∫

unit sphere

Y∗
l′m′(x)Ylm(x)dS = δl′lδm′m .

Product of solid harmonics:

Ykµ(x)Ylm(x)=
∑

l′
〈l′||Yk||l〉Clkl′

m,µ,m+µYl′,m+µ(x)

=
∑

l′
(l′||Yk||l)

(
l k l′

m µ −m−µ

)

× (−1)l
′+m+µYl′,m+µ(x) ,

〈l′||Yk||l〉 = rl+k−l′
(
(2l+1)(2k+1)

4π(2l′ +1)

) 1
2

Clkl′
000 ,

(l′||Yk||l)= rl+k−l′
(
(2l+1)(2k+1)(2l′ +1)

4π

)1
2

× (−1)l
′
(

l k l′

0 0 0

)

,

where Cl1l2l
m1m2m and

(
l1 l2 l

m1 m2 −m

)

= (−1)l1−l2+m

√
2l+1

Cl1l2l
m1m2m

denote Wigner–Clebsch–Gordan coefficients and 3– j
coefficients, respectively (Sect. 2.7).
Vector addition theorem for solid harmonics:

Ylm(z+ z′)=
∑

kµ

(
4π(2l+1)!

(2l−2k+1)!(2k+1)!
) 1

2

Cl−k,k,l
m−µ,µ,m

×Yl−k,m−µ(z)Ykµ(z′) , z, z′ ∈ C3 ,

C j−k,k,l
m−µ,µ,m =

[(
l+m

k+µ

)(
l−m

k−µ

)/(
2l

2k

)] 1
2

.

Rotational invariant in two vectors:

Il(x, y)= 1

2l

∑

k

(−1)k
(

l

k

)(
2l−2k

l

)

× (x · y)l−2k(x · x)k(y · y)k

= (x · x)l/2(y · y)l/2C(1/2)l (x̂ · ŷ)

= 4π

2l+1

∑

m

(−1)mYlm(x)Yl,−m(y) ,

where C(1/2)l (z) is a Gegenbauer polynomial
(Sect. 2.1.2) and

x̂ = x/|x| , ŷ = y/|y| , cos θ = x̂ · ŷ .
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14 Part A Mathematical Methods

Legendre polynomials:

Pl(cos θ)= 4π

2l+1

∑

m

(−1)mYl,−m( ŷ)Ylm(x̂) ,

(
4π

2l+1

) 1
2

Yl0(x)

= 1

2l

∑

k

(−1)k
(

l

k

)(
2l−2k

l

)

xl−2k
3 (x · x)k

= rl Pl(x3/r) .

Rayleigh plane wave expansion:

eik·x = 4π
∞∑

l=0

l∑

m=−l

il jl(kr)Y∗
lm

(
k̂
)
Ylm(x̂) ,

jl(kr)=
(
π

2kr

) 1
2

Jl+1/2(kr) .

Relations in potential theory:

Ylm(∇)
(

1

r

)
= (−1)l(2l)!

2ll!
Ylm(x)
r2l+1

,

1/R =
∞∑

l=0

Il(x, y)/r2l+1 ,

Il(x, y)/r2l+1 = (−1)l

l! (y ·∇)l
(

1

r

)
.

For R= x− y , r = (x · x)
1
2 , s = ( y · y)

1
2 ,

1/R =
∑

l

Pl(cos θ)
sl

rl+1 , s ≤ r, cos θ = x̂ · ŷ .

Rotational invariants in three vectors:

I(l1l2l3)
(
x1, x2, x3)

= (4π)3/2

[(2l1+1)(2l2+1)(2l3+1)]
1
2

×
∑

m1m2m3

(
l1 l2 l3

m1 m2 m3

)

×Yl1m1

(
x1)Yl2m2

(
x2)Yl3m3

(
x3) ,

where

(
l1 l2 l3

m1 m2 m3

)

is a 3–j coefficient (Sect. 2.7).

I(l1l2l3)
(
x1, x2, 0

)

= δl1l2δl30(−1)l1 Il1

(
x1, x2)/(2l1+1

) 1
2 .

Product law:

I(l)(x)I(k)(x)

=
∑

( j )

[
3∏

α=1

(−1) jα(2 jα+1)

(
lα kα jα
0 0 0

)

× (xα · xα)(lα+kα− jα)/2

]
⎧
⎪⎨

⎪⎩

l1 l2 l3

k1 k2 k3

j1 j2 j3

⎫
⎪⎬

⎪⎭
I( j )(x) ,

where l = (l1, l2, l3), etc., x = (
x1, x2, x3

)
.

Coplanar vectors:

I(l)
(
x1, x2, αx1+βx2)

=
∑

kl

(
(2l3+1)!

(2l3−2k)!(2k)!
) 1

2

×αl3−kβk(−1)l1+l3+k(2l+1)

×

(
l3− k l1 l

0 0 0

)(
k l2 l

0 0 0

){
l3− k l3 k

l2 l l1

}

×
(
x1 · x1)(l1+l3−l−k)/2(x2 · x2)(l2+k−l)/2

× Il
(
x1, x2) .

The bracket symbols in these relations are 6–j and 9–j
coefficients (Sects. 2.9, 2.10).
Cartan’s vectors of zero length:

α=
(
− z2

1+ z2
2,−i

(
z2

1+ z2
2

)
, 2z1z2

)
,

α ·α= α2
1+α2

2+α2
3 = 0 ,

z = (z1, z2) ∈ C2 .

Solutions of Laplace’s equation using vectors of zero
length:

∇2(α · x)l = 0 , l = 0, 1, . . . .

Solid harmonics for vectors of zero length:

(−1)mYl,−m(α)= (2l)!
l!

(
2l+1

4π

) 1
2

Plm(z1, z2) ,

Plm(z1, z2)= zl+m
1 zl−m

2√
(l+m)!(l−m)! .

Orbital angular momentum operators for vectors of zero
length:

J =−i(α×∇α) ,
J+ = z1

∂

∂z2
, J− = z2

∂

∂z1
,

J3 = 1

2

(
z1
∂

∂z1
− z2

∂

∂z2

)
.
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Angular Momentum Theory 2.1 Orbital Angular Momentum 15

Rotational invariant for vectors of zero length:

(α · x)l =
(

4π

2l+1

) 1
2

2ll!
∑

m

Plm(z)Ylm(x) .

Spinorial invariant under zi →Uzi(i = 1, 2, 3):

∑

m1m2m3

(
j1 j2 j3

m1 m2 m3

)

Pj1m1

(
z1)Pj2m2

(
z2)Pj3m3

(
z3)

= [( j1+ j2+ j3+1)!]−1/2

×

(
z12

12

) j1+ j2− j3(z31
12

) j3+ j1− j2(z23
12

) j2+ j3− j1

[( j1+ j2− j3)!( j3+ j1− j2)!( j2+ j3− j1)!] 1
2

,

zij
12 = zi

1z j
2− z j

1zi
2 .

This relation is invariant under the transformation

z →Uz = (
(Uz)1, (Uz)2

)

= (u11z1+u12z2, u21z1+u22z2) ,

where U ∈ SU(2). Transformation properties of vectors
of zero length:

α→ Rα, α= col(α1, α2, α3) ,

where z →Uz and R is given in terms of U in the be-
ginning of this chapter. Simultaneous eigenvectors of L2

and J2:

L2(α · x)l = l(l+1)(α · x)l , l = 0, 1, . . . ,

J2(α · x)l = l(l+1)(α · x)l , l = 0, 1, . . . .

2.1.2 Spherical Polar Coordinate
Representation

The results given in Sect. 2.1.1 may be presented in any
system of coordinates well-defined in terms of Cartesian
coordinates. The principal relations for spherical polar
coordinates are given in this section, where a vector
in R3 is now given in the form

x = r x̂ = r(sin θ cosφ, sin θ sinφ, cos θ) ,

0 ≤ θ ≤ π, 0 ≤ φ < 2π .

Orbital angular momentum operators:

L1 = i cosφ cot θ
∂

∂φ
+ i sinφ

∂

∂θ
,

L2 = i sinφ cot θ
∂

∂φ
− i cosφ

∂

∂θ
,

L3 =−i
∂

∂φ
,

L± = e±iφ
(
± ∂
∂θ
+ i cot θ

∂

∂φ

)
,

L2 =− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2 .

Laplacian:

x ·∇ = r
∂

∂r
,

∇2 = 1

r2

[(
r
∂

∂r

)2

+r
∂

∂r
− L2

]

.

Spherical harmonics
(
solid harmonics on the unit

sphere S2
)
:

Ylm(θ, φ)= (−1)m
(

2l+1

4π
(l+m)!(l−m)!

) 1
2

eimφ

×
∑

k

(−1)k(sin θ)2k+m(cos θ)l−2k−m

22k+m(k+m)!k!(l−2k−m)! .

Orthogonality on the unit sphere:

2π∫

0

dφ

π∫

0

dθ sin θ Y∗
l′m′(θ, φ) Ylm(θ, φ)= δl′lδm′m .

Relation to Legendre, Jacobi, and Gegenbauer poly-
nomials:

Ylm(θ, φ)= (−1)m
(
(2l+1)(l−m)!

4π(l+m)!
) 1

2

× Pm
l (cos θ)eimφ ,

Pm
l (cos θ)= (l+m)!

l!
(

sin θ

2

)m

P(m,m)l−m (cos θ) .

Jacobi polynomials:

P(α,β)n (x)=
∑

s

(
n+α

s

)(
n+β
n− s

)

×

(
x−1

2

)n−s ( x+1

2

)s

,

n = 0, 1, . . . ,
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16 Part A Mathematical Methods

where α, β are arbitrary parameters and

(
z

k

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z(z−1) · · · (z− k+1)/k!
for k = 1, 2, . . .

1 for k = 0

0 for k =−1,−2, . . .

Relations between Jacobi polynomials for n+α,
n+β, n+α+β nonnegative integers:

Pα,βn (x)= (n+α)!(n+β)!
n!(n+α+β)!

(
x+1

2

)−β
P(α,−β)n+β (x) ,

Pα,βn (x)= (n+α)!(n+β)!
n!(n+α+β)!

(
x−1

2

)−α
P(−α,β)n+α (x) ,

Pα,βn (x)=
(

x−1

2

)−α ( x+1

2

)−β
P(−α,−β)n+α+β (x) .

Nonstandard form (α arbitrary):

P(α,α)n (x)=
∑

s

(−1)s(α+ s+1)n−s
(
1−x2

)s
xn−2s

22ss!(n−2s)! ,

(z)k = z(z+1) · · · (z+ k−1) , k = 1, 2, . . . ;
(z)0 = 1 .

Gegenbauer polynomials (α >−1/2):

C(α)n (x)= (2α)n
(α+1/2)n

P

(
α− 1

2 ,α− 1
2

)

n (x)

=
∑

s

(−1)s(α)n−s(2x)n−2s

s!(n−2s)! .

2.2 Abstract Angular Momentum

Abstract angular momentum theory addresses the prob-
lem of constructing all finite Hermitian matrices, up
to equivalence, that satisfy the same commutation
relations

[J1, J2] = iJ3 , [J2, J3] = iJ1 , [J3, J1] = iJ2
(2.7)

as some set of Hermitian operators J1, J2, J3 appro-
priately defined in some Hilbert space; that is, of
constructing all finite Hermitian matrices Mi such that
under the correspondence Ji → Mi(i = 1, 2, 3) the com-
mutation relations are still obeyed. If M1,M2,M3
is such a set of Hermitian matrices, then AM1 A−1,

AM2 A−1, AM3 A−1, is another such set, where A is
an arbitrary unitary matrix. This defines what is meant
by equivalence. The commutation relations (2.7) may
also be formulated as:

[J3, J±] = ±J± , [J+, J−] = 2J3 ,

J± = J1± iJ2 , J†+ = J− . (2.8)

The squared angular momentum

J2 = J2
1 + J2

2 + J2
3 = J− J++ J3(J3+1)

= J+ J−+ J3(J3−1) (2.9)

commutes with each Ji , and J3 is, by convention, taken
with J2 as a pair of commuting Hermitian operators to
be diagonalized.

Examples of matrices satisfying relations (2.7) are
provided by Ji → σi/2 [the 2 × 2 Hermitian Pauli ma-
trices defined in (2.1)] and Ji → Mi [the 3 × 3 matrices

defined in (2.4)], these latter matrices being equivalent
to those obtained from the matrices of the orbital angular
momentum operators for l = 1.

One could determine all Hermitian matrices solv-
ing (2.7) and (2.8) by using only matrix theory, but it
is customary in quantum mechanics to formulate the
problem using Hilbert space concepts appropriate to
that theory. Thus, one takes the viewpoint that the Ji
are linear Hermitian operators with an action defined in
a separable Hilbert space H such that Ji :H →H .

One then seeks to decompose the Hilbert space into
a direct sum of subspaces that are irreducible with re-
spect to this action; that is, subspaces that cannot be
further decomposed as a direct sum of subspaces that
all the Ji leave invariant (map vectors in the space into
vectors in the space). In this section, the solution of this
fundamental problem for angular momentum theory is
given. These results set the notation and phase conven-
tions for all of angular momentum theory, in all of its
varied realizations, and the relations are therefore some-
times referred to as standard. The method most often
used to solve the posed problem is called the method of
highest weights.

The solution of this problem is among the most im-
portant in quantum theory because of its generality and
applicability to a wide range of problems. The space H
can be written as a direct sum

H =
∑

j=0, 1
2 ,1,...

⊕ n jH j ,

each H j ⊥H j ′ , j �= j ′ , (2.10)
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Angular Momentum Theory 2.2 Abstract Angular Momentum 17

in which H j denotes a vector space of dimension 2 j+1
that is invariant and irreducible under the action of the
set of operators Ji , i = 1, 2, 3, and where the direct sum
is over all half integers j = 0, 1

2 , 1, . . . . There may be
multiple occurrences, n j in number, of the same space
H j for given j, or no such space, n j = 0, in the di-
rect sum. Abstractly, in so far as angular momentum
properties are concerned, each repeated space H j is
identical. Such spaces may, however, be distinguished
by their properties with respect to other physical ob-
servables, but not by the angular action of momentum
operators themselves. The result, (2.10), applies to any
physical system, no matter how complex, in which ro-
tational symmetry, hence SU(2) symmetry, is present,
even in situations of higher symmetry where SU(2) is
a subgroup. Indeed, the resolution of the terms in (2.10)
for various physical systems constitutes “spectroscopy”
in the broadest sense.

The characterization of the space H j with respect to
angular momentum properties is given by the following
results, where basis vectors are denoted in the Dirac
braket notation.
Orthonormal basis:

{| jm〉|m =− j,− j+1, . . . , j} . (2.11)

〈 jm′| jm〉 = δm′,m . (2.12)

Simultaneous eigenvectors:

J2| jm〉 = j( j+1)| jm〉 , J3| jm〉 = m| jm〉 .
(2.13)

Action of angular momentum operators:

J+| jm〉 = [( j−m)( j+m+1)]1/2| jm+1〉 ,
J−| jm〉 = [( j+m)( j−m+1)]1/2| jm−1〉 .

(2.14)

Defining properties of highest weight vector:

J+| jj〉 = 0 , J3| jj〉 = j| jj〉 .

Generation of general vector from highest weight:

| jm〉 =
(

( j+m)!
(2 j )!( j−m)!

)1/2

J j−m
− | jj〉 .

Necessary property of lowest weight vector:

J− | j,− j〉 = 0 , J3 | j,− j〉 = − j | j,− j〉 .

Operator in H corresponding to a rotation by angle ψ
about direction n̂ in R3:

TU(ψ,n̂) = exp(−iψn̂ · J) ,

n̂ · n̂= n2
1+n2

2+n2
3 = 1 ,

n̂ · J = n1 J1+n2 J2+n3 J3 ,

U(ψ, n̂)= exp(−iψn̂ ·σ/2)
= σ0 cos

(
1
2ψ

)
− i(n̂ ·σ) sin

(
1
2ψ

)

=
(

cos
( 1

2ψ
)− in3 sin

( 1
2ψ

)
(−in1−n2) sin

( 1
2ψ

)

(−in1+n2) sin
( 1

2ψ
)

cos
( 1

2ψ
)+ in3 sin

( 1
2ψ

)

)

,

0 ≤ ψ ≤ 2π, (2.15)

where σ0 denotes the 2 ×2 unit matrix.
Action of TU(ψ,n̂) on H j :

TU | jm〉 =
∑

m′
D j

m′m(U )| jm′〉 , (2.16)

in which U =U(ψ, n̂) and D j
m′m(U ) denotes a homoge-

neous polynomial of degree 2 j defined on the elements
uij =Uij(ψ, n̂) in row i and column j of the matrix
U(ψ, n̂) given by (2.15). The explicit form of this poly-
nomial is

D j
m′m(U )

= [( j+m)!( j−m)!( j+m′)!( j−m′)!] 1
2

×
∑

α

(u11)
α11(u12)

α12(u21)
α21(u22)

α22

α11!α12!α21!α22! . (2.17)

The notation α symbolizes a 2 × 2 array of nonnegative
integers with certain constraints:

α11 α12

α21 α22

j+m′

j−m′

j+m j−m

.

In this array the αij are nonnegative integers subject to
the row and column constraints (sums) indicated by the
(nonnegative) integers j±m, j±m′. Explicitly,

α11+α12 = j+m′ , α21+α22 = j−m′ ,
α11+α21 = j+m , α12+α22 = j−m .

The summation is over all such arrays. Any one of theαij
may serve as a single summation index if one wishes to
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18 Part A Mathematical Methods

eliminate the redundancy inherent in the square-array
notation. The form (2.17) is very useful for obtaining
symmetry relations for these polynomials (Sect. 2.3.6).
Unitary property on H :

〈TUΨ |TUΨ 〉 = 〈Ψ |Ψ 〉 , each Ψ ∈H .

Irreducible unitary matrix representation of SU(2):

(D j(U )) j−m′+1, j−m+1 = D j
m′m(U ) ,

m′ = j, j−1, . . . ,− j ; m = j, j−1, . . . ,− j ,
(2.18)

denotes the element in row j−m′ +1 and column
j−m+1. Then, dimension of D j(U )= 2 j+1 and

D j(U )D j(U ′)= D j(UU ′) ,
U ∈ SU(2) , U ′ ∈ SU(2) ,

(D j(U ))† = (D j(U ))−1 = D j(U†) .

Kronecker (direct) product representation:

D j1(U )× D j2(U )

is a (2 j1+1)(2 j2+1) dimensional reducible represen-
tation of SU(2). One can also effect the reduction of this
representation into irreducible ones by abstract methods.
The results are given in Sect. 2.7.

2.3 Representation Functions

2.3.1 Parametrizations
of the Groups SU(2) and SO(3,R)

The irreducible representations of the quantal rotation
group, SU(2), are among the most important quan-
tities in all of angular momentum theory: These are
the unitary matrices of dimension 2 j+1, denoted by
D j(U ), where this notation is used to signify that the
elements of this matrix, denoted D j

m′m(U ), are func-
tions of the elements uij of the 2 × 2 unitary unimodular
matrix U ∈ SU(2). It has become standard to enumer-
ate the rows and columns of these matrices in the order
j, j−1, . . . ,− j as read from top to bottom down the
rows and from left to right across the columns [see
also (2.18)]. These matrices may be presented in a va-
riety of parametrizations, all of which are useful. In
order to make comparisons between the group SO(3, R)
and the group SU(2), it is most useful to parametrize
these groups so that they are related according to the
two-to-one homomorphism given by (2.2).

The general parametrization of the group SU(2) is
given in terms of the Euler–Rodrigues parameters cor-
responding to points belonging to the surface of the unit
sphere S3 in R4,

α2
0+α2

1+α2
2+α2

3 = 1 . (2.19)

Each U ∈ SU(2) can be written in the form:

U(α0,α)=
(
α0− iα3 −iα1−α2

−iα1+α2 α0+ iα3

)

= α0σ0− iα ·σ . (2.20)

The R ∈ SO(3, R) corresponding to this U in the two-
to-one homomorphism given by (2.2) is:

R(α0,α)=
⎛

⎜⎜⎜
⎝

α2
0 +α2

1 −α2
2 −α2

3 2α1α2−2α0α3 2α1α3+2α0α2

2α1α2+2α0α3 α2
0 +α2

2 −α2
3 −α2

1 2α2α3−2α0α1

2α1α3−2α0α2 2α2α3+2α0α1 α2
0 +α2

3 −α2
1 −α2

2

⎞

⎟⎟⎟
⎠
.

(2.21)

The procedure of parametrization is implemented
uniformly by first parametrizing the points on the unit
sphere S3 so as to cover the points in S3 exactly once,
thus obtaining a parametrization of each U ∈ SU(2).
Equation (2.21) is then used to obtain the correspond-
ing parametrization of each R ∈ SO(3, R), where one
notes that R(−α0,−α)= R(α0,α). Because of this two-
to-one correspondence ±U→R, the domain of the
parameters that cover the unit sphere S3 exactly once
will cover the group SO(3, R) exactly twice. This is
taken into account uniformly by redefining the domain
for SO(3, R) so as to cover only the upper hemisphere
(α0 ≥ 0) of S3.

In the active viewpoint (reference frame fixed with
points being transformed into new points), an ar-
bitrary vector x = col(x1, x2, x3) ∈ R3 is transformed
to the new vector x′ = col

(
x′1, x′2, x′3

)
by the rule

x′ = Rx, or, equivalently, in terms of the Cartan ma-
trix: X ′ =UXU†. In the passive viewpoint, the basic
inertial reference system, which is taken to be a right-
handed triad of unit vectors (ê1, ê2, ê3), is transformed
by R to a new right-handed triad

(
f̂1, f̂2, f̂3

)
by the
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Angular Momentum Theory 2.3 Representation Functions 19

rule

f̂ j =
∑

i

Rij êi , i = 1, 2, 3 ,

so that êi · f̂ j = Rij . In this viewpoint, the coordinates
of one and the same point P undergo a redescription
under the change of frame. If the coordinates of P
are (x1, x2, x3) relative to the frame (ê1, ê2, ê3) and(
x′1, x′2, x′3

)
relative to the frame

(
f̂1, f̂2, f̂3

)
, then

x1ê1+ x2ê2+ x3ê3 = x′1 f̂1+ x′2 f̂2+ x′3 f̂3 ,

so that x′ = RT x.
Rotation about direction n̂ ∈ S2 by positive angle ψ
(right-hand rule):

(α0,α)=
(

cos
1

2
ψ, n̂ sin

1

2
ψ

)
, 0 ≤ ψ ≤ 2π ,

U(ψ, n̂)= exp

(
−i

1

2
ψn̂ ·σ

)
=

(
cos 1

2ψ− in3 sin 1
2ψ (−in1−n2) sin 1

2ψ

(−in1+n2) sin 1
2ψ cos 1

2ψ+ in3 sin 1
2ψ

)

,

R(ψ, n̂)= exp(−iψn̂ · M) , 0 ≤ ψ ≤ π
= I3− i sinψ(n̂ · M)− (n̂ · M)2(1− cosψ)

=
⎛

⎜
⎝

R11 R12 R13

R21 R22 R23

R31 R32 R33

⎞

⎟
⎠ ,

R11 = n2
1+

(
1−n2

1

)
cosψ ,

R21 = n1n2(1− cosψ)+n3 sinψ ,

R31 = n1n3(1− cosψ)−n2 sinψ ,

R12 = n1n2(1− cosψ)−n3 sinψ ,

R22 = n2
2+

(
1−n2

2

)
cosψ ,

R32 = n2n3(1− cosψ)+n1 sinψ ,

R13 = n1n3(1− cosψ)+n2 sinψ ,

R23 = n2n3(1− cosψ)−n1 sinψ ,

R33 = n2
3+

(
1−n2

3

)
cosψ .

The unit vector n̂ ∈ S2 can be further parametrized in
terms of the usual spherical polar coordinates:

n̂= (sin θ cosφ, sin θ sinφ, cos θ) ,

0 ≤ θ ≤ π , 0 ≤ φ < 2π .

Euler angle parametrization:

U(αβγ)= e−iασ3/2 e−iβσ2/2 e−iγσ3/2

=
⎛

⎝
e−iα/2 cos

(
1
2β

)
e−iγ/2 −e−iα/2 sin

(
1
2β

)
eiγ/2

eiα/2 sin
(

1
2β

)
e−iγ/2 eiα/2 cos

(
1
2β

)
eiγ/2

⎞

⎠ ,

0 ≤ α < 2π , 0 ≤ β ≤ π or 2π ≤ β ≤ 3π ,

0 ≤ γ < 2π ,

U(α, β+2π, γ)=−U(αβγ) ;
R(αβγ)= e−iαM3 e−iβM2 e−iγM3

=
⎛

⎜
⎝

cosα − sinα 0

sinα cosα 0

0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

⎞

⎟
⎠

×

⎛

⎜
⎝

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

⎞

⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

cosα cosβ cos γ − cosα cosβ sin γ cosα sinβ

− sinα sin γ − sinα cos γ

sinα cosβ cos γ − sinα cosβ sin γ sinα sinβ

+ cosα sin γ + cosα cos γ

− sinβ cos γ sinβ sin γ cosβ

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

0 ≤ α < 2π , 0 ≤ β ≤ π , 0 ≤ γ < 2π .

This matrix corresponds to the sequence of frame rota-
tions given by

rotate by γ about ê3 = (0, 0, 1) ,
rotate by β about ê2 = (0, 1, 0) ,
rotate by α about ê3 = (0, 0, 1) .

Equivalently, it corresponds to the sequence of frame
rotations given by

rotate by α about n̂1 = (0, 0, 1) ,
rotate by β about n̂2 = (− sinα, cosα, 0) ,

rotate by γ about n̂3 =
(cosα sinβ, sinα sinβ, cosβ) .

This latter sequence of rotations is depicted in Fig. 2.1
in obtaining the frame

(
f̂1, f̂2, f̂3

)
from (ê1, ê2, ê3).

The four complex numbers

(a, b, c, d)

= (α0+ iα3, iα1−α2, iα1+α2, α0− iα3)
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�

�
α

α

γ

n̂3
=

 f̂3

ê3
=

 n̂1

ê1

n̂2

f̂2

f̂1

γ

ê2

Fig. 2.1 Euler angles. The three Euler angles (αβγ ) are
defined by a sequence of three rotations. Reprinted with the
permission of Cambridge University Press, after [2.1]

are called the Cayley–Klein parameters, whereas the
four real numbers (α0,α) defining a point on the sur-
face of the unit sphere in four-space, S3, are known as
the Euler–Rodrigues parameters. The three ratios αi/α0
form the homogeneous or symmetric Euler parameters.

2.3.2 Explicit Forms
of Representation Functions

The general form of the representation functions is given
in its most basic and symmetric form in (2.17). This form
applies to every parametrization, it being necessary only
to introduce the explicit parametrizations of U ∈ SU(2)
or R ∈ SO(3, R) given in Sect. 2.3.1 to obtain the explicit
results given in this section. A choice is also made for the
single independent summation parameter in the α-array.
The notation for functions is abused by writing

D j(ω)= D j(U(ω)) ,

ω= set of parameters of U ∈ SU(2) .

Euler–Rodrigues representation
[
(α0,α) ∈ S3

] :
D j

m′m(α0,α)

= [( j+m′)!( j−m′)!( j+m)!( j−m)!] 1
2

×
∑

s

(α0− iα3)
j+m−s(−iα1−α2)

m′−m+s

( j+m− s)!(m′ −m+ s)!

×
(−iα1+α2)

s(α0+ iα3)
j−m′−s

s!( j−m′ − s)! . (2.22)

Quaternionic multiplication rule for points on the
sphere S3:

(
α′0,α′

)
(α0,α)=

(
α′′0,α′′

)
,

α′′0 = α′0α0−α′ ·α ,
α′′ = α′0α+α0α

′ +α′× α ;
D j(α′0,α′

)
D j(α0,α)= D j(α′′0,α′′

)
.

The (ψ, n̂) parameters:

α0 = cos
1

2
ψ , α= n̂ sin

1

2
ψ .

Euler angle parametrization:

D j
m′m(αβγ)= e−im′αd j

m′m(β)e
−imγ ,

d j
m′m(β)= 〈 jm′|e−iβJ2 | jm〉
= [( j+m′)!( j−m′)!( j+m)!( j−m)!] 1

2

×
∑

s

(−1)m
′−m+s

(
cos 1

2β
)2 j+m−m′−2s

( j+m− s)!s!(m′ −m+ s)!

×

(
sin 1

2β
)m′−m+2s

( j−m′ − s)! . (2.23)

Explicit matrices:

d
1
2 (β)=

⎛

⎜
⎝

cos
1

2
β − sin

1

2
β

sin
1

2
β cos

1

2
β

⎞

⎟
⎠ ,

d1(β)=

⎛

⎜⎜⎜⎜⎜
⎝

1+ cosβ

2

− sinβ√
2

1− cosβ

2
sinβ√

2
cosβ

− sinβ√
2

1− cosβ

2

sinβ√
2

1+ cosβ

2

⎞

⎟⎟⎟⎟⎟
⎠
.

Formal polynomial form (zij are indeterminates):

D j
m′m(Z)= [( j+m′)!( j−m′)!( j+m)!( j−m)!] 1

2

×
∑

α

2∏

i, j=1

(zij)
αij /(αij)! , (2.24)

D j(Z ′)D j(Z)= D j(Z ′Z) .

Boson operator form:
Put a j

i = zij(i, j = 1, 2) in (2.24). Let ā j
i denote the

Hermitian conjugate boson so that
[
ak

l , a
j
i

]
= 0 ,

[
āk

l , ā
j
i

]
= 0 ,

[
āk

l , a
j
i

]
= δk jδli .
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Angular Momentum Theory 2.3 Representation Functions 21

Then the boson polynomials are orthogonal in the boson
inner product:

〈0 | D j ′
µ′µ( Ā)D

j
m′m(A) | 0〉 = (2 j)!δ j ′ jδµ′m′δµm .

2.3.3 Relations to Special Functions

Jacobi polynomials (see Sect. 2.1.2):

d j
m′m(β)=

(
( j+m)!( j−m)!
( j+m′)!( j−m′)!

) 1
2
(

sin
1

2
β

)m−m′

×

(
cos

1

2
β

)m′+m

P(m−m′,m+m′)
j−m (cosβ) ,

d j
m′m(β)= (−1)m

′−md j
−m′,−m(β)

= (−1)m
′−md j

mm′(β)= d j
mm′(−β) .

Legendre polynomials:

Dl
m0(β)= (−1)m

(
(l−m)!
(l+m)!

) 1
2

Pm
l (cosβ)

=
(
(l+m)!
(l−m)!

) 1
2

P−m
l (cosβ) .

Spherical harmonics:

Ylm(βα)=
(

2l+1

4π

) 1
2

eimαdl
m0(β)

=
(

2l+1

4π

) 1
2

Dl∗
m0(αβγ) ,

Y∗
lm(βα)= (−1)mYl,−m(βα) .

Gegenbauer polynomials:

dl
m0(β)= (−1)m[(l+m)!(l−m)!] 1

2

×
(2m)!

m!
⎧
⎪⎩ sinβ

2

⎫
⎪⎭

m

C(m+1/2)
l−m (cosβ) ,

m ≥ 0 .

Solutions of Laplace’s equation in R4 (Sect. 2.5):

∇2
4 D j

m′m(x0, x)= 0 , (x0, x) ∈ R4 ,

∇2
4 =

3∑

µ=0

∂2

∂x2
µ

.

Replace the Euler–Rodrigues parameters (α0,α)

in (2.22) by an arbitrary point (x0, x) ∈ R4.

2.3.4 Orthogonality Properties

Inner (scalar) product:

(Ψ,Φ)=
∫

dΩΨ ∗(x)Φ(x) ,

dΩ = invariant surface measure for S3 ,
∫

S3

dΩ = 2π2 .

Spherical polar coordinate for S3:

(α0,α)=
(cosχ, cosφ sin θ sinχ, sinφ sin θ sinχ, cos θ sinχ) ,

0 ≤ θ ≤ π , 0 ≤ φ < 2π , 0 ≤ χ ≤ π ,
dΩ = dω sin2 χ dχ ,

dω= dφ sin θ ,

dθ = invariant surface measure for S2 ;
2π∫

0

dφ

π∫

0

dθ sin θ

×

π∫

0

dχ sin2 χ D j∗
m′m(α0,α)D

j ′
µ′µ(α0,α)

= 2π2

2 j+1
δ jj ′δm′µ′δmµ .

Coordinates (ψ, n̂) for S3:

(α0,α)=
(

cos
ψ

2
, n̂ sin

ψ

2

)
,

0 ≤ ψ ≤ 2π , n̂ · n̂= 1 ,

dΩ = dS(n̂) sin2 ψ

2

dψ

2
,

dS(n̂)= dω

for n̂= (sin θ cosφ, sin θ sinφ, cos θ) ,

∫
dS(n̂)

2π∫

0

dψ

2

(
sin
ψ

2

)2

D j∗
m′m(ψ, n̂)D

j ′
µ′µ(ψ, n̂)

= 2π2

2 j+1
δ jj ′δm′µ′δmµ ,
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Euler angles for S3 (SU(2)):

(α0,α)=
(

cos
β

2
cos

1

2
(γ +α), sin

β

2
sin

1

2
(γ −α),

sin
β

2
cos

1

2
(γ −α), cos

β

2
sin

1

2
(γ +α)

)
,

dΩ = 1

8
dαdγ sinβdβ , (2.25)

1

8

2π∫

0

dα

2π∫

0

dγ

π∫

0

dβ sinβD j∗
m′m(αβγ)D

j ′
µ′µ(αβγ)

+ 1

8

2π∫

0

dα

2π∫

0

dγ

3π∫

2π

dβ sinβD j∗
m′m(αβγ)D

j ′
µ′µ(αβγ)

= 2π2

2 j+1
δ jj ′δm′µ′δmµ . (2.26)

Euler angles for hemisphere of S3 (SO(3, R); j ′ and j
both integral):

2π∫

0

dα

2π∫

0

dγ

π∫

0

dβ sinβD j∗
m′m(αβγ)D

j ′
µ′µ(αβγ)

= 8π2

2 j+1
δ jj ′δm′µ′δmµ . (2.27)

Formal polynomials (2.24):
(

D j
m′m, D j ′

µ′µ

)
= (2 j )!δ jj ′δm′µ′δmµ ,

with inner product

(P, P′)= P∗
(
∂

∂Z

)
P′(Z)|Z=0 ,

where P∗ ( ∂
∂Z

)
is the complex conjugate polynomial P∗

of P in which each zij is replaced by ∂
∂zij

.
Boson polynomials:

〈
D j

m′m

∣∣∣D j ′
µ′µ

〉
= (2 j )!δ jj ′δm′µ′δmµ ,

with inner product 〈P|P′〉 = 〈0|P∗( Ā
)
P′(A)|0〉.

2.3.5 Recurrence Relations

Many useful relations between the representation func-
tions may be derived as special cases of general relations
between these functions and the WCG-coefficients given
in Sect. 2.7.1. The simplest of these are obtained from
the Kronecker reduction

D j × D
1
2 = D j+1/2⊕D j−1/2 .

Such relations are usually presented in terms of the Euler
angle realization of U , leading to the following relations
between the functions d j

m′,m(β):

( j−m+1)
1
2 cos

(
1

2
β

)
d j+1/2

m′−1/2,m−1/2(β)

+ ( j+m+1)
1
2 sin

(
1

2
β

)
d j+1/2

m′−1/2,m+1/2(β)

= ( j−m′ +1)
1
2 d j

m′m(β) ,

− ( j−m+1)
1
2 sin

(
1

2
β

)
d j+1/2

m′+1/2,m−1/2(β)

+ ( j+m+1)
1
2 cos

(
1

2
β

)
d j+1/2

m′+1/2,m+1/2(β)

= ( j+m′ +1)
1
2 d j

m′m(β) ,

( j+m)
1
2 cos

(
1

2
β

)
d j−1/2

m′−1/2,m−1/2(β)

− ( j−m)
1
2 sin

(
1

2
β

)
d j−1/2

m′−1/2,m+1/2(β)

= ( j+m′)
1
2 d j

m′m(β) ,

( j+m)
1
2 sin

(
1

2
β

)
d j−1/2

m′+1/2,m−1/2(β)

+ ( j−m)
1
2 cos

(
1

2
β

)
d j−1/2

m′+1/2,m+1/2(β)

= ( j−m′)
1
2 d j

m′m(β) .

Two useful relations implied by the above are:

[( j−m)( j+m+1)]
1
2 sinβ d j

m′,m+1(β)

+ [( j+m)( j−m+1)]
1
2 sinβ d j

m′,m−1(β)

= 2(m cosβ−m′)d j
m′m(β) ,

[( j+m)( j−m+1)]
1
2 d j

m′,m−1(β)

+ [
( j+m′)( j−m′ +1)

] 1
2 d j

m′−1,m(β)

= (m−m′) cot

(
1

2
β

)
d j

m′m(β) .

By considering

D j × D1 = D j+1⊕D j ⊕D j−1 ,

one can also readily derive the matrix elements of the
direction cosines specifying the orientation of the body-
fixed frame

(
f̂1, f̂2, f̂3

)
of a symmetric rotor relative to
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Angular Momentum Theory 2.3 Representation Functions 23

the inertial frame (ê1, ê2, ê3):

λµ,νΨ
j

m,m′ =
∑

j ′

(
2 j+1

2 j ′ +1

) 1
2

× C j1 j ′
mµm+µC j1 j ′

m′νm′+νΨ
j ′

m+µ,m′+ν ,

where the wave functions are those defined for integral j
by (2.37), for half-integral j by (2.36), and

λµ,ν = êµ · f̂ ∗ν =
(
D1
µ,ν

)∗
, µ, ν =−1, 0,+1 ;

ê+1 =−(ê1+ iê2)/
√

2 , ê0 = ê3 ,

ê−1 = (ê1− iê2)/
√

2 ,

f̂+1 =−( f̂1+ i f̂2
)
/
√

2 , f̂0 = f̂3 ,

f̂−1 =
(

f̂1− i f̂2
)
/
√

2 .

2.3.6 Symmetry Relations

Symmetry relations for the representation functions
D j

m′m(Z) defined by (2.24) are associated with the action
of a finite group G on the set M(2, 2) of complex 2 × 2
matrices: g : M(2, 2)→ M(2, 2), g ∈ G. Equivalently,
if Z ∈ M(2, 2) is parametrized by a setΩ of parameters
ω ∈Ω (parameter space), then g may be taken to act di-
rectly in the parameter space g :Ω→Ω. The action,
denoted �, of a group G = {e, g, g′, . . . } (e = identity)
on a set X = {x, x′, . . . } must satisfy the rules

g : X → X e� x = x, all x ∈ X ,

g′� (g� x)= (g′g)� x, all g′, g ∈ G, all x ∈ X .
(2.28)

Using · to denote the action of G on M(2, 2) and � to
denote the action of G on Ω, one has the relation:

(g · Z)(ω)= Z(g−1�ω) .

Only finite subgroups G of the unitary group U(2)
(group of 2 × 2 unitary matrices) are considered here:
G ⊂U(2).

Generally, when G acts on M(2, 2), it effects
a unitary linear transformation of the set of functions{

D j
m′m

}
( j fixed) defined over Z ∈ M(2, 2). For certain

groups G, or for some elements of G, a single function
D j
µ′µ ∈

{
D j

m′m
}

occurs in the transformation, so that
(

g ·D j
m′m

)
(Z)= D j

m′m(g
−1�Z)

= gm′m D j
µ′µ(Z) , (2.29)

(µ′µ)
∈ {(λ′m′, λm), (λm, λ′m′)|λ′ = ±1, λ=±1} ,

where gm′m is a complex number of unit modulus. Re-
lation (2.29) is called a symmetry relation of D j

m′m with
respect to g. Usually not all elements in G correspond
to symmetry relations. In a symmetry relation, the ac-
tion of the group is effectively transferred to the discrete
quantum labels themselves:

g : m′ → µ′ = m′(g) ,
m → µ= m(g) . (2.30)

In terms of a parametrization Ω of M(2, 2), rela-
tion (2.29) is written

(
gD j

m′m

)
(ω)= D j

m′m(g
−1�ω)

= gm′m D j
µ′µ(ω) . (2.31)

In practice, action symbols such as · and � are often
dropped in favor of juxtaposition, when the context is
clear. Moreover the set of complex matrices M(2, 2)
may be replaced by U(2) or SU(2) whenever the action
conditions (2.28) are satisfied. Relations (2.29–2.31) are
illustrated below by examples.

There are several finite subgroups of interest with
various group-subgroup relations between them:

1. Pauli group:

P = {σµ,−σµ, iσµ,−iσµ|µ= 0, 1, 2, 3} ,
|P| = 16 .

Each element of this group is an element of U(2). The
action of the group P may therefore be defined on
the group U(2) by left and right actions as discussed
in Sect. 2.4.1.

2. Symmetric groupS4:

S4 = {p|p is a permutation of the four Euler–
Rodrigues parameters (α0, α1, α2, σ3)},

∣∣ S4
∣∣= 24.

Points in S3 are mapped to distinct points in S3;
hence, one can take Z ∈ SU(2), and define the group
action directly from U(α0,α) in (2.20). It is simpler,
however, to define the action of the group directly on
the representation functions (2.22). Not all elements
of this group define a symmetry in the sense defined
by (2.29) (see below).

3. Abelian group T :

T = {(t0, t1, t2, t3)| each tµ =±1} ,
|T | = 16 .

Group multiplication is component-wise multipli-
cation and the identity is (1,1,1,1). The action
of an element of T is defined directly on the
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Euler–Rodrigues parameters by component-wise
multiplication, thus mapping points in S3 to points
in S3; hence, one can take Z ∈ SU(2). This group is
isomorphic to the direct product group S2 × S2 × S2
× S2, S2 = symmetric group on two distinct objects.

4. Group G:

G = 〈R,C,T ,K〉, |G| = 32 ,

where R,C,T ,K denote the operations of row in-
terchange, column interchange, transposition, and
conjugation (see below) of an arbitrary matrix.

Z =
(

a b

c d

)

The notation 〈 〉 designates that the enclosed ele-
ments generate G.

It is impossible to give here all the interrelationships
among the groups defined in (1)–(4). Instead, some rela-
tions are listed as obtained directly from either D j

m′m(Z)
defined by (2.24) or D j

m′m(α0,α) defined by (2.22). The
actions of the groups T and G defined in (3) and (4) are
fully given.
Abelian group T of order 16:

Generators:

T = 〈t0, t1, t2, t3〉 , t0 = (−1, 1, 1, 1) ,

t1 = (1,−1, 1, 1) , t2 = (1, 1,−1, 1) ,

t3 = (1, 1, 1,−1) .

Group action:

t ·a = (t0α0, t1α1, t2α2, t3α3) ,

each t = (t0, t1, t2, t3) ∈ T ,

each a = (α0, α1, α2, α3) ∈ S3,

(tF)(a)= F(t ·a) ,
t0 D j

m′m = (−1)m
′−m D j

−m−m′ ,

t1 D j
m′m = (−1)m

′−m D j
mm′ ,

t2 D j
m′m = D j

mm′ ,

t3 D j
m′m = D j

−m−m′ .

Group G of order 32:
Generators:

G = 〈R,C,T ,K〉 ,

Generator actions:

(RF)

(
a b

c d

)

= F

(
c d

a b

)

,
row

interchange

(CF)

(
a b

c d

)

= F

(
b a

d c

)

,
column

interchange

(T F)

(
a b

c d

)

= F

(
a c

b d

)

, transposition

(KF)

(
a b

c d

)

= F

(
d −c

−b a

)

, conjugation

Subgroup H:

H = 〈R,C,T 〉
= {1,R,C,T ,RC = CR,T R = CT ,T C

= RT,RCT }

with relations in H given by

R2 = C2 = T 2 = 1 ,

T RC = T CR =RCT = CRT ,

RT C = CT R = T .

Adjoining the idempotent element K to H gives the
group G of order 32:

G = {H, HK, HKR, HKRK} .

Symmetry relations:

RD j
m′m = D j

−m′m ,

CD j
m′m = D j

m′−m ,

T D j
m′m = D j

mm′ ,

K D j
m′m = (−1)m

′−m D j
−m′−m . (2.32)

These function relations are valid for D j
m′m defined over

the arbitrary matrix Z defined by (2.24). They are also
true for Z =U ∈ SU(2), but now the operations R and
C change the sign of the determinant of the matrix Z so
that the transformed matrix no longer belongs to SU(2).
It does, however, belong to U(2), the group of all 2 × 2
unitary matrices. The special irreducible representation
functions of U(2) defined by (2.24),

D j
m′m(U ) , U ∈U(2) ,
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Angular Momentum Theory 2.4 Group and Lie Algebra Actions 25

possess each of the 32 symmetries corresponding to the
operations in the group G. [There exist other irreducible
representations of U(2), involving det U .] The opera-
tion K is closely related to complex conjugation, since
for each U ∈U(2),U = (uij), one can write

U∗ = (det U )−1

(
u22 −u21

−u12 u11

)

,

(
K D j

m′m

)
(U )= (det U )2 j D j

m′m(U
∗)

= (det U )2 j D j∗
m′m(U )

= (−1)m
′−m D j

−m′−m(U ) . (2.33)

Relations (2.32) and (2.33) are valid in an arbi-
trary parametrization of U ∈ U(2). In terms of the
parametrization

U(χ, α0,α)= eiχ/2U(α0,α) , 0 ≤ χ ≤ 2π ,

where U(α0,α) ∈ SU(2) is the Euler–Rodrigues
parametrization, the actions of R, C, T , and K cor-
respond to the following transformations in parameter
space:

R : χ→ χ+π, (α0, α1, α2, α3)

→ (−α1, α0,−α3, α2) ,

C : χ→ χ+π, (α0, α1, α2, α3)

→ (−α1, α0, α3,−α2) ,

T : χ→ χ, (α0, α1, α2, α3)→ (α0, α1,−α2, α3) ,

C : χ→ χ, (α0, α1, α2, α3)

→ (α0,−α1, α2,−α3) .

The new angle χ ′ = χ+π is to be identified with the
corresponding point on the unit circle so that these map-
pings are always in the parameter space, which is the
sphere S3 together with the unit circle forχ. Observe that
the following identities hold for functions over SU(2);
hence, over U(2):

C = Tt1 Tt3 , T = Tt2 .

Abelian subgroup of S4:
Generators:
K = 〈(0, 3), (1, 2)〉, where (0, 3) and (1, 2) denote

transpositions in S4, |K | = 4.
Group action in parameter space:

(0, 3)(α0, α1, α2, α3)= (α3, α1, α2, α0) ,

(1, 2)(α0, α1, α2, α3)= (α0, α2, α1, α3) .

Symmetry relations:

(0, 3)D j
m′m = (−i)m

′+m D j
−m−m′ ,

(1, 2)D j
m′m = (−i)m

′−m D j
mm′ .

Diagonal subgroupΣ of the direct product group P × P
(P = Pauli group):

Group elements:

Σ = {(σ, σ)|σ ∈ P} , |Σ| = 16 .

Group action:

(σ, σ) :U → σUσT , each σ ∈ P ,

[(σ, σ)F] (U )= F(σTUσ) .

Example: σ = iσ2:

(σ, σ) : (α0, α1, α2, α3)→ (α0,−α1, α2,−α3) ,

[(σ, σ)F] (α0, α1, α2, α3)= F(α0,−α1, α2,−α3) ,

(σ, σ)= t1t2 on functions over U(2) .

The relations presented above barely touch on
the interrelations among the finite groups introduced
in (1)–(4). Symmetry relations (2.32) and (2.33), how-
ever, give the symmetries of the d j

m′m(β) given
in Sect. 2.3.3 in the Euler angle parametrization. In gen-
eral, it is quite tedious to present the above symmetries in
terms of Euler angles, with χ adjoined when necessary,
because the Euler angles are not uniquely determined by
the points of S3.

2.4 Group and Lie Algebra Actions

The concept of a group acting on a set is funda-
mental to applications of group theory to physical
problems. Because of the unity that this notion brings
to angular momentum theory, it is well worth a brief
review in a setting in which a matrix group acts on
the set of complex matrices. Thus, let G ⊆ GL(n,C)

and H ⊆ GL(m,C) denote arbitrary subgroups, respec-
tively, of the general linear groups of n × n and m × m
nonsingular complex matrices, and let M(n,m) denote
the set of n ×m complex matrices. A matrix Z ∈ M(n,m)
has row and column entries

(
zαi
)
, i = 1, 2, . . . , n;

α= 1, 2, . . . ,m.
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2.4.1 Matrix Group Actions

Left and right translations of Z ∈ M(n,m) :
Lg Z = gZ , each g ∈ G , each Z ∈ M(n,m) ,

Rh Z = ZhT , each h ∈ H , each Z ∈ M(n,m) .

(T denotes matrix transposition.)
Left and right translations commute:

Z ′ = Lg(Rh Z)= Rh(Lg Z) , each g ∈ G, h ∈ H ,

Z ∈ M(n,m) .

Equivalent form as a transformation on z ∈ Cnm :

z′ = (g × h)z ,

where × denotes the direct product of g and h; the column
matrix z (resp., z′) is obtained from the columns of Z
(resp., Z ′), zα, α= 1, 2, . . . ,m, of the n × m matrix Z
as successive entries in a single column vector z ∈ Cnm .
Left and right translations in function space:

(Lg f )(Z)= f(gT Z) , each g ∈ G ,

(Rh f )(Z)= f(Zh) , each h ∈ H ,

where f(Z)= f
(
zαi
)
, and the commuting property holds

for all well-defined functions f :

Lg(Rh f )=Rh(Lg f ) .

2.4.2 Lie Algebra Actions

Lie algebra of left and right translations:

(DX f )(Z)= i
d

dt
f
(

e−itXT
Z
)
|t=0 ,

(DY f )(Z)= i
d

dt
f
(

Z e−itY
)
|t=0 ;

DX = Tr
(
ZT X∂/∂Z

)
, each X ∈ L(G) ,

DY = Tr
(
YT ZT∂/∂Z

)
, each Y ∈ L(H) ,

L(G)= Lie algebra of G ,

L(H)= Lie algebra of H .

Linear derivations:

DαX+βX ′ = αDX +βDX ′ , α, β ∈ C ,

[DX , DX ′ ] = D[X,X ′] ,

DY obeys these same rules.
Commuting property of left and right derivations:

[
DX , DY ]= 0 , X ∈ L(G) , Y ∈ L(H ) .

Basis set:

DX =
n∑

i, j=1

xij Dij , X = (xij) ,

DY =
m∑

α,β=1

yαβDαβ , Y = (yαβ) ,

Dij =
m∑

α=1

zαi
∂

∂zαj
,

Dαβ =
n∑

i=1

zαi
∂

∂zβi
.

Commutation rules:

[Dij , Dkl] = δ jk Dil − δil Dk j ,

[Dαβ, Dγε] = δβγ Dαε− δαεDγβ ,

[Dij , Dαβ] = 0 ,

where i, j,k, l=1,2, . . . , n andα,β,γ, ε= 1, 2, . . . ,m.
The operator sets {Dij} and {Dαβ} are realizations
of the Weyl generators of GL(n,C) and GL(m,C),
respectively.

2.4.3 Hilbert Spaces

Space of polynomials with inner product:

(P, P′)= P∗(∂/∂Z)P′(Z)|Z=0 .

Bargmann space of entire functions with inner product:

〈F, F′〉 =
∫

F∗(Z)F′(Z)dµ(Z) ,

dµ(Z)= π−nm exp

⎛

⎝−
∑

i,α

zα∗i zαi

⎞

⎠
∏

i,α

dxαi dyαi ,

zαi = xαi + iyαi , i = 1, 2, . . . , n ; α= 1, 2, . . . ,m .

Numerical equality of inner products:

(P, P′)= 〈P, P′〉 .

2.4.4 Relation
to Angular Momentum Theory

Spinorial Realization of Sects. 2.4.2 and 2.4.3:

G = SU(2) , H = (1) , Z ∈ M(2, 1) ,

z = col(z1, z2) ,

X = set of 2 × 2 traceless, Hermitian matrices,

(RU f )(z)= f(UTz) ,

Dσi/2 = (zTσi∂/∂z)/2 ,
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J± = Dσ1/2± iDσ2/2 , J3 = Dσ3/2 ,

J+ = z1∂/∂z2 , J− = z2∂/∂z1 ,

J3 = (1/2)(z1∂/∂z1− z2∂/∂z2) ,

(P, P′)= P∗(∂/∂z1, ∂/∂z2)P(z1, z2)|z1=z2=0 .

Orthonormal basis:

Pjm(z1, z2)= z j+m
1 z j−m

2 /[( j+m)!( j−m)!] 1
2 ,

j = 0, 1/2, 1, 3/2, . . . ; m = j, j−1, . . . ,− j .

Standard action:

J2 Pjm(z)= j( j+1)Pjm(z) ,

J3 Pjm(z)= m Pjm(z) ,

J±Pjm(z)= [( j∓m)( j±m+1)] 1
2 Pj,m±1(z) .

Group transformation:

(RU Pjm)(z)=
∑

m′
D j

m′m(U )Pjm′(z) ,

where the representation functions are given by (2.17).

The 2-Spinorial Realization of Sects. 2.4.2
and 2.4.3:

G = H = SU(2) , Z ∈ M(2, 2) ,

Z = [
z1z2] , zα = col

(
zα1 zα2

)
,

X = Y = set of 2 × 2 traceless, Hermitian matrices ,

(RU f )(Z)= f(UT Z) , (LV f )(Z)= f(ZV ) ,

U, V ∈ SU(2) ,

Dσi/2 = Tr(ZTσi∂/∂Z)/2 ,

Dσi/2 = Tr(σi ZT∂/∂Z)/2 .

M± = Dσ1/2± iDσ2/2 , M3 = Dσ3/2 ,

K± = Dσ1/2± iDσ2/2 , K3 = Dσ3/2 ,

M+ =
2∑

α=1

zα1∂/∂z
α
2 , M− =

2∑

α=1

zα2∂/∂z
α
1 ,

M3 = 1

2

2∑

α=1

(
zα1∂/∂z

α
1 − zα2∂/∂z

α
2

)
,

K+ =
2∑

i=1

z1
i ∂/∂z

2
i , K− =

2∑

i=1

z2
i ∂/∂z

1
i ,

K3 = 1

2

2∑

i=1

(
z1

i ∂/∂z
1
i − z2

i ∂/∂z
2
i

)
.

Mutual commutativity of Lie algebras:

[Mi , K j ] = 0 , i, j = 1, 2, 3 .

Inner product:

(P, P′)= P∗(Z)P′(∂/∂Z)|Z=0 ,

Orthogonal basis (2.24):

D j
mm′(Z) , j = 0, 1/2, 1, 3/2, . . . ,

m = j, j−1, . . . ,− j ;
m′ = j, j−1, . . . ,− j ;
(

D j
mm′ , D j ′

µµ′
)
= (2 j )!δ jj ′δmµδm′µ′ .

Equality of Casimir operators:

M2 = K2 = M2
1 +M2

2 +M2
3 = K2

1 +K2
2 +K2

3 .

Standard actions:

M2 D j
mm′(Z)= K2 D j

mm′(Z)= j( j+1)D j
mm′(Z) ,

M3 D j
mm′(Z)= m D j

mm′(Z) ,

K3 D j
mm′(Z)= m′D j

mm′(Z) ,

M±D j
mm′(Z)= [( j∓m)( j±m+1)] 1

2 D j
m±1,m′(Z) ,

K±D j
mm′(Z)= [( j∓m′)( j±m′ +1)] 1

2

× D j
m,m′±1(Z) .

Special values:

D j

(
1 0

0 1

)

= I2 j+1 = unit matrix ,

D j
mm′

(
z1 0

z2 0

)

= δ jm′ Pjm(z1, z2) ,

D j
mm′

(
0 z1

0 z2

)

= δ jm Pjm′(z1, z2) ,

D j
mm′

(
z1 0

0 z2

)

= δmm′ z j+m
1 z j−m

2 ,

D j
jj(Z)=

(
z1

1

)2 j
.
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Symmetry relation:
[

D j(Z)
]T = D j(ZT) .

Generation from highest weight:

D j
mm′(Z)=

(
( j+m)!

(2 j )!( j−m)! ×
( j+m′)!

(2 j )!( j−m′)!
) 1

2

× M j−m
− K j−m′

− D j
jj(Z) .

Generating functions:

(xT Z y)2 j/(2 j )! =
∑

mm′
Pjm(x)D

j
mm′(Z)Pjm′( y) ,

exp(txT Z y)=
∑

j

t2 j
∑

mm′
Pjm(x)D

j
mm′(Z)Pjm′( y) ,

x = col(x1x2) , y = col(y1 y2) ,

Z = (
zαi
)
, i, α= 1, 2 ; all indeterminates .

2.5 Differential Operator Realizations of Angular Momentum

Differential operators realizing the standard commu-
tation relations (2.7) and (2.8) can be obtained from
the 2-spinorial realizations given in Sect. 2.4.4 by
specializing the matrix Z to the appropriate unitary uni-
modular matrix U ∈ SU(2) and using the chain rule
of elementary calculus. Similarly, one obtains the ex-
plicit functions D j

mm′ simply by substituting for Z the
parametrized U in (2.24). This procedure is used in this
section to obtain all the realizations listed. The notations
M = (M1,M2,M3) and K = (K1, K2, K3) and the as-
sociated M± and K± refer to the differential operators
given by the 2-spinorial realization now transformed to
the parameters in question.
Euler angles with Z =U(αβγ) (Sect. 2.3.1):

M3 = i∂/∂α , K3 = i∂/∂γ ,
1

2

(
eiαM+− e−iαM−

)

= 1

2

(
e−iγ K−− eiγ K+

)= ∂

∂β
,

1

2

(
eiαM++ e−iαM−

)

=− (cotβ)M3+ (sinβ)−1 K3 ,

1

2

(
e−iγ K−+ eiγ K+

)= (cotβ) K3− (sinβ)−1 M3 ,

M+ = e−ia[∂/∂β− (cotβ)M3+ (sinβ)−1 K3] ,
M− = eiα[−∂/∂β− (cotβ)M3+ (sinβ)−1 K3] ,
K+ = e−iγ [−∂/∂β+ (cotβ) K3− (sinβ)−1 M3] ,
K− = eiγ [∂/∂β+ (cotβ) K3− (sinβ)−1 M3] .

Euler angles with Z =U∗(αβγ) [replace i by −i in the
above relations]:

M3 =−i∂/∂α , K3 =−i∂/∂γ , (2.34)

M± = e±iα
[
±∂/∂β− (cotβ)M3+ (sinβ)−1K3

]
,

K± = e±iγ
[
∓∂/∂β+ (cotβ)K3− (sinβ)−1 M3

]
.

Since D j(U∗)= (D j(U ))∗, which is denoted
D j∗(U ), these operators have the standard action
on the complex conjugate functions D j∗

mm′(U ).
Quaternionic variables. (x0, x) ∈ R4:

(
x′0,x′

)
(x0, x)= (

x′0x0− x′· x, x′0x+ x0x′+ x′× x
) ;

Z =
(

z11 z12

z21 z22

)

=
(

x0− ix3 −ix1− x2

−ix1+ x2 x0+ ix3

)

;

∂

∂Z
=
(
∂/∂z11 ∂/∂z12

∂/∂z21 ∂/∂z22

)

= 1

2

(
∂/∂x0+ i∂/∂x3 i∂/∂x1−∂/∂x2

i∂/∂x1+∂/∂x2 ∂/∂x0− i∂/∂x3

)

;

Mi = 1

2
Tr
(
ZTσi∂/∂Z

)
, Ki = 1

2
Tr
(
σi ZT∂/∂Z

)
.

(The form of ∂/∂Z is determined by the require-
ment (∂/∂zij)zlk = δilδ jk; for example, 1

2 (∂/∂x0 +
i∂/∂x3)(x0− ix3)= 1).

Define the six orbital angular momentum operators
in R4 by

L jk=−i(x j∂/∂xk − xk∂/∂x j) , j<k = 0, 1, 2, 3 ,

which may be written as the orbital angular momentum
L in R3 together with the three operators A given by

L =−ix ×∇ , L1 = L23 ,

L2 = L31 , L3 = L12 ,

A= (A1, A2, A3)= (L01, L02, L03) .

Then, we have the following relations:

K1 = (L1− A1)/2 , K2 = (L2− A2)/2 ,

K3 = (L3− A3)/2 ;
M1 =−(L1+ A1)/2 , M2 = (L2+ A2)/2 ,

M3 =−(L3+ A3)/2 .
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Commutation rules:

[M j , Kk] = 0 , j, k = 1, 2, 3 ,

M × M= iM , K × K = iK ,

L × L = iL , A× A= iL ,

[L j , Ak] = ie jkl Al ,

where e jkl = 1 for j, k, l an even permutation of 1, 2, 3;
e jkl =−1 for an odd permutation of 1, 2, 3; e jkl = 0,
otherwise.

The M= (M1,M2,M3) and K = (K1, K2, K3) op-
erators have the standard action given in Sect. 2.2 on the
functions D j

mm′(x0, x) defined by (2.22) (Replace α0 by
x0 and α by x). Additional relations:

K2 = M2 =−1

4
R2∇2

4 +K2
0 +K0 ,

R2 = x2
0 + x · x ,

∇2
4 =

∂2

∂x2
0

+∇2 =
∑

µ

∂2

∂x2
µ

,

K0 = 1

2
Tr

(
zT ∂

∂Z

)
= 1

2

3∑

µ=0

xµ
∂

∂xµ
;

K0 D j
mm′(x0, x)= jD j

mm′(x0, x) ,

∇2
4 D j

mm′(x0, x)= 0 ;

(M1,−M2,M3)=
(
∑

i

Ri1 Ki ,
∑

i

Ri2 Ki ,
∑

i

Ri3 Ki

)

,

Rij =
(
x2

0 − x · x
)
δij −2eijkx0xk +2xi x j

x2
0 + x · x

,

each (x0, x) ∈ R4 .

The relation Rij = Rij(x0, x) is a mapping of all points
of four-space R4 (except the origin) onto the group of
proper, orthogonal matrices; for x2

0 + x · x = 1, it is just
the Euler–Rodrigues parametrization, (2.21).

The operators R= (−M1,M2,−M3) and K =
(K1, K2, K3) have the standard action on (−1) j+m

D j
−m,m′ (x0, x), so that the orbital angular momentum in

R3 is given by the addition L = R+K . Thus, one finds:

∑

mm′
C jjL

mm′M(−1) j+m D j
−mm′(x0, x)

= A2 j,L R2 j−LYLM(x)C
(L+1)
2 j−L (x0/R) ,

A2 j,L = (2i)L(−1)2 j L!
(

4π(2 j− L)!
(2 j+ L+1)!

) 1
2

.

2.6 The Symmetric Rotor and Representation Functions

The rigid rotor is an important physical object and its
quantum description enters into many physical theories.
This description is an application of angular momentum
theory with subtleties that need to be made explicit. It
is customary to describe the classical rotor in terms of
a right-handed triad of unit vectors

(
f̂1, f̂2, f̂3

)
fixed in

the rotor and constituting a principal axes system located
at the center of mass. The instantaneous orientation of
this body-fixed frame relative to a right-handed triad
of unit vector (ê1, ê2, ê3) specifying an inertial frame,
also located at the center of mass, is then given, say, in
terms of Euler angles (one could use for this purpose
any parametrization of a proper, orthogonal matrix). For
Euler angles, the relationship is

f̂ j =
∑

i

Rij(αβγ)êi . (2.35)

The Hamiltonian for the rigid rotor is then of the form

H = AP 2
1 + BP 2

2 +CP 2
3 ,

where A, B, and C are physical constants related to the
reciprocals of the principal moments of inertia, and the
angular momenta P j ( j = 1, 2, 3) are the components of
the total angular momentum J referred to the body-fixed
frame:

P j = f̂ j ·J =
∑

i

Rij(αβγ)Ji ,

J = ê1J1+ ê2J2+ ê3J3 .

For the symmetric rotor (taking A= B), the Hamiltonian
can be written in the form

H = aP 2+bP 2
3 .

It is in the interpretation of this Hamiltonian for quan-
tum mechanics that the subtleties already enter, since
the nature of angular momentum components referred
to a moving reference system must be treated correctly.
Relation (2.35) shows that the body-fixed axes cannot
commute with the components of the total angular mo-
mentum J referred to the frame (ê1, ê2, ê3). A position

Part
A

2
.6



30 Part A Mathematical Methods

vector x and the orbital angular momentum L, with com-
ponents both referred to an inertial frame, satisfy the
commutation relations [L j , xk] = ie jkl xl , and for a rigid
body thought of as a collection of point particles rotating
together, the same conditions are to be enforced. Rela-
tive to the body-fixed frame, the vector x is expressed
as

∑

k

xk êk =
∑

h

ah f̂h , each ah = constant ,

xk =
∑

h

ah Rkh(αβγ) .

The direction cosines Rkh = Rkh(αβγ)= êk · f̂h and the
physical total angular momentum components referred
to an inertial frame must satisfy

[
J j , Rkh

]= ie jkl Rlh , each h = 1, 2, 3 ,

in complete analogy to [L j , xk] = ie jkl xl .
The description of the angular momentum associated

with a symmetric rigid rotor and the angular momentum
states is summarized as follows [compare (2.35)]:
Physical total angular momentum J with components
referred to (ê1, ê2, ê3):

J1 = i cosα cotβ
∂

∂α
+ i sinα

∂

∂β
− i

cosα

sinβ

∂

∂γ
,

J2 = i sinα cotβ
∂

∂α
− i cosα

∂

∂β
− i

sinα

sinβ

∂

∂γ
,

J3 =−i
∂

∂α
.

Physical angular momentum J with components re-
ferred to

(
f̂1, f̂2, f̂3

)
:

P1 =−i cos γ cotβ
∂

∂γ
− i sin γ

∂

∂β
+ i

cos γ

sinβ

∂

∂α
,

P2 = i sin γ cotβ
∂

∂γ
− i cos γ

∂

∂β
− i

sin γ

sinβ

∂

∂α
,

P3 =−i
∂

∂γ
.

Standard commutation of the Ji :

[Ji ,J j ] = iJk , i, j, k cyclic .

Ji can stand to either side:

P j =
∑

i

Rij(αβγ)Ji , Ji =
∑

i

Ji Rij(αβγ) .

The famous Van Vleck factor of −i in the commutation
of the Pi :

[Pi ,P j ] = −iPk , i, j, k cyclic .

Mutual commutativity of the J j and Pi :

[Pi ,J j ] = 0 , i, j = 1, 2, 3 .

Same invariant (squared) total angular momentum:

P 2
1 +P 2

2 +P 2
3 = J2

1 +J2
2 +J2

3 = J2

=− csc2 β

(
∂2

∂α2
+ ∂2

∂γ 2
−2 cosβ

∂2

∂α∂γ

)

− ∂2

∂β2 − cotβ
∂

∂β
.

Standard actions:

J2 D j∗
mm′(αβγ)= j( j+1)D j∗

mm′(αβγ) ,

J3 D j∗
mm′(αβγ)= m D j∗

mm′(αβγ) ,

P3 D j∗
mm′(αβγ)= m′D j∗

mm′(αβγ) ;
J±D j∗

mm′(αβγ)= [( j∓m)( j±m+1)] 1
2

× D j∗
m±1,m′(αβγ) ,

(P1− iP2)D
j∗
mm′(αβγ)= [( j−m′)( j+m′ +1)] 1

2

× D j∗
m,m′+1(αβγ) ,

(P1+ iP2)D
j∗
mm′(αβγ)= [( j+m′)( j−m′ +1)] 1

2

× D j∗
m,m′−1(αβγ) .

Normalized wave functions:
Integral or half-integral j (SU(2) solid body):
〈

αβγ

∣∣∣∣
j

mm′

〉

=
√

2 j+1

2π2
D j∗

mm′(αβγ) , (2.36)

with inner product

〈F|F′〉 =
∫

dΩ 〈αβγ |F〉∗〈αβγ |F′〉 ,
where dΩ is defined by (2.25) and the integration
extends over all α, β, γ given by (2.26).

Integral j (collection of “rigid” point particles):

Ψ
j

mm′(αβγ)=
√

2 j+1

8π2 D j∗
mm′(αβγ) , (2.37)

with inner product

(Ψ,Ψ ′)=
2π∫

0

dα

π∫

0

dβ sinβ

2π∫

0

dγ F∗(αβγ)F′(αβγ) .

The concept of a solid (impenetrable) body is conceptu-
ally distinct from that of a collection of point particles
moving collectively together in translation and rotation.
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2.7 Wigner–Clebsch–Gordan and 3-j Coefficients
Wigner–Clebsch–Gordan (WCG) coefficients (also
called vector coupling coefficients) enter the theory
of angular momentum in several ways: (1) as the co-
efficients in the real, orthogonal matrix that reduces
the Kronecker product of two irreducible represen-
tations of the quantal rotation group into a direct
sum of irreducibles; (2) as the coupling coefficients
for constructing basis states of sharp angular momen-
tum in the tensor product space from basis states of
sharp angular momentum spanning the two constituent
spaces; (3) as purely combinatoric objects in the ex-
pansion of a power of a 3 × 3 determinant; and (4) as
coupling coefficients in the algebra of tensor opera-
tors. These perspectives are intimately connected, but
have a different focus: the first considers the group
itself to be primary and views the Lie algebra as
the secondary or derived concept; the second consid-
ers the Lie algebra and the construction of the vector
spaces that carry irreducible representations as pri-
mary, and views the representations carried by these
spaces as derived quantities; the third is a mathe-
matical construction, at first seeming almost empty
of angular momentum concepts, yet the most reveal-
ing in showing the symmetry and other properties
of the WCG-coefficients; and the fourth is the nat-
ural extension of (2) to operators, recognizing that
the set of mappings of a vector space into itself is
also a vector space. The subject of tensor opera-
tor algebra is considered in the next section because
of its special importance for physical applications.
This section summarizes formulas relating to the first
three viewpoints, giving also the explicit mathemat-
ical expression of the coefficients in their several
forms.

Either viewpoint, (1) or (2), may be taken as an
interpretation of the Clebsch–Gordan series, which ex-
presses abstractly the reduction of a Kronecker product
of matrices (denoted ×) into a direct sum (denoted⊕) of
matrices:

[ j1]× [ j2] =
j1+ j2∑

j=| j1− j2|
⊕[ j]

= [| j1− j2|]⊕ [| j1− j2|+1]⊕ · · ·⊕ [ j1+ j2] .

(2.38)

Given two angular momenta j1 ∈ {0, 1
2 , 1, . . . } and

j2 ∈ {0, 1
2 , 1, . . . }, the Clebsch–Gordan (CG) series

also expresses the rule of addition of two angular

momenta:

j = j1+ j2, j1+ j2−1, . . . , | j1− j2| .
The integers ε j1 j2 j defined by

ε j1 j2 j =

⎧
⎪⎨

⎪⎩

1 , for j1, j2, j satisfying
the CG-series rule

0 , otherwise

, (2.39)

are useful in many relations between angular momentum
quantities. The notation ( j1 j2 j ) is used to symbolize the
CG-series relation between three angular momentum
quantum numbers.

The representation function and Lie algebra inter-
pretations of the CG-series (2.38) are, respectively:

C(D j1 × D j2)CT =
∑

j

⊕ε j1 j2 j D j ,

C
(

J ( j1)
i × J ( j2)

i

)
CT =

∑

j

⊕ε j1 j2 j J ( j )
i ,

i = 1, 2, 3 .

The notation J ( j )
i denotes the (2 j+1)× (2 j+1)matrix

with elements

J ( j )
m′,m = 〈 jm′ | Ji | jm〉 ,

m′,m = j, j−1, . . . ,− j .

The elements of the real, orthogonal matrix C of dimen-
sion (2 j1+1)(2 j2+1) that effects these reductions are
the WCG-coefficients:

(C) jm;m1m2 = C j1 j2 j
m1m2m .

The pairs, ( jm) and (m1m2), index rows and columns,
respectively, of the matrix C:

( jm) : j = j1+ j2, . . . , | j1− j2| ,
m = j, . . . ,− j ;

(m1m2) : m1 = j1, . . . ,− j1 ;
m2 = j2, . . . ,− j2 .

Sum rule on projection quantum numbers:

C j1 j2 j
m1m2m = 0 , for m1+m2 �= m . (2.40)

Clebsch–Gordan series rule on angular momentum
quantum numbers:

C j1 j2 j
m1m2m = 0 , for ε j1 j2 j = 0 . (2.41)
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In presenting formulas that express relations relating
to the conceptual framework described above, it is best
to use a notation for a WCG-coefficient giving it as an
element of an orthogonal matrix. For the expression of
symmetry relations, the 3– j coefficient or 3– j symbol
notation is most convenient. The following notations are
used here:
WCG-coefficient notation:

|( j1 j2) jm〉 =
∑

m1,m2

C j1 j2 j
m1m2m | j1m1〉 ⊗ | j2m2〉 ,

| j1m1; j2m2〉 = | j1m1〉 ⊗ | j2m2〉 ,
C j1 j2 j

m1m2m = 〈 j1m1; j2m2|( j1 j2) jm〉 ,
〈( j1 j2) j ′m′|( j1 j2) jm〉 = δ j ′ jδm′m .

The 3– j coefficient notation:

(
j1 j2 j

m1 m2 −m

)

= (−1) j1− j2+m(2 j+1)−1/2C j1 j2 j
m1m2m . (2.42)

Orthogonality of WCG-coefficients:
Orthogonality of rows:

∑

m1m2

C j1 j2 j
m1m2mC j1 j2 j ′

m1m2m′ = δ jj ′δmm′ . (2.43)

Orthogonality of columns (three forms):

∑

jm

C j1 j2 j
m1m2mC j1 j2 j

m′
1m′

2m = δm1m′
1
δm2m′

2
,

∑

j

C j1 j2 j
m1m−m1,mC j1 j2 j

m′
1,m−m′

1,m
= δm1m′

1
,

∑

j

C j1 j2 j
m−m2,m2,mC j1 j2 j

m−m′
2,m

′
2,m

= δm2m′
2
. (2.44)

Orthogonality of 3– j coefficients (symbols):

∑

m1m2

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j ′3

m1 m2 m′
3

)

= δ j3 j ′3δm3m′
3
/(2 j3+1) , (2.45)

∑

j3m3

(2 j3+1)

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j3

m′
1 m′

2 m3

)

= δm1m′
1
δm2m′

2
. (2.46)

The integers ε j1 j2 j ( j3 = j ) are sometimes included
in the orthogonality relations (2.43) and (2.45) to
incorporate the extended definition (2.41) of the WCG-
coefficients.

2.7.1 Kronecker Product Reduction

Product form:

D j1
m′

1m1
(U )D j2

m′
2m2
(U )

=
∑

j

C j1 j2 j
m′

1,m
′
2,m

′
1+m′

2
C j1 j2 j

m1,m2,m1+m2

× D j
m′

1+m′
2,m1+m2

(U ) .

Singly coupled form:

∑

m1+m2=m

C j1 j2 j
m1m2m D j1

m′
1m1
(U )D j2

m′
2m2
(U )

= C j1 j2 j
m′

1,m
′
2,m

′
1+m′

2
D j

m′
1+m′

2,m
(U ) .

Doubly coupled (reduction) form:

∑

m′
1+m′

2=m′

m1+m2=m

C j1 j2 j
m′

1m′
2m′C

j1 j2 j
m1m2m D j1

m′
1m1
(U )D j2

m′
2m2
(U )

= δ j ′ j D j
m′m(U ) .

Integral relation:

∫
dΩD j1

m′
1m1
(U )D j2

m′
2m2
(U )D j∗

m′m1
(U )

= 2π2

2 j+1
C j1 j2 j

m′
1m′

2m′C
j1 j2 j
m1m2m ,

in any parametrization of U ∈ SU(2) that covers S3

exactly once.
Gaunt’s integral:

2π∫

0

dα

π∫

0

sinβdβY∗
lm(βα)Yl1m1(βα)Yl2m2(βα)

=
(
(2l1+1)(2l2+1)

4π(2l+1)

)1/2

Cl1l2l
000 Cl1l2l

m1m2m′ .
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Integral over three Legendre functions:

π∫

0

sinβdβPl(cosβ)Pl1(cosβ)Pl2(cosβ)

=
2
(

Cl1l2l
000

)2

2l+1
.

Cl1l2l
000

=
(
(2l+1)(l1+ l2− l)!(l1− l2+ l)!(−l1+ l2+ l)!

(l1+ l2+ l+1)!
)1

2

×
(−1)L−1L!

(L− l1)!(L− l2)!(L− l)! ,

L = 1

2
(l1+ l2+ l) ,

for l1+ l2+ l even

Cl1l2l
000 = 0 , for l1+ l2+ l odd .

2.7.2 Tensor Product Space Construction

Orthonormal basis of Hj1 :
{| j1m1〉

∣∣ m1 = j1, j1−1, . . . ,− j1
}
.

Orthonormal basis of Hj2 :
{| j2m2〉

∣∣ m2 = j2, j2−1, . . . ,− j2
}
.

Uncoupled basis of Hj1 ⊗Hj2 :
{| j1m1〉 ⊗ | j2m2〉

∣∣m1 = j1, j1−1, . . . ,− j1 ;
m2 = j2, j2−1, . . . ,− j2

}
.

Coupled basis of Hj1 ⊗Hj2 :
{|( j1 j2) jm〉∣∣ j = j1+ j2, j1+ j2−1, . . . , | j1− j2| ;

m = j, j−1, . . . ,− j
}
,

|( j1 j2) jm〉 =
∑

m1m2

C j1 j2 j
m1m2m | j1m1〉 ⊗ | j2m2〉 .

Unitary transformations of spaces:

TU | j1m1〉 =
∑

m′
1

D j1
m′

1m1
(U )

∣∣ j1m′
1

〉
,

m1 = j1, j1−1, . . . ,− j1 , each U ∈ SU(2) ;
TV | j2m2〉 =

∑

m′
2

D j
m′

2m2
(V )

∣∣ j2m′
2

〉
,

m2 = j2, j2−1, . . . ,− j2 , each V ∈ SU(2) ;

T(U,V )| j1m1〉 ⊗ | j2m2〉 = TU | j1m1〉 ⊗TV | j2m2〉
=

∑

m′
1m′

2

D j1
m′

1m1
(U )D j2

m′
2m2
(V )

∣∣ j1m′
1

〉 ⊗ ∣∣ j2m′
2

〉
,

each U ∈ SU(2) , each V ∈ SU(2) ;
T(U,U )|( j1 j2) jm〉 =

∑

m′
D j

m′m(U )|( j1 j2) jm′〉 ,

m = j, j−1, . . . ,− j; each U ∈ SU(2) .

Representation of direct product group SU(2)× SU(2):

T(U,V )T(U ′,V ′) = T(UU ′,VV ′) .

Representation of SU(2) as diagonal subgroup of
SU(2)× SU(2):

T(U,U )T(U ′,U ′) = T(UU ′,UU ′) ,

TU = T(U,U ) .

2.7.3 Explicit Forms of WCG-Coefficients

Wigner’s form:

C j1 j2 j
m1m2m

= δ(m1+m2,m)(2 j+1)
1
2

×

(
( j+ j1− j2)!( j− j1+ j2)!( j1+ j2− j )!

( j+ j1+ j2+1)!
) 1

2

×

(
( j+m)!( j−m)!

( j1+m1)!( j1−m1)!( j2+m2)!( j2−m2)!
) 1

2

×
∑

s

(−1) j2+m2+s( j2 + j+m1 − s)!( j1 −m1+ s)!
s!( j− j1+ j2 − s)!( j+m− s)!( j1 − j2 −m+ s)! .

Racah’s form:

C j1 j2 j
m1m2m =
δ(m1+m2,m)

×

(
(2 j+1)( j1+ j2 − j )!

( j1+ j2 + j+1)!( j+ j1 − j2)!( j+ j2 − j1)!

) 1
2

×

(
( j1−m1)!( j2−m2)!( j−m)!( j+m)!

( j1+m1)!( j2+m2)!
) 1

2

×
∑

t

(−1) j1−m1+t( j1+m1 + t)!( j+ j2 −m1 − t)!
t!( j−m− t)!( j1 −m1 − t)!( j2− j+m1 + t)! .
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Van der Waerden’s form:

C j1 j2 j
m1m2m

= δ(m1+m2,m)

×

(
(2 j+1)( j1+ j2 − j )!( j+ j1 − j2)!( j+ j2 − j1)!

( j1 + j2+ j+1)!

) 1
2

×
[
( j1+m1)!( j1−m1)!( j2+m2)!( j2−m2)!

] 1
2

×
[
( j+m)!( j−m)!] 1

2

×
∑

k

(−1)k
[
k!( j1+ j2− j− k)!( j1−m1− k)!

× ( j2+m2− k)!( j− j2+m1+ k)!
× ( j− j1−m2+ k)!]−1

Regge’s formula and its combinatoric structure:

(det A)k =
∑

α

A(α)
3∏

i, j=1

(aij)
αij , A = (aij) ,

(2.47)

where the summation is over all nonnegative integers αij
that satisfy the row and column sum constraints (2.17)
given by

α=
α11 α12 α13

α21 α22 α23

α31 α32 α33

k

k

k

k k k (2.48)

The coefficients A(α) are constrained sums over multi-
nomial coefficients:

A(α)=
∑
(−1)φ(K)

×

(
k

k123, k132, k231, k213, k312, k321

)

,

where the summation is carried out over all nonnegative
integers ki1i2i3 such that

α11 = k123+ k132 , α12 = k231+ k213 ,

α13 = k312+ k321 ,

α21 = k312+ k213 , α22 = k123+ k321 ,

α23 = k231+ k132 ,

α31 = k231+ k321 , α32 = k312+ k132 ,

α33 = k123+ k213,

φ(K)=
∑

π∈A3

kπ = k132+ k213+ k321 .

The general multinomial coefficient is the integer de-
fined by

(
k

k1, k2, . . . , ks

)

= k!/k1!k2! · · · ks! , k =
∑

i

ki .

Relation (2.47) generalizes in the obvious way to an
n × n determinant, using the symmetric group Sn and
its Sn−1 subgroups S( j )

n−1, where j denotes that this is
the permutation group on the integers 1, 2, . . . , n with
j deleted [2.2].
Regge’s formula for the 3– j coefficient is:

(
j1 j2 j3

m1 m2 m3

)

= δ(m1+m2+m3, 0)

⎡

⎣
3∏

i, j=1

(αij)!
⎤

⎦

1
2

×
A(α)

k![(k+1)!] 1
2

,

k = j1+ j2+ j3 , (2.49)

α11 = j1+m1 , α12 = j2+m2 , α13 = j3+m3 ,

α21 = j1−m1 , α22 = j2−m2 , α23 = j3−m3 ,

α31 = j2+ j3− j1 , α32 = j3+ j1− j2 ,

α33 = j1+ j2− j3 .

Equation (2.49) shows that WCG-coefficients and
3– j coefficients are sums over integers, except for a mul-
tiplicative normalization factor.
Schwinger’s generating function:

exp(t det A)=
∑

k

tk

k!
∑

α

A(α)
∏

i, j

(aij)
αij .

The general definition of the p Fq hypergeometric
function depending on p numerator parameters, q de-
nominator parameters, and a single variable z is:

p Fq

(
a1 . . . , ap

b1 . . . , bq
; z

)

=
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n! ,

(a)n = a(a+1) · · · (a+n−1) , (a)0 = 1 .
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Such a series is terminating if at least one of the nu-
merator parameters is a negative integer (and all other
factors are well-defined). Both WCG-coefficients and
Racah 6– j coefficients relate to special series of this
type, evaluated at z = 1. For WCG-coefficients, we have
for α+β = γ :

Cabc
αβγ

= [(2c+1)(a+α)!(a−α)!(b+β)!(b−β)!(c+γ)!
× (c−γ)!] 1

2 (−1)a+b+γ+δ1∆(abc)

×

3 F2

(
ε1− δ1, ε2− δ1, ε3− δ1
δ2− δ1+1, δ3− δ1+1 ; 1

)

(δ2− δ1)!(δ3− δ1)!(δ1− ε1)!(δ1− ε2)!(δ1− ε3)! ,

δ1 = min(a+α+ b+β, b−β+ c+ γ, a+α+ c+ γ),
(δ1, δ2, δ3)= any permutation of (a+α+b+β, b−β
+c+γ, a+α+ c+γ), after δ1 is fixed, (ε1, ε2, ε3)=
any permutation of (a+α, b+α+γ, c+γ). A some-
what better form can be found in [2.2].
The quantity

∆(abc)=
(
(a+b−c)!(a−b+c)!(−a+b+c)!

(a+b+c+1)!
) 1

2

.

is called a triangle coefficient.
All 72 Regge symmetries are consequences of

known properties of the 3 F2 hypergeometric series.

2.7.4 Symmetries of WCG-Coefficients
in 3-j Symbol Form

There are 72 known symmetries (up to sign changes)
of the 3– j coefficient. There are at least four ways
of verifying these symmetries: (1) directly from the
van der Waerden form of the coefficients; (2) di-
rectly from Regge’s generating function; (3) from
the known symmetries of the 3 F2 hypergeomet-
ric series; and (4) directly from the symmetries of
the representation functions D j

mm′(U ). The set of
72 symmetries is succinctly expressed in terms of the
coefficient A(α) defined in Sect. 2.8.3 with αij en-
tries given by (2.48) and (2.49) in which m1+m2+
m3 = 0:

A

⎛

⎜
⎝

j1+m1 j2+m2 j3+m3

j1−m1 j2−m2 j3−m3

j2+ j3− j1 j3+ j1− j2 j1+ j2− j3

⎞

⎟
⎠ .

This coefficient has determinantal symmetry; that
is, it is invariant under even permutations of its
rows or columns and under transposition, and is
multiplied by the factor (−1) j1+ j2+ j3 under odd
permutations of its rows or columns. These 72 deter-
minantal operations may be generated from the three
operations C12,C13, T consisting of interchange of
columns 1 and 2, interchange of columns 1 and 3,
and transposition, since the first two operations
generate the symmetric group S3 of permutations
of columns, and the symmetric group S′3 of per-
mutations of rows is then given by TS3T . The
transposition T itself generates a group {e, T } iso-
morphic to the symmetric group S2. Thus, the
72 element determinantal group is the direct prod-
uct group S3 × S′3 × {e, T }. The three relations between
3– j coefficients corresponding to the generators
C12,C13, T are

(
j1 j2 j3

m1 m2 m3

)

= (−1) j1+ j2+ j3

(
j2 j1 j3

m2 m1 m3

)

,

(
j1 j2 j3

m1 m2 m3

)

= (−1) j1+ j2+ j3

(
j3 j2 j1

m3 m2 m1

)

,

(
j1 j2 j3

m1 m2 m3

)

=
(

j1+ j2+m1+m2
2

j1+ j2−m1−m2
2 j3

j1− j2+m1−m2
2

j1− j2−m1+m2
2 j2− j1

)

.

All 72 relations among 3– j coefficients can be ob-
tained from these 3. The 12 “classical” symmetries of
the 3– j symbol

(
a b c

α β γ

)

are expressed by:

1. even permutations of the columns leave the coeffi-
cient invariant;

2. odd permutations of the columns change the sign by
the factor (−1)a+b+c;

3. simultaneous sign reversal of the projection quantum
numbers changes the sign by (−1)a+b+c.

The 72 corresponding symmetries of the WCG-
coefficients (up to sign changes and dimensional factors)
are best obtained from those of the 3 j-coefficients by
using (2.42).
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2.7.5 Recurrence Relations

Three-term:

[(J +1)(J −2 j1)] 1
2

(
j1 j2 j3

m1 m2 m3

)

= [( j2+m2)( j3−m3)] 1
2

(
j1 j2− 1

2 j3− 1
2

m1 m2− 1
2 m3+ 1

2

)

−[( j2−m2)( j3+m3)] 1
2

(
j1 j2− 1

2 j3− 1
2

m1 m2+ 1
2 m3− 1

2

)

;

[(J −2 j2)(J +1−2 j3)] 1
2

(
j1 j2 j3

m1 m2 m3

)

+[( j2+m2+1)( j3+m3)] 1
2

×

(
j1 j2− 1

2 j3+ 1
2

m1 m2− 1
2 m3+ 1

2

)

+[( j2−m2+1)( j3−m3)] 1
2

×

(
j1 j2− 1

2 j3+ 1
2

m1 m2+ 1
2 m3− 1

2

)

= 0 ;

( j2+m2)
1
2

(
j1 j2 j3

m1 m m3

)

= [( j3− j1+ j2)(J +1)( j3−m3)] 1
2

×

(
j1 j2− 1

2 j3− 1
2

m1 m2− 1
2 m3− 1

2

)

−[( j1− j3+ j2)(J −2 j2+1)( j3+m3+1)] 1
2

×

(
j1 j2− 1

2 j3+ 1
2

m1 m2− 1
2 m3+ 1

2

)

;
(

j1 j2 j3

j2−m3 − j2 m3

)

=−
(

2 j2( j3+m3)

( j3− j1+ j2)(J +1)

) 1
2

×

(
j1 j2− 1

2 j3− 1
2

j2−m3 − j2+ 1
2 m3− 1

2

)

,

j3 = j1+ j2, j1+ j2−1, . . . , j1− j2+1

for j1 ≥ j2 ;

(
j1 j2 j3

j2−m3 − j2 m3

)

=−
(

2 j2( j3−m3+1)

( j1− j3+ j2)(J −2 j2+1)

) 1
2

×

(
j1 j2− 1

2 j3+ 1
2

j2−m3 − j2+ 1
2 m3− 1

2

)

,

j3 = j1+ j2−1, j1+ j2−2, . . . , j1− j2

for j1 ≥ j2 .

Four-term:

[(J+1)(J−2 j1)(J−2 j2)(J−2 j3+1)] 1
2

×

(
j1 j2 j3

m1 m2 m3

)

= [( j2−m2)( j2+m2+1)

× ( j3+m3)( j3+m3−1)] 1
2

×

(
j1 j2 j3−1

m1 m2+1 m3−1

)

−2m2[( j3+m3)( j3−m3)] 1
2

(
j1 j2 j3−1

m1 m2 m3

)

−[( j2+m2)( j2−m2+1)( j3−m3)( j3−m3−1)] 1
2

×

(
j1 j2 j3−1

m1 m2−1 m3+1

)

.

Five-term:

Cbd f
β,δ,β+δ

=
(
(b+d− f )(b+ f−d+1)(d−δ)( f+β+δ+1)

(2d)(2 f+1)(2d)(2 f+2)

) 1
2

× Cbd−1/2 f+1/2
β,δ+1/2,β+δ+1/2

−
(
(b+d− f )(b+ f−d+1)(d+δ)( f−β−δ+1)

(2d)(2 f+1)(2d)(2 f+2)

) 1
2

× Cbd−1/2 f+1/2
β,δ−1/2,β+δ−1/2

+
(
(d+ f−b)(b+d+ f+1)(d+δ)( f+β+δ)

(2d)(2 f+1)(2d)(2 f )

) 1
2

× Cbd−1/2 f−1/2
β,δ−1/2,β+δ−1/2

+
(
(d+ f−b)(b+d+ f+1)(d−δ)( f−β−δ)

(2d)(2 f+1)(2d)(2 f )

) 1
2

× Cbd−1/2 f−1/2
β,δ+1/2,β+δ+1/2 .
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Angular Momentum Theory 2.8 Tensor Operator Algebra 37

This relation may be used to prove the limit rela-
tion (2.50) from the similar recurrence relation (2.84c)
for the Racah coefficients.

2.7.6 Limiting Properties
and Asymptotic Forms

lim
a→∞Caba+ρ

a−α,β,a−α+β = δρβ ,

lim
j→∞(−1)a+b+2 j−τ [(2c+1)(2 j−2σ +1)] 1

2

×

{
j− τ a j−σ

b j c

}

= Cabc
ρστ , (2.50)

where the brace symbol is a 6– j coefficient (Sect. 2.9).

C jk j+∆
m,µ,m+µ ≈ (−1)∆−µDk

µ∆

(
cos 1

2β sin 1
2β

− sin 1
2β cos 1

2β

)

= dk
µ∆(β) , for large j ;

cos
1

2
β =

√
j+m

2 j
, sin

1

2
β =

√
j−m

2 j
,

C jk j
m0m ≈ Pk(cosβ) , for large j ;

(−1)k[(2 j+1)(2J +1)] 1
2 W( j, k, J +m, J; j, J )

∼ Pk(cosβ),
first for large J , then large j (Sect. 2.9).

2.7.7 WCG-Coefficients as Discretized
Representation Functions

C j1 j2 j
m1m2m

= δm1+m2,m(−1) j1−m1

×

(
(2 j+1)( j1+ j2− j )!
( j1+ j2+ j+1)!

) 1
2

× D j
m, j1− j2

( √
j1+m1

√
j2+m2

−√ j1−m1
√

j2−m2

)

symbolic
powers

,

(2.51)

where in evaluating this result one first substitutes

u11 =
√

j1+m1 ,

u12 =
√

j2+m2 ,

u21 =−√ j1−m1 ,

u22 =
√

j2−m2

into the form (2.17), followed by the replacement of
ordinary powers by generalized powers:

(±√k)s → (±1)s
(

k!
(k− s)!

) 1
2

.

2.8 Tensor Operator Algebra

2.8.1 Conceptual Framework

A tensor operator can be characterized in terms of its
algebraic properties with respect to the angular momen-
tum J or in terms of its transformation properties under
unitary transformations generated by J. Both viewpoints
are essential.

A tensor operator T with respect to the group SU(2)
is a set of linear operators

T = {T1, T2, . . . , Tn} ,

where each operator in the set acts in the space H
defined by (2.10) and maps this space into itself
Ti :H →H, i = 1, 2, . . . , n, and where this set of op-
erators has the following properties with respect to the
angular momentum J, which acts in the same space H
in the standard way:

1. Commutation relations with respect to the angular
momentum J:

[Ji , Tj ] =
n∑

k=1

t(i)k j Tk ,

where the t(i)k j are scalars (invariants) with respect
to J.

2. Unitary transformation with respect to SU(2) rota-
tions:

e−iψn̂·JTi eiψn̂·J =
n∑

j=1

D ji(U )Tj ,

U =U(ψ, n̂) ,

where the matrix D(U ) is an n × n unitary matrix rep-
resentation of SU(2). Reduction of this representation
into its irreducible constituents gives the notion of an ir-
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reducible tensor operator T J of rank J . An irreducible
tensor operator T J of rank J is a set of 2J +1 operators

T J = {
T J

M

∣∣ M = J, J −1, . . . ,−J
}

with the following properties with respect to SU(2):

1. Commutation relations with respect to the angular
momentum J:

[
J+, T J

M

]
= [(J −M)(J +M+1)]

1
2 T J

M+1 ,
[

J−, T J
M

]
= [(J +M)(J −M+1)]

1
2 T J

M−1 ,
[

J3, T J
M

]
= MT J

M ,

∑

i

[
Ji ,

[
Ji , T J

M

]]
= J(J +1)T J

M . (2.52)

2. Generation from highest “weight”:

T J
M =

(
(J +M)!

(2J)!(J −M)!
) 1

2 [
J−, T J

J

]
(J−M ) ,

where [A, B](k) = [A, [A, B](k−1)], k = 1, 2, . . . ,
with [A, B](0) = B, denotes the k-fold commutator
of A with B.

3. Unitary transformation with respect to SU(2) rota-
tions:

e−iψn̂·JT J
M eiψn̂·J =

∑

M′
DJ

M′M(U )T
J
M′ , U =U(ψ, n̂) . (2.53)

Angular momentum operators act in Hilbert spaces
by acting linearly on the vectors in such spaces. The con-
cept of a tensor operator generalizes this by replacing
the irreducible space HJ by the irreducible tensor T J ,
and angular momentum operator action on HJ by com-
mutator action on T J , as symbolized, respectively, by

J : { states }→ { states },
{ commutator action of J } : { tensor operators }

→ {tensor operators } .
Just as exponentiation of the standard generator ac-

tion (2.13) and (2.14) gives relation (2.16), so does the
exponentiation of the commutator action (2.52) give
relation (2.53), when one uses the Baker–Campell–
Hausdorff identity:

etA B e−tA =
∑

k

tk

k! [A, B](k) .

Thus, the linear vector space of states is replaced by
the linear vector space of operators. Abstractly, rela-
tions (2.13) and (2.52) are identical: only the rule of
action and the object of that action has changed.

An example of an irreducible tensor of rank 1 is
the angular momentum J itself, which has the special
property J :H j →H j . Thus, relations (2.52) and (2.53)
are realized as:

T 1
1 = J+1 =−(J1+ iJ2)/

√
2 ,

T 1
0 = J0 = J3 ,

T 1−1 = J−1 = (J1− iJ2)/
√

2 ;
[

J+, T 1
µ

]
= [(1−µ)(2+µ)] 1

2 T 1
µ+1 ,

[
J−, T 1

µ

]
= [(1+µ)(2−µ)] 1

2 T 1
µ−1 ,

[
J3, T 1

µ

]
= µT 1

µ , µ= 1, 0,−1 ;

e−iψn̂·J J eiψn̂·J = J cosψ+ n̂(n̂ · J)(1− cosψ)

− (n̂ × J) sinψ ,

e−iψn̂·JT 1
µ eiψn̂·J =

∑

ν

D1
νµ(ψ, n̂)T

1
ν .

2.8.2 Universal Enveloping Algebra of J

The universal enveloping algebra A(J) of J is the set of
all complex polynomial operators in the components Ji
of J, or equivalently in (J+, J3, J−). The irreducible
tensor operators spanning this algebra are the analogues
of the solid harmonics Ylm(x) and are characterized by
the following properties: Basis set:

T k
k = ak Jk+ , ak arbitrary constant ,

T k
µ = ak

(
(k+µ)!

(2k)!(k−µ)!
)[

J−, Jk+
]

(k−µ) ,

µ= k, k−1, . . . ,−k ; k = 0, 1, 2, . . . .

Standard action with respect to J:
[

J±,T k
µ

]
= [(k∓µ)(k±µ+1)]

1
2 T k
µ±1 ,

[
J3,T

k
µ

]= µT k
µ ,

3∑

i=1

[
Ji ,

[
Ji ,T

k
µ

]]
= k(k+1)T k

µ .

Unitary transformation:

e−iψn̂·JT k
µ eiψn̂·J =

∑

ν

Dk
νµ(ψ, n̂)T

k
ν .
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2.8.3 Algebra
of Irreducible Tensor Operators

Irreducible tensor operators possess, as linear operators
acting in the same space, properties 1., 2., and 3. below,
and an additional multiplication property 4., which con-
structs new irreducible tensor operators out of two given
ones and is called coupling of irreducible tensor opera-
tors. Property 4. extends also to tensor operators acting in
the tensor product space associated with kinematically
independent systems. It is important that associativity
extends to the product (2.54), as well as to the prod-
uct (2.55). Commutativity in these products is generally
invalid. The coupling properties given in 4. and 5. are
analogous to the coupling of basis state vectors. The op-
eration of Hermitian conjugation of operators, which is
the analogue of complex conjugation of states, is also
important, and has the properties presented under 5.

1. Multiplication of an irreducible tensor operator of
rank k by a complex number or an invariant with
respect to angular momentum J gives an irreducible
tensor operator of the same rank.

2. Addition of two irreducible tensor operator of the
same rank gives an irreducible tensor of that rank.

3. Ordinary multiplication (juxtaposition) of three ir-
reducible tensor operators is associative, but the
multiplication of two is noncommutative, in general.

4. Two irreducible tensor operators Sk1 and Tk2 of dif-
ferent or the same ranks acting in the same space
may be multiplied to obtain new irreducible tensor
operators of ranks given by the angular momentum
addition rule (Clebsch–Gordan series):

[
Sk1 × Tk2

]k
µ
=

∑

µ1,µ2

Ck1k2k
µ1µ2µ

Sk1
µ1

T k2
µ2
, (2.54)

µ= k, k−1, . . . ,−k ;
rank =

k ∈ {k1+ k2, k1+ k2−1, . . . , |k1− k2|} .
The following symbol denotes the irreducible tensor
operator with the µ-components (2.54):

[
Sk1 × Tk2

]k
.

5. Two irreducible tensor operators Sk1 and Tk2 of dif-
ferent or the same ranks acting in different Hilbert
spaces, say H and K, may first be multiplied by the
tensor product rule so as to act in the tensor product
space H⊗K, that is,

Sk1
µ1
⊗T k2

µ2
:H⊗K →H⊗K ,

and then coupled to obtain new irreducible tensor
operators, acting in the same tensor product space
H⊗K:

[
Sk1 ⊗Tk2

]k

µ
=

∑

µ,µ2

Ck1k2k
µ1µ2µ

Sk1
µ1
⊗T k2

µ2
,

µ= k, k−1, . . . ,−k . (2.55)

The following symbol denotes the tensor operator
with the µ-components (2.55):

[
Sk1 ⊗Tk2

]k
,

k ∈ {k1+ k2, k1+ k2−1, . . . , |k1− k2|} .
6. The conjugate tensor operator to T J , denoted

by T J†, is the set of operators with components T J†
M

defined by
〈
j ′m′∣∣T J†

M

∣∣ jm
〉= 〈

jm
∣∣T J

M

∣∣ j ′m′〉∗ .
These components satisfy the following relations:

[
J±, T J†

M

]
=−[(J ±M)(J ∓M+1)] 1

2 T J†
M∓1

[
J3, T J†

M

]
=−MT J†

M ,

∑

i

[
Ji ,

[
Ji , T J†

M

]]
= J(J +1)T J†

M ;

e−iψn̂·JT J†
M eiψn̂·J =

∑

M′
DJ∗

M′M(ψ, n̂)T
J†
M′ ;

I J =
∑

M

T J
M T J†

M =
(

invariant operator to

SU(2) rotations

)

,

e−iψn̂·J I J eiψn̂·J = I J .

An important invariant operator is

Ik1k2k =
∑

µ1µ2µ

Ck1k2k
µ1µ2µ

T k1
µ1

T k2
µ2

T k†
µ .

7. Other definitions of conjugation:

T T
M → (−1)J−M T J−M , T J

M → (−1)J+M T J−M .

2.8.4 Wigner–Eckart Theorem

The Wigner–Eckart theorem establishes the form of
the matrix elements of an arbitrary irreducible tensor
operator:

〈
j ′m′∣∣T J

M

∣∣ jm
〉= 〈

j ′
∥∥T J

∥∥ j
〉
C jJ j ′

mMm′

= (
j ′
∥∥T J

∥∥ j
)
(−1) j+J+m′

(
j J j ′

m M −m′

)

.
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Reduced matrix elements with respect to WCG-
coefficients:

〈
j ′
∥∥T J

∥∥ j
〉=

∑

µM

C jJ j ′
µMµ′

〈
j ′µ′

∣∣T J
M

∣∣ jµ
〉
,

eachµ′ = j ′, j ′ −1, . . . ,− j ′ (the reduced matrix elem-
ent is independent of µ′).
Reduced matrix elements with respect to 3– j coeffi-
cients:

(
j ′
∥∥T J

∥∥ j
)= (−1)2J

√
2 j ′ +1

〈
j ′
∥∥T J

∥∥ j
〉
.

Examples of irreducible tensor operators include:

1. The solid harmonics with respect to the orbital an-
gular momentum L:

Yk(x)= {Ykµ(x) : µ= k, . . . ,−k} ,
Ykµ|lm〉 =

∑

l′

〈
l′
∥∥Yk

∥∥l
〉
Clkl′

m,µ,m+µ
∣∣l′,m+µ〉 ,

where

〈x | lm〉 = Ylm(x) ,

〈
l′
∥∥Yk

∥∥l
〉= rl+k−l′

(
(2l+1)(2k+1)

4π(2l′ +1)

) 1
2

Clkl′
000 ,

Ykµ(x)Ylm(x)

=
∑

l′

〈
l′
∥∥Yk

∥∥l
〉
Clkl′

m,µ,m+µYl′,m+µ(x) ,

[
Yk1(x)⊗Yk2(x)

]k
µ

=
∑

µ1µ2

Ck1k2k
µ1µ2µ

Yk1µ1(x)Yk2µ2(x) ,

[
Yk1(x)⊗Yk2(x)

]k
µ
= 〈

k
∥∥Yk1

∥∥k2
〉
Ykµ(x) .

2. The polynomial operator T k in the components of J
(Sect. 2.8.2):

〈
j ′m′∣∣T k

µ

∣∣ jm
〉= δ j ′ j

〈
j
∥∥T k

∥∥ j
〉
C jk j

mµm′ ,
〈
j
∥∥T k

∥∥ j
〉

= ak(−1)k
(

(2 j+ k+1)!k!k!
(2 j+1)(2 j− k)!(2k)!

) 1
2

.

3. Polynomials in the components of an arbitrary vector
operator V, which has the defining relations:

[
Ji , Vj

]= ieijkVk ,
[
J±, Vµ

]= [(1∓µ)(2±µ)] 1
2 Vµ±1 ,[

J3, Vµ
]= µVµ ,

V+1 =−(V1+ iV2)/
√

2, V0 = V3 ,

V−1 = (V1− iV2)/
√

2 .

This construction parallels exactly that given
in Sect. 2.8.2 upon replacing J by V. The explicit form
of the resulting polynomials may be quite different since
no assumptions are made concerning commutation re-
lations between the components Vi of V. The solid
harmonics in the gradient operator ∇ constitute an irre-
ducible tensor operator with respect to the orbital angular
momentum L.

2.8.5 Unit Tensor Operators
or Wigner Operators

A unit tensor operator is an irreducible tensor opera-
tor T̂ J,∆, indexed not only by the angular momentum
quantum number J , but also by an additional label ∆,
which specifies that this irreducible tensor operator has
reduced matrix elements given by

〈
j ′
∥∥T̂ J,∆

∥∥ j
〉= δ j ′, j+∆ .

This condition is to be true for all j = 0, 1/2, 1, . . . .
There is a unit tensor operator defined for each

∆= J, J −1, . . . ,−J .

The special symbol
〈

J +∆
2J 0

•

〉

denotes a unit tensor operator, replacing the boldface
symbol T̂ J,∆, while the symbol

〈
J +∆

2J 0
J +M

〉

, M = J, J −1, . . . ,−J

denotes the components. In the same way that abstract
angular momentum J and state vectors {| jm〉} extract
the intrinsic structure of all realizations of angular mo-
mentum theory, as given in Sect. 2.2, so does the notion
of a unit tensor operator extract the intrinsic structure of
the concept of irreducible tensor operator by disregard-
ing the physical content of the theory, which is carried
in the structure of the reduced matrix elements. Physical
theory is regained from the fact that the unit tensor oper-
ators are the basis for arbitrary tensor operators, which
is the structural content of the Wigner–Eckart theorem.
The concept of a unit tensor operator was introduced by
Racah, but it was Biedenharn who recognized the full
significance of this concept not only for SU(2), but for
all the unitary groups.

All of the content of physical tensor operator the-
ory can be regained from the properties of unit tensor
operators or Wigner operators as summarized below:
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Notation (double Gel’fand patterns):

〈
J +∆

2J 0
J +M

〉

,
M,∆= J, J −1, . . . ,−J

2J = 0, 1, 2, . . . .

Definition (shift action):

〈
J +∆

2J 0
J +M

〉

| jm〉 = C jJ j+∆
m,M,m+M | j+∆,m+M〉

(2.56)

for all j = 0, 1
2 , . . . ; m = j, j−1, . . . ,− j.

Conjugation:

〈
J +∆

2J 0
J +M

〉†

| jm〉

= C j−∆J j
m−M,M,m | j−∆,m−M〉 .

(2.57)

Orthogonality:

∑

M

〈
J +∆′

2J 0
J +M

〉〈
J +∆

2J 0
J +M

〉†

= δ∆′∆ I J
∆ ,

(2.58)

∑

∆

〈
J +∆

2J 0
J +M′

〉† 〈
J +∆

2J 0
J +M

〉

= δM′M ,

(2.59)

∑

m

〈 jm|
〈

J ′ +∆′
2J ′ 0

J ′ +M′

〉〈
J +∆

2J 0
J +M

〉†

| jm〉

= 2 j+1

2J +1
δJ ′ JδM′Mδ∆′∆ . (2.60)

The invariant operator I J
∆ is defined by its action on an

arbitrary vector ψ j ∈H j :

I J
∆ψ j = ε j−∆,J, jψ j .

Tensor operator property:

e−iψn̂·J

〈
J +∆

2J 0
J +M

〉

eiψn̂·J

=
∑

M′
DJ

M′M(ψ, n̂)

〈
J +∆

2J 0
J +M′

〉

. (2.61)

Basis property (Wigner–Eckart theorem):

T J
M | jm〉

=
⎛

⎝
∑

∆

〈
j+∆∥∥T J

∥∥ j
〉
〈

J +∆
2J 0

J +M

〉⎞

⎠ | jm〉 .

(2.62)

Characteristic null space:
The characteristic null space of the Wigner opera-

tor defined by (2.56) is the set of irreducible subspaces
H j ⊂H given be

{H j : 2 j = 0, 1, . . . , J −∆−1} .
Coupling law:

∑

αβ

Cabc
αβγ

〈
b+σ

2b 0
b+β

〉〈
a+ρ

2a 0
a+α

〉

= Wabc
ρ,σ,ρ+σ

〈
c+ρ+σ

2c 0
c+γ

〉

, (2.63)

where Wabc
ρστ is an invariant operator (commutes with J)

and is called a Racah invariant. Its relationship to Racah
coefficients and 6– j coefficients is given in Sect. 2.9.
Product law:

〈
b+σ

2b 0
b+β

〉〈
a+ρ

2a 0
a+α

〉

=
∑

c

Wabc
ρ,σ,ρ+σCabc

α,β,α+β

〈
c+ρ+σ

2c 0
c+α+β

〉

.

(2.64)

Racah invariant:

Wabc
ρστ =

∑

αβγ

Cabc
αβγ

×

〈
b+σ

2b 0
b+β

〉〈
a+ρ

2a 0
a+α

〉〈
c+ τ

2c 0
c+γ

〉†

.

(2.65)

The notation Wabc
ρστ for a Racah invariant is designed

to “match” that of the WCG-coefficient on the left, the
latter being associated with the lower group theoretical
labels, for example,

(
2a 0

a+α

)

→| aα〉 ,
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the state vector having a group transformation law under
the action of SU(2), and the former with the shift labels
of a unit tensor operator,

(
α+ρ

2α 0

)

,

and having no associated group transformation law. The
invariant operator defined by (2.65) has real eigenvalues,
hence, is a Hermitian operator,

Wabc†
ρστ = Wabc

ρστ , (2.66)

which is diagonal on an arbitrary state vector in H j
(Sect. 2.9).

The Racah invariant operator does not commute with
a unit tensor operator, and it makes a difference whether
it is written to the left or to the right of such a unit
tensor operator. The convention here writes it to the
left.

Relation (2.65) is taken as the definition of Wabc
ρστ and

the following properties all follow from this expression:
Domain of definition:

Wabc
ρστ : a, b, c ∈ {0, 1/2, 1, 3/2, . . . } ;
ρ = a, a−1, . . . ,−a

σ = b, b−1, . . . ,−b

τ = c, c−1, . . . ,−c ;
Wabc
ρστ = 0, if ρ+σ �= τ; if εabc = 0 .

Orthogonality relations:

∑

ρσ

Wabc
ρστWabd

ρστ ′ = δcdδττ ′εabc Ic
τ , (2.67)

∑

cτ

Wabc
ρστWabc

ρ′σ ′τ = δρρ′δσσ ′ Iab
ρσ , (2.68)

where the I invariant operators in these expressions
have the following eigenvalues on an arbitrary vector
ψ j ∈H j :

Ic
τψ j = ε j−τ,c, jψ j ,

Iab
ρσψ j = ε j−σ−ρ,a, j−σ ε j−σ,b, jψ j .

The orthogonality relations for Racah invariants parallel
exactly those of WCG-coefficients.

Using the orthogonality relations (2.67) for Racah
invariants, the following two relations now follow
from (2.63) and (2.64), respectively:

WCG and Racah operator coupling:
∑

ρσ

∑

αβ

Wabd
ρ,σ,ρ+σCabc

α,β,α+β

×

〈
b+σ

2b 0
b+β

〉〈
a+ρ

2a 0
a+α

〉

= δcdεabc Id
τ

〈
c+ τ

2c 0
c+γ

〉

. (2.69)

Racah operator coupling of shift patterns:

∑

ρσ

Wabc
ρστ

〈
b+σ

2b 0
b+β

〉〈
a+ρ

2a 0
a+α

〉

= Cabc
α,β,α+β

〈
c+ τ

2c 0
c+α+β

〉

. (2.70)

Relations (2.56–2.70) capture the full content of
irreducible tensor operator algebra through the con-
cept of unit tensor operators that have only 0 or 1
for their reduced matrix elements. Using the Wigner–
Eckart theorem (2.62), the relations between general
tensor operators can be reconstructed. Unit tensor op-
erators were invented to exhibit in the most elementary
way possible the abstract and intrinsic structure of the
irreducible tensor operator algebra, stripping away the
details of particular physical applications, thus giving the
theory universal application. It accomplishes the same
goal for tensor operator theory that the abstract multi-
plet theory in Sect. 2.2 accomplishes for representation
theory.

Physical theory is regained through the concept of re-
duced matrix element. The coupling rule (2.54) is now
transformed to a rule empty of WCG-coefficient con-
tent and becomes a rule for coupling of reduced matrix
elements using the invariant Racah operators:

〈 (
α′
)

j ′
∥∥[Sk1 × Tk2

]k∥∥(α) j
〉

= (−1)k1+k2−k
∑

(α′′) j ′′
Wk2k1k

j ′′− j, j ′− j ′′, j ′− j( j ′)

×
〈 (
α′
)

j ′
∥∥Sk1

∥∥(a′′) j ′′
〉〈 (
α′′
)

j ′′
∥∥Tk2

∥∥(α) j
〉
.

(2.71)

This coupling rule is invariant to all SU(2) rota-
tions, and reveals the true role of the Racah coefficients
and reduced matrix elements in physical theory as in-
variant objects under SU(2) rotations. It now becomes
imperative to understand Racah coefficients as objects
free of their original definition in terms of WCG-
coefficients.

Part
A

2
.8



Angular Momentum Theory 2.9 Racah Coefficients 43

2.9 Racah Coefficients

Relation (2.65) is taken, initially, as the definition of the
Racah coefficient with appropriate adjustments of nota-
tions to conform to Racah’s W-notation and to Wigner’s
6– j notation. Corresponding to each of (2.63–2.65),
(2.69, 2.70), there is a corresponding numerical relation-
ship between WCG-coefficients and Racah coefficients.
Despite the present day popularity of expressing all such
relations in terms of the 3– j and 6– j notation, this temp-
tation is resisted here for this particular set of relations
because of their fundamental origins. The relation be-
tween the Racah invariant notation and Racah’s original
W-notation is

Wabc
ρστ | jm〉 = Wabc

ρστ ( j ) | jm〉 ,
Wabc
ρστ ( j )= 0 if τ �= ρ+σ , or εabc = 0 ,

Wabc
ρστ ( j )= [(2c+1)(2 j−2σ +1)]1/2

× W( j− τ, a, j, b; j−σ, c) ,
[(2e+1)(2 f +1)]1/2W(abcd; ef )

= Wbdf
e−a,c−e,c−a(c) ,

W(abcd; ef )= 0 unless the triples of nonnegative inte-
gers and half-integers (abe), (cde), (acf ), (bdf ) satisfy
the triangle conditions.

2.9.1 Basic Relations Between WCG
and Racah Coefficients

∑

βδ

Cbdf
βδγCedc

α+β,δ,α+γCabe
α,β,α+β

= [(2e+1)(2 f +1)]1/2W(abcd; ef )Ca fc
α,γ,α+γ ,∑

f

[(2e+1)(2 f +1)]1/2W(abcd; ef )

× Cbdf
β,δ,β+δC

a fc
α,β+δ,α+β+δ

= Cedc
α+β,δ,α+β+δCabe

α,β,α+β ,
δcc′ [(2e+1)(2 f +1)]1/2W(abcd; ef )

=
∑

βδ

Cbdf
β,δ,β+δC

edc
γ−δ,δ,γCabe

γ−β−δ,β,γ−δ

× Cabc′
γ−β−δ,β+δ,γ ,∑

βδe

[(2e+1)(2 f +1)]1/2W(abcd; ef )

× Cbdf ′
βδγ Cedc

α+β,δ,α+γCabe
α,β,α+β

= δ f f ′C
a fc
α,γ,α+γ ,∑

e

[(2e+1)(2 f +1)]1/2W(abcd; ef )

× Cedc
α+β,δ,α+β+δCabe

α,β,α+β
= Cbdf

β,δ,β+δC
afc
α,β+δ,α+β+δ .

2.9.2 Orthogonality and Explicit Form

Orthogonality relations for Racah coefficients:
∑

e

(2e+1)(2 f +1)W(abcd; ef )W(abcd; ef ′)

= δ f f ′εac f εbdf , (2.72)

∑

f

(2e+1)(2 f +1)W(abcd; ef )W(abcd; e′ f )

= δee′εabeεcde . (2.73)

Definition of 6– j coefficients:
{

a b e

d c f

}

= (−1)a+b+c+dW(abcd; ef ) . (2.74)

Orthogonality of 6– j coefficients:

∑

e

(2e+1)(2 f +1)

{
a b e

d c f

}{
a b e

d c f ′

}

= δ f f ′εacf εbdf , (2.75)

∑

f

[(2e+1)(2 f +1)]
{

a b e

d c f

}{
a b e′

d c f

}

= δee′εabeεcde . (2.76)

Explicit form of Racah coefficients:

W(abcd; ef )=∆(abe)∆(cde)∆(acf )∆(bdf )

×
∑

k

(−1)a+b+c+d+k(k+1)!
(k−a−b− e)!(k− c−d− e)!

×
1

(k−a− c− f )!(k−b−d− f )!
×

1

(a+b+ c+d− k)!
×

1

(a+d+ e+ f − k)!(b+ c+ e+ f − k)! ,
(2.77)

where ∆(abc) denotes the triangle coefficient, defined
for every triple a, b, c of integers and half-odd integers
satisfying the triangle conditions by:

∆(abc)

=
(
(a+b− c)!(a−b+ c)!(−a+b+ c)!

(a+b+ c+1)!
) 1

2

.

(2.78)

Part
A

2
.9



44 Part A Mathematical Methods

2.9.3 The Fundamental Identities
Between Racah Coefficients

Each of the three relations given in this section
is between Racah coefficients alone. Each expresses
a fundamental mathematical property. The Biedenharn–
Elliott identity is a consequence of the associativity rule
for the open product of three irreducible tensor op-
erators; the Racah sum rule is a consequence of the
commutativity of a mapping diagram associated with
the coupling of three angular momenta; and the triangle
coupling rule is a consequence of the associativity of the
open product of three symplection polynomials [2.1]. As
such, these three relations between Racah coefficients,
together with the orthogonality relations, are the build-
ing blocks on which is constructed a theory of these
coefficients that stands on its own, independent of the
WCG-coefficient origins. Indeed, the latter is recovered
through the limit relation (2.50).
Biedenharn–Elliott identity:

W(a′ab′b; c′e)W(a′ed′d; b′c)
=
∑

f

(2 f +1)W(abcd; ef )W(c′bd′d; b′ f )

× W(a′ad′ f ; c′c) , (2.79a)

{
a′ a c′

b b′ e

}{
a′ e b′

d d′ c

}

=
∑

f

(−1)φ(2 f +1)

{
a b e

d c f

}{
c′ b b′

d d′ f

}

×

{
a′ a c′

f d′ c

}

,

φ = f − e+a′ +a+b′ +b+ c′ − c+d′ −d .

(2.79b)

Racah sum rule:
∑

f

(−1)b+d− f (2 f +1)W(abcd; ef )W(adcb; gf )

= (−1)e+g−a−cW(bacd; eg) , (2.80a)

∑

f

(−1)e+g+ f (2 f +1)

{
a b e

d c f

}{
a d g

b c f

}

=
{

b a e

d c g

}

. (2.80b)

Triangle sum rule:

[∆(acf )∆(bdf )]−1

= (2 f +1)
∑

e

[∆(abe)∆(cde)]−1W(abcd; ef ) ,

(2.81a)

(−1)a+b+c+d[∆(acf )∆(bdf )]−1

= (2 f +1)
∑

e

[∆(abe)∆(cde)]−1

{
abe

dcf

}

.

(2.81b)

2.9.4 Schwinger–Bargmann Generating
Function and its Combinatorics

Triangles associated with the 6– j symbol

{
j1 j2 j3
j4 j5 j6

}

:

( j1 j2 j3) , ( j3 j4 j5) , ( j1 j5 j6) , ( j2 j4 j6) .

Points in R3 associated with the triangles:

( j1 j2 j3)→ (x1, x2, x3) , ( j3 j4 j5)→ (y3, x4, x5) ,

( j1 j5 j6)→ (y1, y5, x6) , ( j2 j4 j6)→ (y2, y4, y6) .

Tetrahedron associated with the points:
The points define the vertices of a general tetrahe-

dron with lines joining each pair of points that share
a common subscript, and the lines are labeled by the
product of the common coordinates (Fig. 2.2).
Monomial term:

Define the triangle monomial associated with a tri-
angle ( ja jb jc) and its associated point (za, zb, zc) in R3

by

(za, zb, zc)
( ja jb jc) = z jb+ jc− ja

a z jc+ ja− jb
b z ja+ jb− jc

c .

(2.82)

Cubic graph (tetrahedral T4) functions:
Interchange the symbols x and y in the coordinates of

the vertices of the tetrahedron and define the following
polynomials on the vertices and edges of the tetrahedron
with this modified labeling.
Vertex function: multiply together the coordinates of
each vertex and sum over all such vertices to obtain

V3 = y1 y2 y3+ x3 y4 y5+ x1x5 y6+ x2x4x6 ;
Edge function: multiply together the coordinates of
a given edge and the opposite edge and sum over all
such pairs to obtain

E4 = x1 y1x4 y4+ x2 y2x5 y5+ x3 y3x6 y6 .
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(y1 y5 x6)

x1 y1 x5 y5

x3 y3(x1 x2 x3) (y3 x4 x5)

x6 y6

(y2 y4 y6)

x2 y2

x4 y4

Fig. 2.2 Labeled cubic graph (tetrahedron) associated with
6– j coefficients

Generating function:

(1+V3+ E4)
−2 =

∑

∆

T (∆)Z∆ , (2.83a)

Z∆ = (x1, x2, x3)
( j1 j2 j3)(y3, x4, x5)

( j3 j4 j5)

× (y1, y5, x6)
( j1 j5 j6)(y2, y4, y6)

( j2 j4 j6) , (2.83b)

∆=

⎡

⎢⎢⎢
⎣

( j1 j2 j3)

( j3 j4 j5)

( j1 j5 j6)

( j2 j4 j6)

⎤

⎥⎥⎥
⎦
;

T(∆)=
∑

k

(−1)k(k+1)

×

(
k

k1, k2, k3, k4, k5, k6, k7

)
, (2.83c)

ki = k− ti , i = 1, 2, 3, 4 ,

k j = e j−4− k , j = 5, 6, 7 ;
ti = triangle sum = vertex sum,

e j = opposite edge sum, in pairs,

t1 = j1+ j2+ j3 , t2 = j3+ j4+ j5 ,

t3 = j1+ j5+ j6 , t4 = j2+ j4+ j6 ,

e1 = ( j2+ j5)+ ( j3+ j6) ,

e2 = ( j1+ j4)+ ( j3+ j6) ,

e3 = ( j1+ j4)+ ( j2+ j5) .

The summation in (2.83b) is over the infinite set of all
tetrahedra; that is, over the infinite set of arrays∆ having
nonnegative integral entries. The 6– j coefficients is then
given by

{
j1 j2 j3
j4 j5 j6

}

= T(∆)

∆( j1 j2 j3)∆( j1 j5 j6)∆( j2 j4 j6)∆( j3 j4 j5)
.

Since the factor T(∆) is an integer in the expansion
(2.83a), this result shows that the 6– j coefficient is
an integer, up to the multiplicative triangle coefficient
factors.

2.9.5 Symmetries of 6– j Coefficients

There are 144 symmetry relations among the Racah
6– j coefficients. The 24 classical ones, given already
by Racah, and corresponding to the tetrahedral point
group Td of rotations-inversions (isomorphic to the sym-
metric group S4) mapping the regular tetrahedron onto
itself, are realized in the 6– j symbol

{
a b e

d c f

}

as permutations of its columns and the exchange of any
pair of letters in the top row with the corresponding pair
in the bottom row. Regge discovered the 6-fold increase
in symmetry by noting that each term in the summation
in (2.77) is invariant not only to the classical 24 sym-
metries, but also under certain linear transformations of
the quantum labels. These symmetries are also implicit
in Schwinger’s generating function.

The full set, including the original 24 substitutions,
of linear transformations of the letters a, b, c, d, e, f
thus yields a group of linear transformation isomorphic
to S4 × S3. The column permutations and row-pair in-
terchanges described above applied to each of the six
symbols in the equalities below yield the set of 144
relationships:

⎧
⎨

⎩
a b e

d c f

⎫
⎬

⎭
=

⎧
⎪⎨

⎪⎩

a
b+ c+ e− f

2

b+ e+ f− c

2

d
b+ c+ f− e

2

c+ e+ f−b

2

⎫
⎪⎬

⎪⎭

=

⎧
⎪⎨

⎪⎩

a+d+ e− f

2
b

a+ e+ f−d

2
a+d+ f− e

2
c

d+ e+ f−a

2

⎫
⎪⎬

⎪⎭
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=

⎧
⎪⎨

⎪⎩

a+b+d− c

2

a+b+ c−d

2
e

a+ c+d−b

2

b+ c+d−a

2
f

⎫
⎪⎬

⎪⎭

=

⎧
⎪⎨

⎪⎩

a+b+d− c

2

b+ c+ e− f

2

a+ e+ f−d

2
a+ c+d−b

2

b+ c+ f− e

2

d+ e+ f−a

2

⎫
⎪⎬

⎪⎭

=

⎧
⎪⎨

⎪⎩

a+d+ e− f

2

a+b+ c−d

2

b+ e+ f− c

2
a+d+ f− e

2

b+ c+d−a

2

c+ e+ f−b

2

⎫
⎪⎬

⎪⎭
.

2.9.6 Further Properties

Recurrence relations:
Three-term:

[(a+b+ e+1)(b+ e−a)

× (c+d+ e+1)(d+ e− c)]1/2
{

a b e

d c f

}

=−2e[(b+d+ f +1)(b+d− f )]1/2

×

{
a b− 1

2 e− 1
2

d− 1
2 c f

}

+ [(a+b− e+1)(a+ e−b)(c+d− e+1)

× (c+ e−d)]1/2
{

a b e−1

d c f

}

, (2.84a)

[(a+ c+ f +1)(c+ e−d)

× (d+ e− c+1)(b+d− f +1)]1/2
{

a b e

d c f

}

= [(a+ c− f )(a+ e−b)

× (b+ f +d+2)(b+ e−a+1)]1/2

×

{
a+ 1

2 b+ 1
2 e

d+ 1
2 c− 1

2 f

}

.

+[(c+ f −a)(c+ e−d)(b−a− c+d+1)]1/2

×

{
a b e

d+ 1
2 c− 1

2 f − 1
2

}

. (2.84b)

Five-term:

(2c+1)(2d)(2 f +1)

{
a b e

d c f

}

= [(b+d− f )(b+ f −d+1)(d+ e− c)

× (c+ e−d+1)(c+ f −a+1)(a+ c+ f +2)] 1
2

×

{
a b e

d− 1
2 c+ 1

2 f + 1
2

}

+[(b+d− f )

× (b+ f −d+1)(c+d− e)(c+d+ e+1)

× (a+ c− f )(a+ f − c+1)] 1
2

×

{
a b e

d− 1
2 c− 1

2 f + 1
2

}

−[(d+ f −b)

× (b+d+ f +1)(c+d− e)(c+d+ e+1)

× (c+ f −a)(a+ c+ f +1)] 1
2

×

{
a b e

d− 1
2 c− 1

2 f − 1
2

}

+[(d+ f −b)

× (b+d+ f +1)(d+ e− c)(c+ e−d+1)

× (a+ f − c)(a+ c− f +1)] 1
2

×

{
a b e

d− 1
2 c+ 1

2 f − 1
2

}

. (2.84c)

Relation to hypergeometric series:
{

abe

dcf

}

= (−1)a+b+c+dW(abcd; ef )

=∆(abe)∆(cde)∆(acf )∆(bdf )

×
(−1)β1(β1+1)!

(β2−β1)!(β3−β1)!

×

4 F3

(
α1−β1, α2−β1, α3−β1, α4−β1

−β1−1, β2−β1+1, β3−β1+1,
; 1

)

(β1−α1)!(β1−α2)!(β1−α3)!(β1−α4)! ,

β1 = min(a+b+c+d, a+d+e+ f, b+c+e+ f ) ,

The parameters β2 and β3 are identified in either way
with the pair remaining in the 3-tuple

(a+b+ c+d, a+d+ e+ f, b+ c+ e+ f )

after deleting β1. The (α1, α2, α3, α4)may be identified
with any permutation of the 4-tuple

(a+b+ e, c+d+ e, a+ c+ f, b+d+ f ) .

The 4 F3 series is Saalschützian:

1+
∑

(numerator parameters)

=
∑

(denominator parameters) .
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2.10 The 9–j Coefficients
2.10.1 Hilbert Space

and Tensor Operator Actions

Let Ta(1) and Tb(2) denote irreducible tensor operators
of ranks a and b with respect to kinematically indepen-
dent angular momentum operators J(1) and J(2) that
act, respectively, in separable Hilbert spaces H(1) and
H(2). Let H(1) and H(2) be reduced, respectively, into
a direct sum of spaces H j1(1) and H j2(2). The angular
momentum J(1) has the standard action on the or-
thonormal basis

{| j1m1〉
∣
∣ m1 = j1, j1−1, . . . ,− j1

}

of H j1(1), and J(2) has the standard action on the or-
thonormal basis

{| j2m2〉
∣
∣ m2 = j2, j2−1, . . . ,− j2

}

of H j2(2). The irreducible tensor operators Ta(1) and
Tb(2) also have the standard actions in their respective
Hilbert spaces H(1) and H(2), as given by the Wigner–
Eckart theorem. The total angular momentum J has the
standard action on the coupled orthonormal basis of the
tensor product space H j1 ⊗H j2 :

|( j1 j2) jm〉 =
∑

m1m2

C j1 j2 j
m1m2m | j1m1〉 ⊗ | j2m2〉 .

(2.85)

The tensor product operator Ta(1)⊗Tb(2) acts in the
tensor product space H(1)⊗H(2) according to the rule:

(
Ta(1)⊗Tb(2)

)
(| j1m1〉⊗ | j2m2〉)

= Ta(1)| j1m1〉 ⊗Tb(2)| j2m2〉 ,
so that

(
Ta(1)⊗Tb(2)

)
| ( j1 j2) jm〉

=
∑

m1m2

C j1 j2 j
m1m2m Ta(1)| j1m1〉 ⊗Tb(2)| j2m2〉 .

(2.86a)

The angular momentum quantities called 9– j coef-
ficients arise when the coupled tensor operators T(ab)c

with components γ defined by

T (ab)c
γ =

∑

αβ

Cabc
αβγ T a

α (1)⊗T b
β (2) ,

γ = c, c−1, . . . ,−c , (2.86b)

are considered. The quantity T(ab)c is an irreducible ten-
sor operator of rank c with respect to the total angular
momentum J for all a, b that yield c under the rule of
addition of angular momentum.

2.10.2 9– j Invariant Operators

The entire angular momentum content of rela-
tion (2.86b) is captured by taking the irreducible
tensor operators Ta(1) and Tb(2) to be unit ten-
sor operators acting in the respective spaces H(1)
and H(2):

T(ab)c
(ρσ)γ

=
∑

αβ

Cabc
αβγ

〈
α+ρ

2a 0
a+α

〉

1

⊗
〈

b+σ
2b 0

b+β

〉

2

.

(2.87)

The placement of the unit tensor operators shows in
which space they act, so that the additional iden-
tification by indices 1 and 2 could be eliminated.
For each given c ∈ {0, 1/2, 1, 3/2, 2, . . . } and all a, b
such that the triangle relation (abc) is satisfied, and,
for each such pair a, b, all ρ, σ with ρ ∈ {a, a−
1, . . . ,−a}, σ ∈ {b, b−1, . . . ,−b}, an irreducible ten-
sor operator of rank c with respect to the total angular
momentum J with components γ is defined by (2.87).
By the Wigner–Eckart theorem, it must be possible to
write

∑

αβ

Cabc
αβγ

〈
α+ρ

2a 0
a+α

〉

1

⊗
〈

b+σ
2b 0

b+β

〉

2

=
∑

τ

[
abc

ρστ

]〈
c+ τ

2c 0
c+γ

〉

. (2.88)

where: (i) The unit tensor operator on the right-hand
side is a irreducible tensor operator with respect to J;
that is, has the action on the coupled states given
by

〈
c+ τ

2c 0
c+γ

〉

|( j1 j2) jm〉

= C j c j+τ
m,γ,m+γ |( j1 j2) j+ τ,m+γ 〉 ; (2.89)

and (ii) the symbol
[

abc
ρστ

]
denotes an invariant

operator with respect to the total angular mo-
mentum J. Using the orthogonality of unit tensor
operators, we can also write relation (2.88) in the
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form:
[

abc

ρστ

]

=
∑

αβγ

Cabc
αβγ

〈
a+ρ

2a 0
a+α

〉

1

⊗
〈

b+σ
2b 0

b+β

〉

2

〈
c+ τ

2c 0
c+γ

〉†

. (2.90)

This form is taken as the definition of the 9– j invariant
operator. Its eigenvalues in the coupled basis define the
9– j coefficient:

[
abc

ρστ

]

|( j1 j2) jm〉

= 〈( j1+ρ, j2+σ) j+ τ |
∣
∣∣∣∣

[
abc

ρστ

]∣∣∣∣∣
|( j1 j2) j〉

× |( j1 j2) jm〉
= [(2 j+1)(2c+1)(2 j1+2ρ+1)(2 j2+2σ+1)] 1

2

×

⎧
⎪⎨

⎪⎩

j1 j2 j

a b c

j1+ρ j2+σ j+ τ

⎫
⎪⎬

⎪⎭
|( j1 j2) jm〉 . (2.91)

The 9– j invariant operators play exactly the same role
in the tensor product space of two irreducible angular
momentum spaces as do the Racah invariants in one such
irreducible angular momentum space.

The full content of the coupling law (2.86b) for
physical irreducible tensor operators is regained in the
coupling law for reduced matrix elements:

〈(
α′1α′2 j ′1 j ′2

)
j ′
∥∥[Ta(1)× Tb(2)]c∥∥(α1α2 j1 j2) j

〉

=
⎡

⎢
⎣

j1 j2 j

a b c

j ′1 j ′2 j ′

⎤

⎥
⎦
〈(
α′1
)

j ′1
∥∥Ta(1)

∥∥(α1) j1
〉

×
〈(
α′2
)

j ′2
∥∥Tb(2)

∥∥(α2) j2
〉 ; (2.92a)

⎡

⎢
⎣

j1 j2 j

a b c

j ′1 j ′2 j ′

⎤

⎥
⎦

= [(
2 j ′1+1

)(
2 j ′2+1

)
(2 j+1)(2c+1)

] 1
2

×

⎧
⎪⎨

⎪⎩

j1 j2 j

a b c

j ′1 j ′2 j ′

⎫
⎪⎬

⎪⎭
. (2.92b)

2.10.3 Basic Relations Between 9– j
Coefficients and 6– j Coefficients

Orthogonality of 9– j coefficients:
∑

hi

(2c+1)(2 f +1)(2h+1)(2i+1)

×

⎧
⎪⎨

⎪⎩

a b c

d e f

h i j

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

a b c′

d e f ′

h i j

⎫
⎪⎬

⎪⎭
= δcc′δ f f ′ ,

where this relation is to be applied only to triples (abc),
(def ), (cf j), (abc′), (def ′), (c′ f ′j) for which the triangle
conditions hold.
9– j coefficients in terms of 3– j coefficients:

δ j33 j ′33
(2 j33+1)−1

⎧
⎪⎨

⎪⎩

j11 j12 j13

j21 j22 j23

j31 j32 j33

⎫
⎪⎬

⎪⎭

=
∑

all mij
except m33

(
j11 j12 j13

m11 m12 m13

)(
j21 j22 j23

m21 m22 m23

)

×

(
j31 j32 j33

m31 m32 m33

)(
j11 j21 j31

m11 m21 m31

)

×

(
j12 j22 j32

m12 m22 m32

)(
j13 j23 j ′33

m13 m23 m33

)

. (2.93)

9– j coefficients in terms of 6– j coefficients:
⎧
⎪⎨

⎪⎩

j11 j12 j13

j21 j22 j23

j31 j32 j33

⎫
⎪⎬

⎪⎭
=
∑

k

(−1)2k(2k+1)

×

{
j11 j21 j31

j32 j33 k

}{
j12 j22 j32

j21 k j23

}

×

{
j13 j23 j33

k j11 j12

}

. (2.94)

Basic defining relation for 9– j coefficient from (2.88):

(−1)φ

⎧
⎪⎨

⎪⎩

j12 j22 j32

j11 j21 j31

j13 j23 j33

⎫
⎪⎬

⎪⎭

(
j31 j32 j33

m31 m32 m33

)

=
∑

all m(1i)m(2i)

(
j11 j21 j31

m11 m21 m31

)
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×

(
j12 j22 j32

m12 m22 m32

)(
j13 j23 j33

m13 m23 m33

)

×

(
j11 j12 j13

m11 m12 m13

)(
j21 j22 j23

m21 m22 m23

)

,

φ =
∑

kl

jkl . (2.95)

Additional relations:
∑

kl

(−1)2b+l+h− f (2k+1)(2l+1)

×

⎧
⎪⎨

⎪⎩

a b c

e d f

k l i

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

a e k

d b l

g h i

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

a b c

d e f

g h i

⎫
⎪⎬

⎪⎭
,

∑

c

(2c+1)

⎧
⎪⎨

⎪⎩

a b c

d e f

g h i

⎫
⎪⎬

⎪⎭

{
a b c

f i j

}

= (−1)2 j

{
d e f

b j h

}{
g h i

j a d

}

,

∑

klm

(2k+1)(2l+1)(2m+1)

×

⎧
⎪⎨

⎪⎩

a b c

d e f

k l m

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

k l m

a′ b′ c′

d′ e′ f ′

⎫
⎪⎬

⎪⎭

×

{
a d k

a′ d′ k′

}{
b e l

b′ e′ l′

}{
c f m

c′ f ′ m′

}

=

⎧
⎪⎨

⎪⎩

a b c

d′ e′ f ′

k′ l′ m′

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

k′ l′ m′

a′ b′ c′

d e f

⎫
⎪⎬

⎪⎭
.

2.10.4 Symmetry Relations
for 9– j Coefficients and Reduction
6– j Coefficients

The 9– j coefficient
⎧
⎪⎨

⎪⎩

j11 j12 j13

j21 j22 j23

j31 j32 j33

⎫
⎪⎬

⎪⎭

is invariant under even permutation of its rows, even per-
mutation of its columns, and under the interchange of

rows and columns (matrix transposition). It is multiplied
by the factor (−1)φ (2.95) under odd permutations of its
rows or columns. These 72 symmetries are all conse-
quences of the 72 symmetries of the 3– j coefficient in
relation (2.93).
Reduction to 6– j coefficients:

⎧
⎪⎨

⎪⎩

a b e

c d e

f f 0

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

0 e e

f d b

f c a

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

e 0 e

c f a

d f b

⎫
⎪⎬

⎪⎭

=

⎧
⎪⎨

⎪⎩

f f 0

d c e

b a e

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

f b d

0 e e

f a c

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

a f c

e 0 e

b f d

⎫
⎪⎬

⎪⎭

=

⎧
⎪⎨

⎪⎩

b a e

f f 0

d c e

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

e d c

e b a

0 f f

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

c e d

a e b

f 0 f

⎫
⎪⎬

⎪⎭

= (−1)b+c+e+ f

[(2e+1)(2 f +1)]
1
2
{

abe

dcf

}

.

2.10.5 Explicit Algebraic Form
of 9– j Coefficients

⎧
⎪⎨

⎪⎩

a b c

d e f

h i j

⎫
⎪⎬

⎪⎭
= (1)c+ f− j (dah)(bei)( jhi)

(def )(bac)( jcf )

×
∑

xyz

(−1)x+y+z

x!y!z!

×
(2 f − x)!(2a− z)!

(2i+1+ y)!(a+d+h+1− z)!

×
(d+ e− f + x)!(c+ j− f + x)!
(e+ f −d− x)!(c+ f − j− x)!

×
(e+ i−b+ y)!(h+ i− j+ y)!
(b+ e− i− y)!(h+ j− i− y)!

×
(b+ c−a+ z)!

(a+d−h− z)!(a+ c−b− z)!
×

(a+d+ j− i− y− z)!
(d+ i−b− f + x+ y)!(b+ j−a− f + x+ z)! ,

(abc)

=
(
(a−b+ c)!(a+b− c)!(a+b+ c+1)!

(b+ c−a)!
) 1

2

.
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2.10.6 Racah Operators

A Racah operator is denoted
⎧
⎪⎨

⎪⎩

a+ρ
2a 0

a+σ

⎫
⎪⎬

⎪⎭

ρ, σ = a, a−1, . . . ,−a,

2a = 0, 1, 2, . . . ,

and is a special case of the operator defined by (2.87):
⎧
⎪⎨

⎪⎩

a+ρ
2a 0

a+σ

⎫
⎪⎬

⎪⎭
|( j1 j2) jm〉

=
(
(2a+1)(2 j2+1)

(2 j2+2σ+1)

) 1
2

T(aa)0
(ρσ)0 |( j1 j2) jm〉 . (2.96)

Thus, a Racah operator is an invariant operator with
respect to the total angular momentum J. Alternative
definitions are:

⎧
⎪⎨

⎪⎩

a+ρ
2a 0

a+σ

⎫
⎪⎬

⎪⎭

= (−1)a+σ
∑

a

〈
a+ρ

2a 0
a+α

〉

⊗
〈

a−σ
2a 0

a+α

〉†

,

⎧
⎪⎨

⎪⎩

a+ρ
2a 0

a+σ

⎫
⎪⎬

⎪⎭

∣∣( j1 j2) jm
〉

= [(2 j1+2ρ+1)(2 j2+1)] 1
2

× W( j, j1, j2+σ, a; j2, j1+ρ)
× |( j1+ρ, j2+σ) jm〉

with conjugate

⎧
⎪⎨

⎪⎩

a+ρ
2a 0

a+σ

⎫
⎪⎬

⎪⎭

†

∣∣( j1 j2) jm
〉

= [(2 j1+1)(2 j2−2σ+1)] 1
2

× W( j, j1−ρ, j2, a; j2−σ, j1)

× |( j1−ρ, j2−σ) jm〉 .
Racah operators satisfy orthogonality relations similar
in form to Wigner operators. The open product rule

is: ⎧
⎪⎨

⎪⎩

b+σ
2b 0

b+β

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

a+ρ
2a 0

a+α

⎫
⎪⎬

⎪⎭

=
∑

c

W
abc
ρ,σ,ρ+σW abc

α,β,α+β

⎧
⎪⎨

⎪⎩

c+ρ+σ
2c 0

c+α+β

⎫
⎪⎬

⎪⎭
.

(2.97)

In this result W
abc
ρστ and W abc

α,β,α+β denote Racah invari-
ants with respect to the angular momenta J(1) and J(2),
respectively, so that

W
abc
ρστ |( j1 j2) jm〉 = W abc

ρστ ( j1)|( j1 j2) jm〉 ,
W abc
αβγ |( j1 j2) jm〉 = W abc

αβγ ( j2)|( j1 j2) jm〉 .
The matrix elements of relation (2.97) lead to the
Biedenharn–Elliott identity. There are five versions of
this relationship in complete analogy to relations (2.63–
2.65) and (2.69–2.70) for Wigner operators.

Racah operators are a basis for all invariant opera-
tors acting in the tensor product space spanned by the
coupled basis vectors (2.85) and are the natural way of
formulating interactions in that space. Their algebra is
a fascinating study, initiated already in a different guise
in the work of Schwinger [2.3]. Little use has been made
of this concept in physical applications.

Additional relations between Racah coefficients or
6– j coefficients may be derived from the various ver-
sions of the rule (2.97) or directly from relation (2.79b)
by using the orthogonality relations (2.75). Two of these
are:

∑

e

(−1)a+b+e(2e+1)

×

{
a b e

d c g

}{
a′ a c′

b b′ e

}{
a′ e b′

d d′ c

}

= (−1)φ1

{
c′ b b′

d d′ g

}{
a′ a c′

g d′ c

}

,

φ1 = g+a′ +b′ + c′ + c+d′ +d ;
∑

e,e′
(−1)a−c′+e−e′(2e+1)(2e′ +1)(2 f +1)

×

{
c′ b e′

d d′ f

}{
a b e

d c g

}{
a′ a c′

b e′ e

}{
a′ e e′

d d′ c

}

= δ fg(−1)φ2

{
a′ a c′

g d′ c

}

,

φ2 = g+a′ −b+ c+d′ +d .
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Angular Momentum Theory 2.10 The 9–j Coefficients 51

The W-coefficient form of these relations is obtained
by deleting all phase factors and making the sub-
stitution (2.74), ignoring the phase factor. There are
no phase factors in the corresponding W-coefficient
relations.

2.10.7 Schwinger–Wu Generating Function
and its Combinatorics

Triangles associated with the 9– j coefficient

⎧
⎪⎨

⎪⎩

j1 j2 j3
j4 j5 j6
j7 j8 j9

⎫
⎪⎬

⎪⎭
:

( j1 j2 j3) , ( j4 j5 j6) , ( j7 j8 j9) , ( j1 j4 j7) ,

( j2 j5 j8) , ( j3 j6 j9) .

Points in R3 associated with the triangles:

( j1 j2 j3)→ (x1, x2, x3), ( j4 j5 j6)→ (x4, x5, x6) ,

( j7 j8 j9)→ (x7, x8, x9), ( j1 j4 j7)→ (y1, y4, y7) ,

( j2 j5 j8)→ (y2, y5, y8), ( j3 j6 j9)→ (y3, y6, y9) .

Cubic graph C6 in R3 associated with the points:
The points define the vertices of a cubic graph C6

on six points with lines joining each pair of points
that share a common subscript, and the lines are la-
beled by the products xi yi , where i is the common
subscript (Fig. 2.3).
Cubic graph C6 functions:

Interchange the symbols x and y in the coordinates
of the vertices of the cubic graph C6, and define the fol-
lowing polynomials on the vertices and edges of the C6
with this modified labeling:
Vertex function: multiply together the coordinates of
each pair of adjacent vertices, divide out the coordinates
with a common subscript, and sum over all pairs of

Fig. 2.3 Labeled cubic graph associated with the 9– j coef-
ficient

vertices to obtain

V4 = y1 y2x6x9+ y1 y3x5x8+ y2 y3x4x7

+ y4 y5x3x9+ y4 y6x2x8+ y5 y6x1x7

+ y7 y8x3x6+ y7 y9x2x5+ y8 y9x1x4 .

Edge function:

E6 = det

⎡

⎢
⎣

x1 y1 x2 y2 x3 y3

x4 y4 x5 y5 x6 y6

x7 y7 x8 y8 x9 y9

⎤

⎥
⎦ .

Generating function [2.4–6]:

(1−V4+ E6)
−2 =

∑

∆

C(∆)Z∆ ,

Z∆ =
∏

all vertices

(za, zb, zc)
( ja jb jc) [see (2.82, )] ,

∆=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

( j1 j2 j3)

( j4 j5 j6)

( j7 j8 j9)

( j1 j4 j7)

( j2 j5 j8)

( j3 j6 j9)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

C(∆)=
∑

k

∑

�

∑

a

(−1)k10+k11+k12(k+1)

×

(
k

k1, . . . , k9, k10, . . . , k15

)
,

where summation
∑
� is over all 3 × 3 square arrays of

nonnegative integers k j( j = 1, 2, . . . , 9)with fixed row
and column sums given by

⎡

⎢
⎣

k1 k2 k3

k4 k5 k6

k7 k8 k9

⎤

⎥
⎦

k− t4 k− t5 k− t6

k− t1
k− t2
k− t3

and for each such array the summation
∑

a is over all
nonnegative integers a such that the following quantities
are nonnegative integers:

k10 =−a+ k1− k+ j2+ j3+ j4+ j7 ,

k11 =−a+ k6− k+ j3+ j4+ j5+ j9 ,

k12 =−a+ k8− k+ j2+ j5+ j7+ j9 ,

k13 = a+ k5− k1− j3+ j6− j7+ j8 ,

k14 = a+ k2− k6+ j1− j4+ j8− j9 ,

k15 = a .
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Note that
15∑

i=10

ki =−2k+
9∑

i=1

ji .

The ti are the following triangle sums:

t1 = j1+ j2+ j3, t2 = j4+ j5+ j6 ,

t3 = j7+ j8+ j9 ,

t4 = j1+ j4+ j7, t5 = j2+ j5+ j8 ,

t6 = j3+ j6+ j9 .

The 9– j coefficient is given by
⎧
⎪⎨

⎪⎩

j1 j2 j3
j4 j5 j6
j7 j8 j9

⎫
⎪⎬

⎪⎭
=∆( j1 j2 j3)∆( j4 j5 j6)∆( j7 j8 j9)

×∆( j1 j4 j7)∆( j2 j5 j8)∆( j3 j6 j9)C(∆) .

The coefficient C(∆) is an integer associated with
each cubic graph C6 that counts the number of occur-
rences of the monomial term Z∆ in the expansion of
(1−V4+ E6)

−2.

2.11 Tensor Spherical Harmonics

Tensor spherical or tensor solid harmonics are special
cases of the coupling of two irreducible tensor operators
in the tensor product space given in Sect. 2.7.2. They are
defined by

Y(ls) jm =
∑

ν

Cl s j
m−ν,ν,mYl,m−ν⊗ ξν

and belong to the tensor product space Hl ⊗H ′
s, where

the orthonormal bases of the spaces Hl and H ′
s are:

{
Ylµ : µ= l, l−1, . . . ,−l

}
,

{ξν : ν = s, s−1, . . . ,−s} .
The orbital angular momentum L has the standard action
on the solid harmonics, and a second set of kinemati-
cally independent angular momentum operators S has
the standard action on the basis set of H ′

s.
The total angular momentum is:

J = L⊗1′ +1⊗ S ,

The set of vectors

{ Y(ls) jm : m = j, j−1, . . . ,− j; (ls j )

obey the triangle conditions }
has the following following properties:
Orthogonality:

〈
Y(l

′s) j ′m′
,Y(ls) jm

〉

=
∑

νν′
Cl′ s j ′

m′−ν′,ν′,m′C
l s j
m−ν,ν,m(Yl′,m′−ν′,Yl,m−ν)

× (ξν′ , ξν)
′ = δ j ′ jδl′lδm′m ,

where 〈 , 〉 denotes the inner product in the space
Hl ⊗H ′

s, ( , ) the inner product in Hl , and ( , )′ the
inner product in H ′

s.
Operator actions:

J2Y(ls) jm = j( j+1)Y(ls) jm ,

J3Y
(ls) jm = mY(ls) jm ,

(L2⊗1′)Y(ls) jm = l(l+1)Y(ls) jm ,

(1⊗ S2)Y(ls) jm = s(s+1)Y(ls) jm ,

J2 = L2⊗1′+1⊗ S2+2
∑

i

Li⊗ Si ,

J±Y(ls) jm = [( j∓m)( j±m+1)] 1
2 Y(ls) j,m±1 .

Transformation property under unitary rotations:

exp(−iψn̂ · J)Y(ls) jm =
∑

m′
D j

m′m(ψ, n̂)Y
(ls) jm′

.

Special realization:
The eigenvectors ξν are often replaced by column

matrices:

ξν = col(0 · · · 010 · · · 0) ,
1 in position s−ν+1, ν = s, s−1, . . . ,−s .

The operators S= (S1, S2, S3) are correspondingly re-
placed by their standard (2s+1)× (2s+1) matrix
representations S(s)i . The tensor product of operators
becomes a (2s+1)× (2s+1) matrix containing both
operators and numerical matrix elements, e.g.,

Ji = Li I2s+1+ S(s)i ,

in which Li is a differential operator multiplying the
unit matrix, that is, Li is repeated 2s+1 times along the
diagonal.
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2.11.1 Spinor Spherical Harmonics
as Matrix Functions

Choose ξ+1/2 = col(1, 0), ξ−1/2 = col(0, 1), and S=
σ/2. The spinor spherical harmonics or Pauli
central field spinors are the following, where
j ∈ {1/2, 3/2, . . . } :

Y

(
j− 1

2 ,
1
2

)
jm =

⎛

⎜
⎝

√
j+m
2 j Y j− 1

2 ,m− 1
2

√
j−m
2 j Y j− 1

2 ,m+ 1
2

⎞

⎟
⎠ ,

Y

(
j+ 1

2 ,
1
2

)
jm =

⎛

⎜
⎝
−
√

j−m+1
2 j+2 Y j+ 1

2 ,m− 1
2

√
j+m+1
2 j+2 Y j+ 1

2 ,m+ 1
2

⎞

⎟
⎠ .

2.11.2 Vector Spherical Harmonics
as Matrix Functions

Choose ξ+1 = col(1, 0, 0), ξ0 = col(0, 1, 0), ξ−1 =
col(0, 0, 1), and S the 3 ×3 angular momentum matrices
given by

S+ =
⎛

⎜
⎝

0
√

2 0

0 0
√

2

0 0 0

⎞

⎟
⎠ , S− =

⎛

⎜
⎝

0 0 0√
2 0 0

0
√

2 0

⎞

⎟
⎠ ,

S3 =
⎛

⎜
⎝

1 0 0

0 0 0

0 0 −1

⎞

⎟
⎠ .

The vector spherical harmonics are the following, where
j ∈ {0, 1, 2, . . . }:

Y( j−1,1) jm =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

√
( j+m−1)( j+m)

2 j(2 j−1) Y j−1,m−1

√
( j−m)( j+m)

j(2 j−1) Y j−1,m

√
( j−m−1)( j−m)

2 j(2 j−1) Y j−1,m+1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

Y( j1) jm =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

−
√
( j+m)( j−m+1)

2 j( j+1) Y j,m−1

m√
j( j+1)

Y j,m

√
( j−m)( j+m+1)

2 j( j+1) Y j,m+1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

Y( j+1,1) jm =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎝

√
( j−m+1)( j−m+2)

2( j+1)(2 j+3) Y j+1,m−1

−
√
( j−m+1)( j+m+1)
( j+1)(2 j+3) Y j+1,m

√
( j+m+2)( j+m+1)

2( j+1)(2 j+3) Y j+1,m+1

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

.

Eigenvalue properties:

∇2Y(l1) jm = 0 ,

J2Y(l1) jm = j( j+1)Y(l1) jm ,

J3Y
(l1) jm = mY(l1) jm ,

L2Y(l1) jm = l(l+1)Y(l1) jm ,

S2Y(l1) jm = 2Y(l1) jm .

2.11.3 Vector Solid Harmonics
as Vector Functions

Vector spherical and solid harmonics can also be defined
and their properties presented in terms of the ordinary
solid harmonics, using the vectors x,∇, and L, and the
operations of divergence and curl:
Defining equations:

Y(l+1,1)lm = −[(l+1)(2l+1)]− 1
2 [(l+1)x

+ ix × L]Ylm ,

Y(l1)lm = [l(l+1)]−1/2LYlm ,

r2Y(l−1,1)lm = −[l(2l+1)]− 1
2 × (−lx+ ix

× L)Ylm .

Eigenvalue properties:

J2Y(l1) jm = j( j+1)Y(l1) jm ,

L2Y(l1) jm = l(l+1)Y(l1) jm ,

S2Y(l1) jm = 2Y(l1) jm ,

J3Y
(l1) jm = mY(l1) jm ,

∇2Y(l1) jm = 0 ,

2iL ×Y(l1) jm = [ j( j+1)− l(l+1)−2]Y(l1) jm .

Orthogonality:
∫

dSx̂Y
(l′1) j ′m′∗(x) ·Y(l1) jm(x)= δl′lδ j ′ jδm′mrl′+l ,

where the integration is over the unit sphere in R3.
Complex conjugation:

Y(l1) jm∗ = (−1)l+1− j(−1)mY(l1) j,−m .
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Vector and gradient formulas:

xYlm =−
(

l+1

2l+1

) 1
2

Y(l+1,1)lm

+
(

l

2l+1

) 1
2

r2Y(l−1,1)lm ,

[(l+1)∇+ i∇ × L](FYlm)

=−[(l+1)(2l+1)] 1
2

(
1

r

dF

dr

)
Y(l+1,1)lm ,

[−l∇+ i∇ × L](FYlm)

=−[l(2l+1)] 1
2

[
r

dF

dr
+ (2l+1)F

]
Y(l−1,1)lm ,

∇(FYlm)=−
(

l+1

2l+1

) 1
2
(

1

r

dF

dr

)
Y(l+1,1)lm

+
(

l

2l+1

) 1
2
[

r
dF

dr
+ (2l+1)F

]
Y(l−1,1)lm ,

i∇ × L(FYlm)=−l

(
l+1

2l+1

) 1
2
(

1

r

dF

dr

)
Y(l+1,1)lm

− (l+1)

(
l

2l+1

) 1
2

×

[
r

dF

dr
+ (2l+1)F

]
Y(l−1,1)lm .

Curl equations:

i∇ × (FY(l+1,1)lm)=−
(

l

2l+1

) 1
2

×

[
r

dF

dr
+ (2l+3)F

]
Y(l1)lm ,

i∇ × (FY(l1)lm)=−
(

l

2l+1

) 1
2

×

(
1

r

dF

dr

)
Y(l+1,1)lm −

(
l+1

2l+1

) 1
2

×

[
r

dF

dr
+ (2l+1)F

]
Y(l−1,1)lm ,

i∇×
(
FY(l−1,1)lm)=−

(
l+1

2l+1

) 1
2
(

1

r

dF

dr

)
Y(l1)lm .

Divergence equations:

∇ · (FY(l+1,1)lm)=

−
(

l+1

2l+1

) 1
2
[

r
dF

dr
+ (2l+3)F

]
Ylm ,

∇ · (FY(l1)lm)= 0 ,

∇ · (FY(l−1,1)lm)=
(

l

2l+1

) 1
2
(

1

r

dF

dr

)
Ylm .

Parity property:

Y(l+δ,1)lm(−x)= (−1)l+δY(l+δ,1)lm(x) .
Scalar product:

Y(l
′1) j ′m′ ·Y(l1) jm =

∑

l′′
rl+l′−l′′

(
(2 j+1)(2 j ′ +1)(2l+1)(2l′ +1)

4π(2l′′ +1)

) 1
2

× (−1)l+ j ′+l′′Cll′l′′
000 C jj ′l′′

m,m′,m+m′

×

{
l′ j ′ 1

j l l′′

}

Yl′′,m+m′ .

Cross product:

Y(l
′1) j ′m′

×Y(l1) jm = (− i
√

2
)∑

l′′ j ′′
rl+l′−l′′

×

(
(2 j+1)(2 j ′ +1)(3)(2l+1)(2l′ +1)

4π

) 1
2

× Cll′l′′
000 C jj ′ j ′′

m,m′,m+m′

⎧
⎪⎨

⎪⎩

l 1 j

l′ 1 j ′

l′′ 1 j ′′

⎫
⎪⎬

⎪⎭
Y(l

′′1) j ′′,m+m′
.

Conversion to spherical harmonic form:

Y(l+δ,1)lm(x)= rl+δY(l+δ,1)lm(x̂) ,
with appropriate modification of F to account for the
factor rl+δ.

2.12 Coupling and Recoupling Theory and 3n–j Coefficients

2.12.1 Composite Angular Momentum
Systems

An “elementary” angular momentum system is one
whose state space can be written as a direct sum of

vector spaces H j with orthonormal basis

{| jm〉|m = j, j−1, . . . ,− j}
on which the angular momentum J has the standard
action, and which under unitary transformation by
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exp(−iψn̂ · J) undergoes the standard unitary transfor-
mation. A composite angular momentum system is one
whose state space is a direct sum of the tensor prod-
uct spaces H j1 j2··· jn of dimension

∏n
α=1(2 jα+1) with

orthonormal basis in the tensor product space of the
elementary systems given by

| j1m1〉⊗ | j2m2〉 ⊗ · · · ⊗ | jnmn〉 , (2.98)

each mα = jα, jα−1, . . . ,− jα.
The following properties then hold for the composite

system:
Independent rotations of the elementary parts:

{
exp

[−iψ1n̂1 · J(1)
]⊗· · ·⊗ exp

[−iψn n̂n · J(n)
]}

× | j1m1〉⊗ · · ·⊗ jnmn〉
= exp

[−iψ1n̂1 · J(1)
] | j1m1〉⊗ · · ·

⊗ exp
[−iψn n̂n · J(n)

] | jnmn〉
=

∑

m′
1···m′

n

[
D j1(U1)× · · ·× D jn (Un)

]

m′
1···m′

n;m1···mn

×
∣∣ j1m′

1

〉⊗· · ·⊗ ∣∣ jnm′
n

〉
, (2.99)

[
D j1(U1)× · · ·× D jn (Un)

]

m′
1···m′

n;m1···mn

= D j1
m′

1m1
(U1) · · · D jn

m′
nmn
(Un) ,

Uα =U(ψα, n̂α) ∈ SU(2) , α= 1, 2, . . . , n .

Multiple Kronecker (direct) product group SU(2)× · · · ×
SU(2):

Group elements:

(U1, . . . ,Un) , each Uα ∈ SU(2) .

Multiplication rule:
(
U ′

1, . . . ,U
′
n

)
(U1, . . . ,Un)=

(
U ′

1U1, . . . ,U
′
nUn

)
.

Irreducible representations:

D j1(U1)× · · ·× D jn (Un) . (2.100)

Rotation of the composite system as a unit:
Common rotation:

U1 =U2 = · · · =Un =U ∈ SU(2) .

Diagonal subgroup SU(2)⊂ SU(2)× · · · × SU(2) :
(U,U, . . . ,U ), each U ∈ SU(2) .

Reducible representation of SU(2):

D j1(U )× · · ·× D jn (U ) . (2.101)

Total angular momentum of the composite system:

J = J(1)+ J(2)+· · ·+ J(n) ,

in which the k-th term in the sum is to be interpreted as
the tensor product operator:

I1⊗· · ·⊗J(k)⊗· · ·⊗In, Iα = unit operator in H jα .

The basic problem for composite systems:
The basic problem is to reduce the n-fold direct prod-

uct representation (2.101) of SU(2) into a direct sum of
irreducible representations, or equivalently, to find all
subspaces H j ⊂H j1 j2··· jn , j ∈ {0, 1/2, 1, . . . }, with or-
thonormal bases sets {| jm〉|m = j, j−1, . . . ,− j} on
which the total angular momentum J has the standard
action.
Form of the solution:

| ( j1 j2 · · · jn)(k) jm〉 =
∑

all mα∑
mα = m

C j1 j2··· jn j
m1m2···mnm(k)

× | j1m1〉⊗ | j2m2〉⊗ · · ·⊗ | jnmn〉 , (2.102)

m = j, j−1, . . . ,− j; index set (k) unspecified.
Diagonal operators:

J2(α)= J2
1 (α)+ J2

2 (α)+ J2
3 (α),

J2(α) | ( j1 j2 · · · jn)(k) jm〉
= jα( jα+1) | ( j1 j2 · · · jn)(k) jm〉 ,

α= 1, 2, . . . , n . (2.103)

Total angular momentum properties imposed:

J2 | ( j1 j2 · · · jn)(k) jm〉
= j( j+1) | ( j1 j2 · · · jn)(k) jm〉 ,

J3 | ( j1 j2 · · · jn)(k) jm〉
= m | ( j1 j2 · · · jn)(k) jm〉 ,

J± | ( j1 j2 · · · jn)(k) jm〉
= [( j∓m)( j±m+1)] 1

2

× | ( j1 j2 · · · jn)(k) jm±1〉 . (2.104)

Properties of the index set (k):
Reduction of Kronecker product (2.101):

D j1 × D j2 × · · ·× D jn =
∑

j

⊕n j D j ,

∏

α

(2 jα+1)=
∑

j

n j(2 j+1) . (2.105)
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For fixed j1, j2, . . . , jn , and j, the index set (k) must
enumerate exactly n j perpendicular spaces H j .
Incompleteness of set of operators:

There are 2n commuting Hermitian operators diag-
onal on the basis (2.98):

{
J2(α), J3(α)

∣∣ α= 1, 2, . . . , n
}
. (2.106a)

There are n+2 commuting Hermitian operators diago-
nal on the basis (2.102):

{
J2, J3; J2(α)

∣∣ α= 1, 2, . . . , n
}
. (2.106b)

There are n−2 additional commuting Hermitian oper-
ators, or other rules, required to complete set (2.106b)
and determine the indexing set (k).
Basic content of coupling and recoupling theory:

Coupling theory is the study of completing the op-
erator set (2.106b), or the specification of other rules,
that uniquely determine the irreducible representation
spaces H j occurring in the Kronecker product reduc-
tion (2.105). Recouping theory is the study of the
inter-relations between different methods of effecting
this reduction; it is a study of relations between the
different ways of spanning the multiplicity space

H j ⊕H j ⊕· · ·⊕H j (n j terms) .

2.12.2 Binary Coupling Theory:
Combinatorics

Binary coupling of angular momenta refers to the se-
lecting any pair of angular momentum operators from
the set of individual system angular momenta

{J(1), J(2), . . . , J(n)} ,
and carrying out the “addition of angular momenta” for
that pair by coupling the corresponding states in the
tensor product space by the standard use of SU(2)WCG-
coefficients; this is followed by addition of a new pair,
which may be a pair distinct from the first pair, or the
addition of one new angular momentum to the sum of
the first pair, etc. If the order 1, 2, . . . , n of the angular
momenta is kept fixed in

J1+ J2+· · ·+ Jn , (2.107)

one is led to the problem of parentheses. (To avoid
misleading parentheses, the notation Jα = J(α) is used
in this section.) This is the problem of introducing
pairs of parentheses into expression (2.107) that spec-
ify the coupling procedure that is to be implemented.

The procedure is clear from the following cases for
n = 2, 3, and 4:

n = 2 : J1+ J2 ;
n = 3 : (J1+ J2)+ J3 ,

J1+ (J2+ J3) ;
n = 4 : (J1+ J2)+ (J3+ J4) ,

[(J1+ J2)+ J3]+ J4 ,

[J1+ (J2+ J3)]+ J4 ,

J1+[(J2+ J3)+ J4] ,
J1+[J2+ (J3+ J4)] .

It is customary to use the ordered sequence

j1 j2 · · · jn (2.108)

of angular momentum quantum numbers in place of the
angular momentum operators in (2.107). Thus, the five
placement of parentheses for n = 4 becomes:

( j1 j2)( j3 j4) , [( j1 j2) j3] j4 , [ j1( j2 j3)] j4 ,

j1[( j2 j3) j4] , j1[ j2( j3 j4)] .
(It is also customary to omit the last parentheses pair,
which encloses the whole sequence.) A sequence (2.108)
into which pairwise insertions of parentheses has been
completed is called a binary bracketing of the sequence,
and denoted by ( j1 j2 · · · jn)B . This symbol may also be
called a coupling symbol. The total number of coupling
symbols, that is, the total number of elements an in the
set

{( j1 j2 · · · jn)
B|B is a binary bracketing}

is given by the Catalan numbers:

an = 1

n

(
2n−2

n−1

)

, n = 2, 3, . . . .

Effect of permuting the angular momenta:
Since the position of an individual vector space in the

tensor product H j1 ⊗· · ·⊗H jn is kept fixed, the mean-
ing of a permutation of the jα in the sequence (2.108)
corresponding to a given binary bracketing is to per-
mute the positions of the terms in the summation for
the total angular momentum, e.g., ( j1 j2) j3 → ( j3 j1) j2
corresponds to

(J1⊗ I2⊗ I3+ I1⊗ J2⊗ I3)+ I1⊗ I2⊗ J3

= (I1⊗ I2⊗ J3+ J1⊗ I2⊗ I3)+ I1⊗ J2⊗ I3 .
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Total number of binary bracketing schemes including
permutations:

The number of symbols in the set
⎧
⎪⎨

⎪⎩
( jα1 jα2 · · · jαn )

B

∣
∣∣∣∣
∣∣

B is a binary bracketing and

α1α2 · · ·αn is a permutation

of 1, 2, . . . , n

⎫
⎪⎬

⎪⎭

(2.109)

is cn = n!an = (n)n−1 = n(n+1) · · · (2n−2).
Caution: One should not assign numbers to the symbols
jα, since these symbols serve as noncommuting, non-
associative distinct objects in a counting process.
Binary subproducts:

A binary subproduct in the coupling symbol
( jα1 jα2 · · · jαn )

B is the subset of symbols between
a given parentheses pair, say, {xy}. The symbols x and y
may themselves contain binary subproducts. Commuta-
tion of a binary subproduct is the operation {xy}→ {yx}.
For example, the coupling symbol {[( j1 j2) j3] j4} con-
tains three binary subproducts, {xy}, [xy], (xy).
Equivalence relation:

Two coupling symbols are defined to be equivalent

( jα1 jα2 · · · jαn )
B ∼ ( jα′1 jα′2 · · · jα′n )

B

if one can be obtained from the other by commutation of
the symbols in the binary subproducts. Such commuta-
tions change the overall phase of the state vector (2.102)
corresponding to a particular coupling symbol, and such
states are counted as being the same (equivalent).
Number of inequivalent coupling schemes:

The equivalence relation under commutation of
binary subproducts partitions the set (2.109) into equiva-
lence classes, each containing 2n−1 elements. There
are dn = cn/2n−1 = (2n−3)!! inequivalent coupling
schemes in binary coupling theory. Thus, for n = 4,
there are 5!! = 5 × 3 × 1 = 15 inequivalent binary cou-
pling schemes.
Type of a coupling symbol:

The type of the coupling symbol ( jα1 jα2 · · · jαn )
B is

defined to be the symbol obtained by setting all the jα
equal to a common symbol, say, x. Thus, the type of the
coupling symbol {[( j1 j2) j3] j4} is {[(x2)x]x}.

The Wedderburn–Etherington number bn gives the
number of coupling symbols of distinct types, counting
two symbols as equivalent if they are related by com-
mutation of binary subproducts. A closed form of these
numbers is not known, although generating functions
exist. The first few numbers are:

n 1 2 3 4 5 6 7 8 9 10

bn 1 1 1 2 3 6 11 23 46 98

There are 15 nontrivial coupling schemes for 4 angular
momenta, and they are classified into 2 types, allowing
commutation of binary subproducts:

Type
[(

x2)x
]
x

[( j1 j2) j3] j4, [( j2 j3) j1] j4, [( j3 j1) j2] j4

[( j1 j2) j4] j3, [( j2 j4) j1] j3, [( j4 j1) j2] j3

[( j1 j3) j4] j2, [( j3 j4) j1] j2, [( j4 j1) j3] j2

[( j2 j3) j4] j1, [( j3 j4) j2] j1, [( j4 j2) j3] j1

Type
(
x2)(x2)

( j1 j2)( j3 j4), ( j1 j3)( j2 j4), ( j2 j3)( j1 j4)

2.12.3 Implementation of Binary Couplings

Each binary coupling scheme specifies uniquely a set of
intermediate angular momentum operators. For exam-
ple, the intermediate angular momenta associated with
the coupling symbol [( j1 j2) j3] j4 are

J(1)+ J(2)= J(12) , J(12)+ J(3)= J(123) ,

J(123)+ J(4)= J ,

where J is the total angular momentum. Each
coupling symbol ( jα1 jα2 · · · jαn )

B , defines exactly
n− 2 intermediate angular momentum operators
K(λ), λ= 1, 2, . . . , n−2. The squares of these op-
erators completes the set of operators (2.106b) for
each coupling symbol; that is, the states vectors sat-
isfying (2.103–2.104) and the following equations are
unique, up to an overall choice of phase factor:

K2(λ)
∣∣ ( jα1 jα2 · · · jαn )

B(k1k2 · · · kn−2) jm〉
= kλ(kλ+1)|( jα1 jα2 · · · jαn )

B(k1k2 · · · kn−2) jm〉 ,
λ= 1, 2, . . . , n−2, n > 2 . (2.110)

The intermediate angular momentum operators K2(λ)

depend, of course, on the choice of binary couplings im-
plicit in the symbol ( jα1 jα2 · · · jαn )

B . The vectors have
the following properties:
Orthonormal basis of H j1(1)⊗· · ·⊗H jn (n) :

〈( jα)
B(k′) jm|( jα)

B(k) jm〉 =
∏

λ

δk′λkλ ,

( jα) = ( jα1 , jα2 , . . . , jαn ) ,

(k) = (k1, k2, . . . , kn−2) ,

(k′) = (
k′1, k′2, . . . , k′n−2

)
.

The range of each kλ is uniquely determined by the
Clebsch–Gordan series and the binary couplings in the
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coupling symbol. Together these ranges enumerate ex-
actly the multiplicity n j of H j occurring in the reduction
of the multiple Kronecker product.
Uniqueness of state vectors:

| ( jα1 jα2 · · · jαn )
B(k1k2 · · · kn−2) jm〉

=
∑

∑
mα=m

C

⎡

⎣
(

jα1 · · · jαn

mα1 · · ·mαn

)B
j

m

⎤

⎦ (k1, . . . , kn−2)

× | j1m1〉⊗ · · ·⊗ | jnmn〉 .

In the C-coefficient, the
(

jα
mα

)
are paired in the binary

bracketing. Each such C-coefficient is a summation over
a unique product of n−1 SU(2)WCG-coefficients.
Equivalent basis vectors:

| ( jα1 jα2 · · · jαn )
B(k1k2 · · · kn−2) jm〉

= ± | ( jα′1 jα′2 · · · jα′n )
B(k1k2 · · · kn−2) jm〉 ,

if and only if ( jα1 jα2 · · · jαn )
B ∼ ( jα′1 jα′2 · · · jα′n )

B . In-
equivalent basis vector are orthonormal in all quantum
numbers labeling the state vector.
Recoupling coefficients:

A recoupling coefficient is a transformation coeffi-
cient

〈
( jβ)

B′ ∣∣ (l) jm
∣∣ ( jα)

B(k) jm
〉

relating any two orthonormal bases of the space H j1 ⊗· · ·⊗H jn , say, the one defined by (2.103, 2.104),
and (2.110) for a prescribed coupling scheme corre-
sponding to a bracketing B, and a second one, again
defined by these relations but for a different coupling
scheme corresponding to a bracketing B′. For example,
for n = 3, there are 3 inequivalent coupling symbols

and
(

3
2

)
= 3 recoupling coefficients; for n = 4, there

are 15 inequivalent coupling symbols and
(

15
2

)
= 105

recoupling coefficients. Each coefficient is, of course,
expressible as a sum over products of 2(n−1) WCG-
coefficients, obtained simply by taking the inner product:

〈
( jβ)

B′(l) jm
∣∣ ( jα)

B(k) jm
〉

=
∑

∑
mα=m

C

⎡

⎣
(

jβ1 · · · jβn

mβ1 · · ·mβn

)B′
j

m

⎤

⎦ (l)

× C

⎡

⎣
(

jα1 · · · jαn

mα1 · · ·mαn

)B
j

m

⎤

⎦ (k) .
(2.111)

The fundamental theorem of binary coupling theory
states for inequivalent coupling schemes is:
Each recoupling coefficient is expressible as a sum over
products of Racah coefficients, the only other quantities
occurring in the summation being phase and dimension
factors.
In every instance, the summation over projection quan-
tum numbers in the right-hand side of (2.111) is
re-expressible as a sum over Racah coefficients.

2.12.4 Construction
of all Transformation Coefficients
in Binary Coupling Theory

Augmented notation:
The coupling symbol ( jα1 jα2 · · · jαn )

B contains all
information as to how n angular momenta are to be
coupled, but is not specific in how the intermediate
angular momentum quantum numbers (k1k2 · · · kn−2),
are to be matched with the binary couplings implicit
in the coupling symbol. For explicit calculations, it
is necessary to remedy this deficiency in notation.
This may be done by attaching the n−2 intermedi-
ate angular momentum quantum numbers and the total
angular momentum j as subscripts to the n−1 paren-
theses pairs in the coupling symbol. For example, for
( j1 j2 j3 j4 j5)B = {[( j1 j2)( j3 j4)] j5}, this results in the
replacement

{[( j1 j2)( j3 j4)] j5}(k1k2k3)

→{[( j1 j2)k1( j3 j4)k2 ]k3 j5} j .

The basic coupling symbol structure is regained simply
by ignoring all inferior letters.
Basic rules for commutation and association:

Let x, y, z denote arbitrary disjoint contiguous
subcoupling symbols {[(x)(y)](z)} contained in the cou-
pling symbol ( jα1 jα2 · · · jαn )

B . Let a, b, c denote the
intermediate angular momenta associated with addition
of the angular momenta represented in x, y, z, respec-
tively, d the angular momentum representing the sum of
a and b, and k the sum of d and c. Symbolically, this
subcoupling may be presented as

∑
J(x)= J(a) ,

∑
J(y)= J(b) ,

∑
J(z)= J(c) ,

J = · · · {[J(a)+ J(b)]+ J(c)} · · · ;
J(a)+ J(b)= J(d); J(d)+ J(c)= J(k)

with augmented coupling symbol

( jα1 jα2 · · · jαn )
B = · · · {[(x)a(y)b]d(z)c}k · · · .
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There are only two basic operations in construct-
ing the recoupling coefficient between any two coupling
schemes:

commutation of symbols:

(x)a(y)b → (y)b(x)a

with the transformation of state vector given by

| · · · [(x)a(y)b]d · · · 〉
→ (−1)a+b−d| · · · [(y)b(x)a]d · · · 〉

= | · · · [(x)a(y)b]d · · · 〉 .
Association of symbols:

[(x)a(y)b](z)c → (x)a[(y)b(z)c]
with the transformation of state vector given by

| · · · {[(x)a(y)b]d(z)c}k · · · 〉
→

∑

e

[(2d+1)(2e+1)]1/2W(abkc; de)

× | · · · {(x)a[(y)b(z)c]e}k · · · 〉
= | · · · {[(x)a(y)b]d(z)c}k · · · 〉 .

The basic result for the calculation of all recoupling
coefficients is:
Each pair of coupling schemes for n angular momenta
can be brought into coincidence by a series of commu-
tations and associations performed on either of the set
of coupling symbols defining the coupling scheme.

In principle, this result gives a method for the con-
struction of all recoupling transformation coefficients
and sets the stage for the formulation of still deeper
questions arising in recoupling theory, as summarized
in Sect. 2.12.5. The following examples illustrate the
content of the preceding abstract constructions.
Examples:
WCG-coefficient form:

〈{[(ab)ec] f d}g
∣∣ [(ac)h(bd)k]g

〉

=
∑

α+β+γ+δ=m

Ca b e
α,β,α+βCe c f

α+β,γ,α+β+γC f d g
α+β+γ,δ,m

× Ca c h
α,γ,α+γCb d k

β,δ,β+δC
h k g
α+γ,β+δ,m .

6– j coefficient as recoupling coefficient:

(ac)(bd)
R→[(ac)b]d φ→ [b(ac)]d R→ [(ba)c]d

φ→ [(ab)c]d ,
where φ denotes that the communication of symbols
effects a phase factor transformation, and R denotes that

the associative of symbol effects a Racah coefficient
transformation:

〈{[(ab)ec] f d}g
∣∣ [(ac)h(bd)k]g

〉

= (−1)e+h−a− f [(2 f +1)(2k+1)]1/2W(hbgd; fk)

× [(2e+1)(2h+1)]1/2W(bafc; eh) .

9– j coefficient as recoupling coefficient:

(ac)(bd)
R→[(ac)b]d φ→ [b(ac)]d R→ [(ba)c]d

φ→ [(ab)c]d R→ (ab)(cd) ,
〈[(ab)e(cd) f ]g

∣
∣ [(ac)h(bd)k]g

〉

= [(2e+1)(2 f +1)(2h+1)(2k+1)] 1
2

×
∑

l

(−1)2l(2l+1)

{
ach

lbe

}{
bdk

ghl

}{
e fg

dlc

}

= [(2e+1)(2 f +1)(2h+1)(2k+1)] 1
2

⎧
⎪⎨

⎪⎩

abe

cd f

hkg

⎫
⎪⎬

⎪⎭
.

2.12.5 Unsolved Problems
in Recoupling Theory

1. Define a route between two coupling symbols for n
angular momenta to be any sequence of transposi-
tions and associations that carries one symbol into
the other. Each such route then gives rise to a unique
expression for the corresponding recoupling coeffi-
cient in terms of 6– j coefficients. In general, there
are several routes between the same pair of coupling
symbols, leading therefore to identities between 6– j
coefficients. How many nontrivial routes are there
between two given coupling symbols, leading to
nontrivial relations between 6– j coefficients (trivial
means related by a phase factor)?

2. Only 6– j coefficients arise in all possible couplings
of three angular momenta; only 6– j and 9– j coeffi-
cients arise in all possible couplings of four angular
momenta; in addition to 6– j and 9– j coefficients,
two new “classes” of coefficients, called 12– j co-
efficients of the first and second kind, arise in the
coupling of five angular momenta; in addition to
6– j, 9– j, and the two classes of 12– j coefficients,
five new classes of 15– j coefficients arise in the
coupling of six angular momenta, · · · . What are the
classes of 3n— j coefficients? The nonconstructive
answer is that a summation over 6– j coefficients
arising in the coupling of n angular momenta is
of a new class if it cannot be expressed in terms
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of previously defined coefficients occurring in the
recoupling of n−1 or fewer angular momenta.

3. Toward answering the question of classes of 3n– j
coefficients, one is lead into the classification prob-
lem of planar cubic graphs. It is known that every
3n– j coefficient corresponds to a planar cubic graph,
but the converse is not true. For small n, the rela-
tion between the coupling of n angular momenta,
the number of new classes of 3(n−1)– j coeffi-
cients, and the number of nonisomorphic planar
cubic graphs on 2(n−1) points is:

Classes of Cubic graphs
n 3(n−1)− j coefficients on 2(n−1) points

3 1 1
4 1 2
5 2 5
6 5 19
7 18 87
8 84 ?
9 576 ?

The geometrical object for n = 3 is a planar graph
isomorphic to the tetrahedron in 3-space. The clas-
sification of all nonisomorphic cubic graphs on
2(n−1) points is an unsolved problem in mathemat-
ics, as is the classification of classes for 3(n−1)– j
coefficients.

a b

c

a b

c

Fig. 2.4 The fundamental triangle [(ab)c] can be realized
by lines or points

4. There are (at least) two methods of realizing the basic
triangles of angular momentum theory in terms of
graphs. The fundamental structural element [(ab)c]
is represented either in terms of its points or in terms
of its lines (Fig. 2.4):
The right representation leads to the interpretation of
recoupling coefficients as functions defined on pairs
of labeled binary trees [2.1]; the left to the diagrams
of the Jucys school [2.7, 8]. Either method leads to
the relationship of recoupling coefficients to cubic
graphs.

5. The approach of classifying 3n− j coefficients
through the use of unit tensor operator couplings,
Racah operators, 9– j invariant operators, and gen-
eral invariant operators is undeveloped.

2.13 Supplement on Combinatorial Foundations

The quantum theory of angular momentum can be
worked out using the abstract postulates of the prop-
erties of angular momenta operators and the abstract
Hilbert space in which they act. The underlying mathe-
matical apparatus is the Lie algebra of the group SU(2)
and multiple copies thereof. An alternative approach is
to use special Hilbert spaces that realize all the proper-
ties of the abstract postulates and perform calculations
within that framework. The framework must be suffi-
ciently rich in structure so as to apply to a manifold
of physical situations. This approach has been used
often in our treatment; it is an approach that is particu-
larly useful for revealing the combinatorial foundations
of quantum angular momentum theory. We illustrate
this concretely in this supplementary section. The ba-
sic objects are the polynomials defined by (2.24), which
we now call SU(2) solid harmonics, where we change
the notation slightly by interchanging the role of m
and m′.

2.13.1 SU(2) Solid Harmonics

The SU(2) solid harmonics are defined to be the homo-
geneous polynomials of degree 2 j in four commuting
indeterminates given by

D j
m m′(Z)=

√
α!β!

∑

(α:A:β)

Z A

A! , (2.112)

in which the indeterminates Z and the nonnegative
exponents A are encoded in the matrix arrays

Z =
(

z11 z12

z21 z22

)

, A =
(

a11 a12

a21 a22

)

,

X A =
2∏

i, j=1

z
aij
ij , A! =

2∏

i, j=1

(aij)!,

α! = α1!α2! , β! = β1!β2! .
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The symbol (α : A : β) in (2.112) denotes that the ma-
trix array A of nonnegative integer entries has row and
column sums of its aij entries given in terms of the
quantum numbers j, m, m′ by

a11+a12 = α1 = j+m, a21+a22 = α2 = j−m ,

a11+a21 = β1 = j+m′, a12+a22 = β2 = j−m′ .

These SU(2) solid harmonics are among the most im-
portant functions in angular momentum theory. Not only
do they unify the irreducible representations of SU(2)
in any parametrization by the appropriate definition of
the indeterminates in terms of generalized coordinates,
they also include the popular boson calculus realiza-
tion of state vectors for quantum mechanical systems,
as well as the state vectors for the symmetric rigid
rotator.

The realization of the inner product is essential.
Physical theory demands an inner product that is given in
terms of integrations of wave functions over the variables
of the theory, as required by the probabilistic inter-
pretation of wave functions. It is the requirement that
realizations of angular momentum operators be Hermi-
tian with respect to the inner product for the spaces being
used that assures the orthogonality of functions, so that
one is able to take results from one realization of the in-
ner product to another with compatibility of relations.
Often, in combinatorial arguments, the inner product
plays no direct role.

The nomenclature SU(2) solid harmonics for the
polynomials defined by (2.112) is by analogy with the
term SO(3, R) solid harmonics for the polynomials
described in Sect. 2.1.

The polynomials Ylm(x), x = (x1, x2, x3) ∈ R3 are
homogeneous of degree l. The angular momentum op-
erator L2 is given by

L2 =−r2∇2+ (x ·∇)2+ (x ·∇) ,
which is a sum of two commuting operators −r2∇2 and
(x ·∇)2+ x ·∇, each of which is invariant under orthog-
onal transformations. The SO(3, R) solid harmonics
are homogeneous polynomials of degree l that solve
∇2Ylm(x)= 0, so that L2Ylm(x)= l(l+1)Ylm(x). The
component angular momentum operators Li then have
the standard action on these polynomials, and under real,
proper, orthogonal transformations give the irreducible
representations of the group SO(3, R).

The polynomials D j
m m′(Z), z = (z11, z21, z12, z22) ∈

C4 are homogeneous of degree 2 j. The angular mo-
mentum operator J2, with J = (J1, J2, J3), is given

by

J2 =−(det Z)

(
det

∂

∂Z

)
+ J0(J0+1) ,

J0 = 1

2
z ·∂ ,

∂ =
(
∂

∂z11
,
∂

∂z21
,
∂

∂z12
,
∂

∂z22

)
, (2.113)

which is a sum of two commuting operators
−(det Z)

(
det ∂

∂Z

)
and J0(J0+1), each of which is in-

variant under SU(2) transformations. The SU(2) solid
harmonics are homogeneous polynomials of degree 2 j
such that

det
∂

∂Z
D j

m m′(Z)= 0 ,

J2 D j
mm′(Z)= j( j+1)D j

mm′(Z) .

The components of the angular momentum op-
erators J = (J1, J2, J3) = (M1,M2,M3) and K =
(K1, K2, K3) then have the standard action on these
polynomials as given in Sect. 2.4.4, and under either
left or right SU(2) transformations these polyno-
mials give the irreducible representations of the
group SU(2).

2.13.2 Combinatorial Definition
of Wigner–Clebsch–Gordan
Coefficients

The SU(2) solid harmonics have a basic role in
the interpretation of WCG-coefficients in combina-
torial terms. We recall from Sect. 2.7.2 that the
basic abstract Hilbert space coupling rule for com-
pounding two kinematically independent angular mo-
menta with components J1 = (J1(1), J2(1), J3(1)) and
J2 = (J1(2), J2(2), J3(2)) to a total angular momentum
J = (J1, J2, J3)= J1+ J2 is

|( j1 j2) j m〉
=

∑

m1+m2=m

C
j1 j2 j

m1 m2 m
| j1 m1〉⊗ | j2 m2〉 . (2.114)

This relation in abstract Hilbert space is realized explic-
itly by spinorial polynomials as follows:

ψ( j1 j2) jm(Z)=
∑

m1+m2=m

C
j1 j2 j

m1 m2 m

×ψ j1 m1(z11, z21)ψ j2 m2(z12, z22) ,

(2.115)
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ψ( j1 j2) jm(Z)=
√

2 j+1

( j1+ j2− j)!( j1+ j2+ j+1)!
× (det Z) j1+ j2− j D j

m, j1− j2
(Z) ,

(2.116)

ψ jm(x, y)= x j+m y j−m

√
( j+m)!( j−m)! . (2.117)

Explicit knowledge of the WCG-coefficients is not
needed to prove these relationships. The angular mo-
mentum operators

J+(1)= z11
∂

∂z21
, J−(1)= z21

∂

∂z11
,

J3(1)= 1

2

(
z11

∂

∂z11
− z21

∂

∂z21

)
;

J+(2)= z12
∂

∂z22
, J−(2)= z22

∂

∂z12
,

J3(2)= 1

2

(
z12

∂

∂z12
− z22

∂

∂z22

)

are Hermitian in the polynomial inner product defined
in Sect. 2.4.3, and have the standard action on the
polynomials ψ j1 m1(z11, z21) and ψ j2 m2(z12, z22), re-
spectively, which are normalized in the inner product
( , ). The components of total angular momentum op-
erator J = M= J1+ J2 have the standard action on the
polynomialsψ( j1 j2) j m(Z), since they have the standard
action on the factor D j

m j1− j2
(Z), as given in Sect. 2.4.4,

and [J, det X] = [
J, det ∂

∂Z

]= 0. Thus, we have

J2ψ( j1 j2) jm(Z)= j( j+1)ψ( j1 j2) jm(Z),

J±ψ( j1 j2) jm(Z)=
√
( j∓m)( j±m+1)

×ψ( j1 j2) jm±1(Z) .

We also note that the two commuting parts of J2 are
diagonal on these functions:

J0(J0+1)ψ( j1 j2) jm(Z)

= ( j1+ j2)( j1+ j2+1)ψ( j1 j2) jm(Z) ,

(det Z)

(
det

∂

∂X

)
ψ( j1 j2) jm(Z)

= ( j1+ j2− j)( j1+ j2+ j1+1)ψ( j1 j2) jm(Z) .

It is necessary only to verify these properties for the
highest weight function D j

j j(Z) = z2 j
11/

√
(2 j)!, for

which they are seen to hold.

The angular momentum operators K = (K1, K2, K3)

defined in Sect. 2.4.4 with components that commute
with those of J = (M1,M2,M3) and having K2 = J2

also have a well-defined action on the functions
ψ( j1 j2) j m(Z). The action of K+, K−, and K3 on the
quantum numbers ( j1, j2) is to effect the shifts to(

j1+ 1
2 , j2− 1

2

)
,
(

j1− 1
2 , j2+ 1

2

)
, and ( j1, j2), respec-

tively. These actions of Hermitian angular momentum
operators satisfying the standard commutation relations
K × K = iK are quite unusual in that they depend only
on the angular momentum quantum numbers j1, j2, j
themselves, which satisfy the triangle rule, and give fur-
ther interesting properties of the modified SU(2) solid
harmonics ψ( j1 j2) j m(Z). We note these properties in
full:

K2ψ( j1 j2) jm(Z)= j( j+1)ψ( j1 j2) jm(Z) ,

K3ψ( j1 j2) jm(Z)= ( j1− j2)ψ( j1 j2) jm(Z) ,

K+ψ( j1 j2) jm(Z)=√
( j− j1+ j2)( j+ j1− j2+1)ψ(

j1+ 1
2 j2− 1

2

)
jm
(Z) ,

K−ψ( j1 j2) jm(Z)=√
( j+ j1− j2)( j− j1+ j2+1)ψ(

j1− 1
2 j2+ 1

2

)
jm
(Z) .

These relations play no direct role in our continuing
considerations of (2.116) and the determination of the
WCG-coefficients, and we do not interpret them fur-
ther.

The explicit WCG-coefficients are obtained by ex-
panding the 2 × 2 determinant in (2.116), multiplying
this expansion into the D-polynomial, and changing the
order of the summation. These operations are most suc-
cinctly expressed in terms of the umbral calculus of
Roman and Rota [2.6], using his evaluation operation.
The evaluation at y of a divided power xk/k! of a sin-
gle indeterminate x to a nonnegative integral power k is
defined by

evaly
xk

k! =
(y)k
k! = y(y−1) · · · (y− k+1)

k! =
(

y

k

)
,

where (y)k is the falling factorial. This definition is
extended to products by

eval(y1,y2,... ,yn)

n∏

i=1

xki

ki ! =
n∏

i=1

evalyi

xki

ki ! =
n∏

i=1

(
yi

ki

)
.

It is also extended by linearity to sums of such divided
powers, multiplied by arbitrary numbers.
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The application of these rules to our problem involv-
ing four indeterminates gives

(det X)n

n!
∑

(α:A:α′)

X A

A!

=
∑

(β:B:β′)
evalB

(
(det X)n

n!
)

X B

B! , (2.118)

β = (
α1+n, α2+n

)
, β′ = (α′1+n, α′2+n),

evalB
(det X)n

n!
=

∑

k1+k2=n

(−1)k2 k1!k2!
(

b11

k1

)(
b12

k2

)(
b21

k2

)(
b22

k1

)
.

(2.119)

In this result, we do not identify the labels with angu-
lar momentum quantum numbers. Relation (2.119) is
a purely combinatorial, algebraic identity for arbitrary
indeterminates and arbitrary row and column sum con-
straints on the array A as specified by α= (α1, α2) and
α′ = (

α′1, α′2
)
. There are no square roots involved.

We now apply relations (2.118–2.119) to the
case at hand: n = j1+ j2− j, α = ( j +m, j −m),
α′ = ( j+ j1− j2, j− j1+ j2), β = ( j1+ j2+m, j1+
j2−m), β′ = (2 j1, 2 j2). This gives the following result
for the WCG-coefficients:

C j1 j2 j
m1m2m

=
√
( j1+ j2− j )!( j1− j2+ j )!(− j1+ j2+ j )!

( j1+ j2+ j+1)!

×

√
(2 j+1)( j+m)!( j−m)!

( j1+m1)!( j1−m1)!( j2+m2)!( j2−m2)!

× evalA
(det X) j1+ j2− j

( j1+ j2− j )! , (2.120)

evalA
(det X) j1+ j2− j

( j1+ j2− j )!
=

∑

k1+k2= j1+ j2− j

(−1)k2 k1!k2!
(

j1+m1

k1

)(
j2+m2

k2

)

×

(
j1−m1

k2

)(
j2−m2

k1

)
. (2.121)

In summary, we have the following:
Up to multiplicative square-root factors, the WCG-

coefficient is the evaluation at the point

B =
(

j1+m1 j2+m2

j1−m1 j2−m2

)

of the divided power

(det X) j1+ j2− j

( j1+ j2− j )!
of a determinant, which is an integer.
The abstract umbral calculus of Rota thus finds its
way, at a basic level, into angular momentum theory.
Relation (2.120) is but a rewriting in terms of evalua-
tions of the well-known Van der Waerden form of the
WCG-coefficients.

2.13.3 Magic Square Realization
of the Addition
of Two Angular Momenta

The origin of (2.114), giving the states of total angu-
lar momentum by compounding two angular momenta,
is usually attributed to properties of the direct sum of
two copies of the Lie algebra of the unitary unimodular
group SU(2), and to the use of differential operators to
realize the Lie algebras and state vectors, as done above.
It is an interesting combinatorial result that this structure
for adding angular momentum is fully encoded within
the properties of magic squares of order 3, and no opera-
tors whatsoever are needed, only the condition of being
a magic square. We have already noted in Sect. 2.7.4
that Regge observed that the restrictions on the do-
mains of the quantum numbers j1,m1, j2,m2, j,m are
encoded in terms of a magic square A with line-sum
J = j1+ j2+ j :

A =
⎛

⎜
⎝

j1+m1 j2+m2 j−m

j1−m1 j2−m2 j+m

j2− j1+ j j1− j2+ j j1+ j2− j

⎞

⎟
⎠ .

(2.122)

The angular momentum quantum numbers are given
in terms of the elements of A = (aij)1≤i, j≤3 by the
invertible relations

j1 = 1

2
(a11+a21) , j2 = 1

2
(a12+a22) ,

j = 1

2
(a13+a23) ,

m1 = 1

2
(a11−a21) , m2 = 1

2
(a12−a22) ,

m = 1

2
(a23−a13) .

It follows from these definitions and the fact that A is
a magic square of line-sum J , that the sum rule m1+
m2 = m and the triangle condition are fulfilled.
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We use the symbol 〈 j1, j2, j〉 to denote any
triple j1, j2, j of angular momentum quantum num-
bers that satisfy the triangle conditions, where we
note that, if a given triple satisfies the triangle
conditions, then all permutations of the triple also
satisfy the triangle conditions. The number of magic
squares for fixed line-sum J is obtained as follows:
Define ∆J = {all triangles 〈 j1, j2, j〉 | j1+ j2+ j = J}
and M( j1, j2, j)= {(m1,m2)| − j1 ≤ m1 ≤ j1; − j2 ≤
m2 ≤ j2; − j ≤ m1+m2 ≤ j}. Then we have the fol-
lowing identity, which gives the number of angular
momentum magic squares with line-sum J :

∑

〈 j1, j2, j〉∈∆J

∣∣M( j1, j2, j )
∣∣=

(
J +5

5

)
−
(

J +2

5

)
.

(2.123)

It is nontrivial to effect the summation on the left-hand
side of this relation to obtain the right-hand side, but this
expression is known from the theory of magic squares
Stanley [2.9, 10].

Not only can the addition of two angular momenta in
quantum theory, with its triangle rule for three angular
momentum quantum numbers and its sum rule on the
corresponding projection quantum numbers, be codified
in magic squares of order 3 and arbitrary line-sum, but
also the content of the abstract state vector of (2.114)
itself can be so expressed:

∣∣∣∣
1

2
(a11+a21) ,

1

2
(a12+a22); 1

2
(a13+a23) ,

1

2
(a23−a13)

〉
=

∑

⎛

⎝ a11 a12

a21 a22

⎞

⎠

C(A)

∣∣∣∣
1

2
(a11+a21),

1

2
(a11−a21)

〉

⊗
∣∣∣∣
1

2
(a12+a22),

1

2
(a12−a22)

〉
,

where the summation is over all subsets
(

a11 a12

a21 a22

)

of the magic square of order 3 such that row 3 and column
3 are held fixed. The coefficients C(A) themselves are
the WCG-coefficients, which may be regarded as a func-
tion whose domain of definition is the set of all magic
squares of order 3. The triangle rule 〈 j1, j2, j〉 and the
sum rule on (m1,m2,m) are implied by the structure of

magic squares of order 3. These rich combinatorial foot-
ings of angular momentum theory are completed by the
observation that the Clebsch–Gordan coefficients them-
selves are obtained by the Schwinger–Regge generating
function given in Sect. 2.7.3 (see [2.2] for the relation to
3 F2 hypergeometric functions).

2.13.4 MacMahon’s and Schwinger’s
Master Theorems

Generating functions codify the content of many math-
ematical entities in a unifying, comprehensive way.
These functions are very popular in combinatorics, and
Schwinger used them extensively in his treatment of an-
gular momentum theory. In this subsection, we present
a natural generalization of the SU(2) solid harmonics to
a class of polynomials that are homogeneous in n2 in-
determinates. While these polynomials are of interest in
their own right, it is their fundamental role in the ad-
dition of n kinematically independent angular momenta
that motivates their introduction here. They bring an
unexpected unity and coherence to angular momentum
coupling and recoupling theory [2.11].

We list in compendium format some of the principal
results:
Special U(n) solid harmonics:

Dk
α,β(Z)=

√
α!β!

∑

A∈M(α,β)

Z A

A! , (2.124)

A = (aij)1≤i, j≤n : matrix of order n in nonnegative inte-
gers;

A! =
n∏

i, j=1

aij ! , Z A =
n∏

i, j=1

z
aij
ij ;

where we employ the notations:
α = (α1, α2, . . . , αn): sequence (composition) of non-
negative integers having the sum k, denoted α � k;
xα = xα1

1 xα2
2 · · · xαn

n , α! = α1!α2! · · ·αn ! ;
β = (β1, β2, . . . , βn): second composition β � k ;
M(α, β), set of all matrices A such that the entries in
row i sums to αi and those in column j to β j .
The significance of the row-sum vector α is that
αi is the degree of the polynomial in the variables
(zi1, zi2, . . . , zin) in row i of Z, with a similar inter-
pretation for β in terms of columns.
Matrix of the Dk

α,β(Z) polynomials:
The number of compositions of the integer k into n non-
negative parts is given by

(n+k−1
k

)
. The compositions in

this set may be linearly ordered by the lexicograph-
ical rule α > β, if the first nonzero part of α−β is
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positive. The polynomial Dk
α,β(Z) is then the entry

in row α and column β in the matrix Dk(Z) of di-
mension dim Dk(Z)= (n+k−1

k

)
, where, following the

convention for SU(2), the rows are labelled from top
to bottom by the greatest to the least sequence, and the
columns are labelled in the same manner as read from
left to right. There is a combinatorial proof by Chen and
Louck [2.12] that these polynomials satisfy the following
multiplication rule for arbitrary matrices X and Y :

Dk(XY )= Dk(X)Dk(Y ) . (2.125)

Orthogonality in the inner product ( , ) defined
in Sect. 2.4.3:

〈
Dk
α,β, Dk

α′,β′
〉
= δα,α′δβ,β′k! .

Value on Z = diag(z1, z2, . . . , zn) :
Dk
α,β

[
diag(z1, z2, . . . , zn)

]= δα,βzα, (2.126)

Dk(In)= I(n+k−1
k

) .

Transposition property:

Dk(ZT)= [
Dk(Z)

]T
.

Special irreducible unitary representations of U(n) :
Dk(U )Dk(V )= Dk(UV ) , all U, V ∈U(n) .

Schwinger’s Master Theorem: For any two matrices X
and Y of order n, the following identities hold:

e(∂x :X:∂y) e(x:Y :y)
∣∣
x=y=0

=
∞∑

k=0

∑

α,β�k

Dk
α,β(X)D

k
β,α(Y )

= 1

det(I − XY )
, (2.127)

(x : Z : y)= xZ yT =
n∑

i, j=1

zij xi y j .

MacMahon’s Master Theorem: Let X be the diagonal
matrix X = diag(x1, x2, . . . , xn) and Y a matrix of or-
der n. Then the coefficient of xα in the expansion of

1
det(I−XY ) equals the coefficient of xα in the product
yα, yi =∑n

j=1 yij x j , that is,

1

det(I − XY )
=

∞∑

k=0

∑

α�k

Dk
α,α(Y ) xα . (2.128)

Basic Master Theorem: Let Z be a matrix of order n.
Then

1

det(I − tZ)
=

∞∑

k=0

tk
∑

α�k

Dk
α,α(Z) . (2.129)

Schwinger’s relation (2.127) follows from the ba-
sic relation (2.129) by setting Z = XY and using
the multiplication property (2.125); MacMahon’s rela-
tion then follows from Schwinger’s result by setting
X = diag(x1, x2, . . . , xn) and using property (2.126).
Of course, MacMahon’s Master Theorem preceded
Schwinger’s result by many years (see MacMa-
hon [2.13]).The unification into the single form by using
properties of the Dk

α,β(Z) polynomials was pointed out
in [2.14]. More surprisingly, relation (2.129) was al-
ready discovered for the general linear group in 1897 by
Molien [2.15]; its properties are developed extensively
in Michel and Zhilinski [2.16] in the context of group
theory.

For many purposes, it is better in combinatorics to
avoid all square roots by using the polynomials

Lα,β(Z)=
∑

A∈M(α,β)

Z A

A!

in place of the Dk
α,β(Z) defined in (2.124).

2.13.5 The Pfaffian and Double Pfaffian

Schwinger observed that the calculation of 3n− j coeffi-
cients involves taking the square root

√
(I − AB),where

A and B are skew symmetric (antisymmetric) matrices
of order n, but the procedure is rather obscure. The ap-
propriate concepts for taking the square root is that of
a Pfaffian and a double Pfaffian, denoted, respectively,
by Pf(A) and Pf(A, B). The definitions require the con-
cept of a matching of the set of integers {1, 2, . . . , n}.
A matching of {1, 2, . . . , n} is an unordered set of
disjoint subsets {i, j} containing two elements. For ex-
ample, the matchings of 1, 2, 3 are {1, 2}, {1, 3}, and
{2, 3}.We then have the following constructs:
Pfaffian and double Pfaffian of skew symmetric matrices
A = (aij) and B = (bij) of order n :

Pf(A)=
∑

{i1,i2},{i3,i4},... ,{in−1,in}
ε(i1i2 · · · in)

× ai1,i2 ai3,i4 · · · ain−1,in , (2.130)
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Pf(A, B)= 1+
∑

k≥1

∑

{i1, i2}, {i3, i4}, . . . , {i2k−1, i2k}
{ j1, j2}, { j3, j4}, . . . , { j2k−1, j2k}

ε(i1i2 · i2k)ε( j1 j2 · · · j2k)

× ai1,i2 ai3,i4 · · · ai2k−1,i2k

× b j1, j2 b j3, j4 · · · b j2k−1, j2k (2.131)

where {i1, i2}, {i3, i4}, . . . , {in−1, in} is a matching of
{1, 2, . . . , n},and ε(i1i2 · · · in) is the sign of the permu-
tation (number of inversions). Similarly, in the double
Pfaffian, the 2-subsets are matchings of a subset of
{1, 2, . . . , n} of even length.
Relations of skew symmetric matrices A, B to Pfaffians:

√
det A = Pf(A) ; √

det(I − AB)= Pf(A, B) .
(2.132)

2.13.6 Generating Functions
for Coupled Wave Functions
and Recoupling Coefficients

This section is a reformulation, nontrivial extension, and
interpretation of results found in Schwinger [2.3]. We
first refine the notation used in Sect. 2.12.3.
Set of triangles in the coupling scheme:
Each coupling scheme, as determined by the bracketing
B, has associated with it a unique ordered set of n−1
triangles

TB( j, k, j )= {〈ai , bi , ki〉|i = 1, 2, . . . , n−1} ,
j = ( j1, j2, . . . , jn) ,

k= (k1, k2, . . . , kn−2) ,

kn−1 = j .

The third part ki of 〈ai , bi , ki〉 can always be chosen,
without loss of generality, as an intermediate angu-
lar momentum (kn−1 = j ), and the triangles in the set
can be ordered by 〈ai , bi , ki〉< 〈ai+1, bi+1, ki+1〉. The
remaining pair of angular momentum labels in the tri-
angle 〈ai , bi , ki〉 then fall, in general, into four classes:
〈ai , bi , ki〉 in which ai can be either a jr or a ks, and bi
can be either a jr ′ or ks′ . The distribution of the j ′s and
k′s among the ai and bi is uniquely determined by the
bracketing B that defines the coupling scheme.
Clebsch–Gordan coefficients for a given coupling
scheme:

(
j k j

m q m

)B

=
∏

〈ai ,bi ,ki 〉∈TB( j ,k, j )

Cai bi ki
αiβi qi

, (2.133)

in which the projection quantum numbers αi and
βi are m′s and q′s that match the ai and bi .

In the given coupling scheme determined by the
bracketing B, only ( ji ,mi), i = 1, 2 . . . , n; (ki , qi), i =
1, 2, . . . , n−2, and ( j,m) appear in the Clebsch–
Gordan coefficients. In fact, if one explicitly implements
the sum rule on the projection quantum numbers, it is
always possible to express the qi as sums over the mi
and m.
Coupled angular momentum function for n angular
momenta:

Ψ B
( j k) j m(x, y)=

∑

m

(
j k j

m q m

)B n∏

i=1

ψ ji mi (xi , yi) .

(2.134)
(

j
m

)

=
(

j1 j2 · · · jn
m1 m2 · · · mn

)

,

(
k
q

)

=
(

k1 k2 · · · kn−2

q1 q2 · · · qn−2

)

. (2.135)

Z = (z1z2 . . . zn+1)=
(

x1 x2 . . . xn+1

y1 y2 . . . yn+1

)

.

(2.136)

Only the first n columns of Z enter into (2.136), but the
last column occurs below.
The skew symmetric matrix of a coupling scheme:

The set of triangles TB( j, k, j )= {〈ai , bi , ki〉|i =
1, 2, . . . , n−1},which is uniquely defined by the brack-
eting B, can be mapped to a unique skew symmetric
matrix of order n+1. This mapping is one of the most
important results for obtaining generating functions for
the coupled wave functions (2.134) and the recoupling
coefficients given below. The skew symmetric matrix
depends on the bracketing B and the detailed man-
ner in which the j ′s and k′s are distributed among the
triangles in TB( j, k, j ). The rule for constructing the
skew symmetric matrix is quite intricate. First, we define
a 3 × (n−1) matrix T of indeterminates by

T =
⎛

⎜
⎝

t11 t12 · · · t1,n−1

t21 t22 · · · t2,n−1

t31 t32 · · · t3,n−1

⎞

⎟
⎠ . (2.137)

Second, we associate with each 〈ai , bi , ki〉 ∈
TB( j, k, j ), a triple of indeterminates (ui , vi , wi) as
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given by

〈a1,b1,k1〉 �→ (u1,v1,w1),withw1 = t21u1+ t11v1,

〈a2,b2,k2〉 �→ (u2,v2,w2),withw2 = t22u2+ t12v2,

...
...

〈an−1, bn−1, kn−1〉 �→ (un−1, vn−1, wn−1),

with wn−1 = t2,n−1un−2+ t1,n−1vn−1 . (2.138)

The indeterminates ui and vi are identified as a col-
umn zi = (xi , yi) of the 2 × (n+1) matrix Z defined
by (2.136), or as one of the w′s occurring higher in the
display (2.138). The distribution rule is in one-to-one
correspondence with the distribution of j ′s and k′s in
the corresponding triangle. Thus, we have

ui = zr , if ai = jr ; vi = zs , if bi = js ;
ui = zr , if ai = jr ; vi =ws , if bi = ks ;
ui = wr , if ai = kr ; vi = zs , if bi = js ;
ui = wr , if ai = kr ; vi =ws , if bi = ks .

The explicit identification of all j ′s and k′s is uniquely
determined by the bracketing B.Once this identification
has been made, the elements aij , i < j of the skew sym-
metric matrix A of order n+1 are uniquely determined
in terms of the elements of T by equating coefficients of
det(zi , z j )= xi y j − x j yi on the two sides of the form

∑

1≤i< j≤n+1

aij det(zi , z j )

=
n−1∑

i=1

t3i det(ui , vi)+det(wn−1, zn+1) , (2.139)

where (t1i , t2i , t3i) is the i-th column of the 3 × (n−1)
matrix T of indeterminates. This relation can be inferred
from results given by Schwinger. Since the elements of
A are determined as monomials in the elements of T,we
sometimes denote A by A(T ).

It is useful to illustrate the rule for determining A for
n = 2, 3, 4:
n = 2: Triangle: 〈 j1, j2, k1〉 :
w1 = t21z1+ t11z2

a12 det(z1, z2)+a13 det(z1, z3)+a23 det(z2, z3)

= t31 det(u1, v1)+det(w1, z3)

= t31 det(z1, z2)+ t21 det(z1, z3)

+ t11 det(z2, z3) ;
a12 = t31 , a13 = t21 , a23 = t11 .

n = 3: Ordered triangles: 〈 j1, j2, k1〉, 〈k1, j3, k2〉 :
w1 = t21u1+ t11v1 , u1 = z1, v1 = z2 ;
w2 = t22u2+ t12v2 , u2 =w1, v2 = z3 .
∑

1≤i< j≤4

aij det(zi , z j )

= t31 det(u1, v1)+ t32 det(u2, v2)+det(w2, z4) ;
a12 = t31, a13 = t21t32, a14 = t21t22

a23 = t11t32, a24 = t11t22

a34 = t12

n = 4: Ordered triangles: 〈 j3, j1, k1〉, 〈 j4, j2, k2〉,
〈k1, k2, k3〉 :
w1 = t21u1+ t11v1 , u1 = z3 , v1 = z1 ,

w2 = t22u2+ t12v2 , u2 = z4 , v2 = z2 ,

w3 = t23u3+ t13v3 , u3 =w1 , v3 = w2 ;
w3 = t11t23z1+ t12t13z2+ t21t23z3+ t22t13z4 ,
∑

1≤i< j≤5

aij det(zi , z j )= t31 det(u1, v1)+ t32

× det(u2, v2)+ t33 det(u3, v3)+det(w3, z5) ;
a12 = t11t12t33, a13 =−t31, a14 = t11t22t33,

a23 =−t12t21t33, a24 =−t32,

a34 = t21t22t33,

a15 = t11t23

a25 = t12t13

a35 = t21t23

a45 = t22t13

Triangle monomials:
Let 〈a, b, c〉 be a triangle of quantum numbers

(a, b, c), let (x, y, z) be three indeterminates, and let B
denote a binary coupling scheme with the set of triangles
TB( j, k, j ) :

Elementary triangle monomial:

Φ〈a,b,c〉(x, y, z)= {abc}−1xb+c−a ya+c−bza+b−c ,

(2.140)

{abc}

=
(
(2c+1)(b+ c−a)(a+ c−b)!(a+b− c)!

(a+b+ c+1)!
) 1

2

.

Triangle monomial associated with a given coupling
scheme B :
ΦB

j,k, j(T )=
∏

〈ai ,bi ,ki 〉∈TB( j,k, j )

Φ〈ai ,bi ,ki 〉(t1i , t2i , t3i) .

(2.141)
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Using the definitions introduced above, we can now
give the generating functions for the coupled wave func-
tions and the recoupling coefficients for each coupling
scheme as determined by the bracketing B.
Generating function for coupled wave functions:

ex A(T )yT = e
∑

1≤i< j≤n+1 ai, j det(zi ,z j )

=
∑

jk

ΦB
j,k, j(T )

∑

m

(−1) j−mψ j,−m(xn+1, yn+1)

×Ψ B
( jk) jm(x, y) , (2.142)

x = (x1, x2, . . . , xn+1) , y = (y1, y2, . . . , yn+1) .

Relation to U(n+1) solid harmonics:

ex A(T )yT =
∞∑

k=0

∑

α,β�k

xα√
α!Dk

α,β(A(T ))
yβ√
β! .

(2.143)

Relation of U(n+1) solid harmonics to triangle mono-
mials:

Dk
α,β[A(T )] = (−1) j−m

∑

k

(
j k j

m q m

)B

ΦB
j,k, j(T )

(2.144)

αi = ji +mi , βi = ji −mi i = 1, 2, . . . , n ;
αn+1 = j−m , βn+1 = j+m ;
∑

i

αi =
∑

i

βi = j1+ j2+· · ·+ jn + j .

The relation between the skew symmetric matrix A(T )
of order n+1 and the elements of the 3 × (n−1) ma-
trix T is that described in relations (2.138).
Generating function for all recoupling coefficients:

1

[Pf(A(T ), A′(T ′))]2 (2.145)

=
∑

j,k,k′, j
ΦB

j,k, j(T )Φ
B′
j ′,k′, j(T

′)〈 j, k, j|| j ′, k′, j〉,

where 〈 j, k, j || j ′, k′, j〉 denotes the recoupling co-
efficient that effects the transformation between the
coupling schemes corresponding to the bracketing B
and the bracketing B′, and where the sequence j ′ is
a permutation of j in accordance with the bracketing B′.
We also note that

1

Pf(A, A′)
= 1√

det(I − AA′)

=
⎡

⎣1+
∑

k≥1

∑

α,β�k

Dk
α,β(A)D

k
β,α(A

′)

⎤

⎦

1
2

, (2.146)

for arbitrary skew symmetric matrices of order n.
Relation (2.145) generates all recoupling coeffi-

cients, the trivial ones (those differing by signs) and
all the complicated ones, that is, those corresponding
to 3n− j coefficients. It will also be observed that the
expansion of the reciprocal of the double Pfaffian ef-
fects an infinite sum in which no radicals occur, which
in turn implies that the every recoupling coefficient has
the form

〈 j, k, j || j ′, k′, j〉
=

∏

〈ai ,bi ,ki 〉∈TB( j,k, j)

{ai , bi , ki}

×
∏

〈a′i ,b′i ,k′i 〉∈TB′ ( j ′,k′, j)

{
a′i , b′i , k′i

}

× I( j, k, j || j ′, k′, j) ,

where I( j, k, j || j ′, k′, j) is an integer:
Each recoupling coefficient is an integer multiplied by
square-root factors that depend on the triangles associ-
ated with the coupling scheme.
Such features can be very useful in the development
of algorithms for the calculation of 3n− j coefficients,
including WCG-coefficients [2.17]. Relation (2.145)
should be useful for the classification of 3n− j coef-
ficients.

Part
A

2
.1

3



70 Part A Mathematical Methods

Table 2.3 The 3– j coefficients for J3 = 1, 3
2 , 2⎛

⎝J +1 J 1

M −M−1 1

⎞

⎠= (−1)J−M−1
(

(J −M)(J −M+1)

(2J +3)(2J +2)(2J +1)

) 1
2

⎛

⎝J +1 J 1

M −M 0

⎞

⎠= (−1)J−M−1
(

2(J +M+1)(J −M+1)

(2J +3)(2J +2)(2J +1)

) 1
2

⎛

⎝ J J 1

M −M−1 1

⎞

⎠= (−1)J−M
(

2(J −M)(J +M+1)

(2J +2)(2J +1)(2J )

) 1
2

⎛

⎝ J J 1

M −M 0

⎞

⎠= (−1)J−M M

[(2J +1)(J +1)J]
1
2

⎛

⎝J + 3
2 J 3

2

M −M− 3
2

3
2

⎞

⎠= (−1)J−M+ 1
2

((
J −M− 1

2

)(
J −M+ 1

2

)(
J −M+ 3

2

)

(2J +4)(2J +3)(2J +2)(2J +1)

) 1
2

⎛

⎝J + 3
2 J 3

2

M −M− 1
2

1
2

⎞

⎠= (−1)J−M+ 1
2

(
3
(
J −M+ 1

2

)(
J −M+ 3

2

)(
J +M+ 3

2

)

(2J +4)(2J +3)(2J +2)(2J +1)

) 1
2

⎛

⎝J + 1
2 J 3

2

M −M− 3
2

3
2

⎞

⎠= (−1)J−M− 1
2

(
3
(
J −M− 1

2

)(
J −M+ 1

2

)(
J +M+ 3

2

)

(2J +3)(2J +2)(2J +1)2J

) 1
2

⎛

⎝J + 1
2 J 3

2

M −M− 1
2

1
2

⎞

⎠= (−1)J−M− 1
2

(
J −M+ 1

2

(2J +3)(2J +2)(2J +1)2J

) 1
2 (

J +3M+ 3

2

)

⎛

⎝J +2 J 2

M −M−2 2

⎞

⎠= (−1)J−M
(
(J −M−1)(J −M)(J −M+1)(J −M+2)

(2J +5)(2J +4)(2J +3)(2J +2)(2J +1)

) 1
2

⎛

⎝J +2 J 2

M −M−1 1

⎞

⎠= (−1)J−M
(
(J +M+2)(J −M+2)(J −M+1)(J −M)

(2J +5)(2J +4)(2J +3)(2J +2)(2J +1)

) 1
2

⎛

⎝J +2 J 2

M −M 0

⎞

⎠= (−1)J−M
(

6(J +M+2)(J +M+1)(J −M+2)(J −M+1)

(2J +5)(2J +4)(2J +3)(2J +2)(2J +1)

) 1
2

⎛

⎝J +1 J 2

M −M−2 2

⎞

⎠= 2(−1)J−M+1
(
(J −M−1)(J −M)(J −M+1)(J +M+2)

(2J +4)(2J +3)(2J +2)(2J +1)2J

) 1
2

⎛

⎝J +1 J 2

M −M−1 1

⎞

⎠= (−1)J−M+12(J +2M+2)

(
(J −M+1)(J −M)

(2J +4)(2J +3)(2J +2)(2J +1)2J

) 1
2

⎛

⎝J +1 J 2

M −M 0

⎞

⎠= (−1)J−M+12M

(
6(J +M+1)(J −M+1)

(2J +4)(2J +3)(2J +2)(2J +1)2J

) 1
2

⎛

⎝ J J 2

M −M−2 2

⎞

⎠= (−1)J−M
(

6(J −M−1)(J −M)(J +M+1)(J +M+2)

(2J +3)(2J +2)(2J +1)(2J )(2J −1)

) 1
2

⎛

⎝ J J 2

M −M−1 1

⎞

⎠= (−1)J−M(1+2M)

(
6(J +M+1)(J −M)

(2J +3)(2J +2)(2J +1)(2J )(2J −1)

) 1
2

⎛

⎝ J J 2

M −M 0

⎞

⎠= (−1)J−M 2
[
3M2 − J(J +1)

]

[(2J +3)(2J +2)(2J +1)(2J )(2J −1)]
1
2
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Table 2.4 The 6– j coefficients for d = 0, 1
2 , 1,

3
2 , 2, with s = a+b+ c

⎧
⎨

⎩
a b c

0 e f

⎫
⎬

⎭
= (−1)s [(2b+1)(2c+1)]

−1
2 δb f δce

⎧
⎨

⎩
a b c

1
2 c− 1

2 b+ 1
2

⎫
⎬

⎭
= (−1)s

(
(s−2b)(s−2c+1)

(2b+1)(2b+2)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

1
2 c− 1

2 b− 1
2

⎫
⎬

⎭
= (−1)s

(
(s+1)(s−2a)

2b(2b+1)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

1 c−1 b−1

⎫
⎬

⎭
= (−1)s

(
s(s+1)(s−2a−1)(s−2a)

(2b−1)2b(2b+1)(2c−1)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

1 c−1 b

⎫
⎬

⎭
= (−1)s

(
2(s+1)(s−2a)(s−2b)(s−2c+1)

2b(2b+1)(2b+2)(2c−1)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

1 c−1 b+1

⎫
⎬

⎭
= (−1)s

(
(s−2b−1)(s−2b)(s−2c+1)(s−2c+2)

(2b+1)(2b+2)(2b+3)(2c−1)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

1 c b

⎫
⎬

⎭
= (−1)s+1 2 [b(b+1)+ c(c+1)−a(a+1)]

[2b(2b+1)(2b+2)2c(2c+1)(2c+2)]
1
2

,

⎧
⎨

⎩
a b c

3
2 c− 3

2 b− 3
2

⎫
⎬

⎭
= (−1)s

(
(s−1)s(s+1)(s−2a−2)(s−2a−1)(s−2a)

(2b−2)(2b−1)2b(2b+1)(2c−2)(2c−1)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

3
2 c− 3

2 b− 1
2

⎫
⎬

⎭
= (−1)s

(
3s(s+1)(s−2a−1)(s−2a)(s−2b)(s−2b+1)

(2b−1)2b(2b+1)(2b+2)(2c−2)(2c−1)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

3
2 c− 3

2 b+ 1
2

⎫
⎬

⎭
= (−1)s

(
3(s+1)(s−2a)(s−2b−1)(s−2b)(s−2c+1)(s−2c+2)

2b(2b+1)(2b+2)(2b+3)(2c−2)(2c−1)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

3
2 c− 3

2 b+ 3
2

⎫
⎬

⎭
= (−1)s

(
(s−2b−2)(s−2b−1)(s−2b)(s−2c+1)(s−2c+2)(s−2c+3)

(2b+1)(2b+2)(2b+3)(2b+4)(2c−2)(2c−1)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

3
2 c− 1

2 b− 1
2

⎫
⎬

⎭
= (−1)s

[2(s−2b)(s−2c)− (s+2)(s−2a−1)] [(s+1)(s−2a)]
1
2

[(2b−1)2b(2b+1)(2b+2)(2c−1)2c(2c+1)(2c+2)]
1
2

⎧
⎨

⎩
a b c

3
2 c− 1

2 b+ 1
2

⎫
⎬

⎭
= (−1)s

[(s−2b−1)(s−2c)−2(s+2)(s−2a)] [(s−2b)(s−2c+1)]
1
2

[2b(2b+1)(2b+2)(2b+3)2c(2c+1)(2c+2)(2c+3)]
1
2

,

⎧
⎨

⎩
a b c

2 c−2 b−2

⎫
⎬

⎭
= (−1)s

(
(s−2)(s−1)s(s+1)

(2b−3)(2b−2)(2b−1)2b(2b+1)

) 1
2

×

(
(s−2a−3)(s−2a−2)(s−2a−1)(s−2a)

(2c−3)(2c−2)(2c−1)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

2 c−2 b−1

⎫
⎬

⎭
= (−1)s 2

(
(s−1)s(s+1)

(2b−2)(2b−1)2b(2b+1)(2b+2)

) 1
2

×

(
(s−2a−2)(s−2a−1)(s−2a)(s−2b)(s−2c+1)

(2c−3)(2c−2)(2c−1)2c(2c+1)

) 1
2
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Table 2.4 The 6– j coefficients for d = 0, 1
2 , 1,

3
2 , 2, with s = a+b+ c, cont.

⎧
⎨

⎩
a b c

2 c−2 b

⎫
⎬

⎭
= (−1)s

(
6s(s+1)(s−2a−1)(s−2a)

(2b−1)2b(2b+1)(2b+2)(2b+3)

) 1
2

×

(
(s−2b)(s−2c+1)(s−2c+2)

(2c−3)(2c−2)(2c−1)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

2 c−2 b+1

⎫
⎬

⎭
= (−1)s 2

(
(s+1)(s−2a)(s−2b−2)(s−2b−1)(s−2b)

2b(2b+1)(2b+2)(2b+3)(2b+4)

) 1
2

×

(
(s−2c+1)(s−2c+2)(s−2c+3)

(2c−3)(2c−2)(2c−1)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

2 c−2 b+2

⎫
⎬

⎭
= (−1)s

(
(s−2b−3)(s−2b−2)(s−2b−1)(s−2b)

(2b+1)(2b+2)(2b+3)(2b+4)(2b+5)

)1/2

×

(
(s−2c+1)(s−2c+2)(s−2c+3)(s−2c+4)

(2c−3)(2c−2)(2c−1)2c(2c+1)

) 1
2

⎧
⎨

⎩
a b c

2 c−1 b−1

⎫
⎬

⎭
= (−1)s

4 [(a+b)(a−b+1)− (c−1)(c−b+1)]

[(2b−2)(2b−1)2b(2b+1)(2b+2)]
1
2

×

(
s(s+1)(s−2a−1)(s−2a)

(2c−2)(2c−1)2c(2c+1)(2c+2)

) 1
2

⎧
⎨

⎩
a b c

2 c−1 b

⎫
⎬

⎭
= (−1)s 2

[
(a−b+1)(a−b)− c2 +1

]

[(2b−1)2b(2b+1)(2b+2)(2b+3)]
1
2

×

(
6(s+1)(s−2a)(s−2b)(s−2c+1)

(2c−2)(2c−1)2c(2c+1)(2c+2)

) 1
2

⎧
⎨

⎩
a b c

2 c−1 b+1

⎫
⎬

⎭
= (−1)s

4 [(a+b+2)(a−b−1)− (c−1)(b+ c+2)]

[2b(2b+1)(2b+2)(2b+3)(2b+4)]
1
2

×

(
(s−2b−1)(s−2b)(s−2c+1)(s−2c+2)

(2c−2)(2c−1)2c(2c+1)(2c+2)

) 1
2
,

⎧
⎨

⎩
a b c

2 c b

⎫
⎬

⎭
= (−1)s

2 [3X(X−1)−4b(b+1)c(c+1)]

[(2b−1)2b(2b+1)(2b+2)(2b+3)]
1
2

×

(
1

(2c−1)2c(2c+1)(2c+2)(2c+3)

) 1
2
,

where X = b(b+1)+ c(c+1)−a(a+1)
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2.14 Tables

Excerpts and Fig. 2.1 are reprinted from Bieden-
harn and Louck [2.1] with permission of Cambridge
University Press. Tables 2.2–2.4 have been adapted

Table 2.1 The solid and spherical harmonics Ylm , and the tensor harmonics T k
µ (labeled by k = l and µ= m) for l = 0,

1, 2, 3, and 4

l m
√

4πYlm(r)
√

4π Ylm(θ,ϕ) T l
m

1 ±1 ∓
√

3
2 (x± iy) ∓

√
3
2 e±iϕ sin θ ∓√2J±

0
√

3 z
√

3 cos θ 2J3

2 ±2 1
2

√
15
2 (x± iy)2 1

2

√
15
2 e±2iϕ sin2 θ

√
6J2±

±1 ∓
√

15
2 (x± iy)z ∓

√
15
2 e±iϕ sin θ cos θ ∓√6J±(2J3±1)

0 1
2

√
5 (3z2−r2) 1

2

√
5 (3 cos2 θ−1) 2

(
3J2

3 − J2
)

3 ±3 ∓ 1
4

√
35 (x± iy)3 ∓ 1

4

√
35 e±3iϕ sin3 θ ∓2

√
5J3±

±2 1
2

√
105
2 (x± iy)2z 1

2

√
105
2 e±2iϕ sin2 θ cos θ 2

√
30J2±(J3±1)

±1 ∓ 1
4 21(x± iy)(5z2−r2) ∓ 1

4

√
21 e±iϕ sin θ(5 cos2 θ−1) ∓2

√
3J±

(
5J2

3 − J2±5J3+2
)

0 1
2

√
7 (5z2−3r2)z 1

2

√
7 (5 cos2 θ−3) cos θ 4

(
5J2

3 −3J2+1
)
J3

4 ±4 3
16

√
70 (x± iy)4 3

16

√
70 e±4iϕ sin4 θ

√
70J4±

±3 ∓ 3
4

√
35 (x± iy)3z ∓ 3

4

√
35 e±3iϕ sin3 θ cos θ ∓2

√
35J3±(2J3±3)

±2 3
8

√
10 (x± iy)2(7z2−r2) 3

8

√
10 e±2iϕ sin2 θ(7 cos2 θ−1) 2

√
10J2±

(
7J2

3 − J2 ±14J3+9
)

±1 ∓ 3
4

√
5 (x± iy)(7z2−3r2)z ∓ 3

4

√
5 e±iϕ sin θ(7 cos2 θ−3) cos θ ∓√5J±

(
28J3

3 −12J2 J3±42J2
3

−6J2+38J3±12
)

0 15
8

(
7z4−6z2r2 + 3

5 r4
) 15

8

(
7 cos4 θ−6 cos2 θ+ 3

5

)
70J4

3 −60J2 J2
3 +6(J2)2 +50J2

3

−12J2

Table 2.2 The 3– j coefficients for all M’s = 0, or J3 = 0, 1
2

⎛

⎝J1 J2 J3

0 0 0

⎞

⎠= (−1)
1
2 J

(
(J1+ J2− J3)!(J1+ J3− J2)!(J2+ J3− J1)!

(J1+ J2+ J3+1)!
) 1

2

×
( 1

2 J)!
( 1

2 J − J1
)! ( 1

2 J − J2
)! ( 1

2 J − J3
)! , J even

⎛

⎝J1 J2 J3

0 0 0

⎞

⎠=0 , J odd, where J = J1+ J2+ J3

⎛

⎝ J J 0

M −M 0

⎞

⎠= (−1)J−M 1

(2J +1)1/2

⎛

⎝J + 1
2 J 1

2

M −M− 1
2

1
2

⎞

⎠= (−1)J−M− 1
2

(
J −M+ 1

2

(2J +2)(2J +1)

)1/2

from Edmonds [2.18] by permission of Prince-
ton University Press. Thanks are given for this
cooperation.

Part
A

2
.1

4



75

Group Theory3. Group Theory for Atomic Shells

The basic elements of the theory of Lie groups
and their irreducible representations (IRs)
are described. The IRs are used to label the
states of an atomic shell and also the com-
ponents of operators of physical interest.
Applications of the generalized Wigner-Eckart
theorem lead to relations between matrix
elements appearing in different electronic
configurations. This is particularly useful in
the f shell, where transformations among
the seven orbital states of an f electron can
be described by the unitary group U(7) and
its sequential subgroups SO(7), G2, and SO(3)
with respective IRs [λ], W , U, and L. Exten-
sions to groups that involve electron spin S
(like Sp(14)) are described, as are groups that
do not conserve electron number. The most
useful of the latter is the quasispin group
whose generators Q connect states of iden-
tical W , U, L and seniority v in the f shell.
The symmetries of products of objects (states
or operators) that themselves possess sym-
metries are described by the technique of
plethysms.
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3.1 Generators

3.1.1 Group Elements

An element Sa of a Lie group G corresponding to
an infinitesimal transformation can be written in the
form

Sa = 1+ δaσ Xσ , (3.1)

where the δaσ are the infinitesimal parameters and
the Xσ are the generators [3.1]. Summation over

the repeated Greek index is implied. Transformations
corresponding to finite parameters can be found by
exponentiation:

Sa → exp
(
a1 X1

)
exp

(
a2 X2

) · · · exp
(
ar Xr

)
. (3.2)

The generators necessarily form a Lie algebra, that is,
they close under commutation:

[
Xρ, Xσ

]= cτρσ Xτ . (3.3)
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In terms of the structure constants cτρσ , the metric tensor
is defined as

gρσ = cµρλ cλσµ . (3.4)

3.1.2 Conditions on the Structure Constants

For an Abelian group, all the generators commute with
one another:

cτρσ = 0 . (3.5)

The operators Xσ , (σ = 1, 2, . . . , p< r) form the gen-
erators of a subgroup if [3.2]

cτρσ = 0 , (ρ, σ ≤ p, τ > p) . (3.6)

The subgroup is invariant if the stronger condition

cτρσ = 0 , (ρ ≤ p, τ > p) (3.7)

is satisfied. A group is simple if it contains no in-
variant subgroup (besides the unit element). A group
is semisimple if it contains no Abelian invariant sub-
group (besides the unit element). A necessary and
sufficient condition that a group be semisimple is
that

det | gρτ | �= 0 . (3.8)

All simple groups are semisimple. For semisimple
groups, the inverse tensor gµν can be formed, thus
permitting suffixes to be raised. The quadratic operator

C = gρσ XρXσ (3.9)

commutes with all generators of the group and is called
Casimir’s operator [3.1]. If the generators of a group G
can be broken up into two sets such that each member

of one set commutes with all the members of the other,
that is, if

cτρσ = 0 , (ρ ≤ p, σ > p) , (3.10)

then the two sets form the generators of two invariant
subgroups, H and K. The group G is the direct product
of H and K and is written as H ×K.

3.1.3 Cartan–Weyl Form

By taking suitable linear combinations Hi and Eα
of the generators Xσ , the basic commutation rela-
tions (3.3) can be thrown into the so-called Cartan–Weyl
form [3.1]

[Hi , Hj ] = 0 , (3.11)

[Hi , Eα] = αi Eα , (3.12)

[Eα, E−α] = αi Hi , (3.13)

[Eα, Eβ] = NαβEα+β . (3.14)

The Roman symbols i, j, . . . run over an l-dimensional
space (the weight space of rank l) in which the num-
bers αi can be visualized as the components of the
vectors (called roots). The Eα are shift operators, the
displacements being specified by the components of α.
The operator Eα+β in (3.17) is to be interpreted as 0 if
α+β is not a root. The coefficient Nαβ depends on the
choice of normalization.

3.1.4 Atomic Operators as Generators

The pairs a†ξaη of creation and annihilation operators
for either bosons or fermions, as defined in Sect. 6.1.1
close under commutation and form a Lie algebra. The
coupled forms W(κk) , defined in Sect. 6.2.2, are often
used to play the role of the generators for electrons in an
atomic shell.

3.2 Classification of Lie Algebras

3.2.1 Introduction

The semisimple Lie algebras have been classified by
Cartan [3.3]. They consist of four main classes Al ,
Bl , Cl , Dl , and five exceptions G2, F4, E6, E7, E8.
Each algebra is characterized by an array of roots in
the l-dimensional weight space; they are conveniently
specified by a set of mutually orthogonal unit vec-
tors ei . The total number of generators (those of type
Eα plus the l generators of type Hi ) gives the order of
the algebra.

3.2.2 The Semisimple Lie Algebras

Al . The roots are conveniently represented by the vectors
ei −e j (i, j = 1, 2, . . . , l+1). They are all perpendicu-
lar to Σek and do not extend beyond the l-dimensional
weight space. The order of the algebra is l(l+2). The
group for which this algebra can serve as a basis is the
special unitary group SU(l+1).

Bl . The roots are ± ei and ± ei ± e j (i, j = 1, 2, . . . ,
l; i �= j). The order of the algebra is l(2l+1). A cor-
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Table 3.1 Generators of the Lie groups for the atomic l shell. The subscripts i and j run over all 4l+2 states of a single
electron

Group Generators

SO(8l+5)a a†i a†j , a
†
i a j , ai a j , a

†
i , a j

SO(8l+4)a a†i a†j , a
†
i a j , ai a j

U(4l+2)b W(κk) (κ = 0, 1; k = 0, 1, . . . , 2l)

SU(4l+2)b W(κk) (As above, with κ = k = 0 excluded)

Sp(4l+2)c W(κk) (As above, with κ+ k odd)

U(2l+1)d W(0k) (k = 0, 1, . . . , 2l)

SU(2l+1)d W(0k) (k = 1, 2, . . . , 2l)

SO(2l+1)d W(0k) (k = 1, 3, 5, . . . , 2l−1)

Gd
2 W(01),W(05) (for l = 3)

SOL (3)e W(01) (or L)

SOS(3)e W(10) (or S)

UA(2l+1)× UB(2l+1)f W (0k)
0q +W (1k)

0q ,W (0k)
0q −W (1k)

0q (k = 0, 1, . . . , 2l)

SOλ(2l+1)× SOµ(2l+1)× SOν(2l+1)× SOξ (2l+1)g (θ†θ)(k) (k odd, θ ≡ λ,µ, ν, ξ)

Uλ(2l)× Uµ(2l)× Uν(2l)× Uξ (2l)h q†θ qθ (all components, θ ≡ λ,µ, ν, ξ)
a [3.4, 5] b [3.1, 6] c [3.6, 7] d [3.6] e [3.8] f [3.9] g [3.10] and (6.69)–(6.72) h [3.11]

responding group is the special orthogonal (or rotation)
group in 2l+1 dimensions, SO(2l+1).

Cl . The roots are ±2ei and ±ei ±e j (i, j = 1, 2, . . . ,
l; i �= j). The order of the algebra is l (2l+1). A corres-
ponding group is the symplectic group in 2l dimensions,
Sp(2l). A rotation of the roots yields C2 = B2.

Dl . The roots are ± ei ± e j (i, j = 1, 2, . . . , l ; i �= j).
The order of the algebra is l(2l−1). A correspond-
ing group is the special orthogonal (or rotation) group
SO(2l). A rotation of the roots yields D3 = A3. Also,
D2 = A1 × A1.

E6, E7, E8. The roots are given by Racah [3.1]. The re-
spective orders are 78, 133, and 248.

F4. The roots consist of the roots of B4 together with
the 16 vectors 1

2 (± e1± e2± e3± e4). The order of the
algebra is 52.

G2. The roots consist of the roots of A2 together with
the six vectors ± (2ei − e j − ek) (i �= j �= k = 1, 2, 3).
The order of the algebra is 14.

Examples of Lie groups used in atomic shell
theory, together with their generators, are given in Ta-
ble 3.1.

3.3 Irreducible Representations

3.3.1 Labels

If n atomic states of a collection transform among
themselves under an arbitrary action of the generators
of a group G, then the states form a representation
of G. The representation is irreducible if n′ linear
combinations of the states cannot be found that also
exhibit that property, where n′ < n. The commuting
generators Hi of G can be simultaneously diagonalized
within the n states: their eigenvalues (m1,m2, . . . ,ml)

for an eigenstate ψ specify the weight of the eigen-
state. The weight above is said to be higher than(
m′

1,m
′
2, . . . ,m

′
l

)
if the first non-vanishing term in the

sequence m1−m′
1, m2−m′

2, . . . is positive. An irre-

ducible representation (IR) of a semisimple group is
uniquely specified (to within an equivalence) by its
highest weight [3.1], which can therefore be used as
a defining label.

3.3.2 Dimensions

The dimensions of the IRs of various groups are ex-
pressed in terms of the highest weights and set out
in Table 3.2. General algebraic expressions have been
given by Wybourne [3.12, pp. 137]. Numerical tabu-
lations have been made by Butler in the appendix to
another book by Wybourne [3.13], and also by McKay
and Patera [3.14]. The latter defines the IRs by speci-
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fying the coordinates of the weights with respect to the
simple roots of Dynkin [3.15].

3.3.3 Casimir’s Operator

The eigenvalues of Casimir’s operator C, defined
in (3.9), can be expressed in terms of the high-
est weights of an IR [3.1]. A complete algebraic
listing for all the semisimple Lie groups has been

Table 3.2 Dimensions D of the irreducible representations (IR’s) of various Lie groups

Group IR D

SO(2) M 1

SO(3) DJ 2J +1

SO(4)= SOA(3)× SOB(3) DJ × DK (2J +1)(2K +1)

SO(5) (w1w2) (w1+w2 +2)(w1−w2 +1)(2w1+3)(2w2+1)/6

SO(6) (w1w2w3) (w1−w2 +1)(w1−w3 +2)(w2−w3 +1)
×(w1 +w2+3)(w1 +w3+2)(w2 +w3+1)/12

SO(7) (w1w2w3) (w1+w2 +4)(w1+w3 +3)(w2+w3 +2)
×(w1 −w2+1)(w1 −w3+2)(w2 −w3+1)
×(2w1+5)(2w2 +3)(2w3+1)/720

G2 (u1u2) (u1+u2+3)(u1+2)(2u1+u2+5)(u1 +2u2+4)
×(u1−u2+1)(u2 +1)/120

SU(3) or U(3) [λ1λ2λ3] (λ1−λ2 +1)(λ1−λ3 +2)(λ2 −λ3+1)/2

SU(4) or U(4) [λ1λ2λ3λ4] As for (w1w2w3) of SO(6)a

Sp(4) 〈 σ1σ2 〉 As for (w1w2) of SO(5)b

Sp(6) 〈 σ1σ2σ3 〉 (σ1−σ2+1)(σ1−σ3+2)(σ1+σ2+5)
×(σ1+σ3+4)(σ2 +σ3+3)(σ2−σ3+1)
×(σ1+3)(σ2+2)(σ3 +1)/720

a Subject to the conditions w1 = (λ1 +λ2 −λ3−λ4)/2, w2 = (λ1 −λ2+λ3 −λ4)/2, w3 = (λ1−λ2 −λ3+λ4)/2
b Subject to the conditions w1 = (σ1+σ2)/2, w2 = (σ1−σ2)/2

given by Wybourne [3.12, p. 140]. Sometimes Casimir’s
operator is given in terms of the spherical tensors
W(κk), or of their special cases V(k)

(= 2
1
2 W(0k)

)

for which the single-electron reduced matrix element
satisfies

(nl‖v(k)‖nl)= (2k+1)
1
2 . (3.15)

The eigenvalues of several operators of that form are
given in Table 3.3.

3.4 Branching Rules

3.4.1 Introduction

If a group H shares some of its generators with a group
G, the first can be considered a subgroup of the second.
That is, G⊃H . Many of the groups in Table 3.1 can
be put in extended group–subgroup sequences. The IRs
of a subgroup that together span an IR of the group
constitute a branching rule.

3.4.2 U(n) ⊃ SU(n)

The group U(n) differs from SU(n) in that the former
contains among its generators a scalar

(
such as W (00)

)

that, by itself, forms an invariant subgroup. Thus U(n)

is not semisimple. The scalar in question commutes
with all the generators of the group and so is of
type Hi . Its presence enlarges the dimension, l, of the
weight space by 1, an extension that can be accommo-
dated by the unit vectors ei of Al given in Sect. 3.2.2.
The reduction U(n)⊃ SU(n) leads to the branching
rule

[λ1λ2 · · ·λn] → [λ1−a, λ2−a, · · · , λn −a] ,
(3.16)

where, in the IR of SU(n) on the right,

a = (λ1+λ2+· · ·+λn)/n . (3.17)
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Table 3.3 Eigenvalues of Casimir’s operator C for groups used in the atomic l shell

Group IR Operator Eigenvalue

SU(2l+1) [λ]a ∑
k>0

(
V(k)

)2
3N +2Nl− 1

2 N2−2S(S+1)− N2/(2l+1)

SO(2l+1) Wb ∑
kodd

(
V(k)

)2 1
2

∑l
i=1 wi (wi +1+2l−2i)

G2 (u1u2)
1
4

[(
V(1)

)2 + (
V(5)

)2
] (

u2
1+u2

2+u1u2+5u1+4u2
)
/12

a Appropriate for terms of lN with total spin S [3.7], p. 125
b Defined by the l weights (w1w2 · · ·wl)

To avoid fractional weights, the IRs of SU(n) are
frequently replaced by those of U(n) for which the
λi are integers. The weights λ1, λ2, . . . can be in-
terpreted as the number of cells in successive rows
of a Young Tableau. When the n states of a single
particle are taken as a basis for the IR [10 . . . 0]
of U(n), thus corresponding to a tableau comprising
a single cell, the tableaux comprising N cells can
be interpreted in two ways, namely, (1) as an IR of
U(n) for a system of N particles, and (2) as an IR
of SN , the finite group of permutations on N objects.
A given tableau corresponds to as many permutations
as there are ways of entering the numbers 1, 2, . . . ,
N in the cells such that the numbers increase going
from left to right along the rows, and from top to
bottom down the columns. A tableau possessing cells
numbered in this way is called standard; it defines
a permutation corresponding to a symmetrization with
respect to the numbers in the rows, followed by an
antisymmetrization with respect to the numbers in the
columns [3.16].

3.4.3 Canonical Reductions

A group–subgroup sequence of the type

U(n)⊃ U(n−1)⊃ U(n−2)⊃ · · · ⊃ U(1) (3.18)

is called canonical [3.17]. The branching rules for
those IRs

[
λ′1λ′2 · · ·λ′n−1

]
of U(n−1) contained in

[λ1λ2 · · ·λn] of U(n) have been given by Weyl [3.18]

in terms of the “betweenness” conditions

λ1 ≥ λ′1 ≥ λ2 ≥ λ′2 · · · ≥ λ′n−1 ≥ λn . (3.19)

The possibility of using the scheme of (3.18) in the
theory of complex atomic spectra has been explored
by Harter and Patterson [3.19–21], and by Drake and
Schlesinger [3.22, 23] (see also Sect. 4.3.1).

3.4.4 Other Reductions

The algebraic formulae for U(n)⊃ SO(n) and
U(n)⊃ Sp(n) have been given by Littlewood [3.24] and
in a rather more accessible form by Wybourne [3.13].
Special cases have been tabulated by Butler (in Tables
C-1 through C-15 in [3.13]). Another set of tables, in
which Dynkin’s labeling scheme is used, has been given
by McKay and Patera [3.14]. Descriptions of how to
apply the mechanics of the mathematics to the Young
tableaux that describe the IRs of U(n) can be found
in the articles of Jahn [3.25] [with particular reference
to SO(5)] and Flowers [3.26] [for Sp(2 j+1)]. For the
atomic l shell, the reductions SO(2l+1)⊃ SO(3) and
(for f electrons) SO(7)⊃ G2 and G2 ⊃ SO(3) are im-
portant. The sources cited in the previous Section are
useful here. It is important to recognize that the embed-
ding of one group in another can often be performed
in inequivalent ways, depending on which generators
are discarded in the reduction process. Thus the use of
SO(5)⊃ SO(3) in the atomic d shell involves a differ-
ent SO(3) group from that derived from the canonical
sequence SO(5)⊃ SO(4)⊃ SO(3).

3.5 Kronecker Products

3.5.1 Outer Products of Tableaux

Consider the tableau [λ1λ2 · · ·λn], where the total num-
ber of cells is N . A preliminary definition is required.

If among the first r terms of any permutation of the N
factors of the product, x1

λ1 x2
λ2 · · · xn

λn , the number of
times x1 occurs is ≥ the number of times x2 occurs ≥
the number of times x3 occurs, etc. for all values of r,
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this permutation is called a lattice permutation. The pre-
scription of Littlewood [3.24] for finding the tableaux
appearing in the Kronecker product of [λ1λ2 · · ·λn]with
[µ1µ2 · · ·µm] is as follows. The acceptable tableaux
are those that can be built by adding to the tableau
[λ1λ2 · · ·λn], µ1 cells containing the same symbol α,
thenµ2 cells containing the same symbol β, etc., subject
to two conditions:

1. After the addition of each set of cells labeled by
a common symbol we must have a permissible
tableau with no two identical symbols in the same
column;

2. If the total set of added symbols is read from right to
left in the consecutive rows of the final tableau, we
obtain a lattice permutation of αµ1βµ2γµ3 · · · .
Examples of this procedure have been given ([3.24,

p. 96], [3.7, p. 136], [3.13, p. 24]). An extensive tabula-
tion involving tableaux with N < 8 has been calculated
by Butler and given by Wybourne [3.13, Table B-1].

3.5.2 Other Outer Products

The rules for constructing the Kronecker products for
U(n) follow by interpreting the Young tableaux of the
previous section as IRs of U(n). The known branching
rules for reductions to subgroups enable the Kronecker
products for the subgroups to be found. Many examples
for SO(n),Sp(n), and G2 can be found in the book
by Wybourne ([3.13, Tables D-1 through D-15, and E-4].

3.5.3 Plethysms

Sometimes a particle can be thought of as being com-
posite [as when the six orbital states s+d of a single
electron are taken to span the IR [200] of SU(3)]. When
the n′ component states of a particle form a basis for

an IR
[
λ′
]

of U(n) other than [10 . . . 0], the pro-
cess of finding which IRs of U(n) occur for N-particle
states whose permutation symmetries are determined
by a given Young tableau [λ] with N cells is called
a plethysm [3.24, p. 289] and written as

[
λ′
]⊗[λ]. The

special techniques for doing this have been described
by Wybourne [3.13]. An elementary method, which is
often adequate in many cases, runs as follows:

1. Expand
[
λ′
]N by repeated use of Table B-1

from [3.13]. The resulting tableaux
[
λ′′
]

are inde-
pendent of n.

2. Choose a small value of n, and strike out all tableaux
from the set

[
λ′′
]

that possess more than n rows
[since they are unacceptable as IRs of U(n)].

3. Interpret the remaining tableaux
[
λ′′
]

as IRs of U(n)
and find their dimensions from Tables A-2 through
A-17 of [3.13]. Check that the sum of the dimensions
is
(
dim

[
λ′
])N .

4. Interpret the various tableaux [λ] possessing the
same number N of cells as IRs of U

(
dim

[
λ′
])

, and
find their dimensions from [3.13].

5. Match the dimensions of parts (3) and (4), remem-
bering that each tableau [λ] occurs as often as the
number of its standard forms. This determines the
possible ways of assigning the IRs

[
λ′′
]

of U(n) to
each [λ].

6. Proceed to higher n to remove ambiguities and to
include the tableaux struck out in step 2.

This procedure can be extended to calculate the
plethysms for other groups. Examples of the type
W⊗[λ] and U⊗[λ], where W and U are IRs of SO(7)
and G2, have been given for [λ] ≡ [2] and [11] cor-
responding to the separation of W2 and U2 into their
symmetric and antisymmetric parts [3.27]. The tech-
nique of plethysm is also useful for mixed atomic
configurations (Sect. 3.6.1).

3.6 Atomic States

3.6.1 Shell Structure

The 24l+2 states of the l shell span the elementary
spinor IR

( 1
2

1
2 · · · 1

2

)
of SO(8l+5), which decom-

poses into the two IRs
( 1

2
1
2 · · ·± 1

2

)
of SO(8l+4),

corresponding to an even and an odd number N of elec-
trons [3.4]. The states of lN span the IR

[
1N 04l+2−N

]
of

U(4l+2), corresponding to the antisymmetric Young
tableau comprising a single column of N cells. The
separation of spin and orbit through the subgroup

U(2)× U(2l+1) yields the tableau products [λ]× [λ̃],
where [λ̃] is the tableau obtained by reflecting [λ]
in a diagonal line [3.1]. The IRs of the subgroup
U(2)× SO(2l+1) are denoted by S and W [3.6].
An alternative way of reaching this subgroup from
U(4l+2) involves the intermediary Sp(4l+2), whose
IRs

〈
1v02l+1−v〉 possess as a basis the states with se-

niority v [3.7]. A subgroup of SO(2l+1) is the SO(3)
group whose IRs specify L , the total orbital angular
momentum.
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Alternatives to this classic sequence are provided by
the last three groups listed in Table 3.1, together with
their respective subgroups. For UA(2l+1)×UB(2l+1),
the shell is factored by considering spin-up and spin-
down electrons as distinct (and statistically independent)
particles [3.28]. A further factorization by means of the
quasiparticles, θ, leads to four independent spaces. The
2l states in each space span the elementary spinor( 1

2
l
)

of SOθ(2l+1), which can be regarded as a fictitious
particle (or quark), qθ [3.29].

The standard classification of the states of the d-shell
is given in Table 3.4. The component MQ of the qua-
sispin Q (defined in (6.33–6.35)) is listed, as well as
the seniority, v = 2l+1−2Q , the IRs W of SO(5),
and the value of L (as a spectroscopic symbol). Only
states in the first half of the shell appear; the classifica-
tion for the second half is the same as the first except
that the signs of MQ are reversed. A general rule for
arbitrary l is exemplified by noting that every W [the
IR of SO(2l+1)] occurs with two spins (S1 and S2)
and two quasispins (Q1 and Q2) such that S1 = Q2
and S2 = Q1. No duplicated spectroscopic terms appear
in Table 3.4. The generators of SO(5) do not commute
with the inter-electronic Coulomb interaction; thus the
separations effected by SO(5) merely define (to within
a phase) a basis. The analog of Table 3.4 has been given

Table 3.4 The states of the d shell

dN MQ
2S+1[λ] v W L

d0 − 5
2

1[0] 0 (00) S

d1 −2 2[1] 1 (10) D

d2 − 3
2

1[2] 0 (00) S

2 (20) DG
3[11] 2 (11) PF

d3 −1 2[21] 1 (10) D

3 (21) PDFGH
4[111] 3 (11) PF

d4 − 1
2

1[22] 0 (00) S

2 (20) DG

4 (22) SDFGI
3[211] 2 (11) PF

4 (21) PDFGH
5[1111] 4 (10) D

d5 0 2[221] 1 (10) D

3 (21) PDFGH

5 (22) SDFGI
4[2111] 3 (11) PF

5 (20) DG
6[11111] 5 (00) S

by Wybourne [3.30] for the f shell. As Racah [3.6]
showed, the group G2 can be used to help distin-
guish repeated terms, but a few duplications remain.
They are distinguished by Nielson and Koster [3.31] in
their tables of spectroscopic coefficients by the letters
A and B. The scope for applications of group theory
becomes enlarged when the states of a single electron
embrace more than one l value. Extensions of the stan-
dard model have been made by Feneuille [3.32] with
particular reference to the configurations (d+ s)N , for
which quasiparticles have also been considered [3.33].
The group SU(3) has been used for (d+ s)N pM [3.34].
The mixed configurations (s+ f)4 have found a use in
the quark model of the atomic f shell [3.29]. A brief
description of this model has been given by Fano and
Rao [3.35].

3.6.2 Automorphisms of SO(8)

The quark structure s+ f derives from the SO(3) struc-
ture of the elementary spinor

( 1
2

1
2

1
2

)
of SO(7). Its eight

components span the IR (1000) of SO(8), a group
that admits automorphisms [3.36]. This property is
exhibited by the existence of the three distinct sub-
groups SO(7) (Racah’s group), SO(7)′, and SO(7)′′,
all of which possess the same G2 and SO(3) as
subgoups. A reversal of the relative phase of the
s and f quarks takes SO(7) into SO(7)′′ and vice
versa [3.37]. The generators of SO(7)′ are the sums
of the corresponding generators of SO(7) and SO(7)′′.
The phase reversal between the s and f quarks, when
interpreted in terms of electronic states, explains the
unexpected simplifications found by Racah [3.6] in
his equation (87) [3.38], which goes beyond what
the Wigner–Eckart theorem for G2 would predict.
Similarly, explanations can be found for some (but
not all) proportionalities between blocks of matrix
elements of components of the spin–other-orbit inter-
action for f electrons [3.39]. Hansen and Ven have
given some examples of still unexplained proportion-
alities [3.40]. The group SO(7)′ has proved useful
in analyses of the effective three-electron operators
used to represent weak configuration interaction in the
f shell [3.37].

3.6.3 Hydrogen and Hydrogen-Like Atoms

The nonrelativistic hydrogen atom possesses an SO(4)
symmetry associated with the invariance of the
Runge–Lenz vector, which indicates the direction of
the major axis of the classical elliptic orbit [3.5]. The
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quantum-mechanical form of this vector can be written
in dimensionless units as

a = [(l × p)− (p × l)+2Zr/ra0] /2p0 , (3.20)

where a0 = �
2/me2 is the Bohr radius, Ze is the nu-

clear charge, p0 is related to the principal quantum
number n by p0 = Z/na0, and where the momentum p
and angular momentum l of the electron in its orbit
are measured in units of �. The analysis is best carried
out in momentum space [3.41]. The four coordinates
to which SO(4) refers can be taken from (9.43–9.46)
or directly as k px , k py, k pz , and k p0

(
1− p2/p2

0

)
/2,

where k = 2p0/
(

p2+ p2
0

)
. The generators of SO(4)

are provided by the 6 components of the two mutu-
ally commuting vectors (l+a)/2 and (l−a)/2, each
of which behaves as an angular momentum vector. The

equivalence SO(4)= SO(3)× SO(3) corresponds to the
isomorphism D2 = A1 × A1 of Sect. 3.2.2.

Hydrogenic eigenfunctions belonging to various en-
ergies can be selected to form bases for a number of
groups. The inclusion of all the levels up to a given n
yields the IR (n−1, 0) of SO(5). Levels of a given l and
all n form an infinite basis for an IR of the noncompact
group SO(2, 1) [3.42]. All the bound hydrogenic states
span an IR of SO(4, 2), as do the states in the contin-
uum [3.43]. Subgroups of SO(4, 2) and their generators
have been listed by Wybourne [3.12] in his Table 21.2.

To the extent that the central potential of a com-
plex atom resembles the r−1 dependence for a bare
nucleus, the group SO(4) can be used to label the
states [3.44].

3.7 The Generalized Wigner–Eckart Theorem

3.7.1 Operators

All atomic operators involving only the electrons can be
built from their creation and annihilation operators. The
appropriate group labels for an atomic operator acting
on N electrons, each with n relevant component states,
reduces to working out the various parts of the Kronecker
products [10 . . . 0]N × [0 . . . 0−1]N of U(n). Subgroups
of U(n) can further define these parts, which may be
limited by Hermiticity constraints. The group labels for
the Coulomb interaction for f electrons were first given
by Racah [3.6]. Interactions involving electron spin were
classified later [3.45–47]. Operators that represent the
effects of configuration interaction on the d and f shells
have also been studied [3.27, 48–52].

3.7.2 The Theorem

Let the ket, operator T , and bra of a matrix element be
labeled by an IR (Ra, Rc, Rb) of a group G, each with
a component (ia, ic, ib). Suppose the supplementary la-
bels γk are also required to complete the definitions. The
generalized Wigner–Eckart theorem is

〈γa Raia|T(γc Rcic)|γb Rbib〉 =
∑

β

Aβ(βRaia|Rbib, Rcic) , (3.21)

where β distinguishes the IRs Ra should they appear
more than once in the reduction of the Kronecker product
Rb × Rc. The reduced matrix element Aβ is independent
of the ik [3.6, 8]. The second factor on the right-hand

side of (3.21) is a Clebsch–Gordan (CG) coefficient for
the group G.

If the specification Ri can be replaced by Rτri,
where r denotes an IR of a subgroup H of G,
and τ is an additional symbol that may be neces-
sary to make the classification unambiguous, the CG
coefficient for G factorizes according to the Racah
lemma [3.6]

(βRaτaraia|Rbτbrbib, Rcτcrcic)

=
∑

α

(αraia|rbib, rcic)(βRaτara|Rbτbrb+ Rcτcrc )α .

(3.22)

The first factor on the right is a CG coefficient for
the group H ; the second factor is an isoscalar fac-
tor [3.53].

3.7.3 Calculation of the Isoscalar Factors

The group H above is often SO(3), whose Clebsch–
Gordan coefficients (and their related 3– j symbols) are
well-known (Chapt. 2). The principal difficulty in es-
tablishing comparable formulae for the isoscalar factors
lies in giving algebraic meaning to β. Several meth-
ods are available for obtaining numerical results as
follows.

Extraction from Tabulated Quantities
If Rb or Rc correspond to the IRs labeling a single elec-
tron, the factorization of the known [3.31] coefficients
of fractional parentage (cfp) according to formulae of
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the type [3.6]
(
dN SLv{|dN−1S′L ′v′

)=
(
dN Sv{|dN−1S′v′

)(
W ′L ′ + (10)d|WL

)
(3.23)

yields some isoscalar factors. In this example, W and W ′
are the IRs of SO(5) defined by the triples NSv and
N ′S′v′ (with N ′ = N−1) as in Table 3.4. This approach
can be applied to the f shell to give isoscalar factors for
SO(7) and G2. The many-electron cfp of Donlan [3.54]
and the multielectron cfp of Velkov [3.55] further extend
the range to IRs Rb and Rc describing many-electron
systems. Isoscalar factors found in this way have the
advantage that their relative phases as well as the sig-
nificance of the indices β and τ coincide with current
usage.

Evaluation Using Casimir’s Operator
Two commuting copies (b and c) are made of the gener-
ators of the group G to form the generators of the direct
product Gb ×Gc [3.56]. Corresponding generators of Gb
and Gc are added to give the generators of Ga. Each
quadratic operator (Ta)

2 appearing in the expression for
Casimir’s operator Ca for Ga (as listed in Table 3.3)
is written as (Tb+Tc)

2. On expanding the expressions
of this type, the terms (Tb)

2 and (Tc)
2 yield Casimir’s

operators Cb and Cc for Gb and Gc. Their eigenvalues
can be written down in terms of the highest weights
of the IRs appearing in the isoscalar factor of (3.22).
If the cross products of the type (Tb ·Tc) can be evalu-
ated within the uncoupled states |Rbτbrb, Rcτcrc〉, then
our knowledge of the eigenvalues of Ca for the coupled
states |βRaτara〉 provides the equations for determin-
ing (to within the freedom implied by β) the isoscalar
factors relating the uncoupled to the coupled states. The
evaluation of the cross products is straightforward when
H = SO(3), since the relevant 6– j symbols are readily
available [3.57]. Examples of this method can be found
in the literature [3.48].

3.7.4 Generalizations of Angular
Momentum Theory

CG coefficients, n– j symbols, reduced matrix elements,
and the entire apparatus of angular momentum theory all
have their generalizations to groups other than SO(3).
An interchange of two columns of a 3– j symbol has its
analog in the interchange of two parts of an isoscalar
factor. For IRs W and L of SO(2l+1) and SO(3), there
are two possibilities:
(1) The interchange of the two parts separated by the
plus sign, namely,

(Waτa La|WbτbLb+WcτcLc )=
(−1)t(Waτa La|WcτcLc+WbτbLb) , (3.24)

where t = La − Lb− Lc+ x, with x dependent on the
IRs W only; or,
(2) The reciprocity relation of Racah [3.6]:

(Waτa La|WbτbLb+WcτcLc )=
(−1)t

′ [(2Lb+1) dim Wa/(2La +1) dim Wb] 1
2

× (WbτbLb|Waτa La +WcτcLc) , (3.25)

where t′ = La− Lb− Lc+ x′, with x′ dependent on the
IRs W , but taken to be l by Racah for Wc = (10 . . . 0).

Reduced matrix elements in SO(3) can be further
reduced by the extraction of isoscalar factors. When
Wa occurs once in the decomposition of W × Wb we
have

(
γaWaτa La‖T (WL)‖γbWbτbLb

)
=

[(2La+1)/ dim Wa]
1
2

(
γaWa|||T (W)|||γbWb

)

× (WbτbLb+WL|Waτa La) . (3.26)

Analogs of the n– j symbols are discussed by But-
ler [3.58].

3.8 Checks

The existence of numerical checks is useful when
using group theory in atomic physics. The CG coeffi-
cients, isoscalar factors, and the various generalizations
of the n– j symbols are often calculated in ways
that conceal the simplicity and structure of the an-
swer. Practitioners are familiar with several empirical
rules:

1. Numbers with different irrationalities, such as
√

2
and

√
3, are never added to one another.

2. The denominators of fractions seldom involve high
primes.

3. High primes are uncommon, but when they appear,
it is usually in diagonal matrix elements rather than
off-diagonal ones.
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4. A sum of a number of terms frequently factors in
what appears to be an unexpected way, and similar
sums often exhibit similar factors.

Guided by these rules, one will find that such er-
rors as do arise occur with phases rather than with
magnitudes.
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Dynamical Gro4. Dynamical Groups

The well known symmetry (invariance, degener-
acy) groups or algebras of quantum mechanical
Hamiltonians provide quantum numbers (con-
servation laws, integrals of motion) for state
labeling and the associated selection rules. In ad-
dition, it is often advantageous to employ much
larger groups, referred to as the dynamical groups
(noninvariance groups, dynamical algebras, spec-
trum generating algebras), which may or may
not be the invariance groups of the studied sys-
tem [4.1–7]. In all known cases, they are Lie groups
(LGs), or rather corresponding Lie algebras (LAs),
and one usually requires that all states of inter-
est of a system be contained in a single irreducible
representation (irrep). Likewise, one may require
that the Hamiltonian be expressible in terms of
the Casimir operators of the corresponding univer-
sal enveloping algebra [4.8,9]. In a weaker sense,
one regards any group (or corresponding alge-
bra) as a dynamical group if the Hamiltonian can
be expressed in terms of its generators [4.10–12].
In nuclear physics, one sometimes distinguishes
exact (baryon number preserving), almost ex-
act (e.g., total isospin), approximate (e.g., SU(3)
of the “eightfold way”) and model (e.g., nuclear
shell model) dynamical symmetries [4.13]. The
dynamical groups of interest in atomic and mo-
lecular physics can be conveniently classified by
their topological characteristic of compactness.
Noncompact LGs (LAs) generally arise in simple
problems involving an infinite number of bound
states, while those involving a finite number of
bound states (e.g., molecular vibrations or ab
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initio models of electronic structure) exploit
compact LG’s.

We follow the convention of designating Lie
groups by capital letters and Lie algebras by lower
case letters, e.g., the Lie algebra of the rotation
group SO(3) is designated as so(3).

4.1 Noncompact Dynamical Groups

As an illustration we present basic facts con-
cerning LAs that are useful for centrosymmetric
Kepler-type problems, their realizations and typic-
al applications. Recall that a realization of a LA
is a homomorphism associating a concrete set of

physically relevant operators with each abstract ba-
sis of the given LA. The physical operators we
will use are general (intrinsic) position vectors
R= (X1, X2, . . . , X N ) in �

N and their corresponding
momenta P = (P1, P2, . . . , PN ), satisfying the basic
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commutation relations (�= 1)
[
X j , Xk

]= [
Pj , Pk

]= 0,
[
X j , Pk

]= iδ jk I .
(4.1)

4.1.1 Realizations of so(2,1)

This important LA is a simple noncompact ana-
logue of the well known rotation group LA so(3),
(cf. Sects. 2.1 and 3.2). Designating its three generators
by Tj ( j = 1, 2, 3), its structure constants (Sect. 2.1.1
and Sect. 3.1.1) are defined by

[T1, T2] = iγT3 ,

[T2, T3] = iT1 ,

[T3, T1] = iT2 , (4.2)

with γ =−1, while γ = 1 gives so(3). Defining the so-
called ladder (raising and lowering) operators

T± = T1± iT2 , (4.3)

we also have that
[
T+, T−

]= 2γT3 ,
[
T3, T±

]=±T3 . (4.4)

The Casimir operator then has the form

T 2 = γ
(

T 2
1 +T 2

2

)
+T 2

3 = γT+T−+T 2
3 −T3 .

(4.5)

With a Hermitian scalar product satisfying T †j = Tj ( j =
1, 2, 3), so that T †± = T∓, the unitary irreps (unirreps)
carried by the simultaneous eigenstates of T 2 and T3
have the form (cf. Sects. 2.1.1 and 2.2)

T 2|kq〉 = k(k+1)|kq〉 ,
T3|kq〉 = q|kq〉 ,
T±|kq〉 =√

γ(k∓q)(k±q+1)|k, q±1〉 . (4.6)

For so(3), (γ = 1), only finite dimensional irreps D(k),
k = 0, 1, 2, . . . with |q| ≤ k are possible (Sects. 2.2
and 2.3). In contrast, there are no nontrivial finite
dimensional unirreps of so(2,1); (for classification,
see e.g., [4.2, 14, 15]). The relevant class D+(k) of
so(2,1) unirreps for bound state problems has a T3
eigenspectrum bounded from below and is given by
q = −k+µ; µ = 0, 1, 2, . . . , and k < 0 or, equiva-
lently, D+(−k−1)with q = k+1+µ;µ= 0, 1, 2, . . . ;
k >−1, since k1 =−k−1 defines an equivalent unir-
rep and k1(k1+1)= k(k+1). There exists a similar
class of irreps with the T3 spectrum bounded from
above and two classes (principal and supplementary)

with unbounded T3 spectra (which may be exploited in
scattering problems).

For problems involving only central potentials,
a useful realization is given in terms of the radial distance
R = |R| and the radial momentum

PR =− i

R

∂

∂R
R =−i

(
∂

∂R
+ 1

R

)

= 1

R
(R · P− iI) , (4.7)

so that [R, PR] = iI . Recall that

P2 = P2
R+

L2

R2
, L = R∧ P . (4.8)

The general form of the desired so(2,1) realization
is [4.2, 14–17]

T1

T3

}

= 1

2
R−ν

(
ν−2 R2 P2

R+ ξ∓ R2ν
)
,

T2 = 1

2

[
2ν−1 RPR− i(1−ν−1)I

]
, (4.9)

where ξ is either a c-number (scalar operator) or an
operator which commutes with both R and PR, and ν is
an arbitrary real number.

To interrelate this realization with so(2,1) unirreps
D+(k) or D+(−k−1), we have to establish the con-
nection between the quantum numbers k, q and the
parameters ξ and ν. Considering the Casimir operator T 2

in (4.5), we find that in our realization (4.9)

T 2 = ξ+ (
1−ν2)/4ν2 , (4.10)

so that

k = 1

2

(
−1±

√
4ξ+ν−2

)
(4.11)

and

q = q0+µ , µ= 0, 1, 2, . . . (4.12)

where

q0 = k+1 = 1

2

(
1±

√
4ξ+ν−2

)
, k >−1 .

(4.13)

4.1.2 Hydrogenic Realization of so(4,2)

To obtain suitable hydrogenic realizations of so(4,2) it
is best to proceed from so(4) (the dynamical symmetry
group for the bound states of the nonrelativistic Kepler
problem), and merge it with so(2,1) [4.2, 14, 15].
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The so(4) LA can be realized either as a direct sum
so(4) = so(3)⊕ so(3), or by supplementing so(3) with an
appropriately scaled quantum mechanical analogue of
the Laplace–Runge–Lenz (LRL) vector (cf. Sect. 3.6.2).
In the first case, we use two commuting angular momen-
tum vectors M and N (cf. Sect. 2.5),

[
M j ,Mk

]= iε jkM ,
[
N j , Nk

]= iε jkN ,[
M j , Nk

]= 0, ( j, k, = 1, 2, 3) (4.14)

while in the second case we use the components of the
total angular momentum vector J and LRL-like vector V
with commutation relations

[
J j , Jk

]= iε jk J ,[
Vj , Vk

]= iσε jk J ,[
J j , Vk

]= iε jkV , ( j, k, = 1, 2, 3) , (4.15)

with σ = 1. For σ =−1 we obtain so(3,1) (the LA of
the homogeneous Lorentz group), which is relevant to
the scattering problem of a particle in the Coulomb (or
Kepler) potential (see below). For σ = 0 we get e(3) (the
LA of the three-dimensional Euclidean group) [4.18–
20]. Note that (4.14) and (4.15) are interrelated by

M= 1

2
(J+V) , N = 1

2
(J−V) , (4.16)

so that J = M⊕N and V = 2M− J. The two Casimir
operators C1 and C2 are

C1 = σJ2+V 2

= σJ+ J−+V+V−+V 2
3 +σJ3(J3−2) ,

C2 = (V · J)= (J ·V)
= 1

2
(V+ J−+V− J+)+V3 J3 , (4.17)

where again

X± = X1± iX2 , X = J or V . (4.18)

For so(3,1) and e(3), only infinite dimensional non-
trivial irreps are possible, while for so(4), only finite
dimensional ones arise. To get unirreps, we require
J and V to be Hermitian. Using

{
J2, J3,C1,C2

}
as

a complete set of commuting operators for so(4), we la-
bel the basis vectors by the four quantum numbers as
|γ jm〉 ≡ |( j0, η) jm〉, so that

J2|γ jm〉 = j( j+1)|γ jm〉 ,
J3|γ jm〉 = m|γ jm〉 ,

C1|γ jm〉 = (
j2
0 −η2−1

)|γ jm〉 ,
C2|γ jm〉 = j0η|γ jm〉 , (4.19)

with 2| j0| being a nonnegative integer and

j = | j0|, | j0|+1, . . . , η−1 ;
η= | j0|+ k, k = 1, 2, . . . (4.20)

(see, e.g., [4.17] for the action of J±, V3 and V±).
To obtain the hydrogenic (or Kepler) realization of

so(4), we consider the quantum mechanical analog of
the classical LRL vector

Ṽ = 1

2
(p∧ L− L∧ p)− Zr−1r

= 1

2
r p2− p(r · p)+r H ,

L = r∧ p , (4.21)

which commutes with the hydrogenic Hamiltonian

H = 1

2
p2−Zr−1 . (4.22)

Note that

[L, H] = [
Ṽ, H

]= 0 ,
(
L · Ṽ)= (

Ṽ · L
)= 0 ,

Ṽ 2 = 2H
(
L2+1

)+Z2 , (4.23)

while the components of L and Ṽ satisfy the commuta-
tion relations

[
L j , Lk

]= iε jkL ,[
L j , Ṽk

]= iε jkṼ ,[
Ṽ j , Ṽk

]= (−2H )iε jkL . (4.24)

Thus, restricting ourselves to a specific bound state
energy level En , we can replace H by En and define

Vj = (−2En)
−1/2Ṽ j ( j = 1, 2, 3) , (4.25)

obtaining the so(4) commutation relations (4.15) (with
J replaced by L). This is Pauli’s hydrogenic realization
of so(4) [4.21–23]. [In a similar way we can consider
continuum states E > 0 and define V = (2E)−1/2Ṽ, ob-
taining an so(3,1) realization.] The last identity of (4.23)
now becomes

V 2 =−(L2+1
)−Z2/2En , (4.26)

which immediately implies Bohr’s formula, since V 2+
L2 = 4M2 =−1−Z2/2En , so that

En =−Z2/2(2 j1+1)2 =−Z2/2n2 , (4.27)

where n = 2 j1+1 and j1 is the angular momentum
quantum number for M, (4.16). In terms of the ir-
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rep labels (4.20), we have that j0 = 0, η= n, so that
|γm〉 = |(0, n)m〉 ≡ |nm〉, = 0, 1, . . . , n−1.

Using the stepwise merging of so(4) and so(2,1)
[adding first T2 which leads to so(4,1) and subsequently
T1 and T3], we arrive at the hydrogenic realization of
so(4,2) having fifteen generators L, A, B,Γ , T1, T2, T3,
namely (cf. [4.2, 14, 15, 17])

L = R∧ P ,

A
B

}

= 1

2
RP2− P(R · P)∓ R ,

Γ = RP ,

T1

T3

}

= 1

2

(
RP2∓ R

)= 1

2

(
RP2

R+ L2 R−1∓ R
)
,

T2 = R · P− iI = RPR . (4.28)

Relabeling these generators by the elements of an anti-
symmetric 6 × 6 matrix according to the scheme

L jk ↔

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 L3 −L2 A1 B1 Γ1

0 L1 A2 B2 Γ2

0 A3 B3 Γ3

0 T2 T1

0 T3

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.29)

we can write the commutation relations in the following
standard form

[
L jk, Lm

]=
i
(
g jLkm + gkm L j− gkL jm − g jm Lk

)
,

(4.30)

with the diagonal metric tensor g jk defined by the matrix
G = diag[1, 1, 1, 1,−1,−1]. The matrix form (4.29)
also implies the subalgebra structure

so(4, 2)⊃ so(4, 1)⊃ so(4)⊃ so(3) , (4.31)

with so(4,1) generated by L, A, B and T2, and so(4) by
L, A. [L, B also generate so(3,1).]

The three independent Casimir operators (quadratic,
cubic and quartic) are [4.24], (summation over all in-
dices is implied)

Q2 = 1

2
L jk L jk

= L2+ A2− B2−Γ 2+T 2
3 −T 2

1 −T 2
2 ,

Q3 = 1

48
εijkmn Lij LkLmn

= T1(B · L)+T2(Γ · L)+T3(A · L)

+ A · (B∧Γ ) ,

Q4 = L jk LkLm Lm j . (4.32)

For our hydrogenic realization Q2 =−3, Q3 = Q4 = 0.
Thus, our hydrogenic realization implies a single unirrep
of so(4,2) adapted to the chain (4.31).

4.2 Hamiltonian Transformation and Simple Applications

The basic idea is to transform the relevant Schrödinger
equation into an eigenvalue problem for one of the
operators from the complete set of commuting opera-
tors in our realizations, e.g., T3 for so(2,1). Instead of
using a rather involved “tilting” transformation ([4.1,
p. 20], and [4.2,14,15]), we can rely on a simple scaling
transformation [4.16, 25]

r = λR , p = λ−1 P , r = λR , pr = λ−1 PR ,

(4.33)

where

r =
⎛

⎝
N∑

j=1

x2
j

⎞

⎠

1/2

, (4.34)

and

p2 = p2
r +r−2

[
1

4
(N −1)(N −3)+ L2

]
, (4.35)

with pr defined analogously to PR in (4.7); r and p are
the physical operators in terms of which the Hamiltonian
of the studied system is expressed. Recall that L2 has
eigenvalues [4.26]

(+ N −2) , = 0, 1, 2, . . . for N ≥ 2 ,
(4.36)

and we can set = 0 for N = 1 (angular momentum term
vanishes in one-dimensional case). The units in which
m = e = �= 1, c ≈ 137 are used throughout.

4.2.1 N-Dimensional Isotropic Harmonic
Oscillator

Considering the Hamiltonian

H = 1

2
p2+ 1

2
ω2r2 , (4.37)
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with p2 in the form (4.35), transforming the cor-
responding Schrödinger equation using the scaling
transformation (4.33) and multiplying by 1

4λ
2, we get

for the radial component

1

2

(
1

4
P2

R+R−2ξ+1

4
ω2λ4 R2−1

2
λ2 E

)
ψR(λR)= 0 ,

(4.38)

with

ξ = 1

16
(N −1)(N −3)+ 1

4
(+ N −2) . (4.39)

Choosing λ such that
(
ω/2

)2
λ4 = 1, we can

rewrite (4.38) using the so(2,1) realization (4.9) with
ν = 2 as

(
T3− 1

4
λ2 E

)
ψR(λR)= 0 . (4.40)

Thus, using the second equation of (4.6) we can interre-
late ψR(λR) with |kq〉 and set 1

4λ
2 E = q, so that

E = 4q/λ2 = 2qω , (4.41)

with q given by (4.12) and (4.13), i. e.,

q = q0+µ , µ= 0, 1, 2, . . . (4.42)

and

q0 = k+1 = 1

2

[
1±

(
+ 1

2
N −1

)]
. (4.43)

Now, for N = 1 we set = 0 so that q0 = 1
4 and

q0 = 3
4 , yielding for E = 2qω the values

( 1
2 +2µ

)
ω and( 1

2 +2µ+1
)
ω, µ= 0, 1, 2, . . . . Combining both sets

we thus get for N = 1 the well known result

E ≡ En =
(

n+ 1

2

)
ω , n = 0, 1, 2, . . . . (4.44)

Similarly, for the general case N ≥ 2 we choose the
upper sign in (4.43) [so that k >−1] and get

E ≡ En =
(

n+ 1

2
N

)
ω, n = 0, 1, 2, . . . (4.45)

where we identified (+2µ)with the principal quantum
number n.

4.2.2 N-Dimensional Hydrogenic Atom

Applying the scaling transformation (4.33) to the hydro-
genic Hamiltonian (4.22) in N-dimensions, we get for

the radial component (after multiplying from the left by
λ2 R)

[
1

2

(
RP2

R+ R−1ξ−2λ2 ER
)−λZ

]
ψR(λR)= 0 ,

(4.46)

where now

ξ = 1

4
(N −1)(N −3)+(+ N −2) . (4.47)

In this case we must set 2λ2 E =−1 and use realiza-
tion (4.9) with ν = 1 to obtain

(T3−λZ)ψR(λR)= 0 . (4.48)

This immediately implies that

λZ= q (4.49)

and

q0 = k+1 = 1

2
[1± (2+ N −2)] . (4.50)

Choosing the upper sign [since  ≥ 0 and k >−1],
so that q0 = + 1

2 (N −1), and identifying q with the
principal quantum number n, we have finally that

E ≡ En =− 1

2λ2 =− Z2

2n2 . (4.51)

The N-dimensional relativistic hydrogenic atom can
be treated in the same way, using either the Klein–
Gordon or Dirac–Coulomb equations [4.2, 14–17].

4.2.3 Perturbed Hydrogenic Systems

The so(4,2) based Lie algebraic formalism can be con-
veniently exploited to carry out large order perturbation
theory (see [4.27–29] and Chapt. 5) for hydrogenic sys-
tems described by the Schrödinger equation

[H0+ εV(r)]ψ(r)= (E0+∆E)ψ(r) , (4.52)

with H0 given by (4.22) and E0 by E of (4.51). Ap-
plying transformation (4.33), using (4.49), (4.51) and
multiplying on the left by λ2 R, we get

[
1

2
RP2−q+ 1

2
R+ ελ2 RV(λR)−λ2 R∆E

]
Ψ(R)

= 0 , (4.53)

where we set ψ(λR)≡ Ψ(R). For the important case
of a 3-dimensional hydrogenic atom [N = 3, ξ = (+
1), q ≡ n]we get using the so(4,2) realization (4.28) [or
so(2,1) realization (4.9) with ν = 1]

(K + εW − S∆E)Ψ(R)= 0 , (4.54)
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with

K = T3−n ,

W = λ2 RV(λR) ,

S = λ2 R . (4.55)

We also have that λ= n/Z and for the ground state case
n = q = 1. Although (4.54) has the form of a general-
ized eigenvalue problem requiring perturbation theory
formalism with a nonorthogonal basis (where S rep-
resents an overlap), T3 is Hermitian with respect to
a (1/R) scalar product, and the required matrix ele-
ments can therefore be easily evaluated [4.2, 14, 15, 17,
27–29].

For central field perturbations, V(r)= V(r), the prob-
lem reduces to one dimension and since R = T3−T1,
the so(2,1) hydrogenic realization (ν = 1) can be em-
ployed. For problems of a hydrogenic atom in a magnetic
field (Zeeman effect) [4.27–30] or a one-electron di-
atomic ion [4.31], the so(4,2) formalism is required
(note, however, that the LoSurdo–Stark effect can also
be treated as a one-dimensional problem using parabolic
coordinates [4.32]).

The main advantage of the LA approach stems from
the fact that the spectrum of T3 is discrete, so that no
integration over continuum states is required. Moreover,
the relevant perturbations are closely packed around the
diagonal in this representation, so that infinite sums are
replaced by small finite sums.

For example, for the LoSurdo–Stark problem when
V(r)= F z, where F designates electric field strength
in the z-direction, we get (4.54) with ε = F and
W = (n/Z)3 RZ, S = (n/Z)2 R. Since both R and

Z are easily expressed in terms of so(4,2) genera-
tors,

Z = B3− A3 , R = T3−T1 , (4.56)

we can easily compute all the required matrix elem-
ents [4.2, 14, 15, 17].

Similarly, considering the Zeeman effect with

V(r)= 1

2
BL3+ 1

8
B2(r2− z2) , (4.57)

where B designates magnetic field strength in the
z-direction, we have for the ground state when n = 1,
=m = 0 that ε= 1

8B2 , K = T3−1, W =Z−4 R(R2−
Z2) and S = Z−2 R. Again, the matrix elements of
W and S are obtained from those of Z and R, (4.56)
by matrix multiplication (for tables and programs,
see [4.17]).

One can treat one-electron diatomic ions [4.2,14,15,
31] and screened Coulomb potentials, including charmo-
nium and harmonium [4.10–12, 17, 33, 34], in a similar
way.

Note, finally, that we can also formulate the
perturbed problem (4.54) in a standard form not in-
volving the “overlap” by defining the scaling factor
as λ= (−2E)−1/2, where E is now the exact energy
E = E0+∆E. Equation (4.54) then becomes

(T3+ εW −λZ)Ψ(R)= 0 , (4.58)

with the eigenvalue λZ. In this case any conventional
perturbation formalism applies, but the desired energy
has to be found from λZ [4.35].

4.3 Compact Dynamical Groups

Unitary groups U(n) and their LAs often play the role
of (compact) dynamical groups since

1. quantum mechanical observables are Hermitian and
the LA of U(n) is comprised of Hermitian operators
[under the exp(iA) mapping],

2. any compact Lie group is isomorphic to a subgroup
of some U(n),

3. “nothing of algebraic import is lost by the unitary
restriction” [4.36].

All U(n) irreps have finite dimension and are thus
relevant to problems involving a finite number of bound
states [4.3–6, 10–12, 36–43].

4.3.1 Unitary Group
and Its Representations

The unitary group U(n) has n2 generators Eij spanning
its LA and satisfying the commutation relations

[
Eij , Ek

]= δ jk Ei− δiEk j (4.59)

and the Hermitian property

E†ij = E ji . (4.60)

They are classified as raising (i < j ), lowering (i > j )
and weight (i = j ) generators according to whether they
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raise, lower and preserve the weight, respectively. The
weight vector is a vector of the carrier space of an irrep
which is a simultaneous eigenvector of all weight gener-
ators Eii of U(n) (comprising its Cartan subalgebra), and
the vector m = (m1,m2, . . . ,mn) with integer compo-
nents, consisting of corresponding eigenvalues, is called
a weight. The highest weight mn (in lexical ordering),

mn = (m1n,m2n, . . . ,mnn) , (4.61)

with

m1n ≥ m2n ≥ · · · ≥ mnn , (4.62)

uniquely labels U(n) irreps, Γ (mn), and may be repre-
sented by a Young pattern. Subducing Γ (mr) of U(r) to
U(r−1), embedded as U(r−1)⊕1 in U(r), gives [4.41]

Γ (mr) ↓ U(r−1)=
⊕

Γ (mr−1) , (4.63)

where the sum extends over all U(r−1)weights mr−1 =
(m1,r−1,m2,r−1, . . .mr−1,r−1) satisfying the so-called
“betweenness conditions” [4.38]

mir ≥ mi,r−1 ≥ mi+1,r (i = 1, . . . , r−1) .
(4.64)

Two irreps Γ (mn) and Γ (m′
n) of U(n) yield the

same irrep when restricted to SU(n) if mi =m′
i +h, i =

1, . . . , n. The SU(n) irreps are thus labeled with highest
weights with mnn = 0. The dimension ofΓ (mn) of U(n)
is given by the Weyl dimension formula [4.36]

dimΓ (mn)=
∏

i< j

(
min −m jn + j− i

)/
1!2! · · · (n−1)! .

(4.65)

The U(n) Casimir operators have the form

CU(n)
k =

n∑

i1,i2,... ,ik=1

Ei1i2 Ei2i3 · · · Eik−1ik Eiki1 .

(4.66)

The first order Casimir operator is given by the sum
of weight generators and equals the sum of the highest
weight components.

Since U(1) is Abelian, the Gel’fand-Tsetlin [4.42]
canonical chain (Sect. 3.4.3)

U(n)⊃ U(n−1)⊃ · · · ⊃ U(1) (4.67)

can be used to label uniquely the basis vectors of the
carrier space of Γ (mn) by triangular Gel’fand tableaux

[m] defined by

[m] =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

mn

mn−1

· · ·
· · ·
m2

m1

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

m1n m2n · · · · · · mnn

m1,n−1 · · · · · ·mn−1,n−1

· · ·
· · ·

m12 m22

m11

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

,

(4.68)

with entries satisfying betweenness conditions (4.64).
Matrix representatives of weight generators are diagonal

〈[m′]|Eii |[m]〉 = δ[m],[m′]

⎛

⎝
i∑

j=1

m ji −
i−1∑

j=1

m j,i−1

⎞

⎠ ,

(4.69)

while those for other generators are rather in-
volved [4.42, 43]. Note that only elementary (Ei,i+1)

raising generators are required since

〈[m′]|Eij |[m]〉 = 〈[m]|E ji |[m′]〉 (4.70)

and

Eij =
[
Ei,i+1, Ei+1, j

]
. (4.71)

In special cases required in applications ([4.39, 40]
and Sect. 4.3.4) efficient algorithms exist for the com-
putation of explicit representations.

4.3.2 Orthogonal Group O(n)
and Its Representations

Since O(n) is a proper subgroup of U(n), its repre-
sentation theory has a similar structure. The suitable
generators are

Fij = Eij − E ji , Fji =−Fij ,

Fii = 0 , F†ij =−Fji (4.72)

and satisfy the commutation relations
[
Fij , Fk

]= δ jk Fi+ δiFjk − δik Fj− δ jFik .

(4.73)

The canonical chain has the form

O(n)⊃ O(n−1)⊃ · · · ⊃ O(2) . (4.74)

The components of the highest weight mn ,

mn = (m1n,m2n, . . . ,mkn) , (4.75)
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satisfy the conditions

m1n ≥ m2n ≥ · · · ≥ mkn ≥ 0 for n = 2k+1 ,
(4.76)

and

m1n ≥ m2n ≥ · · · ≥ |mkn | for n = 2k , (4.77)

where min are simultaneously integers or half-odd
integers. The former are referred to as tensor rep-
resentations (since they arise as tensor products of
fundamental irreps), while those with half-odd integer
components are called spinor representations. Note that
for n = 2k, we have two lowest (mirror-conjugated)
spinor representations, namely m(+) = ( 1

2 ,
1
2 , . . . ,

1
2 )

and m(−) = ( 1
2 , . . . ,

1
2 ,− 1

2 ). Only tensor representa-
tions can be labeled by Young tableaux.

Subducing O(n) to O(n−1), the betweenness con-
ditions (branching rules) have the form

min ≥ mi,n−1 ≥ mi+1,n (i = 1, . . . , k−1) (4.78)

together with

mk,2k+1 ≥ |mk,2k| (4.79)

when n = 2k+1. The mi,n−1 components are integral
(half-odd integral) if the min are integral (half-odd inte-
gral). The U(n)⊃O(n) [or SU(n) ⊃ SO(n)] subduction
rules are more involved [4.44].

4.3.3 Clifford Algebras and Spinor
Representations

While all reps of U(n) or SL(n) arise as tensor powers of
the standard rep, only half of the reps of SO(m) or O(m)
arise this way, since SO(m) is not simply connected
when m > 2. A double covering of SO(m) leads to spin
groups Spin(m). The best way to proceed is, however,
to construct the so-called Clifford algebras Cm , whose
multiplicative group (consisting of invertible elements)
contains a subgroup which provides a double cover of
SO(m). The key fact is that C2k is isomorphic with gl(2k)

and C2k+1 with gl(2k) ⊕ gl(2k). The reps of Cm thus
provide the required spinor reps.

A Clifford algebra Cm is an associative algebra
generated by Clifford numbers αi satisfying the anti-
commutation relations

{αi , α j} = 2δij (i, j = 1, . . . ,m) . (4.80)

Since α2
i = 1, dim Cm = 2m and a general element of

Cm is a product of Clifford numbers αν1
1 α

ν2
2 · · ·ανm

m with
νi = 0 or 1.

To see the relation with so(m+1), note that

F0k =−1

2
iαk , Fjk = 1

4

[
α j , αk

]= 1

2
α jαk ,

( j �= k) (4.81)

satisfy the commutation relations (4.73).
As an example, C2 can be realized by Pauli matrices

by setting

α1 = σ1 =
(

0 1

1 0

)

, α2 = σ2 =
(

0 i

−i 0

)

.

(4.82)

Clearly, the four matrices 12, α1, α2 and α1α2 are lin-
early independent (note that σ3 = iσ1σ2), so that C2 is
isomorphic to gl(2, � ).

Similarly, considering Dirac–Pauli matrices

γ0 =
(
−i12 0

0 −i12

)

= iγ4 ,

γk =
(

0 iσk

−iσk 0

)

, (k = 1, 2, 3) (4.83)

we have that

{γi , γ j} = 2δij , (i, j = 1, . . . , 4) (4.84)

so that γi (i = 1, . . . , 4) or (i = 0, . . . , 3) represent
Clifford numbers for C4 and 14, γi , γiγ j (i < j), γiγ jγk
(i < j< k) and γ 5 ≡ γ 1γ 2γ 3γ 4 = iγ 0γ 1γ 2γ 3 form an
additive basis for gl(4, � ) (the γi themselves are said to
form a multiplicative basis). For general construction of
Cm Clifford numbers in terms of direct products of Pauli
matrices see [4.45, 46].

4.3.4 Bosonic and Fermionic Realizations
of U(n)

Designating by b†i (bi) the boson creation (annihilation)
operators (Sect. 6.1.1) satisfying the commutation rela-
tions

[
bi , b j

]= [
b†i , b

†
j

]= 0,
[
bi , b

†
j

]= δij , we obtain
a possible U(n) realization by defining its n2 generators
as follows

Gij = b†i b j . (4.85)

The first order Casimir operator, (4.66) with k = 1, then
represents the total number operator

N̂ ≡ CU(n)
1 =

n∑

i=1

Gii =
n∑

i=1

b†i bi , (4.86)
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and the physically relevant states, being totally symmet-
ric, carry single row irreps Γ (N 0̇)≡ Γ (N0 · · · 0).

Similarly for fermion creation (annihilation) opera-
tors X†I (X I ) that are associated with some orthonormal
spin orbital set {|I〉}, I = 1, 2, . . . , 2n, and satisfy the
anticommutation relations

{
X I , X J

}= {
X†I , X†J

}= 0,{
X I , X†J

}= δIJ , the operators

eIJ = X†I X J (4.87)

again represent the U(2n) generators satisfying (4.59)
and (4.60). The first-order Casimir then represents the
total number operator N̂ =∑

I X†I X I , while the possible
physical states are characterized by totally antisymmet-
ric single column irreps Γ (1N 0̇)≡ Γ (11 · · · 1 0 · · · 0).

4.3.5 Vibron Model

Similar to the unified description of nuclear collec-
tive rovibrational states using the interacting boson
model [4.47–49], one can build an analogous model
for molecular rotation-vibration spectra [4.8]. For di-
atomics, an appropriate dynamical group is U(4) [4.8,
50–52] and, generally, for rotation-vibration spectra in
r-dimensions one requires U(r+1). For triatomics, the
U(4) generating algebra is generalized to U(4)⊗U(4),
and for the (k+1) atomic molecule to U(1)(4)⊗· · ·⊗
U(k)(4) [4.8, 50–52].

For the bosonic realization of U(4), we need four
creation (b†i , i = 1, . . . , 4) and four annihilation (bi)

operators (Sect. 4.3.4). The Hamiltonian may be gener-
ally expressed as a multilinear form in terms of boson
number preserving products

(
b†i b j

)
, so that using (4.85)

we can write

H = h(0)+
∑

ij

h(1)ij Gij + 1

2

∑

ijk

h(2)ijkGij Gk+· · · .

(4.88)

The energy levels (as a function of 0, 1, 2, . . . -body
matrix elements h0, h(1)ij , h(2)ijk, etc.) are then determined
by diagonalizing H in an appropriate space, which is
conveniently provided by the carrier space of the totally
symmetric irrep Γ (N 0 0 0)≡ Γ (N 0̇) of U(4).

The requirement that the resulting states be charac-
terized by angular momentum J and parity P quantum
numbers necessitates that the boson operators in-
volved have definite transformation properties under
rotations and reflections [4.8]. The boson operators
are thus subdivided into the scalar operators

(
σ†, σ

)
,

J = 0, and vector operators
(
π
†
µ, πµ;µ= 0,±1

)
, J = 1

with parity P = (−)J . All commutators vanish except

for
[
σ, σ†

]= 1,
[
πµ, π

†
µ′
]= δµµ′ . (4.89)

Since H preserves the total number of vibrons N = nσ +
nπ , the second order Hamiltonian (4.88) within the irrep
Γ (N 0̇) can be expressed in terms of four independent
parameters (apart from an overall constant) as

H = e(0)+ e(1)
[
π† × π̃

](0)

0

+ e(2)1

[[
π† ×π†

](0)
×
[
π̃ × π̃

](0)](0)

0

+ e(2)2

[[
π† ×π†

](2)
×
[
π̃ × π̃

](2)](0)

0

+ e(2)3

[[
π† ×π†

](0)
×
[
σ̃ × σ̃

](0)

+
[
σ† ×σ†

](0)
×
[
π̃ × π̃

](0)](0)

0
+· · · , (4.90)

where σ̃ = σ, π̃µ = (−)1−µπ−µ and square brackets in-
dicate the SU(2) couplings.

In special cases the eigenvalue problem for H can be
solved analytically, assuming that H can be expressed in
terms of Casimir operators of a complete chain of sub-
groups of U(4) [referred to as dynamical symmetries].
Requiring that the chain contain the physical rotation
group O(3), one has two possibilities

(I) U(4)⊃ O(4)⊃ O(3)⊃ O(2) ,

(II) U(4)⊃ U(3)⊃ O(3)⊃ O(2) . (4.91)

These imply labels (quantum numbers): N [total vibron
number defining a totally symmetric irrep of U(4)],
ω= N, N −2, N −4, . . . , 1 or 0 [defining a totally
symmetric irrep of O(4)] and nπ = N, N −1, . . . , 0
[defining the U(3) irrep], in addition to the O(3)⊃O(2)
labels J,M; |M| ≤ J . In terms of these labels one finds
for the respective Hamiltonians

H(I) = F+ A CO(4)
2 + BCO(3)

2 ,

H(II) = F+ εCU(3)
1 +αCU(3)

2 +βCO(3)
2 , (4.92)

where F, A, B, ε, α, β are free parameters and CU(k)
i ,

CO(k)
i are relevant Casimir operators, the following ex-

pressions [4.8, 50–52] for their eigenvalues

E(I)(N, ω, J,M)= F+ Aω(ω+2)+ BJ(J +1),

E(II)(N, nπ, J,M)= F+ εnπ +αnπ(nπ +3)

+βJ(J +1) . (4.93)
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The limit (I) is appropriate for rigid diatomics and limit
(II) for nonrigid ones [4.8, 50–52].

In addition to handling di- and tri-atomic systems,
the vibron model was also applied to the overtone spec-
trum of acetylene [4.53], intramolecular relaxation in
benzene and its dimers [4.54, 55], octahedral molecules
of the XF6 type (X = S, W, and U) [4.56], and to lin-
ear polyatomics [4.57]. Most recently, the experimental
(dispersed fluorescence and stimulated emission pump-
ing) vibrational spectra of H2O and SO2 in their ground
states, representing typical local-mode and normal-
mode molecules, respectively, have been analyzed,
including highly excited levels, by relying on the U(2) al-
gebraic effective Hamiltonian approach [4.58–60]. The
U(2) algebraic scheme [4.61] also enabled the treat-
ment of Franck–Condon transition intensities [4.62, 63]
in rovibronic spectra. The attempts at a similar heuris-
tic phenomenological description of electronic spectra
have met so-far with only a limited success [4.64].

4.3.6 Many-Electron Correlation Problem

In atomic and molecular electronic structure calculations
one employs a spin-independent model Hamiltonian

H =
∑

i, j

hij

2∑

σ=1

X†iσ X jσ

+ 1

2

∑

i, j,k,

vij,k

2∑

σ,τ=1

X†iσ X†jτ Xτ Xkσ , (4.94)

where X†I ≡ X†iσ (X I ) designate the creation (annihi-
lation) operators associated with the orthonormal spin
orbitals |I〉 ≡ |iσ〉 = |i〉⊗ |σ〉; i = 1, . . . , n; σ = 1, 2[
σ = 1, 2 labeling the spin-up and spin-down eigenstates

of Sz
]
, and hij = 〈i|ĥ| j〉, vij,k = 〈i(1) j(2)|v̂|k(1)(2)〉

are the one- and two-electron integrals in the orbital ba-
sis {|i〉}. As stated in Sect. 4.3.4, eIJ ≡ eiσ, jτ = X†iσ X jτ
may then be regarded as U(2n) generators, and the
appropriate U(2n) irrep for N-electron states isΓ

(
1N 0̇

)
.

Similar to the nuclear many-body problem [4.65],
one defines mutually commuting partial traces of spin
orbital generators eIJ , (4.87),

Eij =
2∑

σ=1

eiσ, jσ =
2∑

σ=1

X†iσ X jσ ,

Eστ =
n∑

i=1

eiσ,iτ =
n∑

i=1

X†iσ Xiτ , (4.95)

which again satisfy the unitary group commutation re-
lations (4.59) and property (4.60), and may thus be

considered as the generators of the orbital group U(n)
and the spin group U(2). The Hamiltonian (4.94) is thus
expressible in terms of orbital U(n) generators

H =
∑

i, j

hij Eij + 1

2

∑

i, j,k,

vij,k(Eik E j− δ jk Ei) .

(4.96)

We can thus achieve an automatic spin adaptation by
exploiting the chain

U(2n)⊃ U(n)⊗U(2) (4.97)

and diagonalize H within the carrier space of two-
column U(n) irreps Γ (2a1b0c)≡ Γ (a, b, c) with [4.39,
66]

a = 1

2
N − S , b = 2S ,

c = n−a−b = n− 1

2
N − S , (4.98)

considering the states of multiplicity (2S+1) involving
n orbitals and N electrons. The dimension of each spin-
adapted subproblem equals [4.39, 66]

dimΓ (2a1b0c)= b+1

n+1

(
n+1

a

)(
n+1

c

)

,

(4.99)

where
(m

n

)
designate binomial coefficients.

Exploiting simplified irrep labeling by triples
of integers (a, b, c), (4.98), at each level of the
canonical chain (4.67), one achieves more efficient
state labeling by replacing Gel’fand tableaux (4.68)
by n × 3 ABC [4.66] or Paldus or Gel’fand–Paldus
tableaux [4.40, 67–75]

[P] = [aibici ] , (4.100)

where ai +bi +ci = i. Another convenient labeling uses
the ternary step numbers di , 0≤ di ≤ 3 [4.66–68,76,77]

di = 1+2(ai −ai−1)− (ci − ci−1) . (4.101)

An efficient and transparent representation of this
basis can be achieved in terms of Shavitt graphs and dis-
tinct row tables ([4.67, 68], cf. also [4.10–12, 39, 69]).
An efficient evaluation of generator matrix representa-
tives, as well as of their products, is formulated in terms
of products of segment values, whose explicit form has
been derived in several different ways [4.10–12, 66–69,
73–75, 77, 78]. Since the dimension (4.99) rapidly in-
creases with n and N , various truncated schemes (limited
CI) are often employed. The unitary group formalism
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that is based either on U(n) or on the universal envelop-
ing algebra of U(n) proved to be of great usefulness
in various post-Hartree–Fock approaches to molecu-
lar electronic structure [4.79], especially in large-scale
CI calculations (in particular in the columbus Pro-
gram System [4.80]; see also [24–31] in [4.12]) and
in the spin-adapted UGA version of the coupled cluster
(CC) method [4.81–83] (cf. Chapter 5; for applications,
see [4.84–86]), as well as in various other investigations
(e.g. quantum dots [4.87], charge migration in fragmen-
tation of peptide ions [4.88, 89]; see also [4.10–12] for
other references).

4.3.7 Clifford Algebra Unitary Group
Approach

The Clifford algebra unitary group approach (CAUGA)
exploits a realization of the spinor algebra of the rotation
group SO(2n+1) in the covering algebra of U(2n) to
obtain explicit representation matrices for the U(n) [or
SO(2n+1) or SO(2n)] generators in the basis adapted
to the chain [4.90–94]

U(2n)⊃ Spin(m)⊃ SO(m)⊃ U(n) ,

(m = 2n+1 or m = 2n) (4.102)

supplemented, if desired, by the canonical chain (4.67)
for U(n).

To realize the connection with the fermionic Grass-
mann algebra generated by the creation

(
X†I

)
and

annihilation (X I ) operators, I = 1, . . . , 2n, note that
it is isomorphic with the Clifford algebra C4n when we
define [4.12, 25]

αI = X I + X†I , αI+2n = i
(
X I − X†I

)
,

(I = 1, . . . , 2n) . (4.103)

For practical applications, the most important is the
final imbedding U(2n)⊃U(n), (for the role of interme-
diate groups, see [4.90–92]). All states of an n-orbital
model, regardless the electron number N and the total
spin S, are contained in a single two-box totally sym-
metric irrep 〈20̇〉 of U(2n) [4.93, 94]. To simplify the
notation, one employs the one-to-one correspondence
between the Clifford algebra monomials, labeled by the
occupation numbers mi = 0 or mi = 1 (i = 1, . . . , n),
and “multiparticle” single-column U(n) states labeled
by

p ≡ p{mi} = 2n − (m1 m2 · · ·mn)2 , (4.104)

where the occupation number array (m1 · · ·mn) is in-
terpreted as a binary integer, which we then regard as

one-box states |p) of U(2n). The orbital U(n) generators
Λij may then be expressed as simple linear combinations
of U(2n) generators E pq = |p)(q|with coefficients equal
to ±1 [4.93, 94].

Generally, any p-column U(n) irrep is contained
at least once in the totally symmetric p-box irrep of
U(2n). For many-electron problems, one thus requires
a two-box irrep 〈20̇〉. Any state arising in the U(n) irrep
Γ(a, b, c) can then be represented as a linear combi-
nation of two-box states, labeled by the Weyl tableaux
[i| j] ≡ i j . In particular, the highest weight state of
Γ (a, b, c) is represented by

[
2c|2b+c

]
. Once this repre-

sentation is available, it is straightforward to compute
explicit representations of U(n) generators, since E pq
act trivially on [i| j] [4.94]. Defining unnormalized states
(i| j) as

(i| j)=√
1+ δij [i| j] , (4.105)

we have

E pq(i| j )= δqi(p| j )+ δq j(i|p) . (4.106)

The main features of CAUGA may thus be summa-
rized as follows: CAUGA

1. effectively reduces an N-electron problem to a num-
ber of two-boson problems;

2. enables an exploitation of an arbitrary coupling
scheme (being particularly suited for the valence
bond method);

3. can be applied to particle-number nonconserving
operators;

4. easily extends to fermions with an arbitrary spin;
5. drastically simplifies evaluation of explicit represen-

tations of U(n) generators and of their products;
6. can be exploited in other than shell-model ap-

proaches [4.95–101].

4.3.8 Spin-Dependent Operators

The spin-adapted U(n)-based UGA is entirely satis-
factory in most investigations of molecular electronic
structure. However, when exploring the fine structure
in high-resolution spectra, the intersystem crossings,
phosphorescent lifetimes, molecular predissociation,
spin–orbit interactions in transition metals, and like phe-
nomena, the explicitly spin-dependent terms must be
included in the Hamiltonian. Since in most cases the total
spin S represents a good approximate quantum number,
so that the spin-adapted N-electron states render an ex-
cellent point of departure, it is necessary to consider the
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corresponding matrix elements of general spin-orbital
U(2n) generators in terms of which the relevant spin-
dependent terms may be expressed. This was first done
in the context of the symmetric group and Racah algebra
by Drake and Schlesinger [4.78] and later on in terms of
the Gel’fand–Paldus tableaux [4.102–106].

In general, the U(2n) generators eiσ, jτ ≡ eIJ may be
resolved into the spin-shift components e(±)IJ that in-
crease (+) or decrease (−) the total spin S by one unit
and the zero-spin component e(0)IJ that preserves S.
The relevant matrix elements can then be expressed in
terms of the matrix elements of a single U(n) adjoint ten-

sor operator ∆, which is given by the following second
degree polynomial in U(n) generators,

∆= E(E+ N/2−n−2), E = ‖Eij‖ (4.107)

and by the well-known matrix elements of U(2) or SU(2)
generators in terms of the pure spin states [4.102, 103]
(see also [4.107, 108]). The operator (4.107), referred
to as the Gould–Paldus operator [4.109], also plays
a key role in the determination of reduced density ma-
trices [4.110, 111], and has been recently exploited in
the multireference spin-adapted variant of the density
functional theory [4.109].
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Perturbation5. Perturbation Theory

Perturbation theory (PT) represents one of
the bridges that takes us from a simpler, exactly
solvable (unperturbed) problem to a corresponding
real (perturbed) problem by expressing its solutions
as a series expansion in a suitably chosen “small”
parameter ε in such a way that the problem
reduces to the unperturbed problem when ε= 0.
It originated in classical mechanics and eventually
developed into an important branch of applied
mathematics enabling physicists and engineers to
obtain approximate solutions of various systems of
differential equations [5.1–4]. For the problems of
atomic and molecular structure and dynamics, the
perturbed problem is usually given by the time-
independent or time-dependent Schrödinger
equation [5.5–8].
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5.1 Matrix Perturbation Theory (PT)
A prototype of a time-independent PT considers an
eigenvalue problem for the Hamiltonian H of the form

H = H0+V , V =
∞∑

i=1

εi Vi , (5.1)

acting in a (finite-dimensional) Hilbert space Vn , as-
suming that the spectral resolution of the unperturbed
operator H0 is known; i. e.,

H0 =
∑

i

ωi Pi , Pi Pj = δij Pj ,
∑

i

Pi = I ,

(5.2)

where ωi are distinct eigenvalues of H0, the Pi form
a complete orthonormal set of Hermitian idempotents

and I is the identity operator on Vn . The PT problem
for H can then be formulated within the Lie algebra A
(see Sect. 3.2) generated by H0 and V [5.9, 10].

5.1.1 Basic Concepts

Define the diagonal part 〈X〉 of a general operator X ∈A
by

〈X〉 =
∑

i

Pi X Pi , (5.3)

and recall that the adjoint action of X ∈ A,
adX :A→A, is defined by

ad X(Y )= [X,Y ] , (∀ Y ∈A) , (5.4)
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where the square bracket denotes the commutator. The
key problem of PT is the ‘inversion’ of this operation,
i. e., the solution of the equation [5.9–11]

adH0(X)≡ [H0, X] = Y . (5.5)

Assuming that 〈Y〉 = 0, then

X = R(Y )+〈A〉 , (5.6)

where A ∈A is arbitrary and

R(Y )=
∑

i �= j

∆−1
ij PiYPj , (5.7)

with∆ij = ωi −ω j , represents the solution of (5.5) with
the vanishing diagonal part 〈R(Y )〉 = 0.

5.1.2 Level-Shift Operators

To solve the PT problem for H , (5.1), we search for
a unitary level-shift transformation U [5.9, 10], U†U =
UU† = I ,

UHU† =U(H0+V )U† = H0+ E , (5.8)

where the level-shift operator E satisfies the condition

E = 〈E〉 . (5.9)

To guarantee the unitarity of U , we express it in the form

U = eG , G† =−G , 〈G〉 = 0 . (5.10)

Using the Haussdorff formula

eA B e−A =
∞∑

k=0

(k!)−1( adA)k B , (5.11)

and defining the operator

F = [H0,G] , (5.12)

we find from (5.8) that

E+ F = V + 1

2
[G, V + E]

+
∞∑

k=2

(k!)−1 Bk( adG)k(V − E) , (5.13)

where we used the identity [5.12]
( ∞∑

k=0

Bk

k! Xk

)( ∞∑

k=0

1

(k+1)! Xk

)

= I , (5.14)

and Bk designates the Bernoulli numbers [5.13]

B0 = 1 , B1 =−1

2
, B2 = 1

6
,

B2k+1 = 0 (k ≥ 1) ,

B4 = 1

30
, B6 = 1

42
, etc. (5.15)

5.1.3 General Formalism

Introducing the PT expansion for relevant operators,

X =
∞∑

i=1

εi Xi , X = E, F,G ; Fi = [H0,Gi ] ,
(5.16)

(5.13) leads to the following system of equations

E1+ F1 = V1 ,

E2+ F2 = V2+ 1

2
[G1, V1+ E1] ,

E3+ F3 = V3+ 1

2
[G1, V2+ E2]

+ 1

2
[G2, V1+ E1]

+ 1

12
[G1, [G1, V1− E1]] ,

etc. , (5.17)

which can be solved recursively for Ei and Gi by tak-
ing their diagonal part and applying operator R, (5.7),
since

〈Ei〉 = Ei , 〈Gi〉 = 〈Fi〉 = 0 ,

RFi = Gi , REi = 0 . (5.18)

We thus get

E1 = 〈V1〉 ,
E2 = 〈V2〉+ 1

2
〈[RV1, V1]〉 ,

E3 = 〈V3〉+〈[RV1, V2]〉
+ 1

6
〈[RV1, [RV1, 2V1+ E1]]〉 , etc. , (5.19)

and

G1 = RV1 ,

G2 = RV2+ 1

2
R[RV1, V1+ E1] , etc. (5.20)

Since

〈R(X)〉 = R〈X〉 = 0 , 〈R(X)Y〉 = −〈X R(Y )〉 ,
R(X〈Y〉)= R(X)〈Y〉, R(〈X〉Y)= 〈X〉R(Y ) ,

(5.21)
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these relationships can be transformed to a more con-
ventional form

E2 = 〈V2〉−〈V1 RV1〉 ,
E3 = 〈V3〉−〈V1 RV2〉−〈V2 RV1〉

+ 1

6
〈R(V1)R(V1)[2V1+〈V1〉]〉

− 1

3
〈R(V1)[2V1+〈V1〉]R(V1)〉

+ 1

6
〈[2V1+〈V1〉]R(V1)R(V1)〉 , etc.

(5.22)

However, in this way certain nonphysical terms arise that
exactly cancel when the commutator form is employed
(Sect. 5.3.7).

5.1.4 Nondegenerate Case

In the nondegenerate case, when Pi = |i〉〈i|, with |i〉
representing the eigenvector of H0 associated with the
eigenvalue ωi , the level-shift operator is diagonal and
its explicit PT expansion (as well as that for the cor-
responding eigenvectors) is easily obtained from (5.19)
and (5.20). Writing xij for the matrix element 〈i|X| j〉,

we get

(e1)ii = (v1)ii ,

(e2)ii = (v2)ii −
∑

j

′ (v1)ij(v1) ji

∆ ji
,

(e3)ii = (v3)ii −
∑

j

′ (v1)ij(v2) ji + (v2)ij(v1) ji

∆ ji

+
∑

j,k

′ (v1)ij(v1) jk(v1)ki

∆ ji∆ki

− (v1)ii
∑

j

′ (v1)ij(v1) ji

∆2
ji

,

etc., (5.23)

the prime on the summation symbols indicating that the
terms with the vanishing denominator are to be deleted.

Note that in contrast to PT expansions which directly
expand the level-shift transformation U, U = 1+εU1+
ε2U2+· · · , the above Lie algebraic formulation has the
advantage that U stays unitary in every order of PT. This
is particularly useful in spectroscopic applications, such
as line broadening.

5.2 Time-Independent Perturbation Theory

For stationary problems, particularly those arising in
atomic and molecular electronic structure studies relying
on ab initio model Hamiltonians, the PT of Sect. 5.1 can
be given a more explicit form which avoids a priori the
nonphysical, size inextensive terms [5.6–8, 14, 15].

5.2.1 General Formulation

We wish to find the eigenvalues and eigenvectors of the
full (perturbed) problem

K |Ψi〉 ≡ (K0+W )|Ψi〉 = ki |Ψi〉 , (5.24)

assuming we know those of the unperturbed problem

K0|Φi〉 = κi |Φi〉, 〈Φi |Φ j〉 = δij . (5.25)

For simplicity, we restrict ourselves to the nondegenerate
case (κi �= κ j if i �= j) and consider only the first order
perturbation [see (5.1), εV1 ≡ W, Vi = 0 for i ≥ 2].
Of course, K and K0 are Hermitian operators acting
in a Hilbert space which, in ab initio applications, is
finite-dimensional.

Using the intermediate normalization for |Ψi〉,
〈Ψi |Φi〉 = 1 , (5.26)

the asymmetric energy formula gives

ki = κi +〈Φi |W |Ψi〉 . (5.27)

The idempotent Hermitian projectors

Pi = |Φi〉〈Φi |, Qi = P⊥
i = 1− Pi =

∑

j(�=i)

|Φ j〉〈Φ j | ,

(5.28)

commute with K0, so that

(λ−K0)Qi |Ψi〉 = Qi(λ− ki +W )|Ψi〉 , (5.29)

λ being an arbitrary scalar (note that we write λI simply
as λ). Since the resolvent (λ−K0)

−1 of K0 is nonsingu-
lar on the orthogonal complement of the ith eigenspace,
we get

Qi |Ψi〉 = |Ψi〉− |Φi〉 = Ri(λ)(λ− ki +W )|Ψi〉 ,
(5.30)

Part
A

5
.2



104 Part A Mathematical Methods

where

Ri ≡ Ri(λ)= (λ−K0)
−1 Qi

= Qi(λ−K0)
−1 =

∑

j(�=i)

|Φ j〉〈Φ j |
λ−κ j

,

(5.31)

assuming (λ �= κ j). Iterating this relationship, we get
prototypes of the desired PT expansion for |Ψi〉,

|Ψi〉 =
∞∑

n=0

[Ri(λ− ki +W )]n|Φi〉 , (5.32)

and, from (5.27), for ki ,

ki = κi +
∞∑

n=0

〈Φi |W[Ri(λ− ki +W )]n|Φi〉 . (5.33)

5.2.2 Brillouin–Wigner
and Rayleigh–Schrödinger PT (RSPT)

So far, the parameter λ was arbitrary, as long as λ �=
κ j ( j �= i). The following two choices lead to the two
basic types of many-body perturbation theory (MBPT):

Brillouin–Wigner (BW) PT
Setting λ= ki gives

ki = κi +
∞∑

n=0

〈Φi |W
(

R(BW)
i W

)n |Φi〉 , (5.34)

|Ψi〉 =
∞∑

n=0

(
R(BW)

i W
)n |Φi〉 , (5.35)

where

R(BW)
i =

∑

j(�=i)

|Φ j〉〈Φ j |
ki −κ j

. (5.36)

Rayleigh–Schrödinger (RS) PT
Setting λ= κi gives

ki = κi +
∞∑

n=0

〈Φi |W
[

R(RS)
i (κi − ki +W )

]n|Φi〉 ,

(5.37)

|Ψi〉 =
∞∑

n=0

[
R(RS)

i (κi − ki +W )
]n |Φi〉 , (5.38)

where now

Ri ≡ R(RS)
i =

∑

j(�=i)

|Φ j〉〈Φ j |
κi −κ j

. (5.39)

The main distinction between these two PTs lies
in the fact that the BW form has the exact eigenval-
ues appearing in the denominators, and thus leads to
polynomial expressions for ki . Although these are not
difficult to solve numerically, since the eigenvalues are
separated, the resulting energies are never size exten-
sive and thus unusable for extended systems. They are
also unsuitable for finite systems when the particle num-
ber changes, as in various dissociation processes. From
now on, we thus investigate only the RSPT, which yields
a fully size-extensive theory.

5.2.3 Bracketing Theorem and RSPT

Expressions (5.37) and (5.38) are not explicit, since they
involve the exact eigenvalues ki on the right-hand side.
To achieve an order by order separation, set

ki ≡ k =
∞∑

j=0

k( j) , |Ψi〉 ≡ |Ψ 〉 =
∞∑

j=0

|Ψ( j)〉 ,

(5.40)

where the superscript ( j) indicates the jth-order in the
perturbation W . We only consider the eigenvalue expres-
sions, since the corresponding eigenvectors are easily
recovered from them by removing the bra state and
the first interaction W [see (5.37) and (5.38)]. We also
simplify the mean value notation writing for a general
operator X,

〈X〉 ≡ 〈Φi |X|Φi〉 . (5.41)

Substituting the first expansion (5.40) into (5.37) and
collecting the terms of the same order in W , we get

k(0) = κi ,

k(1) = 〈W〉 ,
k(2) = 〈WRW〉 ,
k(3) = 〈

W(RW )2
〉−〈W〉〈WR2W

〉
,

k(4) = 〈
W(RW )3

〉

−〈W〉(〈WR(RW )2
〉+ 〈
(WR)2 RW

〉)

+〈W〉2〈WR3W
〉−〈WRW〉〈WR2W

〉
, etc.

(5.42)

The general expression has the form

k(n) = 〈
W(RW )n−1〉+R(n) , (5.43)
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the first term on the right-hand side being referred to as
the principal nth-order term, while R(n) designates the
so-called renormalization terms that are obtained by the
bracketing theorem [5.14, 16] as follows:

1. Insert the bracketings 〈· · · 〉 around the W,WRW,
. . . ,WR · · · RW operator strings of the principal
term in all possible ways.

2. Bracketings involving the rightmost and/or the left-
most interaction vanish.

3. The sign of each bracketed term is given by (−1)nB ,
where nB is the number of bracketings.

4. Bracketings within bracketings are allowed, e.g.,
〈WR〈WR〈W〉RW〉RW〉 = 〈W〉〈WR2W

〉2.
5. The total number of bracketings (including the prin-

cipal term) is (2n−2)!/[n!(n−1)!].

5.3 Fermionic Many-Body Perturbation Theory (MBPT)

5.3.1 Time Independent Wick’s Theorem

The development of an explicit MBPT formalism is
greatly facilitated by the exploitation of the time-
independent version of Wick’s theorem. This version of
the theorem expresses an arbitrary product of creation
(a†µ) and annihilation (aµ) operators (see Chapt. 6)as
a normal product (relative to |Φ0〉) and as normal
products with all possible contractions of these oper-
ators [5.14, 15],

x1x2 · · · xk = N[x1x2 · · · xk]+ΣN[x1x2 · · · · · · xk] ,
(xi = a†µi

or xi = aµi ) (5.44)

where

a†µa†ν = aµaν = 0 ,

a†µaν = h(µ)δµν , aµa†ν = p(µ)δµν , (5.45)

and

h(µ)= 1 , p(µ)= 0 if |µ〉 is occupied in |Φ0〉
(hole states),

h(µ)= 0 , p(µ)= 1 if |µ〉 is unoccupied in |Φ0〉
(particle states) . (5.46)

The N-product with contractions is defined as a pro-
duct of individual contractions times the N-product of
uncontracted operators (defining N[∅] ≡ 1 for an empty
set) with the sign given by the parity of the permutation
reordering the operators into their final order.

Note that the Fermi vacuum mean value of an
N-product vanishes unless all operators are contracted.
Thus, 〈x1x2 · · · xk〉 is given by the sum over all possible
fully contracted terms (vacuum terms). Similar rules fol-
low for the expressions of the type (x1x2 · · · xk)|Φ〉.
Moreover, if some operators on the left-hand side
of (5.44) are already in the N-product form, all the terms
involving contractions between these operators vanish.

5.3.2 Normal Product Form of PT

Consider the eigenvalue problem for a general ab initio
or semi-empirical electronic Hamiltonian H with one-
and two-body components Z and V , namely,

H|Ψi〉 = Ei |Ψi〉 ,
H = Z+V =

∑

i

z(i)+
∑

i< j

v(i, j) , (5.47)

and a corresponding unperturbed problem

H0|Φi〉 = εi |Φi〉 , (5.48)

H0 = Z+U , 〈Φi |Φ j〉 = δij ,
with U representing some approximation to V . In the
case that U is also a one-electron operator, U =Σiu(i),
the unperturbed problem (5.48) is separable and reduces
to a one-electron problem,

(z+u)|µ〉 = ωµ|µ〉 , (5.49)

which is assumed to be solved. Choosing the or-
thonormal spin orbitals {|µ〉} as a basis of the second
quantization representation [Chapt. 6, (6.8)], the N-
electron solutions of (5.48) can be represented as

|Φi〉 = a†µ1
a†µ2

· · · a†µN
|0〉 , (5.50)

εi =
N∑

j=1

ωµ j , (5.51)

the state label i representing the occupied spin orbital
set {µ1, µ2, . . . , µN }, while the one- and two-body
operators take the form

X =
∑

µ,ν

〈µ|x|ν〉a†µaν, X = Z,U; x = z, u ,

(5.52)

V = 1

2

∑

µ,ν,σ,τ

〈µν|v|στ〉a†µa†νaτaσ . (5.53)
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Considering, for simplicity, a nondegenerate ground
state |Φ〉 ≡ |Φ0〉 = a†1a†2 · · · a†N |0〉, referred to as a Fermi
vacuum, we define the normal product form of these
operators relative to |Φ〉

X N ≡ X−〈X〉 =
∑

µ,ν

〈µ|x|ν〉N[
a†µaν

]
, (5.54a)

(X = Z,U,G; x = z, u, g)

VN ≡ V −〈V 〉−G N

= 1

2

∑

µ,ν,σ,τ

〈µν|v|στ〉N[
a†µa†νaτaσ

]

= 1

4

∑

µ,ν,σ,τ

〈µν|v|στ〉A N
[
a†µa†νaτaσ

]
, (5.54b)

where

〈µ|g|ν〉 =
N∑

σ=1

〈µσ |v|νσ〉A , (5.55)

〈µν|v|στ〉A = 〈µν|v|στ〉−〈µν|v|τσ〉 , (5.56)

〈X〉 = 〈Φ|X|Φ〉, and N[· · · ] designates the nor-
mal product relative to |Φ〉 [5.14, 15]. (Recall
that N[x1x2 · · · xk] = ±b†µ1 · · · b†µi bµi+1 · · · bµk , where
xi = bµi or b†µi are the annihilation and creation op-
erators of the particle-hole formalism relative to |Φ〉,
i. e., bµ = a†µ for µ ≤ N and bµ = aµ for µ > N , the
sign being determined by the parity of the permutation
p : j �→ µ j .)

Defining

K = H−〈H〉, K0 = H0−〈H0〉 = H0− ε0 ,

(5.57)

we can return to (5.24) and (5.25), where now

ki = Ei −〈H〉, κi = εi − ε0,

ε0 =
N∑

µ=1

ωµ , (5.58)

and

W = K −K0 = V −U −〈V −U〉 . (5.59)

With this choice, 〈W〉 = 0, so that for the reference
state |Φ〉, (5.42) simplify to (we drop the subscript 0
for simplicity)

k(0) = 0, k(1) = 0 ,

k(2) = 〈WRW〉 ,
k(3) = 〈WRWRW〉 ,
k(4) = 〈

W(RW )3
〉−〈WRW〉〈WR2W

〉
, etc.

(5.60)

Note that W is also in the N-product form,

W = W1+W2 , W1 = G N −UN , W2 = VN .

(5.61)

5.3.3 Møller–Plesset
and Epstein–Nesbet PT

Choosing U = G we have

H0 = Z+G ≡ F , (5.62)

so that (5.49) represent Hartree–Fock (HF) equa-
tions, and ωµ and |µ〉 the canonical HF orbit-
al energies and spin orbitals, respectively. Since
〈H〉 =∑N

µ=1

(〈µ|z|µ〉+ 1
2 〈µ|g|µ〉

)
is the HF energy,

k = k0 gives directly the ground state correlation en-
ergy. (Note, however, that the N-product form of PT
eliminates the first-order contribution k(1) = 〈W〉 in any
basis, even when F is not diagonal.) With this choice,
W1 = 0, W = VN , and the denominators in (5.39) are
given by the differences of HF orbital energies

κ0−κ j =
λ∑

i=1

(ωµi −ωνi )≡∆〈{µi}; {ν j}〉 , (5.63)

assuming that |Φ j〉 is a λ-times excited configu-
ration relative to |Φ〉 obtained through excitations
µi → νi , i = 1, . . . , λ. Using the Slater rules (or the
second quantization algebra), we can express the
second-order contribution in terms of the two-electron
integrals and HF orbital energies as

k(2) = 1

2

∑

a,b,r,s

〈ab|v|rs〉(〈rs|v|ab〉−〈rs|v|ba〉)
ωa+ωb−ωr −ωs

,

(5.64)

where the summations over a, b (r, s) extend over all oc-
cupied (unoccupied) spin orbitals in |Φ〉. Obtaining the
corresponding higher-order corrections becomes more
and more laborious and, beginning with the fourth-order,
important cancellations arise between the principal and
renormalization terms, even when the N-product form
is employed. These will be addressed in Sect. 5.3.7.

The above outlined PT with H0 given by the HF op-
erator is often referred to as the Møller–Plesset PT [5.17]
and, when truncated to the n-th order, is designated
by the acronym MPn, n = 2, 3, . . . . In this version,
the two-electron integrals enter the denominators only
through the HF orbital energies. In an alternative, less
often employed variant, referred to as the Epstein–
Nesbet PT [5.18, 19], the whole diagonal part of H is
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a) b) c) d)

µ ν µ ν µ σ

ν τ

µ σ

ν τ

Fig. 5.1a–d Diagrammatic representation of one- and two-
electron operators

used as the unperturbed Hamiltonian, i. e.,

H0 =
∑

i

〈Φi |H|Φi〉Pi . (5.65)

With this choice, the denominators are given as dif-
ferences of the diagonal elements of the configuration
interaction matrix.

5.3.4 Diagrammatic MBPT

To facilitate the evaluation of higher order terms,
and especially to derive the general properties and
characteristics of the MBPT, it is useful to employ a dia-
grammatic representation [5.6–8, 14, 15]. Representing
all the operators in (5.42) and (5.43) or (5.60) in the
second quantized form, we have to deal with the refer-
ence state (i. e., the Fermi vacuum) mean values of the
strings of annihilation and creation operators (or with
these strings acting on the reference in the case of a wave
function). This is efficiently done using Wick’s theorem
and its diagrammatic representation via a special form of
Feynman diagrams. In this representation we associate
with various operators suitable vertices with incident
oriented lines representing the creation (outgoing lines)
and annihilation (ingoing lines) operators that are in-
volved in their second quantization form. A few typical
diagrams representing operators (−U), W1 and V are
shown in Fig. 5.1a, Fig. 5.1b and Fig. 5.1c, Fig. 5.1d, re-
spectively. Using the N-product form of PT with HF
orbitals (Sect. 5.3.3), we only need the two-electron
operator V or VN , which can be represented using ei-
ther non-antisymmetrized vertices (Fig. 5.1c), leading
to the Goldstone diagrams [5.20], or antisymmetrized
vertices (Fig. 5.1d), associated with antisymmetrized
two-electron integrals (5.56) and yielding the Hugen-
holtz diagrams [5.21].

5.3.5 Vacuum and Wave Function Diagrams

Applying Wick’s theorem to the strings of operators in-
volved, we represent the individual contractions, (5.45),
by joining corresponding oriented lines. To obtain a non-

a) b) c)
r

a

b

s

r

ab

s

r
s

a

b

Fig. 5.2a–c The second-order Goldstone (a), (b) and
Hugenholtz (c) diagrams

vanishing contribution, only contractions preserving the
orientation need be considered [cf. (5.45)]. The resulting
internal lines have either the left–right orientation (hole
lines) or the right–left one (particle lines). Only fully
contracted terms, represented by the so-called vacuum
diagrams (having only internal lines), can contribute
to the energy, while those representing wave function
contributions have uncontracted or free lines extending
to the left. When the operators involved are in the N-
product form, no contractions of oriented lines issuing
from the same vertex are allowed. The projection-like
operators R, (5.39), or their powers, lead to the denomi-
nators, (5.63), given by the difference of hole and particle
orbital energies associated with, respectively, hole and
particle lines passing through the interval separating the
corresponding two neighboring vertices. Clearly, there
must always be at least one pair of such lines lest the de-
nominator vanish. Thus, for example, the second-order
contribution 〈WRW〉 is represented either by the two
Goldstone diagrams [5.20] (Fig. 5.2a,b) or by the single
Hugenholtz diagram [5.21] (Fig. 5.2c). The rules for the
energy (vacuum) diagram evaluation are as follows:

1. Associate appropriate matrix elements with all ver-
tices and form their product. The outgoing (ingoing)
lines on each vertex define the bra (ket) states of
a given matrix element, and for the Goldstone dia-
grams, the oriented lines attached to the same node
are associated with the same electron number, (e.g.,
for the leftmost vertex in diagram (a) of Fig. 5.2 we
have 〈ab|v̂|rs〉 ≡ 〈a(1)b(2)|v|r(1)s(2)〉).

2. Associate a denominator, (5.63), or its appropri-
ate power, with every neighboring pair of vertices
(and, for the wave function diagrams, also with the
free lines extending to the left of the leftmost ver-
tex; with each pair of such free lines associate also
the corresponding pair of particle creation and hole
annihilation operators).

3. Sum over all hole and particle labels.
4. Multiply each diagram contribution by the weight

factor given by the reciprocal value of the order of
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Fig. 5.3 Hugenholtz diagrams for the third-order energy
contribution

the group of automorphisms of the diagram (stripped
of summation labels) and by the sign (−1)h+, where
h designates the number of internal hole lines and
 gives the number of closed loops of oriented lines
(for Hugenholtz diagrams, use any of its Goldstone
representatives to determine the correct phase).

Applying these rules to diagrams (a) and (b)
of Fig. 5.2 we clearly recover (5.64) or, using the Hugen-
holtz diagram of Fig. 5.2, the equivalent expression

k(2) = 1

4

∑

a,b,r,s

〈ab|v|rs〉A〈rs|v|ab〉A∆
−1(a, b; r, s) .

(5.66)

The possible third-order Hugenholtz diagrams are
shown in Fig. 5.3 with the central vertex involving
particle–particle, hole–hole, and particle–hole interac-
tion [5.14, 15].

5.3.6 Hartree–Fock Diagrams

In the general case (non-HF orbitals and/or not normal
product form of PT), the one-electron terms, as well
as the contractions between operators associated with
the same vertex, can occur (the latter are always the
hole lines). Representing the W1 and (−U) operators as
shown in Fig. 5.1, the one-body perturbation W1 repre-
sents in fact the three diagrams as shown in Fig. 5.4. The
second-order contribution of this type is then represented
by the diagrams in Fig. 5.5, which in fact represents nine
diagrams which result when each W1 vertex is replaced
by three vertices as shown in Fig. 5.4.

Using HF orbitals, all these terms mutually cancel
out as seen above. For this reason, the diagrams involv-
ing contractions of lines issuing from the same vertex

a) b) c) d)

µ ν µ ν µ ν

= + +

a

a
ν

µ

Fig. 5.4a–d Schematic representation of W1 = G N −UN

r

a

Fig. 5.5 The second-order one-particle contribution

are referred to as Hartree–Fock diagrams. Note, how-
ever, that even when not employing the canonical HF
orbitals, it is convenient to introduce W1 vertices of the
normal product form PT and replace all nine HF-type
diagrams by a single diagram of Fig. 5.5 (clearly, this
feature provides even greater efficiency in higher orders
of PT).

5.3.7 Linked and Connected Cluster
Theorems

Using the N-product form of PT, the first nonvan-
ishing renormalization term occurs in the fourth-order
[cf. (5.60)]. For a system consisting of N noninteract-
ing species, the energy given by this nonphysical term is
proportional to N2, and thus violates the size extensivity
of the theory. It was first shown by Brueckner [5.22] that
in the fourth-order these terms are in fact exactly can-
celed by the corresponding contributions originating in
the principal term. A general proof of this cancellation
in an arbitrary order was then given by Goldstone [5.20]
using the time-dependent PT formalism (Sect. 5.4).

To comprehend this cancellation, consider the
fourth-order energy contribution arising from the so-
called unlinked diagrams (no such contribution can arise
in the second- or the third-order) shown in Fig. 5.6.
An unlinked diagram is defined as a diagram contain-
ing a disconnected vacuum diagram (for the energy
diagrams, the terms unlinked and disconnected are
synonymous). The numerators associated with both
diagrams being identical, we only consider the denomi-
nators. Designating the denominator associated with the

A

B

Fig. 5.6 The fourth-order unlinked diagrams
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top and the bottom part by A and B, respectively, we
find for the overall contribution

1

B
· 1

A+ B
· 1

B
+ 1

A
· 1

A+ B
· 1

B

=
(

1

B
+ 1

A

)
1

(A+ B)B
= 1

AB2 . (5.67)

Thus, the contribution from these terms exactly cancels
that from the renormalization term 〈WRW〉〈WR2W

〉
.

Generalizing (5.67), we obtain the factorization
lemma of Frantz and Mills [5.23], which implies the
cancellation of renormalization terms by the unlinked
terms originating from the principal term. This result
holds for the energy as well as for the wave function
contributions in every order of PT, as ascertained by the
linked cluster theorem, which states that

∆E = k =
∞∑

n=0

〈Φ|W |Ψ(n)〉 =
∞∑

n=0

〈W(RW )n〉L ,
(5.68)

|Ψ 〉 =
∞∑

n=0

|Ψ(n)〉 =
∞∑

n=0

{
(RW )n|Φ〉}L , (5.69)

where the subscript L indicates that only linked dia-
grams (or terms) are to be considered. This enables
us to obtain general, explicit expressions for the nth-
order PT contributions by first constructing all possible
linked diagrams involving n vertices and by con-
verting them into the explicit algebraic expressions
using the rules of Sect. 5.3.5. Note that linked en-
ergy diagrams are always connected, but the linked
wave function diagrams are either connected or dis-
connected, each disconnected component possessing at
least one pair of particle–hole free lines extending to the
left.

To reveal a deeper structure of the result (5.69), de-
fine the cluster operator T that generates all connected
wave function diagrams,

T |Φ〉 =
∞∑

n=1

{
(RW )n|Φ〉}C , (5.70)

the subscript C indicating that only contributions from
connected diagrams are to be included. Since the
general component with r disconnected parts can be
shown to be represented by the term (r!)−1Tr |Φ〉, the
general structure of the exact wave function |Ψ 〉 is
given by the connected cluster theorem, which states
that

|Ψ 〉 = eT |Φ〉 . (5.71)

In other words, the wave operator W which trans-
forms the unperturbed independent particle model wave
function |Φ〉 into the exact one according to

|Ψ 〉 =W |Φ〉 , (5.72)

is given by the exponential of the cluster operator T ,

W = eT , (5.73)

which in turn is given by the connected wave function
diagrams. This is in fact the basis of the coupled cluster
methods [5.15, 24–28] (Sect. 5.3.8).

The contributions to T may be further classified by
their excitation rank i,

T =
N∑

i=1

Ti , (5.74)

where Ti designates connected diagrams with i pairs
of free particle–hole lines, producing i-times excited
components of |Ψ 〉 when acting on |Φ〉.

5.3.8 Coupled Cluster Theory

Summing all HF diagrams (Sect. 5.3.6) is equivalent to
solving the HF equations. Depending on the average
electron density of the system, it may be essential to
sum certain types of PT diagrams to infinite order at
the post-HF level. A frequently used approach that is
capable of recovering a large part of the electronic cor-
relation energy is based on the connected cluster theorem
(Sect. 5.3.7), referred to in this context as the exponential
cluster Ansatz for the wave operator. Using this Ansatz,
one derives a system of energy-independent nonlinear
coupled cluster (CC) equations [5.15, 26–28] determin-
ing the cluster amplitudes of T . These CC equations
can be regarded as recurrence relations generating the
MBPT series [5.15], so that by solving these equations
one in fact implicitly generates all the MBPT diagrams
and sums them to infinite order. Since the solution of
the full CC equations is equivalent to the exact solution
of the Schrödinger equation, we must – in all practical
applications – introduce a suitable truncation scheme,
which implies that only diagrams of certain types are
summed.

Generally, using the cluster expansion (5.71) in the
N-product form of the Schrödinger equation,

HN|Ψ 〉 ≡ (H−〈H〉)|Ψ 〉 =∆E|Ψ 〉 ,
∆E = E− E0 , (5.75)

Part
A

5
.3



110 Part A Mathematical Methods

premultiplying with the inverse of the wave operator,
and using the Hausdorff formula (5.11) yields

e−T HN eT |Φ〉 =
∞∑

n=0

[ad(−T )]n HN

n! =∆E|Φ〉 .
(5.76)

In fact, this expansion terminates, so that using (5.74)
and projecting onto |Φ〉we obtain the energy expression

∆E = 〈HNT2〉+ 1

2

〈
HNT 2

1

〉
, (5.77)

while the projection onto the manifold of excited states
{|Φi〉} relative to |Φ〉 ≡ |Φ0〉 gives the system of CC
equations

〈Φi |HN+[HN, T ]+ 1

2
[[HN, T ], T ]+ · · · |Φ〉 = 0 .

(5.78)

Approximating, e.g., T by the most important pair clus-
ter component T ≈ T2 gives the so-called CCD (coupled
clusters with doubles) approximation

〈
Φ
(2)
i

∣∣HN+[HN, T2]+ 1

2
[[HN, T2], T2]|Φ〉 = 0 ,

(5.79)

the superscript (2) indicating pair excitations relative
to |Φ〉.

Equivalently, (5.77) and (5.78) can be written in the
form

∆E = 〈
HN eT 〉

C , (5.80)
〈
Φi
∣∣(HN eT )

C

∣∣Φ
〉= 0 , (5.81)

the subscript C again indicating that only connected di-
agrams are to be considered. The general form of CC
equations is

ai +
∑

j

bij t j +
∑

j≤k

cijkt j tk +· · · = 0 , (5.82)

where ai = 〈Φi |HN|Φ0〉, bij = 〈Φi |HN|Φ j〉C, cijk =
〈Φi |HN|Φ j ⊗Φk〉C, etc. Writing the diagonal linear
term bii in the form

bii =∆i +b′ii , (5.83)

this system can be solved iteratively by rewriting it in
the form

t(n+1)
i =∆−1

i

(
ai +b′ii t

(n)
i +

∑

j

′bij t
(n)
j

+
∑

j≤k

cijkt(n)j t(n)k +· · ·
)
. (5.84)

Starting with the zeroth approximation t(0)i = 0, the first
iteration is

t(1)i =∆−1
i ai , (5.85)

which yields the second-order PT energy when used
in (5.77). Clearly, the successive iterations generate
higher and higher orders of the PT. At any truncation
level, a size extensive result is obtained.

The CC methods belong to the most accurate
and often used tools in computations of molecu-
lar electronic structure and several general-purpose
codes are available for this purpose (for reviews
see [5.29–32]). The standard approach truncates the
cluster operator (5.74) at the singly (S) and doubly
(D) excited level (the CCSD method [5.33]) and
is often supplemented by a perturbative account
of the triply-excited (T) cluster components [the
CCSD(T) method] for greater accuracy [5.34]. To
avoid the breakdown of the latter method in quasi-
degenerate situations, one can employ one of the
renormalized versions of CCSD(T) [5.35]. The CC
ansatz (5.71) has also been exploited in the context
of the equation-of-motion (EOM) and the linear-
response formalisms, enabling the computation of the
excitation energies and of properties other than the en-
ergy (dipole and quadrupole moments, polarizabilities,
etc., [5.29–32].

At this stage it is important to recall that the
above described MBPT and CC approaches pertain
to nondegenerate, lowest-lying closed-shell states of
a given symmetry species. Although the CC meth-
ods are often used even for open-shell states by
relying on the unrestricted HF (UHF) reference [of
the different-orbitals-for-different-spins (DODS) type],
a proper description of such states requires a multi-
reference (MR) generalization based on the effective
Hamiltonian formalism [5.6, 31, 32, 36–38]. Unfor-
tunately, such a generalization is not unambiguous.
The two existing formulations, the so-called valence
universal [5.6, 37] and state universal [5.38] meth-
ods, are computationally demanding and often plagued
with the intruder state and other problems [5.15, 36].
For these reasons, no general-purpose codes have
yet been developed and very few actual applica-
tions have been carried out [5.31, 32] (see, however,
the recently formulated SU CC approach for gen-
eral model spaces [5.39, 40]). Nonetheless, the MR
CC formalism proved to be very useful in the for-
mulation of the so-called state selective or state
specific approaches (e.g., the reduced MR CCSD
method [5.41–46]).

Most recently, the CC approach has been used to
handle bosonic-type problems of the vibrational struc-
ture in molecular spectra and, generally, multimode
dynamics [5.47].
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5.4 Time-Dependent Perturbation Theory

5.4.1 Evolution Operator PT Expansion

By introducing the evolution operator U(t, t0)

|Ψ(t)〉 =U(t, t0)|Ψ(t0)〉 , (5.86)

time-dependent Schrödinger equation

i�
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉 (5.87)

becomes

i�
∂

∂t
U(t, t0)= HU(t, t0) . (5.88)

Clearly,

U(t0, t0)= 1 ,

U(t, t0)=U(t, t′)U(t′, t0) ,
U(t, t0)

−1 =U(t0, t)=U†(t, t0) . (5.89)

If the Hamiltonian is time independent then

U(t, t0)= exp
[
− i

�
H(t− t0)

]
. (5.90)

In the interaction picture (subscript I)

|Ψ(t)〉I = exp
( i

�
H0t

)
|Ψ(t)〉 , (5.91)

where now

H = H0+V , (5.92)

the Schrödinger equation becomes

i�
∂

∂t
|Ψ(t)〉I = V(t)I|Ψ(t)〉I , (5.93)

known as Tomonaga-Schwinger equation [5.48]. Analo-
gously, the evolution operator in this picture (we drop
the subscript I from now on) satisfies

i�
∂

∂t
U(t, t0)= V(t)U(t, t0) , (5.94)

with the initial condition U(t0, t0)= 1. This differential
equation is equivalent to an integral equation

U(t, t0)= 1− i

�

t∫

t0

V(t1)U(t1, t0)dt1 . (5.95)

Iterating we get [5.49, 50]

U(t, t0)

=
∞∑

n=0

(
− i

�

)n

×

t∫

t0

dt1

t1∫

t0

dt2 · · ·
tn−1∫

t0

dtn V(t1)V(t2) · · · V(tn)

=
∞∑

n=0

(−i/�)n

n!

×

t∫

t0

dt1 · · ·
t∫

t0

dtnT [V(t1) · · · V(tn)] , (5.96)

where T [· · · ] designates the time-ordering or chrono-
logical operator.

5.4.2 Gell–Mann and Low Formula

For a time-independent perturbation, one introduces the
so-called adiabatic switching by writing

Hα(t)= H0+λe−α|t|V, α > 0 (5.97)

so that Hα(t →±∞)= H0 and Hα(t → 0)= H =
H0+λV . Then

|Ψ(t)〉I =Uα(t,−∞|λ)|Φ0〉 , (5.98)

with Uα(t,−∞|λ) obtained with Vα(t)= λe−α|t|V (all
in the interaction picture). The desired energy is then
given by the Gell–Mann and Low formula [5.51]

∆E = lim
α→0+ i�αλ

∂

∂λ
ln〈Φ0|Uα(0,−∞|λ)|Φ0〉 ,

(5.99a)

or

∆E = 1

2
lim
α→0+ i�αλ

∂

∂λ
ln〈Φ0|Uα(∞,−∞|λ)|Φ0〉 ,

(5.99b)

which result from the asymmetric energy formula (5.27).
One can similarly obtain the perturbation expansion for
the one- or two-particle Green functions, e.g.,

Gµν
(
t, t′

)= lim
α→0+

〈
T
{
aµ(t)a

†
ν(t′)Uα(∞,−∞|λ)}〉

〈Uα(∞,−∞|λ)〉 ,

(5.100)
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with the operators in the interaction representation and
the expectation values in the noninteracting ground
state |Φ0〉. Analogous expressions result for G(rt, r ′t′),
etc., when the creation and annihilation operators are
replaced by the corresponding field operators.

5.4.3 Potential Scattering and Quantum
Dynamics

The Schrödinger equation for a free particle of energy
E = �

2k2/2m, moving in the potential V(r),
(∇2+ k2)ψ(k, r)= v(r)ψ(k, r) ,

v(r)= (
2m/�2)V(r) , (5.101)

has the formal solution

ψ(k, r)=Φ(k, r)+
∫

G0
(
k, r, r ′

)
v
(
r ′
)
ψ
(
k, r ′

)
dr ′ ,

(5.102)

whereΦ(k, r) is a solution of the homogeneous equation
[v(r)≡ 0] and G0(k, r, r ′) is a classical Green function

(∇2+ k2)G0
(
k, r, r ′

)= δ(r−r ′
)
. (5.103)

For an in-going plane wave Φ(k, r) ≡ Φki (r) =
(2π)3/2 exp(iki · r) with the initial wave vector ki
and appropriate asymptotic boundary conditions
(outgoing spherical wave with positive phase vel-
ocity), when G0(k, r, r ′)≡ G(+)0 (|r− r ′|)=−(4π|r−
r ′|)−1 eik|r−r ′|, (5.102) is referred to as the Lippmann–
Schwinger equation [5.52]. It can be equivalently
transformed into the integral equation for the Green
function

G(+)
(
r, r ′

)= G(+)0

(
r, r ′

)+
∫

G(+)0

(
r, r ′′

)
v
(
r ′′
)

× G(+)
(
r ′′, r ′

)
dr ′′ , (5.104)

representing a special case of the Dyson equation.
In the time-dependent case, considering the scatter-

ing of a spinless massive particle by a time-dependent
potential V(r, t), we get similarly

ψ(r, t)=
Φ(r, t)+

∫
G0

(
r, r ′; t, t′

)
V
(
r ′, t′

)
ψ
(
r ′, t′

)
dr ′ dt′ ,

(5.105)

where the zero-order time-dependent Green function
now satisfies the equation

(
i�
∂

∂t
−H0

)
G0

(
r, r ′; t, t′

)= δ(r−r ′
)
δ
(
t− t′

)
.

(5.106)

Again, for causal propagation one chooses the time-
retarded or causal Green function or propagator
G(+)0 (r, r ′; t, t′).

5.4.4 Born Series

Iteration of (5.105) gives the Born sequence

ψ0(r, t)=Φ(r, t) ,
ψ1(r, t)=Φ(r, t)+

∫
G(+)0

(
r, r ′; t, t′

)

× V
(
r ′, t′

)
Φ
(
r ′, t′

)
dr ′ dt′ , (5.107a)

ψ2(r, t)=Φ(r, t)+
∫

G(+)0

(
r, r ′; t, t′

)

× V
(
r ′, t′

)
ψ1

(
r ′, t′

)
dr ′ dt′ , (5.107b)

and, generally

ψn(r, t)=Φ(r, t)+
∫

G(+)0

(
r, r ′; t, t′

)

× V
(
r ′, t′

)
ψn−1

(
r ′, t′

)
dr ′ dt′ . (5.108)

Summing individual contributions gives the Born series
for ψ(r, t)≡ ψ(+)(r, t),

ψ(r, t)=
∞∑

n=0

χn(r, t) , (5.109)

where

χ0(r, t)=Φ(r, t) ,
χn(r, t)=

∫
Gn

(
r, r ′; t, t′

)
Φ
(
r ′, t′

)
dr ′ dt′ ,

(5.110)

with

Gn
(
r, r ′; t, t′

)=
∫

G1
(
r, r ′′; t, t′′

)

×Gn−1
(
r ′′, r ′; t′′, t′

)
dr ′′ dt′′ , (n > 1)

G1
(
r, r ′; t, t′

)= G(+)0

(
r, r ′; t, t′

)
V
(
r ′, t′

)
. (5.111)

In a similar way we obtain the Born series for the
scattering amplitudes or transition matrix elements.

5.4.5 Variation of Constants Method

An alternative way of formulating the time-dependent
PT is the method of variation of the constants [5.53,54].
Start again with the time-dependent Schrödinger equa-
tion (5.87) with H = H0+V , and assume that H0 is
time-independent, while V is a time-dependent pertur-
bation. Designating the eigenvalues and eigenstates of

Part
A

5
.4



Perturbation Theory References 113

H0 by εi and |Φi〉, respectively [cf. (5.48)], the general
solution of the unperturbed time-dependent Schrödinger
equation

i�
∂

∂t
|Ψ0〉 = H0|Ψ0〉 (5.112)

has the form

|Ψ0〉 =
∑

j

c j |Φ j〉 exp
(
− i

�
ε j t

)
, (5.113)

with c j representing arbitrary constants, and the sum
indicating both the summation over the discrete part and
the integration over the continuum part of the spectrum
of H0.

In the spirit of the general variation of constants
procedure, write the unknown perturbed wave function
|Ψ(t)〉, (5.87), in the form

|Ψ(t)〉 =
∑

j

C j(t)|Φ j〉 exp
(
− i

�
ε j t

)
, (5.114)

where the C j(t) are now functions of time. Substitut-
ing this Ansatz into the time-dependent Schrödinger
equation (5.87) gives

Ċ j(t)= (i�)−1
∑

k

Ck(t)Vjk exp[(i/�)∆ jkt] ,
(5.115)

where

∆ jk = ε j − εk , Vjk = 〈Φ j |V |Φk〉 . (5.116)

Introducing again the ‘small’ parameter λ by writing
the Hamiltonian H in the form

H = H0+λV(t) , (5.117)

and expanding the ‘coefficients’ C j(t) in powers of λ,

C j ≡ C j(t)=
∞∑

k=0

C(k)j (t)λ
k , (5.118)

gives the system of first order differential equations

Ċ(n+1)
j = (i�)−1

∑

k

C(n)k Vjk exp
[
(i/�)∆ jkt

]
,

n = 0, 1, 2, . . . , (5.119)

with the initial condition Ċ(0)j = 0, which implies that
C(0)j are time independent, so that C(0)j = c j , obtain-
ing (5.113) in the zeroth order. The system (5.119) can
be integrated to any prescribed order. For example, if the
system is initially in a stationary state |Φi〉, then set

C(0)j =
⎧
⎨

⎩
δ ji for discrete states ,

δ( j− i) for continuous states ,

(5.120)

so that

C(1)j(i)(t)= (i�)−1

t∫

−∞
Vji exp

[
(i/�)∆ ji t

′] dt′ ,

(5.121)

assuming C(1)j(i)(−∞)= 0. Clearly, |C(1)j(i)(t)|2 gives the
first order transition probability for the transition from
the initial state |Φi〉 to a particular state |Φ j〉. These
in turn will yield the first order differential cross sec-
tions [5.55].
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Second Quant6. Second Quantization

In second quantization, the characteristic
properties of eigenfunctions are transferred
to operators. This approach has the advan-
tage of treating the atomic shell as the basic
unit, as opposed to the electron configura-
tion. The creation and annihilation operators
allow one to move from configuration to con-
figuration, exposing an intrinsic shell structure.
The introduction of coefficients of fractional
parentage (cfp) then allows the calculation
of the matrix elements of an operator in one
configuration to be expressed in terms of
those of the same operator in another con-
figuration; hence the matrix elements of an
operator in all configurations may be de-
termined from the knowledge of its matrix
elements in but one. This can be viewed as
an extension of the usual Wigner-Eckart the-
orem. The basic concepts of quasispin and
quasiparticle are also introduced within this
context.
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6.1 Basic Properties

6.1.1 Definitions

The creation operator a†ξ creates the quantum state ξ .
The annihilation (or destruction) operator aη annihilates
the quantum state η. The vacuum (or reference) state |0〉
satisfies the equation

aη|0〉 = 0 . (6.1)

Bosons satisfy the commutation relations
[
a†ξ , a

†
η

]= 0 , (6.2)

[aξ , aη] = 0 , (6.3)
[
aξ , a

†
η

]= δ(ξ, η) , (6.4)

where [A, B] ≡ AB− BA. Fermions satisfy the anti-
commutation relations

[
a†ξ , a

†
η

]
+ = 0 , (6.5)

[aξ , aη]+ = 0 , (6.6)
[
aξ , a

†
η

]
+ = δ(ξ, η) , (6.7)

where [A, B]+ ≡ AB+ BA.

6.1.2 Representation of States

For an electron in an atom, characterized by the
quantum number quartet (n  ms m), the identification
ξ ≡ (n  ms m) for fermions is made. For normalized
Slater determinants {αβ . . . ν} characterized by the elec-
tron states α, β, . . . , ν, the equivalences

a†αa†β . . . a
†
ν |0〉 ≡ {αβ . . . ν} , (6.8)

〈0|aν . . . aβaα ≡ {αβ . . . ν}∗ (6.9)

are valid, where the asterisk denotes the complex conju-
gate.
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For a normalized boson state { · · · } in which the label
ξ appears Nξ times, the additional factor

[Nα!Nβ! . . . Nν!]− 1
2 (6.10)

must be included on the left-hand sides of the equiva-
lences (6.8) and (6.9).

6.1.3 Representation of Operators

For an operator F, consisting of the sum of operators fi
acting on the single electron i,

F ≡
∑

ξ,η

a†ξ 〈ξ| f |η〉aη . (6.11)

For an operator G, consisting of the sum of operators gij
acting on the pair of electrons i and j,

G ≡ 1

2

∑

ξ,η,ζ,λ

a†ξa
†
η〈ξ1η2|g12|ζ1λ2〉aλaζ . (6.12)

For an N-particle system |Ψ 〉 ,
∑

ξ

a†ξaξ |Ψ 〉 = N|Ψ 〉 . (6.13)

The representations of single-particle and two-particle
operators for bosons are identical to those given above
for fermions [6.1].

6.2 Tensors

6.2.1 Construction

If the description ξ for a single fermion or boson state
includes an angular momentum quantum number t and
the corresponding magnetic quantum number mt , then
the 2t + 1 components of a creation operator a†σ , where
σ ≡ (t,mt) and −t ≤ mt ≤ t, satisfy the commutation
relations of Racah [6.2] for an irreducible spherical ten-
sor of rank t with respect to the total angular momentum
T, given by

T =
∑

a†ξ 〈ξ|t|η〉aη . (6.14)

That is, with the phase conventions of Condon and
Shortley [6.3],

[
Tz, a

†
σ

]
= mta

†
σ , (6.15)

[
Tx ± iTy, a

†
σ

]
= [t(t+1)−mt(mt ±1)]

1
2 a†τ ,

(6.16)

where τ ≡ (t,mt ±1).
A spherical tensor a constructed from annihilation

operators possesses the components ãσ , which satisfy

ãσ = (−1)paζ , (6.17)

with p = t−mt and ζ ≡ (t,−mt).
The 4 + 2 components of the creation operator for

an electron in the atomic  shell form a double tensor of
rank 1

2 with respect to the total spin S, and rank  with
respect to the total angular momentum L.

6.2.2 Coupled Forms

Tensors formed from annihilation and creation operators
can be coupled by means of the usual rules of angular
momentum theory [6.4]. The double tensor defined for
electrons in the  shell by

W(κk) =−(a†a)(κk) , (6.18)

possesses a rank κ with respect to S, and rank k with
respect to L. Its reduced matrix element, defined here as
in (5.4.1) of Edmonds [6.4], for a single electron in both
the spin and orbital spaces, is given by

(
s  ||W (κk) || s  )= [(2κ+1)(2k+1)] 1

2 . (6.19)

The connections to tensors whose matrix elements have
been tabulated [6.5, 6] are

W(0k) = [(2k+1)/2] 1
2 U(k) , (6.20)

W(1k) = [2(2k+1)] 1
2 V(k1) . (6.21)

For terms with common spin S, say ψ and ψ′,
(
ψ||W (0k)||ψ′)=
[(2S+1)(2k+1)/2] 1

2
(
ψ||U(k)||ψ′) . (6.22)

This result is obtained because the ranks assigned to the
tensors imply that W(0k) is to be reduced with respect
to both the spin S and the orbit L, while U(k) is to be
reduced only with respect to L.

Part
A

6
.2



Second Quantization 6.3 Quasispin 117

The following relations hold for electrons with az-
imuthal quantum numbers  [6.7]:

S= [(2+1)/2] 1
2 W(10) , (6.23)

L = [2(+1)(2+1)/3] 1
2 W(01) ,

(6.24)

∑

i

(
siC

(2)
i

)(1) =−
(
(+1)(2+1)

10(2−1)(2+3)

) 1
2

W(12)1 ,

(6.25)
∑

i

(si ·�i)=−[(+1)(2+1)/2]W(11)0 ,

(6.26)

where the tensor Ck of Racah [6.2] is related to the
spherical harmonics by

C(k)q = [4π/(2k+1)] 1
2 Ykq , (6.27)

and where the tensors of the type W(κk)K indicate that
the spin and orbital ranks are coupled to a resultant K .

6.2.3 Coefficients of Fractional Parentage

Let ψ and ψ̄ denote terms of N and N−1 character-
ized by (S, L) and (S̄, L̄). The coefficients of fractional
parentage (cfp) (ψ{|ψ̄) of Racah [6.8] allow one to
calculate an antisymmetrized function ψ by vector-
coupling ψ̄ to the spin and orbit of the N th electron:

|ψ〉 =
∑

ψ̄

∣∣ψ̄, 2, SL
〉 (
ψ̄|}ψ

)
, (6.28)

where the sum over ψ̄ includes S̄, L̄, and any other
quantum numbers necessary to define the spectroscopic

terms of N−1. The cfp’s are given by

(
ψ||a†||ψ̄)= (−1)N [N(2S+1)(2L+1)] 1

2
(
ψ{|ψ̄) ,

(6.29)
(
ψ̄||a||ψ)= (−1)g[N(2S+1)(2L+1)] 1

2
(
ψ̄|}ψ) ,

(6.30)

where g = N + S̄+ L̄ − s− S−− L . A tabulation for
the p, d, and f shells has been given by Nielson and
Koster [6.5].

Two-electron cfp are given by

(
ψ||(a†a†)(κk)||ψ̃)= [N(N −1)(2S+1)(2L+1)] 1

2

×
(
ψ{|ψ̃, 2(κk)

)
, (6.31)

where ψ̃ denotes a term of N−2, and the symbols κ and
k stand for the S and the L of a term of 2. A tabulation
for the p, d, and f shells has been given by Donlan [6.9].
An extension to all multielectron cfp has been carried
out by Velkov [6.10].

If, through successive applications of the two-
particle operators (aa)(00), a state of N can be reduced
to v, but no further, then v is the seniority number of
Racah [6.8].

If the ranks s and  of a† are coupled to S̄ and L̄ of
ψ̄, the term

(
a†
∣∣ψ̄
〉)(SL)

(6.32)

either vanishes, or is a term of N characterized by
S and L . Such a term is said to possess the godparent
ψ̄. Redmond [6.11] has used the notion of godparents to
generate an explicit formula for the single particle cfp
[6.7].

6.3 Quasispin

6.3.1 Fermions

For electrons, the components Q±(≡ Qx ± iQy) and Qz
of the quasispin Q are defined by [6.7, 12]

Q+ = [(2+1)/2] 1
2
(
a†a†

)(00)
, (6.33)

Q− =−[(2+1)/2] 1
2 (aa)(00) , (6.34)

Qz =−[(2+1)/8] 1
2
[(

a†a
)(00)+ (

aa†
)(00)]

.

(6.35)

The term quasispin comes from the fact that the com-
ponents of Q satisfy the commutation relations of an
angular momentum vector. The eigenvalues MQ of Qz ,
for a state of N , are given by

MQ =−(2+1− N )/2 . (6.36)

The shift operators Q+ and Q− connect states of the
 shell possessing the same value of the seniority v of
Racah [6.8]. A string of such connected states defines
the extrema of MQ , from which it follows that

Q = (2+1−v)/2 . (6.37)
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Rudzikas has placed special emphasis on quasispin in
his reworking of atomic shell theory, and he has also in-
troduced isospin to embrace electrons differing in their
principal quantum numbers n [6.13]. Concise tables of
one-electron cfp with their quasispin dependence fac-
tored out have been given [6.14], as have the algebraic
dependences on ν and S of two-electron cfp [6.15].

6.3.2 Bosons

For real vibrational modes created by a†ν (ν = 1, 2,
. . . , d), the analogs of (6.33–6.35) are

P+ = −1

2

∑

ν

a†νa
†
ν , (6.38)

P− = 1

2

∑

ν

aνaν , (6.39)

Pz = 1

4

∑

ν

(
a†νaν+aνa

†
ν

)
, (6.40)

and P is an angular momentum vector [6.16]. The eigen-
values MP for an n-boson state are given by

MP = (2n+d)/4 , (6.41)

and can therefore be quarter-integral. Successive appli-
cation of the operator P+ to a state |n0〉, for which
P−|n0〉 = 0, generates an infinite ladder of states char-
acterized by

P = (2n+d−4)/4 . (6.42)

6.3.3 Triple Tensors

The creation and annihilation operators a†ξ and aξ for
a given state ξ can be regarded as the two components
of a tensor of rank 1

2 with respect to quasispin (either
Q or P). For electrons, this leads to triple tensors a(qs)

(for which q = s = 1
2 ) satisfying

a(qs)
λ a(qs)

µ +a(qs)
µ a(qs)

λ =
(−1)x+1δ

(
mq,−m′

q

)
δ
(
ms,−m′

s

)
δ
(
m,−m′



)
,

(6.43)

where λ≡ (mqmsm) , µ≡ (m′
qm′

sm′
) , and x = q+

s++mq +ms +m. In terms of the coupled tensor

X(Kκk) = (a(qs)a(qs))(Kκk) , (6.44)

the angular momenta Q, S, and L are given by

Q =−[(2+1)/4] 1
2 X(100) , (6.45)

S=−[(2+1)/4] 1
2 X(010) , (6.46)

L =−[(+1)(2+1)/3] 1
2 X(001) . (6.47)

Furthermore, the components of X(Kκk) for which
MK = 0 are identical to the corresponding components
of 2

1
2 (a†a)(κk) when K +κ+ k is odd; and

X(Kκk) =−(2+1)
1
2 δ(K, 0)δ(κ, 0)δ(k, 0) (6.48)

when K +κ+ k is even.

6.3.4 Conjugation

Creation and annihilation operators can be interchanged
by the operation of the conjugation operator C [6.7,17].
For electrons in the atomic  shell,

Ca(qs)
ξ C−1 = (−1)q−mq a(qs)

η , (6.49)

where ξ ≡ (mqmsm) and η≡ ((−mq)msm). In terms
of the tensors a† and a,

Ca†C−1 = a , CaC−1 =−a† . (6.50)

Furthermore,

CX(Kκk)λ C−1 = (−1)K−MK X(Kκk)µ , (6.51)

where λ≡ (MK MκMk) and µ≡ [(−MK )MκMk], and

C
∣∣QMQ

〉= (−1)Q−MQ
∣∣Q−MQ

〉
. (6.52)

Thus, from (6.36), the action of C takes N into 4+
2−N ; that is, C interchanges electrons and holes. When
the case κ = k = 0 is excluded, application of (6.51) and
(6.52) yields

(
Nψ ||W (κk) || Nψ′

)
=

(−1)y
(
 4+2−Nψ||W (κk)|| 4+2−Nψ′

)
,

(6.53)

where y = κ+ k+ 1
2 (v

′ −v)+1, and where the senior-
ities v and v′ are implied by ψ and ψ′. A similar
application to reduced matrix elements of a† and a gives
the following relation between cfp:

(
N+1ψ{|Nψ′

)
= (−1)z

(
 4+1−Nψ|} 4+2−Nψ′

)

×

(
(4+2− N )(2S′ +1)(2L ′ +1)

(N +1)(2S+1)(2L+1)

) 1
2

,

(6.54)

where z = S+ S′ − s+ L + L ′ −+ 1
2 (v+v′ −1). The

phases y and z stem from the conventions of angular
momentum theory, which enter via quasispin. Racah
[6.2, 8] did not use this concept, and his phase choices
are slightly different from the ones above.
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For a Cartesian component Qu of the quasispin Q,

CQuC−1 =−Qu . (6.55)

Thus, C is the analog of the time-reversal operator T ,
for which

TLu T−1 =−Lu , (6.56)

TSu T−1 =−Su . (6.57)

Both C and T are antiunitary; thus,

CiC−1 =−i . (6.58)

6.3.5 Dependence on Electron Number

Application of the Wigner–Eckart theorem to matrix
elements whose component parts have well-defined
quasispin ranks yields the dependence of the matrix el-
ements on the electron number N [6.18, 19]. For κ+ k
even and nonzero, the quasispin rank of W(κk) is 1, and

(
Nψ||W (κk)||Nψ′

)
= (6.59)

(2+1− N )

(2+1−v)
(
 vψ ||W (κk) || vψ′

)
.

For κ+ k odd, W(κk) is necessarily a quasispin scalar,
and the matrix elements are diagonal with respect to the

seniority and independent of N . These properties were
first stated in Eqs. (69) and (70) of [6.8].

Application of these ideas to single-electron cfp
yields, for states ψ and ψ̄ with seniorities v and v+1,
respectively,

(
Nψ{|N−1ψ̄

)
=

[(N −v)(v+2)/2N] 1
2
(
v+2ψ

∣∣}v+1ψ̄
)
. (6.60)

6.3.6 The Half-filled Shell

Selection rules for operators of good quasispin rank K ,
taken between states of the half-filled shell (for which
MQ = 0), can be found by inspecting the 3– j symbol

(
Q K Q′

0 0 0

)

,

which appears when the Wigner-Eckart theorem is ap-
plied in quasispin space. This 3– j symbol vanishes
unless Q+K +Q′ is even. An equivalent result can be
obtained for W(κk) by referring to (6.53) and insisting
that y be even.

6.4 Complementarity

6.4.1 Spin–Quasispin Interchange

The operator R formally interchanges spin and qua-
sispin. The result for the creation and annihilation
operators for electrons can be expressed in terms of
triple tensors:

Ra(qs)
ξ R−1 = a(qs)

η , (6.61)

where ξ ≡ (mqmsm) and η≡ (msmqm). For the ten-
sors X(Kκk) defined in (6.44), we get

RX(Kκk)λ R−1 = X(κKk)
µ , (6.62)

whereλ≡ (MK MκMk) andµ≡ (MκMK Mk). For states
of the  shell,

R|γQMQ SMS〉 = (−1)t |γSMS QMQ〉 , (6.63)

where the quasispin of the ket on the right is S and the
spin is Q. The phase factor t depends on S and Q and
on phase choices made for the coefficients of fractional
parentage. The symbol γ denotes the additional labels
necessary to completely define the state in question,
including L and ML .

For every γ , Racah [6.20] observed that there are
two possible pairs (v1, S1) and (v2, S2) satisfying

v1+2S2 = v2+2S1 = 2+1 . (6.64)

From (6.37) it follows that

S1 = Q2 , S2 = Q1 . (6.65)

6.4.2 Matrix Elements

Application of the complementarity operator R to the
component parts of a matrix element leads to the equa-
tion

〈
γQMQ SMS|X(Kκk)λ |γ ′Q′M′

Q S′M′
S

〉= (6.66)

(−1)y
〈
γSMS QMQ |X(κKk)

µ |γ ′S′M′
S Q′M′

Q

〉
,

where λ and µ have the same significance as in (6.62),
and where y, like t of (6.63), depends on the spins and
quasispins but not on the associated magnetic quantum
numbers. Equation (6.66) leads to a useful special case
when MK = Mκ = 0 and the tensors X are converted to
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those of type W, defined in (6.18). The sum K +κ+k is
taken to be odd, with the scalars κ= k = 0 and K = k = 0
excluded. Application of the Wigner-Eckart theorem to
the spin and orbital spaces yields

(
γQMQ S||W (κk)||γ ′Q′M′

Q S′
)

(
γSMS Q||W (Kk)||γ ′S′M′

S Q′) =

(−1)z

(
Q K Q′

−MQ 0 MQ

)

(
S κ S′

−MS 0 MS

) , (6.67)

where z = y+Q−MQ − S+MS. An equivalent form
is

(
Nγv1S1||W (κk)||Nγ ′v′1S′1

)

(
N ′
γv2S2||W (Kk)||N ′

γ ′v′2S′2
) = (6.68)

(−1)z

⎛

⎝
1
2 (2+1−v1) K 1

2 (2+1−v′1)
1
2 (2+1− N ) 0 1

2 (N −2−1)

⎞

⎠

⎛

⎝
1
2 (2+1−v2) κ

1
2 (2+1−v′2)

1
2 (2+1− N ′) 0 1

2 (N
′ −2−1)

⎞

⎠

,

where (6.64) is satisfied both for the unprimed and
primed quantities.

6.5 Quasiparticles

Sets of linear combinations of the creation and an-
nihilation operators for electrons in the  shell can be
constructed such that every member of one set anticom-
mutes with a member of a different set. To preserve the
tensorial character of these quasiparticle operators with
respect to L, it is convenient to define [6.21]

λ†q = 2−
1
2

[
a†1

2 ,q
+ (−1)−qa 1

2 ,−q

]
, (6.69)

µ†q = 2−
1
2

[
a†1

2 ,q
− (−1)−qa 1

2 ,−q

]
, (6.70)

ν†q = 2−
1
2

[
a†− 1

2 ,q
+ (−1)−qa− 1

2 ,−q

]
, (6.71)

ξ†q = 2−
1
2

[
a†− 1

2 ,q
− (−1)−qa− 1

2 ,−q

]
. (6.72)

The four tensors θ†(≡ λ†,µ†, ν†, or ξ†) anticommute
with each other; the first two act in the spin-up space,
the second two in the spin-down space. The tensors θ,
whose components θ̃q are defined as in (6.17) with t = 
and mt = q, are related to their adjoints by the equations

λ† = λ , µ† =−µ , (6.73)

ν† = ν , ξ† =−ξ . (6.74)

Under the action of the complementarity operator R
(see (6.61)) [6.22],

R λR−1 = λ , R µR−1 = µ , (6.75)

R νR−1 = ν , R ξ R−1 =−ξ . (6.76)

The tensors λ, µ, and ν, for a given component q, form
a vector with respect to S + Q. Every component of ξ is
scalar with respect to S + Q [6.23].

The compound quasiparticle operators defined by
[6.21]

Θ†q = 2−
1
2
[
θ†q , θ

†
0

]
, (6.77)

where q> 0 and θ ≡ λ, µ, ν, or ξ satisfy the anticom-
mutation relations

[
Θ†q ,Θ

†
q′
]
+ = 0 , (6.78)

[
Θq,Θq′

]
+ = 0 , (6.79)

[
Θ†q ,Θq′

]
+ = δ(q, q′) , (6.80)

for q, q′ > 0. TheΘ†q with q> 0 can thus be regarded as
the creation operators for a fermion quasiparticle with
 components.

The connection between the creation and annihi-
lation operators for quasiparticles and for quarks
(appearing in the last two rows of Table 3.1) is

θ → 2(−1)/2εθγθ
(
q†θqθ

)(10...0)
, (6.81)

where the γθ are Dirac matrices satisfying

γθγφ+γφγθ = 2δ(θ, φ) , (6.82)

and the εθ are phases, to some extent dependent on the
definitions (6.69–6.72) [6.24]. The superscript (10 . . . 0)
indicates that q†θ and qθ each of which belongs to the
elementary spinor ( 1

2
1
2 . . .

1
2 ) of SOθ(2+1), are to be

coupled to the resultant (10 . . . 0), which matches the
group label for θ. In the quark model, the 24+2 states
of the atomic  shell are given by

q†λq†µq†νq†ξ |0〉pp′ , (6.83)
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where p and p′ are parity labels that distinguish the four
reference states |0〉 corresponding to the evenness and
oddness of the number of spin-up and spin-down elec-
trons. The scalar nature of ξ (and hence of qξ ) with

respect to S+Q can be used to derive relations be-
tween spin-orbit matrix elements that go beyond those
expected from an application of the Wigner–Eckart the-
orem [6.25].
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Density Matri7. Density Matrices

The density operator was first introduced by J. von
Neumann [7.1] in 1927 and has since been widely
used in quantum statistics. Over the past decades,
however, the application of density matrices
has spread to many other fields of physics.
Density matrices have been used to describe, for
example, coherence and correlation phenomena,
alignment and orientation and their effect on the
polarization of emitted radiation, quantum beat
spectroscopy, optical pumping, and scattering
processes, particularly when spin-polarized
projectiles and/or targets are involved. A thorough
introduction to the theory of density matrices
and their applications with emphasis on atomic
physics can be found in the book by Blum [7.2]
from which many equations have been extracted
for use in this chapter.
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The main advantage of the density matrix formalism is
its ability to deal with pure and mixed states in the same
consistent manner. The preparation of the initial state as
well as the details regarding the observation of the final
state can be treated in a systematic way. In particular,
averages over quantum numbers of unpolarized beams in
the initial state and incoherent sums over non-observed

quantum numbers in the final state can be accounted
for via the reduced density matrix. Furthermore, expan-
sion of the density matrix in terms of irreducible tensor
operators and the corresponding state multipoles allows
for the use of advanced angular momentum techniques,
as outlined in Chapts. 2, 3 and 12. More details can be
found in two recent textbooks [7.3, 4].

7.1 Basic Formulae

7.1.1 Pure States

Consider a system in a quantum state that is represented
by a single wave function |Ψ 〉. The density operator for
this situation is defined as

ρ = |Ψ 〉〈Ψ | . (7.1)

If |Ψ 〉 is normalized to unity, i.e., if

〈Ψ |Ψ 〉 = 1 , (7.2)

then

ρ2 = ρ . (7.3)
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Equation (7.3) is the basic equation for identifying pure
quantum mechanical states represented by a density
operator.

Next, consider the expansion of |Ψ 〉 in terms of
a complete orthonormal set of basis functions {|Φn〉},
i.e.,

|Ψ 〉 =
∑

n

cn |Φn〉 . (7.4)

The density operator then becomes

ρ =
∑

n,m

cnc∗m |Φn〉〈Φm | = ρnm |Φn〉〈Φm | , (7.5)

where the star denotes the complex conjugate
quantity. Note that the density matrix elements
ρnm = 〈Φn| ρ |Φm〉 depend on the choice of the
basis and that the density matrix is Hermitian,
i.e.,

ρ∗mn = ρnm . (7.6)

Finally, if |Ψ 〉 = |Φi〉 is one of the basis functions,
then

ρmn = δniδmi , (7.7)

where δni is the Kronecker δ. Hence, the density mat-
rix is diagonal in this representation with only one
nonvanishing element.

7.1.2 Mixed States

The above concepts can be extended to treat statistic-
al ensembles of pure quantum states. In the simplest
case, such mixed states can be represented by a diagonal
density matrix of the form

ρ =
∑

n

wn|Ψn〉〈Ψn | , (7.8)

where the weight wn is the fraction of systems in the
pure quantum state |Ψn〉. The standard normalization
for the trace of ρ is

Tr{ρ} =
∑

n

wn = 1 . (7.9)

Since the trace is invariant under unitary transformations
of the basis functions, (7.9) also holds if the |Ψn〉 states
themselves are expanded in terms of basis functions as
in (7.4). For a pure state and the normalization (7.9), one
finds in an arbitrary basis

Tr{ρ} = Tr
{
ρ2}= 1 . (7.10)

7.1.3 Expectation Values

The density operator contains the maximum available in-
formation about a physical system. Consequently, it can
be used to calculate expectation values for any operator
A that represents a physical observable. In general,

〈A〉 = Tr{Aρ}/Tr{ρ} , (7.11)

where Tr{ρ} in the denominator of (7.11) ensures the
correct result even for a normalization that is different
from (7.9). The invariance of the trace operation ensures
the same result – independent of the particular choice of
the basis representation.

7.1.4 The Liouville Equation

Suppose (7.8) is valid for a time t = 0. If the functions
|Ψn(r, t)〉 obey the Schrödinger equation, i.e.

i
∂

∂t
|Ψn(r, t)〉 = H(t) |Ψn(r, t)〉 , (7.12)

the density operator at the time t can be written as

ρ(t)=U(t) ρ(0)U†(t) . (7.13)

In (7.13), U(t) is the time evolution operator which re-
lates the wave functions at times t = 0 and t according
to

|Ψn(r, t)〉 =U(t) |Ψn(r, 0)〉 , (7.14)

and U†(t) denotes its adjoint. Note that

U(t)= e−iHt , (7.15)

if the Hamiltonian H is time-independent.
Differentiation of (7.13) with respect to time and in-

serting (7.14) into the Schrödinger equation (7.12) yields
the equation of motion

i
∂

∂t
ρ(t)= [H(t), ρ(t)] , (7.16)

where [A,B ] denotes a commutator.
The Liouville equation (7.16) can be used to deter-

mine the density matrix and to treat transitions from
nonequilibrium to equilibrium states in quantum mech-
anical systems. Especially for approximate solutions in
the presence of small time-dependent perturbation terms
in an otherwise time-independent Hamiltonian, i.e., for

H(t)= H0+V(t) , (7.17)

the interaction picture is preferably used. The Liouville
equation then becomes

i
∂

∂t
ρI(t)=

[
VI(t), ρI(t)

]
, (7.18)
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Density Matrices 7.2 Spin and Light Polarizations 125

where the subscript I denotes the operator in the inter-
action picture. In first-order perturbation theory, (7.18)
can be integrated to yield

ρI(t)= ρI(0)− i

t∫

0

[VI(τ), ρI(0)] dτ , (7.19)

and higher-order terms can be obtained through subse-
quent iterations.

7.1.5 Systems in Thermal Equilibrium

According to quantum statistics, the density operator
for a system which is in thermal equilibrium with a
surrounding reservoir R at a temperature T (canonical
ensemble), can be expressed as

ρ = exp(−βH )

Z
, (7.20)

where H is the Hamiltonian, and β = 1/kBT with kB
being the Boltzmann constant. The partition sum

Z = Tr
{

exp(−βH)
}
, (7.21)

ensures the normalization condition (7.9). Expectation
values are calculated according to (7.11), and extensions
to other types of ensembles are straightforward.

7.1.6 Relaxation Processes

Transitions from nonequilibrium to equilibrium states
can also be described within the density matrix for-
malism. One of the basic problems is to account for
irreversibility in the energy (and sometimes particle)

exchange between the system of interest, S, and the
reservoir, R. This is usually achieved by assuming
that the interaction of the system with the reservoir is
negligible and, therefore, the density matrix represen-
tation for the reservoir at any time t is the same as the
representation for t = 0.

Another important assumption that is frequently
made is the Markov approximation. In this approxi-
mation, one assumes that the system “forgets” all
knowledge of the past, so that the density matrix elem-
ents at the time t+∆t depend only on the values of
these elements, and their first derivatives, at the time t.
When (7.19) is put back into (7.18), the result in the
Markov approximation can be rewritten as

∂

∂t
ρSI(t)= − i TrR

[
VI(t), ρSI(0)ρR(0)

]

−
t∫

0

dτTrR
[
VI(t),[VI(τ),ρSI(t)ρR(0)]

]
,

(7.22)

where TrR denotes the trace with regard to all variables
of the reservoir. Note that the integral over dτ contains
the system density matrix in the interaction picture, ρSI,
at the time t, rather than at all times τ which are inte-
grated over (the Markov approximation), and that the
density matrix for the reservoir is taken as ρR(0) at all
times. For more details, see Chapter 7 of Blum [7.2] and
references therein.

Equations such as (7.22) are the basis for the master
or rate equation approach used, for example, in quantum
optics for the theory of lasers and the coupling of atoms
to cavity modes. For more details, see Chapts. 68, 69,
70 and 78.

7.2 Spin and Light Polarizations

Density matrices are frequently used to describe the
polarization state of spin-polarized particle beams as
well as light. The latter can either be emitted from ex-
cited atomic or molecular ensembles or can be used, for
example, for laser pumping purposes.

7.2.1 Spin-Polarized Electrons

The spin polarization of an electron beam with respect
to a given quantization axis n̂ is defined as [7.5]

Pn̂ = N↑ − N↓
N↑ + N↓

, (7.23)

where N↑(N↓) is the number of electrons with spin up
(down) with regard to this axis. An arbitrary polarization
state is described by the density matrix

ρ = 1

2

(
1+ Pz Px − iPy

Px + iPy 1− Pz

)

, (7.24)

where Px,y,x are the cartesian components of the spin
polarization vector. The individual components can be
obtained from the density matrix as

Pi = Tr{σi ρ} , (7.25)

where the σi (i = x, y, z) are the standard Pauli spin
matrices.

Part
A

7
.2



126 Part A Mathematical Methods

7.2.2 Light Polarization

Another important use of the density matrix formalism
is the description of light polarization in terms of the so-
called Stokes parameters [7.6]. For a given direction of
observation, the general polarization state of light can be
fully determined by the measurement of one circular and
two independent linear polarizations. Using the notation
of Born and Wolf [7.7], the density matrix is given by

ρ = Itot

2

(
1− P3 P1− iP2

P1+ iP2 1+ P3

)

, (7.26)

where P1 and P2 are linear light polarizations while P3
is the circular polarization (see also Sect. 7.6). In (7.26),
the density matrix is normalized in such as way that

Tr{ρ} = Itot , (7.27)

where Itot is the total light intensity. Other frequently
used names for the various Stokes parameters are

P1 = η3 = M , (7.28)

P2 = η1 = C , (7.29)

P3 = −η2 = S . (7.30)

The Stokes parameters of electric dipole radiation can be
related directly to the charge distribution of the emitting
atomic ensemble. As discussed in detail in Chapt. 46,
one finds, for example,

L⊥ =−P3 (7.31)

for the angular momentum transfer perpendicular to the
scattering plane in collisional (de-)excitation, and

γ = 1

2
arg{P1+ iP2} (7.32)

for the alignment angle.

7.3 Atomic Collisions

7.3.1 Scattering Amplitudes

Transitions from an initial state |J0 M0; k0m0〉 to a final
state |J1 M1; k1m1〉 are described by scattering ampli-
tudes

f(M1m1; M0m0)= 〈J1 M1; k1m1|T |J0 M0; k0m0〉 ,
(7.33)

where T is the transition operator. Furthermore, J0 (J1)

is the total electronic angular momentum in the initial
(final) state of the target and M0 (M1) its corresponding
z-component, while k0 (k1) is the initial (final) momen-
tum of the projectile and m0 (m1) its spin component.

7.3.2 Reduced Density Matrices

While the scattering amplitudes are the central elements
in a theoretical description, some restrictions usually
need to be taken into account in a practical experiment.
The most important ones are: (i) there is no “pure” ini-
tial state, and (ii) not all possible quantum numbers are
simultaneously determined in the final state. The solu-
tion to this problem can be found by using the density
matrix formalism. First, the complete density operator
after the collision process is given by [7.2]

ρout = T ρinT
† , (7.34)

where ρin is the density operator before the collision.
The corresponding matrix elements are given by

(ρout)
k1,M′

1 M1
m′

1m1
=

∑

m′
0m0 M′

0 M0

ρm′
0m0
ρM′

0 M0

× f
(
M′

1m′
1; M′

0m′
0

)

× f ∗
(
M1m1; M0m0

)
, (7.35)

where the termρm′
0m0
ρM′

0 M0
describes the preparation of

the initial state (i). Secondly, “reduced” density matrices
account for (ii). For example, if only the scattered pro-
jectiles are observed, the corresponding elements of the
reduced density matrix are obtained by summing over
the atomic quantum numbers as follows:

(ρout)
k1
m′

1m1
=
∑

M1

(ρout)
k1,M1 M1
m′

1m1
. (7.36)

The differential cross section for unpolarized projectile
and target beams is given by

dσ

dΩ
= C

∑

m1

(ρout)
k1
m1m1

, (7.37)

where C is a constant that depends on the normalization
of the continuum waves in a numerical calculation.

On the other hand, if only the atoms are observed
(for example, by analyzing the light emitted in optical
transitions), the elements

(ρout)M′
1 M1

=
∫

d3 k1

∑

m1

(ρout)
k1,M′

1 M1
m1m1

(7.38)
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determine the integrated Stokes parameters [7.8,9], i.e.,
the polarization of the emitted light. They contain in-
formation about the angular momentum distribution in
the excited target ensemble.

Finally, for electron–photon coincidence experi-
ments without spin analysis in the final state, the
elements

(ρout)
k1
M′

1 M1
=
∑

m1

(ρout)
k1,M′

1 M1
m1m1

(7.39)

simultaneously contain information about the project-
iles and the target. This information can be extracted

by measuring the angle-differential Stokes parameters.
In particular, for unpolarized electrons and atoms, the
“natural coordinate system”, where the quantization
axis coincides with the normal to the scattering plane,
allows for a simple physical interpretation of the various
parameters [7.10] (see Chapt. 46).

The density matrix formalism outlined above
is very useful for obtaining a qualitative descrip-
tion of the geometrical and sometimes also of
the dynamical symmetries of the collision pro-
cess [7.11]. Two explicit examples are discussed
in Sect. 7.6.

7.4 Irreducible Tensor Operators

The general density matrix theory can be formulated
in a very elegant fashion by decomposing the density
operator in terms of irreducible components whose ma-
trix elements then become the state multipoles. In such
a formulation, full advantage can be taken of the most
sophisticated techniques developed in angular momen-
tum algebra (see Chapt. 2). Many explicit examples can
be found in [7.3, 4].

7.4.1 Definition

The density operator for an ensemble of particles in
quantum states labeled as |JM〉 where J and M are the
total angular momentum and its magnetic component,
respectively, can be written as

ρ =
∑

J ′ JM′M
ρJ ′ J

M′M |J ′M′〉〈JM| , (7.40)

where

ρJ ′ J
M′M = 〈J ′M′|ρ|JM〉 (7.41)

are the matrix elements. (For simplicity, interactions out-
side the single manifold of momentum states |JM〉 are
neglected). Alternatively, one may write

ρ =
∑

J ′ JKQ

〈
T
(
J ′ J

)†
KQ

〉
T
(
J ′ J

)
KQ , (7.42)

where the irreducible tensor operators are defined in
terms of 3–j symbols as

T
(
J ′ J

)
KQ =

∑

M′M
(−1)J ′−M′√

2K +1

×

(
J ′ J K

M′ −M −Q

)

|J ′M′〉〈JM| ,
(7.43)

and the state multipoles or statistical tensors are given
by

〈
T
(
J ′ J

)†
KQ

〉
=

∑

M′M
(−1)J ′−M′√

2K +1

×

(
J ′ J K

M′ −M −Q

)

〈J ′M′|ρ|JM〉 .
(7.44)

Hence, the selection rules for the 3–j symbols imply
that

|J − J ′| ≤ K ≤ J + J ′ , (7.45)

M′ −M = Q . (7.46)

Equation (7.44) can be inverted through the orthogonal-
ity condition of the 3–j symbols to give

〈J ′M′|ρ|JM〉 =
∑

KQ

(−1)J ′−M′√
2K +1

×

(
J ′ J K

M′ −M −Q

)〈
T
(
J ′ J

)†
KQ

〉
.

(7.47)

7.4.2 Transformation Properties

Suppose a coordinate system (X2,Y2, Z2) is obtained
from another coordinate system (X1,Y1, Z1) through
a rotation by a set of three Euler angles (γ, β, α) as
defined in Edmonds [7.12]. The irreducible tensor oper-
ators (7.43) defined in the (X1,Y1, Z1) system are then
related to the operators 〈T(J ′ J )†KQ〉 in the (X2, Y2, Z2)
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system by

T
(
J ′ J

)
KQ =

∑

q

T
(
J ′ J

)
Kq D(γ, β, α)KqQ , (7.48)

where

D(γ, β, α)J
M′M = eiM′γ d(β)J

M′M eiMα (7.49)

is a rotation matrix (see Chapt. 2). Note that the rank K
of the tensor operator is invariant under such rotations.
Similarly,

〈
T
(
J ′ J

)†
KQ

〉
=
∑

q

〈
T
(
J ′ J

)†
Kq

〉
D(γ, β, α)KqQ

∗

(7.50)

holds for the state multipoles.
The irreducible tensor operators fulfill the orthogon-

ality condition

Tr
{

T
(
J ′ J

)
KQ T

(
J ′ J

)†
K ′Q′

}
= δK ′K δQ′Q , (7.51)

with

T
(
J ′ J

)
00 =

1√
2J +1

δJ ′ J 1 (7.52)

being proportional to the unit operator 1, it follows that
all tensor operators have vanishing trace, except for the
monopole T(J ′ J )00.

Reduced tensor operators fulfill the Wigner–Eckart
theorem (see Sect. 2.8.4)

〈
J ′M′|T(J ′ J

)
KQ |JM

〉

= (−1)J ′−M′
(

J ′ K J

−M′ Q M

)

×
〈
J ′‖ TK ‖J

〉
, (7.53)

where the reduced matrix element is simply given by
〈
J ′‖ TK ‖J

〉= 1√
2K +1

. (7.54)

7.4.3 Symmetry Properties
of State Multipoles

The Hermiticity condition for the density matrix implies
〈
T
(
J ′ J

)†
KQ

〉∗ = (−1)J ′−J+Q
〈
T(JJ ′)†K−Q

〉
,

(7.55)

which, for sharp angular momentum J ′ = J , yields
〈
T(J )†KQ

〉∗ = (−1)Q
〈
T(J)†K−Q

〉
. (7.56)

Hence, the state multipoles
〈
T(J )†K0

〉
are real numbers.

Furthermore, the transformation property (7.50) of
the state multipoles imposes restrictions on nonvan-
ishing state multipoles to describe systems with given
symmetry properties. In detail, one finds:

1. For spherically symmetric systems,
〈
T
(
J ′ J

)†
KQ

〉
=
〈
T
(
J ′ J

)†
KQ

〉

rot
(7.57)

for all sets of Euler angles. This implies that only the
monopole term

〈
T(J )†00

〉
can be different from zero.

2. For axially symmetric systems,
〈
T
(
J ′ J

)†
KQ

〉
=
〈
T
(
J ′ J

)†
KQ

〉

rot
(7.58)

for all Euler angles φ that describe a rotation around the
z-axis. Since this angle enters via a factor exp(−iQφ)
into the general transformation formula (7.50), it follows
that only state multipoles with Q = 0, i.e.,

〈
T
(
J ′ J

)†
K0

〉
,

can be different from zero in such a situation.

3. For planar symmetric systems with fixed J ′ = J ,
〈
T(J )†KQ

〉
= (−1)K

〈
T(J )†KQ

〉∗
(7.59)

if the system properties are invariant under reflection in
the xz-plane. Hence, state multipoles with even rank K
are real numbers, while those with odd rank are purely
imaginary in this case.

The above results can be applied immediately to the
description of atomic collisions where the incident beam
axis is the quantization axis (the so-called “collision sys-
tem”). For example, impact excitation of unpolarized
targets by unpolarized projectiles without observation
of the scattered projectiles is symmetric both with re-
gard to rotation around the incident beam axis and with
regard to reflection in any plane containing this axis.
Consequently, the state multipoles

〈
T(J )†00

〉
,
〈
T(J )†20

〉
,〈

T(J )†40

〉
, . . . fully characterize the atomic ensemble of

interest. Using (7.50), similar relationships can be de-
rived for state multipoles defined with regard to other
coordinate systems, such as the “natural system” where
the quantization axis coincides with the normal vector
to the scattering plane (see Chapt. 46).

7.4.4 Orientation and Alignment

From the above discussion, it is apparent that the
description of systems that do not exhibit spherical
symmetry requires the knowledge of state multipoles
with rank K �= 0. Frequently, the multipoles with K = 1
and K = 2 are determined via the angular correla-
tion and the polarization of radiation emitted from
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an ensemble of collisionally excited targets. The state
multipoles with K = 1 are proportional to the spheri-
cal components of the angular momentum expectation
value and, therefore, give rise to a nonvanishing
circular light polarization (see also Sect. 7.6). This
corresponds to a sense of rotation or an orientation
in the ensemble which is therefore called oriented
(see Sect. 46.1).

On the other hand, nonvanishing multipoles with
rank K = 2 describe the alignment of the system.
Some authors, however, use the terms “alignment”
or “orientation” synonymously for all nonvanishing
state multipoles with ranks K �= 0, thereby de-
scribing any system with anisotropic occupation of
magnetic sublevels as “aligned” or “oriented”. For
details on alignment and orientation, see Chapt. 46
and [7.3, 4].

7.4.5 Coupled Systems

Tensor operators and state multipoles for coupled sys-
tems are constructed as direct products (⊗) of the
operators for the individual systems. For example, the

density operator for two subsystems in basis states
|L,ML 〉 and |S,MS〉 is constructed as [7.2]

ρ =
∑

KQkq

〈
T(L)†KQ ⊗T(S)†kq

〉[
T(L)KQ ⊗T(S)kq

]
.

(7.60)

If the two systems are uncorrelated, the state multipoles
factor as

〈
T(L)†KQ ⊗T(S)†kq

〉=
〈
T(L)†KQ

〉 〈
T(S)†kq

〉
; (7.61)

More generally, irreducible representations of coupled
operators can be defined in terms of a 9–j symbol as

T
(
J ′, J

)
K ′Q′ =

∑

KQkq

K̂ k̂ Ĵ Ĵ ′
(
K Q, kq|K ′Q′)

×

⎧
⎪⎨

⎪⎩

K k K ′

L S J ′

L S J

⎫
⎪⎬

⎪⎭
T(L)KQ ⊗T(S)kq ,

(7.62)

where x̂ ≡√
2x+1, and ( j1m1, j2m2| j3m3) is a stand-

ard Clebsch-Gordan coefficient.

7.5 Time Evolution of State Multipoles

7.5.1 Perturbation Coefficients

From the general expansions

ρ(t)=
∑

j ′ jkq

〈
T
(

j ′ j; t
)†

kq

〉
T
(

j ′ j
)

kq (7.63)

in terms of irreducible components, together with (7.42)
for time t = 0 and (7.13) for the time development of
the density operator, it follows that

〈
T
(

j ′ j; t
)†

kq

〉
=

∑

J ′ JKQ

〈
T
(
J ′ J; 0

)†
KQ

〉

× G
(
J ′ J, j ′ j; t

)Qq
Kk , (7.64)

where the perturbation coefficients are defined as

G
(
J ′ J, j ′ j; t

)Qq
Kk

= Tr
{

U(t)T
(
J ′ J

)
KQU(t)†T( j ′ j)†kq

}
. (7.65)

Hence, these coefficients relate the state multipoles at
time t to those at t = 0.

7.5.2 Quantum Beats

An important application of the perturbation coefficients
is the coherent excitation of several quantum states
which subsequently decay by optical transitions. Such
an excitation may be performed, for example, in beam-
foil experiments or electron–atom collisions where the
energy width of the electron beam is too large to resolve
the fine structure (or hyperfine structure) of the target
states.

Suppose, for instance, that explicitly relativistic ef-
fects, such as the spin–orbit interaction between the
projectile and the target, can be neglected during a col-
lision process between an incident electron and a target
atom. In that case, the orbital angular momentum (L)
system of the collisionally excited target states may be
oriented, depending on the scattering angle of the pro-
jectile. On the other hand, the spin (S) system remains
unaffected (unpolarized), provided that both the target
and the projectile beams are unpolarized. During the
lifetime of the excited target states, however, the spin–
orbit interaction within the target produces an exchange
of orientation between the L and the S systems, which
results in a net loss of orientation in the L system.
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This effect can be observed directly through the in-
tensity and the polarization of the light emitted from
the excited target ensemble. The perturbation coeffi-
cients for the fine structure interaction are found to
be [7.2, 13]

G(L; t)K = exp(−γt)
2S+1

∑

J ′ J

(
2J ′ +1

)(
2J +1

)

×

{
L J ′ S

J L K

}2

cos
(
ωJ ′ −ωJ

)
t ,

(7.66)

where ωJ ′ −ωJ corresponds to the (angular) frequency
difference between the various multiplet states with total
electronic angular momenta J ′ and J , respectively. Also,
γ is the natural width of the spectral line; for simplicity,
the same lifetime has been assumed in (7.66) for all
states of the multiplet.

Note that the perturbation coefficients are independ-
ent of the multipole component Q in this case, and that
there is no mixing between different multipole ranks K .
Similar results can be derived [7.2,13] for the hyperfine
interaction and also to account for the combined effect
of fine and hyperfine structure. The cosine terms repre-
sent correlation between the signal from different fine
structure states, and they lead to oscillations in the in-
tensity as well as the measured Stokes parameters in a
time-resolved experiment.

Finally, generalized perturbation coefficients have
been derived for the case where both the L and
the S systems may be oriented and/or aligned dur-
ing the collision process [7.14]. This can happen when

spin-polarized projectiles and/or target beams are pre-
pared.

7.5.3 Time Integration over Quantum Beats

If the excitation and decay times cannot be resolved in
a given experimental setup, the perturbation coefficients
need to be integrated over time. As a result, the quan-
tum beats disappear, but a net effect may still be visible
through a depolarization of the emitted radiation. For
the case of atomic fine structure interaction discussed
above, one finds [7.2, 13]

Ḡ(L)K =
∞∫

0

G(L; t)K dt

= 1

2S+1

∑

J ′ J

(
2J ′ +1

)(
2J +1

)

×

{
L J ′ S

J L K

}2
γ

γ 2+ω2
J ′ J
, (7.67)

where ωJ ′ J = ωJ ′ −ωJ . Note that the amount of de-
polarization depends on the relationship between the
fine structure splitting and the natural line width. For
|ωJ ′ J | % γ (if J ′ �= J), the terms with J ′ = J dominate
and cause the maximum depolarization; for the opposite
case |ωJ ′ J | & γ , the sum rule for the 6–j symbols can
be applied and no depolarization is observed.

Similar depolarizations can be caused through
hyperfine structure effects, as well as through external
fields. An important example of the latter case is the
Hanle effect (see Sect. 17.2.1).

7.6 Examples

In this section, two examples of the reduced den-
sity formalism are discussed explicitly. These are:
(i) the change of the spin polarization of initially
polarized spin- 1

2 projectiles after scattering from unpo-
larized targets, and (ii) the Stokes parameters describing
the angular distribution and the polarization of light
as detected in projectile-photon coincidence experi-
ments after collisional excitation. The recent book
by Andersen and Bartschat [7.4] provides a de-
tailed introduction to these topics, together with a
thorough discussion of benchmark studies in the
field of electronic and atomic collisions, including
extensions to ionization processes, as well as ap-
plications in plasma, surface, and nuclear physics.

Even more extensive compilations of such stud-
ies can be found in a review series dealing with
unpolarized electrons colliding with unpolarized tar-
gets [7.10], heavy-particle collisions [7.15], and the
special role of projectile and target spins in such col-
lisions [7.16].

7.6.1 Generalized STU-parameters

For spin-polarized projectile scattering from unpolar-
ized targets, the generalized STU-parameters [7.11]
contain information about the projectile spin polar-
ization after the collision. These parameters can be
expressed in terms of the elements (7.36).
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To analyze this problem explicitly, one defines the
quantities

〈
m′

1m′
0;m1m0

〉= 1

2J0+1

∑

M1 M0

f
(
M1m′

1; M0m′
0

)

× f ∗
(
M1m1; M0m0

)
(7.68)

which contain the maximum information that can be
obtained from the scattering process, if only the polar-
ization of the projectiles is prepared before the collision
and measured thereafter.

Next, the number of independent parameters that
can be determined in such an experiment needs to be ex-
amined. For spin- 1

2 particles, there are 2 × 2 × 2 × 2= 16
possible combinations of {m′

1m′
0;m1m0} and, therefore,

16 complex or 32 real parameters (in the most gen-
eral case of spin-S particles, there would be (2S+1)4

combinations). However, from the definition (7.68) and
the Hermiticity of the reduced density matrix contained
therein, it follows that

〈
m′

1m′
0;m1m0

〉= 〈
m1m0;m′

1m′
0

〉∗
. (7.69)

Furthermore, parity conservation of the interaction or
the equivalent reflection invariance with regard to the
scattering plane yields the additional relationship [7.11]

f
(
M1m1; M0m0

)= (−1)J1−M1+ 1
2−m1+J0−M0+ 1

2−m0

×Π1Π0 f
(−M1−m1;−M0−m0

)
,

(7.70)

where Π1 and Π0 are ±1, depending on the parities of
the atomic states involved. Hence,

〈
m′

1m′
0;m1m0

〉= (−1)m
′
1−m1+m′

0−m0

×
〈−m′

1−m′
0;−m1−m0

〉
.

(7.71)

Note that (7.70, 71) hold for the collision frame where
the quantization axis (ẑ) is taken as the incident beam
axis and the scattering plane is the xz-plane. Sim-
ilar formulas can be derived for the natural frame
(see Sect. 7.3.2)

Consequently, eight independent parameters are suf-
ficient to characterize the reduced spin density matrix of
the scattered projectiles. These can be chosen as the
absolute differential cross section

σu = 1

2

∑

m1,m0

〈
m1m0;m1m0

〉
(7.72)

for the scattering of unpolarized projectiles from unpo-
larized targets and the seven relative parameters

SA = − 2

σu
Im

{〈
1

2
− 1

2
; 1

2

1

2

〉}
, (7.73)

SP = − 2

σu
Im

{〈
1

2

1

2
;−1

2

1

2

〉}
, (7.74)

Ty = 1

σu

{〈
−1

2
− 1

2
; 1

2

1

2

〉
−
〈
−1

2

1

2
; 1

2
− 1

2

〉}
,

(7.75)

Tx = 1

σu

[〈
−1

2
− 1

2
; 1

2

1

2

〉
+
〈
−1

2

1

2
; 1

2
− 1

2

〉]
,

(7.76)

Tz = 1

σu

[〈
1

2

1

2
; 1

2

1

2

〉
−
〈

1

2

1

2
;−1

2

1

2

〉]
, (7.77)

Uxz = 2

σu
Re

{〈
1

2

1

2
;−1

2

1

2

〉}
, (7.78)

Uzx = − 2

σu
Re

{〈
1

2
− 1

2
; 1

2

1

2

〉}
, (7.79)

where Re{x} and Im{x} denote the real and imaginary
parts of the complex quantity x, respectively. Note that
normalization constants have been omitted in (7.72) to
simplify the notation.

Therefore, the most general form for the polariza-
tion vector after scattering, P′, for an initial polarization
vector P = (Px, Py, Pz) is given by

(
SP+Ty Py

)
ŷ+(Tx Px+Uxz Pz

)
x̂+(Tz Pz−Uzx Px

)
ẑ

1+ SA Py
.

(7.80)

The physical meaning of the above relation is illustrated
in Fig. 7.1.

The following geometries are particularly suitable
for the experimental determination of the individual par-
ameters; σu and SP can be measured with unpolarized
incident projectiles. A transverse polarization compon-
ent perpendicular to the scattering plane

(
P = Py ŷ

)
is

needed to obtain SA and Ty. Finally, the measurement of
Tx , Uzx , Tz , and Uxz requires both transverse

(
Px x̂

)
and

longitudinal
(
Pz ẑ

)
projectile polarization components in

the scattering plane.

7.6.2 Radiation from Excited States:
Stokes Parameters

The state multipole description is also widely used for
the parametrization of the Stokes parameters that de-
scribe the polarization of light emitted in optical decays
of excited atomic ensembles. The general case of exci-
tation by spin-polarized projectiles has been treated by
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P

Pz

Py

Px

y

x

z

P�
SP + Ty + Py

 1 + SA + Py

Tx Px + UxzPz

 1 + SA Py

Tz Pz – UzxPz

 1 + SA Py

σu(1 + SA Py)

k 0

k1

θ

Fig. 7.1 Physical meaning of the generalized STU-
parameters: the polarization function SP gives the
polarization of an initially unpolarized projectile beam after
the collision while the asymmetry function SA determines
a left-right asymmetry in the differential cross section for
scattering of a spin-polarized beam. Furthermore, the con-
traction parameters (Tx , Ty, Tz) describe the change of an
initial polarization component along the three cartesian axes
while the parameters Uxz and Uzx determine the rotation of
a polarization component in the scattering plane

Bartschat and collaborators [7.8]. The basic experimen-
tal setup for electron-photon coincidence experiments
and the definition of the Stokes parameters are illustrated
in Figs. 7.2 and 7.3.

For impact excitation of an atomic state with total
electronic angular momentum J and an electric dipole
transition to a state with J f , the photon intensity in
a direction n̂= (Θγ ,Φγ ) is given by

I(Θγ ,Φγ )= C

[
2 (−1)J−J f

3
√

2J +1

〈
T(J )†00

〉

−
{

1 1 2

J J J f

}

×
(

Re
{〈

T(J )†22

〉}
sin2Θγ cos 2Φγ

−Re
{〈

T(J )†21

〉}
sin 2Θγ cosΦγ

+
√

1

6

〈
T(J )†20

〉
(3 cos2Θγ −1)

− Im
{〈

T(J )†22

〉}
sin2Θγ sin 2Φγ

+ Im
{〈

T(J )†21

〉}
sin 2Θγ sinΦγ

)]
,

(7.81)

where

C = e2ω4

2πc3

∣∣〈J f ‖r‖J〉∣∣2 (−1)J−J f (7.82)

Θy
θ

e–, k 0

z

x

y

Φy

hv

e–, k1

Fig. 7.2 Geometry of electron–photon coincidence experi-
ments

n̂

Φy

z

x

y

n

Photon
detector

ê2

ê1

Θy

Fig. 7.3 Definition of the Stokes parameters: Photons are
observed in a direction n̂ with polar angles (Θγ ,Φγ ) in the
collision system. The three unit vectors (n̂, ê1, ê2) define
the helicity system of the photons, ê1 = (Θγ +90◦, Φγ )
lies in the plane spanned by n̂ and ẑ and is perpendicular
to n̂ while ê2 = (Θγ ,Φγ +90◦) is perpendicular to both
n̂ and ê1. In addition to the circular polarization P3, the
linear polarizations P1 and P2 are defined with respect to
axes in the plane spanned by ê1 and ê2. Counting from the
direction of ê1, the axes are located at (0◦, 90◦) for P1 and
at (45◦, 135◦) for P2, respectively

is a constant containing the frequency ω of the tran-
sition as well as the reduced radial dipole matrix
element.

Similarly, the product of the intensity I and the cir-
cular light polarization P3 can be written in terms of
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state multipoles as

(
I · P3

)(
Θγ ,Φγ

)= −C

{
1 1 1

J J J f

}

×

(
Im

{〈
T(J )†11

〉}
2sinΘγ sinΦγ

−Re
{〈

T(J )†11

〉}
2sinΘγ cosΦγ

+ √
2
〈
T(J )†10

〉
cosΘγ

)
,

(7.83)

so that P3 can be calculated as

P3
(
Θγ ,Φγ

)= (
I · P3

)(
Θγ ,Φγ

)
/I
(
Θγ ,Φγ

)
.

(7.84)

Note that each state multipole gives rise to a character-
istic angular dependence in the formulas for the Stokes
parameters, and that perturbation coefficients may need
to be applied to deal, for example, with depolarization

effects due to internal or external fields. General formu-
las for P1 = η3 and P2 = η1 can be found in [7.8] and,
for both the natural and the collision systems, in [7.4].

As pointed out before, some of the state multipoles
may vanish, depending on the experimental arrange-
ment. A detailed analysis of the information contained
in the state multipoles and the generalized Stokes pa-
rameters (which are defined for specific values of the
projectile spin polarization) has been given by Ander-
sen and Bartschat [7.4, 17, 18]. They re-analyzed the
experiment performed by Sohn and Hanne [7.19] and
showed how the density matrix of the excited atomic
ensemble can be determined by a measurement of the
generalized Stokes parameters. In some cases, this will
allow for the extraction of a complete set of scatter-
ing amplitudes for the collision process. Such a “perfect
scattering experiment” has been called for by Beder-
son many years ago [7.20] and is now within reach
even for fairly complex excitation processes. The most
promising cases have been discussed by Andersen and
Bartschat [7.4, 17, 21].

7.7 Summary

The basic formulas dealing with density matri-
ces in quantum mechanics, with particular empha-
sis on reduced matrix theory and its applications
in atomic physics, have been summarized. More

details are given in the introductory textbooks
by Blum [7.2], Balashov et al. [7.3], Andersen
and Bartschat [7.4], and the references listed be-
low.
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Computationa8. Computational Techniques

Essential to all fields of physics is the ability to
perform numerical computations accurately and
efficiently. Whether the specific approach involves
perturbation theory, close coupling expansion,
solution of classical equations of motion, or fit-
ting and smoothing of data, basic computational
techniques such as integration, differentiation, in-
terpolation, matrix and eigenvalue manipulation,
Monte Carlo sampling, and solution of differen-
tial equations must be among the standard tool
kit.

This chapter outlines a portion of this tool
kit with the aim of giving guidance and or-
ganization to a wide array of computational
techniques. Having digested the present
overview, the reader is then referred to de-
tailed treatments given in many of the large
number of texts existing on numerical anal-
ysis and computational techniques [8.1–5],
and mathematical physics [8.6–10]. We
also summarize, especially in the sections
on differential equations and computa-
tional linear algebra, the role of software
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packages readily available to aid in implementing
practical solutions.

8.1 Representation of Functions

The ability to represent functions in terms of polynomi-
als or other basic functions is the key to interpolating
or fitting data, and to approximating numerically the
operations of integration and differentiation. In addi-
tion, using methods such as Fourier analysis, knowledge
of the properties of functions beyond even their inter-
mediate values, derivatives, and antiderivatives may be
determined (e.g., the “spectral” properties).

8.1.1 Interpolation

Given the value of a function f(x) at a set of points
x1, x2, . . . , xn , the function is often required at some
other values between these abscissae. The process
known as interpolation seeks to estimate these un-
known values by adjusting the parameters of a known

function to approximate the local or global behav-
ior of f(x). One of the most useful representations
of a function for these purposes utilizes the algebraic
polynomials, Pn(x)= a0+a1x+· · ·+an xn , where the
coefficients are real constants and the exponents are
nonnegative integers. The utility stems from the fact
that given any continuous function defined on a closed
interval, there exists an algebraic polynomial which
is as close to that function as desired (Weierstrass
Theorem).

One simple application of these polynomials is the
power series expansion of the function f(x) about some
point, x0, i. e.,

f(x)=
∞∑

k=0

ak(x− x0)
k . (8.1)
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A familiar example is the Taylor expansion in which the
coefficients are given by

ak = f (k)(x0)

k! , (8.2)

where f (k) indicates the kth derivative of the function.
This form, though quite useful in the derivation of formal
techniques, is not very useful for interpolation since it
assumes the function and its derivatives are known, and
since it is guaranteed to be a good approximation only
very near the point x0 about which the expansion has
been made.

Lagrange Interpolation
The polynomial of degree n−1 which passes through
all n points [x1, f(x1)], [x2, f(x2)], . . . , [xn, f(xn)] is
given by

P(x)=
n∑

k=1

f(xk)

n∏

i=1,i �=k

x− xi

xk − xi
(8.3)

=
n∑

k=1

f(xk)Lnk(x) , (8.4)

where Lnk(x) are the Lagrange interpolating polynomi-
als. Perhaps the most familiar example is that of linear
interpolation between the points [x1, y1 ≡ f(x1)] and
[x2, y2 ≡ f(x2)], namely,

P(x)= x− x2

x1− x2
y1+ x− x1

x2− x1
y2 . (8.5)

In practice, it is difficult to estimate the formal error
bound for this method, since it depends on knowledge
of the (n+1)th derivative. Alternatively, one uses iter-
ated interpolation in which successively higher order
approximations are tried until appropriate agreement is
obtained. Neville’s algorithm defines a recursive pro-
cedure to yield an arbitrary order interpolant from
polynomials of lower order. This method, and subtle re-
finements of it, form the basis for most “recommended”
polynomial interpolation schemes [8.3].

One important caution to bear in mind is that the
more points that are used in constructing the inter-
polant, and therefore the higher the polynomial order,
the greater will be the oscillation in the interpolating
function. This highly oscillating polynomial most likely
will not correspond more closely to the desired function
than polynomials of lower order, and, as a general rule
of thumb, fewer than six points should be used.

Cubic Splines
By dividing the interval of interest into a number of
subintervals and in each using a polynomial of only
modest order, one may avoid the oscillatory nature of
high-order (many-point) interpolants. This approach uti-
lizes piecewise polynomial functions, the simplest of
which is just a linear segment. However, such a straight
line approximation has a discontinuous derivative at the
data points – a property that one may wish to avoid
especially if the derivative of the function is also de-
sired – and which clearly does not provide a smooth
interpolant. The solution is therefore to choose the poly-
nomial of lowest order that has enough free parameters
(the constants a0, a1, . . . ) to satisfy the constraints that
the function and its derivative are continuous across the
subintervals, as well as specifying the derivative at the
endpoints x0 and xn .

Piecewise cubic polynomials satisfy these con-
straints, and have a continuous second derivative as
well. Cubic spline interpolation does not, however, guar-
antee that the derivatives of the interpolant agree with
those of the function at the data points, much less glob-
ally. The cubic polynomial in each interval has four
undertermined coeffitients,

Pi(x)= ai +bi(x− xi)+ ci(x− xi)
2+di(x− xi)

3

(8.6)

for i = 0, 1, . . . , n−1. Applying the constraints, a sys-
tem of equations is found which may be solved once the
endpoint derivatives are specified. If the second deriva-
tives at the endpoints are set to zero, then the result is
termed a natural spline and its shape is like that which
a long flexible rod would take if forced to pass through
all the data points. A clamped spline results if the first
derivatives are specified at the endpoints, and is usually
a better approximation since it incorporates more infor-
mation about the function (if one has a reasonable way
to determine or approximate these first derivatives).

The set of equations in the unknowns, along with
the boundary conditions, constitute a tridiagonal sys-
tem or matrix, and is therefore amenable to solution by
algorithms designed for speed and efficiency for such
systems (see Sect. 8.3; [8.1–3]). Other alternatives of
potentially significant utility are schemes based on the
use of rational functions and orthogonal polynomials.

Rational Function Interpolation
If the function which one seeks to interpolate has one or
more poles for real x, then polynomial approximations
are not good, and a better method is to use quotients of
polynomials, so-called rational functions. This occurs
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since the inverse powers of the dependent variable will
fit the region near the pole better if the order is large
enough. In fact, if the function is free of poles on the
real axis but its analytic continuation in the complex
plane has poles, the polynomial approximation may also
be poor. It is this property that slows or prevents the
convergence of power series. Numerical algorithms very
similar to those used to generate iterated polynomial
interpolants exist [8.1,3] and can be useful for functions
which are not amenable to polynomial interpolation.
Rational function interpolation is related to the method
of Padé approximation used to improve convergence of
power series, and which is a rational function analog of
Taylor expansion.

Orthogonal Function Interpolation
Interpolation using functions other than the algebraic
polynomials can be defined and are often useful.
Particularly worthy of mention are schemes based
on orthogonal polynomials since they play a cen-
tral role in numerical quadrature. A set of functions
φ1(x), φ2(x), . . . , φn(x) defined on the interval [a, b] is
said to be orthogonal with respect to a weight function
W(x) if the inner product defined by

〈
φi |φ j

〉=
b∫

a

φi(x)φ j(x)W(x)dx (8.7)

is zero for i �= j and positive for i = j. In this case, for
any polynomial P(x) of degree at most n, there exists
unique constants αk such that

P(x)=
n∑

k=0

αkφk(x) . (8.8)

Among the more commonly used orthogonal polynomi-
als are Legendre, Laguerre, and Chebyshev polynomials.

Chebyshev Interpolation
The significant advantages of employing a representa-
tion of a function in terms of Chebyshev polynomials,
Tk(x) [8.4, 6] for tabulations, recurrence formulas, or-
thogonality properties, etc. of these polynomials), i. e.,

f(x)=
∞∑

k=0

akTk(x) , (8.9)

stems from the fact that (i) the expansion rapidly con-
verges, (ii) the polynomials have a simple form, and (iii)
the polynomial approximates very closely the solution

of the minimax problem. This latter property refers to the
requirement that the expansion minimizes the maximum
magnitude of the error of the approximation. In partic-
ular, the Chebyshev series expansion can be truncated
so that for a given n it yields the most accurate approx-
imation to the function. Thus, Chebyshev polynomial
interpolation is essentially as “good” as one can hope to
do. Since these polynomials are defined on the interval
[−1, 1], if the endpoints of the interval in question are a
and b, the change of variable

y = x− 1
2 (b+a)

1
2 (b−a)

(8.10)

will effect the proper transformation. Press et al. [8.3],
for example, give convenient and efficient routines for
computing the Chebyshev expansion of a function.

8.1.2 Fitting

Fitting of data stands in distinction from interpolation
in that the data may have some uncertainty, and there-
fore, simply determining a polynomial which passes
through the points may not yield the best approximation
of the underlying function. In fitting, one is concerned
with minimizing the deviations of some model function
from the data points in an optimal or best fit manner.
For example, given a set of data points, even a low-
order interpolating polynomial might have significant
oscillation, when, in fact, if one accounts for the sta-
tistical uncertainties in the data, the best fit may be
obtained simply by considering the points to lie on
a line.

In addition, most of the traditional methods of
assigning this quality of best fit to a particular set
of parameters of the model function rely on the as-
sumption that the random deviations are described by
a Gaussian (normal) distribution. Results of physical
measurements, for example the counting of events, is
often closer to a Poisson distribution which tends (not
necessarily uniformly) to a Gaussian in the limit of
a large number of events, or may even contain “outliers”
which lie far outside a Gaussian distribution. In these
cases, fitting methods might significantly distort the pa-
rameters of the model function in trying to force these
different distributions to the Gaussian form. Thus, the
least squares and chi-square fitting procedures discussed
below should be used with this caveat in mind. Other
techniques, often termed “robust” [8.3, 11], should be
used when the distribution is not Gaussian, or replete
with outliers.
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Least Squares
In this common approach to fitting, we wish to
determine the m parameters al of some function
f(x; a1, a2, . . . , am) depending in this example on one
variable, x. In particular, we seek to minimize the sum
of the squares of the deviations

n∑

k=1

[y(xk)− f(xk; a1, a2, . . . , am)]
2 (8.11)

by adjusting the parameters, where the y(xk) are the n
data points. In the simplest case, the model function is
just a straight line, f(x; a1, a2)= a1x+a2. Elementary
multivariate calculus implies that a minimum occurs if

a1

n∑

k=1

x2
i +a2

n∑

k=1

xi =
n∑

k=1

xi yi , (8.12)

a1

n∑

k=1

xi +a2n =
n∑

k=1

yi , (8.13)

which are called the normal equations. Solution of these
equations is straightforward, and an error estimate of
the fit can be found [8.3]. In particular, variances may
be computed for each parameter, as well as measures
of the correlation between uncertainties and an overall
estimate of the “goodness of fit” of the data.

Chi-square Fitting
If the data points each have associated with them a dif-
ferent standard deviation, σk , the least square principle
is modified by minimizing the chi-square, defined as

χ2 ≡
n∑

k=1

[
yk − f(xk; a1, a2, . . . , am)

σk

]2

. (8.14)

Assuming that the uncertainties in the data points are
normally distributed, the chi-square value gives a mea-
sure of the goodness of fit. If there are n data points
and m adjustable parameters, then the probability that
χ2 should exceed a particular value purely by chance is

Q = Q

(
n−m

2
,
χ2

2

)
, (8.15)

where Q(a, x)= Γ(a, x)/Γ(a) is the incomplete gamma
function. For small values of Q, the deviations of the fit
from the data are unlikely to be by chance, and values
close to one are indications of better fits. In terms of the
chi-square, reasonable fits often have χ2 ≈ n−m.

Other important applications of the chi-square
method include simulation and estimating standard de-

viations. For example, if one has some idea of the actual
(i. e., non-Gaussian) distribution of uncertainties of the
data points, Monte Carlo simulation can be used to gen-
erate a set of test data points subject to this presumed
distribution, and the fitting procedure performed on the
simulated data set. This allows one to test the accu-
racy or applicability of the model function chosen. In
other situations, if the uncertainties of the data points
are unknown, one can assume that they are all equal to
some value, say σ , fit using the chi-square procedure,
and solve for the value of σ . Thus, some measure of
the uncertainty from this statistical point of view can be
provided.

General Least Squares
The least squares procedure can be generalized usually
by allowing any linear combination of basis functions to
determine the model function

f(x; a1, a2, . . . , am)=
m∑

l=1

alψl(x) . (8.16)

The basis functions need not be polynomials. Similarly,
the formula for chi-square can be generalized, and nor-
mal equations determined through minimization. The
equations may be written in compact form by defining
a matrix A with elements

Ai, j = ψ j(xi)

σi
, (8.17)

and a column vector B with elements

Bi = yi

σi
. (8.18)

Then the normal equations are [8.3]

m∑

j=1

αk ja j = βk , (8.19)

where

[α] = AT A , [β] = AT B , (8.20)

and a j are the adjustable parameters. These equations
may be solved using standard methods of computational
linear algebra such as Gauss–Jordan elimination. Diffi-
culties involving sensitivity to round-off errors can be
avoided by using carefully developed codes to perform
this solution [8.3]. We note that elements of the inverse
of the matrix α are related to the variances associated
with the free parameters and to the covariances relating
them.
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Statistical Analysis of Data
Data generated by an experiment, or perhaps from
a Monte Carlo simulation, have uncertainties due to
the statistical, or random, character of the processes by
which they are acquired. Therefore, one must be able
to describe statistically certain features of the data such
as their mean, variance and skewness, and the degree
to which correlations exist, either between one portion
of the data and another, or between the data and some
other standard or model distribution. A very readable
introduction to this type analysis has been given by
Young [8.12], while more comprehensive treatments are
also available [8.13].

8.1.3 Fourier Analysis

The Fourier transform takes, for example, a function of
time, into a function of frequency, or vice versa, namely

ϕ̃(ω)= 1√
2π

∞∫

−∞
ϕ(t)eiωt dt , (8.21)

ϕ(t)= 1√
2π

∞∫

−∞
ϕ̃(ω)e−iωt dω . (8.22)

In this case, the time history of the function ϕ(t)may be
termed the “signal” and ϕ̃(ω) the “frequency spectrum”.
Also, if the frequency is related to the energy by E = �ω,
one obtains an “energy spectrum” from a signal, and thus
the name spectral methods for techniques based on the
Fourier analysis of signals.

The Fourier transform also defines the relationship
between the spatial and momentum representations of
wave functions, i. e.,

ψ(x)= 1√
2π

∞∫

−∞
ψ̃(p)eipx dp , (8.23)

ψ̃(p)= 1√
2π

∞∫

−∞
ψ(x)e−ipx dx . (8.24)

Along with the closely related sine, cosine, and
Laplace transforms, the Fourier transform is an extraor-
dinarily powerful tool in the representation of functions,
spectral analysis, convolution of functions, filtering, and
analysis of correlation. Good introductions to these tech-
niques with particular attention to applications in physics
can be found in [8.6, 7, 14]. To implement the Fourier
transform numerically, the integral tranform pair can be

converted to sums

ϕ̃(ω j)= 1√
2N2π

2N−1∑

k=0

ϕ(tk)e
iω j tk , (8.25)

ϕ(tk)= 1√
2N2π

2N−1∑

j=0

ϕ̃(ω j)e
−iω j tk , (8.26)

where the functions are “sampled” at 2N points. These
equations define the discrete Fourier transform (DFT).
Two cautions in using the DFT are as follows.

First, if a continuous function of time that is sam-
pled at, for simplicity, uniformly spaced intervals,
(i. e., ti+1 = ti +∆), then there is a critical frequency
ωc = π/∆, known as the Nyquist frequency, which lim-
its the fidelity of the DFT of this function in that it
is aliased. That is, components outside the frequency
range −ωc to ωc are falsely transformed into this range
due to the finite sampling. This effect can be remedi-
ated by filtering or windowing techniques. If, however,
the function is bandwidth limited to frequencies smaller
than ωc, then the DFT does not suffer from this effect,
and the signal is completely determined by its samples.
Second, implementing the DFT directly from the above
equations would require approximately N2 multiplica-
tions to perform the Fourier transform of a function
sampled at N points. A variety of fast Fourier trans-
form (FFT) algorithms have been developed (e.g., the
Danielson–Lanczos and Cooley–Tukey methods) which
require only on the order of (N/2) log2 N multiplica-
tions. Thus, for even moderately large sets of points, the
FFT methods are indeed much faster than the direct im-
plementation of the DFT. Issues involved in sampling,
aliasing, and selection of algorithms for the FFT are
discussed in great detail, for example, in [8.3, 15, 16].

8.1.4 Approximating Integrals

Polynomial Quadrature
Definite integrals may be approximated through a pro-
cedure known as numerical quadrature by replacing the
integral by an appropriate sum, i. e.,

b∫

a

f(x)dx ≈
n∑

k=0

ak f(xk) . (8.27)

Most formulas for such approximation are based on the
interpolating polynomials described in Sect. 8.1.1, es-
pecially the Lagrange polynomials, in which case the
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coefficients ak are given by

ak =
b∫

a

Lnk(xk)dx . (8.28)

If first or second degree Lagrange polynomials are used
with a uniform spacing between the data points, one
obtains the trapezoidal and Simpson’s rules, i. e.,

b∫

a

f(x)dx ≈ δ

2
[ f(a)+ f(b)]+O

[
δ3 f (2)(ζ)

]
,

(8.29)

b∫

a

f(x)dx ≈ δ

3

[
f(a)+4 f

(
δ

2

)
+ f(b)

]

+O
[
δ5 f (4)(ζ)

]
, (8.30)

respectively, with δ= b−a, and for some ζ in [a, b].
Other commonly used formulas based on low-order

polynomials, and generally referred to as Newton–Cotes
formulas, are described and discussed in detail in numer-
ical analysis texts [8.1, 2]. Since potentially unwanted
rapid oscillations in interpolants may arise, it is gener-
ally the case that increasing the order of the quadrature
scheme too greatly does not generally improve the ac-
curacy of the approximation. Dividing the interval [a, b]
into a number of subintervals and summing the result
of application of a low-order formula in each subinter-
val is usually a much better approach. This procedure,
referred to as composite quadrature, may be combined
with choosing the data points at a nonuniform spacing,
decreasing the spacing where the function varies rapidly,
and increasing the spacing for economy where the func-
tion is smooth to construct an adaptive quadrature.

Gaussian Quadrature
If the function whose definite integral is to be ap-
proximated can be evaluated explicitly, then the data
points (abscissas) can be chosen in a manner in which
significantly greater accuracy may be obtained than us-
ing Newton–Cotes formulas of equal order. Gaussian
quadrature is a procedure in which the error in the
approximation is minimized owing to this freedom to
choose both data points (abscissas) and coefficients. By
utilizing orthogonal polynomials and choosing the ab-
scissas at the roots of the polynomials in the interval
under consideration, it can be shown that the coeffi-
cients may be optimally chosen by solving a simple set
of linear equations. Thus, a Gaussian quadrature scheme

approximates the definite integral of a function multipled
by the weight function appropriate to the orthogonal
polynomial being used as

b∫

a

W(x) f(x)dx ≈
n∑

k=1

ak f(xk) , (8.31)

where the function is to be evaluated at the abscissas
given by the roots of the orthogonal polynomial, xk.
In this case, the coefficients ak are often referred to
as “weights,” but should not be confused with the
weight function W(x) (Sect. 8.1.1). Since the Legen-
dre polynomials are orthogonal over the interval [−1, 1]
with respect to the weight function W(x) ≡ 1, this
equation has a particularly simple form, leading im-
mediately to the Gauss–Legendre quadrature. If f(x)
contains as a factor the weight function of another of
the orthogonal polynomials, the corresponding Gauss–
Laguerre or Gauss–Chebyshev quadrature should be
used.

The roots and coefficients have been tabulated [8.4]
for many common choices of the orthogonal polyno-
mials (e.g., Legendre, Laguerre, Chebyshev) and for
various orders. Simple computer subroutines are also
available which conveniently compute them [8.3]. Since
the various orthogonal polynomials are defined over dif-
ferent intervals, use of the change of variables such as
that given in (8.10) may be required. So, for Gauss–
Legendre quadrature we make use of the transformation

b∫

a

f(x) dx ≈ (b−a)

2

1∫

−1

f

(
(b−a)y+b+a

2

)
dy .

(8.32)

Other Methods
Especially for multidimensional integrals which can not
be reduced analytically to seperable or iterated integrals
of lower dimension, Monte Carlo integration may pro-
vide the only means of finding a good approximation.
This method is described in Sect. 8.4.3. Also, a conve-
nient quadrature scheme can easily be devised based on
the cubic spline interpolation described in Sect. 8.1.1.
since in each subinterval, the definite integral of a cubic
polynomial of known coefficients is evident.

8.1.5 Approximating Derivatives

Numerical Differentiation
The calculation of derivatives from a numerical repre-
sentaion of a function is generally less stable than the
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calculation of integrals because differentation tends to
enhance fluctuations and worsen the convergence prop-
erties of power series. For example, if f(x) is twice
continuously differentiable on [a, b], then differentia-
tion of the linear Lagrange interpolation formula (8.5)
yields

f (1)(x0)= f(x0+ δ)− f(x0)

δ
+O

[
δ f (2)(ζ)

]

(8.33)

for some x0 and ζ in [a, b], where δ = b−a. In the
limit δ→ 0, (8.33) coincides with the definition of the
derivative. However, in practical calculations with finite
precision arithmetic, δ cannot be taken too small because
of numerical cancellation in the calculation of f(a+δ)−
f(a).

In practice, increasing the order of the polynomial
used decreases the truncation error, but at the expense of
increasing round-off error, the upshot being that three-
and five-point approximations are usually most useful.
Various three- and five-point formulas are given in stan-
dard texts [8.2,4,17]. Two common five-point formulas

(centered and forward/backward) are

f (1)(x0)= 1

12δ

[
f(x0−2δ)−8 f(x0− δ)

+8 f(x0+ δ)− f(x0+2δ)
]

+O
[
δ4 f (5)(ζ)

]
(8.34)

f (1)(x0)= 1

12δ

[−25 f(x0)+48 f(x0+ δ)
−36 f(x0+2δ)+16 f(x0+3δ)

−3 f(x0+4δ)
]+O

[
δ4 f (5)(ζ)

]
. (8.35)

The second formula is useful for evaluating the deriva-
tive at the left or right endpoint of the interval, depending
on whether δ is positive or negative, respectively.

Derivatives of Interpolated Functions
An interpolating function can be directly differentiated
to obtain the derivative at any desired point. For example,
if f(x) ≈ a0+a1x+a2x2, then f (1)(x) = a1+2a2x.
However, this approach may fail to give the best ap-
proximation to f (1)(x) if the original interpolation was
optimized to give the best possible representaion of f(x).

8.2 Differential and Integral Equations

The subject of differential and integral equations is
immense in both richness and scope. The discussion
here focuses on techniques and algorithms, rather than
the formal aspect of the theory. Further information
can be found elsewhere under the broad catagories of
finite element and finite difference methods. The Nu-
merov method, which is particularly useful in integrating
the Schrödinger equation, is described in great detail
in [8.8].

8.2.1 Ordinary Differential Equations

An ordinary differential equation is an equation in-
volving an unknown function and one or more of its
derivatives that depends on only one independent vari-
able [8.18]. The order of a differential equation is the
order of the highest derivative appearing in the equation.
A solution of a general differential equation of order n,

f
(

t, y, ẏ, . . . , y(n)
)
= 0 , (8.36)

is a real-valued function y(t) having the following prop-
erties: (1) y(t) and its first n derivatives exist, so y(t) and
its first n−1 derivatives must be continuous, and (2)
y(t) satisfies the differential equation for all t. A unique

solution requires the specification of n conditions on
y(t) and its derivatives. The conditions may be speci-
fied as n initial conditions at a single t to give an initial
value problem, or at the end points of an interval to give
a boundary value problem.

Consider first solutions to the simple equation

ẏ = f(t, y) , y(a)= A . (8.37)

The methods discussed below can easily be ex-
tended to systems of first-order differential equations
and to higher-order differential equations. The meth-
ods are referred to as discrete variable methods
and generate a sequence of approximate values for
y(t), y1, y2, y3, . . . at points t1, t2, t3, . . . . For simplic-
ity, the discussion assumes a constant spacing h between
t points. We shall first describe a class of methods known
as one-step methods [8.19]. They have no memory of the
solutions at past times; given yi , there is a recipe for yi+1
that depends only on information at ti . Errors enter into
numerical solutions from two sources. The first is dis-
cretization error and depends on the method being used.
The second is computational error which includes such
things as round off error.
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For a solution on the interval [a, b], let the t points
be equally spaced; so for some positive integer n and
h = (b−a)/n, ti = a+ ih, i = 0, 1, . . . , n. If a< b, h
is positive and the integration is forward; if a> b, h is
negative and the integration is backward. The latter case
could occur in solving for the initial point of a solu-
tion curve given the terminal point. A general one-step
method can then be written in the form

yi+1 = yi +h∆(ti , yi) , y0 = y(t0) , (8.38)

where ∆ is a function that characterizes the method.
Different ∆ functions are displayed, giving rise to the
Taylor series methods and the Runge–Kutta methods.

Taylor Series Algorithm
To obtain an approximate solution of order p on [a, b],
generate the sequence

yi+1 = yi +h

[
f(ti , yi)+· · ·

+ f (p−1)(ti , yi)
h p−1

p!
]
,

ti+1 = ti +h, i = 0, 1, . . . , n−1 (8.39)

where t0 = a and y0 = A. The Taylor method of order
p = 1 is known as Euler’s method:

yi+1 = yi +h f(ti , yi) ,

ti+1 = ti +h . (8.40)

Taylor series methods can be quite effective if the total
derivatives of f are not too difficult to evaluate. Software
packages are available that perform exact differentiation,
(ADIFOR, MAPLE, MATHEMATICA, etc.) facilitating
the use of this approach.

Runge–Kutta Methods
Runge–Kutta methods are designed to approximate Tay-
lor series methods [8.20], but have the advantage of
not requiring explicit evaluations of the derivatives of
f(t, y). The basic idea is to use a linear combination of
values of f(t, y) to approximate y(t). This linear combi-
nation is matched up as closely as possible with a Taylor
series for y(t) to obtain methods of the highest possi-
ble order p. Euler’s method is an example using one
function evaluation.

To obtain an approximate solution of order p = 2,
let h = (b−a)/n and generate the sequences

yi+1 = yi +h

[
(1−γ) f(ti, yi)

+ γ f

[
ti + h

2γ
, yi + h

2γ
f(ti , yi)

]]
,

ti+1 = ti +h , i = 0, 1, . . . , n−1 , (8.41)

where γ �= 0, t0 = a, y0 = A.
Euler’s method is the special case, γ = 0, and has

order 1; the improved Euler method has γ = 1/2 and the
Euler–Cauchy method has γ = 1.

The Adams–Bashforth and Adams–Moulton
Formulas

These formulas furnish important and widely-used
examples of multistep methods [8.21]. On reach-
ing a mesh point ti with approximate solution
yi ∼= y(ti), there are (usually) available approximate
solutions yi+1− j ∼= y(ti+1− j) for j = 2, 3, . . . , p. From
the differential equation itself, approximations to the
derivatives ẏ(ti+1− j) can be obtained.

An attractive feature of the approach is the form of
the underlying polynomial approximation, P(t), to ẏ(t)
because it can be used to approximate y(t) between mesh
points

y(t)∼= yi +
t∫

ti

P(t) dt . (8.42)

The lowest-order Adams–Bashforth formula arises
from interpolating the single value fi = f(ti , yi) by P(t).
The interpolating polynomial is constant so its integra-
tion from ti to ti+1 results in h f(ti , yi) and the first order
Adams–Bashforth formula:

yi+1 = yi +h f(ti , yi) . (8.43)

This is just the forward Euler formula. For constant step
size h, the second-order Adams–Bashforth formula is

yi+1 = yi +h

[(
3

2

)
f(ti , yi)−

(
1

2

)
f(ti−1, yi−1)

]
.

(8.44)

The lowest-order Adams–Moulton formula involves
interpolating the single value fi+1 = f(xi+1, yi+1) and
leads to the backward Euler formula

yi+1 = yi +h f (ti+1, yi+1) , (8.45)

which defines yi+1 implicitly. From its definition it is
clear that it has the same accuracy as the forward Eu-
ler method; its advantage is vastly superior stability. The
second-order Adams–Moulton method also does not use
previously computed solution values; it is called the
trapezoidal rule because it generalizes the trapezoidal
rule for integrals to differential equations:

yi+1 = yi + h

2

[
f(ti+1, yi+1)+ f(ti, yi)

]
. (8.46)
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The Adams–Moulton formula of order p is more ac-
curate than the Adams–Bashforth formula of the same
order, so that it can use a larger step size; the Adams–
Moulton formula is also more stable. A code based on
such methods is more complex than a Runge–Kutta code
because it must cope with the difficulties of starting the
integration and changing the step size. Modern Adams
codes attempt to select the most efficient formula at
each step, as well as to choose an optimal step size h to
achieve a specified accuracy.

8.2.2 Differencing Algorithms for Partial
Differential Equations

The modern approach to evolve differencing schemes
for most physical problems is based on flux con-
servation methods [8.22]. One begins by writing the
balance equations for a single cell, and subsequently
applying quadratures and interpolation formulas. Such
approaches have been successful for the full spectrum
of hyperbolic, elliptic, and parabolic equations. For sim-
plicity, we begin by discussing systems involving only
one space variable.

As a prototype, consider the parabolic equation

c
∂

∂t
u(x, t)= σ ∂

2

∂x2 u(x, t) , (8.47)

where c and σ are constants and u(x, t) is the solu-
tion. We begin by establishing a grid of points on the
xt-plane with step size h in the x direction and step size
k in the t-direction. Let spatial grid points be denoted
by xn = x0+nh and time grid points by t j = t0+ jk,
where n and j are integers and (x0, t0) is the origin of
the space–time grid. The points ξn−1 and ξn are intro-
duced to establish a “control interval”. We begin with
a conservation statement

ξn∫

ξn−1

dx
[
r(x, t j+1)−r(x, t j)

]

=
t j+1∫

t j

dt [q(ξn−1, t)−q(ξn, t)] . (8.48)

This equation states that the change in the field density
on the interval (ξn−1, ξn) from time t = t j to time t =
t j+1 is given by the flux into this interval at ξn−1 minus
the flux out of the interval at ξn from time t j to time
t j+1. This expresses the conservation of material in the
case that no sources or sinks are present. We relate the
field variable u to the physical variables (the density r

and the flux q). We consider the case in which density
is assumed to have the form

r(x, t)= cu(x, t)+b (8.49)

with c and b constants, thus

c

ξn∫

ξn−1

dx
[
u(x, t j+1)−u(x, t j)

]

≈ c[u(xn, t j+1)−u(xn, t j)]h . (8.50)

When developing conservation law equations, there are
two commonly used strategies for approximating the
right-hand-side of (8.48): (i) left end-point quadrature

t j+1∫

t j

dt
[
q(ξn−1, t)−q(ξn, t)

]

≈ [
q(ξn−1, t j)−q(ξn, t j)

]
k , (8.51)

and (ii) right end-point quadrature

t j+1∫

t j

dt
[
q(ξn−1, t)−q(ξn, t)

]

≈ [
q(ξn−1, t j+1)−q(ξn, t j+1)

]
k . (8.52)

Combining (8.48) with the respective approxima-
tions yields: from (i) an explicit method

c
[
u(xn, t j+1)−u(xn, t j)

]
h

≈ [
q(ξn−1, t j)−q(ξn, t j)

]
k , (8.53)

and from (ii) an implicit method

c
[
u(xn, t j+1)−u(xn, t j)

]
h

≈ [
q(ξn−1, t j+1)−q(ξn, t j+1)

]
k . (8.54)

Using centered finite difference formulas to approx-
imate the fluxes at the control points ξn−1 and ξn yields

q(ξn−1, t j)=−σ u(xn, t j)−u(xn−1, t j)

h
, (8.55)

and

q(ξn, t j)=−σ u(xn+1, t j)−u(xn, t j)

h
(8.56)

where σ is a constant. We also obtain similar formulas
for the fluxes at time t j+1.
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We have used a lower case u to denote the continuous
field variable, u = u(x, t). Note that all of the quadra-
ture and difference formulas involving u are stated as
approximate equalities. In each of these approximate
equality statements, the amount by which the right side
differs from the left side is called the truncation error. If
u is a well-behaved function (has enough smooth deriva-
tives), then it can be shown that these truncation errors
approach zero as the grid spacings, h and k, approach
zero.

If U j
n denotes the exact solution on the grid, we have

from (i) the result

c
(

U j+1
n −U j

n

)
h2 = σk

(
U j

n−1+U j
n+1−2U j

n

)
.

(8.57)

This is an explicit method since it provides the solution
to the difference equation at time t j+1, knowing the
values at time t j .

If we use the numerical approximations (ii) we
obtain the result

c
(

U j+1
n −U j

n

)
h2 = σk

(
U j+1

n−1 +U j+1
n+1 −2U j+1

n

)
.

(8.58)

Note that this equation defines the solution at time
t j+1 implicitly, since a system of algebraic equations
is required to be satisfied.

8.2.3 Variational Methods

Perhaps the most widely used approximation procedures
in AMO physics are the variational methods. We shall
outline in detail the Rayleigh–Ritz method [8.23]. This
method is limited to boundary value problems which can
be formulated in terms of the minimization of a func-
tional J[u]. For definiteness we consider the case of
a differential operator defined by

Lu(x)= f(x) (8.59)

with x= xi , i = 1, 2, 3 in R, for example, and with u = 0
on the boundary of R. The function f(x) is the source. It
is assumed that L is always nonsingular and in addition,
for the Ritz method L is Hermitian. The real-valued
functions u are in the Hilbert spaceΩ of the operator L .
We construct the functional J[u] defined as

J[u] =
∫

Ω

dx [u(x)Lu(x)−2u(x) f(x)] . (8.60)

The variational ansatz considers a subspace of Ω, Ωn ,
spanned by a class of functions φn(x), and we construct
the function un ≈ u

un(x)=
n∑

i=1

ciφi(x) . (8.61)

We solve for the coefficients ci by minimizing J[un]

∂ci J[un] = 0 , i = 1, . . . , n . (8.62)

These equations are simply cast into a set of well-
behaved algebraic equations

n∑

j=1

Ai, j c j = gi , i = 1, . . . , n , (8.63)

with Ai, j =
∫
Ω

dxφi(x)Lφ j(x), and gi =
∫
Ω

dxφi(x)
f(x). Under very general conditions, the functions un

converge uniformly to u. The main drawback of the Ritz
method is in the assumption of Hermiticity of the opera-
tor L . For the Galerkin Method we relax this assumption
with no other changes. Thus we obtain an identical set
of equations, as above with the exception that the func-
tion g is no longer symmetric. The convergence of the
sequence of solutions un to u is no longer guaranteed,
unless the operator can be separated into a symmetric
part L0, L = L0+K so that L−1

0 K is bounded.

8.2.4 Finite Elements

As discussed in Sect. 8.2.2, in the finite difference
method for classical partial differential equations, the
solution domain is approximated by a grid of uniformly
spaced nodes. At each node, the governing differen-
tial equation is approximated by an algebraic expression
which references adjacent grid points. A system of equa-
tions is obtained by evaluating the previous algebraic
approximations for each node in the domain. Finally,
the system is solved for each value of the dependent
variable at each node.

In the finite element method [8.24], the solution
domain can be discretized into a number of uniform
or nonuniform finite elements that are connected via
nodes. The change of the dependent variable with re-
gard to location is approximated within each element by
an interpolation function. The interpolation function is
defined relative to the values of the variable at the nodes
associated with each element. The original boundary
value problem is then replaced with an equivalent in-
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tegral formulation. The interpolation functions are then
substituted into the integral equation, integrated, and
combined with the results from all other elements in the
solution domain.

The results of this procedure can be reformulated
into a matrix equation of the form

n∑

j=1

Ai, j c j = gi , i = 1, . . . , n , (8.64)

with Ai, j =
∫
Ω

dxφi(x)Lφ j(x), and gi =
∫
Ω

dxφi(x)
f(x) exactly as obtained in Sect. 8.2.3. The only dif-
ference arises in the definitions of the support functions
φi(x). In general, if these functions are piecewise poly-
nomials on some finite domain, they are called finite
elements or splines. Finite elements make it possible to
deal in a systematic fashion with regions having curved
boundaries of an arbitrary shape. Also, one can system-
atically estimate the accuracy of the solution in terms of
the parameters that label the finite element family, and
the solutions are no more difficult to generate than more
complex variational methods.

In one space dimension, the simplest finite element
family begins with the set of step functions defined by

φi(x)=
⎧
⎨

⎩
1 xi−1 ≤ x ≤ xi

0 otherwise .
(8.65)

The use of these simple “hat” functions as a basis
provides no advantage over the usual finite differ-
ence schemes. However, for certain problems in two
or more dimensions, finite element methods have dis-
tinct advantages over other methods. Generally, the
use of finite elements requires complex, sophisticated
computer programs for implementation. The use of
higher-order polynomials, commonly called splines, as
a basis has been extensively used in atomic and mo-
lecular physics. An extensive literature is available
[8.25, 26].

We illustrate the use of the finite element method
by applying it to the Schrödinger equation. In this
case, the linear operator L is H− E where, as usual,
E is the energy and the Hamiltonian H is the sum
of the kinetic and potential energies, that is, L = H−
E = T +V − E and Lu(x)= 0. We define the finite
elements through support points, or knots, given by
the sequence {x1, x2, x3, . . . } which are not necessarily
spaced uniformly. Since the “hat” functions have van-
ishing derivatives, we employ the next more complex
basis, i. e., “tent” functions, which are piecewise linear

functions given by

φi(x)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x− xi−1

xi − xi−1
xi−1 ≤ x ≤ xi

xi+1− x

xi+1− xi
xi ≤ x ≤ xi+1

0 otherwise ,

(8.66)

and for which the derivative is given by

d

dx
φi(x)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

xi − xi−1
xi−1 ≤ x ≤ xi

−1

xi+1− xi
xi ≤ x ≤ xi+1

0 otherwise .

(8.67)

The functions have a maximum value of one at the
midpoint of the interval [xi−1, xi+1], with partially over-
lapping adjacent elements. In fact, the overlaps may be
represented by a matrix O with elements

Oij =
∞∫

−∞
dx φi(x)φ j(x) . (8.68)

Thus, if i = j

Oii =
xi∫

xi−1

dx
(x− xi−1)

2

(xi − xi−1)2
+

xi+1∫

xi

dx
(x− xi)

2

(xi+1− xi)2

= 1

3
(xi+1− xi−1) , (8.69)

if i = j−1

Oij =
xi+1∫

xi

dx
(x− xi)(xi+1− x)

(xi+1− xi)2

= 1

6
(xi+1− xi) , (8.70)

if i = j+1

Oij =
xi∫

xi−1

dx
(x− xi−1)(xi − x)

(xi − xi−1)2

= 1

6
(xi − xi−1) , (8.71)

and Oij = 0 otherwise.
The potential energy is represented by the matrix

Vij =
∞∫

−∞
dx φi(x)V(x)φ j(x) , (8.72)
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which may be well approximated by

Vij ≈ V(xi)

∞∫

−∞
dx φi(x)φ j(x) (8.73)

= V(xi)Oij

if x j − xi is small. The kinetic energy, T =− 1
2 d2/dx2,

is similarly given by

Tij =−1

2

∞∫

−∞
dxφi(x)

d2

dx2
φ j(x) , (8.74)

which we compute by integrating by parts since the tent
functions have a singular second derivative

Tij = 1

2

∞∫

−∞
dx

(
d

dx
φi(x)

)(
d

dx
φ j(x)

)
, (8.75)

which in turn is evalutated to yield

Tij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi+1− xi−1

2(xi − xi−1)(xi+1− xi)
i = j

1

2(xi − xi+1)
i = j−1

1

2(xi−1− xi)
i = j+1

0 otherwise .
(8.76)

Finally, since the Hamiltonian matrix is Hij = Tij +Vij ,
the solution vector ui(x) may be found by solving the
eigenvalue equation

[Hij − EOij ]ui(x)= 0 . (8.77)

8.2.5 Integral Equations

Central to much of practical and formal scattering theory
is the integral equation and techniques of its solution.
For example, in atomic collision theory, the Schrödinger
differential equation

[E−H0(r)]ψ(r)= V(r)ψ(r) (8.78)

where the Hamiltonian H0 ≡−(�2/2m)∇2+V0 may
be solved by exploiting the solution for a delta function
source, i. e.,

(E−H0)G(r, r ′)= δ(r−r ′) . (8.79)

In terms of this Green’s function G(r, r ′, and any
solution χ(r) of the homogeneous equation [i. e. with
V(r)= 0], the general solution is

ψ(r)= χ(r)+
∫

dr ′ G(r, r ′)V(r ′)ψ(r ′) (8.80)

for which, given a choice of the functions G(r, r ′) and
χ(r), particular boundary conditions are determined.
This integral equation is the Lippmann–Schwinger equa-
tion of potential scattering. Further topics on scattering
theory are covered in other chapters (see especially
Chapts. 47 to 58) and in standard texts such as those
by Joachain [8.27], Rodberg and Thaler [8.28], and
Goldberger and Watson [8.29]. Owing especially to the
wide variety of specialized techniques for solving inte-
gral equations, we survey briefly only a few of the most
widely applied methods.

Integral Transforms
Certain classes of integral equations may be solved us-
ing integral transforms such as the Fourier or Laplace
transforms. These integral transforms typically have the
form

f(x)=
∫

dx′ K(x, x′)g(x′) , (8.81)

where f(x) is the integral transform of g(x′) by the ker-
nel K(x, x′). Such a pair of functions is the solution
of the Schrödinger equation (spatial wave function) and
its Fourier transform (momentum representation wave
function). Arfken [8.6], Morse and Feshbach [8.9], and
Courant and Hilbert [8.10] give other examples, as well
as being excellent references for the application of in-
tegral equations and Green’s functions in mathematical
physics. In their analytic form, these transform methods
provide a powerful method of solving integral equa-
tions for special cases, and, in addition, they may be
implemented by performing the transform numerically.

Power Series Solution
For an equation of the form (in one dimension for
simplicity)

ψ(r)= χ(r)+λ
∫

dr ′ K(r, r ′)ψ(r ′) , (8.82)

a solution may be found by iteration. That is, as a first
approximation, set ψ0(r)= χ(r) so that

ψ1(r)= χ(r)+λ
∫

dr ′ K(r, r ′)χ(r ′) . (8.83)
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This may be repeated to form a power series solution,
i. e.,

ψn(r)=
n∑

k=0

λk Ik(r) , (8.84)

where

I0(r)= χ(r) , (8.85)

I1(r)=
∫

dr ′ K(r, r ′)χ(r ′) , (8.86)

I2(r)=
∫

dr ′′
∫

dr ′ K(r, r ′)K(r ′, r ′′)χ(r ′′) ,

(8.87)

In(r)=
∫

dr ′ · · ·
∫

dr(n) K(r, r ′)K(r, r ′′)

· · · K(r(n−1), r(n)) . (8.88)

If the series converges, then the solution ψ(r) is
approached by the expansion. When the Schrödinger
equation is cast as an integral equation for scattering in
a potential, this iteration scheme leads to the Born series,
the first term of which is the incident, unperturbed wave,
and the second term is usually referred to simply as the
Born approximation.

Separable Kernels
If the kernel is separable, i. e.,

K(r, r ′)=
n∑

k=1

fk(r)gk(r
′) , (8.89)

where n is finite, then substitution into the prototype
integral equation (8.82) yields

ψ(r)= χ(r)+λ
n∑

k=1

fk(r)
∫

dr ′ g(r ′)ψ(r ′) . (8.90)

Multiplying by fk(r), integrating over r, and rearrang-
ing, yields the set of algebraic equations

c j = b j +λ
n∑

k=1

a jkck , (8.91)

where

ck =
∫

dr ′gk(r
′)ψ(r ′) , (8.92)

bk =
∫

dr fk(r)χ(r) , (8.93)

a jk =
∫

drg j(r) fk(r) , (8.94)

or, if c and b denote vectors, and A denotes the matrix
of constants a jk ,

c = (1−λA)−1b . (8.95)

The eigenvalues are the roots of the determinantal equa-
tion. Substituting these into (1−λA)c = 0 yields the
constants ck which determine the solution of the original
equation. This derivation may be found in Arfken [8.6],
along with an explicit example. Even if the kernel is
not exactly separable, if it is approximately so, then this
procedure can yield a result which can be substituted
into the original equation as a first step in an iterative
solution.

Numerical Integration
Perhaps the most straightforward method of solving an
integral equation is to apply a numerical integration for-
mula such as Gaussian quadrature. An equation of the
form

ψ(r)=
∫

dr ′ K(r, r ′)χ(r ′) (8.96)

can be approximated as

ψ(r j)=
n∑

k=1

wk K(r j , r
′
k)χ(rk) , (8.97)

where wk are quadrature weights, if the kernel is well
behaved. However, such an approach is not without pit-
falls. In light of the previous subsection, this approach
is equivalent to replacing the integral equation by a set
of algebraic equations. In this example we have

ψ j =
n∑

k=1

M jkχk , (8.98)

so that the solution of the equation is found by inverting
the matrix M. Since there is no guarantee that this matrix
is not ill-conditioned, the numerical procedure may not
produce meaningful results. In particular, only certain
classes of integral equations and kernels will lead to
stable solutions.

Having only scratched the surface regarding the very
rich field of integral equations, the interested reader is
encouraged to explore the references given here.

Part
A

8
.2



148 Part A Mathematical Methods

8.3 Computational Linear Algebra

Previous sections of this chapter have dealt with
interpolation, differential equations, and related top-
ics. Generally, discretization methodologies lead to
classes of algebraic equations. In recent years enor-
mous progress has been made in developing algorithms
for solving linear algebraic equations, and many very
good books have been written on this topic [8.30].
Furthermore, a large body of numerical software is
freely available via an electronic service called Netlib
(www.netlib.org). In addition to the widely adopted
numerical linear algebra packages LAPACK, ScaLA-
PACK, ARPACK, etc., there are dozens of other
libraries, technical reports on various parallel computers
and software, test data, facilities to automatically trans-
late Fortran programs to C, bibliographies, names and
addresses of scientists and mathematicians, and so on.

Here we discuss methods for solving systems of
equations such as

a11x1+a12x2+· · ·+a1n xn = b1 ,

a21x1+a22x2+· · ·+a2n xn = b2 ,

...

am1x1+am2x2+· · ·+amn xn = bm . (8.99)

In these equations aij and bi form the set of known
quantities, and the xi must be determined. The solu-
tion to these equations can found if they are linearly
independent. Numerically, problems can arise due to
truncation and roundoff errors that lead to an approx-
imate linear dependence [8.31]. In this case the set of
equations are approximately singular and special meth-
ods must be invoked. Much of the complexity of modern
algorithms comes from minimizing the effects of such
errors. For relatively small sets of nonsingular equa-
tions, direct methods in which the solution is obtained
after a definite number of operations can work well.
However, for very large systems iterative techniques are
preferable [8.32].

A great many algorithms are available for solving
(8.99), depending on the structure of the coefficients. For
example, if the matrix of coefficients A is dense, using
Gaussian elimination takes 2n3/3 operations; if A is
also symmetric and positive definite, using the Cholesky
algorithm takes a factor of two fewer operations. If A
is triangular, i. e., either zero above the diagonal or zero
below the diagonal, we can solve the above by simple
substitution in only n2 operations. For example, if A
arises from solving certain elliptic partial differential

equations, such as Poisson’s equation, then Ax = b can
be solved using multigrid methods in only n operations.

We shall outline below how to solve (8.99) us-
ing elementary Gaussian elimination. More advanced
methods, such as conjugate gradient, generalized min-
imum residuals, and the Lanczos method are treated
elsewhere [8.33].

To solve Ax = b, we first use Gaussian elimination
to factor the matrix A as PA= LU , where L is lower tri-
angular, U is upper triangular, and P is a matrix which
permutes the rows of A. Then we solve the triangular sys-
tem Ly = Pb and Ux = y. These last two operations are
easily performed using standard linear algebra libraries.
The factorization PA= LU takes most of the time. Re-
ordering the rows of A with P is called pivoting and is
necessary for numerical stability. In the standard partial
pivoting scheme, L has ones on its diagonal and other
entries bounded in absolute value by one. The simplest
version of Gaussian elimination involves adding multi-
ples of one row of A to others to zero out subdiagonal
entries, and overwriting A with L and U .

We first describe the decomposition of PA into
a product of upper and lower triangular matrices,

A′ = LU , (8.100)

where the matrix A′ is defined by A′ = PA. A very nice
algorithm for pivoting is given in [8.3] and will not be
discussed further. Writing out the indices,

A′ij =
min(i, j)∑

k=1

LikUk j . (8.101)

We shall make the choice

Lii = 1 . (8.102)

These equations have the remarkable property that
the elements A′ij of each row can be scanned in turn,
writing Lij and Uij into the locations A′ij as we go.
At each position (i, j), only the current A′ij and already-
calculated values of Li ′ j ′ and Ui ′ j ′ are required. To see
how this works, consider the first few rows. If i = 1,

A′1 j = U1 j , (8.103)

defining the first row of L and U . The U1 j are written
over the A′1 j , which are no longer needed. If i = 2,

A′21 = L21U11 , j = 1

A′2 j = L21U1 j +U2 j , j ≥ 2 . (8.104)
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The first line gives L21, and the second U2 j , in terms of
existing elements of L and U . The U2 j and L21 are writ-
ten over the A′2 j . (Remember that Lii = 1 by definition.)
If i = 3,

A′31 = L31U11 , j = 1

A′32 = L31U12+ L32U22 , j = 2

A′3 j = L31U1 j + L32U2 j +U3 j , j ≥ 3 , (8.105)

yielding in turn L31,L32, and U3 j , which are written
over A′3 j .

The algorithm should now be clear. At the ith row

Lij =U−1
jj

⎛

⎝A′ij −
j−1∑

k=1

LikUk j

⎞

⎠ , j ≤ i−1

Uij = A′ij −
i−1∑

k=1

LikUk j , j ≥ i . (8.106)

We observe from the first line of these equations that
the algorithm may run into numerical inaccuracies if
any U jj becomes very small. Now U11 = A′11, while in
general Uii = A′ii −· · · . Thus the absolute values of the
Uii are maximized if the rows are rearranged so that the
absolutely largest elements of A′ in each column lie on
the diagonal. A little thought shows that the solutions
are unchanged by permuting the rows (same equations,
different order).

The LU decomposition can now be used to solve the
system. This relies on the fact that the inversion of a tri-
angular matrix is a simple process of back substitution.
We replace ((8.99)) by two systems of equations. Writ-
ten out in full, the equations for a typical column of y
look like

L11 y1 = b′1 ,
L21 y1+ L22 y2 = b′2 ,

L31 y1+ L32 y2+ L33 y3 = b′3 ,
... , (8.107)

where the vector b′ is p′ = Pb. Thus from successive
rows we obtain y1, y2, y3, . . . in turn

U11x1 = y1 ,

U12x1+U22x2 = y2 ,

U13x1+U23x2+U33x3 = y3 ,

... , (8.108)

and from successive rows of the latter we obtain
x1, x2, x3, . . . in turn.

Library software also exists for evaluating all the
error bounds for dense and band matrices (see discussion
of Netlib in above). Gaussian elimination with pivoting
is almost always numerically stable, so the error bound
one expects from solving these equations is of the order
of nε, where ε is related to the condition number of the
matrix A. A good discussion of errors and conditioning
is given in [8.3].

8.4 Monte Carlo Methods

Owing to the continuing rapid development of computa-
tional facilities and the ever-increasing desire to perform
ab initio calcalutions, the use of Monte Carlo methods is
becoming widespread as a means to evaluate previously
intractable multidimensional integrals and to enable
complex modeling and simulation. For example, a wide
range of applications broadly classified as Quantum
Monte Carlo have been used to compute, for example,
the ground state eigenfunctions of simple molecules.
Also, guided random walks have found application in
the computation of Green functions, and variables cho-
sen randomly, subject to particular constaints, have been
used to mimic the electronic distribution of atoms.
The latter application, used in the classical trajectory
Monte Carlo technique described in Chapt. 58, allows
the statistical quasiquantal representation of ion–atom
collisions.

Here we summarize the basic tools needed in these
methods, and how they may be used to produce specific
distributions and make tractable the evaluation of mul-
tidimensional integrals with complicated boundaries.
Detailed descriptions of these methods can be found
in [8.3, 8, 34].

8.4.1 Random Numbers

An essential ingredient of any Monte Carlo procedure
is the availability of a computer-generated sequence
of random numbers which is not periodic and is free
of other significant statistical correlations. Often such
numbers are termed pseudorandom or quasirandom, in
distinction to truly random physical processes. While
the quality of random number generators supplied with
computers has greatly improved over time, it is impor-
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tant to be aware of the potential dangers which can
be present. For example, many systems are supplied
with a random number generator based on the linear
congruential method. Typically a sequence of integers
n1, n2, n3, . . . is first produced between 0 and N −1 by
using the recurrence relation

ni+1 = (ani +b) mod N , 0 ≤ i < N −1
(8.109)

where a, b, N and the seed value n0 are positive inte-
gers. Real numbers between 0 and (strictly) 1 are then
obtained by dividing by N . The period of this sequence
is at most N , and depends on the judicious choice of
the constants, with N being limited by the wordsize of
the computer. A user who is unsure that the character of
the random numbers generated on a particular computer
platform is proper can perform additional randomizing
shuffles or use a portable random number generator, both
procedures being described in detail by Knuth [8.5] and
Press et al. [8.3], for example.

8.4.2 Distributions of Random Numbers

Most distributions of random numbers begin with se-
quences generated uniformly between a lower and an
upper limit, and are therefore called uniform deviates.
However, it is often useful to draw the random numbers
from other distributions, such as the Gaussian, Poisson,
exponential, gamma, or binomial distributions. These
are particularly useful in modeling data or supplying in-
put for an event generator or simulator. In addition, as
described below, choosing the random numbers accord-
ing to some weighting function can signficantly improve
the efficiency of integration schemes based on Monte
Carlo sampling.

Perhaps the most direct way to produce the required
distribution is the transformation method. If we have
a sequence of uniform deviates x on (0, 1) and wish to
find a new sequence y which is distributed with proba-
bility given by some function f(y), it can be shown that
the required transformation is given by

y(x)=
⎡

⎣
y∫

0

f(y)dy

⎤

⎦

−1

. (8.110)

Evidently, the indefinite integral must be both known and
invertible, either analytically or numerically. Since this
is seldom the case for distributions of interest, other less
direct methods are most often applied. However, even
these other methods often rely on the transformation

method as one “stage” of the procedure. The transfor-
mation method may also be generalized to more than
one dimension [8.3].

A more widely applicable approach is the rejection
method, also known as von Neumann rejection. In this
case, if one wishes to find a sequence y distributed
according to f(y), first choose another function f̃ (y),
called the comparison function, which is everywhere
greater than f(y) on the desired interval. In addition,
a way must exist to generate y according to the compar-
ison function, such as use of the transformation method.
Thus, the comparison function must be simpler or bet-
ter known than the distribution to be found. One simple
choice is a constant function which is larger than the
maximum value of f(y), but choices which are “closer”
to f(y) will be much more efficient.

To proceed, y is generated uniformly according to
f̃ (y) and another deviate x is chosen uniformly on
(0, 1). One then simply rejects or accepts y depend-
ing on whether x is greater than or less than the ratio
f(y)/ f̃ (y), respectively. The fraction of trial numbers
accepted simply depends on the ratio of the area un-
der the desired function to that under the comparison
function. Clearly, the efficiency of this scheme depends
on how few of the numbers initially generated must
be rejected, and therefore on how closely the com-
parison function approximates the desired distribution.
The Lorentzian distribution, for which the inverse defi-
nite integral is known (the tangent function), is a good
comparison function for a variety of “bell-shaped” dis-
tributions such as the Gaussian (normal), Poisson, and
gamma distributions.

Especially for distributions which are functions
of more than one variable and possess complicated
boundaries, the rejection method is impractical and
the transformation method simply inapplicable. In the
1950’s, a method to generate distributions for such situa-
tions was developed and applied in the study of statistical
mechanics where multidimensional integrals (e.g., the
partition function) must often be solved numerically,
and is known as the Metropolis algorithm. This proce-
dure, or its variants, has more recently been adopted to
aid in the computation of eigenfunctions of complicated
Hamiltonians and scattering operators. In essence, the
Metropolis method generates a random walk through
the space of the dependent variables, and in the limit of
a large number of steps in the walk, the points visited
approximate the desired distribution.

In its simplest form, the Metropolis method gen-
erates this distribution of points by stepping through
this space, most frequently taking a step “downhill” but
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sometimes taking a step “uphill”. That is, given a set of
coordinates q and a desired distribution function f(q),
a trial step is taken from the ith configuration qi to the
next, depending on whether the ratio f(qi +1)/ f(qi) is
greater or less than one. If the ratio is greater than one,
the step is accepted, but if it is less than one, the step is
accepted with a probability given by the ratio.

8.4.3 Monte Carlo Integration

The basic idea of Monte Carlo integration is that if a large
number of points is generated uniformly randomly in
some n-dimensional space, the number falling inside
a given region is proportional to the volume, or definite
integral, of the function defining that region. Though this
idea is as true in one dimension as it is in n, unless there
is a large number (“large” could be as little as three) of
dimensions or the boundaries are quite complicated, the
numerical quadrature schemes described previously are
more accurate and efficient. However, since the Monte
Carlo approach is based on just sampling the function at
representative points rather than evaluating the function
at a large number of finely spaced quadrature points, its
advantage for very large problems is apparent.

For simplicity, consider the Monte Carlo method for
integrating a function of only one variable; the gener-
alization to n dimensions being straightforward. If we
generate N random points uniformly on (a, b), then in
the limit of large N the integral is

b∫

a

f(x)dx ≈ 1

N
〈 f(x)〉±

√〈
f 2(x)

〉−〈 f(x)〉2
N

,

(8.111)

where

〈 f(x)〉 ≡ 1

N

N∑

i=1

f(xi) (8.112)

is the arithmetic mean. The probable error given is
appropriately a statistical one rather than a rigorous

error bound and is the one standard error limit. From
this one can see that the error decreases as only N1/2,
more slowly than the rate of decrease for the quadrature
schemes based on interpolation. Also, the accuracy is
greater for relatively smooth functions, since the Monte
Carlo generation of points is unlikely to sample nar-
rowly peaked features of the integrand well. To estimate
the integral of a multidimensional function with compli-
cated boundaries, simply find an enclosing volume and
generate points uniformly randomly within it. Keeping
the enclosing volume as close as possible to the vol-
ume of interest miminizes the number of points which
fall outside, and therefore increases the efficiency of the
procedure.

The Monte Carlo integral is related to techniques
for generating random numbers according to prescribed
distributions described in Sect. 8.4.2. If we consider
a normalized distribution w(x), known as the weight
function, then with the change of variables defined by

y(x)=
x∫

a

w(x′)dx′ , (8.113)

the Monte Carlo estimate of the integral becomes

b∫

a

f(x)dx ≈ 1

N

〈
f [x(y)]

w [x(y)]

〉
, (8.114)

assuming that the transformation is invertible. Choosing
w(x) to behave approximately as f(x) allows a more
efficient generation of points within the boundaries of
the integrand. This occurs since the uniform distribution
of points y results in values of x distributed according to
w and therefore “close” to f . This procedure, generally
termed the reduction of variance of the Monte Carlo
integration, improves the efficiency of the procedure to
the extent that the transformed function f/w can be
made smooth, and that the sampled region is as small as
possible but still contains the volume to be estimated.
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Hydrogenic W9. Hydrogenic Wave Functions

This chapter summarizes the solutions of the
one-electron nonrelativistic Schrödinger equation,
and the one-electron relativistic Dirac equation,
for the Coulomb potential. The standard notations
and conventions used in the mathematics
literature for special functions have been chosen
in preference to the notations customarily
used in the physics literature whenever there
is a conflict. This has been done to facilitate
the use of standard reference works such as
Abramowitz and Stegun [9.1], the Bateman
project [9.2, 3], Gradshteyn and Ryzhik [9.4],
Jahnke and Emde [9.5], Luke [9.6, 7], Magnus,
Oberhettinger, and Soni [9.8], Olver [9.9],
Szego [9.10], and the new NIST Digital Library
of Mathematical Functions project, which is
preparing a hardcover update [9.11] of Abramowitz
and Stegun [9.1] and an online digital library
of mathematical functions [9.12]. The section
on special functions contains many of the
formulas which are needed to check the results
quoted in the previous sections, together
with a number of other useful formulas. It
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includes a brief introduction to asymptotic
methods.

References to the numerical evaluation of
special functions are given.

9.1 Schrödinger Equation

The nonrelativistic Schrödinger equation for a hydro-
genic ion of nuclear charge Z in atomic units is

(
−1

2
∇2 − Z

r

)
ψ (r)= Eψ (r) . (9.1)

9.1.1 Spherical Coordinates

The separable solutions of (9.1) in spherical coordinates
are

ψ (r)= Ym (θ, φ) R (r) , (9.2)

where Ym (θ, φ) is a spherical harmonic as defined by
Edmonds [9.13] and R (r) is a solution of the radial

equation

[
−1

2

(
d2

dr2 +
2

r

d

dr
−  (+1)

r2

)
− Z

r

]
R (r)

= ER (r) . (9.3)

The general solution to (9.3) is

R (r)

= r exp (ikr) [A 1 F1 (a; c; z) + BU (a, c, z)] ,
(9.4)

where 1 F1 and U are the regular and irregular solu-
tions of the confluent hypergeometric equation defined
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in (9.130) and (9.131) below, and

k =√
2E , (9.5)

a = +1− ik−1 Z , (9.6)

c = 2+2 , (9.7)

z = −2ikr . (9.8)

A and B are arbitrary constants. The solution given in
(9.4) has an r−−1 singularity at r = 0 unless B = 0 or
a is a non-positive integer. The leading term for small
r is proportional to r when B = 0 and/or a is a non-
positive integer. The large r behavior of the solution for
(9.4) follows from (9.134), (9.135), and (9.164) below.
Bound state solutions, with energy

E = − 1

2
Z2n−2 (9.9)

are obtained when a =−n++1 where n >  is the
principal quantum number. The properly normalized
bound state solutions are

Rn, (r)= 2Z

n2

√
Z(n−−1)!
(n+)!

(
2Zr

n

)

× exp (−Zr/n) L(2+1)
n−−1 (2Zr/n) ,

(9.10)

where L(2+1)
n−−1 is the generalized Laguerre polynomial

defined in (9.187). The relation in (9.188) shows that
1 F1 and U are linearly dependent in this case, so that
(9.4) is no longer the general solution of (9.3). A lin-
early independent solution for this case can be obtained
by replacing the L(2+1)

n−−1 (2Zr/n) in (9.10) by the second

(irregular) solution M(2+1)
n−−1 (2Zr/n) of the Laguerre

equation [see (9.194), (9.196), and (9.197)]. The first
three Rn, are

R1,0 (r)= 2Z3/2 exp (−Zr) , (9.11)

R2,0 (r)=
(

1

2
Z

)3/2

(2− Zr) exp

(
−1

2
Zr

)
,

(9.12)

R2,1 (r)=
(

1

2
Z

)3/2 (1

3

)1/2

Zr exp

(
−1

2
Zr

)
.

(9.13)

Additional explicit expressions, together with graphs
of some of them, can be found in Pauling and Wil-
son [9.14].

The Rn, can be expanded in powers of 1/n [9.15]

Rn, (r)= −
(

2Z2 (n+)!
(n−−1)!n2+4

)1/2

×r−1/2
∞∑

k=0

g()k

[
(8Zr)1/2

]
n−2k ,

(9.14)

where the functions g()k (z) are finite linear combina-
tions of Bessel functions:

g()k (z)= z3k
k∑

m=0

a()k,m J2+2m+k+1 (z) . (9.15)

The coefficients a()k,m in (9.15) are calculated recursively
from

a()k,m = (2+2m+ k+1)

32 (2k+m) (2+m+2k+1)

×
1

(2+2m+ k−1)

×
[
(2+2m+ k−1) a()k−1,m

+ 32 (k−m+1) (2+m− k) a()k,m−1

]
,

(9.16)

starting with the initial condition

a()0,0 = 1 . (9.17)

The expansion (9.14) converges uniformly in r for r in
any bounded region of the complex r plane. However, it
converges fast enough so that a few terms give a good
description of Rn, only if r is small. The square root
in (9.14) has not been expanded in inverse powers of
n because it has a branch point at 1/n = 1/ which
would reduce the radius of convergence of the expansion
to 1/. In some cases, large n expansions of matrix
elements can be obtained by inserting (9.14) for Rn,
and integrating term by term; examples can be found
in Drake and Hill [9.15]. An asymptotic expansion in
powers of 1/n, which is valid from r equal to an arbitrary
fixed positive number through the turning point at r =
2n2/Z out to r =∞, can be assembled from (9.133),
(9.166) – (9.181), and (9.188) below.

The Rn, are not a complete set because the con-
tinuum has been left out. The Sturmian functions ρk,,
given by

ρk, (β; r) =
√

β3k!
Γ (k+2+3)

(βr) e−βr/2

× L(2+2)
k (βr) , (9.18)
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do form a complete orthonormal set. The positive con-
stant β, which is independent of k and , sets the length
scale for the basis set (9.18).

9.1.2 Parabolic Coordinates

The Schrödinger equation (9.1) is separable in para-
bolic coordinates ξ , η, φ, which are related to spherical
coordinates r, θ, φ via

ξ = r+ z = r [1+ cos (θ)] , (9.19)

η= r− z = r [1− cos (θ)] , (9.20)

φ = φ . (9.21)

This separability in a second coordinate system is related
to the existence of a “hidden” O(4) symmetry, which is
also responsible for the degeneracy of the bound states
[9.16, 17]. The solutions in parabolic coordinates are
particularly convenient for derivations of the Stark ef-
fect and the Rutherford scattering cross section. The
separable solutions of (9.1) in parabolic coordinates are

ψ (r)= exp (imφ) N (η)Ξ (ξ) , (9.22)

where

N (η)= η|m|/2 exp

(
1

2
ik1η

)
[A 1 F1 (a1; c;−ik1η)

+ BU (a1, c,−ik1η)] , (9.23)

Ξ (ξ)= ξ |m|/2 exp

(
1

2
ik2ξ

)
[C 1 F1 (a2; c;−ik2ξ)

+ DU (a2, c,−ik2ξ)] , (9.24)

with 1 F1 and U defined in (9.130), (9.131) below, and

k1 = ± k2 = ±√2E , (9.25)

a1 = 1

2
(|m|+1)− ik−1

1 µ , (9.26)

a2 = 1

2
(|m|+1)− ik−1

2 (Z−µ) , (9.27)

c = |m|+1 . (9.28)

A, B, C, and D are arbitrary constants; µ is the
separation constant. An important special case is the
well-known Coulomb function

ψC (r) = Γ
(

1− ik−1 Z
)

exp

(
1

2
πk−1 Z+ ik ·r

)

× 1 F1

[
ik−1 Z; 1; i (kr−k ·r)

]
, (9.29)

which is obtained by orienting the z-axis in the k direc-
tion and taking m = 0, −k1 = k2 = |k|, µ= Z+ 1

2 i|k|.

ψC is normalized to unit incoming flux [see (9.34) be-
low]. In applications, Z is often replaced by −Z1 Z2, so
that the Coulomb potential in (9.1) becomes +Z1 Z2/r.
Equation (9.232), the addition theorem for the spheri-
cal harmonics ([9.13] p. 63 Eq. 4.6.6), and the λ= c= 1
special case of (9.163) below can be used to expand ψC
into an infinite sum of solutions of the form (9.2):

ψC (r)

= 4π
∞∑

=0

∑

m=−

Γ
(
+1− ik−1 Z

)

(2+1)!
× (−2ik) eπk−1 Z/2 Y∗

m (θk, φk)Ym (θ, φ)

×r eikr
1 F1

(
+1− ik−1 Z; 2+2;−2ikr

)
,

(9.30)

where k, θk, and φk are the spherical coordinates of k.
ψC can be split into an incoming plane wave and an
outgoing spherical wave with the aid of (9.134) below:

ψC (r)= ψin (r)+ψout (r) , (9.31)

where

ψin (r)= exp

(
ik · r − 1

2
πk−1 Z

)

×U
[
ik−1 Z; 1; i (kr−k ·r)

]
, (9.32)

ψout (r)= − Γ
(
1− ik−1 Z

)

Γ
(
ik−1 Z

) exp

(
ikr− 1

2
πk−1 Z

)

×U
[
1− ik−1 Z; 1;−i (kr−k ·r)

]
.

(9.33)

The functionsψin andψout can be expanded for kr−k·r
large with the aid of (9.164). The result is

ψin (r)∼ exp
[
ik · r− ik−1 Z ln (kr−k ·r)

]

×
∞∑

n=0

(−i)n

n!

(
Γ
(
ik−1 Z+n

)

Γ
(
ik−1 Z

)

)2

× (kr−k ·r)−n , (9.34)

ψout (r)∼− iΓ
(
1− ik−1 Z

)

Γ
(
ik−1 Z

)
(kr−k ·r)

× exp
[
ikr− ik−1 Z ln (kr−k · r)

]

×
∞∑

n=0

in

n!

(
Γ
(
1− ik−1 Z+n

)

Γ
(
1− ik−1 Z

)

)2

× (kr−k ·r)−n . (9.35)
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Because (9.1) is an elliptic partial differential equa-
tion, its solutions must be analytic functions of the
Cartesian coordinates (except at r = 0, where the so-
lutions have cusps). The n = 0 special case of (9.138)
shows that ψin and ψout are logarithmically singular at
k ·r = kr. Thus ψin and ψout are not solutions to (9.1) at
k ·r = kr. The logarithmic singularity cancels when ψin
and ψout are added to form ψC, which is a solution to
(9.1).

Bound state solutions, with energy

E = − 1

2
Z2 (n1+n2+|m|+1)−2 , (9.36)

are obtained when a1 =−n1 and a2 =−n2 where n1 and
n2 are non-negative integers. The properly normalized
bound state solutions, which can be put into one–one cor-
respondence with the bound state solutions in spherical
coordinates, are

ψn1,n2,m(η, ξ, φ)

=
√

β2|m|+4n1!n2!
2πZ (n1+|m|)! (n2+|m|)!

× exp

[
imφ− 1

2
β (η+ ξ)

]

× (ηξ)|m|/2 L(|m|)n1
(βη) L(|m|)n2

(βξ) , (9.37)

where

β = Z (n1+n2+|m|+1)−1 . (9.38)

9.1.3 Momentum Space

The nonrelativistic Schrödinger equation (9.1) becomes
the integral equation

1

2
p2φ (p)− Z

2π2

∫
φ
(

p′
)

(p− p′)2
d3 p′ = Eφ (p)

(9.39)

in momentum space. Its solutions are related to the so-
lutions in coordinate space via the Fourier transforms

ψ (r)= (2π)−3/2
∫

exp (ip · r) φ (p) d3 p , (9.40)

φ (p)= (2π)−3/2
∫

exp (−ip · r)ψ (r) d3r .

(9.41)

A trick of Fock’s [9.16, 18] can be used to expose the
“hidden” O(4) symmetry of hydrogen and construct the

bound state solutions to (9.39). Let p, θp, φp and p′,
θ ′p, φ′p be the spherical coordinates of p and p′. Change
variables from p, p′ to χ, χ ′ via p =√−2E tan (χ/2)
and p′ = √−2E tan

(
χ ′/2

)
. This brings (9.39) to the

form

2π2 Z−1
√−2E

[
sec4(χ/2)φ(p)

]

=
∫ [

sec4
(
χ ′/2

)
φ
(

p′
)]

sin2
(
χ ′
)

dχ ′sin
(
θp
)

dθp dφp

2−2 [cos(χ)cos(χ ′)+ sin(χ)sin(χ ′)cos(γ ′)]
,

(9.42)

where γ ′ is the angle between p and p′. Equation (9.42)
is solved by introducing spherical coordinates and spher-
ical harmonics in four dimensions via a natural extension
of the procedure used in three dimensions. Going to polar
coordinates on x and y yields the cylindrical coordinates
r2, φ, z; the further step of going to polar coordinates on
r2 and z yields spherical coordinates r3, θ, φ. If there is
a fourth coordinate w, spherical coordinates in four di-
mensions are obtained via the additional step of going
to polar coordinates on r3 and w. The result is

x = r4 sin (χ) sin (θ) cos (φ) , (9.43)

y = r4 sin (χ) sin (θ) sin (φ) , (9.44)

z = r4 sin (χ) cos (θ) , (9.45)

w= r4 cos (χ) . (9.46)

The volume element, which is easily obtained via the
same series of transformations, is

dV = r3
4 dr4 dΩ4 , (9.47)

dΩ4 = sin2 (χ) dχ sin (θ) dθ dφ . (9.48)

The four-dimensional spherical harmonics [9.2, Vol. 2,
Chap. XI] are

Yn,,m (χ, θ, φ)= 2+1!
√

n (n−−1)!
2π (n+)! sin (χ)

× C+1
n−−1 [cos (χ)] Ym (θ, φ) ,

(9.49)

where C+1
n−−1 is a Gegenbauer polynomial and n ≥ +

1 is an integer. They have the orthonormality property
∫

Y∗
n,,m (χ, θ, φ)Yn′,′,m′ (χ, θ, φ) dΩ4

= δn,n′δ,′δm,m′ . (9.50)

Part
A

9
.1



Hydrogenic Wave Functions 9.2 Dirac Equation 157

Equations (9.229) and (9.230) with λ= 1, equation
(9.231), and the addition theorem for the three dimen-
sional spherical harmonics Ym can be used to show
that

[
1−2

[
cos (χ) cos

(
χ ′
)

+ sin (χ) sin
(
χ ′
)

cos
(
γ ′
)]

t+ t2
]−1

=
∞∑

n=1

n−1∑

=0

∑

m=−

2π2

n
tn−1Yn,,m (χ, θ, φ)

× Y∗
n,,m

(
χ ′, θ ′, φ′

)
(9.51)

holds for |t|< 1, where γ ′ is the angle between p and p′.
Multiply both sides of (9.51) by Yn,,m

(
χ ′, θ ′, φ′

)
dΩ′

4
(where dΩ′

4 is dΩ4 with χ, θ, φ replaced by χ ′, θ ′, φ′)
and use the orthogonality relation (9.50). The result can
be rearranged to the form

2π2n−1tn−1Yn,,m (χ, θ, φ)=
∫

Yn,,m
(
χ ′, θ ′, φ′

)
sin2

(
χ ′
)

dχ ′ sin(θ)dθ dφ

1−2 [cos(χ)cos(χ ′)+ sin(χ)sin(χ ′)cos(γ ′)] t+t2
.

(9.52)

Analytic continuation can be used to show that (9.52)
is valid for all complex t despite the fact that (9.51) is
restricted to |t|< 1. Comparing the t = 1 case of (9.52)
with (9.42) shows that E =− 1

2 Z2n−2 in agreement with
(9.9), and that

φ (p )=
{

normalizing

factor

}

cos4 (χ/2)

× Yn,,m (χ, θ, φ) . (9.53)

Transforming from χ back to p brings these to the form

φ (p)= Ym
(
θp, φp

)
Fn, (p) , (9.54)

where the properly normalized radial functions are

Fn, (p)= 22+2n2!
√

2(n−−1)!
πZ3(n+)!

(n p

Z

)

×
Z2+4

(
n2 p2+ Z2

)+2

× C+1
n−−1

(
n2 p2− Z2

n2 p2+ Z2

)
.

(9.55)

The first three Fn, are

F1,0 (p)= 4

√
2

πZ3

Z4

(
p2+ Z2

)2
, (9.56)

F2,0 (p)= 32√
πZ3

Z4
(
4p2− Z2

)

(
4p2+ Z2

)3
, (9.57)

F2,1 (p)= 128√
3πZ3

Z5 p
(
4p2+ Z2

)3
. (9.58)

The Fn, satisfy the integral equation

1

2
p2 Fn, (p)

− Z

πp

∞∫

0

Q

(
p2+ p′2

2pp′

)
Fn,

(
p′
)

p′ dp′

= EFn, (p) , (9.59)

which can be obtained by inserting (9.54) in (9.39). Here
Q is the Legendre function of the second kind, which
is defined in (9.233) below.

9.2 Dirac Equation

The relativistic Dirac equation for a hydrogenic ion of
nuclear charge Z can be reduced to dimensionless form
by using the Compton wavelength �/ (mc) for the length
scale and the rest mass energy mc2 for the energy scale.
The result is

(
−iα ·∇ + β − Zα

r

)
ψ (r)= Eψ (r) , (9.60)

where α= e2/ (�c) is the fine structure constant, and α,
β are the usual Dirac matrices:

α =
(

0 σ

σ 0

)

, β =
(

I 0

0 −I

)

. (9.61)

Here σ is a vector whose components are the two by two
Pauli matrices, and I is the two by two identity matrix

Part
A

9
.2



158 Part A Mathematical Methods

given by

σx =
(

0 1

1 0

)

, σy =
(

0 −i

i 0

)

,

σz =
(

1 0

0 −1

)

, I =
(

1 0

0 1

)

. (9.62)

The solutions to (9.60) in spherical coordinates have the
form

ψ (r)=

⎛

⎜⎜
⎝

G (r) χm
κ (θ, φ)

iF (r) χm−κ (θ, φ)

⎞

⎟⎟
⎠ , (9.63)

where, for positive energy states, G (r) is the radial part
of the large component and iF (r) is the radial part of
the small component. For negative energy states, G (r)
is the radial part of the small component and iF (r) is
the radial part of the large component. χ is the two
component spinor

χm
κ =

⎛

⎜⎜⎜⎜⎜
⎝

− κ

|κ|

(
κ+ 1

2 −m

2κ+1

)1/2

Y|κ+ 1
2 |− 1

2 ,m− 1
2

(
κ+ 1

2 +m

2κ+1

)1/2

Y|κ+ 1
2 |− 1

2 ,m+ 1
2

⎞

⎟⎟⎟⎟⎟
⎠
.

(9.64)

The relativistic quantum number κ is related to the total
angular momentum quantum number j by

κ =±
(

j+ 1

2

)
. (9.65)

Because j takes on the values 1
2 , 3

2 , 5
2 , . . . , κ is restricted

to the values ±1, ±2, ±3, . . . . The spinor χm
κ obeys

the useful relations

σ · r̂ χm
κ = − χm−κ , (9.66)

σ ·Lχm
κ = − (κ+1) χm

κ , (9.67)

where r̂ = r/r and L = r × p with p =−i∇. Equations
(9.66), (9.67), and the identity

σ · p = (
σ · r̂

) (
r̂ · p + iσ ·L

r

)
(9.68)

can be used to derive the radial equations, which are
(

d

dr
+ 1+κ

r

)
G(r) −

(
1+ E+ Zα

r

)
F(r)= 0 ,

(9.69)
(

d

dr
+ 1−κ

r

)
F(r) −

(
1− E− Zα

r

)
G(r)= 0 .

(9.70)

Equations (9.158), (9.159), (9.161), and (9.162) below
can be used to show that the general solution to (9.69)
and (9.70) is

G (r)= rγ exp (−λr) (1+ E)1/2 {A [ f2 (r)+ f1 (r)]

+B [ f4 (r)+ f3 (r)]} , (9.71)

F (r)= rγ exp (−λr) (1− E)1/2 {A [ f2 (r)− f1 (r)]

+B [ f4 (r)− f3 (r)]} , (9.72)

where

f1 (r)=
(

Zαλ−1−κ
)

1 F1 (a; c; 2λr) , (9.73)

f2 (r)= a 1 F1 (a+1; c; 2λr) , (9.74)

f3 (r)=U (a, c, 2λr) , (9.75)

f4 (r)=
(

Zαλ−1+κ
)

U (a+1, c, 2λr) , (9.76)

λ= (1+ E)1/2 (1− E)1/2 , (9.77)

γ = −1+
(
κ2− Z2α2

)1/2
, (9.78)

a = 1+γ −λ−1 EZα , (9.79)

c = 3+2γ . (9.80)

A and B are arbitrary constants. Because γ is in general
not an integer, the solutions have a branch point at r = 0,
and become infinite at r = 0 when κ =±1, which makes
γ negative. The solutions for E <−1 and E >+1 are
in the continuum, which implies that one of the factors
(1+ E)1/2, (1− E)1/2 is real with the other imaginary.
Square integrable solutions, with energy

En,κ = Z

|Z|
(

1+ Z2α2

(n+1+γ)2
)−1/2

, (9.81)

are obtained when a =−n where n is a non-negative
integer. The properly normalized square integrable solu-
tions are

Gn,κ (r)= Cn,κ (2λr)γ exp (−λr)
(
1+ En,κ

)1/2

×
[
g(2)n,κ (r)+ g(1)n,κ (r)

]
, (9.82)

Fn,κ (r)= Cn,κ (2λr)γ exp (−λr)
(
1− En,κ

)1/2

×
[
g(2)n,κ (r)− g(1)n,κ (r)

]
, (9.83)

g(1)n,κ (r)=
(

Zαλ−1−κ
)1/2

L(2+2γ)
n (2λr) ,

(9.84)
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g(2)n,κ (r)= − (n+2+2γ)
(

Zαλ−1−κ
)−1/2

× L(2+2γ)
n−1 (2λr) , (9.85)

Cn,κ =
√

2λ4n!
ZαΓ (n+3+2γ)

. (9.86)

When n = 0, |Zαλ−1| = |κ|, and the value of κ whose
sign is the same as the sign of Zαλ−1 is not permitted.
Also, L(2+2γ)

−1 (2λr) is counted as zero, so that g(2)0,κ (r)=
0.

The eigenvalues and eigenfunctions for the first four
states for Z > 0 will now be written out explicitly in
terms of the variable ρ = Zαr. For the 1 S1/2 ground
state, with n = 0, j = 1

2 , κ =−1, the formulae are

E0,−1 =
√

1− Z2α2 , (9.87)

G0,−1 (r)=
√

4Z3α3
(
1+ E0,−1

)

Γ
(
1+2E0,−1

) (2ρ)E0,−1−1 e−ρ ,

(9.88)

F0,−1 (r)= −
√

4Z3α3
(
1− E0,−1

)

Γ
(
1+2E0,−1

)

× (2ρ)E0,−1−1 e−ρ . (9.89)

The formulae for the 2 S1/2 excited state, with n = 1,
j = 1

2 , κ =−1, and for the 2 P1/2 excited state, with
n = 1, j = 1

2 , κ = 1, can be written together. They are

E1,κ =
(

1

2
+ 1

2

√
1− Z2α2

)1/2

, (9.90)

G1,κ (r)=
√√√
√

Z3α3
(
2E1,κ−κ

) (
1+ E1,κ

)

2E2
1,κΓ

(
4E2

1,κ+1
)

×ρ
2E2

1,κ−2
1 e−ρ1/2

×
[(

2E1,κ−κ−1
) (

2E1,κ+κ
)−ρ1

]
,

(9.91)

F1,κ (r)= −
√√√√

Z3α3
(
2E1,κ−κ

) (
1− E1,κ

)

2E2
1,κΓ

(
4E2

1,κ+1
)

×ρ
2E2

1,κ−2
1 e−ρ1/2

×
[(

2E1,κ−κ+1
) (

2E1,κ+κ
)−ρ1

]
,

(9.92)

where ρ1 = ρ/E1,κ . For the 2 P3/2 excited state, with
n = 0, j = 1

2 , κ =−2, the formulae are

E0,−2 =
√

1− 1

4
Z2α2 , (9.93)

G0,−2 (r)=
√

Z3α3
(
1+ E0,−2

)

2Γ
(
1+4E0,−2

) ρ2E0,−2−1 e−ρ/2 ,

(9.94)

F0,−2 (r)= −
√

Z3α3
(
1− E0,−2

)

2Γ
(
1+4E0,−2

) ρ2E0,−2−1 e−ρ/2 .

(9.95)

9.3 The Coulomb Green’s Function

The abstract Green’s operator for a Hamiltonian H is
the inverse G (E)= (H− E)−1. It is used to write the
solution to (H− E) |ξ〉 = |η〉 in the form |ξ〉 = G|η〉. It
has the spectral representation

G (E)=
∫∑

j

1

E j − E
|e j〉〈e j | . (9.96)

The sum over j in (9.96) runs over all of the spectrum
of H , including the continuum. For the bound state part
of the spectrum, the numbers E j and vectors |e j〉 are the
eigenvalues and eigenvectors of H . For the continuous
spectrum, |e j〉〈e j | is a projection valued measure [9.19].
The representation (9.96) shows that G (E) has first
order poles at the eigenvalues. The reduced Green’s op-
erator (also known as the generalized Green’s operator),

which is the ordinary Green’s operator with the singu-
lar terms subtracted out, remains finite when E is at an
eigenvalue. It can be calulated from

G(red) (Ek)= lim
E→Ek

{
∂

∂E
[(E− Ek)G (E)]

}
.

(9.97)

The coordinate and momentum space representatives of
the abstract Green’s operator are the Green’s functions.
The nonrelativistic Coulomb Green’s function has been
discussed by Hostler and Schwinger [9.20, 21]. A uni-
fied treatment of the Coulomb Green’s functions for
the Schrödinger and Dirac equations has been given by
Swainson and Drake [9.22]. Reduced Green’s functions
are discussed in the third of the Swainson–Drake papers,
and in the paper of Hill and Huxtable [9.23].
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9.3.1 The Green’s Function for the
Schrödinger Equation

The Green’s function G(S) for the Schrödinger equation
(9.98) is a solution of

(
−1

2
∇2 − Z

r
− E

)
G(S) (r, r ′; E

)= δ (r−r ′
)
.

(9.98)

An explicit closed form expression for G(S) is

G(S) (r, r ′; E
)= Γ (1−ν)

2π|r−r ′|
×

[
W
ν, 1

2
(z2)

∂

∂z1
M
ν, 1

2
(z1)

− M
ν, 1

2
(z1)

∂

∂z2
W
ν, 1

2
(z2)

]
,

(9.99)

where Mν,1/2 and Wν,1/2 are the Whittaker functions
defined in (9.132) and (9.133) below, and

ν = Z (−2E)−1/2 , (9.100)

z1 = (−2E)1/2
(
r+r ′ − |r−r ′|) , (9.101)

z2 = (−2E)1/2
(
r+r ′ + |r−r ′|) . (9.102)

The branch on which (−2E)1/2 is positive should be
taken when E < 0. When E > 0, the branch which cor-
responds to incoming (or outgoing) waves at infinity can
be selected with the aid of the asymptotic approximation

G(S) (r, r ′; E
)≈ Γ (1−ν)

2π|r−r ′| zν2 exp
(
− 1

2 z2

)
,

(9.103)

which holds when z2 % z1. This approximation is ob-
tained by using (9.130), (9.132), (9.133), and (9.164) in
(9.99). A number of useful expansions for G(S) can be
obtained from the integral representation

G(S) (r, r ′; E
)

= 2Z

ν

∞∫

0

[
coth

(
1

2
ρ

)]2ν

sinh (ρ)

× I0

{
ν−1 Z sinh (ρ)

(
2rr ′

)1/2
[1+ cos (Θ)]

}

× exp
[
−ν−1 Z

(
r+r ′

)
cosh (ρ)

]
dρ , (9.104)

whereΘ is the angle between r and r ′. These expansions,
and other integral representations, can be found in [9.20–

22]. The partial wave expansion of G(S) is

G(S) (r, r ′; E
)

=
∑

,m

g(S)


(
r, r ′; ν)Ym (θ, φ) Y∗

m

(
θ ′, φ′

)
.

(9.105)

The radial Green’s function g(S)
 is a solution of the radial

equation
[
−1

2

(
d2

dr2 +
2

r

d

dr
−  (+1)

r2

)

− Z

r
− E

]
g(S)


(
r, r ′; ν)= δ

(
r−r ′

)

rr ′
. (9.106)

The standard method for calculating the Green’s func-
tion of a second order ordinary differential equation
([9.24] pp. 354–355) yields

g(S)


(
r, r ′; ν)

= (2Z)2+2 Γ (+1−ν)
(2+1)!ν2+1

exp
[
−ν−1 Z

(
r+r ′

)]

×
(
rr ′

)
1 F1

(
+1−ν; 2+2; 2ν−1 Zr<

)
[3pt]

×U
(
+1−ν, 2+2, 2ν−1 Zr>

)
, (9.107)

where r< is the smaller of the pair r, r ′ and r> is the
larger of the pair r, r ′. Matrix elements of g(S)

 can be
calculated with the aid of the formula for the double
Laplace transform, which is

∞∫

0

dr

∞∫

0

dr ′
(
rr ′

)+1 exp
(−λr−λ′r ′) g(S)



(
r, r ′; ν)

= 2 (2+1)!
−ν+1

( ν
2Z

)2+3
(

4Z2

(νλ+ Z) (νλ′ + Z)

)2+2

× 2 F1 (2+2, −ν+1; −ν+2; 1− ζ) ,
(9.108)

where

ζ = 2νZ
(
λ+λ′)

(νλ+ Z) (νλ′ + Z)
, (9.109)

Matrix elements with respect to Slater orbitals can be
calculated from (9.108) by taking derivatives with re-
spect to λ and/or λ′ to bring down powers of r and r ′.
Matrix elements with respect to Laguerre polynomials
can be calculated by using (9.108) to evaluate integrals
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over the generating function (9.199) for the Laguerre
polynomial [9.23]. Other methods of calculating matrix
elements are discussed in Swainson and Drake [9.22].
The Green’s function G̃(S) in momentum space is re-
lated to the coordinate space Green’s function G(S) via
the Fourier transforms

G(S) (r, r ′; E
)= (2π)−3

∫
exp

[
i
(

p ·r − p′ ·r ′
)]

× G̃(S) (p, p′; E
)

d3 p d3 p′ ,

(9.110)

G̃(S) (p, p′; E
)= (2π)−3

∫
exp

[−i
(

p ·r − p′ · r ′
)]

× G(S) (r, r ′; E
)

d3r d3r ′ .

(9.111)

The Green’s function G̃(S) is a solution of(
1

2
p2 − E

)
G̃(S) (p, p′; E

) − Z

2π2

∫
1

(p− p′′)2

× G̃(S) (p′′, p′; E
)

d3 p ′′ = δ
(

p− p′
)
. (9.112)

An explicit closed form expression for G̃(S) is

G̃(S) (p, p′; E
)

= δ
(

p− p′
)

1
2 p2− E

+ Z

2π2|p− p′|2
(

1
2 p2− E

) [
1
2 (p

′)2− E
]

×

{
1+ νq

1−ν
×

[(
1−q

1+q

)

2 F1

(
1, 1−ν; 2−ν; 1−q

1+q

)

−
(

1+q

1−q

)

2 F1

(
1, 1−ν; 2−ν; 1+q

1−q

)]}
,

(9.113)

where

q =
√

2E |p− p′|2
4E2−4E p · p′ + (pp′)2

. (9.114)

9.3.2 The Green’s Function for the Dirac
Equation

The Green’s function GD for the Dirac equation (9.60)
is a 4 × 4 matrix valued solution of(

−iα ·∇+β− Zα

r
− E

)
GD

(
r, r ′; E

)

= δ (r−r ′
)

I4 , (9.115)

where I4 is the 4 × 4 identity matrix. The partial wave
expansion of GD is

GD
(
r, r ′; E

)=
∑

κ,m

(
Gκ,m11 −iGκ,m12

iGκ,m21 Gκ,m22

)

, (9.116)

where

Gκ,m11 = χm
κ (θ, φ) χ

m†
κ

(
θ ′, φ′

)
g11

(
r, r ′; E

)
,

(9.117)

Gκ,m12 = χm
κ (θ, φ) χ

m†
−κ

(
θ ′, φ′

)
g12

(
r, r ′; E

)
,

(9.118)

Gκ,m21 = χm−κ (θ, φ) χm†
κ

(
θ ′, φ′

)
g21

(
r, r ′; E

)
,

(9.119)

Gκ,m22 = χm−κ (θ, φ) χ
m†
−κ

(
θ ′, φ′

)
g22

(
r, r ′; E

)
.

(9.120)

The identity

δ
(
r−r ′

)
I4 = δ

(
r−r ′

)

rr ′

×
∑

κ,m

(
χm
κ (θ, φ) χ

m†
κ

(
θ ′, φ′

)
0

0 χm−κ (θ, φ) χ
m†
−κ

(
θ ′, φ′

)

)

(9.121)

can be used to show that the radial functions
g jk

(
r, r ′; E

)
satisfy the equation

⎛

⎜⎜⎜⎜
⎝

(
1 − E − Zα

r

)
−

(
d

dr
+ 1−κ

r

)

(
d

dr
+ 1+κ

r

)
−

(
1 + E + Zα

r

)

⎞

⎟⎟⎟⎟
⎠

×

(
g11

(
r, r ′; E

)
g12

(
r, r ′; E

)

g21
(
r, r ′; E

)
g22

(
r, r ′; E

)

)

= δ
(
r−r ′

)

rr ′

(
1 0

0 1

)

. (9.122)

The solution to (9.122) is
(

g11
(
r, r ′; E

)
g12

(
r, r ′; E

)

g21
(
r, r ′; E

)
g22

(
r, r ′; E

)

)

= (2λ)1+2γ Γ (a)

Γ (3+2γ)

×

[

Θ
(
r ′ −r

)
(

G< (r)

F< (r)

) (

G>
(
r ′
)

F>
(
r ′
)
)

+Θ (
r−r ′

)
(

G> (r)

F> (r)

) (

G<
(
r ′
)

F<
(
r ′
)
)]

,

(9.123)
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where a is defined by (9.79), Θ is the Heaviside unit
function, defined by

Θ (x)=

⎧
⎪⎪⎨

⎪⎪⎩

1, x > 0 ,

1
2 , x = 0 ,

0, x < 0,

(9.124)

and the functions G<, F<, G>, and F> are special cases
of the homogeneous solutions (9.71 – 9.80):

G< (r)= rγ exp (−λr) (1+ E)1/2 [ f2 (r)+ f1 (r)] ,

(9.125)

F< (r)= rγ exp (−λr) (1− E)1/2 [ f2 (r)− f1 (r)] ,

(9.126)

G> (r)= rγ exp (−λr) (1+ E)1/2 [ f4 (r)+ f3 (r)] ,

(9.127)

F> (r)= rγ exp (−λr) (1− E)1/2 [ f4 (r)− f3 (r)] .

(9.128)

The functions G< (r) and F< (r) obey the boundary con-
ditions at r = 0. The functions G> (r) and F> (r) obey
the boundary conditions at r =∞. Integral representa-
tions and expansions for the Dirac Green’s function can
be found in [9.22] and [9.25]. Matrix element evaluation
is discussed in [9.22].

9.4 Special Functions

This section contains a brief list of formulae for the spe-
cial functions which appear in the solutions discussed
above. Derivations, and many additional formulae, can
be found in the standard reference works listed in the bib-
liography. For numerically useful approximations and
available software packages, see Olver et al. [9.12], and
Lozier and Olver [9.26].

9.4.1 Confluent Hypergeometric Functions

The confluent hypergeometric differential equation is
[

z
d2

dz2
+ (c− z)

d

dz
−a

]
w(z)= 0 . (9.129)

Equation (9.129) has a regular singular point at r = 0
with indices 0 and 1− c and an irregular singular point
at ∞. The regular solution to (9.129) is the confluent
hypergeometric function, denoted by 1 F1 in generalized
hypergeometric series notation. It can be defined by the
series

1 F1 (a; c; z)= Γ (c)

Γ (a)

∞∑

n=0

Γ (a+n)

Γ (c+n)

zn

n! . (9.130)

The series (9.130) for 1 F1 converges for all finite z
if c is not a negative integer or zero. It reduces to
a polynomial of degree n in z if a =−n where n is
a positive integer and c is not a negative integer or
zero. The function 1 F1 (a; c; z) is denoted by the symbol
M (a, c, z) in Abramowitz and Stegun [9.1], in Jahnke
and Emde [9.5], and in Olver [9.9], by 1 F1 (a; c; z) in
both of Luke’s books [9.6, 7] and in Magnus et al. [9.8],
and by Φ (a, c; z) in the Bateman project [9.2, 3] and

Gradshteyn and Ryzhik [9.4]. The irregular solution to
(9.129) is

U (a, c, z) = Γ (1− c)

Γ (1+a− c)
1 F1 (a; c; z)

+ Γ (c−1)

Γ (a)
z1−c

× 1 F1 (1+a− c; 2− c; z) . (9.131)

The function U (a, c, z) is multiple-valued, with princi-
pal branch −π < arg z ≤ π. It is denoted by the symbol
U (a, c, z) in Abramowitz and Stegun [9.1], in Magnus
et al. [9.8], and in Olver [9.9], by ψ (a; c; z) in the first
of Luke’s books [9.6], by U (a; c; z) in the second of
Luke’s books [9.7], and by Ψ (a, c; z) in the Bateman
project [9.2, 3] and Gradshteyn and Ryzhik [9.4].

The Whittaker functions Mκ,µ and Wκ,µ, which are
related to 1 F1 and U via

Mκ,µ (z)= exp

(
−1

2
z

)
zµ+

1
2

×1 F1

(
µ+ 1

2
−κ; 2µ+1; z

)
,

(9.132)

Wκ,µ (z)= exp

(
−1

2
z

)
zµ+

1
2

×U

(
µ+ 1

2
−κ, 2µ+1, z

)
, (9.133)

are sometimes used instead of 1 F1 and U . For numerical
evaluation and a program, see [9.27, 28].
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The regular solution can be written as a linear com-
bination of irregular solutions via

1 F1 (a; c; z)= Γ (c)

Γ (c−a)
eiπεaU (a, c, z)+ Γ (c)

Γ (a)

× ez+iπε(a−c)U (c−a, c,−z) ,

(9.134)

ε =
{
+1 , Im z > 0 ,

−1 , Im z < 0 .
(9.135)

1 F1 can also be obtained from U as the discontinuity
across a branch cut:

zc−1 exp (−z) 1 F1 (a; c; z)

= Γ (1−a) Γ (c)

2πi

[(
ze−iπ)c−1

U
(
c−a, c, ze−iπ)

− (
zeiπ)c−1

U
(
c−a, c, zeiπ)

]
. (9.136)

The Wronskian of the two solutions is

1 F1 (a; c; z)
d

dz
U (a, c, z)

−U (a, c, z)
d

dz
1 F1 (a; c; z)

=−Γ (c) z−c exp (z) /Γ (a) . (9.137)

A formula for U (a, c, z) when c is the integer n+1
can be obtained by taking the c → n+1 limit of the
right-hand side of (9.131) to obtain

U (a, n+1, z)= (−1)n+1

Γ (a−n)

×

[
1

n! ln (z) 1 F1 (a; n+1; z)

+
∞∑

k=−n

Γ (a+ k) akzk

Γ (a) (k+n)!

]

,

(9.138)

where

ak =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)k+1 (−k−1)! , −n ≤ k ≤−1 ,

[Ψ (k+a)−Ψ (k+1)

−Ψ (k+n+1)] /k! , k ≥ 0 .
(9.139)

Here Ψ is the logarithmic derivative of the gamma
function:

Ψ (z)= Γ ′ (z) /Γ (z) . (9.140)

n is a non-negative integer. When n = 0, the sum from
k =−n to −1 is omitted.

The basic integral representations for 1 F1 and U are

1 F1 (a; c; z)= Γ (c)

Γ (a) Γ (c−a)

×

1∫

0

ezt ta−1 (1− t)c−a−1 dt ,

(9.141)

U (a, c, z)= 1

Γ (a)

∞∫

0

e−zt ta−1 (1+ t)c−a−1 dt .

(9.142)

The basic transformation formulae for 1 F1 and U are

1 F1 (a; c; z)= ez
1 F1 (c−a; c;−z) , (9.143)

U (a, c, z)= z1−c U (a− c+1, 2− c, z) .
(9.144)

The recurrence relations among contiguous functions
are

(z+2a− c) 1 F1 (a; c; z)= (a− c) 1 F1 (a−1; c; z)

+a 1 F1 (a+1; c; z) , (9.145)

(z+a−1) 1 F1 (a; c; z)= (a− c) 1 F1 (a−1; c; z)

+ (c−1) 1 F1 (a; c−1; z) , (9.146)

c 1 F1 (a; c; z)= c 1 F1 (a−1; c; z)

+ z 1 F1 (a; c+1; z) , (9.147)

(a+1− c) 1 F1 (a; c; z)= a 1 F1 (a+1; c; z)

+ (1− c) 1 F1 (a; c−1; z) , (9.148)

c (z+a) 1 F1 (a; c; z)= a c 1 F1 (a+1; c; z)

+ (c−a) z 1 F1 (a; c+1; z) , (9.149)

c (z+ c−1) 1 F1 (a; c; z)= c (c−1)

× 1 F1 (a; c−1; z)

+ (c−a) 1 F1 (a; c+1; z) , (9.150)

(z+2a− c)U (a; c; z)=U (a−1; c; z)

+a (a− c+1)U (a+1; c; z) , (9.151)

(z+a−1)U (a; c; z)=U (a−1; c; z)

+ (c−a−1)U (a; c−1; z) , (9.152)

(c−a)U (a; c; z)= −U (a−1; c; z)

+ zU (a; c+1; z) , (9.153)

Part
A

9
.4



164 Part A Mathematical Methods

(a+1− c)U (a; c; z)= a U (a+1; c; z)

+U (a; c−1; z) , (9.154)

(z+a)U (a; c; z)= a (a− c+1)U (a+1; c; z)

+ zU (a; c+1; z) , (9.155)

(z+ c−1)U (a; c; z)= (c−a−1) (c−1)

×U (a; c−1; z)+ zU (a; c+1; z) . (9.156)

Useful differentiation formulae include

d

dz
1 F1 (a; c; z)= a c−1

1 F1 (a+1; c+1; z) ,

(9.157)

d

dz

[
za

1 F1 (a; c; z)
]= a za−1

1 F1 (a+1; c; z) ,

(9.158)

d

dz

[
e−zzc−a−1

1 F1 (a+1; c; z)
]

= (c−a−1) e−zzc−a−2
1 F1 (a; c; z) , (9.159)

d

dz
U (a, c, z)=−a U (a+1, c+1, z) , (9.160)

d

dz

[
zaU (a, c, z)

]

= a (a− c+1) za−1U (a+1, c, z) , (9.161)

d

dz

[
e−zzc−a−1U (a+1, c, z)

]

=−e−zzc−a−2U (a, c, z) . (9.162)

An important multiplication theorem is

1 F1 (a; c; z1z2)

=
∞∑

k=0

Γ (a+ k) Γ (λ+2k)

k!Γ (a) Γ (λ+ k)
(−z1)

k

× 2 F1 (−k, λ+ k; c; z1)

× 1 F1 (a+ k; λ+2k+1; z2) . (9.163)

The fundamental asymptotic expansion for large z is

U (a, c, z)

∼ z−a
∞∑

n=0

Γ (a+n) Γ (1+a− c+n)

n!Γ (a) Γ (1+a− c)
(−z)−n ,

− 3

2
π < arg z <

3

2
π . (9.164)

The asymptotic expansion of 1 F1 for large z is obtained
by using (9.164) and

exp [z+ iπε (a− c)] U (c−a, c,−z)

∼ ezza−c
∞∑

n=0

Γ (c−a+n) Γ (1−a+n)

n!Γ (c−a) Γ (1−a)
z−n ,

− 5

2
π < arg z <

5

2
π , (9.165)

which is a consequence of (9.164), on the right-hand
side of (9.134). In the asymptotic expansion (9.165),
and in the asymptotic expansion for 1 F1, the change
in the factor exp [iπε (a− c)] as arg z passes through
zero is compensated by the phase change which comes
from a factor (−z)a−c in the asymptotic expansion of
U (c−a, c,−z). The change in the factor exp (iπεa) in
the first term of (9.134) as arg z passes through zero is
not compensated by any other phase change. However,
this discontinuity occurs in a region in which this first
term is negligible compared to the second term. This
is an example of the Stokes phenomenon [9.29], which
occurs because the single-valued function 1 F1 is being
approximated by multiple-valued functions. The large z
asymptotic expansion of 1 F1 is valid for− 3

2π< arg z <
3
2π, which is the overlap of the domain of validity of the
expansions (9.164) and (9.165).

Uniform asymptotic expansions for the Whittaker
functions Mκ,µ and Wκ,µ introduced in (9.132), (9.133)
have been constructed via Olver’s method. The follow-
ing result [9.9], (p. 412, Ex. 7.3), which holds for x
positive, κ large and positive, and µ unrestricted, gives
the flavor of these approximations:

Wκ,µ (4κx)= 24/3π1/2κκ+(1/6)

φn (κ, µ) exp (κ)

(
xζ

x−1

)1/4

×

{
Ai

[
(4κ)2/3 ζ

] n∑

s=0

As (ζ)

(4κ)2s

+ Ai′
[
(4κ)2/3 ζ

]

(4κ)2/3

×
n∑

s=0

Bs (ζ)

(4κ)2s
+ ε2n+1,2 (4κ, ζ)

}
.

(9.166)

Here Ai is the Airy function, and ε2n+1,2 is an error term
which tends to zero faster than the last term kept when
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κ→∞ with n fixed. ζ is related to x by
4

3
ζ3/2 =

(
x2− x

)1/2− ln
[
x1/2+ (x−1)1/2

]
,

x ≥ 1 ,

(9.167)

4

3
(−ζ)3/2 = cos−1

(
x1/2

)
−
(

x− x2
)1/2

,

0< x ≤ 1 .

(9.168)

ζ is an analytic function of x in the neighborhood of
x = 1; conversely, x is an analytic function of ζ in
the neighborhood of ζ = 0. The differential form of the
relations (9.167), (9.168) is

2ζ1/2 dζ = x−1/2 (x−1)1/2 dx x ≥ 1 ,
(9.169)

2 (−ζ)1/2 dζ = x−1/2 (1− x)1/2 dx 0< x ≤ 1 .

(9.170)

A Taylor series expansion of ζ about x = 1 is most easily
constructed by expanding the x−1/2 in (9.169) or (9.170)
about x = 1 and integrating term by term. The opening
terms of such an expansion are

ζ = 2−2/3
[
(x−1)− 1

5
(x−1)2

+ 17

175
(x−1)3

]
+O

[
(x−1)4

]
. (9.171)

The coefficient functions As and Bs are calculated re-
cursively from

Bs (ζ)= 1

2ζ1/2

ζ∫

0

[
ψ (η) As (η)− A′′s (η)

] dη

η1/2 ,

x ≥ 1 , (9.172)

Bs (ζ)= 1

2 (−ζ)1/2
0∫

ζ

[ψ (η) As (η)

−A′′s (η)
] dη

(−η)1/2 , 0< x ≤ 1 ,

(9.173)

As+1 (ζ)= − 1

2
B′s (ζ)+

1

2

∫
ψ (ζ) Bs (ζ) dζ ,

(9.174)

ψ (ζ)=
(
4µ2−1

)
ζ

x (x−1)
+ (3−8x) ζ

4x (x−1)3
+ 5

16ζ2 .

(9.175)

The functions As (ζ), Bs (ζ), and ψ (ζ), which appear
to be singular at ζ = 0, are actually analytic functions of
ζ at ζ = 0. The first few coefficient functions are:

A0 (ζ)= 1 , (9.176)

B0 (ζ)= 1

4
ζ−1/2

(
x

x−1

)3/2 [(
8µ2− 1

2

)

×

(
x

x−1

)2

−
(

x

x−1

)
+ 5

6

]

− 5

48
ζ−2 ,

(9.177)

A1 (ζ)= 1

4
ζ−1 [B0 (ζ)−ψ (ζ)]+ ζ [B0 (ζ)]

2 .

(9.178)

The function φn is calculated from

φn (κ, µ)=
n∑

s=0

As (∞)
(4κ)2s

−
n−1∑

s=0

lim
ζ→∞

ζ1/2 Bs (ζ)

(4κ)2s+1 .

(9.179)

The first two φn are

φ0 (κ, µ)= 1 , (9.180)

φ1 (κ, µ)= 1−
(

12µ2−1

24κ

)
+
(

12µ2−1

24κ

)2

.

(9.181)

A bound for the error term ε2n+1,2 has been given by
Olver ([9.9] p. 410, Eq. 7.13). The extension to the com-
plex case can be found in Skovgarrd [9.30]. Skovgarrd’s
expansions are in powers of (4κ)−1 instead of (4κ)−2,
because the factor 1/φn (κ, µ) has been expanded out
in inverse powers of 4κ in his results; as a conse-
quence, his coefficient functions As and Bs differ from
Olver’s. The corresponding asymptotic expansions for
U
(
µ+ 1

2 −κ, 2µ+1, 4κz
)

and for the Laguerre poly-

nomial L(2µ)κ−µ−1/2 (4κz) can be constructed with the aid
of (9.133) and (9.188).

Formulae for matrix element integrals can be ob-
tained by inserting the integral representation (9.141)
and interchanging the orders of integration. An example
is

∞∫

0

zµ 1 F1 (a1; c1; λ1z) 1 F1 (a2; c2; λ2z) dz

= F2 (µ+1, a1, a2, c1, c2;−λ1,−λ2) . (9.182)

Here F2 is one of the hypergeometric functions of two
variables introduced by Appell, which can be defined
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either by the integral representation ([9.2], Vol. 1, p. 230,
Eq. 2)

F2(α, β, β
′, γ, γ ′; x, y)

= Γ(γ)Γ(γ ′)
Γ(β)Γ(β′)Γ(γ −β)Γ(γ ′ −β′)

×

1∫

0

du

1∫

0

dv uβ−1vβ
′−1(1−u)γ−β−1

× (1−v)γ ′−β′−1(1−ux−vy)−α , (9.183)

or by the series expansion ([9.2], Vol. 1, p. 224, Eq. 7)

F2(α, β, β
′, γ, γ ′; x, y)

=
∞∑

m=0

∞∑

n=0

Γ (α+m+n)

m!n!Γ (α)

×
Γ (β+m) Γ

(
β′ +n

)
Γ (γ) Γ

(
γ ′
)

Γ (β) Γ (β′) Γ (γ +m) Γ (γ ′ +n)
xm yn ,

(9.184)

which converges for |x|+ |y| < 1. Numerical evalua-
tion of F2 is particularly convenient in the special cases
where it can be expressed in terms of ordinary hyperge-
ometric functions 2 F1 ([9.2], Vol. 1, Chap. 2), which are
easy to calculate, or in terms of elementary functions.
The key is the formula ([9.2], Vol. 1, p. 238, Eq. 3)

F2(α, β, β
′, α, α; x, y)

= (1− x)−β(1− y)−β′

× 2 F1

(
β, β′;α; xy

(1− x)(1− y)

)
, (9.185)

which shows that it is necessary to get Appell func-
tions F2 in which the first, fourth, and fifth parameters
are equal. This can be achieved by exploiting whatever
freedom in the choice of a1, a2, c1, and c2 is available,
and by using identities such as

F2(α+2, β, β′, α+1, α+1; x, y)

= (α+1)−1β′y
× F2(α+1, β, β′ +1, α+1, α+1; x, y)

+ [
F2(α+1, β, β′, α+1, α+1; x, y)

+2(α+1)−2ββ′xy

× F2(α+2, β+1, β′ +1, α+2, α+2; x, y)
]

+ (α+1)−1βx

× F2(α+1, β+1, β′, α+1, α+1; x, y) , (9.186)

to obtain Appell functions F2 for which the reduction
(9.185) can be used.

9.4.2 Laguerre Polynomials

The Laguerre polynomials L(α)n are the polynomial so-
lutions of the differential equation

[
z

d2

dz2
+ (α+1− z)

d

dz
+n

]
L(α)n (z)= 0 . (9.187)

They are a special case of the confluent hypergeometric
function:

L(α)n (z)= Γ (n+α+1)

n!Γ (α+1)
1 F1 (−n;α+1; z)

= (−1)n

n! U (−n, α+1, z) , (9.188)

and are given explicitly by

L(α)n (z)=
n∑

k=0

Γ (α+n+1)

k! (n− k)!Γ (α+ k+1)
(−z)k .

(9.189)

The L(α)n are sometimes called generalized Laguerre
polynomials, because L(0)n , which is often denoted by
Ln , is the polynomial introduced by Laguerre. This La-
guerre polynomial differs from the “associated Laguerre
function” for which the symbol L p

q (with p and q both in-
tegers) is often used in the physics literature. The relation
between the two is

[
L p

q (z)
]

physics = (−1)p+q q!L(p)q−p (z) . (9.190)

The first three L(α)n are

L(α)0 (z)= 1 , (9.191)

L(α)1 (z)= α+1− z , (9.192)

L(α)2 (z)= 1

2
(α+1) (α+2)− (α+2) z+ 1

2
z2 .

(9.193)

Equation (9.188) shows that the irregular solution U
does not supply a linearly independent second solution.
A second solution which remains linearly independent
and finite when α is a positive integer is

M(α)
n (z)= −Γ (α) [z−α 1 F1 (−n−α; 1−α; z)

− cos (πα) Γ (1−α) L(α)n (z)
]
. (9.194)

The Wronskian of the two solutions is

L(α)n (z)
d

dz
M(α)

n (z)−M(α)
n (z)

d

dz
L(α)n (z)

= Γ (n+α+1) z−α−1 exp (z) /n! . (9.195)
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A formula for M(α)
n (z)whenα is a positive integer m can

be obtained by taking the α→m limit of the right-hand
side of (9.194) to obtain

M(m)
n (z)= ln (z) L(m)n (z)+

∞∑

k=−m

(n+m)!
(k+m)! bkzk ,

(9.196)

where

bk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (−k−1)!/ (n− k)!, −m ≤ k ≤−1 ,

(−1)k [Ψ (n+1− k)−Ψ (k+1)

−Ψ (k+m+1)] / [k! (n− k)!] ,
0 ≤ k ≤ n ,

(−1)n (k−n−1)!/k! , k ≥ n+1 .
(9.197)

The Rodrigues formula is

L(α)n (z)= 1

n! z
−α exp (z)

dn

dzn

[
zn+α exp (−z)

]
.

(9.198)

The generating function is

(1−w)−α−1 exp

(
− wz

1−w
)
=

∞∑

n=0

L(α)n (z) wn .

(9.199)

The Christoffel–Darboux formula is

n∑

k=0

k!
Γ (k+α+1)

L(α)k (w) L(α)k (z)

=
(n+1)!

[
L(α)n (w)L(α)n+1(z)− L(α)n+1(w)L

(α)
n (z)

]

Γ (n+α+1) (w− z)
.

(9.200)

The orthonormality relation is

∞∫

0

xα exp (−x) L(α)n (x) L(α)n′ (x) dx

= (n!)−1Γ (n+α+1) δn,n′ . (9.201)

Other useful integration formulae include
∞∫

0

xα+1 exp (−x) L(α)n (x) L(α)n′ (x) dx

= Γ (n+α+1)

n!
[−nδn,n′+1+ (2n+α+1) δn,n′

− (n+α+1) δn,n′−1
]
, (9.202)

∞∫

0

xα−1 exp (−x) L(α)n (x) L(α)n′ (x) dx

= Γ (n<+α+1)

n<!α , n< = min
(
n, n′

)
, (9.203)

∞∫

0

xα−2 exp (−x) L(α)n (x) L(α)n′ (x) dx

= Γ (n<+α+1)

n<!α (α+2)

{
α
[
(α+1)

(
n+n′

)+4α+5
]

× (1−n<)+2 (n+1)
(
n′ +1

)+2α
(
n+n′

)}
,

n< = min
(
n, n′

)
. (9.204)

The differentiation and recursion relations are

z
d

dz
L(α)n (z) = nL(α)n (z)− (n+α) L(α)n−1 (z) ,

(9.205)

L(α)n+1 (z)= (n+1)−1
[
(2n+α+1− z) L(α)n (z)

− (n+α) L(α)n−1 (z)
]
. (9.206)

Additional relations can be obtained as special cases of
the relations listed above for the confluent hypergeomet-
ric function by using the relation (9.188).

The coefficients ck in a Laguerre polynomial expan-
sion such as

F (x)=
∞∑

k=0

k!
Γ (k+α+1)

ck

× (βx)α/2 exp

(
−1

2
βx

)
L(α)k (βx)

(9.207)

are given by the integral

ck = β
∞∫

0

F (x) (βx)α/2 exp

(
−1

2
βx

)
L(α)k (βx) dx .

(9.208)
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The rate of convergence of the expansion (9.207) is
determined by the asymptotic behavior of the integral
(9.208) for large k. A convenient way of extracting this
asymptotic behavior will be described with the special
case

α= 0 , (9.209)

F (x)= (x+ c)ν exp (−γx) , (9.210)

as an example. Since the discussion is intended to be il-
lustrative rather than exhaustive, only the case γ < 1

2β

will be considered. The method is based on the generat-
ing function (9.199). The generating function g (z) for
the coefficients ck is given in general by

g (z)=
∞∑

k=0

ckzn

= β(2+α)/2 (1− z)−α−1 G

[
β (1+ z)

2 (1− z)

]
,

(9.211)

where G is the Laplace transform

G (λ)=
∞∫

0

xα/2 F (x) exp (−λx) dx . (9.212)

The asymptotic analysis of the expansion coefficient ck
begins with the Cauchy integral for ck, which is

ck = 1

2πi

∫

C

z−k−1g (z) dz , (9.213)

where the contour C is a small circle which runs
counterclockwise around the origin. The contour C
is deformed to give integrals which can be evaluated
via standard methods for the asymptotic evaluation of
integrals [9.31, 32]. For the example (9.209), (9.210),

g (z)= βcν+1 (1− z)−1 U [1, ν+2, t (z)] , (9.214)

t (z)= (β+2γ) c+ (β−2γ) cz

2 (1− z)
. (9.215)

This g (z) has a branch point on the negative real
axis at z =− (β+2γ) / (β−2γ), and a combination of
a branch point and an essential singularity on the positive
real axis at z = 1. It is convenient to take the associated
branch cuts to run from −∞ to − (β+2γ) / (β−2γ)
on the negative real axis, and from +1 to +∞ on the
positive real axis. The contour C can be deformed into
the sum of two contours which run clockwise around the
branch cuts. Then

ck = c(1)k + c(2)k , (9.216)

where c(1)k is the contribution from a contour which
runs clockwise around the branch cut from −∞ to
− (β+2γ) / (β−2γ) on the negative real axis, and c(2)k
is the contribution from a contour which runs clock-
wise around the branch cut from +1 to +∞ on the
positive real axis. The asymptotic behavior of c(1)k can
be extracted in straightforward fashion via the method
of Darboux ([9.9], pp. 309–315, 321) ([9.32], pp. 116–
122). The result is

c(1)k =
(

2β

β+2γ

)(
4β

(β+2γ) (β−2γ)

)ν
(−1)k

× kν
(
β−2γ

β+2γ

)k [
1+O

(
k−1

)]
. (9.217)

The contribution c(2)k requires a somewhat different strat-
egy. The first step writes it as an integral along the real
axis from +1 to +∞ of the jump across the branch cut.
Evaluating the jump yields

c(2)k = β

Γ (−ν)
∞∫

0

dxxν
[
β+

(
1

2
β−γ

)
x

]−ν−1

× exp

[
−
(

1

2
β−γ

)
c− (k+1) ln (1+ x)

−βcx−1
]
. (9.218)

The integrand in (9.218) has a saddle point at
x ≈ [βc/ (k+1)]1/2. The asymptotics for (k+1) c
large can be extracted via the method of steepest
descent (also known as the saddle point method)
([9.9], pp. 136–138), ([9.32], pp. 85–103), [9.31], (see
Chapt. 8). However, if k+1 is large with (k+1) c small
or moderate, the steepest descent approximation breaks
down because the saddle point is too close to the branch
point of the integrand at x = 0. The breakdown can be
cured by using the small x approximations [β+ (1/2β−
γ)x]−ν−1 ≈ β−ν−1 and ln(1+ x)≈ x−1/2(k+1)−1βc
to obtain

c(2)k = 2β

Γ (−ν)
(

c

(k+1) β

)(ν+1)/2

exp (βc)

× Kν+1

[
2
√
(k+1) βc

] [
1+O

(
k−1/2

)]
.

(9.219)

The function Kν+1 which appears in (9.219) is
a modified Bessel function of the third kind
in standard notation. The large z approximation
Kν+1 (z)≈ π1/2 (2z)−1/2 exp (−z) can be used to re-
cover the result of a steepest descent approximation to
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(9.218), which is

c(2)k = π
1/2βcν+1

Γ (−ν)
[
βc

(
k+ 1

2

)]−(2ν+3)/4

× exp

{

γc−2

[
βc

(
k+ 1

2

)]1/2
}

×
[
1+O

(
k−1

)]
. (9.220)

The approximation (9.219) remains valid as c→ 0. The
approximation (9.220) does not.

The generating function method outlined above has
one very nice feature: if the singularity in the complex
z-plane which dominates the asymptotics is known, the
analysis can be inverted to obtain a “convergence accel-
eration function” which builds in this singularity, and has
no other singularities in the finite complex z plane. The
difference between the original F (x) and this conver-
gence acceleration function will have an expansion of the
form (9.207) which converges faster than the expansion
of F (x). Examples can be found in [9.33–36].

The contributions c(1)k and c(2)k exhibit two typical
features. The most rapidly varying part, which is

[(β−2γ) / (β+2γ)]k (9.221)

for c(1)k , and

exp

{

−2

[
βc

(
k+ 1

2

)]1/2
}

(9.222)

for the steepest descent approximation to c(2)k , is de-
termined by the location of the associated singularity.
The next most important part, which is kν for c(1)k ,
and (k+1/2)−(2ν+3)/4 for the steepest descent approx-
imation to c(2)k , is determined by the nature of the
singularity (i. e., by the value of ν).

9.4.3 Gegenbauer Polynomials

The Gegenbauer polynomials are a special case of the
Jacobi polynomial, and of the hypergeometric function:

Cλn (z)=
Γ
(
λ+ 1

2

)
Γ (2λ+n)

Γ (2λ)Γ
(
λ+n+ 1

2

) P
(λ− 1

2 ,λ− 1
2 )

n (z)

= Γ (2λ+n)

n!Γ (2λ)
× 2 F1

(
−n, n+2λ; λ+ 1

2
; 1

2
− 1

2 z

)
,

(9.223)

and are given explicitly by

Cλn (z)=
[n/2]∑

k=0

(−1)k Γ (λ+n− k)

k! (n−2k)!Γ (λ) (2z)n−2k .

(9.224)

The first three Cλn are

Cλ0 (z)= 1 , (9.225)

Cλ1 (z)= 2λz , (9.226)

Cλ2 (z)= 2λ (λ+1) z2−λ . (9.227)

Additional Cλn can be obtained with the aid of the
recursion relation

Cλn+1 (z)= (n+1)−1 [2 (n+λ) zCλn (z)

− (n+2λ−1)Cλn−1 (z)
]
, (9.228)

which is valid for n ≥ 1. A generating function is

(
1−2zt+ t2

)−λ =
∞∑

n=0

Cλn (z) tn . (9.229)

An important addition theorem, which can be used to
derive addition theorems for spherical harmonics in any
number of dimensions, is

Cλn [cos (γ )] = Γ (2λ−1)

[Γ (λ)]2

n∑

=0

22 (2λ+2−1)

Γ (n+2λ+)
×Γ (n−+1) [Γ (λ+)]2

× sin (χ) sin
(
χ ′
)

× Cλ+n− [cos (χ)] Cλ+n−
[
cos

(
χ ′
)]

× C
λ− 1

2


[
cos

(
γ ′
)]
, (9.230)

cos (γ )= cos (χ) cos
(
χ ′
)

+ sin (χ) sin
(
χ ′
)

cos
(
γ ′
)
. (9.231)

9.4.4 Legendre Functions

The Legendre polynomials P (z) are a special case of
the Gegenbauer polynomial, and of the hypergeometric
function:

P (z)= C1/2
n (z)

= 2 F1

(
−n, n+1; 1; 1

2
− 1

2
z

)
. (9.232)
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The second (irregular) solution to the Legendre
equation, which appears in (9.43) above, can be defined
by the integral representation

Q (z)= 2−−1

1∫

−1

(
1− t2

)
(z− t)−−1 dt .

(9.233)

The first two Q are

Q0 (z)= 1

2
ln

(
z+1

z−1

)
, (9.234)

Q1 (z)= 1

2
z ln

(
z+1

z−1

)
−1 , (9.235)

Additional Q can be obtained with the aid of the
recursion relation

Q+1 (z)= [(2+1) zQ (z)

−Q−1 (z)
]
/ (+1) , (9.236)

which is valid for ≥ 1.
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Atomic Spectr10. Atomic Spectroscopy

This chapter outlines the main concepts of atomic
structure, with some emphasis on terminology
and notation. Atomic radiation is discussed,
in particular the wavelengths, intensities, and
shapes of spectral lines, and a few remarks are
made regarding continuous spectra. We include
updated tabulations of ionization energies for
the neutral atoms and transition probabilities for
persistent lines of selected neutral atoms. Some
sources of additional atomic spectroscopic data
are mentioned.

Experimental techniques and the details of
atomic theoretical methods are not covered in this
chapter; these and a number of other subjects
pertinent to atomic spectroscopy are treated in
one or more of at least fifteen other chapters in
this book.
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10.1 Frequency, Wavenumber, Wavelength

The photon energy due to an electron transition between
an upper atomic level k (of energy Ek) and a lower level i
is

∆E = Ek − Ei = hν = hcσ = hc/λvac , (10.1)

where ν is the frequency, σ the wavenumber in vacuum,
and λvac the wavelength in vacuum. The most accu-
rate spectroscopic measurements are determinations of
transition frequencies, the unit being the Hertz (1 Hz =
1 s−1) or one of its multiples. A measurement of any one

of the entities frequency, wavenumber, or wavelength (in
vacuum) is an equally accurate determination of the oth-
ers since the speed of light is exactly defined [10.1]. The
most common wavelength units are the nanometer (nm),
the Ångström (1 Å = 10−1 nm) and the micrometer
(µm). The SI wavenumber unit is the inverse meter,
but in practice wavenumbers are usually expressed in
inverse centimeters: 1 cm−1 = 102 m−1, equivalent to
2.997 924 58 × 104 MHz. Energy units and conversion
factors are further discussed in Chapt. 1.

10.2 Atomic States, Shells, and Configurations

A one-electron atomic state is defined by the quantum
numbers nlmlms or nl jm j , with n and l representing
the principal quantum number and the orbital an-
gular momentum quantum number, respectively. The
allowed values of n are the positive integers, and
l = 0, 1, . . . , n−1. The quantum number j represents
the angular momentum obtained by coupling the or-
bital and spin angular momenta of an electron, i. e.,
j = l+ s, so that j = l±1/2. The magnetic quantum
numbers ml , ms, and m j represent the projections of
the corresponding angular momenta along a particular
direction; thus, for example, ml =−l, −l+1 · · · l and
ms =±1/2.

The central field approximation for a many-electron
atom leads to wave functions expressed in terms of prod-
ucts of such one-electron states [10.2,3]. Those electrons
having the same principal quantum number n belong to
the shell for that number. Electrons having both the same
n value and l value belong to a subshell, all electrons in
a particular subshell being equivalent. The notation for

a configuration of N equivalent electrons is nlN , the
superscript usually being omitted for N = 1. A config-
uration of several subshells is written as nlN n′l′M · · · .
The numerical values of l are replaced by letters in writ-
ing a configuration, according to the code s, p, d for
l = 0, 1, 2 and f , g, h . . . for l = 3, 4, 5 . . . , the letter j
being omitted.

The Pauli exclusion principle prohibits atomic states
having two electrons with all four quantum numbers the
same. Thus the maximum number of equivalent elec-
trons is 2(2l+1). A subshell having this number of
electrons is full, complete, or closed, and a subshell hav-
ing a smaller number of electrons is unfilled, incomplete,
or open. The 3p6 configuration thus represents a full
subshell and 3s2 3p6 3d10 represents a full shell for
n = 3.

The parity of a configuration is even or odd ac-
cording to whether Σi li is even or odd, the sum being
taken over all electrons (in practice only those in open
subshells need be considered).

10.3 Hydrogen and Hydrogen-Like Ions

The quantum numbers n, l, and j are appropriate [10.4].
A particular level is denoted either by nl j or by nl 2L J
with L = l and J = j. The latter notation is somewhat
redundant for one-electron spectra, but is useful for con-
sistency with more complex structures. The L values
are written with the same letter code used for l values,
but with capital letters. The multiplicity of the L term is
equal to 2S+1= 2s+1= 2. Written as a superscript, this
number expresses the doublet character of the structure:

each term for L ≥ 1 has two levels, with J = L±1/2,
respectively.

The Coulomb interaction between the nucleus and
the single electron is dominant, so that the largest energy
separations are associated with levels having differ-
ent n. The hyperfine splitting of the 1H 1s ground
level [1420.405 751 766 7(1 0)MHz] results from the
interaction of the proton and electron magnetic mo-
ments and gives rise to the famous 21 cm line. The
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separations of the 2n−1 excited levels having the
same n are largely determined by relativistic con-
tributions, including the spin–orbit interaction, with
the result that each of the n−1 pairs of levels

having the same j value is almost degenerate; the
separation of the two levels in each pair is mainly
due to relatively small Lamb shifts (see Sects. 28.2
and 27.10).

10.4 Alkalis and Alkali-Like Spectra

In the central field approximation there exists no angular-
momentum coupling between a closed subshell and
an electron outside the subshell, since the net spin
and orbital angular momenta of the subshell are both
zero. The nl j quantum numbers are, then, again ap-
propriate for a single electron outside closed subshells.
However, the electrostatic interactions of this electron
with the core electrons and with the nucleus yield

a strong l-dependence of the energy levels [10.5]. The
differing extent of “core penetration” for ns and np elec-
trons can in some cases, for example, give an energy
difference comparable to or exceeding the difference
between the np and (n+1)p levels. The spin–orbit
fine-structure separation between the nl (l > 0) levels
having j = l−1/2 and l+1/2, respectively, is relatively
small.

10.5 Helium and Helium-Like Ions; LS Coupling

The energy structure of the normal 1snl configurations
is dominated by the electron–nucleus and electron–
electron Coulomb contributions [10.4]. In helium and in
helium-like ions of the lighter elements, the separations
of levels having the same n and having l = s, p, or d are
mainly determined by direct and exchange electrostatic
interactions between the electrons – the spin–orbit, spin–
other orbit, and other relativistic contributions are much
smaller. This is the condition for L S coupling, in which:

(a) The orbital angular momenta of the electrons
are coupled to give a total orbital angular momentum
L =Σili .

(b) The spins of the electrons are coupled to give
a total spin S=Σisi .

The combination of a particular S value with a par-
ticular L value comprises a spectroscopic term, the

notation for which is 2S+1L . The quantum number
2S+1 is the multiplicity of the term. The S and L vec-
tors are coupled to obtain the total angular momentum,
J = S+ L, for a level of the term; the level is denoted
as 2S+1L J .

The parity is indicated by appended degree symbols
on odd parity terms.

For 1snl configurations, L = l and S = 0 or
1, i. e., the terms are singlets (S = 0) or triplets
(S = 1). As examples of the He i structure, the
ionization energy (energy required to remove one
of the 1s electrons in the 1s2 ground configura-
tion) is 24.5874 eV, the 1s2s 3S−1S separation is
0.7962 eV, the 1s2p 3P◦ −1P◦ separation is 0.2539 eV,
and the 1s2p 3P◦2−3P◦0 fine-structure spread is only
1.32 × 10−4 eV.

10.6 Hierarchy of Atomic Structure in LS Coupling

The centrality of L S coupling in the analysis and the-
oretical interpretation of atomic spectra has led to the
acceptance of notations and nomenclature well adapted
to discussions of particular structures and spectra [10.2].
The main elements of the nomenclature are shown in
Table 10.1, most of the structural entities having already
been defined in the above discussions of simple spectra.
The quantum numbers in the table represent a full de-
scription for complex configurations, and the accepted
names for transitions between the structural elements
are also given.

As an example, the Ca i 3d4p 3D◦
2 level belongs

to the 3D◦ term which, in turn, belongs to the
3d4p 3(P◦ D◦ F◦) triplet triad. The 3d4p configura-
tion also has a 1(P◦ D◦ F◦) singlet triad. The 3d4s
configuration has only monads, one 1D and one 3D .
The 3d4s 3D2–3d4p 3D◦

3 line belongs to the corre-
sponding 3D –3D◦ triplet multiplet, and this multiplet
belongs to the great Ca i 3d4s 3D –3d4p 3(P◦ D◦ F◦)
supermultiplet of three triplet multiplets discussed by
Russell and Saunders in their classic paper on the
alkaline-earth spectra [10.6]. The 3d4s–3d4p transition
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178 Part B Atoms

Table 10.1 Atomic structural hierarchy in LS coupling and
names for the groups of all transitions between structural
entities

array includes both the singlet and triplet supermulti-
plets, as well as any (L S-forbidden) intercombination
or intersystem lines arising from transitions between
levels of the singlet system and those of the triplet
system. The order of the two terms in the transi-
tions as written above, with the lower-energy term on
the left, is standard in atomic spectroscopy. Examples
of notations for complex configurations are given in
Sect. 10.8.

Structural Quantum Group of all

entity numbers a transitions

Configuration (nili)Ni Transition array

Polyad (nili)Ni γS1 L1nl Supermultiplet

SL, SL ′ · · ·
Term (nili)Ni γSL Multiplet

Level (nili)Ni γSL J Line

State (nili)Ni γSL JM Line component

a The configuration may include several open subshells, as
indicated by the i subscripts. The letter γ represents any ad-
ditional quantum numbers, such as ancestral terms, necessary
to specify a particular term

10.7 Allowed Terms or Levels for Equivalent Electrons

10.7.1 LS Coupling

The allowed LS terms of a configuration consisting of
two nonequivalent groups of electrons are obtained by
coupling the S and L vectors of the groups in all possible
ways, and the procedure may be extended to any number
of such groups. Thus the allowed terms for any configu-
ration can be obtained from a table of the allowed terms
for groups of equivalent electrons.

The configuration lN has more than one allowed
term of certain LS types if l> 1 and 2< N< 4l (d3–d7,
f3–f11, etc.). The recurring terms of a particular LS term
type from dN and f N configurations are assigned se-
quential index numbers in the tables of Nielson and
Koster [10.7]; the index numbers stand for additional
numbers having group-theoretical significance that serve
to differentiate the recurring terms, except for a few
terms of f5 and f9, f6 and f8, and f7. These remain-
ing terms, which occur only in pairs, are further labeled
A or B to indicate Racah’s separation of the two terms.

The index numbers of Nielson and Koster are in
practice the most frequently used labels for the recurring
terms of f N configurations. Use of their index numbers
for the recurring terms of dN configurations has perhaps
the disadvantage of substituting an arbitrary number
for a quantum number (the seniority) that itself distin-
guishes the recurring terms in all cases. The actual value
of the seniority number is rarely needed, however, and
a consistent notation for the dN and f N configurations is
desirable. A table of the allowed LS terms of the lN elec-
trons for l ≤ 3 is given in [10.8], with all recurring terms
having the index numbers of Nielson and Koster as a fol-
lowing on-line integer. The theoretical group labels are

also listed. Thus the d3 2D term having seniority 3 is
designated 2D 2, instead of 2

3D, in this scheme; and the
level having J = 3/2 is designated 2D3/22.

10.7.2 j j Coupling

The allowed J values for a group of N equivalent
electrons having the same j value, lN

j , are given in
Table 10.2 for j = 1/2, 3/2, 5/2, and 7/2 (sufficient

Table 10.2 Allowed J values for lN
j equivalent electrons

( jj) coupling

lN
j Allowed J values

l1/2 1/2

l2
1/2 0

l3/2 and l3
3/2 3/2

l2
3/2 0, 2

l4
3/2 0

l5/2 and l5
5/2 5/2

l2
5/2 and l4

5/2 0, 2, 4

l3
5/2 3/2, 5/2, 9/2

l6
5/2 0

l7/2 and l7
7/2 7/2

l2
7/2 and l6

7/2 0, 2, 4, 6

l3
7/2 and l5

7/2 3/2, 5/2, 7/2, 9/2, 11/2, 15/2

l4
7/2 0, 22, 42, 24, 44, 5, 6, 8

l8
7/2 0
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Atomic Spectroscopy 10.8 Notations for Different Coupling Schemes 179

for l ≤ 3). The l4
7/2 group has two allowed levels for

each of the J values 2 and 4. The subscripts distin-
guishing the two levels in each case are the seniority
numbers [10.9].

The allowed levels of the configuration nlN may
be obtained by dividing the electrons into sets of two
groups nlQ

l+1/2 nlR
l−1/2, Q+ R = N . The possible sets

run from Q = N −2l (or zero if N < 2l) up to Q = N

or Q = 2l+2, whichever is smaller. The (degenerate)
levels for a set with both Q and R nonzero have wave
functions defined by the quantum numbers (αJ1, βJ2)J ,
with J1 and J2 deriving from the Q and R groups, re-
spectively. The symbolsα andβ represent any additional
quantum numbers required to identify levels. The J val-
ues of the allowed levels for each (αJ1, βJ2) subset are
obtained by combining J1 and J2 in the usual way.

10.8 Notations for Different Coupling Schemes

In this section we give enough examples to make
clear the meaning of the different coupling-scheme
notations. Not all the configurations in the examples
have been identified experimentally, and some of the
examples of a particular coupling scheme given for
heuristic purposes may be physically inappropriate.
Cowan [10.3] describes the physical conditions for
the different coupling schemes and gives experimental
examples.

10.8.1 LS Coupling
(Russell–Saunders Coupling)

Some of the examples given below indicate notations
bearing on the order of coupling of the electrons

1. 3d7 4F7/2

2. 3d7
(

4F
)
4s4p

(
3P◦) 6F◦

9/2

3. 4f7
(

8S◦)6s6p2
(

4P
)

11P◦
5

4. 3p5
(

2P◦)3d2
(

1G
)

2F◦
7/2

5. 4f10
(

3K 2
)
6s6p

(
1P◦) 3L◦

6

6. 4f7
(

8S◦)5d
(

7D◦)6p 8F13/2

7. 4f7
(

8S◦)5d
(

9D◦)6s
(

8D◦)7s 9D◦
5

8. 4f7
(

8S◦)5d
(

9D◦)6s6p
(

3P◦) 11F8

9. 4f7
(

8S◦)5d2
(

1G
) (

8G◦)6p 7F0

10. 4f
(

2F◦) 5d2
(

1G
)
6s

(
2G

)
1P◦

1.

In the second example, the seven 3d electrons
couple to give a 4F term, and the 4s and 4p elec-
trons couple to form the 3P◦ term; the final 6F◦
term is one of nine possible terms obtained by
coupling the 4F grandparent and 3P◦ parent terms.
The next three examples are similar to the sec-
ond. The meaning of the index number 2 following
the 3K symbol in the fifth example is explained in
Sect. 10.7.1.

The coupling in example 6 is appropriate if the inter-
action of the 5d and 4f electrons is sufficiently stronger
than the 5d–6p interaction. The 7D◦ parent term results
from coupling the 5d electron to the 8S◦ grandparent,
and the 6p electron is then coupled to the 7D◦ parent to
form the final 8F term. A space is inserted between the
5d electron and the 7D◦ parent to emphasize that the lat-
ter is formed by coupling a term

(
8S◦) listed to the left

of the space. Example 7 illustrates a similar coupling
order carried to a further stage; the 8D◦ parent term re-
sults from the coupling of the 6s electron to the 9D◦
grandparent.

Example 8 is similar to examples 2–5, but in 8 the
first of the two terms that couple to form the final 11F
term, i. e., the 9D◦ term, is itself formed by the coupling
of the 5d electron to the 8S◦ core term. Example 9 shows
an 8G◦ parent term formed by coupling the 8S◦ and 1G
grandparent terms. A space is again used to emphasize
that the following

(
8G◦) term is formed by the coupling

of terms listed before the space.
A different order of coupling is indicated in the final

example, the 5d2 1G term being coupled first to the
external 6s electron instead of directly to the 4f core
electron. The 4 f

(
2F◦) core term is isolated by a space to

denote that it is coupled (to the 5d2
(

1G
)
6s 2G term) only

after the other electrons have been coupled. The notation
in this particular case (with a single 4f electron) could be
simplified by writing the 4f electron after the 2G term to
which it is coupled. It appears more important, however,
to retain the convention of giving the core portion of the
configuration first.

The notations in examples 1–5 are in the form rec-
ommended by Russell et al. [10.10], and used in both
the Atomic Energy States [10.11] and Atomic Energy
Levels [10.8, 12] compilations. The spacings used in
the remaining examples allow different orders of cou-
pling of the electrons to be indicated without the use of
additional parentheses, brackets, etc.
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Some authors assign a short name to each (final)
term, so that the configuration can be omitted in ta-
bles of classified lines, etc. The most common scheme
distinguishes the low terms of a particular SL type by
the prefixes a, b, c, . . . , and the high terms by z, y, x,
. . . [10.12].

10.8.2 j j Coupling of Equivalent Electrons

This scheme is used, for example, in relativistic calcula-
tions. The lower-case j indicates the angular momentum
of one electron ( j = l±1/2) or of each electron in an
lN

j group. Various ways of indicating which of the two
possible j values applies to such a group without writ-
ing the j-value subscript have been used by different
authors; we give the j values explicitly in the examples
below. We use the symbols Ji and j to represent total
angular momenta.

1.
(
6p2

1/2

)
0

2.
(
6p2

1/2 6p3/2

)◦
3/2

3.
(
6p2

1/2 6p2
3/2

)
2

4. 4d3
5/2 4d2

3/2

(
9/2, 2

)
11/2

The relatively large spin–orbit interaction of the 6p
electrons produces jj-coupling structures for the 6p2,
6p3, and 6p4 ground configurations of neutral Pb, Bi,
and Po, respectively; the notations for the ground levels
of these atoms are given as the first three examples above.
The configuration in the first example shows the notation
for equivalent electrons having the same j value lN

j , in
this case two 6p electrons each having j = 1/2. A con-
venient notation for a particular level (J = 0) of such
a group is also indicated. The second example extends
this notation to the case of a 6p3 configuration divided
into two groups according to the two possible j values.
A similar notation is shown for the 6p4 level in the third
example; this level might also be designated (6p−2

3/2)2,
the negative superscript indicating the two 6p holes. The
(J1, J2)J term and level notation shown on the right in
the fourth example is convenient because each of the
two electron groups 4d3

5/2 and 4d2
3/2 has more than one

allowed total Ji value. The assumed convention is that
J1 applies to the group on the left (J1 = 9/2 for the 4d3

5/2
group) and J2 to that on the right.

10.8.3 J1 j or J1 J2 Coupling

1. 3d9
(

2D5/2

)
4p3/2

(
5/2, 3/2

)◦
3

2. 4f11
(

2H◦
9/22

)
6s6p

(
3P◦

1

) (
9/2, 1

)
7/2

3. 4f9
(

6H◦)5d
(

7H◦
8

)
6s6p

(
3P◦

0

) (
8, 0

)
8

4. 4f12
(

3H6

)
5d
(

2D
)
6s6p

(
3P◦) (4F◦

3/2

) (
6, 3/2

)◦
13/2

5. 5f4
(

5I4

)
6d3/2

(
4, 3/2

)
11/27s7p

(
1P◦

1

) (
11/2, 1

)◦
9/2

6. 5f4
7/25f5

5/2

(
8, 5/2

)◦
21/2 7p3/2

(
21/2, 3/2

)
10

7. 5f3
7/25f3

5/2

(
9/2, 9/2

)
97s7p

(
3P◦

2

) (
9, 2

)◦
7

The first five examples all have core electrons in
L S coupling, whereas jj coupling is indicated for the
5f core electrons in the last two examples. Since the
J1 and J2 values in the final (J1, J2) term have al-
ready been given as subscripts in the configuration,
the (J1, J2) term notations are redundant in all these
examples. Unless separation of the configuration and
final term designations is desired, as in some data
tables, one may obtain a more concise notation by
simply enclosing the entire configuration in brackets
and adding the final J value as a subscript. Thus,
the level in the first example can be designated as[
3d9

(
2D5/2

)
4p3/2

]◦
3. If the configuration and coupling

order are assumed to be known, still shorter designa-
tions may be used; for example, the fourth level above
might then be given as

[(
3H6

) (
3P◦) (4F◦

3/2

)]
13/2 or(

3H6,
3P◦, 4F◦

3/2

)
13/2. Similar economies of notation

are of course possible, and often useful, in all coupling
schemes.

10.8.4 J1l or J1L2 Coupling (J1K Coupling)

1. 3p5
(

2P◦
1/2

)
5g 2

[
9/2

]◦
5

2. 4f2
(

3H4

)
5g 2

[
3
]

5/2

3. 4f13
(

2F◦
7/2

)
5d2

(
1D

)
1
[
7/2

]◦
7/2

4. 4f13
(

2F◦
5/2

)
5d6s

(
3D

)
3
[
9/2

]◦
11/2

The final terms in the first two examples re-
sult from coupling a parent-level J1 to the orbital
angular momentum of a 5g electron to obtain a re-
sultant K , the K value being enclosed in brackets.
The spin of the external electron is then coupled with
the K angular momentum to obtain a pair of J val-
ues, J = K ±1/2 (for K �= 0). The multiplicity (2)
of such pair terms is usually omitted from the term
symbol, but other multiplicities occur in the more gen-
eral J1 L2 coupling (examples 3 and 4). The last two
examples are straightforward extensions of J1 l cou-
pling, with the L2 and S2 momenta of the “external”
term (1D and 3D in examples 3 and 4, respectively)
replacing the l and s momenta of a single external
electron.
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10.8.5 LS1 Coupling (LK Coupling)

1. 3s23p
(

2P◦)4f G 2
[
7/2

]
3

2. 3d7
(

4P
)
4s4p

(
3P◦) D◦ 3

[
5/2

]◦
7/2

The orbital angular momentum of the core is cou-
pled with the orbital angular momentum of the external
electron(s) to give the total orbital angular momentum L.
The letter symbol for the final L value is listed with the
configuration because this angular momentum is then
coupled with the spin of the core (S1) to obtain the resul-
tant K angular momentum of the final term (in brackets).
The multiplicity of the [K ] term arises from the spin of
the external electron(s).

10.8.6 Coupling Schemes and Term Symbols

The coupling schemes outlined above include those now
most frequently used in calculations of atomic struc-
ture [10.3]. Any term symbol gives the values of two
angular momenta that may be coupled to give the to-
tal electronic angular momentum of a level (indicated

by the J value). For configurations of more than one
unfilled subshell, the angular momenta involved in the
final coupling derive from two groups of electrons (ei-
ther group may consist of only one electron). These are
often an inner group of coupled electrons and an outer
group of coupled electrons, respectively. In any case
the quantum numbers for the two groups can be distin-
guished by subscripts 1 and 2, so that quantum numbers
represented by capital letters without subscripts are total
quantum numbers for both groups. Thus, the quantum
numbers for the two vectors that couple to give the final
J are related to the term symbol as follows:

Quantum numbers for

Coupling vectors that couple Term

scheme to give J symbol

L S L, S 2S+1L

J1 J2 J1, J2 (J1, J2)

J1 L2(→ K ) K, S2
2S2+1[K ]

L S1(→ K ) K, S2
2S2+1[K ]

10.9 Eigenvector Composition of Levels

The wave functions of levels are often expressed as
eigenvectors that are linear combinations of basis states
in one of the standard coupling schemes. Thus, the
wave function Ψ(αJ ) for a level labeled αJ might
be expressed in terms of LS coupling basis states
Φ(γSL J ):

Ψ(αJ )=
∑

γSL

c(γSL J ) Φ(γSL J ) . (10.2)

The c(γSL J ) are expansion coefficients, and
∑

γSL

∣∣∣c(γSL J )
∣∣∣
2 = 1 . (10.3)

The squared expansion coefficients for the vari-
ous γSL terms in the composition of the αJ level
are conveniently expressed as percentages, whose sum
is 100%. Thus the percentage contributed by the
pure Russell–Saunders state γSL J is equal to 100 ×
|c(γSL J )|2. The notation for Russell–Saunders basis
states has been used only for concreteness; the eigen-
vectors may be expressed in any coupling scheme,
and the coupling schemes may be different for dif-
ferent configurations included in a single calculation

(with configuration interaction). “Intermediate coup-
ling” conditions for a configuration are such that
calculations in both L S and jj coupling yield some
eigenvectors representing significant mixtures of basis
states.

The largest percentage in the composition of a level
is called the purity of the level in that coupling scheme.
The coupling scheme (or combination of coupling
schemes if more than one configuration is involved)
that results in the largest average purity for all the
levels in a calculation is usually best for naming
the levels. With regard to any particular calculation,
one does well to remember that, as with other cal-
culated quantities, the resulting eigenvectors depend
on a specific theoretical model and are subject to the
inaccuracies of whatever approximations the model
involves.

Theoretical calculations of experimental energy
level structures have yielded many eigenvectors hav-
ing significantly less than 50% purity in any coupling
scheme. Since many of the corresponding levels have
nevertheless been assigned names by spectroscopists,
some caution is advisable in the acceptance of level
designations found in the literature.
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10.10 Ground Levels and Ionization Energies for the Neutral Atoms

Fortunately, the ground levels of the neutral atoms
have reasonably meaningful L S-coupling names, the
corresponding eigenvector percentages lying in the
range from ≈ 55% to 100%. These names are listed
in Table 10.3, except for Pa, U, and Np; the low-
est few ground-configuration levels of these atoms
comprise better 5f N (L1S1 J1) 6d j7s2 (J1 j) terms than
L S-coupling terms. As noted in Sect. 10.8.2, the jj-
coupling names given there for the ground levels of
Pb, Bi, and Po are more appropriate than the alternative
L S-coupling designations in Table 10.3.

Table 10.3 Ground levels and ionization energies for the neutral atoms

Ionization Ionization

Elem- Ground energy Elem- Ground energy

Z ent Ground configuration a level (eV) Z ent Ground configuration a level (eV)

1 H 1s 2S 1/2 13.5984 27 Co [Ar] 3d7 4s2 4F 9/2 7.8810

2 He 1s2 1S 0 24.5874 28 Ni [Ar] 3d8 4s2 3F 4 7.6398

3 Li 1s2 2s 2S 1/2 5.3917 29 Cu [Ar] 3d10 4s 2S 1/2 7.7264

4 Be 1s2 2s2 1S 0 9.3227 30 Zn [Ar] 3d10 4s2 1S 0 9.3942

5 B 1s2 2s2 2p 2P ◦
1/2 8.2980 31 Ga [Ar] 3d10 4s2 4p 2P ◦

1/2 5.9993

6 C 1s2 2s2 2p2 3P 0 11.2603 32 Ge [Ar] 3d10 4s2 4p2 3P 0 7.8994

7 N 1s2 2s2 2p3 4S ◦
3/2 14.5341 33 As [Ar] 3d10 4s2 4p3 4S ◦

3/2 9.7886

8 O 1s2 2s2 2p4 3P 2 13.6181 34 Se [Ar] 3d10 4s2 4p4 3P 2 9.7524

9 F 1s2 2s2 2p5 2P ◦
3/2 17.4228 35 Br [Ar] 3d10 4s2 4p5 2P ◦

3/2 11.8138

10 Ne 1s2 2s2 2p6 1S 0 21.5645 36 Kr [Ar] 3d10 4s2 4p6 1S 0 13.9996

11 Na [Ne] 3s 2S 1/2 5.1391 37 Rb [Kr] 5s 2S 1/2 4.1771

12 Mg [Ne] 3s2 1S 0 7.6462 38 Sr [Kr] 5s2 1S 0 5.6949

13 Al [Ne] 3s2 3p 2P ◦
1/2 5.9858 39 Y [Kr] 4d 5s2 2D 3/2 6.2173

14 Si [Ne] 3s2 3p2 3P 0 8.1517 40 Zr [Kr] 4d2 5s2 3F 2 6.6339

15 P [Ne] 3s2 3p3 4S ◦
3/2 10.4867 41 Nb [Kr] 4d4 5s 6D 1/2 6.7589

16 S [Ne] 3s2 3p4 3P 2 10.3600 42 Mo [Kr] 4d5 5s 7S 3 7.0924

17 Cl [Ne] 3s2 3p5 2P ◦
3/2 12.9676 43 Tc [Kr] 4d5 5s2 6S 5/2 7.28

18 Ar [Ne] 3s2 3p6 1S 15.7596 44 Ru [Kr] 4d7 5s 5F 5 7.3605

19 K [Ar] 4s 2S 1/2 4.3407 45 Rh [Kr] 4d8 5s 4F 9/2 7.4589

20 Ca [Ar] 4s2 1S 0 6.1132 46 Pd [Kr] 4d10 1S 0 8.3369

21 Sc [Ar] 3d 4s2 2D 3/2 6.5615 47 Ag [Kr] 4d10 5s 2S 1/2 7.5762

22 Ti [Ar] 3d2 4s2 3F 2 6.8281 48 Cd [Kr] 4d10 5s2 1S 0 8.9938

23 V [Ar] 3d3 4s2 4F 3/2 6.7462 49 In [Kr] 4d10 5s2 5p 2P ◦
1/2 5.7864

24 Cr [Ar] 3d5 4s 7S 3 6.7665 50 Sn [Kr] 4d10 5s2 5p2 3P 0 7.3439

25 Mn [Ar] 3d5 4s2 6S 5/2 7.4340 51 Sb [Kr] 4d10 5s2 5p3 4S ◦
3/2 8.6084

26 Fe [Ar] 3d6 4s2 5D 4 7.9024 52 Te [Kr] 4d10 5s2 5p4 3P 2 9.0096

The ionization energies in the table are from recent
compilations [10.13, 14]. The uncertainties are mainly
in the range from less than one to several units in the
last decimal place, but a few of the values may be in
error by 20 or more units in the final place, i. e., the error
could be greater than 0.2 eV. Although no more than
four decimal places are given here, values for both the
neutral and singly-ionized atoms are given to their full
accuracies in [10.14].
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Atomic Spectroscopy 10.11 Zeeman Effect 183

Table 10.3 Ground levels and ionization energies for the neutral atoms, cont.

Ionization Ionization

Elem- Ground energy Elem- Ground energy

Z ent Ground configuration a level (eV) Z ent Ground configuration a level (eV)

53 I [Kr] 4d10 5s2 5p5 2P ◦
3/2 10.4513 79 Au [Xe] 4f14 5d10 6s 2S 1/2 9.2255

54 Xe [Kr] 4d10 5s2 5p6 1S 0 12.1298 80 Hg [Xe] 4f14 5d10 6s2 1S 0 10.4375

55 Cs [Xe] 6s 2S 1/2 3.8939 81 Tl [Xe] 4f14 5d10 6s2 6p 2P ◦
1/2 6.1082

56 Ba [Xe] 6s2 1S 0 5.2117 82 Pb [Xe] 4f14 5d10 6s2 6p2 3P 0 7.4167

57 La [Xe] 5d 6s2 2D 3/2 5.5769 83 Bi [Xe] 4f14 5d10 6s2 6p3 4S ◦
3/2 7.2855

58 Ce [Xe] 4f 5d 6s2 1G ◦
4 5.5387 84 Po [Xe] 4f14 5d10 6s2 6p4 3P 2 8.414

59 Pr [Xe] 4f3 6s2 4I ◦9/2 5.473 85 At [Xe] 4f14 5d10 6s2 6p5 2P ◦
3/2

60 Nd [Xe] 4f4 6s2 5I 4 5.5250 86 Rn [Xe] 4f14 5d10 6s2 6p6 1S 0 10.7485

61 Pm [Xe] 4f5 6s2 6H ◦
5/2 5.582 87 Fr [Rn] 7s 2S 1/2 4.0727

62 Sm [Xe] 4f6 6s2 7F 0 5.6437 88 Ra [Rn] 7s2 1S 0 5.2784

63 Eu [Xe] 4f7 6s2 8S ◦
7/2 5.6704 89 Ac [Rn] 6d 7s2 2D 3/2 5.17

64 Gd [Xe] 4f7 5d 6s2 9D ◦
2 6.1498 90 Th [Rn] 6d2 7s2 3F 2 6.3067

65 Tb [Xe] 4f9 6s2 6H ◦
15/2 5.8638 91 Pa [Rn] 5f2 (3H 4) 6d 7s2 (4, 3/2)11/2 5.89

66 Dy [Xe] 4f10 6s2 5I 8 5.9389 92 U [Rn] 5f3 (4I ◦9/2) 6d 7s2 (9/2, 3/2)◦6 6.1941

67 Ho [Xe] 4f11 6s2 4I ◦15/2 6.0215 93 Np [Rn] 5f4 (5I 4) 6d 7s2 (4, 3/2)11/2 6.2657

68 Er [Xe] 4f12 6s2 3H 6 6.1077 94 Pu [Rn] 5f6 7s2 7F 0 6.0260

69 Tm [Xe] 4f13 6s2 2F ◦
7/2 6.1843 95 Am [Rn] 5f7 7s2 8S ◦

7/2 5.9738

70 Yb [Xe] 4f14 6s2 1S 0 6.2542 96 Cm [Rn] 5f7 6d 7s2 9D ◦
2 5.9914

71 Lu [Xe] 4f14 5d 6s2 2D 3/2 5.4259 97 Bk [Rn] 5f9 7s2 6H ◦
15/2 6.1979

72 Hf [Xe] 4f14 5d2 6s2 3F 2 6.8251 98 Cf [Rn] 5f10 7s2 5I 8 6.2817

73 Ta [Xe] 4f14 5d3 6s2 4F 3/2 7.5496 99 Es [Rn] 5f11 7s2 4I ◦15/2 6.42

74 W [Xe] 4f14 5d4 6s2 5D 0 7.8640 100 Fm [Rn] 5f12 7s2 3H 6 6.50

75 Re [Xe] 4f14 5d5 6s2 6S 5/2 7.8335 101 Md [Rn] 5f13 7s2 2F ◦
7/2 6.58

76 Os [Xe] 4f14 5d6 6s2 5D 4 8.28 102 No [Rn] 5f14 7s2 1S 0 6.65

77 Ir [Xe] 4f14 5d7 6s2 4F 9/2 9.02 103 Lr [Rn] 5f14 7s2 7p? 2P ◦
1/2? 4.9 ?

78 Pt [Xe] 4f14 5d9 6s 3D 3 8.9588 104 Rf [Rn] 5f14 6d2 7s2 ? 3F 2? 6.0 ?

a An element symbol in brackets represents the electrons in the ground configuration of that element

10.11 Zeeman Effect

The Zeeman effect for “weak” magnetic fields (the
anomalous Zeeman effect) is of special interest because
of the importance of Zeeman data in the analysis and
theoretical interpretation of complex spectra. In a weak
field, the J value remains a good quantum number
although in general a level is split into magnetic sub-

levels [10.3]. The g value of such a level may be defined
by the expression for the energy shift of its magnetic
sublevel having magnetic quantum number M, which
has one of the 2J +1 values, −J , −J +1, . . . , J :

∆E = gMµB B . (10.4)
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The magnetic flux density is B and µB is the Bohr
magneton (µB = e�/2me).

The wavenumber shift ∆σ corresponding to this
energy shift is

∆σ = gM(0.466 86B cm−1) , (10.5)

with B representing the numerical value of the magnetic
flux density in teslas. The quantity in parentheses, the
Lorentz unit, is of the order of 1 or 2 cm−1 for typical
flux densities used to obtain Zeeman-effect data with
classical spectroscopic methods. Accurate data can be
obtained with much smaller fields, of course, by using
higher-resolution techniques such as laser spectroscopy.
Most of the g values now available for atomic energy
levels were derived by application of the above formula
(for each of the two combining levels) to measurements
of optical Zeeman patterns. A single transverse-Zeeman-
effect pattern (two polarizations, resolved components,
and sufficiently complete) can yield the J value and the
g value for each of the two levels involved.

Neglecting a number of higher-order effects, we can
evaluate the g value of a level βJ belonging to a pure
LS-coupling term using the formula

gβSL J = 1+
{
(ge−1) (10.6)

×
J(J +1)− L(L+1)+ S(S+1)

2J(J +1)

}
.

The independence of this expression from any other
quantum numbers (represented by β) such as the con-

figuration, etc., is important. The expression is derived
from vector coupling formulas by assuming a g value of
unity for a pure orbital angular momentum and writing
the g value for a pure electron spin as ge [10.15]. A value
of 2 for ge yields the Landé formula. If the anomalous
magnetic moment of the electron is taken into account,
the value of ge is 2.002 3193. “Schwinger” g values ob-
tained with this more accurate value for ge are given for
levels of SL terms in [10.8].

The usefulness of gSL J values is enhanced by their
relation to the g values in intermediate coupling. In the
notation used in (10.2) for the wave function of a level
βJ in intermediate coupling, the corresponding g value
is given by

gβJ =
∑

γSL

gSL J |c(γSL J )|2 , (10.7)

where the summation is over the same set of quantum
numbers as for the wave function. The gβJ value is thus
a weighted average of the Landé gSL J values, the weight-
ing factors being just the corresponding component
percentages.

Formulas for magnetic splitting factors in the
J1 J2 and J1L2 coupling schemes are given in [10.8]
and [10.15]. Some higher-order effects that must be
included in more accurate Zeeman-effect calculations
are treated by Bethe and Salpeter [10.4] and by
Wybourne [10.15], for example. High precision calcula-
tions for helium are given in [10.16]. See also Chapt. 13
and Chapt. 15.

10.12 Term Series, Quantum Defects, and Spectral-Line Series

The Bohr energy levels for hydrogen or for a hydrogenic
(one-electron) ion are given by

En =− Z2

n2 , (10.8)

in units of the Rydberg for the appropriate nuclear mass.
For a multielectron atom, the deviations of a series of
(core)nl levels from hydrogenic En values may be due
mainly to core penetration by the nl electron (low l-value
series), or core polarization by the nl electron (high
l-value series), or a combination of the two effects. In
either case it can be shown that these deviations can
be approximately represented by a constant quantum
defect δl in the Rydberg formula,

Enl =− Z2
c

(n− δl)2 =− Z2
c

(n∗)2
, (10.9)

where Zc is the charge of the core and n∗ = n− δ is the
effective principal quantum number. If the core includes
only closed subshells, the Enl values are with respect
to a value of zero for the (core)1S0 level, i. e., the 1S0
level is the limit of the (core)nl series. If the quantities in
(10.9) are taken as positive, they represent term values
or ionization energies; the term value of the ground level
of an atom or ion with respect to the ground level of the
next higher ion is thus the principal ionization energy.

If the core has one or more open subshells, the series
limit may be the baricenter of the entire core configura-
tion, or any appropriate sub-structure of the core, down
to and including a single level. The Enl values refer
to the series of corresponding (core)nl structures built
on the particular limit structure. The value of the quan-
tum defect depends to some extent on which (core)nl
structures are represented by the series formula.
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The quantum defect in general also has an energy
dependence that must be taken into account if lower
members of a series are to be accurately represented by
(10.9). For an unperturbed series, this dependence can
be expressed by the extended Ritz formula

δ= n−n∗

= δ0+ a

(n− δ0)2 +
b

(n− δ0)4 +· · · , (10.10)

with δ0, a, b . . . constants for the series (δ0 being
the limit value of the quantum defect for high se-
ries members) [10.17]. The value of a is usually
positive for core-penetration series and negative for

core-polarization series. A discussion of the foundations
of the Ritz expansion and application to high precision
calculations in helium is given in [10.18].

A spectral-line series results from either emission or
absorption transitions involving a common lower level
and a series of successive (core)nl upper levels differ-
ing only in their n values. The principal series of Na i,
3s 2S1/2−np 2P◦

1/2,3/2 (n ≥ 3), is an example. The reg-
ularity of successive upper term values with increasing n
(10.9,10.10) is of course observed in line series; the
intervals between successive lines decrease in a regu-
lar manner towards higher wavenumbers, and the series
of increasing wavenumbers converges towards the term
value of the lower level as a limit.

10.13 Sequences

Several types of sequences of elements and/or ionization
stages are useful because of regularities in the progres-
sive values of parameters relating to structure and other
properties along the sequences. All sequence names may
refer either to the atoms and/or ions of the sequence or
to their spectra.

10.13.1 Isoelectronic Sequence

A neutral atom and those ions of other elements hav-
ing the same number of electrons as the atom comprise
an isoelectronic sequence. (Note that a negative ion
having this number of electrons is a member of the se-
quence.) An isoelectronic sequence is named according
to its neutral member; for example, the Na i isolectronic
sequence.

10.13.2 Isoionic, Isonuclear,
and Homologous Sequences

An isoionic sequence comprises atoms or ions of differ-
ent elements having the same charge. Such sequences
have probably been most useful along the d- and f-shell
rows of the periodic table. Isoionic analyses have also
been carried out along p-shell rows, however, and a fine-
structure regularity covering spectra of the p-shell atoms
throughout the periodic table is known [10.19].

The atom and successive ions of a particular element
comprise the isonuclear sequence for that element.

The elements of a particular column and subgroup
in the periodic table are homologous. Thus the C, Si,
Ge, Sn, and Pb atoms belong to a homologous se-
quence having np2 ground configurations (Table 10.3).
The singly ionized atoms of these elements comprise
another example of a homologous sequence.

10.14 Spectral Wavelength Ranges, Dispersion of Air

The ranges of most interest for optical atomic spec-
troscopy are:

∼ 2–20 µm mid-infrared (ir)

700–2000 nm near ir

400–700 nm visible

200–400 nm near ultraviolet (uv)

100–200 nm vacuum uv or far uv

10–100 nm extreme uv (euv or xuv)

< 10 nm soft X-ray, X-ray

The above correspondence of names to ranges
should not be taken as exact; the variation as to the ex-
tent of some of the named ranges found in the literature
is considerable.

Wavelengths in standard air are often tabulated for
the region longer than 200 nm. These wavelengths can
be related to energy-level differences by conversion to
the corresponding (vacuum) wavenumbers or frequen-
cies [10.20, 21].
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10.15 Wavelength (Frequency) Standards
In 2001 the Comité International des Poids et
Mesures recommended values for optical frequency
standards from stabilized lasers using various ab-
sorbing atoms, atomic ions, and molecules [10.22].
These frequencies range from 29 054 057 446 579 Hz
(10.318 436 884 460 µm; relative standard uncer-
tainty 1.4 × 10−13) for a transition in OsO4 to
1 267 402 452 889.92 kHz (236.540 853 549 75 nm; rel-
ative standard uncertainty 3.6 × 10−13) for a transition
in the 115In+ ion [10.22].

Extensive tables of wavenumbers for molecular
transitions in the mid-ir range of 2.3 to 20.5 µm
are included in a calibration atlas published in
1991 [10.23]. Wavenumbers of Ar i [10.24] and
Ar ii [10.25] emission lines having uncertainties as small
as 0.0003 cm−1 are included in tables for these spec-
tra covering a broad range from 222 nm to 5.865 µm.
Measurements of U and Th lines (575 to 692 nm)
suitable for wavenumber calibration at uncertainty lev-
els of 0.0003 cm−1 or 0.0004 cm−1 were reported
in [10.26]. Comprehensive tables of lines for U [10.27],
Th [10.28], and I2 [10.29, 30] are useful for cali-

bration at uncertainty levels of 0.002 to 0.003 cm−1,
the atlas of the Th spectrum extending down to
278 nm.

A 1974 compilation gives reference wavelengths for
some 5400 lines of 38 elements covering the range
1.5 nm to 2.5 µm, with most uncertainties between
10−5 and 2 × 10−4 nm [10.31]. The wavelengths for
some 1100 Fe lines selected from the Fe/Ne hollow-
cathode spectrum have been recommended for reference
standards over the range 183 nm to 4.2 µm, with
wavenumber uncertainties 0.001 to 0.002 cm−1 [10.32].
Wavelengths for about 3000 vuv and uv lines (110
to 400 nm) from a Pt/Ne hollow-cathode lamp have
been determined with uncertainties of 0.0002 nm or
less [10.13, 33]. More recent high-accuracy measure-
ments of ultraviolet lines of Fe i, Ge i, Kr ii, and Pt i, ii
include some wavelengths with uncertainties smaller
than 10−5 nm [10.34]. The wavelengths tabulated for the
Kr and Pt lines in [10.34] extend from 171 to 315 nm,
and the accuracies of earlier measurements of a num-
ber of spectra useful for wavelength calibration are
discussed.

10.16 Spectral Lines: Selection Rules, Intensities, Transition
Probabilities, f Values, and Line Strengths

The selection rules for discrete transitions are given in
Table 10.4.

10.16.1 Emission Intensities
(Transition Probabilities)

The total power ε radiated in a spectral line of frequency
ν per unit source volume and per unit solid angle is

εline = (4π)−1 hν Aki Nk , (10.11)

where Aki is the atomic transition probability and Nk
the number per unit volume (number density) of excited
atoms in the upper (initial) level k. For a homoge-
neous light source of length l and for the optically thin
case, where all radiation escapes, the total emitted line
intensity (SI quantity: radiance) is

Iline = εline l =
+∞∫

0

I(λ)dλ

= (4π)−1 (hc/λ0) Aki Nk l , (10.12)

where I(λ) is the specific intensity at wavelength λ, and
λ0 the wavelength at line center.

10.16.2 Absorption f Values

In absorption, the reduced absorption

W(λ)= [I(λ)− I ′(λ)]/I(λ) (10.13)

is used, where I(λ) is the incident intensity at wavelength
λ, e.g., from a source providing a continuous back-
ground, and I ′(λ) the intensity after passage through
the absorbing medium. The reduced line intensity from
a homogeneous and optically thin absorbing medium of
length l follows as

Wik =
+∞∫

0

W(λ) dλ= e2

4ε0 me c2
λ2

0 Ni fik l ,

(10.14)

where fik is the atomic (absorption) oscillator strength
(dimensionless).
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Table 10.4 Selection rules for discrete transitions

Electric dipole (E1) Magnetic dipole (M1) Electric quadrupole (E2)
(“allowed”) (“forbidden”) (“forbidden”)

Rigorous rules 1. ∆J = 0,±1 ∆J = 0,±1 ∆J = 0,±1,±2

(except 0 �↔ 0) (except 0 �↔ 0) (except 0 �↔ 0, 1/2 �↔ 1/2, 0 �↔ 1)

2. ∆M = 0,±1 ∆M = 0,±1 ∆M = 0,±1,±2

(except 0 �↔ 0 when ∆J = 0) (except 0 �↔ 0 when ∆J = 0)

3. Parity change No parity change No parity change

With negligible configuration 4. One electron jumping, No change in electron No change in electron

interaction with ∆l =±1, configuration; i. e., configuration; or one

∆n arbitrary for all electrons, electron jumping with

∆l = 0,∆n = 0 ∆l = 0,±2,∆n arbitrary

For L S coupling only 5. ∆S = 0 ∆S = 0 ∆S = 0

6. ∆L = 0,±1 ∆L = 0 ∆L = 0,±1,±2

(except 0 �↔ 0) ∆J =±1 (except 0 �↔ 0, 0 �↔ 1)

10.16.3 Line Strengths

Aki and fik are the principal atomic quantities related to
line intensities. In theoretical work, the line strength S
is also widely used (see Chapt. 21):

S = S(i, k)= S(k, i)= |Rik|2 , (10.15)

Rik = 〈ψk|P|ψi〉 , (10.16)

where ψi and ψk are the initial- and final-state wave
functions and Rik is the transition matrix element of
the appropriate multipole operator P (Rik involves an
integration over spatial and spin coordinates of all
N electrons of the atom or ion).

10.16.4 Relationships Between A, f, and S

The relationships between A, f , and S for electric dipole
(E1, or allowed) transitions in SI units (A in s−1, λ in m,
S in m2 C2) are

Aki = 2π e2

mecε0 λ2

gi

gk
fik = 16π3

3h ε0 λ3 gk
S . (10.17)

Table 10.5 Wavelengths λ, upper energy levels Ek , statistical weights gi and gk of lower and upper levels, and transition
probabilities Aki for persistent spectral lines of neutral atoms. Many tabulated lines are resonance lines (marked “g”),
where the lower energy level belongs to the ground term

Spectrum λa Ek Aki Accuracy b

(Å) (cm−1) gi gk (108 s−1)

Ag 3280.7g 30 473 2 4 1.4 B

3382.9g 29 552 2 2 1.3 B

5209.1 48 744 2 4 0.75 D

5465.5 48 764 4 6 0.86 D

Numerically, in customary units (A in s−1, λ in Å,
S in atomic units),

Aki = 6.6702 × 1015

λ2

gi

gk
fik = 2.0261 × 1018

λ3 gk
S ,

(10.18)

and for S and ∆E in atomic units,

fik = 2

3
(∆E/gi) S . (10.19)

gi and gk are the statistical weights, which are obtained
from the appropriate angular momentum quantum num-
bers. Thus for the lower (upper) level of a spectral
line, gi(k) = 2Ji(k)+1 and for the lower (upper) term
of a multiplet,

ḡi(k) =
∑

Ji(k)

(2Ji(k)+1)= (2Li(k)+1) (2Si(k)+1) .

(10.20)

The Aki values for strong lines of selected elements
are given in Table 10.5. For comprehensive numerical
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Table 10.5 Wavelengths λ, upper energy levels Ek , statistical weights gi and gk of lower and upper levels, . . . , cont.

Spectrum λa Ek Aki Accuracy b

(Å) (cm−1) gi gk (108 s−1)

Al 3082.2g 32 435 2 4 0.63 C
3092.7g 32 437 4 6 0.74 C
3944.0g 25 348 2 2 0.493 C
3961.5g 25 348 4 2 0.98 C

Ar 1048.2g 95 400 1 3 5.32 B
4158.6 117 184 5 5 0.0140 B
3453.5 32 431 10 12 1.1 C+
4259.4 118 871 3 1 0.0398 B
7635.1 106 238 5 5 0.245 C
7948.2 107 132 1 3 0.186 C
8115.3 105 463 5 7 0.331 C

As 1890.4g 52 898 4 6 2.0 D
1937.6g 51 610 4 4 2.0 D
2288.1 54 605 6 4 2.8 D
2349.8 53 136 4 2 3.1 D

Au 2428.0g 41 174 2 4 1.99 B+
2676.0g 37 359 2 2 1.64 B+

B 1825.9g 54 767 2 4 1.76 B
1826.4g 54 767 4 6 2.11 B
2496.8g 40 040 2 2 0.864 C
2497.7g 40 040 4 2 1.73 C

Ba 5535.5g 18 060 1 3 1.19 B
6498.8 24 980 7 7 0.54 D
7059.9 23 757 7 9 0.50 D
7280.3 22 947 5 7 0.32 D

Be 2348.6g 42 565 1 3 5.547 AA
2650.6 59 696 9 9 4.24 AA

Bi 2228.3g 44 865 4 4 0.89 D
2898.0 45 916 4 2 1.53 C
2989.0 44 865 4 4 0.55 C
3067.7g 32 588 4 2 2.07 C

Br 1488.5g 67 184 4 4 1.2 D
1540.7g 64 907 4 4 1.4 D
7348.5 78 512 4 6 0.12 D

C 1561.4g 64 087 5 7 1.18 A
1657.0g 60 393 5 5 2.52 A
1930.9 61 982 5 3 3.51 B+
2478.6 61 982 1 3 0.340 B+

Ca 4226.7g 23 652 1 3 2.18 B+
4302.5 38 552 5 5 1.36 C+
5588.8 38 259 7 7 0.49 D
6162.2 31 539 5 3 0.354 C
6439.1 35 897 7 9 0.53 D

Cd 2288.0g 43 692 1 3 5.3 C

3466.2 59 498 3 5 1.2 D

3610.5 59 516 5 7 1.3 D

5085.8 51 484 5 3 0.56 C
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Table 10.5 Wavelengths λ, upper energy levels Ek , statistical weights gi and gk of lower and upper levels, cont.

Spectrum λa Ek Aki Accuracy b

(Å) (cm−1) gi gk (108 s−1)

Cl 1347.2g 74 226 4 4 4.19 C
1351.7g 74 866 2 2 3.23 C
4526.2 96 313 4 4 0.051 C
7256.6 85 735 6 4 0.15 C

Co 3405.1 32 842 10 10 1.0 C+
3453.5 32 431 10 12 1.1 C+
3502.3 32 028 10 8 0.80 C+
3569.4 35 451 8 8 1.6 C

Cr 3578.7g 27 935 7 9 1.48 B
3593.5g 27 820 7 7 1.50 B
3605.3g 27 729 7 5 1.62 B
4254.3g 23 499 7 9 0.315 B
4274.8g 23 386 7 7 0.307 B
5208.4 26 788 5 7 0.506 B

Cs 3876.1g 25 792 2 4 0.0038 C
4555.3g 21 946 2 4 0.0188 C
4593.2g 21 765 2 2 0.0080 C
8521.1g 11 732 2 4 0.3276 AA
8943.5g 11 178 2 2 0.287 A

Cu 2178.9g 45 879 2 4 0.913 B
3247.5g 30 784 2 4 1.39 B
3274.0g 30 535 2 2 1.37 B
5218.2 49 942 4 6 0.75 C

F 954.83g 104 731 4 4 5.77 C
6856.0 116 987 6 8 0.494 C
7398.7 115 918 6 6 0.285 C+
7754.7 117 623 4 6 0.382 C+

Fe 3581.2 34 844 11 13 1.02 B+
3719.9g 26 875 9 11 0.162 B+
3734.9 33 695 11 11 0.901 B+
3745.6g 27 395 5 7 0.115 B+
3859.9g 25 900 9 9 0.0969 B+
4045.8 36 686 9 9 0.862 B+

Ga 2874.2g 34 782 2 4 1.2 C
2943.6g 34 788 4 6 1.4 C
4033.0g 24 789 2 2 0.49 C
4172.0g 24 789 4 2 0.92 C

Ge 2651.6g 37 702 1 3 0.85 C
2709.6g 37 452 3 1 2.8 C
2754.6g 37 702 5 3 1.1 C
3039.1 40 021 5 3 2.8 C

He 537.03g 186 209 1 3 5.663 AA
584.33g 171 135 1 3 17.99 AA

3888.6 185 565 3 9 c 0.09475 AA
4026.2 193 917 9 15 c 0.1160 AA
4471.5 191 445 9 15 c 0.2458 AA
5875.7 186 102 9 15 c 0.7070 AA
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Table 10.5 Wavelengths λ, upper energy levels Ek , statistical weights gi and gk of lower and upper levels, cont.

Spectrum λa Ek Aki Accuracy b

(Å) (cm−1) gi gk (108 s−1)

Hg 2536.5g 39 412 1 3 0.0800 B

3125.7 71 396 3 5 0.656 B

4358.3 62 350 3 3 0.557 B

5460.7 62 350 5 3 0.487 B

I 1782.8g 56 093 4 4 2.71 C

1830.4g 54 633 4 6 0.16 D

In 3039.4g 32 892 2 6 1.3 D

3256.1g 32 915 4 4 1.3 D

4101.8g 24 373 2 2 0.56 C

4511.3g 24 373 4 2 1.02 C

K 4044.1g 24 720 2 4 0.0124 C

4047.2g 24 701 2 2 0.0124 C

7664.9g 13 043 2 4 0.387 B+
7699.0g 12 985 2 2 0.382 B+

Kr 5570.3 97 919 5 3 0.021 D

5870.9 97 945 3 5 0.018 D

7601.5 93 123 5 5 0.31 D

8112.9 92 294 5 7 0.36 D

Li 3232.7g 30 925 2 6 c 0.01002 A

4602.9 36 623 6 10 c 0.233 B

6103.6 31 283 6 10 c 0.6860 AA

6707.8g 14 904 2 6 c 0.3691 AA

Mg 2025.8g 49 347 1 3 0.84 D

2852.1g 35 051 1 3 4.95 B

4703.0 56 308 3 5 0.255 C

5183.6 41 197 5 3 0.575 B

Mn 2794.8g 35 770 6 8 3.7 C

2798.3g 35 726 6 6 3.6 C

2801.1g 35 690 6 4 3.7 C

4030.8g 24 820 6 8 0.17 C+
4033.1g 24 788 6 6 0.165 C+
4034.4g 24 779 6 4 0.158 C+

N 1199.6g 83 365 4 6 4.01 B+
1492.6 86 221 6 4 3.13 B+
4935.1 106 478 4 2 0.0176 B

7468.3 96 751 6 4 0.193 B+
8216.3 95 532 6 6 0.223 B+

Na 5890.0g 16 973 2 4 0.611 AA

5895.9g 16 956 2 2 0.610 AA

5682.6 34 549 2 4 0.103 C

8183.3 29 173 2 4 0.453 C

Ne 735.90g 135 889 1 3 6.11 B

743.72g 134 459 1 3 0.486 B

5852.5 152 971 3 1 0.682 B

6402.2 149 657 5 7 0.514 B

6074.3 150 917 3 1 0.603 B
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Table 10.5 Wavelengths λ, upper energy levels Ek , statistical weights gi and gk of lower and upper levels, cont.

Spectrum λa Ek Aki Accuracy b

(Å) (cm−1) gi gk (108 s−1)

Ni 3101.6 33 112 5 7 0.63 C+
3134.1 33 611 3 5 0.73 C+
3369.6g 29 669 9 7 0.18 C
3414.8 29 481 7 9 0.55 C
3524.5 28 569 7 5 1.0 C
3619.4 31 031 5 7 0.66 C

O 1302.2g 76 795 5 3 3.41 A
4368.2 99 681 3 9c 0.007 58 B
5436.9 105 019 7 5 0.0180 C+
7156.7 116 631 5 5 0.505 B
7771.9 86 631 5 7 0.369 A

P 1775.0g 56 340 4 6 2.17 C
1782.9g 56 090 4 4 2.14 C
2136.2 58 174 6 4 2.83 C
2535.6 58 174 4 4 0.95 C

Pb 2802.0g 46 329 5 7 1.6 D
2833.1g 35 287 1 3 0.58 D
3683.5g 34 960 3 1 1.5 D
4057.8g 35 287 5 3 0.89 D

Rb 4201.8g 23 793 2 4 0.018 C
4215.5g 23 715 2 2 0.015 C
7800.3g 12 817 2 4 0.370 B
7947.6g 12 579 2 2 0.340 B

S 1474.0g 67 843 5 7 1.6 D
1666.7 69 238 5 5 6.3 C
1807.3g 55 331 5 3 3.8 C
4694.1 73 921 5 7 0.0067 D

Sc 3907.5g 25 585 4 6 1.28 C+
3911.8g 25 725 6 8 1.37 C+
4020.4g 24 866 4 4 1.65 C+
4023.7g 25 014 6 6 1.44 C+

Si 2506.9g 39 955 3 5 0.466 C
2516.1g 39 955 5 5 1.21 C
2881.6 40 992 5 3 1.89 C
5006.1 60 962 3 5 0.028 D
5948.5 57 798 3 5 0.022 D

Sn 2840.0g 38 629 5 5 1.7 D
3034.1g 34 641 3 1 2.0 D
3175.1g 34 914 5 3 1.0 D
3262.3 39 257 5 3 2.7 D

Sr 2428.1g 41 172 1 3 0.17 C
4607.3g 21 698 1 3 2.01 B

Ti 3642.7g 27 615 7 9 0.774 B
3653.5g 27 750 9 11 0.754 C+
3998.6g 25 388 9 9 0.408 B
4981.7 26 911 11 13 0.660 C+
5210.4g 19 574 9 9 0.0357 C+

Part
B

1
0
.1

6



192 Part B Atoms

Table 10.5 Wavelengths λ, upper energy levels Ek , statistical weights gi and gk of lower and upper levels, cont.

Spectrum λa Ek Aki Accuracy b

(Å) (cm−1) gi gk (108 s−1)

Tl 2767.9g 36 118 2 4 1.26 C

3519.2g 36 200 4 6 1.24 C

3775.7g 26 478 2 2 0.625 B

5350.5g 26 478 4 2 0.705 B

U 3566.6g 28 650 11 11 0.24 B

3571.6 38 338 17 15 0.13 C

3584.9g 27 887 13 15 0.18 B

V 3183.4g 31 541 6 8 2.4 C+
4111.8 26 738 10 10 1.01 B

4379.2 25 254 10 12 1.1 C

4384.7 25 112 8 10 1.1 C

Xe 1192.0g 83 890 1 3 6.2 C

1295.6g 77 186 1 3 2.5 C

1469.6g 68 046 1 3 2.8 B

4671.2 88 470 5 7 0.010 D

7119.6 92 445 7 9 0.066 D

Zn 2138.6g 46 745 1 3 7.09 B

3302.6 62 772 3 5 1.2 B

3345.0 62 777 5 7 1.7 B

6362.3 62 459 3 5 0.474 C

a A “g” following the wavelength indicates that the lower level of the transition belongs to the ground term, i. e., the line is
a resonance line. Wavelengths below 2000 Å are in vacuum, and those above 2000 Å are in air

b Accuracy estimates pertain to Aki values: AA, uncertainty within 1%; A, within 3%; B, within 10%; C, within 25%; D, within 50%
c The Aki , λ, gi , and gk are multiplet values; see (10.20) and Sect. 10.16.5

tables of A, f , and S, including forbidden lines, see
Sect. 10.21.

Experimental and theoretical methods to determine
A, f , or S values as well as atomic lifetimes are discussed
in Chapts. 17, 18, and 21.

Conversion relations between S and Aki for the most
common forbidden transitions are given in Table 10.6.
Oscillator strengths f are not used for forbidden tran-
sitions, i. e., magnetic dipole (M1), electric quadrupole
(E2), etc.

[Numerical example: For the 1s2p 1P◦
1−1s3d 1D2

(allowed) transition in He i at 6678.15 Å: gi = 3; gk = 5;
Aki = 6.38 × 107 s−1; fik = 0.711; S = 46.9 a2

0 e2.]

Table 10.6 Conversion relations between S and Aki for
forbidden transitions

Numerically, in
SI units a customary units b

Electric
quadrupole Aki = 16π5

15h ε0λ5 gk
S Aki = 1.1199 × 1018

gk λ5
S

Magnetic
dipole Aki = 16π3µ0

3h λ3 gk
S Aki = 2.697 × 1013

gk λ3
S

a A in s−1, λ in m. Electric quadrupole: S in m4 C2. Magnetic
dipole: S in J2 T−2

b A in s−1, λ in Å. S in atomic units: a4
0 e2 =

2.013 × 10−79 m4 C2 (electric quadrupole), e2h2/16π2m2
e =

µ2
B = 8.601 × 10−47 J2 T−2 (magnetic dipole). µB is the

Bohr magneton
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10.16.5 Relationships Between Line
and Multiplet Values

The relations between the total strength and f value of
a multiplet (M) and the corresponding quantities for the
lines of the multiplet (allowed transitions) are

SM =
∑

Sline , (10.21)

fM = (
λ̄ḡi

)−1 ∑

Jk,Ji

giλ(Ji , Jk) f(Ji , Jk) . (10.22)

λ̄ is the weighted (“multiplet”) wavelength in vacuum:

λ̄= nλ̄air = hc/∆E , (10.23)

Table 10.7 Relative strengths for lines of multiplets in LS coupling

Normal multiplets S–P, P–D, D–F, etc.
Jm Jm −1 Jm −2 Jm −3 Jm −4

Jm −1 x1 y1 z1

Jm −2 x2 y2 z2

Jm −3 x3 y3 z3

Jm −4 x4 y4

Multiplicity
1 2 3 4 5

S–P

SM = 3 6 9 12 15

x1 3.00 4.00 5.00 6.00 7.00

y1 2.00 3.00 4.00 5.00

z1 1.00 2.00 3.00

P–P

SM = 9 18 27 36 45

x1 9.00 10.00 11.25 12.60 14.00

x2 4.00 2.25 1.60 1.25

x3 1.00 2.25

y1 2.00 3.75 5.40 7.00

y2 3.00 5.00 6.75

P–D

SM = 15 30 45 60 75

x1 15.00 18.00 21.00 24.00 27.00
x2 10.00 11.25 12.60 14.00

x3 5.00 5.00 5.25

y1 2.00 3.75 5.40 7.00

y2 3.75 6.40 8.75

y3 5.60 6.75

z1 0.25 0.60 1.00

z2 1.00 2.25

z3 3.00

Symmetrical multiplets P–P, D–D etc.
Jm Jm −1 Jm −2 Jm −3

Jm x1 y1

Jm −1 y1 x2 y2

Jm −2 y2 x3 y3

Jm −3 y3 x4

Multiplicity
1 2 3 4 5

D–D
SM = 25 50 75 100 125
x1 25.00 28.00 31.11 34.29 37.50
x2 18.00 17.36 17.29 17.50
x3 11.25 8.00 6.25
x4 5.00 1.25

y1 2.00 3.89 5.71 7.50
y2 3.75 7.00 10.00
y3 5.00 8.75
y4 5.00

D–F
SM = 35 70 105 140 175
x1 35.00 40.00 45.00 50.00 55.00
x2 28.00 31.11 34.29 37.50
x3 21.00 22.40 24.00
x4 14.00 14.00
x5 7.00

y1 2.00 3.89 5.71 7.50
y2 3.89 7.31 10.50
y3 5.60 10.00
y4 7.00

z1 0.11 0.29 0.50
z2 0.40 1.00
z3 1.00

where
∆E = Ek − Ei

= (ḡk)
−1

∑

Jk

gk Ek − (ḡi)
−1

∑

Ji

gi Ei

(10.24)

and n is the refractive index of standard air.

10.16.6 Relative Strengths for Lines
of Multiplets in LS Coupling

Table 10.7 lists relative line strengths for frequently
encountered symmetrical (P → P, D → D) and nor-
mal (S → P, P → D) multiplets in L S coupling. The
strongest, or principal, lines are situated along the main
diagonal of the table and are called x1, x2, etc. Their
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strengths normally diminish along the diagonal. The
satellite lines yn and zn are usually weaker and devi-
ate more from the L S values than the stronger diagonal
lines when departures from L S coupling are encoun-

tered. The total multiplet strengths SM are also listed in
Table 10.7. A discussion of their normalization as well
as more extensive tables are given in [10.35].

10.17 Atomic Lifetimes

The radiative lifetime τk of an atomic level k is related
to the sum of transition probabilities to all levels i lower
in energy than k:

τk =
(
∑

i

Aki

)−1

. (10.25)

The branching fraction of a particular transition, say
to state i ′, is defined as

Aki ′/
∑

i

Aki = Aki ′ τk . (10.26)

If only one branch (i ′) exists (or if all other branches
may be neglected), one obtains Aki ′ τk = 1, and

τk = 1/Aki ′ . (10.27)

Precision lifetime measurement techniques are dis-
cussed in Chapts. 17 and 18.

10.18 Regularities and Scaling

10.18.1 Transitions in Hydrogenic
(One-Electron) Species

The nonrelativistic energy of a hydrogenic transition
(10.1, 10) is

(∆E)Z = (Ek − Ei)Z = RZ hc Z2
(

1/n2
i −1/n2

k

)
.

(10.28)

Hydrogenic Z Scaling
The spectroscopic quantities for a hydrogenic ion of
nuclear charge Z are related to the equivalent quanti-
ties in hydrogen (Z = 1) as follows (neglecting small
differences in the values of RZ ):

(∆E)Z = Z2(∆E)H , (10.29)

(λvac)Z = Z−2(λvac)H , (10.30)

SZ = Z−2 SH , (10.31)

fZ = fH , (10.32)

AZ = Z4 AH . (10.33)

For large values of Z, roughly Z > 20, relativistic
corrections become noticeable and must be taken into
account.

f -value Trends
f values for high series members (large n′ values) of
hydrogenic ions decrease according to

f
(
n, l → n′, l±1

) ∝ (
n′
)−3

. (10.34)

Data for some lines of the main spectral series of hydro-
gen are given in Table 10.8.

10.18.2 Systematic Trends and Regularities
in Atoms and Ions with Two
or More Electrons

Atomic quantities for a given state or transition in an
isoelectronic sequence may be expressed as power series
expansions in Z−1:

Z−2 E = E0+ E1 Z−1+ E2 Z−2+ . . . , (10.35)

Z2 S = S0+ S1 Z−1+ S2 Z−2+ . . . , (10.36)

f = f0+ f1 Z−1+ f2 Z−2+ . . . , (10.37)

where E0, f0, and S0 are hydrogenic quantities. For
transitions in which n does not change (ni = nk), f0 = 0,
since states i and k are degenerate.

For equivalent transitions of homologous atoms,
f values vary gradually. Transitions to be compared in
the case of the “alkalis” are [10.36]

(
nl−n′l′

)
Li →

[
(n+1)l− (

n′ +1
)
l′
]

Na

→ [
(n+2)l− (

n′ +2
)
l′
]

Cu → . . . .

Complex atomic structures, as well as cases involv-
ing strong cancellation in the integrand of the transition
integral, generally do not adhere to this regular behavior.
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Table 10.8 Some transitions of the main spectral series of hydrogen

Cus- Cus-
Tran- tomary λb Aki Tran- tomary λb Aki

sition name a (Å) g c
i gk (108 s−1) sition name a (Å) g c

i gk (108 s−1)

1–2 (Lα) 1215.67 2 8 4.699 2–6 (Hδ) 4101.73 8 72 9.732 (−3)

1–3 (Lβ) 1025.73 2 18 5.575 (−1)d 2–7 (Hε) 3970.07 8 98 4.389 (−3)

1–4 (Lγ ) 972.537 2 32 1.278 (−1) 3–4 (Pα) 18 751.0 18 32 8.986 (−2)

1–5 (Lδ) 949.743 2 50 4.125 (−2) 3–5 (Pβ) 12 818.1 18 50 2.201 (−2)

1–6 (Lε) 937.803 2 72 1.644 (−2) 3–6 (Pγ ) 10 938.1 18 72 7.783 (−3)

2–3 (Hα) 6562.80 8 18 4.410 (−1) 3–7 (Pδ) 10 049.4 18 98 3.358 (−3)

2–4 (Hβ) 4861.32 8 32 8.419 (−2) 3–8 (Pε) 9545.97 18 128 1.651 (−3)

2–5 (Hγ ) 4340.46 8 50 2.530 (−2)
a Lα is often called Lyman α, Hα = Balmer α, Pα = Paschen α, etc.
b Wavelengths below 2000 Å are in vacuum; values above 2000 Å are in air
c For transitions in hydrogen, gi(k) = 2(ni(k))

2, where ni(k), is the principal quantum number of the lower (upper) electron shell
d The number in parentheses indicates the power of 10 by which the value has to be multiplied

10.19 Spectral Line Shapes, Widths, and Shifts

Observed spectral lines are always broadened, partly due
to the finite resolution of the spectrometer and partly
due to intrinsic physical causes. The principal physi-
cal causes of spectral line broadening are Doppler and
pressure broadening. The theoretical foundations of line
broadening are discussed in Chapts. 19 and 59.

10.19.1 Doppler Broadening

Doppler broadening is due to the thermal motion of
the emitting atoms or ions. For a Maxwellian velocity
distribution, the line shape is Gaussian; the full width at
half maximum intensity (FWHM) is, in Å,

∆λD
1/2 =

(
7.16 × 10−7) λ (T/M)1/2 . (10.38)

T is the temperature of the emitters in K, and M the
atomic weight in atomic mass units (amu).

10.19.2 Pressure Broadening

Pressure broadening is due to collisions of the emitters
with neighboring particles (see also Chapts. 19 and 59).
Shapes are often approximately Lorentzian, i. e., I(λ)∝
{1+[(λ−λ0)/∆λ1/2]2}−1. In the following formulas,
all FWHMs and wavelengths are expressed in Å, particle
densities N in cm−3, temperatures T in K, and energies
E or I in cm−1.

Resonance broadening (self-broadening) occurs
only between identical species and is confined to lines
with the upper or lower level having an electric dipole
transition (resonance line) to the ground state. The
FWHM may be estimated as

∆λR
1/2 ) 8.6 × 10−30(gi/gk)

1/2 λ2λr fr Ni , (10.39)

where λ is the wavelength of the observed line; fr and λr
are the oscillator strength and wavelength of the reso-
nance line; gk and gi are the statistical weights of its
upper and lower levels. Ni is the ground state number
density.

For the 1s2p 1P◦1−1s3d 1D2 transition in He i
[λ = 6678.15 Å; λr (1s2 1S0−1s2p 1P◦1) = 584.334 Å;
gi = 1; gk = 3; fr = 0.2762] at Ni = 1 × 1018 cm−3:
∆ λR

1/2 = 0.036 Å.
Van der Waals broadening arises from the dipole

interaction of an excited atom with the induced dipole
of a ground state atom. (In the case of foreign gas broad-
ening, both the perturber and the radiator may be in their
respective ground states.) An approximate formula for
the FWHM, strictly applicable to hydrogen and similar
atomic structures only, is

∆λW
1/2 ) 3.0 × 1016λ2 C2/5

6 (T/µ)3/10 N , (10.40)

where µ is the atom-perturber reduced mass in units
of u, N the perturber density, and C6 the inter-
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action constant. C6 may be roughly estimated as
follows: C6 = Ck −Ci , with Ci(k) = (9.8 × 1010)αd R2

i(k)
(αd in cm3, R2 in a2

0). Mean atomic polarizabil-
ity αd ≈ (6.7 × 10−25) (3IH/4E∗)2 cm3, where IH is
the ionization energy of hydrogen and E∗ the en-
ergy of the first excited level of the perturber atom.
R2

i(k) ≈ 2.5 [IH/(I − Ei(k))]2, where I is the ioniza-
tion energy of the radiator. Van der Waals broadened
lines are red shifted by about one-third the size of the
FWHM.

For the 1s2p 1P◦1−1s3d 1D2 transition in He i, and
with He as perturber:λ= 6678.15 Å; I = 198 311 cm−1;
E∗ = Ei = 171 135 cm−1; Ek = 186 105 cm−1; µ= 2.
At T = 15 000 K and N = 1 × 1018 cm−3: ∆λW

1/2 =
0.044 Å.

Stark broadening due to charged perturbers, i. e.,
ions and electrons, usually dominates resonance and van
der Waals broadening in discharges and plasmas. The
FWHM for hydrogen lines is

∆λ
S,H
1/2 =

(
2.50 × 10−9)α1/2 N2/3

e , (10.41)

Table 10.9 Values of Stark-broadening parameter α1/2 of
the Hβ line of hydrogen (4861 Å) for various temperatures
and electron densities

T(K) Ne (cm−3)
1015 1016 1017 1018

5000 0.0787 0.0808 0.0765 . . .

10 000 0.0803 0.0840 0.0851 0.0781

20 000 0.0815 0.0860 0.0902 0.0896

30 000 0.0814 0.0860 0.0919 0.0946

where Ne is the electron density. The half-width param-
eter α1/2 for the Hβ line at 4861 Å, widely used for
plasma diagnostics, is tabulated in Table 10.9 for some
typical temperatures and electron densities [10.35]. This
reference also contains α1/2 parameters for other hy-
drogen lines, as well as Stark width and shift data for
numerous lines of other elements, i. e., neutral atoms and
singly charged ions (in the latter, Stark widths and shifts
depend linearly on Ne). Other tabulations of complete
hydrogen Stark profiles exist.

10.20 Spectral Continuum Radiation

10.20.1 Hydrogenic Species

Precise quantum-mechanical calculations exist only for
hydrogenic species. The total power εcont radiated (per
unit source volume and per unit solid angle, and ex-
pressed in SI units) in the wavelength interval ∆λ is
the sum of radiation due to the recombination of a free
electron with a bare ion (free–bound transitions) and
bremsstrahlung (free–free transitions):

εcont = e6

2πε3
0(6πme)3/2

Ne NZ Z2

×
1

(kT )1/2
exp

(
− hc

λkT

)
∆λ

λ2

×

⎧
⎨

⎩
2 Z2 IH

kT

n′∑

n≥(Z2 IH λ/hc)1/2

γfb

n3 exp

(
Z2 IH

n2 kT

)

+ γ̄fb

[
exp

(
Z2 IH

(n′ +1)2 kT

)
−1

]
+γff

⎫
⎬

⎭

(10.42)

where Ne is the electron density, NZ the number dens-
ity of hydrogenic (bare) ions of nuclear charge Z, IH the

ionization energy of hydrogen, n′ the principal quantum
number of the lowest level for which adjacent levels
are so close that they approach a continuum and sum-
mation over n may be replaced by an integral. (The
choice of n′ is rather arbitrary; n′ as low as 6 is found
in the literature.) γfb and γff are the Gaunt factors,
which are generally close to unity. (For the higher free-
bound continua, starting with n′ +1, an average Gaunt
factor γ̄fb is used.) For neutral hydrogen, the recom-
bination continuum forming H− becomes important,
too [10.37].

In the equation above, the value of the constant
factor is 6.065 × 10−55 W m4 J1/2 sr−1. [Numerical ex-
ample: For atomic hydrogen (Z = 1), the quantity
εcont has the value 2.9 W m−3 sr−1 under the fol-
lowing conditions: λ= 3 × 10−7 m; ∆λ= 1 × 10−10 m;
Ne(= NZ=1)= 1 × 1021 m−3; T = 12 000 K. The lower
limit of the summation index n is 2; the upper limit n′
has been taken to be 10. All Gaunt factors γfb, γ̄fb, and
γff have been assumed to be unity.]

10.20.2 Many-Electron Systems

For many-electron systems, only approximate theo-
retical treatments exist, based on the quantum-defect
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method (for results of calculations for noble gases,
see, e.g., [10.38]). Experimental work is centered on
the noble gases [10.39]. Modifications of the con-
tinuum by autoionization processes must also be
considered.

Near the ionization limit, the f values for bound-
bound transitions of a spectral series (n′ →∞)
make a smooth connection to the differential os-
cillator strength distribution d f/dε in the con-
tinuum [10.40].

10.21 Sources of Spectroscopic Data

Access to most of the atomic spectroscopic databases
currently online is given by links at the Plasma
Gate server [10.41]. Extensive data from NIST com-
pilations of atomic wavelengths, energy levels, and

transition probabilities are available from the Atomic
Spectra Database (ASD) at the NIST site [10.13]. Sec-
tion 10.15 includes additional references for wavelength
tables.
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High Precision11. High Precision Calculations for Helium

Exact analytic solutions to the Schrödinger
equation are known only for atomic hydrogen, and
other equivalent two-body systems (see Chapt. 9).
However, very high precision approximations are
now available for helium, which are essentially
exact for all practical purposes. This chapter
summarizes the computational methods and
tabulates numerical results for the ground
state and several singly excited states. Similar
methods can be applied to other three-body
problems.
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11.1 The Three-Body Schrödinger Equation

The Schrödinger equation for a three-body system con-
sisting of a nucleus of charge Ze, and mass M, and two
electrons of charge −e and mass me is

[
1

2M
P2

N+
1

2me

2∑

i=1

P2
i +V(RN, Ri)

]

Ψ = EΨ ,

(11.1)

where Pi = (�/i)∇i and

V(RN, Ri)=− Ze2

|RN−R1| −
Ze2

|RN−R2| +
e2

|R1−R2|
(11.2)

depends only on the relative particle separations. Since
the center of mass (c.m.) is then an ignorable coordinate,
it can be eliminated by defining the relative particle
coordinates

ri = Ri − RN

to obtain
[

1

2µ

2∑

i=1

p2
i +

1

M
p1 · p2+V(r1, r2)

]

Ψ = EΨ ,

(11.3)

where µ = me M/(me+M) is the electron reduced mass
and the term Hmp = p1 · p2/M is called the mass polar-
ization operator. For computational purposes, it is usual
to measure distance in units of aµ = (me/µ)a0 and en-
ergies in units of e2/aµ = 2(µ/me)R∞ so that (11.3)
assumes the dimensionless form

[

−1

2

2∑

i=1

∇2
ρi
− µ

M
∇ρ1·∇ρ2 +V(ρ1, ρ2)

]

Ψ = εΨ ,
(11.4)

where ρi = ri/aµ, ε = E/(e2/aµ), and

V(ρ1, ρ2)=− Z

ρ1
− Z

ρ2
+ 1

|ρ1−ρ2| . (11.5)

The limitµ/M → 0 defines the infinite nuclear mass
problem with eigenvalue ε0 and eigenfunctionΨ0. If the
mass polarization term is treated as a small perturbation,
then the total energy assumes the form

E =
[
ε0+ µ

M
ε1+

( µ
M

)2
ε2+· · ·

]
µ

me

e2

a0
,

(11.6)
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200 Part B Atoms

where ε1 =−〈Ψ0|∇ρ1 ·∇ρ2 |Ψ0〉 determines the first-
order specific mass shift and ε2 is the second-order
coefficient. The common (µ/me)ε0 mass scaling of all
eigenvalues determines the normal mass shift (isotope
shift). Since µ/m = 1−µ/M, the shift is −(µ/M)ε0.

11.1.1 Formal Mathematical Properties

Two-Particle Coalescences
The exact nonrelativistic wave function for any many-
body system contains discontinuities or cusps in the
spherically averaged radial derivative with respect to rij
as rij → 0, where rij = |ri −r j | is any interparticle co-
ordinate. If the masses and charges are mi and qi
respectively, then the discontinuities are given by the
Kato cusp condition [11.1]

�
2

(
∂Ψ̄

∂rij

)

rij=0

= µijqiq jΨ(rij = 0) , (11.7)

where µij = mim j/(mi +m j) and Ψ̄ denotes the wave
function averaged over a sphere centered at rij = 0. If
Ψ vanishes at rij = 0, then its leading dependence on rij
is of the form rl

ijYlm(rij) for some integer l > 0 [11.2].
Equation (11.7) applies to any Coulombic system. The
electron–nucleus cusp in the wave functions for hydro-
gen provides a simple example.

Three-Particle Coalescences
Three-particle coalescences are described by the Fock
expansion [11.3–6], as recently discussed by Myers
et al. [11.7]. For the S-states of He-like ions, the ex-

pansion has the form

Ψ(r1, r2)=
∞∑

j=0

[ j/2]∑

k=0

R j(ln R)kφ j,k , (11.8)

where [ ] denotes “greatest integer in”, and R = (r2
1 +

r2
2)

1/2 is the hyperradius. The leading coefficients are

φ0,0 = 1 ,

φ1,0 = −
(

Zr1+ Zr2− 1

2
r12

)/
R ,

φ2,1 = −2Z

(
π−2

3π

)
r1 ·r2

R2 . (11.9)

The next term φ2,0 is known in terms of a lengthy ex-
pression [11.7–9], but higher terms have not yet been
obtained in closed form. The Fock expansion has been
proved convergent for all R < 1

2 [11.10], and extended
to pointwise convergence for all R [11.11, 12].

Asymptotic Form
The long range behavior of many-electron wave
functions has been studied from several points of
view [11.13–15]. The basic result of [11.16] is that at
large distances, the one-electron density behaves as

ρ1/2(r)≈ r Z∗/t−1 e−tr , (11.10)

where t = (2I1)
1/2, I1 is the first ionization potential (in

a.u.), and Z∗ = Z−N+1 is the screened nuclear charge
seen by the outer most electron. For hydrogenic systems
with principal quantum number n, I1 = (Z∗)2/2n2.

11.2 Computational Methods

11.2.1 Variational Methods

Most high precision calculations for the bound states
of three-body systems such as helium are based on the
Rayleigh–Ritz variational principle. For any normaliz-
able trial function Ψtr, the quantity

Etr = 〈Ψtr|H|Ψtr〉
〈Ψtr|Ψtr〉 (11.11)

satisfies the inequality Etr ≥ E1, where E1 is the true
ground state energy. Thus Etr is an upper bound to E1.
The inequality is easily proved by expanding Ψtr in the
complete basis set of eigenfunctions Ψ1, Ψ2, Ψ3, · · ·

of H with eigenvalues E1 < E2 < E3 < · · · , so that

Ψtr =
∞∑

i=1

ciΨi , (11.12)

where the ci are expansion coefficients. This can always
be done in principle, even though the exact Ψi are not
actually known. IfΨtr is normalized so that 〈Ψtr|Ψtr〉 = 1,
then

∑∞
i=1 |ci |2 = 1 and

Etr = |c1|2 E1+|c2|2 E2+|c3|2 E3+· · ·
= E1+|c2|2(E2− E1)+|c3|2(E3− E1)+· · ·
≥ E1 , (11.13)

which proves the theorem.
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The basic idea of variational calculations then is to
write Ψtr in some arbitrarily chosen mathematical form
with variational parameters (subject to normalizability
and boundary conditions at the origin and infinity), and
then adjust the parameters to obtain the minimum value
of Etr.

The minimization problem for the case of linear
variational coefficients can be solved algebraically. For
example, let

χp(α, β)= ri
1r j

2rk
12 e−αr1−βr2 (11.14)

denote the members of a basis set, where p is an index
labeling distinct triplets of nonnegative integer values
for the powers {i, j, k}, and α, β are (for the moment)
fixed constants determining the distance scale.

If Ψtr is expanded in the form

Ψtr =
N∑

p=1

cpχp(α, β) , (11.15)

then the solution to the system of equations
∂Etr/∂cp = 0, p = 1, . . . , N , is exactly equivalent to
solving the N-dimensional generalized eigenvalue prob-
lem

Hc = λOc , (11.16)

where c is a column vector of coefficients cp; and
H and O have matrix elements Hpq = 〈χp|H|χq〉 and
Opq = 〈χp|χq〉. There are N eigenvalues λ1, λ2, . . . λN ,
of which the lowest is an upper bound to E1.

Extension to Excited States
By the Hylleraas–Undheim–MacDonald (HUM) theo-
rem [11.17, 18], the remaining eigenvalues λ2, λ3, . . .

are also upper bounds to the exact energies E2, E3, . . . ,
provided that the spectrum is bounded from below. The
HUM theorem is a consequence of the matrix eigenvalue
interleaving theorem, which states that as the dimensions
of H and O are progressively increased by adding an
extra row and column, the N old eigenvalues λp fall be-
tween the N +1 new ones. Consequently, as illustrated
in Fig. 11.1, all eigenvalues numbered from the bottom
up must move inexorably downward as N is increased.
Since the exact spectrum of bound states is obtained
in the limit N →∞, no λp can cross the correspond-
ing exact E p on its way down. Thus λp ≥ E p for every
finite N .

11.2.2 Construction of Basis Sets

Since the Schrödinger equation (11.4) is not separable
in the electron coordinates, basis sets which incorporate

E∞
E5

E4

E3

E2

E1

N

1 2 3 4 5

λ5

λ1

λ4

λ3

λ2

Fig. 11.1 Diagram illustrating the Hylleraas–Undheim–
MacDonald Theorem. The λp, p = 1, . . . , N are the
variational eigenvalues for an N-dimensional basis set, and
the Ei are the exact eigenvalues of H. The highest λp lie in
the continuous spectrum of H

the r12 = |r1−r2| interelectron coordinate are most ef-
ficient. The necessity for r12 terms also follows from
the Fock expansion (11.8). A basis set constructed from
terms of the form (11.14) is called a Hylleraas basis
set [11.19, 20]. (The basis set is often expressed in
terms of the equivalent variables s = r1+r2, t = r1−r2,
u = r12.)

Withχp(α, β) defined as in (11.14), the general form
for a state of total angular momentum L is

Ψtr =
[L/2]∑

l1=0

∑

p

C p,l1χp(α, β)r
l1
1 rl2

2 YM
l1 L−l1 L(r̂1, r̂2)

± exchange , (11.17)

where

YM
l1l2 L(r̂1, r̂2)=

∑

m1,m2

Yl1m1(r̂1)Yl2m2(r̂2)

× 〈l1l2m1m2|LM〉 (11.18)

is the vector coupled product of angular momenta l1, l2
for the two electrons. The sum over p in (11.17) typically
includes all terms in (11.14) with i+ j+ k ≤Ω, where
Ω is an integer determining a so-called Pekeris shell of
terms, and the exchange term denotes the interchange
of r1 and r2 with (+) for singlet states and (−) for
triplet states. Convergence is studied by progressively
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increasingΩ. The number of terms is

N = 1

6
(Ω+1)(Ω+2)(Ω+3) .

Basis sets of this type were used by many authors,
culminating in the extensive high precision calculations
of Pekeris and coworkers [11.21] for low-lying states,
using as many as 1078 terms. Their accuracy is not easily
surpassed because of the rapid growth of N withΩ, and
because of numerical linear dependence in the basis set
for largeΩ. Recently, their accuracy has been surpassed
by two principal methods. The first explicitly includes
powers of logarithmic and half-integral terms in χp, as
suggested by the Fock expansion [11.22–25]. This is
particularly effective for S-states. The second focuses
directly on the multiple distance scales required for an
accurate representation of the wave function by writing
the trial function in terms of the double basis set [11.26]

Ψtr =
[L/2]∑

l1=0

∑

p

[
C(1)p,l1

χp(α1, β1)+C(2)p,l1
χp(α2, β2)

]

× rl1
1 rl2

2 Yl1l2 L(r1, r2)± exchange , (11.19)

where each χp(α, β) is of the form (11.14), but with dif-
ferent values for the distance scales α1, β1 and α2, β2 in
the two sets of terms. They are determined by a complete
minimization of Etr with respect to all four parameters,
producing a natural division of the basis set into an
asymptotic sector and a close-range correlation sector.
The method produces a dramatic improvement in accu-
racy for higher-lying Rydberg states (where variational
methods typically deteriorate rapidly in accuracy) and is
also effective for low-lying S-states [11.27–29]. Nonrel-
ativistic energies accurate to 1 part in 1016 are obtainable
with modest computing resources.

Another version of the variational method is the
quasi-random (or stochastic) method in which non-
linear exponential parameters for all three of r1, r2,
and r12 are chosen at random from certain specified in-
tervals [11.30, 31]. The method is remarkably accurate
and efficient for low-lying states, but subject to severe
roundoff error.

11.2.3 Calculation of Matrix Elements

The three-body problem has the unique advantage
that the full six-dimensional volume element (in the
c.m. frame) can be transformed to the product of
a three-dimensional angular integral (ang) and a three-
dimensional radial integral (rad) over r1, r2, and r12. The

transformation is

∫ ∫
dr1 dr2 =

2π∫

0

dφ

2π∫

0

dϕ1

π∫

0

sin θ1 dθ1

×

∞∫

0

r1 dr1

∞∫

0

r2 dr2

r1+r2∫

|r1−r2|
r12 dr12 ,

(11.20)

where θ1, ϕ1 are the polar angles of r1 and φ is the angle
of rotation of the triangle formed by r1, r2, and r12
about the r1 direction. The polar angles θ2, ϕ2 are then
dependent variables. The basic angular integral is

〈Y∗
l1m1
(θ1, ϕ1)Yl2m2(θ2, ϕ2)〉ang

= 2πδl1l2δm1m2 Pl1(cos θ) , (11.21)

where cos θ ≡ r̂1 · r̂2 denotes the radial function

cos θ = r2
1 +r2

2 −r2
12

2r1r2
, (11.22)

and Pl(cos θ) is a Legendre polynomial. The angu-
lar integral over vector-coupled spherical harmonics
is [11.32]

〈
YM′∗

l′1l′2 L ′(r̂1, r̂2)Y
M
l1l2 L(r̂1, r̂2)

〉
ang

= δL,L ′δM,M′
∑

Λ

CΛPΛ(cos θ) , (11.23)

where

CΛ = 1

2
[(2l1+1)(2l′1+1)(2l2+1)(2l′2+1)]1/2

× (−1)L+Λ(2Λ+1)

×

(
l′1 l1 Λ

0 0 0

)(
l′2 l2 Λ

0 0 0

){
L l1 l2

Λ l′2 l′1

}

,

(11.24)

and the sum overΛ includes all nonvanishing terms. This
can be extended to general matrix elements of tensor
operators by further vector coupling [11.32].

Radial Integrals
Table 11.1 lists formulas for the radial integrals arising
from matrix elements of H , as well as those from the
Breit interaction (see Sect. 21.1). Although they can all
be written in closed form, some have been expressed
as infinite series in order to achieve good numerical
stability. The exceptions are formulas 5 and 10 in the
Table, which became unstable as α→ β. More elaborate

Part
B

1
1
.2



High Precision Calculations for Helium 11.2 Computational Methods 203

Table 11.1 Formulas for the radial integrals I0(a, b, c;α, β)= 〈ra
1 rb

2rc
12 e−αr1−βr2〉rad and I log

0 (a, b, c;α, β) = 〈ra
1 rb

2rc
12

ln r12 e−αr1−βr2〉rad; ψ(n) =−γ +∑n−1
k=1 k−1 is the digamma function, 2 F1(a, b; c; z) is the hypergeometric function, and

s = a+b+ c+5. Except as noted, the formulas apply for a ≥−1, b ≥−1, c ≥−1

1. I0(−2,−2,−1;α, β) = 2

α
ln

(
α+β
β

)
+ 2

β
ln

(
α+β
α

)

2. I0(a, b, c;α, β) = 2

c+2

[(c+1)/2]∑

i=0

(
c+2
2i+1

)
[Fa+2i+2, b+c−2i+2(α, β)+ Fb+2i+2, a+c−2i+2(β, α)]

(c ≥−1, s ≥ 0)

where Fp,q(α, β)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q!
(α+β)p+1βq+1

q∑

j=0

(p+ j)!
j!

(
β

α+β
) j

q ≥ 0, p ≥ 0

p!
αp+q+2

∞∑

j=p+q+1

j!
( j−q)!

(
α

α+β
) j+1

q< 0, p ≥ 0

0 a p< 0

3. I0(a, b, c;α, α) = 2c+3s!
(c+2)(2α)s+1

⎡

⎣
a+1∑

j=0

(
a+1

j

)
(b+1)!

(
j!

( j+b+2)! −
( j+ c+2)!
( j+b+ c+4)!

)
+ (a ↔ b)

⎤

⎦

5. I0(a, b,−2;α, β) = (a+1)!
αa+2

a+1∑

j=0

(b+1+ j)!
j!

(
α j

(α+β)b+2+ j
− (−α) j

(β−α)b+2+ j

)

×

[
ln

(
2α

α+β
)
−ψ(a+2− j)+ψ(1)

]
+
(

a ↔ b
α↔ β

)

6. I0(a, b,−2;α, α) = 2s!(a+1)!(b+1)!
(2α)s+1

⎡

⎣
a+1∑

j=0

ψ(s+1− j)−ψ(a+2− j)

j!(s− j)! + (a ↔ b)

⎤

⎦

7. I0(−1,−1,−3;α, β) = 2(β lnβ−α lnα)

α2−β2
+ 2[ψ(2)− ln ε]

α+β
b

8. I0(a, b,−3;α, β) =
⎡

⎣ (a+1)!
αa+1(α+β)b+2

a∑

j=0

(b+1+ j)!
j!(a+1− j)

(
α

α+β
) j

+
(

a ↔ b
α↔ β

)
⎤

⎦− s! [ln(αβε2)−2ψ(2)
]

(α+β)s+1

− (a+1)!(b+1)!
(s+1)αa+2βb+1 2 F1

(
a+2, 1; s+2; α−β

α

)
, a ≥−1, b ≥−1

9. I log
0 (−1,−1, c;α, β) = 2(c+1)!

α2−β2

(
lnα−ψ(c+2)

αc+2
− lnβ−ψ(c+2)

βc+2

)

10. I log
0 (a, b, c;α, β) = (a+1)!

(c+2)αa+c+4

a+1∑

j=0

(b+1+ j)!(a+ c+3− j)!
j!(a+1− j)!

(
α j

(α+β)b+2+ j
− (−α) j

(β−α)b+2+ j

)

×

[
−ψ(a+ c+4− j)+ 1

c+2
+ lnα

]
+
(

a ↔ b
α↔ β

)

11. I log
0 (a, b, c;α, α) = 2c+3s!(b+1)!

(c+2)(2α)s+1

a+1∑

j=0

(
a+1

j

){(
j!

( j+b+2)! −
( j+ c+2)!
( j+b+ c+4)!

)[
ψ(s+1)− lnα− 1

c+2

]

+ (a+ c+3− j)!
(s+1− j)! [ψ(s+1− j)−ψ(a+ c+4− j)]

}
+ (a ↔ b)

a Terms with p< 0 represent divergent parts which cancel from convergent differences between integrals with the same α and β
b ε is the radius of an infinitesimal sphere about r12 = 0 which is omitted from the range of integration
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techniques for these are discussed in [11.33]. Other cases
can be derived by use of the formula

〈
r−1

1 r−1
2 f(r12) e−αr1−βr2

〉

rad

= 2

α2−β2

∞∫

0

(
e−βr − e−αr) r f(r) dr , (11.25)

and then differentiating or integrating with respect to
α or β to raise or lower the powers of r1 and r2.

Total Integral
The angular integral (11.23) combined with the radial
integrals from Table 11.1 yields the total integral

〈
YM∗

l1l2 L YM
l′1l′2 L f(a, b, c;α, β)

〉

=
∑

Λ

CΛ IΛ(a, b, c;α, β) , (11.26)

where

IΛ(a, b, c;α, β)= 〈 f(a, b, c;α, β)PΛ(cos θ)〉rad ,

f(a, b, c;α, β)= ra
1 rb

2rc
12 e−αr1−βr2 .

Starting from I0 and I1, the general IΛ can be efficiently
calculated from the recursion relations [11.32]

IΛ+1(a, b, c;α, β)
= 2Λ+1

c+2
IΛ(a−1, b−1, c+2;α, β)

+ IΛ−1(a, b, c;α, β), c �= −2 (11.27)

IΛ+1(a, b,−2;α, β)
= (2Λ+1)I log

Λ (a−1, b−1, 0;α, β)
+ IΛ−1(a, b,−2;α, β), c =−2 (11.28)

where

I log
Λ (a, b, c;α, β)
= 〈 f(a, b, c, α, β) ln r12 PΛ(cos θ)〉rad .

The I log
Λ integrals follow the recursion relation

I log
Λ+1(a, b, c;α, β)
= (2Λ+1)

c+2

[
I log
Λ (a−1, b−1, c+2;α, β)

− 1

c+2
IΛ(a−1, b−1, c+2;α, β)

]

+ I log
Λ−1(a, b, c;α, β) . (11.29)

Hamiltonian Matrix Elements
The general form of the Laplacian operator in terms of
r1, r2, r12 variables is

∇2
1 =

1

r2
1

∂

∂r1

(
r2

1
∂

∂r1

)
+ 1

r2

∂

∂r

(
r2 ∂

∂r

)
− l2

1

r2
1

+ 2(r1−r2 cos θ)

r

∂2

∂r1∂r
−2

(
∇Y

1 ·r2

) 1

r

∂

∂r
,

(11.30)

and similarly for ∇2
2 with subscripts 1 and 2 inter-

changed. The term ∇Y
1 is understood to act only on

the YM
l1l2 L(r̂1, r̂2) part of the wave function. This term

in ∇2
1 can be easily evaluated by means of the effective

operator replacement

〈
YM∗

l′1l′2 L ′ ∇Y
1 · r2 YM

l1l2 L

〉
ang

1

r12

∂g(r12)

∂r12

→ g(r12)

2r1r2

∑

Λ

C̃ΛPΛ(cos θ) (11.31)

for the angular part of the total integral, where

C̃Λ = [l′1(l′1+1)− l1(l1+1)−Λ(Λ+1)]CΛ .
(11.32)

The replacement (11.31) becomes an equality after ra-
dial integration with any function g(r12) in the integrand.
The matrix elements of H between arbitrary basis func-
tions defined by

χ = ra
1 rb

2rc
12 e−αr1−βr2YM

l1l2 L(r̂1, r̂2) ,

χ ′ = ra′
1 rb′

2 rc′
12 e−α′r1−β′r2YM

l′1l′2 L(r̂1, r̂2) ,

can then be written in the explicitly Hermitian form (for
infinite nuclear mass)

〈χ ′|H|χ〉 = 1

8

∑

Λ

CΛ

2∑

i=0

[
A(1)i

× IΛ(a+− i, b+, c+;α+, β+)
+ A(2)i IΛ(a+, b+− i, c+;α+, β+)
+ A(3)i IΛ(a+, b+, c+− i;α+, β+)

]

(11.33)

where a± = a′ ±a, α± = α′ ±α etc., and

A(1)0 = −α2+−α2−+2α−α+(c−/c+) ,
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A(1)1 = 2{α+(a++2)+α−a−
− [α+a−+α−(a++2)](c−/c+)}−8Z ,

A(1)2 = −a2+−a2−−2a++2a−(a++1)(c−/c+)
+ 2l1(l1+1)(1− c−/c+)
+ 2l′1(l′1+1)(1+ c−/c+) ,

A(3)0 = 0 , A(3)1 = 8 ,

A(3)2 = 2(c2+− c2−) ,

with (c−/c+)= 0 for c+ = 0. The A(2)i are defined sim-
ilarly to A(1)i with the replacements a → b, α→ β,
l1 → l2. The overlap integral is

〈χ ′|χ〉 =
∑

Λ

CΛ IΛ(a+, b+, c+;α+, β+) . (11.34)

11.2.4 Other Computational Methods

Although not yet at the same level of accuracy as
variational methods, certain nonvariational methods,
such as finite element methods [11.34], solutions to
the Faddeev equations [11.35], and the correlated-
function hyperspherical-harmonic method [11.36], have
their own advantages of flexibility and/or general-
ity. A characteristic feature of these methods is that
they provide direct numerical solutions to the three-
body problem which in principle converge pointwise
to the exact solution, rather than depending upon
a globally optimized solution. Other methods particu-
larly suited to doubly-excited states are discussed in
Chapt. 25

11.3 Variational Eigenvalues

High precision variational eigenvalues are available for
all states of helium up to n = 10 and L = 7 [11.27–29].
The nonrelativistic values of ε0, ε1 and ε2 [see (11.6)]
are listed in Table 11.2 and Table 11.3. The ε0 are the
eigenvalues for infinite nuclear mass, and ε1 and ε2,
together with (11.6) give the finite mass corrections for
the isotopes 3He and 4He. The values of µ/M can be
calculated from

µ

M
=
(

MA

5.485 799 110 (12)× 10−4 − N +1

)−1

(11.35)

where MA is the atomic mass (in amu, see [11.37]
for a tabulation. For high precision work, the helium
electronic binding energy of 8.48 × 10−8amu should be
added to MA.) and N is the number of electrons. For
4He, one can use directly the accurately known value
of me/mα to calculate µ/M = 1/(mα/me+1). Values
of µ/M for the first several isotopes are listed in Ta-
ble 11.4, and the corresponding energy coefficients for
the 1s2 1S ground state are given in Table 11.5.

Table 11.2 Nonrelativistic eigenvalue coefficients ε0 and ε1 for helium

State ε0(n 1L) ε1(n 1L) ε0(n 3L) ε1(n 3L)

1S −2.903 724 377 034 1195 0.159 069 475 085 84 − −
2S −2.145 974 046 054 419(6) 0.009 503 864 419 28 −2.175 229 378 236 791 30 0.007 442 130 706 04

2P −2.123 843 086 498 093(2) 0.046 044 524 937(1) −2.133 164 190 779 273(5) −0.064 572 425 024(4)

3S −2.061 271 989 740 911(5) 0.002 630 567 0977(1) −2.068 689 067 472 457 19 0.001 896 211 617 81

3P −2.055 146 362 091 94(3) 0.014 548 047 097(1) −2.058 081 084 274 28(4) −0.018 369 001 636(2)

3D −2.055 620 732 852 246(6) −0.000 249 399 9921(1) −2.055 636 309 453 261(4) 0.000 025 322 839(1)

11.3.1 Expectation Values of Operators
and Sum Rules

Expectation values for various powers of the radial co-
ordinates, together with operators appearing in the Breit
interaction, are listed in Table 11.6 for the ground state
of helium and He-like ions. Included are all terms re-
quired to calculate 〈V 2〉, and the oscillator strength sum
rules [11.38]

S(−1)= 2

3

〈
(r1+r2)

2〉 , (11.36a)

S(0)= 2 , (11.36b)

S(1)=−4

3
(ε0− ε1) , (11.36c)

S(2)= 2πZ

3

〈
δ(r1)+ δ(r2)

〉
, (11.36d)

where S(k)=∑
n[ε0(n1P )− ε0(11S )]k f0n , with ener-

gies in a.u., and f0n is the 11S −n1P oscillator strength
(see Sect. 11.5.1).
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Table 11.2 Nonrelativistic eigenvalue coefficients ε0 and ε1 for helium, cont.

State ε0(n 1L) ε1(n 1L) ε0(n 3L) ε1(n 3L)

4S −2.033 586 717 030 72(1) 0.001 073 641 2266(1) −2.036 512 083 098 236 30(2) 0.000 742 661 516 18

4P −2.031 069 650 450 24(3) 0.006 254 923 5543(1) −2.032 324 354 296 62(2) −0.007 555 178 98(1)

4D −2.031 279 846 178 687(7) −0.000 129 175 1887(8) −2.031 288 847 501 795(3) 0.000 029 442 651(2)

4F −2.031 255 144 381 749(1) −0.000 010 024 2694(2) −2.031 255 168 403 2456(6) −0.000 009 669 6396

5S −2.021 176 851 574 363(5) 0.000 538 860 3605(1) −2.022 618 872 302 312 27(1) 0.000 363 697 136 49

5P −2.019 905 989 900 83(2) 0.003 230 021 84(2) −2.020 551 187 256 25(1) −0.003 810 911 035(1)

5D −2.020 015 836 159 984(4) −0.000 071 883 131(6) −2.020 021 027 446 911(5) 0.000 019 568 85(1)

5F −2.020 002 937 158 7427(5) −0.000 005 704 2946(4) −2.020 002 957 377 3694(4) −0.000 005 406 4900(5)

5G −2.020 000 710 898 584 71(1) −0.000 001 404 4136 −2.020 000 710 925 343 92(1) −0.000 001 404 0013

6S −2.014 563 098 446 60(1) 0.000 307 704 277(1) −2.015 377 452 992 862 19(3) 0.000 204 329 479 10

6P −2.013 833 979 671 73(2) 0.001 878 058 536(1) −2.014 207 958 773 74(1) −0.002 184 346 463(1)

6D −2.013 898 227 424 286(5) −0.000 043 412 2689(9) −2.013 901 415 453 792(7) 0.000 012 742 22(3)

6F −2.013 890 683 815 5497(3) −0.000 003 482 257(7) −2.013 890 698 348 5320(2) −0.000 003 268 4586(8)

6G −2.013 889 345 387 313 22(3) −0.000 000 898 5799(7) −2.013 889 345 416 952 96(3) −0.000 000 898 1237(7)

6H −2.013 889 034 754 279 72 −0.000 000 290 3471 −2.013 889 034 754 301 55 −0.000 000 290 3467

7S −2.010 625 776 210 87(2) 0.000 191 925 025(1) −2.011 129 919 527 626 21(4) 0.000 125 981 736 89

7P −2.010 169 314 529 35(2) 0.001 186 152 30(1) −2.010 404 960 007 94(2) −0.001 366 5008(3)

7D −2.010 210 028 457 98(1) −0.000 028 027 840(2) −2.010 212 105 955 595(2) 0.000 008 563 121(3)

7F −2.010 205 248 074 013(1) −0.000 002 262 00(4) −2.010 205 258 374 865(1) −0.000 002 110 58(3)

7G −2.010 204 386 224 772 55(7) −0.000 000 598 3963(3) −2.010 204 386 250 217 93(6) −0.000 000 598 005(1)

7H −2.010 204 182 806 482 04(2) −0.000 000 201 0978 −2.010 204 182 806 512 04(1) −0.000 000 201 0973

7I −2.010 204 120 606 191 32 −0.000 000 077 7755 −2.010 204 120 606 191 340 −0.000 000 077 7755

8S −2.008 093 622 105 61(4) 0.000 127 650 436(1) −2.008 427 122 064 721 42(6) 0.000 083 070 552 34

8P −2.007 789 127 133 22(2) 0.000 796 195 83(5) −2.007 947 013 771 12(1) −0.000 911 0535(3)

8D −2.007 816 512 563 811(7) −0.000 019 076 181(1) −2.007 817 934 711 706(3) 0.000 005 971 1234(3)

8F −2.007 813 297 115 0141(6) −0.000 001 545 48(1) −2.007 813 304 535 0908(5) −0.000 001 436 452(2)

8G −2.007 812 711 494 0241(1) −0.000 000 415 0040(1) −2.007 812 711 514 424 82(9) −0.000 000 414 6904

8H −2.007 812 571 828 655 81(1) −0.000 000 142 6492(3) −2.007 812 571 828 685 73(1) −0.000 000 142 6487(2)

8I −2.007 812 528 549 584 59 −0.000 000 056 9359 −2.007 812 528 549 584 61 −0.000 000 056 9359

8K −2.007 812 512 570 229 31 −0.000 000 025 1113 −2.007 812 512 570 229 306 −0.000 000 025 1113

9S −2.006 369 553 107 85(3) 0.000 089 149 6387(7) −2.006 601 516 715 010 67(3) 0.000 057 628 311 52

9P −2.006 156 384 652 86(5) 0.000 559 978 028(2) −2.006 267 267 366 41(4) −0.000 637 531 359(6)

9D −2.006 175 671 437 641(6) −0.000 013 542 185(3) −2.006 176 684 884 697(2) 0.000 004 306 538(6)

9F −2.006 173 406 897 3246(8) −0.000 001 099 9671(3) −2.006 173 412 365 0430(7) −0.000 001 019 651(2)

9G −2.006 172 991 627 5863(2) −0.000 000 298 2672(1) −2.006 172 991 643 6650(3) −0.000 000 298 0198(1)

9H −2.006 172 891 903 619 14(2) −0.000 000 104 0022 −2.006 172 891 903 645 88(2) −0.000 000 104 0019

9I −2.006 172 860 732 382 57 −0.000 000 042 3136 −2.006 172 860 732 382 60 −0.000 000 042 3136(1)

9K −2.006 172 849 096 329 78 −0.000 000 019 1516 −2.006 172 849 096 329 780 −0.000 000 019 1516

10S −2.005 142 991 748 00(8) 0.000 064 697 214(3) −2.005 310 794 915 6113(2) 0.000 041 598 811 52

10P −2.004 987 983 802 22(4) 0.000 408 649 4263 −2.005 068 805 4978(1) −0.000 463 433 718(8)

10D −2.005 002 071 654 250(6) −0.000 009 947 5060(6) −2.005 002 818 080 232(8) 0.000 003 198 298(8)

10F −2.005 000 417 564 6682(9) −0.000 000 809 442(9) −2.005 000 421 686 6036(7) −0.000 000 748 9264(2)

10G −2.005 000 112 764 3180(3) −0.000 000 220 982(2) −2.005 000 112 777 0031(4) −0.000 000 220 785(3)

10H −2.005 000 039 214 394 52(2) −0.000 000 077 8067 −2.005 000 039 214 417 41(2) −0.000 000 077 8062

10I −2.005 000 016 086 516 19 −0.000 000 032 0590(1) −2.005 000 016 086 516 22 −0.000 000 032 0589(2)

10K −2.005 000 007 388 375 88 −0.000 000 014 7514 −2.005 000 007 388 375 88 −0.000 000 014 7514
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Table 11.3 Eigenvalue coefficients ε2 for helium

State ε2(n 1L) ε2(n 3L)

1S −0.470 391 870(1) −
2S −0.135 276 864(1) −0.057 495 8479(2)

2P −0.168 271 22(7) −0.204 959 88(1)

3S −0.058 599 3124(4) −0.040 455 8505(5)

3P −0.066 047 859(3) −0.070 292 710(2)

3D −0.057 201 299(9) −0.054 737 73(1)

4S −0.032 522 293(2) −0.025 628 6338(1)

4P −0.035 159 71(6) −0.036 129 973(2)

4D −0.032 150 91(2) −0.030 747 891(7)

4F −0.031 274 336(4) −0.031 277 9921(3)

5S −0.020 647 26(9) −0.017 322 734 96

5P −0.021 8476(3) −0.022 166 61(9)

5D −0.020 5101(2) −0.019 7062(2)

5F −0.020 013 498(6) −0.020 016 561(4)

5G −0.020 003 5608 −0.020 003 5646

6S −0.014 261 796(4) −0.012 411 3991(3)

6P −0.014 902 86(9) −0.015 033 58(5)

6D −0.014 1994(2) −0.013 707 27(1)

6F −0.013 896 984(2) −0.013 899 22(3)

6G −0.013 891 179(6) −0.013 891 184(8)

6H −0.013 889 6191 −0.013 889 6190

7S −0.010 4382(2) −0.009 304 4433(3)

7P −0.010 8186(2) −0.010 879(2)

7D −0.010 405 09(3) −0.010 085 212(1)

7F −0.010 2092(3) −0.010 2107(3)

7G −0.010 205 61(5) −0.010 205 61(5)

7H −0.010 204 590(2) −0.010 204 587(2)

7I −0.010 204 2767 −0.010 204 2768

8S −0.007 968 944(3) −0.007 224 7705(3)

8P −0.008 2117(5) −0.008 2487(6)

8D −0.007 9507(4) −0.007 731 59(2)

Table 11.4 Values of the reduced electron mass ratio µ/M

Table 11.5 Nonrelativistic eigenvalues E = ε0+ (µ/M)ε1 + (µ/M)2ε2 for helium-like ions (in units of e2/aµ)

Atom ε0(1 1S ) ε1(1 1S ) ε2(1 1S )

H− −0.527 751 016 544 377 0.032 879 781 852 30 −0.059 779 492 64(1)

He −2.903 724 377 034 1195 0.159 069 475 085 84 −0.470 391 870(1)

Li+ −7.279 913 412 669 3059 0.288 975 786 393 99 −1.277 369 3776(2)

Be++ −13.655 566 238 423 5867 0.420 520 303 439 44 −2.491 572 8581(1)

Table 11.3 Eigenvalue coefficients ε2 for helium, cont.

State ε2(n 1L) ε2(n 3L)

8F −0.007 8159(3) −0.007 8170(2)

8G −0.007 813 563(1) −0.007 813 568(3)

8H −0.007 812 855(4) −0.007 812 859(5)

8I −0.007 812 6429 −0.007 812 6429

8K −0.007 812 5630 −0.007 812 5630

9S −0.006 282 5136(1) −0.005 768 0285(1)

9P −0.006 4457(2) −0.006 464 9369(1)

9D −0.006 270 99(7) −0.006 1152(1)

9F −0.006 175 20(1) −0.006 176 0254(7)

9G −0.006 173 5796(1) −0.006 173 592(4)

9H −0.006 173 104(2) −0.006 173 101(2)

9I −0.006 172 9459(1) −0.006 172 9460(2)

9K −0.006 172 8876 −0.006 172 8876

10S −0.005 079 8362(8) −0.004 709 4530(1)

10P −0.005 197(1) −0.005 2067(1)

10D −0.005 0724(4) −0.004 9580(8)

10F −0.005 001 76(2) −0.005 002 386(2)

10G −0.005 000 55(2) −0.005 000 55(2)

10H −0.005 000 1935(2) −0.005 000 1935(1)

10I −0.005 000 0803(4) −0.005 000 081(1)

10K −0.005 000 0369 −0.005 000 0368

Isotope µ/M × 104

1H 5.443 205 771(12)
2D 2.723 695 064(6)
3He 1.819 212 075(4)
4He 1.370 745 641(3)
6Li 0.912 167 61(8)
7Li 0.782 020 21(6)
9Be 0.608 820 45(3)
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Table 11.6 Expectation values of various operators for He-like ions for the case M =∞ (in a.u.)

Quantity H− He Li+ Be++

〈r2
1〉 11.913 699 678 05(6) 1.193 482 995 019 0.446 279 011 201 0.232 067 315 531

〈r2
12〉 25.202 025 2912(1) 2.516 439 312 833 0.927 064 803 063 0.477 946 525 143

〈r1 ·r2〉 −0.687 312 967 569 −0.064 736 661 398 −0.017 253 390 330 −0.006 905 947 040

〈r1〉 2.710 178 278 444(1) 0.929 472 294 874 0.572 774 149 971 0.414 283 328 006

〈r12〉 4.412 694 497 992(2) 1.422 070 255 566 0.862 315 375 456 0.618 756 314 066

〈1/r1〉 0.683 261 767 652 1.688 316 800 717 2.687 924 397 413 3.687 750 406 344

〈1/r12〉 0.311 021 502 214 0.945 818 448 800 1.567 719 559 137 2.190 870 773 906

〈1/r2
1〉 1.116 662 8246(1) 6.017 408 8670(1) 14.927 623 7214(2) 27.840 105 671 33(2)

〈1/r2
12〉 0.155 104 152 58(3) 1.464 770 923 350(1) 4.082 232 787 55(2) 8.028 801 781 824(1)

〈1/r1r2〉 0.382 627 890 340 2.708 655 474 480 7.011 874 111 824(1) 13.313 954 940 144(1)

〈1/r1r12〉 0.253 077 567 065 1.920 943 921 900 5.069 790 932 379 9.717 071 116 528

〈δ(r1)〉 0.164 552 872 86(3) 1.810 429 318 49(3) 6.852 009 4344(1) 17.198 172 544 74(3)

〈δ(r12)〉 0.002 737 9923(3) 0.106 345 3712(2) 0.533 722 5371(9) 1.522 895 3541(2)

〈p4〉 2.462 558 614(3) 54.088 067 230(2) 310.547 150 179(6) 1047.278 491 476(2)

〈Hoo〉/α2 −0.008 875 022 10(1) −0.139 094 690 556(1) −0.427 991 611 178(9) −0.878 768 694 709(1)

11.4 Total Energies

As discussed in Chapts. 21 and 27, relativistic and QED
corrections must be added to the nonrelativistic eigen-
values of Sect. 11.3 before a meaningful comparison
with measured transition frequencies can be made. The
corrections are discussed in detail in [11.27, 28, 39].

The terms in order of decreasing size are:

1. Relativistic corrections of O(α2)

Hrel = HNFS+HFS ,

HNFS = Hmass+HD+Hssc+Hoo ,

HFS = Hso+Hsoo+Hss .

The various nonfine-structure (NFS) and fine-
structure (FS) terms are defined in Sect. 21.1. The
off-diagonal matrix elements of HFS mix states
of different spin and cause a break-down of L S-
coupling.

2. Anomalous magnetic moment corrections of O(α3)

The general FS matrix elements between states with
spins S and S′ due to the anomalous magnetic mo-
ment ae are (see Sect. 27.4)

〈γS|Hanom
FS |γ ′S′〉 = 2ae

〈
γS|Hso+ 2

3
δS,S′ Hsoo

+
(

1+ 1

2
ae

)
Hss|γ ′S′

〉
,

(11.37)

where ae = (ge − 2)/2 = α/(2π)− 0.328 479α2

+· · · .
3. QED corrections of O(α3)

The lowest order QED corrections (including NFS
anomalous magnetic moment terms) can be written
in the form ∆L,1+∆L,2, where

∆EL,1 = 4

3
Zα3

(
ln(Zα)−2+ 19

30
− ln k0

)

× 〈δ(r1)+ δ(r2)〉 (11.38)

∆EL,2 = α3
(

89

15
+ 14

3
lnα− 20

3
s1 · s2

)

× 〈δ(r12)〉− 14

3
α3 Q , (11.39)

ln k0 is the two-electron Bethe logarithm de-
fined by (27.86) and Q is the matrix ele-
ment defined by (27.83). For a highly excited
1snl state, ∆EL,2 → 0, 〈δ(r1)+ δ(r2)〉 → Z3/π,
ln k0 → ln k0(1s)= 2.984 128 555, and ∆EL,1 re-
duces to the Lamb shift of the 1s core
state (see Sects. 28.3.4 and 28.3.5). Thus
∆EL,1 represents the electron–nucleus part of
the QED shift with the factor of Z3/π re-
placed by the correct electron density at the
nucleus. Accurate values of ln k0 for two-
electron atoms and ions are tabulated in [11.40].
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For the low-lying S-states and P-states of he-
lium [11.31],

ln k0(1
1S )= 2.983 865 861 , (11.40a)

ln k0(2
1S )= 2.980 118 365 , (11.40b)

ln k0(2
3S )= 2.977 742 459 , (11.40c)

ln k0(2
1P )= 2.983 803 377 , (11.40d)

ln k0(2
3P )= 2.983 690 995 . (11.40e)

For a 1snl state with large l, the asymptotic expan-
sion [11.41, 42]

ln k0(1snl)≈ ln k0(1s)+ 1

n3

(
Z−1

Z

)4

ln k0(nl)

+ 0.316 205(6)Z−6〈r−4〉
nl

+ ∆β(1snl) (11.41)

becomes essentially exact. Here ln k0(nl) is the one-
electron Bethe logarithm [11.43] and

〈
r−4〉

nl =
16(Z−1)4[3n2− l(l+1)]

(2l−1)2l(2l+1)(2l+2)(2l+3)
.

(11.42)

The correction ∆β(1snl) for higher order terms is

∆β(1snl 1L)= 95.8(8)
〈
r−6〉−845(19)

〈
r−7〉

+ 1406(50)
〈
r−8〉 (11.43)

∆β(1snl 3L)= 95.1(9)
〈
r−6〉−841(23)

〈
r−7〉

+ 1584(60)
〈
r−8〉 . (11.44)

For example, for the 1s4f 1F state, β(4 1F ) =
2.984 127 1493(3).
For higher Z, 1/Z expansions of [11.40] should be
used.

4. Relativistic finite mass corrections of O(α2µ/M)
Relativistic finite mass corrections come from two
sources. First, a transformation to relative coordi-
nates as in (11.3) is applied to the pairwise Breit
interactions among the three particles, generating
the new terms [11.44, 45]

∆=∆oo+∆so+2
me

M
Hso

where

∆oo= −Zα2me

2M

∑

i, j

1

ri

[
pj · pi + r̂i ·

(
r̂i · p j

)
pi
]
,

(11.45)

∆so = Zα2me

M

∑

i �= j

1

r3
i

ri × p j · si . (11.46)

Second, the mass polarization term Hmp in (11.3)
generates second-order cross-terms between Hmp
and Hrel. If the wave functions are calculated by
solving (11.4) in scaled atomic units, the Hmp cor-
rection is then automatically included to all orders
and the mass-corrected relativistic energy shift is (in
units of e2/a0)

∆Erel =
(
µ

me

)3 〈(
µ

me

)
Hmass+HD+Hssc

+Hoo+∆oo+
(

1+ 2me

M

)
Hso

+Hsoo+Hss+∆so

〉
(11.47)

with µ/me = 1−µ/M. The difference ∆Erel−
〈Hrel〉∞ calculated for infinite nuclear mass is the
relativistic finite mass correction.

5. Higher-order corrections
Spin-dependent terms of O(α4) are known in
their entirety, and have recently been calculated to
high precision [11.46]. Nonrelativistic operators for
the spin-independent part have recently been de-
rived and calculated for the 1s2s 3S1 state [11.47]
and 1s2 1S0 state [11.48]. The dominant electron–
nucleus part is known from the one-electron Lamb
shift to be

∆E′
L,1 = Zα3

[
πZα

(
427

96
−2 ln 2

)

+0.538 931
α

π

]

× 〈δ(r1)+ δ(r2)〉+O
(
α5) (11.48)

and the electron–electron logarithmic part is [11.49]

∆E′
L,2 = πα4 lnα−1〈δ(r12)〉 . (11.49)

As an example, ∆E′
L,1 contributes −50.336 MHz

and−88.267 MHz to the 2 1P –2 1S and 2 3PJ–2 3S1
transition frequencies respectively, while the differ-
ences between theory and experiment are ≈1 MHz
and≈−7 MHz for the two cases (see [11.39]). Thus,
two-electron corrections (for example, relativistic
corrections of relative order Zα to ∆EL,2) are evi-
dently small.
Table 11.7 lists the calculated ionization energies
for all states of helium up to n = 10 and L = 7.
For the D-states and beyond, the uncertainties are
sufficiently small that these states can be taken
as known points of reference in the interpretation
of experimental transition frequencies. However,
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long-range Casimir–Polder corrections [11.50–52]
are not included since they still lack experimen-
tal confirmation [11.53]. The QED shifts are the
largest for the S- and P-states. The contributions

Table 11.7 Total ionization energies for 4He, calculated with RM = 3 289 391 006.715 MHz

State E(n 1LL) E(n 3LL−1) E(n 3LL) E(n 3LL+1)

1S 5 945 204 223.(91)

2S 960 332 041.(25) 1 152 842 741.2(6)

2P 814 709 150.(9) 876 078 642.(17) 876 108 265.(17) 876 110 558.(17)

3S 403 096 132.(8) 451 903 472.(8)

3P 362 787 968.(3) 382 109 902.(6) 382 118 017.(6) 382 118 676.(6)

3D 365 917 749.018(5) 366 018 892.97(1) 366 020 218.086(8) 366 020 293.415(2)

4S 220 960 311.(3) 240 210 377.(3)

4P 204 397 211.(1) 212 658 040.(3) 212 661 348.(2) 212 661 617.7(4)

4D 205 783 935.816(3) 205 842 547.918(6) 205 843 103.149(4) 205 843 139.171(1)

4F 205 620 797.145 205 621 029.602(1) 205 621 502.019(1) 205 621 287.974

5S 139 318 258.(2) 148 807 312.(2)

5P 130 955 541.8(7) 135 203 443.(2) 135 205 105.(1) 135 205 240.8(2)

5D 131 680 211.938(2) 131 714 043.938(3) 131 714 327.498(2) 131 714 346.719(1)

5F 131 595 041.501 131 595 195.235(1) 131 595 419.741(1) 131 595 327.454

5G 131 580 320.1329(1) 131 580 370.9465(2) 131 580 529.5188(2) 131 580 446.4606(1)

6S 95 807 682.0(9) 101 166 442.3(9)

6P 91 009 810.5(4) 93 472 041.5(9) 93 472 992.5(7) 93 473 070.0(1)

6D 91 433 655.841(1) 91 454 440.605(2) 91 454 604.486(1) 91 454 615.8316(5)

6F 91 383 852.0310(2) 91 383 954.3008(5) 91 384 078.8996(5) 91 384 030.7936(2)

6G 91 374 997.961 01(7) 91 375 027.4177(2) 91 375 119.1361(2) 91 375 071.113 69(7)

6H 91 372 940.612 32(3) 91 372 961.813 55(7) 91 373 021.530 29(7) 91 372 990.226 74(3)

7S 69 904 819.7(6) 73 222 269.3(6)

7P 66 901 127.5(2) 68 452 586.6(6) 68 453 180.9(4) 68 453 229.30(8)

7D 67 169 717.1562(6) 67 183 264.590(1) 67 183 367.7091(9) 67 183 374.9339(3)

7F 67 138 158.5571(1) 67 138 228.5582(3) 67 138 305.0654(3) 67 138 276.7195(1)

7G 67 132 455.947 62(6) 67 132 474.5216(1) 67 132 532.2572(1) 67 132 502.036 82(5)

7H 67 131 109.015 31(2) 67 131 122.366 81(5) 67 131 159.972 34(5) 67 131 140.259 24(2)

7I 67 130 692.480 04(1) 67 130 702.489 54(2) 67 130 728.915 04(2) 67 130 715.088 42(1)

8S 53 246 283.1(4) 55 440 834.1(4)

8P 51 242 587.4(2) 52 282 092.0(4) 52 282 488.0(3) 52 282 520.19(5)

8D 51 423 248.1412(4) 51 432 523.2471(8) 51 432 592.2921(6) 51 432 597.1660(2)

8F 51 402 021.6289(1) 51 402 071.1099(2) 51 402 121.5341(2) 51 402 103.3700(1)

8G 51 398 146.238 04(6) 51 398 158.6930(1) 51 398 197.3600(1) 51 398 177.125 22(7)

8H 51 397 221.579 33(2) 51 397 230.523 93(4) 51 397 255.716 51(4) 51 397 242.510 26(2)

8I 51 396 931.943 12(1) 51 396 938.648 74(2) 51 396 956.351 73(2) 51 396 947.088 95(1)

8K 51 396 822.734 66 51 396 827.929 60(1) 51 396 841.052 96(1) 51 396 834.203 39

9S 41 903 979.2(3) 43 430 382.9(3)

9P 40 501 246.4(1) 41 231 283.2(3) 41 231 560.2(2) 41 231 582.71(4)

from ∆EL,1+∆E′
L,1 and ∆EL,2+∆E′

L,2 for these
states are listed separately in Table 11.8. Appli-
cations to isotope shifts and measurements of the
nuclear radius are discussed in Sects. 16.2 and 90.1
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Table 11.7 Total ionization energies for 4He, calculated with RM = 3 289 391 006.715 MHz, cont.

State E(n 1LL) E(n 3LL−1) E(n 3LL) E(n 3LL+1)

9D 40 628 480.2670(3) 40 635 090.4472(6) 40 635 138.9215(4) 40 635 142.3606(2)

9F 40 613 531.5089(1) 40 613 567.5551(2) 40 613 602.5777(2) 40 613 590.2103(1)

9G 40 610 783.198 70(5) 40 610 791.952 31(8) 40 610 819.103 53(8) 40 610 804.897 45(5)

9H 40 610 123.035 88(2) 40 610 129.318 02(3) 40 610 147.011 47(3) 40 610 137.736 30(2)

9I 40 609 914.516 79(1) 40 609 919.226 38(2) 40 609 931.659 73(2) 40 609 925.154 18(1)

9K 40 609 835.097 59 40 609 838.746 17(1) 40 609 847.963 12(1) 40 609 843.152 44

10S 33 834 679.6(2) 34 938 883.9(2)

10P 32 814 665.30(8) 33 346 784.3(2) 33 346 985.6(1) 33 347 001.97(3)

10D 32 907 601.9150(2) 32 912 470.7559(4) 32 912 506.0839(3) 32 912 508.5992(1)

10F 32 896 683.0965(1) 32 896 710.0670(1) 32 896 735.3970(1) 32 896 726.5815(1)

10G 32 894 665.770 94(3) 32 894 672.155 70(5) 32 894 691.945 68(5) 32 894 681.592 48(3)

10H 32 894 178.909 63(1) 32 894 183.489 34(2) 32 894 196.387 81(2) 32 894 189.626 22(1)

10I 32 894 024.241 08(1) 32 894 027.674 38(1) 32 894 036.738 28(1) 32 894 031.995 73(1)

10K 32 893 964.927 04 32 893 967.586 86(1) 32 893 974.306 01(1) 32 893 970.799 02

Table 11.8 QED corrections to the ionization energy in-
cluded in Table 11.7 for the S- and P-states of helium (in
MHz)

�EL,1 +�E′
L,1 �EL,2 +�E′

L,2

State Singlet Triplet Singlet Triplet

1S −45 409. 4173. a

2S −3134.4 −4098.7 327.865 39.883 a

3S −858.34 −1030.29 91.258 8.468

4S −349.09 −402.29 37.303 3.203

5S −174.93 −196.80 18.735 1.544

6S −99.807 −110.505 10.702 0.861

7S −62.221 −68.113 6.677 0.528

8S −41.369 −44.904 4.441 0.347

9S −28.885 −31.147 3.102 0.240

10S −20.959 −22.482 2.251 0.173

2P −103.6 1208.7 62.608 45.502

3P −35.13 344.96 19.559 12.376

4P −15.15 142.33 8.413 5.035

5P −7.816 71.911 4.348 2.529

6P −4.540 41.256 2.529 1.446

7P −2.866 25.824 1.598 0.904

8P −1.923 17.223 1.073 0.602

9P −1.352 12.055 0.755 0.421

10P −0.987 8.764 0.551 0.306

a Includes additional contributions of −4 MHz for the 1 1S
state [11.48] and 3.00(1) MHz for the 2 3S state [11.47] due
to electron–electron terms of O

(
α4
)
R∞

11.4.1 Quantum Defect Extrapolations

As discussed in Sect. 14.1, the ionization energies of an
isolated Rydberg series of states can be expressed in the
form

Wn = RM(Z−1)2/n∗2 , (11.50)

where Z−1 is the screened nuclear charge and n∗ is
the effective principal quantum number defined by an
iterative solution to the equation

n∗ = n− δ(n∗) , (11.51)

where δ(n∗) is the quantum defect defined by the Ritz
expansion

δ(n∗)= δ0+ δ2

(n− δ)2 +
δ4

(n− δ)4 +· · · (11.52)

with constant coefficients δi . The absence of odd terms
in this series is a special property of the eigenvalues of
Hamiltonians of the form HC+V , where HC is a pure
one-electron Coulomb Hamiltonian, and V is a local,
short-range, spherically symmetric potential of arbitrary
strength (see [11.54] for further discussion). For the Ry-
dberg states of helium, odd terms must be included in
the Ritz expansion (11.52) due to relativistic and mass
polarization corrections, but they can be removed again
by first adjusting the energies according to

W ′
n = Wn −∆Wn , (11.53)
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where, to sufficient accuracy [11.54] [see discussion
following (11.66)]

∆Wn = RM

{−3α2(Z−1)4

4n4
+
( µ

M

)2 (Z−1)2

n2

×

[
1+ 5

6
(αZ)2

]}
, (11.54)

Table 11.9 Quantum defects for the total energies of helium with the ∆Wn term subtracted (11.54)

δi Value
1S 0

3S 1

δ0 0.139 718 064 86(21) 0.296 656 487 71(75)

δ2 0.027 835 737(18) 0.038 296 666(59)

δ4 0.016 792 29(41) 0.007 5131(12)

δ6 −0.001 4590(31) −0.004 5476(79)

δ8 0.002 9227(65) 0.002 180(14)
1P 1

3P 0
3P 1

3P 2

δ0 −0.012 141 803 603(64) 0.068 328 002 51(27) 0.068 357 857 65(27) 0.068 360 283 79(23)

δ2 0.007 519 0804(59) −0.018 641 975(24) −0.018 630 462(24) −0.018 629 228(21)

δ4 0.013 977 80(15) −0.012 331 65(57) −0.012 330 40(57) −0.012 332 75(51)

δ6 0.004 8373(12) −0.007 9515(45) −0.007 9512(45) −0.007 9527(41)

δ8 0.001 2283(29) −0.005 448(10) −0.005 450(10) −0.005 451(9)
1D 2

3D 1
3D 2

3D 3

δ0 0.002 113 378 464(49) 0.002 885 580 281(22) 0.002 890 941 493(25) 0.002 891 328 825(26)

δ2 −0.003 090 0510(58) −0.006 357 6012(27) −0.006 357 1836(30) −0.006 357 7040(33)

δ4 0.000 008 27(22) 0.000 336 67(11) 0.000 337 77(11) 0.000 336 70(13)

δ6 −0.000 3094(31) 0.000 8394(16) 0.000 8392(16) 0.000 8395(18)

δ8 −0.000 401(14) 0.000 3798(72) 0.000 4323(75) 0.000 3811(83)
1F 3

3F 2
3F 3

3F 4

δ0 0.000 440 294 26(62) 0.000 444 869 89(22) 0.000 448 594 83(28) 0.000 447 379 27(21)

δ2 −0.001 689 446(65) −0.001 739 275(24) −0.001 727 232(30) −0.001 739 217(23)

δ4 −0.000 1183(20) 0.000 104 76(76) 0.000 1524(9) 0.000 104 78(71)

δ6 0.000 326(18) 0.000 0337(69) −0.000 2486(83) 0.000 0331(64)
1G 4

3G 3
3G 4

3G 5

δ0 0.000 124 734 490(79) 0.000 125 707 43(12) 0.000 128 713 16(10) 0.000 127 141 67(11)

δ2 −0.000 796 230(12) −0.000 796 498(19) −0.000 796 246(15) −0.000 796 484(17)

δ4 −0.000 012 05(53) −0.000 009 80(81) −0.000 011 89(66) −0.000 009 85(75)

δ6 −0.000 0136(69) −0.000 019(11) −0.000 0141(85) −0.000 019(10)
1H 5

3H 4
3H 5

3H 6

δ0 0.000 047 100 899(61) 0.000 047 797 067(43) 0.000 049 757 614(51) 0.000 048 729 846(45)

δ2 −0.000 433 2277(84) −0.000 433 2322(55) −0.000 433 2274(65) −0.000 433 2281(57)

δ4 −0.000 008 14(26) −0.000 008 07(16) −0.000 008 13(19) −0.000 008 10(16)
1I 6

3I 5
3I 6

3I 7

δ0 0.000 021 868 881(17) 0.000 022 390 759(20) 0.000 023 768 483(14) 0.000 023 047 609(26)

δ2 −0.000 261 0673(22) −0.000 261 0680(28) −0.000 261 0662(18) −0.000 261 0672(35)

δ4 −0.000 004 048(67) −0.000 004 042(87) −0.000 004 076(58) −0.000 004 04(11)

with Z = 2 for helium. The quantum defect
parameters listed in Table 11.9 provide accu-
rate extrapolations to higher-lying Rydberg states,
with

Wn = RM/n
∗2+∆Wn . (11.55)
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11.4.2 Asymptotic Expansions

The asymptotic expansion method [11.39, 55] rapidly
increases in accuracy with increasing angular momen-
tum L of the Rydberg electron, and can be used to high
precision for L ≥ 7. The method is based on a model in
which:

1. the Rydberg electron, treated as a distinguishable
particle, moves in the field of the core consisting of
the He nucleus and a tightly bound 1s electron.

2. the core, as characterized by its various multipole
moments, is perturbed by the electric field of the
Rydberg electron.

A systematic perturbation expansion yields an
asymptotic series of the form

εnL
0 =−2− (Z−1)2

2n2
+a0

N∑

j=4

A j
〈
r− j 〉

nL

e2

a0
,

(11.56)

where the expectation value 〈r− j〉nL is calculated
with respect to the hydrogenic nL-electron wave func-
tion [11.56] and the series is truncated at the upper
limit N where the series begins diverging. The leading
coefficients A j are

A4 =−1

2
α1 , A5 = 0 , A6 =−1

2
(α2−6β1) ,

where αk is the 2k-pole polarizability of the hydro-
genic core and βk is a nonadiabatic correction. The exact
hydrogenic values are

α1 = 9a3
0

2Z4 , α2 = 15a5
0

Z6 , β1 = 43a5
0

8Z6 .

All terms are known up to A10 (see [11.39, 55] for de-
tailed results). The expansions for the terms ε0, ε1, and
ε2 in (11.6) for helium are

εnL
0 = −2− 1

2n2 −
9

64

〈
r−4〉

+ 69

512

〈
r−6〉+ 3833

15 360

〈
r−7〉

−
(

55 923

65 536
+ 957L(L+1)

10 240

) 〈
r−8〉

− 908 185

688 128

〈
r−9〉

+
(

3 824 925

1 048 576
+ 33 275L(L+1)

28 672

) 〈
r−10〉

+ e(1,1)− 23

20
e(1,2) , (11.57)

εnL
1 = − 9

32

〈
r−4〉+ 249

256

〈
r−6〉+ 319

3840

〈
r−7〉

−
(

34 659

16 384
+ 957L(L+1)

5120

) 〈
r−8〉

− 14 419

3072

〈
r−9〉

+
(

6 413 781

262 144
+ 24 155L(L+1)

8192

) 〈
r−10〉

+ 4e(1,1)− 53

5
e(1,2) , (11.58)

εnL
2 = − 1

2n2 −
45

64

〈
r−4〉+ 165

512

〈
r−6〉+ 2555

3072

〈
r−7〉

−
(

268 485

32 768
+ 957L(L+1)

2048

) 〈
r−8〉

+ 598 909

172 032

〈
r−9〉

+
(

3 907 923

524 288
+ 629 515L(L+1)

114 688

) 〈
r−10〉

+ 14e(1,1)− 251

10
e(1,2) . (11.59)

The terms e(1,1) and e(1,2) are second-order dipole–
dipole and dipole–quadrupole perturbation corrections.
Defining f L

p = (L+ p)!/(L− p)!, they are given by

e(i, j ) = − (2− δ j,k)22i+2 j+1(2L−2i )!(2L−2 j )!
n3(2L+2i+1)!(2L+2 j+1)!

×

(
22i+2 j (2L−2i−2 j )!A(i, j )
n2i+2 j+2(2L+2i+2 j+1)!

+ B(i, j )

n2i+2 j+1

)

(11.60)

with

A(1,1) = 3n2(3n2−2 f1)( f1−2)
(
45+623 f L

1

+3640 f L
2 + 560 f L

3

)
,

B(1,1) = (
9n2−7 f L

1

)(
3n2− f L

1

)
,

A(1,2) = −21n6(94 500+122 850 f L
1

−1 126 125 f L
2 − 18 931 770 f L

3

−11 171 160 f L
4 − 1 029 600 f L

5

−18 304 f L
6

)

− 15n4(94 500−444 150 f L
1

+7 747 425 f L
2 + 337 931 880 f L

3

+375 290 190 f L
4 + 66 518 760 f L

5
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+2 880 416 f L
6 +29 568 f L

7

)

+ 9n2 f L
1

(
90 300−177 450 f L

1

+1 738 450 f L
2 + 133 125 575 f L

3

+160 040 870 f L
4 + 29 322 216 f L

5

+1 293 600 f L
6 +13 440 f L

7

)

+ 2 f L
1 f L

2 f L
3

(
45+252 f L

1 −1680 f L
2

−2240 f L
3

)
,

B(1,2) = 315n6+125n4(3−5 f L
1

)

−7n2 f L
1

(
43−39 f L

1

)− 27 f L
1 f L

2 .

The accuracy of the expansion for the ε0, ε1, and ε2 can
be reliably estimated to be one-half of the last 〈r− j〉 term
included in the sum. Formulas for the 〈r− j〉 are given in
Table 11.10.

The asymptotic formulas for the NFS relativistic
corrections are [11.39, 57]

〈Hmass+HD〉 → − α
2 Z4

8
+h1(nL)+χ1(nL)

+ (Zα)2

2

(
14

3Z4

〈
r−4〉

− 5041

240Z6

〈
r−6〉

)
(11.61)

〈Hoo〉 → α2

Z2

(〈
r−4〉+ 3(Z−1)

Z2

〈
r−5〉

− 3
(

f L
1 +8

)

4Z2

〈
r−6〉

)

, (11.62)

where

h1(nL)= α
2(Z−1)4

2n3

(
3

4n
− 1

L+ 1
2

)

(11.63)

is the leading one-electron Dirac energy and

χ1(nL)= α
2α1

2

{

3

(
Z−1

n

)2 〈
r−4〉

− (Z−1)
〈
r−5〉− 4(2L−2)!

(2L+3)!
×

[

4

(
Z−1

n

)6
(

n+ 9n2−5 f L
1

2L+1

)

+(Z−1)2
(

40 f L
2 +70 f L

1 −3

2L+1

)
〈
r−4〉

]}

(11.64)

is the correction due to the dipole perturbation of the
Rydberg electron. The relativistic recoil terms due to

Table 11.10 Formulas for the hydrogenic expectation value
〈r− j〉 ≡ 〈nl|r− j |nl〉 in terms of

Gnl
p = 2p Z p(2l− p+2)!

n p+1(2l+ p−1)! , f l
p =

(l+ p)!
(l− p)! .

j
〈
r− j
〉

(a0)

2
1

2
Gnl

2

3 nGnl
3

4 Gnl
4

(
3n2− f l

1

)

5 2Gnl
5

[
5n3−n

(
3 f l

1−1
)]

6 Gnl
6

[
35n4−5n2(6 f l

1 −5
)+3 f l

2

]

7 2Gnl
7

[
63n5−35n3(2 f l

1−3
)+n

(
15 f l

2−20 f l
1 +12

)]

8 Gnl
8

[
462n6−210n4(3 f l

1−7
)

+42n2(5 f l
2−15 f l

1+14
)−10 f l

3

]

9 2Gnl
9

[
858n7−462n5(3 f l

1 −10
)+42n3(15 f l

2 −75 f l
1

+101
)−2n

(
35 f l

3−105 f l
2 +252 f l

1−180
)]

10 Gnl
10

[
6435n8−6006n6(2 f l

1−9
)+1155n4(6 f l

2 −44 f l
1

+81
)−6n2(210 f l

3−1365 f l
2+4648 f l

1−4566
)

+35 f l
4

]

mass polarization are

〈Hmass+HD〉RR

→ µ

M

[
22(Zα)2(Z−1)

9Z4

〈
r−4〉+2(Z−1)χ1(nL)

]

+
( µ

M

)2
[

− 5

12

(
αZ(Z−1)

n

)2

+4h1(nL)

]

,

(11.65)

〈Hoo〉RR+〈∆oo〉
→ − α

2µ

M

[
Z4+ (Z−1)4

n3

(
1

n
− 3

2L+1

)

− 25[1+13 f(Z)]
16Z2

〈
r−4〉

]
, (11.66)

with f(Z) ) 1+ (Z − 2)/6. The −(5/12)[αZ(Z −
1)/n]2 term in (11.65) is the dominant contribution in
helium for L ≥ 4. It is included in (11.54) for ∆Wn ,
along with the leading 1/n2 term from (11.59), and the
1/n4 term from (11.63). The complete relativistic finite
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mass correction includes also the mass-scaling terms
−(µ/M)〈4Hmass+3HD+3Hoo〉 obtained by expand-
ing µ/me in (11.47). The 〈δ(r1)〉 term is [11.58]

π〈δ(r1)〉 → Z3

2
− 31

4Z3

〈
r−4〉+ 1447

32Z5

〈
r−7〉

− −31(Z−1)

2Z3

( µ
M

) 〈
r−4〉+· · · .

(11.67)

〈δ(r12)〉 vanishes exponentially as 1/n2L+4 with increas-
ing L . The complete asymptotic expressions for the FS
matrix elements are summarized by the formulas

〈
nL 3L J |HFS|nL 3L J

〉

→ TnL(J ){Z−3+2SL(J )+2ae[Z−2

+ (2+ae)SL(J )]+ (µ/M)[2−4SL()]} ,
(11.68)

〈
nL 3L J |HFS|nL 1L J

〉

→ TnL(L)(Z+1+2ae Z−2µ/M)
√

L(L+1) ,
(11.69)

where

TnL(J )=

⎧
⎪⎨

⎪⎩

−α2(L+1)
〈
r−3

〉
/4 J = L−1 ,

−α2
〈
r−3

〉
/4 J = L ,

α2L
〈
r−3

〉
/4 J = L+1 ,

SL(J )=
{

1 J = L ,

±1/(2J +1) J = L±1 .

The asymptotic form for the QED term ∆EL,1 fol-
lows from (11.38) with the use of (11.67) for 〈δ(r1)〉 and
(11.41) for ln k0. The electron–electron part is

∆EL,2 →−7α3

6π

(〈
r−3〉+ 3

Z2

〈
r−5〉

)
. (11.70)

With the use of the formulas in this section, the vari-
ationally calculated ionization energies for the K-states
(L = 7) in Table 11.7 can be reproduced to within ±20
Hz. For L > 7, the uncertainty becomes less than 1 Hz,
up to the Casimir-Polder retardation effects which have
not been included.

11.5 Radiative Transitions

11.5.1 Basic Formulation

In a semiclassical picture, the interaction Hamiltonian
with the radiation field is obtained by making the mini-
mal coupling replacements

PN → PN− Ze

c
A(RN)

Pi → Pi + e

c
Ai(Ri) (11.71)

in (11.1), where

A(R)= c

(
2π�

ωV

)1/2

ε̂ eik·R (11.72)

is the time-independent part of the vector potential
A(r, t)= A(r)e−iωt + c.c for a photon of frequency ω,
wave vector k, and polarization ε̂⊥ k normalized to unit
photon energy �ω in volume V. The linear coupling
terms then yield

Hint =− Ze

Mc
PN · A(RN)+ e

mec

2∑

i=1

Pi · A(Ri) ,

(11.73)

and from Fermi’s Golden Rule, the decay rate for spon-
taneous emission from state γ to γ ′ is

wγ,γ ′ dΩ = 2π

�
|〈γ |Hint|γ ′〉|2ρ f , (11.74)

where ρ f = Vω2 dΩ/(2πc)3� is the number of photon
states with polarization ε̂ per unit energy and solid angle
in the normalization volume V. In the long wavelength
and electric dipole approximations, the factor eik·R in
(11.72) is replaced by unity. After integrating over angles
dΩ and summing over polarizations ε̂, the decay rate
reduces to

wγ,γ ′ = 4

3
αωγ,γ ′ |〈γ |Q p|γ ′〉|2 , (11.75)

where ωγ ′,γ is the transition frequency and Q p is the
velocity form of the transition operator

Q p =− Z

Mc
PN+ 1

mec

N∑

i=1

Pi (11.76)

for the general case of N electrons. From the commu-
tator [H0, Qr/�ωγ,γ ′ ] = Q p, where H0 is the field-free
Hamiltonian in (11.1), the equivalent length form is

Qr =− i

c
ωγ,γ ′

(

Z RN−
N∑

i=1

Ri

)

. (11.77)
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After transforming to c.m. plus relative coordinates
in parallel with (11.3), the dipole transition operators
become

Q p = Z p

mec

N∑

i=1

pi , Qr = iωγ,γ ′

c
Zr

N∑

i=1

ri ,

(11.78)

with

Z p = Zme+M

M
, Zr = Zme+M

Nme+M
,

and H0 now contains the Hmp term. If (11.3) is solved
exactly for the states |γ 〉 and |γ ′〉, then the identity

〈γ |Q p|γ ′〉 = 〈γ |Qr |γ ′〉 (11.79)

is satisfied to all orders in me/M. For a neutral atom,
N = Z and Zr = 1. If the oscillator strength is defined
by

fγ ′,γ = 2meωγ ′,γ
3�

(
Zr

Z p

) ∣∣∣∣∣

〈

γ ′
∣∣∣∣∣

N∑

i=1

ri

∣∣∣∣∣
γ

〉∣∣∣∣∣

2

= 2

3me�ωγ ′,γ

(
Z p

Zr

) ∣∣∣∣∣

〈

γ ′
∣∣∣∣∣

N∑

i=1

pi

∣∣∣∣∣
γ

〉∣∣∣∣∣

2

(11.80)

Table 11.11 Oscillator strengths for helium. The factor in brackets gives the finite mass correction, with y = µ/M

1 1S 2 1S 3 1S 4 1S

2 1P 0.276 1647(1−2.282y) 0.376 4403(1+1.255y) −0.145 4703(1+1.351y) −0.025 8703(1+0.885y)

3 1P 0.073 4349(1−1.789y) 0.151 3417(1−3.971y) 0.626 1931(1+1.234y) −0.307 5074(1+1.097y)

4 1P 0.029 8629(1−1.583y) 0.049 1549(1−3.235y) 0.143 8889(1−4.650y) 0.858 0214(1+1.205y)

5 1P 0.015 0393(1−1.474y) 0.022 3377(1−2.967y) 0.050 4714(1−3.764y) 0.146 2869(1−5.080y)

6 1P 0.008 6277(1−1.407y) 0.012 1340(1−2.829y) 0.024 1835(1−3.444y) 0.052 7562(1−4.105y)

7 1P 0.005 4054(1−1.362y) 0.007 3596(1−2.75y) 0.013 6794(1−3.279y) 0.025 8918(1−3.75y)

2 3S 3 3S 4 3S 5 3S

2 3P 0.539 0861(1−3.185y) −0.208 5359(1−3.773y) −0.031 7208(1−2.819y) −0.011 3409(1−2.609y)

3 3P 0.064 4612(1+5.552y) 0.890 8513(1−2.967y) −0.435 6711(1−3.362y) −0.067 6073(1−2.359y)

4 3P 0.025 7689(1+3.886y) 0.050 0833(1+7.505y) 1.215 2630(1−2.878y) −0.668 3003(1−3.185y)

5 3P 0.012 4906(1+3.332y) 0.022 9141(1+5.209y) 0.044 2305(1+9.009y) 1.530 6287(1−2.827y)

6 3P 0.006 9822(1+3.063y) 0.011 9933(1+4.460y) 0.021 6301(1+6.198y) 0.041 5177(1+10.215y)

7 3P 0.004 2990(1+2.908y) 0.007 0772(1+4.092y) 0.011 7754(1+5.292y) 0.021 1003(1+6.981y)

2 1P 3 1P 4 1P 5 1P

3 1D 0.710 1641(1−0.281y) −0.021 1401(1+29.947y) −0.015 3034(1−6.680y) −0.003 1128(1−6.27y)

4 1D 0.120 2704(1−1.307y) 0.648 1049(1+0.435y) −0.040 0610(1+29.183y) −0.039 2932(1−6.163y)

5 1D 0.043 2576(1−1.681y) 0.141 3027(1−0.566y) 0.647 6679(1+0.817y) −0.057 3258(1+28.903y)

6 1D 0.020 9485(1−1.866y) 0.056 2766(1−0.936y) 0.152 8104(1−0.170y) 0.669 8361(1+1.056y)

7 1D 0.011 8970(1−1.975y) 0.028 8961(1−1.127y) 0.063 5953(1−0.538y) 0.163 0272(1+0.082y)

8 1D 0.007 4645(1−2.046y) 0.017 0777(1−1.241y) 0.033 6403(1−0.731y) 0.069 3063(1−0.26y)

then the sum rule
∑
γ ′ fγ ′,γ = N remains valid,

independent of me/M. The decay rate, summed
over final states and averaged over initial states,
is

w̄γ,γ ′ = −2α�ω2
γ,γ ′

mec2
Z p Zr f̄γ,γ ′ , (11.81)

where f̄γ,γ ′ = −(g′γ /gγ ) f̄γ ′,γ is the (negative) oscilla-
tor strength for photon emission, and g′γ , gγ are the
statistical weights of the states.

11.5.2 Oscillator Strength Table

Table 11.11 provides arrays of nonrelativistic oscillator
strengths among various states of helium, including the
effects of finite nuclear mass as a separate factor. In the
absence of mass polarization, the correction factor would
be (1+µ/M)−1 ) 1−µ/M. Mass polarization effects
are particularly strong for P-states, and for transitions
with ∆n = 0.

The largest relativistic correction comes from
singlet–triplet mixing between states with the same n,
L , and J (e.g. 3 1D2 and 3 3D2) due to HFS. The wave
functions obtained by diagonalizing the 2 × 2 matrices
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Table 11.11 Oscillator strengths for helium. The factor in brackets gives the finite mass correction, with y = µ/M, cont.

2 3P 3 3P 4 3P 5 3P

3 3D 0.610 2252(1−2.029y) 0.112 1004(1+6.653y) −0.036 9592(1+3.292y) −0.006 9009(1+2.678y)

4 3D 0.122 8469(1−1.001y) 0.477 5938(1−3.059y) 0.200 9498(1+6.368y) −0.088 3017(1+2.939y)

5 3D 0.047 0071(1−0.631y) 0.124 5532(1−2.019y) 0.438 3888(1−3.607y) 0.280 0558(1+6.225y)

6 3D 0.023 4692(1−0.449y) 0.053 0093(1−1.631y) 0.123 9414(1−2.555y) 0.429 4411(1−3.961y)

7 3D 0.013 5638(1−0.346y) 0.028 1587(1−1.432y) 0.055 2332(1−2.153y) 0.125 2389(1−2.904y)

8 3D 0.008 6047(1−0.280y) 0.016 9809(1−1.315y) 0.030 2853(1−1.94y) 0.057 0589(1−2.498y)

3 1D 4 1D 5 1D 6 1D

4 1F 1.015 0829(1−1.010y) 0.002 4920(1+3.833y) −0.012 6968(1−0.888y) −0.002 2631(1−0.890y)

5 1F 0.156 8808(1−0.993y) 0.886 1343(1−1.023y) 0.004 6467(1+4.139y) −0.033 2539(1−0.893y)

6 1F 0.054 0508(1−0.984y) 0.186 0576(1−1.001y) 0.839 1374(1−1.031y) 0.006 6028(1+4.302y)

7 1F 0.025 6799(1−0.978y) 0.072 3229(1−0.994y) 0.196 3692(1−1.014y) 0.826 9464(1−1.039y)

8 1F 0.014 4782(1−0.978y) 0.036 6627(1−0.987y) 0.080 7847(1−1.003y) 0.203 1182(1−1.019y)

9 1F 0.009 0730(1−0.977y) 0.021 5401(1−0.975y) 0.042 4256(1−1.000y) 0.086 0955(1−1.01y)

3 3D 4 3D 5 3D 6 3D

4 3F 1.014 3389(1−0.997y) 0.003 3992(1−2.166y) −0.012 8084(1−1.042y) −0.002 2830(1−1.044y)

5 3F 0.156 9831(1−1.004y) 0.884 5767(1−0.991y) 0.006 5121(1−2.387y) −0.033 5369(1−1.043y)

6 3F 0.054 1179(1−1.006y) 0.186 0264(1−1.003y) 0.837 0221(1−0.988y) 0.009 3836(1−2.499y)

7 3F 0.025 7201(1−1.008y) 0.072 3579(1−1.003y) 0.196 2031(1−0.996y) 0.824 4031(1−0.984y)

8 3F 0.014 5037(1−1.009y) 0.036 6936(1−1.004y) 0.080 7712(1−1.00y) 0.202 8407(1−0.993y)

9 3F 0.009 0903(1−1.008y) 0.021 5632(1−1.011y) 0.042 4344(1−0.99y) 0.086 0373(1−0.99y)

H0+HNFS+HFS are then

Ψ(n 1L L)= Ψ0(n
1L L) cos θ+Ψ0(n

3L L) sin θ

Ψ(n 3L L)= −Ψ0(n
1L L) sin θ+Ψ0(n

3L L) cos θ .

Values of sin θ are listed in Table 11.12. The cor-
rected oscillator strengths f̃γ,γ ′ for the singlet (s) and
triplet (t) components of a γ → γ ′ transition can then be
calculated from the values in Table 11.11 according to

f̃ ss
γ,γ ′ = ωss

γ,γ ′
(

Xss
γ,γ ′ cos θγ cos θγ ′

+X tt
γ,γ ′ sin θγ sin θγ ′

)2
,

f̃ tt
γ,γ ′ = ωtt

γ,γ ′
(

Xss
γ,γ ′ sin θγ sin θγ ′

+X tt
γ,γ ′ cos θγ cos θγ ′

)2
,

f̃ st
γ,γ ′ = ωst

γ,γ ′
(

Xss
γ,γ ′ cos θγ sin θγ ′

−X tt
γ,γ ′ sin θγ cos θγ ′

)2
,

f̃ ts
γ,γ ′ = ωts

γ,γ ′
(

Xss
γ,γ ′ sin θγ cos θγ ′

−X tt
γ,γ ′ cos θγ sin θγ ′

)2
,

Table 11.12 Singlet–triplet mixing angles for helium

State sin θ State sin θ State sin θ

2P 0.000 2783

3P 0.000 2558 3D 0.015 6095

4P 0.000 2498 4D 0.011 3960 4F 0.604 1024

5P 0.000 2473 5D 0.010 1143 5F 0.549 9291

6P 0.000 2460 6D 0.009 5289 6F 0.518 0737

7P 0.000 2452 7D 0.009 2067 7F 0.498 4184

8P 0.000 2447 8D 0.009 0087 8F 0.485 5768

9P 0.000 2444 9D 0.008 8777 9F 0.476 7620

10P 0.000 2442 10D 0.008 7862 10F 0.470 4595

5G 0.693 4752

6G 0.693 1996 6H 0.696 2385

7G 0.692 9889 7H 0.696 2377 7I 0.697 9315

8G 0.692 8356 8H 0.696 2372 8I 0.697 9315

9G 0.692 7195 9H 0.696 2374 9I 0.697 9316

10G 0.692 6329 10H 0.696 2353 10I 0.697 9316

8K 0.699 1671

9K 0.699 1671 9L 0.700 1089

10K 0.699 1671 10L 0.700 1089 10M 0.700 8507
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where Xss
γ,γ ′ = ( f ss

γ,γ ′/ωss
γ,γ ′)1/2, and similarly for X tt

γ,γ ′ .
From (11.80), Xγ,γ ′ is proportional to the dipole length
form of the transition operator, for which there are
no spin-dependent relativistic corrections [11.59, 60].
The mixing corrections are particularly significant for

D–F and F–G transitions, where intermidiate cou-
pling prevails. The two-state approximation becomes
increasingly accurate with increasing L , but for P-states,
where sin θ is small, states with n′ �= n must also be
included [11.61].

11.6 Future Perspectives

The variational calculations, together with quantum
defect extrapolations for high n and asymptotic ex-
pansions for high L , provide essentially exact results
for the entire singly-excited spectrum of helium. In
this sense, helium joins hydrogen as a fundamental
atomic system. The dominant uncertainties arise from
two-electron QED effects beyond the current realm of
standard atomic physics. Transition frequencies from the
1s2s 1S0 state are now known to better than ±0.5 MHz
(±1.8 parts in 109) [11.62, 63], and the fine struc-

ture intervals in the 1s2p 3P state have been measured
to an accuracy exceeding 1 kHz [11.64]. Comparisons
with theory [11.65,66] hold the promise of determining
an “atomic physics” value for the fine structure con-
stant. Transition frequencies among the n = 10 states are
known even more accurately [11.53]. Recent progress in
the use of isotope the shift to deduce the size of the nu-
cleus from the nuclear volume effect (see Sect. 90.1) has
attracted a great deal of attention, especially for neutron-
rich “halo” nuclei such as 6He and 11Li. [11.67, 68]

References

11.1 T. Kato: Commun. Pure Appl. Math. 10, 151 (1957)
11.2 M. Hoffman-Ostenhoff, T. Hoffmann-Ostenhoff,

H. Stremnitzer: Phys. Rev. Lett. 68, 3857 (1992)
11.3 V. A. Fock: Izv. Akad. Nauk SSSR, Ser. Fiz. 18, 161

(1954)
11.4 V. A. Fock: D. Kngl. Norske Videnskab. Selsk. Forh.

31, 138 (1958)
11.5 V. A. Fock: D. Kngl. Norske Videnskab. Selsk. Forh.

31, 145 (1958)
11.6 G. B. Sochilin: Int. J. Quantum Chem. 3, 297 (1969)
11.7 C. R. Myers, C. J. Umriger, J. P. Sethna, J. D. Mor-

gan III: Phys. Rev. A 44, 5537 (1991)
11.8 J. E. Gottschalk, E. N. Maslen: J. Phys. A 20, 2781

(1987)
11.9 K. McIsaac, E. N. Maslen: Int. J. Quantum Chem. 31,

361 (1987)
11.10 J. H. Macek: Phys. Rev. 160, 170 (1967)
11.11 J. Leray: Trends and Applications of Pure Math-

ematics to Mechanics, Lect. Notes Phys., Vol. 195,
ed. by P. G. Ciarlet, M. Roseau (Springer, Berlin,
Heidelberg 1984) pp. 235–247

11.12 J. D. Morgan III: Theoret. Chem. Acta 69, 181 (1986)
11.13 P. Deift, W. Hunziker, B. Simon, E. Vock: Commun.

Math. Phys. 64, 1 (1978)
11.14 J. D. Morgan III: J. Phys. A 10, L91 (1977)
11.15 M. Hoffman-Ostenhoff, T. Hoffmann-Ostenhoff:

Phys. Rev. A 16, 1782 (1977)
11.16 R. Ahlrichs, T. Hoffman-Ostenhoff, M. Hoffmann-

Ostenhoff, J. D. Morgan III: Phys. Rev. A 23, 2107
(1981)

11.17 E. A. Hylleraas, B. Undheim: Z. Phys. 65, 759 (1930)
11.18 J. K. L. MacDonald: Phys. Rev. 43, 830 (1933)
11.19 E. A. Hylleraas: Z. Phys. 48, 469 (1928)
11.20 E. A. Hylleraas: Z. Phys. 54, 347 (1929)
11.21 Y. Accad, C. L. Pekeris, B. Schiff: Phys. Rev. A 4, 516

(1971)
11.22 K. Frankowski, C. L. Pekeris: Phys. Rev. 146, 46

(1966)
11.23 K. Frankowski, C. L. Pekeris: Phys. Rev. 150, 366(E)

(1966)
11.24 D. E. Freund, B. D. Huxtable, J. D. Morgan III: Phys.

Rev. A 29, 980 (1984)
11.25 A. J. Thakkar, T. Koga: Phys. Rev. A 50, 854 (1994)
11.26 G. W. F. Drake: Nucl. Instrum. Methods Phys. Res.

Sect B 31, 7 (1988)
11.27 G. W. F. Drake, Z.-C. Yan: Phys. Rev. A 46, 2378

(1992)
11.28 G. W. F. Drake: Long Range Casimir Forces: Theory

and Recent Experiments in Atomic Systems, ed. by
F. S. Levin, D. A. Micha (Plenum Press, New York
1993) p. 107

11.29 G. W. F. Drake, Z.-C. Yan: Chem. Phys. Lett. 229, 486
(1994)

11.30 A. M. Frolov, V. H. Smith: J. Phys. B 37, 2917 (2004)
11.31 V. Korobov: Phys. Rev. A 69, 0545012 (2004) The

Bethe logarithms calculated by Korobov include an
additional ln Z2 in their definition

11.32 G. W. F. Drake: Phys. Rev. A 18, 820 (1978)
11.33 Z.-C. Yan, G. W. F. Drake: Can. J. Phys. 72, 822

(1994)

Part
B

1
1



High Precision Calculations for Helium References 219

11.34 J. Ackermann: Phys. Rev. A 52, 1968 (1995) and
earlier references therein

11.35 C.-Y. Hu, A. A. Kvitsinsky, J. S. Cohen: J. Phys. B 28,
3629 (1995) and earlier references therein

11.36 R. Krivec, V. B. Mandelzweig, K. Varga: Phys. Rev.
61, 062503 (2000) and earlier references therein

11.37 A. H. Wapstra, G. Audi: Nucl. Phys. A 432, 1 (1985)
11.38 A. Dalgarno, N. Lynn: Proc. Phys. Soc. (London) A

70, 802 (1957)
11.39 G. W. F. Drake: Adv. At. Mol. Opt. Phys. 31, 1 (1993)
11.40 G. W. F. Drake, S. P. Goldman: Can. J. Phys. 77, 835

(1999)
11.41 S. P. Goldman, G. W. F. Drake: Phys. Rev. Lett. 68,

1683 (1992)
11.42 G. W. F. Drake: Phys. Scr. T95, 22 (2001)
11.43 G. W. F. Drake, R. A. Swainson: Phys. Rev. A 41, 1243

(1990)
11.44 A. P. Stone: Proc. Phys. Soc. (London); 77, 786

(1961)
11.45 A. P. Stone: Proc. Phys. Soc. (London); 81, 868

(1963)
11.46 G. W. F. Drake: Phys. Rev. Lett. 74, 4791 (1995)
11.47 K. Pachucki: Phys. Rev. Lett. 84, 4561 (2000)
11.48 V. Korobov, A. Yelkhovsky: Phys. Rev. Lett. 87,

193003 (2001)
11.49 G. W. F. Drake, I. B. Khriplovich, A. I. Milstein,

A. S. Yelkhovsky: Phys. Rev. A 48, R15 (1993)
11.50 J. F. Babb, L. Spruch: Phys. Rev. A 38, 13 (1988)
11.51 C.-K. Au: Phys. Rev. A 39, 2789 (1989)
11.52 C.-K. Au, M. A. Mesa: Phys. Rev. A 41, 2848 (1990)

11.53 C. H. Storry, N. E. Rothery, E. A. Hessels: Phys.
Rev. Lett. 75, 3249 (1995) and earlier references
therein

11.54 G. W. F. Drake: Adv. At. Mol. Opt. Phys. 32, 93 (1994)
11.55 R. J. Drachman: Phys. Rev. A 47, 694 (1993)
11.56 G. W. F. Drake, R. A. Swainson: Phys. Rev. A 42, 1123

(1990)
11.57 E. A. Hessels: Phys. Rev. A 46, 5389 (1992)
11.58 G. W. F. Drake: Phys. Rev. A 45, 70 (1992)
11.59 G. W. F. Drake: Phys. Rev. A; J. Phys. B 5, 1979 (1972)
11.60 G. W. F. Drake: J. Phys. B 9, L169 (1976)
11.61 G. W. F. Drake: Phys. Rev. A 19, 1387 (1979)
11.62 C. J. Sansonetti, J. D. Gillaspy: Phys. Rev. A 45, R1

(1992)
11.63 W. Lichten, D. Shiner, Z.-X. Zhou: Phys. Rev. A 43,

1663 (1991)
11.64 M. C. George, L. D. Lombardi, E. A. Hessels: Phys.

Rev. Lett. 87, 173002 (2001)
11.65 G. W. F. Drake: Can. J. Phys. 80, 1195 (2002)
11.66 K. Panchucki, J. Sapirstein: J. Phys. B 36, 803 (2003)

and earlier references therein
11.67 L.-B. Wang, P. Müller, K. Bailey, G. W. F. Drake,

J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Jans-
sens, c. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo,
M. Paul, K. E. Rehm, J. P. Schiffer, X. D. Tang: Phys.
Rev. Lett. 93, 142501 (2004)

11.68 G. Ewald, W. Nörtershäuser, A. Dax, S. Göte,
R. Kirchner, H.J. Kluge, Th. Kühl, R. Sanchez, A. Wo-
jtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan,
C. Zimmermann: Phys. Rev. Lett. 93, 113002 (2004)

Part
B

1
1



221

Atomic Multip12. Atomic Multipoles

Often symmetries in the experiment limit
the number of nonvanishing multipoles, and
frequently only populations proportional to
diagonal elements of the density matrix are
significant. This chapter studies the physical and
geometrical significance of simple multipoles and
examines whether symmetries allow a complete
characterization of the ensemble with state
populations. More thorough treatments can be
found elsewhere [12.1].
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A typical atomic experiment involves the preparation
of an atomic or molecular ensemble, its perturbation
by a combination of collisions and external fields, and
the characterization of the perturbed system through de-
tection of emitted or scattered particles or quanta. The
ensemble can be described by its density matrix, whose
full specification generally requires elements between
every pair of states in a complete basis set, and whose
elements generally depend on spatial position, velocity,
and time. The time development of such an ensemble
may depend on interactions among the atoms of the en-
semble with each other, with external fields, and with
external perturbers. Most problems burdened by this
much detail are intractable, but fortunately, significant
simplifications can usually be made.

In this chapter, only ensembles of homogeneously
excited, independent atoms are considered. The spatial
and velocity distribution of the atoms is thus assumed
to be independent of the quantum-state distribution, and
the total density matrix can be factored into the prod-
uct of a phase-space distribution with a state density
matrix that is independent of position and velocity. The
assumption is severe and prevents us from treating cases
of radiation transfer (see Chapt. 19) where the degree of
excitation varies as a function of position or problems of
velocity-selective laser excitation. Nevertheless, many
experiments in atomic physics do use ensembles that
are well-described by our assumption, and even in more
complex cases, our model can often serve as a starting
point for analysis. Typical of the experiments for which

our approach is well suited are collisionally induced po-
larization relaxation experiments in a gas cell, either
of an excited state or of an optically pumped ground
state.

In addition, we shall for the most part focus on a few
isolated manifolds, usually a ground-state manifold and
one or two excited-state manifolds. Each manifold, we
assume, can be described by a given eigenvalue J of the
total angular momentum. The qualifier “isolated” means
that coherences between manifolds oscillate rapidly in
time compared to other processes and can be ignored.
These assumptions permit a great simplification and fre-
quently allow a decoupling of the equations of motion, as
shown below. The density matrix within each state mani-
fold can be described by multipole moments, which are
coefficients of the expansion of the density matrix in irre-
ducible tensor operators, as described in Chapt. 7. Each
state multipole is associated with a physical electric or
magnetic moment in the atom.

The amount of information which can be im-
parted to, or obtained from, an atomic ensemble is
limited by the finite number of accessible multipole mo-
ments.The nature of that information may depend on
the time evolution of the multipoles in external fields
and their relaxation through collisions. The ideal ex-
periment is a complete measurement that determines
all the multipoles. Often over-complete experiments can
be designed, but there is little reason for determining
redundant information unless consistency checks are
important.
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12.1 Polarization and Multipoles

An ensemble is said to be polarized if there is a non-
statistical distribution of atoms in magnetic sublevels.
The type of polarization can be described by the multi-
poles that exist. In many experiments, symmetries in
the preparation or detection of the ensemble limit
the detectable polarizations to ones caused by differ-
ent sublevel populations. One can then employ the
relatively simple population (or diagonal) representa-
tion. The more general case is discussed in the next
section.

As an introduction to the concepts, consider an
atomic manifold of total angular momentum 3/2, for
example an excited alkali P3/2 state. There are four mag-
netic sublevels |m〉 with m =±3/2, ±1/2 so that state
populations are given by a four-dimensional population–
density vector

N =

⎛

⎜⎜⎜
⎝

N3/2

N1/2

N−1/2

N−3/2

⎞

⎟⎟⎟
⎠
, (12.1)

where Nm is the density of atoms in state |m〉. If there
are no external fields, the time evolution of N is given
by

Ṅ = S−ΓN −γ · N , (12.2)

where S is the source vector and gives the excitation
rate to the various sublevels, Γ is the radiative decay
rate, assumed the same for all levels, and γ is the colli-
sional matrix, whose elements−γmn give the collisional
transition rate from n to m.

The equation of motion is most easily solved if
the basis used for the state space exploits the sym-
metry. Define the “spherical” orthonormal basis of
vectors

T̂0 = 1

2

⎛

⎜⎜⎜
⎝

1

1

1

1

⎞

⎟⎟⎟
⎠
, T̂1 = 1√

20

⎛

⎜⎜⎜
⎝

3

1

−1

−3

⎞

⎟⎟⎟
⎠
, (12.3)

T̂2 = 1

2

⎛

⎜⎜⎜
⎝

1

−1

−1

1

⎞

⎟⎟⎟
⎠
, T̂3 = 1√

20

⎛

⎜⎜⎜
⎝

1

−3

3

−1

⎞

⎟⎟⎟
⎠
. (12.4)

(These relations follow from the TLM with M = 0. See
Sects. 12.2 and 12.3). The population vector N can be
expanded

N =
4∑

L=0

nL T̂L , (12.5)

where the coefficients nL = N · T̂L contain all the
knowable information about the population distribu-
tion. The coefficient nL is called the 2L multipole
moment of the ensemble. In particular, n0 = 1

2

∑
m Nm

is twice the population of the entire ensemble; n1 =
5−1/2 ∑

m mNm = 2n0 〈Jz〉 /
√

5 is the “orientation” (as-
sociated with a physical magnetic-dipole moment) of the
system, n2 = 1

3 n0
〈
3J2

z − J2
〉
is the “alignment” (electric

quadrupole moment), and n3 = (2n0/
√

45)〈Jz(5Jz +
1−3J2)〉 is the octupole moment of N. The source
vector S is readily expanded in the same basis.

If the collisions are isotropic, as is usually ap-
proximately the case in gas-cell experiments, then the
collision matrix γ is invariant under rotations and

γ · T̂L = γL T̂L . (12.6)

The equation of motion (12.2) is separated into four
uncoupled scalar equations:

ṅL = SL −ΓnL −γL nL . (12.7)

If the source term SL = S · T̂L is constant, (12.7) have
the simple solutions

nL (t)= nL (∞)
+ [nL (0)−nL (∞)] exp [− (Γ +γL) t] ,

(12.8)

with the steady-state value

nL (∞)= SL/ (Γ +γL ) . (12.9)

The detection of such multipoles is discussed at the end
of Sect. 12.4.

12.2 The Density Matrix in Liouville Space

If in the example of the last section the state basis is
changed, say by rotating the axis of quantization, then
populations are generally no longer sufficient to char-
acterize the ensemble. In the new basis, the ensemble

will have been prepared in a coherent superposition of
states. An adequate description for the quantum state of
an ensemble in a manifold of n quantum states requires
an n × n density matrix ρ(t) as discussed in Chapt. 7.
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Atomic Multipoles 12.2 The Density Matrix in Liouville Space 223

The density matrix may be considered a vector in
a space, called Liouville space, of n2 dimensions. A con-
venient set of complex orthonormal basis vectors in
this space is given by the irreducible tensor operators
TLM:

T∗
LM · TL ′M′ := Tr

{
T†LMTL ′M′

}
= δLL′δMM′ ,

(12.10)

where the trace (Tr) expression is appropriate for the
usual n × n matrix representations of the TLM. Every
quantum operator on the manifold can be expanded in
the basis

{
TLM

}
, and in particular the density matrix

has an expansion

ρ (t)=
∑

LM
ρLM (t) TLM , (12.11)

with time-dependent coefficients

ρLM (t)= T∗
LM ·ρ (t) := Tr

[
T†LMρ (t)

]

= N
〈
T†LM

〉
(12.12)

that are identified with the multipole moments of the
ensemble. Here, 〈· · · 〉 indicates the average value over
the ensemble and N = Tr{ρ} is the normalization of the
density matrix ρ, which is often set equal to unity but
is sometimes more conveniently set equal to the total
density of atoms in the manifold.

The TLM are defined to transform under rotations
as spherical harmonics YLM [12.2, 3]. The expansion
(12.11) splits the density matrix into basis vectors
TLM which contain the geometric information and
scalar coefficients (the multipole moments) ρLM(t)
which contain the physical information about state
distributions.

The time dependence of ρ(t) is given by the
Schrödinger equation and in the interaction picture takes
the form

i�ρ̇ = [V, ρ] , (12.13)

where V is the interaction due to external fields (in-
cluding radiation) and collisions. When V is expanded
and second-order perturbation theory is applied, the time
evolution (12.13) can be expressed in a form analogous
to (12.2) but with an extra term [12.1]:

ρ = S−Γ ·ρ−γ ·ρ− iL0 ·ρ , (12.14)

where L0 is the Liouville operator arising from the inter-
action V0 with slowly varying external fields. Its matrix

elements with ρ are

(L0 ·ρ)mn = �
−1 [V0, ρ]mn = (ωm −ωn) ρmn ,

(12.15)

whereωm −ωn are the field-induced frequency splittings
between the states.

For example, in a weak magnetic field B0 ẑ oriented
along the quantization axis ẑ, V0 = ω0 Jz where ω0 =
g jµB B0/�. Since

[
Jz, TLM

]= M�TLM (see Chapt. 7),
then assuming that the collisions are isotropic and that
the radiative decay rate is the same for all states of the
manifold, the expansion of ρ in TLM decouples the
equation of motion (12.14) into multipoles:

ρ̇LM = SLM−ΓρLM−γLρLM− iMω0ρLM ,

(12.16)

with the solution

ρLM (t)= ρLM (∞)+ [
ρLM (0)−ρLM (∞)]

× exp [− (Γ +γL + iMω0) t] (12.17)

comprising a transient part that decays as it precesses at
the angular rate ω0 plus a steady-state part that predicts
the collisionally broadened Hanle effect (see Chapt. 17):

ρLM (∞)= SLM
Γ +γL + iMω0

. (12.18)

If M = 0, the solutions reduce to the field-independent
ones given in (12.9). On the other hand, any stray
field that is not aligned with an induced multipole
moment can rotate the moment and possibly cause
systematic measurement errors if not taken into ac-
count. Measurements of γL in a gas cell at temperature
T are frequently used to determine thermally aver-
aged multipole-relaxation cross sections QL , defined
by

γL = N v̄QL , (12.19)

where N is the density of perturbers, and the mean
relative velocity is v̄= 2π−1/2 (2kT/µ)1/2, with µ the
reduced mass of the polarized-atom/perturber system.
Many semiclassical and full quantum calculations of
such cross sections have been made, both for atoms
[12.1, 4] and for molecules [12.5].
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12.3 Diagonal Representation: State Populations

An ensemble is said to be in a coherent state when
one or more of the off-diagonal elements of the density
matrix do not vanish. In a manifold of angular momen-
tum substates of a single total angular momentum j,
the ensemble has coherence if and only if it is not axi-
ally symmetric, that is, if and only if [ρ, Jz] �= 0. In an
ensemble lacking coherence, or one in which any coher-
ence that is present does not affect the observation, only

the N = 2 j+1 diagonal elements of the N × N density
matrix, those that represent state populations, need be
considered. In terms of multipoles, only the N elements
ρL0 then play a role; the ρLM elements with M �= 0
can be safely ignored. Such a diagonal representation is
valid whenever (1) the time evolution of the system is
axially symmetric and (2) either the preparation of the
system or its detection is axially symmetric.

12.4 Interaction with Light

A polarized system can be prepared in a variety of ways,
including beam splitting in external fields, collisional
excitation (including beam-foil excitation of fast beams),
or radiative excitation with directed and/or polarized
light. Several options for the detection of multipoles
also exist, including the measurement of the anisotropy
and/or polarization of scattered particles or photons. In
this section, the interaction of the atomic ensemble with
dipole radiation is considered.

It is convenient to define a detection operator for
electric dipole radiation of polarization ε̂ by

Dλ
(
ε̂
)=

∑

µ

ε̂ ·d |λµ〉 〈λµ| d · ε̂∗ (12.20)

for decay to the state λ. Here, d =∑
k erk is the dipole-

moment operator of the atom and µ is a magnetic
sublevel of λ. The detection operator is a vector in
Liouville space and can be expanded in irreducible
tensor operators according to

Dλ
(
ε̂
)=

∑

LM
DλLM

(
ε̂
)

TLM , (12.21)

where

DλLM
(
ε̂
)= T∗

LM · Dλ
(
ε̂
)

= BL (λ)ΦLM
(
ε̂
)
, (12.22)

with the dynamics contained in

BL (λ)= (−1)λ+L+ j+1
∣∣d jλ

∣∣2
{

1 L 1

j λ j

}

,

(12.23)

and the angular dependence in

ΦLM
(
ε̂
)= (2L+1)1/2

∑

rs

ε̂ · r̂
(
ε̂ · ŝ

)∗

× (−1)1−s

(
1 L 1

r λ −s

)

. (12.24)

Here, r̂ and ŝ range over the unit spherical tensors of
rank one, namely ±1̂ =∓ (

x̂± iŷ
)
/
√

2 and 0̂ = ẑ (see
also Omont [12.6], who gives tables of ΦLM), and d jλ
is a reduced matrix element of d.

The intensity of radiation of polarization ε̂′ emit-
ted by an excited ensemble of atoms with state
density matrix ρ in its radiative decay to level λ
is

ρ∗·Dλ
(
ε̂′
)=

∑

m,n,µ

〈λµ| d · ε̂′∗ |m〉 ρmn 〈n| d · ε̂′ |λµ〉

=
∑

LM
ρLMDλLM , (12.25)

and by selection of polarization or spatial distribu-
tion, individual multipole components DλLM and hence
ρLM can be determined. The source terms SLM ex-
cited by electric-dipole radiation from an isotropic
ground state are given by a linear combination of
DλLM:

SLM = (2π)2
∑

λ,ε̂

uε̂ (λ) DλLM
(
ε̂
)
, (12.26)

where uε̂(λ) is the energy density of exciting ra-
diation with polarization vector ε̂ per unit energy.
From the 3− j symbol in (12.24), only the L = 0, 1,
and 2 components of ρ are observable unless the
splitting of the Zeeman sublevels of λ are spec-
troscopically resolved. Similarly, if the ground state
is unpolarized and its Zeeman sublevels unresolved,
then only L = 0, 1, and 2 components of ρ can
be excited. To excite higher-order multipoles, the
ground state can be polarized by optical pump-
ing [12.7].

As an example, consider the axially symmetric sys-
tem discussed in Sect. 12.1 with j = 3/2 in the excited
state and λ= 1/2 in the ground state. Only the four
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diagonal elements of D(ε̂′),

Dm
(
ε̂′
)=

∑

µ

∣∣〈 jm
∣∣ε̂′ ·d

∣∣ λµ
〉∣∣2

= ∣∣d jλ
∣∣2
∑

µr

∣∣ε̂′ · r̂
∣∣2
(
λ 1 j

−µ r m

)2

,

are needed for the 2 j+1 values of m =− j, . . . , j,
where µ ranges over the 2λ+1 values from −λ to λ
and r =±1, 0. One finds directly

D
(
ε̂′
)=

∣∣d jλ
∣∣2

12

⎡

⎢⎢⎢
⎣

∣∣∣ε̂′ ·−1̂
∣∣∣
2

⎛

⎜⎜⎜
⎝

3

1

0

0

⎞

⎟⎟⎟
⎠
+
∣∣∣ε̂′ · 0̂

∣∣∣
2

⎛

⎜⎜⎜
⎝

0

2

2

0

⎞

⎟⎟⎟
⎠

+
∣∣∣ε̂′ · 1̂

∣∣∣
2

⎛

⎜⎜⎜
⎝

0

0

1

3

⎞

⎟⎟⎟
⎠

⎤

⎥⎥⎥
⎦
. (12.27)

The detected signal of polarization ε̂′ is proportional
to N · D(ε̂′), where N is the population–density vector
(12.1). Some of the state polarization can be monitored
by looking at polarized dipole radiation. If the emitted
light is observed as it propagates perpendicular to the
polarization vector, the intensities are given to within an
overall constant of proportionality by

Iσ± = D
(
±1̂

)
· N, Iπ = D

(
0̂
)

· N , (12.28)

Iσ = D
(
ξ̂
)

· N = 1

2
(Iσ++ Iσ−) , (12.29)

where ξ̂ is any real unit vector (linear polarization vector)
in the xy-plane. The intensities of polarized radiation
may also be given in terms of Stokes parameters [12.8]
(see also Chapt. 7). By expanding N in the spherical
basis vectors TL as in (12.5), one obtains a detected

signal

N · D
(
ε̂′
)=

2 j+1∑

L=0

nL DλL0 (12.30)

=
∣∣d jλ

∣∣2

12

[
2n0

+ √
5

(∣∣∣ε̂′ · 1̂
∣∣∣
2−

∣∣∣ε̂′ ·−1̂
∣∣∣
2
)

n1

+
(

3
∣
∣∣ε̂′ · 0̂

∣
∣∣
2−1

)
n2

]
. (12.31)

Thus there is no way to monitor the octupole polarization
n3 from the dipole radiation since DλLM = 0 for L > 2.
To monitor the orientation n1, the circular polarization
must be measured√

5

3

n1

n0
= Iσ+− Iσ−

2Iσ + Iπ
, (12.32)

since the coefficient DλL0 vanishes for any linear polar-
ization. Conversely, from

n2

2n0
= Iσ − Iπ

2Iσ + Iπ
, (12.33)

alignment is given by linear polarization. However, the
denominator in both cases is different from that com-
mon in polarization measurements, and indeed, the ratio
(Iσ+− Iσ−)/(Iσ++ Iσ−) is not proportional to the ori-
entation but contains a contribution from the alignment,
and (Iσ − Iπ)/(Iσ + Iπ) is not linear in the alignment.
The expressions for other total angular momenta j are
the same except for the numerical coefficients on the
LHS of (12.32) and (12.33). Finally, if the desire is to
measure the total excited-state population n0 without
any polarization component (which might rotate in stray
external fields), one can choose linear polarization at an
angle to make Dλ20 disappear, namely at the “magic an-
gle” θ = arccos 3−1/2 = 54.74 degrees. Of course, the
same angle may be chosen to excite an unpolarized
population.

12.5 Extensions

Although the discussion here has focused on cell experi-
ments in which collisional perturbations are isotropic
and state manifolds with a given total angular momen-
tum j are well isolated, the concept of state multipoles
is also useful in many applications where the collision

symmetry is lower and where states with different j
values interact, possibly due to the presence of fine
and hyperfine structure [12.1]. Applications have been
made in electron–atom collisions (Chapt. 7), atom–atom
collisions [12.9], and atom–molecule collisions [12.5].
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Atoms in Stro13. Atoms in Strong Fields

Interest in the effect that electric and magnetic
fields have on the internal structure of atoms is
as old as quantum mechanics itself. In practical
terms, an atom’s spectrum acts as its signature,
and so it is important to understand how elec-
tric and magnetic fields alter this characteristic. In
this chapter, a summary of the basic nonrelativis-
tic and relativistic theory of electrons and atoms
in external magnetic fields is given. Extensions to
the case of very strong fields are then introduced
for both types of fields.
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13.1 Electron in a Uniform Magnetic Field

13.1.1 Nonrelativistic Theory

The nonrelativistic Hamiltonian (in Gaussian units) for
an electron in an external field A is [13.1]

H = 1

2m

(
p− e

c
A
)2

−µ · B+ eV , (13.1)

where A is the vector potential and V is the scalar po-
tential. The second term in (13.1) must be included to
account for the interaction of the electron magnetic mo-
ment with an external magnetic field. The potentials A
and V are only defined to within a gauge transforma-
tion [13.2]:

A′ = A+∇ f , V ′ = V − 1

c

∂ f

∂t
. (13.2)

We choose the gauge∇ · A= 0 in which the momentum
operator p = i�∇ and vector potential A commute. B is
a constant uniform magnetic field with vector potential

A= 1

2
B× r . (13.3)

µ is the magnetic moment of the electron:

µ= 1

2
geµBσ , (13.4)

where the σi are the Pauli spin matrices, µB = e�/2mec
is the Bohr magneton and ge is the electron g-factor
which accounts for the anomalous magnetic moment of
the electron (see Sect. 27.4).

Consider now the case of a free electron in a constant
uniform field in the z-direction with no scalar potential,
i. e., V = 0 in (13.1). This case also describes an atom in
the limit of strong magnetic fields such that the Coulomb
interactions are negligible. In this case, which is different
from (13.3), we have

B= Bẑ with

{
Ax =−By

Ay = Ax = 0
. (13.5)

For this field, the operatorsµz , px and pz commute with
the Hamiltonian and are therefore conserved. Calling
their respective eigenvalues µz , px and pz , with −∞≤
px, py ≤∞, the eigenstates are written as

ψ = ei
(

px x+pz z
)
/�
ϕ(y) . (13.6)

Calling y0 =−cpx/eB, ϕ satisfies

− �
2

2m

d2

dy2
ϕ+ 1

2
mω2

B (y− y0)
2 ϕ

=
(

E+µz B− p2
z

2m

)
ϕ , (13.7)
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which is the Schrödinger equation for a one-
dimensional harmonic oscillator with angular frequency
ωB = |e|B/mc, the cyclotron frequency of the electron.
The solutions to (13.7) give the eigenstates for an elec-
tron in an external homogeneous magnetic field. They
are called Landau levels [13.1] with energies given
by

En =
(

n+ 1

2
+ms

)
�ωB+ p2

z

2m
, (13.8)

where �ms =±�/2 is the eigenvalue of the z-component
of the spin operator s, and eigenfunctions given
by

ϕn(y)= 1
√
π1/2aB2nn!

× exp

(

− (y− y0)
2

2a2
B

)

Hn

(
y− y0

aB

)
,

(13.9)

where aB =√
�/mωB and the Hn are Hermite polyno-

mials [13.3].

13.1.2 Relativistic Theory

The relativistic analog of (13.1) is given by the Dirac
Hamiltonian

HD = cα ·
(

p− e

c
A
)
+βmc2+ eV , (13.10)

where α and β are the 4 × 4 matrices defined by (9.61).
The eigenfunctions of the Dirac Hamiltonian (13.10) are
written as four-dimensional spinors:

ψD =

⎛

⎜⎜⎜
⎝

ψ(1)

ψ(2)

ψ(3)

ψ(4)

⎞

⎟⎟⎟
⎠
≡

⎛

⎜⎜⎜
⎝

φ1

φ−1

χ1

χ−1

⎞

⎟⎟⎟
⎠
≡
(
φ

χ

)

, (13.11)

where φ and χ are two-dimensional (Pauli) spinors and
φi andχi are functions of the coordinates of the electron.

In the case V = 0, the lower component χ can
be eliminated in the eigenvalue equation HDψ = Eψ

to obtain a Hamiltonian equation for φ only, sim-
ilar to (13.1) [13.4]. For a field defined by (13.5)
one writes φ in the form (as in the nonrelativistic
case)

φ = ei(px x+pz z)/� f(y) . (13.12)

Here, f(y) satisfies the equation

− �
2

2m

d2

dy2 ϕ+
1

2
mω2

B (y− y0)
2 ϕ

=
(

E2−m2c4

2mc2 +µz B− p2
z

2m

)
ϕ ,

(13.13)

which reduces to the nonrelativistic form (13.7) in the
limit E → mc2. In (13.13), the term involving µ is not
included arbitrarily as in (13.1) but is a consequence
of HDφ, which predicts the value g = 2. The value ge
used in (13.4) includes radiative corrections to the Dirac
value.

From (13.13) we obtain

E2
n = 2mc2

[
mc2

2
+
(

n+ 1

2
+ms

)
�ωB+ p2

z

2m

]
,

(13.14)

and the eigenfunctions ψD
ms

are

ψD
1/2 = N

⎛

⎜⎜⎜⎜⎜⎜
⎝

E+mc2

c
ψn

0

pz ψn

− i�

aB

√
2nψn−1

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

ψD−1/2 = N

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

0
E+mc2

c
ψn

i�

aB

√
2(n+1)ψn+1

−pz ψn

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, (13.15)

where ψn is defined as in (13.6) and (13.9), and N is
a normalization constant.

13.2 Atoms in Uniform Magnetic Fields

13.2.1 Anomalous Zeeman Effect

Consider now the nonrelativistic Hamiltonian for a one-
electron atom in the presence of an external magnetic
field B. The one-electron Hamiltonian can be written

as [13.5]

H = 1

2m
p2− 1

4πε0

Ze2

r
+ ξ(r)L · S

+ µB

�
(L+ geS) · B+ e2

8mc2
(B× r)2 , (13.16)

Part
B

1
3
.2



Atoms in Strong Fields 13.2 Atoms in Uniform Magnetic Fields 229

where

ξ(r)= 1

2m2c2

Ze2

4πε0

1

r3
. (13.17)

The anomalous Zeeman effect corresponds to the
case of weak magnetic fields such that the magnetic
interaction is small compared with the L · S spin-orbit
term. The energy shifts are obtained from a pertur-
bation of (13.16) with B= 0. The unperturbed wave
functions are eigenfunctions of L2, S2, J2 and Jz , with
J = L+ S, but are not eigenfunctions of Lz or Sz . The
energy levels with given values of l, s and j split in
the presence of a field defined by (13.5) according
to

∆Em j = gµB Bmj , (13.18)

where g is the Landé splitting factor given by

g = gl
j( j+1)− s(s+1)+ l(l+1)

2 j( j+1)

+ ge
j( j+1)+ s(s+1)− l(l+1)

2 j( j+1)
, (13.19)

where ge is defined by (13.4), and gl = 1−me/M to
lowest order in me/M, where me is the electron mass
and M is the nuclear mass. To a first approximation, it
is often sufficient to take ge = 2 (the Dirac value) and
gl = 1. In the case of a many-electron atom, j, l and s
are replaced by the total angular momenta J , L and S. In
the one-electron case (neglecting corrections to gl or ge)
the g-value is simply

g ≈ j+ 1
2

l+ 1
2

, (13.20)

which shows that the splitting of the j = l+ 1
2 levels

is larger than that of the j = l− 1
2 levels. The selec-

tion rules for the splitting of spectral lines are δmj = 0
for components polarized parallel to the field (π com-
ponents), and δmj =±1 for those perpendicular to the
field (σ components).

13.2.2 Normal Zeeman Effect

For moderately strong fields up to B ∼ 104 T, the quad-
ratic (B× r )2 term in (13.16) can be neglected. If the
spin-orbit interaction term is also neglected, then the en-
ergies relative to the field-free eigenvalues En are given
by

En(B)= En +µB B(ml +2ms) . (13.21)

The selection rules for transitions are ∆ms = 0 and
∆ml = 0,±1. The transition energy of a spectral line
is split into three components, the Lorentz triplet

∆En =∆En,0+ (∆ml)�ωL , (13.22)

where ∆En,0 is the transition energy in the absence
of a field, and ωL = |e|B/2m is the Larmor frequency.
Transitions with ∆ml = 0 produce the π line at the
unshifted transition energy; transitions with ∆ml =±1
produce the shifted σ lines. Lorentz triplets can be ob-
served in many-electron atoms in which the total spin is
zero.

13.2.3 Paschen–Back Effect

We add now to the results of the last section the first-
order perturbation caused by the spin-orbit term. The
calculation can be performed in closed form for hydro-
genic atoms, for which the contribution to the energy of
the level n is [13.6]

∆En = 0 , for l = 0

∆En = α
4 Z4µc2

2n3 ml ms

×

[
l

(
l+ 1

2

)
(l+1)

]
, for l �= 0

(13.23)

where µ is the reduced mass, µ = mM/(m+M).
A general expression of the relativistic solution for the
Paschen–Back effect can be written for the one-electron
case in the Pauli approximation in which the eigenstates
are given in terms of φ in (13.11). Call φ0± the eigenfunc-
tions with no external field corresponding to j = l± 1

2
with unperturbed energies E0± respectively. In terms of
the dimensionless variables

η= µB B

E+− E−
, ε =

√

1+η 4mj

2l+1
+η2 ,

γ = 1

ε

(
1+η 4mj

2l+1

)
, (13.24)

the energies E± and wave functions φ± of the states, in
the presence of the field B, are

E± = E0+
2
(1± ε+2mjη)+ E0−

2
(1∓ ε−2mjη)

(13.25)

and

φ± = ±
√

1±γ
2

φ0++
√

1∓γ
2

φ0− . (13.26)
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13.3 Atoms in Very Strong Magnetic Fields

The case of very strong magnetic fields (i. e., B> 104 T),
such as those encountered at the surface of neutron stars,
is also called the quadratic Zeeman effect, as the last
term in (13.16) is dominant. In this range, perturbation
calculations fail to yield good results as the field is too
large, and even at fields of the order B ∼ 107 T the
Landau high B approximation of (13.8) and (13.9) is
not adequate.

Very accurate calculations have been performed us-
ing variational finite basis set techniques for both the
relativistic Dirac and nonrelativistic Schrödinger Hamil-
tonians. The calculations use the following relativistic
basis set [13.7] that includes nuclear size effects (R is
the nuclear size) and contains both asymptotic limits,
the Coulomb limit for B = 0 and the Landau limit for
B →∞:

ψ
(k,ν)
nl =

{
rqk−1+2ne−a(k)nν r2−βρ2

Ωk r ≤ R

b(k)nν rγν−1+ne−λr−βρ2
Ωk r > R

(13.27)

with

Ωk = (cos θ)l−|mk|(sin θ)|mk|eimkφωk , (13.28)

where

n = 0, 1, . . . , Nr , k = 1, 2, 3, 4, ν = 1, 2, 3, 4 ,

q1 = q2 = k0, q3 = q4 = k′0 ,
mk = µ−σk/2, σ1 = σ3 = 1, σ2 = σ4 =−1 .

Here, k refers to the component ψ(k) in (13.11), and λ
and β are variational parameters. The power of r at the
origin is given by

k0 =
{
|κ| if κ < 0

|κ|+1 if κ > 0 ,
(13.29)

k
′
0 =

{
|κ|+1 if κ < 0

|κ| if κ > 0 ,
(13.30)

The index ν refers to the two regular and two irregular
solutions for r> R that match the corresponding powers
at the origin k0 and k′0.

γ1 = γ0, γ2 = γ0+1, γ3 =−γ0, γ4 =−γ0+1 ,

(13.31)

γ0 =
√
κ2− (αZ)2 , κ =∓

(
ν± 1

2

)
+ 1

2
,

(13.32)

ω1 =
(
ϑ1

0

)

, ω2 =
(
ϑ−1

0

)

,

ω3 =
(

0

iϑ−1

)

, ω4 =
(

0

iϑ−1

)

, (13.33)

where ϑk is a two-component Pauli spinor: σzϑk = kϑi .
For even (odd) parity states, the value of l for the large
components (k = 1, 2) is an even (odd) number greater
than or equal to |mk| up to 2Nθ (for even parity) or
2Nθ +1 (for odd parity), while for the small compo-
nents (k = 3, 4) it is an odd (even) number greater than
or equal to |mk| up to 2Nθ +1 (for even parity) or 2Nθ
(for odd parity), since the small component has a dif-
ferent nonrelativistic parity than the large component.
The coefficients a(k)nν and b(k)nν are determined by the
continuity condition of the basis functions and their first
derivatives at R. For a point nucleus, the section r ≤ R
is omitted; for a nonrelativistic calculation, take α = 0
in the basis set.

Table 13.1 presents relativistic (Dirac) energies for
the ground state of one-electron atoms. Values for a point
nucleus and finite nuclear size corrections are given.
Table 13.2 presents the relativistic energies for n = 2

Table 13.1 Relativistic ground state binding energy
−Egs/Z2 and finite nuclear size correction δEnuc/Z2 (in
a.u.) of hydrogenic atoms for various magnetic fields B (in
units of 2.35 × 105 T). δEnuc should be added to Egs

Z B −Egs/Z2 δEnuc/Z2

1 0 0.500 006 656 597 483 75 1.557 86 × 10−10

1 10−5 0.500 011 656 4837 1.5579 × 10−10

1 10−2 0.504 981 572 360 1.5580 × 10−10

1 10−1 0.547 532 408 3429 1.5718 × 10−10

1 2 1.022 218 0290 3.23 × 10−10

1 10 1.747 800 68 1.182 × 10−9

1 20 2.215 400 91 2.360 × 10−9

1 200 4.727 1233 3.032 × 10−8

1 500 6.257 0326 8.778 × 10−8

20 0 0.502 691 308 407 5098 1.3372 × 10−6

20 1 0.503 930 867 05 1.34 × 10−6

20 10 0.514 950 248 1.3 × 10−6

20 100 0.612 377 94 1.4 × 10−6

40 0 0.511 129 686 143 1.1878 × 10−5

92 0 0.574 338 140 7377 8.4155 × 10−4

92 1 0.574 386 987 8.4155 × 10−4
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Table 13.2 Relativistic binding energy −E2S,−1/2 for the
2S1/2

(
mj =− 1

2

)
and −E2P,−1/2 for the 2P1/2

(
m j =− 1

2

)

excited states of hydrogen (in a.u.) in an intense magnetic
field B (in units of 2.35 × 105 T)

B −E2S,−1/2 −E2P,−1/2

10−6 0.125 002 580 164 0.125 002 283 074

10−5 0.125 006 104 950

10−4 0.125 052 044 95 0.125 050 967 92

10−3 0.125 499 4694

10−2 0.129 653 6428 0.129 851 3642

0.05 0.142 018 956

0.1 0.148 091 7386 0.162 411 0524

0.2 0.148 989 58

0.5 0.150 810 15

1 0.160 471 07 0.260 009 34

10 0.208 955 91 0.382 663 18

100 0.256 191 0.463 6641

excited states of hydrogen with the (negligible) finite
nuclear size correction included.

Table 13.3 Relativistic corrections δE = (E− ENR)/|ER|
to the nonrelativistic energies ENR for the ground state and
n = 2 excited states of hydrogen in an intense magnetic field
B (in units of 2.35 × 105 T). The numbers in brackets denote
powers of 10

B δEgs B δE2S,−1/2 δE2P,−1/2

0.1 −1.08[−5] 1[−6] −1.66[−5] −1.43[−5]
1 −5.21[−6] 1[−4] −1.66[−5] −7.86[−6]
2 −4.03[−6] 1[−3] −7.72[−6]
3 −3.48[−6] 1[−2] −1.60[−5] −7.30[−6]

20 −1.09[−6] 0.05 −1.57[−5]
200 4.61[−6] 0.1 −1.74[−6] −6.00[−6]
500 8.81[−6] 1 −1.3[−5] −1.05[−5]

2000 1.85[−5] 10 −2.0[−5] −3.48[−5]
5000 2.78[−5] 100 −3.9[−5] −1.0[−4]

Table 13.3, which displays the relativistic correc-
tions of the energies of the previous two tables, presents
one of the most interesting relativistic results: the change
in sign of the relativistic correction of the energy of the
ground state at B ∼ 107 T.

13.4 Atoms in Electric Fields

13.4.1 Stark Ionization

An external electric field F introduces the perturbing
potential

V =−d · F , (13.34)

where

d =
∑

i

qiri (13.35)

is the dipole moment of the atom, and i runs over all
electrons in the atom. In the case of strong external
electric fields, bound states do not exist because the
atom ionizes. Consider a hydrogenic atom in a static
electric field

F = F ẑ . (13.36)

The total potential acting on the electron is then

Vtot(r)=− e2 Z

4πε0

1

r
+ eFz . (13.37)

Consider the z-dependence of this potential. Call ρ =√
x2+ y2 and v(z, ρ)= V(x, y, z). Unlike the Coulomb

case in which vCoul(±∞, ρ)= 0 resulting in an infinite

number of bound states, now v(±∞, ρ)=±∞ and v has
a local maximum. On the z axis, this maximum occurs
at zmax =−√Z|e|/(4πε0 F) for which v(zmax, 0)= 0.
There is then a potential barrier through which the elec-
tron can tunnel, i. e., there are no bound states any longer
but resonances. The potential barrier is shallower the
stronger the field; the well can contain a smaller number
of bound states and ionization occurs.

13.4.2 Linear Stark Effect

The electric field (13.36) produces a dipole potential

VF = eFz = eF r

√
4π

3
Y10(r̂) , (13.38)

which does not preserve parity. A first-order perturbation
calculation for the energy

E(1)n = 〈n |VF| n〉 (13.39)

yields null results unless the unperturbed states are
degenerate with states of opposite parity.

In the remainder of this chapter, atomic units will
be used. Final results for energies can be multiplied by
2R∞hc to translate to SI or other units. The calculation
can be carried out in detail for the case of hydrogenic
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atoms [13.8]. In this case it is convenient to work in
parabolic coordinates: ϕ denotes the usual angle in the
xy-plane, and

ξ = r+ z ,

η= r− z . (13.40)

The Hamiltonian for a hydrogenic atom with a field
VF = 1

2 F (ξ−η) from (13.38) is

(ξ+η)H = ξh+(ξ)+ηh−(η) . (13.41)

The wave function is written in the form

Ψ(ξ, η, ϕ)= 1√
2πZ

ψ+(ξ)ψ−(η)eimlϕ , (13.42)

with the ψ± satisfying

h±(x)ψ±(x)= Eψ±(x) , (13.43)

where x = ξ for ψ+ and x = η for ψ−, and

h±(x)=−2

x

d

dx

(
x

d

dx

)
− 2Z±

x
+ m2

l

2x2
∓ 1

2
Fx ,

(13.44)

with

Z = Z++ Z− . (13.45)

Using the notation

ε =√−2E ,

n± = Z±/ε− 1

2
(|ml|+1) ,

n = n++n−+|ml|+1 ,

n+, N− = 0, 1, . . . , n−|ml|+1 ,

|ml| = 0, 1, 2, . . . , n−1 ,

δn = n+−n− , (13.46)

where n is the principal quantum number, the unper-
turbed eigenfunctions are

ψ±(x)= ε n±! 1
2

(n±+|ml|)! 1
2

e−
1
2 εx (εx)

1
2 |ml | L(|ml |)

n± (εx) ,

(13.47)

where the L(a)b are generalized Laguerre polynomials
(Sect. 9.4.2). The zero-order eigenvalues are

Z(0)± =
(

n±+ ml +1

2

)
ε . (13.48)

The first-order perturbation yields

Z(1)± = ± 1

4

F

ε2

[
6n±(n±

+ml +1)+ml(ml +3)+2
]
. (13.49)

From these

ε = Z

n
− 3

2 F
(

n
Z

)2
δn

, (13.50)

and to first order in F,

E =−1

2
ε2 ≈ E(0)+ E(1) ,

E(0) =−1

2

Z2

n2
,

E(1) = 3

2

F

Z
n δn . (13.51)

13.4.3 Quadratic Stark Effect

A perturbation linear in the field F yields no contri-
bution to nondegenerate states (e.g., the ground state
n+ = n− =m = 0; n = 1). In this case, the lowest order
contribution comes from the quadratic Stark effect, the
contribution of order F2. The quadratic perturbation to
a level E(0)n caused by a general electric field F can be
written in terms of the symmetric tensor αn

ij as

E(2)n =−1

2
αn

ij Fi Fj , (13.52)

with

αn
ij =−2

∑

m
m �=n

〈n |di |m〉
〈
m
∣∣d j

∣∣ n
〉

En − Em
, (13.53)

where di is defined in (13.35).
For a field (13.36),

∆En =−1

2
αn F2 , (13.54)

where

αn ≡ αn
zz =−2e2

∑

m
m �=n

|〈n |z|m〉|2
En − Em

. (13.55)

In terms of (13.46), a general nonrelativistic expression
for the dipole polarizability of hydrogenic ions is [13.9]

αn = a3
0n4

8Z4

(
17n2−3 δ2

n −9m2
l +19

)
. (13.56)

For the ground state of hydrogenic atoms,

αn=1 = 9a3
0

2Z4 . (13.57)

Table 13.4 lists the relativistic values for the ground
state polarizabilityαn=1

rel , obtained by calculating (13.55)
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using relativistic variational basis sets [13.10]. The val-
ues are interpolated by

αn=1 = a3
0

Z4

[
9

2
− 14

3
(αZ)2+0.53983(αZ)4

]
.

(13.58)

13.4.4 Other Stark Corrections

Third Order Corrections
For the energy correction cubic in the external field
(13.36), one obtains [13.9]

E(3) = 3

32
F3

( n

Z

)7

× δn
(

23n2− δ2
n +11m2

l +39
)
. (13.59)

Relativistic Linear Stark-Shift
of the Fine Structure of Hydrogen

For a Stark effect small relative to the fine structure, the
degenerate levels corresponding to the same value of j
split according to

δm En j = 3

4

√

n2−
(

j+ 1

2

)2 nm

j( j+1)
F . (13.60)

Other Stark Corrections in Hydrogen
The expectation value of the delta function, is, in a.u.
[13.11],

2π〈1s|δ(r)|1s〉 = 2−31F2 . (13.61)

Table 13.4 Relativistic dipole polarizabilities for the
ground state of hydrogenic atoms

Z αn=1
rel Z4/

(
a3

0

)

1 4.499 7515

5 4.493 7883

10 4.475 1644

20 4.400 8376

30 4.277 5621

40 4.106 2474

50 3.888 1792

60 3.625 0295

70 3.318 8659

80 2.972 1524

90 2.587 7205

100 2.168 6483

For the Bethe logarithm β defined by

β1s =
∑

n |〈1s |p| n〉|2 (En − E1s) ln |En − E1s|
∑

n |〈1s |p| n〉|2 (En − E1s)
,

(13.62)

the result is [13.12]

β1s = 2.290 981 375 205 552 301

+0.316 205(6) F2 . (13.63)

These results are useful in calculating an asymptotic
expansion for the two-electron Bethe logarithm [13.13].

13.5 Recent Developments

The drastic change of an atom’s internal structure in
the presence of external electric and magnetic fields
is shown most clearly through the changes induced in
its spectral features. Of these features, avoided cross-
ings are a distinctive example. Recent work in this
area by Férez and Dehesa [13.14] has suggested the
use of Shannon’s information entropy [13.15], defined
by

S =−
∫
ρ(r) lnρ(r)dr , (13.64)

where ρ(r)= |ψ(r)|2, as an indicator or predictor of
such irregular features of atomic spectra. By studying
some excited states of hydrogen in parallel fields it was
shown that, for the states involved, a marked confine-
ment of the electron cloud and an information-theoretic

exchange occurs when the magnetic field strength is ad-
justed adiabatically through the region of an avoided
crossing. The field strengths studied are characteristic
of compact astronomical objects, such as white dwarfs
and neutron stars.

Although the effects of strong magnetic fields on
the structure and dynamics of hydrogen have been
known for some time, knowledge of the helium atom
in such fields has only recently become sufficient for
comparison with astrophysical observations [13.16–18].
As one example of their importance, such studies
have proven critical in showing the presence of he-
lium in the atmospheres of certain magnetic white
dwarfs [13.19].

In recent years, the increased sophistication and
resolution of observation techniques has not only in-
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creased the number of known astronomical objects, but
also motivated the study of the effects of strong fields
on heavier atoms [13.20].

Another interesting area of current research con-
cerns the relationship between quantum mechanics and
classically chaotic systems. For these studies, Rubid-
ium Rydberg atoms are an ideal system since laboratory

fields can easily push the atom to the strong-field
limit [13.21–23].

For a very useful review of various topics up to 1998
see [13.24]; a more concise review, concerning the elec-
tronic structure of atoms, molecules, and bulk matter,
including some properties of dense plasma, in strong
fields, is given in [13.25].
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Rydberg Atom14. Rydberg Atoms

Rydberg atoms are those in which the valence
electron is in a state of high principal quantum
number n. They are of historical interest since the
observation of Rydberg series helped in the initial
unraveling of atomic spectroscopy [14.1]. Since
the 1970s, these atoms have been studied mostly
for two reasons. First, Rydberg states are at the
border between bound states and the continuum,
and any process which can result in either excited
bound states or ions and free electrons usually
leads to the production of Rydberg states. Second,
the exaggerated properties of Rydberg atoms allow
experiments to be done which would be difficult
or impossible with normal atoms.
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14.1 Wave Functions and Quantum Defect Theory

Many of the properties of Rydberg atoms can be cal-
culated accurately using quantum defect theory, which
is easily understood by starting with the H atom [14.2].
We shall use atomic units, as discussed in Sect. 1.2. The
Schrödinger equation for the motion of the electron in
a H atom in spherical co-ordinates is

(
−1

2
∇2− 1

r

)
Ψ(r, θ, φ)= EΨ(r, θ, φ) , (14.1)

where E is the energy, r is the distance between the
electron and the proton, and θ and φ are the polar
and azimuthal angles of the electron’s position. Equa-
tion (14.1) can be separated, and its solution expressed
as the product

Ψ(r, θ, φ)= R(r)Ym(θ, φ) , (14.2)

where  and m are the orbital and azimuthal-orbital
angular momentum (i. e., magnetic) quantum numbers
and Ym(θ, φ) is a normalized spherical harmonic. R(r)
satisfies the radial equation

d2 R(r)

dr2 + 2dR(r)

r dr
+2ER(r)+ 2R(r)

r
= (+1)R

r2 ,

(14.3)

which has the two physically interesting solutions

R(r)= f(, E, r)

r
, (14.4)

R(r)= g(, E, r)

r
. (14.5)

The f and g functions are the regular and irregular
Coulomb functions which are the solutions to a variant
of (14.3). As r → 0 they have the forms [14.3]

f (, E, r)∝ r+1 , (14.6)

g(, E, r)∝ r− , (14.7)

irrespective of whether E is positive or negative. As
r →∞, for E > 0 the f and g functions are sine and
cosine waves, i. e., there is a phase shift of π/2 between
them. For E < 0 it is useful to introduce ν, defined by
E =−1/2ν2, and for E < 0 as r →∞

f = u(, ν, r) sinπν−v(, ν, r)eiπν , (14.8)

g =−u(, ν, r) cosπν+v(, ν, r)eiπ(ν+1/2) ,

(14.9)

where u and v are exponentially increasing and decreas-
ing functions of r. As r →∞, u →∞ and v→ 0.
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Requiring that the wave function be square inte-
grable means that as r → 0 only the f function is
allowed. Equation (14.8) shows that the r →∞ bound-
ary condition requires that sinπν be zero or ν an
integer n, leading to the hydrogenic Bohr formula for
the energies:

E =− 1

2n2
. (14.10)

The classical turning point of an s wave occurs at
r = 2n2, and the expectation values of positive pow-
ers of r reflect the location of the outer turning point,
i. e.,

〈
rk〉≈ n2k . (14.11)

The expectation values of negative powers of r are
determined by the properties of the wave function at
small r. The normalization constant of the radial wave
function scales as n−3/2, so that R(r) ∝ n−3/2r+1

for small r. Accordingly, the expectation values of
negative powers of r, except r−1, and any prop-
erties which depend on the small r part of the
wave function, scale as n−3. Using the properties
of the wave function and the energies, the n-
scaling of the properties of Rydberg atoms can be
determined.

The primary reason for introducing the Coulomb
waves instead of the more common Hermite poly-
nominal solution for the radial function is to set the
stage for single channel quantum defect theory, which
enables us to calculate the wave functions and prop-
erties of one valence electron atoms such as Na. The
simplest picture of an Na Rydberg atom is an elec-
tron orbiting a positively charged Na+ core consisting
of 10 electrons and a nucleus of charge +11. The
ten electrons are assumed to be frozen in place with
spherical symmetry about the nucleus, so their charge
cloud is not polarized by the outer valence electron,
although the valence electron can penetrate the ten-
electron cloud. When the electron penetrates the charge
cloud of the core electrons, it sees a potential well
deeper than −1/r due to the decreased shielding of the
+11 nuclear charge. For Na and other alkali atoms, we
assume that there is a radius rc such that for r < rc
the potential is deeper than −1/r, and for r > rc it
is equal to −1/r. As a result of the deeper potential
at r < rc, the radial wave function is pulled into the
core in Na, relative to H, as shown in Fig. 14.1. For
r ≥ rc, the potential is a Coulomb −1/r potential, and
R(r) is a solution of (14.3) which can be expressed

Hydrogen

Sodium

r

r

Fig. 14.1 Radial wave functions for H and Na showing that
the Na wave function is pulled in toward the ionic core

as

R(r)= [
f (, ν, r) cos τ− g(, ν, r) sin τ

]/
r ,
(14.12)

where τ is the radial phase shift.
Near the ionization limit, E ∼ 0, and as a result,

the kinetic energy of the Rydberg electron is greater
than 1/rc (∼ 10 eV) when r < rc. As a result, changes
in E of 0.10 eV, the n = 10 binding energy, do not
appreciably alter the phase shift τ, and we can as-
sume τ to be independent of E. The  dependence
of τ arises because the centrifugal (+1)/r term in
(14.3) excludes the Rydberg electron from the region
of the core in states of high . Applying the r →∞
boundary condition to the wave function of (14.12)
leads to the requirement that the coefficient of u vanish,
i. e.,

cos τ sin(πν)+ sin τ cos(πν)= 0 , (14.13)

which implies that sin(πν+ τ)= 0 or ν = n− τ/π.
Usually τ/π is written as δ and termed the quantum
defect, and the energies of members of the n series are
written as

E =− 1

2(n− δ)2 =− 1

2n∗2 , (14.14)

where n∗ = n−δ is often termed the effective quantum
number (see also Sect. 11.4.1).

Knowledge of the quantum defect δ of a se-
ries of  states determines their energies, and it is
a straightforward matter to calculate the Coulomb wave
function specified in (14.12) using a Numerov algo-
rithm [14.4, 5]. This procedure gives wave functions
valid for r ≥ rc, which can be used to calculate many
of the properties of Rydberg atoms with great accu-
racy. The effect of core penetration on the energies is
easily seen in the energy level diagram of Fig. 14.2.
The Na  ≥ 2 states have the same energies as hydro-
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Fig. 14.2 Energy levels of Na and H

gen, while the s and p states, with quantum defects of
1.35 and 0.85 respectively, lie far below the hydrogenic
energies.

Although it is impossible to discern in Fig. 14.2,
the Na  ≥ 2 states also lie below the hydrogenic
energies. For these states it is not core penetration,
but core polarization which is responsible for the
shift to lower energy. Contrary to our earlier as-
sumption that the outer electron does not affect the
inner electrons if r > rc, the outer electron polar-
izes the inner electron cloud even when r > rc, and
the energies of even the high  states fall below the
hydrogenic energies. The leading term in the polariza-
tion energy is due to the dipole polarizability of the
core, αd. For high  states it gives a quantum defect
of [14.6]

δ = 3αd

45
. (14.15)

Quantum defects due primarily to core polarization
rarely exceed 10−2, while those due to core penetration
are often greater than one.

14.2 Optical Excitation and Radiative Lifetimes

Optical excitation of the Rydberg states from the ground
state or any other low lying state is the continuation of
the photoionization cross section σPI below the ioniza-
tion limit. The photoionization cross section, discussed
more extensively in Chapt. 24, is approximately con-
stant at the limit. Above and below the limit the average
photoabsorption cross section is the same, as evidenced
by the fact that a discontinuity is not evident in an ab-
sorption spectrum, i. e., it is not possible to see where
the unresolved Rydberg states end and the continuum
begins. Nonetheless, below the limit the cross section
is structured by the ∆n spacing of 1/n3 between adja-
cent members of the Rydberg series. In any experiment,
there is a finite resolution ∆ω with which the Rydberg
states can be excited. It can arise, for example, from the
Doppler width or a laser linewidth. This resolution de-
termines the cross section σn for exciting the Rydberg
state of principal quantum number n. Explicitly, σn is
given by

σn = σPI

n3∆ω
. (14.16)

A typical value for σPI is 10−18 cm2. For a resolu-
tion ∆ω= 1 cm−1 (6 × 10−6 a.u.) the cross section for
exciting an n = 20 atom is 3 × 10−17 cm2.

From the wave functions of the Rydberg states,
we can also derive the n−3 dependence of the pho-
toexcitation cross section. The dipole matrix element
from the ground state to a Rydberg state only in-
volves the part of the Rydberg state wave function
near the core. At small r, the Rydberg wave func-
tion only depends on n through the n−3 normalization
factor, and as a result, the squared dipole matrix
element between the ground state and the Ryd-
berg state and the cross section both have an n−3

dependence.
Radiative decay, which is covered in Chapt. 17, is,

to some extent, the reverse of optical excitation. The
general expression for the spontaneous transition rate
from the n state to the n′′ state is the Einstein A
coefficient, given by [14.2]

An,n′′ = 4

3
µ2

n,n′′ω
3
n,n′′

α3g>
2gn +1

, (14.17)

Part
B

1
4
.2



238 Part B Atoms

whereµn,n′′ and ωn,n′,′ are the electric dipole matrix
elements and frequencies of the n→ n′′ transitions,
gn and gn′ are the degeneracies of the n and n′′ states,
and g> is the greater of gn and gn′ . The lifetime τn of
the n state is obtained by summing the decay rates to
all possible lower energy states. Explicitly,

1

τn
=
∑

n′′
An,n′′ . (14.18)

Due to the ω3 factor in (14.17), the highest frequency
transition usually contributes most heavily to the total
radiative decay rate, and the dominant decay is likely
to be the lowest lying state possible. For low- Rydberg
states, the lowest lying ′ states are bound by orders of
magnitude more than the Rydberg states, and the fre-
quency of the decay is nearly independent of n. Only the
squared dipole moment depends on n, as n−3, because
of the normalization of the Rydberg wave function at the
core. Consequently, for low- states,

τn ∝ n3 . (14.19)

As a typical example, the 10f state in H has a lifetime
of 1.08 µs [14.7].

The highest  states, with = n−1, have radiative
lifetimes with a completely different n dependence. The
only possible transitions are n → n−1, with frequency
1/n3. In this case the dipole moments reflect the large
size of both the n and n−1 states and have the n2 scaling
of the orbital radius. Using (14.17) for = n−1 leads
to

τn(n−1) ∝ n5 . (14.20)

Another useful lifetime, τn , is that corresponding to the
average decay rate of all ,m states of the same n. It
scales as n4.5 [14.2, 8].

Equation (14.17) describes spontaneous decay to
lower lying states driven by the vacuum. At room tem-
perature, 300 K, there are many thermal photons at the
frequencies of the n → n±1 transitions of Rydberg

states for n ≥ 10, and these photons drive transitions
to higher and lower states [14.9]. A convenient way of
describing blackbody radiation is in terms of the photon
occupation number n̄, given by

n̄ = 1

eω/kT −1
. (14.21)

The stimulated emission or absorption rate Kn,n′′ from
state n to state n′′ is given by

Kn,n′′ = 4

3
µn,n′′ω

3
n,n′′

α3n̄g>
2gn +1

. (14.22)

Summing these rates over n′ and ′ gives the total
blackbody decay rate 1/τbb

n . Explicitly,

1

τbb
n

=
∑

n′′
Kn,n′′ . (14.23)

The resulting lifetime τT
n at any given temperature is

given by

1

τT
n

= 1/τn+1/τbb
n . (14.24)

For low- states with 10< n < 20, blackbody radiation
produces a 10% decrease in the lifetimes, but for high-
states of the same n, it reduces the lifetimes by a factor of
ten. Since 1/τbb

n ∝ n−2, this term must dominate normal
spontaneous emission at high n.

The above discussion of spontaneous and stimu-
lated transitions is based on the implicit assumption
that the atoms are in free space. If the atoms are in
a cavity, which introduces structure into the blackbody
and vacuum fields, the transition rates are signifi-
cantly altered [14.10]. These alterations are described
in Chapt. 79. If the cavity is tuned to a resonance, it
increases the transition rate by the finesse of the cav-
ity (approximately the Q for low-order modes). On the
other hand, if the cavity is tuned between resonances,
the transition rate is suppressed by a similar factor.

14.3 Electric Fields

As a starting point, consider the H atom in a static electric
field E in the z-direction, and focus on the states of
principal quantum number n. The field couples  and
±1 states of the same m by the electric dipole matrix
elements. Since the states all have a common zero field
energy of −1/2n2, and the off-diagonal Hamiltonian
matrix elements are all proportional to E , the eigenstates

are field-independent linear combinations of the zero
field  states of the same m, and the energy shifts from
−1/2n2 are linear in E . In this first-order approximation,
the energies are given by [14.2]

E =− 1

2n2
+ 3

2
(n1−n2)nE , (14.25)
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Rydberg Atoms 14.3 Electric Fields 239

where n1 and n2 are parabolic quantum numbers (see
Sect. 9.1.2) which satisfy

n1+n2+|m|+1 = n . (14.26)

Consider the m = 0 states as an example. The n1−n2 =
n−1 state is shifted up in energy by 3

2 n(n−1)E and is
called the extreme blue Stark state, and the n2−n1 =
n−1 state is shifted down in energy by 3

2 n(n−1)E
and is called the extreme red Stark state. These two
states have large permanent dipole moments, and in the
red (blue) state the electron spends most of its time
on the downfield (upfield) side of the proton as shown
in Fig. 14.3, a plot of the potential along the z-axis.
We have here ignored the electric dipole couplings to
other n states, which introduce small second order Stark
shifts to lower energy. As implied by (14.26), states of
higher m have smaller shifts. In particular, the circular
m = = n−1 state has no first order shift since there
are no degenerate states to which it is coupled by the
field.

The Stark effect in other atoms is similar, but not
identical to that observed in H. This point is shown by
Fig. 14.4, a plot of the energies of the Na m = 0 levels
near n = 20. The energy levels are similar to those of H
in that most of the levels exhibit apparently linear Stark
shifts from the zero field energy of the high- states.
The differences, however, are twofold. First, the levels
from s and p states with nonzero quantum defects join
the manifold of Stark states at some nonzero field, given
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Fig. 14.4 Energies of Na m = 0 levels of n ≈ 20 as a function of electric field. The shaded region is above the classical
ionization limit
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Fig. 14.3 Combined Coulomb–Stark potential along the
z-axis when a field of 5 × 10−7 a.u. (2700 V/cm) is ap-
plied in the z-direction (solid). The extreme red state (R)
is near the saddlepoint, and the extreme blue (B) state
is held on the upfield side of the atom by an effec-
tive potential (dashed) roughly analogous to a centrifugal
potential
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approximately by [14.4]

E = 2δ′
3n5 , (14.27)

where δ′ is the magnitude of the difference between
δ and the nearest integer. Second, there are avoided
crossings between the blue n = 20 and red n = 21 Stark
states. In H these states would cross, but in Na they do
not because of the finite sized Na+ core, which also
leads to the nonzero quantum defects of the ns and np
states. This point, and other related points, are described
in Chapt. 15.

Field ionization is both intrinsically interesting
and of great practical importance for the detection of
Rydberg atoms [14.11]. The simplest picture of field
ionization can be understood with the help of Fig. 14.4.
The potential along the z-axis of an atom in a field E in
the z-direction is given by

V =−1

r
−Ez . (14.28)

If an atom has an energy E relative to the zero field limit,
it can ionize classically if the energy E lies above the sad-
dle point in the potential. The required field is given by

E = E2

4
. (14.29)

Ignoring the Stark shifts and using E =−1/2n2 yields
the expression

E = 1

16n4 . (14.30)

The H atom ionizes classically as described above,
or by quantum mechanical tunneling which occurs at
slightly lower fields. Since the tunneling rates increase
exponentially with field strength, typically an order of
magnitude for a 3% change in the field, specifying the
classical ionization field is a good approximation to the
field which gives an ionization rate of practical interest.
The red and blue states of H ionize at very different
fields, as shown by Fig. 14.5, a plot of the m = 0 Stark
states out to the fields at which the ionization rates are
106 s−1 [14.12]. First, note the crossing of the levels of
different n mentioned earlier. Second, note that the red
states ionize at lower fields than do the blue states, in
spite of the fact that they are lower in energy. In the
red states, the electron is close to the saddle point of the
potential of Fig. 14.3, and it ionizes according to (14.29).
If the Stark shift of the extreme red state to lower energy
is taken into account, (14.30) becomes

E = 1

9n4 . (14.31)

E (× 1000 cm–1)

–500

–1000

–1500
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Fig. 14.5 Energies of H m = 0 levels of n = 9, 10, and 11
as functions of electric field. The widths of the levels due
to ionization broaden exponentially with fields, and the
onset of the broadening indicated is at an ionization rate of
106 s−1. The broken line indicating the classical ionization
limit, E = E2/4 passes near the points at which the extreme
red states ionize

In the blue state the electron is held on the upfield side
of the atom by an effective potential roughly analogous
to a centrifugal potential, as shown by Fig. 14.3. At the
same field the blue state’s energy is lower relative to the
saddle point of its potential, shown by the broken line
of Fig. 14.3, than is the energy of the red state relative
to the saddle point of its potential, given by (14.28) and
shown by the solid line of Fig. 14.3. As shown by the
broken line of Fig. 14.5, the classical ionization limit of
(14.29) is simply a line connecting the ionization fields
of the extreme red Stark states. All other states are sta-
ble above the classical ionization limit. In the Na atom,
ionization of m = 0 states occurs in a qualitatively dif-
ferent fashion [14.12]. Due to the finite size of the Na+
core, there are avoided crossings between the blue and
red Stark states of different n, as is shown by Fig. 14.4.
In the region above the classical ionization limit, shown
by the shaded region of Fig. 14.4, the same coupling
between hydrogenically stable blue states and the de-
generate red continua leads to autoionization of the blue
states [14.13]. As a result, all states above the classi-
cal ionization limit ionize at experimentally significant
rates. In higher m states, the core coupling is smaller,
and the behavior is more similar to H.
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Field ionization is commonly used to detect Rydberg
atoms in a state selective manner. Experiments are most
often conducted at or near zero field, and afterwards the
field is increased in order to ionize the atoms. Exactly
how the atoms pass from the low field to the high ionizing
field is quite important. The passage can be adiabatic,
diabatic or anything in between. The selectivity is best
if the passage is purely adiabatic or purely diabatic, for
in these two cases unique paths are followed.

In zero field, optical excitation from a ground s state
leads only to final np states. In the presence of an elec-
tric field, all the Stark states are optically accessible,
because they all have some p character. The fact that
all the Stark states are optically accessible from the
ground state allows the population of arbitrary  states
of nonhydrogenic atoms by a technique called Stark
switching [14.6, 14]. In any atom other than H, the
 states are nondegenerate in zero field, and each of
them is adiabatically connected to one, and only one,
high field Stark state, as shown by Fig. 14.4. If one of
the Stark states is excited with a laser and the field re-
duced to zero adiabatically, the atoms are left in a single
zero field  state.

In zero field, the photoionization cross section is
structureless. However, in an electric field, it exhibits
obvious structure, sometimes termed strong field mix-
ing resonances. Specifically, when ground state s atoms
are exposed to light polarized parallel to the static field,
an oscillatory structure is observed in the cross section,
even above the zero field ionization limit [14.15]. The

origin of the structure can be understood with the aid
of a simple classical picture [14.16, 17]. The electrons
ejected in the downfield direction can simply leave the
atom, while the electrons ejected in the upfield direc-
tion are reflected back across the ionic core and also
leave the atom in the downfield direction. The wave
packets corresponding to these two classical trajecto-
ries are added, and they can interfere constructively or
destructively at the ionic core depending on the phase
accumulation of the reflected wave packet. Since the
phase depends on the energy, there is an oscillation in
the photoexcitation spectrum. This model suggests that
no oscillations should be observed for light polarized
perpendicular to the static field, and none are. The os-
cillations can also be thought of as arising from the
remnants of quasistable extreme blue Stark states which
have been shifted above the ionization limit, and, using
this approach or a WKB approach, one can show that the
spacing between the oscillations at the zero field limit is
∆E = E3/4 [14.18, 19].

The initial photoexcitation experiments were done
using narrow bandwidth lasers, so that the time de-
pendence of the classical pictures was not explicitly
observed. Using mode locked lasers it has been possible
to create a variety of Rydberg wave packets [14.20, 21]
and observe, in effect, the classical motion of an elec-
tron in an atom. Of particular interest, it has been
possible to directly observe the time delay of the ejec-
tion of electrons subsequent to excitation in an electric
field [14.22].

14.4 Magnetic Fields

To first order, the energy shift of a Rydberg atom due
to a magnetic field B (the Zeeman effect) is propor-
tional to the angular momentum of the atom. Since the
states optically accessible from the ground state have
low angular momenta, the energy shifts are the same as
those of low-lying atomic states. In contrast, the sec-
ond order diamagnetic energy shifts are proportional to
the area of the Rydberg electron’s orbit and scale as
B2n4 [14.23]. The diamagnetic interaction mixes the
 states, allowing all to be excited from the ground state,
and produces large shifts to higher energies. The energy
levels as a function of magnetic field are reminiscent
of the Stark energy levels shown in Fig. 14.5, differing
in that the energy shifts are quadratic in the magnetic
field.

One of the most striking phenomena in magnetic
fields is the existence of quasi-Landau resonances,

spaced by ∆E = 3�B/2, in the photoionization cross
section above the ionization limit [14.24]. The ori-
gin of this structure is similar to the origin of the
strong field mixing resonances observed in electric
fields. An electron ejected in the plane perpendicu-
lar to the B fields is launched into a circular orbit
and returns to the ionic core. The returning wave
packet can be in or out of phase with the one
leaving the ionic core, and thus, can interfere con-
structively or destructively with it. While the electron
motion in the xy-plane is bound, motion in the
z-direction is unaffected by the magnetic field and
is unbounded above the ionization limit, leading to
resonances of substantial width. The Coulomb poten-
tial does provide some binding in the z-direction and
allows the existence of quasistable three-dimensional
orbits [14.25].
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14.5 Microwave Fields

Strong microwave fields have been used to drive mul-
tiphoton transitions between Rydberg states and to
ionize them. Here we restrict our attention to ion-
ization. Ionization by both linearly and circularly
polarized fields has been explored with both H and other
atoms.

Hydrogen atoms have been studied with linearly po-
larized fields of frequencies up to 36 GHz [14.26]. When
the microwave frequencyω& 1/n3, ionization of m = 0
states occurs at a field of E = 1/9n4(E2/4), which is
the field at which the extreme red Stark state is ion-
ized by a static field. Due to the second-order Stark
effect, the blue and red shifted states are not quite mir-
ror images of each other, and when the microwave field
reverses, transitions between Stark states occur. There is
a rapid mixing of the Stark states of the same n and m by
a microwave field, and all of them are ionized at the same
microwave field amplitude, E = 1/9n4. Important points
are that no change in n occurs and the ionization field is
the same as the static field required for ionization of the
extreme red Stark state. As ω approaches 1/n3, the field
falls below 1/9n4 due to ∆n transitions to higher lying
states, allowing ionization at lower fields. This form of
ionization can be well described as the transition to the
classically chaotic regime [14.27]. Forω> 1/n3 the ion-
ization field is more or less constant, and for ω> 1/2n2

the process becomes photoionization.
The ionization of nonhydrogenic atoms by linearly

polarized fields has also been investigated at frequen-
cies of up to 30 GHz, but the result is very different
from the hydrogenic result. For ω& 1/n3 and low m,
ionization occurs at a field of E ≈ 1/3n5 [14.28]. This
is the field at which the m = 0 extreme blue and
red Stark states of principal quantum number n and
n+1 have their avoided crossing. For n = 20 this field
is ≈ 500 V/cm, as shown by Fig. 14.4. How ioniza-
tion occurs can be understood with a simple model
based on a time-varying electric field. As the mi-
crowave field oscillates in time, atoms follow the Stark
states of Na shown in Fig. 14.4. Even with very small
field amplitudes, transitions between the Stark states
of the same n are quite rapid because of the zero
field avoided crossings. If the field reaches 1/3n5, the
avoided crossing between the extreme red n and blue
n+1 state is reached, and an atom in the blue n Stark
state can make a Landau–Zener transition to the red
n+1 Stark state. Since the analogous red–blue avoided
crossings between higher lying states occur at lower
fields, once an atom has made the n → n+1 transi-

tion it rapidly makes a succession of transitions through
higher n states to a state which is itself ionized by the
field.

The Landau–Zener description given above is some-
what oversimplified in that we have ignored the
coherence between field cycles. When it is included,
we see that the transitions between levels are resonant
multiphoton transitions. While the resonant charac-
ter is obscured by the presence of many overlapping
resonances, the coherence substantially increases the
n → n+1 transition probability even when E < 1/3n5.
The fields required for ionization calculated using this
model are lower than 1/3n5, in agreement with the ex-
perimental observations. Nonhydrogenic Na states of
high m behave like H, because no states with signifi-
cant quantum defects are included, and the n → n+1
avoided crossings are vanishingly small.

Experiments on ionization of alkali atoms by cir-
cularly polarized fields of frequency ω show that for
ω& 1/n3, a field amplitude of E = 1/16n4 is required
for ionization [14.29]. This field is the same as the static
field required. In a frame rotating with frequency ω,
the circularly polarized field is stationary and cannot
induce transitions, so this result is not surprising. On
the other hand, when the problem is transformed to
the rotating frame, the potential of (14.28) is replaced
by

V =−1

r
−Ex− ω

2ρ2

2
, (14.32)

where ρ2 = x2+ y2, and we have assumed the field to
be in the x-direction in the rotating frame. This poten-
tial has a saddle point below E = 1/16n4 [14.30]. As
n or ω is raised so that ω→ 1/n3, the experimentally
observed field falls below 1/16n4, but not so fast as im-
plied by (14.32). Equation (14.32) is based solely on
energy considerations, and ionization at the threshold
field implied by (14.32) requires that the electron es-
cape over the saddle point in the rotating frame at nearly
zero velocity. For this to happen, when ω approaches
1/n3, more than n units of angular momentum must be
transferred to the electron, which is unlikely. Models
based on a restriction of the angular momentum trans-
ferred from the field to the Rydberg electron are in better
agreement with the experimental results. Small devia-
tions of a few percent from circular polarization allow
ionization at fields as low as E = 1/3n5. This sensitiv-
ity can be understood as follows. In the rotating frame,
a field with slightly elliptical polarization appears to be
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a large static field with a superimposed oscillating field
at frequency 2ω. The oscillating field drives transitions
to states of higher energy, allowing ionization at fields
less than E = 1/16n4.

In the regime in which ω > 1/n3, microwave ion-
ization of nonhydrogenic atoms is essentially the same

as it is in H [14.31]. In this regime, the microwave
field couples states differing in n by more than one,
and the pressure or absence of quantum defects is
not so important. Consequently, only for ω > 1/n3

is the microwave ionization of H and other atoms
different.

14.6 Collisions

Since Rydberg atoms are large, with geometric cross
sections proportional to n4, one might expect the cross
sections for collisions to be correspondingly large. In
fact, such is often not the case. A useful way of under-
standing collisions of neutral atoms and molecules with
Rydberg atoms is to imagine an atom or molecule M
passing through the electron cloud of an Na Rydberg
atom. There are three interactions

e−−Na+ , e−−M , M−Na+ . (14.33)

The long range e−–Na+ interaction determines the en-
ergy levels of the Na atom. The short range of the
e−–M and M–Na+ interactions makes it likely that
only one will be important at any given time. This
approximation, termed the binary encounter approxima-
tion, is described in Chapt. 56. The M–Na+ interaction
can only lead to cross sections of ≈ 10–100 Å2. On
the other hand, since the electron can be anywhere in
the cloud, the cross sections due to the e−–M interac-
tion can be as large as the geometric cross section of
the Rydberg atom. Accordingly, we focus on the e−–M
interaction.

Consider a thermal collision between M and an Na
Rydberg atom. Typically, M passes through the elec-
tron cloud slowly compared with the velocity of the
Rydberg electron, and it is the e−–M scattering which
determines what happens in the M–Na collision, as first
pointed out by Fermi [14.32]. First consider the case
where M is an atom. There are no energetically acces-
sible states of atom M which can be excited by the low
energy electron, so the scattering must be elastic. The
electron can transfer very little kinetic energy to M,
but the direction of the electron’s motion can change.
With this thought in mind, we can see that only the
collisional mixing of nearly degenerate  states of the
same n has very large cross sections. The -mixing cross
sections are approximately geometric at low n [14.33].
If the M atom comes anywhere into the Rydberg or-
bit, scattering into a different  state occurs. At high n,

the cross section decreases, because the probability dis-
tribution of the Rydberg electron becomes too dilute,
and it becomes increasingly likely that the M atom
will pass through the Rydberg electron’s orbit with-
out encountering the electron. The n at which the peak
-mixing cross section occurs increases with the elec-
tron scattering length of the atom. While -mixing cross
sections are large, n changing cross sections are small(≈ 100 Å2

)
since they cannot occur when the Rydberg

electron is anywhere close to the outer turning point of
its orbit [14.34].

If M is a molecule, there are likely to be energet-
ically accessible vibrational and rotational transitions
which can provide energy to or accept energy from
the Rydberg electron, and this possibility increases
the likelihood of n changing collisions with Rydberg
atoms [14.11]. Electronic energy from the Rydberg atom
must be resonantly transferred to rotation or vibration
in the molecule. In heavy or complex molecules, the
presence of many rotational-vibrational states tends to
obscure the resonant character of the transfer, but in sev-
eral light systems the collisional resonances have been
observed clearly [14.11].

Using the large Stark shifts of Rydberg atoms it
is possible to tune the levels so that resonant energy
transfer between two colliding atoms can occur [14.35]
by the resonant dipole–dipole coupling,

Vd = µ1µ2

R3 . (14.34)

Here µ1 and µ2 are the dipole matrix elements of the
upward and downward transitions in the two atoms, and
R is their separation. At room temperature, this process
leads to enormous cross sections, substantially in excess
of the geometric cross sections. At the low temperatures
(300 µK) attainable using cold atoms, the atoms do not
move, and therefore cannot collide. However, resonant
dipole–dipole energy transfer is still observed due to the
static dipole–dipole interactions of not two, but many
atoms [14.36, 37].
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Since Rydberg atoms are easily perturbed by electric
fields, it is hardly a surprise that collisions of charged
particles with Rydberg atoms have large cross sections.
In cold Rydberg atom samples, these large cross sections

can lead to the spontaneous evolution to a plasma, since
the macroscopic positive charge of the cold ions can trap
any liberated electrons, leading to impact ionization for
a large part of the Rydberg atom sample [14.38, 39].

14.7 Autoionizing Rydberg States

The bound Rydberg atoms considered thus far are
formed by adding the Rydberg electron to the ground
state of the ionic core. It could equally well be added to
an excited state of the core [14.40]. Figure 14.6 shows
the energy levels of the ground 5s state of Sr+ and the
excited 5p state. Adding an n electron to the 5s state
yields the bound Sr 5sn state, and adding it to the ex-
cited 5p state gives the doubly excited 5pn state, which
is coupled by the Coulomb interaction to the degenerate
5sε′ continuum. The 5pn state autoionizes at the rate
Γn given by [14.41]

Γn = 2π|〈5pn|V |5sε′〉|2 , (14.35)

where V denotes the Coulomb coupling between the
nominally bound 5pn state and the 5sε′ continuum.
A more general description of autoionization can be
found in Chapt. 25.

A simple picture, based on superelastic electron scat-
tering from the Sr+ 5p state, gives the scaling of the
autoionization rates of (14.35) with n and . The n
Rydberg electron is in an elliptical orbit, and each time

5s

5p

Fig. 14.6 Sr+ 5s and 5p states (—), the Rydberg states of
Sr converging to these two ionic states are shown by (—),
the continuum above the two ionic levels (///). The 5pn
states are coupled to the 5sε′ continua and autoionize

it comes near the core it has an n-independent probabil-
ity γ of scattering superelastically from the Sr+ 5p ion,
leaving the core in the 5s state and gaining enough en-
ergy to escape from the Coulomb potential of the Sr+
core. The autoionization rate of the 5pn state is ob-
tained by multiplying γ by the orbital frequency of the
n state, 1/n3 to obtain

Γn = γ

n3 . (14.36)

Equation (14.36) displays the n dependence of the
autoionization rate explicitly and the  dependence
through γ. As  increases, the closest approach of the
Rydberg electron to the Sr+ is at a larger orbital radius,
so that superelastic scattering becomes progressively
less probable, and γ decreases rapidly with increas-
ing . The simple picture of autoionization given above
implies a finite probability of autoionization each time
the n electron passes the ionic core, so the probabil-
ity of an atom’s remaining in the autoionizing state
should resemble stair steps [14.42], which can be di-
rectly observed using mode locked laser excitation and
detection [14.43].

To a first approximation, the Sr 5pn states can be de-
scribed by the independent electron picture used above,
but in states converging to higher lying states of Sr+,
the independent electron picture fails. Consider the Sr+
≥ 4 states of n > 5. They are essentially degenerate,
and the field due to an outer Rydberg electron converts
the zero field  states to superpositions much like Stark
states. The outer electron polarizes the Sr+ core, so that
the outer electron is in a potential due to a charge and
a dipole, and the resulting dipole states of the outer elec-
tron display a qualitatively different excitation spectrum
than do states such as the 5pn states, which are well de-
scribed by an independent particle picture [14.44]. When
both electrons are excited to very high-lying states, with
the outer electron in a state of relatively low , the clas-
sical orbits of the two electrons cross. Time domain
measurements, made using wave packets, show that in
this case autoionization is likely to occur in the first orbit
of the outer electron [14.45].
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Rydberg Atom15. Rydberg Atoms in Strong Static Fields

Confronting classical and quantum mechanics
in systems whose classical motion is chaotic is
one of the fundamental problems of physics, as
evidenced by the enormous outpouring of research
during the last three decades [15.1, 2]. Highly
excited Rydberg atoms in external fields [15.3] play
a prominent role in this quest because they are
the best known examples of quantum systems
whose classical counterpart is chaotic. For a wide
variety of field configurations and field strengths,
their spectra can be measured to high precision.
At the same time, since their Hamiltonians are
known analytically, they are equally amenable
to accurate theoretical investigations using either
classical or quantum mechanics.

This chapter is restricted to a description of
Rydberg atoms in strong static fields. Related
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information on atoms in strong fields can be found
in Chapt. 13 of this Handbook, on Rydberg atoms
in Chapt. 14, and on the interaction of atoms with
strong laser fields in Chapt. 74.

Different configurations of external fields have been
studied: (i) an electric field, which in hydrogen leads
to integrable classical dynamics [15.4, 5] (ii) a mag-
netic field, which produces a transition from regular to
chaotic classical dynamics and which sparked the in-
terest in Rydberg atoms as prototype examples for the
study of the quantum-classical correspondence [15.6–
15] and references therein (iii) parallel electric and
magnetic fields [15.16, 17] (iv) crossed electric and
magnetic fields which break all continuous symme-
tries of the unperturbed atom and thus allow one to
study the transition from regularity to chaos in three
coupled degrees of freedom [15.18–21] and references
therein.

The hydrogen atom is the prototype example for
states with a single highly excited electron under the
influence of strong external fields. For an electron
in the hydrogen ground state, the influence of exter-
nal electric or magnetic fields becomes comparable

to that of the nuclear Coulomb field when the field
strengths are in the order of the atomic units of electric
field strength, F0 = e/(4πε0a2

0) = 5.142 206 42 (44)×
1011 V/m, or magnetic field strength, B0 = �/

(
ea2

0

)=
2.350 517 42 (20)× 105 T, which is far beyond exper-
imental reach. However, the relative importance of
the external fields scales with the principal quan-
tum number n as n4 F and n3 B, so that for
highly excited atoms, laboratory fields can easily be
“strong”. Atomic units will be used throughout this
chapter.

In a non-hydrogenic atom, the influence of the
inner-shell electrons can be summarized by means of
a short-range effective core potential or a set of quan-
tum defects [15.22]. For laboratory field strengths, the
core is too small to be appreciably influenced by the
external fields. For this reason, the field-free quantum
defects can be used to model core effects even in the
presence of external fields [15.23].
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15.1 Scaled-Energy Spectroscopy

The Hamiltonian for a hydrogen atom in a ẑ-directed
magnetic field and an electric field of arbitrary orienta-
tion is

H = p2

2
− 1

r
+ 1

2
BLz + 1

8
B2ρ2+ r · F = E ,

(15.1)

where ρ2 = x2+ y2 and Lz is the angular momentum
component along the magnetic field axis. The dynamics
depends on three parameters: the field strengths F and B
and the energy E. We can reduce the number of indepen-
dent parameters to two if we exploit a scaling property
of the Hamiltonian: In terms of the scaled quantities

r̃ =w−2r , p̃ = wp

Ẽ =w2 E , F̃ = w4 F (15.2)

with the scaling parameter

w= B−1/3 , (15.3)

the scaled Hamiltonian reads

H̃ = p̃2

2
− 1

r̃
+ 1

2
L̃ z + 1

8
ρ̃2+ r̃ · F̃ = Ẽ . (15.4)

The scaled dynamics thus depends only on two param-
eters, the scaled energy Ẽ and the scaled electric field
strength F̃. Instead of the above scaling with the mag-
netic field strength, which is the most common one,
equivalent scaling prescriptions with the electric field
strength or the energy can be used [15.24].

The way of recording an atomic spectrum that is
most suitable for the investigation of quantum-classical
correspondence is scaled-energy spectroscopy. A scaled
spectrum consists of a list of eigenvalueswn of the scal-
ing parameter (15.3) characterizing the quantum states
for a given scaled energy Ẽ and scaled electric field
strength F̃. It offers the advantage that the underlying
classical dynamics does not change across the spectrum,
which makes the spectrum more easily accessible to
a semiclassical interpretation (Sect. 15.2). For this rea-
son, scaled-energy spectroscopy has been adopted in
numerous experimental [15.4, 5, 8, 18] and theoretical
investigations.

To obtain a theoretical description of a scaled spec-
trum, the Schrödinger equation must be rewritten in
terms of the scaling parameter w. In the case of a single
external field, either electric or magnetic, this procedure
leads to a generalized eigenvalue equation for the scal-
ing parameterw [15.25]. In the presence of both electric
and magnetic fields, the scaled spectrum is described
by a quadratic eigenvalue equation that has become
tractable only recently [15.26].

In a non-hydrogenic atom, the extent of the core
imposes an absolute length scale and thus breaks the
scaling symmetry. However, if the extent of the Ryd-
berg electron’s orbital is large, the size of the core can be
neglected and the scaling behavior is restored. This ren-
ders scaled-energy spectroscopy a useful concept also
for non-hydrogenic atoms [15.4, 5, 18].

15.2 Closed-Orbit Theory

Among the most remarkable effects strong external
fields produce in Rydberg atoms are the Quasi-Landau
oscillations: Close to the ionization limit, the photoab-
sorption spectrum of Ba I in a magnetic field shows
regular oscillations [15.6]. This phenomenon was given
a convincing interpretation by Starace [15.27] and
embedded by Du and Delos [15.28, 29] and Bogo-
molny [15.30] into the general framework of closed-orbit
theory, which has since become the central interpreta-
tive tool for a description of Rydberg spectra in external
fields [15.4,5,8,18]). Recently, it has also been used for
the computation of Rydberg spectra [15.31, 32].

Closed-orbit theory represents an atomic photo-
absorption spectrum as a superposition of regular
oscillations, each of which is related to a closed orbit

of the underlying classical dynamics, i. e., to an orbit
that starts and ends at the position of the nucleus. The
period of an oscillation is given by the return time of
the associated closed orbit (divided by �), the amplitude
is determined on the one hand by the initial state and
the polarization of the exciting photon, and on the other
hand by the stability of the closed orbit. Once the ini-
tial state is specified, both can therefore be calculated
within classical mechanics.

A spectrum that contains contributions from many
closed orbits can look enormously complicated. Its
Fourier transform, on the other hand, consists of a series
of isolated peaks that can be identified with the contribu-
tions of individual closed orbits. The Fourier transform
thus provides the means to identify the crucial dynam-
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ics underlying a complicated spectrum. If a spectrum
is recorded at constant external field strength, however,
this analysis is inhibited by the fact that the oscilla-
tions are not strictly harmonic because both the return
time of a closed orbit and the recurrence amplitude as-
sociated with it vary across the spectrum. This is the
principal reason why scaled-energy spectroscopy (see
Sect. 15.1) is customarily used. In a scaled spectrum,
the period of an oscillation is given by the scaled ac-
tion of the corresponding orbit and is fixed across the
spectrum.

Although initially devised for atoms in magnetic
fields [15.28–30], closed-orbit theory is equally applica-
ble to atoms in electric [15.33] as well as parallel [15.34]
or crossed [15.34, 35] electric and magnetic fields. In
the case of non-hydrogenic atoms, the influence of the
ionic core can be modelled either by means of an ef-
fective classical potential [15.35, 36] or in terms of
quantum defects [15.37]. Recently, closed-orbit theory

has even been applied to the spectra of simple molecules
in external fields [15.38].

Since a non-hydrogenic core is much smaller than
the extent of a closed orbit (which is comparable to the
size of the atomic Rydberg state), it does not apprecia-
bly modify the shape of the orbit. The peaks observed
in a hydrogen spectrum are therefore also observed in
the corresponding spectrum of a non-hydrogenic atom,
although their strengths may be altered considerably
(core shadowing) [15.37]. The principal effect of a core
is to scatter the electron returning along one closed
orbit into the initial direction of another, so that con-
catenations of hydrogenic closed orbits appear in the
spectrum [15.37]. For this reason, the closed orbits of
the hydrogen atom in external fields are the crucial in-
gredient for the interpretation of any Rydberg spectrum.
They have been systematically studied for hydrogen
in magnetic [15.39, 40] as well as electric [15.41] and
crossed [15.42, 43] fields.

15.3 Classical and Quantum Chaos

In the absence of external electric and magnetic
fields, the classical dynamics described by the atomic
Hamiltonian (15.1) is integrable and completely de-
generate [15.44]. When external fields are present,
a transition to classical chaos can be observed whose
details depend on the precise field configuration (see be-
low). It is characterized by the break-up of invariant tori
and the appearance of irregular regions in the classical
phase space.

Chaos, as understood in classical mechanics, does
not exist in closed quantum systems [15.45]. Never-
theless, in the dynamics of a quantum system clear
indications of regularity or chaos in the underlying clas-
sical system can be found [15.2]. Most prominent among
them is the statistical distribution of nearest-neighbor
energy level spacings (NNS). In a classically chaotic
system, energy levels show avoided crossings. Level
repulsion is statistically reflected by NNS following
a Wigner distribution

P(S)= π
2

S e−πS/4 (15.5)

that restricts small spacings. On the other hand, in-
tegrable systems possess a complete set of quantum
numbers, so that levels are allowed to cross. This gives
rise to a Poissonian NNS distribution

P(S)= e−S (15.6)

that favors small spacings. For mixed regular-chaotic
systems, a transition from a Poisson to a Wigner NNS
distribution is found [15.14].

15.3.1 Magnetic Field

An atom exposed to a magnetic field possesses rota-
tional symmetry around the magnetic field axis, which
leads in classical mechanics to the conservation of the
angular-momentum component Lz along the field axis
and in quantum mechanics to a good magnetic quantum
number m = Lz . The dynamics of the rotation coordi-
nate can thus be separated, leaving two coupled degrees
of freedom.

The quantum numbers l and n that characterize
the pure hydrogen states both break down in a mag-
netic field. However, the field affects them differently:
Whereas l breaks down extensively even for small fields
(l-mixing region), the breakdown of n is only achieved
through considerably stronger fields or higher ener-
gies (n-mixing region). Since chaotic dynamics can
only exist in at least two degrees of freedom, a sin-
gle n-manifold of electronic energy levels does not
have enough degrees of freedom to support chaos.
Chaos can develop only when different n-manifolds
mix (intermanifold chaos). The regular dynamics that
prevails as long as n is approximately conserved is
reflected in the existence of a second adiabatic con-
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stant of motion (apart from the energy), which is given
by [15.46, 47]

Λ= 4A2−5A2
z , (15.7)

in terms of the Runge–Lenz vector

A= 1√−2E

[
1

2
(p × L− L × p)− r

r

]
, (15.8)

and is conserved to second order in the magnetic field
strength.

As the magnetic field strength increases, corres-
ponding to an increase in the scaled energy from
−∞ toward zero, the classical dynamics changes from
regular to almost entirely chaotic [15.13, 14]. For
positive scaled energies above Ẽc = 0.328 782 . . . , com-
pletely hyperbolic dynamics is reached [15.48]. In step
with the onset of classical chaos, the quantum NNS
distribution changes from a Poisson to a Wigner distri-
bution [15.13, 14].

15.3.2 Parallel Electric and Magnetic Fields

In parallel fields, as in a pure magnetic field, an atom
retains rotational symmetry around the field axis. It
therefore shows a similar transition from regular dynam-
ics to intermanifold chaos at scaled energies Ẽ ≈ 0. At
small field strengths, a second-order adiabatic invariant
akin to (15.7) is given by [15.49, 50]

Λβ = 4A2−5(Az −β)2+5β2 , (15.9)

where the parameter

β = 12

5

F

n2 B2
(15.10)

measures the relative strengths of the electric and mag-
netic fields.

15.3.3 Crossed Electric and Magnetic Fields

In nonaligned electric and magnetic fields, the rotational
symmetry of the field-free atom is broken completely,
so that all three degrees of freedom are coupled. The an-
gular momentum quantum numbers l and m break down
extensively even at small field strengths; the principal
quantum number n follows only gradually. Even when
n is approximately conserved, however, in the crossed-
fields atom two coupled degrees of freedom remain.
They allow the occurrence of chaotic dynamics within
a single n-manifold (intramanifold chaos) [15.51, 52].

The intramanifold dynamics can conveniently be
described in terms of the vectors [15.53]

I1 = 1

2
(L+ A) ,

I2 = 1

2
(L− A) , (15.11)

that obey independent angular momentum Poisson
bracket (or, in quantum mechanics, commutator) re-
lations. For fixed n, I1 and I2 are restricted to the
spheres

I2
1 = I2

2 =
n2

4
. (15.12)

They span a four-dimensional space that is a convenient
representation of the intramanifold phase space.

Within a given n manifold, the position vector r
can be replaced with − 3

2 n A [15.54]. Using this re-
placement, we can rewrite the contributions to the
Hamiltonian (15.1) that are linear in the field strengths
as

Hlin = ω1 · I1+ω2 · I2 (15.13)

with the constant vectors

ω1 = 1

2
(B−3nF) ,

ω2 = 1

2
(B+3nF) . (15.14)

The first-order Hamiltonian Hlin describes a precession
of the vectors I1 and I2 around ω1 and ω2, respectively,
and preserves the integrability of the dynamics. Intra-
manifold chaos arises only if the quadratic contribution
to the Hamiltonian (15.1) is taken into account. It can be
detected either in classical mechanics [15.51, 52] or in
quantum mechanics via its imprint on the intramanifold
NNS distribution [15.52].

The properties of the crossed-fields hydrogen atom
above the ionization threshold provide an example of
a chaotic scattering system. Classically, chaotic ion-
ization manifests itself in a fractal dependence of the
electron escape time on the initial conditions [15.55].
Experimentally, a distinction has been made between
“prompt” electrons that ionize fast, and “delayed” elec-
trons that ionize only after more than 100 ns [15.20]. The
latter can be interpreted as electrons that undergo chaotic
scattering and circle the nucleus many times before they
escape. A detailed classical model of chaotic scatter-
ing was presented in [15.56]. In quantum mechanics,
chaotic scattering can be identified through the occur-
rence of Ericson fluctuations in the above-threshold
spectrum [15.55].
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15.4 Nuclear-Mass Effects

So far, only the relative motion of the electron with
respect to the ionic core has been described. This is
appropriate if the nucleus can be assumed to be infinitely
heavy and thus not to take part in the motion. To include
the effects of a finite nuclear mass, the description must
start from the coupled two-body Hamiltonian and then
work toward a separation of the internal dynamics from
the center-of-mass (CM) motion.

It turns out that in the presence of a magnetic
field, unlike the field-free two-body problem, a com-
plete separation of the relative and CM motions is
impossible. Instead, only a pseudo-separation can be
achieved, where the relative and CM motions remain
coupled through a new constant of motion called the
pseudomomentum K [15.57]. This coupling introduces
a number of novel effects into the dynamics (see [15.58]
for a detailed discussion).

The influence of the CM motion on the internal dy-
namics is twofold: on the one hand, the motion of the
atom in the magnetic field causes an induced electric
field (motional Stark effect). On the other hand, the ki-
netic energy of the CM motion gives rise to an additional
confining potential for the internal motion that could, in
principle, locate the electron at a large distance from the
nucleus, and produce atomic states with a huge dipole
moment.

Conversely, the motion of the CM is driven
by the internal motion, most strongly so in the
case of vanishing pseudomomentum. It thus re-
flects the transition from regular to chaotic internal
dynamics: A regular internal motion leads to a reg-
ular CM motion, whereas chaotic internal dynamics,
for K = 0, give rise to a classical diffusion of the
CM.
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Hyperfine Stru16. Hyperfine Structure

Hyperfine structure in atomic and molecular
spectra is a result of the interaction between
electronic degrees of freedom and nuclear
properties other than the dominant one, the
nuclear Coulomb field. It includes splittings
of energy levels (and thus of spectral lines)
from magnetic dipole and electric quadrupole
interactions (and higher multipoles, on occasion).
Isotope shifts are experimentally entangled
with hyperfine structure, and the so-called
field effect in the isotope shift can be naturally
included as part of hyperfine structure. Studies
of hyperfine structure can be used to probe
nuclear properties, but they are an equally
important probe of the structure of atomic
systems, providing especially good tests of
atomic wave functions near the nucleus. There
are also isotope shifts owing to the mass
differences between different nuclear species,
and the study of these shifts provides useful
atomic information, especially about correlations
between electrons.

Hyperfine effects are usually small and often,
but not always, it is sufficient to consider only
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diagonal matrix elements for the atomic or
molecular system and for the nuclear system.
In some cases, however, matrix elements off-
diagonal in the atomic space, even though small,
can be of importance; one possible result is to
cause admixtures sufficient to make normally
forbidden transitions possible.

In the diagonal case, one can picture each electron
undergoing elastic scattering from the nucleus and re-
turning to its initial bound state. As pointed out by
Casimir [16.1, 2], however, the internal conversion of
nuclear gamma-ray transitions involves the inelastic
down-scattering from an excited nuclear state to a lower
one as an electron goes from an initial bound state
to the continuum. By further conversion of bound to
continuum states, one sees the connection with elec-
tron scattering from the nucleus – elastic, inelastic, and
break-up. Hyperfine structure of outer-shell electronic
states is at the low momentum-transfer end of this chain
of related processes.

Some of the standard textbooks which discuss hyper-
fine structure are [16.3–10] and a few newer texts
[16.11–14]. Especially relevant are [16.15–19] and the
conference proceedings [16.20–22].

The study of hyperfine structure in free atoms, ions,
and molecules is part of the more extensive research
area of hyperfine interactions, which includes the study
of atoms and molecules in matter, both at rest, for ex-
ample as part of the structure of a solid, and moving,
such as ions moving through condensed or gaseous mat-
ter. This more general subject also includes the ways
in which atomic electrons shield the nucleus, or anti-
shield it, from external or collective fields. Thus nuclear
magnetic resonance, nuclear quadrupole resonance,
electron-nuclear double resonance, recoilless nuclear
absorption and emission, nuclear orientation, production
of polarized beams, and many other widely used tech-
niques, are intimately connected with hyperfine effects.

Though hyperfine effects are ordinarily small in elec-
tronic systems, they can become much larger in “exotic”
atoms: those with a heavier lepton or hadron as the
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“light” particle. Hyperfine effects are typically related
to light particle density at the nucleus, or to expectation
values of r−3, and thus scale as the cube of the light par-
ticle mass. The study of muonic atoms has contributed
importantly to knowledge of the nuclear charge distri-
bution [16.23–26]. There has been considerable interest
in pionic atoms, where the strong interaction also con-

tributes to hyperfine structure (e.g., [16.27, 28]), and
also in kaonic, antiprotonic, and other hadronic “atoms”
[16.29, 30]. See especially [16.31] for recent work on
antiprotonic helium.

Some other examples of interaction between atomic
and nuclear degrees of freedom are discussed in
Chapt. 90.

16.1 Splittings and Intensities

16.1.1 Angular Momentum Coupling

When the nuclear system is in an isotropic environment,
each nuclear state β has a definite value of nuclear an-
gular momentum Iβ�, where the possible values of Iβ
are related to the number of nucleons (protons plus neu-
trons) in the same way as those for Jα are related to
the number of electrons in electronic state |α〉. The nu-
clear operators, eigenstates, and eigenvalues are related
to each other in the same way as for atomic angular
momentum by

I2|β〉 = Iβ(Iβ+1)|β〉 ,
Iz|β〉 = Mβ|β〉 , (16.1)

in units with �= 1. Shift operators move the system
from one M-value to another, as for the atomic system
(see Chapt. 2), and the operator I is the generator of
rotations. When the combined atomic-nuclear system is
considered, in an isotropic environment, it is the total
angular momentum of the combined system defined by

F = J+ I , (16.2)

that has definite values. The state of the combined system
can be labeled by γ , so that

F2|γ 〉 = Fγ (Fγ +1)|γ 〉 ,
Fz|γ 〉 = Mγ |γ 〉 . (16.3)

The shift operators are defined as before, and it is now
F that is the generator of rotations of the (combined)
system, or of the coordinate frame to which the system
is referred.

By the rules of combining angular momenta, the
possible values of the quantum number F are separated
by integer steps and run from an upper limit of Jα+ Iβ
to a lower limit of |Jα− Iβ|. The number of possible
eigenvalues F is the smaller of 2Jα+1 and 2Iβ+1.
Experimental values of the nuclear quantum number I
may be found in a number of compilations [16.32–34].

16.1.2 Energy Splittings

Electromagnetic interactions between atomic electrons
and the nucleus can be expanded in a multipole series

HeN =
∑

k

Tk(N) · Tk(e) ,

≡
∑

k,q

(−1)i T k
q (N)T

k−q(e) (16.4)

where Tk(N) is an irreducible tensor operator of rank k
operating in the nuclear space, and similarly Tk(e) op-
erates in the space of the electrons. Since one is taking
diagonal matrix elements (in the nuclear space, at least)
in states that are to a very good approximation eigen-
states of the parity operator, only even electric multipoles
(E0, E2, etc.) and odd magnetic multipoles (M1, M3,
etc.) contribute to the series. The effects of the par-
ity nonconserving weak interaction are considered in
Chapt. 29.

The term with k = 0 contributes directly to the struc-
ture (and fine structure) of atomic systems, and its
dominant contributions come from the external r−1 elec-
trostatic field of the nucleus. The hyperfine Hamiltonian
is defined by subtracting that term to obtain

Hhfs =
∑

i

[
T0(N)T0(i)− (− Ze2/ri

)]

+
∑

k=1

Tk(N) · Tk(e) , (16.5)

where Z is the nuclear charge number. The difference
between the Ze2/r term(s) and the full monopole term
is called the field effect or finite nuclear size effect in the
isotope shift, and the remaining terms contribute dipole
(k = 1), quadrupole (k = 2), and higher multipoles in
hyperfine structure.

Since the hyperfine Hamiltonian can be expressed
as a multipole expansion, its contributions to the pattern
of energy levels for the various F values in a given
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Jα, Iβ multiplet in first-order perturbation theory can
be described relatively simply in terms of 3– j and 6– j
symbols. The contribution of the term which is the scalar
product of electron and nuclear operators of multipole k
is

∆Ek(JIF, JIF)

= (−)J+I+F

{
J J k

I I F

}

×

[(
J k J

J 0 −J

)(
I k I

I 0 −I

)]−1

Ak , (16.6)

where for k ≥ 1,

Ak =
〈
JJ
∣∣Tk(e)

∣∣JJ
〉 · 〈II

∣∣Tk(N)
∣∣II

〉
. (16.7)

The commonly used hfs coefficients A, B, etc., are
related to the Ak by

A = A1/IJ, B = 4A2, C = A3, D = A4 .

(16.8)

The isotope shift A0 is the matrix element of the reduced
monopole operator.

The pattern of the splitting depends on the total angu-
lar momentum F wholly through the 6– j symbol. Since
for k = 0 the value of the 6– j symbol is independent of
F, the monopole term shifts all levels of the hyperfine
multiplet equally, independent of the value of F.

The F-dependence of the dipole contribution can be
found from the fact that the same 6– j symbol would
appear for any scalar product of k = 1 operators, for
example J · I. But in this product space, with J , I , and F
all good quantum numbers, the diagonal matrix elements
of J · I are just

〈J · I〉 = 1

2
[F(F+1)− J(J +1)− I(I +1)] ,

(16.9)

so that
∆E1(JIF, JIF)

= 1

2
A[F(F+1)− J(J +1)− I(I +1)] , (16.10)

where, in terms of reduced matrix elements according to
the convention of Brink and Satchler ([16.35, p. 152]),
(the first version given in Sect. 2.8.4)

A = [J(J +1)]−1/2〈J
∥∥T1(e)

∥∥J
〉[I(I +1)]−1/2

×
〈
I
∥∥T1(N)

∥∥I
〉
. (16.11)

A is the magnetic dipole hyperfine structure constant for
the atomic level J and nuclear state I . M1 hfs shows
the same pattern of splittings as spin-orbit fine structure,
described sometimes as the Landé interval rule.

Electric quadrupole hfs is described by the quad-
rupole hyperfine structure constant B. If we define the
quantity K = [F(F+1)− J(J +1)− I(I +1)], then

∆E2(JIF, JIF)

=
( 1

4 B
)[3K(K +1)/2−2J(J +1)I(I +1)]

J(2J −1)I(2I −1)
.

(16.12)

The constant B is related to the tensor operators by

1

4
B = [J(2J −1)/(J +1)(2J +3)]−1/2

×
〈
J
∥∥T2(e)

∥∥J
〉

× [I(2I −1)/(I +1)(2I +3)]−1/2

×
〈
I
∥∥T2(N)

∥∥I
〉
, (16.13)

For higher multipoles, see [16.36].
The multipole expansion is important because it is

valid for relativistic as well as nonrelativistic situations,
and for nuclear penetration effects (hyperfine anomalies
discussed in Sect. 16.3.3) as well as for normal hyper-
fine structure. Its limitation comes from its nature as
a first-order diagonal perturbation. Off-diagonal contri-
butions, even when small, can perturb the pattern, but,
more importantly, can lead to misleading values for the
Ak coefficients, including the isotope shift.

16.1.3 Intensities

When hyperfine structure is observed as a splitting in an
optical transition between different atomic levels, there
are relations between the intensities of the components.
The general rule for reduced matrix elements of a tensor
operator operating in the first part of a coupled space is
([16.35, p. 152])

〈
JIF

∥∥Qλ(e)
∥∥J ′ IF′〉

= (−1)λ+I+F′+J (2F′ +1)1/2
{

F F′ λ
J ′ J I

}

× (2J +1)1/2
〈
J
∥∥Qλ(e)

∥∥J ′
〉
. (16.14)

For a dipole transition (λ= 1) connecting atomic states
J and J ′, with fixed nuclear spin I , the line strength
SFF′ of the hyperfine component connecting F and F′
is related to the line strength SJJ ′ by

SFF′ = (2F+1)(2F′ +1)

{
F F′ 1

J ′ J I

}2

SJJ ′ .

(16.15)
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16.2 Isotope Shifts

Two distinct mechanisms contribute to isotope shifts
in atomic energy levels and transition energies. First,
there are shifts due to the different mass values of the
isotopes; these mass shifts can again be separated into
two kinds, the normal mass shift and the specific mass
shift. Second, there are shifts due to different nuclear
charge distributions in different isotopes. Shifts of this
sort are called field shifts, and can be considered to be
the monopole part of the hyperfine interaction.

The usual convention is to describe an isotope shift
in a transition as positive when the line frequency is
greater for the heavier isotope.

16.2.1 Normal Mass Shift

The normal mass shift occurs already for one-electron
atoms, where the energy scale in the c.m. frame for the
electron-nucleus system is directly proportional to the
reduced mass of the system, µ= mM/(M+m), where
m is the mass of the electron and M that of the nu-
cleus. The two natural limits are those of an infinitely
heavy nucleus, where µ= m, and positronium, where
µ= 1

2 m. The normal mass shift applies to all levels
of all atomic systems. The fractional shift in frequency
between isotopes of mass MH and ML is given by

(νH −νL)/νH = m(MH −ML)/MH(ML +m) ,
(16.16)

or

(νH −νL)/νL = m(MH −ML)/(MH +m)ML .

(16.17)

The normal mass shift between deuterium and protonic
hydrogen is (νD− νH)/νH = 2.721 × 10−4, amounting
to 4.15 cm−1 (0.179 nm) for Balmer α. It decreases
rapidly for heavy elements, with ∆ν/ν ≈ (AH −
AL)/(1823AH AL ), where the A-values are the atomic
mass numbers; for the pair 208Pb–206Pb, ∆ν/ν is then
2.56 × 10−8, corresponding to a wavelength shift of
0.000 014 nm for a line at 550 nm.

16.2.2 Specific Mass Shift

When the system has more than two particles the sit-
uation is more complicated; in particular, the center of
mass of any particular electron and the nucleus is no
longer the center of mass of the whole system. When
c.m. motion is removed from the Hamiltonian, there

remains a set of mass polarization terms

Hmp = 1

M

∑

j<k

p j · pk , (16.18)

where M is the nuclear mass and p j is the momentum of
the jth electron. The matrix elements of these terms can
be strongly state-dependent, and the difference in their
contributions for isotopes of different mass is called the
specific mass shift (SMS). For a transition a → b, the
lowest-order SMS between isotopes A and A′ is

∆ν(a, b; A, A′)= Ka,b(MA−MA′)/MA MA′ ,
(16.19)

where

Ka,b = 〈
a
∣∣∑

j<k p j · pk
∣∣a
〉− 〈

b
∣∣∑

j<k p j · pk
∣∣b
〉
.

(16.20)

It was earlier thought that the SMS, like the normal
mass shift, was always very small for heavy atoms, but
that has turned out not to be the case.

Since the operator p1 · p2 resembles the product of
two dipole transition operators, the matrix elements of
Hmp vanish between simple product-type wave func-
tions unless allowed by dipole selection rules. For
example, in the 1sn 1L and 3L states of helium, the
only nonvanishing diagonal terms are the = 1 exchange
terms ±〈1s(1)np(2)|p1 · p2|np(2)1s(1)〉, with (−) for
singlet states and (+) for triplet states. The resulting
Hughes–Eckart level shift [16.37] is positive for singlets
and negative for triplets. For other states, 〈Hmp〉 acquires
a nonzero value due to electron correlation (configura-
tion mixing) effects, but the resulting level shifts are
correspondingly smaller. Detailed tabulations for many
states of helium, including second-order corrections, are
given by Drake and Yan [16.38].

For other atoms, the diagonal matrix elements of
Hmp within a single electron configuration are weighted
by the same coefficients as those that weight the Slater
exchange integral G1. Relativistic corrections have been
given by Stone [16.39, 40]. Bauche and Champeau
[16.11] provide a useful discussion of the SMS, as does
King [16.16].

Among recent results, we mention high-precision
experimental work on the difference in the splittings
23S1–23PJ between 4He and 3He [16.41–43], which can
be compared with theoretical results [16.43, 44], and an
extensive multi-isotope study in Sm II, in which isotope-
shift results are used to deduce structure information for
a number of levels [16.45].
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16.2.3 Field Shift

The field shift is due to different electric monopole
interactions within the nucleus for different nuclei.
Since the field shift is state-dependent, it contributes
to the isotope shift of electronic transition frequencies.
When field shifts occur between different isomeric lev-
els of the same nuclear species, they are called isomer
shifts.

Following Seltzer [16.46], (see also the summary in
Fricke et al.[16.47]), a level shift can be written as

∆E = − e2
∫
[ρN(A)−ρN(A

′)]

×

[
r−1

N

∫
ρe dτe−

∫
r−1

e ρe dτe

]
dτN .

(16.21)

The electronic factor inside the second bracket can
be fitted as an even power series in rN, starting with
r2 j+1

N . The result is that the field shift for a transition a
is

∆ν(a, AA′)= FaλAA′ , (16.22)

with

λAA′ = δ
〈
r2〉

AA′ + (C2/C1)δ
〈
r4〉

AA′

+ (C3/C1)δ
〈
r6〉

AA′ + · · · , (16.23)

where δ
〈
rk
〉
AA′ =

〈
rk
〉
A −

〈
rk
〉
A′ . The term Fa is an elec-

tronic factor proportional to the change in electron
density at the nucleus between the initial and final
electronic states; in the simplest perturbation approach
Fa is equal to −(4π/6)Ze2∆ρe(0), where ∆ρe(0)
is the electron density at the nucleus in the lower
atomic state minus that in the upper (see Sect. 90.1).
The ratios C2/C1 etc., which weight the higher even
moments, depend only on Z and not on the particu-
lar transition; values are tabulated in [16.46, 48, 49],
as are F-factors for K X-ray transitions. This ap-
proach has been generalized and reformulated by
Blundell et al. [16.49].

Measurements of isotope shifts of optical lines
have long played an important role in the deter-
mination of nuclear rms radii. A more compre-
hensive picture of nuclear charge distributions can
be found by combining optical isotope shift re-
sults with those for X-ray lines and for transitions
in muonic atoms, together with results of elastic
electron scattering from nuclei; a compilation of
the results of such an analysis is to be found in
Fricke et al. [16.47].

16.2.4 Separation of Mass Shift
and Field Shift

From the measured isotope shift for a spectral line a
between a pair of isotopes A and A′, one can define
a residual isotope shift by subtracting the normal mass
shift. The residual shift is the sum of two terms, each
with an electronic factor and a nuclear factor

∆νa,AA′ = Ka(MA−MA′)/MA MA′ + FaλAA′ .
(16.24)

If the field shift is assumed to be negligible,
the electronic factor Ka can be extracted. Similar-
ly, if the SMS is assumed to be negligible,
from the ratios ∆ν(a, A1 A2)/∆ν(a, A3 A4), ratios of
λ(A1 A2)/λ(A3 A4) can be obtained, and the ratios
∆ν(a, A1 A2)/∆ν(b, A1 A2) give ratios of the electronic
factors Fa/Fb.

If both contributions have to be considered, one can
gain information from a King plot [16.16, 50] in which
a modified residual shift ∆ν′(a, AA′) for line a is defined
as

∆ν′(a, AA′)=∆ν(a, AA′)MA MA′/(MA −MA′) .
(16.25)

(Some authors modify the whole shift, without sub-
tracting the normal mass shift; since the isotopic mass
dependence is the same for the two mass-shift contri-
butions, the separation proceeds as before, but with an
altered definition of the constant K .) For each isotope
pair AA′, this defines a point in the King plot whose
ordinate is, e.g., ∆ν′(a, AA′) and whose abscissa is
∆ν′(b, AA′). If the assumed additivity is valid, one finds
a linear relationship between the modified shifts for line
a and those for another line b according to

∆ν′(a, AA′)= (
Fa/Fb)∆ν′(b, AA′)+Ka

−Kb(Fa/Fb) .
(16.26)

From the slope of the line one has the ratio of F-factors
for the two lines, and from the intercept a relation be-
tween the K -factors. A sometimes useful variant of the
King plot involves choosing a pair of isotopes, say B
and B′ as a reference pair [16.16, 47]. A reduced shift
∆ν′′(a, AA′) is then defined as

∆ν′′(a, AA′)= ∆ν(a, AA′)MA MA′(MB −MB′)

(MA−MA′)MB MB′
,

(16.27)

and ∆ν′′(a) is plotted vs. ∆ν′′(b).
It is not in general possible to extract F- and

K -values for individual transitions from optical isotope
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shifts alone, unless one has at least one calculated or oth-
erwise reliably known value. Information about nuclear
charge distributions, however, and isotopic changes in
them, is available from other sources, including X-ray
isotope shifts, muonic X-rays, and elastic electron scat-
tering from nuclei. Calculated electronic factors for K
X-ray transitions can be expected to be more reliable

than those for optical transitions. The effects of finite
nuclear size are much bigger in muonic than electronic
atoms, and screening effects much smaller. Combined
analyses of all four types of data lead to the best current
knowledge of changes in nuclear charge parameters, and
thus contribute to knowledge of the electronic factors Fa

and Ka for optical transitions [16.47].

16.3 Hyperfine Structure

We discuss first normal hyperfine structure, in which
terms coming from penetration of electrons into the
nuclear charge and current distributions can be ne-
glected; such contributions, the anomalous hyperfine
structure, are briefly discussed in Sect. 16.3.3. See also
Sect. 21.7.2.

16.3.1 Electric Multipoles

The electric quadrupole tensor operators, when penetra-
tion is neglected, are

T2(N )= ρN(rN)r
2
NC(2) , (16.28)

where ρN is the nuclear charge density, and

T2(ei)=−er−3
i C(2)(i) . (16.29)

The matrix element of T2(N) that occurs in the ex-
pansion coefficient A2 is just e/2 times the nuclear
quadrupole moment Q:

eQ = 2
〈
II
∣∣T2(N)|II

〉
. (16.30)

Experimental values of Q are tabulated by Ragha-
van [16.32] and more recently discussed by
Pyykkö [16.51]. The matrix element of T2(e), summed
over all electrons, also has a simple semiclassical inter-
pretation [16.7];

〈
JJ
∣∣T2(e)

∣∣JJ
〉= (e/2)qJ

= (1/2)〈∂2V
/
∂z2〉

JJ , (16.31)

where V is the electrostatic potential at the nucleus due
to the electrons. The quadrupole splitting constant can
thus be expressed as

B = 4A2 = e2 QqJ = eQ
〈
∂2V

/
∂z2〉

JJ . (16.32)

Because the matrix elements of spherical harmonics
in lsj-coupled states are independent of l (aside from

the parity requirement that l+ l′ + k be even), the one-
electron matrix elements of T2(e) are [16.36]

〈
ls j

∥∥T2(e)
∥∥l′s j ′

〉

=−e
〈
ls j

∥
∥C(2)

∥∥l′s j ′
〉 ∫

r−3(gg′ + f f ′
)

dr , (16.33)

where g and f are the large and small r-multiplied Dirac
radial functions, and the right-hand reduced matrix el-
ement is equal to (−1)k−1C jk j ′

1
2 0 1

2
with k = 2 ([16.35,

p. 153]).
Electric hexadecapole hyperfine structure follows

similar rules [16.36]. While there is considerable in-
direct evidence that many nuclear states have nonzero
E4 moments [16.52], their effect on hyperfine structure
has been identified only occasionally [16.53, 54].

16.3.2 Magnetic Multipoles

For the magnetic multipole modes, when penetration
effects are neglected, and when the the nuclear current
is taken to be a sum of the orbital-current and spin-
current contributions of individual nucleons, the nuclear
tensor operator can be written as the sum

Tk(N)= (e�/2mpc)
∑

n

[k(2k−1)]1/2rk−1
n

×

[
2gln(k+1)−1

(
C(k−1)Ln

)(k)

+ gsn

(
C(k−1)Sn

)(k)]
, (16.34)

where e�/2mpc is the nuclear magneton, and in the
extreme single-nucleon model the orbital g-factors gln
are 1 for protons and 0 for neutrons, while the spin
g-factors gsn are 5.585 694 701(56) for protons and
−3.826 085 46(90) for neutrons. Similarly, for elec-
tron i, the atomic Mk operator can be written

Tk(ei)= ie[(k+1)/k]1/2r−k−1
i

(
αiC

(k)
i

)(k)
.

(16.35)
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For the magnetic dipole case, the nuclear operator of
(16.29) becomes

T1(N)= (e�/2mpc)
∑

n

(gln Ln + gsn Sn) . (16.36)

The nuclear currents, however, are more complicated
in the strongly interacting and relatively dense environ-
ment of real nuclear systems; renormalized g-factors
can be used to take some such effects into account. For
the quenching of spin matrix elements, see Castel and
Towner [16.55]; for the M1 mode, the effective g-factor
is typically in the neighborhood of 0.5 or 0.6 of the
free-space value. It is also sometimes useful to con-
sider effective orbital g-factors, but the effective value
is smaller, with geff/gfree = 1.05−1.1 [16.56]. The ma-
trix element of T1(N) is the nuclear magnetic dipole
moment

µ= 〈
II
∣∣T1(N)

∣∣II
〉
. (16.37)

Experimental values of µ are tabulated by Raghavan
[16.32].

In the semiclassical picture where ∆E =−µ · B(0),
the contributions to B(0) from the orbital and spin
magnetism of the ith electron are

Bl(0)=−2µ0r−3
i li , (16.38)

Bs(0)= 2µ0r−3
i (10)1/2

[
siC

(2)
i

](1)
, (16.39)

while the “contact” term for s-electrons is

Bc(0)=−(16π/3)µ0ρi(0)s . (16.40)

The one-electron matrix elements of T1(e) are [16.36]
〈
ls j

∥∥T1(e)
∥∥l′s j ′

〉= −e(κ+κ′)〈ls j
∥∥C(1)

∥∥l′xs j ′
〉

×
∫

r−2( fg′ + g f ′
)

dr , (16.41)

where for a given combination ls j, κ = (l− j)(2 j+1),
and lx is the opposite-parity orbital quantum number of
the small Dirac component, lx = l+1 for j = l+1/2,
lx = l−1 for j = l−1/2. Recent high precision cal-
culations for the hyperfine structure of helium and
lithium, including relativistic corrections and second-
order effects, have recently been done by Pachucki
[16.57, 58].

Magnetic octupole hyperfine structure [16.59, 60]
follows similar rules [16.36, 61]. Systems studied in
recent years include Eu I excited states [16.62].

16.3.3 Hyperfine Anomalies
When the electron density is nonzero inside the nu-
cleus, the interaction with different kinds of nuclear
current density is in general different; there is, for ex-
ample, a sensitivity to differing radial distributions of
spin and orbital currents. The result is that the ratio
of A-values for two isotopes is not necessarily the
same as the ratio of nuclear g-factors [16.63]. The
anomaly for two nuclear species a and b is characterized
by

a∆b = (Aa/Ab)(ga/gb)−1 . (16.42)

∆ is seldom larger than a few per cent. The the-
ory for the M1 mode was worked out by Bohr
and Weisskopf [16.64]; there are relatively recent re-
views of theory and experiment [16.65, 66], and an
especially clear exposition of the semiclassical limit
[16.67]. Recent experimental results include transi-
tions in isotopes of La II [16.68], and the ground
state of hydrogenlike thallium [16.69]. Anomalies are
expected to be considerably smaller for the electric
mode.
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Precision Osci17. Precision Oscillator Strength
and Lifetime Measurements

The accuracy of oscillator strength and lifetime
measurements has improved greatly in the
past twenty years. Nevertheless, these high
accuracies have been achieved for only a restricted
number of lines belonging to a few elements and
ionization stages [17.1]. Large numbers of precision
measurements must still be made as improved
experimental oscillator strengths are needed, both
as tests of theoretical concepts, and for diagnostics
and engineering applications.
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A spectral line arising from a radiative transition be-
tween atomic states i and k is characterized by its
wavelength λik, its intensity and its shape. In the limit
of free atoms, the intensity per atom is determined by
the emission transition rate Aik or absorption oscilla-
tor strength fki , and the shape by the natural width
Γi = �/τi , where τi is the lifetime of the excited state.
While classical spectroscopic methods provide precise
wavelength measurements (1 part in 108 or better;
Chapt. 10), it has only recently been possible to meas-
ure oscillator strengths and lifetimes to better than
a few percent, as discussed in this chapter. Examples
of applications which require an accurate knowledge
of these quantities are the interpretation of astrophys-
ical data (Chapt. 82), atmospheric physics (Chapt. 84),
combustion (Chapt. 88), the modeling and diagnosis
of thermonuclear plasmas (Chapt. 86), nonlinear op-
tics (Chapt. 72), isotope separation (Chapt. 16), and the
development of new types of lasers (Chapt. 71).

Precision measurements of oscillator strengths and
lifetimes also provide stringent tests of atomic structure
calculations. These quantities are very sensitive to the
wave functions and the approximations used, particu-
larly in cases where electron correlations (Sect. 23.2.1)
and relativistic effects (Sect. 22.1) are significant. They
provide experimental tests of fundamental theory;
for example, of quantum electrodynamic corrections

(Sect. 27.2), and of the nonconservation of parity pre-
dicted by the unified electro-weak theory (Sect. 29.1).

In applications where only modest precision is
required, semi-empirical parameterizations involving
quantum defects, charge screening and polarization al-
low a few precise measurements to be extrapolated
along isoelectronic, homologous, isoionic and Rydberg
sequences. Similar methods have been applied to the
atomic energy levels themselves (Sect. 10.13). They al-
low one to produce a very large data base of moderate
precision [17.2].

The spontaneous transition rate Aik (Sect. 10.16.2)
is the probability per unit time (s−1) for an atom in any
one of the gi states of the energy level i to make a transi-
tion to any of the gk states of the level k. The lifetime τi
is then given by 1/τi =∑

k Aik. The branching fraction
for the kth channel of the decay of level i is defined
as FB = τi Aik , and the branching ratio (Sect. 10.17) be-
tween two decay channels is RB = Aik/Aij . Emission
and absorption rate constants differ by a factor of λ2

ik,
and the absorption oscillator strength fki (Sect. 10.17) is
defined by

gk fki = Cλ2
ikgi Aik , (17.1)

where C = (32π3αa2
0Ry)−1 = 1.499 19 × 10−14 nm−2 s.

Because of this relationship, the words transition rate and
oscillator strength will be used almost interchangeably.
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17.1 Oscillator Strengths

Oscillator strengths can be determined directly through
absolute emission, absorption, or dispersion meas-
urements, or through the combined measurement of
branching ratios and lifetimes. Direct measurements
compare different transitions at the same time, and re-
quire sample equilibrium, a knowledge of the absolute
number density, and an absolute intensity measure-
ment. These are in contrast to time-resolved lifetime
measurements, which compare relative intensities from
the same transition at different times, and require
no absolute measurements. However, lifetime meas-
urements yield oscillator strengths directly only in
cases where a single decay transition channel ex-
ists, such as the lowest excited level in an atom or
ion. Thus, combined measurements of lifetimes and
branching ratios are often used where high preci-
sion values for oscillator strengths are required. Both
absorption and dispersion measurements involve the
number density of the lower level of the transition,
whereas emission measurements involve that of the
upper level.

17.1.1 Absorption
and Dispersion Measurements

Absorption measurements involve placing a sample of
atoms (for example, in a gas cell, an atomic beam, an arc,
a shock tube, or within the vapor column in a furnace)
between a continuous light source and a spectrometer.
For an isolated spectral line, the absorption cross section
for a beam of photons of frequency ν passing through
the sample is

σik(ν)= πα(�/m)g(ν) fik , (17.2)

where g(ν) is the spectral distribution function per unit
frequency normalized so that

∫∞
0 g(ν) dν = 1. If there

are N atoms per unit volume, the absorption coefficient
is kν = Nσ(ν). The integrated intensity lost after passing
through a distance L of the sample is

∞∫

0

∆I(ν) dν = I0

∞∫

0

(
1− exp−σik(ν)NL

)
dν

) I0πα(�/m)NL fik , (17.3)

where the second line applies if the sample is optically
thin. Otherwise, the integral can be calculated directly, if
g(ν) is known, to determine fik by the curve-of-growth
method.

The Furnace Method
High precision absorption measurements have been
achieved by Blackwell and co-workers [17.3], who have
used the furnace method to study the astrophysically
important neutral iron spectrum. These measurements
have quoted accuracies of 0.5% on a relative scale, and
2.5% on an absolute scale. This accuracy was obtained
through the use of a stable and isothermal furnace, low-
noise spectral intensity recording techniques, and two
identical high resolution spectrometers for the simulta-
neous recording of pairs of absorption lines. By selecting
successive line pairs of a suitable oscillator strength ra-
tio and adjusting the temperature and vapor pressure in
the furnace, a large dynamic range of oscillator strengths
could be covered. Recently, corroborative studies of the
uncertainties quoted in these measurements have been
undertaken, including tests that are coupled to other
methods that use combinations of lifetime and branching
ratio measurements [17.3].

The Hook Method
The absorption measurements described above deter-
mine the oscillator strength from the line intensity. An
alternative absorptive approach is the anomalous disper-
sion or “hook” method, which determines the oscillator
strength from the index of refraction at wavelengths near
the edge of an absorption line [17.1]. The advantages
of this method are its large dynamic range, its insen-
sitivity to the line shape, and the fact that it does not
saturate. The absorbing gas is placed in one arm of an
interferometer and a compensator is placed in the other
arm. This leads to the formation of oblique interference
fringes with two characteristic hooks symmetric about
the center of an absorption line. The oscillator strength
is determined by the wavelength separation W between
the hooks. Defining K = λik Nf, where Nf is the number
of fringes per unit wavelength, then

fik = πKW2

λ3
ikα

2a0 NL
(17.4)

where a0 is the Bohr radius.

Synchrotron Radiation
Storage ring synchrotron radiation facilities now pro-
vide a source of continuum radiation that can extend the
wavelength range of absorption measurements. A tech-
nique [17.4] has been developed and applied that utilizes
a hollow cathode discharge as an absorbing sample, syn-
chrotron radiation as a continuum source, and a CCD
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array for vacuum ultraviolet (VUV) detection. Here
relative oscillator strengths were obtained using two
separate detection systems. However, VUV calibration
standards are presently lacking (Sect. 17.1.4), and will
be required to obtain independent tests (Sect. 17.1.3) of
sets of branching fractions.

17.1.2 Emission Measurements

Emission methods use, for example, a hollow cath-
ode, wall-stabilized arc, or shock tube to excite the
source. Recent developments in the methods of Fourier
transform spectrometry (FTS) [17.5, 6] offer several
advantages over grating spectroscopy, as discussed
next.

Fourier Transform Spectrometry
As opposed to the dispersive nature of a grating spectro-
graph, FTS uses interference effects from a Michelson
interferometer. All radiation admitted to the spectrom-
eter is thus incident on the detectors at all times, but
different wavelengths are distinguished by their spatial
modulation frequencies. The interferogram from all si-
nusoidal signals is sampled at a prescribed interval of
path length, and compared with a laser of known fre-
quency following the same optical path. The spectrum
is recovered from the interferogram by means of a fast
Fourier transform (Sect. 8.1.3). Thus, for an FTS instru-
ment, the spectral range is determined by the sampling
step size, whereas the resolution depends on the max-
imum path difference (this is in contrast to a grating
spectrometer where the sampling step determines the
resolution, and the scan length determines the spectral
range).

The FTS method provides a number of attractive
features in precision oscillator strength measurements.
The axial symmetry and the replacement of the slit
by a larger aperture can provide a throughput that is
two orders of magnitude greater than that of a grat-
ing instrument of the same resolution. The precision
and reproducibility are determined by the laser stand-
ard and the linearity of the wavenumber scale. The
resolution can be increased as necessary to resolve
a specific source line. The superior resolution allows
blending and self-absorption to be more readily de-
tected. The spectral range is limited only by detectors
and filters. Recently, uv FTS instruments have been con-
structed that operate from the visible down to 175 nm.
Since all wavelengths are observed at all times, errors
from drifts in source conditions during scanning are
reduced.

Hollow Cathode Lamps
Hollow cathode discharge lamps are used extensively
for emission branching fraction measurements [17.5].
These lamps can generate an emission spectrum of es-
sentially any element, and the relatively low collision
rates result in line profiles that are narrow and primar-
ily Doppler broadened. The narrow line width is a major
advantage when studying line-rich spectra. The low col-
lision rates also imply that the discharges are far from
local thermodynamic equilibrium (LTE). However, this
does not affect the determination of branching fractions,
where only the relative strengths of lines from a common
upper level are measured. These measurements can then
be put on an absolute basis if lifetime measurements are
available for all of the upper levels.

17.1.3 Combined Absorption, Emission
and Lifetime Measurements

By combining measurements obtained in emission with
those obtained in absorption (or dispersion) to obtain
branching ratios, and then incorporating lifetime meas-
urements, it is possible to use a scheme that requires
no knowledge of level populations [17.1]. The scheme
was originally proposed by Ladenburg in 1933, and its
various modern implementations are known as “leap-
frogging,” “linkage” and “bow ties”.

The principle of “leap-frogging” or “linkage” is
illustrated in Fig. 17.1a. The decay of level 1 is un-
branched, so the 1 → 2 transition rate is assumed
known (kn) from a lifetime measurement. This is used
to specify the 2 → 3 oscillator strength using relative
absorption (ab) measurements for the 2 → 1 : 2 → 3
oscillator strength ratio (and appropriate factors of the
wavelengths and degeneracies). In a similar manner, this
is subsequently combined with relative emission (em)
measurements of the 3 → 2 : 3 → 4 branching ratio to
determine the 3 → 4 transition rate.

The principle of “bow ties” is illustrated in
Fig. 17.1b. The two branching ratios for 1 → 2 : 1 → 4
and for 3 → 2 : 3 → 4 are measured in emission (em).
The two oscillator strength ratios for 2→ 1 : 2→ 3 and
for 4 → 1 : 4 → 3 are measured in absorption (ab). Af-
ter correction for wavelength and degeneracy factors
between f and A values, these relationships are com-
bined into a quantity known as the “bow tie ratio,” which
would be unity for ideally accurate measurements. A sig-
nificant deviation from unity can be used to trace the
observations that are in error. Figure 17.1b is a “simple
bow tie” connecting two upper and two lower levels with
four transitions. Higher order sets of measurements can
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a) 1 3

2 4

kn

ab

em

b) 1 3

2 4

em

ab ab

em

Fig. 17.1a,b Illustration of methods for the determination
of ratios of oscillator strengths (ab = absorption, em =
emission, kn = known)

be similarly coupled; for example, a set of transitions
between three lower levels and three upper levels can be
coupled by nine simple bow ties.

In cases where both lifetime and complete branch-
ing ratio measurements exist for the same upper level,
then the branching ratios can be normalized to branch-
ing fractions divided by the lifetime to obtain absolute
transition probabilities.

17.1.4 Branching Ratios
in Highly Ionized Atoms

In highly ionized atoms, many measurements of life-
times in the 1–5% accuracy range have been made
by ANDC (Sect. 17.2.2) analysis of beam–foil meas-
urements. However, little work exists for the precision
measurement of branching ratios in highly ionized
atoms, where an intensity calibration of the detection
equipment is particularly difficult. In beam-foil exci-
tation, for example, Doppler broadening and Doppler
shifts, polarization due to anisotropic excitation, and the
short wavelength (≤ 200 nm) nature of the radiation are
not well-suited for use with standard techniques for cali-
brating grating spectrometer and detection systems by
the use of calibrated lamps. Calibrations have been car-

ried out using synchrotron radiation, or through the use
of previously known branching ratios.

One way in which lifetime measurements are used
to determine branching ratios involves precision studies
of the lifetimes of the individual fine structure com-
ponents of a multiplet decay. If one fine structure level
has a decay channel that is not available to the other
levels (for example, a spin-changing transition or an
autoionization mode made possible by a J-dependent
intermediate coupling) then the transition rate of the
extra channel can be determined by differential lifetime
measurements.

The use of Si(Li) detectors in the measurement
of very short wavelength radiation in highly ionized
atoms also offers possibilities for branching ratio meas-
urements. Since these devices can specify the photon
energy from pulse height information without the need
for a spectrometer, they can be calibrated for detection
efficiency as a function of energy. This type of detection
was recently used to determine the branching ratio of the
magnetic dipole channel to the two-photon decay chan-
nel in the 2s 2S 1

2
state in one-electron krypton [17.7].

Although radiometric calibration standards are avail-
able for λ > 280 nm, technical challenges exist for their
extension to shorter wavelengths. The urgent need for
these standards and their desired characteristics have
been discussed by Lawler et al. [17.4], and an opera-
tional prescription for combining sources of uncertainty
in their specification has been presented by Sikström
et al. [17.8]. A semi-empirical method for obtaining line
intensity standards in the VUV has also been proposed
[17.9, 10] that uses intermediate coupling (IC) ampli-
tudes deduced from measured energy level data to obtain
intensity ratios. This utilizes the observation that the
ns2np2 and ns2np(n+1)s configurations in the Si, Ge
and Sn isoelectronic sequences exhibit negligible config-
uration interaction, hence the intensity ratios within their
transition arrays are accurately prescribed by the IC am-
plitudes. For the neutral atoms the transitions occur in the
visible region, and measurements confirm the validity of
the empirical values. Thus, isoelectronic extensions can
yield VUV standards.

17.2 Lifetimes

The total transition rate summed over all decay channels
can be measured either through frequency-resolved stud-
ies of the level width, or through time-resolved studies
of the level lifetime. In order to determine the natu-

ral linewidth in a field-free spectroscopic measurement,
either the lifetime must be very short, or the Doppler,
pressure, and instrumental broadenings must be made
very small. Line widths have been determined using
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Fabry–Perot spectrometry at very low temperatures and
pressures, and in beam–foil studies of radiative transi-
tions in which the lower level decays very rapidly via
autoionization. The linewidth can also be determined
through the use of the phase shift method. Here modu-
lated excitation is applied to the source, thus producing
similarly modulated emitted radiation, and the width
can be specified from the phase shift between the two
signals. Other methods involve resonance fluorescence
techniques, where sub-Doppler widths are obtained be-
cause the width of the exciting radiation selects a subset
of particle motions within the sample. Resonance flu-
orescence techniques that can be used to determine
level widths include zero-field level crossing (the Hanle
effect), high-field level crossing, and double optical
resonance methods, but the Hanle effect is the most
common.

17.2.1 The Hanle Effect

In its most commonly used form, the Hanle effect makes
use of polarized resonance radiation to excite atoms in
the presence of a known variable magnetic field. The
magnetic substates of the sample are anisotropically ex-
cited, and the subsequent radiation possesses a preferred
angular distribution. By applying the magnetic field in
a direction perpendicular to the anisotropy, the angular
distribution is made to precess, producing oscillations in
the radiation observed at a fixed angle. At infinite pre-
cessional frequency the intensity would be proportional
to the instantaneous average angular intensity, but at fi-
nite precessional frequency it depends upon the decay
that has occurred during each quarter rotation. Measured
as a function of magnetic field, the emitted intensity
has a Lorentzian shape centered about zero field with
a width that depends on the lifetime and g-factor of the
level [17.2].

17.2.2 Time-Resolved Decay Measurements

The most direct method for the experimental determi-
nation of level lifetimes is through the time-resolved
measurement of the free decay of the fluorescence
radiation following a cutoff of the source of ex-
citation. An important factor limiting the accuracy
is the repopulation of the level of interest by cas-
cade transitions from higher-lying levels. For this
reason, decay curve measurements fall into two
classes: those that involve selective excitation of
the level of interest, thus eliminating cascading al-
together; and those that use correlations between

cascade connected decays to account for the effects of
cascades.

Selective Excitation
Lifetime measurements accurate to within a few parts
in 103 have been obtained through selective excitation
produced when appropriately tuned laser light is inci-
dent on a gas cell or a thermal beam, or on a fast ion
beam (Sect. 18.1). With a gas cell or thermal beam, the
timing is obtained by a pulsed laser and delayed coin-
cidence detection. With a fast ion beam, time-of-flight
methods are used. In either case, after removal of the
background, the decay curve of intensity vs. time is
a single exponential, and the lifetime is obtained from
its semilogarithmic slope. Laser-excited time-of-flight
studies were first carried out by observing the optical de-
cay of the ion in flight following excitation using a laser
beam which crossed the ion beam. In these studies, the
laser light was tuned to the frequency of the desired
absorption transition either through the use of a tun-
able dye laser, or by varying the angle of intersection to
exploit the Doppler effect. Recent measurements have
utilized diode laser excitation in this geometry [17.11].
A number of adaptations of this technique have been
developed in which the laser and ion beams are made
to be collinear, and are switched into and out of res-
onance within a segment of the beam by use of the
Doppler effect [17.12]. The collinear geometry can pro-
vide a longer excitation region and less scattering of
laser light into the detector than occurs in the crossed
beam geometry. In one adaptation [17.13], excitation oc-
curs within an electrostatic velocity switch, and the time
resolution is obtained by physically moving the velocity
switch. In another adaptation [17.12], the ion beam is
accelerated with a spatially varying voltage ramp. The
resonance region is moved relative to a fixed detector
by time-sweeping either the laser tuning or the ramp
voltage.

While these selective excitation methods totally
eliminate the effects of cascade repopulation, they are
generally limited to levels in neutral and singly ion-
ized atoms that can be accessed from the ground
state by strongly absorptive E1 transitions, and the
selectivity itself is a limitation. Many very precise
measurements have been made by these techniques,
but they have primarily involved ∆n = 0 reso-
nance transitions in neutral alkali atoms and singly
ionized alkali-like ions. A summary of these meas-
urements is given in Table 17.1, and a comparison
of these values with theoretical calculations is given
in [17.14].
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Table 17.1 Measured np 2PJ lifetimes

Atom n J τ (ns)

Li 2 1/2 27.20(20)a, 27.29(4)b

Na 3 1/2 16.38(8)c, 16.40(3)b, 16.30(2)d

3 3/2 16.36(2)c, 16.25(2)d

Mg+ 3 1/2 3.854(30)d

3 3/2 3.810(40)e

Ca+ 4 1/2 7.07(7)f, 7.098(20)g

4 3/2 6.87(6)f, 6.924(19)g

Cu 4 1/2 7.27(6)h

4 3/2 7.17(6)h

Sr+ 5 1/2 7.47(7)i

5 3/2 6.69(7)i

Ag 5 1/2 7.408(32)j

5 3/2 6.791(19)j

Cd+ 5 1/2 3.11(3)k

5 3/2 2.77(6)k

Cs 6 3/2 30.55(27)l

Ba+ 6 1/2 7.92(8)i

6 3/2 6.312(16)m

a[17.17] b[17.18] c[17.19] d[17.20]
e[17.21] f[17.22] g[17.23] h[17.24]
i[17.25] j[17.26] k[17.27] l[17.11]

m[17.28]

Advances have recently been made in the measure-
ment of transition probabilities of long-lived metastable
levels. Through a laser probing technique [17.15] us-
ing an ion storage ring, an extremely long lifetime (28 s)
has been measured [17.16]. The metastable level is pop-
ulated in the ion source and preserved in the storage
ring until it is destructively probed at variable times
after excitation. The laser light is collinearly merged
with the beam and tuned to a transition that promotes
the population of the metastable level to a higher un-
stable level. The fluorescence subsequently emitted by
this unstable level gives a relative measure of the pop-
ulation of the metastable level. Thus, by varying the
delay time between the excitation and the laser prob-
ing, a decay curve of the population remaining is
obtained.

Nonselective Excitation
Much more general access can be obtained by non-
selective excitation methods, such as pulsed electron
beam bombardment of a gas cell or gas jet, or in-
flight excitation of a fast ion beam by a thin foil.
Pulsed electron beam excitation can be achieved ei-

ther through use of a suppressor grid, or by repetitive
high frequency deflection of the beam across a slit
so as to chop the beam. Particularly in the case of
weak lines, the high frequency deflection technique
offers the advantages of high current and sharp cut-
off times. The high currents yield high light levels,
so that high resolution spectroscopic methods can be
used to eliminate the effects of line blending. Pulsed
electron excitation methods are well suited to measure-
ments in neutral and near neutral ions (although for very
long lifetimes in ionized species, the decay curves can
be distorted if particles escape from the viewing vol-
ume through the Coulomb explosion effect [17.29]).
However, for highly ionized atoms, the only gener-
ally applicable method is thin foil excitation of a fast
ion beam. Nonselective excitation techniques can also
be applied to measurements such as the phase shift
method [17.30] and the Hanle effect [17.31], in which
case cascade repopulation also can become a serious
problem. However, most of the attempts to eliminate or
account for cascade effects have occurred in decay curve
studies.

In beam–foil studies, the excitation is created in
the dense solid environment of the foil, after which
the ions emerge into a field free, collision free, high
vacuum region downstream from the foil. A time-
resolved decay curve is obtained by translating the foil
upstream or downstream relative to the detection ap-
paratus. The beam is a very tenuous plasma, which
has both advantages and disadvantages. The low den-
sity avoids the effects of collisional de-excitation and
radiation trapping, but also produces relatively low
light levels. This requires fast optical systems with
a corresponding reduction in wavelength dispersion,
and care must be taken to avoid blending of these
Doppler broadened lines. Methods have been developed
by which grating monochromators can be refocussed to
a moving light source, thus utilizing the angular depen-
dence of the Doppler effect to narrow and enhance the
lines.

In these nonselective excitation methods, the decay
curve involves a sum of many exponentials, one cor-
responding to the primary level, and one to each level
that cascades (either directly or indirectly) into it. De-
cay exponentials do not comprise an orthogonal set of
functions, and the representation of an infinite sum by
a finite sum through curve fitting methods (Sect. 8.1.2)
can lead to large errors. Fortunately, alternative methods
to exponential curve fitting exist, which permit the ac-
curate extraction of lifetimes to be made from correlated
sets of nonselectively populated decay curves.
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ANDC Method
Precision lifetime values have been extracted from
cascade-affected decay curves by a technique known as
the arbitrarily normalized decay curve (ANDC) method
(Sect. 18.1.1, [17.32]), which exploits dynamical corre-
lations among the cascade-related decay curves. These
correlations arise from the rate equation that connects
the population of a given level to those of the levels that
cascade directly into it. The instantaneous population
of each level n is, to within constant factors ξn involv-
ing the transition probabilities and detection efficiencies,
proportional to the intensity of radiation In(t) emitted in
any convenient decay branch. In terms of these inten-
sities, the population equation for the level n can be
written in terms of its direct cascades from levels i as

dIn

dt
(tp)=

∑

i

ξi Ii
(
tp
)− In

(
tp
)
/τn . (17.5)

Thus, if all decay curves are measured at the same
discrete intervals of time tp, the population equation pro-
vides a separate independent linear relationship among
these measured decay curves for each value of tp, with
common constant coefficients given by the lifetime τn
and the normalization parameters ξi . Although the sum
over cascades is formally unbounded, the dominant ef-
fects of cascading from highly excited states are often
accounted for by indirect cascading through the lower
states, in which case the sum can be truncated after
only a few terms. ANDC analysis consists of using this
equation to relate the measured Ik(tp) (using numerical
differentiation or integration) to determine τk and the ξi
through a linear regression. If all significant direct cas-
cades have been included, the goodness-of-fit will be
uniform for all time subregions, indicating reliability.
If important cascades have been omitted or blends are
present, the fit will vary over time subregions, indicating
a failure of the analysis. Very rugged algorithms have
been developed [17.33] that permit accurate lifetimes to
be extracted even in cases where statistical fluctuations
are substantial, and studies of the propagation and cor-
relation of errors have been made. Clearly the ANDC
method is most easily applied to systems for which re-
population effects are dominated by a small number of
cascade channels. Further applications are discussed in
Sect. 18.1.1.

17.2.3 Other Methods

Coincidence measurements provide another method
for elimination of cascade effects. While the low
count rates and correspondingly high accidental rates

make the application of these methods difficult for
optical spectra, the use of Si(Li) detectors for the
very short wavelength emission in very highly ion-
ized systems offers new possibilities [17.34] for these
measurements.

Another method of accounting for cascading in-
volves the combined use of a laser and beam–foil
excitation [17.35, 36]. The beam–foil excitation pro-
vides a source of ions in excited states, and a chopped
laser is used to stimulate transitions between two ex-
cited states. By subtracting the decay curves obtained
with laser on and with laser off, the cascade-
free, laser-produced portion of the decay curve is
obtained.

17.2.4 Multiplexed Detection

Recently, the detection efficiency and reliability of
beam–foil measurements have been improved through
the use of position sensitive detectors (PSD), which
permits measurement of decay curves as a function
both of wavelength and of time since excitation. The
PSD is mounted at the exit focus of the analyz-
ing monochromator, where it records all lines within
a given wavelength interval simultaneously, including
reference lines with the same Doppler shifts. De-
cay curves can be constructed by integrating over
a line profile, and that profile can be examined
for exponential content to eliminate blending. The
time dependent backgrounds underlying the decay
curves are directly available from the neighboring
channels.

The use of multiplexed detection greatly en-
hances the data collection efficiency, and causes many
possible systematic errors to cancel in differential
measurements. Effects such as fluctuations in the
beam current, degradation of the foil, divergence of
the beam, etc., affect all decay curves in the same
way.

The most accurate measurement [17.37] made
by beam–foil excitation (± 0.26%) used a type of
multiplexed detection in which two spectrometers si-
multaneously viewed the decays of the 1P1 and 3P1
levels of the 1s3p configuration in neutral helium. The
1P1 emission exhibited the desired multi-exponential de-
cay curve (with only weak cascading), whereas the 3P1
emission exhibited a zero field quantum beat pattern
superimposed on its decay because of the anisotropic
excitation of that level. The quantum beats provided an
in-beam time base calibration which permitted this high
precision.
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Spectroscopy18. Spectroscopy of Ions Using Fast Beams
and Ion Traps

A knowledge of the spectra of ionized
atoms is of importance in many fields.
A wide variety of light sources are avail-
able for the study of such spectra. In
recent years, techniques coming under the
broad headings of fast beams and ion
traps have been used extensively for such
studies. This chapter will consider the ad-
vantages each technique has for particular
applications.
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18.1 Spectroscopy Using Fast Ion Beams

A beam of ionized atoms has several advantages as
a spectroscopic source. Unlike arcs, sparks, and high
temperature plasmas, the ions can be studied in an envi-
ronment that is free of electric and magnetic fields and
relatively free of interparticle collisions [18.1]. Standard
accelerator techniques can be used to produce a well-
collimated, mass-analyzed beam of ions having a low
velocity spread. In principle, virtually any charge state
of any element, isotopically pure if required, can be
obtained. Finally, the well-defined velocity of the ions
permits the study of processes evolving in time in terms
of their spatial evolution along the beam. This is partic-
ularly important in the case of lifetime measurements.

18.1.1 Beam–Foil Spectroscopy

A beam of ions passing through a thin (50–200 nm) foil
emerges in a range of ionization states, with the mean
charge state increasing with the incident energy [18.2].
Thin foils made from a light element, usually carbon, are
used to minimize particle scattering and energy strag-
gling. Thus, a F+ beam of 0.5 MeV that enters a carbon
foil emerges with a mean charge of about +2e, while
a Xe ion beam at 180 MeV emerges with a mean charge
of about +29e. The outer electrons are distributed over
many different states, most of which then decay to lower
states by photon emission as the ions move away from
the foil. The beam-foil interaction is a highly nonse-
lective excitation process, which is an advantage for
spectroscopic studies but causes a problem for lifetime

measurements. (Methods for tackling this problem are
discussed in Sect. 17.2.2.) A major disadvantage of the
beam-foil light source is its low intensity; consequently,
scanning spectrometers have usually been equipped with
photon-counting detectors. In recent years, however, po-
sition sensitive detectors have become available, which
permit the simultaneous recording of information over
a wide spectral range, resulting in a greatly improved
detection efficiency (Sect. 44.4).

The intrinsic properties of the beam-foil interaction
are important in understanding its usefulness for spec-
troscopic studies. The electrons of the moving ion are
shielded from the travelling ion core as the ion passes
through the foil and are then recaptured into a statisti-
cal distribution of outer states. The probability that more
than one electron in a given ion will be captured in an
excited state is high relative to other light sources, and
hence the technique has been used extensively to study
doubly- and multiply-excited states [18.3] (Sect. 64.1).
The interaction also favours the production of high-L
Rydberg states [18.4] (Chapt. 14). At low incident ion
energies, electron capture can give a downstream beam
containing neutral and even negative ions. The first ob-
servation of photon emission between bound states in
a negative ion was achieved using beam-foil excita-
tion [18.5]. A more recent example of multiple excitation
in a negative ion is the identification in lithium-like He−
of the 2p3 4So state in which all three electrons are ex-
cited [18.6,7]. The observation of the same triply excited
level in neutral Li has resulted in one of the most pre-
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cise (40 ppm) wavelength measurements in beam-foil
spectroscopy [18.8]. The time-resolution inherent in the
beam-foil source can also be used to aid in the iden-
tification of transitions from long-lived states, such as
intercombination transitions [18.9] (Sect. 10.16). Here
the beam foil spectrum is first recorded close to the
foil and then far downstream (a few mm to a few cm);
“far” in this context means that the short-lived states
have had time to decay. The intercombination (or other
long-lived) transitions are then easily identified by their
relatively strong intensity in the (overall much weaker)
downstream spectrum. This has been a decisive step
in identifying laboratory lines with lines in the so-
lar corona [18.10, 11]. A recent example of beam-foil
spectroscopic analysis is given in [18.12].

One problem with using fast ions as a light source
for precision wavelength measurements is the inevitable
Doppler broadening of the spectral lines. However, this
can be removed by appropriately refocusing the spec-
trometer [18.13, 14]. Furthermore, since the Doppler
width varies with the wavelength, and the line width
of a given grating spectrometer used on a fast ion beam
usually is dominated by spectrometer geometry, not by
diffraction, Doppler broadening often becomes less im-
portant in measurements at shorter wavelengths, as in
the UV or EUV. This is the primary range of emission
from the more highly-ionized atoms, and that is where
beam-foil spectroscopy really comes into its own. For
example, the leading terms omitted in calculations of
the wavelength of the 1s2s3S−1s2p 3Po transition in
He-like ions [18.15] scale as Z4, with the result that
measurements made with higher-Z ions need not have
as high a precision for a meaningful test of the calcula-
tion as would be required for a low-Z ion. The beam-foil
measurement for the leading (J = 1 to J = 2) com-
ponent in Ni26+ [18.16] has an uncertainty of 0.02%,
which is about equal to that in the calculation. The two
values agree well within this limit. (Naturally, measure-
ments made using the beam-laser techniques discussed
in Sect. 18.1.3 yield results with a much higher pre-
cision, but such measurements are restricted to low-Z
ions because of the excitation energy steps and transi-
tion wavelengths involved; the theoretical uncertainties
in this case are also much smaller.)

Turning now to beam-foil lifetime measurements,
here the intensity of a given transition is studied as
a function of the time that has elapsed since excita-
tion, usually by stepping the foil upstream. Because
of the nonselective nature of the excitation, the possi-
bility exists that the state being studied is itself being
repopulated by higher-lying states, resulting in a de-

cay curve that consists of the sum of exponential terms,
one term corresponding to the primary level being stud-
ied and the other terms to higher-lying levels involved
in repopulating that level. The analysis of such decay
curves can be problematic. Several computer routines
have been developed to tackle this problem, such as
Discrete [18.17] and Homer [18.18]. One useful trick
here is to record the decay curve for each of the ma-
jor transitions repopulating a given primary level and
then include the lifetimes obtained for those transi-
tions as fixed parameters in fitting the decay curves
for that primary level. A more rigorous method to in-
clude the decay data from the repopulating transitions
in the analysis of the primary lifetime is the ANDC
technique described in detail in Sect. 17.2.2. An addi-
tional problem may arise in the measurement of very
short lifetimes, which tend to be associated with short-
wavelength transitions for which no lenses are available
to focus the beam at the spectrometer entrance slit. The
observation region is then defined by the spectrome-
ter aperture and extends for a finite length along the
beam that can be comparable to, or even greater than,
the decay length for that transition. Here it is nec-
essary to fit the decay curve including the vignetted
region around the foil [18.19, 20]. Lifetimes in the
picosecond regime have been successfully measured
in this way.

18.1.2 Beam-Gas Spectroscopy

While the use of a gas target in place of a foil has
the obvious advantage that it cannot break, the loss
of a tightly-localized excitation region means that the
fine time-resolution of the beam-foil light source is
largely lost. The beam-gas source, however, has two
main advantages. First, the passage of a beam of fast,
highly-stripped ions through a neutral gas results in the
production of recoil ions (Sect. 65.2) that are moving
very slowly relative to the beam ions, thus reducing the
Doppler broadening problem mentioned earlier. Sec-
ondly, it is possible to study details of the interaction
between the gas and beam ions, such as charge-exchange
reactions, as they occur, rather than merely observing
their consequences. Such experiments have experi-
enced a resurgence with the advent of the ECR ion
source [18.21, 22]. A recent example of such work is
given in [18.23].

When a fast beam of highly-charged ions passes
through a neutral gas, it leaves a trail of ionized gas atoms
in its wake. These ions recoil from the interaction re-
gion with relatively low velocities (v/c = 10−4 –10−5).
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Furthermore, the recoil velocities tend to be restricted
to a narrow range of angles approximately perpendic-
ular to the beam direction. Hence, observation of the
radiation emitted by the recoil ions transverse to their
motion, i. e., along a direction parallel to the beam,
gives a very low Doppler width, ∆λD/λ being typi-
cally 10−6, the limit imposed by the thermal motion
of the target gas atoms. Recoil ion spectroscopy is
therefore a useful procedure for precision wavelength
measurements for highly-stripped ions, such as He-
like Ar16+ recoil ions produced by a beam of 2 GeV
U70+ ions [18.24]. The energies and charge states of the
recoil ions may be determined using standard time-of-
flight techniques [18.25], and detecting the recoil ions
in coincidence with their progenitor ions yields infor-
mation on the dependence of the recoil energy on the
details of the ionizing collision [18.26]. In later de-
velopments, the differentially pumped gas target has
first been replaced by a supersonic jet target which re-
duces the thermal motion of the target particles, and
then by a cold atom sample in an atom trap; replac-
ing optical detection by position-sensitive fast-timing
detectors for all collision products, the technique of
COLTRIMS (cold target recoil ion momentum spec-
troscopy) can now be employed to study the momentum
distribution of the collision partners (developed largely
by the groups of H. Schmidt-Böcking (Frankfurt) and
C. L. Cocke (Manhattan, Kansas)).

Measurements made on the projectile ions them-
selves also yield useful information about electron-
capture processes. The strength of such a process is
described in terms of its cross section (Sect. 63.1.2).
Recent work has shifted from measurements of the to-
tal cross section for electron capture to more detailed
studies of the individual capture channels [18.27]. Such
studies provide much more stringent tests of theoreti-
cal models of ion–atom charge transfer processes. They
often involve such techniques as spectroscopy of the op-
tical radiation or of the Auger electrons (Sect. 25.1.1)
emitted by the ions after electron exchange. This topic
is covered in Chaps. 51, 64, and 65. A further example
is the study by Prior et al. [18.28] of the angular dis-
tribution of Auger electrons emitted by doubly-excited
states formed in hydrogen-like projectile ions with an en-
ergy of 40 keV, following double-electron capture from
target helium atoms. They found that significant align-
ment of the magnetic substates of the projectile ions can
result from electron capture. Such anisotropies in the
Auger electron emission demonstrate the danger of using
single-angle measurements to determine cross sections.

18.1.3 Beam-Laser Spectroscopy

As for the beam-foil source, excitation of a beam of
fast ions by a transverse tuneable laser produces the
localized excitation required for high temporal resolu-
tion. Now, however, the excitation is highly selective,
permitting the population of just a single level. The
laser-induced-fluorescence (LIF) signal as a function
of the distance along the beam from the excitation
region is therefore described by a single exponential
decay, for which an exact analysis with rigorous er-
ror bounds is possible. The restriction to levels that
can be accessed by electric dipole (E1) transitions from
the ground and metastable levels may be overcome by
combining laser excitation with a nonselective mode of
excitation, as in beam-gas-laser [18.29,30] or beam-foil-
laser [18.31] measurements. A discussion of precision
lifetime measurements using laser excitation of a fast
beam is given in Sect. 17.2.2. Here the discussion will
be limited to precision optical spectroscopy. Exam-
ples of precision beam-laser wavelength measurements
may be found in [18.32, 33]. A further example is the
measurement of the spin-forbidden 1s2s 1S0–1s2p 3P1
interval in N5+ [18.34], where the experimental value,
986.321 (7) cm−1 is in agreement with the calculated
value, 986.58 (30) cm−1 [18.34]. An example of a sim-
ilar measurement in a molecular ion is given in [18.35],
while a recent study of the hyperfine structure in a rare-
earth ion is given in [18.36].

A major aim in beam-laser spectroscopy is to min-
imize the width of the LIF signal. The instrumental
linewidth of the laser itself can be reduced to below
1 kHz, so that the width of the LIF signal is usually
dominated by the velocity spread of the ions and by the
divergences of the ion and laser beams. The effects of
beam divergence can be minimized by using a collinear
geometry, in which the ion and laser beams are parallel.
If the angle between the ion and laser beams is θ, the
Doppler-shifted laser frequency, as measured in the ion’s
rest frame, is fL(1−β cos θ), where fL is the laser fre-
quency and β = v/c and is much less than unity. Hence
the range in frequency resulting from a beam divergence
∆θ is given by fLβ sin θ∆θ, which tends to zero as θ
tends to zero. One disadvantage of the collinear geome-
try is that, if the laser is brought into resonance with an
atomic transition by adjusting the ion velocity and/or the
laser frequency, the LIF signal is produced over the entire
overlap region between the ion and laser beams. The res-
onance can be restricted to a desired region by setting the
ion velocity to be slightly off resonance. The velocity can

Part
B

1
8
.1



272 Part B Atoms

then be adjusted locally for resonance with the laser by
passing the ion beam through a Faraday cage electrode
to which an adjustable voltage is applied [18.37, 38].
The width of the resonance signal here is usually dom-
inated by the spread in the ion velocity, c ∆β, usually
arising in the ion source being used. The width result-
ing from a given ∆β can therefore be reduced by using
a higher ion energy. This is known as kinematic com-
pression. In terms of the ion energy E, the range in the
ion energy ∆E and the ion mass M, the Doppler width
of the LIF signal is given by fL∆E/(2Mc2 E)1/2, and
thus decreases as E is increased.

A more significant improvement in frequency res-
olution is made possible by including rf resonance in
a laser double-resonance experiment. Here the ions are
brought into resonance with an off resonance laser using
two separate Faraday cage electrodes. The first reso-
nance depletes the population in the ion state from which
excitation occurs, thus weakening the second resonance
signal. An rf field is then applied to the ions between
the two electrodes. Tuning the frequency of this field
over the region that corresponds to fine- or hyperfine-
structure intervals in the ion can then repopulate the state
from which laser excitation occurs, thus re-establishing
the second laser LIF resonance signal. The width of
the resonance signal is now determined by the transit-
time broadening that results from the finite time spent
by the ions in the rf field. For example, in the experi-

ments by Sen et al. [18.38] with a beam of 131Eu+ ions
at 1.35 keV, the width of the laser-rf double-resonance
signal was 59 kHz, compared with a width of 45 MHz
obtained using a single LIF resonance.

18.1.4 Other Techniques
of Ion-Beam Spectroscopy

Ion beams find uses in many other applications, three
of the main areas involving storage rings (discussed
in Sect. 18.2.2), merged beams, and studies of the
ion-surface interaction at grazing incidence. Merged
beam experiments usually study recombination pro-
cesses involving electrons and atomic or molecular ions
(Sect. 54.1 regarding recombination processes). The
advantage of using merged beams is that the time devel-
opment of the processes may be studied spatially, while
maintaining a low relative velocity between the ions
and the electrons. This permits measurements at the low
energies of importance in studies of Rydberg state for-
mation and in some astrophysical applications. A very
different type of experiment studies the ion-surface in-
teraction using a well-collimated ion beam at grazing
incidence on a clean, flat surface. Such experiments have
revealed very large atomic orientations [18.39]. This ori-
entation can be passed on to the nuclei of the atoms
via the hyperfine interaction, thus providing a source of
oriented nuclei.

18.2 Spectroscopy Using Ion Traps

A basic purpose of ion traps is to confine ions to the field
of view of detectors for time intervals that are longer
than the radiative lifetimes of long-lived atomic levels
of possible interest. At thermal energies, the ion veloc-
ities are large enough to leave a typical detection zone
within microseconds. Electrostatic (Kingdon), magnetic
(Penning), and radiofrequency (Paul) traps have served
for this task for decades (Chapt. 75), with recent addi-
tions to the armory by electrostatic mirrors of various
shapes [18.40,41]. Two trap varieties of particular inter-
est for spectroscopy, the electron beam ion trap and the
heavy-ion storage ring, will be treated in Sects. 18.2.1
and 18.2.2, respectively.

Collisions with the neutral atoms and molecules of
the residual gas cause charge exchange, and thus loss of
the ion species. Therefore, an ultrahigh vacuum is of pri-
mary importance. Over the last three decades the figure
of merit has moved from pressures of about 10−8 mbar
to about 10−11 mbar. Further improvements can be ex-

pected from working with traps at liquid helium temper-
ature; in fact, even ion traps as large as an ion storage ring
at Aarhus (Sect. 18.2.1) have been cooled considerably
to vary both the vacuum and the amount of blackbody
radiation experienced by ions in weakly bound states.

The energy steps in multiply charged ions are regu-
larly larger than what is available from lasers, at least for
excitation from the ground state. Hence, single-ion trap-
ping and laser spectroscopic investigation are rarely an
option for these ions; many ions are needed to provide
a sufficiently strong emission signal. The production of
quantities of multiply charged ions used to be achieved
by electron bombardment of a dilute gas inside the trap
volume, or by ablation from a surface. Evidently, this is
detrimental to any subsequent measurements, since the
residual gas is still present. Precision work like mass
spectrometry that exploits the ion cyclotron motion of
stored ions, or detailed studies of the radiative processes
(including the effects of the interrogating laser field)

Part
B

1
8
.2



Spectroscopy of Ions Using Fast Beams and Ion Traps 18.2 Spectroscopy Using Ion Traps 273

in ions nowadays employ a sequence of ion traps. In
a first trap, the ions of interest are produced and pos-
sibly cooled by laser light or other mechanisms, and
then, by applying electric fields, the ions of interest
are moved to a second trap that works under better
vacuum conditions or that can be more finely tuned.
In the same sense, a heavy-ion storage ring is being
fed by an isotopically pure, charge-state selected ion
beam. Any loss of ions, measured by whatever means,
is thus proportional to the loss of the ion species of
interest.

18.2.1 Electron Beam Ion Traps

Electron beam ion traps (EBIT) make use of the attrac-
tive potential of a high-density electron beam, as well
as of the space charge compensation that is provided
by the electron beam to any ion cloud already trapped.
Most electron beam ion traps generate the high-current
density electron beam by feeding the beam from an elec-
tron gun into a magnetic field that then compresses and
guides the beam. In most cases, superconducting mag-
nets with fields of 3 to 8 T are being used, and current
densities of the order of 104 A/cm2 are reached. This
high current density corresponds to an electron density
of the order of 1011 /cm3. This low-density environment,
roughly comparable to tokamak discharges, is one of the
factors that renders the electron beam ion trap a very
interesting device for laboratory astrophysics. The mag-
netic field helps to confine any ion cloud that is produced
from the residual gas (or gas bled in) or from injected
low charge ions. However, the ions could move away
along the field lines, if they were not stopped by poten-
tial barriers provided by electrically charged drift tubes.
Obviously, the basic design is the same as that of a Pen-
ning trap, with the permanent electron beam added. In
fact, EBIT with the electron beam on has been said to
operate in electronic trapping mode [18.42]; while the
same device with the electron beam off (“magnetic trap-
ping mode”) still works as a Penning trap. This option of
producing an ion cloud with intense electron bombard-
ment and then studying the ions without the electron
beam present is the basis for a variety of experiments on
charge exchange (CX) reactions and long-lived excited
levels [18.43] (see below).

The first working electron beam ion trap, EBIT-I,
has been set up at Livermore [18.44,45]. The successful
operation instigated an upgrade to SuperEBIT, the first
such machine that was able to completely ionize all
naturally occurring elements [18.46]. Based mostly on
the Livermore design, some 8 to 10 EBITs are now

either running or under construction around the world.
The EBIT operating principles have, for example, been
described by Currell [18.47].

Ionization of ions trapped in the combination of
electrical fields proceeds as long as the electron beam
energy is high enough to overcome the ionization poten-
tial. Thus, the highest charge state can be pre-selected
by the appropriate choice of the electron beam energy.
The technical effort required to reach, for example, bare
uranium in SuperEBIT is much smaller than in an ion
accelerator. In both cases the ionization is achieved by
frequent energetic collisions of ions with electrons. In
SuperEBIT, the ions are (practically) stationary, and the
design energy of SuperEBIT, 250 keV, is enough to re-
move even the last electron of uranium. At a heavy-ion
accelerator, the electrons are stationary (in a foil tar-
get), and the ions are fast. Consequently an ion energy
per nucleon that is higher by the proton/electron mass
ratio is required – some 500 MeV/amu. Such energetic
ion beams are only available in a few large accelera-
tor laboratories, whereas an electron beam ion trap with
its auxiliary equipment fits into an office-sized labora-
tory space. Of course, there are experiments that need
specific properties of either fast ion beams or station-
ary ions, so both types of devices have their specific
merit.

The ions in an EBIT are not only stationary in
the sense that they are localized in a cloud, and mov-
ing either way along the magnetic field with the same
probability, but their energy (temperature) can also be
controlled by the height of the potential barriers. The
voltages on the confining drift tubes are usually cho-
sen to be few hundred volts. This makes for barrier
potentials +qeU (charge state q, elementary charge
e, voltage U) that are higher for highly charged ions
than for low-charge state ions. This not only bene-
fits the confinement of highly charged ions directly;
light ions (residual gas or purposely bled in gases)
may become fully ionized by the collisions with the
electron beam and by charge exchange, but they still
have a larger chance to evaporate from the trap and
thus they cool the remaining ion cloud. Under typical
conditions, the ion cloud may have a temperature of
a few keV. This can be lowered by introducing a cool-
ing gas and by lowering the potential barriers. With
Cs45+ in the trap, this has been demonstrated by re-
ducing the (thermal) Doppler spread of X-ray emission
lines until it was smaller than the natural line width
of the emitter, thus yielding a measurement of fem-
tosecond level lifetimes from highly resolved X-ray
spectra [18.48].
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The other good level lifetime range of an EBIT
reaches from a few microseconds (limited by practical
switching issues) to many milliseconds. Under direct
optical (X-ray, EUV, visible) observation of a spectral
feature, the electron beam is used to produce an ion
cloud with ions of a desired charge state. When the elec-
tron beam is stopped, all direct excitation and prompt
emission ceases. Any later photon signal relates to de-
layed emission from long-lived levels, or from excitation
by charge transfer collisions (highly charged ions cap-
turing electrons from the residual gas atoms). CX is
an important loss mechanism, and the CX signal also
serves as a monitor of the number of ions remaining
in the trap. Owing to the excellent vacuum in cryo-
genic EBITs, trapping times of many seconds, if not
minutes have been observed [18.43]. The ion loss rate
is the major correction to the apparent decay time of
the delayed photon signal. For atomic level lifetimes
of a few milliseconds and less, this correction is small
(a few percent or less). EBIT lifetime measurements
that take this correction into account yield results that
agree with those from heavy-ion storage rings [18.49]
and that are, at uncertainties of 0.5% and less, remark-
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Fig. 18.1 The lifetime of the 1s2s 3S1 level in the He iso-
electronic sequence varies by 15 orders of magnitude from
He (about 6000 s) to Xe52+ (a few picoseconds). The figure
shows the deviation of selected experimental results from
calculations, and indicates the dominant experimental tech-
niques for the various lifetime ranges. The consistency of
experimental results from a heavy-ion storage ring (TSR
Heidelberg) and an electron beam ion trap (Livermore
EBIT-II) with theory in the low-Z range is impressive.
(After [18.50]).

ably consistent with theory in a case for which the
theory can do very well (see Fig. 18.1). This observation
can be turned around and interpreted as a demonstra-
tion of the reliability of the experimental techniques
that then can be applied to more complex cases in
which theory evidently has problems (for examples,
see [18.50, 51]).

An EBIT is an excellent light source for precision
spectroscopy of highly charged ions because it not only
gives access to all charge states of all elements, but it
does so at low particle densities. Of particular inter-
est to precision spectroscopy have been the ions with
a single valence electron (Li, Na, Cu isoelectronic se-
quences) that are rather amenable to calculation. Such
spectra of ions up to Z = 60 or 70 have been meas-
ured at low-density plasmas like the tokamak, and they
have been found to agree well with theory. Higher
charge states were then reached in laser-produced plas-
mas (Sect. 44.1.2), but the wavelength results seemed
to deviate from the theoretical trend that had sup-
ported the tokamak results. There also were (very few)
high-nuclear charge Z data from fast ion beams. Elec-
tron beam ion trap data have now confirmed that the
trend of the tokamak data was correct and that the-
ory [including second-order quantum electrodynamics
(QED) contributions] provides a good description of the
n = 3 (Na sequence) [18.52] and n = 4 levels (Cu se-
quence) [18.53] up to Z = 92, within the 40 ppm error
margin of the EBIT results for the heaviest Cu-like ions.
The agreement with theory for the Zn-like ions of the
same elements is much poorer. As the QED contribu-
tions are rather similar, this is a problem of theory with
the computational treatment of two (and more) valence
electrons in the same shell.

The atomic systems purportedly under best theo-
retical control are H-like ions, with only one electron
in total. In high-Z H-like ions, the lines of high-
est interest are in the hard X-ray range (n = 1−2),
or are severely lifetime-broadened (2s–2p) and in the
EUV. One line is in the visible (for a number of
ions), where it is accessible to high-resolution spec-
troscopy, and not even notably broadened, because its
upper level has a millisecond-range lifetime: the M1
transition between the hyperfine levels of the ground
state. For two isotopes (of Bi and Pb), this transition
has been induced by laser radiation in a heavy-ion
storage ring ([18.54], see below), and for 5 isotopes
(of Re, Ho, and Tl) emission spectroscopy at the Su-
perEBIT electron beam ion trap [18.55] was successful.
Using the ion cloud (with its cross section largely
determined by the electron beam diameter of about
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70 µm) as a light source without a further entrance
slit, a high-efficiency transmission grating spectrom-
eter, and a position-sensitive detector, lines from two
Tl isotopes were recorded simultaneously [18.55]. The
differential effects of the two nuclei yielded additional
information on the charge distribution in the nucleus,
on top of the magnetic moment distribution that makes
up the dominant effect. These results are required for
a better interpretation of parity nonconservation (PNC;
Chapt. 29) measurements of neutral Tl atoms, in which
the nuclear magnetic moments so far have been treated
only as a point dipole. Corresponding measurements
are also being done on Li-like ions, and again the
most precise data so far (on Bi) have been obtained
at SuperEBIT.

One of the pertinent problems in astrophysics is the
cataloguing of spectral lines in all spectral ranges, both
for identifying spectral features and thus learning about
the composition of a light source, and for modeling
of the light source in order to understand its “operat-
ing conditions”. Even data bases that claim “practical
completeness”, however, are found to be grossly incom-
plete in the EUV and soft-X-ray ranges that have been
opened to high-resolution observations by the grating
spectrometers on board the Chandra and XMM-Newton
spacecrafts. Here observations at electron beam ion traps
fill in much of the needed data, at comparable quality.
Moreover, an EBIT as a kind of analog computer does
more than provide correct line positions: the spectra
show line ratios from a light source with known elec-
tron energy (and the option of known temperature by
simulating a Maxwellian energy distribution [18.56])
and particle density. This serves both as a check on
collisional-radiative models and as an immediate data
resource for astrophysics.

Most X-ray data from EBITs have been collected
using solid state detectors [Si(Li), Ge] that offer
high detection efficiency (large solid angle) and sig-
nal timing on the microsecond scale, but feature poor
spectral resolution. High-resolution instruments like
crystal spectrometers are necessary to analyze spectra
in any detail; equipped with position-sensitive detec-
tors, such instruments do much better than scanning
spectrometers in terms of data collection rate and cal-
ibration. However, they suffer from the low diffraction
efficiency of the crystals. Recently a new device, the
microcalorimeter, has started to show its interesting
properties. In these devices, small absorbers at mK-
temperatures show a measurable temperature increase
when absorbing an X-ray photon, and the signal is pro-
portional to the deposited photon energy [18.57]. The

linewidth of the best devices is below 10 eV (not as
good as a crystal spectrometer, but much better than
a traditional solid state diode), the sensor pixels can
be grouped in arrays to make for a larger area and for
cross references among pixels (which helps with cal-
ibration and with the rejection of cosmic ray events),
and the signal processing is fast enough to permit time
resolution on the millisecond range. A spaceflight engi-
neering spare has been used at the Livermore EBITs
to study, for example, soft-X-rays of light elements
as seen from CX near comets [18.58], or measure the
(10 ms) time constant of the M3 decay in a Ni-like ion
(Xe26+) [18.59].

Last, but not least, the well defined and adjustable
electron beam energy permits detailed studies of the in-
teraction of fast electrons with highly charged ions. This
includes, for example, the spectroscopy of dielectronic
recombination (DR) resonances, or the exploration of ra-
diative recombination (RR) (Chapt. 55). These processes
can be investigated up to the highest ion charges, where
relativistic and QED contributions (like the Generalized
Breit interaction) matter.

18.2.2 Heavy-Ion Storage Rings

With foil-excited ion beams and long level-lifetimes,
decay curves spread out along the beam, and the sig-
nal from a given width of the field of view may drop
to the detector background level. The decay lengths of
microsecond lifetime levels are on the order of 10 m,
and those of millisecond levels are tens of kilometers.
In such cases it is advantageous to curve the beam line
around on itself, forming a storage ring, in which the
ions pass in front of the detector over and over again.
Heavy-ion storage rings need excellent vacuum condi-
tions (10−11 mbar and better) to reach storage times of
seconds, minutes, or hours, depending on the electronic
structure of the stored ions and on the ion beam en-
ergy. The dominant loss processes are electron capture
and loss, small angle scattering, and large angle (in-
elastic) scattering as with any fast ion beams [18.60],
but these are aggravated here by the much longer path
lengths.

Storage rings (for example, TSR Heidelberg,
ASTRID Aarhus, CRYRING Stockholm, ESR Darm-
stadt), with magnetic dipoles and quadrupoles for beam
transport and focusing, sort the stored particles by their
momentum. The typical ion beam energies range from
a few dozen keV total to hundreds of MeV per nucleon
(ESR). Electrostatic storage rings (ELISA Aarhus and
more under construction) have only electrical fields and

Part
B

1
8
.2



276 Part B Atoms

select by particle energy, usually below about 100 keV
(for a review, see [18.61]). They are more suitable for
low-charge heavy ions and ion molecules, including
biomolecules, than the magnetic rings that can han-
dle very fast particles. Magnetic storage rings usually
have electron cooler sections in which a “cool” elec-
tron beam (with a low longitudinal velocity spread
from kinematic compression) of almost the same ve-
locity as the circulating ion beam is merged with the
latter for a path of a few meters (and is then de-
flected out again). By scattering among electrons and
ions, the momentum spread of the electrons (small) and
ions (larger) equilibrates, leaving the ion beam with
a narrower momentum distribution and thus cooled.
Cooling, which typically takes a few seconds, im-
proves the storage behaviour of the ion beam and
the energy resolution of, for example, dielectronic re-
combination (DR) studies (Chapt. 55). For these, the
same electron cooler is now tuned to provide elec-
trons at a well defined but different velocity. Thus the
electron cooler can serve as an electron target, with-
out the complications of a foil target in beam-foil
spectroscopy. The difference velocity can be chosen
from a wide range, including zero. Extremely low en-
ergy collisions are being investigated for the study
of DR and for the recombination of molecular rad-
icals. When a beam of molecular ions is injected,
storage is long enough to let some of the internal
degrees of freedom relax, and then a beam of mo-
lecular ions can be extracted that are closer to their
ground state.

A cooled ion beam, with its narrow velocity dis-
tribution, is also of interest for laser-ion interaction
studies, offering higher resolution and better signal.
Laser-assisted electron capture in the electron cooler,
as well as laser spectroscopy on high-lying levels pop-
ulated by DR, are possible. One of the problems with
precision wavelength measurements involving fast ions
is, as always the accurate determination of the veloc-
ity, as a step towards determining Doppler corrections.
At TSR Heidelberg, a beam of Li+ ions was subjected
to a laser beam from ahead, tuned to one of the 2s–2p
transitions. A second laser beam from behind probed
the position of the Lamb dip in the velocity distri-
bution and thus assured that it would meet the same
velocity group of the multi-MeV stored ions. Accurate
off-line calibrations of the laser frequencies then permit-
ted a test of the Doppler formula to a relative precision
of 2.2 × 10−7 [18.62].

The Doppler shift determination in any observation
of fast ions requires accurate angle measurements. These
are nontrivial, because the detection efficiency of any
finite size spectrometer or extended detector may be
non-uniform as a function of position or angle. One tech-
nique calls for segmented (“granular”) X-ray detectors,
the strips of which are calibrated individually [18.63].
Relativity changes the emission pattern seen in the lab-
oratory rest frame to one that favours forward emission.
This is beneficial for zero-degree spectroscopy, that is, an
observation along the ion beam path. At ESR Darmstadt,
bare ions captured an electron in the electron cooler sec-
tion, and the resulting X-rays were detected from straight
ahead (behind the next dipole magnet that deflected the
ion beam). This geometry maximizes the Doppler shift,
but minimizes the uncertainty relating to geometry. Also,
after electron capture, the ion in the bending magnet
section follows a trajectory that differs from that of the
unperturbed ions. The ion can be detected and, in coin-
cidence with the X-ray detector, make for a very clean
and charge-specific spectrum. Similar coincidence mea-
surements make it possible to use a low-pressure gas jet
target in a high-energy ion storage ring, evaluating only
coincidences of X-ray photons and charge-changing
events [18.63]. Fast ions (energetic enough to achieve the
desired charge state) can also be decelerated in a storage
ring, which helps to do systematic checks of the Doppler
effect and to work at lower Doppler shift [18.63].

As mentioned in Sect. 18.2.1, laser-resonance tech-
niques have been used to find the ground state hyperfine
transition in two H-like heavy isotopes. In one of them,
the lifetime was also measured, by recording the fluo-
rescence decay from the ion beam after switching off
the laser [18.54]. For lower charge states, one can ex-
ploit the excitation that ions carry into the ring from their
production in the ion source, or from stripping processes
in the injector accelerator [18.64]. Lifetimes from half
a millisecond to several seconds have been measured this
way by passive observation [18.50], with an accuracy of
better than 0.2% in favourable cases. Other techniques
use excitation by DR in the ring [18.65], or laser prob-
ing of the remaining metastable level population so that
fluorescence is emitted near a photomultiplier detec-
tor [18.66]. With a stored beam of negative ions, even
blackbody radiation may be sufficient to photodetach the
weakly bound last electron; the ensuing neutral atom is
not deflected at the next bending section and leaves the
ring to be detected. All in all, lifetime measurements at
storage rings reach from 10 µs to about 1 min.
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Line Shapes a19. Line Shapes and Radiation Transfer

The shapes of collisionally broadened atomic lines
is a topic almost as old as Fraunhofer’s discovery
of the existence of discrete lines. Lorentz pro-
vided the first quantitative theory in 1906 [19.1],
and Weisskopf advanced this to the impact the-
ory by 1933 [19.2]. Holtsmark [19.3], Kuhn [19.4]
and Margenau [19.5] meanwhile developed the
quasistatic or statistical theory which describes
the line wing, and Jablonski put this on a quan-
tum mechanical footing in the context of free–free
molecular radiation [19.6,7]. By the 1940s, satellite
bands in the line wings, and a variety of high and
low pressure line shapes and broadening rates
had been measured. Initial confusion regarding
the validity of the contrasting impact versus static
approaches was largely resolved by unified treat-
ments of the Fourier integral theory [19.8–13].
Baranger then provided a quantum basis for the
impact theory, including level degeneracies [19.14].
Descriptions can be found in a variety of reviews
and references therein, including [19.2, 5, 15–20].
The broadening of molecular lines involves the
additional complication of rotationally nonadia-
batic collisions; this was initially addressed by
Anderson [19.12, 13] and later with great thorough-
ness by van Kranendonk [19.21]. This chapter and
most of the above theories are concerned with
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neutral atomic gases, which is sometimes
called pressure broadening. In plasmas, elec-
tron, ion, and neutral collisions all contribute
to the line shapes and strengths; thus the
emitted lines provide a powerful diagnostic of
plasma conditions. Neither molecular nor plasma
broadening will be covered here; the latter is
reviewed in [19.17–20, 22], and in Chapts. 59
and 48.

19.1 Collisional Line Shapes

The neutral-gas theories described above generally used
phenomenological or long range forms of the atomic
and molecular interactions, and most measurements
were not sufficiently detailed to test the validity of
these parameterizations or the theoretical approxima-
tions. A great deal of the work since mid century has
been directed towards obtaining more realistic and ac-
curate descriptions of these interactions and of the full
line shapes. In addition, many new types of observa-
tions have stimulated variations on the basic theories
and descriptions. This includes topics such as collision-
induced forbidden transitions, satellite shapes, spectral
and polarization redistribution, orientation and align-

ment effects, Doppler-free spectroscopy and very low
temperature collisions. Most of these topics are beyond
the scope of this brief and basic description of neutral
collisional line shapes.

19.1.1 Voigt Line Shape

An atomic (or molecular or ionic) line has an intrinsic
Lorentzian shape that reflects the Fourier transform of
the exponentially decaying spontaneous emission. For
a spontaneous decay rate Γ , the fullwidth at half max-
imum (FWHM) is ∆ω= Γ . Due to the Maxwellian
distribution of atomic velocities v in a thermal va-
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por, and the Doppler shift ∆ωD = v/λ, the resonance
frequencies of atoms in the laboratory frame have
a Gaussian distribution. The Doppler width of this
distribution is approximately ω0u/c, where ω0 is the
resonant frequency and u is the mean thermal vel-
ocity. The full line shape is thus a convolution of
the natural Lorentzian with the thermal Gaussian;
a Voigt profile. In the presence of collisions, the
line from each atom broadens, shifts and becomes
asymmetric, and this is normally convoluted with the
Gaussian velocity distribution to obtain the complete
line shape. Collisions may also cause weak or dipole-
forbidden transitions to become stronger as well as
broader.

19.1.2 Interaction Potentials

Theories of collisional line shapes consider an en-
semble average of collisional interactions. For atomic
gases, the description of each individual collision or
interaction generally starts with a molecular model for
a pair of interacting atoms, since the Born–Oppenheimer
approximation is appropriate for thermal atomic colli-
sions (electron velocities % nuclear velocities) [19.23].
The radiative transition then occurs between adiabatic
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Fig. 19.1 Diagrammatic representation of a free–free molecular
radiative transition and the classical Franck–Condon principle. Adia-
batic potentials (Vu and Vg), the difference potential equal to the
classical transition frequency (dashed), nuclear kinetic energies and
wave functions Φu(R) and Φg(R) are indicated. The position RC

is the classical radiation position for the initial (Eu) and final (Eg)
energies shown

electronic molecular states that separate to the atomic
states of the transition under consideration. The nota-
tion Vu(R) denotes the electronic energy of the upper
state, and Vg(R) the lower state, where R is the inter-
nuclear separation, and the total atomic energies are E1
and E0 with E1− E0 = hω0 (Fig. 19.1). The next sim-
plification is to assume that the atom-pair statistically
branch into adiabatic motion along each of the molecu-
lar states associated with the initial atomic state, and
radiation to each of the final states is summed inde-
pendently, assuming they are also completely adiabatic.
This ignores an inevitable nonadiabatic coupling be-
tween the states as their energy separation decreases to
zero at large R, but as discussed below this has been
shown to have a very minor effect on line broadening.
The single-collision problem then reduces to calculat-
ing the spectrum of a molecular transition between
each upper and lower pair of adiabatic states, for each
initial state of internuclear motion and all possible fi-
nal motions, and summing these weighted by the rate
of initial collisional motions. However, such calcula-
tions are only necessary to elucidate particular quantum
features, because the classical oscillator approxima-
tion, impact approximation, quasistatic approximation,
and classical Franck–Condon principle provide major
conceptual and calculational simplifications. These are
presented in the context of free–free transitions in the
following sections.

19.1.3 Classical Oscillator Approximation

Consider a free–free molecular radiative transition of
energy �ω= Eu− Eg between upper (u) and lower (g)
states of total energy Eu and Eg, as shown in Fig. 19.1.
Each elastic scattering state is the product of an elec-
tronic adiabatic state φ(r, R) and a nuclear motion state
Φ(R) of the molecule. The electronic states u and g have
effective potentials

V e
q = Vq + l(l+1)/R2 , (19.1)

where q = u or g. Examples of such V(R) and Φ(R)
for the case of l = 0 are shown in Fig. 19.1. The elec-
tric dipole radiation operator that couples these states is
normally a weak perturbation that does not alter these
potentials or wave functions. For definiteness assume
the atom is initially in the upper state, and that an atom
pair approach with kinetic energy Ti and separate with
T f , as indicated. The intensity I , or transition prob-
ability, is proportional to the squared matrix element of
the dipole operator er = eΣiri between initial and final
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states:

I ∝
∣∣∣∣

∫
d3 R

∫
d3rΦu(R)

∗φu(r,R)∗erφg(r,R)Φg(R)

∣∣∣
∣

2

= µ2
∣∣∣∣

∫
d3 RΦu(R)

∗Φg(R)

∣∣∣∣
2

, (19.2)

where the last factor is the Franck–Condon factor, µ is
the dipole moment, here assumed to be the atomic
value independent of R, and d3 R = 4πR2 dR for di-
atomics. The Φ(R) can be represented, in the WKB
approximation, as

RΦq = k−1/2
q exp

⎡

⎣−i

∞∫

0

dRkq(R)

⎤

⎦ , (19.3)

where

kq =
{

2M
[
Eq −V e

q (R)
]}1/2

/� (19.4)

and M is the reduced mass of the atom pair (�2k2/2M
is the kinetic energy in Fig. 19.1).

The integrand in the second line of (19.2) then con-
tains exp[i ∫ d3 R(ku−kg)]. If one multiplies ku−kg by
(ku+ kg)/(ku+ kg), the exponent becomes

2M(ω−ωc)

�(ku+ kg)
,

and if one further defines a variable t(R) by
dt = dR/v(R) with v(R)= �(ku+ kg)/2M, the expo-
nent becomes i

∫
ωc(t′)dt′ − iωt, where

ωc(R)= [Vu(R)−Vg(R)]/� (19.5)

and R(t) is the classical trajectory in the average po-
tential. Thus, the Franck–Condon factor reduces to the
squared Fourier transform of exp[i ∫ t

ωc(t′)dt′], where
�ωc(R)= Vu(R)−Vg(R) (Fig. 19.1). This is the classi-
cal oscillator approximation (COA), in which the atoms
are considered to be a classical oscillator at ωc(R) dur-
ing the collisional interaction, and R(t) is the classical
orbit.

The
√

k in the denominator of the WKB wave func-
tion leads to 1/v(R) in the nuclear density at R, again
corresponding to classical motion. This COA is used as
the starting point in many line shape calculations. It is
apparent that the COA breaks down when the initial- and
final-state orbits are significantly different, or when the
Born–Oppenheimer or WKB approximation is not valid.
However, the COA is normally a very good approxima-
tion for thermal atomic vapors when h(ω−ω0)& kBT ,

since most orbits are then straight lines within the R re-
gion that yields the observed radiation.

One further conceptual and mathematical simplifica-
tion is to subtract ω0 from ωc(t′) and from ω by defining
∆ωc = ωc−ω0 and ∆ω= ω−ω0. The Franck–Condon
factor in (19.2) then becomes

I(ω)=
(

4µ2ω4

3c3

)

×

∣∣
∣∣∣∣

∫
dt exp

⎡

⎣i

t∫
∆ωc(t

′)dt′ − i∆ωt

⎤

⎦

∣∣∣∣∣∣

2

av

,

(19.6)

where the prefactors that yield the correct intensity are
explained in [19.12, 13] (Sect. 10.6). The average is, in
general, over a sequence of collisions leading to an
integral over collision velocity and impact parameter,
weighted by the rate of occurrence.

In the next section, the character of the broadened
line core is obtained by the traditional method of evalu-
ating (19.6) using the impact approximation.

19.1.4 Impact Approximation

Atomic collisions in thermal vapors typically occur in
a time interval τc < 1 ps, whereas the time between sig-
nificant collisions is much longer at vapor pressures
below a few atmospheres. Thus, one can consider the
atom as radiating its unperturbed frequency ω0 most
of the time, but occasionally suffering a rapid, strong
perturbation. If the duration of a collision is τc, then
φ(t)= ∫ t

∆ωc(t′)dt′ in the exponent of (19.6) under-
goes a net phase shift ∆θ in a time τc, and is constant
between collisions. If ∆ω& 1/τc, then one can ap-
proximate this phase shift as instantaneous; this is the
essential assumption of the impact approximation. When
the factor exp[i∆θ(b, v)], which then occurs in (19.6) is
averaged over collision rates with velocity v and im-
pact parameter b this leads to (γc− iδ)t in place of φ(t),
where γc and δ are given by [19.15]

γc =
∞∫

0

n(v)vdv

∞∫

0

2πb[1− cos ∆θ(b, v)]db ,

δ=
∞∫

0

n(v)vdv

∞∫

0

2πb sin ∆θ(b, v)db .

Including the spontaneous emission dipole decay rate
exp(−Γt/2), the Fourier integral produces the normal-
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ized Lorentzian line shape

I(ω)= (Γ/2+γc)

π
[
(Γ/2+γc)2+ (∆ω− δ)2

] . (19.7)

The full line shape is then a Voigt profile with
a Lorentzian-component half width Γ +2γc and a shift
of δ from ω0. The shift can be understood as the
perturbed oscillator frequency advancing relative to
ω0 by the average value of sin ∆θ, or alternately
as indicating the direction of the frequency shift of
Vu−Vg. The Lorentz approximation corresponds to tak-
ing 1− cos ∆θ = 1 or 0, with the former representing
a collision. This gives γ = 1/∆tc, where ∆tc is the
average time between strong collisions.

The b for which ∆θ(b, 〈v〉)= 1 is called the Weiss-
kopf radius (RW). The collisional line width 2γc can be
thought of as a collisional rate n〈v〉Q, where Q = πR2

W.
The importance of RW is that γc and δ result primarily
from atomic interactions in the region R ≈ RW. Since
the size of an electronic wave function increases with in-
creasing excitation energy, |∆V(R)| = |V(R)−V(∞)| is
normally larger for the upper state of a transition. (High
Rydberg states can be an exception.) Since ∆θ = 1 for
b= RW and ∆θ ≈ (∆V/�)τc, then ∆V(RW)≈ �/τc. For
a typical τc = 1 ps this implies ∆V(RW)/hc ≈ 5 cm−1,
which is a relatively weak, long range interaction. Thus,
reasonable approximations to the necessary V(R) can of-
ten be obtained from atomic perturbation theory. Simple
expressions for γc and δ are obtained for Vi−Vf = A/Rn

with n > 2 [19.24]. The case of n = 3 corresponds to
the resonant interaction between identical atoms, while
n = 6 corresponds to the van der Waals interaction,
which holds at long range for foreign gas interactions.
This result for one pair of adiabatic states must be av-
eraged over all of the pairs that separate to each atomic
state.

Higher order approximations obtain an asymmetric
line, rather than a pure Lorentzian, due to the asymme-
try of ∆V(R) [19.24]. In the line core this asymmetry
appears as a multiplicative correction 1+∆ω/D, where
|D| ≈ 1/τc [19.25], and with increasing detuning it in-
creases until at |∆ω|> 1/τc the static wing approaches
the quasistatic limit described in Sect. 19.1.7. If ∆V(R)
changes monotonically with decreasing R, only one side
of the line has a static contribution and the other, anti-
static side falls off exponentially at |∆ω|> τc [19.11].
However, this situation is seldom observed, as more
than one difference potential generally contributes and
there is usually a static contribution on both sides of the
line. Another factor that produces a small divergence
from the Voigt profile is the velocity dependence of the

shift and width. When combined with the higher vel-
ocities of atoms emitting or absorbing in the Doppler
wing, this produces an asymmetry in the Doppler
wings [19.26, 27].

19.1.5 Examples: Line Core

It is possible to deconvolve a Voigt line shape to separate
the Doppler and Lorentzian components, and thereby de-
duce broadenings of considerably less than the Doppler
width ([19.28] and references therein). However, the
broadening is most easily observed at perturber densities
where the collisional broadening exceeds the Doppler
broadening. Such a pressure-dependent line shape is
shown in Fig. 19.2, for a range of perturber density nP
such that the broadening exceeds the Doppler width
and hyperfine structure, yet the line core is described
by the impact theory [19.29]. In Fig. 19.2 the normal-
ized line intensity has been divided by nP; as the line
wings are proportional to nP they are constant in such
a plot, while the line center broadens and shifts with
increasing nP. For this case of fairly heavy atoms,
(2πcτc)−1 =∆kc corresponds to ≈ 0.5 cm−1, and the
line becomes asymmetric and non-Lorentzian beyond
≈ 1 cm−1 (Fig. 19.3a); the red wing intensity falls more
slowly and the blue wing more rapidly than (∆ω)−2.
This behavior is typical for most heavy perturbers, and is

10–18

10–19

10–20

–1.5 –1.0 –0.5 0 0.5 1.0 1.5
∆k (cm–1)

I (λ) /N� I(λ) dλ(cm3/Å)

Kr

Fig. 19.2 Normalized line shape of the Rb 5P3/2−5S1/2

transition broadened by Kr, for Kr densities of 4.5, 9, 18,
and 27 × 1018 cm−3 (top to bottom). Hyperfine structure and
instrumental resolution cause≈ 0.3 cm−1 of the broadening
shown
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I (λ) /N� I(λ) dλ(m3/Å)a)

R(ao)b)

k – ko
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B – X

Fig. 19.3a,b Normalized intensity in the wings of the Rb
5P3/2−5S1/2 transition broadened by Kr, in frequency
units of k = 1/λ. The measured spectrum in (a) is from
[19.29–31]. The solid line is at 310 K and the dashed line
at 540 K. The difference potentials corresponding to the A,
B and X states of Rb−Kr, taken from [19.32], are shown
in (b)

attributed to a long range attractive Vu which dominates
Vu−Vg.

For the lowest nP shown in Fig. 19.2, a convolution
with the Doppler, hyperfine and instrumental broaden-
ings showed that the line is essentially a symmetric
Lorentzian for |∆k| <∆kc [19.29]. However, at the
highest density, the half-height point is beginning to fall
outside of ∆kc; the impact approximation is marginally
valid for describing the half width of the line at this
density. Most early experiments were done at more
than 10 times this density [19.15]; most of the line-
core was at |∆k|>∆kc and describable by the static
theory (Sect. 19.1.7) rather than the impact approxi-
mation. The impact approximation was also not valid
under these conditions because collisions overlap in
time. These very broad lines are well represented by the
multiple-perturber, static theories that assume scalarly
additive perturber interactions [19.5, 8]. This transition
between an impact and quasistatic line core, and to mul-
tiple perturber interactions, occurs at lower pressures

for transitions to higher states, as the interactions have
a longer range. In addition, nearby intensity peaks or
satellites often occur, and strongly affect the line as
pressure increases. An example calculation, based on
an interpretation of measured spectra [19.16], is shown
in Fig. 19.4. This shows how a line with a satellite fea-
ture progressively broadens and finally blends with the
satellite as nP increases.

With the advent of saturated-absorption (Doppler
free) spectroscopy, collisional line broadening can be
measured at much lower densities, where 2γc &∆ωD.
In principle, this can allow measurement of line broaden-
ings and shifts, although with a complication that affects
the line shape; the same collisions that produce optical
phase shifts also change the atomic velocity. These vel-
ocity changes have a minor effect outside the Doppler
envelope where high pressure measurements are nor-
mally made, but they are quite important in saturated
absorption line shapes. This affects primarily the low in-
tensity wings of the line, so it does not prevent measuring
the broadening and shift of the nearly Lorentzian core.

–46 –38 –30 –22 –14 –6 +2

Intensity

Frequency (cm–1)

1 × 1018

2.5 × 1018

5 × 1018

1 × 1019

1.5 × 1019

2 × 1019

Fig. 19.4 Calculated line shapes of the Cs(9P1/2−6S1/2)

line broadened by Xe at the densities indicated (from
[19.16]). The assumed interaction is based on measured line
shapes, but data corresponding to the calculated conditions
are not available
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Details can be found in [19.33] and references therein.
Two-photon absorption yields Doppler free lines that
are not affected by velocity changing collisions. This
provides the most exacting test of line shapes. These
narrow lines are precisely Lorentzian, with a broaden-
ing that reflects the upper state interaction since this is
usually much stronger than that of the ground state. The
technique has been used to measure the broadening of
two photon transitions to many excited states [19.34,35].

19.1.6 ∆ and γc Characteristics

Since 1970, neutral broadening has generally been
measured in the |∆ω| < 1/τc region where the
impact approximation and (19.7) is valid. Measure-
ments through 1982 are tabulated in [19.16], and
through 1992 in [19.36]. More recent measurements
are tabulated in the NIST Reference Data bibliog-
raphy, which is accessible (free) at the web site
http://physics.nist.gov/PhysRefData. These involve pri-
marily metal vapor resonance lines broadened by noble
gases. For collisions with the heavier (more polariz-
able) gases, the sizes of these measured broadening
rate coefficients generally fall within a factor of 10
range, and approximately fit the prediction of (19.7)
with ∆Vu(R)−∆Vg(R)= C6 R−6 [19.37] and C6 given
by a simple effective quantum number formula. This
occurs because the potentials are fairly close to van
der Waals for R ≥ RW and the broadening is insensi-
tive to details of the potentials at R< RW since cos ∆θ

in (19.7) averages to ≈ 0 for the closer (strong) colli-
sions. It also occurs because the full quantum solution
for broadening by a van der Waals interaction, with Zee-
man degeneracies, yields nearly the same result as the
above single-level theory with an average C6 [19.38].

For the heavy, more polarizable perturbers, the ex-
cited state interactions are attractive and red shifts occur,
but the measured shifts have a very poor correlation
with the van der Waals prediction. As b decreases and
∆θ(b, v) increases, sin ∆θ oscillates and major cancel-
lations occur in the average of sin ∆θ in (19.7). The
shift is therefore only a fraction of the broadening and
is very sensitive to the interaction throughout the region
R ≈ RW. This often differs considerably from the van
der Waals form, at the typical ≈ 5 cm−1 interaction en-
ergy at RW. The shape of the red wing just beyond ∆ωc
also frequently fails to fit that expected for a van der
Waals interaction [19.29]. Thus, the often good agree-
ment of γc with van der Waals numbers is not a reliable
indicator of the actual V(R) in the relevant R region,
even for heavy noble gas perturbers.

For He and sometimes Ne perturbers, a repulsive
interaction due to charge overlap normally dominates
at R ≈ RW, causing a blue shift as well as a larger
broadening than the van der Waals prediction.

19.1.7 Quasistatic Approximation

The impact approximation is valid for |∆ω| & 1/τc,
where the 1/τc is typically 1–10 cm−1. For larger |∆ω|
the line shape becomes asymmetric, with higher in-
tensity on the wing corresponding to the long-range
Vu(R)−Vg(R). At large detunings where ∆ω% 1/τc
a major simplification occurs. The COA describes the
interacting atom pair as an oscillator of frequency
ωc(R) =

[
Vu(R)−Vg(R)

]
/� when at separation R.

Since R is time dependent during the classical orbit,
ωc is as well and the Fourier spectrum is broadened
relative to the simple distribution of ωc(t) that occurs
during the orbit. But if the motion is sufficiently slow,
the intensity at ω reduces to the probability of finding
the atom pair at the appropriate R(ω= ωc). The spec-
trum then reduces, at low pressure, to the probability
distribution of pair separations R, subject to (19.5) be-
tween R and ω. This is the binary quasistatic, static,
or statistical spectrum, which accurately describes most
line wings for |∆ω|> 1/τc. When the pressure is large
enough to yield a significant probability of one perturber
at R ≤ Rc, multiple-perturber interactions must also be
considered as in [19.5].

This intuitive deduction of the statistical spectrum
from the COA [19.4] can also be obtained more for-
mally from (19.6) by expanding the exponent about
the time during a collision when ωc(t)= ω. Alter-
natively, it follows directly from (19.2) using WKB
wave functions to evaluate free–free molecular Franck–
Condon factors [19.6, 7]. This result is identical to the
classical Franck–Condon principle (CFCP), originally
established in the context of bound–bound molecular
radiation.

The CFCP yields important insights for all molecular
radiation. Again consider (19.2) with the substitution of
the WKB wave functions φq , given below it. Examples
of φu and φg are given in Fig. 19.1. For large detun-
ings ω−ω0, as shown in Fig. 19.1, the integrand on the
right side oscillates rapidly everywhere except at the
stationary phase point Rc, where ku = kg. As a conse-
quence, the dominant contribution to the integral occurs
at Rc and one can consider the transition to be localized
at Rc. Since ku(Rc)= kg(Rc), Tu(Rc)= Tg(Rc)= Tc
also holds, and as can be seen in Fig. 19.1 it then
follows that �ω= Vu(Rc)−Vg(Rc). Thus, radiation at
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frequencyω “occurs” when the atoms are near Rc, where
the electronic state energies differ by �ω. Note that
this holds for all initial kinetic energies and angular
momenta, as long as the conditions for validity of the
Born–Oppenheimer and WKB approximations hold for
the initial and final nuclear motions. This is the CFCP,
which is equivalent to the classical-oscillator model for
radiation at large detunings from the atomic transition.

Another insight evident from Fig. 19.1 is that the
photon energy associated with the frequency differ-
ence ω−ωc is supplied by nuclear kinetic energy
�(ω−ω0)= Ti−Tf . This transformation of nuclear into
electronic energy takes place as the nuclei move from
large R to Rc on one V(R) and back to large R on the
other.

If an absorbing or emitting atom interacts as Vi(R)
with a density nP of perturbers in a vapor of tem-
perature T , the probability of a perturber at separation
R → R+ dR is nP4πR2 exp[−Vi(R)/kBT ]dR if the in-
teratomic motion is in equilibrium. Inverting (19.5) for
R(ω) yields dR = dω/(dω/dR), and this pair of re-
lations yields the (single perturber) quasistatic (QS)
spectrum

I(ω)= NnPΓ 4πR(ω)2

× exp[−Vi(ω)/kBT ]/[dω(R)/dR] , (19.8)

where N is the radiator density and I(ω) the radiation
per unit volume and frequency interval.

Figure 19.3a gives an example of far wing emission
line shapes versus photon energy in units of cm−1, for
the Kr broadened Rb D2 line for which ∆kc ≈ 0.7 cm−1.
These data are normalized by dividing by perturber den-
sity, so they are independent of perturber density for the
density region of the experiment. The excited state pro-
duces two Vu(R), called the A and B states, while the
ground state produces one Vg(R), called the X state.
Each of these potentials has a single minimum at long
range and is strongly repulsive at close range, but the
well depths and positions are very different [19.32].
This causes the complex forms of Vu(R)−Vg(R) that
are shown in Fig. 19.3b. There I have plotted ln(R)
vertically and ln(∆V(R)/hc) horizontally, where ∆V
refers to VA−VX and VB−VX. The right side of (19.8)
can also be written as the exponential and constant fac-
tors times dR3(ω)/dω. Since ln[R3(ω)] ∝ ln[R(ω)], the
static spectrum at ∆k =∆ω/2πc is proportional to the
slopes of the curves in Fig. 19.3b, divided by |∆k| due
to the ln(∆k) horizontal axis. One can see qualitatively
that the overall spectrum follows such a relation to the
lines in Fig. 19.3b; in fact in most spectral regions this
relation is quantitatively accurate.

The temperature dependence in Fig. 19.3a corre-
sponds to the exponential factors in (19.8) [19.30]. At
large R, both ∆V(R) are attractive, and this causes a large
intensity on the negative ∆k (red) wing. However, once
|∆k| exceeds≈ 20 cm−1, where VB−VX reverses direc-
tion, the red wing intensity drops rapidly. This extremum
in ∆V(R) causes a satellite at ≈−20 cm−1, although it
is spread out by the finite collision speed and does not
cause a distinct peak in the spectrum. Satellite features
are discussed in more detail in the next paragraph. The
antistatic blue wing drops rapidly for several decades,
then suddenly flattens beyond≈ 10 cm−1 due to the pos-
itive portion of VB−VX at small R. The remaining blue
wing is the B–X band, and has a satellite at ≈ 350 cm−1

as VB−VX passes through another extremum. The the-
ory predicts this at 800 cm−1, but clearly represents all
the basic aspects correctly. This satellite is also spread
out by finite collision speed, but a definite intensity peak
remains. The red wing beyond ≈ 50 cm−1 is the A–X
band. The feature near −1000 cm−1 is due to the expo-
nential factor in (19.8), not an extremum in ∆V(R); the
feature essentially disappears if the normalized intensity
is extrapolated to infinite temperature.

19.1.8 Satellites

In regions of the wing where the intensity falls slowly
with increasing frequency, motional broadening of the
static spectrum is not noticeable and the static spec-
trum is a good approximation. However, if ∆V(R), or
equivalently ωc(R), has an extremum at some RS, the
denominator of (19.8) is zero at ω(RS)= ωS. This pro-
duces a local maximum, or satellite, in the far wing
intensity, as seen in Fig. 19.3a at 350 cm−1. If one
expands ω(R) in a Taylor series about R = RS this
produces in (19.8) a square root divergence of finite
area, with no intensity beyond ωS. The area under this
feature is meaningful, but not its shape; the quasistatic
assumption is clearly not valid for such sharp features.
The more accurate satellite shape is obtained by re-
turning to (19.2) and expanding Vu(R), Vg(R) and the
WKB wave functions about RS, or using (19.6) with
ωc(t) expanded about t(RS). Sando and Wormhoudt
used the former method to obtain a universal satellite
shape [19.39]. Szudy and Baylis improved the expansion
to yield a smooth transition to the quasistatic spectrum
at smaller detunings [19.37]. This result is nearly the
same as Sando et al. in the spectral region of the satel-
lite, but it more accurately connects to the adjacent static
line wing. Intensity undulations between the satellite and
the line occur in this calculation; these arise from alter-
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nating constructive and destructive interference between
two contributions to the same frequency from R> RS
and R < RS. This can not be seen in the low resolu-
tion of Fig. 19.3a, but such undulations are seen near
the 350 cm−1 satellite [19.31]. At antistatic detunings
beyond ωS, which are not quasistatically allowed, the
calculated intensities decay exponentially. This is also
observed experimentally [19.31] and is the same behav-
ior predicted for the antistatic wing of a line [19.11].

At higher perturber densities and closer to the line
core, corresponding to larger R interactions, the multi-
ple perturber probability distribution must be included.
If the interactions are additive, this leads to a sec-
ondary satellite at twice the detuning of the low pressure
satellite, as seen in Fig. 19.4.

The wings of a collisionally broadened atomic line
are molecular radiation. In the context of molecular
bound state spectroscopy, a satellite is a “head of band
heads,” corresponding to a frequency region where
bound–bound band heads congregate. This occurs, of
course, at the classical satellite frequency and when
Vu(R)−Vg(R) has an extremum [19.40].

An extremum in ∆V(R) is the most common cause
of satellites, but similar looking features can occur for
other reasons. Forbidden bands often appear in the wings
of forbidden atomic transitions, due to an increase in
the transition dipole moment µ(R) resulting from the
collisional interaction. These are described, in the QS
approximation, by (19.8) with Γ replaced by Γ (R). If
Γ (R) increases rapidly with decreasing R, the intensity
increases as ωmoves into the far wing until the dR3 and
exponential factors cause a net decrease at small R. This
leads to forbidden bands far from the atomic frequency,
such as those in [19.41]. In some cases, a collision-
induced feature also appears at the frequency of the
forbidden transition. The shapes of such features, which
also include radiative collisions, in which both atoms
change state, are calculated and reviewed in [19.42].

A variety of related line shape phenomena has been
investigated, including the relation between absorbed
and emitted wavelengths (spectral redistribution), the
dependence of fluorescence polarization on absorbed
wavelength (polarization redistribution), and high power
effects. Some references regarding these phenomena
are [19.43–47].

19.1.9 Bound States
and Other Quantum Effects

The validity of the QS spectrum requires the validity
of the WKB approximation in the initial and final state,

but it is not restricted to free–free molecular transitions.
In fact, the equilibrium probability distribution in (19.8)
must include bound states in an attractive Vi(R). The
QS spectrum describes the average behavior of bound–
free and bound–bound molecular bands, as well as the
free–free radiation implied by the above method of
derivation. The quantum character is expressed in the
discrete bound–bound lines that make up this average,
and in Condon oscillations, where the intensity oscillates
about the average IQS(ω). The latter occur as oscil-
lations in Franck–Condon factors in the bound–bound
case, and as smooth oscillations in bound–free spectra
and low resolution bound–bound spectra. An additional
quantum feature occurs in regions of the spectrum dom-
inated by classical turning points, usually at the far edge
of a line wing where the intensity is dropping rapidly.
There, quantum tunneling past the edge of the classically
allowed region spreads the spectrum. Yet another is the
energy hω0/2 of the ground vibrational state, which ef-
fectively adds to kBT in (19.8) for attractive Vi. All of
these quantum features become more pronounced as the
reduced mass decreases; examples and details can be
found in [19.40, 48–50].

19.1.10 Einstein A and B Coefficients

The relationship between absorption coefficient B12(ω),
stimulated emission coefficient B21(ω) and spontaneous
emission coefficient A21(ω) are given by the Einstein
relations; A21/B21 = 8πhλ−3 and B21/B12 = g1/g2.
These relations are most familiar for atomic lines, but
if they are referred to the density of absorbers dNg/dω
and emitters dNu/dω that emit or absorb at ω, then they
also apply to the wings of lines, i. e.,

k(ω)= B12(ω)

(
2πh

λ

)(
gu

gg

)
dNg

dω

= 1

4
λ2 A21(ω)

(
gu

gg

)
dNg

dω
, (19.9)

g(ω)= 1

4
λ2 A21(ω)

dNu

dω
, (19.10)

I(ω)= �ωA21(ω)
dNu

dω
. (19.11)

Here k(ω) is the absorption coefficient due to lower
state atoms, g(ω) is the stimulated emission coefficient
and I(ω) the spontaneous emission due to excited state
population, and gu and gg are the statistical weights of
the atomic states. For absorbing atoms of density Ng
and perturber density nP, the QS approximation with
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equilibrated internuclear motion sets

dNg

dω
= NgnP4πR2 dR

dω
exp

(
− Vg

kBT

)
, (19.12)

and equivalently for a radiating atom density Nu with
perturber interaction Vu. Normally most of the radia-
tion, and dNg/dω, is concentrated at the atomic line, so
integrating over dω near the line leads to the relations

∞∫

0

k(ω)dω= 1

2
λ2 A21 Ng

(
gu

gg

)
, (19.13)

∞∫

0

I(ω)dω= A21 Nu

(
hω

2π

)
, etc. (19.14)

Note that
g(ω)/Nu

k(ω)/Ng
∝ exp

(
− �ω

kBT

)
; (19.15)

if Nu/Ng is also in equilibrium at T , this yields the
correct equilibrium relation between k(ω), g(ω), I(ω),
and a black body spectrum. While these relations are
much more general than the QS theory, the latter pro-
vides a helpful conceptual basis. The above expressions
in terms of spontaneous emission thus cover all cases.

19.2 Radiation Trapping

Atoms and ions efficiently absorb their own resonance
radiation, and their emission can be reabsorbed be-
fore escaping a vapor. Molecules are less efficient
absorbers, since each electronic transition branches into
multiple-line bands, but interesting effects result if such
reabsorption occurs. This emission and reabsorption
process is fundamental to the formation of stellar lines,
where it is called radiation transfer, and to confined
vapors and plasmas where it is also called radiation
diffusion or trapping. Fraunhofer’s observation of dark
lines in the stellar spectrum result from this radiation
transfer process. Highly sophisticated treatments of line
formation in inhomogeneous and nonequilibrium plas-
mas containing many species [19.19, 20] also apply to
laboratory plasmas, but the simplifications inherent in
a one- or two-element, confined plasma with cylindrical
or planar symmetry leads to easier treatments. This sec-
tions discusses only a uniform density and temperature,
confined atomic vapor.

The flourescent lamp in which 254 nm mercury ra-
diation diffuses to the walls and excites a phosphor,
provides a prime example of radiation trapping. Its im-
provement motivated the seminal Biberman [19.51, 52]
and Holstein [19.53, 54] theories, continuing through
modern theory and experiment that is particularly rele-
vant to electrodeless and compact lamps. Dense clouds
of cold, trapped atoms are also influenced by radia-
tion trapping. Reference [19.55] provides and excellent
overview of this topic, which we will not discuss here.
The effect of radiation trapping on the polarization of
flourescent radiation played a major role in develop-
ing a correct understanding of the coherent response of
atoms to radiation. This is reviewed in [19.44], and will

not be covered here. Molisch and Oehry [19.56] have
provided a detailed discussion of research on radiation
transport up to 1998.

19.2.1 Holstein–Biberman Theory

An atom in a dense vapor may be excited by exter-
nally applied radiation plus the fluorescence from other
excited atoms within the vapor, and it will decay by
spontaneous emission (neglecting stimulated emission).
This is expressed by the Holstein–Biberman equation

dn(r, t)/dt = S(r, t)+γ
∫

vol

K(r−r ′)n(r ′, t)d3r ′

−γn(r, t) , (19.16)

where n(r, t) is the excited state density at position r,
S(r, t) is the excitation rate due to externally applied ra-
diation, γ is the spontaneous emission rate, the kernel
K(r−r ′) is the probability of a reabsorption at r due to
fluorescence by an atom at r ′, and the integral is over
the vapor filled volume [19.51–54]. Since K(r, r ′) is as-
sumed the same for all excited atoms, this contains an
implicit assumption that all atoms emit the same fully
redistributed spectrum. The solution of this linear inte-
gral equation, subject to boundary values at the vapor
boundary, can be expressed as a sum over an orthog-
onal set of solutions n(r, t)i = n(r)i exp(−giγt) of the
homogeneous equation

n(r, t)=
∞∑

i=1

a(t)in(r)i , (19.17)
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where, if S(r, t)= S(r) f(t), then a(t)i = āi
∫ t
−∞ f (t′)

× exp[−giγ(t− t′)]dt′ and āi =
∫

S(r)n(r)i d3r. Here
n(r, t)i is the ith normal mode and giγ is the decay
rate of this mode, as it would decay without change in
its shape n(r)i from a pulse of excitation.

Two shapes of vapor regions have been studied in
detail: an infinitely long cylinder of radius R and the
region between two infinite parallel plates with sepa-
ration L . The first three symmetric modes of the latter
slab geometry are shown with unit height in Fig. 19.5.
A spatial integration over the normalized i = 1 or fun-
damental mode yields 1 and all others integrate to zero,
so a(t)1 equals the total excited state population. g1 is
the escape probability; i. e., the probability of photon es-
cape averaged over the fundamental mode distribution
of emitters n(r)1. Since n(r, t)must be everywhere posi-
tive, the negative contributions of the higher order modes
only reduce the density in some regions. The gi can vary
from 0 to 1 and increase with increasing i, so that higher
order modes die out faster after pulsed excitation. The
ratios of decay rates is gi : g3 : g5 = 1 : 3.7 : 6.4 for the
symmetric slab modes shown in Fig. 19.5. For steady
state excitation, (19.17) yields a(t)i = āi/giγ , so the
lower order modes are more heavily weighted because
they decay more slowly. The fundamental mode decay
rate g1γ is of primary interest in most situations, and we
will now discuss its properties.

1.0

0.5

0

–0.5

–1.0
–1.0 –0.5 0 0.5 1.0

1

3

5

Fig. 19.5 The first three symmetric eigenfunctions ( j =
0.2, 4) of radiation trapping between slab windows, for
a Doppler line profile, from [19.57–59]. The windows are
at ±1

The kernel K(x) is the probability of fluorescence
transport over a distance x followed by reabsorption,
averaged over the emitted frequency distribution. It is
conceptually useful to express it in terms of the spec-
trally averaged transmission T (x)

K(x)= 1

4πx2

dT (x)

dx
, (19.18)

T (x)=
∞∫

0

L(ω) exp[−k(ω)x]dω ,

where L(ω) is the emission line shape normalized to
unit area, and x = |r−r ′|. If one assumes that the fluo-
rescence frequency of an atom does not depend on the
frequency it absorbed (i. e., complete spectral redistri-
bution), this leads to k(ω)= κL(ω), where κ = (λ2/8π)
(gu/gg)nΓ and gu and gg are statistical weights. This
simplification applies under most conditions and will
be used here; its range of validity and more accurate
treatments are discussed below.

The transmission factor L(ω) and the integrand
of (19.18) are shown in Fig. 19.6, for a Gaussian line
shape and several values of k0x, where k0 is the line
center absorption coefficient. At small k0x, the trans-
mitted spectrum is similar to L(ω); for these conditions
T (x)) exp(−kavx), where kav ) 0.7k0 is the average
attenuation. For k0x > 5, the transmission is small ex-
cept at the edges of the line. The transmitted radiation
is then predominately in the ω region near ω1, defined
by k0xL(ω1)= 1. Since the integrand is sharply peaked
near ω1, this leads to simple analytic forms for T (x). In

1

0–3 –2 –1 0 1 2 3
(ω – ωo) /0.6 ∆ωD

× 5

Fig. 19.6 Gaussian emission spectrum L(ω) (short-dash
line), transmissions T(ω) (long-dash lines), and transmitted
intensities (solid lines) for k0x = 2, 10, and 50
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Line Shapes and Radiation Transfer 19.2 Radiation Trapping 289

the large k0x limit, T (x)) [k0x(π ln k0x)1/2]−1 in the
Gaussian case, and T (x)) (πk0x)−1/2 for a Lorentzian
line shape. These asymptotic forms of T (x) are com-
pared with the exact T (x) in Fig. 19.7; T (x) follows
the asymptotic formulas for k0x > 5 and 10, respec-
tively. T (x) for several Voigt line shapes is also shown
in Fig. 19.7; these follow the Gaussian T (x) at smaller
k0x, then rise above as ω1 moves into the Lorentzian
wing.

For radiative escape from a cell, transmission over
distances near the cell dimension (R or L) is most impor-
tant, since transport over this distance often escapes the
vapor and transport over much smaller distances does
not have much effect. The escape probability g1, aver-
aged over the fundamental mode distribution, is close to
T (R) or T (L/2), while the higher order modes are re-
lated to the same asymptotic forms of T (x) at smaller
distances. Thus, in the large k0L slab case,

(19.19a)

gi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Gi

k0L( 1
2 ln k0L)1/2

Gaussian line

G′
1

(k0L)1/2
Lorentzian line, (19.19b)

with G1 = 1.03 and G′
1 ) 0.65. For an infinite cylinder,

the same equations hold with L/2 → R and slightly
larger Gi values. Exact Gi and G′

1 values can be found
in [19.57–59].

19.2.2 Additional Factors

As noted above, the line shape of a two-level atom
in a thermal vapor is a Voigt shape; a convolution of
a Lorentzian of width Γ +2γc with a Gaussian of width
∆ωD. In most cases, ∆ωD % Γ , so in the absence of
a buffer gas the line shape is nearly Gaussian at low
density (n). As a result, ω1 is in the Gaussian region of
the line at low density and g1 behaves similarly to the
Gaussian transmission in Fig. 19.7 with x replaced by the
confinement dimension. k0 is proportional to n, so from
(19.19a) g1 is approximately inversely proportional to n
for k0L > 5. As n increases, ω1 moves further into the
wing of the line, and whenω1 reaches the Lorentzian tail
of the Voigt line profile a transition to (19.19b) occurs,
where k0 corresponds to a purely Lorentzian line. (That
the core of the line does not have a Lorentzian shape
does not matter, since the fraction of emission well into
the Lorentzian wing is nearly the same as that of a pure
Lorentzian line.)

In the absence of a collision, a two level atom rera-
diates in its rest frame the same frequency it absorbed.

0

–1

–2

–3

log (k0x)
–1 0 1 2 3

log transmission

Gaussian

Holstein Gauss approximation
Lorentzian

Holstein Lorentzian
approximation

a = 0.1

a =
0.01

a =
0.001a = 0

Fig. 19.7 Transmission T(x) versus distance in units of
k0x, for Voigt line shapes with the a parameters indi-
cated, where a = (ln 2)1/2∆ωLor/∆ωGauss. The Gaussian
limit corresponds to a = 0 and the Lorentzian limit to
a = 1. The Holstein, large k0x, approximations are also
indicated

Thermal motion redistributes this coherent scattering
frequency within the Doppler envelope when the emis-
sion and absorption are in different directions, but it
does not transfer it into the natural Lorentzian wing
outside the Doppler envelope. This leads to the prop-
erty that an atomic vapor will scatter frequencies in
the natural wing, but will not emit in this wing un-
less it absorbed there or is excited by or during
a collision. With line broadening collisions, a frac-
tion Γ/(Γ +2γc) of optical attenuation is coherently
scattered and a fraction 2γc/(Γ +2γc) is redistributed
into “incoherent” emission with a Lorentzian spectrum
of width Γ +2γc centered at ω0+ δ in the reference
frame of the moving atom. This redistributed emission
can escape in the Lorentzian wing of the Voigt line.
In this radiation transport problem, the consequence is
that (19.19b) with k0 = n(λ2/2π)(Γ/γc)(gu/gg), corre-
sponding to a Lorentzian with ΓTotal = 2γc not Γ +2γc,
provides the best approximation to g1 in the density
region where ω1 is in the Lorentzian wing of the
line. Since k0 ∝ n/γc and in the absence of a buffer
gas γc = kcn, where kc is the rate coefficient for self
broadening collisions, g1 becomes independent of n.
In fact, kc ∝ Γ as well, so g1 is also independent of
Γ . For the case of a J = 0 ground state and a J = 1
excited state, g1 = 0.21(λ/L)1/2; the broadening coef-
ficient for other cases can be found in [19.60]. If the
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broadening is due to a buffer gas, γc = kcnB in (19.19b)
yields

g1 ∝
(nB

n

)1/2 ; (19.20)

this has been studied in [19.64].
Post et al. have numerically evaluated g1 for all

values of k0L for slab and cylinder geometries, by in-
tegrating the radiative escape probability g(z) over the
fundamental mode distribution N(z), where z is the po-
sition between the windows [19.65]. To obtain g(z) they
integrate over the angular distribution of the emission,
using T (x) from the exact line shape. Thus all features
of the calculation correspond to the Holstein–Biberman
theory for an isolated line without approximation. As
will now be discussed real atomic vapors are generally
not that simple.

Many atomic “lines” have multiple components due
to hyperfine structure and isotope shifts; some compo-
nents are isolated while others are separated by less than
a Doppler line width and overlap. The absorption line
shape then becomes a weighted sum over components,
each with an equivalent Voigt shape. In a high dens-
ity vapor or a plasma, collisions will usually distribute

100

10–1

10–2

10–3

10–4

10–1 100 101 102 103 104

Optical depth (k0 L /2)

g1
eff

Sodium density (cm–3)
1011 1012 1013 1014 1015

R = Γeff ΓN = 2γc

H(3P3/2)

H(3P1/2)

P(3P3/2)

Fig. 19.8 Radiative escape probability g1 for Na vapor excited to
the 3P3/2 state, for a slab geometry. The Holstein approximation
for the 3P3/2−3S1/2 (D2) line and the 3P1/2−3S1/2 (D1) line
are indicated as dashed lines. The Post-type calculation of [19.61]
for the D2 line is indicated as a solid line. Solid squares are data
from [19.62], and open circles are data from [19.63]. The effective
escape probability corresponds to the D2 line rate at low densities
but a combination of D1 and D2 at high densities

the excited state population between the isotopes and
hyperfine states in proportion to their isotopic fraction
and statistical weight. The emission line shape L(ω) is
then a similarly weighted distribution over components.
Since radiation only escapes in the wings of a line com-
ponent at high k0L , overlapping components act almost
as a single component. If the line has M isolated com-
ponents, the right-hand side of (19.19a) and (19.19b)
become sums over the fraction f j of the intensity in
the j component times the escape probability for that
component. The latter is obtained, for large k0L , by re-
placing k0 with k0 f j in (19.19a) and (19.19b). The net
result, after summing over components, is an increase in
gi by a factor of ≈ M in the Gaussian case and ≈ M1/2

in the Lorentzian. This approximation was obtained by
Holstein in the context of the Hg 254 nm radiation under
conditions appropriate to the fluorescent lamp [19.66].
Walsh made a more detailed study of these overlapping
components [19.67], and the dependence of g1 on the
ratio of line separation to Doppler width is also given
in [19.63].

19.2.3 Measurements

The overall behavior of g1 versus n is shown in Fig. 19.8
for the Na(3P3/2) or D2 resonance line in pure Na
vapor [19.62, 63]. In this type of experiment the funda-
mental mode decay rate is established by a combination
of optimally exciting that spatial mode and of wait-
ing until the fluorescence decay is exponential in time
after termination of the excitation. A transition to ap-
proximately 1/n behavior, corresponding to (19.19a),
is seen to occur at k0L/2 ≈ 5. At k0L/2 ≈ 100 the
transition to n0 behavior, corresponding to a self-
broadened Lorentzian line in (19.19b), can be seen.
The behavior at k0L < 5 fits the Milne diffusion the-
ory [19.68] as well as the Post et al. theory shown
as a solid line; this is also similar to T (L/2), as
seen in Fig. 19.7. For 5 < k0L/2 < 100, the behav-
ior is similar to (19.19a) (dashed line), but the Post
et al. theory (solid line) is ≈ 20% higher due to the
inclusion of the Na hyperfine structure (hfs splitting
) Doppler width). For k0L/2> 1000, the Post theory
converges to the Holstein–Lorentzian-line result with
ΓTotal = 2γc.

The experiment is complicated in the 50< k0L/2<
500 region by fine structure mixing [19.62]. The 3P3/2
state was excited, but at high densities, collisions popu-
late the 3P1/2 state, which has a smaller g1 than the 3P3/2
state (Fig. 19.8). At low densities, geff

1 = g1(3P3/2), and
at high densities these states are statistically populated
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and geff
1 = 1

3 g1(3P1/2)+ 2
3 g1(3P3/2). The transition

density where the fine structure mixing rate R equals
Γeff is indicated in Fig. 19.8. The theory is also compli-
cated in this intermediate k0L region by the necessity of
including incomplete frequency redistribution [19.65];
this leads to the dip in g1 near k0L ≈ 500. While the
overall behavior of the data in Fig. 19.8 is consistent
with the Post et al. theory, there is ≈ 30% systematic
discrepancy at k0L/2 = 10−100 and the dip near 500
is not seen. Part of this difference probably results from
the experimental geometry, which was between a slab
and a cylinder of radius R = L/2; g1 for the cylinder is
17% larger than the slab value used in Fig. 19.8.

The fundamental mode decay rate has also been
measured for the Hg 254 nm [19.69] and 185 nm [19.65]
lines, for the Ne resonance line [19.70] and for the Ar
resonance line [19.71]. The Hg measurements are com-
plicated by multiple isotopes and hyperfine structure,
producing a mixture of partially overlapping and isolated
lines combined with density-dependent uncertainties in
excited state populations of the various isotopes. Se-
rious efforts to model and measure these effects have
been made [19.65, 67, 69, 72]. The Ne and Ar meas-
urements have similar complications, as will now be
discussed.

In essence, g1 behaves like the Gaussian T (x = L/2)
in Fig. 19.7 until n is large enough for ω1 to ap-
proach the collision induced Lorentzian wing of the
Voigt line. g1 then decreases more slowly since the
line wing does not fall off as rapidly as a Gaussian.
With continued increase in n, ω1 moves further into
the Lorentzian wing, a broader spectral region escapes
and g1 reaches a minimum. Finally, when the en-
tire escaping spectral region is Lorentzian, g1 reaches
the constant value described above. Independent and
detailed treatments of this density region, including in-
complete frequency redistribution, predict a dip in g1 as
seen in Fig. 19.8 [19.65, 71, 73, 74]. However, this has
not been clearly confirmed experimentally. In Fig. 19.8
this dip occurs where fine structure mixing also occurs,
and in addition the data are higher than the calcula-
tions throughout this n region. Post et al. [19.65] did
observe such a dip for the Hg (149 nm) resonance line,
but the data do not fit the calculation at other densities;
hyperfine and isotopic structure within the line cause
major complications. This long-standing issue has fi-
nally been clarified by Menningen and Lawler [19.75],
who measured the decay of the Hg (185 nm) resonance
line following laser excitation. They observed a clear dip
in g1 due to incomplete redistribution. They also carried
out sophisticated Monte Carlo simulations, obtaining

g1 values that compared favorably with the measure-
ments. By extending the simulations over a large range of
a parameter space, they constructed an analytic formula
for g1 of a single-component line in cylindrical geome-
try [19.76]. This formula includes effects of incomplete
frequency redistribution and varying ratios of Doppler
broadening, radiative broadening and collisional broad-
ening, so that it can be applied to any resonance line.
Payne et al. [19.71] did not observe the predicted dip for
the Ar resonance line; again a minor isotope with an iso-
lated line occurs and could be very important at these
high optical depths. Phelps [19.70] reported such a dip
for the Ne 74.3 nm resonance line, but with rather large
uncertainties due to the necessity of correcting for other
collisional effects. Again there are isotopes with isolated
lines that may have effected the data. Thus, experiments
have verified the essential aspects of the above theories,
but quantitative agreement in all aspects has not yet been
achieved.

The fact that the escaping radiation is concentrated
in the wings of the line, near the unity optical depth
pointω1, is reflected in the emitted spectrum. Calculated
examples are shown in [19.74]; the Gaussian case looks
somewhat like the transmitted spectra in Fig. 19.6 for
x ≈ L/4. These spectra, and all results described so far,
are calculated assuming no motion of the atoms. This is
appropriate in the central region of the vapor, because
the distance moved in an excited state lifetime (Lv =
v/Γ ) is much smaller than L . In fact, resonant collisions
between excited and ground state atoms further limits the
distance an excited atom moves in one direction before
transfer of excitation. However, near the window or wall
of the container, atomic motion will cause wall collisions
of excited atoms and loss of radiation. This loss will be
primarily within the Doppler core of the line, since these
frequencies can only escape if emitted near the vapor
edge. This loss depends on the excited state density in
the neighborhood of the wall, and can be significant if
Lv > 1/k0. The excited atom density near the wall must
be self consistent with the radiation transport and wall
quenching. This situation has been modeled and studied
experimentally ([19.77] and references therein).

Additional aspects of radiation trapping, such as
higher-order spatial modes and non-uniform absorber
distributions, can be significant in lighting plasmas (and
trapped atom clouds). Propagator function techniques
have been developed for modeling radiation transport
when the excitation has unusual temporal or spatial
character [19.78,79]. Non-uniform absorber spatial dis-
tributions can be particularly important at high power
densities, and have been considered in [19.80].
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Thomas–Ferm20. Thomas–Fermi
and Other Density-Functional

Theories
The key idea in Thomas–Fermi theory and its
generalizations is the replacement of complicated
terms in the kinetic energy and electron–electron
repulsion energy contributions to the total energy
by relatively simple functionals of the electron
density ρ. This chapter first describes Thomas–
Fermi theory, and then its various generalizations
which attempt to correct, with varying success,
some of its deficiencies. It concludes with an
overview of the Hohenberg-Kohn and Kohn-Sham
density functional theories.
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In the early years of quantum physics, Thomas [20.1]
and Fermi [20.2–5] independently invented a sim-
plified theory, subsequently known as Thomas–Fermi
theory, to describe nonrelativistically an atom or
atomic ion with a large nuclear charge Z and
a large number of electrons N . Many qualitative
features of this model can be studied analytically,
and the precise solution can be found by solv-
ing numerically a nonlinear ordinary differential
equation. Lenz [20.6] demonstrated that this equa-
tion for the electrostatic potential could be derived
from a variational expression for the energy as
a functional of the electron density. Refinements to
Thomas–Fermi theory include a term in the energy
functional to account for electron exchange effects
introduced by Dirac [20.7], and nonlocal gradient
corrections to the kinetic energy introduced by von
Weizsäcker [20.8].

Although the Hartree–Fock method or other more
elaborate techniques for calculating electronic structure
now provide much more accurate results (Chapts. 21,
22, and 23), Thomas–Fermi theory provides quick esti-
mates and global insight into the total energy and other
properties of a heavy atom or ion. A rigorous analysis

of Thomas–Fermi theory by Lieb and Simon [20.9, 10]
showed that it is asymptotically exact in that it yields
the correct leading asymptotic behavior, for both the
total nonrelativistic energy and the electronic density,
in the limit as both Z and N tend to infinity, with the
ratio Z/N fixed. (In a real atom, of course, relativis-
tic and other effects become increasingly important as
Z increases.) However, Thomas–Fermi theory has the
property that molecules do not bind, as first noted by
Sheldon [20.11] and proved by Teller [20.12]. That the
interatomic potential energy curve for a homonuclear di-
atomic molecule is purely repulsive was demonstrated
by Balàzs [20.13]. This ‘no binding’ property of clus-
ters of atoms was used by Lieb and Thirring [20.14]
to prove the stability of matter, in the sense that as the
number of particles increases, the total nonrelativistic
energy decreases only linearly rather than as a higher
power of the number of particles, as it would if elec-
trons were bosons rather than fermions. Lieb went on
to explore the mathematical structure of the modifica-
tions of the Thomas–Fermi model when gradient terms
(von Weizsäcker) and/or exchange (Dirac) terms are in-
cluded [20.15, 16]. A review article by Spruch [20.17]
explicates the linkage between long-developed physi-
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cal intuition and the mathematically rigorous results
obtained in the 1970’s and 1980’s. The older liter-
ature was reviewed by Gombás [20.18, 19] and by
March [20.20].

An outgrowth of Thomas–Fermi theory is the gen-
eral density functional theory initiated by Hohenberg
and Kohn [20.21] and by Kohn and Sham [20.22], as
discussed in Sect. 20.3 of this chapter.

20.1 Thomas–Fermi Theory

20.1.1 Thomas–Fermi Theory

In a D-dimensional Euclidean space, the expectation
value of the electronic kinetic energy operator in a quan-
tum state ψ can be approximated by

�
2

me
2π2 D

D+2

(
D

2ΩD

)2/D ∫
ρ(D+2)/D(r) dDr ,

(20.1)

where

ΩD = DπD/2/Γ (1+D/2) (20.2)

is the surface area of a unit hypersphere in D dimen-
sions [20.17, p. 176]. These expressions can easily be
derived by considering the energy levels of a system
of a large number of noninteracting fermions confined
to a D-dimensional box. Specialization to the physic-
ally interesting case of D = 3 yields the well-known
expression

�
2

me
2π2 3

5

(
3

2Ω3

)2/3 ∫
ρ5/3(r) d r , (20.3)

where

Ω3 = 3π3/2/Γ (1+3/2)= 4π . (20.4)

The electron–nucleus attraction energy in a three-
dimensional space is given exactly by

∫
ρ(r)V(r) d r , (20.5)

where V(r) is the Coulomb potential due to
a single nucleus (V(r) = −Z/r) or to several nu-
clei [V(r)=−∑

i Zi/|r− Ri |]. The electron–electron
Coulomb repulsion energy in a three-dimensional space
is approximated by

1

2

∫
ρ(r)ρ(r ′)
|r−r ′| d r d r ′ , (20.6)

which tends to overestimate the actual repulsion energy
because it includes the self-energy of the densities of
individual electrons. This is, however, a higher-order

effect for a system with a large number of electrons con-
centrated in a small region of space. As was suggested
by Fermi and Amaldi [20.23], this overestimation can be
approximately corrected for an atom with N electrons
by multiplying this term by the ratio of the number of
ordered pairs of different electrons to the total number
of ordered pairs

N(N −1)

N2
= 1 − 1

N
. (20.7)

This is approximately correct for an atom, with many
electrons concentrated close together, but it would still
be an overestimate for a diffuse system, such as one
composed of N electrons and N protons separated by
large distances of O(R), for which the ground-state
electron–electron repulsion term should be proportional
to 1

2 N(N −1)/R rather than to N times a constant of
O(1). For this reason the Fermi–Amaldi correction,
which complicates the mathematical analysis with-
out eliminating the unphysical overestimation of the
electron–electron repulsion term, is not usually in-
cluded. It is evident that the treatment of both the
electronic kinetic energy term and the electron–electron
repulsion energy term depends on the assumption that
the number N of electrons (actually, the number of elec-
trons per atom) is large. Hence the Thomas–Fermi model
is sometimes called the statistical model of an atom.

The three contributions to the total energy are now
added together and one seeks to minimize their sum, the
Lenz functional [20.6]

E[ρ] = �
2

me
2π2 3

5

(
3

2Ω3

)2/3 ∫
ρ5/3(r) d r

+
∫
ρ(r)V(r) d r+ 1

2

∫
ρ(r)ρ(r ′)
|r−r ′| d r d r ′ ,

(20.8)

over all admissible densities ρ. The mathematical ques-
tion now arises: what is an admissible density? The
answer was provided by Lieb and Simon [20.9, 10]:
a density for which both

∫
ρ(r) d r , (20.9)

Part
B

2
0
.1



Thomas–Fermi and Other Density-Functional Theories 20.1 Thomas–Fermi Theory 297

the total number of electrons, and
∫
ρ5/3(r) d r , (20.10)

which is proportional to the estimate of their kinetic
energy, are finite, automatically yields finite values of
the other terms in the expression for the energy. As Lieb
and Simon proved, the minimization of this functional
over all such densities yields a well-determined result.

Carrying out the variation of E[ρ] with respect to ρ
yields the Euler–Lagrange equation

0 = �
2

me
2π2

(
3

2Ω3

)2/3

ρ2/3(r)

+ V(r) +
∫

ρ(r ′)
|r−r ′| d r ′ . (20.11)

The sum of the last two terms is of course the negative
of the total electrostatic potential φ(r), so one sees that
in Thomas–Fermi theory the density is proportional to
the 3/2-power of the potential. To simplify subsequent
manipulations, let

�
2

me
2π2

(
3

2Ω3

)2/3

= �
2

2me

(
3π2)2/3 = γp ,

(20.12)

so that

γpρ
2/3(r) = φ(r) . (20.13)

By Poisson’s theorem,

−∇2φ = 4π

[
∑

i

Ziδ
(3)(r− Ri) − ρ(r)

]

,

(20.14)

and from (20.13) one has ρ = γ−3/2
p φ3/2, so from the

integral equation for the electronic density ρ one obtains
the differential equation

−∇2φ = 4π

[
∑

i

Ziδ
(3)(r− Ri) − γ−3/2

p φ3/2

]

(20.15)

for the potential φ. In the case of a single nucleus, the
usual separation of variables in spherical polar coordi-
nates yields for φ the ordinary differential equation

1

r

d2

dr2 (rφ) = 4π γ−3/2
p φ3/2 , (20.16)

whose similarity to Emden’s equation, which Eddington
had used to study the internal constitution of stars, was

recognized by Milne [20.24]. The numerical solution
of this equation with the appropriate boundary condi-
tions at r = 0 and r =∞ was extensively discussed by
Baker [20.25], and accurate solutions tabulated by Tal
and Levy [20.26]. The numerical solution determines
that the total energy of a neutral atom is

E =−3.678 745 21 . . . γ−1
p Z7/3

=−1.537 490 24 . . . Z7/3 Ry . (20.17)

Another possibility is to do the constrained miniza-
tion over all densities which obey

∫
ρ(r) d r = λ , (20.18)

whereλ is the number of electrons, which for purposes of
mathematical analysis is allowed to be nonintegral. One
then introduces a Lagrange multiplier −µ, the chemical
potential, to correspond with this constraint, and thereby
obtains the Euler–Lagrange equation

0 = �
2

me
2π2

(
3

2Ω3

)2/3

ρ2/3(r)

+ V(r)+
∫

ρ(r ′)
|r−r ′| d r ′ +µ , (20.19)

which holds wherever ρ is positive. As was shown
by Lieb and Simon [20.9, 10], this procedure too is
well-defined. The analogue of (20.13), the relationship
between the density and the electrostatic potential for
the neutral atom, is now

γpρ
2/3(r) = [φ(r) −µ]+ , (20.20)

where [ f ]+ = max( f, 0). The corresponding differen-
tial equation for the potential φ is

−∇2φ = 4π

[
∑

i

Ziδ
(3)(r− Ri)

−γ−3/2
p [φ(r)−µ]3/2+

]

. (20.21)

Lieb and Simon rigorously proved a large number
of results concerning the solution of the Thomas–Fermi
model. When V(r) is a sum of Coulomb potentials aris-
ing from a set of nuclei of positive charges Zi , with∑

i Zi = Z, then the energy E(λ) is a continuous, mono-
tonically decreasing function of λ for 0 ≤ λ ≤ Z, and
its derivative dE/dλ is the chemical potential −µ(λ),
which vanishes at λ= Z. For λ in this range, there is
a unique minimizing density ρ, whereas for λ > Z there
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is no unique minimizing ρ, since one can place arbitrar-
ily large clumps of charge with arbitrarily low energy
arbitrarily far away from the nuclei. In the atomic case,
with a single nucleus, ρ(r) is a spherically symmetric
monotonically decreasing function of r.

Moreover, for an atom or atomic ion, the Thomas–
Fermi density obeys the virial theorem

2〈T 〉 = −〈V 〉 = −2E , (20.22)

and for a neutral atom the electronic kinetic en-
ergy, electron–nucleus attraction energy, and electron–
electron repulsion energy terms in the expression for the
total energy satisfy the ratios 3 : −7 : 1.

It is straightforward to examine the behavior of the
Thomas–Fermi density ρ in the limit as either r → 0
or r →∞. For large r, the electron density vanishes
identically outside a sphere of finite radius for a positive
ion. For a neutral atom, the ordinary differential equation
(20.16) for the potential φ can be analyzed to show that

φ(r)) γp (3γp/π)
2 r−4 , (20.23)

from which it follows that

ρ(r)) (3γp/π)
3 r−6 , (20.24)

independent of Z. This implies that as Z →∞, a neutral
atom described by the Thomas–Fermi model has a finite
size defined in terms of a radius within which all but
a fixed amount of electronic probability density is lo-
cated. For example, if one defines the size of an atom as
that value of ra for which

∫

|r|≥ra

ρ(r) d r = 1

2
, (20.25)

one finds that in the large-Z limit

ra =
(

8π

3

)1/3 3γp

π
. (20.26)

In atomic units, γp = 1
2 (3π

2)2/3, and

ra = (9π)2/3 a0 ) 9.3 a0 , (20.27)

which is about what one would expect for a ‘real’ non-
relativistic atom with a large nuclear charge Z. On the
other hand, the characteristic distance scale in Thomas–
Fermi theory, defined as the ‘average’ value of r, or in
terms of a radius within which a fixed fraction of elec-
tronic probability density is located, is proportional to
Z−1/3, which shrinks to 0 as Z →∞. The resolution
of this paradox is that outside the typical ‘core’ scale of

distance set by Z−1/3, within which most of the electron
density is located, there resides in the ‘mantle’ region
a fraction of electrons proportional to Z2/3/Z = Z−1/3,
and almost all of these are concentrated within a sphere
of radius of about 10 a0.

Moving deeper into the core and approaching the
nucleus, the −Z/r singularity in the electron–nucleus
Coulomb potential dominates the smeared-out electron–
electron potential, so one readily finds that

ρ(r))
(

Z

γp r

)3/2

. (20.28)

This singularity is integrable but unphysical, since it
arises from the approximation of the local kinetic en-
ergy by ρ5/3, which breaks down where ρ is rapidly
varying on a length scale proportional to 1/Z. In a ‘real’
nonrelativistic heavy atom governed by the Schrödinger
equation, the actual electron density at the nucleus is
finite, being proportional to Z3. This unphysical singu-
larity in the electron density in Thomas–Fermi theory
can be eliminated by adding a gradient correction to the
Thomas–Fermi kinetic energy term.

20.1.2 Thomas–Fermi–von Weizsäcker
Theory

The semiclassical approximation (20.3) for the quantum
kinetic energy in terms of a power of the density is
capable of improvement, particularly in regions of space
where the density is rapidly varying. The incorporation
of such corrections leads to a gradient expansion for the
kinetic energy [20.27]. The leading correction is of the
form

�
2

2m

∫ ∣∣∣
(∇ρ1/2)(r)

∣∣∣
2

d r . (20.29)

Addition of such a term to the Thomas–Fermi expression
for the kinetic energy yields a theory which avoids many
of the unphysical features of ordinary Thomas–Fermi
theory at very short and moderately large distances. The
more important points, as rigorously proved in Lieb’s
review article [20.15, 16], are as follows. The lead-
ing features of the energy are unchanged; for large Z
the energy E(Z) of a neutral atom or atomic ion is
still proportional to Z7/3, but now there enter higher-
order corrections arising from the gradient terms of
order Z7/3 Z−1/3 = Z2 and higher powers of Z−1/3. The
maximum number of electrons which can be bound by
an atom of nuclear charge Z is no longer exactly Z,
but a slightly larger number; thus Thomas–Fermi–von
Weizsäcker theory allows for the formation of nega-
tively charged atomic ions. It was further proven by
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Benguria and Lieb [20.28] that in the Thomas–Fermi–
von Weizsäcker model a neutral atom can bind at most
one extra electron, and that a neutral molecule can bind
at most as many extra electrons as it has nuclei.

The effect on the electronic density ρ is more pro-
found. While the general shape and properties of ρ in the
‘core’ and ‘mantle’ regions is unchanged, the fact that
∇ρ1/2 need not, and in general does not, vanish when
ρ vanishes on some surface implies that for a positive ion
ρ no longer vanishes outside of a sphere, as it does in the
case of Thomas–Fermi theory, but instead extends over
all space. For positive ions, neutral atoms, and negative
ions alike, ‘differential inequality’ techniques [20.29]
can be used to show that ρ(r) decays exponentially for
large r, with the constant in the exponential proportional
to µ1/2(λ). For small r, the gradient terms dominate the
energy expression, so one finds that the electronic dens-
ity no longer diverges as r → 0, but instead tends to
a finite limit, with a first derivative which obeys a rela-
tion analogous to the Kato cusp condition [20.30] (see
Sect. 11.1.1).

The study of molecules within the Thomas–Fermi–
von Weizsäcker model involves several subtleties and
pitfalls, which can lead to physical absurdities. Since
two neutral atoms with different nuclear charges will in
general have different chemical potentials, a pair of such
atoms placed a long distance apart will spontaneously
ionize, with a small amount of electric charge being
transferred from one to the other until the chemical po-
tentials of the positively charged ion and the negatively
charged ion become equal. The result is a long-range
Coulomb attraction between them [20.31]. This phe-
nomenon does not occur in the real world, since the
amount of electric charge which can be transferred is
quantized in units of −e, and it is empirically true
that the smallest atomic ionization potential exceeds the
largest atomic electron affinity. For two neutral atoms
with the same nuclear charges, the situation is more
subtle. Nonetheless, a careful analysis shows that in this
case too, though no spontaneous ionization occurs, there
is a long-range attractive interaction between them aris-
ing from the overlap of the exponentially small tails of
the electron clouds. Since electron correlation is not in-
cluded in this model, it could not be expected to describe
attractive van der Waals forces.

In summary, the Thomas–Fermi–von Weizsäcker
model yields a more realistic picture of a single atom
than does the Thomas–Fermi model. However, it does
not provide a useful picture for understanding the inter-
action between atoms at large distances. These kinds of
unphysical features provide a glimpse into the compli-

cated nature of the universal density functional, which
must include terms which rigorously suppress an un-
physical feature like spontaneous ionization of a distant
pair of heteronuclear atoms [20.32, 33]. It is evident
from the mathematical properties of Thomas–Fermi–
von Weizsäcker theory and related models that a density
functional which ‘fixes up’ the Thomas–Fermi expres-
sion simply by adding a few gradient terms and/or simple
exchange terms and the like must still differ in important
ways from the universal density functional, particularly
for properties of extended systems.

20.1.3 Thomas–Fermi–Dirac Theory

The effect of the exchange of electrons can be ap-
proximated, following Dirac [20.7], by including in the
Thomas–Fermi energy functional an expression of the
form

− 1

4π3

(
3π2)4/3

∫
ρ4/3(r) d r . (20.30)

Minimization of the resulting Thomas–Fermi–Dirac en-
ergy functional over all admissible densities ρ whose
integral is λ yields a well-defined E(λ), which has the
correct behavior for λ≤ Z, and it has been shown that
for an atom the exchange correction to the energy is of
order Z5/3. However, this model exhibits unphysical be-
havior for λ > Z, because one can obtain a completely
artificial lowering of the energy by placing many small
clumps of electrons a large distance from the nucleus, for
which the negative

∫
ρ4/3 d r term dominates the energy

expression [20.15,16]. At the conclusion of his original
article, Dirac clearly stated that the correction he had
derived, although giving a better approximation in the
interior of an atom, gives “a meaningless result for the
outside of the atom” [20.7]. It is therefore clear that any
physically reasonable theory must somehow profoundly
modify this correction in the region where the electronic
density is very small.

20.1.4 Thomas–Fermi–von
Weizsäcker–Dirac Theory

One can also include the Dirac exchange correction in
the Thomas–Fermi–von Weizsäcker energy functional.
In this case, however, the mathematical foundations of
the theory are still incomplete ([20.15, 16, pp. 638–9]).
Nonetheless, it is clear that this theory too suffers from
the unphysical lowering of the energy by small clumps
of electrons at large distances from the nucleus.

In summary, one can say that the inclusion of Dirac’s
exchange correction in its most straightforward form
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leads to an improvement of energies for positive ions or
neutral atoms, but to unphysical behavior for systems
where the charge of the electrons exceeds the nuclear
charge, in line with Dirac’s own observations on the
limitations of his correction [20.7]. We see here again
a manifestation of how complicated must be the behavior
of the true universal density functional.

20.1.5 Thomas–Fermi Theory
with Different Spin Densities

As was remarked by Lieb and Simon [20.10], it is possi-
ble to consider a variant of Thomas–Fermi theory with
a pair of spin densities ρα and ρβ for the spin-up and
spin-down electrons, with the two adding together to
produce the total electronic density ρ. This theory has
been rigorously formulated and analyzed by Goldstein

and Rieder [20.34]. Because the problem is nonlinear,
the mathematical complications are substantial, and the
theory is not a trivial extension of ordinary Thomas–
Fermi theory. Goldstein and Rieder first considered the
case where the total number of electrons of each type of
spin is specified in advance [20.35]. There is no math-
ematical obstacle to constructing such a spin-polarized
Thomas–Fermi theory, but it does not yield the kind of
spontaneous spin-polarization that one observes in the
ground states of many real quantum mechanical atoms
and molecules, which is not surprising in view of the fact
that such spin-polarization in accord with Hund’s first
rule arises from exchange and correlation effects not in-
cluded in this simple functional. However, in the case
where the electronic spins (but not their currents) are
coupled to an external magnetic field, the ground state
is naturally spin-polarized [20.34].

20.2 Nonrelativistic Energies of Heavy Atoms

Thomas–Fermi theory suggests that (20.17) provides
the leading term in a power series expansion for
the nonrelativistic energy of a neutral atom of the
form

E(Z)=−
(

c7 Z7/3+ c6 Z6/3+ c5 Z5/3+· · ·
)

(20.31)

with c7 = 1.537 490 24 . . . Ry, c6 =−1 Ry, and c5 )
0.5398 Ry. The c6 term was first calculated by
Scott [20.36] from the observation that it arises from
the energy of the innermost electrons for which
the electron–electron interaction can be neglected.
The difference between the exact and Thomas–Fermi
energies for this case of noninteracting electrons
yields the correct c6 [20.17, 37]. A mathemati-
cally nonrigorous but physically insightful justification
of the Scott correction was provided in 1980 by
Schwinger [20.38]. This result has now been rigorously
proved, with upper and lower bounds coincid-
ing [20.39–43].

The c5 term is much more subtle, since it arises from
a combination of effects from the exchange interaction
and from the bulk motion of electrons in the Thomas–
Fermi potential. A general analytic procedure devised
by Schwinger [20.44] yields the above value, in good
agreement with a much earlier estimate by March and
Plaskett [20.45].

A numerical check of these results, based on a fit
to Hartree–Fock calculations for Z up to 290 with
correlation corrections, yielded the values [20.46]

c5 = 0.55±0.02 Ry and c4 ) 0. It seems likely that,
because of shell structure, the terms c4 and beyond have
an oscillatory dependence on Z [20.47]. The oscillatory
structure and other refinements of Thomas–Fermi the-
ory are considered in a series of papers by Englert and
Schwinger [20.48–50].

Iantchenko, Lieb, and Siedentop [20.51] have
proven Lieb’s ‘strong Scott conjecture’ that for small
r, the rescaled density for the exact quantum sys-
tem converges to the sum of the densities of the
bound noninteracting hydrogenic orbitals; the prop-
erties of this function were explored by Heilman
and Lieb [20.52]. Fefferman and Seco [20.53] have
rigorously proved the correctness of Schwinger’s pro-
cedure for calculating not just the O(Z6/3) Scott
correction but also the O(Z5/3) exchange term.
Their full proof includes a demonstration that the
Hartree–Fock energy agrees with the exact quan-
tum energy through O(Z5/3), with an error of
smaller order [20.54]. Numerous auxiliary theorems
and lemmas are published in [20.55–58]. Progress
toward obtaining higher-order oscillatory terms is de-
scribed in [20.59–63]. The analytical evaluation of
accurate approximations to the energy of a heavy
atom, or at least of the contributions to that en-
ergy of all but the few outermost electronic orbitals,
would be of particularly great value if it led to the
construction of more accurate and better justified pseu-
dopotentials [20.64–67] for describing the valence
orbitals.
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20.3 General Density Functional Theory

The literature on general density functional theory
and its applications is enormous, so any bibliography
must be selective. The reader interested in learning
more could begin by consulting a number of review
articles [20.68–73], collections of articles [20.74–76],
and conference proceedings [20.77–87], and the recent
textbooks by Parr and Yang [20.88] and by Dreizler and
Gross [20.89].

20.3.1 The Hohenberg–Kohn Theorem
for the One-Electron Density

In 1964 Hohenberg and Kohn [20.21] argued that there
exists a universal density functional F[ρ], independent
of the external potential V(r), such that minimization of
the sum

F[ρ] +
∫
ρ(r)V(r) d r , (20.32)

subject to the constraint
∫
ρ(r) d r = N (a positive integer) , (20.33)

yields the ground state energy of a quantum-mechanical
N-electron system moving in this external potential.
However, Hohenberg and Kohn’s ‘theorem’ is like
a mathematical ‘existence theorem’; no procedure exists
to calculate explicitly this unknown universal functional,
which surely is extremely complicated if it can be written
down at all in closed form. (E. Bright Wilson, however,
defined it, implicitly and whimsically, as follows: “Take
the ground-state density and integrate it to find the to-
tal number of electrons. Find the cusps in the density
to locate all nuclei, and then use the cusp condition –
that the radial derivative of the density at the cusp is
minus twice the nuclear charge density at each cusp –
to determine the charges on each nucleus. Finally solve
Schrödinger’s equation for the ground-state density or
any other property that is desired” (paraphrased by B. I.
Dunlap, in [20.83, p. 3], from J. W. D. Connolly).)

Moreover, Hohenberg and Kohn glossed over two
problems: it is not clear a priori that every well-
behaved ρ is derivable from a well-behaved properly
antisymmetric many-electron wave function (the so-
called n-representability problem, since n was used
by Hohenberg and Kohn to represent the density of
electrons), and it is also not clear a priori that every
well-behaved density ρ can be derived from a quantum-
mechanical many-electron wave functionψ which is the
properly antisymmetric ground-state wave function for

a system of electrons moving in some external poten-
tial V(r) (the so-called v-representability problem, since
Hohenberg and Kohn used v in place of V ).

The n-representability problem was solved by
Gilbert [20.90] and by Harriman [20.91], who gave
a prescription for starting from an arbitrary well-
behaved ρ and from it constructing a many-electron
wave functionψ which generated that ρ [20.33,92]. The
v-representability problem is much more formidable,
as demonstrated by the discovery that there are well-
behaved densities ρ which are not the ground-state
densities for any fermionic system in an external po-
tential V [20.92, 93]. Following Percus’ definition of
a universal kinetic energy functional for independent
fermion systems [20.94], Levy [20.95] proposed to cir-
cumvent this v-representability problem by modifying
the definition of F[ρ] so that instead of being defined in
terms of densities which might not be v-representable,
it is defined as

F[ρ] = min [ψ, (T +V )ψ] , (20.34)

with the minimum being taken over all properly anti-
symmetric normalized ψ’s which yield that ρ.

A great deal of effort has been devoted to trying
to find approximate representations of the universal
functional F[ρ]. One route is mathematical, and fea-
tures a careful exploration of the abstract properties
which F[ρ] must have. Another route is numerical,
and can be characterized as involving the guessing of
some ansatz with a general resemblance to Thomas–
Fermi–von Weizsäcker–Dirac theory, with some flexible
parameters which are determined by least-squares fitting
of the energies resulting from insertion of Hartree–
Fock densities into the trial functional to theoretical
Hartree–Fock energies, or the like. If, however, the ba-
sic ansatz exhibits unphysical features in the case of
negatively charged ions or heteronuclear molecules, it
is not likely that the optimization of parameters in
that ansatz will get one closer to the true universal
density functional. In the opinion of this writer, signif-
icant progress in density functional theory based solely
upon the one-electron density is likely to require a ma-
jor revolution in our mathematical understanding of
this field, with a useful procedure made explicit for
constructing progressively better approximations to the
universal density functional, which, like π or other
transcendental numbers, probably will never be written
down exactly in closed form. Moreover, the numeri-
cal solution of the highly nonlinear Euler–Lagrange
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equations for a very complicated density functional is
likely to require large amounts of computer time, as
well as problems with landing in local minima of the
energy.

20.3.2 The Kohn–Sham Method
for Including Exchange
and Correlation Corrections

Density functional theory posed solely in terms
of the one-electron density and based upon the
Hohenberg–Kohn variational principle provides no gen-
eral procedure for accurately calculating relatively small
energy differences such as excitation energies, ioniza-
tion potentials, electron affinities, or the binding energies
of molecules. There is, however, a powerful method
inspired by the Hohenberg–Kohn variational principle,
which has been used with great success in the calculation
of such quantities. This is the Kohn–Sham variational
method [20.22].

The key idea in the Kohn–Sham variational method
is to replace the nonlocal exchange term in the Hartree–
Fock equations with an exchange-correlation potential,
which at least in principle can be used to determine
energies exactly. The oldest, simplest, and most com-
mon ansatz used for the exchange-correlation potential
involves the local density approximation (LDA), in
which one assumes that the exchange-correlation po-
tential for the actual system under study has the same
functional form as does the exchange-correlation poten-
tial for a uniform interacting gas of electrons. If the
density is not too small or not too rapidly varying,
the exchange part of this potential can be approxi-
mated by ρ1/3, which appears in Dirac’s first-order
approximation for exchange energies, with a system-
atic procedure for deriving higher-order corrections in
a gradient expansion. The correlation part of this po-
tential is accurately known from Ceperley and Alder’s
quantum Monte Carlo calculation of the properties
of the uniform electron gas [20.96]. One therefore
retains the important features of the quantum the-
ory based on wave functions, with a determinantal
approximation to ψ, while approximately including
exchange and correlation effects through a simply com-
putable effective potential. Higher corrections, which
are important for quantitative accuracy, can be incor-
porated by taking account of the variation of ρ by
means of a gradient expansion [20.27] involving ∇ρ
and higher derivatives [20.89, Chapt. 7], thus yielding
a generalized gradient approximation (GGA) for the
exchange-correlation potential.

The Kohn–Sham procedure has become the back-
bone for the vast majority of accurate calculations of
the electronic structure of solids [20.72, 86]. In the
1990’s, motivated by Becke’s work on constructing sim-
ple gradient-corrected exchange potentials [20.97–103],
and incorporating the Lee, Yang, and Parr (LYP) expres-
sion for the correlation potential [20.104] derived from
Colle and Salvetti’s correlation-energy formula [20.105–
107], the Kohn–Sham method is finding increasing
application in efficiently estimating relatively small en-
ergy differences of relevance to chemistry [20.108–110]
(However, Becke’s gradient-corrected exchange poten-
tial does not have the correct 1/r behavior at large r,
as was observed by several authors [20.111–113]). For
definitive results, however, one must still resort to an ab
initio theory which at least in principle converges toward
the correct result.

The generation of improved generalized gradient
approximations has recently become a growth indus-
try, with increasingly many proposals of increasingly
greater complexity [20.97, 104, 113–125]. Inevitably,
some expressions work better for some properties than
for others. It is found that usually most of the errors
in the long-range tails of the exchange and correla-
tion potentials tend to cancel each other, thus leading
to better overall energies than one could reasonably
expect [20.126]. Under these circumstances, it is im-
portant to have benchmarks for testing the accuracy
of the various approximations. Such comparisons have
been carried out for two important sets of two-electron
systems [20.127–129]:

1. a pair of electrons moving in harmonic potential
wells and coupled by the Coulomb repulsion, which
yields an exactly solvable system;

2. helium-like ions of variable nuclear charge Z,
for which extremely accurate energies and wave
functions are available which take account of the
behavior of the exact but unknown wave function in
the vicinity of all two-particle coalescences and the
three-particle coalescence.

The results indicate that the approximate exchange-
correlation potentials differ quite considerably from the
true exchange-correlation potentials, thus indicating the
need for further analytical work in understanding how
to design accurate exchange-correlation potentials, and
for devising tests of exchange-correlation potentials for
larger atoms and for molecules.

Another important way of testing the validity of
various approximate exchange and correlation po-
tentials is checking whether they obey inequalities
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imposed by such general properties as scaling and the
Hellmann–Feynman theorem. Such general tests have
been devised by Levy and his co-workers [20.130–
139], who have found that many of the commonly
used approximate potentials violate general inequal-
ities which must be obeyed by the exact potential.
These abstract results are helpful in designing poten-
tials which should be better approximations to the true
potential.

20.3.3 Density Functional Theory
for Excited States

The Hohenberg–Kohn theorem and the Kohn–Sham
method were originally formulated in terms of the
ground electronic state. These techniques can be
extended to calculate the ground state of a given sym-
metry [20.140], but that leaves unresolved the issue
of using density functional theory to calculate the en-

ergies of excited states for a given symmetry. Using
the Rayleigh–Ritz principle for ensembles, general ab-
stract procedures for generalizing density functional
theory to excited state calculations have been formulated
by Theophilou [20.141] and by several other work-
ers [20.142–151]. Unfortunately, the errors typically
seem to be much larger than for ground-state density
functional theory.

20.3.4 Relativistic and Quantum Field
Theoretic Density Functional Theory

At a formal level, one can discuss the development of
density functional theory for a relativistic system of elec-
trons. For an overview of this challenging subject, see
the discussions by Dreizler and Gross [20.89, Chapt. 8]
and by Dreizler [20.152]. Much of the formalism carries
over, but no good way has yet been found of incorporat-
ing vacuum polarization corrections.

20.4 Recent Developments

During the last eight years there has continued to be ex-
ponentially growing interest in applications of density
functional theory of the Kohn-Sham variety to atoms
and molecules, especially those of chemical relevance
which are too large for accurate ab initio electronic
structure calculations. The awarding of the 1998 No-
bel Prize in Chemistry to Walter Kohn and John A.
Pople recognised their individual contributions to this
increasingly important field. Their Nobel lectures were
published the following year in the Reviews of Modern
Physics [20.153, 154].

Since a comprehensive summary of the wide-
ranging developments in density functional theory
during the past decade is not feasible within the lim-
ited space available for this supplementary section, I
will briefly cite some of the most extensive surveys of
various aspects of this field that have appeared since
1995.

Many aspects of density functional theory were re-
viewed in four consecutive volumes of Topics in Current
Chemistry published in 1996 [20.155], and in 1999 an
entire volume of Advances in Quantum Chemistry was
devoted to density functional theory [20.156]. This has
also been the subject of several conference proceed-
ings [20.157–159] and introductory textbooks [20.160,
161]. Developments in time-dependent density func-

tional theory for chemical systems have been surveyed
in two very recent review articles [20.162, 163].

Although the locality of DFT was proved for a large
class of functionals [20.164–166], this issue has come
under recent dispute. The question that has been raised is
whether there exists an exact Thomas-Fermi model for
non-interacting electrons. If such an exact model does
not exist, as it is a direct consequence of the Hohenberg-
Kohn theorem, then DFT would be incomplete.

Nesbet [20.167–171] has argued that such a theory
would be inconsistent with the Pauli exclusion princi-
ple for atoms of more than two electrons (or for a two
electron atom where both electrons are in the same spin
state). The contention is that if only the total electron
density were normalized (which corresponds to only one
Lagrange multiplier), as in the TF model, then no shell
structure can exist; hence such a system would violate
the exclusion principle.

A counter-example has recently been constructed
by Lindgren and Salomonson [20.172] showing that
shell structure can indeed be generated through a sin-
gle Lagrange multiplier. In addition, they have verified
numerically that a local Kohn-Sham potential can repro-
duce to high accuracy the many-body electron density
and the 2s eigenvalue for the 1s2s 3S state of neutral
helium.
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Atomic Struct21. Atomic Structure:
Multiconfiguration Hartree–Fock Theories

This chapter outlines variational methods for the
determination of wave functions either in non-
relativistic LS or relativistic LSJ theory. The emphasis
is on Hartree–Fock and multiconfiguration
Hartree–Fock theory though configuration
interaction methods are also mentioned. Some
results from the application of these methods to
a number of atomic properties are presented.
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21.1 Hamiltonians: Schrödinger and Breit–Pauli

The state of a many-electron system is described by
a wave function Ψ that is the solution of a partial
differential equation (called the wave equation),

(H− E)Ψ = 0 , (21.1)

where H is the Hamiltonian operator for the system
and E the total energy. The operator H depends on the
system (atomic, molecular, solid-state, etc.) as well as
the underlying quantum mechanical formalism (nonrela-
tivistic, Breit–Pauli, Dirac–Coulomb, or Dirac–Breit,
etc.). In atomic systems, the Hamiltonian of the non-
relativistic Schrödinger equation is (in atomic units)

Hnr =−1

2

N∑

i=1

(
∇2

i +
2Z

ri

)
+
∑

i< j

1

rij
. (21.2)

Here Z is the nuclear charge of the atom with N elec-
trons, ri is the distance of electron i from the nucleus,

and rij is the distance between electron i and elec-
tron j. This equation was derived under the assumption
of a point-nucleus of infinite mass. The term 2Z/r rep-
resents the nuclear attraction and 1/rij the inter-electron
repulsion. The operator Hnr has both a discrete and con-
tinuous spectrum: for the former, Ψ(r1, r2, . . . , rN ) has
a probability interpretation and consequently must be
square integrable. In the Breit–Pauli approximation, the
Hamiltonian is extended to include relativistic correc-
tions up to relative order (αZ)2. It is convenient to write
the Breit–Pauli Hamiltonian as the sum [21.1]

HBP = Hnr+Hrel , (21.3)

where Hrel represents the relativistic contributions. The
latter may again be subdivided into nonfine-structure
(NFS) and fine structure (FS) contributions:

Hrel = HNFS+HFS . (21.4)
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The NFS contributions

HNFS = Hmass+HD+Hssc+Hoo (21.5)

shift nonrelativistic energy levels without splitting the
levels. The mass-velocity term

Hmass =−α
2

8

∑

i

∇4
i (21.6)

corrects for the variation of mass with velocity; the one-
and two-body Darwin terms

HD =−α
2 Z

8

∑

i

∇2
i r−1

i + α
2

4

∑

i< j

∇2
i r−1

ij (21.7)

are the corrections of the one-electron Dirac equa-
tion due to the retardation of the electromagnetic
field produced by an electron; the spin–spin contact
term

Hssc =−8πα2

3

∑

i< j

(si · s j)δ(rij) (21.8)

accounts for the interaction of the spin magnetic mo-
ments of two electrons occupying the same space; the
orbit–orbit interaction

Hoo =−α
2

2

∑

i< j

(
pi · p j

rij
+ rij(rij · pi) · p j

r3
ij

)

(21.9)

accounts for the interaction of two orbital moments.
The FS contributions

HFS = Hso+Hsoo+Hss , (21.10)

split the nonrelativistic energy levels into a series of
closely-spaced fine structure levels. The nuclear spin–
orbit interaction

Hso = α
2 Z

2

∑

i

1

r3
i

(li · si) , (21.11)

represents the interaction of the spin and angular mag-
netic moments of an electron in the field of the nucleus.
The spin–other-orbit term

Hsoo =−α
2

2

∑

i �= j

(
rij

r3
ij

× pi

)

· (si +2s j) , (21.12)

and the spin–spin term

Hss = α2
∑

i< j

1

r3
ij

[

si · s j − 3

r2
ij

(si · rij)(s j · rij)

]

,

(21.13)

arise from spin-dependent interactions with the other
electrons in the system.

21.2 Wave Functions: LS and LSJ Coupling

In the configuration interaction model, the approximate
wave functionΨ for a many-electron system is expanded
in terms of configuration state functions (CSF).

The assignment of nl quantum numbers to elec-
trons specifies a configuration, often written as
(n1l1)

q1(n2l2)
q2 · · · (nmlm)

qm , where qi is the occupa-
tion of subshell (nili). Associated with each subshell
are one-electron spin-orbitals

φ(r, θ, ϕ, σ)= (1/r)Pnl(r)Ylml (θ, ϕ)χms (σ) ,

where Pnl(r) is the radial function, Ylml (θ, ϕ) a spherical
harmonic, and χms (σ) a spinor. Each CSF is a linear
combination of products of one-electron spin-orbitals,
one for each electron in the system, such that the sum
is an eigenfunction of the total angular momenta op-
erators L2, Lz and the total spin operators S2, Sz . It
can be considered to be a product of radial factors, one
for each electron, an angular and a spin factor obtained

by vector coupling methods. It also is required to be
antisymmetric with respect to the interchange of any
pair of electron co-ordinates. Often, the specification of
the configuration and the final L S quantum numbers is
sufficient to define the configuration state, but this is not
always the case. Additional information about the order
of coupling or the seniority of a subshell of equivalent
electrons may be needed. Let γ specify the configuration
information and any additional information about coup-
ling to uniquely specify the configuration state function
denoted by Φ(γL S).

The wave function for a many-electron system is
usually labeled in the same manner as a CSF and gener-
ally designates the largest component. Thus, in the L S
approximation,

Ψ(γL S)=
M∑

α=1

cαΦ(γαL S) .
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However, cases are known where the configuration states
are so highly mixed that no dominant component can be
found. Then the assignment is made using other criteria.
Clearly no two states should have the same label.

In the L SJ scheme, the angular and spin momenta
are coupled to form an eigenstate of the total mo-

menta J2, Jz . The label often still includes an L S
designation, as in 2p23P2, but only the subscript J is
a good quantum number. Thus,

Ψ(γL SJ )=
M∑

α=1

cαΦ(γαLαSα J ) . (21.14)

21.3 Variational Principle

Variational theory shows the equivalence between so-
lutions of the wave equation, (H − E)ψ = 0, and
stationary solutions of a functional. For bound states
where approximate solutionsΨ are restricted to a square
integrable subspace, say H̃ , the best solutions are those
for which the energy functional

E(Ψ)= 〈Ψ |H|Ψ 〉/〈Ψ |Ψ 〉 (21.15)

is stationary. The condition δE(Ψ )= 0 leads to

〈δΨ |H− E|Ψ 〉 = 0, ∀ δΨ ∈ H̃, E = E(Ψ) .
(21.16)

Several results readily follow. The eigenvalues of H
are bounded from below. Let E0 ≤ E1 ≤ · · · . Then

E0 ≤ E(Ψ), ∀ Ψ ∈ H̃ . (21.17)

Consequently, for any approximate wave function,
the computed energy is an upper bound to the
exact lowest eigenvalue. By the Hylleraas–Undheim–
MacDonald theorem (see Sect. 11.3.1) the computed
excited states are also upper bounds to the exact eigen-
values, provided that the correct number of states lies
below.

21.4 Hartree–Fock Theory

In the Hartree–Fock (HF) approximation, the approxi-
mate wave function consists of only one configuration
state function. The radial function of each spin–orbital
is assumed to depend only on the nl quantum numbers.
These are determined using the variational principle and
the nonrelativistic Schrödinger Hamiltonian.

The energy functional can be written as an energy ex-
pression for the matrix element 〈Φ(γL S)|H|Φ(γL S)〉.
Racah algebra may be used to evaluate the spin–
angular contributions, resulting in two types of radial
integrals:

One-Body
Let L be the differential operator

L= d2

dr2
+ 2Z

r
− (+1)

r2
. (21.18)

Then,

I(nl, n′l′)=−1

2

∞∫

0

P(nl; r)

×LP(n′l′; r) dr . (21.19)

Two-Body
The other integrals arise from the multipole expansion
of the two-electron part

1

r12
=
∑

k

rk
<

rk+1
>

Pk(cos θ) , (21.20)

where θ is the angle between the vectors r1 and r2, and
r<, r> are the lesser and greater of r1, r2, respectively.
In general, let a, b, c, d be four nl quantum numbers,
two from the left (bra) and two from the right (ket) CSF.
Then

Rk(ab, cd)=
∞∫

0

∞∫

0

P(a; r1)P(b; r2)

×
rk
<

rk+1
>

P(c; r1)P(d; r2) dr1 dr2 ,

(21.21)

which is called a Slater integral. It has the symmetries

Rk(ad, cb)≡ Rk(cb, ad)≡ Rk(cd, ab)

≡ Rk(ab, cd) .
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In the Hartree–Fock approximation, the Slater integrals
that occur depend on only two sets of quantum numbers.
These special cases are denoted separately as

Fk(a, b)≡ Rk(ab, ab) and

Gk(a, b)≡ Rk(ab, ba) . (21.22)

The former is the direct interaction between a pair of
orbitals whereas the latter arises from the exchange
operator.

The energy expression may be written as

E(γL S)=
m∑

i

qi

[
I(nili , nili)

+ qi −1

2

2li∑

k=0

fk(i, i)F
k(nili , nili)

]

+
∑

j<i

qiq j

[2 min(li ,l j )∑

k=0

fk(i, i)F
k(nili , n jl j)

+
li+l j∑

k=|li−l j |
gk(i, j )Gk(nili , n jl j)

]
.

(21.23)

In general, the coefficients fk(i, j ) and gk(i, j ) depend
not only on the configuration, but also on the coupling.
An extremely useful concept, introduced by Slater, is
the “average energy of a configuration”, E(av). This is
a weighted average of all possible L S terms, where the
weighting factor is (2L +1)(2S+1). In this case the
coefficients have simple formulas that depend on the
configuration:

fk(i, i)= 1, k = 0 ,

=−
(

2li +1

4li +1

)(
li k li
0 0 0

)2

, k > 0

fk(i, j )= 1, i �= j and k = 0 ,

= 0, i �= j and k > 0 ,

gk(i, j )=−
(

2li +1

4li +1

)(
li k l j

0 0 0

)2

. (21.24)

Let*(Pa) be an integral that depends on Pa. Then δ*
is defined as the first-order term of*(Pa+δPa)−*(Pa).
To derive the first-order variation of the Fk and Gk

integrals (and Rk in general) it is convenient to re-
place the variables (r1, r2) by (r, s) and introduce the

function

Yk(ab; r)= r

∞∫

0

rk
<

rk+1
>

P(a; s)P(b; s) ds

=
r∫

0

( s

r

)k
P(a; s)P(b; s) ds

+
∞∫

r

(r

s

)k+1
P(a; s)P(b; s) ds (21.25)

so that

Fk(a, b)=
∞∫

0

P2(a; r)

(
1

r

)
Yk(bb; r) dr (21.26)

and

Gk(a, b)=
∞∫

0

P(a; r)P(b; r)

(
1

r

)
Yk(ab; r) dr .

(21.27)

Then the variations are

δI(a, b)=−1

2
(1+ δa,b)

∞∫

0

δP(b; r)LP(b; r) dr ,

δFk(a, b)= 2(1+ δa,b)
∞∫

0

δP(a; r)P(a; r)

×

(
1

r

)
Yk(bb; r) dr ,

δGk(a, b)= 2

∞∫

0

δP(a; r)P(b; r)

(
1

r

)
Yk(ab; r) dr .

(21.28)

The part of the expression that depends on P(nili; r), for
example, is the negative of the removal energy of the
entire (nili)qi subshell, say −Ē [(nili)qi ]. The stationary
condition for a Hartree–Fock solution applies to this
expression, but since the variations must be constrained
in order to satisfy orthonormality assumptions, Lagrange
multipliers λij need to be introduced. The stationary
condition applies to the functional

F [P(nili)] =− Ē
[
(nili)

qi
]

+
∑

j

δli ,l jλij〈P(nili)|P(n jl j)〉 .

(21.29)
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Applying the variational conditions to each of the inte-
grals, and dividing by −qi , we get the equation

(
d2

dr2
+ 2

r
[Z−Y(nili; r)]− l(l+1)

r2
− εii

)

× P(nili; r)

= 2

r
X(nili; r)+

∑

j �=i

δli ,l j εij P(n jl j; r) , (21.30)

where

Y(nili; r)= (qi −1)
∑

k

fk(i, i)Y
k(nilinili; r)

+
∑

j �=i

q jY
k(n jl jn jl j; r) ,

X(nili; r)=
∑

j �=i

q j

∑

k

gk(i, j )Yk(nilin jl j; r)

× P(n jl j; r) . (21.31)

21.4.1 Diagonal Energy Parameters
and Koopmans’ Theorem

The diagonal (εii ) and off-diagonal (εij ) energy pa-
rameters are related to the Lagrange multipliers by
εii = 2λii/qi and εij = λij/qi . In fact,

εii = 2

qi
Ē
[
(nili)

qi
]

− (qi −1)
∑

k

fk(i, i)F
k(nili , nili) (21.32)

where Ē[(nili)qi ] is the Hartree–Fock value of the re-
moval energy functional Ē [(nili)qi ]. In the special case
where qi = 1, εii is twice the removal energy, or ion-
ization energy. This is often referred to as Koopmans’
Theorem; but, as discussed in Sect. 21.4.3, if a rotation
of the radial basis leaves the wave function unchanged
while transforming the matrix of energy parameters (εij),
the removal energies are extreme values obtained by
setting the off-diagonal energy parameters to zero. For
multiply occupied shells, εii/2 can be interpreted as an
average removal energy, with a correction arising from
the self-interaction.

21.4.2 The Fixed-Core Hartree–Fock
Approximation

The above derivation has assumed that the solution is
stationary with respect to all allowed variations. In prac-
tice, it may be convenient to assume that certain radial
functions are “fixed” or “frozen”. In other words, these

radial functions are assumed to be given. Such approxi-
mations are often made for core orbitals and so, this is
called a fixed-core HF approximation.

21.4.3 Brillouin’s Theorem

The Hartree–Fock approximation has some special
properties not possessed by other single configuration
approximations. One such property is referred to as
satisfying Brillouin’s theorem, though, in complex sys-
tems with multiple open shells of the same symmetry,
Brillouin’s theorem is not always obeyed.

Let ΦHF(γ L S) be a Hartree–Fock configuration
state, where γ denotes the configuration and coupling
scheme. WithΦHF(γ L S) are associated the m Hartree–
Fock radial functions PHF(n1l1; r), PHF(n2l2; r),
. . . , PHF(nmlm; r). These radial functions define the oc-
cupied orbitals. To this set may be added virtual orbitals
that maintain the necessary orthonormality conditions.
Let one of the radial functions (nl) be replaced by
another (n′l), either occupied or virtual, without any
change in the coupling of the spin–angular factor. Let
the resulting function be denoted by F(nl → n′l).

The perturbation of the Hartree–Fock radial func-
tion, P(nl; r)→ PHF(nl; r)+ εP(n′l; r) induces a per-
turbation ΦHF(γ L S)→ ΦHF(γ L S)+ εF(nl → n′l).
But the Hartree–Fock energy is stationary with respect
to such variations and so,

〈ΦHF(γ L S) | H | F(nl → n′l)〉 = 0 . (21.33)

If the function F(nl → n′l) is a CSF for a configur-
ation γ ∗, or proportional to one, then Brillouin’s theorem
is said to hold between the two configuration states.
When n′l is a virtual orbital, it may happen that F(nl →
n′l) is a linear combination of CSFs, as in the 2p → 3p
replacement from 2p32P, yielding a linear combination
of {2p2(1S)3p, 2p2(3P)3p, 2p(1D)3p}, the linear com-
bination being determined by coefficients of fractional
parentage. Thus, Brillouin’s theorem will not hold for
any of the three individual configuration states in the
above equation, only for the linear combination.

When perturbations are constrained by orthogonality
conditions between occupied orbitals, the perturbation
is of the form of a rotation, where both are perturbed
simultaneously,

P(nl; r)→ P(nl; r)+ εP(n′l; r) ,

P(n′l; r)→ P(n′l; r)− εP(nl; r) . (21.34)

Then the perturbation has the form F(nl → n′l, n′l →
−nl). For 1s22s 2S, the simultaneous perturbations,
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F(1s → 2s, 2s →−1s), lead to a linear combination of
{1s2s22S, 1s32S}. The CSF for the 1s32S is identically
zero by antisymmetry, and so Brillouin’s theorem holds
for the lithium-like ground state. In the 1s2s3S state,
neither the 1s → 2s nor the 2s → 1s substitutions are
allowed; in fact, it can be shown that for these states,
Brillouin’s theorem holds for all mono-excited config-
urations. The same is not true for 1s2s1S where the
simultaneous perturbations lead to the condition

〈
ΦHF(1s2s1S)|H|

[
Φ
(

1s2
)
−Φ

(
2s2

)]〉
= 0 .

(21.35)

Thus, Brillouin’s theorem is not obeyed for either the
Φ
(
1s2

)
or Φ

(
2s2

)
CSF in an HF calculation for 1s2s.

The importance of Brillouin’s theorem lies in the fact
that certain interactions have already been included to
first order. This has the consequence that certain classes
of diagrams can be omitted in many-body perturbation
theory [21.2].

21.4.4 Properties of Hartree–Fock Functions

Term Dependence
The radial distribution for a given nl orbital may depend
significantly on the L S term. A well known exam-
ple is the 1s22s2p configuration in Be which may
couple to form either a 3P or 1P term. The energy
expression differs only in the exchange interaction,
±(1/3)G1(2s, 2p), where the + refers to 1P and the
− to 3P. Clearly, the energies of these two terms dif-
fer. What is not quite as obvious is the extent to which
the P(2p) radial functions differ for the two states. The
most affected orbital is the one that is least tightly bound,
which in this case is the 2p orbital. Figure 21.1 shows
the two radial functions. The 1P orbital is far more dif-
fuse (not as localized) as the one for 3P. Such a change
in an orbital is called L S term dependence.

Orbital Collapse
Another phenomenon, called orbital collapse, occurs
when an orbital rapidly contracts as a function of
the energy. This could be an L S dependent effect,
but it can also occur along an isoelectronic se-
quence. This effect is most noticeable in the high-l
orbitals. In hydrogen, the mean radius of an orbital
is 〈r〉 = (1/2)[3n2− l(l+1)] a0. Thus, the higher-l or-
bitals are more contracted; but in neutral systems, the
high-l orbitals have a higher energy and are more diffuse.
This is due, in part, to the l(l+1)/r2 angular momentum
barrier that appears in the definition of the L operator.
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Fig. 21.1 A comparison of the 2p Hartree–Fock radial func-
tions for the 1s2p 1,3P states of Be

In the Hartree model, it is possible for V(r)+ l(l+1)/r2

to have two wells: an inner well and an outer shallow
well. As the lowest eigenfunction changes rapidly from
the outer well to the inner well, as Z changes, orbital
collapse is said to occur.

Quantum Defects and Rydberg Series
Spectra of atoms often exhibit phenomena associated
with a Rydberg series of states where one of the elec-
trons is in an nl orbital, with n assuming a sequence
of values. An example is the 1s22snd 3D series in Be,
n = 3, 4, 5, . . . . For such a series, an useful concept is
that of a quantum defect parameter δ. In hydrogen, the
ionization energy (IP) in atomic units is 1/(2n2). In com-
plex neutral systems, the effective charge would be the
same at large r. As n increases, the mean radius be-
comes larger and the probability of the electron being in
the hydrogen-like potential increases. Thus, one could
define an effective quantum number, n∗ = n− δ, such
that

IP(nl)= (1/2)/(n− δ)2 . (21.36)

Table 21.1 The effective quantum number and quantum
defect parameters of the 2snd Rydberg series in Be

3D 1D

n n∗ δ(nl) n∗ δ(nl)

3 2.968 0.032 3.014 −0.014

4 3.960 0.040 4.012 −0.012

5 4.957 0.043 5.013 −0.013

6 5.955 0.045 6.013 −0.013
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For ionized systems, the equation must be modified to
IP(nl)= (1/2)[(Z− N +1)/(n− δ)]2.

Often, this parameter is defined with respect to
observed data, but it can also be used to evaluate
Hartree–Fock energies, where IP = εnl,nl/2, so that
εnl,nl = [(Z − N +1)/(n− δ)]2. Table 21.1 shows the
effective quantum number and quantum defect for the

Hartree–Fock 2snd 3D and 1D orbitals in Be as a func-
tion of n. For the triplet part the quantum defect is
positive whereas for the singlet it is negative. This is
the effect of exchange. Note that as n increases the
quantum defect becomes constant. This observation is
often the basis for determining ionization potentials from
observed data.

21.5 Multiconfiguration Hartree–Fock Theory

The Hartree–Fock method predicts many atomic prop-
erties remarkably well; but when analyzed carefully,
systematic discrepancies can be observed. Consider the
ionization potentials tabulated in Table 21.2 compared
with the observed values. In these calculations, the en-
ergy of the ion was computed using the same radial
functions as for the atom. Thus, no “relaxation” effects
were included.

The observed data include other effects as well,
such as relativistic effects, finite mass and volume of
the nucleus, but these are small for light atoms. For
these systems, the largest source of discrepancy arises
from the fact that the Hartree–Fock solution is an in-
dependent particle approximation to the exact solution
of Schrödinger’s equation. Neglected entirely is the no-
tion of “correlation in the motion of the electrons”; each
electron is assumed to move independently in a field de-
termined by the other electrons. For this reason, the error
in the energy was defined by Löwdin [21.3], to be the
correlation energy, that is,

Ecorr = Eexact− EHF . (21.37)

In this definition, Eexact is not the observed energy –
it is the exact solution of Schrödinger’s equation which
itself is based on a number of assumptions.

21.5.1 Z-Dependent Theory

An indication of the important correlation corrections
can be obtained from a perturbation theory study of
the exact wave function. In the following section, we
follow closely the approach taken by Layzer et al. [21.4]
in the study of the Z-dependent structure of the total
energy.

Let us introduce a new scaled length, ρ = Zr. Then
the Hamiltonian becomes

H = Z2(H0+ Z−1V
)
, (21.38)

where

H0 =−1

2

∑

i

(
∇2

i +
2

ρ

)
, (21.39)

V =
∑

i> j

1

ρij
, (21.40)

and Schrödinger’s equation becomes
(

H0+ Z−1V
)
ψ =

(
Z−2 E

)
ψ . (21.41)

With Z−1V regarded as a perturbation, the expansions
of ψ and E in the powers of Z−1 are

ψ = ψ0+ Z−1ψ1+ Z−2ψ2+· · · , (21.42)

in the ρ unit of length, and

E = Z2
(

E0+ Z−1 E1+ Z−2 E2+ Z−3 E3+· · ·
)
.

(21.43)

The zero-order equation is

H0ψ0 = E0ψ0 . (21.44)

The solutions of this equation are products of hydrogenic
orbitals.

Table 21.2 Observed and Hartree–Fock ionization poten-
tials for the ground states of neutral atoms, in eV. (See also
Table 10.3.)

Atom Obs. HF Diff.

Li 5.39 5.34 0.05

Be 9.32 8.42 0.90

B 8.30 8.43 −0.13

C 11.26 11.79 −0.53

N 14.53 15.44 −0.91

O 13.62 14.45 −0.85

F 17.42 18.62 −1.20

Ne 21.56 23.14 −1.58
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Let |(nl)νL S〉 be a configuration state function
constructed by vector coupling methods from prod-
ucts of hydrogenic orbitals. Here (nl) represents a set
of N quantum numbers (n1l1, n2l2, . . . , nNlN ) and ν
any additional quantum numbers such as the coupling
scheme or seniority needed to distinguish the different
configuration states. Then,

H0|(nl)νL S〉 = E0|(nl)νL S〉 , (21.45)

E0 =−1

2

∑

i

1

n2
i

. (21.46)

Since E0 is independent of the li , different configurations
may have the same E0; that is, E0 is degenerate. Ac-
cording to first-order perturbation theory for degenerate
states, ψ0 then is a linear combination of the degenerate
configuration state functions |(nl′)ν′L S〉 with the same
set of principal quantum numbers ni and parity π. The
coefficients are components of an eigenvector of the in-
teraction matrix 〈(nl′)ν′L S|V |(nl)νL S〉, and E1 is the
corresponding eigenvalue. This is the set of configur-
ations referred to as the complex by Layzer [21.5] and
denoted by the quantum numbers (n)πL S.

The zero-order wave function ψ0 describes the
many-electron system in a general way. It can be shown
that the square of the expansion coefficients of ψ0 over
the degenerate set of configuration states can be inter-
preted as a probability that the many-electron system is
in that configuration state, thatψ1 is then a weighted lin-
ear combination of first-order corrections to each such
configuration state. Let us now assume the nondegen-
erate case where ψ0 = Φ (γ L S). The configurations
interacting with γ L S are of two types: those that dif-
fer by a single electron (single substitution S) and those
that differ by two electrons (double substitution D). The
former can be further subdivided into three categories:
(i) Those that differ from γ L S by one principal quan-
tum number but retain the same spin–angular coupling.
These configuration states are part of radial correlation.
(ii) Those that differ by one principal quantum number
but differ in their coupling. If the only change is the
coupling of the spins, the configuration states are part of
spin-polarization.
(iii) Those that differ in the angular momentum of one
electron and are accompanied by a change in angular
coupling of the configuration state and possibly also the
spin coupling. The latter represent orbital-polarization.

The sums over intermediate states involve infinite
sums. In practice, the set of orbitals is finite. In the
nondegenerate case, these orbitals can be divided into
occupied orbitals and unoccupied, or virtual, orbitals

depending on whether or not they occur in the refer-
ence configuration that defines γ L S. Single and double
(SD) replacements of occupied orbitals by other occu-
pied or virtual orbitals generate the set of configurations
that interact with ψ0. Consider the 1s22s ground state
of Li and the {1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d, 4d, 4f} set
of orbitals. The 1s and 2s orbitals are occupied and
all the other orbitals are virtual orbitals, vl. The set of
replacements can then be classified as follows:

Replacement Configuration Type of correlation

1s → 2s 1s2s2 Radial and
spin-polarization

2s → vs 1s2vs Radial

1s → vs 1svs(1S)2s Radial

1svs(3S)2s Spin-polarization

1s2s → vlv′l 1svlv′l Core-polarization

1s2 → vlv′l 2svlv′l Core

The above discussion has considered only the
Z-dependence of the wave function, but the notion can
readily be extended to other properties. For example,
in transition studies, the dipole transition matrix ele-
ment decreases as 1/Z, whereas the transition energy
increases linearly with Z for ∆n = 0 transitions, and
quadratically as Z2 otherwise. A first-order theory for
oscillator strengths (FOTOS) [21.6] is based on similar
concepts.

21.5.2 The MCHF Approximation

In the multiconfiguration Hartree–Fock (MCHF)
method, the wave function is approximated by a lin-
ear combination of orthogonal configuration states so
that

Ψ(γ L S)=
m∑

i

ciΦ (γi L S) , (21.47)

where
m∑

i

c2
i = 1 .

Then the energy expression becomes

E
[
Ψ (γ L S)

]=
m∑

i

m∑

j

cic j Hij (21.48)

where

Hij =
〈
Φ (γi L S)

∣∣H
∣∣Φ

(
γ j L S

)〉
. (21.49)

Because Hij = Hji , the sum over i, j may be limited to
the diagonals and the lower part of the matrix H = (Hij),
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called the interaction matrix. Let c = (ci) be a column
vector of the expansion coefficients, also called mixing
coefficients. Then the energy of the system is

E = cT Hc . (21.50)

Let P be the column vector of radial functions,
(Pa, Pb, . . . )

T. Since the interaction matrix elements de-
pend on the radial functions, it is clear that the energy
functional depends on both P and c.

In deriving the MCHF equations, the energy needs
to be expressed in terms of the radial functions and c.
From the theory of angular momenta, it follows that

Hij =
∑

ab

qij
ab I(a, b)+

∑

abcd;k
v

ij
abcd;k Rk(ab, cd) ,

(21.51)

where the sum over ab or abcd covers the occupied
orbitals of configuration states i and j.

Substituting into the energy expression (21.48), and
interchanging the order of summation, we get

E(Ψ)=
∑

ab

qab I(a, b)+
∑

abcd;k
vabcd;k Rk(ab, cd) ,

(21.52)

where

qab =
∑

i

∑

j

cic jq
ij
ab and

vabcd;k =
∑

i

∑

j

cic jv
ij
abcd;k .

In this form, the energy is expressed as a list of integrals
and their contribution to the energy – a form suitable for
the derivation of the MCHF radial equations.

As in the derivation of the Hartree–Fock equations,
the stationary principle must be applied to a functional
that includes Lagrange multipliers for all the constraints.
Thus,

F (P, c)= E(Ψ)+
∑

a<b

δa,bλab〈a|b〉− E
∑

i

c2
i .

(21.53)

In deriving the stationary conditions with respect to
variations in ci , the most convenient form for E(Ψ)
is (21.48), which leads to the secular equation

Hc = Ec . (21.54)

Thus, the Lagrange multiplier E is the total energy of
the system.

The requirement of a stationary condition with re-
spect to variations in the radial functions leads to

a system of equations with exactly the same form as the
Hartree–Fock equations except: (i) the occupation num-
bers qaa are not integers but rather expected occupation
numbers, and (ii) the function X(r) arises not only from
the exchange of electrons within a configuration state,
but also from interactions between configuration states.

A solution of the MCHF problem requires the si-
multaneous solution of the secular equation and the
variational radial equations. When the latter are assumed
to be given, then only the secular problem needs to be
solved and the problem is called a configuration inter-
action (CI) problem. If any radial function is optimized,
the calculation is called a multi-configuration Hartree–
Fock (MCHF) calculation. The iterative procedure for
its solution is the MCHF-SCF method, details of which
can be found in [21.7].

21.5.3 Systematic Methods

For MCHF calculations with only a few configuration
states, the latter must be carefully chosen. Accord-
ing to first-order perturbation theory, the expansion
coefficient is ci = 〈Φi |H|Φ0〉/(E0− Ei). Clearly, con-
figurations near in energy to the state under investigation
are candidates for a strong interaction, but it is also
important to remember the numerator in this expres-
sion. Generally, the latter is large if the electrons in the
two configurations occupy the same region of space.
Thus in the ground state of beryllium, the strongest
mixing is with 2p21S, even though the energy of
the latter is far removed from the energy of 2s21S.
In highly ionized systems, the complex identifies the
configurations that might interact strongly, but for neu-
tral systems, there are many exceptions, particularly
in atoms such as the transition metals where the 4s
and 4p subshells may be filled before the 3d sub-
shell.

For large scale computation, it is desirable to de-
fine the configuration states systematically in terms of
an active set (AS) of orbitals. Several notations are com-
monly used for this set. A very simple designation is
“the n = 4 active set” in that all orbitals up to and
including those with principal quantum number n = 4
are included. Another notation common in quantum
chemistry is one where the number of orbitals of each
symmetry is specified, as in 4s3p2d1f.

Closely associated with this set is the set of config-
uration states that can be generated. The latter is referred
to as the complete active space (CAS). Often the CAS
is defined relative to a set of closed shells (or subshells)
common to all configurations. For example, the com-
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plex for the 3s23p23P ground state of Si, is a neon-like
core, 1s22s22p6, coupled to the {N = 4, π = even, 3P}
CAS of the active set {3s, 3p, 3d}. If the AS is extended
to {3s, 3p, 3d, 4s, 4p, 4d, 4f}, then all single, double,
triple, quadruple (SDTQ) replacements from the outer
four electrons are generated. Of course, the number of
CSF increase rapidly, both with the size of the active
set and with the number of electrons N defining the
CAS. For this reason, other models may be used, such as
multi-reference singles and doubles (MR–SD) modeled
on the results of Z-dependent perturbation theory. These
multi-reference functions may be extended to include all
important contributors to a wave function. Calculations
in which correlation is restricted to a few outer electrons
is called valence correlation.

A consequence of a CAS expansion is that the
MCHF problem is over determined: a rotation of ra-
dial functions of the same symmetry merely transforms
the CSFs and the expansion coefficients. The wave func-
tion and energy do not change. When similar situations
occur in Hartree–Fock theory, Koopmans’ theorem re-
quires that the lagrange multiplier associated with the
rotation be set to zero. In MCHF calculations, the de-
gree of freedom is usually used to eliminate a CSF or,
more precisely, to determine that solution for which
a specific CSF has a zero expansion coefficient. A gener-
alized Brillouin’s Theorem (GBT) then holds. In the case
of the helium ground state (or any ns2 pair function),
applying GBT leads to the natural orbital expansion
of the form {1s2, 2s2, 3s2, . . . , 2p2, 3p2, . . . , 3d2, . . . }
in which all CSF differ by two electrons. For other
symmetries, such as 1s2p3P, a reduced form [21.8]
can also be defined in which all CSF differ by two
electrons, but now involves different sets of orthonor-
mal radial functions for the different partial waves
as in {1s2p1, 2s3p1, 3s4p1, . . . , 2p23d1, 3p24d1, . . . }.

Such expansions yield the fastest rate of convergence,
but are difficult to apply in complex systems. For a his-
tory of Brillouin’s theorem and its use in solving multi-
configuration self-consistent field problems see [21.9].

21.5.4 Excited States

For ground states or atomic states lowest in their
symmetry, the variational procedure is a minimization
procedure, and consequently any approximate energy is
an upper bound. For all others the energies are stationary.
Such calculations may be difficult. One of the most dif-
ficult has been the HF calculation for 1s2s1S and, once
obtained is disappointing since the energy is too low. Ex-
cited state calculations become minimization problems
through the use of the Hylleraas–Undheim–MacDonald
theorem (Sect. 11.3.1). Consider a CAS calculation
over the active set {1s, 2s} for which the CSFs are
{1s2, 1s2s, 2s2}. In determining orbitals, we have a de-
gree of freedom so one CSF may be removed. Selecting
2s2 has the consequence that the eigenvalue for the 1s2s
state to be determined is now the second eigenvalue, and
hence an upper bound to the exact.

21.5.5 Autoionizing States

The MCHF variational method may be applied to core
excited states imbedded in the continuum, provided that
certain CSFs with filled shells are omitted. An example
is 1s2s2p2P of Lithium. An MCHF calculation omit-
ting 1s2np configuration states represents the localized
charge distribution of a state in the continuum. How-
ever, the resulting energy is not guaranteed to be an
upper bound to the exact energy.

The saddle-point variational method, as described in
Chapt. 25 is a minimax method for such states.

21.6 Configuration Interaction Methods

Configuration interaction (CI) methods differ from vari-
ational methods like MCHF in that the radial functions
are assumed to be fixed, and hence known in advance.
There are several situations where these methods can be
used effectively:

MCHF with Breit–Pauli
Since the Breit–Pauli operators are valid only as
first order perturbations, variational calculations for
the Breit–Pauli Hamiltonian are not justified. Instead,
MCHF calculations are performed to provide a basis for

L SJ wave functions of (21.14). The expansion coef-
ficients are obtained as a CI calculation. Usually such
expansions are a concatenation of the expansions of all
the LS terms of a configuration and possibly some close
lying configurations. Most Breit–Pauli codes require
a single orthonormal basis. In order to have an orbital
basis that simultaneously describes the correlation of
all these LS terms from a systematic procedure, the
MCHF derivation described earlier has been extended
to derive systems of coupled equations for linear combi-
nations of energy functionals, one for each LS term and
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eigenstate. With this extension, it has been possible to
perform “spectrum” calculations in which all LSJ lev-
els up to a certain point in the spectrum are included.
This requires a balanced correlation approach so that
the energy differences with respect to the ground state is
in good agreement with the observed excitation energy.
Once wave functions have been obtained for each level,
transition probabilities can be computed. With all E1
transitions between these levels and some E2/M1 tran-
sitions, the lifetimes of levels can be obtained [21.10].

Full-Core Methods
The full-core plus correlation method (FCPC) [21.16]
is a configuration interaction method. It is mostly used
for an atomic system in which a well defined “core”
is present. For example, in a system such as the three-
elec tron 1s2nl or the four-electron 1s2nln′l′, the system
has a 1s1s core. In this case, the wave function for an
N-electron system is written as

Ψ(1, 2, 3, . . . , N )=
Aφ1s1s(1, 2)

∑

i

CiΦi(3, 4, . . . , N )

+A
∑

j

D jψ j(1, 2, 3, . . . , N ) ,

where φ1s1s(1, 2), the wave function of the core, is used
as a single term, and A denotes antisymmetrization. The
relaxation of the core and other correlation effects are
accounted for by the last term in this equation. The cor-
relation effect of the 1s1s core is, in general, very strong
and it is difficult to fully account for this effect in a con-
ventional N-electron wave function. If inaccurate results
are obtained from such a wave function, it may be diffi-
cult to distinguish between errors coming from the core
part or from the other parts. In the FCPC, the correlation
effect in φ1s1s(1, 2) can be precalculated to a desired ac-
curacy such that ψ j no longer contains the contribution
from the unperturbed core. In physical processes such as
ionization, optical transitions and others, the 1s1s core
wave function in the final state does not change much
from that of the initial state. Using the same φ1s1s(1, 2)
for the core may minimize possible errors due to the in-
accuracy of the core wave function. The application of
this method is not limited to systems with 1s1s cores.
For example, for the lithium-like 1s2snp 4Po, for n ≥ 4,
the 1s2s 3S can also be considered as an appropriate
“core”.

From a computational view point, the FCPC wave
function has the advantage that it reduces the matrix size
of the secular equation substantially. This drastically

Table 21.3 Comparison of theoretical and experimental en-
ergies for Be 1s22s2 1S in hartrees. All theoretical values
include some form of extrapolation

Ref. Method −ENR −Erel

[21.11] FEM MCHF 14.667 37 14.669 67

[21.12] MCHF 14.667 315

[21.13] Full-core CI 14.667 3492 14.669 6774

[21.14] Semi-empirical 14.667 353

[21.15] Experiment 14.669 6759

reduces the memory and CPU time needed on a com-
puter. This method has been quite successful in getting
accurate results for four-electron systems as shown in
Table 21.3. See [21.13] for more details.

Slater Type Orbitals
The essential characteristic of a radial function can be
well represented by the expansion

Pnl(r)=
∑

j

c jnlφ jnl(r) ,

where

φ jnl(r)=
(
(2ζ jnl)

2I jnl+1

(2I jnl)

)1/2

r I jnl exp(−ζ jnlr)

is a Slater type orbital (STO). Optimized sets of pa-
rameters have been tabulated for many Hartree–Fock
wave functions and these may be used to represent the
core [21.17]. Others may be added and selected orbitals
exponent optimized (only the exponent is varied) so as
to augment the basis. This method has been used effec-
tively by A. Hibbert as implemented in the Configuration
Interaction Version 3 program [21.18].

Spline Basis
The analytic basis methods described in the previous
section have some similarities with MCHF in that linear
combinations of STOs first represent orbitals which then
define the CSFs. These bases result in extensive cancel-
lation as shown by Hansen et al. [21.19]. An expansion
in B-spline basis functions, Bi,k(r), which are a basis for
a piecewise polynomial subspace (see Chapt. 8), provide
a more flexible basis with very little cancellation in this
representation.

By solving a radial equation with a well chosen po-
tential using the spline Galerkin method that leads to
a matrix eigenvalue problem, a complete set of orbitals
for a piecewise polynomial space can be obtained. The
resulting orthogonal orbital basis may then be used in
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CI calculations. Such methods have been reviewed by
Hansen et al. [21.19]. Methods that deal directly with the
primitive B-spline basis have been applied to the study
of Rydberg series [21.20], though orthogonality to tar-
get orbitals was still required. More recently, by using
non-orthogonal theory, an Rmatrix-CI method has been
developed that leads to a generalized eigenvalue prob-

lem. As in the close-coupling approximation, the wave
function is expressed in terms of one or more “targets,”
each coupled to a Rydberg orbital, and an arbitrary num-
ber of pseudo-states. Each Rydberg orbital is expressed
as a linear combination of B-splines but there is no re-
quirement of orthogonality of the Rydberg orbital to the
orbitals defining the target function [21.21]

21.7 Atomic Properties

The discussion so far has concentrated entirely on deter-
mining accurate wave functions based on expressions for
the energy. Energy levels are a by-product of such cal-
culations, but once a wave function is known a number
of atomic properties can be evaluated.

21.7.1 Isotope Effects

The isotope shift observed in atomic transitions can be
separated into a mass shift and a field shift. The mass
shift is due to differences in the nuclear mass of the
isotopes, and is the dominant effect for light atoms. The
volume shift arises from the finite volume of the nuclear
charge distribution, and is important for heavy atoms.
From a physical point of view the field shift is the more
interesting, since it yields information about differences
in the nuclear charge distribution between the isotopes.

The isotope shift in a transition is given as the dif-
ference between the shift for the upper and lower level.
The individual shifts are often large, but cancel, and
therefore it is necessary to calculate them very accu-
rately in order to get a reliable value for the difference.
The energy shifts are evaluated in first-order perturbation
theory with wave functions obtained from the zero-order
Schrödinger Hamiltonian, H0.

Mass Shift
Up to this point, the nuclear mass has been taken to
be infinite. If instead it has a finite value M, an N-
electron atom turns into an (N+1)-particle dynamical
system. A transformation to center of mass R plus rel-
ative coordinates r ′i = ri − rnuc yields the transformed
Hamiltonian [21.22]

H = P2

2Mtot
+

N∑

i=1

p′2i
2µ

+
N∑

i< j

p′i · p′j
M

+V
(
r ′i
)
,

(21.55)

where Mtot = M+ Nm is the total mass and
µ= Mm/(M+m) is the reduced mass. The first term is

the kinetic energy of the center of mass, which can be ne-
glected if R is an ignorable coordinate. For the remaining
terms, introduce the scaled distances ρi = r ′i/aµ, where
aµ = (m/µ)a0 is the scaled Bohr radius. If the potential
is entirely Coulombic, then H assumes the form

H =−1

2

N∑

i=1

∇2
ρi
− µ

M

N∑

i< j

∇ρi ·∇ρ j +V(ρi)

(21.56)

in units of e2/aµ. This can be written in the form H =
H0+HMP, where H0 includes the first and last terms
of (21.56), and

HMP =− µ
M

N∑

i< j

∇ρi ·∇ρ j

(
e2/aµ

)
(21.57)

is the additional mass polarization term.
Equation (21.56) gives rise to two kinds of mass

shifts. First, since H is identical to the infinite mass
Hamiltonian, all its eigenvalues E0 are multiplied by
a0/aµ = µ/m, resulting in the normal mass shift (nms)

∆Enms =−(µ/M)E0 . (21.58)

Second, if HMP is treated as a first order perturbation,
then the resulting specific mass shift (sms) is

∆Esms = 〈Ψ0 | HMP | Ψ0〉 (e2/aµ) (21.59)

where Ψ0 is an eigenvector of H0. The specific mass
shift parameter S is defined by

S =
〈

Ψ0 | −
N∑

i< j

∇ρi ·∇ρ j | Ψ0

〉

. (21.60)

Field Shift
The field shift of an atomic energy level is due to the
extended nuclear charge distribution. The field inside
the nucleus deviates from the Coulomb field of a point
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charge, and this is reflected in the calculated levels. For
light atoms, the resulting energy correction to the level
E0 is expressed in terms of the nonrelativistic electron
probability at the origin, |Ψ(0)|2:

Efs = 2π

3
Z
〈
r2

N

〉|Ψ(0)|2 , (21.61)

where
〈
r2

N

〉
is the mean square radius of the nucleus. For

heavier atoms (Z > 10) it becomes necessary to include
a relativistic correction factor. Numerical values of this
correction factor can be found in [21.23].

Table 21.4 shows the convergence of an MCHF cal-
culation for the specific mass shift parameter and the
electron density at the nucleus of the ground state of
Boron II as the active set increases. The calculated
11B−10 B isotope shift is 13.3 mÅ with an estimated
uncertainty of 1%. The size of the isotope shift is sim-
ilar to the limit of resolution of the Goddard High
Resolution Spectrograph aboard the Hubble Space Tele-
scope [21.24].

21.7.2 Hyperfine Effects

The magnetic hyperfine structure (hfs) is due to an in-
teraction between the magnetic field generated by the
electrons and the nuclear magnetic dipole moment. The
interaction couples the nuclear and electronic angular
momenta to a total momentum F = I+ J, and the in-
teraction energy can be written as the expectation value
of a scalar product between an electronic and a nuclear
tensor operator [21.25] (see Chapt. 16)

WM1(J )=
〈
γIγJ IJFMF | T(1)

·M(1) | γIγJ IJFMF
〉
. (21.62)

The nuclear operator M(1) is related to the scalar mag-
netic dipole moment, µI , according to

〈
γI II | M(1)

0 | γI II
〉= µI . (21.63)

Table 21.4 Specific mass shift parameter and electron den-
sity at the nucleus as a function of the active set

Active set S (a.u.) |ψ(0)|2

HF 0.000 00 72.629

2s 1p −0.020 17 72.452

3s 2p 1d 0.625 18 72.490

4s 3p 2d 1f 0.624 81 72.497

5s 4p 3d 2f 1g 0.601 69 72.501

6s 5p 4d 3f 2g 1h 0.598 03 72.503

7s 6p 5d 4f 3g 2h 1i 0.597 09 72.504

The magnetic dipole moments are known quantities, ob-
tained with high accuracy from experiments. For a recent
tabulation see [21.26].

The electronic operator is

T(1) = α
2

2

N∑

i=1

{
2l(1)(i)r−3

i

− gs
√

10
[
C(2)(i)× s(1)(i)

](1)
r−3

i

+ gs
8

3
πδ(ri)s(1)(i)

}
, (21.64)

where gs = 2.002 3193 is the electron spin g-fac-
tor, δ(r) the three-dimensional delta function and
C(k)q =√

4π/(2k+1)Ykq , with Ykq being a normalized
spherical harmonic. The first term of the electronic op-
erator represents the magnetic field generated by the
orbiting electric charges and is called the orbital term.
The second term represents the field generated by the
orbiting magnetic dipole moments, which are coupled
to the spin of the electrons. This is the spin-dipole term.
The last term represents the contact interaction between
the nuclear magnetic dipole moment and the electron
magnetic moment. It is called the Fermi contact term
and contributes only for s-electrons.

By recoupling I and J , the interaction energy can be
rewritten as

WM1(J )= (−1)I+J−F W(IJIJ; F1)

× 〈γJ J‖T(1)‖γJ J〉〈γI I‖M(1)‖γI I〉 ,
(21.65)

where W(IJIJ; F1) is a W coefficient of Racah. When
the magnetic dipole interaction constant

AJ = µI

I

1

[J(J +1)(2J +1)] 1
2

〈γJ J‖T(1)‖γJ J〉
(21.66)

is introduced, the energy is given by

WM1(J )= 1

2
AJ C , (21.67)

where C = F(F+1)− J(J +1)− I(I +1). In theoret-
ical studies, the A-factor is often given as a linear
combination of the hyperfine parameters

al = 〈γL SML MS |
∑

i

l(1)0 (i)r
−3
i | γL SML MS〉 ,

(21.68)
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ad = 〈γL SML MS |
∑

i

2C(2)0 (i)s
(1)
0 (i)r

−3
i | γL SML MS〉 , (21.69)

ac = 〈γL SML MS |
∑

i

2s(1)0 (i)r
−2
i δ(ri) | γL SML MS〉 , (21.70)

where ML = L and MS = S. These parameters corre-
spond to the orbital, spin-dipole and Fermi contact term
of the electronic operator.

The electric hyperfine structure is due to the interac-
tion between the electric field gradient produced by the
electrons and the nonspherical charge distribution of the
nucleus. The interaction energy is

WE2(J )= 〈γIγJ IJFMF | T(2)

·M(2) | γIγJ IJFMF〉 , (21.71)

where the nuclear operator M(2) is related to the scalar
electric quadrupole moment, Q, according to

〈γI II | M(2)
0 | γI II〉 = Q

2
. (21.72)

The electronic operator is

T(2) =−
N∑

i=1

C(2)(i)r−3
i , (21.73)

and represents the electric field gradient. By introducing
the electric quadrupole interaction constant B,

BJ = 2Q

(
J(2J −1)

(J +1)(2J +1)(2J +3)

) 1
2

× 〈γJ J‖T(2)‖γJ J〉 , (21.74)

the interaction energy can be written as

WE2(J )= BJ

3

4
C(C+1)− I(I +1)J(J +1)

2I(2I −1)J(2J −1)
.

(21.75)

In many cases the electric hyperfine interaction is
weaker than the magnetic and manifests itself as a small
deviation from the Landé interval rule for the magnetic
hfs. If the electronic part of the interaction can be cal-
culated accurately, a value of the electric quadrupole
moment Q, which is a difficult quantity to measure
with direct nuclear techniques, can be deduced from
the measured B-factor. A recent tabulation of nuclear
quadrupole moments is given in [21.27].

Table 21.5 shows the convergence of an MCHF ac-
tive space calculation for two different isotopes for the
1s22s2p1P state of B II [21.24]. Some oscillations are

Table 21.5 MCHF Hyperfine constants (in MHz) for the
1s22s2p 1P state of B II

10B 11B

Active set A1 B1 A1 B1

HF 60.06 8.338 179.36 4.001

2s 1p 60.22 8.360 179.83 4.011

3s 2p 1d 60.98 8.193 182.11 3.932

4s 3p 2d 1f 60.05 7.677 179.34 3.684

5s 4p 3d 2f 1g 60.48 7.764 180.62 3.725

6s 5p 4d 3f 2g 1h 60.85 8.052 181.71 3.864

7s 6p 5d 4f 3g 2h 1i 60.81 8.002 181.60 3.840

observed since each new “layer” of orbitals may localize
in different regions of space.

21.7.3 Metastable States and Lifetimes

States above an ionization threshold may decay via
a radiationless transition to a continuum. When the inter-
action with the continuum is spin-forbidden the state is
metastable. The nsnp24P of negative ions, for example,
decay through Breit–Pauli interactions with nsnp2 dou-
blets. The latter, in turn interact with continuum states,
thus opening a decay channel. Such metastable states
may be treated as bound states.

The foundation for the theory of autoionization was
laid down by Fano [21.28], where he developed a con-
figuration interaction (CI) theory for autoionization. Let
Ψb(N; γL S) be a normalized, multiconfiguration com-
ponent of a discrete perturbor for an N-electron system,
in which all orbitals are bound orbitals, decaying ex-
ponentially for large r. Let Ψk be an asymptotically
normalized continuum component of the wave func-
tion, also for an N-electron system, at energy E, of
the form,

Ψk(N; Eγ ′L S)= |Ψb
(
N −1;β L̃ S̃

) ·φ(kl)L S〉 ,
(21.76)

whereΨb
(
N −1;β L̃ S̃

)
is a bound MCHF wave function

for the (N −1)-electron target system. Then, in the L S-
coupling scheme, the width of the autoionizing state is
given by the “Golden Rule”

Γ = 2πV 2
E0
, (21.77)

where

VE0 = 〈Ψb(N; γL S)|H− E0|Ψk(N; E0γ
′L S)〉 .

(21.78)

A similar formula can be derived for the L SJ-scheme
and the Breit–Pauli Hamiltonian. In the above equation,
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E0 = 〈Ψb(N; γL S)|H|Ψb(N; γL S)〉. The energy of the
core, or target, is Etarget =

〈
Ψb

(
N −1;β L̃ S̃

)|H|Ψb
(
N−

1;β L̃ S̃
)〉

, where H in the latter equation is the Hamilto-
nian for an (N −1)-electron system.

The wave function for the continuum compo-
nent is assumed to have only one unknown, namely
φ(kl)= Pkl(r)|ls〉, the one-particle continuum function,
where |ls〉 is the known spin–angular part. The radial
equation for Pkl(r) has exactly the same form as (21.26),
except that εnl,nl =−k2, where E0 = Etarget+ k2/2.
The radial function can be obtained iteratively using an
SCF procedure from outward integration.

One of the more accurate calculations of a lifetime
is that for He− 1s2s2p4P5/2 by Miecznik et al. [21.29].
In this case, a lifetime of (345±10) µs was found
and compared with a recent experimental value of
(350±15) µs [21.30]. In this L SJ state, the 4P inter-
acts with the 1s2kf2F. It was found that correlation in
the target of the continuum orbital modified the life-
time. In calculations like these, it is always a question
whether orthogonality conditions should be applied [as
in projection operator formalism (see Chapt. 25)]. Some
theorems relating to this question have been published
by Brage et al. [21.31].

The position and widths of autoionizing resonances
can also be determined from the study of photoioniza-
tion or photodetachment using a spline Galerkin method
together with inverse iteration. No boundary condition
need be applied nor is there an inner and outer re-
gion. Resonance properties are obtained from a fitting of
the cross-section [21.32]. Non-orthogonal, spline-based
R-matrix methods with an inner and outer region have
also been developed where there is no need of the “Buttle
correction” and, at the same time, the non-orthogonality
eliminates the need of certain pseudo-states [21.33].
For an extensive review of the application of splines
in atomic and molecular physics, see [21.34].

21.7.4 Transition Probabilities

The most fundamental quantity for the probability of
a transition from an initial state i to a final state f is the
reduced matrix element related to the line strength by

S1/2 = 〈Ψi ||O||Ψ f 〉 , (21.79)

where O is the transition operator. In the case of the
electric dipole transition, there are two frequently used
forms: the length form O =∑

j r j , and the velocity
form, O =∑

j ∇ j/Ei f , where Ei f = E f − Ei . For ex-
act non-relativistic wave functions, the two forms are
equivalent, but for approximate wave functions, the ma-

trix elements in general differ. Thus, the computation of
the line strength and the oscillator strength, or f -value,
where

f = (2/3)Ei f S/[(2Si +1)(2Li +1)] ,
forms a critical test of the wave function in non-
relativistic theory and also the model describing
a many-electron system. The same operators are often
also used in Breit–Pauli calculations. In this case, the
velocity form of the operator has neglected some terms
of order (αZ)2 and the length value is preferred.

Some well-known discrepancies between theory and
experiment existed for more than a decade for the res-
onance transitions of Li and Na. For the nonrelativistic
2s–2p transition in Li, a full-core CI [21.35] calcula-
tion produced f -values of (0.747 04, 0.747 04, 0.753 78)
for the length-, velocity-, and acceleration form, respec-
tively. When relativistic corrections were included, the
value changed to 0.747 15, in agreement with a num-
ber of theories, tabulated to only four decimal places.
A fast beam-laser experiment by Gaupp et al. [21.36],
yielded a value of 0.7416±0.0012 but this value was
revised in 1996 by a beam-gas-laser experiment in per-
fect agreement with theory [21.37]. In the case of the
resonance transition in Na, when theory included cor-
relation in the core as well as core-polarization and
some relativistic effects, results were in agreement with
an almost simultaneous cascade of new experimental
values [21.38].

For MCHF calculations of transition data, an impor-
tant consideration is that the matrix element is between
two different states. For independently optimized wave
functions, the orbitals of the initial and final states are
not orthonormal, as assumed when Racah algebra tech-
niques are used to evaluate the transition matrix element.
Through the use of biorthogonal transformations, the
orbitals and the coefficients of expansion of the wave
functions of the initial and final state can be transformed
efficiently so that standard Racah algebra techniques
may be applied [21.39]. Table 21.6 shows the conver-
gence of an MCHF calculation for the ground state of
Boron from independently optimized wave functions.

21.7.5 Electron Affinities

By definition, the electron affinity is Ae = E(A−)−
E(A). Thus it is the energy difference between Hamilto-
nians differing by one electron. Correlation plays a very
important role in the binding of the extra electron in
the negative ion. It has been known for a long time that
the alkali metals have a positive electron affinity, but
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only recently has it been found, theoretically [21.40]
and experimentally [21.41], that some of the alkaline
earths may also be able to bind an extra electron. The
d-electrons need to play a strong role, so Be and Mg,
do not have a positive Ae, but according to the most
recent experimental measurement, the electron affin-
ity for Ca is 18 meV [21.42]. A calculation based on
the spline methods and using a model potential with
adjustable parameters to describe the core, obtained
a value of 17.7 meV [21.43] in close agreement with
experiment.

Atomic systems such as Ca are often thought of as
two-electron systems and indeed, for qualitative descrip-
tions, many observations can be explained. A number of
physical effects need to be considered when predicting
such electron affinities:
(i) Valence correlation is crucial for obtaining binding.
(ii) Intershell correlation between the valence electrons
and the core (core polarization) is also important. The
first electron may polarize the core considerably, but
this is reduced by the second electron since the two
avoid each other dynamically and prefer to be on oppo-
site sides of the core.
(iii) Core rearrangement, which occurs because of the
presence of one or more outer electrons, and is particu-
larly large if any of these penetrate the core. In the case of
Ca+, the fixed-core Hartree–Fock energy of 3d 2D state
is 300 meV higher if computed in the fixed potential the
Ca+2 ion compared with a fully variational calculation!
(iv) Intracore exclusion effects due to the presence of an

Table 21.6 Convergence of transition data for the
1s22s22p2Po → 1s22s2p2 2D transition in Boron with in-
creasing active set

N g fl g fv Sl ∆E (cm−1)

3 0.6876 0.8156 2.5534 53 197

4 0.2456 0.2696 0.9959 48 720

5 0.2625 0.2695 1.0705 48 440

6 0.2891 0.2866 1.1868 48 125

7 0.2928 0.2900 1.2036 48 051

Expt. a 0.28(02) 47 857
a [21.44]

extra valence electron which reduces the correlation of
the core.
(v) Relativistic shift effects, which are present in
observed levels and are particularly important for
s-electrons.

Model potential methods attempt to capture all but
valence correlation in a potential so that calculations
for Calcium, for example, can proceed as though for
a two-electron system. A review of various theoretical
approaches, many of which include different effects,
may be found in [21.45].

For small systems such as Li, the electron affinity has
been computed [21.46] to experimental accuracy [21.47]
of (0.6176±0.0002) eV. In neutral oxygen, it has been
found that there is an isotope effect on the electron
affinity [21.48].

21.8 Summary

More comprehensive treatments of atomic structure
may be found [21.49, 50]. An atomic structure pack-
age is available for many of the calculations described

here [21.51]. A review of the application of systematic
procedures to the prediction of atomic properties has
been published [21.52, 53].
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Relativistic At22. Relativistic Atomic Structure

Relativistic quantum mechanics is required for
the description of atoms and molecules whenever
their orbital electrons probe regions of space with
high potential energy near the atomic nuclei.
Primary effects of a relativistic description include
changes to spatial and momentum distributions;
spin–orbit interactions; quantum electrodynamic
corrections such as the Lamb shift; and vacuum
polarization. Secondary effects in many-electron
systems arise from shielding of the outer electrons
by the distributions of electrons in penetrating
orbitals; they change orbital binding energies and
dimensions and so modify the order in which
atomic shells are filled in the lower rows of the
Periodic Table.

Relativistic atomic and molecular structure
theory can be regarded as a simplification of the
fundamental description provided by quantum
electrodynamics (QED). This treats the atom
or molecule as an assembly of electrons and
atomic nuclei interacting primarily by exchanging
photons. This model is far too difficult and
general for most purposes, and simplifications
are required. The most important of these is the
representation of the nuclei as classical charge
distributions, or even as point particles. Since the
motion of the nuclei is usually slow relative to the
electrons, it is often adequate to treat the nuclear
motion nonrelativistically, or even to start from
nuclei in fixed positions, correcting subsequently
for nuclear motion.

The emphasis in this chapter is on relativistic
methods for the calculation of atomic structure
for general many-electron atoms based on
an effective Hamiltonian derived from QED in
the manner sketched in Sect. 22.2 below. An
understanding of the Dirac equation, its solutions
and their numerical approximation, is essential
material for studying many-electron systems,
just as the corresponding properties of the
Schrödinger equation underpin Chapt. 21. We
shall use atomic units throughout. Where it aids
interpretation we shall, however, insert factors
of c, me and �. In these units, the velocity of

light, c, has the numerical value
α−1 = 137.035 999 11(46), where α is the fine
structure constant.
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22.1 Mathematical Preliminaries

22.1.1 Relativistic Notation:
Minkowski Space-Time

An event in Minkowski space-time is defined by
a 4-vector x = {xµ} (µ= 0, 1, 2, 3) where x0 = ct is
the time coordinate and x1, x2, x3 are Cartesian coordi-
nates in 3-space. The bilinear form (The Einstein suffix
convention, in which repeated pairs of Greek subscripts
are assumed to be summed over all values 0, 1, 2, 3,will
be used where necessary in this chapter.)

(x, y)= xµgµν yν , (22.1)

in which

g = (
gµν

)= (
gµν

)=

⎛

⎜⎜⎜
⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞

⎟⎟⎟
⎠

(22.2)

are called metric coefficients, defines the metric of
Minkowski space.

22.1.2 Lorentz Transformations

Lorentz transformations are defined as linear map-
pings Λ such that

(Λx,Λy)= (x, y) (22.3)

so that

gµν =Λρµ gρσ Λ
σ
ν . (22.4)

This furnishes 10 equations connecting the 16 compo-
nents of Λ; at most 6 components can be regarded as
independent parameters. The (infinite) set of Λ matri-
ces forms a regular matrix group (with respect to matrix
multiplication) called the Lorentz group, L, designated
O(3,1) [22.1, 2].

22.1.3 Classification of Lorentz
Transformations

Rotations
Lorentz transformations with matrices of the form

Λ=
(

1 0,

0 R

)

, (22.5)

where R∈ SO(3) is an orthogonal 3 × 3 matrix with de-
terminant +1, and 0 is a null three dimensional column
vector, correspond to three-dimensional space rotations.
They form a group isomorphic to SO(3).

Boosts
Lorentz transformations with matrices of the form

Λ=
(
γ(v) γ(v)v,

γ(v)v I3+ (γ(v)−1)nn,

)

, (22.6)

with v= vn a three dimensional column vector, |n| = 1,
v = |v| and γ(v)= (1−v2/c2)−1/2, are called boosts.
The matrixΛ describes an ‘active’ transformation from
an inertial frame in which a free classical particle is at
rest to another inertial frame in which its velocity is v.

Boosts form a submanifold of L though they do not
in general form a subgroup. However, the set of boosts
in a fixed direction n form a one-parameter subgroup.

Discrete Transformations
The matrices

P =
(

1 0,

0 −I3

)

, T =
(
−1 0,

0 I3

)

with PT =−I4

(22.7)

are called discrete Lorentz transformations and form
a subgroup of the Lorentz group along with the iden-
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tity I4. The matrix P performs space or parity inversion;
the matrix T performs time reversal.

Infinitesimal Lorentz Transformations
The proper Lorentz transformations close to the identity
are of particular importance: they have the form

Λµν = δµν + εωµν +· · · ,
(Λ−1)µν = δµν − εωµν +· · · , (22.8)

where

ωµν =−ωνµ
and ε is infinitesimal. The infinitesimal generators, com-
ponents ωµν, can be treated as quantum mechanical
observables: see Sect. 22.2.1.

The Lorentz Group
The Lorentz group L is a Lie group with a six-
dimensional group manifold which has four connected
components, namely

L
↑
+ ≡

{
Λ ∈L |Λ0

0 ≥ 1, detΛ=+1
}
, (22.9)

L↑
− ≡

{
Λ ∈L |Λ0

0 ≥ 1, detΛ=−1
}
= PL↑

+ ,
(22.10)

L
↓
+ ≡

{
Λ ∈L |Λ0

0 ≤ 1, detΛ=−1
}
= TL

↑
+ ,
(22.11)

L
↓
+ ≡

{
Λ ∈L |Λ0

0 ≤ 1, detΛ=+1
}
= PTL

↑
+ .

(22.12)

The connected component L
↑
+ containing the identity is

a Lie subgroup of L called the proper Lorentz group. All
its group elements can be obtained from boosts and ro-
tations. It is not simply connected because the subgroup
of rotations is not simply connected. The group is also
noncompact as the subset of boosts is homeomorphic
to R3.

These topological properties of L
↑
+ are essential for

understanding the properties of relativistic wave equa-
tions. In particular the multiple connectedness forces
the introduction of spinor representations, and to the
appearance of half-integer angular momenta or spin.

22.1.4 Contravariant and Covariant Vectors

Contravariant 4-vectors (such as events x) transform
according to the rule

aµ �→ aµ′ =Λµνaν . (22.13)

Covariant 4-vectors can be formed by writing

aµ = gµνa
ν , (22.14)

so that

aµaµ = aµgµνa
ν = (a, a) (22.15)

is invariant with respect to Lorentz transformations.
Similarly, we can construct a contravariant 4-vector from
a covariant one by writing

aµ = gµνaν . (22.16)

The transformation law for covariant vectors is there-
fore

aµ �→ a′µ = [Λ−1]νµaν . (22.17)

The most important example of a covariant vector is
the 4-momentum operator

pµ = i
∂

∂xν
µ= 0, 1, 2, 3 . (22.18)

From this we derive the contravariant 4-momentum
operator with components pµ by writing

pµ = gµν pν

=
(

i
∂

∂x0 ,−i
∂

∂x1 ,−i
∂

∂x2 ,−i
∂

∂x3

)
, (22.19)

in agreement with nonrelativistic expressions.

22.1.5 Poincaré Transformations

More generally, a Poincaré transformation is obtained
by combining Lorentz transformations and space-time
translations:

Π(x)=Λx+a . (22.20)

The set of all Poincaré transformations, Π = (a,Λ),
with the composition law

(a1,Λ1)(a2,Λ2)= (a1+Λ1a2,Λ1Λ2) , (22.21)

also forms a group, P .
Properties of the Lorentz and Poincaré groups will

be introduced as needed. For a concise account of
their properties see [22.3]. For more detail on relativis-
tic quantum mechanics in general see textbooks such
as [22.3, 4].
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22.2 Dirac’s Equation

We present Dirac’s equation for an electron in a classical
electromagnetic field defined by the 4-potential Aµ(x):

Covariant Form
{
γµ

[
pµ− eAµ(x)

]−m ec
}
ψ(x)= 0 . (22.22)

where

γµ(µ= 0, 1, 2, 3), are 4 × 4 matrices.

ψ(x) is a 4-component spinor wave function.

Here, and elsewhere in this chapter, identity matrices are
omitted when it is safe to do so.

Dirac Gamma Matrices

• Anticommutation relations:

γµγν+γνγµ = 2gµν .

• Standard representation:

γ 0 =
(

1 0

0 −1

)

γ i =
(

0 σ i

−σ i 0

)

i = 1, 2, 3 ,

where σi(i = 1, 2, 3) are Pauli matrices [22.1–4].

Noncovariant Form
In the majority of atomic structure calculations, a frame
of reference is chosen in which the nuclear center is taken
to be fixed at the origin. In this case it is convenient
to write Dirac’s equation in noncovariant form. Then
functions of

x = (x0, x) ,

where x0 = ct, can be regarded as functions of the time t
and the position 3-vector x, so that (22.22) is replaced
by

i
∂

∂t
ψ(x, t)= ĥDψ(x, t) (22.23)

where the scalar and 3-vector potentials are defined by

φ(x, t)= cA0(x) ,

A(x, t)=
[

A1(x), A2(x), A3(x)
]
, (22.24)

and

ĥD =
{

cα ·
[

p− eA(x, t)
]
+ eφ(x, t)+βm ec2

}

(22.25)

defines the Dirac Hamiltonian. The matrices α, with
Cartesian components

(
α1, α2, α3

)
, and β, have the

standard representation

β = γ 0 =
(

1 0

0 −1

)

(22.26)

αi = γ 0γ i =
(

0 σ i

σ i 0

)

i = 1, 2, 3 . (22.27)

22.2.1 Characterization of Dirac States

The solutions of Dirac’s equation span representations
of the Lorentz and Poincaré groups, whose infinitesimal
generators can be identified with physical observables.
The Lorentz group algebra has 10 independent self-
adjoint infinitesimal generators: these can be taken to
be the components pµ of the four-momentum (which
generate displacements in each of the four coordinate
directions); the three generators, Ji , of rotations about
each coordinate axis in space; and the pseudovectorwµ.
The irreducible representations can be characterized by
invariants

(p, p)= m2
ec2 , (22.28)

(w,w)=−m2
ec2s2 =−3

4
m2

ec2 , (22.29)

where p is the momentum four-vector and s is a 3-vector
defined in terms of Pauli matrices by

si = 1

2
σi , i = 1, 2, 3 .

which can be interpreted as the electronic angular mo-
mentum (intrinsic spin) in its rest frame. For more detail
see [22.3] and the original papers [22.5, 6].

22.2.2 The Charge-Current 4-Vector

Dirac’s equation (22.22) is covariant with respect to
Lorentz (22.3) and Poincaré (22.20) transformations,
provided that there exists a nonsingular 4×4 matrix S(Λ)
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with the property

ψ′(x)= S(Λ)ψ
[
Λ−1(x−a)

]
. (22.30)

The matrices S(Λ) are characterized by the equation

S−1(Λ)γλS(Λ)=Λλµγµ . (22.31)

The most important observable expression required
in this chapter is the charge–current four-vector

jµ = ecψ(x)γµψ(x) , (22.32)

where the Dirac adjoint is defined by

ψ(x)= ψ†(x)γ 0 , (22.33)

and the dagger denotes spinor conjugation and transpo-
sition. Since

ψ ′(x)= ψ[Λ−1(x−a)
]
γ 0S(Λ)†γ 0

= ψ[Λ−1(x−a)
]
S−1(Λ) ,

jµ(x) transforms as a 4-vector

jµ′(x)=Λµν jν(x)

by virtue of (22.31). The component j0(x) can be inter-
preted as a multiple of the charge density ρ(x),

j0(x)= ecρ(x)= ecψ(x)γ 0ψ(x)= ecψ†(x)ψ(x)
(22.34)

and the space-like components as the current density

ji(x)= ecψ(x)γ iψ(x)= ecψ†(x)αiψ(x) . (22.35)

The charge–current density satisfies a continuity equa-
tion, which in noncovariant form reads

∂ρ(x)

∂t
+

3∑

i=1

∂ ji(x)

∂xi
= 0 ,

or, in covariant notation,

∂µ jµ = 0 . (22.36)

This is readily proved by using the Dirac equa-
tion (22.22) and its Dirac adjoint. Equation (22.36) is
clearly invariant under Poincaré transformations, and
this yields the important property that electric charge is
conserved in Dirac theory.

22.3 QED: Relativistic Atomic and Molecular Structure

22.3.1 The QED Equations of Motion

The conventional starting point [22.7–10] for deriving
equations of motion in quantum electrodynamics (QED)
is a Lagrangian density of the form

L(x)=Lem(x)+Le(x)+Lint(x) . (22.37)

The first term is the Lagrangian density for the free
electromagnetic field, Fµν(x),

Lem(x)=−1

4
FµνFµν , (22.38)

the second term is the Lagrangian density for the
electron–positron field in the presence of the external
potential Aµext(x),

Le(x)= ψ̄(x)
{
γµ

[
pµ− eAµext(x)

]−mec
}
ψ(x) .

(22.39)

We assume that the electromagnetic fields are express-
ible in terms of the four-potentials by

Fµν = ∂µAνtot−∂νAµtot ,

where

Aµtot(x)= Aµext(x)+ Aµ(x)

is the sum of a four-potential Aµext(x) describing the
fields generated by classical external charge–current
distributions, and a quantized field Aµ(x)which through

Lint(x)=− jµ(x)A
µ(x) , (22.40)

accounts for the interaction between the uncoupled elec-
trons and the radiation field. The field equations deduced
from (22.37) are

{
γµ
[

pµ−Aµext(x)
]−mec

}
ψ(x)= γµ(x)ψ(x)Aµ(x)

∂µFµν(x)= jν(x) , (22.41)

and clearly exhibit the coupling between the fields.
Quantum electrodynamics requires the solution of

the system (22.41) when Aµ(x), ψ(x) and its adjoint
ψ̄(x) are quantized fields. This formulation is purely
formal: it ignores all questions of zero-point energies,
normal ordering of operators, choice of gauge associated
with the quantized photon field, or the need to include
(infinite) counterterms to render the theory finite.

22.3.2 The Quantized Electron–Positron
Field

Furry’s bound interaction picture of QED [22.7, 11] ex-
ploits the fact that a one-electron model is often a good
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starting point for a more accurate calculation of atomic
or molecular properties. The electrons are described by
a field operator

ψ(x)=
∑

Em>EF

amψm(x)+
∑

En<EF

b†nψn(x) ,

(22.42)

where EF ≥ −mc2 is a “Fermi level” separating the
states describing electrons (bound and continuum) from
the positron states (lower continuum) in the chosen time-
independent model potential V(r). Equation (22.42) is
written as if the spectrum were entirely discrete, as in
finite matrix models; more generally, this must be re-
placed by integrals over the continuum states together
with a sum over the bound states. We assume that the
amplitudes ψm(x) are orthonormalized (which can be
achieved, for example, by enclosing the system in a finite
box). The operators am and a†m respectively annihilate
and create electrons, and bn and b†n perform the same
role for vacancies in the “negative energy” states, which
we interpret as antiparticles (positrons). These operators
satisfy the anticommutation rules (see Sect. 6.1.1)

[
am, a

†
m′
]
= δm,m′ ,

[
bn, b

†
n′
]
= δn,n′ , (22.43)

where [a, b] = ab+ba. All other anticommutators van-
ish. The operator representing the number of electrons
in state m is then

Nm = a†mam , (22.44)

having the eigenvalues 0 or 1; the states of a system of
noninteracting electrons and positrons can therefore be
labeled by listing the occupation numbers, 0 or 1 of the
one-electron states participating.

We define the vacuum state as the (reference)
state |0〉 in which Nm = Nn = 0 for all m, n, so that

am |0〉 = bn|0〉 = 0 . (22.45)

The operator representing the total number of particles
is given by

N =
∫
ψ†(x)ψ(x) dx =

∑

Em>EF

Nm +
∑

En<EF

(1− Nn) .

This is not quite satisfactory: N =∑
En<EF

1 is infinite
for the vacuum state, as are the total charge and energy
of the vacuum.

These infinite “zero-point” values can be eliminated
by introducing normal ordered operators. A product of

annihilation and creation operators is in normal order if
it is rearranged so that all annihilation operators are to
the right of all creation operators. Such a product has
a null value in the vacuum state. In performing the rear-
rangement, each anticommutator is treated as if it were
zero. We denote normal ordering by placing the op-
erators between colons. Thus : a†mam : = a†mam whilst
: bnb†n : = −b†nbn . This means that if we redefine N by

N =
∫
: ψ†(x)ψ(x) : dx =

∑

Em>EF

Nm −
∑

En<EF

Nn ,

(22.46)

then 〈0|N|0〉 = 0. The same trick eliminates the infinity
from the total energy of the vacuum;

H0 =
∫
: ψ†(x)ĥDψ(x) : dx

=
∑

Em>EF

Nm Em −
∑

En<EF

Nn En , (22.47)

so that 〈0|H0|0〉 = 0.
The current density operator is given by the commu-

tator of two field variables

jµ(x)=−1

2
ec
[
ψ̄(x)γµ,ψ(x)

]
, (22.48)

where the Dirac adjoint, ψ̄(x) is defined by (22.33).
The definition (22.48) differs from (22.32) by expressing
the total current as the difference between the electron
(negatively charged) and positron (positively charged)
currents. We can write

jµ(x)=: jµ(x) : + ec Tr
[
γµSF(x, x)

]
, (22.49)

where SF(x, y) is the Feynman causal propagator, de-
fined below. Since 〈0| : jµ(x) : |0〉 = 0, the last term
in (22.49) is the vacuum polarization current due to the
asymmetry between positive and negative energy states
induced by the external field. From this, the net charge
of the system is

Q = 1

c

∫
j0(x) d3x (22.50)

= − e

⎛

⎝
∑

Em>EF

Nm −
∑

En<EF

Nn

⎞

⎠+Qvac .

Qvac is the total charge of the vacuum, which vanishes
for free electrons, but is finite in the presence of an exter-
nal field (the phenomenon of vacuum polarization). Note
that whilst Q is conserved for all processes, the total
number of particles need not be; it is always possible to
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add virtual states incorporating electron–positron pairs
without changing Q.

22.3.3 Quantized Electromagnetic Field

The four-potential of the quantized electromagnetic field
can be expressed in terms of a spectral expansion over
the field modes in, for example, plane waves

Aµ(x)=
∫

d3k

2(2π)3k0

3∑

λ=0

[
q(λ)(k)ε(λ)µ (k)e

−ik·x

+q(λ)†(k)ε(λ)∗µ (k)eik·x
]
. (22.51)

The vectors ε(λ)µ (k) describe the polarization modes;
there are four linearly independent vectors, which may
be assumed real, for each k on the positive light cone.
Two of these (λ= 1, 2) can be chosen perpendicular
to the photon momentum k (transverse polarization);
one component (λ= 3) along k (longitudinal polar-
ization); and the final component (λ= 0) is time-like
(scalar polarization). The operators q(λ)(k) and q(λ)†(k)
describe respectively photon absorption and emission.
They satisfy commutation relations

[
q(λ)(k), q(λ

′)†(k′)
]
= δλ,λ′δk,k′ , λ, λ

′ = 1, 2, 3
[
q(0)(k), q(0)†(k′)

]
= − δk,k′ ; (22.52)

all other commutators vanish. The photon vacuum state,
|0〉γ , is such that

q(λ)(k)|0〉γ = 0 . (22.53)

Further details may be found in the texts [22.7–10].

22.3.4 QED Perturbation Theory

The textbook perturbation theory of QED, see for ex-
ample [22.7,8,10,12] and other works, has been adapted
for applications to relativistic atomic and molecular
structure and is also the source of methods of nonrel-
ativistic many-body perturbation theory (MBPT). We
offer a brief sketch emphasizing details not found in the
standard texts.

The Perturbation Expansion
The Lagrangian approach leads to an interaction Hamil-
tonian

HI =−
∫

jµ(x)Aµ(x) dx . (22.54)

In the interaction representation, this gives an equation
of motion

i�∂t |Φ(t)〉 = HI(t)|Φ(t)〉 , (22.55)

where |Φ(t)〉 is the QED state vector, and

HI(t)= exp(iH0t/�)HI exp(−iH0t/�) ,

where H0 = Hem+He is the Hamiltonian for the uncou-
pled photon and electron–positron fields. If S(t, t′) is the
time development operator such that

|Φ(t)〉 = S(t, t′)|Φ(t′)〉 ,
then

i�∂t S(t, t′)= HI(t)S(t, t
′) .

The equivalent integral equation, incorporating the inital
condition S(t, t)= 1,

S(t, t0)= 1− i

�

t∫

t0

HI(t1)S(t1, t0)d1t , (22.56)

can be solved iteratively, giving

S(t, t0)= 1+
∞∑

n=1

S(n)(t, t0) , (22.57)

where

S(n)(t, t0)= (−i/�)n
t∫

t0

dt1

t1∫

t0

dt2 · · ·
tn−1∫

t0

dtn

× HI(t1)HI(t2) · · · HI(tn) .

This can be put into a more symmetric form by us-
ing time-ordered operators. Define the T -product of two
operators by

T

[
A(t1)B(t2)

]
=
{

A(t1)B(t2) , t1 > t2
±B(t2)A(t1) , t2 > t1

(22.58)

where the positive sign refers to the product of photon
operators and the negative sign to electrons. Then

S(n)(t, t0)= (−i/�)n

n!
t∫

t0

dt1

t∫

t0

dt2 · · ·
t∫

t0

dtn

× T

[
HI(t1)HI(t2) · · · HI(tn)

]
. (22.59)

The operator S(t, t′) relates the state vector at time t
to the state vector at some earlier time t′ < t. Its ma-
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trix elements therefore give the transition amplitudes
for different processes, for example the emission or ab-
sorption of radiation by a system, or the outcome of
scattering of a projectile from a target. The techniques
for extracting cross-sections and other observable quan-
tities from the S-operator are described at length in the
texts [22.7, 8, 10, 12].

Although the use of normal ordering means that
the charge and mass of the reference state, the vac-
uum, is zero, it fails to remove other infinities due to
the occurrence of divergent integrals. The method of
extracting finite quantities from this theory involves
renormalization of the charge and mass of the elec-
tron. We shall refer especially to [22.10, Chapt. 8]
for a detailed discussion. The most difficult tech-
nical problems are posed by mass renormalization.
Formally, we modify the interaction Hamiltonian to
read

jµ(x)Aµ(x)− δM(x) ,
where δM(x) is the mass renormalization operator

δM(x)= 1

2
δm

[
ψ̄(x), ψ(x)

]

where δm is infinite.
A further problem is that electrons in a many-

electron atom or molecule move in a potential
which is quite unlike that of the bare nucleus.
It is therefore useful to introduce a local mean
field potential, say U(x), representing some sort of
average interaction with the rest of the electron
charge distribution, so that the zero-order orbitals
satisfy

[
cα · p+βc2+Vnuc(x)+U(x)− Em

]
ψm(x)= 0 .

(22.60)

With this starting point, the interaction Hamiltonian
becomes

HI(x)= H(1)I (x)+H(2)I (x) , (22.61)

where

H(1)I (x)=−U(x), H(2)I (x)= jµ(x)Aµ(x)− δM(x) ,
and the electron current is defined in terms of the mean
field orbitals of (22.60). The expression H(2)I (x) is some-
times referred to as a fluctuation potential. The term
jµ(x)Aµ(x) is proportional to the electron charge, e,
which serves as an ordering parameter for perturbation
expansions.

Effective Interactions
Although the S-matrix formalism provides in principle
a complete computational scheme for many-electron
systems, it is generally too cumbersome for practical
use, and approximations are necessary. Usually, this is
a matter of selecting a subset of dominant contributions
to the perturbation series depending on the application.
We are faced with the evaluation of T -products of the
form

T [φ(t1)φ(t2) · · ·φ(tn)]
which is done using Wick’s Theorem [22.10, p. 25].

In the simplest case,

T [φ(t1)φ(t2)]= : φ(t1)φ(t2) :
+ 〈0 | T [φ(t1)φ(t2)] | 0〉 . (22.62)

The vacuum expectation value is called a contraction.
More generally, we have

T [φ(t1)φ(t2) · · ·φ(tn)]
= : φ(t1)φ(t2) · · ·φ(tn) :
+ {〈0|T [φ(t1)φ(t2)]|0〉 : φ(t3) · · ·φ(tn) :
+ permutations

}

+ {〈0|T [φ(t1)φ(t2)] |0〉〈0|T [φ(t3)φ(t4)]|0〉
× : φ(t5) · · ·φ(tn) : + permutations

} · · · .
This result has the effect that a T -product with an odd
number of factors vanishes. A rigorous statement can be
found in all standard texts; each term in the expansion
gives rise to a Feynman diagram which can be inter-
preted as the amplitude of a physical process. As an
example, consider the simple but important case

S(2) = (ie)
2

2! T
[

jµ(x)Aµ(x). j
ν(y)Aν(y)

]
. (22.63)

One of the terms (there are others) found by using Wick’s
Theorem is

jµ(x) jν(y)〈0|T
[

Aµ(x)Aν(y)
]
|0〉 .

We see that this involves the contraction of two photon
amplitudes

−1

2
DFµν(x− y)= 〈0 | T

[
Aµ(x)Aν(y)

]
| 0〉 ,

which plays the role of a propagator (22.69): it relates
the photon amplitudes at two space-time points x, y.
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With the introduction of a spectral expansion for the
electron current (22.48), the contribution to the energy
of the system becomes

1

2

∑

pqrs

: a†pa†qasar : 〈pq|V |rs〉 , (22.64)

which can be interpreted, in the familiar language
of ordinary quantum mechanics, as the energy of
two electrons due to the electron–electron inter-
action V which is directly related to the photon
propagator.

22.3.5 Propagators

Propagators relate field variables at different space-time
points. Here we briefly define those most often needed
in atomic and molecular physics.

Electrons
Define Feynman’s causal propagator for the electron–
positron field by the contraction

SF(x2, x1)= 〈0|T[ψ(x2)ψ̄(x1)
]|0〉 . (22.65)

This has a spectral decomposition of the form

SF(x2, x1)=
⎧
⎨

⎩

∑
Em>EF

ψm(x2)ψ̄m(x1) t1 > t2 ,

−∑
En<EF

ψn(x2)ψ̄n(x1) t1 < t2 ,
(22.66)

which ensures that positive energy solutions are prop-
agated forwards in time, and negative energy solutions
backwards in time in accordance with the antiparticle
interpretation of the negative energy states. By not-
ing that the stationary state solutions ψm(x) have time
dependence exp(−iEmt), we can write (22.66) in the
form

SF(x2, x1)= 1

2πi

∞∫

−∞

∑

n

ψn(x2)ψ̄n(x1)

En − z(1+ iδ)
e−iz(t2−t1)dz

= 1

2πi

∞∫

−∞
G(x2, x1, z)γ 0 e−iz(t2−t1) dz ,

(22.67)

where δ is a small positive number, the sum over n
includes the whole spectrum, and where the Green’s
function G(x2, x1, z), in the specific case in which the

potential of the external field aµ(x) has only a scalar
time-independent part, Vnuc(x), satisfies

[
cα · p+βc2+ (Vnucx)− z

]
G(x, y, z)

= δ(3)(x2− x1) . (22.68)

G(x2, x1, z) is a meromorphic function of the com-
plex variable z with branch points at z =±c2, and cuts
along the real axis

(
c2,∞)

and
(−∞,−c2

)
. The poles

lie on the segment
(− c2, c2

)
at the bound eigenvalues

of the Dirac Hamiltonian for this potential.

Photons
The photon propagator DFµν(x2− x1) is constructed in
a similar manner:

− 1

2
DFµν(x2− x1)=

〈
0
∣∣T
[
Aµ(x2)Aν(x1)

]∣∣ 0
〉
,

(22.69)

where µ0 is the permeability of the vacuum. This has
the integral representation

DFµν(x2− x1)= gµνDF(x2− x1)

=− gµν
i

(2π)4

∫
d4q D

(
q2) ,

(22.70)

where

D
(
q2)= 1

q2+ iδ
,

and δ is a small positive number. This is not unique, as
the four-potentials depend on the choice of gauge; for
details see [22.8, Sect. 77]. The various forms for the
electron–electron interaction given below express such
gauge choices.

22.3.6 Effective Interaction of Electrons

The expression (22.63) can be viewed in several ways:
it is the interaction of the current density jµ(x) at
the space-time point x with the four-potential due to
the current jµ(y); the interaction of the current den-
sity jµ(y) with the four-potential due to the current
jµ(x); or, as is commonly assumed in nonrelativistic
atomic theory, the effective interaction between two
charge density distributions, as represented by (22.64).
In terms of the corresponding Feynman diagram, it can
be thought of as the energy due to the exchange of
a virtual photon.

Part
B

2
2
.3



334 Part B Atoms

The form of V depends on the choice of gauge
potential, as follows.

Feynman Gauge

〈pq|V |rs〉
=
∫ ∫

ψ†p(x)ψr(x)vF
sq(x, y)ψ†q (y)ψs(y)d3x d3 y

(22.71)

where

vF
sq(x, y)= eiωsq R

R
(1−αx ·αy) , (22.72)

with

R= x− y, R = |R|, ωsq = Es − Eq

c
.

This interaction gives both a real and an imaginary con-
tribution to the energy; only the former is usually taken
into account in structure calculations. Since the orbital
indices are dummy variables, it is usual to symmetrize
the interaction kernel by writing

v̄F(x, y)= 1

2

[
vF

sq(x, y)+vF
r p(x, y)

]
,

which places the orbitals on an equal footing.

Coulomb Gauge
Here the Feynman propagator is replaced by that for the
Coulomb gauge, giving

vT
sq(x, y)= eiωsq R

R
−
[
αx ·αy

eiωsq R

R

+ (αx ·∇) (αy ·∇) eiωr p R −1

ω2
r p R

]
(22.73)

in which the operator ∇ involves differentiation with
respect to R.

Symmetrization is also used with this interaction.

Breit Operator
The low frequency limit, ωr p → 0, ωsq → 0, is known
as the Breit interaction:

lim
ωr p,ωsq→0

vT
sq(x, y)= 1

R
+vB(R) , (22.74)

where

vB(R)=− 1

2R

(
αx ·αy + αx · R αy · R

R2

)
.

Gaunt Operator
This is a further approximation in which vB(R) is re-
placed by

vG(R)=−αx ·αy

R
, (22.75)

the residual part of the Breit interaction being neglected.

Comments
The choice of gauge should not influence the predic-
tions of QED for atomic and molecular structure when
the perturbation series is summed to convergence, so
that it should not matter if the unapproximated effec-
tive operators are taken in Feynman or Coulomb gauge.
However, this need not be true at each order of pertur-
bation. It has been shown that the results are equivalent,
order by order, if the orbitals have been defined in a local
potential, but not otherwise. There have also been sug-
gestions that the Feynman operator introduces spurious
terms in lower orders of perturbation that are canceled
in higher orders [22.13]. For this reason, most structure
calculations have used Coulomb gauge.

It is often argued, following Bethe and Salpeter
[22.14, Sect. 38], that the Breit interaction should only
be used in first order perturbation theory. The reason
is the approximation ω→ 0; however, this approxima-
tion is quite adequate for many applications in which
the dominant interactions involve only small energy
differences.

22.4 Many-Body Theory For Atoms

The relativistic theory of atomic structure can be viewed
as a simplification of the QED approach using an effec-
tive Hamiltonian operator in which the Dirac electrons
interact through the effective electron–electron interac-
tion of Sect. 22.3.6. This approach retains the dominant
terms from the perturbation solution; those that are
omitted are small and can, with sufficient trouble, be

taken into account perturbatively [22.10,15]. In particu-
lar, radiative correction terms requiring renormalization
are explicitly omitted, and their effects incorporated
at a later stage. Once a model has been chosen, the
techniques and methods used for practical calculations
acquire a close resemblance to those of the nonrelativis-
tic theory described, for example in Chapt. 21.
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22.4.1 Effective Hamiltonians

The models which are closest to QED are those in
which the full electron–electron interaction is included,
usually in Coulomb gauge. We define a Fock space
Hamiltonian

HDCB = H0+H1+H2 (22.76)

where, as in (22.47),

H0 =
∑

Em>EF

Nm Em −
∑

En<EF

Nn En , (22.77)

in which the states are those determined with respect to
a mean-field central potential U(x) as in (22.60)

[
cα · p+βc2+Vnuc(x)+U(x)− Em

]
ψm(x)= 0 ,

and

H1 = −
∑

pq

: a†paq : 〈p|U(x)|q〉

H2 = 1

2

∑

pqrs

: a†pa†qaras : 〈pq|V |sr〉 .

Here the sums run only over states p with E p > EF; this
means that states with E p < EF are treated as inert.

The models are named according to the choice of V
from Sect. 22.5.3.

Dirac–Coulomb–Breit Models
These incorporate the full Coulomb gauge opera-
tor (22.73) or the less accurate Breit operator (22.74).
The fully retarded operator is usually taken in the sym-
metrized form. The Gaunt operator (22.75) is sometimes
considered as an approximation to the Breit operator.

Dirac–Coulomb Models
The electron–electron interaction is simply taken to be
the static 1/R potential. Note that although the equations
are relativistic, the choices of electron–nucleus interac-
tion all implicitly restrict these models to a frame in
which the nuclei are fixed in space. The full electron–
electron interaction is gauge invariant; however, it is
common to start from the Dirac–Coulomb operator, in
which case the gauge invariance is lost. Since radiative
transition rates are sensitive to loss of gauge invari-
ance [22.16] the choice of potential in (22.76) can make
a big difference. Such choices may also affect the rate
of convergence in correlation calculations in which the
relativistic parts of the electron–electron interaction are
treated as a second, independent, perturbation.

22.4.2 Nonrelativistic Limit:
Breit–Pauli Hamiltonian

The nonrelativistic limit of the Dirac–Coulomb–Breit
Hamiltonian is described in Chapt. 21. The derivation is
given in many texts, for example [22.8, 10, 14], and in
principle involves the following steps:

1. Express the relativistic 4-spinor in terms of nonrela-
tivistic Pauli 2-spinors of the form (see Sect. 21.2)

φnlml ,ms (x)= const.
Pnl(r)

r
Ylml (θ, φ)χms (σ) ,

where χms is a 2-component eigenvector of the spin
operator s to lowest order in 1/c.

2. Extract effective operators to order 1/c2.

Thus the Breit–Pauli Hamiltonian is written as the
sum of terms of Sect. 21.2 which can be correlated with
specific parts of the parent relativistic operator:

1. One-body terms originate from the Dirac Hamil-
tonian: they are Hmass (21.5), the one-body part
of HDarwin (21.7) and the spin–orbit couplings Hso
(21.11) and Hsoo (21.12). The forms given in these
equations assume that the electron interacts with
a point-charge nucleus and only require the Coulomb
part of the electron–electron interaction.

2. Two-body terms, including the two-body parts of
HDarwin (21.7), the spin–spin contact term Hssc
(21.8), the orbit–orbit term Hoo (21.9) and the
spin–spin term Hss (21.13) originate from the Breit
interaction.

22.4.3 Perturbation Theory:
Nondegenerate Case

We give a brief resumé of the Rayleigh–Schrödinger
perturbation theory following Lindgren [22.17]. The ma-
terial presented here supplements the general discussion
of perturbation theory in Chapt. 5. First consider the
simplest case with a nondegenerate reference state Φ
belonging to the Hilbert space H satisfying

H0|Φ〉 = E0|Φ〉 , (22.78)

which is a first approximation to the solution of the full
problem

H|Ψ 〉 = E|Ψ 〉, H = H0+V . (22.79)

Next, introduce a projection operator P such that

P = |Φ〉〈Φ|, P|Φ〉 = |Φ〉 ,
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and its complement Q = 1− P, projecting onto the com-
plementary subspace H \ {Φ}. With the intermediate
normalization

〈Φ|Ψ 〉 = 〈Φ|Φ〉 = 1 ,

it follows that

P|Ψ 〉 = |Φ〉〈Φ|Ψ 〉 = |Φ〉 ,
so that the perturbed wave function can be decomposed
into two parts:

|Ψ 〉 = (P+Q)|Ψ 〉 = |Φ〉+Q|Ψ 〉 .
Thus, with intermediate normalization,

E = 〈Φ|H|Ψ 〉 = E0+〈Φ|V |Ψ 〉 .
We now use this decomposition to write (22.79) in

the form

(E0−H0)|Ψ 〉 = (V −∆E)|Ψ 〉 , (22.80)

where ∆E = 〈Φ|V |Ψ 〉. Thus

(E0−H0)Q|Ψ 〉 = Q(V −∆E)|Ψ 〉 . (22.81)

Introduce the resolvent operator

R = Q

E0−H0
, (22.82)

which is well-defined except on {Φ}. Then the perturba-
tion contribution to the wave function is

Q|Ψ 〉= R(V−∆E)|Ψ 〉= R(V |Ψ 〉−|Ψ 〉〈Φ|V |Ψ 〉) .
The Rayleigh–Schrödinger perturbation expansion can
now be written

|Ψ 〉 = |Φ〉+ ∣∣Ψ(1)
〉+ ∣∣Ψ(2)

〉+· · ·
E = E0+ E(1)+ E(2)+· · ·

The contributions are ordered by the number of occur-
rences of V , the leading terms being

∣∣Ψ(1)
〉= RV |Φ〉 ,

∣∣Ψ(2)
〉= (

RVRV − R2VPV
)|Φ〉 ,

and so on. The corresponding contribution to the energy
can then be found from

E(n) = 〈Φ|V ∣∣Ψ(n−1)〉 .

22.4.4 Perturbation Theory:
Open-Shell Case

Consider now the case in which there are several unper-
turbed states,

∣
∣Φ(a)

〉
, a = 1, 2, . . . , d, having the same

energy E0, which span a d-dimensional linear subspace
(the model space) M ⊂H , so that

H0
∣∣Φ(a)

〉= E0
∣∣Φ(a)

〉
, a = 1, 2, . . . , d .

Let P be the projector onto M, and Q onto the orthog-
onal subspace M⊥.

The perturbed states
∣∣Ψ(a)

〉
, a = 1, 2, . . . , d are re-

lated to the unperturbed states by the wave operator Ω,
∣∣Ψ(a)

〉=Ω∣∣Φ(a)〉, a = 1, 2, . . . , d .

The effective Hamiltonian, Heff, is defined so that

Heff
∣
∣Φ(a)

〉= E(a)
∣
∣Φ(a)

〉
,

and thus

ΩHeff
∣∣Φ(a)

〉= E(a)
∣∣Ψ(a)

〉= HΩ
∣∣Φ(a)

〉
.

Thus on the domain M we can write an operator equation

ΩHeff P = HΩP , (22.83)

known as the Bloch equation. We now partition Heff so
that

Heff P = (H0+Veff)P ,

enabling a reformulation of (22.83) as the commutator
equation

[Ω, H0]P = (VΩ−ΩVeff)P . (22.84)

With the intermediate normalization convention of
Sect. 22.4.3, this becomes

∣∣Ψ(a)
〉= P

∣∣Φ(a)
〉

so that PΩP = P and

Heff P = PHΩP , Veff P = PVΩP .

Then (22.84) can be put in the final form

[Ω, H0]P = (VΩ−ΩPVΩ)P . (22.85)

The general Rayleigh–Schrödinger perturbation expan-
sion can now be generated by expanding the wave
operator order by order

Ω = 1+Ω(1)+Ω(2)+· · · ,
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and inserting into (22.85), resulting in a hierarchy of
equations

[
Ω(1), H0

]
P = (V − PV )P = QVP ,

[
Ω(2), H0

]
P = (

QVΩ(1)−Ω(1)PV
)
P ,

and so on, with H(n)eff = PVΩ(n−1).

22.4.5 Perturbation Theory: Algorithms

The techniques of QED perturbation theory of
Sect. 22.3.4 can be utilized to give computable expres-
sions for perturbation calculations order by order. They
exploit the second quantized representation of opera-
tors of Sect. 22.4.1 along with the use of diagrams to
express the contributions to the wave operator and the
energy as sums over virtual states. The use of Wick’s

theorem to reduce products of normally-ordered opera-
tors, and the linked-diagram or linked-cluster theorem
are explained in Lindgren’s article [22.17] and Chapt. 5.
Further references and discussion of features which
can exploit vector-processing and parallel-processing
computer architectures may be found in [22.18].

The theory can also be recast so as to sum certain
classes of terms to completion. This depends on the
possibility of expressing the wave operator as a normally
ordered exponential operator

Ω = {exp S} = 1+{S}+ 1

2! {S
2}+ · · · ,

where the normally ordered operator S is known as the
cluster operator. Expanding S order by order leads to the
coupled cluster expansion (see also Chapts. 5 and 27).

22.5 Spherical Symmetry

A popular starting point for most calculations in atomic
and molecular structure is the independent particle cen-
tral field approximation. This assumes that the electrons
move independently in a potential field of the form

A0(x)= 1

c
φ(r) , r = |x| ;

Ai(x)= 0 , i = 1, 2, 3 . (22.86)

Clearly φ(r) is left unchanged by any rotation about the
origin, r = 0, but transforms as the component A0(x)
of a 4-vector under other types of Lorentz and Poincaré
transformation such as boosts or translations. However,
solutions in central potentials of this form have a simple
form which is convenient for further calculation.

With this restriction on the 4-potential, Dirac’s
Hamiltonian becomes

ĥD =
{
cα · p+ eφ(r)+βmec2} . (22.87)

Consider stationary solutions with energy E satisfying

ĥDψE(x)= EψE(x) .

Since ĥD is invariant with respect to rotation about
r = 0, it commutes with the generators J1, J2, J3 men-
tioned in Sect. 22.1.1, corresponding to components of
the total angular momentum j of the electron, usually
decomposed into an orbital part l and a spin part s,

j = l+ s (22.88)

where

l j = iε jkl xk∂l , j = 1, 2, 3

s j = 1

2
ε jklσkl , j = 1, 2, 3 .

22.5.1 Eigenstates of Angular Momentum

We can construct simultaneous eigenstates of the op-
erators j2 and j3 by using the product representation
D(l) ×D(1/2) of the rotation group SO(3), which is
reducible to the Clebsch–Gordan sum of two irreps

D(l+1/2)⊕D(l−1/2) . (22.89)

We construct a basis for each irrep from products of ba-
sis vectors for D(1/2) and D(l) respectively. D(1/2) is
a 2-dimensional representation spanned by the simulta-
neous eigenstates φσ of s2 and s3

s2 φσ = 3

4
φσ , s3 φσ = σφσ , σ =±1

2
,

for which we can use 2-rowed vectors

φ1/2 =
(

1

0

)

, φ−1/2 =
(

0

1

)

.

The representation D(l) is (2l+1)-dimensional; its basis
vectors can be taken to be the spherical harmonics

{
Ym

l (θ, ϕ) |m =−l,−l+1, . . . , l
}
,
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so that

l2 Ym
l (θ, ϕ)= l(l+1)�2Ym

l (θ, ϕ) ,

l3 Ym
l (θ, ϕ)= m� Ym

l (θ, ϕ) .

We shall assume that spherical harmonics satisfy the
standard relations

l±Ym
l (θ, ϕ)=[l(l+1)−m(m±1)]1/2�Ym±1

l (θ, ϕ) ,

where l± = l1± l2, so that

Ym
l (θ, ϕ)=

(
2l+1

4π

)1/2

Cm
l (θ, ϕ) ,

Cm
l (θ, ϕ)= (−1)m

(
(l−m)!
(l+m)!

)1/2

Pm
l (θ)e

imϕ ,

if m ≥ 0 ,

C−m
l (θ, ϕ)= (−1)mCm

l (θ, ϕ)
∗ . (22.90)

Basis functions for the representations D j with
j = l± 1

2 have the form (The order of coupling is sig-
nificant, and great confusion results from a mixing
of conventions. Here we couple in the order l, s, j.
The same spin-angle functions are obtained if we
use the order s, l, j but there is a phase difference
(−1)l− j+1/2 = (−1)(1−a)/2. You have been warned!)

χ j,m,a(θ, ϕ)

=
∑

σ

〈
l,m−σ, 1

2
, σ

∣∣∣ l,
1

2
, j,m

〉
Ym−σ

l (θ, ϕ)φσ

(22.91)

where 〈l,m−σ, 1
2 , σ | l, 1

2 , j,m〉 is a Clebsch–Gordan
coefficient with

l = j− 1

2
a, a =±1,

m = − j,− j+1, . . . , j−1, j .

Inserting explicit expressions for the Clebsch–Gordan
coefficients gives

χ j,m,−1(θ, ϕ)=
⎛

⎜
⎝
−
(

j+1−m
2 j+2

)1/2
Ym−1/2

j+1/2 (θ, ϕ)(
j+1+m
2 j+2

)1/2
Ym+1/2

j+1/2 (θ, ϕ)

⎞

⎟
⎠ ,

χ j,m,1(θ, ϕ)=
⎛

⎜
⎝

(
j+m
2 j

)1/2
Ym−1/2

j−1/2 (θ, ϕ)(
j−m
2 j

)1/2
Ym+1/2

j−1/2 (θ, ϕ)

⎞

⎟
⎠ .

(22.92)

The vectors (22.92) satisfy

j2χ j,m,a = j( j+1)χ j,m,a, s2χ j,m,a = 3

4
χ j,m,a ,

l2χ j,m,a = l(l+1)χ j,m,a, l = j− 1

2
a, a =±1 .

(22.93)

The parity of the angular part is given by (−1)l , with the
two possibilities distinguished by means of the operator

K ′ = −( j2− l2− s2+1)=−(2s · l+1) (22.94)

so that

K ′χ j,m,a=k′χ j,m,a, k′ =−
(

j+ 1

2

)
a, a=±1 .

The basis vectors are orthonormal on the unit sphere
with respect to the inner product

(χ j ′,m′,a′ |χ jma)

=
∫ ∫

χ
†
j ′,m′,a′(θ, ϕ)χ j,m,a(θ, ϕ) sin θ dθ dϕ

= δ j ′, jδm′,mδa′,a . (22.95)

22.5.2 Eigenstates of Dirac Hamiltonian
in Spherical Coordinates

Eigenstates of Dirac’s Hamiltonian (22.87) in spheri-
cal coordinates with a spherically symmetric potential
V(r)= eφ(r),

ĥDψE(r)= EψE(r) , (22.96)

are also simultaneous eigenstates of j2, of j3 and of the
operator

K =
(

K ′ 0

0 −K ′

)

, (22.97)

where K ′ is defined in (22.94) above. Denote the cor-
responding eigenvalues by j,m and κ, where

κ =±
(

j+ 1

2

)
. (22.98)

Then the simultaneous eigenstates take the form

ψEκm(r)= 1

r

(
PEκ(r)χκ,m(θ, ϕ)

iQEκ(r)χ−κ,m(θ, ϕ)

)

, (22.99)

where κ =−( j+1/2)a is the eigenvalue of K ′, and the
notation χκ,m replaces the notation χ j,m,a used previ-
ously in (22.91). The factor i in the lower component
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ensures that, at least for bound states, the radial am-
plitudes PEκ(r), QEκ(r) can be chosen to be real. This
decomposition into radial and angular factors exploits
the identity

σ · p
[

F(r)

r
χκ,m(θ, ϕ)

]

= i�
1

r

(
dF

dr
+ κF

r

)
χ−κ,m(θ, ϕ) (22.100)

and gives a reduced eigenvalue equation
⎛

⎝
mc2− E+V −c

(
d
dr − κ

r

)

c
(

d
dr + κ

r

)
−mc2− E+V

⎞

⎠
(

PEκ(r)

QEκ(r)

)

= 0 .

(22.101)

Angular Density Distributions
It is a remarkable fact that the angular density distribu-
tion

Aκ,m(θ, ϕ)= χκ,m(θ, ϕ)†χκ,m(θ, ϕ) , (22.102)

where m =− j,− j+1, . . . , j−1, j, is independent of
the sign of κ; the equivalence of

A j+1/2,m(θ, ϕ)= 1

4π

( j−m)!
( j+m)!

×
[
( j−m+1)2

∣∣∣Pm−1/2
j+1/2 (µ)

∣∣∣
2+

∣∣∣Pm+1/2
j+1/2 (µ)

∣∣∣
2]
,

and

A−( j+1/2),m(θ, ϕ)= 1

4π

( j−m)!
( j+m)!

×
[
( j+m)2

∣∣∣Pm−1/2
j−1/2 (µ)

∣∣∣
2+

∣∣∣Pm+1/2
j−1/2 (µ)

∣∣∣
2]
,

where µ= cos θ, was demonstrated by Hartree [22.19].
Angular densities for the lowest |κ| values are given

in Table 22.1. The corresponding nonrelativistic angular
densities

Al,m(θ, ϕ)nr =
∣∣∣Ym

l (θ, ϕ)

∣∣∣
2

= 2l+1

4π

(l−m)!
(l+m)!

∣∣∣P|m|
l (µ)

∣∣∣
2 ;

are listed in Table 22.2.

Radial Density Distributions
The probability density distribution ρEκm(r) associated
with the stationary state (22.99) is given by

ρE,κ,m(r)= 1

r2

[
|PE,κ(r)|2 Aκ,m(θ, ϕ)

+|QE,κ(r)|2 A−κ,m(θ, ϕ)
]
. (22.103)

Table 22.1 Relativistic angular density functions

|κ| |m| 4π A|κ|,m(θ,ϕ)

1 1
2 1

2 3
2

3
2 sin2 θ

1
2

1
2 (1+3 cos2 θ)

3 5
2

15
8 sin4 θ

3
2

3
8 sin2 θ(1+15 cos2 θ)

1
2

3
4 (3 cos2 θ−1)2+3 sin2 θ cos2 θ

Table 22.2 Nonrelativistic angular density functions

l |m| 4π Al,m(θ,ϕ)nr

0 0 1

1 1 3
2 sin2 θ

0 3 cos2 θ

2 2 15
8 sin4 θ

1 15
2 sin2 θ cos2 θ

0 5
4 (3 cos2 θ−1)2

Since Aκ,m does not depend on the sign of κ, the angular
part can be factored so that

ρE,κ,m(r)= DE,κ(r)

r2 A|κ|,m(θ, ϕ) ,

where

DE,κ(r)=
[
|PE,κ(r)|2+|QE,κ(r)|2

]
(22.104)

defines the radial density distribution.

Subshells in j–j Coupling
The notion of a subshell depends on the observation that
the set {ψE,κ,m,m =− j, . . . , j} have a common radial
density distribution. The simplest atomic model is one
in which the electrons move independently in a mean
field central potential. Since

j∑

m=− j

ρE,κ,m(r)= 2 j+1

4π

DE,κ(r)

r2 , (22.105)

a state of 2 j+1 independent electrons, with one in
each member of the set {ψE,κ,m,m =− j, . . . , j}, has
a spherically symmetric probability density. If E be-
longs to the point spectrum of the Hamiltonian, then
(22.105) gives a distribution localized in r, and we re-
fer to the states {E, κ,m},m =− j, . . . , j as belonging
to the subshell {E, κ}.

The notations in use for Dirac central field states
are set out in Table 22.3. Here l is associated with the
orbital angular quantum number of the upper pair of
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Table 22.3 Spectroscopic labels and angular quantum num-
bers

Label: s p p d d f f

κ =−( j+ 1
2

)
a −1 +1 −2 +2 −3 +3 −4

j = l+ 1
2 a 1

2
1
2

3
2

3
2

5
2

5
2

7
2

a 1 −1 1 −1 1 −1 1

l = j− 1
2 a 0 1 1 2 2 3 3

l̄ = j+ 1
2 a 1 0 2 1 3 2 4

components and l̄ with the lower pair. Note the useful
equivalence

κ(κ+1)= l(l+1) .

Defining κ̄ := −κ we have also κ̄(κ̄+1)= l̄(l̄+1).

22.5.3 Radial Amplitudes

Textbooks on quantum electrodynamics usually contain
extensive discussions of the formalism associated with
the Dirac equation but rarely go beyond the treatment of
the hydrogen atom Chapt. 10. Greiner’s textbook [22.4]
is an honorable exception, with many worked exam-
ples. A more exhaustive list of problems in which exact
solutions are known is contained in [22.20]; it is par-
ticularly rich in detail about equations of motion and
Green’s functions in external electromagnetic fields of
various configurations; coherent states of relativistic par-
ticles; charged particles in quantized plane wave fields. It
also incorporates discussion of extensions of the Dirac
equations due to Pauli which include explicit interac-
tion terms arising from anomalous magnetic or electric
moments.

Atoms and molecules with more than one electron
are not soluble analytically so that numerical models
are needed to make predictions. The solutions are sen-
sitive to boundary conditions on which we focus in this
section. For large r, solutions of (22.101) can be found
proportional to exp(±λr), where

λ=+
√

c2− E2/c2 . (22.106)

Thus λ is real when −c2 ≤ E ≤ c2, and pure imaginary
otherwise.

Singular Point at r = 0
Singularities of the nuclear potential near r = 0 have
a major influence on the nature of solutions of the Dirac
equation. Suppose that the potential has the form

V(r)=− Z(r)

r
, (22.107)

so that Z(r) is the effective charge seen by an electron
at radius r from the nuclear center. The dependence of
Z(r) on r may reflect the finite size of the nuclear charge
distribution, so far treated as a point, or the screening due
to the environment. Assume that Z(r) can be expanded
in a power series of the form

Z(r)= Z0+ Z1r+ Z2r2+· · · (22.108)

in a neighborhood of r = 0. This property characterizes
a number of well-used models

1. Point nucleus: Z0 �= 0; Zn = 0, n > 0.
2. Uniform nuclear charge distribution:

V(r)=

⎧
⎪⎨

⎪⎩

−3Z

2a

(
1− r2

3a2

)
, 0 ≤ r ≤ a ,

− Z

r
, r > a .

(22.109)

This gives the expansion Z0 =−3Z/2a, Z1 = 0,
Z2 =+Z/2a3, Zn = 0 for n > 2 when r ≤ a.

3. Fermi distribution: The nuclear charge density has
the form

ρnuc(r)= ρ0

1+ exp[(r−a)/d] ,
where ρ0 is chosen so that the total charge on the
nucleus is Z.

Other nuclear models, reflecting the density distribu-
tions deduced from nuclear scattering experiments, can
be found in the literature.

Series Solutions Near r = 0
Any solution for the radial amplitudes of Dirac’s equa-
tion in a central potential

u(r)=
(

P(r)

Q(r)

)

, (22.110)

with radial density

D(r)= P2(r)+Q2(r) ,

can be expanded in a power series near the singular point
at r = 0 in the form

u(r)= rγ
(
u0+u1r+u2r2+· · · ) , (22.111)

where

uk =
(

pk

qk

)

, k = 1, 2, . . .

and γ, pk, qk are constants which depend on the nuclear
potential model.
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Point Nuclear Models
For a Coulomb singularity, Z0 �= 0, the leading coeffi-
cients satisfy

−Z0 p0+ c(κ−γ)q0 = 0 ,

c(κ+γ)p0− Z0q0 = 0 , (22.112)

so that

γ = ±
√

κ2− Z2
0

c2
,

q0

p0
= Z0

c(κ−γ) =
c(κ+γ)

Z0
. (22.113)

Finite Nuclear Models
Finite nuclear models, for which Z0 = 0, have no sin-
gularity in the potential at r = 0. The indicial equation
(22.113) reduces to γ =±|κ|, so that for κ < 0,

P(r)= p0rl+1+O
(
rl+3) , (22.114)

Q(r)= q1rl+2+O
(
rl+4) , (22.115)

with

q1/p0 =
(
E−mc2+ Z1

)/[c(2l+3)] ,
q0 = p1 = 0 ,

and for κ ≥ 1,

P(r)= p1rl+1+O
(
rl+3) , (22.116)

Q(r)= q0rl +O
(
rl+2) , (22.117)

with

p1/q0 =−(E−mc2+ Z1
)/[c(2l+1)] ,

p0 = q1 = 0 .

In both cases the solutions consist of either purely even
powers or purely odd powers of r, contrasting strongly
with the point nucleus case, where both even and odd
powers are present in the series expansion.

The Nonrelativistic Limit
For a solution linked to a nonrelativistic state with orbital
angular momentum l, one expects the nonrelativistic
limit

P(r)= O
(
rl+1), c →∞ .

The limiting behavior reveals some significant features.

Finite nuclear models.
The behavior is entirely regular:

P(r)= O
(
rl+1), Q(r)= O

(
c−1)→ 0 .

Point nuclear models.
Since

γ = |κ|− Z2

2c2|κ| + · · · ,

(22.113) shows that the leading coefficient p0 vanishes
in the limit so that,

P(r)≈ p1rl+1
[
1+O

(
r2)

]
, when κ ≥ 1, l = κ .

(22.118)

All higher powers of odd relative order vanish in the limit
for both components. The behavior in the case κ < 0 is
entirely regular.

22.5.4 Square Integrable Solutions

Square integrable solutions require
∫

DE,κ(r)dr to be
finite; since the solutions are smooth, except possibly
near the singular endpoints r → 0 and r →∞, we focus
on the behavior at the endpoints:

r →∞
For real values of λ the condition

∞∫

R

DE,κ(r)dr <∞ , 0< R<∞ ,

requires that PEκ(r), QEκ(r) are proportional to
exp(−λr) with λ > 0.

This means that bound states can only exist when
E lies in the interval−c2 ≤ E ≤ c2. Outside this interval
solutions are necessarily of scattering type and so

∞∫

R

DE,κ(r)dr

diverges when |E|> c2.

r → 0
This limit requires

R′∫

0

DE,κ(r)dr <∞, R′ > 0 .

Part
B

2
2
.5



342 Part B Atoms

Since DE,κ(r)∼ r±2γ as r → 0, this condition holds
when ±γ >− 1

2 . Only the solution with γ > 0 satis-
fies the condition when |γ |> 1

2 , or Z < α−1
√
κ2−1/4,

and the solution with γ < 0 must be disregarded. This
corresponds to the limit point case of a second-order dif-
ferential operator [22.21]. In the special case |κ| = 1 or
j = 1

2 this limits Z to be smaller than c
√

3/2 ≈ 118.6.
For Z > c

√
3/2, both solutions are square integrable

near the origin (the limit circle case) and the differential
operator is no longer essentially self-adjoint.

The Coulomb potential must have a finite expecta-
tion for any physically acceptable solution, so that we
also require

R′∫

0

DE,κ(r)
dr

r
<∞, R′ > 0 .

This is always satisfied by the solution with γ > 0 for
all |Z|< α−1|κ|, but not by the solution with γ < 0. Im-
posing this condition restores essential self-adjointness
(on a restricted domain) for 118< Z ≤ 137.

22.5.5 Hydrogenic Solutions

The wave functions for hydrogenic solutions of Dirac’s
equation are presented in Sect. 22.8.2. Here we note
some properties of hydrogenic solutions that reveal
dynamical effects of relativity in the absence of screen-
ing by orbital electrons. In this case Z0 = Z, Zn = 0,
n > 0. When −c2 < E < c2 we have bound states. The
parameter λ, (22.106), can conveniently be written

λ= Z/N , (22.119)

so that rearranging (22.106) gives

E =+c2

√

1− Z2

N2c2 , (22.120)

essentially equivalent to Sommerfeld’s fine structure for-
mula. In the formal nonrelativistic limit, c →∞, we
have

E = c2− Z2

2N2
+O(1/c2)

so that N is closely related to the principal quantum
number, n, appearing in the Rydberg formula. As in
Sect. 22.8.2, we write ρ = 2λr.

Define the inner quantum number

nr =−a =−γ + NE

c2
, nr = 0, 1, 2, . . . .

Substitute for E from (22.120) to get

N =
[
(nr+γ)2+α2 Z2

]1/2

=
[
n2−2nr(|κ|−γ)

]1/2
, (22.121)

where n = nr+|κ| is the principal quantum number,
the exact equivalent of the principal quantum num-
ber of the nonrelativistic state to which the Dirac
solution reduces in the limit c →∞. With this nota-
tion, the radial amplitudes for bound hydrogenic states
are

PEκ(r)

=NEκ(c+ E/c)1/2ργ e−ρ/2
[−nr M(−nr+1,

2γ +1; ρ)+ (N −κ)M(−nr, 2γ +1; ρ)] ,
(22.122)

QEκ(r)

=NEκ(c− E/c)1/2ργ e−ρ/2
[−nr M(−nr+1,

2γ +1; ρ)− (N −κ)M(−nr, 2γ +1; ρ)] ,
(22.123)

where

NEκ =
(

αZ

2N2(N −κ) · Γ (2γ +nr+1)

nr! [Γ(2γ +1)]2
)1/2

is the normalization constant. For definitions of
the confluent hypergeometric functions M(a, b; c; z)
see [22.22, Sect. 13.1].

Table 22.4 lists expectation values of simple pow-
ers of the radial variable ρ = 2Zr/N from [22.23]

Table 22.4 Radial moments 〈ρs〉
s Nonrelativistic Relativistic a

2 2n2[5n2+1 2
[
N2(5N2−2κ2)R2(N )

−3l(l+1)] +N2(1−γ 2)−3κN2 R(N )
]

1 3n2− l(l+1) −κ+ (3N2−κ2)R(N )

0 1 1

−1
1

2n2

nγ + (|κ|−γ)|κ|
2γN3

−2
1

2n3(2l+1)

κ2 R(N )

2γ 2 N3(2γ − sgnκ)

−3
1

4n3l(l+1)(2l+1)

N2+2γ 2κ2−3N2κR(N )

4N5γ(γ 2−1)(4γ 2−1)

a R(N )=√
1− Z2/N2c2
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and [22.24]. Simple algebra, using the inequalities
γ < |κ| and N < n, yields the inequality

〈ρs〉nκ < 〈ρs〉nl, s> 0 ;
the inequality is reversed for s< 0. In the same way, it is
easy to deduce that relativistic hydrogenic eigenvalues
lie below the nonrelativistic eigenvalues

εnκ < εnl .

Thus, in the absence of screening, Dirac orbitals both
contract and are stabilized with respect to their nonrela-
tivistic counterparts. The relativistic and nonrelativistic
expectation values approach each other as the relativistic
coupling constant, Z/c= αZ → 0. This formal nonrela-
tivistic limit is approached as α→ 0 or c→∞, in which
the speed of light is regarded as infinite.

22.5.6 The Free Electron Problem
in Spherical Coordinates

The radial equation (22.101) for the free electron
(V(r)= 0) gives a pair of first order ordinary differential
equations

(mc2− E)PEκ(r)= c

(
d

dr
− κ

r

)
QEκ(r) ,

c

(
d

dr
+ κ

r

)
PEκ(r)=

(
mc2+ E

)
QEκ(r) , (22.124)

from which we deduce that

d2 PEκ(r)

dr2
+
(

p2− κ(κ+1)

r2

)
PEκ(r)= 0 ,

d2 QEκ(r)

dr2
+
(

p2− κ̄(κ̄+1)

r2

)
QEκ(r)= 0 ,

(22.125)

where p2 =m2c2− E2/c2 = p. p and the angular quan-
tum numbers κ and κ̄ are associated respectively with the
upper and lower components. These are defining equa-
tions of Riccati–Bessel functions [22.22, Sect. 10.1.1]
of orders l and l̄ respectively, where

κ(κ+1)= l(l+1), κ̄(κ̄+1)= l̄(l̄+1) .

Thus the solutions of (22.125) are functions of the
variable x = pr of the form

PEκ(r)= Ax fl(x), QEκ(r)= Bx fl̄(x) ,

where the ratio of A and B is determined by (22.124)
and where fl(x) is a spherical Bessel function of the

first, second or third kind [22.22, Sect. 10.1.1]. Thus

PEκ(r)=N

(
E+mc2

πE

)1/2

x fl(x) ,

QEκ(r)=N sgn(κ)

(
E−mc2

πE

)1/2

x fl̄(x) .

(22.126)

Equations (22.124) require that Riccati–Bessel solu-
tions of the same type be chosen for both components.
The possibilities are:

Standing Waves
The two solutions of the same type are fl(x) =
jl(x), fl(x)= yl(x). The jl(x) are bounded everywhere,
including the singular points x = 0, x → ∞ and have
zeros of order l at x = 0. The yl(x) are bounded at infinity
but have poles of order l+1 at x = 0.

Progressive Waves
The spherical Hankel functions (functions of the third
kind) are linear combinations

h(1)l (x)= jl(x)+ iyl(x), h(2)l (x)= jl(x)− iyl(x) .

Recalling that p is real if and only if |E|>mc2, we see
that h(1)l (x), h

(2)
l (x) are bounded as x →∞ and have

poles of order l+1 at x = 0. Notice that when |E|<mc2,
which does not occur for a free particle, p becomes pure
imaginary and no solution exists which is finite at both
singular points.

The normalization constant N can be determined by
using the well-known result

∞∫

0

jl(pr) jl(p
′r)r2 dr = π

2p2
δ(p− p′) .

The choice N = 1 ensures that
∞∫

0

[
P†Eκ(r)PE′κ(r)+Q†Eκ(r)QE′κ(r)

]
dr=δ(p−p′) .

Noting that

δ(E− E′)=
∣∣∣∣

dp

dE

∣∣∣∣ δ(p− p′) ,

and dp/dE = c2 p/E gives
∞∫

0

[
P†Eκ(r)PE′κ(r)+Q†Eκ(r)QE′κ(r)

]
dr=δ(E−E′) .

when N = (|E|/c2 p
)1/2

.
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22.6 Numerical Approximation of Central Field Dirac Equations

The main drive for understanding methods of numerical
approximation of solutions of Dirac’s equation comes
from their application to many-electron systems. Ap-
proximate wave functions for atomic or molecular states
are usually constructed from products of one-electron
orbitals, and their determination exploits knowledge
gained from the treatment of one-electron problems.
Whilst the numerical methods described here are strictly
one-electron in character, extension to many-electron
problems is relatively straightforward.

22.6.1 Finite Differences

The numerical approximation of eigensolutions of the
first order system of differential equations (22.101)

E

(
PEκ(r)

QEκ(r)

)

=
⎛

⎝
mc2+V(r)− c

(
d
dr − κ

r

)

c
(

d
dr + κ

r

)
−mc2+V(r)

⎞

⎠
(

PEκ(r)

QEκ(r)

)

(22.127)

can be achieved by more or less standard finite differ-
ence methods given in texts such as [22.25]. For states
in either continuum, E > mc2 or E <−mc2, the calcu-
lation is completely specified as an initial value problem
for a prescribed value of E starting from power series
solutions in the neighborhood of r = 0. Solutions of this
sort exist for all values of (complex) E except at the
bound eigensolutions in the gap −mc2 < E < mc2. For
bound states, the calculation becomes that of a two-point
boundary value problem in which the eigenvalue E has
to be determined iteratively along with the numerical
solution. We concentrate on the latter, which is more
involved.

It is convenient to write

εnκ = Enκ−mc2 , (22.128)

so that ε approaches the nonrelativistic eigenvalue in the
limit c →∞. For the one-electron problem, (22.101)
can be written in the general form

J
du

ds
+ 1

c

dr

ds

[
rε+W(s)

]
u(s)= χ(s) dr

ds
, (22.129)

where u(s) and χ(s) are two-component vectors, such
that

u(s)=
(

P(s)

Q(s)

)

, J =
(

0 1

−1 0

)

,

W(s)=
(
−rV(r) −cκ

−cκ 2rc2−rV(r)

)

,

and r(s) is a smooth differentiable function of a new
independent variable s. This facilitates the use of a uni-
form grid for s mapping onto a suitable nonuniform grid
for r. Common choices are

rn = r0 esn , sn = nh, n = 0, 1, 2, . . . , N ,

for suitable values of the parameters r0 and h, and

A rn + log

(
1+ rn

r0

)
= sn, n = 0, 1, 2, . . . , N ,

where A is a constant, chosen so that the spacing
in rn increases exponentially for small values of n and
approaches a constant for large values of n. The expo-
nentially increasing spacing is appropriate for tightly
bound solutions, but a nearly linear spacing is advisable
to ensure numerical stability in the tails of extended and
continuum solutions.

The most convenient numerical algorithm involves
double shooting from s0 = 0 and sN = Nh towards an
intermediate join point s = Jh, adjusting ε until the
trial solutions have the right number of nodes and have
left- and right-limits at s = Jh which agree to a pre-set
tolerance (commonly about 1 part in 108).

The deferred correction method [22.26, 27] allows
the precision of the numerical approximation to be
improved as the iteration converges. Consider the sim-
plest implicit linear difference scheme for the first order
system

dy

ds
= F [y(s), s] ,

based on the trapezoidal rule of quadrature, is

z j+1− z j = 1

2
h(Fj+1+ Fj) , (22.130)

which has a local truncation error O(h2). The preci-
sion can be improved, at the expense of increasing the
computational cost per iterative cycle, by adding higher
order difference terms to the right-hand side in (22.130).
Use of the trial solution from the previous cycle leaves
the stability properties of (22.130) are unaltered, but the
converged solution has much higher accuracy.

To apply this to the Dirac system, write f(s)= dr/ds
and

A±j = J± h

2c
f(s j)W(s j) .
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Also consider a slightly generalized problem in which
V(r) is replaced by a discretized potential U(ν)j that
may change from one iteration to the next as in a self-
consistent field calculation. The first iteration is

A+(0)j+1 U(1)j+1− A−(0)j U(1)j

+ ε(0) h

2c

[
r j+1 f(s j+1)U

(1)
j+1+r j f(s j)U

(1)
j

]

= 1

2
h
[

f(s j+1)χ(s j+1)
(0)+ f(s j)χ(s j)

(0)
]
,

(22.131)

where superscript 0 refers to initial estimates and su-
perscript 1 to the result of the first iteration. On the
(ν+1)-th iteration, we solve

A+(ν)j+1 U(ν+1)
j+1 − A−(ν)j U(ν+1)

j

+ ε(ν) h

2c

[
r j+1 f(s j+1)U

(ν+1)
j+1 +r j f(s j)U

(ν+1)
j

]

= 1

2
h
[

f(s j+1)χ(s j+1)
(ν)+ f(s j)χ(s j)

(ν)
]

+ 1

12
δ3U(ν)j+1/2+· · · , (22.132)

where δ3 U(ν)j+1/2 is the central-difference correction of
order 3 [22.22, Sect. 25.1.2]. Higher order difference
corrections (at least to order 5) are included in modern
codes to improve the accuracy and numerical stability
of weakly bound solutions. This deferred correction al-
gorithm can be shown to converge asymptotically to the
required solution of the differential system with a lo-
cal truncation error of order O

(
h2p+2

)
when difference

corrections of order 2p+1 are employed [22.28].

22.6.2 Expansion Methods

Methods of solving the Dirac equation which represent
the one-electron wave function as a linear combination
of sets of square integrable functions (basis sets) have
become popular in the last 10 years. Simple and rigorous
criteria for choosing effective basis sets for this purpose
are now available, and classes of functions that satisfy
these criteria are known. Consequently, cheap and accu-
rate calculations of the electronic structure of atoms and
molecules are now a practical possibility.

Finite difference algorithms generate eigensolutions
one at a time. Basis set methods replace the differen-
tial operator ĥD of (22.87) with a finite symmetric (in
some cases complex Hermitian) matrix of dimension
2N . The spectrum of this operator, which is of course
a pure point spectrum, consists of three pieces: N eigen-
solutions with E <−mc2 (ε <−2mc2) representing the

eigenstates of the lower continuum; Nb < N eigenso-
lutions in the gap −mc2 < E < mc2 (−2mc2 < ε < 0)
corresponding to bound states; and N − Nb eigensolu-
tions with E >mc2 (ε > 0) representing the eigenstates
of the upper continuum. For properly chosen basis sets,
the approximation properties of bound state eigensolu-
tions are similar to those of the equivalent nonrelativistic
eigensolutions. Solutions at continuum energies have
the correct behavior near r = 0, but their amplitudes de-
crease exponentially like bound state solutions at large
values of r. The criteria on which this description rests
are as follows:

A. The eigenstates of ĥD are 4-component central
field spinors whose components are coupled. The
basis functions should therefore also consist of
4-component spinors of the form

Φκm(r)= 1

r

[
f L
κ (r)χκ,m(θ, ϕ)

i f S
κ (r)χ−κ,m(θ, ϕ)

]

. (22.133)

B. The spinor basis functions should, as far as practic-
able, satisfy the boundary conditions near r = 0 of
Sect. 22.5.3. They should also be square integrable
at infinity.

C. Acceptable spinor basis functions should satisfy the
relation

i�
f S
κ (r)

r
χ−κ,m(θ, ϕ)→ σ · p

f L
κ (r)

r
χκ,m(θ, ϕ)

(22.134)

in the nonrelativistic limit, c →∞.
D. Acceptable spinor basis functions must have finite

expectation values of component operators of ĥD,
namely α · p, β and V(r).

Finite Basis Set Formalism
Assume that each solution of the target problem is
approximated as a linear combination

ψκm(r)= 1

r

( ∑
j cL
κ j f L

κ j(r)χκ,m(θ, ϕ)

i
∑

j cS
κ j f S

κ j(r)χ−κ,m(θ, ϕ)

)

,

(22.135)

where cL
κ j , c

S
κ j j = 1 · · · N, are arbitrary constants, so

that each j-term on the right-hand side has the form
(22.133). This enables us to construct a Rayleigh quo-
tient

W[ψ] = 〈ψ|ĥD|ψ〉
〈ψ|ψ〉 , (22.136)
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where both 〈ψ|ĥD|ψ〉 and 〈ψ|ψ〉 are quadratic expres-
sions in the expansion coefficients cL

j , c
S
j . By requiring

that W[ψ] shall be stationary with respect to arbitrary
variations in the expansion coefficients, we arrive at the
matrix eigenvalue equation

fκ

(
cL
κ

cS
κ

)

= ε
(

SLL
κ 0

0 SSS
κ

)(
cL
κ

cS
κ

)

, (22.137)

where the matrix Hamiltonian is denoted by

fκ =
(

VLL
κ cΠL S

κ

cΠSL
κ VSS

κ −2mc2SSS
κ

)

,

cL
κ , cS

κ are N-vectors, and VLL
κ ,VSS

κ , SLL
κ , SSS

κ , ΠL S
κ

and ΠSL
κ are all N × N matrices. Using superscripts T

to denote either of the letters L, S, the elements of the
matrices are defined by

STT
κij =

∞∫

0

f T∗
iκ (r) f T

jκ(r)dr , (22.138)

V TT
κij =

∞∫

0

f T∗
iκ (r)V(r) f T

jκ(r)dr , (22.139)

and

ΠL S
κij =

∞∫

0

f L∗
iκ (r)

(
− d

dr
+ κ

r

)
f S

jκ(r)dr ,

(22.140)

ΠSL
κij =

∞∫

0

f S∗
iκ (r)

(
d

dr
+ κ

r

)
f L

jκ(r)dr . (22.141)

If f L
iκ(r) and f S

iκ(r) vanish at both r = 0 and r →∞,
then a simple integration by parts shows that ΠL S

κ and
ΠSL
κ are Hermitian conjugate matrices.

Physically Acceptable Basis Sets
The four criteria described above are exploited in the
following way:

A. The structure of (22.133) ensures (i) that the upper
and lower components have properly matched angu-
lar behavior. It also emphasizes that the radial parts
are part of a spinor structure which should be kept
intact when making approximations.

B. The nuclear singularity drives the dynamics of the
electronic motion. It is therefore important that

approximate trial solutions should have the cor-
rect analytic character as defined in Sects. 22.5.3
and 22.5.4. An expansion of f L

iκ(r) and f S
iκ(r) at

r = 0 must reproduce this analytic behavior exactly
if the approximation is to be physically reliable.
The boundary conditions are part of the definition
of a quantum mechanical operator; changing them
gives a different operator with a different eigen-
value spectrum, so that trial functions which do
not satisfy the boundary conditions of the physical
problem cannot reproduce the physical solution. The
behavior as r →∞ is less crucial. Provided a bound
wavefunction is well approximated over the region
containing most of the electron density, the results
are insensitive to many choices.

C. The correct reduction of the Dirac equation to
Schrödinger’s equation in the nonrelativistic limit
(for example see [22.4, p. 97]) depends upon the
operator identity

p2 = (σ · p)(σ · p) .

In the basis set formalism, the matrix equivalent of
this equation is

Tlij = 1

2

N∑

k=1

ΠL S
κikΠ

SL
κk j , (22.142)

where

Tlij =
∞∫

0

f L∗
iκ (r)

1

2

(
− d2

dr2 +
l(l+1)

r2

)
f L

jκ(r)dr

is the ij-element of the nonrelativistic radial kinetic
energy matrix. This is not true in general unless cri-
terion C holds [22.29,30]. The criterion can only be
satisfied by matched pairs of functions f L

iκ(r), f S
iκ(r),

ruling out all choices of basis set in which large
and small components are not matched in pairs. An-
other way of viewing this result is to observe that for
a general basis set, the sum over intermediate states
in (22.142) is necessarily incomplete. The Hermi-
tian conjugacy property, ΠL S

κij =ΠSL
κ ji ensures that

the omitted terms give real and non-negative con-
tributions. Thus all other choices of basis set cause
(22.142) to underestimate the nonrelativistic kinetic
energy [22.29] and to give spuriously large relativis-
tic energy corrections.
We emphasize that (22.134) need only be true in the
limit c→∞; however, basis sets used for finite val-
ues of c should be smooth functions of c−1 as c→∞
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so that the equality

i�
f S
κ (r)

r
χ−κ,m(θ, ϕ)= σ · p

f L
κ (r)

r
χκ,m(θ, ϕ)

(22.143)

holds in the limit.
D. This ensures that the basis functions are in the do-

main of the Dirac operator; the meaning of this
statement can be made precise in a functional ana-
lytic discussion such as in [22.3]. Some implications
for the finite basis set approach are given in the au-
thor’s paper [22.15, pp. 235–253], which discusses
the convergence of expectation values of operators
for approximate Dirac wavefunctions obtained by
this method. Here the main importance is that a
(possibly singular) multiplicative operator V(r) (say,
−Z/r) has N × N matrices VLL

κ ,VSS
κ with finite el-

ements. This must be true both for exact solutions
and for approximations if the wave functions are to
represent physical states. In particular, both matrices
must have a lowest eigenvalue V (N)min say. Consider
now the quantity (ψ|ĥD(λ)|ψ), where

ĥD(λ)=
(
cα · p+βmec2)+λV(r) .

With λ = 0 we have a free Dirac particle with
a two-branched continuous spectrum E > mc2 and
E <−mc2. A negative definite V(r) has always
(ψ|V(r)|ψ) > Vmin; clearly,

V (N)min ≥ Vmin >−2mc2 , (22.144)

for all values of N . So if we increase λ from
0 to 1, the eigenvalues of trial solutions corre-
sponding to eigenvalues in the upper continuum
at λ = 0 will be smoothly decreasing functions
of λ bounded below by Vmin for all values of N .
It follows that the upper set of eigenvalues has
a fixed lower bound in the gap

(−mc2,mc2
)

for
each finite matrix approximation. If the basis set
satisfies suitable completeness criteria in an ap-
propriate Hilbert space as N →∞ (see [22.15,
pp. 235–253], [22.31] for more details) we see that,
if (22.144) holds for all values of N , the infinite
sequence {E(N )N+i , N = N0, N0+1, . . . } of eigenval-
ues approximating the ith bound state has a finite
lower bound, and therefore, by the completeness of
the real numbers, it must have a limit point Ei in the
bound state gap

(−mc2,mc2
)
. Thus Rayleigh–Ritz

approximations for Dirac’s Hamiltonian converge in
the same fashion as the corresponding nonrelativistic
Rayleigh–Ritz approximations [22.30, 31].

22.6.3 Catalogue of Basis Sets
for Atomic Calculations

A. L-Spinors:
L-spinors [22.31] are related to Dirac hydrogenic
functions in much the same way as Sturmian func-
tions [22.32, 33] are related to Schrödinger hydrogenic
functions (Sect. 22.3). They are solutions of the differ-
ential equation system

⎛

⎜
⎜⎜
⎝

1

2
− αnrκZµ2

cx
− d

dx
+ κ

x
d

dx
+ κ

x
−1

2
− Z

αnrκµ
2cx

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎝

f L
nrκ
(x)

µ

µ f S
nrκ
(x)

⎞

⎟
⎠=0 ,

(22.145)

where x = 2λr is a scaled radial coordinate, with
fixed λ which can be related to an energy parameter
E R

0 = c2
√

1−λ2/c2, and µ2, a root of the equation
µ4−2cµ2/λ+1 = 0, is given by

µ2 = c

λ

(
1+ E R

0 /c
2
)
. (22.146)

This choice ensures that f L
nrκ
(x) tends smoothly to

the corresponding Coulomb Sturmian in the nonrela-
tivistic limit c →∞ [22.31]. L2 boundary conditions
are satisfied if αnrκ = Nnrκλ/Z; when αnrκ = 1, then
f L
nrκ
(x), f S

nrκ
(x) respectively coincide with the Dirac–

Coulomb eigenfunctions Pnκ(r) and Qnκ(r) having
principal quantum number n = nr+|κ|. The explicit
form for L-spinors, in terms of Laguerre polynomials
(see Sect. 9.3.2), L(2γ)nr (x), is

f (L)κ,nr
(x)=Nnr,κ xγ e−x/2

[
− (1− δnr,0)L

(2γ)
nr−1(x)

+ (Nnr,κ−κ)
(nr+2γ)

L(2γ)nr (x)

]
, (22.147)

f (S)κ,nr
(x)=Nnr,κ xγ e−x/2

[
− (1− δnr,0)L

(2γ)
nr−1(x)

− (Nnr,κ−κ)
(nr+2γ)

L(2γ)nr (x)

]
, (22.148)

where

Nnrκ =
(

nr! (2γ +nr)

2Nnrκ(Nnrκ−κ) Γ(2γ +nr)

)1/2

(22.149)

is chosen so that the diagonal elements gκnr,nr
of the

Gram (or overlap) matrix are unity for both large and
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small components. Both Gram matrices are tri-diagonal
with non-zero off-diagonal elements

g(κ)nr,(nr+1) = g(κ)(nr+1),nr

= η
T

2

(
(nr+1)(2γ +nr+1)(Nnrκ−κ)

NnrκN(nr+1),κ(N(nr+1),κ−κ)
)1/2

,

(22.150)

where T = L, S, ηL =−1 and ηS =+1. This conven-
tion facilitates the construction of the blocks of the
matrix Hamiltonian (22.137), which are banded when
the operators are the powers rn , n >−1. The properties
of Laguerre polynomials ensure that the matrix of the
Coulomb potential is diagonal. For a full discussion of
L-spinors, their orthogonality and completeness proper-
ties, and applications to hydrogenic atoms see [22.31].

L-spinors are most useful for hydrogenic prob-
lems, either for isolated atoms or for atoms in strong
electromagnetic fields (see Chapt. 13). The equivalent
nonrelativistic Coulomb Sturmians have for a long time
been used to study the Zeeman effect on high Rydberg
levels, especially in the region where chaotic behavior
is expected [22.34] (see Chapt. 15).

B. S-Spinors:
S-spinors have the functional form of the most nearly
nodeless L-spinors characterized by the minimal value
of nr, and can be viewed as the relativistic analogues
of Slater functions (STOs). When κ is negative, take
nr = 0, so that

f (L)κ,0 (x)=− f (S)κ,0 (x)

=Nκ,0 xγ exp(−x/2)
N0,κ−κ

2γ
L(2γ)0 (x) .

When κ is positive, we must take nr = 1, and then

f (L)κ,1 (x)=N1,κ xγ e−x/2

×

[
−L(2γ)0 (x)+ N1,κ−κ

1+2γ
L(2γ)1 (x)

]
,

f (S)κ,1 (x)=N1,κ xγ e−x/2

×

[
−L(2γ)0 (x)− N1,κ−κ

1+2γ
L(2γ)1 (x)

]
.

These can be simplified by inserting the ex-
plicit expressions L(2γ)0 (x)= 1, L(2γ)1 (x)= 2γ +1− x.
We define a set of S-spinors with exponents
{λm,m = 1, 2, . . . , N} by rewriting the above in the
form

f (T )m (r)= AT gm(γ, r)+ BT gm(γ +1, r) ,
(22.151)

where T = L, S, gm(θ, r)= rθ e−λmr ,

AL = AS = 1, BL = BS = 0 for κ < 0 ,

AL = (κ+1− N1,κ)(2γ +1)

2(N1,κ−κ)
AS = (κ−1− N1,κ)(2γ +1)

2(N1,κ−κ)
BL = BS = 1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for κ > 0 ,

(22.152)

and

γ =
√
κ2− Z2/c2, N1,κ =

√
κ2+2γ +1 .

The choice of the set of positive real exponents {λm,m =
1, 2, . . . , N}, must be such as to assure Rayleigh–Ritz
convergence [22.15, pp. 235–253)] and to maximize the
rate at which it is attained. In particular, if one particular
exponent is chosen to have the value λm = Z/Nnr,κ ,
then the corresponding S-spinor is a true hydrogenic
solution. In this case the trial solution is exact. Clearly,
S-spinors inherit desirable properties of L-spinors and,
in particular, satisfy criteria A–D.

All elements of the matrix Hamiltonian of the Dirac
hydrogenic problem can be expressed in terms of Euler’s
integral for the gamma function [22.22, Sect. 6.1.1]:

Γ(z)= kz

∞∫

0

tz−1e−kt dt , (Rz > 0 , Rk > 0)

and are therefore readily written down and evaluated.
The effectiveness of this method depends upon the
choice of exponent set: see D below. We refer to cal-
culations using this scheme for many-electron systems
in Sect. 22.7.

C. G-Spinors:
The G-spinors are the relativistic analogues of nonrela-
tivistic spherical Gaussians (SGTO), popular in quantum
chemistry for studying the electronic structure of atoms
and molecules. They satisfy the relativistic boundary
conditions for a finite size nuclear charge density distri-
bution at r = 0, and are therefore the most convenient
for relativistic molecular electronic structure calcula-
tions. They are defined so that (22.143) holds for finite c
as well as in the nonrelativistic limit, which is equivalent
to

f (S)m (r)= const.

(
d

dr
+ κ

r

)
f (L)m (r) . (22.153)
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Thus, if

f (L)m (r)=N (L)
l,m rl+1e−λmr2

, (22.154)

f (S)m (r)=N (S)
l,m

[
(κ+ l+1)rl −2λmrl+2

]
e−λmr2

.

(22.155)

Note that the leading term in (22.155) vanishes when
κ < 0, so that the radial amplitude r−1 f (S)m (r) is
never singular, even in the s-state case when κ =−1,
l = 0.

D. Exponent Sets for S- and G-Spinors:
Quantum chemists are familiar with the use of non-
relativistic STO and GTO basis sets, and there are
extensive collections of optimized exponents which
permit economical calculations for atomic and mo-
lecular calculations [22.35–37]. These sets are a good
starting point for relativistic calculations also. By
and large, the compilations ignore mathematical com-
pleteness, which although desirable is unattainable in
practice. However, basis sets can almost always be con-
structed to give adequate numerical precision for most
purposes.

An effective alternative to optimization, especially
for atoms, is to use geometrical sequences {λm} of the
form

λm = αNβ
m−1
N , m = 1, 2, . . . , N , (22.156)

which depend upon just two parameters αN , βN . A con-
venient way to do this is to find a pair αN0 , βN0 for small
N0, say N0 = 9, in a cheap and simple nonrelativistic
calculation and then to increase N systematically using
relations such as

αN

αN0

=
(
βN −1

βN0 −1

)a

, or
lnβN

lnβN0

=
(

N0

N

)b

,

where a, b are positive constants. Experience shows
that no linear dependence problems (caused by ill-
conditioning of the ST matrices) are encountered when
βN > 1.2 for S-spinors, with N up to about 30, or
βN > 1.5 for G-spinors with N up to about 50.

E. Other Types of Analytic Basis Sets;
Variational Collapse:

The earliest work with atoms [22.38,39] used STO func-
tions of the form {rγ exp(−λmr), m = 1, . . . N} for both
large and small components, whilst Kagawa [22.40,41]
used integer powers instead of the noninteger γ . Drake
and Goldman [22.42] used functions of the form

{rγ+i exp(−λr), i = 0, . . . N−1}. For hydrogenic prob-
lems, these worked well for negative κ states, but gave
a single spurious eigenvalue for positive κ, which could
be simply deleted from the basis set. Various test calcula-
tions are included in the review article [22.43, Sect. IV].
Other attempts to use GTOs in the early 1980’s led to
problems interpreted as a failure of the Rayleigh–Ritz
method because of the presence of “negative energy
states” with a spectrum unbounded below: so-called
“variational collapse”. It is clear that all these approaches
fail to observe three, and sometimes all, of the four
criteria for acceptable basis sets. They are incapable
of satisfying the physical boundary conditions, and it
is therefore hardly surprising that they give unphysical
spectra.

Several procedures have been advocated to over-
come the problem, of which the two most popular
are “kinetic balance” and projection operators. Kinetic
balance, suggested by Lee and McLean [22.44], ad-
vocates augmenting a GTO basis, common to both
large and small components, with additional functions
to “balance the set kinetically”. This appears to “fix
up” the problem for the upper spectrum, but intro-
duces spurious states, mainly in the lower part of the
spectrum, as well as increasing the size of the small
component basis set. There is no rigorous nonrelativis-
tic limit, and no mathematical proof of convergence
such as that guaranteed by criteria A–D. A model with
spurious negative energy states cannot furnish a consis-
tent physical interpretation of negative energy solutions
as positron states, expected of a proper relativistic
theory.

If “variational collapse” is attributed to the absence
of a lower bound to the Dirac spectrum as a whole, the
idea of introducing a projection operator to eliminate
collapse seems attractive. This is easy to do for free
electrons, where the operators

Λ± = ĥD± E

2|E| ,

select positive/negative energy solutions. Unfortunately,
this cannot be done in the presence of a potential except
by an approximation which complicates calculations
and reduces the efficiency of algorithms. The “negative
energy sea” also depends upon the choice of poten-
tial; perturbing the potential (as long as it does not
change the domain of the Hamiltonian) induces a uni-
tary transformation taking one set of eigenstates into
another which inevitably mixes the old positive and
negative energy states. For example a relativistic cal-
culation on a hydrogenic atom in which the nuclear

Part
B

2
2
.6



350 Part B Atoms

charge is perturbed gives incorrect answers if the neg-
ative energy contribution to the perturbation series is
omitted [22.45].

In any event, the finite matrix eigensolutions include
both positive energy and negative energy states. It is
therefore a simple matter to exclude the negative energy
states if their contribution is expected to be negligible;
this is the no virtual-pair approximation. The negative
energy solutions are inert spectators for most atomic
processes, just as are those positive energy solutions
which lie deep in the atomic core. It is easy to go beyond
the no virtual-pair approximation if the physical problem
demands it.

Finite Element Methods:
Johnson et al. [22.46, 47], following earlier work
on relativistic ion–ion collisions by Bottcher and
Strayer [22.48], popularized the use of a basis
of B-splines in relativistic atomic calculations. See
Sect. 8.1.1. The method has mainly been of use in rela-
tivistic many-body calculations on the spectra of heavy
ions. See Sect. 21.6 for spline-Galerkin representations
in nonrelativistic atomic structure, such as [22.49].
Parpia and Fischer explored the spline-Galerkin ap-
proach for the Dirac equation [22.50], but this method
has not been extended so far to relativistic many-electron
atoms.

22.7 Many-Body Calculations

22.7.1 Atomic States

The construction of atomic many-electron wave-
functions from products of central field Dirac orbitals
is employed to simplify the algorithms for calculating
electronic structures and properties. This can be either
in the context of expansions in Slater determinants of
the traditional type, or by use of Racah algebra. A com-
plete description of the methods of the latter sort used
in popular computer codes is found in [22.27, Sect. 2].

22.7.2 Slater Determinants

An antisymmetric state of N independent electrons in
configuration space can be constructed in the form

{α1, α2, . . . , αN } (22.157)

= 〈x1, x2, . . . , xn|a†α1
a†α2

· · · a†αN
|0〉

= 1

N !

∣∣∣∣∣∣∣∣

ψα1(x1) ψα2(x1) · · · ψαN (x1)

ψα1(x2) ψα2(x2) · · · ψαN (x2)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
ψα1(xN ) ψα2(xN ) · · · ψαN (xN )

∣∣∣∣∣∣∣∣

This Slater determinant is an antisymmetric eigenfunc-
tion of H0 corresponding to the energy

∑
Eαn and of

the angular momentum projection J3 =∑
j3,αn cor-

responding to the eigenvalue M3 =∑
m3,αn . Defining

the parity of a Dirac electron orbital as that of its up-
per component, (−1)lαn , we see that this has parity
Π(−1)lαn .

22.7.3 Configurational States

Configurational state functions (CSF) having specified
total angular momentum J and parity Π can be con-

structed by vector addition of the individual angular
momenta: J =∑

jαn . We write such states as

φ(γJM)=
∑

{mαn }
〈γJM|mα1 ,mα2 . . . ,mαN 〉

× {α1, α2, . . . , αN } , (22.158)

where 〈γJM|mα1 ,mα2 . . . ,mαN 〉 is a generalized
Clebsch–Gordon coefficient, and γ defines the angular
momentum coupling scheme.

A list of orbital quantum numbers, {α1, α2, . . . , αN }
defines an electron configuration. If the configuration
belongs to a single subshell, then the states share a com-
mon set of labels {n, κ}where n is the principal quantum
number. In j− j coupling, the α-subshell states of Nα
equivalent electrons can therefore be identified (we can
suppress the projection Mα and the parityΠα) by the la-
beling αNα , γα, Jα, where γα distinguishes degenerate
states of the same Jα. For j− j coupling, such labels
are needed only for j ≥ 5

2 ; the seniority scheme, [22.27,
Sects. 2.3, 2.4)], provides a complete classification for
j< 9

2 . A list of states of configurations j N , classified
in terms of the seniority number v and of total angular
momentum J , appears in Table 22.5.

22.7.4 CSF Expansion

Atomic state functions (ASF) are linear superpositions
of CSF’s, of the form

Ψ(γΠJ )=
N∑

α=1

cαφ(γα J ) , (22.159)

where cα are a set of (normally) real coefficients. These
coefficients are usually chosen so that Ψ(γΠJ ) is an
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Table 22.5 j N configurational states in the seniority
scheme. The multiplicity of each unresolved degenerate
state is indicated by a superscript

j N v J
1
2 0, 2 0 0

1 0 1
2

3
2 0, 4 0 0

1, 3 1 3
2

2 0 0

2 2 2
5
2 0, 6 0 0

1, 5 1 5
2

2, 4 0 0

2 2, 4

3 1 5
2

3 3
2 ,

9
2

7
2 0, 8 0 0

1, 7 1

2, 6 0 0

2 2, 4, 6

3, 5 1 7
2

3 3
2 ,

5
2 ,

9
2 ,

11
2 ,

15
2

4 0 0

2 2, 4, 6

4 2, 4, 5, 8
9
2 0, 10 0 0

1, 9 1 9
2

2, 8 0 0

2 2, 4, 6, 8

3, 7 1 9
2

3 3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,

13
2 ,

15
2 ,

17
2 ,

21
2

4, 6 0 0

2 2, 4, 6, 8

4 0, 2, 3, 42, 5, 62, 7, 8, 9, 10, 12

5 1 9
2

3 3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,

13
2 ,

15
2 ,

17
2 ,

21
2

7
2 5 3

2 ,
5
2 ,

7
2 ,

9
2 ,

11
2 ,

13
2 ,

15
2 ,

17
2 ,

19
2 ,

25
2

eigenstate of the many-electron Hamiltonian matrix in
a finite subspace of CSF’s.

22.7.5 Matrix Element Construction

A full presentation of the reduction of matrix elem-
ents between CSF’s to computable form is beyond
the scope of this chapter. There are two approaches:
one is based on expanding all CSF’s and ASF’s in
Slater determinants, whilst the other exploits the prop-
erties of central field orbital spinors. The principles

underlying the first are straightforward and may be
found in atomic physics texts and review articles such
as [22.26, 27].

The use of second quantization and diagrammatic
methods of the quantum theory of angular momentum
provides a powerful means of reducing matrix elem-
ents between atomic CSF’s to a linear combination
of radial integrals in a systematic way. The method,
which is fully explained in [22.27], leads to a complete
classification of matrix element expressions for all the
one- and two-electron operators treated in this chapter.
A full implementation within the j− j coupling senior-
ity scheme is available in various versions of the GRASP
code [22.51–53].

22.7.6 Dirac–Hartree–Fock
and Other Theories

The notation above echoes that of the nonrelativistic
theory of Chapt. 21, and it is possible to proceed along
similar lines.

Dirac–Hartree–Fock Theory
Dirac–Hartree–Fock theory works exactly as described
in Sect. 21.4; relativistic counterparts of Koopmans’ the-
orem, fixed-core approximations, Brillouin’s theorem
are easy to obtain. The properties of Dirac–Hartree–
Fock functions closely resemble those of Hartree–Fock
functions, though allowance must be made for the fact
that, for example, n p orbitals

(
with κ =−2, j = 3

2

)

and n p̄ orbitals
(
with κ =+1, j = 1

2

)
have different

spatial distributions as a consequence of the dynami-
cal and indirect effects of relativity. For further insight
see [22.23, 26].

Most such calculations are currently made with up-
dated versions of the codes of Desclaux [22.54] or
Grant [22.51–53] which rely on finite difference meth-
ods resting on the techniques of Sect. 22.6.1. Further
details may be found in the code descriptions.

Finite Matrix Methods for Atoms and Molecules
In view of the rapid pace of development of finite matrix
methods, especially for the treatment of relativistic mo-
lecular electronic structure in the Born–Oppenheimer
(fixed nucleus) approximation, it seems appropriate
to give a brief outline of the extension of the one-
electron equations of Sect. 22.4.2 to the many-electron
case.

The method of approximation generalizes the one-
body approximation scheme of Sect. 22.6.2 to the many-
body problem based on the effective Hamiltonian of
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Sect. 22.4.1. This leads to an energy functional of the
form

E = E0+ E1 (22.160)

where E0 is the expected value of H0 (22.76) and E1 the
expected value of H1 for the finite basis many-body trial
function. This leads to matrix Dirac–Fock equations of
the form

FX = ESX . (22.161)

In general, the Fock matrix F is a sum of several matrices

F = f + g+b , (22.162)

where, for each symmetry κ and nuclear center, A, of
the molecule, f can be partitioned into blocks

fAκ =
(

VLL
Aκ cΠL S

Aκ

cΠSL
Aκ VSS

Aκ −2mc2SSS
Aκ

)

. (22.163)

The matrix

g =
(

JLL−KLL −K L S

−K SL JSS−KSS

)

(22.164)

is the matrix of the Coulomb repulsion part of the
electron–electron interaction and

b =
(

BLL BL S

BSL BSS

)

. (22.165)

is the matrix of the Breit interaction.
In the atomic (one nuclear center) case, follow-

ing [22.55], these matrices can also be blocked by
symmetry κ. Using superscripts T to label the L or
S components, and the notation T̄ to denote the com-
plementary label: T̄ = S when T = L or T̄ = L when
T = S, then the direct Coulomb part JTT

κ has matrix
elements

JTT
κpq=

∑

κ′rs

(2 j ′+1)
(

DTT
κ′rs J0,TTTT

κpq,κ′rs+DT̄ T̄
κ′rs J0,TT T̄ T̄

κpq,κ′rs

)
,

(22.166)

whilst the exchange part K TT′
κ has the form

K TT ′
κpq =

∑

κ′rs

∑

ν

(2 j ′ +1)bν( jj ′)DTT ′
κ′rs Kν,TT ′TT ′

κpq,κ′rs ,

(22.167)

where TT ′ denotes any combination of component la-
bels. Here DTT ′

κ is a density matrix with elements

DTT ′
κpq = cT∗

κp cT ′
κq , (22.168)

where cT
κp are the expansion coefficients. The Breit

interaction matrices have the similar form

BTT
κpq =

∑

κ′rs

∑

ν

(2 j ′ +1)eν( jj ′)DT̄ T̄
κ′rs Kν,TT T̄ T̄

κpq,κ′rs ,

(22.169)

and

BT T̄
κpq =

∑

κ′rs

∑

ν

(2 j ′ +1)DT̄ T
κ′rs

×
[
dν(κκ

′)Kν,T T̄ T̄ T
κpq,κ′rs + gν(κκ

′)Mν,T T̄ T̄ T
κpq,κ′rs

]
.

(22.170)

The matrix elements are constructed from standard ra-
dial integrals

Jν,TTT ′T ′
κpq,κ′rs =

∞∫

0

∞∫

0

f T
κp(r1) f T

κq(r1)Uν(r1, r2)

× f T ′
κ′r(r2) f T ′

κ′s(r2)dr2 dr1 (22.171)

where

Uν(r1, r2)=
⎧
⎨

⎩
rν1/r

ν+1
2 for r1 < r2 ,

rν2/r
ν+1
1 for r1 > r2 .

Similarly

Kν,TT ′TT ′
κpq,κ′rs = Jν,TTT ′T ′

κp,κ′r,κq,κ′s (22.172)

and

Mν,T T̄ T̄ T
κpq,κ′rs =

∞∫

0

∞∫

r1

f T
κp(r1) f T̄

κ′r(r1)Uν(r1, r2)

× f T̄
κq(r2) f T

κ′s(r2)dr2 dr1 . (22.173)

Further details about the coefficients bν( jj ′), eν( jj ′),
dν(κκ′) and gν(κκ′) may be found in [22.55].

This formalism has been implemented for closed
shell atoms with both S-spinors and G-spinors [22.55].
Computational aspects of calculating the radial integrals
using S-spinors are discussed in [22.56, 57], and can be
adapted with relatively small modifications to G-spinor
basis sets. As yet, there have been relatively few ap-
plications by comparison with codes based on finite
difference methods, but the potential can be gauged from
papers such as [22.55, 58–61], which deal with Dirac–
Fock and Dirac–Fock–Breit calculations, many-body
perturbation theory and coupled-cluster schemes.

G-spinor basis sets provide the most promising
technique for application to the electronic struc-
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ture of molecules; computer codes are under active
development.

Electron Correlation in Atomic Calculations
Here we use the term correlation to denote methods
which go beyond the single determinant approximation
of Dirac–Hartree–Fock theory. These include config-
uration interaction schemes, in which each ASF is
represented as a linear combination of CSF’s built
from previously determined orbital spinors and mul-
ticonfiguration Dirac–Fock calculations in which the
orbitals are optimized simultaneously. Calculations rep-
resentative of state of the art techniques will be found
in [22.62, 63].

Many-body perturbation theory calculations and
coupled-cluster calculations are not well suited to cal-
culations with finite difference codes, because of the
expense of calculating more than a limited orbital basis
and all the matrix elements required. Calculations based
on finite matrix methods enable this sort of calculation
to be done more economically. Some justification for the
use of finite matrix methods in relativistic many-body
theory is given in [22.15, pp. 235–253].

The relativistic version of quantum defect the-
ory [22.64, 65] also gives insight into the competing
roles of relativistic dynamics and screening in atoms.
Compared with nonrelativistic quantum defect theory, it
has been under-used.

22.7.7 Radiative Corrections

The term “radiative corrections” is usually interpreted
to mean QED contributions to energies, expectation
values or rates of atomic or molecular processes that
arise from interaction between the electron–positron
and photon fields, apart from those directly attributable
to the nonrelativistic Coulomb interaction. This in-
cludes the relativistic and retardation effects embodied
in the effective interaction between electrons as well
as contributions from processes that are not so in-
cluded. We consider two such processes, the electron
self-energy and the vacuum polarization, which involve
interactions of the same formal order as those giving
rise to the covariant electron–electron interaction dis-
cussed above, but which are formally infinite. These are
the lowest order processes requiring renormalization.
See [22.7, 8, 10, 15] for more details.

Electron Self-Energy
For a one-electron system, the renormalized expres-
sion for the self-energy of an electron in the state a

in Feynman gauge is

∆Ea = lim
Λ→∞R

[
− iαπ.mc2

∫
ψ̄a(x2)γ

µSF(x2, x1)

×γνψa(x1)gµνDΛF (x2− x1)d
3x2 d3x1

× d(t2− t1)− δm(Λ)〈ψa|β|ψa〉
]
,

(22.174)

where

δm(Λ)= α

π
mc2

[
3

4
ln(Λ2)+ 3

8

]
.

This represents the contribution from virtual processes
involving the exchange of a single photon. The photon
propagator has been modified to give the photon and ef-
fective massΛ, so that the denominator of D

(
q2
)

(22.69)
becomes q2−Λ2+ iδ. The two parts of this formula di-
verge as Λ→∞, though the limit of their difference
is finite. This makes calculation difficult and expensive.
There are several approaches:

1. For atomic number Z � 20, an expansion in powers
of the electron–nucleus coupling parameter αZ =
Z/c is satisfactory.

2. At larger atomic numbers an expansion in αZ
evidently fails to converge, and nonperturbative
methods must be sought. This too is computationally
difficult and expensive. The results for hydrogenic
ions have been tabulated [22.66] for atomic numbers
in the range 1≤ Z ≤ 100. (See [22.10, Chapt. 2] for
an up-to-date summary biased towards applications
to the spectroscopy of highly-ionized atoms.)

3. Processes involving more than one virtual photon
are hard to calculate, and have mostly been ignored.
See [22.10] for references.

Vacuum Polarization
The contribution of vacuum polarization is next in or-
der of importance in the list of radiative corrections in
atoms. As shown by (22.49), the nuclear potential gen-
erates a current in the vacuum that is responsible for
a short-range screening of the nuclear charge. This can
be represented as a local perturbing potential which is
easy to take into account [22.67–69].

22.7.8 Radiative Processes

The operator jµ(x)Aµ(x) which occurs in the in-
teraction Hamiltonian (22.61) describes processes in
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which the number of photons present can increase or
decrease by one. The Fock space operator may be
written

Hint =
∑

a,b

∑

ρ

[
a†aabq†ρM(ρ)†

ab (t)+a†aabqρM(ρ)
ab (t)

]
,

(22.175)

where the first set of terms in the sum represents
emission of a photon in the mode labeled ρ and the sec-
ond to absorption of a photon by the same initial state.
The operators aa and a†a are anticommuting annihila-
tion and creation operators of electrons, whilst qρ and
q†ρ are commuting annihilation and creation operators of

photons. If ω denotes photon frequency, then

M(ρ)†
ab (t)= M(ρ)

ab ei(Ea−Eb+ω)t ,

M(ρ)
ab (t)= M(ρ)

ab ei(Ea−Eb−ω)t ,

where

M(ρ)
ab =

( ω
πc

)1/2
∫
ψ†a (x)

[
Φ(ρ)(x)+ cα · A(ρ)(x)

]

×ψb(x)d3x

is the transition amplitude. For a discussion of this ex-
pression including the effect of gauge transformations on
the computed amplitudes, the elimination of angular co-
ordinates for atomic central field orbitals and connection
with the nonrelativistic limit, see [22.10, 16, 27].

22.8 Recent Developments

22.8.1 Technical Advances

Relativistic atomic structure continues to develop
to meet modern demands for high quality cal-
culations on many-electron atoms. The computing
power now available makes it possible to carry out
multi-configurational Dirac–Hartree–Fock (MCDHF)
or configuration interaction (CI) calculations on a scale
unimaginable when this chapter was first drafted.
Some of the software currently available is surveyed
below.

On the theoretical side, there have been new tech-
nical applications of tensor operator theory. Whilst the
approach initiated by Fano [22.27, 70] continues to
be the basis on which many relativistic and nonrel-
ativistic calculations are based, recent work aims to
simplify the calculation, not only by exploiting sec-
ond quantization techniques and the coupling of tensor
operators, but by better utilization of quasispin meth-
ods [22.71–74]. A new jj-coupling package along
these lines [22.75] has been constructed for eval-
uation of fractional parentage coefficients, reduced
fractional parentage coefficients (in which the depen-
dence on particle number is extracted as a quasispin
3 j-symbol), matrix elements of unit tensors T k and
double tensor operators Wkqk j , from which to construct
many-particle matrix elements of physical operators.
Fritzsche et al. [22.76–80] have recently published
utilities which exploit the capabilities of the Maple
computer algebra system to evaluate Racah algebra
expressions.

22.8.2 Software for Relativistic Atomic
Structure and Properties

Many software packages for relativistic atomic physics
calculations can now be downloaded from the internet.
The earliest codes, which generate many-electron wave-
functions and bound energy levels, taking account of the
full relativistic electron–electron interaction and QED
corrections, of Desclaux [22.54] and Grant et al. [22.51],
though now much modified, are still in use, as is the code
of Chernysheva and Yakhontov [22.81]. These codes can
use various (MC)DHF and CI procedures, albeit with
not more than a few hundred CSF. A more recent ver-
sion of Grant et al.’s code appeared in 1989 [22.52]
and GRASP92 embodied major changes to the user in-
terface and to file-handling to permit calculations with
very large CSF sets [22.53]. Most earlier calculations
were of the AL or EAL type, in which a large num-
ber of states are treated together using a common orbital
set. These are cheap and work well for highly ionized,
few-electron systems but the results only have modest
accuracy. More accurate treatment of electron correla-
tion requires MCDHF calculations on single levels (OL
calculations) or small groups of fine structure levels
(EOL calculations). The CSF sets are chosen through
some active space (AS) procedure as in nonrelativis-
tic MCHF [22.82]; complete active spaces (CAS) are
often too large for practical use, so that the AS must
be restricted in some way, for example by using only
SD (single and double) replacements from the refer-
ence CSF set. With such large CSF basis sets it is not
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practical or desirable to diagonalize the complete Hamil-
tonian matrix, and Davidson’s version [22.83, 84] of
the Lanczos algorithm, as implemented by Stathopoulos
and Fischer [22.85], is used in GRASP92 to construct
the small number of eigenvalues and eigenvectors of
physical importance.

This approach generally gives highly accurate wave-
functions and energy levels for a small number of
atomic states. Each state is determined in a sep-
arate SCF calculation, and therefore has its own
set of orbitals. The GRASP software for calculat-
ing radiative transition probabilities was based on the
assumption that initial and final states of a transi-
tion are described by the same orbital set. Most if
this machinery can still be used by way of a pro-
cedure to express sets of non-orthogonal orbitals as
a biorthonormal system [22.86]. An adaptation for
GRASP92 was used, for example, to calculate ra-
diative transition probabilities for lines of the C III
spectrum [22.87] and the oscillator strengths of the
n d 2 D3/2− (n+1)p 2 P0

1/2,3/2 lines in Lu (n = 5) and
Lw (n = 6) which are very sensitive to correla-
tion effects [22.88]. These two calculations involved
CSF sets of order 300,000. Desclaux’s code, which
uses an expansion of the many-electron wavefunc-
tion in determinantal wavefunctions rather than the
Fano approach using jj-coupled CSFs, has simi-

larly been modernized [22.89]; its capabilities are ra-
ther similar to those of GRASP. There is no published
description.

GRASP92 has been enhanced recently with new util-
ities to calculate hyperfine interactions [22.90–92] and
isotope shifts [22.93]. Fritzsche et al. have developed
a new suite of programs, RATIP (an acronym for Rel-
ativistic Atomic Transition and Ionization Properties),
which uses MCDHF wavefunctions from GRASP92 to
study a range of atomic properties [22.94,95]. Like De-
sclaux’s package, this expresses jj-coupled symmetry
functions in terms of Slater determinants [22.96] and
also provides the relevant utilities for coefficients of
fractional parentage and the calculation of angular co-
efficients. The package supports CI calculations of ASF
and energy levels taking account of the Breit interac-
tion and QED estimates. A new utility [22.97] permits
calculation of relaxed orbital radiative transition prob-
abilities and lifetimes within the RATIP framework.
The code generates continuum orbitals, which enable
calculation of Auger energies, relative intensities and
angular distributions, and should also enable calculation
of photoionization cross-sections and angular distribu-
tions. The papers cited contain information on how
to obtain the programs, many of which are also ob-
tainable from the Computer Physics Communications
International Program Library [22.98].
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Many-Body Th23. Many-Body Theory of Atomic Structure
and Processes

All atoms except hydrogen are many-body
systems, in which the interelectron interaction
plays an important or even decisive role. The aim
of this chapter is to describe a consistent method
for calculating the structure of atoms and the
characteristics of different atomic processes, by
applying perturbation theory to take into account
the interelectron interaction. This method involves
drawing a characteristic diagram based on the
structure or process. This is then used to create an
analytical expression to the lowest order in the
interelectron interaction. Higher-order corrections
are subsequently generated.

This technique was invented about half
a century ago in quantum electrodynamics by
Feynman [23.1], then modified and adjusted for
multiparticle systems by a number of authors.
Its application to atomic structure and atomic
processes required further modifications, which
were initiated at the end of the fifties (see,
e.g., [23.2]) and later. The corresponding technique
was successfully applied to the calculation of
a wide variety of characteristics and processes
in many papers and several review articles
[23.3, 4]. The increasing amount of experimental
data available has led to improved accuracy
for this technique, so that it can be applied to
current problems considering not only atoms
and ions, both positive and negative [23.5–8],
but also molecules [23.9], clusters [23.10] and
fullerenes.
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The elements of the diagrammatic technique,
which form a convenient and simple “language”,
are given together with the rules for creating
“sentences” using basic “words”. A kind of
“dictionary” helps to translate diagrammatic
“sentences” into analytical expressions suitable
for calculations.

An essential part of the program is to learn how the sim-
plest approximation can be improved, and what are the
mechanisms and processes connected with, and respon-
sible for, higher-order corrections.

When the diagrammatic technique of many-body
theory is used, it is unnecessary to be restricted to a finite
number of lowest-order terms in the interelectron inter-
action. On the contrary, some infinite sequences may

be taken into account. The sum of all many-body di-
agrams is completely equivalent to the many-particle
Schrödinger equation. Therefore, taking all of them into
account is just as complicated as solving the corre-
sponding equation. Compared with other approaches,
the diagrammatic technique can easily uncover hidden
approximations and transparently demonstrate possible
sources of corrections.
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23.1 Diagrammatic Technique

23.1.1 Basic Elements

Each physical atomic process (or a process with par-
ticipation of a molecule, cluster or fullerenes) involves
an electronic interaction with a projectile or external
field, in general time-dependent, or a mutual inter-
electronic interaction. By convention, the ground state
of the atom (if it is not degenerate) is regarded as the
vacuum state. Then the simplest process in this target is
excitation of an electron to an unoccupied level, leav-
ing behind a vacancy. The basic elements of a diagram
are

a) b) c) d) e) f)

(23.1)

where (a) with an arrow directed to the right represents
an electron excited to a vacant level; (b) with an arrow
directed to the left represents a vacancy; (c) with a cross
represents the static Coulomb interaction; (d) represents
the interelectron Coulomb interaction; (e) represents
interaction with a time-dependent external field, usu-
ally electromagnetic; and (f) represents the very act of
interaction.

The elements (23.1a–f) in combination can describe
the following real or virtual basic processes

a) b) c)

(23.2)

which represent (a) photon absorption by the vacuum
with electron–vacancy pair creation; (b) electron ex-
citation; and (c) vacancy excitation. Diagrams (23.2)
depict processes as developing in time, shown in-
creasing from left to right. A vacancy can be
thought of as an antiparticle to the electron, mov-
ing backward in time. The time-reverse of processes
(23.2) represent processes of photon emission due
to annihilation of an electron–vacancy pair, va-
cancy transition, and electron inelastic scattering,
respectively.

A static [for example, Coulomb (23.1c)] field can
virtually create an electron–vacancy pair, or affect the
moving electron or vacancy, as shown in the following

diagrams:

a) b) c)

(23.3)

Just as for (23.2), diagrams (23.3) have their time-
reversed counterparts.

Inclusion of interelectron interaction leads to a num-
ber of processes of which some examples are

a) b) c)

d) e) f)

(23.4)

Here, (23.4a) describes creation of two electron–
vacancy pairs, (23.4b) represents the simplest picture
of electron inelastic scattering, (23.4c) depicts vacancy
decay with electron–vacancy pair creation, (23.4d)
stands for electron–electron scattering, (23.4e) repre-
sents a process which can be called electron–vacancy
annihilation and creation, while (23.4f) shows electron–
vacancy scattering.

23.1.2 Construction Principles for Diagrams

The foundations of diagrammatic techniques are dis-
cussed in a number of books such as [23.11]. This
chapter presents recipes for the construction and eval-
uation of diagrams corresponding to various atomic
processes [23.12].

The basic procedure is to connect the initial and final
states of the atom, drawn at the left and right sides of the
diagram, using any of the elements in (23.1). In doing
so, the following rules apply:

1. At each dot (23.1f), only three lines can meet: wavy
(or dashed) and electron–vacancy.

2. A vacancy cannot be transformed into an electron or
vice versa.
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3. Electrons and vacancies can be created only pairwise
from the vacuum.

4. Only linked diagrams are allowed; i. e. only those
having no parts entirely disconnected from one an-
other.

The simplest or initial approximation to a process
is represented by a diagram which includes the lowest
possible number of elements (23.1–23.4). Higher-order
corrections can be derived by including additional
elements of interaction with the static field of the
nucleus (23.1c) and between electrons and/or vacancies
(23.1d).

As an illustration of the method, consider the fol-
lowing three processes:

1. one-electron photoionization – the initial state is
a photon while the simplest final state is an electron–
vacancy pair. They can be combined together giving
the basic diagram (23.2a).

2. elastic electron scattering – the initial and final states
are single electrons. To describe the simplest scatter-
ing process, the interaction with the Coulomb field
must be taken into account, leading to (23.3b). To
account for interelectron interaction, the simplest
element

(23.5)

must be introduced. It is a modification of (23.4b)
accounting for the interaction of an incoming elec-
tron with all target electrons individually, not altering
their states. This is emphasized by the loop in which
the same vacancy leaving the lower dot reenters it.
Indistinguishability of all electrons as fermions is
taken into account by permutation of the electron
(vacancy) line ends, as illustrated in the following
diagrams:

a) or b)

(23.6)

Diagram (23.6a) is obtained from (23.5) by per-
mutation of the electron lines on one side of the
interelectron interaction. Diagram (23.6b) is equiva-
lent to (23.6a), but is simpler to draw.

3. inelastic electron scattering – the initial state is
a single electron. For the final state we choose one
with two electrons and therefore a single vacancy.
The simplest diagram in this case is given by (23.4b).

To illustrate the description of the ground state char-
acteristics, consider the contributions to the ground state
energy of an atom. If this state is not degenerate, its po-
tential energy is given by vacuum diagrams which have
no free lines in the initial or final states. The simplest
vacuum diagrams are

a) b) c)

(23.7)

Higher-order corrections to all these diagrams can be
obtained by adding elements such as a static external
field (23.3) or interelectron interaction (23.4) without
changing the initial and final states of the processes.
The lowest-order processes are represented by (23.2a),
(23.5), (23.6), (23.4b), and (23.7). There are many cor-
rections even in the next order of interaction, either with
an external field or with electrons or vacancies. To il-
lustrate, only one correction to each process will be
presented:

1. Simple photoionization (23.2a) may be combined
with (23.4e) to obtain

(23.8)

This describes the effect of the creation of another
electron–vacancy pair, after annihilation of the first
one formed by absorption of the initial photon.

2. Simple elastic electron scattering (23.5) can be
combined with an extra interaction term (23.4f) be-
tween the incoming electron and the vacancy of the
loop (23.5), to obtain

(23.9)
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3. Simple inelastic electron scattering (23.4b) can also
be combined with (23.4f), accounting for the in-
teraction of an electron and vacancy created in the
lowest-order process, to obtain

(23.10)

4. The ground state energy term (23.7b) can be com-
bined with (23.7b) and the element (23.3c) of the
interaction between the vacancy in the (23.7b) loops
and the static field to obtain

(23.11)

Higher-order corrections can be constructed step by
step by introducing further elements of interaction. In
some cases, classes of diagrams may be taken into ac-
count up to infinite order by solving closed systems of
integral or differential equations.

23.1.3 Correspondence Rules

These rules describe how to obtain an analytical ex-
pression corresponding to a given diagram. One starts
by choosing a zero-order approximation which can be
that of independent electrons moving in the Coulomb
field of an atomic nucleus. Atoms with completely occu-
pied shells, or subshells having a non-degenerate ground
state, can be chosen as the vacuum. Electron (vacancy)
states are characterized in this case by the quantum
numbers n, , m, and σ =±1/2.

The first correspondence rule is to substitute a matrix
element for each interaction:

Diagram (23.2) →〈p|W |q〉 ,
Diagram (23.3) →〈p|U|q〉 ,
Diagram (23.4) →〈pt|V |qs〉 , (23.12)

where W is the interaction potential of an electron with
the external time-dependent field, U is the interaction
potential of an electron (vacancy) with an external static
field, for example that of the nucleus, and V is the

Coulomb interelectron interaction. Each of the letters
p, q, t, s represents a full set of n, , m, σ quantum
numbers. Vacancy states are below (and include) the
highest occupied energy level, called the Fermi level,
so that p ≤ F. Electron states are above the Fermi level
so that q> F. Thus diagram (23.2a) is represented by
〈p|W |q〉 with p ≤ F and q> F.

Apart from initial and final states, each diagram can
have sections, i. e., intervals between successive inter-
actions. For instance (23.9) and (23.10) each have one
section. Each section is represented by an inverse energy
denominator ε−1

d . It includes the sum over all vacancy
energies

∑
vac εi minus the sum of the electron energies∑

el εn to which the entrance energy E of the diagram
(e.g. �ω for a time-dependent field) must be added:

ε−1
d =

(
∑

vac

εi −
∑

el

εn + E

)−1

. (23.13)

The second correspondence rule is to identify sections
and write down their energy denominators. After at-
tributing to each electron (vacancy) line a letter, denoting
its state, the analytical expression for a diagram is given
by

Analytical Expression

= (the product of all interaction matrix elements)

× (all energy denominators)−1

× (−1)L summed over all intermediate

electron and vacancy states, (23.14)

where L is equal to the sum of the total number of
vacancy lines and closed vacancy or electron–vacancy
loops.

Although electrons are fermions, the summation
in (23.14) has no additional restrictions caused by the
Pauli principle. It runs over all electron (> F) and va-
cancy (≤ F) states, including those where two or more
electrons (or vacancies) are in the same state. The cor-
respondence rules (23.12), (23.13), and (23.14) can be
illustrated by giving as examples the analytical expres-
sions of two diagrams (23.8) and (23.9).

Attributing letters denoting electron and vacancy
states, diagram (23.8) becomes

ω r

t f

i (23.15)
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According to (23.12–23.14), the analytical formula

Ai f (ω)=
∑∫

r>F,t≤F

〈t|W |r〉〈ri|V |t f 〉
εt − εr +ω (−1)2+1

(23.16)

is obtained. The symbol
∫∑

includes summation over
discrete levels and integration. In (23.16), the interme-
diate state is r > F, t ≤ F and the diagram has two
vacancies (t and i) and one loop rt. Integration must
be performed over those states r which belong to the
continuum.

Assigning letters denoting states, (23.9) appears as

p q p'

r

t (23.17)

where p, q, p′, r > F, while t ≤ F. According to
(23.14),

∆E =
∑∫

r,q>F;t≤F

〈pt|V |qr〉〈qr|V |p′t〉
εt − εq − εr + εp

(−1)1+1 ,

(23.18)

where the intermediate states are q, r > F and t ≤ F. It
has one vacancy and one electron–vacancy loop rt.

An intermediate state in a diagram can be real or
virtual. It is real if the energy conservation law can be
fulfilled, i. e. if for some values of the section energy the
following relation holds:

E =
∑

el

εn −
∑

vac

εi . (23.19)

If (23.19) can be fulfilled, a prescription for avoiding
the singularity in (23.13) is to substitute the expression
ε−1

d Q, where

Q = lim
η→0

(

E−
∑

el

εn +
∑

vac

εi + iη

)−1

=P

(

E−
∑

el

εn +
∑

vac

εi

)−1

− iπδ

(

E−
∑

el

εn +
∑

vac

εi

)

, (23.20)

for ε−1
d . Here P denotes that the principal value is to

be taken on integration over intermediate state energies.
The result of (23.20) can thus be complex.

An intermediate state is virtual if the energy con-
servation law (23.19) is violated for all values of the
section energy. In general, the bigger the virtuality,
i. e. the difference E−∑

el εn +∑
vac εi , the smaller the

contribution to the amplitude of the process.

23.1.4 Higher-Order Corrections
and Summation of Sequences

An important feature of the diagrammatic technique is
the convenience in constructing higher-order corrections
and in the summation of infinite sequences of diagrams.
According to (23.13), each new interaction line leads
to an additional interaction matrix element, extra en-
ergy denominator and summation over new intermediate
states.

An important example of infinite summation
is that of determining the one-electron states.
The interaction with the nucleus (23.3b) and
with atomic electrons (23.5) and (23.6) is not
small and must be taken into account non-
perturbative; i. e., these elements must be iterated
infinitely. To simplify the drawing, only the elem-
ent (23.5) is repeated, leading to the diagrammatic
equation:

= + + + ...
p p p q p q q'

p
= +

p q

i

i i i'

1 2

(23.21)

Indeed, everything in the infinite sum which is in front
of the dashed line repeats the infinite sum itself, thus
leading to a closed equation of the form

〈 p̃| = 〈p|+
∑∫

q>F

〈 p̃i|V |qi〉 1

−εq + εp
〈q| . (23.22)

The two interactions leading to (23.21) can be permuted,
so that the interaction 1 can be after 2. This leads to
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extension of the sum to include states with q ≤ F. As
a result, the summation in (23.22) must be performed
over all states q.

Interaction with the nucleus and the other elec-
trons affects also the occupied (or vacancy) states i
in (23.21) and therefore the latter must be modified by
inserting the elements (23.3b), (23.5), and (23.6) into
them. Here again, the vacancy line in (23.5) and (23.6)
must be modified by including the corrections (23.3b),
(23.5), (23.6) and so on. Finally, the diagrammatic
equation

= + +
p p p q p q

p

+ +

i

q

+
p

i

q

p

q

i

+

p

i

q

(23.23)

is obtained. The doubled line for i emphasizes that the
vacancy wave function is determined by an equation
similar to (23.21). The corresponding analytical equa-
tion looks like (23.22), but includes also the Coulomb
interaction with the nucleus and the exchange interac-
tion with other atomic electrons. The summation over q
in this equation is extended over all q, not only q> F.
Multiplying the corresponding equation by (Ĥ0− εp)

from the right (atomic units are used in this chapter:
e = me = �= 1), where Ĥ0 =−∇2/2, and using the
completeness of the functions

∑∫
q |q〉〈q| = δ(r− r ′),

results in the equation

[
− ∇2

2
− Z

r
+
∑

i≤F

∫
dr ′

|r ′ −r| |φi(r ′)|2− εp

]
φp(r)

=
∑

i≤F

∫
dr ′

|r ′ −r|φ
∗
i (r

′)φp(r ′)φi(r) (23.24)

for the electron wave function φp(r). Here φi(r) are
wave functions determined by equations similar to
(23.24). These are the Hartree–Fock (HF) equations.

HF includes a part for interelectron interaction ma-
trix elements, namely that given by (23.5) and (23.6).
The rest is called the residual interaction, and its in-
clusion leads beyond the HF frame, accounting for
correlations.

When a perturbative approach is used, it is essential
to define the zero-order approximation. In this chapter,
and very often in the literature, the Hartree–Fock ap-
proximation is used in this role. To simplify the drawing
of diagrams, from now on single (rather than double)
lines will represent electrons (vacancies), whose wave
functions are determined in the HF approximation by
(23.24). Obviously, in this case elements (23.3a), (23.5)
and (23.6) should not be added to any other diagrams.

The procedure used in deriving (23.21) and (23.23)
is in fact more general. Let us separate all diagrams de-
scribing elastic scattering which do not include a single
one-electron or one-vacancy state as intermediate. De-
picting their total contribution by a square, the precise
one-particle state is determined by an infinite sequence
of iterative diagrams which can be summed, similarly to
(23.21), by

= + +
p p p q

q

p qq'
Σ̂ Σ̂ Σ̂

+ … +
p

Σ̂ + …

=
p

+
p

Σ̂
q

+

q

p
Σ̂

(23.25)

Here the single line stands for an HF state. Using the
correspondence rule (23.14), an analytical equation sim-
ilar to the Schrödinger equation can be derived with the
operator �̂ playing the role of an external potential.
The essential difference is, however, that this “poten-
tial” depends in principle upon the energy and state of
the particle. The same kind of iterative procedure lead-
ing to (23.21) or (23.23) will be used several times in
this chapter.

Other zero-order approximations can be chosen.
But then diagrams with corrections of the type (23.3a)
must be included, with the external static field potential
equal to the difference between the HF and the chosen
one.

To calculate the numerical value of a given dia-
gram or a sequence of diagrams one needs to know,
according to the description given above, the matrix
elements of external fields and interelectron interac-
tions obtained with the help of one-electron HF wave
functions. The required calculational procedures are
described in [23.13].
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23.2 Calculation of Atomic Properties

23.2.1 Electron Correlations
in Ground State Properties

A major advantage of the diagrammatic technique in
many-body theory is that it is usually unnecessary to
know the total wave function of the atom. On the con-
trary, only actively participating electrons or vacancies
appear in a diagram. The HF zero-order approxima-
tion for one-electron and one-vacancy wave functions
is used in what follows. All atomic characteristics and
cross sections for atomic processes calculated with HF
form the one-electron approximation. Everything be-
yond the HF frame, i. e., caused by residual interaction,
are called correlation corrections or correlations. They
can be calculated using the many-body perturbation the-
ory (MBPT) [23.3], random phase approximation (RPA)
[23.14] and random phase approximation with exchange
(RPAE) or its generalized version GRPAE [23.12, 13].

The simplest diagrammatic expression for the corre-
lation energy is given by the two diagrams

a) b)k

i

j

n

k

j

n

i

(23.26)

The analytical expression ∆E(2)corr for (23.26a) is

∆E(2)corr =
∑∫

k,n>F;i, j≤F

〈ij|V |kn〉〈kn|V |ij〉
εi + ε j − εk − εn

. (23.27)

The analytical expression for (23.26b) differs from
(23.27) by the sign and an exchange matrix element
〈kn|V | ji〉 instead of a direct 〈kn|V |ij〉 one. The contri-
bution (23.26) overestimates the correlation energy by
≈10%.

Diagrams (23.26) can also be used to describe the
interaction potential of two atoms, designated A and B.
Let the ki states belong to A and n j to B. At large dis-
tances R between the atoms, the contribution of (23.26b)
is exponentially small. Because the vacancies i and j
are located inside atoms A and B respectively, the
interelectron potential V = |rA−rB+ R|−1 at large dis-
tances R % RA,B, (RA,B are atomic radii), can be
expanded as a series in powers of R−1. The first
term giving a non-vanishing contribution to (23.27) is
V ) R−3[(rA ·rB)−3(rA ·n)(rB ·n)], n being the unit

vector in the direction of R. Substituted into (23.26),
this potential leads to the expression

U(R)=−C6

R6
(23.28)

for the interatomic potential [23.15], where

C6 ≈
∑∫

k,n>F;i, j≤F

|〈i|r|k〉|2|〈 j|r|n〉|2
(εi + ε j − εk − εn)

. (23.29)

Calculations [23.16] show that the inclusion of
higher-order corrections is important for obtaining ac-
curate values for ∆Ecorr and C6. However, to improve
accuracy by taking into account the corrections to dia-
grams (23.26) requires considerable effort. Indeed, there
are several types of corrections to (23.26) such as (i)
screening of the Coulomb interelectron interaction by
the electron–vacancy excitations; (ii) interaction be-
tween vacancies ij; (iii) interaction between electrons
and vacancies ki(n j ) (k j(ni)); and (iv) interaction be-
tween electrons kn. Corrections to the HF field itself
which acts upon electrons k, n and vacancies i, j are
discussed in Sect. 23.2.3.

Screening of the Coulomb interelectron interaction
is very important, and in many cases must be taken into
account non-perturbative. The simplest way to do this
is to use RPA, which defines the effective interelectron
interaction Γ̃ as a solution of an integral equation, shown
diagrammatically by

= +

k

i
Γ
~

Γ
~

(23.30)

If V in (23.27) is replaced by Γ̃ , an expression for ∆Ecorr
in RPA can be derived.

Exchange is very important in atoms and molecules,
so diagram (23.30) can be modified to include this
effect, thus leading to the effective interaction Γ in
RPAE [23.12, 13, 16]:

= +
k

iΓ
~

Γ
~ +

Γ
~

k

i

(23.31)

Replacing V in (23.27) by Γ gives a rather accurate
expression for ∆Ecorr in RPAE. Taking into account
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screening also affects the long-range interatomic in-
teraction considerably by altering the constant C6
in (23.28).

The ground state energy of an atom or molecule is
modified by an external field. For a not too intense elec-
tromagnetic field, the simplest correction to the ground
state energy is given by the diagrams

k

i

+ k i

(23.32)

Considering a dipole external field, its interaction with
the atomic electrons is given by W =∑

i≤F E ·ri , E be-
ing the strength of the field. The ground state energy
shift is given by ∆E =−α(ω)E2/2, where α(ω) is the
dynamical dipole polarizability and ω is the frequency
of the field. According to (23.32), α(ω) is determined
by

α(ω)=
∑∫

k>F;i≤F

2|〈i|z|k〉|2(εk − εi)

(εk − εi)2−ω2
, (23.33)

where z is a component of the vector r.
RPAE corrections to α(ω) are discussed in

Sect. 23.2.5 in connection with the photoionization
process.

Non-dipole polarizabilities of other multipolarities
can be obtained in the lowest order of interelectron
interaction using (23.32) with a properly chosen interac-
tion operator between the electromagnetic field and an
electron, instead of W =∑

i≤F E ·ri .

23.2.2 Characteristics of One-Particle States

A single vacancy or electron can propagate from one in-
stant of interaction to another, as described to zero order
by elements (23.1b) [or (23.1a)] with dots (23.1f) at the
ends. This line represents an HF one-particle state with
a given angular momentum, spin, and total momentum.
Accounting for virtual or real atomic excitations leads,
for a vacancy, to a diagram similar to (23.25) but with
oppositely directed arrows. Because the interaction with
these excitations is usually much smaller than the en-
ergy distance between shells, in the sum over q only the
term q = i, i being the considered vacancy state, need be
taken into account. Interaction with the vacuum leaves
the angular momentum, spin,and total momentum un-
altered. It can however change the energy, and lead to
a finite lifetime for a vacancy state.

Analytically, the vacancy propagation in the HF ap-
proximation is described by the one-particle HF Green’s

function GHF:

GHF
i (E)= 1/(εi − E) . (23.34)

Solving (23.25) for a vacancy i with only Σii terms
included gives

Gi(E)= 1/[εi +Σii(E)− E] . (23.35)

The pole in G(E) which determines the vacancy energy
is shifted from E = εi to Ei = εi +Σii(Ei). The quan-
tity Σii(E) is called the self-energy, and is in general
a complex function of energy, its imaginary part deter-
mining the lifetime of the vacancy i. Near Ei , (23.35)
can be written in the form

Gi(E)≈ Fi/ [εi +Σii(Ei)− E] = Fi/(Ei − E) ,
(23.36)

where

Fi =
(

1− ∂Σii(E)

∂E

∣∣∣∣
E=Ei

)−1

(23.37)

is called the spectroscopic factor. It characterizes the
probability for more complicated configurations to be
admixed into a single vacancy state i [23.12].

An important problem is to calculate the self-energy
part Σ(E). The first nonzero contributions are

a) b)

+
i' j' i i' i

j

n n

j k

+ exchange
terms.

(23.38)

Specific calculations [23.16] demonstrate that if the in-
termediate electron states n [in (23.38a)] and kn [in
(23.38b)] are found in the field of vacancies jj ′ and ii ′ j,
the diagrams (23.38) are able to reproduce the values
of the correlation energy shift with about 5% accuracy.
For outer subshell vacancies, the contributions (23.38a)
and (23.38b) are almost equally important, to a large ex-
tent cancelling each other. For example, (23.38a) shifts
the outer 3p vacancy in Ar to lower binding ener-
gies by 0.1 Ry, while the contribution of (23.38b) is
−0.074 Ry. The total value 0.026 Ry is small and close
to the experimental one, which is 0.01 Ry. For inner va-
cancies, (23.38a) is dominant because the intermediate
states in (23.38b) have large virtualities and are therefore
small. The main contribution to the sum over j ′ comes
from the term j ′ = i ′ = i, which gives for the energy
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shift of level i

∆εi =Σ(2)ii (εi)=
∑∫

n>F; j≤F

|〈n|r−1| j〉|2
εn − ε j

. (23.39)

The value (23.39) is positive. Most important higher-
order corrections will be included if V in (23.38a) is
replaced by Γ from (23.31).

The physical meaning of diagram (23.38a) is trans-
parent: it accounts for configuration mixing of one
vacancy i and “two vacancies jj ′ – one electron n” states
in the lowest order in the interelectron interaction. Dia-
gram (23.38b) is not as transparent, and for i = i ′ its
intermediate state appears to violate the Pauli principle.
However, as noted in connection with (23.14), the Pauli
principle should not be considered as a restriction in
constructing intermediate states.

Diagram (23.38a) and its exchange can have an
imaginary part, which gives the probability of Auger
decay γ (A)i , calculated to the lowest order in the inter-
electron interaction. For (23.38a) one has

γ
(A)
i = Im [Σii(Ei)]

=2π
∑∫

j, j ′≤F;n>F

|〈in|V | jj ′〉|2δ(ε j + ε j ′ − εn − εi) .

(23.40)

The width γ
(A)
i is usually much smaller than

Re[Σii(Ei)], but there are several exceptional cases with
abnormally large Auger widths, among which the most
impressive is the 4p-vacancy in Xe with its γ4p ≈ 10 eV.

Higher-order corrections include those which are
taken into account when V in (23.40) is replaced by Γ
from (23.31). The others include jj ′ vacancy–vacancy
interaction, the interaction between vacancies jj ′ and the
electron n and so on. As noted above, all of these can
be obtained step by step by inserting the elements (23.4)
into (23.38). To select the most important corrections,
a physical idea and/or experience are necessary. For in-
stance, if the energy transferred in the decay process
∆ε= ε j ′ − ε j is close to some threshold energies of
atomic intermediate or outer shells, corrections which
include virtual excitation of this shell must be taken into
account.

The contribution to the spectroscopic factor
from (23.38a) is given according to (23.37) by

F(2)i ≡
⎛

⎜
⎝ 1+

∑∫

j, j ′≤F;n>F

|〈in|V | j ′ j〉|2
(ε j + ε j ′ − εn − εi)2

⎞

⎟
⎠

−1

.

(23.41)

Generally, for any Fermi particle, Fi ≤ 1 [23.17] because
there cannot be more than one particle in a given state.
Note that the integrand in (23.41) is the lowest-order
admixture of the jj ′n state to a pure one-vacancy state i.
A small F value means strong mixing. For atoms, Fi is
usually close to 1, but there are exceptions where F is
small. For example, F5s in Xe is about 0.33 [23.12].

The operator Σij(n)(ε) has non-diagonal matrix
elements, which leads to admixture of other one-
vacancy j or one-electron n states to the vacancy i.
A measure of this admixture is given by the ratio
Σij(n)(εi)/(ε j(n)− εi).

In higher orders, decay processes more complex than
those described by the imaginary part of (23.38a) be-
come possible. For example, this could be a two-electron
Auger decay in which the transition energy is distributed
between two outgoing electrons. An example of the
lowest-order diagram for this process is

i j

j1

j2

ε1
ε2

(23.42)

This is one of those diagrams which describe the mix-
ing of a pure one-vacancy state with a quite complex
configuration jj1 j2ε1ε2.

23.2.3 Electron Scattering

Propagation of an electron in a discrete level or
in a scattering state can be described in the same
way as for a vacancy. The electron wave function
is determined by (23.25). Using the correspondence
rule (23.14), (23.25) can be expressed analytically in
the form

[
− ∇2

2
− Z

r
+
∑

i≤F

∫
dr ′

|r ′ −r|
∣∣φi(r ′)

∣∣2− ε
]
ψε(r)

=
∑

i≤F

∫
dr ′

|r ′ −r|φ
∗
i (r

′)ψε(r ′)φi(r)

+
∫
Σ̂(r, r ′, ε)ψε(r ′)dr ′ .

(23.43)

The terms with the Coulomb interelectron interaction
|r ′ − r|−1 determine the Hartree–Fock self-consistent
potential. The last term in (23.43) represents the nonlocal
energy dependent polarization interaction of the contin-
uous spectrum electron with the target atom. Although
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(23.43) resembles the ordinary Schrödinger equation,
because of the energy dependence of the self-energy
part Σ̂(r, r ′, ε), it is not the same. Consequently, the
wave function ψε(r), often called a Dyson orbital, must
be normalized according to the condition

(ψε′ |ψε)= Fεδ(ε
′ − ε) , (23.44)

where

Fε =
[

1−
(

ε

∣
∣∣∣∣
∂Σ̂(r, r ′, E)

∂E

∣
∣∣∣∣
ε

) ∣∣∣
∣
E=ε

]−1

. (23.45)

This is different from that for ordinary wave functions
by the factor Fε < 1. In Fε, the matrix element of the
operator ∂Σ̂(r, r ′, E)/∂E is calculated between states
ψε(r). It is seen that Fε is the same spectroscopic factor
as determined by (23.37), but for a continuous spectrum
or an excited electron state.

The object described by the wave function ψε(r)
differs from an individual electron because it can be
unstable, and its state is mixed with those of more com-
plicated configurations, such as “two electrons” k′k′′ –
one vacancy j ′′. This object is called a quasi-electron.

Equation (23.43) also determines the energies of
electrons in discrete levels which are shifted from their
HF values. Contrary to the case of deep vacancies, it is
impossible to predict the sign of the energy shift without
detailed calculations.

For incoming electron energies ε higher than the
target ionization threshold, the operator Σ̂(r, r ′, ε) ac-
quires an imaginary part, thus becoming an optical
potential for the projectile. The additional elastic scatter-
ing phase shifts from their HF values can be expressed
via matrix elements of Σ̂(r, r ′, ε) between the wave
functions φ∗ε (r) and ψε(r); but to find numbers for these
phase shifts, the self-energy part or polarization inter-
action Σ̂(r, r ′, ε) must be calculated. It appears that the
second-order projectile–target interactions

j

j'

a) b)
ε ε

+
ε ε

k''

j

1 2

1' 2'

+ exchange
terms

k'

(23.46)

provide a reasonably good approximation [23.10, 12].
The expression for Σ̂(r, r ′, ε) simplifies at dis-

tances far from the target. Only (23.46a) contributes
in this region, while other terms are exponentially
small. Expanding the Coulomb interelectron interac-
tions in (23.46a) in powers of r1′/r1 & 1, r2′/r2 & 1

gives

Σ(r, r ′,ε)=−δ(r−r ′)α
HF(0)

2r4
, r, r ′ →∞

(23.47)

where αHF(0) is the static (ω= 0) dipole polarizability
determined by (23.33).

Accounting for each additional interaction between
the projectile and target increases the power of r in the
denominator of (23.47). Most important is the inter-
action between target electrons. By including this, the
asymptotic expression (23.47) is also modified, where
instead of αHF(0), the RPAE polarizability αRPAE(0) ap-
pears. If the target–projectile interelectron interaction is
taken into account to second order as in (23.46) while all
the rest is included exactly, the expression for Σ̂(r, r ′, ε)
for r, r ′ →∞ is still given by (23.46), but with the exact
static polarizability.

Many experimental results for low energy electron
scattering by noble gases, alkalis, and alkaline earths
agree well with calculations of elastic scattering phase
shifts obtained by solving equation (23.42) in which
Σ̂(r, r ′, ε) is given by (23.46) with RPAE corrections
taken into account. Total cross sections are reproduced
with an accuracy as high as several percent, including
the Ramsauer minimum region. This is illustrated in
Fig. 23.1 for the e− +Xe case [23.18]. This approxima-
tion is also reasonably good in describing the angular
distributions. As the projectile energy ε increases, the
contribution of (23.46) decreases rapidly.

The approach presented here applies to other in-
coming particles, such as for instance positrons e+.

0 2 4 6 8 10

150

100

50

0

E (eV)

σ (E) (arb. units)

Fig. 23.1 Electron–Xe atom elastic scattering cross sec-
tion [23.12]. Solid line: including polarization interaction;
dashed line: HF; dash-dotted line: experiment
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The exchange between e+ and target electrons must be
omitted by discarding (23.6) and all but (23.46a) terms
in the polarization interaction Σ̂(r, r ′, ε). The incom-
ing positron in its intermediate state k′ [see (23.46a)]
interacts strongly with the virtually excited electron
k′′, forming a positronium-like object. Corresponding
diagrams are obtained by inserting elements (23.4d)
for the e+–e− interaction into (23.46a). Summation
of the infinite sequence of such diagrams corresponds
to substituting the product φk′(r1)φk′′(r2) in the in-
termediate state of (23.46a) by the exact e+e− wave
function in the field of a target with a vacancy j. Such
a program is very complicated, and a simplification
has proved to be satisfactory. Only the positronium
(Ps) binding is taken into account by subtracting its
binding energy in the denominator of (23.13). This is
equivalent to adding the Ps ionization potential IPs to
ε in (23.46) [23.19]. It enhances the polarization in-
teraction and leads to an interesting qualitative feature:
the possibility of alteration of the sign of the interac-
tion (23.46). Indeed, instead of α(0), the corresponding
expression for e+-atom collision includes α(IPs). For
alkalis, the binding energy is less than IPs, and for
the energy region �ω > IPs the polarizability (23.33)
is negative, while α(0) > 0. This leads to a repulsive
polarization interaction, rather than the usual attractive
one. This difference affects the cross section qualita-
tively [23.20].

Another, more complicated, approximation substi-
tutes φk′(r1)φk′′(r2) by the product of the precise Ps
wave function ψPs(|r1− r2|) and the wave function of
the free motion of the Ps center of gravity [23.21]

According to the diagrams (23.23), (23.43) describes
the target with an additional electron. If the target is
a neutral atom, solution of (23.43) with discrete energy
values describes negative ion states; both ground and
excited.

Again, as in Sect. 23.2.2, diagrams (23.46) with
RPAE corrections form a reasonably good starting point
for calculating the negative ion binding energies, even
in cases when this binding is comparatively small, as
in alkaline earth negative ions [23.22]. The inclusion
of only the outer shell polarizability ( j is a vacancy in
the outer shell) leads to overbinding of the additional
electron forming the negative ion. Only the inclusion
of screening due to inner shell excitations yields good
agreement with experiment. For instance, recent meas-
urements of Ca− affinity [23.23] give about 20 meV,
while the calculations without inner shell excitations
give about 50 meV [23.22]. Their inclusion must con-
siderably reduce the theoretical value.

23.2.4 Two-Electron
and Two-Vacancy States

One can construct a diagrammatic equation for the wave
function of a two-electron or a two-vacancy state by
separating all diagrams describing two-electron (two-
vacancy) scattering which do not include these states
as intermediate, and denoting their total contribution by
a circle. Then the exact two-electron (vacancy) state is
determined by the infinite sequence of diagrams

= + + + …

+

=

+ …

kk' k

k'

k

k'

k1

k'1

k

k'

Π̂ Π̂
k2

k'2

k1

k'1
k

k'

Π̂

Π̂
i

i'

k

k'

+ Π̂ Π̂
i

+
kk'

k1

k'1

kk'

i'

(23.48)

The analytic equation for two electrons in an atom
interacting with each other can be written in the form

(
ĤHF

1 + Σ̂1+ ĤHF
2 + Σ̂2+ Q̂Π̂12− ε

)

×ψ12(r1 ·r2)= 0 . (23.49)

Here ĤHF
1(2) is the HF part of the one-particle Hamiltonian

in (23.24), Π̂12 is the effective interelectron interaction
and Q̂ is the projection operator

Q̂ = 1−n1−n2 , (23.50)

with n1(2) being the Fermi step function, n1(2) = 1 for
1(2)≤ F and n1(2) = 0 for 1(2) > F. The function n1(2)
thus eliminates contributions of vacant states. The op-
erator Q̂ takes into account the fact that propagation of
two electrons (or, more precisely, quasi-electrons due to
the presence of Σ̂) takes place in a system of other par-
ticles which occupy all levels up to the Fermi level.
The presence of Q̂ makes (23.49) essentially differ-
ent from a simple two-electron Schrödinger equation:
Q̂ requires that after each act of interaction described
by Π̂12, both participants either remain electrons or
become vacancies.

Diagrams (23.48) describe the states of two electrons
outside the closed shell core, or electron scattering by
an atom with one electron outside the closed shells.
In general, Π̂12 is nonlocal, dependent upon ε, and can
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have an imaginary part. The lowest-order approximation
to Π̂12 is V = |r1− r2|−1. Equation (23.49) must be
solved in order to obtain, for example, the excitation
spectrum of two electrons in atoms with two electrons
outside closed subshells, such as Ca. Instead of V , the
interaction Γ from (23.31) can be used, which would
account for screening due to virtual excitation of inner
shell electrons. For low level two-electron excitations,
the energy dependence of Π̂12 can be neglected.

The same type of equation can be obtained for two-
vacancy states, describing their energies, decay widths,
and structure due to configuration mixing with more
complex states. For inner and intermediate shell va-
cancies, however, the corresponding corrections can be
taken into account perturbatively, and the screening by
outer shells is not essential. The admixture of outer shell
excitation with inner vacancies is important, leading to
satellites of the main spectral lines.

The interaction between vacancies leads to correla-
tion two-vacancy decay processes in which the energy
is carried away by a single electron or photon. Some
diagrams exemplifying these processes in the lowest
possible order of interaction are

a) b)i1 j1

i2 q
j2

j3

ε

j1

i2 q
j2

ω

%i
1

(23.51)

Even in this order, there are several diagrams giving
together the amplitude of the correlation Auger (23.51a)
and radiative (23.51b) decay. For inner shells, a specific
feature of such processes is that the released energy is
about twice that for a single vacancy decay. Of course,
in these cases the decay probability is relatively small.
It is not, however, necessarily much smaller than that of
individual vacancies if the energies of the intermediate
and initial states are close to each other.

The presence of residual two-body forces leads to ef-
fective multiparticle interactions. The simplest diagram
presenting a three-electron interaction is given by

n1 n'1

n2 n'2

n3 n'3
(23.52)

The role of multi-particle interactions in atomic struc-
ture is far from being clear. Diagrams similar to (23.52)
are important if it is of interest to calculate the energy

levels of atoms with three or more electrons (or vacan-
cies) outside of closed shells. This is a very complicated
calculation because even two electrons in the Coulomb
field of the nucleus is a difficult three-body problem.

23.2.5 Electron–Vacancy States

The one-electron–one-vacancy state is the simplest ex-
citation of a closed shell system under the action of an
external time-dependent field, represented by (23.2a).
Beginning with electrons and vacancies described in the
HF approximation, the result of residual interactions
leads to excitations of more complex states, including
those with two or more electron–vacancy pairs. The in-
teraction can also lead to a single electron–vacancy pair.
Let us concentrate on the latter case and separate all
diagrams describing electron–vacancy interaction which
do not include these states as intermediate, and denote
them by a circle. Then the exact electron–vacancy state
is determined by the infinite sequence of diagrams

= +
k

R

ki

i

k

i

+ + R

k

i

R + …
k'

i' i'' i'

+ R
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i k'

i'

+ …

=
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i
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i'

ki
+ R

k'

i'

ki

k'' k'

k'

(23.53)

Contrary to the electron–electron case in Sect. 23.2.4,
the analytical expression corresponding to (23.53) can-
not be represented as a Schrödinger-type equation.
Indeed, being symmetric under time reversal, (23.53)
leads to an equation depending, unlike (23.49), upon
the second power of the electron–vacancy energy
ω. Note that R in (23.53) and �̂ in (23.46) are
different.

It is necessary to solve (23.53) when calculating the
photoabsorption amplitude, which can then be repre-
sented as

i'

k

i

k'

ω

(23.54)

The amplitude for elastic photon scattering is also ex-
pressed via the exact electron–vacancy state, determined
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by (23.53) to be

i'

k

i

k'

ω ω

(23.55)

The other case where it is necessary to solve (23.53) is
the scattering of electrons, both elastic and inelastic, by
atoms with a vacancy in their outer shell, such as the
halogens.

The simplest approximation to R is given by the
Coulomb interaction to lowest order (23.4e) and (23.4f).
With such R, the sequence of diagrams (23.53) is
the same as (23.31) and thus forms the RPAE, which
is often used to describe photoionization and other
atomic processes. Both terms (23.4e) and (23.4f) con-
tribute to the electron–vacancy in (23.53) only if
the external field is spin independent, such as an
ordinary photon. For a magnetic interaction, which
is proportional to spin, the term (23.4e) does not
contribute.

23.2.6 Photoionization in RPAE and Beyond

In RPAE, the photoionization amplitude 〈k|D(ω)|i〉 is
determined by solving an integral equation obtained
from (23.53) and (23.54) using the correspondence
rule (23.14) [23.12]:

〈k|D(ω)|i〉
= 〈k|d|i〉
+

∑∫

k′>F;i ′≤F

( 〈k′|D(ω)|i ′〉〈ki ′|V |ik′ − k′i〉
ω− εk′ + εi ′ + iη

− 〈i ′|D(ω)|k′〉〈kk′|V |ii ′ − i ′i〉
ω− εk′ − εi ′ − iη

)
, (23.56)

where d is the dipole operator describing the photon–
electron interaction and V = |r1−r2|−1. To obtain the
RPAE photoionization cross section, the usual expres-
sion (24.19) must be multiplied by the square modulus
of the ratio 〈k|D(ω)|i〉/〈k|d|i〉, with ω= εk + Ii . The
RPAE corrections described by the term in square brack-
ets in (23.56) are very large for outer and intermediate
electron shells. Through the sum over i ′, if only terms
with the same energies εi ′ = εi are included, (23.56) ac-
counts for intra-shell correlations. By adding terms with
εi ′ �= εi , the effect of inter-shell correlations is taken into
account.

For atoms, (23.56) has to be solved numerically,
but can be presented in a symbolical operator form

that creates the possibility of qualitative analyzes of its
solutions:

D(ω)= d+D(ω)χ(ω)U , (23.57)

where U is a combination of the direct Vd
and exchange Ve Coulomb interelectron potentials,
U = Vd−Ve, χ(ω)= χ1(ω)+χ2(ω), χ1(ω)= 1/(ω−
ω′ + iη) and χ2(ω)= 1/(ω+ω′), with ω′ being the ex-
citation energy of the virtual electron–vacancy state.
Using Γ from (23.31), one can present D(ω) as

D(ω)= d+dχ(ω)Γ(ω) . (23.58)

Equation (23.57) allows a rather simple, also symbolic,
solution

D(ω)= d/[1−χ(ω)U] . (23.59)

If the denominator in (23.59) has a solution Ω deter-
mined by the equation

1−χ(Ω)U = 0 , (23.60)

atΩ> I , where I is the atomic ionization potential, then
the cross section has a powerful maximum called a giant
resonance with energy Ω.

A giant resonance is of a collective nature, in the
sense that it appears to be due to coherent virtual
excitation of all electrons of at least one considered
multi-electron subshell.

These intra-shell correlations are most important
for multielectron shells with large photoionization cross
sections. Their inclusion leads to a quantitative descrip-
tion of the above mentioned giant resonances – huge
maxima in the photoionization cross sections. An exam-
ple is the 4d10 photoionization cross section of Xe shown
in Fig. 23.2 [23.12], where satisfactory agreement with
experiment is demonstrated.

It appears that all RPAE intra-shell time-forward dia-
grams, such as that on the first line in (23.53), and the
first term in brackets in (23.56) with εi ′ = εi , may be
taken into account by the matrix element 〈k̃|d|i〉. This
is the one-electron approximation, but with the function
φ̃k(r) calculated in the term-dependent HF approxima-
tion [23.12]. Term-dependency means that only the total
angular momentum and spin and their projections for the
electron–vacancy pair are conserved, being equal to that
of the incoming photon. The individual values for the
electron and vacancy angular momentum and spin are
not considered to be good quantum numbers. Thus the
term-dependent HF includes a large fraction of RPAE
correlations.
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Fig. 23.2 Photoabsorption in the vicinity of the 4d10 sub-
shell threshold in Xe [23.7]. Solid line: RPAE; dashed line:
experiment

RPAE permitted to the prediction of interference res-
onances. To describe them, let us consider a situation in
which the direct HF amplitude ds is small, while there
are other electrons with large photoionization amplitude
Db, Db(ω)% ds. Then, from (23.57) one has

Ds(ω)≈ ds +Db(ω)χ(ω)

Ubs ≈ Db(ω)χ(ω)Ubs % ds (23.61)

if the inter-transition interaction Ubs is not too small.
The enhancement of the photoionization amplitude de-
scribed by (23.61) manifests itself as a resonance in
the partial cross section of s electrons photoioniza-
tion. Very often the term Db(ω)χ(ω)Ubs and ds are
of opposite sign, so that the total amplitude acquires
two minima, along with an extra maximum, thus form-
ing a rather complicated structure in the partial cross
section that was named interference or correlation
resonance.

Usually, these resonances are manifestations of
inter-shell correlations. These are taken into account if
the sum over i ′ in (23.56) includes terms with εi ′ �= εi .
An example is the 5s2 subshell in Xe, which is strongly
affected by the outer 5p6 and inner 4d10 neighboring
electrons. Due to this interaction, the 5s2 cross section
is completely altered, as illustrated in Fig. 23.3 [23.12].
The RPAE results predict a qualitative feature of the ex-
perimental data, namely the formation of a maximum
and two minima in the cross section. The second mini-
mum is not seen in Fig. 23.3, since it lies at considerably
higher ω.

RPAE is able to describe a number of other ef-
fects, such as giant autoionizational resonance (decay

of a powerful discrete excitation into a continuum,
with which the excitation interacts strongly), continu-
ous spectrum autoionization (modification of a broad
continuous spectrum excitation due to its strong in-
teraction with a narrow continuum that happens in
negative ions [23.22]) and quadrupole giant reso-
nances [23.24].

Above we concentrated on dipole Giant resonances.
Quadrupole amplitudes in RPAE are determined by an
equation similar to (23.57):

Q(ω)= q+Q(ω)χ(ω)U , (23.62)

where q is the quadrupole amplitude in HF approxima-
tion.

Giant quadrupole resonance was found in excitations
of 4d6 electrons in Xe [23.25]. Its direct observation in
photoabsorption is almost impossible, since the corres-
ponding cross section is very small due to the inclusion
of the extra factor α2 = 1/c2 ≈ 10−4 as compared to the
dipole cross section. However, the quadrupole amplitude
leads to noticeable corrections to the angular distribu-
tions of photoelectrons where their relative contribution
is considerably bigger.

Note that the amplitude of electron elastic scattering
on an atom with a vacancy is expressed in RPAE via Γ
given by (23.31) [23.26].

For the inner or deep intermediate shells, RPAE
proves to be insufficient. First, screening of the Coulomb
interaction between the outgoing or virtually excited
electron and the vacancy [see (23.4f)] must be taken
into account. This can be done by replacing V by Γ

1.0

0.5

0 2 4 6 8 10

σ (Mb)

ω (Ry)

Fig. 23.3 Photoionization of 5s2 electrons in Xe [23.7].
Solid line: RPAE with effects of 5p6 and 4d10 included;
dashed line: 5s2 electrons only; dash-dotted line: with effect
of 5p6 electrons; dash-double-dotted line: with effect of
4d10 electrons; dotted line: experiment
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from (23.31). The ionization potential (or the energy of
the vacancy i) must also be corrected, which requires
inclusion of at least the contribution from the first term
of (23.38). It has been demonstrated [23.27] that the
screening of the electron–vacancy interaction can be
taken into account by calculating the wave function of
the virtually excited or outgoing electron in the self-
consistent HF field of an ion instead of that of a neutral
atom. A method which uses only these one-particle wave
functions in (23.54) (23.56) is called the generalized
RPAE or GRPAE. The use of this approximation con-
siderably improves the agreement with experiment near
the intermediate shell thresholds, decreasing there the
cross section value and shifting its maximum to higher
energies. GRPAE permitted to disclose intra-doublet
resonances that results from interaction of electrons
belonging to two components of the spin-orbit dou-
blet, e.g., 3d3/2 and 3d5/2 in Xe, Cs and Ba atoms
[23.24, 28].

RPAE and GRPAE corrections affect not only the
cross sections but also characteristics of the photoelec-
tron angular distribution, i. e., dipole and non-dipole
angular anisotropy parameters [23.12, 16, 24]. As an
example, Fig. 23.4a presents the partial cross sections
[23.28] while Fig. 23.4b depicts the dipole anisotropy
parameter β [23.24] for 3d5/2 and 3d3/2 electrons in
Cs. The effect of intra-doublet resonance – an additional
maximum in the 3d5/2 cross section under the action of
3d3/2 electrons – is clearly seen.

Figure 23.5 depicts the non-dipole angular aniso-
tropy parameter γ5s for 5s electrons in Xe [23.29]. The
parameter γns (in Fig. 23.5, n = 5) is given by the simple
formula [23.16]

γns(ω)= 6[|Qns(ω)|/|Dns(ω)|] cos(∆q −∆d) ,

(23.63)

where Qns(Dns) are the RPAE (GRPAE) quadrupole
(dipole) photoionization amplitudes and ∆q(∆d) are
their phases. Thus, γns(ω) is sensitive to the pres-
ence of interference, dipole, and quadrupole res-
onances. The latter is presented by a small but
noticeable maximum on the high energy slope of
the huge maximum, caused by the presence of
the giant dipole resonance. The variation of γ5s
near the 5s threshold is determined by the reso-
nant behavior of cos(∆q −∆d), called phase reso-
nance [23.24].

Close to inner shell thresholds, the Auger decay
of a deep vacancy must be taken into account. Due
to decay, the photoelectron instantly finds itself in the
field of at least two vacancies instead of one, leading

20
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0
720 730 740 750 760 770

2

1

0

–1
720 730 740 750 760 770

a) Cross section, Mb

b)

Photon energy, eV

Photon energy, eV

Cs3d

�

Fig. 23.4a,b Intra-doublet resonance in 3d10 Cs. (a) Par-
tial photoionization cross sections σ5/2 and σ3/2 [23.28],
(b) Dipole angular anisotropy parameters β5/2 and β3/2.

Solid line: data for 5/2 with account of 3/2; Dash-dotted
line: data for 5/2 without account of 3/2; Dotted line: data
for 3/2 with account of 5/2; Dashed line: data for 3/2
without account of 5/2

to considerable growth of the threshold cross section.
Diagrammatically, the effect of decay may be described
by

k'

j1
j2

k2

i

(23.64)

Here, the double line emphasizes that starting from the
instant of decay, the photoelectron moves in the field
j1 j2 of double instead of a single i vacancy. For inner
vacancies, this is a strong effect which can lead even to
recapture of the photoelectron into some of the discrete
levels in the field of the double vacancy j1 j2.
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Fig. 23.5 Nondipole anisotropy parameter γ5s(ω) of 5s2 electrons in Xe [23.29]

So-called Post-collision interactions in photoioniza-
tion can be taken into account by this diagram when
the Auger electron is much faster than the photoelectron
[23.30]. If their speed is of the same order, their mutual
Coulomb repulsion must be accounted for, leading to ad-
ditional alteration of energy and angular redistributions.

A photoelectron can excite or knock out another
atomic electron. To lowest order in the residual in-
terelectron interaction, this process can be represented
by

k2

i1
k1

i1

k

(23.65)

While the formation of an initial electron–vacancy ki1
pair requires RPAE or GRPAE for its description, the
second step of (23.65) can be reasonably well repro-
duced by the lowest-order term in V . It appears that
process (23.65) has a high probability for not too fast
photoelectrons, changing considerably the cross sec-
tion [23.31] for ionization by creating a vacancy i1.

A comparatively simple diagram

k

i
j

n

i

(23.66)

describes the photoionization process in which a more
complicated state is created in the ion than a single
vacancy, e.g. a state with two vacancies and one electron.
Here the doubled arrow indicates that the electron is in
a discrete level n.

Diagrams (23.64–23.66) present some corrections
which mix electron–vacancy and two-electron–two-
vacancy configurations. Each additional interaction line
increases the number of possible physical processes
considerably. With growth of the number of particles
actively participating in a process, the calculational diffi-
culties increase enormously. However, this is not a short-
coming of the diagrammatic approach, but a specific
feature of more and more complex physical processes.

23.2.7 Photon Emission
and Bremsstrahlung

The amplitude of photon emission in lowest order is
given by the time-reverse of (23.2c):

k k'

ω (23.67)

This diagram represents ordinary Bremsstrahlung; i. e.
a process of projectile deceleration in the field of the
target. If the target has internal structure as atoms do,
it can be really or virtually excited during the collision
process. The simplest excitation means creation of an

Part
B

2
3
.2



Many-Body Theory of Atomic Structure and Processes 23.3 Concluding Remarks 375

electron–vacancy pair. The annihilation of this pair re-
sults via the time-reverse of (23.2a) in photon emission.
The process thus looks like

k k'

k''

i ω (23.68)

To obtain the total Bremsstrahlung amplitude, the terms
(23.67) and (23.68) must be summed. The polarization
radiation (PR) created by the mechanism (23.68) has
a number of features which are different from the ordi-
nary Bremsstrahlung (OB) represented by (23.67). The
intensity is proportional to 1/M2

p for OB, where Mp is
the projectile mass, and the spectrum, at least for high
εk, is proportional to 1/ω. On the other hand, the PR
intensity is almost completely independent of Mp and
its frequency dependence is quite complex, being de-
termined by the target polarizability α(ω) [23.32]. PR
is most important for frequencies ω of the order of and
higher than the target’s ionization potential. At suffi-
ciently large distances and for neutral targets, PR starts to
predominate over OB. Close to discrete excitations of the
k′ electron, the contribution (23.68) becomes resonantly
enhanced.

Higher-order corrections are important in the PR
amplitude. First, the Coulomb interaction V in (23.68)
must be replaced by Γ from (23.31).

The analytical expression for the total Bremsstrahl-
ung amplitude, including RPAE corrections to (23.68),
is given by the expression

〈k|A(ω)|k′〉 = 〈k|d|k′〉+
∑∫

k′′>F;i≤F

〈ki|V |k′k′′〉

× lim
η→+0

2(εk′′ − εi)

ω2− (εk′′ − εi)2+ iωη
〈i|D(ω)|k′′〉 .

(23.69)

To derive the Bremsstrahlung spectrum, the usual
general expression must be multiplied by the square
modulus of the ratio 〈k|A(ω)|k′〉/〈k|d|k′〉. If the incom-
ing electron is slow, corrections (23.46) also become
important. The intermediate state in (23.68) includes
two electrons k′ and k, and a vacancy i. The extent of
interaction between them could be considerable.

An important feature of PR is that it is nonzero even if
the projectile is neutral, but is able to polarize the target.
For example, it leads to emission of continuous spectrum
radiation in atom–atom collisions, whose intensity for
frequencies of the order of the ionization potentials is
close to that in electron–atom collisions.

The second and higher orders in the residual interac-
tion involve processes more complicated than (23.68),
for instance those which include simultaneous photon
emission and target excitation (ionization) [23.33].

23.3 Concluding Remarks

It is most convenient to apply diagrammatic techniques
to closed shell atoms whose ground state is non-
degenerate. Degeneracy means that some of the energy
denominators (23.13) become zero with nonzero statis-
tical weight. All such contributions must be summed
to eliminate this degeneracy. This leads to strong mix-
ing of some states. For example, the energy required
for electron–vacancy transitions jn [see (23.38)] within
an open shell is zero, thus leading to strong mixing of
i and ijn states. If a pair with zero excitation energy
has nonzero angular momentum, taking into account the
mixing within such a pair destroys angular momentum
as a characteristic of a one-vacancy state. This makes all
calculations much more complicated, reflecting a spe-
cific feature of the degenerate physical system.

In using the diagrams and formulas presented above,
it is essential that the interelectron and electron–
nucleus interactions be purely potential. Inclusion of

retardation and spin-dependence in the interparticle
interaction makes the calculations much more com-
plicated. These parts of the interaction appear as
relativistic corrections. They are comparatively small
in all but the heaviest atoms, and can be taken into
account perturbatively. Beyond lowest order, these
additional interactions are strongly altered when vir-
tual excitations of electron–vacancy pairs and the
Coulomb interaction between them is taken into ac-
count. An example is given by the sequence of
diagrams

+…+ +
k1 k'1

k2 k'2

k1

k2

k'1 k1

k2

k'2k'2

k'1

(23.70)
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where the heavy dashed line stands for the spin-
dependent interelectron interaction. Note that here
there are no electron–vacancy loops as in (23.28)
because the Coulomb interaction is unable to af-
fect the electron spin and thus to transfer spin
excitations.

The same kind of diagram describes the one-particle
field acting upon an electron or vacancy due to the
presence of spin-orbit interaction or weak interaction
between electrons and the nucleus. For instance, the ef-
fective weak potential includes contributions from the

sequence

+ …+
k1 k'

k k

k'

wi wi

+ k'

wi

(23.71)

This is another example demonstrating how flexible and
convenient the many-body approach is for considering
different processes and interactions.
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Photoionizati24. Photoionization of Atoms

This chapter outlines the theory of atomic
photoionization, and the dynamics of the
photon–atom collision process. Those kinds of
electron correlation that are most important
in photoionization are emphasized, although
many qualitative features can be understood
within a central field model. The particle–hole
type of electron correlations are discussed,
as they are by far the most important for
describing the single photoionization of atoms
near ionization thresholds. Detailed reviews of
atomic photoionization are presented in [24.1]
and [24.2]. Current activities and interests are
well-described in two recent books [24.3, 4].
Other related topics covered in this volume are
experimental studies of photon interactions at
both low and high energies in Chapts. 61 and
62, photodetachment in Chapt. 60, theoretical
descriptions of electron correlations in Chapt. 23,
autoionization in Chapt. 25, and multiphoton
processes in Chapt. 74.
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24.1 General Considerations

24.1.1 The Interaction Hamiltonian

Consider an N-electron atom with nuclear charge Z. In
the nonrelativistic approximation, it is described by the
Hamiltonian

H =
N∑

i=1

(
pi

2

2m
− Ze2

ri

)
+

N∑

i> j=1

e2

|ri −r j | . (24.1)

The one-electron terms in brackets describe the kinetic
and potential energy of each electron in the Coulomb
field of the nucleus; the second set of terms describe the
repulsive electrostatic potential energy between elec-
tron pairs. The interaction of this atom with external
electromagnetic radiation is described by the additional
terms obtained upon replacing pi by pi + (|e|/c)A(ri , t),

where A(ri , t) is the vector potential for the radiation.
The interaction Hamiltonian is thus

Hint =
N∑

i=1

{+|e|
2mc

[pi · A(ri , t)+ A(ri , t) · pi ]

+ e2

2mc2 |A(ri , t)|2
}
. (24.2)

Under the most common circumstance of single-photon
ionization of an outer-subshell electron, the interaction
Hamiltonian in (24.2) may be simplified considerably.
First, the third term in (24.2) may be dropped, as it intro-
duces two-photon processes (since it is of second order
in A). In any case, it is small compared with single pho-
ton processes since it is of second order in the coupling
constant |e|/c. Second, we choose the Coulomb gauge
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for A, which fixes the divergence of A as ∇ · A= 0.
A thus describes a transverse radiation field. Further-
more p and A now commute and hence the first and
second terms in (24.2) may be combined. Third, we
introduce the following form for A:

A(ri , t)=
(

2πc2
�

ωV

) 1
2

ε̂ei(k·ri−ωt) . (24.3)

This classical expression for A may be shown [24.5] to
give photoabsorption transition rates that are in agree-
ment with those obtained using the quantum theory of
radiation. Here k and ω are the wave vector and angular
frequency of the incident radiation, ε̂ is its polarization
unit vector, and V is the spatial volume. Fourth, the elec-
tric dipole (E1) approximation, in which exp[i(k ·ri)] is
replaced by unity, is usually appropriate. The radii ri
of the atomic electrons are usually of order 1 Å. Thus
forλ% 100 Å, |k·ri | & 1. Nowλ% 100 Å corresponds
to photon energies �ω& 124 eV. For outer atomic sub-
shells, most of the photoabsorption occurs for much
smaller photon energies, thus validating the use of the
E1 approximation. (This approximation cannot be used
uncritically, however. For example, photoionization of
excited atoms (which have large radii), photoionization
of inner subshells (which requires the use of short wave-
length radiation), and calculation of differential cross
sections or other measurable quantities that are sensitive
to the overlap of electric dipole and higher multipole am-
plitudes all require that the validity of the electric dipole
approximation be checked.) Use of all of the above con-
ventions and approximations allows the reduction of Hint
in (24.2) to the simplified form

Hint = +|e|
mc

(
2πc2

�

ωV

) 1
2 N∑

i=1

ε̂ · pi exp(−iωt) .

(24.4)

Hint thus has the form of a harmonically time-dependent
perturbation. According to time-dependent perturbation
theory, the photoionization cross section is proportional
to the absolute square of the matrix element of (24.4)
between the initial and final electronic states described
by the atomic Hamiltonian in (24.1). Atomic units, in
which |e| = m = �= 1, are used in what follows.

24.1.2 Alternative Forms
for the Transition Matrix Element

The matrix element of (24.4) is proportional to the matrix
element of the momentum operator

∑
i pi . Alternative

expressions for this matrix element may be obtained
from the following operator equations involving com-
mutators of the exact atomic Hamiltonian in (24.1):

N∑

i=1

pi =−i

[
N∑

i=1

ri , H

]

, (24.5)

[
N∑

i=1

pi , H

]

=−i
N∑

i=1

Zri

r3
i

. (24.6)

Matrix elements of (24.5) and (24.6) between eigen-
states 〈ψ0| and |ψ f 〉 of H having energies E0 and E f
respectively give

〈ψ0|
N∑

i=1

pi |ψ f 〉 = −iω〈ψ0|
N∑

i=1

ri |ψ f 〉 ,
(24.7)

〈ψ0|
N∑

i=1

pi |ψ f 〉 = −i

ω
〈ψ0|

N∑

i=1

Zri

r3
i

|ψ f 〉 ,
(24.8)

where ω = E f − E0. Matrix elements of
∑N

i=1 pi ,∑N
i=1 ri , and

∑N
i=1 Zri/r3

i are known as the “veloc-
ity,” “length,” and “acceleration” forms of the E1 matrix
element.

Equality of the matrix elements in (24.7) and (24.8)
does not hold when approximate eigenstates of H are
used [24.6]. In such a case, qualitative considerations
may help to determine which form is most reliable. For
example, the length form tends to emphasize the large r
part of the approximate wave functions, the acceleration
form tends to emphasize the small r part of the wave
functions, and the velocity form tends to emphasize
intermediate values of r.

If instead of employing approximate eigenstates of
the exact H , one employs exact eigenstates of an approx-
imate N-electron Hamiltonian, then inequality of the
matrix elements in (24.7) and (24.8) is a measure of the
nonlocality of the potential in the approximate Hamil-
tonian [24.7,8]. The exchange part of the Hartree–Fock
potential is an example of such a nonlocal potential.
Nonlocal potentials are also implicitly introduced in
configuration interaction calculations employing a finite
number of configurations [24.7, 8]. One may eliminate
the ambiguity of which form of the E1 transition opera-
tor to use by requiring that the Schrödinger equation be
gauge invariant. Only the length form is consistent with
such gauge invariance [24.7, 8].

However, equality of the alternative forms of the
transition operator does not necessarily imply high ac-
curacy. For example, they are exactly equal when one
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uses an approximate local potential to describe the
N-electron atom, as in a central potential model, even
though the accuracy is often poor. The length and ve-
locity forms are also exactly equal in the random phase
approximation [24.9], which does generally give accu-
rate cross sections for single photoionization of closed
shell atoms. No general prescription exists, however, for
ensuring that the length and velocity matrix elements are
equal at each level of approximation to the N-electron
Hamiltonian.

24.1.3 Selection Rules
for Electric Dipole Transitions

If one ignores relativistic interactions, then a general
atomic photoionization process may be described in L S-
coupling as follows:

A(L, S,ML ,MS, πA)+γ(πγ , γ ,mγ )
−→A+(L̄ S̄πA+)ε(L ′, S′,ML ′ ,MS′) . (24.9)

Here the atom A is ionized by the photon γ to produce
a photoelectron with kinetic energy ε and orbital angu-
lar momentum . The photoelectron is coupled to the
ion A+ with total orbital and spin angular momenta L ′
and S′. In the electric dipole approximation, the photon
may be regarded as having odd parity, i. e., πγ =−1,
and unit angular momentum, i. e., γ = 1. This is ob-
vious from (24.7) and (24.8), where the E1 operator is
seen to be a vector operator. The component mγ of the
photon in the E1 approximation is ±1 for right or left
circularly polarized light and 0 for linearly polarized
light. (The z axis is taken as k̂ in the case of circularly
polarized light and as ε̂ in the case of linearly polar-
ized light, where k and ε̂ are defined in (24.3).) Angular
momentum and parity selection rules for the E1 transi-
tion in (24.9) imply the following relations between the
initial and final state quantum numbers:

L ′ = L⊕1 = L̄⊕ , (24.10)

ML ′ = ML +mγ = ML̄ +m , (24.11)

S′ = S = S̄⊕ 1

2
, (24.12)

MS′ = MS = MS̄+ms , (24.13)

πAπA+ = (−1)+1 . (24.14)

Equation (24.14) follows from the parity (−1) of the
photoelectron. The direct sum symbol ⊕ denotes the
vector addition of A and B i.e, A⊕B= A+ B, A+ B−
1, . . . , |A− B|.

In (24.9), the quantum numbers α ≡ L̄ , S̄, πA+ ,
, L ′, S′, ML ′ , MS′ (plus any other quantum numbers

needed to specify uniquely the state of the ion A+)
define a final state channel. All final states that differ
only in the photoelectron energy ε belong to the same
channel. The quantum numbers L ′, S′,ML ′ ,MS′ , and
πtot = (−1) πA+ are the only good quantum numbers
for the final states. Thus the Hamiltonian (24.1) mixes
final state channels having the same angular momen-
tum and parity quantum numbers but differing quantum
numbers for the ion and the photoelectron; i. e., differ-
ing L̄, S̄, πA+ , and  but the same L ′, S′,ML ′ ,MS′ and
(−1) πA+ .

24.1.4 Boundary Conditions
on the Final State Wave Function

Photoionization calculations obtain final state wave
functions satisfying the asymptotic boundary condition
that the photoelectron is ionized in channel α. This
boundary condition is expressed as

ψ−αE(r1s1, . . . , rN sN )

−→
rN→∞θα(r1s1, . . . , r̂N sN )

1

i(2πkα)
1
2

1

rN
ei∆α

−
∑

α′
θα′(r1s1, . . . , r̂N sN )

1

i(2πkα′)
1
2

1

rN
e−i∆α′ S†

α′α ,

(24.15)

where the phase appropriate for a Coulomb field is

∆α ≡ kαrN − 1

2
πα+ 1

kα
log 2kαrN +σα . (24.16)

The minus superscript on the wave function in (24.15)
indicates an “incoming wave” normalization: i. e.,
asymptotically ψ−αE has outgoing spherical Coulomb
waves only in channel α, while there are incom-
ing spherical Coulomb waves in all channels. S†

α′α
is the Hermitian conjugate of the S-matrix of scat-
tering theory, θα indicates the coupled wave function
of the ion and the angular and spin parts of the
photoelectron wave function, kα is the photoelectron
momentum in channel α and α is its orbital angular
momentum, and σα in (24.16) is the Coulomb phase
shift.

While one calculates channel functions ψ−αE ,
experimentally one measures photoelectrons which
asymptotically have well-defined linear momenta kα and
well-defined spin states m 1

2
, and ions in well-defined

states ᾱ≡ L̄ S̄ML̄ MS̄. The wave function appropriate for
this experimental situation is related to the channel func-
tions by uncoupling the ionic and electronic orbital and
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spin angular momenta and projecting the photoelectron
angular momentum states α, mα onto the direction k̂α
by means of the spherical harmonic Y%αmα

(kα). This
relation is [24.1]:

ψ−
ᾱkα
(r1s1, . . . , rN sN )

=
∑

αmα

iα exp(−iσα)

k
1
2
α

Y%αmα (k̂α)

×
∑

L ML SMS

〈L̄ ML̄αmα|L ML〉

× 〈S̄MS̄
1
2 m 1

2
|SMS〉ψ−αE(r1s1, . . . , rN sN ) , (24.17)

where the coefficients in brackets are Clebsch–Gordon
coefficients. This wave function is normalized to a delta
function in momentum space, i. e.,

∫ (
ψ−
ᾱkα

)†
ψ−
ᾱ′kα′

d3r = δᾱᾱ′δ(kα−kα′) . (24.18)

The factors iα exp(−iσα)k
− 1

2
α ensure that for large rN

(24.17) represents a Coulomb wave (with momen-
tum kα) times the ionic wave function for the state ᾱ plus
a sum of terms representing incoming spherical waves.
Thus only the ionic term ᾱ has an outgoing wave. One
uses the wave function in (24.17) to calculate the angular
distribution of photoelectrons.

24.1.5 Photoionization Cross Sections

If one writes Hint in (24.4) as Hint(t)= Hint(0)e−iωt ,
then from first order time-dependent perturbation theory,
the transition rate for transition from an initial state with
energy E0 and wave function ψ0 to a final state with
total energy E f and wave function ψ−

ᾱkα
is

dWkα = 2π|〈ψ0|Hint(0)|ψ−ᾱkα
〉|2

× δ(E f − E0−ω)k2
α dkα dΩ(k̂α) . (24.19)

The delta function expresses energy conservation and the
last factors on the right are the phase space factors for
the photoelectron. Dividing the transition rate by the in-
cident photon current density c/V , integrating over dkα,

and inserting Hint(0), the differential photoionization
cross section is

dσᾱ
dΩ

= 4π2

c

kα
ω

∣∣∣
∣∣
ε̂ · 〈ψ0|

N∑

i=1

pi |ψ−ᾱkα
〉
∣∣∣∣∣

2

. (24.20)

Implicit in (24.19) and (24.20) is an average over initial
magnetic quantum numbers ML0 MS0 and a sum over
final magnetic quantum numbers ML̄ MS̄m 1

2
. The length

form of (24.20) is obtained by replacing each pi by
ωri (24.7).

Substitution of the final state wave function (24.17)
in (24.20) permits one to carry out the numerous sum-
mations over magnetic quantum numbers and obtain the
form

dσᾱ
dΩ

= σᾱ

4π
[1+βP2(cos θ)] (24.21)

for the differential cross section [24.10]. Here σᾱ
is the partial cross section for leaving the ion in
the state ᾱ, β is the asymmetry parameter [24.11],
P2(cos θ)= 3

2 cos2 θ− 1
2 , and θ indicates the direction

of the outgoing photoelectron with respect to the polar-
ization vector ε̂ of the incident light. The form of (24.21)
follows in the electric dipole approximation from gen-
eral symmetry principles, provided that the target atom
is unpolarized [24.12]. The partial cross section is given
in terms of reduced E1 matrix elements involving the
channel functions in (24.15) by

σᾱ = 4π2

3c
ω[L]−1

∑

αL ′

∣∣∣∣∣
〈ψ0 ‖

N∑

i=1

ri
[1] ‖ ψ−αE〉

∣∣∣∣∣

2

.

(24.22)

The β parameter has a much more complicated expres-
sion involving interference between different reduced
dipole amplitudes [24.1]. Thus measurement of β pro-
vides information on the relative phases of the alternative
final state channel wave functions, whereas the partial
cross-section in (24.22) does not. From the requirement
that the differential cross section in (24.21) be positive,
one sees that −1 ≤ β ≤+2.

24.2 An Independent Electron Model

The many-body wave functions ψ0 and ψ−αE are usually
expressed in terms of a basis of independent electron
wave functions. Key qualitative features of photoion-
ization cross sections can often be interpreted in terms

of the overlaps of initial and final state one electron ra-
dial wave functions [24.1, 13]. The simplest independent
electron representation of the atom, the central potential
model, proves useful for this purpose.
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24.2.1 Central Potential Model

In the central potential (CP) model the exact H in (24.1)
is approximated by a sum of single-particle terms de-
scribing the independent motion of each electron in
a central potential V(r):

HCP =
N∑

i=1

[
pi

2

2m
+V(ri)

]
. (24.23)

The potential V(r) must describe the nuclear attraction
and the electron–electron repulsion as well as possible
and must satisfy the boundary conditions

V(r)−→
r→0

− Z/r and V(r)−→
r→∞

−1/r (24.24)

in the case of a neutral atom. HCP is separable in
spherical coordinates and its eigenstates can be writ-
ten as Slater determinants of one-electron orbitals of
the form r−1 PnYm(Ω) for bound orbitals and of the
form r−1 Pε(r)Ym(Ω) for continuum orbitals. The one-
electron radial wave functions satisfy

d2 Pε(r)

dr2 +2

[
ε−V(r)− (+1)

2r2

]
Pε(r)= 0 ,

(24.25)

subject to the boundary condition Pε(0)= 0, and sim-
ilarly for the discrete orbitals Pn(r). Hermann and
Skillman [24.14] have tabulated a widely used central
potential for each element in the periodic table as well
as radial wave functions for each occupied orbital in the
ground state of each element.

24.2.2 High Energy Behavior

The hydrogen atom cross section, which is nonzero at
threshold and decreases monotonically with increasing
photon energy, serves as a model for inner-shell pho-
toionization cross sections in the X-ray photon energy
range. A sharp onset at threshold followed by a mono-
tonic decrease above threshold is precisely the behavior
seen in X-ray photoabsorption measurements. A simple
hydrogenic approximation at high energies may be jus-
tified theoretically as follows: (1) Since a free electron
cannot absorb a photon (because of kinematical consid-
erations), at high photon energies one expects the more
strongly bound inner electrons to be preferentially ion-
ized as compared with the outer electrons. (2) Since the
Pn(r) for an inner electron is concentrated in a very
small range of r, one expects the integrand of the radial
dipole matrix element to be negligible except for those

values of r where Pn(r) is greatest. (3) Thus it is only
necessary to approximate the atomic potential locally,
e.g., by means of a screened Coulomb potential

Vn(r)=−
(

Z− sn

r

)
+Vn

o (24.26)

appropriate for the n orbital. Here sn is the “inner-
screening” parameter, which accounts for the screening
of the nuclear charge by the other atomic electrons,
and V o

n is the “outer-screening” parameter, which ac-
counts for the lowering of the n electrons’ binding
energy due to repulsion between the outer electrons
and the photoelectron as the latter leaves the atom.
The potential in (24.26) predicts hydrogen-like pho-
toionization cross sections for inner-shell electrons
with onsets determined by the outer-screening param-
eters V o

n.
Use of more accurate atomic central potentials in

place of the screened hydrogenic potential in (24.26)
generally enables one to obtain photoionization cross
sections below the keV photon energy region to within
10% of the experimental results [24.15]. For  > 0 sub-
shells and photon energies in the keV region and above,
the independent particle model becomes increasingly in-
adequate owing to coupling with nearby ns-subshells,
which generally have larger partial cross sections at
high photon energies [24.16]. For high, but still non-
relativistic photon energies, i. e., ω& mc2, the energy
dependence of the cross section for the n subshell
within the independent particle model is [24.17]

σn ∼ ω−− 7
2 . (24.27)

However, when interchannel interactions are taken into
account, the asymptotic energy dependence for subshells
having  > 0 becomes independent of  [24.18]:

σn ∼ ω− 9
2 ( > 0) . (24.28)

This result stems from coupling of the  > 0 photoion-
ization channels with nearby s-subshell channels.

24.2.3 Near Threshold Behavior

For photons in the vuv energy region, i. e., near the
outer-subshell ionization thresholds, the photoionization
cross sections for subshells with ≥ 1 frequently have
distinctly nonhydrogenic behavior. The cross section, in-
stead of decreasing monotonically as for hydrogen, rises
above threshold to a maximum (the so called delayed
maximum above threshold). Then it decreases to a min-
imum (the Cooper minimum [24.19, 20]) and rises to
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a second maximum. Finally the cross section decreases
monotonically at high energies in accordance with hy-
drogenic behavior. Such nonhydrogenic behavior may
be interpreted as due either to an effective potential bar-
rier or to a zero in the radial dipole matrix element. We
examine each of these effects in turn.

The delayed maximum above outer subshell ioniza-
tion thresholds of heavy atoms (i. e., Z � 18) is due to
an effective potential barrier seen by = 2 and = 3
photoelectrons in the region of the outer edge of the
atom (24.25). This effective potential lowers the prob-
ability of photoelectron escape until the photoelectrons
have enough excess energy to surmount the barrier. Such
behavior is nonhydrogenic. Furthermore, in cases where
an inner subshell with = 2 or 3 is being filled as Z in-
creases (as in the transition metals, the lanthanides and
the actinides) there is a double well potential. This dou-
ble well has profound effects on the 3p-subshell spectra
of the transition metals, the 4d-subshell spectra of the
lanthanides, and the 5d-subshell spectra of the actinides,
as well as on atoms with Z just below those of these
series of elements [24.1, 21, 22].

Cross section minima arise due to a change in sign
of the radial dipole transition matrix element in a par-
ticular channel [24.23, 24]. Rules for predicting their
occurrence were developed by Cooper [24.19,20]. Stud-
ies of their occurrence in photoionization from excited
states [24.25], in high Z atoms [24.26], and in relativis-
tic approximation [24.27] have been carried out. Only
recently has a proof been given [24.28] that such min-
ima do not occur in atomic hydrogen spectra. For other
elements, there are further rules on when and how many
minima may occur [24.29–31].

Often within such minima, one can observe effects
of weak interactions that are otherwise obscured. Rela-
tivistic and weak correlation effects on the asymmetry
parameter β for s-subshells is a notable example [24.32].
Wang et al. [24.33] have also emphasized that near
such minima in the E1 amplitudes, one cannot ignore
the effects of quadrupole and higher corrections to the
differential cross section. Central potential model cal-
culations [24.33] show that quadrupole corrections can
be as large as 10% of the E1 cross section at such cross
section minima, even for low photon energies.

24.3 Particle–Hole Interaction Effects

The experimental photoionization cross sections for the
outer subshells of the noble gases (The noble gases
have played a prominent role in the development of
the theory of photoionization for two reasons. These
were among the first elements studied by experimental-
ists with synchrotron radiation beginning in the 1960’s.
Also, their closed-shell, spherically symmetric ground
states simplified the theoretical analysis of their cross
sections.) near the ionization thresholds can be under-
stood in terms of interactions between the photoelectron,
the residual ion, and the photon field which are called,
in many-body theory language, “particle–hole” inter-
actions (see Chapt. 47). These may be described as
interactions in which two electrons either excite or de-
excite each other out of or into their initial subshell
locations in the unexcited atom. To analyze the effects
of these interactions on the cross section, it is conve-
nient to classify them into three categories: intrachannel,
virtual double excitation, and interchannel. These alter-
native kinds of particle–hole interactions are illustrated
in Fig. 24.1 using both many-body perturbation theory
(MBPT) diagrams and more “physical” scattering pic-
tures. We discuss each of these types of interaction in
turn.

24.3.1 Intrachannel Interactions

The MBPT diagram for this interaction is shown on the
left in Fig. 24.1a; on the right a slightly more picto-
rial description of this interaction is shown. The wiggly
line indicates a photon, which is absorbed by the atom
in such a way that an electron is excited out of the
n subshell. During the escape of this excited elec-
tron, it collides or interacts with another electron from
the same subshell in such a way that the second elec-
tron absorbs all the energy imparted to the atom by
the photon; the first electron is de-excited back to its
original location in the n subshell. For closed-shell
atoms, the photoionization process leads to a 1P1 final
state in which the intrachannel interaction is strongly
repulsive. This interaction tends to broaden cross sec-
tion maxima and push them to higher photon energies
as compared with the results of central potential model
calculations.

Intrachannel interaction effects are taken into ac-
count automatically when the correct Hartree-Fock (HF)
basis set is employed in which the photoelectron sees
a net Coulomb field due to the residual ion and is cou-
pled to the ion to form the appropriate total orbital L and
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Fig. 24.1a–c MBPT diagrams (left) and scattering pic-
tures (right) for three kinds of particle–hole interaction:
(a) intrachannel scattering following photoabsorption;
(b) photoabsorption by a virtual doubly-excited state; (c) in-
terchannel scattering following photoabsorption

spin S angular momenta. Any other basis set requires
explicit treatment of intrachannel interactions.

24.3.2 Virtual Double Excitations

The MBPT diagram for this type of interaction is
shown on the left in Fig. 24.1b. Topologically, this di-
agram is the same as that on the left in Fig. 24.1a.
In fact, the radial parts of the two matrix elements
are identical; only the angular factors differ. A more
pictorial description of this interaction is shown on
the right of Fig. 24.1b. The ground state of the atom
before photoabsorption is shown to have two elec-
trons virtually excited out of the n subshell. In
absorbing the photon, one of these electrons is de-
excited to its original location in the n subshell,
while the other electron in ionized. These virtual dou-
ble excitations imply a more diffuse atom than in
central-potential or HF models, with the effect that
the overly repulsive intrachannel interactions are weak-
ened, leading to cross sections for noble gas atoms

that are in very good agreement with experiment
with the exception that resonance features are not
predicted.

24.3.3 Interchannel Interactions

The interchannel interaction shown in Fig. 24.1c is im-
portant, particularly for s subshells. This interaction has
the same form as the intrachannel interaction shown in
Fig. 24.1a, except now when an electron is photoexcited
out of the n00 subshell, it collides or interacts with an
electron in a different subshell – the n11 subshell. This
interaction causes the second electron to be ionized, and
the first electron to fall back into its original location in
the n00 subshell.

Interchannel interaction effects are usually very con-
spicuous features of photoionization cross sections.
When the interacting channels have partial photoion-
ization cross sections which differ greatly in magnitude,
one finds that the calculated cross section for the weaker
channel is completely dominated by its interaction with
the stronger channel. At the same time, it is often a safe
approximation to ignore the effect of weak channels
on stronger channels. In addition, when the interacting
channels have differing binding energies, their inter-
channel interactions lead to resonance structure in the
channel with lower binding energy (arising from its cou-
pling to the Rydberg series in the channel with higher
binding energy).

At high photon energies, s-subshell partial cross
sections dominate over  > 0 subshell partial cross sec-
tions [(24.27), (24.28)]. Hence interchannel interactions
of  > 0 subshells with nearby s-subshells change in-
dependent particle model predictions significantly. In
particular, as noted in Sect. 24.3.2, such interactions can
drastically change the magnitudes of the  > 0 partial
cross sections [24.16] as well as their asymptotic energy
behavior [24.18].

24.3.4 Photoionization of Ar

An example of both the qualitative features exhibited by
photoionization cross sections in the vuv energy region
and of the ability of theory to calculate photoionization
cross reactions is provided by photoionization of the
n = 3 subshell of argon, i. e.,

Ar3s23p6+γ → Ar+3s23p5+ e−

→ Ar+3s3p6+ e− . (24.29)

Figure 24.2 shows the MBPT calculation of Kelly
and Simons [24.34], which includes both intrachannel
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and interchannel interactions as well as the effect of vir-
tual double excitations. The cross section is in excellent
agreement with experiment [24.35, 36], even to the ex-
tent of describing the resonance behavior due to discrete
members of the 3s → εp channel.

Figure 24.2 illustrates most of the features of pho-
toionization cross sections described so far. First, the
cross section rises to a delayed maximum just above
the threshold because of the potential barrier seen by
photoelectrons from the 3p subshell having = 2. For
photon energies in the range of 45–50 eV, the calcu-
lated cross section goes through a minimum because of
a change in sign of the 3p → εd radial dipole amplitude.
The HFL and HFV calculations include the strongly
repulsive intrachannel interactions in the 1P final-state
channels and calculate the transition amplitude using
the length (L) and velocity (V) form respectively for the
electric dipole transition operator (24.7). With respect
to the results of central potential model calculations, the
HFL and HFV results have lower and broader maxima
at higher energies. They also disagree with each other
by a factor of two! Inclusion of virtual double excita-
tions results in length and velocity results that agree to
within 10% with each other and with experiment, ex-
cept that the resonance structures are not reproduced.
Finally, taking into account the interchannel interac-
tions, one obtains the length and velocity form results
shown in Fig. 24.2 by dash-dot and dashed curves re-
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Fig. 24.2 Photoionization cross section for the 3p and 3s
subshells of Ar. HFL and HFV indicate the length and ve-
locity results obtained using HF orbitals calculated in a 1P1

potential. Dot-dash and dashed lines represent the length
and velocity results of the MBPT calculation of Kelly and Si-
mons [24.34]. Only the four lowest 3s→ np resonances are
shown; the series converges to the 3s threshold at 29.24 eV.
Experimental results are those of Samson [24.35] above
37 eV and of Madden et al. [24.36] below 37 eV (After
[24.34])

spectively. Agreement with experiment is excellent and
the observed resonances are well-reproduced.

24.4 Theoretical Methods for Photoionization

24.4.1 Calculational Methods

Most of the ab initio methods for the calcula-
tion of photoionization cross sections (e.g., the
MBPT method [24.37], the close-coupling (CC)
method [24.38], the R-matrix method [24.39, 40], the
random phase approximation (RPA) method [24.9], the
relativistic RPA method [24.41], the transition matrix
method [24.42,43], the multiconfiguration Hartree-Fock
(MCHF) method [24.44–46], etc.) have successfully cal-
culated outer p-subshell photoionization cross sections
of the noble gases by treating in their alternative ways
the key interactions described above, i. e., the particle–
hole interactions. In general, these methods all treat
both intrachannel and interchannel interactions to in-
finite order and differ only in their treatment of ground
state correlations. (The exception is MBPT, which often
treats interchannel interactions between weak and strong

channels only to first or second order.) These methods
therefore stand in contrast to central potential model
calculations, which do not treat any of the particle–hole
interactions, and single-channel term-dependent HF cal-
culations, which treat only the intrachannel interactions.
The key point is that selection of the interactions that
are included in a particular calculation is more impor-
tant than the method by which such interactions are
handled.

Treatment of photoionization of atoms other than
the noble gases presents additional challenges for the-
ory. For example, elements such as the alkaline earths,
which have s2 outer subshells, require careful treatment
of electron pair excitations in both initial and final states.
Open shell atoms have many more ionization thresholds
than do the noble gases. Treatment of the resultant rich
resonance structures typically relies heavily on quantum
defect theory [24.46] (see Chapt. 32). All the methods
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listed above can be used to treat elements other than the
noble gases, but a method which has come to promi-
nence because of the excellent results it obtains for both
alkaline earth and open-shell atoms is the eigenchannel
R-matrix method [24.47].

24.4.2 Other Interaction Effects

A number of interactions, not of the particle–hole type,
lead to conspicuous effects in localized energy regions.
When treating photoionization in such energy regions,
one must be careful to choose a theoretical method which
is appropriate. Among the interactions which may be
important are the following:

Relativistic and Spin-Dependent Interactions
The fact that j = − 1

2 electrons are contracted more
than j = + 1

2 electrons at small distances has an enor-
mous effect on the location of cross section minima
in heavy elements [24.15, 48]. It may explain the large
observed differences in the profiles of a resonance de-
caying to final states that differ only in their fine structure
quantum numbers [24.49].

Inner-Shell Vacancy Rearrangement
Inner-shell vacancies often result in significant pro-
duction of satellite structures in photoelectron spectra.
Calculations for inner subshell partial photoionization
cross sections are often substantially larger than results
of photoelectron measurements [24.50–52]. This differ-

ence is attributed to such satellite production, which is
often not treated in theoretical calculations.

Polarization and Relaxation Effects
Negative ion photodetachment cross sections often
exhibit strong effects of core polarization near thresh-
old. These effects can be treated semi-empirically,
resulting in excellent agreement between theory and
experiment [24.53]. Even for inner shell photoion-
ization cross sections of heavy elements, ab initio
theories do not reproduce measurements near thresh-
old without the inclusion of polarization and relaxation
effects [24.54, 55].

An Example
The calculation of the energy dependence of the asym-
metry parameter β for the 5s subshell of xenon requires
the theoretical treatment of all of the above effects. In
the absence of relativistic interactions,β for Xe 5s would
have the energy-independent value of two. Deviations of
β from two are therefore an indication of the presence of
these relativistic interactions. The greatest deviation of
β from two occurs in the localized energy region where
the partial photoionization cross section for the 5s sub-
shell has a minimum. In this region, however, relativistic
calculations show larger deviations from two than are
observed experimentally. Inner shell rearrangement and
relaxation effects play an important role [24.56, 57]
and must be included to achieve good agreement with
experiment.

24.5 Recent Developments

One of the most intensively studied areas in atomic
photoionization in recent years has been the double
photoionization of the helium atom. Extensive sets of
experimental measurements for the two electron angular
distributions (i. e., the triply differential cross sections)
have provided stringent tests for various theoretical
models and their treatments of electron correlations.
A number of excellent reviews of this field have been
published recently [24.58–60].

Another intensively studied area has been the
analysis and measurement of non-dipole effects in pho-
toionization, which were first observed in the X-ray
region [24.61] but have been found to be significant even
in the vuv photon energy region [24.62, 63]. In general,
these effects stem from interference between electric
quadrupole and the (usual) electric dipole transition am-
plitudes in differential cross sections (for a recent review,

see [24.64]). Besides asymmetries in the photoelectron
angular distributions, non-dipole effects lead also to new
features for spin-resolved measurements [24.65,66], and
for the case of polarized atoms [24.67]. Recently, non-
dipole effects have been predicted to be significant also
in double photoionization of helium at relatively low
photon energies [24.68].

Finally, both experimental and theoretical studies of
ionic species have flourished over the past decade. In
particular, photodetachment of negative ions near ex-
cited atomic thresholds provides an opportunity to study
correlated, three-body Coulomb states unencumbered
by Rydberg series. Only with the advent of power-
ful computer workstations have theorists been able to
carry out numerical calculations for such high, doubly
excited states with spectroscopic accuracy. Following
experiments for photodetachment of H− with excita-
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tions of atomic levels in H(n > 2), theorists developed
propensity rules for identifying and characterizing the
dominant photodetachment channels [24.69–71]. More
recently, experimental and theoretical interest shifted
to the negative alkali ions (e.g., Li− and Na−), which
for low photon energies have outer electron detach-
ment spectra grossly resembling that of H−. However,
the negative alkali spectra contain clear signatures of
propensity-rule-forbidden states that become increas-
ingly prominent as the atomic number increases (owing
to the nonhydrogenic inner electron cores). A brief re-
view of low energy negative alkali photodetachment
is given in [24.72]. Among the more general features
brought to light by these studies is the mirroring of
resonance profiles in alternative partial cross sections,
which appears to be a very general phenomenon com-
mon to photodetachment and photoionization processes
involving highly excited residual atoms or ions [24.73].

Recently, high energy (K -shell) photodetachment of
the negative ions Li− and He− (resulting in two elec-

tron ionization) has been studied both experimentally
and theoretically [24.74, 75]. These studies represent
the first results for inner shell photodetachment. There
is general agreement between theory and experiment
well above the K edge, but the theoretical cross sec-
tions at the K edge are significantly higher than the
experimental measurements. The latter discrepancy is
now understood as arising from recapture of the low-
energy detached electron following Auger decay of
the inner-shell vacancy, which when taken into ac-
count theoretically has been shown to provide results
that agree with experiment [24.76, 77]. Also, the first
experimental data together with theoretical analyses
were recently presented for photoionization of ground
and metastable positive ions (O+ and Sc++) [24.78,
79]. With the advent of data for photoionization of
positive ions it now becomes possible (using the prin-
ciple of detailed balance) to make connections to
data for electron–ion photo-recombination cross sec-
tions [24.79].

24.6 Future Directions

The construction of high brightness synchrotron light
sources and the increasing use of lasers are providing
the means to study atomic photoionization processes at
an unparalleled level of detail. The synchrotrons gen-
erally produce photons in the soft X-ray and X-ray
regions. Thus, inner shell vacancy production and decay,
satellite production, and multiple ionization phenom-
ena are all being increasingly studied. Laser sources
are allowing production of atoms in tailored initial
states. Studies of ions, both negativeand positive, in

well-specified states are also increasingly being car-
ried out. Thus, photoionization of excited atoms and
ions and, in particular, complete measurements of par-
ticular photoionization processes, are now possible.
Recent collections of short review papers provide ref-
erences to these topics [24.3, 4]. In addition, two recent
reviews of experimental results for noble gas atom
photoionization [24.80] and for metal atom photoion-
ization [24.81] also provide valuable information on
the current state of the correspondingtheoretical results.
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Autoionizatio25. Autoionization

The phenomenon of autoionization, or more
particularly the autoionization state itself, is
treated for the most part in this chapter as
a bound state. The process is rigorously a part
of the scattering continuum (Chapt. 47), but, due
mostly to the work of Feshbach [25.1], a rigorous
formulation can be established whereby the main
element of the theory can be made into a bound
state problem with the scattering elements built
around it. The major constituent of both these
features is accomplished with projection operators.
A brief description of the above elements of the
theory, centered around projection operators, is
the aim of this chapter [25.2], although some
additional methods are discussed in Sect. 25.5.
Rydberg units are used unless otherwise noted.
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25.1 Introduction

25.1.1 Auger Effect

Autoionization falls within the general class of phe-
nomena known as the Auger effect. In the Auger
effect an atomic system “seemingly” (Sect. 25.1.3) spon-
taneously decays into a partition of its constituent
parts.

25.1.2 Autoionization, Autodetachment,
and Radiative Decay

If the initial, composite system is neutral, or positively
charged, and its constituent decay particles are an elec-
tron and the residual ion, then the process is called
autoionization. If the original system is a negative ion,
so that the residual heavy particle system is neutral, then
the process is technically called autodetachment; for the

most part, the physics and the mathematical treatment
are the same.

It is also possible, before electron emission takes
place, that the system will alternatively decay radia-
tively to an autoionization state of lower energy, or a true
bound state of the composite system. The latter process
is called radiative stabilization (which is a basic part of
dielectronic recombination (Chapt. 55)).

25.1.3 Formation, Scattering,
and Resonances

Autoionizing states are formed by scattering processes
and photoabsorption. These are the inverses of the auto-
ionization and photon emission processes by which
they can decay. In the scattering process, formation
of the autoionization state corresponds to a resonance
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in the scattering cross section (Chapt. 47). Autoion-
ization is the process which corresponds to the decay
of the resonance. The decay of the resonance (au-
toionization) is then seen to be the last half of the
resonant scattering process. Strictly speaking there-
fore, the resonant or autoionization state, although it
may be long-lived, is not completely stationary, and

that is the reason that the word “seemingly” was used
to describe the Auger process. The compound system
can also be formed by absorption of photons im-
pinging on a bound state (usually the ground state)
of the compound system, in which case the aution-
ization state shows up as a “line” in the absorption
spectrum.

25.2 The Projection Operator Formalism
In the energy domain where the Schrödinger equation
(SE)

HΨ = EΨ (25.1)

describes scattering, the wave function does not vanish
at infinity, i. e.,

lim
ri→∞Ψ �= 0 , (25.2)

where ri is the radial coordinate of ith electron.
The basic idea of the projection operator formal-

ism [25.1] is to define projection operators P and Q
which separateΨ into scattering-like (PΨ ) and quadrat-
ically integrable (QΨ ) parts:

Ψ = PΨ +QΨ . (25.3)

Implicit in (25.3) are

completeness: P+Q = 1 ,

idempotency: P2 = P , Q2 = Q ,

orthogonality: PQ = 0 , (25.4)

and the asymptotic properties

lim
ri→∞

⎧
⎨

⎩

PΨ = lim
ri→∞Ψ

QΨ = 0
. (25.5)

25.2.1 The Optical Potential

Straightforward manipulation of (25.1) and (25.3) leads
to an important relation between QΨ and PΨ :

QΨ = (E−Q HQ)−1 Q HPΨ . (25.6)

From (25.6) a basic equation for PΨ (which, by
virtue of (25.5), contains all the scattering information)
emerges:

(PHP+Vop− E)PΨ = 0 . (25.7)

The most significant part of (25.7) is the optical potential
Vop given by

Vop = PHQ(E−Q HQ)−1 Q HP . (25.8)

Vop is a nonlocal potential; the most incisive way to give
it meaning is to the define the Q HQ problem.

25.2.2 Expansion of Vop: The QHQ Problem

The following eigenvalue problem constitutes the heart
of the projection operator formalism:

Q HQΦn = EnΦn . (25.9)

For calculational purposes, it is best to recast (25.9) in
the variational form

δ

( 〈ΦQ HQΦ〉
〈ΦQΦ〉

)
= 0 . (25.10)

This equation may yield a discrete plus a contin-
uous spectrum in an energy domain where the SE
has only a continuous spectrum. Moreover, if the
Q operator is appropriately chosen, then the dis-
crete eigenvalues En are close to the desired class
of many-body resonances, called variously Fesh-
bach resonances, core-excited [25.3], or doubly-excited
states. In terms of these solutions, Vop has the
expansion

Vop =
∑∫

PHQ|Φn〉(E−En)
−1〈Φn |Q HP . (25.11)
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25.3 Forms of P and Q

25.3.1 The Feshbach Form

Projection operators are not unique. Feshbach [25.1] has
sketched a derivation of a “robust” projection operator
for the general N-electron target system. Robust means
that QΦ is devoid of open channels. The complete ex-
pression for P, including inelastic channels has been
derived in [25.5]

P =
N+1∑

i=1

[
ψ
(
r(i)

)〉 · 〈ψ(r(i))

+
∑

λα

′ vα(ri) ·ψ
(
r(i)

)〉〈
vα(ri) ·ψ

(
r(i)

)

λα−1

]
,

(25.12)

where the prime on the second summation means that
terms with λα = 1 are to be omitted, ri denotes the radial
coordinate of electron i, and r(i) stands for the angular
and spin coordinates of electron i plus all coordinates
of the remaining N electrons. Thus r(i) indicates the
totality of all coordinates of the (N+1) electrons except
the radial coordinate of the ith electron ri . ψ(r(i)) is
the vector channel wave function in which the angular
momentum and spin of the electron i are coupled to
the target in state ν (ν = 0, . . . , νmax). A component of
a vector labels the inelastic channel, and dot products
represent sums over channels. The Q operator is then
made explicit by completeness: Q = 1− P, (25.4).

The α-indexed quantities in (25.12) arise from ex-
change; they are the eigensolutions of the integral
eigenvalue problem

vα(ri)= λα〈K(ri |r j) ·vα(r j)〉r j . (25.13)

Here, K(ri |r j) is a matrix with components

Kµν(ri |r j) ∝ N
〈
ψµ

(
r(i)

)
ψν

(
r( j))〉

r(ij) , (25.14)

and r(ij) indicates that all variables, except ri and r j are
integrated over. In the inelastic regime, therefore, the
[vα, λα] are not associated with specific channels, but
rather with the totality of open channels. This means
that every component of vα is associated with all inelas-
tic channels [25.5]. The vα are orthogonal, and can be
normalized so that 〈vα ·vβ〉 = δαβ . The λα obey several
sum rules [25.4], of which the most useful is

nλ∑

α=1

(λα)
−1 =

νmax∑

ν=0

〈Kνν(r|r)〉r , (25.15)

where nλ is the number of eigenvalues of (25.13). The
vα can be accurately calculated by use of a variational
principle [25.4]. A test of (25.15) for the lowest He−( 2S)
resonance, using Hylleraas functions to construct Q in
the evaluation of Q HQ, is shown in Table 25.1 [25.4],
and results for the resonance position are compared in
Table 25.2.

Table 25.1 Test of sum rule (25.15) for the lowest
He− (1s2s2 2S) autodetachment state [25.4]. Projection
operators are based on a 4 term Hylleraas φ0 and the vari-
ational form of vα given below. Values of other constants
are given in [25.4]

φ0 ∝ (1+C1r1+C2r2+C12r12) exp(−γ1r1−γ2r2)

+(r1 ↔ r2) ,

vα ∝ (
c(α)11 + c(α)12 r

)
exp(−γ1r)

+(c(α)21 + c(α)22 r
)

exp(−γ2r) ,
and the variational eigenvalues are [25.4]

λ1 = 1.009 453 λ2 = 232.8540

λ3 = 80 101.08 λ4 = 4 817 341

Summation Value (Ry−1)
4∑

α=1

(λα)
−1 0.994 9425

〈K(r|r)〉r 0.994 9514

Table 25.2 Comparison of methods for calculating the en-
ergy of the lowest He− (1s2s2 2S) autodetachment state.
The Q HQ results are denoted (Ê − E0)Quasi for the quasi-
projection method and (E − E0)Complete for the complete
projection method [25.4]. The entries labeled “Other re-
sults” give the full resonant energy. Units are eV

Target (Ê − E0)Quasi (E − E0)
a
Complete

Closed shell 19.366 19.593

Open shell 19.385 19.666

|1s1s ′|+2p2 19.388 19.615

4 term Hylleraas 19.381 19.496

10 term Hylleraas 19.379 19.504

Other results 19.402 b, 19.376 c, 19.367 d, 19.367±0.007 e

a Values obtained using R∞ = 13.605 698 eV and

E0 =−79.0151 eV [25.6]
b Complex rotation method; Junker and Huang [25.7]
c Hole-projection complex-rotation; Davis and Chung [25.8]
d Hermitian-representation complex-rotation; [25.9]
e Experiment; Brunt et al. [25.10]
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25.3.2 Reduction for the N = 1 Target

Explicit rigorous P and Q operators of the above type
are only possible for N = 1 (i. e. hydrogenic) targets.
In that case, spin can be easily eliminated by using spa-
tially symmetric or antisymmetric wave functions. In the
elastic region, P and Q reduce to [25.11, 12]

P = P1+ P2− P1 P2 ; Q = 1− P1− P2+ P1 P2 .

(25.16)

Here the Pi = φ(ri)〉〈φ(ri) are purely spatial projectors.
Forms for the inelastic continuum are easily general-
ized [25.13].

There have been many calculations of Q HQ for
two-electron systems (N = 1), starting with fundamental
work of O’Malley and Geltman [25.13]. A small sample
is given in Table 25.3. They are given for their historical
importance, demonstrating for the first time the con-
vergence of eigenvalues to well defined values in the
continuum. All eigenvalues (below the n = 2 threshold,
in this case) correspond to resonances.

Table 25.3 Energies Es of the He(2s2p1P0) autoionization
states below He+ (n = 2) threshold from the variational
calculations of O’Malley and Geltman [25.13]. Units are
Ry. N is the number of terms in the trial function

N s = 1 s = 2 s = 3

9 −1.377 08 −1.178 92 −1.097 16

15 −1.380 44 −1.183 12 −1.104 32

20 −1.382 16 −1.183 48 −1.108 28

25 −1.383 16 −1.190 00 −1.111 88

25.3.3 Alternative Projection
and Projection-Like Operators

Two alternative methods based on the idea of projec-
tion are available: quasi-projectors and hole projection
operators.

Quasi-projectors [25.14] relax the condition of idem-
potency, but still maintain a discrete spectrum, which is
in a one-to-one correspondence with resonances, with
a predeterminable number of exceptions [25.2].

Hole projection operators have proven to be a more
practical and effective approach [25.15]. The method
uses one-particle (say, hydrogenic) orbitals, φn(q; r),
to build holes via projectors, [1−∑

n φn〉〈φn], op-
erating on the (N +1)-particle wave function. The
Rayleigh–Ritz functional is minimized with respect to
the parameters in Φ, but it is maximized with respect
to q, the nonlinear parameter in all the φn . In a model
case, this minimax procedure has been shown [25.15]
to optimize the eigenvalues to describe resonance ener-
gies; many calculations since then [25.16] have verified
the minimax criteria in many-electron systems. More re-
cently, the technique has been combined with complex
rotation, so as to enable calculation of other resonant
quantities [25.17]. Remarkably accurate results have
been obtained.

Finally, hole projectors are ideally suited for inner-
shell vacancy states of many-electron systems if high
accuracy is required [25.2]. Effectively, this amounts to
a reliable method for optimizing parameters of a hole
orbital to be used in an Auger transition integral for fill-
ing such a vacancy, although that method has apparently
never been used (Chapt. 62).

25.4 Width, Shift, and Shape Parameter

25.4.1 Width and Shift

Here one requires PΨ as well as QΨ . The former is
obtained from a “nonresonant continuum,” defined as
the scattering solution of

[
PHP+V (nr)

s − E
]
PΨ(nr)

s = 0 , (25.17)

where the nonresonant potential,

V (nr)
s = Vop− PHQΦs〉(E−Es)

−1〈Φs Q HP ,
(25.18)

excludes the resonant state s from the optical potential.
In terms of PΨ(nr)

s , whose phase shift, η0, is smooth
in the vicinity of E ≈ Es , a solution of the complete

problem, (25.7), can be constructed [25.13] with a phase
shift η0+ηr, where the additional phase shift

ηr = arctan

(
Γ/2

(Es +∆s)− E

)
(25.19)

exhibits typical resonant behavior (0 < ηr < π).
From (25.19) it is clear that the “true” position of the
resonance is

Es(E)= Es +∆s(E) . (25.20)

The width Γs and shift ∆s are given by [25.13]:

Γs(E)= 2k|〈Ψ(nr)
s (E) PHQΦs〉|2 , (25.21)

∆s(E)= 〈Φs Q HP G P(E) PHQΦs〉 , (25.22)

Part
B

2
5
.4



Autoionization 25.4 Width, Shift, and Shape Parameter 395

where k is the scattering momentum (i. e. k2 = E− E0),
and G P is the Green’s function associated with (25.17);
G P can be simplified from the form given in [25.13]
[(2.28) of first article of [25.2]].

Equation (25.20) is an implicit equation for the
energy at which the resonance occurs. It can be
solved graphically [25.18], and that energy defines
the Feshbach resonant energy EF, which differs (very
slightly) from the Breit–Wigner energy (Sect. 25.4.3 and
Fig. 25.1).

25.4.2 Shape Parameter

The shape of an isolated radiative transition between
an autoionization state and some other state can be de-
scribed by Γ , E, and an additional parameter qs, often
called the shape parameter [25.19]. The ratio of tran-
sition probabality (in, say, absorption from an initial
state labeled i〉) through the resonant state to its non-
resonant value, parametrized in its Fano form [25.19]
on the left-hand side of (25.23), can be equated to
its meaning in Feshbach terms on the right-hand side
of (25.23):

(es +qs)
2

1+ e2
s

= |〈PΨ +QΨ |T |i〉|2
|〈PΨ(nr)

s +QΨ(nr)
s |T |i〉|2

, (25.23)

where es is the scaled energy

es = (E− Es)/(Γs/2) (25.24)

and T is a radiative transition operator (25.25).
To analyze (25.23) in the Feshbach formalism, the

key point [25.13] is to recognize that the bras on the
right-hand side must include P as well as Q parts of
the respective wave functions, as is indicated in (25.23).
That is because the T operator is a perturbation and
not part of the dynamical problem. With T in length
form

T ∝
N+1∑

j=1

z j , (25.25)

the rhs of (25.23) can be calculated by noting that PΨs

and PΨ(nr)
s can be, in principle, determined from (25.7)

and (25.17). QΨs is then derived from PΨs using (25.6).
But QΨ(nr)

s excludes the sth term from the right-hand
side of (25.6):

QΨ(nr)
s =

∑

n �=s

Φn〉〈Φn Q HPΨ(nr)〉
E−En

. (25.26)

9.55744

9.5574

9.55736

9.55732

9.55728

0.04709

0.04707

0.04705

0.04703

0.04701
9.52 9.53 9.54 9.55 9.56 9.57 9.58 9.59

k2 (eV)

Γ

1 + E (k2) Γ (k2)

1 + E

ΓF

k2
F

1 + EF

Fig. 25.1 Precision calculation of H−(1S) resonance. Solid curve:
E+1 vs. k2, where E = E +∆, (25.20). k2

F is that value of k2 at
which E+1 = k2. Dashed curve is Γ vs. k2 from (25.21), and
ΓF = Γ

(
k2

F

)
. Curves are from calculations of [25.18]; results are

EF = 9.557 35 eV and ΓF = 0.047 0605 eV. Applying corrections,
(25.31) gives finally EBW = EF+O(10−6), ΓBW = 0.047 17 eV

With use of these relations in the rhs of (25.23) an ex-
plicit formula for qs was derived in [25.2]; it is given
by

qs = 〈Φs Q̃|T |i〉
k〈i|T |Ψ(nr)

s 〉〈Ψ(nr)
s |PHQΦs〉

, (25.27)

where

Q̃ = Q+Q HPGs +
∑

n �=s

Q HPGs HQ|Φn〉〈Φn

E−En
.

(25.28)

The Green’s function Gs in (25.28) is the one associated
with (25.17). It can be expanded in terms of the eigenso-
lutions of (25.17), but its spectrum may have a discrete
as well as continuous part, in which case,

Gs =
∑

ν

′ PΨ(nr)
ν 〉〈PΨ(nr)

ν

Es − Eν

+ ℘
π

∫
PΨ(nr)

s (E′)〉〈PΨ(nr)
s (E′)

√
E′ dE′

Es − E′ .

(25.29)

The sum over ν refers to the discrete part of the
spectrum of (25.17) (if there is one), and ℘ denotes
a principal value integral over the continuum solutions.
The latter are always assumed to be normalized as
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Table 25.4 Comparison of high precision calculations with experiment for the resonance parameters of the He(1P0)
resonances below the n = 2 threshold. For photoabsorption, the appropriate Rydberg constant is RM = R∞/(1+
m/M) [25.20]. The value used here is RM = 13.603 833 eV, and E0 = −79.0151 eV [25.6]

Calculation a Experiment
Quantity Units s = 1 s = 2 s = 1 s = 2

Es Ry −1.385 7895 −1.194 182

∆ eV −0.007 13 0.000 6202

Es − E0 eV 60.1444 62.7587 60.133±0.015 b 62.756±0.01 b

60.151±0.0103 c

Γ eV 0.0369 d 0.000 1165 0.038±0.004 b

0.038±0.002 c

qs −2.849 e −4.606 e −2.80±0.25 b

−2.55±0.16 c

a Bhatia and Temkin [25.20], except as noted
b Madden and Codling [25.21]
c Morgan and Ederer [25.22]
d Bhatia, Burke, and Temkin [25.23]
e Bhatia and Temkin [25.24]

plane waves (not energy normalized) throughout this
chapter.

Equation (25.27) is a nontrivial example of what can
be done with the projection operator technique. Not only
does it allow very accurate calculations ([25.17,20] and
footnote e of Table 25.4), but it provides a theoretical
incisiveness which far exceeds all previous resonance
formalisms.

A formula for the resonant scattering cross section
can be derived which is of the same form as the left-
hand side of (25.23); however, in that case, the parameter
corresponding to qs is related to the nonresonant phase
shift [25.25], and has no quantitative relationship to the
above shape parameter (qs).

25.4.3 Relation to Breit–Wigner
Parameters

Inferring resonance parameters from experimental data
is generally done by fitting to resonance formulae in

which the resonance parameters are assumed to be en-
ergy independent. A phase shift for example would be
inferred by assuming

η(E)= δ0(E)+ arctan

(
ΓBW/2

EBW− E

)
. (25.30)

The relation between the above Breit–Wigner param-
eters and those of the Feshbach theory has been derived
in lowest order by Drachman [25.26]:

EBW = EF− (1/4)ΓF(dΓF/dE)E=EF ,

ΓBW = ΓF(1+ d∆F/dE)E=EF ,

δ0(E)= η0(E)− (1/2)dΓF/dE . (25.31)

In only one precision calculation (for the lowest 1S
resonance in electron–hydrogen scattering) have these
differences, thus far, been evaluated [25.18]. A précis is
given in Fig. 25.1.

25.5 Other Calculational Methods

We now briefly review two calculational methods used
for basic applications in autoionization of few body sys-
tems: (a) complex rotation and (b) a pseudopotential
method.

25.5.1 Complex Rotation Method

Complex rotation, which is based on a theorem of Bal-
slev and Combes [25.27], has been extensively applied
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with great accuracy. Two additional basic systems to be
mentioned here are H− and Ps− (Ps = positronium). In
complex rotation the particle distances are multiplied by
a common phase factor

ri → ri eiθ . (25.32)

Under this replacement the Hamiltonian undergoes the
transformation

H → T e−2iθ +V e−iθ (25.33)

(only Coulomb interactions are assumed). A real varia-
tional wave functionΦ is used (for the applications here,
they are of Hylleraas form, multiplied by rotational har-
monics of symmetric Euler angles of the desired angular
momentum, parity, and spin [25.31]). The functional

[E] = 〈Φ|H|Φ〉
〈Φ|Φ〉 = 〈Φ|T |Φ〉e−2iθ +〈Φ|V |Φ〉e−iθ

〈Φ|Φ〉
(25.34)

is then evaluated. Minimization of (25.34) with respect
to the linear parameters, for a given value of θ, is car-
ried out in the usual way, but by virtue of the complex
dependence on rotation angle the matrix elements Hij in
the matrix eigenvalue equation

det |Hij(θ)− E∆ij | = 0 (25.35)

are complex. Thus the solution of (25.35) gives rise
to complex eigenvalues Eλ = Eλ(θ). For a given λ,
the optimum θ is the one for which Eλ(θ) is effec-
tively stationary as a function of θ [25.29]. Note that no
projection operators are used: the real part of Eλ corres-
ponds to the Breit–Wigner (i. e., experimental) position
of the resonance, and Im(Eλ)= ΓBW/2, whereΓBW cor-
responds to the Breit–Wigner width of the resonance.
These parameters thus include the full Feshbach values
plus corrections (25.31).

Using Hylleraas wave functions with up to 1230
terms in the complex rotation method, resonance
parameters have been obtained for resonance states
of H− below the n = 2 and 3 thresholds of H which

Table 25.5 Comparison of resonance parameters (in eV) obtained from different methods for calculating 1De states in H−

Threshold Complex-cordinate R-matrix [25.28] Feshbach projection [25.20]
n rotation [25.29] (25.31)

E Γ E Γ EF ΓF

2 10.124 36 0.008 62 10.1252 0.008 81 10.1244 0.010

3 11.811 02 0.045 12 11.810 97 a 0.044 49 a

a Close coupling (18-state), [25.30]

compare very well with those obtained using the
projection-operator, R-matrix and close-coupling meth-
ods. Results for the 1De states of H− are given in
the Table 25.5. Similar calculations for Ps− have been
carried out [25.32]. The complex rotation method has
been applied to the autoionization states of many
different systems including muonic systems [25.33],
as well as to study the combined effect of electric
field and spin-orbit interaction on resonance param-
eters [25.34].

25.5.2 Pseudopotential Method

The second method that is included in this section is
done so for the reason that it represents a rather different
idea for the calculation of autoionization rather than be-
ing a more elaborate application of methodologies that
are already known, with results too numerous to be refer-
enced here. The method, described as a pseudopotential
approach, was introduced by Martin et al. [25.35]. An
effective Hamiltonian Heff is defined as

Heff = H+MP , (25.36)

where M is a scalar parameter (i. e., a number), which
will be taken to be very large, multiplying the P operator,
(25.16). [Applications have thus far been restricted to
one-electron targets and resonances below n = 3 excited
state.] In practice, one minimizes the expectation value
of Heff, i. e.,

δ

( 〈Ψv|Heff|Ψv〉
〈ΨvΨv〉

)
= 0 , (25.37)

using an arbitrary, quadratically integrable, variational
function Ψv.

In order to understand the nature of the spectrum
that arises from this variation, we imagine Ψv divided
into its P and Q space components:

Ψv = QΨv+ PΨv = Ψ Q
v +Ψ P

v . (25.38)
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The expectation value 〈Ψv|Heff|Ψv〉 is written in matrix
form as

〈Ψv|Heff|Ψv〉

=
〈
(
Ψ Q

v Ψ P
v

)
(

HQQ HQ P

HPQ HPP +M

)(
Ψ

Q
v

Ψ P
v

)〉

.

(25.39)

The eigenvalue problem resulting from (25.37) reduces
to finding the eigenvalues of the determinant

det

(
〈HQQ〉−λ 〈HQ P〉
〈HPQ〉 〈HPP〉+M−λ

)

= 0 . (25.40)

Note that only the bottom right component contains the
term M. As a result, in the limit of large M, the eigen-
values, which can readily be solved for from (25.39),
are

lim
M→large

λ=
⎧
⎨

⎩
M+〈HPP〉
〈HQQ〉

. (25.41)

The lower eigenvalue is the desired Feshbach resonant
energy EF = 〈HQQ〉. The width is calculated from [with
our normalization, (25.21)]

Γ = 2k|〈Ψλ|Heff|χE〉|2 (25.42)

Table 25.6 Resonance energies EF (Ry) and widths (eV) for 1P states of He below n = 2 threshold (−1 Ry) of He+

State Martin et al. [25.35] Lipsky and Conneely [25.36] Bhatia and Temkin [25.20, 24]

Position Width Position Width Position Width

1 −1.384 00 0.0382 −1.376 72 0.0341 −1.385 79 0.0363

2 −1.194 60 0.000 146 −1.193 12 0.000 131 −1.194 18 0.000 106

3 −1.127 52 0.000 860 −1.125 84 0.007 27 −1.127 72 0.0090

where χE is the solution of the exchange approximation

(HPP − E)χE = 0 (25.43)

It is emphasized that this method only calculates the
Feshbach energy; thus the shifts are not included. On
the other hand the method uses no projection operators
in calculating the matrix elements of H , and only the
matrix elements of P by itself occur. This is much easier
than a standard Q HQ calculation (Sect. 25.2.2).

In practice, the matrix in (25.39) will expand to an
N × N matrix, where N is the number of linear param-
eters in Ψv, and (if one uses a Hylleraas form of Ψv,
for example) the matrix in (25.39) will not overtly
divide itself into the simple form of this heuristic ex-
position pictured in (25.39) or (25.40). Nevertheless,
the conclusion holds; in detail, the eigenvalue spec-
trum will span a range of values with those below the
threshold, appropriate to the P operator being used,
corresponding to real resonances, and the largest eigen-
value will approach the value of M used in the specific
calculation.

A sample of results for the He(1P) resonances below
the n = 2 threshold of He+ taken from [25.35], with
some comparisons, is given in Table 25.6. Note that
the value of EF of the second resonance in the Martin
et al. [25.35] calculation is lower than the rigorous Q HQ
calculation [25.20]. It is believed that this may be due to
the residual M dependence of Heff.

25.6 Related Topics

This chapter is necessarily of limited scope. Within the
projection operator formalism, overlapping resonance
theory [25.37] is discussed in Sect. 47.1.3. Recent cal-
culations [25.38] have shown that such effects, when
present, can induce significant alteration of isolated
resonance results. Other prominent items not included
are stabilization methods [25.39] and hyperspherical
coordinate methods [25.40, 41]. The latter methods
have the appealing property of presenting energies as
a function of the hyperradius, R = (∑

i r2
i

)1/2, which

look like potential energy curves of diatomic molecules
as a function of the intermolecular separation, which
is also usually denoted by R. The molecular struc-
ture analogy has also been used to uncover additional
(approximate) symmetries with corresponding quantum
labels [25.40,41]. They thus have a global character not
present in the foregoing methods. On a purely quanti-
tative level, however, they are not generally as accurate
as methods based on the projection operator or complex
rotation formalism.
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There are many other areas in which autoionization
can play an important role, such as satellite line forma-
tion [25.42], inner-shell ionization [25.43], to mention
only a few (Chapt. 62 and [25.44]). In addition, sig-

nificant application of the phenomena associated with
autoionization to diagnostics of astrophysical [25.45]
and fusion [25.46] plasmas, for example, shows that au-
toionization has considerable applied utility.
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Green’s Funct26. Green’s Functions of Field Theory

The discussion in this chapter is restricted
to Green’s function techniques as applied to
problems in atomic physics, specifically to the
calculation of higher order (correlation, Breit, as
well as radiative) corrections to energy levels,
and also of transition amplitudes for radiative
transitions of atoms which are gauge invariant (GI)
at every level of approximation.

Green’s function techniques were first applied
to many-electron atoms in 1971 as specific instances
of the use of field theory techniques in many-
particle problems [26.1, 2]. They initially provided
alternative derivations of known approximations
such as the Hartree–Fock (HF) approximation
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and random phase approximation (RPA). The start-
ing point for the derivations was a nonrelativistic
(NR) field-theoretical effective Hamiltonian for the
system, which involved the nucleus–electron po-
tential and only Coulomb interactions between
electrons.

It subsequently became apparent that it was possible
to formulate the problem more generally, with the
full quantum electrodynamic (QED) Hamiltonian as
a starting point [26.3, 4]. Thus, the theory contains
both relativity, and virtual and real transverse photons,
as well as the Coulomb interaction between the elec-
trons. The relativistic (R) approximate equations, such
as the Dirac–Fock (DF) and relativistic random phase
approximation (RRPA) are the natural outcomes of the
formalism, and the NR results can be viewed as ap-
proximations to these R cases. Moreover, the Green’s
function approach (GFA) now provides a means of car-
rying out programs involving systematic approximations
of successively higher and higher accuracy. The GFA
provides a framework which allows one to make cor-
rections to results obtained in the DF approximation or
in the coupled cluster approximation (CCA) and many-
body perturbation theory (MBPT), including magnetic
(Breit type) interactions [26.5, 6]. It ensures that there
is neither double counting nor omission of contribu-
tions. For radiative transitions, the formalism allows for
a systematic treatment of such effects which is gauge
independent that at any given level of approximation
[26.7–10]. (It should be noted that there is a subtle differ-
ence between gauge invariance and gauge independence.
The first refers to the transition amplitude and the second
to quantities which are directly observable experimen-
tally.) Finally, the GFA is numerically implementable.

Renormalization can be carried out for radiative cor-
rections, resulting in finite and calculable expressions
[26.11–13]. The integro-differential equations (i. e., the
Dyson equations) needed to calculate energies or tran-
sition amplitudes in nontrivial approximations are also
soluble [26.8, 9, 14].

In quantum field theory, Green’s functions are de-
fined in terms of vacuum expectation values of products
of field operators. While this restriction can be relaxed,
expectation values must still be taken for a nonde-
generate state. As a practical matter, this requirement
ultimately restricts one to consider atoms with electron
numbers associated only with closed shells or sub-
shells, and those with closed shells or subshells plus or
minus one or two electrons. The corresponding Green’s
functions considered here are the two- and four-point
functions for energy levels, and the three- and five-point
functions for transition amplitudes (leading to oscillator
strengths). The restriction in electron numbers is clearly
not a severe one. It allows one to cover many atomic
species.

Starting from relativistic QED, the electron field op-
erator ψ(r, t) written in the Heisenberg picture, satisfies
equal-time anticommutation relations

[
ψ(r, t), ψ(r ′, t)

]= [
ψ†(r, t), ψ†(r ′, t)

]= 0 , (26.1)
[
ψ(r, t), ψ†(r ′, t)

]= δ3(r−r ′) . (26.2)

(Spinor labels are suppressed.)
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The time-translation operator, acting on any Heisen-
berg operator O(r, t)= {ψ(r, t), ψ†(r, t), jµ(r, t), . . . },
is

O(r, t)= eiH tO(r, 0)e−iH t , (26.3)

where H is the full QED Hamiltonian.

Notations and Definitions
For brevity, plainface numbers are used to denote both
a coordinate and time, while boldface numbers denote
a coordinate vector alone. For example,

1 ≡ (1, t1)≡ (r1, t1) ,

d31 ≡ d3r1 , (26.4)

d41 ≡ d3r1 dt1 .

For radiative transitions, MN ′
fi (k0) denotes the tran-

sition amplitude for the emission of a single pho-
ton of energy k0 for an N ′-electron atom from
an initial energy EN ′

i to a final energy EN ′
f ,

where

MN ′
fi (k0)≡ (2π)4δ

(
EN ′

f − EN ′
i − k0

)
MN ′

fi (k0) .

(26.5)

The notation on the right-hand side of (26.5) is some-
what redundant, since k0 is taken to be k0 = EN ′

f −
EN ′

i .
The current density operators at t = 0 are given

respectively by

jµ(r, 0)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

2

∫
d31d32

[
ψ†(1, 0), uR

µ(12; r)ψ(2, 0)
]
,

for R∫
d31d32ψ†(1, 0)uNR

µ (12; r)ψ(2, 0) ,

for NR
(26.6)

with

uµ(12; r)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

eαµδ
3(1−r)δ3(2−r) , for R

e

[
1,

(
1

2im

)
(∇2−∇1)δ

3(1−r)δ3(2−r)
]
,

for NR ,
(26.7)

where αµ = (α, 1), and the components of α are the
usual Dirac matrices.

The corresponding charge operators are defined as

Q=

⎧
⎪⎪⎨

⎪⎪⎩

1

2
e
∫

d31
[
ψ†(1, 0), ψ(1, 0)

]
, for R

e
∫

d31 ψ†(1, 0)ψ(1, 0) , for NR .

(26.8)

The transition amplitude for a photon of polarization
four-vector εµ(k), momentum k, energy k0(k0 = |k|),
and photon attachment point r is

MN ′
fi (k0)=

∫
d3r

eik·r
√

2k0
MN ′

fi (r; k0) . (26.9)

In terms of the current density operator, MN ′
fi (r; k0) can

be written as

MN ′
fi (r; k0)=

〈
N ′
f

∣∣∣ εµ(k) jµ(r, 0)
∣∣∣N

′
i

〉

≡
〈

N ′
f

∣∣∣ jk(r, 0)
∣∣∣N

′
i

〉
, (26.10)

where
∣∣ N ′

n

〉
is a state of leptonic charge number N ′, with

N ′ corresponding to an atom of N ′ electrons, with total
energy EN ′

n . The term lepton charge is used to refer to
the charge of electrons and positrons.

In the dipole approximation, eik·r ≈ 1, εµ jµ contains
the quantity

εµ(k)uµ(12; r)≡ λk(r)δ(1−r)δ(2−r) , (26.11)

where, in the radiation gauge,

λk(r)=
{

eε(k) ·α , velocity form

iek0ε(k) ·r , length form .
(26.12)

26.1 The Two-Point Green’s Function

The two-point Green’s function, or one-body propagator
[26.3, 4], for a system of lepton charge Ne is defined as
the expectation value of a time-ordered product

G N (1, 1′)≡−i
〈

N
0

∣∣∣T
[
ψ(1)ψ†(1′)

]∣∣∣ N
0

〉
, (26.13)

where
∣∣N

0

〉
is the ground state of leptonic charge num-

ber N , with N corresponding to an atom with electron
number N in a filled shell or subshell (N = 2, 4, 8, . . . ).

The relative time (t1 − t′1) Fourier transform
of (26.13) yields the spectral representation of
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G N (1, 1′):

G N
ω =

∑∫

j

∣∣u j
〉 〈

u j
∣∣

ω− ε j + iη
+
∑∫

ζ

∣∣vζ
〉 〈
vζ
∣∣

ω− εζ + iη
, η= 0+ ,

(26.14)

where

G N
ω (1, 1

′)≡ 〈1|G N
ω |1′〉, u j(r)≡

〈
r
∣∣
∣u j

〉
, etc. ,

(26.15)

and where the symbol
∑∫

denotes a summation over dis-
crete and integration over continuous states. The two
terms in (26.14) are obtained by counting each time-
ordering separately in (26.13), introducing a complete
set of intermediate states and using the time transla-
tion operator (26.3). The functions u j(r) and vζ (r) are
defined by

u j(r)≡
〈

N
0

∣∣∣ψ(r, 0)
∣∣∣ N+1

j

〉
,

〈
N
0

∣∣∣ψ(r, t)
∣∣∣ N+1

j

〉
= ei(E N

0 −E N+1
j )tu j(r) , (26.16)

and

vζ (r)≡
〈

N−1
ζ

∣∣∣ψ(r, 0)
∣∣∣ N

0

〉
,

〈
N−1
ζ

∣∣∣ψ(r, t)
∣∣∣ N

0

〉
= ei(E N−1

ζ −E N
0 )t
vζ (r) . (26.17)

Here,
∣∣N

0

〉
is the ground state of an atom of lepton charge

number N (corresponding to a nondegenerate state –
a closed shell or subshell) of energy EN

0 ,
∣∣N+1

j

〉
an

atomic state of total energy EN+1
j and leptonic charge

number N +1, and
∣∣N−1
ζ

〉
is the state of energy EN−1

ζ
and leptonic charge number N −1. These several states
satisfy the eigenvalue equations

H
∣∣∣N

0

〉
= EN

0

∣∣∣N
0

〉
,

H
∣∣∣N+1

j

〉
= EN+1

j

∣∣∣N+1
j

〉
,

H
∣∣∣N−1
ζ

〉
= EN−1

ζ

∣∣∣N−1
ζ

〉
. (26.18)

The energy parameters ε j and εζ are defined by

ε j ≡ EN+1
j − EN

0 , (26.19)

εζ ≡ EN
0 − EN−1

ζ . (26.20)

Equations (26.19) and (26.20) are generalizations of
Koopmans’s theorem [26.15] (see Sect. 21.4.1). In the
DF approximation, the state

∣∣N+1
j

〉
can be thought of as

N effective particles (electrons) making up the core,

plus one valence electron, with energy label j. The
atom can also be an isoelectronic ion with nuclear
charge number Z. In this (DF) approximation, the
state

∣∣N−1
ζ

〉
is one of two possible types. It can have

N independent electrons making up the core, with one
of the core electrons missing, or equivalently the N elec-
tron core with one electron–hole, with energy label ζ .
There is a finite number N of such hole states, which
shall be labeled a. There are no other states in the NR
(HF) case. In the R (DF) case, the second group of
states

∣
∣N−1
ζ

〉
can also describe an atom with a core of

N electrons, plus one positron. Its continuum energy la-
bel, will be taken as ζ = ̄. This energy will appear with
a negative sign in (26.14).

The second step in leading to an explicit G N (1, 1′)
is the generation of a Dyson equation which it sat-
isfies. In both the DF and HF approximations, the
Dyson equation can be obtained through a succes-
sive series of steps [26.11]. Working in the Coulomb
gauge (see Sect. 27.2), begin with the Coulomb in-
teraction between electrons and neglect the exchange
of transverse virtual photons. The Dyson equation for
the resulting two-point function is then expanded as
a power series in the electron–electron (ee) interac-
tion

Vee ≡ V = α

|x− y| , (26.21)

resulting in an infinite set of Feynman diagrams
(α = e2/4π in rationalized mks units). As a next ap-
proximation, consider only diagrams involving single
Coulomb exchanges and their iterates (“ladders”). That
is, set aside for later consideration nonladder Feyn-
man diagrams of two or more Coulomb photons and
their iterates (e.g., two crossed Coulomb photon lines).
A summation of the infinite set of these remaining terms
generates an equation for a propagator labeled G N

ω,Coul,
which contains Coulomb radiative corrections in its
kernel. Finally, modify the kernel by isolating these
radiative corrections (self energy and vacuum polar-
ization) by constructing a spectral representation of
G“0”
ω which mimics that for the usual QED propa-

gator, which is a vacuum (rather than an N-lepton
ground state) expectation value. This requires shift-
ing the poles corresponding to core energies of the
atom from the upper to the lower complex ω plane.
The shifting of poles is accomplished by means of the
equation

1

x− iη
− 1

x+ iη
= 2πiδ(x) , (26.22)
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which, when used to shift the poles of core electrons in
the ω plane, gives

G N
ω,Coul = 2πi

N∑

a=1

∣
∣va〉 〈va

∣
∣ δ(ω− εa)+G“0”

ω .

(26.23)

It is the first term on the right-hand side of this equa-
tion which occurs in the kernel of (26.24) below and
generates the DF approximation.

Some of the terms set aside in the course of this se-
quence of approximations are reconsidered in Sect. 26.4
to obtain more accurate energy results. What remains
at the end of this sequence is an approximation to G N

ω

of (26.14), designated as G N
ω,DF, and which satisfies the

self-consistent Dyson equation

G N
ω,DF = gω+ gωΣ

N
DFG N

ω,DF , (26.24)

where
∑N

DF is the kernel defined in (26.27). For the
R (DF) case,

g−1
ω = ω−hR(r), hR(r)= α · p+mβ− Zα/r ,

(26.25)

and the corresponding hNR, used in the HF case, is

hNR(r)= p2

2m
− Zα

r
. (26.26)

The function gω in (26.25) is the R or NR Coulomb
Green’s function. It is the solution of the cor-
responding inhomogeneous c-number Schrödinger or
Dirac equation. It is a single-particle equation which
has had a long history of specific treatments (see
Chapt. 9 and [26.16–19]). It is the semiclassical limit
of the two-point propagator we consider here when
only the c-number nuclear Coulomb potential is
kept and all other (q-number) interactions are turned
off.

In the DF and HF approximations in (26.14), we re-
place ε j by e j > 0,

∣∣u j
〉
by | j〉 (the valence energies and

states of an atom with N +1 electrons and a frozen re-
laxed core of N electrons), εζ by ea > 0, |uζ 〉 by |a〉,
for the N discrete electron core states, and εζ by e

̄
< 0,

|uζ 〉 by |̄〉, for the continuum of negative energy states
(which do not appear in the HF approximation). The
kernelΣN

DF contains only core states |a〉, in both the DF
and HF approximations, and is given by the sum over

states
〈
m
∣∣∣ΣN

DF

∣∣
∣ n
〉
= α

N∑

a=1

∫
d3xd3 y

1

|x− y| 〈m|x〉 〈a|y〉

× (〈x|n〉 〈y|a〉−〈x|a〉 〈y|n〉)

≡
N∑

a=1

[ (m
a |V |na

)− (m
a |V |an

) ]

≡
N∑

a=1

[m
a |V |na

]
(26.27)

for arbitrary states m and n. The first term in brackets is
the Hartree term and the second is the electron exchange
term in the DF (HF) approximation. The DF (HF) equa-
tion is the homogeneous equation corresponding to the
inhomogeneous (26.24). Thus,

(
en −h−ΣN

DF

)|n〉 = 0,
〈
n|n′〉= δnn′ . (26.28)

The states |n〉 (valence, core, and negative energy states)
are orthonormal and complete. In the coordinate basis,
(26.28) takes the more familiar form

[en −h(x)] 〈x|n〉−
〈
x
∣∣∣ΣN

DF

∣∣∣ n
〉
= 0 , (26.29)

where
〈
x
∣∣∣ΣN

DF

∣∣∣ n
〉
=
∑∫

m

N∑

a=1

〈x|m〉 [m
a |V |na

]

≡
N∑

a=1

[x
a |V |na

]

≡
∫

VDF(x, y)d3 y〈y|n〉 . (26.30)

One can also generate equations corresponding to higher
approximations than DF using the same approach. For
example, one can obtain a Brueckner equation [26.20],

[
en −h−ΣN

DF−ΣN
B (en)

]
|n〉 = 0 , (26.31)

and the states now satisfy the orthonormality condition

lim
ω→en

∫
d3xd3 y 〈n|x〉 〈y|n′〉

×

({
(ω− en)δ

3(x− y)− 〈
x
∣∣{ΣN

B (ω)−ΣN
B (en)

}∣∣ y
〉}

ω− en

)

= δnn′ , (26.32)

where the energy-dependent kernel ΣB(en) arises from
irreducible Feynman diagrams involving two Coulomb
photons. The kernel is given by

〈
m
∣∣∣ΣN

B (en)

∣∣∣ n
〉

=
∑∫

a,i, j

1/2

en + ea − ei − e j

[
m
a

∣∣∣V
∣∣∣ i

j

] [
i
j

∣∣∣V
∣∣∣ n

a

]
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+
∑∫

a,b,i

1/2

en + ei − ea − eb

[
m
i

∣∣∣V
∣∣∣ a

b

] [
a
b

∣∣∣V
∣∣∣ n

i

]
.

(26.33)

∑∫
involves summations over core states (a, b), and

summation and integration over valence states (i, j).
In perturbation theory, the lowest order contribution of
ΣB(en) is an ee correlation term.

26.2 The Four-Point Green’s Function

The four-point Green’s function [26.4, 8, 11], or two-
body propagator, is defined as

G N (12, 1′2′)

≡−
〈

N
0

∣∣∣T
[
ψ(1)ψ†(1′)ψ(2)ψ†(2′)

]∣∣∣
N

0

〉
. (26.34)

In order to avoid unnecessary complication, only sim-
ple ladders of Vee ≡ V are considered. There are
4! possible time orderings. Of these, there are four
groups of four with t1, t1′ > t2, t2′ , t1, t1′ < t2, t2′ ,
t1, t2 > t1′ , t2′ , and t1, t2 < t1′ , t2′ , corresponding to the
particle–hole (PH/HP) and the two-particle/two-hole
(2P/2H) cases for the first eight and last eight time
orderings, respectively. For each of these cases, intro-
duce a total time and relative time variable defined
by

T = 1

2
(t1+ t1′), T ′ = 1

2
(t2+ t2′) ,

t = t1− t1′ , t
′ = t2− t2′ , (26.35)

for the first eight cases (PH/HP) and

T = 1

2
(t1+ t2), T ′ = 1

2
(t1′ + t2′) ,

t = t1− t2, t
′ = t1′ − t2′ , (26.36)

for the last eight cases (2P/2H). For a particular set
of eight time orderings, a time translation with respect
to the relevant c.m. time t or t′, followed by a sepa-
rate Fourier transformation for each case with respect
to T −T ′ (with integration variable dΩ), yields contri-
butions with poles in the separately defined Ω-planes
at

ω(iα) = EN
(iα)− EN

0 , for PH (26.37a)

−ω(iα) = EN
0 − EN

(iα), for HP (26.37b)

ω(ij) = EN+2
(ij) − EN

0 , for 2P (26.38a)

ω(ab) = EN
0 − EN−2

(ab) , for 2H . (26.38b)

Equations (26.37a,b) parallel (26.19) and (26.20) as
generalizations of Koopmans’ theorem. The spectral

representation is of a form similar to (26.14), with wave
functions corresponding to (26.16) and (26.17) given by

χ(ia)(11′)≡ 〈
1
∣∣χ(ia)(t)

∣∣ 1′
〉

e−iω(ia)T

=
〈

N
0

∣∣∣T
[
ψ(1)ψ†(1′)

] ∣∣∣
N

(ia)

〉
(26.39)

for the PH/HP case and

ϕ(ij)(12)≡ 〈12|ϕ(ij)(t)〉e−iω(ij)T

=
〈

N
0

∣∣∣T [ψ(1)ψ(2)]
∣∣∣ N+2
(ij)

〉
, (26.40)

γ(ab)(1
′2′)≡ 〈

1′2′
∣∣ γ(ab)(t

′)
〉
e−iω(ab)T ′

=
〈

N−2
(ab)

∣∣∣T
[
ψ(1′)ψ(2′)

] ∣∣∣ N
0

〉
, (26.41)

for the 2P and 2H cases, respectively. The antisymmetry
under exchange follows from the definitions (26.40) and
(26.41):

ζ(τ)(12)=−ζ(τ)(21) , ζ(τ) = ϕ(ij), γ(ab) , (26.42)

where it is understood that the suppressed spinor in-
dices are interchanged as well as the coordinate and
time variables.

The three amplitudes defined above satisfy Bethe–
Salpeter (BS) equations. The PH/HP case is the analog
of the positronium atom and the 2P case is analogous
to He. For the case of Coulomb ladder exchanges, to
which we have restricted ourselves, these BS equations
can be reduced to simpler ones, with the relative time
set equal to zero (the Salpeter equation [26.21]). The
corresponding BS wave functions in the DF (HF) basis
(rather than the coordinate basis), are for PH/HP,

〈
m
∣∣χ̄(ia)

∣∣ n
〉≡

∫
d31d31′〈m|1〉〈1|χ(ia)(0)|1′〉〈1′|n〉 ,

(26.43)

with m = k and n = c, or m = c and n = k, and for 2P/2H,
〈
mn

∣∣∣ζ̄(τ)
〉
≡
∫

d31d32〈m|1〉〈n|2〉 〈12
∣∣ζ(τ)(0)

〉
,

(26.44)

where ζ(τ) = ϕ(ij), γ(ab). The states |i〉, | j〉, |a〉, |b〉, |m〉,
and |n〉 label one-particle DF (HF) eigenkets and
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ei , e j , ea, eb, em, and en , the corresponding eigen-
values.

In the PH/HP case, the BS equation is

− (ω(ia)− ek + ec)
〈
i
∣∣χ̄(ia)

∣∣ a
〉

=
∑∫ {[

k
b

∣∣∣V
∣∣∣ j

c

] 〈
j
∣∣χ̄(ia)

∣∣ b
〉

+
[

k
j

∣
∣∣V
∣
∣∣ b

c

] 〈
b
∣∣χ̄(ia)

∣∣ j
〉}
, (26.45)

(ω(ia)− ec+ ek)
〈
a
∣∣χ̄(ia)

∣∣ i
〉

=
∑∫

j,b

{[
c
b

∣∣∣V
∣∣∣ j

k

] 〈
j
∣
∣χ̄(ia)

∣∣ b
〉

+
[

c
j

∣
∣∣V
∣
∣∣ b

k

] 〈
b
∣∣χ̄(ia)

∣∣ j
〉}
.

In the 2P/2H case, the coupled pairs of BS equations
are

− (ω(τ)− ec− ed)
〈
cd|ζ̄(τ)

〉

=
∑∫

m>n

[
c
d

∣∣∣V
∣∣∣m

n

] 〈
mn

∣∣∣ζ̄(τ)
〉
, (26.46)

(ω(τ)− ek − e)
〈
k|ζ̄(τ)

〉

=
∑∫

m>n

[
k


∣∣∣V
∣∣∣m

n

] 〈
mn

∣∣∣ζ̄(τ)
〉
,

with m and n in these equations labeling either both
core, or both valence states.

The wave functions also satisfy the additional con-
ditions:

〈
c
∣∣χ̄(ia)

∣∣ d
〉= 〈

k
∣∣χ̄(ia)

∣∣ 
〉= 0 ,

PH/HP (no 2P/2H terms) (26.47)
〈
ck
∣
∣ϕ̄(ij)

〉= 〈
ck
∣
∣γ̄(ab)

〉= 0 ,

2P/2H (no PH/HP terms) (26.48)

The single indices a, b, c, d refer to core and i, j, k, 
to valence DF (HF) states. The BS wave functions satisfy
the orthonormality conditions

∑

k,c

(〈
k
∣∣χ̄(ia)

∣∣ c
〉 〈

c
∣∣χ̄(ia)′

∣∣ k
〉

+ 〈
c
∣
∣χ̄(ia)

∣∣ k
〉 〈

k
∣∣χ̄(ia)′

∣∣ c
〉)= δ(ia)(ia)′ , (26.49)

for the PH/HP case, and

±
(∑

c>d

〈
ζ̄(τ)

∣∣∣ cd
〉 〈

cd
∣∣∣ζ̄(τ ′)

〉

−
∑

k>

〈
ζ̄(τ)

∣∣∣ k
〉 〈

k
∣∣∣ζ̄(τ ′)

〉 )
= δ(τ)(τ ′) , (26.50)

where +(−) corresponds to the 2H(2P) case and
(τ)= (ab) or (ij).

The PH/HP case in the GFA, involving Coulomb
ladders for the ee interaction, is just the R and NR
RPA [26.2]. The labels c, d should also refer to anti-
particles, but the contributions of the integrals from these
terms to (26.45) and (26.46) are negligible.

26.3 Radiative Transitions

For the majority of applications, one begins with the
function Γ N (12; 3), the reducible three-point vertex:

Γ N (12; 3)=−
〈

N
0

∣∣∣T
[
ψ(1) jk(3)ψ†(2)

]∣∣∣
N

0

〉
.

(26.51)

The usual strategy is followed. The spectral representa-
tion serves to identify the functions of ultimate interest.
(Energies are not relevant in this case.) One then gen-
erates Dyson equations in the chosen approximation by
summing an infinite series of perturbation terms.

There are 3! time orderings in (26.51). As with
the four-point function, not all of them are subse-
quently useful. The two useful cases are t1 > t3 > t2,
and t2 > t3 > t1. To obtain a spectral representation
for these two cases, one first carries out a time trans-
lation of t3, using the operator exp(iH t3) of (26.3),
so that t1 → τ1 = t1− t3, t2 → τ2 = t2− t3. One then

introduces complete sets of intermediate states. The
functions defined in connection with the two-point
function in (26.16) and (26.17) will now appear, as
well as the radiative transition amplitude, defined
in (26.10). If one next carries out a separate time
translation of τ1 and τ2 and Fourier-transforms the
resulting expressions, one obtains (with 3 replaced
by r)

Γ N (r;ω1ω2)

=
∑∫

j

|u j〉MN+1
j (r)〈u|

(ω1− ε j + iη)(ω2− ε+ iη)

+
∑∫

ζχ

|vζ 〉MN−1
ζχ (r)〈vχ |

(ω1− εζ − iη)(ω2− εχ − iη)
+· · · .

(26.52)
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We next define the three-point irreducible electron
vertex ΛN from the reducible vertex Γ N (the electron
“legs” in Γ N are missing in ΛN ) as

〈
1
∣∣∣Γ N (r;ω1ω2)

∣∣∣ 2
〉

≡
∫ ∫

d31′ d32′
〈
1
∣∣∣G N
ω1

∣∣∣ 1′
〉 〈

1′
∣∣∣ΛN (r;ω1ω2)

∣∣∣ 2′
〉

×
〈
2′
∣∣∣G N
ω2

∣∣∣ 2
〉
, (26.53)

and pick out the residues of the ω1 and ω2 poles at
specific energies εm and εn . [ΛN (r;ω1ω2) has no such
poles.] With the equivalent of the DF(HF) approximation
to the Dyson equations (26.57) below, the corresponding
kets form an orthonormal set, and scalar products are
calculated with respect to 〈m| and |n〉. The second term
on the right-hand side of (26.52) refers to hole states and
is of less interest than the first term describing 1P–1P
transitions. From the first term, the transition matrix
element in terms of ΛN is

MN+1
fi (r; k0)=

〈
f
∣∣∣ΛN (r; e f ei)

∣∣∣ i
〉
. (26.54)

Generation of a Dyson Equation
The approximation of only Coulomb “ladder” ee inter-
actions in the two-point Green’s function produces an
infinite set of Feynman diagrams to which one end of
a single transverse photon line is attached in all possi-
ble ways. A resummation of these diagrams generates
the G N

ω,Coul functions, which are approximated by the
DF (HF) propagators written in their spectral form. The
scalar products leading to (26.54) can then be taken.

A further simplification results because of the
Coulomb ladder approximation, which is the same as
in the four-point Green’s function case: the relative time
can be set equal to zero, which corresponds to inte-
grating over the relative frequency, ω= ω1−ω2. With
the total frequency defined as Ω = 1

2 (ω1+ω2), and the
definitions

Λ̄N (r,Ω)= 1

2π

∫
dωΛN

(
r;ω+ 1

2
Ω,ω− 1

2
Ω

)
,

〈
m
∣∣∣Λ̄N (Ω)

∣∣∣ n
〉

=
∫

d3r
eik·r
√

2k0

〈
m
∣∣∣Λ̄N (r,Ω)

∣
∣∣ n
〉
,

Ωmn = en − em = k0 , (26.55)

with a relation similar to (26.55) for the quantity λk(r)
defined in (26.11), i. e.,

〈m |λ(k0)| n〉 =
∫

d3r
eik·r
√

2k0
〈m|λk(r)|n〉 , (26.56)

the matrix elements in the DF (HF) basis are [26.14,20]
〈
m
∣∣∣Λ̄N (k0)

∣∣∣ n
〉

= 〈m|λ(k0)|n〉
+
∑∫

a j

{
1

ea− e j + k0

[
m
j

∣∣∣V
∣∣∣ n

a

] 〈
a
∣∣∣Λ̄N (k0)

∣∣∣ j
〉

+ 1

ea − e j − k0

[
m
a

∣∣∣V
∣∣∣ n

j

] 〈
j
∣∣∣Λ̄N (k0)

∣∣∣ a
〉}
.

(26.57)

As discussed in Sect. 26.1, the label a should include not
just hole states but also negative energy states, which
have been neglected in (26.57). Note also that only
PH or HP matrix elements appear on the right-hand
side of (26.57). Therefore, a closed set of inhomoge-
neous linear algebraic equations for 〈b|Λ̄N (k0)|〉 and
〈|Λ̄N (k0)|b〉 results from setting m = b, n =  or m = ,
n = b, respectively, in (26.57). These equations can be
solved numerically, and the resulting

〈
a
∣∣Λ̄N (k0)

∣∣ j
〉

and〈
j
∣∣Λ̄N (k0)

∣∣a
〉

substituted in (26.57) to obtain the final
result

MN+1
fi (k0)≡

〈
f
∣∣∣Λ̄N (k0)

∣∣∣ i
〉
. (26.58)

An integro-differential equation form, which pro-
vides the option of choosing alternative numerical
techniques [26.14], is obtained from (26.57), after
some rearrangement and passage to a coordinate basis.
Defining m fi(k0) from λ(k0) in analogy with the defini-
tion of MN+1

fi (k0) from Λ̄N (k0) in (26.58), one has

MN+1
fi (k0)= m fi(k0)+

∑

a

(〈a|λ(k0)|A−〉

+〈A+|λ(k0)|a〉) , (26.59)

where

[h(r)∓ k0− ea]
〈
r
∣∣A±

〉+
∑

a

[
r
a

∣∣V
∣∣ A±

a

]

=−
∑∫

j

〈r| j〉〈 j| [v±+V±
] |a〉 , (26.60)

〈 j|v+|a〉 =
[

j
i

∣∣∣V
∣∣∣ a

f

]
, 〈 j|v−|a〉 =

[
j
f

∣∣∣V
∣∣∣ a

i

]
,

(26.61)

〈 j|V±|a〉 =
∑

b

{[
j
b

∣∣∣V
∣∣∣ a

B±

]
+
[

j
B∓

∣∣∣V
∣∣∣ a

b

]}
.

(26.62)

The three-point Green’s function, as can be seen
from this summary, describes transition amplitudes
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for radiative transitions between two valence states of
atoms with closed shells (subshells) plus one electron
(the 1P case). In the Coulomb ladder approximation,
closely related to the DF equation, the photon vertex〈
1
∣∣ΛN (r;ω1ω2)

∣∣ 2
〉

of (26.53), is nonlocal in space,
rather than the local vertex 〈1 |λk(r)| 2〉 of (26.11)
[as follows from the factor of δ3(1− r)δ3(2− r)]. The
presence of these additional nonlocal contributions to
MN+1

fi (k0) is made apparent in (26.59). The m fi(k0)

term is the contribution of the local vertex. Of course, if
one knew the exact N +1 electron wave functions and
energies, only the local vertex would enter and a GI re-
sult would be obtained. However, the length and velocity
versions of (26.12) are equal and GI even in the approx-
imation just discussed [26.3, 7]. Gauge invariance is an
essential constraint on radiative transition amplitudes.
It has been proven for general gauges not only in the
present approximation, but also in the ones discussed
below [26.8, 10], all of them arising in the GFA. Since
the effective potential in the DF (or HF) approximation
is nonlocal, the effective current must also be nonlocal
in order to maintain the GI.

The somewhat more complicated Dyson equa-
tion satisfied by the nonlocal vertex corresponding
to the Brueckner approximation has also been gener-
ated [26.22], and put in a numerically implementable
form.

An alternative approximation [26.3, 7] for transi-
tion matrix elements, proposed earlier [26.2] than the
one just discussed, is based on the RPA [our PH/HP
case, with wave function χ̄( fa) the solution of (26.45)].
Reference to (26.6), (26.7), (26.10) and (26.11) gives
immediately

MN
fa(r;ω( fa))=−λk(r)

〈
r
∣∣χ̄( fa)

∣∣ r
〉
, (26.63)

where k0 = k = ω( fa) and N corresponds to atoms with
a closed shell or subshell of electrons.

Aside from being a different approximation to tran-
sition amplitudes than (26.54), (26.63) covers a different
set of cases than does (26.54), since the corresponding

initial states i in (26.54) are restricted to core states a
in (26.63). Thus, for example, the case N = 2 in (26.54)
can describe transitions between any two valence states
of Li. The corresponding case for (26.63) is N = 4, but
only transitions to a higher level, originating in the 1s or
2s level of Li, can be described by the formalism.

Finally, we shall discuss radiative transitions [26.8]
for 2P atoms (closed shell/subshell plus two valence
electrons). The general case involves a five-point
nonlocal vertex. However, in the ladder approxima-
tion, this reduces to transition matrix elements which
contain combinations of DF, 2P BS wave func-
tions, and three-point functions. The final expressions
are

MN+2
fi (r; k0)

=
〈

ζ̄( f p)

∣∣∣∣
∣

(
Λ̄N (r, k0)

k0−∆H
V −V

Λ̄N (r, k0)

k0−∆H

)∣∣∣∣
∣
ζ̄(iq)

〉

.

(26.64)

The expressions appearing in this equation are, in more
detail, in the DF basis:

〈
m

n

∣∣∣∣∣
Λ̄N (r, k0)

k0−∆H

∣∣∣∣∣
q

s

〉

≡
〈
m
∣∣∣Λ̄N (r, k0)

∣∣∣ q
〉
δns

k0+ eq − em
,

(26.65)

where m, n, q, s label DF states (P or H),
∣∣qs
〉≡ |qs〉 ≡

|q〉|s〉; (26.65) serves to define ∆H , as a difference of
two DF Hamiltonians, the argument r of Λ̄ refers to the
electron which emits the photon, and

〈m
n

∣∣V
∣∣ζ̄(τ)

〉=
∑∫

cd

(m
n

∣∣ V
∣∣c
d

) 〈
cd

∣∣∣ζ̄(τ)
〉

+
∑∫

k

(m
n

∣∣ V
∣∣k


) 〈
k

∣∣∣ζ̄(τ)
〉
. (26.66)

In (26.66) we used the fact that, in the DF basis, |ζ̄(τ)〉
only has 2P or 2H components (26.46, 26.48).

26.4 Radiative Corrections

This section summarizes radiative corrections for 1P/1H
atoms, starting from the two-point Green’s function. The
Dyson equations are generated and solved perturbatively
for the energy to order α5m (α3 a.u.). The perturbation
theory starts from the DF solution as the zero-order one.

As done for the three-point function in Sect. 26.3,
the Dyson equation for radiative corrections involving

a single transverse photon is generated by expanding the
two-point propagator to all orders in the Coulomb ladder
approximation, inserting a transverse virtual photon in
all possible ways, and then resumming. The resulting in-
tegral equation [26.23] is quite complicated, containing
even the three-point vertex in its inhomogeneous term,
as well as a mass counter term to eliminate divergences.
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It is sufficient for the present purposes to expand these
vertices through first order matrix elements of Vee ≡ V ,
but to exclude matrix elements of type

[
m
a |V |na

]
(where

a is the label for core states), since these are already
included in the DF approximation [see (26.27)].

Other radiative corrections are also generated, which
include Coulomb photons. Two of these corrections, in-
volving only such photons, have already been referred
to in the text between (26.21) and (26.23). Finally, to or-
der α5m, corrections involving two transverse photons
must be included.

Systematic application of the pole-shifting process
in (26.23) to the one- and two-transverse-photon and the
Coulomb-photon expressions yields two types of terms:
first, photon exchange (of one transverse photon or of
two-photons of either kind, Coulomb or transverse) be-
tween core and valence states; and second, self-energy
and vacuum polarization contributions. Among the pho-
ton exchange terms, one can identify those contributions
included in other approaches (at least for a few special
cases, such as those arising from a single transverse pho-
ton interaction, and from two Coulomb interactions and
Coulomb–Breit interactions with positive energy inter-
mediate electron states). These are electron correlation
terms which are included as part of a MBPT calcu-
lation [26.5], or one which involves consideration of
an infinite subset of MBPT terms [26.6]. They need
not be re-evaluated. The terms not covered by calcula-
tions of the type in [26.5, 6], which are of O(mα5c2),
involve retardation in Coulomb-transverse photon ex-
change, negative energy intermediate electron states
for two Coulomb and Coulomb-transverse photon ex-
changes, two transverse photon exchange, self-energy
and vacuum polarization terms, as well as anomalous
magnetic moment corrections.

After lengthy calculation, one obtains final results
in finite analytic form, which are numerically imple-
mentable. The results given below are obtained after
further approximations. First, the remnants of the orig-
inal integral equation are solved iteratively. Second,
the self-energy terms are calculated in a joint expan-
sion [26.24–26] in α and αZ, and are thus only valid
for low Z in isoelectronic sequences. Finally, there are
characteristic logarithmic terms generated by low vir-
tual photon momenta in the self-energy contributions.
A standard approach is to scale these with a factor of
(αZ)2 to obtain Bethe log (BL) terms as constants inde-
pendent of α, together with constant log (CL) terms of
the form ln(αZ)2. The BL terms are independent of Z for
hydrogenic ions, and remain nearly so for other atoms.
BL and CL terms are associated with both nuclear and

ee Coulomb potentials. The ee CL terms arising from
core and valence self-energy terms are canceled exactly
by those coming from Coulomb and transverse photon
exchange. Thus, the numerous and rather complicated
corresponding ee BL terms, which also are individually
small compared to their associated CL terms, should
additionally almost cancel, and are therefore neglected.

One finally obtains (with all state labels denoting
principal and orbital quantum numbers as well as spin
indices: n ≡ (n, ;ms))

∆E(n, )= Z|〈0|n〉|2 F(n, ) , (26.67)

in a.u., where 〈0|n〉 ≡ 〈0|n, 0〉 is the s-state HF wave
function at the origin of coordinates, and serves to define
an effective (shielded) nuclear charge Zn,eff:

〈r|n, 〉 ≡ Ψn,(r), |〈0|n〉|2 ≡ 1

πn3
(Zn,effα)

3 .

(26.68)

(Just as in hydrogen, for which the final expressions for
the radiative corrections require NR and not R wave
functions and energies, so in this case we use HF (NR)
and not DF (R) quantities.) F(n, ) consists of a valence
or hole contribution Fv,h, a core term Fcore(n, ), and one
due to photon exchange between electrons Fee(n, ):

F(n, )= Fv,h(n, )+ Fcore(n, )+ Fee(n, ) ,

(26.69)

Fv,h(n, )= 4

3

[
N(Z)δ0+ L(n)+Uso

v,h(n)
]
,

(26.70)

Fcore(n, )= 4

3Z

[
N(Z)ρ(n)+ Lcore(n)

+U(n)+Uso
core(n)

]
, (26.71)

Fee(n, )= 4

3Z

[
E(Z)KC(n)+K L(n)

]
,

(26.72)

with Uso
v,h(n) and Uso

core(n) being the spin-orbit terms,

N(Z)= ln
1

(Zα)2
+ 19

30
+ ZαC5 , (26.73)

C5 = 3π

(
1+ 11

128
− 1

2
ln 2

)
, (26.74)

E(Z)=−7

2
ln

1

Zα
+ 59

20
− 9

8
π , (26.75)

L(n)= i/4π

|〈0|n〉|2
〈
n, 

∣∣∣
[

p ·LB(n)
r
r3

− r
r3

LB(n) · p
]∣∣∣ n, 

〉
, (26.76)

LB(n)≡ ln
Z2

2|en −H| , (26.77)
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H the HF Hamiltonian, en ≡ e(n) the HF energy,

Uso
v,h(n)=

3/16π

|〈0|n〉|2
〈
n

∣
∣∣∣

1

r3

∣
∣∣∣ n

〉
C , (26.78)

where

C =
{
 j = + 1

2
−(+1) j = − 1

2

, (26.79)

ρ(n)= i/4π

|〈0|n〉|2
∑

a

∑∫

jk

{
(ek − e j)(ea−2ek + e j)

ea − e j

[n
a

∣∣V
∣∣n

j

]〈 j|r|k〉 · 〈k|p|a〉+ c.c.

}
, (26.80)

Lcore(n)= i/4π

|〈0|n〉|2
∑

a

∑∫

jk

{
(ek − e j)(ea−2ek + e j)

ea − e j

[n
a

∣∣ V
∣∣n

j

]
ln

Z2

2|ea− ek| 〈 j|r|k〉 · 〈k|p|a〉+ c.c.

}
,

(26.81)

U(1)(n)= 1/2π

|〈0|n〉|2
∑

a

{〈
a
∣∣∣p2

∣∣∣ a
〉 [n

a

∣∣ V
∣∣n
a

]−
[

n
(a)′

∣∣∣ V
∣∣∣ n
(a)′

]
−
([
(b)′
a

∣∣∣ V
∣∣∣ a
(b)′

]
+ c.c.

)
δnb

}
, (26.82)

U(2)(n)= i/2π

|〈0|n〉|2
∑

a

∑∫

k<q

{
(2ea− ek − eq)

eq − ek

[n
q

∣∣V
∣∣n
k

] (
ln

∣∣∣∣
ea − eq

ea − ek

∣∣∣∣+2

)
〈a|p|q〉 · 〈k|p|a〉+ c.c.

}
, (26.83)

Uso
core(n)=

3/16π

|〈0|n〉|2
∑∫

a j

{
δa j

ea − e j

[
n
a

∣∣∣V
∣∣∣ n

j

] 〈
j

∣∣∣∣
1

r3

∣∣∣∣ a

〉
C+ c.c.

}
, (26.84)

KC(n)= 1

|〈0|n〉|2
∑

a

[
n
a

∣∣∣δ3(x− y)
∣∣∣ n

a

]
, (26.85)

K L(n)= 7/2

|〈0|n〉|2|
∑

a

[
n

a

∣∣∣∣∣
1

4π
∇2

(
ln(Z|x− y|)+γ

|x− y|
) ∣∣∣∣∣

n

a

]

, (26.86)

where

U(n)≡U(1)(n)+U(2)(n) , (26.87)

〈r|(a)′〉 ≡ d

dr
〈r|a〉 , (26.88)

and γ is the Euler–Mascheroni constant. As in (26.27),
x refers to the top row and y to the bottom row in the
two-row expression in (26.86).

L(n), which is associated with the valence electron
and the nuclear Coulomb potential, has the form of a hy-
drogenic BL, except that it is calculated with HF wave
functions and energies. Lcore(n) comes from BL terms
associated with core electrons.

The expressions appearing in (26.80), (26.81),
and (26.83) originate from the double commutator
[p · [p, H]], which is then approximated by using the
commutator [r, H] ≈ ip. This is not an exact result

because the ee exchange term in the HF potential is
neglected. One thus obtains [26.13]

〈m |[p · [p, H]]| n〉 (26.89)

≈ i(en −2ek + em)(ek − en) 〈m |p| k〉 · 〈k |r| n〉 .
A less accurate approximation is [26.12]

4πZδ3(r)≈ [p · [p, H]] . (26.90)

Using the left-hand side of this equation instead of the
approximation (26.89) to the right-hand side would lead
to only s-state a, j and p-state k contributions in (26.80)
and alternative forms of (26.81) and (26.83).

The major part of the contribution to the energy due
to radiative corrections comes from Fv,h(n, 0) (s-states),
and numerical tests indicate that the principal effect in
this term comes from the renormalization of the electron
density at the coordinate origin due to electron shielding.
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This reduction occurs because the shielded wave func-
tion is more spread out than the unshielded one. Thus,
one can extend the above results semi-empirically to
high Z (for which Fcore(n, ) and Fee(n, ) play a much
smaller role because of their 1/Z dependence) by using
the hydrogenic results [26.27] for high Z, i. e., replac-
ing Z4 for hydrogen by Z(Zn,eff)

3 for 1P/1H atoms
(where Zn,eff is the shielded nuclear charge number,
defined in (26.68), and Z is the unshielded nuclear
charge number). The results obtained in this way are
competitive with other evaluations of ∆En [26.28].

Finally, there is a correction to F(n, ) for smaller Z
when the integral equations for the self-energy and
vacuum polarization contributions are solved more accu-
rately than by iteration. These corrections play little role
in s-state energies, but are somewhat more important in
p-states for the hard core case (closed shells, N = 2, 10,
etc.). They are expected to provide a much more signifi-
cant contribution in the soft core case (closed subshells,
N = 4, 12, etc.).

The correction is based on the simpler approximation
given in (26.90) of the more accurate (26.89). It is given
by

δF(n, )= 1

Z〈0|n〉2
∑

a

∑∫

j

⎧
⎨

⎩

[
n
a

∣∣∣V
∣∣∣ n

j

]

ea − e j
[〈 j|E |a〉

− ZF (0)
v,h 〈 j|0〉 〈0|a〉

]
+ c.c.

⎫
⎬

⎭
,

(26.91)

where

〈 j|E |a〉 = ZF (0)
v,h 〈 j|0〉 〈0|a〉

+
∑

b

∑∫

k

⎛

⎝

[
j
b

∣
∣∣V
∣
∣∣ a

k

]

eb− ek
[〈k|E |b〉+ c.c.]

⎞

⎠ ,

(26.92)

F (o)
v,h = 4

3
{N(Z)+ L} . (26.93)

The inhomogeneous term in (26.92) appears only
for states | j〉 and |a〉 which are s-states. L in (26.93) is
taken to be a constant, an approximation sufficient for
the desired accuracy, and reflects the fact that L(n, 0)
for s-states is essentially constant as a function of radial
quantum number, and is approximately the same for
hydrogen and the HF approximation.

In order to obtain the correction δF(n, ) of
(26.91), it is necessary first to solve the coupled in-
homogeneous linear equations of (26.92). While the
sum

∑
a over core states is always over a finite

number of discrete states, the symbol
∑∫

denotes
an infinite sum over discrete bound valence states
and an integral over the continuum of such states.
Indeed, expressions of this type occur throughout
the GFA. They can be dealt with by the use of
finite basis techniques, for example the B-spline ap-
proach [26.29, 30].
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Quantum Elec27. Quantum Electrodynamics

Quantum Electrodynamics (QED) is the underlying
theory of atomic and molecular physics. Despite
this generality, it is not necessary to use the full
theory in most atomic physics problems. This is
because in the nonrelativistic limit QED reduces to
the Schrödinger equation, and the extra physics in
QED is in general quite small, being suppressed by
powers of the fine structure constant α. Given the
difficulty of solving the Schrödinger equation with
high accuracy in most atomic physics situations,
these small corrections can usually be neglected.
The theory is however needed to explain small
deviations from the solution to the Schrödinger
equation in simple systems, in particular a single
electron in a constant magnetic field and few-
electron atoms. Larger deviations occur for highly
charged ions, and also for high-energy scattering
of electrons and photons. We note that a rather
extensive review of QED is available [27.1], and
refer the reader interested in more details to that
work. In addition, comparison with experiment is
made by Mohr in Chapt. 28, and thus is done here
only in selected cases.
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27.1 Covariant Perturbation Theory

QED combines relativity, electromagnetism, and quan-
tum mechanics. As the first two theories were well
understood when quantum mechanics was formulated,
the development of the the fundamental equations of
QED (after Dirac’s introduction of his relativistic equa-
tion for the electron) took place rapidly, being in place
in 1928 [27.2, 3]. However, it was recognized almost
immediately that when higher order perturbation theory
was considered, infinities associated with short wave-
lengths, known as ultraviolet divergences, were present,
and that this apparently predicted infinite shifts in spec-
tral lines. These difficulties were not overcome for two
decades, but at that time improvements in calculational
technology coupled with an understanding that the in-
finities could be grouped into renormalizations of the
electron’s mass, charge, and wave function and the pho-
ton’s wave function, led to the modern form of QED.

A central object in this form of the theory is the S-matrix.
To introduce it, we start with the Schrödinger equation,

i�
∂

∂t
Ψ(t)= (H0+HI)Ψ(t) (27.1)

where H0 is the Hamiltonian of free electrons and pho-
tons (although this can be easily generalized to include
external potentials such as a nuclear Coulomb field),
and HI the electromagnetic interaction between them.
These Hamiltonians follow from the Lagrangian density
L=L0+L1, where

L0 =ψ̄0(x, t)
(
γµ pµ−m0

)
ψ0(x, t)

− 1

4
F0µν(x, t)F

µν
0 (x, t) (27.2)

and

LI =−e0ψ̄0(x, t)γµψ0(x, t)A
µ
0 (x, t) . (27.3)
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The 0 subscripts in the above emphasize that the fields
and couplings are unrenormalized: renormalization will
be discussed in the next section. In addition ψ̄ pµψ
is understood to represent 1

2 iψ̄(∂µψ)− 1
2 i(∂µψ̄)ψ, and

gauge fixing terms have been suppressed. By making
the unitary transformation

Ψ(t)≡ e−iH0t/�Φ(t) , (27.4)

which transforms from the Schrödinger to the interaction
representation, and further defining the U matrix through

Φ(t)=U(t,−∞)Φ(−∞) , (27.5)

one finds an equation for this matrix

i�
∂

∂t
U(t,−∞)= ĤI(t)U(t,−∞) (27.6)

where

ĤI(t)= eiH0t/�HI e−iH0t/� . (27.7)

Solving this equation iteratively then gives for the
S-matrix, defined as S =U(∞,−∞),

S =
∞∑

n=0

(−i)n
1

n!
∞∫

−∞
dt1 · · ·

∞∫

−∞
dtn

× T
[

Ĥ1(t1), · · · Ĥ1(tn)
]
, (27.8)

where T is the time ordering operator. An initial state
consisting of free electrons, positrons, and photons will
then have an amplitude to scatter into a final state with
different momenta and perhaps different numbers of
particles given by the S-matrix. This amplitude can be
calculated using Wick’s theorem, and the result conve-
niently represented by Feynman diagrams. Lowest order
results of this procedure (tree approximation) describe
processes such as electron scattering, electron–positron
annihilation, etc. to fairly high precision. However, as
mentioned above, when higher terms in the perturbation
expansion are considered, diagrams containing closed
loops are encountered that are formally infinite, and
a renormalization program must be introduced.

27.2 Renormalization Theory and Gauge Choices

Before we discuss renormalization theory, we mention
that QED has the same freedom to choose gauge as
classical electromagnetism. We will discuss four gauges
that have been used in QED calculations, though there
is of course an arbitrary number. All of these gauges can
be defined through the photon propagator in momentum
space. If this is defined by

∫
d4x e−ik·x〈0|T [Aµ(x)Aν(0)]|0〉 ≡ −i

Gµν(k)

k2

(27.9)

the Coulomb gauge is defined by

G00 =− k2

k2
,

Gij =−
(
δij − kik j

k2

)
,

Gi0 =G0i = 0 . (27.10)

While this gauge is particularly physical, with the
G00 part directly corresponding to the instantaneous
Coulomb interaction and the Gij to magnetic interac-
tions, it is relatively difficult to work with. For ease of
calculation, the covariant gauges, defined by

Gµν = gµν+β kµkν
k2

(27.11)

are useful, particularly the case β = 0, the Feyn-
man gauge. Other values of β are β = 2, the Yennie
gauge [27.4], andβ=−1, the Landau gauge. The former
has the advantage of controlling infrared divergences,
and the latter of controlling ultraviolet divergences.

Two of these infinities are first encountered when
the self-energy of a free electron is calculated in second
order perturbation theory. In order to deal with finite
quantities, we first must introduce a device to regulate
the high-frequency range of the integrations. This can
be done in a number of ways, among them Pauli–Villars
regularization [27.5]. In this method one modifies the
photon propagator to

1/q2 → 1/
(

q2−λ2
)
−1/

(
q2−Λ2

)
, (27.12)

where λ is a photon mass that regulates infrared diver-
gences and Λ an ultraviolet cutoff mass. In this case
the self-energy operator is represented by the Feynman
diagram of Fig. 27.1a, and is, using Feynman gauge,

Σ(p)=− ie2
∫

d4k

(2π)4
γµ

1

�p− � k−m0
γµ

×

(
1

k2−λ2 −
1

k2−Λ2

)
. (27.13)
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a) b) c)

Fig. 27.1a–c Ultraviolet divergent one-loop Feynman dia-
grams

Combining the two denominators together with a Feyn-
man parameter and carrying out the integration over k
then leads to

Σ(p)= δm(2)+ B(2)(�p−m0)+ΣF(p) , (27.14)

where

δm(2) = 3αm0

2π
[ln(Λ/m0)+1/4] (27.15)

and

B(2) =− α

2π
[ln(Λ/m0)+2 ln(λ/m0)+9/4] .

(27.16)

ΣF will not be given here, but the important point is
that it is ultraviolet finite. Thus the ultraviolet infinities
of QED are isolated in the first two terms, which are of
a very simple structure.

The next infinity is connected with the vertex func-
tion of Fig. 27.1b. This is defined by the equation

Γµ =−ie3
0

∫
d4k

(2π)4
γρ

1

�p− � k−m
γµ

×
1

�p ′− � k−m
γρ

(
1

k2−λ2 −
1

k2−Λ2

)
. (27.17)

While Γµ is a fairly complicated function, its ultraviolet
divergent part is simply a multiple of γµ. When the
electron momenta p and p′ are equal and on shell, this
integral can be evaluated to be

Γµ = e0γµL(2) (27.18)

where

L(2) = α

2π
[ln(Λ/m)+2 ln(λ/m)+9/4] . (27.19)

The fact that L(2) =−B(2) is a consequence of the Ward
identity [27.6].

The final infinity of second-order QED arises from
the vacuum polarization diagram of Fig. 27.1c. The
associated integral is

Πµν(p)=−ie2
∫

d4k

(2π)4
Tr

×

(
γµ

1

�p+ � k−m0
γν

1

�k−m0

)
. (27.20)

In this case the integral cannot be regulated as be-
fore, since there is no photon propagator to modify.
Instead one can subtract a similar integral with the
electron mass replaced by M. Vacuum polarization is
particularly sensitive to ultraviolet divergences, since the
nominal order of the divergence is quadratic. However,
gauge invariance requires Πµν(p) to have the structure(

p2gµν− pµ pν
)
Π
(

p2
)
, and if one considers only the

pµ pν part of the vacuum polarization integral, the ultra-
violet divergence is only logarithmic. This divergence is
independent of the photon momentum p, and one can
write

Π
(

p2)= C(2)+Πfinite
(

p2) (27.21)

where

C(2) = α

3π
ln
(

M2/m2
0

)
(27.22)

and

Πfinite
(

p2)=− 2α

π

1∫

0

dx x(1− x)

× ln
[
1− x(1− x)p2/m2

0

]
. (27.23)

The four infinite quantities encountered in second order
perturbation theory are modified by higher order correc-
tions, but no new divergent structures arise. The basic
idea of renormalization is to note that these structures
are already present in the lowest order Lagrangian. We
now make the following definitions:

m = m0+ δm , (27.24)

ψ(x)= Z−1/2
2 ψ0(x) , (27.25)

Aµ(x)= Z−1/2
3 Aµ0 (x) , (27.26)

and

e = e0 Z−1
1 Z2 Z1/2

3 . (27.27)

These correspond to an additive renormalization of the
electron mass and multiplicative renormalizations of
the electron and photon wave functions and the elec-
tron charge. Rewriting the original bare Lagrangian in
terms of these renormalized quantities then gives that
Lagrangian without the 0 subscripts, plus the following
counterterms:

LCT1 = Z2δmψ̄(x, t)ψ(x, t) , (27.28)

LCT2 =−e(Z1−1)ψ̄(x, t)γµψ(x, t)Aµ(x, t) ,
(27.29)

LCT3 =−1

4
(Z3−1)Fµν(x, t)Fµν(x, t) , (27.30)
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and

LCT4 = (Z2−1)ψ̄(x, t)
(
γµ pµ−m

)
ψ(x, t) .

(27.31)

By choosing Z2 = 1+ B(2), Z1 = 1− L(2), δm = δm(2),
and Z3 = 1−C(2), these counterterms will precisely
cancel the previously encountered divergences in sec-
ond order. At this point we identify m and e as the

experimentally determined mass and charge of the elec-
tron: as long as these are used, the radiative corrections
discussed above have no effect for free electrons. How-
ever, when an electron undergoes scattering or is in the
presence of an external magnetic or nuclear Coulomb
field, the finite terms no longer vanish, and give rise to
small corrections. We now turn to a discussion of these
corrections.

27.3 Tests of QED in Lepton Scattering

The highest energy tests of QED come from scatter-
ing experiments at accelerators. While the dominant
part of QED corrections for all the other tests dis-
cussed in this chapter involves electron and photon
propagators close to the mass shell, scattering ex-
periments involve propagators very far off the mass
shell, which allows tests of the theory at very small
distances. It is standard to parameterize possible de-
viations from the predictions of QED at these small
distances by the introduction of form factors of the
form

F
(
q2)= 1− q2

q2−Λ2 (27.32)

where q is photon momentum at an electron–photon
vertex. In QED Λ is infinite and this form factor is
unity even at very high q2, but this can be tested in
various scattering experiments. For example, Bhabha

scattering, e+ e− → e+ e−, has been accurately meas-
ured at high center of mass energy,

√
s = 34.8 GeV, at

TASSO [27.1, 7]. To compare with QED, very sizable
radiative corrections must be carefully calculated, and
at these energies electroweak effects involving the Z bo-
son, while small, must also be considered. Although the
accuracy of the experiments is not high compared with
atomic physics measurements, being at the percent level,
the good agreement with QED that is found allows lower
limits on the cutoff Λ> 500 GeV to be placed. This
corresponds to distances of under 10−16 cm. It is of in-
terest to compare this sensitivity with that available from
atomic physics tests. The change in the photon propaga-
tor given above corresponds to a potential e−Λr/r. This
would lead to an energy shift of a 2s electron in hydro-
gen of 46/Λ2 kHz with Λ in units of GeV. Thus even
1 kHz accuracy in the Lamb shift would only restrict
Λ> 7 GeV.

27.4 Electron and Muon g Factors

One of the successes of the Dirac equation is the pre-
diction g = 2 for the electron. The leading correction to
this result coming from QED is the Schwinger correc-
tion [27.8],

g = 2
(

1+ α

2π

)
. (27.33)

While in principle this is an external field problem, be-
cause of the weakness of laboratory magnetic fields, the
correction can be related to Feynman diagrams with
free propagators. To see the weakness we note that
eB/m2

e = 2.3 × 10−14 B (Gauss). In extremely intense
magnetic fields such as can be encountered in astrophys-
ical situations, a bound state approach [27.9] should be
used both for calculating energy shifts and the imag-
inary part of these shifts, which describe synchrotron
radiation. An example of the more precise approach

is Demeur’s formula for the (real) energy shift of an
electron in the lowest energy level

∆E = mα

2π

[
− eB

2m2
+
(

eB

m2

)2 (4

3
ln

m2

2eB
− 13

18

)

+
(

eB

m2

)3 (14

3
ln

m2

2eB
− 32

5
ln 2+ 83

90

)

+· · ·
]
. (27.34)

The second term could actually be seen at the present
level of precision, but is spin-independent, and the third
term is negligible. An interesting feature of the experi-
ment is the effect of the conducting cavity, which must be
understood to extract the correct value of g−2 [27.1,10].

After the initial verification of the Schwinger correc-
tion, experiments of increasing precision culminating in
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the Penning trap measurements in Washington [27.11]
have stimulated advances in theoretical calculations.
These involve the evaluation of constants Ci defined
by

ae = C1
α

π
+C2

(α
π

)2+C3

(α
π

)3+C4

(α
π

)4+· · ·
(27.35)

where ae = (g−2)/2 is the anomalous magnetic mo-
ment of the electron. The computational effort involved
in computing the coefficients Ci increases very rapidly
with i, and the four loop calculation is the largest QED
calculation ever carried out. The situation with regard
to these calculations is as follows. After the calcula-
tion of the Schwinger correction, the next step was the
evaluation of the seven Feynman diagrams of Fig. 27.2.
A feature of the one-loop calculation, that it is ultraviolet
finite, is no longer present at this level, and renormaliza-
tions of the self-mass, vertex, and wave function must
be performed, although the latter two cancel by Ward’s
identity. When the calculation is carried out in Feyn-
man gauge, each graph has an infrared divergence that
must be regulated in some fashion, for example by giv-
ing the photon a small mass λ. This calculation was
first correctly carried out by Sommerfield [27.12] and
Petermann [27.13]. The result is

C2 = 197

144
+ π

2

6
(0.5−3 ln 2)+0.75ζ(3) (27.36)

where ζ(3)= 1.202 05 . . . is the Riemann zeta func-
tion of argument 3. While each individual diagram is
infrared divergent in Feynman gauge, Adkins [27.14]
has used Yennie gauge [27.4] to recalculate the effect,
free of infrared divergent terms. His results are given in
Table 27.1.

The vacuum polarization graph of Fig. 27.2e plays
an interesting role. While the result for C2 given above

a) b) c)

d) e)

Fig. 27.2a–e Two-loop Feynman diagrams contributing to
g−2

Table 27.1 Contributions to of C2 in Yennie gauge

Graph Value

a −1

2
B(2)− 3

16

b
5

4
ζ(3)− 5

6
π2 ln 2+ 5

12
π2+ 7

12

c −B(2)− 1

2
ζ(3)+ 1

3
π2 ln 2− 29

24

d B(2)− 9

8

e −1

3
π2+ 119

36

Counterterm
1

2
B(2)

includes only the case where the intermediate particles
in the loop are electrons, that loop can also involve any
charged particle, such as the muon, pion, or tau. How-
ever, because all these particles are much heavier than
the electron, which sets the energy scale of the Feyn-
man integral, their effect is suppressed by the square of
the mass ratio of the electron to their mass, and are thus
quite small. Specifically, in units of 10−12, the muon
loop contributes 2.80, the tau loop 0.01, and hadrons
1.6(2). These act to increase C2 by 0.000 000 82. We
note in passing that the effect of the weak interac-
tions enters in one loop, and contributes 0.05 × 10−12

to the electron g−2 value and 1 95( 10)× 10−11 for the
muon.

When the anomalous magnetic moment of the muon
is considered the situation changes significantly. Firstly,
the contribution of electrons in the loop is enhanced,
since they are now relatively light particles, and the vac-
uum polarization loop behaves as a logarithm of the mass
ratio. Specifically, the difference between the muon and
electron g−2 factors behaves as [27.15]

aµ−ae = 1.094
(α
π

)2+22.9
(α
π

)3

+132.7
(α
π

)4+· · · (27.37)

These large coefficients arise primarily because the vac-
uum polarization loops involving electrons change the
effective value of α to α/(1−2α/3π ln mµ/me). Note
however that such logarithmic terms also arise from
other sources, most notably the light-by-light scattering
graphs that enter first in third order.

The second important change in the muon case is
the significant role of strongly interacting particles in
the loop. Fortunately, while our present inability to carry

Part
B

2
7
.4



418 Part B Atoms

out high accuracy calculations of the strong interactions
could in principle interfere with the interpretation of the
muon g−2 as a QED test, the bulk of this contribution
can be related to the experimentally available cross-
section for e+ e− annihilation into hadrons [27.16]. It
is also possible to use τ decay to determine the con-
tribution [27.17]. At present the two methods are not in
agreement, and this situation will have to be resolved be-
fore a possible discrepancy between theory and the most
recent experiment [27.18] can be interpreted as indicat-
ing new physics. Specifically, if the τ data is used a 1.4
standard deviation difference exists, but if the e+ e−
data is used the discrepancy increases to 2.7 standard
deviations.

The calculation of C3 involves 72 Feynman graphs,
although they can be grouped together into a smaller
number of gauge invariant sets. As discussed in more
detail in Chapt. 28, C3 is now known analytically, re-
moving an important source of numerical uncertainty.
The evaluation of such high-order graphs requires an in-
tricate set of subtractions to lead to finite answers, and
provides a practical demonstration of the renormaliz-
ability of QED. The result for C3 is

C3 = 1.181 241 456 . . . (27.38)

Finally, the very large scale calculation of C4, which is
almost completely numerical, has been carried out by
Kinoshita and Lindquist [27.19]. When their result,

C4 =−1.509 8(384) , (27.39)

is compared with experiment, agreement is found, but
the largest source of error is the uncertainty in the
fine structure constant as determined from solid state
physics. However, if one instead assumes the validity of
QED, the situation can be turned around to determine
a QED value of the fine structure constant. This is done
by combining the experimental result [27.11]

ae− = 1 159 652 188.4(4 .3)× 10−12

ae+ = 1 159 652 187.9(4 .3)× 10−12 (27.40)

with the previous formulas for the C coefficients (in-
cluding the small vacuum polarization corrections for
C2 discussed above). The result is

α−1
QED = 137.035 992 22(51)(48) (27.41)

where the errors come from experiment and C4 respec-
tively. It would be of great interest to have another QED
determination of the fine structure constant of com-
parable accuracy: a very promising approach involves

precision measurements of recoil in cesium [27.20, 21],
which has achieved 7 ppb and has the potential of reach-

ing 1 ppb. Another way to determine α involves the fine
structure of helium, as will be discussed below.

27.5 Recoil Corrections

Because of the smallness of the ratio of the electron
mass to most nuclear masses, a reasonable approxi-
mation to atoms is to treat the nucleus as a source of
a classical Coulomb and magnetic dipole field, which
corresponds to the use of Furry representation [27.22].
In addition, the leading correction to this approximation
can be accounted for by using the reduced mass in place
of the electron mass. However, to calculate higher order
terms consistently, one must treat a one-electron atom as
a two-body system and an N-electron atom as a N +1-
body system. Shortly after the development of modern
QED, a number of workers [27.23–25] developed two-
body equations by considering the Green’s function for
electron–nucleus scattering, with the original equation
known as the Bethe–Salpeter equation. Considered as
a function of the total energy in the c.m. frame, this
Green’s function has poles at bound state energies. In
practice an approximate Green’s function is considered
that has poles at either the Schrödinger or the Dirac en-
ergies, with reduced mass built in to some degree. Then

a perturbation theory is set up that allows corrections
of higher order in α and me/mN to be calculated in
a systematic way.

While the treatment of recoil using various versions
of the Bethe–Salpeter equation gives correct answers,
its implementation is quite complicated. In recent years
enormous progress has been made using the very differ-
ent approach of effective field theory. One of the earliest
uses of effective field theory was in QED [27.26], and
we will refer to it as NRQED (nonrelativistic QED).
Effective field theories have been used in many differ-
ent areas of physics, and are useful whenever physics
at one scale can be treated separately from physics at
a widely different scale. Atomic physics is an ideal place
for the use of effective field theory, as, for example, the
scale of the Bohr radius, the basic atomic physics length
scale, is separated from the electron Compton wave-
length, which is characteristic of most QED effects, by
two orders of magnitude. NRQED applies to both recoil
and non-recoil QED corrections, and always has as its
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starting point the well-understood Schrödinger equation.
Relativistic effects, such as relativistic mass increase,
magnetic interactions, or the Darwin term, are then in-
cluded perturbatively. This requires cutoff methods to
deal with higher orders of perturbation theory, where
those operators lead to ultraviolet singular results. In ad-
dition, the short distance physics of QED is accounted
for by adding in perturbations that involve delta func-
tions or derivatives of delta functions, with coefficients
determined by what is called a matching procedure, in
which scattering calculations in full QED and in the ef-
fective field theory are forced to agree. This approach,
which unfortunately has not yet been treated at text-
book level, has had a very great impact on higher order
QED calculations, with a number of higher order effects
calculated in recent years using the technique.

To illustrate the method, we follow a treatment of
Pachucki [27.27] in which the Dirac energies of hydro-
gen in the non-recoil limit are calculated to order mα6.
While he treated the general case, for simplicity we con-
sider here only the ground state energy, which has the
Taylor expansion

E = mc2
[

1− 1

2
(Zα)2− 1

8
(Zα)4− 1

16
(Zα)6

]
,

(27.42)

where we follow the convention of allowing for a general
nuclear charge Z. The fine structure, as is well known,
can be derived from perturbations associated with the
relativistic mass increase and the Darwin term, with
the spin–orbit interaction not contributing for s-states.
While the contribution of these perturbations is finite
in lowest order perturbation theory, they give rise to
singularities when treated in second order. To see this,
we give the momentum space version of second order
perturbation theory,

E(2) =
∫

d3 p d3k d3l d3q

(2π)9
φ0(p)V(p, k)

× GR(k, l)V(l, q)φ0(q) , (27.43)

where GR is the reduced Coulomb Green’s function.
It can be expanded in terms of a free term, a one-
potential term, and a many-potential term. The strongest
singularities are associated with the free term,

G0
R(k, l)=− (2π)

32mδ3(k− l)
k2+γ 2

, (27.44)

where γ =m Zα. The Darwin term in momentum space
is simply VD = πZα/2m2, and it is simple to see that
when both V ′s in the expression for E(2) are Darwin
terms and the free part of the Green’s function is used

a linearly divergent integral results. This can be regulated
by imposing a cutoffΛ on the magnitude of all momenta
in the integral, in which case a simple calculation gives

E(2)(DD0)=−Λ(Zα)
5

4π
+ m(Zα)6

8
. (27.45)

Linear divergences also exist when two relativistic mass
increase (RMI) terms or Darwin-RMI cross terms are
considered, but these terms happen to cancel.

To get a finite answer, the contribution of oper-
ators of intrinsic order m(Zα)6 must be considered.
These operators can be obtained from consideration of
the Bethe–Salpeter equation, but a great simplification
of NRQED is the fact that they can also be obtained
by considering free-particle scattering, where the com-
plications of the bound state problem are not present.
We illustrate this by considering electron scattering in
a Coulomb potential created by a stationary charge Z|e|.
In the Dirac theory this is given by

−4πZα

|p2− p1|2 ψ̄(p2)γ0ψ(p1)

= −4πZα

|p2− p1|2
(

1− |p2− p1|2
8m2

+6|p2− p1|2
(

p2
1+ p2

2

)+5
(

p2
2− p2

1

)2

128m4

)

.

(27.46)

In the above we have carried out a Taylor expansion
to fourth order in the electron momenta and dropped
spin–orbit terms. While this coincides with Schrödinger
theory in lowest order, a set of extra terms exists in the
Dirac case. To account for these, we modify the nonrel-
ativistic theory by adding extra operators that make the
theories agree. If the Taylor expansion is stopped in or-
der p2, we recognize the Darwin term already treated
above, but to go to order m(Zα)6 the last terms must
be treated. They are again linearly divergent, as are two
other terms – one associated with the next term in RMI,

VRMI =−(2π)3δ(k− l)
( |k|4

8m3 −
|k|6

16m5

)
(27.47)

and the other a term that can either be derived with
a Foldy–Wouthuysen transformation or by compar-
ing two-Coulomb photon scattering in the Dirac and
Schrödinger theories. When combined, first order per-
turbation theory for these operators cancels out the linear
divergence found above arising from second order per-
turbation theory, along with a logarithmic singularity,
leaving a finite answer in agreement with the Dirac
theory.
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27.6 Fine Structure

The fine structure of hydrogenic atoms in the non-recoil
limit is correctly described by the Dirac equation, which
gives for a state of principal quantum number n and
spin j En j = me f(n, j), with

f(n, j)=
(

1+ (Zα)2

(n−β)2
)−1/2

. (27.48)

Here

β ≡ j+ 1

2
−
√(

j+ 1

2

)2

− (Zα)2 , (27.49)

which gives the expansion

En j = m

{

1− (Zα)
2

2n2
− (Zα)

4

2n3

(
1

j+ 1
2

− 3

4n

)

+· · ·
}

(27.50)

With the use of the Bethe–Salpeter equation or NRQED
one can include recoil corrections exactly to order
m(Zα)4, and to this order

E = M+mr[ f(n, j)−1]− m2
r

2M
[ f(n, j)−1]2

+ (Zα)
4m3

r

2n3m2
N

(
1

j+ 1
2

− 1

l+ 1
2

)

(1− δl0)
(27.51)

The last term in this expression leads to a slight break-
ing of the degeneracy of the 2s1/2 and 2p1/2 states: this
splitting is referred to as the Lamb shift. A larger break-
ing arises from the finite size of the nucleus, which in
the nonrelativistic limit shifts s-states by

∆En(finite size)= 2

3n3
(Zα)4m3

r

〈
r2〉 . (27.52)

A major issue for the Lamb shift in hydrogen is the dis-
agreement between measurements at Stanford [27.28]
and Mainz [27.29] of the charge radius of the proton.
As discussed in Mohr’s chapter, the 18 kHz difference
creates difficulties in interpreting the experimental sta-
tus of the Lamb shift. While assuming the validity of
QED and completing all calculations that enter at the
few kHz level may allow one to determine the proton
charge radius independently, it is clearly highly desir-
able that a definitive electron-scattering experiment be
carried out. A promising alternative resolution to the
problem may come from measurements on muonic hy-
drogen undergoing at PSI. Because the scale of such

atoms is two orders of magnitude smaller than hy-
drogen, the effect of proton size is greatly enhanced,
and a measurement of the Lamb shift would then al-
low a very precise measurement of the proton charge
radius.

The largest correction to the Lamb shift comes
from the self-energy and vacuum polarization graphs
previously introduced in Sect. 27.2, with the understand-
ing that the free electron propagators are replaced by
Dirac–Coulomb propagators. The self-energy diagram
in Feynman gauge gives an energy shift

∆En(SE)= − i e2
∫

d3r d3r ′

×
∫

d4k

(2π)4
eik·(r−r ′)

k2+ iε
ψ̄n(r)

×γµSF
(
r, r ′; En − k0

)
γµψn

(
r ′
)

(27.53)

and the vacuum polarization a shift

∆En(VP)= − i e2
∫

d3r
∫

d3r ′

×
∫

d3k

(2π)3

∫
dE

2π
ψ̄n(r)

×γ0ψn(r)
eik·(r−r ′)

k2
Tr
[
γ 0SF

(
r ′, r ′; E

)]
.

(27.54)

In both cases the counterterms discussed above are un-
derstood to be added. It is conventional to pull out the
overall behavior in Z, α, and the principal quantum
number n as follows:

∆En(SE)+∆En(VP)≡ mα
(Zα)4

πn3 Fn(Zα) .

(27.55)

The evaluation of the function Fn(Zα) is quite difficult.
At low Z, a perturbative expansion to order (Zα)2 is
available, and is expressed as

Fn(Zα)= A40+ A41 ln(Zα)−2+ (Zα)A50

+ (Zα)2
[

A62 ln2(Zα)−2

+ A61 ln(Zα)−2+ A60

]

+· · · (27.56)

The constants A can be found in Mohr’s Chapt. 28. A40
contains a constant that must be obtained numerically,
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known as the Bethe logarithm. It can be defined from
a nonrelativistic limit of the Coulomb gauge version of
(27.53), in which one carries out the integral over k0
with Cauchy’s theorem, keeping only the photon pole,
makes the dipole approximation, and replaces α with
p/m. In that limit one has

∆ENR
n = 2e2

3m2

Λ∫

0

d3k

2ω(2π)3
∑

m

|pnm |2
En −ω− Em

,

(27.57)

where pnm ≡ 〈n|p|m〉. Because negative energy states
are not present, this expression diverges linearly withΛ.
The Bethe logarithm is defined by subtracting −1/ω
from the above denominator and carrying out the d3k
integration, giving

∆ENR
n = e2

6m2π2

∑

m

|pnm |2(Em−En) ln
Λ

|Em−En|

≡ 4mα(Zα)4

3πn3
ln

(
Λ

k0(n)Ry

)
. (27.58)

Elegant high accuracy determinations of these quanti-
ties using Schwinger’s Coulomb Green’s function have
been made [27.30, 31]. Reference [27.32] contains an
extensive tabulation.

We next discuss recoil corrections to the Lamb shift.
One recoil effect is the modification of the A constants
by a factor (mr/me)

3 (although part of A40 is modi-
fied instead by (mr/me)

2). Another correction, similar
to the Lamb shift but involving a photon exchanged

between the electron and nucleus was first derived by
Salpeter [27.25], and is given by

∆En = m3
r

memN

(Zα)5

πn3

[
2

3
δl0 ln

(
1

Zα

)
− 8

3
ln k0(n)

− 7

3
an − 1

9
δl0− 2

m2
N −m2

e
δl0

×

(
m2

N ln
me

mr
−m2

e ln
mN

mr

)]
, (27.59)

where a1s =−3− ln 4, a2s =−9/2, and a2p =−13/3.
Present research is concerned with corrections of order
α6m2

e/mN .
Finally we discuss the two-loop Lamb shift. The

leading contribution is [27.33–35]

∆En(two-loop)= mα2(Zα)4

π2n3 Hn(Zα) (27.60)

where for s-states

Hn =−4358

1296
− 10

27
π2+ 3

2
π2 ln 2− 9

4
ζ(3) (27.61)

and for non-s states

Hn =
[

197

72
+ π

2

6
−π2 ln 2+ 3

2
ζ(3)

]
Cl j

2(2l+1)
(27.62)

where Cl j = 2( j− l)/( j+1/2). The Zα corrections to
this quantity have been carried out [27.36,37], and con-
siderable progress has been made in calculating terms
of order (Zα)2 [27.38], though a complete calculation
of the constant in that order has not yet been carried out.

27.7 Hyperfine Structure

27.7.1 Muonium Hyperfine Splitting

After the electron g−2, the best test of QED is af-
forded by ground state muonium hyperfine splitting.
This is dominated by the Fermi splitting, which is given
by

EF = 16

3
α2 m3

r

m2
emµ

cR∞ (27.63)

where mr is the reduced mass. The leading cor-
rection to the Fermi splitting involves the electron
and muon anomalous magnetic moment, which act
to increase the splitting by a factor (1+ae)(1+aµ).
It is convenient to split the remaining corrections
into non-recoil and recoil parts. The non-recoil terms

are given by

∆νnon-recoil = (1+aµ)

{
1+ae+ 3

2
(Zα)2

+α(Zα)
(

ln 2− 5

2

)

− 8α(Zα)2

3π
ln(Zα)

×

[
ln(Zα)−ln 4+ 281

480

]

+ α(Zα)
2

π
[14.88 (0.29)]

+α
2(Zα)

π
D1

}
EF . (27.64)

Part
B

2
7
.7



422 Part B Atoms

A recent development has been the complete eval-
uation of D1, which is a binding correction to
the two-loop g−2 contribution, by Kinoshita and
Nio [27.39], who found D1 = 0.82(4). Note also
the constant 14.88 has changed from the previous
value of 15.38 because of a new calculation of the
vacuum polarization component, as discussed fur-
ther in Mohr’s chapter. Subtracting ∆νnon-recoil from
experiment leaves 795 kHz to be accounted for by re-
coil. The present state of recoil corrections is given
by

∆νrecoil =
{
− 3Zα

π

memµ
m2
µ−m2

e
ln

mµ
me

+ (Zα)
2m2

r

memµ

×

[
−2 ln(Zα)−8 ln 2+ 65

18

]

+ α(Zα)
π2

me

mµ

[
−2 ln2 mµ

me
+ 13

12
ln

mµ
me

+ 21

2
ζ(3)+ π

2

6
+ 35

9
+2.15(14)

+ α
π

(
−4

3
ln3 mµ

me
+ 4

3
ln2 mµ

me

)]}
EF .

(27.65)

The full power of modern forms of the Bethe–Salpeter
equation was needed for the evaluation of the second
term [27.40]. While these terms account for just the
needed 795 kHz mentioned above, the relatively large
uncertainty in the muon mass leads to an uncertainty in
the Fermi splitting of 1.3 kHz, and further progress in
muonium hyperfine splitting will need this uncertainty
to be reduced.

27.7.2 Hydrogen Hyperfine Splitting

The situation in hydrogen hyperfine splitting is quite
different from the muonium case because of the struc-
ture of the proton. The recoil corrections in (27.65) that

involve ln mµ/me involve the offshell muon propaga-
tor. Because the muon is a pointlike particle, there is
no uncertainty in the calculation. However, when it is
replaced by a proton, two strong-interaction problems
arise that limit the theoretical accuracy that can be at-
tained. The first arises from the fact that the charge
distribution of the proton modifies the hyperfine split-
ting. The fractional correction can be expressed in terms
of the electric and magnetic form factors of the proton
as follows:

δp(Zemach)= 2αme

π2

∫
d3 p

p4

×

(
GE

(− p2
)
GM

(− p2
)

1+κ −1

)

,

(27.66)

where κ is the anomalous magnetic moment of the pro-
ton. It contributes −38.72 ppm, with an error of 0.5 ppm
coming from the uncertainty in the form factors. The sec-
ond correction, δrecoil, replaces the first term in ∆νrecoil
discussed in muonium hfs. The logarithm of the ratio of
the muon and electron masses in that expression arises
from high internal momenta. In the case of hydrogen
hfs, this is sensitive to details of the proton structure.
The most recent evaluation of this quantity [27.41] gives
a 5.68 ppm effect, which is smaller than the Zemach
correction only because of cancellation of individual
terms of comparable size. When these corrections are
added to the the other QED corrections, theory agrees
with experiment at under the 1 ppm level, with hadronic
uncertainties of about 0.5 ppm. This limits the size of
hadronic effects arising from the polarizability of the
proton, which is known to be bounded in magnitude by
4 ppm from inelastic electron scattering data [27.42].
As with the case of the Lamb shift in hydrogen, further
progress will require better understanding from either
an experimental or theoretical approach of properties of
the proton.

27.8 Orthopositronium Decay Rate

The decay rate of orthopositronium has been measured
with increasing accuracy over the years, and has reached
the level where corrections of order α2 to the lowest
order decay rate need to be considered. The most recent
experiment [27.43] has determined

Γexperiment = 7.0404(10)(8)µs−1 . (27.67)

The lowest order rate is

Γ0 = 2
π2−9

9π
mα6 = 7.211 1670(1)µs−1 , (27.68)

so that radiative corrections must be quite large, about
2.4%, to account for the difference. These radiative

Part
B

2
7
.8



Quantum Electrodynamics 27.9 Precision Tests of QED in Neutral Helium 423

corrections are conventionally written as

Γtheory =
[

1+ A
α

π
+ α

2

3
lnα+ B

(α
π

)2− 3α3

2π
ln2α

+ C
α3

π
lnα+D

(α
π

)3+ . . .
]
Γ0 .

(27.69)

The constant A was first correctly calculated in [27.44].
Analytic and numeric improvements to this work [27.45]
have led to the present value of

A =−10.286 606±0.000 010 , (27.70)

which accounts for all but 0.1% of the difference be-
tween theory and experiment. The logarithmic term
of order α2Γ0 was determined by Caswell and Lep-
age [27.46] and the leading logarithmic term of order α3

by Karshenboim [27.47,48]. The coefficient of the non-
leading logarithmic term in order α3, C, has recently
been determined, but is numerically insignificant. For
quite some time a discrepancy appeared to be present
between theory and experiment, because a set of experi-
ments in both powders and vacuum appeared to require
a very large coefficient B. However, when this constant
was finally calculated [27.49], it was found to be

B = 45.06(26) , (27.71)

which is too small to explain the discrepancy. How-
ever, another experiment [27.50] was consistent with
theory, and further work at Michigan led to the above re-
sult, which is in complete agreement with theory: there
is at present no discrepancy in the decay rate of or-
thopositronium. We note also progress in the theory of
the decay rate of parapositronium [27.51, 52], which is
also consistent with experiment.

27.9 Precision Tests of QED in Neutral Helium

The Bethe–Salpeter equation mentioned above was de-
veloped in terms of an expansion of free electron
and nuclear propagators. However, if these propaga-
tors are replaced with two electron propagators in
an external Coulomb field, the formalism, while now
more complicated, allows a rigorous treatment of he-
lium in the non-recoil limit. This was carried out by
Araki [27.53] and Sucher [27.54], and allowed the-
oretical predictions up to order mα5. However, the
actual calculations are far more difficult because of the
more complicated propagators. Firstly, the Schrödinger
equation cannot be solved analytically, but rather nu-
merically. However, the use of sophisticated Hylleras
basis sets [27.55, 56], or the more recently introduced
method of random exponents [27.57], leads to accura-
cies far beyond experimental precision. Secondly, the
fine structure cannot be calculated analytically, but in-
stead involves expectation values of operators that are
somewhat singular: again the high-quality basis sets
just mentioned allow the precision evaluation of this
quantity [27.58, 59]. A third difficulty is the evalua-
tion of the Lamb shift. In helium the analog of the
Bethe logarithm discussed in connection with hydrogen
is much more difficult to evaluate. However, signifi-
cant progress has been made in recent years, with one
approach using Schwartz’s [27.60] idea of using an
integral representation of the numerator of the Bethe
logarithm [27.61, 62]. An even more accurate and com-

putationally simpler approach has been developed by
Drake and Goldman [27.63].

Most of the leading QED corrections in helium can
be expressed in terms of expectation values of various
operators 〈O〉, where

〈O〉 ≡
∫

d3r1 d3r2φ
∗
0(r1, r2)O(r1, r2)φ0(r1, r2) .

(27.72)

Explicitly, one has

H(4) = α

π
〈Hso〉+ α

2π
〈Hsoo〉+ α

π
〈Hss〉

+
(

89

15
+ 14

3
lnα− 20

3
s1 · s2

)
α2

m2
〈δ(r12)〉

+
(

76

45
− 8

3
ln 2α2

)
α2

m2

× [〈Zδ(r1) + Zδ(r2)〉]
− 14

3

α2

m2
Q− 2α

3πm2
M . (27.73)

Here

Hso = α

4m2

{
Z

r3
1

σ1 · L1+ Z

r3
2

σ2 · L2

− 1

r3
12

[σ1 · (r12 × p1)σ2 · (r12 × p2)]
}

,

(27.74)
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Hsoo = α

2m2

[

σ1 ·
(

r12

r3
12

× p2

)

+σ2 ·
(

r12

r3
12

× p1

)]

(27.75)

and

Hss = α

4m2

{[
σ1 ·σ2−3σ1 · r̂12σ2 · r̂12

r3
12

]

− 8π

3
σ1 ·σ2δ

3(r12)

}

. (27.76)

In the above, units in which �= c = 1 are used. Then
p and 1/r are of order mα, and H(4) is of order mα5.
The quantity Q is defined by

Q = 1

4π
lim
a→0

〈
1

r3
12(a)

+4πδ(r12)[γ + ln(a)]
〉

,

(27.77)

where r12(a) vanishes when r12 < a and M is given by

M =
∑

n

(
E0

n − E0)|Pn |2 ln

(
E0

n − E0
)

mα2 (27.78)

where

Pn =
∫

d3r1 d3r2φ
∗
n(r1, r2)(p1+ p2)φ0(r1, r2) .

(27.79)

M can be written in terms of an expectation value if we
define the Bethe logarithm ln k0 through

M ≡
∑

n

(
E0

n − E0)|Pn|2 ln
k0

mα2 . (27.80)

Calculations of the next order, that is, those of order
mα6, were carried out for triplet P states by Dou-
glas and Kroll [27.64] some time ago, but extension
of the method to S states has only recently become
possible through the use of NRQED techniques: we
note in particular a calculation of the 23S1 state by
Pachucki [27.65] and of the ground state by Korobov
and Yelkhovsky [27.66]. An outstanding problem in QED
is the completion of the extension of the fine struc-
ture calculation to order mα7. This latter calculation
should allow an extraction of the fine structure constant
from helium competitive to that obtained from electron
g−2 [27.67]. Work on this problem using both a Bethe–
Salpeter formalism [27.68] and NRQED [27.69] is
ongoing.

27.10 QED in Highly Charged One-Electron Ions

Because the Lamb shift scales as Z4 and energy levels
as Z2, the relative importance of this effect increases as
one goes out along an isoelectronic sequence. In addi-
tion, the approach used in the previous section, which
relies on an expansion in powers of Zα, becomes inap-
propriate, and requires methods that do not use such an
expansion. Such methods were introduced by Wichmann
and Kroll [27.70] for vacuum polarization. They were
extended to the more difficult self-energy calculation by
Brown and others [27.71], and the first correct calcula-
tions using the method were carried out by Desiderio and
Johnson [27.72]. The basic idea is first to carry out the
d3k integration in (27.53) analytically, leaving an inte-
gration over d3r, d3r ′, and k0 of a product of the electron
and photon propagators in coordinate space. If one then
makes a partial wave expansion of these propagators, the
angle integrations can be carried out, and the self-energy
becomes a sum over partial waves of an integral over two
radial coordinates and the photon energy, which integral
is carried out numerically. While simple in principle,
this method is numerically awkward because the parts
of the self-energy that are ultraviolet divergent are not
well described in coordinate space. To solve this prob-

lem, the parts of the self-energy that have this sensitivity,
which are associated with the part of the electron prop-
agator in which the electron propagates freely, or with
a single interaction, can be separated out. These subtrac-
tions allowed the first high-accuracy calculation of the
self-energy in Coulomb potentials by Mohr [27.73–75].
Later Blundell and Snyderman [27.76] used such sub-
tractions in a purely numeric approach that allowed the
treatment of non-Coulomb potentials, which must be
used for the many-electron ions discussed in the next
section. While the most accurate calculations have been
carried out for the case of the Coulomb potential, the
finite size of the nucleus cannot be neglected, particu-
larly at high Z. This issue has recently been studied by
several groups [27.77, 78], and is now well understood.
The experimental status of QED in one-electron ions is
discussed by Mohr in this volume. An important recent
development has been the calculation of the two-loop
Lamb shift using exact electron propagators. While so
far carried out only for the ground state in the ranges
Z > 40 [27.79] it should be straightforward, though
computationally intensive, to extend the calculations
both to excited states and to lower values of Z.
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27.11 QED in Highly Charged Many-Electron Ions

The previous applications of QED have been con-
centrated on simple systems, the most complex being
helium. However, slight modifications of the S-matrix
approach to QED described in Sect. 27.1 allow the treat-
ment of ions with any number of electrons. In practice,
this does not necessarily allow progress, since diagrams
of arbitrarily high order contribute at the level of 1 a.u.
in the many-body problem. However, when the nuclear
Coulomb field dominates the Coulomb fields of the elec-
trons, a small parameter is available, the quantity 1/Z.
Physically this simply reflects the fact the the energy
of repulsion of any pair of electrons is of the order
of Z a.u., while the energy of attraction to the nu-
cleus scales as Z2 a.u.. This 1/Z expansion has been
studied empirically in the context of many-body pertur-
bation theory, and it can be seen that while diagrams
involving two-photon interactions are important, those
involving three photons are highly suppressed. Thus the
possibility exists of putting the QED of highly charged
ions on the same footing as, for example, the electron
g−2, in the sense that evaluation of a limited num-
ber of Feynman diagrams will allow precision tests of
QED. However, while in principle one can start with
the original Furry representation, in practice, particu-
larly when larger numbers of electrons are present, it is
better to start with non-Coulomb potentials that build
in a major part of the electron screening present in
the ion. For example, if one considers sodiumlike plat-
inum (Z = 78), the valence electron should see a nuclear
charge of around 68 because of the ten ‘core’ electrons.
One potential that builds in this property is the so-called
‘core-Hartree’ potential [27.80], which is defined so
that

VCH(r)= Vnuc(r)+
∑

a

(2 ja+1)v0(a, a; r) ,

(27.81)

where

v0(a, a; r)≡
∞∫

0

dr ′ 1

r>

[
g2

a(r
′)+ f 2

a (r
′)
]

(27.82)

with ga and fa the upper and lower radial compo-
nents of the Dirac wavefunction for core state a. For
sodium-like systems, a ranges over the 1s, 2s, 2p1/2,
and 2p3/2 states. These states are solved for self con-
sistently. The resulting potential gives results close to
a full Dirac–Fock potential, but has the advantage of
being local, which makes the connection with QED

transparent. Because as r →∞, v0(a, a; r)→ 1/r, the
long range behavior of this potential has the physi-
cally expected limit. It is very simple to modify the
Furry representation to include this potential: one simply
writes

H0 =
∫

d3rψ†(r)[α · p+βm+VCH(r)]ψ(r)
(27.83)

and

HI =
∫

d3rψ†(r)[Vnuc(r)−VCH(r)]ψ(r)

− e
∫

d3rψ†(r)α · A(r)ψ(r)

+ α
2

∫
d3r d3r ′

|r−r ′| ψ
†(r)ψ(r)ψ†(r ′)ψ(r ′) .

(27.84)

The only difference with the QED discussed in the previ-
ous section is the first term of HI, which acts in a manner
similar to the self-mass counterterm, though it is of
course finite. However, when more than one electron
is present, new types of Feynman diagram are encoun-
tered: a representative set of them is given in Fig. 27.3.
There is an interesting connection between these dia-
grams and the many-body perturbation theory (MBPT)
method of solving the many-electron Schrödinger equa-
tion. In this latter method the N-electron Hamiltonian is
written H = H0+VC , where

H0 =
i=N∑

i=1

[
αi · pi +βim− Zα

ri
+U(ri)

]
(27.85)

a) b)

c) d)

e)

Fig. 27.3a–e Two-photon diagrams contributing to energy
levels of highly charged ions
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and

VC = α
2

∑

ij

1

|ri −r j | −
i=N∑

i=1

U(ri) . (27.86)

Care must be taken when working with the relativistic
version of the N-electron Schrödinger equation because
of negative energy states, a point that has been em-
phasized by Sucher [27.81]. This problem shows up in
MBPT in second order, where the associated energy shift
for the ground state of an alkali atom with valence elec-
tron v in the case when U is the Hartree–Fock potential
is

E(2) = −
∑

amn

gvamn(gmnva− gmnav)

εm + εn − εa − εv
+
∑

abm

gabmv(gmvab− gmvba)

εm + εv− εa − εb . (27.87)

Here a and b range over the occupied core states, and
m and n over excited states including in principle neg-
ative energy states. However, if they are included, the
energy denominator in the first term of the above ex-
pression can vanish when m is a positive energy state
and n negative energy, and vice versa. This problem can
be avoided by restricting sums over excited states to pos-
itive energy states, but this procedure must be justified in
the framework of QED. This can indeed be done [27.82],
with the result that the use of MBPT with the positive
energy restriction is justified, but negative energy state
effects enter in a well-defined way, giving effects on the
order of the Lamb shift.

To illustrate the present status of QED in highly
charged many-electron ions, we consider the spectrum
of sodium-like platinum. The transition energy be-
tween 3p3/2 and 3s1/2 has been measured [27.83] to
be 653.44( 7) eV. When MBPT is applied to this transi-
tion through second order, the answer depends slightly
on the starting potential. The Hartree–Fock potential
gives 659.56 eV, while the core-Hartree potential de-
scribed above gives 659.59 eV. A modification of the
core-Hartree potential in which the factor 2 ja+1 is re-
duced by 1 for the last core state give 659.57 eV. This
spread of 0.03 eV gives a measure of the convergence of
MBPT: it should be compared with a spread of 12 eV
in lowest order and 0.4 eV in first order. Thus the differ-
ence with experiment of 6.1 eV that is to be explained
by QED is reliable at the 0.1 eV level.

The QED calculations in highly charged ions are
not as advanced as in the QED tests in simple neu-
tral atoms. As discussed above, only in the last decade

have calculations of one-loop radiative corrections in
non-Coulomb potentials begun to be carried out. In
the case of the core-Hartree potential they give exactly
the 6.1 eV required to explain the difference between
MBPT and experiment. This is actually somewhat un-
fortunate, since the set of two-photon Feynman diagrams
comprising the two-loop Lamb shift mentioned above,
some of which are shown in Fig. 27.3, should be de-
tectable. Specifically, scaling arguments indicate that
they should contribute at the few tenths of an eV level,
and it is likely the good agreement with experiment
found above involves fortuitous calculations. The graph
of Fig. 27.3a plays a particularly interesting role, since
it can be shown to ‘contain’ E(2). Specifically, when
both photons are Coulomb photons and the electron
propagators are written in terms of a spectral represen-
tation, the fourth component of the internal momentum
integration can be carried out with contour methods.
When both propagators involve positive energy states,
E(2) from MBPT is precisely reproduced, including of
course the previously introduced ad hoc rule of hav-
ing only positive energy states in intermediate sums.
When one is positive and the other negative the un-
defined term discussed above could arise, but since
in this case both poles are on the same side of the
axis, the contribution vanishes. However, when both
are negative, a contribution outside of MBPT, part of
the QED effect, arises. It is of order Z3α3 a.u., in
other words 1/Z of the leading Lamb shift. For sodium-
like platinum, this should enter at the 0.1 eV level. For
this reason, to be sensitive to corrections beyond the
one-loop Lamb shift, ever more precise experiments
along with more sophisticated MBPT calculations are
required.

In recent years considerable progress has been made
in the evaluation of ‘two-photon’ physics in lithium-
like ions. This physics involves not only the two-loop
Lamb shift mentioned in the previous section, but also
vertex corrections to one-photon exchange and a full
QED treatment of the correlation effects discussed in
the previous paragraph. These effects have been included
in recent calculations [27.80, 84], and the extension to
sodiumlike and other alkalilike ions should be straight-
forward. This latter development would be desirable,
as new data on sodiumlike and copperlike uranium of
extremely high accuracy has become available.

As this progress is made, the interesting prospect
arises of extending the high-accuracy QED tests in sim-
ple neutral systems discussed in this review to more
complicated many-electron ions, and eventually to all
the neutral atoms in the periodic table.
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Tests of Fund28. Tests of Fundamental Physics

This chapter describes comparisons of precise
measurements and theoretical predictions that
provide tests of our knowledge of fundamental
physics. The focus is on several quantitative tests
of quantum electrodynamics (QED).

The basic formulation of the theory of QED and
calculational methods are discussed in Chapt. 27.
Here, only the end results of calculations are
collected, numerically evaluated, and compared
with the corresponding experiments. (All quoted
uncertainties are meant to be approximately at
the one standard deviation level.)

It should be remarked that QED theory and
the fundamental constants that are employed
in evaluating the theoretical expressions are
intimately linked. Fundamental constants are
discussed in Chapt. 1. Values of the constants
needed for comparison of theory and experiment
are generally determined by other comparisons
of theory and experiment, so that only the
consistency of a set of tests is checked. However,
the fact that this overall consistency is maintained
at a high level of precision and over a broad range
of phenomena provides confidence that QED is
sound despite mathematical shortcomings in its
formulation.
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Recent reviews that cover topics in this chapter
are given in [28.1, 2]. Much of the content in this
chapter is reprinted from [28.3]. Values of the
fundamental constants used in calculations in this
chapter are the 2002 CODATA recommended values
[28.3].

28.1 Electron g-Factor Anomaly

The magnetic moment of any of the three charged
leptons (e, µ, τ) is written as

µ= g
e

2m
s , (28.1)

where g is the g-factor of the particle, m is its mass, and
s is its spin. In (28.1), e is the elementary charge and is
positive. For the negatively charged leptons (e−, µ−, and
τ−) g is negative, and for the corresponding antiparticles
(e+, µ+, and τ+) g is positive. CPT invariance implies
that the masses and absolute values of the g-factors are
the same for each particle–antiparticle pair.

These leptons have eigenvalues of spin projection
sz =±�/2, and in the case of the electron and positron

it is conventional to write, based on (28.1),

µe = ge

2
µB , (28.2)

where µB = e�/(2me) is the Bohr magneton.
For nucleons or nuclei with spin I, the magnetic

moment can be written as

µ= g
e

2mp
I , (28.3)
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or

µ= gµNi . (28.4)

In (28.4), µN = e�/(2mp) is the nuclear magneton, de-
fined in analogy with the Bohr magneton, and i is
the spin quantum number of the nucleus defined by
I2 = i(i+1)�2 and Iz =−i�, . . . , (i−1)�, i�, where
Iz is the spin projection. However, in some publications
moments of nucleons are expressed in terms of the Bohr
magneton with a corresponding change in the definition
of the g-factor.

One of the most precise tests of QED is the compari-
son of theory and experiment for the electron magnetic
moment anomaly; the current status of this comparison
is given in this section.

The electron magnetic moment is proportional to

ge =−2(1+ae) , (28.5)

where the anomaly ae characterizes the deviation of
the g-factor from the Dirac value of ge(Dirac)=−2.
Measurement of the anomaly by the University of Wash-
ington group has yielded values for the electron and
positron given respectively by [28.4]

ae−(exp)= 1 159 652 188.4 (4.3)× 10−12 , (28.6)

ae+(exp)= 1 159 652 187.9 (4.3)× 10−12 , (28.7)

which yield the mean value

ae(exp)= 1 159 652 188.3 (4.2)× 10−12 , (28.8)

based on the analysis described in [28.1]. This analysis
assumes that CPT invariance holds for the electron–
positron system.

The same experiment has provided a precision com-
parison of the electron and positron g-factors

∣∣∣∣
ge−

ge+

∣∣∣∣= 1+ (0.5±2.1)× 10−12 , (28.9)

which provides a test of CPT invariance of the electron–
positron system.

The theoretical expression for ae may be written as

ae(th)= ae(QED)+ae(weak)+ae(had) , (28.10)

where the terms denoted by QED, weak, and had account
for the purely quantum electrodynamic, predominantly
electroweak, and predominantly hadronic (that is, strong
interaction) contributions to ae, respectively. The QED
contribution may be written as [28.5]

ae(QED)= A1+ A2(me/mµ)+ A2(me/mτ)

+ A3(me/mµ,me/mτ) . (28.11)

The term A1 is mass independent and the other terms
are functions of the indicated mass ratios. For these
terms the lepton in the numerator of the mass ratio is
the particle under consideration, while the lepton in the
denominator of the ratio is the virtual particle that is the
source of the vacuum polarization that gives rise to the
term.

Each of the four terms on the right-hand side of
(28.11) is expressed as a power series in the fine-
structure constant α:

Ai = A(2)i

(α
π

)
+ A(4)i

(α
π

)2+ A(6)i

(α
π

)3

+ A(8)i

(α
π

)4+· · · . (28.12)

The fine-structure constant α is proportional to the
square of the elementary charge e, and the order of a term
containing (α/π)n is 2n and its coefficient is called the
2nth-order coefficient.

The second-order coefficient is known exactly, and
the fourth- and sixth-order coefficients are known ana-
lytically in terms of readily evaluated functions:

A(2)1 = 1

2
(28.13)

A(4)1 = −0.328 478 965 579 . . . (28.14)

A(6)1 = 1.181 241 456 . . . . (28.15)

A total of 891 Feynman diagrams give rise to the
eighth-order coefficient A(8)1 , and only a few of these
are known analytically. However, in an effort begun
in the 1970s, Kinoshita and collaborators have cal-
culated A(8)1 numerically (for a summary of some of
this work see [28.6, 7]). The value of A(8)1 used in
the 1998 CODATA adjustment of the fundamental con-
stants was −1.5098 (384) [28.1]. Recently an error in
the program employed in the evaluation of a gauge-
invariant 18 diagram subset of the 891 diagrams was
discovered in the course of carrying out an independent
calculation to check this value [28.8]. The corrected pro-
gram together with improved precision in the numerical
integration for all diagrams leads to the tentative value
A(8)1 = −1.7366 (60) [28.9], where the shift from the
earlier value is predominately due to the correction of
the error. As a result of this recent work, Kinoshita and
Nio [28.8] report that the integrals from all 891 Feyn-
man diagrams have now been verified by independent
calculation and/or checked by analytic comparison with
lower-order integrals. Nevertheless, because the preci-
sion of the numerical evaluation of some integrals is still
being improved and a closer examination is being made
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of the uncertainty of the numerical evaluation of other
integrals, we retain the uncertainty estimate of the earlier
reported value of A(8)1 . This gives

A(8)1 = −1.7366 (384) . (28.16)

The 0.0384 standard uncertainty of A(8)1 contributes
a standard uncertainty to ae(th) of 0.96 × 10−9ae, which
may be compared to the 3.7 × 10−9ae uncertainty of the
experimental value (28.8). We also note that work is in
progress on analytic calculations of eighth-order inte-
grals. See, for example, Laporta [28.10] and Mastrolia
and Remiddi [28.11].

Little is known about the tenth-order coeffi-
cient A(10)

1 and higher-order coefficients. To evaluate
the contribution to the uncertainty of ae(th) due to
lack of knowledge of A(10)

1 , we follow [28.1] to obtain
A(10)

1 = 0.0(3.8). Because the 3.8 standard uncertainty
of A(10)

1 contributes a standard uncertainty component
to ae(th) of only 0.22 × 10−9ae, the uncertainty contri-
butions to ae(th) from all other higher-order coefficients
are assumed to be negligible.

The mass-dependent coefficients of possible inter-
est and corresponding contributions to ae(th), based on
the 2002 CODATA recommended values of the mass
ratios [28.3], are

A(4)2 (me/mµ)= 5.197 386 70 (27)× 10−7

→ 2.418 × 10−9ae , (28.17)

A(4)2 (me/mτ)= 1.837 63 (60)× 10−9

→ 0.009 × 10−9ae , (28.18)

A(6)2 (me/mµ)= −7.373 941 58 (28)× 10−6

→ −0.080 × 10−9ae , (28.19)

A(6)2 (me/mτ)= −6.5819 (19)× 10−8

→ −0.001 × 10−9ae , (28.20)

where the standard uncertainties of the coefficients are
due to the uncertainties of the mass ratios. However,
the contributions are so small that the uncertainties of
the mass ratios are negligible. It may also be noted
that the contributions from A(6)3 (me/mµ,me/mτ) and
all higher-order mass-dependent terms are negligible as
well.

For the electroweak contribution we have

ae(weak)= 0.0297 (5)× 10−12

= 0.0256 (5)× 10−9ae , (28.21)

as in [28.1].

The hadronic contribution is

ae(had)= 1.671 (19)× 10−12

= 1.441 (17)× 10−9ae , (28.22)

and is the sum of the following three contributions:
a(4)e (had)= 1.875 (18)× 10−12 obtained by Davier and
Höcker [28.12]; a(6a)

e (had)= −0.225 (5)× 10−12 given
by Krause [28.13]; and a(γγ)

e (had)=0.0210 (36)× 10−12

obtained by multiplying the corresponding result for the
muon given in [28.3] by the factor (me/mµ)

2, since
a(γγ)

e (had) is assumed to vary approximately as m2
µ. The

contribution ae(had), although larger than ae(weak), is
not yet of major significance.

Since the dependence on α of any contribution other
than ae(QED) is negligible, we obtain a convenient form
for the function by combining terms in ae(QED) that
have like powers of α/π. This leads to the following
summary of the above results:

ae(th)= ae(QED)+ae(weak)+ae(had) , (28.23)

where

ae(QED)= C(2)e

(α
π

)
+C(4)e

(α
π

)2+C(6)e

(α
π

)3

+C(8)e

(α
π

)4+C(10)
e

(α
π

)5+· · · ,
(28.24)

with

C(2)e = 0.5 ,

C(4)e = −0.328 478 444 00 ,

C(6)e = 1.181 234 017 ,

C(8)e = −1.7366 (384) ,

C(10)
e = 0.0 (3.8) , (28.25)

and where

ae(weak)= 0.030 (1)× 10−12 (28.26)

and

ae(had)= 1.671 (19)× 10−12 . (28.27)

The standard uncertainty of ae(th) from the uncertainties
of the terms listed above, other than that due to α, is

u[ae(th)] = 1.15 × 10−12 = 0.99 × 10−9ae , (28.28)

and is dominated by the uncertainty of the coeffi-
cient C(8)e .

We define an additive correction δe to ae(th) to ac-
count for the lack of exact knowledge of ae(th), and
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hence the complete theoretical expression for the elec-
tron anomaly is

ae(α, δe)= ae(th)+ δe , (28.29)

where all the uncertainty is associated with δe. The the-
oretical estimate of δe is zero and its standard uncertainty
is u[ae(th)]:
δe = 0.0 (1.1)× 10−12 . (28.30)

Equating the theoretical expression with ae(exp)
given in (28.8) yields

α−1(ae)= 137.035 998 80 (52) . (28.31)

The uncertainty of ae(th) is significantly smaller than
the uncertainty of ae(exp), and thus the uncertainty
of this inferred value of α is determined mainly by
the uncertainty of ae(exp). This result has the smallest
uncertainty of any value of alpha currently avail-
able.

This result compares favorably with the value

α−1(recoil)= 137.036 0001 (11) (28.32)

derived from the atomic recoil frequency shift of pho-
tons absorbed and emitted by cesium, as reviewed
in [28.3].

28.2 Electron g-Factor in 12C5+ and 16O7+
For a ground-state hydrogenic ion A X(Z−1)+ with
mass number A, atomic number (proton number) Z,
nuclear spin quantum number i = 0, and g-factor
ge−

(
AX(Z−1)+) in an applied magnetic flux density B,

the ratio of the electron’s spin-flip (often called pre-
cession) frequency fs =

∣∣ge−
(

AX(Z−1)+)∣∣(e�/2me)B/h
to the cyclotron frequency of the ion fc = (Z −1)
eB/2πm(A X(Z−1)+) in the same magnetic flux density
is

fs
(

A X(Z−1)+)

fc
(

A X(Z−1)+)=−
ge−

(
A X(Z−1)+)

2(Z−1)

Ar
(

A X(Z−1)+)

Ar(e)
,

(28.33)

where Ar(X) is the relative atomic mass of particle X.
If the frequency ratio fs/ fc is determined experimen-
tally with high accuracy, and Ar

(
A X(Z−1)+) of the ion

is also accurately known, then this expression can be
used to determine an accurate value of Ar(e), assuming
the bound-state electron g-factor can be calculated from
QED theory with sufficient accuracy; or the g-factor can
be determined if Ar(e) is accurately known from another
experiment. In fact, a broad program involving workers
from a number of European laboratories has been under-
way since about the mid-1990s to measure the frequency
ratio and calculate the g-factor for different ions, most
notably (to date) 12C5+ and 16O7+. The measurements
themselves are being performed at the GSI (Gesellschaft
für Schwerionenforschung, Darmstadt, Germany) by
GSI and University of Mainz researchers. Values re-
ported are [28.14–16]

fs
(

12C5+)

fc
(

12C5+) = 4376.210 4989 (23) (28.34)

and [28.16–18]

fs
(

16O7+)

fc
(

16O7+) = 4164.376 1836 (31) . (28.35)

It should be noted that these two frequency ratios are
correlated. Based on the detailed uncertainty budget of
the two results [28.16], we find

r

(
fs
(

12C5+)

fc
(

12C5+) ,
fs
(

16O7+)

fc
(

16O7+)
)

= 0.035 (28.36)

for the correlation coefficient.
We next consider the g-factor in (28.33) for an elec-

tron in the 1S state of hydrogen-like carbon 12 (atomic
number Z = 6, nuclear spin quantum number i = 0) or in
the 1S state of hydrogen-like oxygen 16 (atomic number
Z = 8, nuclear spin quantum number i = 0) within the
framework of relativistic bound-state theory. The meas-
ured quantity is the transition frequency between the
two Zeeman levels of the atom in an externally applied
magnetic field.

The energy of a free electron with spin projection sz
in a magnetic flux density B in the z direction is

Esz =−ge−
e

2me
sz B , (28.37)

and hence the spin-flip energy difference is

∆E =−ge−µB B . (28.38)

(In keeping with the definition of the g-factor in
Sect. 28.1 the quantity ge− is negative.) The analogous
expressions for the ions considered here are

∆Eb(X)=−ge−(X)µB B , (28.39)
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which defines the bound-state electron g-factor in the
case where there is no nuclear spin, and where X is
either 12C5+ or 16O7+.

The main theoretical contributions to ge−(X) can be
categorized as follows:

• Dirac (relativistic) value gD;• radiative corrections ∆grad;• recoil corrections ∆grec;• nuclear size corrections ∆gns.

Thus we write

ge−(X)= gD+∆grad+∆grec+∆gns+· · · ,
(28.40)

where terms accounting for other effects are assumed
to be negligible at the current level of uncertainty of
the relevant experiments (relative standard uncertainty
ur ≈ 6 × 10−10). These theoretical contributions are dis-
cussed in the following paragraphs; numerical results
are summarized in Tables 28.1, 28.2.

Breit [28.19] obtained the exact value

gD =−2

3

[
1+2

√
1− (Zα)2

]

=−2

[
1− 1

3
(Zα)2− 1

12
(Zα)4

− 1

24
(Zα)6+· · ·

]
(28.41)

from the Dirac equation for an electron in the field of
a fixed point charge of magnitude Ze, where the only
uncertainty is that due to the uncertainty in α.

The radiative corrections may be written as

∆grad =−2

[
C(2)e (Zα)

(α
π

)

+C(4)e (Zα)
(α

π

)2+· · ·
]
, (28.42)

where the coefficients C(2n)
e (Zα), corresponding to n vir-

tual photons, are slowly varying functions of Zα. These
coefficients are defined in direct analogy with the cor-
responding coefficients for the free electron C(2n)

e given
in Sect. 28.1 so that

lim
Zα→0

C(2n)
e (Zα)= C(2n)

e . (28.43)

The coefficient C(2)e (Zα) has been calculated to second
order in Zα by Grotch [28.20] who finds

C(2)e (Zα)= C(2)e + 1

12
(Zα)2+· · ·

= 1

2
+ 1

12
(Zα)2+· · · . (28.44)

This result has been confirmed by Faustov and
Close [28.21] and Osborn [28.22], as well as by others.

The terms listed in (28.44) do not provide a value of
C(2)e (Zα)which is sufficiently accurate at the level of un-
certainty of the current experimental results. However,
Yerokhin [28.23, 24] have recently calculated numer-
ically the self-energy contribution C(2)e,SE(Zα) to the
coefficient to all orders in Zα over a wide range of Z.
These results are in general agreement with, but are more
accurate than, the earlier results of Beier et al. [28.25]
and Beier [28.26]. Other calculations of the self en-
ergy have been carried out by Persson [28.27]; Blundell
et al. [28.28]; and Goidenko [28.29]. For Z = 6 and
Z = 8 the calculation of Yerokhin et al. [28.23] gives

C(2)e,SE(6α)= 0.500 183 609 (19)

C(2)e,SE(8α)= 0.500 349 291 (19) , (28.45)

where we have converted their quoted result to conform
with our notation convention, taking into account the
value of α employed in their calculation.

Table 28.1 Theoretical contributions and total for the
g-factor of the electron in hydrogenic carbon 12 based on
the 2002 recommended values of the constants

Contribution Value Source (Eq.)

Dirac gD −1.998 721 354 39 (1) (28.41)

∆g(2)SE −0.002 323 672 45 (9) (28.45)

∆g(2)VP 0.000 000 008 51 (28.49)

∆g(4) 0.000 003 545 74 (16) (28.53)

∆g(6) −0.000 000 029 62 (28.54)

∆g(8) 0.000 000 000 10 (28.55)

∆grec −0.000 000 087 64 (1) (28.56, 28.58)

∆gns −0.000 000 000 41 (28.60)

ge− (12C5+) −2.001 041 590 16 (18) (28.61)

Table 28.2 Theoretical contributions and total for the
g-factor of the electron in hydrogenic oxygen 16 based
on the 2002 recommended values of the constants

Contribution Value Source (Eq.)

Dirac gD −1.997 726 003 06 (2) (28.41)

∆g(2)SE −0.002 324 442 15 (9) (28.45)

∆g(2)VP 0.000 000 026 38 (28.49)

∆g(4) 0.000 003 546 62 (42) (28.53)

∆g(6) −0.000 000 029 62 (28.54)

∆g(8) 0.000 000 000 10 (28.55)

∆grec −0.000 000 117 02 (1) (28.56, 28.58)

∆gns −0.000 000 001 56 (1) (28.60)

ge− (16O7+) −2.000 047 020 31 (43) (28.61)
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The lowest-order vacuum-polarization correction is
conveniently considered as consisting of two parts. In
one the vacuum polarization loop modifies the inter-
action between the bound electron and the Coulomb
field of the nucleus, and in the other the loop modifies
the interaction between the bound electron and the ex-
ternal magnetic field. The first part, sometimes called
the “wave function” correction, has been calculated nu-
merically by Beier et al. [28.25], with the result (in our
notation)

C(2)e,VPwf(6α)= −0.000 001 840 3431 (43) ,

C(2)e,VPwf(8α)= −0.000 005 712 028 (26) . (28.46)

Each of these values is the sum of the Uehling poten-
tial contribution and the higher-order Wichmann–Kroll
contribution, which were calculated separately.

The values in (28.46) are consistent with the re-
sult of an evaluation of the correction in powers of
Zα. Terms to order (α/π)(Zα)7 have been calculated
for the Uehling potential contribution [28.30–32]; and
an estimate of the leading order (α/π)(Zα)6 term of
the Wichmann–Kroll contribution has been given by
Karshenboim et al. [28.32] based on a prescription of
Karshenboim [28.30]. To the level of uncertainty of in-
terest here, the values from the power series are the
same as the numerical values in (28.46). (Note that for
the Wichmann–Kroll term, the agreement between the
power-series results and the numerical results is im-
proved by an order of magnitude if an additional term
in the power series for the energy level [28.33] used in
Karshenboim’s prescription is included.)

For the second part of the lowest-order vacuum po-
larization correction, sometimes called the “potential”
correction, Beier et al. [28.25] found that the Uehling
potential contribution is zero. They also calculated the
Wichmann–Kroll contribution numerically over a wide
range of Z. Their value at low Z is very small and
only an uncertainty estimate of 3 × 10−10 in g is given
because of poor convergence of the partial wave expan-
sion. The reduction in uncertainty (by a factor of 30
for carbon) employed by Beier et al. [28.14] for this
term, based on the assumption that it is of the order of
(α/π)(Zα)7, is not considered here, because the refer-
ence quoted for this estimate [28.32] does not explicitly
discuss this term. Yerokhin et al. [28.23] obtained numer-
ical values for this contribution for carbon and oxygen
by a least-squares fit to the values of Beier et al. [28.25]
at higher Z.

Subsequently, Karshenboim and Milstein [28.34] an-
alytically calculated the Wichmann–Kroll contribution

to the potential correction to lowest order in Zα. Their
result in our notation is

C(2)e,VPp(Zα)=
7π

432
(Zα)5+· · · . (28.47)

This result, together with the numerical values from
Beier [28.26], yields

C(2)e,VPp(6α)= 0.000 000 007 9595 (69) ,

C(2)e,VPp(8α)= 0.000 000 033 235 (29) , (28.48)

which are used in the present analysis. We ob-
tained these results by fitting a function of the
form

[
a+bZα+ c(Zα)2

]
(Zα)5 to the point in (28.47)

and two values of the complete function calculated
by [28.26] (separated by about 10 calculated values)
and evaluating the fitted function at Z = 6 or 8. This
was done for a range of pairs of points from [28.26], and
the results in (28.48) are the apparent limit of the val-
ues as the lower Z member of the pair used in the fit
approaches either 6 or 8 as appropriate. (This general
approach is described in more detail in [28.35].)

The total one-photon vacuum polarization coeffi-
cients are given by the sum of (28.46) and (28.48):

C(2)e,VP(6α)= C(2)e,VPwf(6α)+C(2)e,VPp(6α)

= −0.000 001 832 384 (11) ;
C(2)e,VP(8α)= C(2)e,VPwf(8α)+C(2)e,VPp(8α)

= −0.000 005 678 793 (55) . (28.49)

The total for the one-photon coefficient C(2)e (Zα), given
by the sum of (28.45) and (28.49), is

C(2)e (6α)= C(2)e,SE(6α)+C(2)e,VP(6α)

= 0.500 181 777 (19) ,

C(2)e (8α)= C(2)e,SE(8α)+C(2)e,VP(8α)

= 0.500 343 613 (19) , (28.50)

where in this case, following Beier et al. [28.25], the
uncertainty is simply the sum of the individual uncer-
tainties in (28.45) and (28.49). The total one-photon
contribution ∆g(2) to the g-factor is thus

∆g(2) =−2C(2)e (Zα)
(α

π

)

= −0.002 323 663 93 (9) for Z = 6

= −0.002 324 415 77 (9) for Z = 8 .

(28.51)

The separate one-photon self energy and vacuum po-
larization contributions to the g-factor are given in
Tables 28.1, 28.2.
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Evaluations by Eides and Grotch [28.36] using the
Bargmann–Michel–Telegdi equation and by Czarnecki
et al. [28.37] using an effective potential approach yield

C(2n)
e (Zα)= C(2n)

e

(
1+ (Zα)

2

6
+· · ·

)
(28.52)

as the leading binding correction to the free electron
coefficients C(2n)

e for any n. For n = 1, this result was
already known, as is evident from (28.44). We include
this correction for the two-photon term, that is, for n = 2,
which gives

C(4)e (Zα)= C(4)e

(
1+ (Zα)

2

6
+· · ·

)

= −0.328 583 (14) for Z = 6

= −0.328 665 (39) for Z = 8 ,
(28.53)

here C(4)e = −0.328 478 444 . . . . The uncertainty is due
to uncalculated terms and is obtained by assuming that
the unknown higher-order terms for n = 2, represented
by the dots in (28.52), are the same as the higher-order
terms for n = 1 as can be deduced by comparing the
numerical results given in (28.50) to (28.44). This is
the same general approach as that employed by Beier
et al. [28.14].

The three-photon term is calculated in a similar way
but the uncertainty due to uncalculated higher-order
terms is negligible:

C(6)e (Zα)= C(6)e

(
1+ (Zα)

2

6
+· · ·

)

= 1.1816 . . . for Z = 6

= 1.1819 . . . for Z = 8 , (28.54)

where C(6)e = 1.181 234 . . . . For the four-photon cor-
rection, at the level of uncertainty of current interest,
only the free-electron coefficient is necessary:

C(8)e (Zα)≈ C(8)e = −1.7366 (384) . (28.55)

The preceding corrections ∆gD and ∆grad are based
on the approximation that the nucleus of the hydrogenic
atom has an infinite mass. The recoil correction to the
bound-state g-factor associated with the finite mass of
the nucleus is denoted by ∆grec, which we write here as
the sum ∆g(0)rec +∆g(2)rec corresponding to terms that are
zero- and first-order in α/π, respectively. For ∆g(0)rec, we

have

∆g(0)rec =

⎡

⎢
⎢
⎣ − (Zα)2+ (Zα)4

3
[
1+√

1− (Zα)2
]2

− (Zα)5 P(Zα)

⎤

⎥⎥
⎦

me

mN
+O

(
me

mN

)2

= −0.000 000 087 71 (1) . . . for Z = 6

= −0.000 000 117 11 (1) . . . for Z = 8 ,
(28.56)

where mN is the mass of the nucleus. The
mass ratios, obtained from the 2002 CODATA
adjustment, are me/m

(
12C6+) = 0.000 045 7275 . . .

and me/m
(

16O8+) = 0.000 034 3065 . . . . In (28.56),
the first term in the brackets was calculated by
Grotch [28.38]. Shortly thereafter, this term and
higher-order terms were obtained by Grotch [28.39],
Hegstrom [28.40], Faustov [28.21], Close and Os-
born [28.22], and Grotch and Hegstrom [28.41] (see
also Hegstrom [28.42] and Grotch [28.20]). The sec-
ond and third terms in the brackets were calculated by
Shabaev and Yerokhin [28.43] based on the formula-
tion of Shabaev [28.44] (see also Yelkhovski [28.45]).
Shabaev and Yerokhin have numerically evaluated the
function P(Zα) over a wide range of Z, with the re-
sult P(6α)= 10.493 95 (1) for hydrogenic carbon and
P(8α)= 9.300 18 (1) for hydrogenic oxygen.

An additional term of the order of the mass ratio
squared has been considered by various authors. Earlier
calculations of this term for atoms with a spin one-half
nucleus, such as muonium, have been done by Close and
Osborn [28.22] and Grotch and Hegstrom [28.41] (see
also Eides and Grotch [28.36]). Their result for this term
is

(1+ Z)(Zα)2
(

me

mN

)2

. (28.57)

Eides and Grotch [28.36], Eides [28.46] find that this
correction to the g-factor is independent of the spin of the
nucleus, so (28.57) gives the correction for carbon and
oxygen, as well as atoms with a spin one-half nucleus.
On the other hand, Martynenko and Faustov [28.47, 48]
find that the correction of this order depends on the spin
of the nucleus and give a result with the factor 1+ Z
replaced by Z/3 for a spin zero nucleus. In view of
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this discrepancy, we include a contribution to ∆g(0)rec in
(28.56) that is the average of the two quoted results with
an uncertainty of half of the difference between them.

For ∆g(2)rec, we have

∆g(2)rec =
α

π

(Zα)2

3

me

mN
+· · ·

= 0.000 000 000 06 . . . for Z = 6

= 0.000 000 000 09 . . . for Z = 8 , (28.58)

There is a small correction to the bound-state
g-factor due to the finite size of the nucleus:

∆gns = 8

3
(Zα)4

(
RN

λC

)2

+· · · , (28.59)

where RN is the bound-state nuclear rms charge ra-
dius andλC is the Compton wavelength of the electron
divided by 2π. In (28.59), the term shown is the nonrela-
tivistic approximation given by Karshenboim [28.30].
This term and the dominant relativistic correction have
been calculated by Glazov and Shabaev [28.49]. We
take RN = 2.4705 (23) fm and RN = 2.6995 (68) from
the compilation of Angeli [28.50] for the values of the
12C and 16O nuclear radii, respectively, which, based on
Glazov and Shabaev [28.49], yields

∆gns = −0.000 000 000 41 for 12C ,

∆gns = −0.000 000 001 56 (1) for 16O . (28.60)

The theoretical value for the g-factor of the electron
in hydrogenic carbon 12 or oxygen 16 is the sum of the
individual contributions discussed above and summar-
ized in Tables 28.1 and 28.2:

ge−
(12C5+)= −2.001 041 590 16 (18)

ge−
(16O7+)= −2.000 047 020 31 (43) . (28.61)

We define gC(th) to be the sum of gD as given
in (28.41), the term −2(α/π)C(2)e , and the numerical
values of the remaining terms in (28.40) as given in
Table 28.1 without the uncertainties. The standard un-
certainty of gC(th) from the uncertainties of these latter
terms is

u[gC(th)] = 1.8 × 10−10 = 9.0 × 10−11|gC(th)| .
(28.62)

The uncertainty in gC(th) due to the uncertainty in α en-
ters primarily through the functional dependence of gD
and the term −2(α/π)C(2)e on α. Therefore this particu-
lar component of uncertainty is not explicitly included in

u[gC(th)], but it is included in Tables 28.1 and 28.2. To
take the uncertainty u[gC(th)] into account we employ
as the theoretical expression for the g-factor

gC(α, δC)= gC(th)+ δC , (28.63)

where the input value of the additive correction δC is
taken to be zero and its standard uncertainty is u[gC(th)]:
δC = 0.0 (1.8)× 10−10 . (28.64)

Analogous considerations apply for the g-factor in oxy-
gen:

u[gO(th)] = 4.3 × 10−10 = 2.2 × 10−10|gO(th)|
(28.65)

gO(α, δO)= gO(th)+ δO (28.66)

δO = 0.0 (4.3)× 10−10 . (28.67)

Since the uncertainties of the theoretical values of
the carbon and oxygen g-factors arise primarily from
the same sources, the quantities δC and δO are highly
correlated. Their covariance is

u(δC, δO)= 741 × 10−22 , (28.68)

which corresponds to a correlation coefficient of
r(δC, δO)= 0.95.

The theoretical value of the ratio of the two g-factors,
which is relevant to the following discussion, is

ge−
(

12C5+)

ge−
(

16O7+) = 1.000 497 273 23 (13) , (28.69)

where the covariance is taken into account in calculat-
ing the uncertainty, and for this purpose includes the
contribution due to the uncertainty in α.

Finally, we consider evaluation of the mass ratio
in (28.33) by applying the relation for the relative atomic
mass Ar

(
A X

)
of a neutral atom A X in terms of the

relative atomic mass of an ion of the atom formed by the
removal of n electrons, which is given by

Ar
(A X

)= Ar
(A Xn+)+n Ar(e)

− Eb
(

A X
)− Eb

(
A Xn+)

muc2 . (28.70)

Here A is the mass number, Z is the atomic number (pro-
ton number), Eb

(
A X

)
/muc2 is the relative-atomic-mass

equivalent of the total binding energy of the Z electrons
of the atom, Eb

(
A Xn+)/muc2 is the relative-atomic-

mass-equivalent of the binding energy of the A Xn+ ion,
and mu is the atomic mass constant.
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From (28.33) and (28.70), we have

fs
(

12C5+)

fc
(

12C5+) =−ge−
(

12C5+)

10Ar(e)

×

[

12−5Ar(e)+ Eb
(

12C
)− Eb

(
12C5+)

muc2

]

,

(28.71)

which is the equation for the 12C5+ frequency-ratio.
Evaluation of this expression using the result for
fs
(

12C5+)/fc
(

12C5+) in (28.34), the theoretical result
for ge−

(
12C5+) in Table 28.1, and the relevant bind-

ing energies from [28.3], yields

Ar(e)= 0.000 548 579 909 31 (29) , (28.72)

a result that is consistent with the University of Washing-
ton result [28.51], but has about a factor of four smaller
uncertainty.

Similarly, we have

fs
(

16O7+)

fc
(

16O7+) =−ge−
(

16O7+)

14Ar(e)
Ar
(16O7+) (28.73)

with

Ar
(16O

)= Ar
(16O7+)+7Ar(e)

− Eb
(

16O
)− Eb

(
16O7+)

muc2 , (28.74)

which are the equations for the oxygen frequency ra-
tio and Ar

(
16O

)
, respectively. The first expression,

evaluated using the result for fs
(

16O7+)/ fc
(

16O7+) in
(28.35) and the theoretical result for ge−

(
16O7+) in Ta-

ble 28.2, in combination with the second expression,
evaluated using the value of Ar

(
16O

)
from the Univer-

sity of Washington group [28.52, 53] and the relevant
binding energies from [28.3], yields

Ar(e)= 0.000 548 579 909 57 (43) , (28.75)

a value that is consistent with both the University of
Washington value [28.51] and the value in (28.72) ob-
tained from fs

(
12C5+)/ fc

(
12C5+).

As a consistency test, it is of interest to com-
pare the experimental and theoretical values of the
ratio of ge−

(
12C5+) to ge−

(
16O7+) [28.54]. The main

reason is that the experimental value of the ratio is
only weakly dependent on the value of Ar(e). The
theoretical value of the ratio is given in (28.69) and
takes into account the covariance of the two the-
oretical values. The experimental value of the ratio
can be obtained by combining (28.34) to (28.36),
(28.71), (28.73), and (28.74), and using the 2002
CODATA recommended value for Ar(e). (Because of
the weak dependence of the experimental ratio on
Ar(e), the value used is not at all critical.) The result
is

ge−
(

12C5+)

ge−
(

16O7+) = 1.000 497 273 70 (90) , (28.76)

in agreement with the theoretical value in (28.69).

28.3 Hydrogen and Deuterium Atoms

This section gives a brief survey of the theory of the
energy levels of hydrogen and deuterium relevant to
measurements of transition frequencies. Although in-
formation to completely determine the theoretical values
for the energy levels is provided, results that are included
in [28.1, 2] are given with minimal discussion, and the
emphasis is on recent results. For brevity, reference to
most historical works is not included.

The theoretical data provided here are confined to
that needed to evaluate the theoretical values of the pre-
cisely measured transition frequencies in hydrogen and
deuterium summarized in [28.3].

It should be noted that the theoretical values of the
energy levels of different states of hydrogen and deu-
terium are highly correlated. For example, for S states,
the uncalculated terms are primarily of the form of

an unknown common constant divided by n3. This
fact is taken into account by calculating covariances
between energy levels in addition to the uncertain-
ties of the individual levels as discussed in detail in
Sect. 28.3.12. To provide the information needed to cal-
culate the covariances, where necessary we distinguish
between components of uncertainty that are proportional
to 1/n3, denoted by u0, and components of uncer-
tainty that are essentially random functions of n, denoted
by un .

Theoretical values of the energy levels of hydro-
gen and deuterium atoms are determined mainly by
the Dirac eigenvalue, QED effects such as self energy
and vacuum polarization, and nuclear size and mo-
tion effects. We consider each of these contributions
in turn.
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28.3.1 Dirac Eigenvalue

The binding energy of an electron in a static Coulomb
field (the external electric field of a point nucleus of
charge Ze with infinite mass) is determined predomin-
antly by the Dirac eigenvalue

ED =
(

1+ (Zα)2

(n− δ)2
)−1/2

mec2 , (28.77)

where n is the principal quantum number,

δ= |κ|−
[
κ2− (Zα)2

]1/2
, (28.78)

and κ is the angular momentum-parity quantum number
(κ =−1, 1,−2, 2,−3 for S1/2, P1/2, P3/2, D3/2, and
D5/2 states, respectively). States with the same principal
quantum number n and angular momentum quantum
number j = |κ|− 1

2 have degenerate eigenvalues. The
nonrelativistic orbital angular momentum is given by
l = ∣∣κ+ 1

2

∣∣− 1
2 . (Although we are interested only in the

case where the nuclear charge is e, we retain the atomic
number Z in order to indicate the nature of various
terms.)

Corrections to the Dirac eigenvalue that approxi-
mately take into account the finite mass of the nucleus
mN are included in the more general expression for
atomic energy levels, which replaces (28.77) [28.55,56]:

EM = Mc2+[ f(n, j )−1]mrc
2

−[ f(n, j )−1]2 m2
r c2

2M

+ 1− δl0
κ(2l+1)

(Zα)4m3
r c2

2n3m2
N

+· · · , (28.79)

where

f(n, j )=
[

1+ (Zα)2

(n− δ)2
]−1/2

, (28.80)

M = me+mN, and mr = memN/(me+mN) is the re-
duced mass.

28.3.2 Relativistic Recoil

Relativistic corrections to (28.79) associated with mo-
tion of the nucleus are considered relativistic-recoil
corrections. The leading term, to lowest order in Zα

and all orders in me/mN, is [28.56, 57]

ES = m3
r

m2
emN

(Zα)5

πn3 mec2

×

{
1

3
δl0 ln(Zα)−2− 8

3
ln k0(n, l)− 1

9
δl0− 7

3
an

− 2

m2
N−m2

e
δl0

[
m2

N ln
(me

mr

)
−m2

e ln
(mN

mr

)]}
,

(28.81)

where

an =−2

[

ln
(2

n

)
+

n∑

i=1

1

i
+1− 1

2n

]

δl0

+ 1− δl0
l(l+1)(2l+1)

. (28.82)

To lowest order in the mass ratio, higher-order cor-
rections in Zα have been extensively investigated; the
contribution of the next two orders in Zα can be written
as

ER = me

mN

(Zα)6

n3
mec2

×
[

D60+D72 Zα ln2 (Zα)−2+· · ·
]
,

(28.83)

where for nS1/2 states [28.58, 59]

D60 = 4 ln 2− 7

2
(28.84)

and for states with l ≥ 1 [28.60–62]

D60 =
(

3− l(l+1)

n2

)
2

(4l2−1)(2l+3)
. (28.85)

(As usual, the first subscript on the coefficient refers to
the power of Zα and the second subscript to the power
of ln(Zα)−2.) The next coefficient in (28.83) has been
calculated recently with the result [28.63, 64]

D72 =− 11

60π
δl0 . (28.86)

The relativistic recoil correction used here is based on
(28.81) to (28.86). Numerical values for the complete
contribution of (28.83) to all orders in Zα have been ob-
tained by Shabaev et al. [28.65]. While these results are
in general agreement with the values given by the power
series expressions, the difference between them for
S states is about three times larger than expected (based
on the uncertainty quoted by Shabaev et al. [28.65] and
the estimated uncertainty of the truncated power series
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which is taken to be one-half the contribution of the term
proportional to D72, as suggested by Eides et al. [28.2]).
This difference is not critical, and we allow for the am-
biguity by assigning an uncertainty for S states of 10%
of the contribution given by (28.83). This is sufficiently
large that the power series value is consistent with the
numerical all-order calculated value. For the states with
l ≥ 1, we assign an uncertainty of 1% of the contribu-
tion in (28.83). The covariances of the theoretical values
are calculated by assuming that the uncertainties are
predominately due to uncalculated terms proportional
to (me/mN)/n3.

28.3.3 Nuclear Polarization

Another effect involving specific properties of the
nucleus, in addition to relativistic recoil, is nuclear polar-
ization. It arises from interactions between the electron
and nucleus in which the nucleus is excited from the
ground state to virtual higher states.

For hydrogen, the result that we use for the nuclear
polarization is [28.66]

EP(H)= −0.070 (13)h
δl0

n3
kHz . (28.87)

Larger values for this correction have been reported by
Roedenfelder [28.67], Martynenko and Faustov [28.68],
but apparently they are based on an incorrect formulation
of the dispersion relations [28.2, 66].

For deuterium, to a good approximation, the po-
larizability of the nucleus is the sum of the proton
polarizability, the neutron polarizability [28.69], and the
dominant nuclear structure polarizability [28.70], with
the total given by

EP(D)= −21.37 (8)h
δl0

n3 kHz . (28.88)

We assume that this effect is negligible in states of
higher l.

28.3.4 Self Energy

The second order (in e, first order in α) level shift due
to the one-photon electron self energy, the lowest-order
radiative correction, is given by

E(2)SE = α

π

(Zα)4

n3
F(Zα)mec2 , (28.89)

where

F(Zα)= A41 ln(Zα)−2+ A40+ A50(Zα)

+ A62(Zα)
2 ln2(Zα)−2

+ A61(Zα)
2 ln(Zα)−2

+GSE(Zα)(Zα)
2 , (28.90)

with [28.71]

A41 = 4

3
δl0

A40 =−4

3
ln k0(n, l)+ 10

9
δl0

− 1

2κ(2l+1)
(1− δl0)

A50 =
(

139

32
−2 ln 2

)
πδl0

A62 =−δl0
A61 =

[
4

(
1+ 1

2
+· · ·+ 1

n

)
+ 28

3
ln 2−4 ln n

−601

180
− 77

45n2

]
δl0

+
(

1− 1

n2

)(
2

15
+ 1

3
δ j 1

2

)
δl1

+ 96n2−32l(l+1)

3n2(2l−1)(2l)(2l+1)(2l+2)(2l+3)
× (1− δl0) . (28.91)

Selected Bethe logarithms ln k0(n, l) that appear in
(28.91) are given in Table 28.3 [28.72].

The function GSE(Zα) in (28.90) gives the higher-
order contribution (in Zα) to the self energy, and
values for GSE(α) are listed in Table 28.4. For the
states with n = 1 and n = 2, the values in the ta-
ble are based on direct numerical evaluations by
Jentschura et al. [28.73, 74], and the values for the 3S
and 4S states are from Jentschura and Mohr [28.75].
The remaining values of GSE(α) are based on the

Table 28.3 Relevant Bethe logarithms ln k0(n, l)

n S P D

1 2.984 128 556

2 2.811 769 893 −0.030 016 709

3 2.767 663 612

4 2.749 811 840 −0.041 954 895 −0.006 740 939

6 2.735 664 207 −0.008 147 204

8 2.730 267 261 −0.008 785 043

12 −0.009 342 954
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Table 28.4 Values of the function GSE(α)

n S1/2 P1/2 P3/2 D3/2 D5/2

1 −30.290 24 (2)

2 −31.185 15 (9) −0.9735 (2) −0.4865 (2)

3 −31.0477 (9)

4 −30.912 (4) −1.165 (2) −0.611 (2) 0.031 (1)

6 −30.82 (8) 0.034 (2)

8 −30.80 (9) 0.008 (5) 0.034 (2)

12 0.009 (5) 0.035 (2)

low-Z limit of this function, GSE(0)= A60, in the
cases where it is known, together with extrapola-
tions of the results of complete numerical calculations
of F(Zα) (28.90) at higher Z [28.76, 77]. There is
a long history of calculations of A60 [28.2], lead-
ing up to the accurate values of A60 for the 1S
and 2S states obtained by Pachucki [28.73, 78–80].
Values for P and D states have been reported subse-
quently by Jentschura and Pachucki [28.62], Jentschura
et al. [28.81, 82]. Extensive numerical evaluations
of F(Zα) at higher Z, which in turn yield val-
ues for GSE(Zα), have been done by Mohr [28.83],
Mohr and Kim [28.84], Indelicato and Mohr [28.85],
Le Bigot [28.86].

The dominant effect of the finite mass of the nucleus
on the self energy correction is taken into account by
multiplying each term of F(Zα) by the reduced-mass
factor (mr/me)

3, except that the magnetic moment term
−1/[2κ(2l+1)] in A40 is instead multiplied by the fac-
tor (mr/me)

2. In addition, the argument (Zα)−2 of the
logarithms is replaced by (me/mr)(Zα)−2 [28.56].

The uncertainty of the self energy contribution to
a given level arises entirely from the uncertainty of
GSE(α) listed in Table 28.4 and is taken to be entirely
of type un .

28.3.5 Vacuum Polarization

The second-order vacuum-polarization level shift, due to
the creation of a virtual electron–positron pair in the ex-
change of photons between the electron and the nucleus,
is

E(2)VP =
α

π

(Zα)4

n3 H(Zα)mec2 , (28.92)

where the function H(Zα) is divided into the part cor-
responding to the Uehling potential, denoted here by
H(1)(Zα), and the higher-order remainder H(R)(Zα)=
H(3)(Zα)+H(5)(Zα)+· · · , where the superscript de-
notes the order in powers of the external field. The

individual terms are expanded in a power series in Zα
as

H(1)(Zα)= V40+V50(Zα)+V61(Zα)
2 ln(Zα)−2

+G(1)VP(Zα)(Zα)
2 , (28.93)

H(R)(Zα)= G(R)VP (Zα)(Zα)
2 , (28.94)

with

V40 =− 4

15
δl0 ,

V50 = 5

48
πδl0 ,

V61 =− 2

15
δl0 . (28.95)

The part G(1)VP(Zα) arises from the Uehling potential,
and is readily calculated numerically [28.76, 87]; val-
ues are given in Table 28.5. The higher-order remainder
G(R)VP (Zα) has been considered by Wichmann and Kroll,
and the leading terms in powers of Zα are [28.33,88,89]

G(R)
VP(Zα)=

(
19

45
− π2

27

)
δl0

+
(

1

16
− 31π2

2880

)
π(Zα)δl0+· · · .

(28.96)

Higher-order terms omitted from (28.96) are negligible.
In a manner similar to that for the self energy,

the leading effect of the finite mass of the nucleus is
taken into account by multiplying (28.92) by the fac-
tor (mr/me)

3 and including a multiplicative factor of
(me/mr) in the argument of the logarithm in (28.93).

There is also a second-order vacuum polarization
level shift due to the creation of virtual particle pairs
other than the e−e+ pair. The predominant contribution
for nS states arises from µ+µ−, with the leading term
being [28.90, 91]

E(2)µVP =
α

π

(Zα)4

n3

(
− 4

15

)(
me

mµ

)2 (mr

me

)3

mec2 .

(28.97)
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Table 28.5 Values of the function G(1)VP(α)

n S1/2 P1/2 P3/2 D3/2 D5/2

1 −0.618 724

2 −0.808 872 −0.064 006 −0.014 132

3 −0.814 530

4 −0.806 579 −0.080 007 −0.017 666 −0.000 000

6 −0.791 450 −0.000 000

8 −0.781 197 −0.000 000 −0.000 000

12 −0.000 000 −0.000 000

The next order term in the contribution of muon vacuum
polarization to nS states is of relative order Zαme/mµ

and is therefore negligible. The analogous contribution
E(2)τVP from τ+τ− (−18 Hz for the 1S state) is also
negligible at the level of uncertainty of current interest.

For the hadronic vacuum polarization contribution,
we take the result given by Friar et al. [28.92] that
utilizes all available e+e− scattering data:

E(2)had VP = 0.671 (15)E(2)µVP , (28.98)

where the uncertainty is of type u0.
The muonic and hadronic vacuum polarization con-

tributions are negligible for P and D states.

28.3.6 Two-Photon Corrections

Corrections from two virtual photons, of order α2, have
been calculated as a power series in Zα:

E(4) =
(α

π

)2 (Zα)4

n3 mec2 F(4)(Zα) , (28.99)

where

F(4)(Zα)= B40+ B50(Zα)+ B63(Zα)
2 ln3(Zα)−2

+ B62(Zα)
2 ln2(Zα)−2

+ B61(Zα)
2 ln(Zα)−2+ B60(Zα)

2

+· · · . (28.100)

The leading term B40 is well known:

B40 =
[

3π2

2
ln 2− 10π2

27
− 2179

648
− 9

4
ζ(3)

]
δl0

+
[

π2 ln 2

2
− π2

12
− 197

144
− 3ζ(3)

4

]
1− δl0
κ(2l+1)

.

(28.101)

The second term has been calculated by Eides and
Shelyuto [28.93], Pachucki [28.94], Eides et al. [28.90],
Pachucki [28.95] with the result

B50 = −21.5561 (31)δl0 . (28.102)

The next coefficient, as obtained by Karshen-
boim [28.96], Yerokhin [28.97], Manohar and Stew-
art [28.98], Pachucki [28.99], is

B63 =− 8

27
δl0 . (28.103)

For S states the coefficient B62 has been found to be

B62 = 16

9

[
71

60
− ln 2+γ +ψ(n)

− ln n− 1

n
+ 1

4n2

]
, (28.104)

where γ = 0.577 . . . is Euler’s constant and ψ is the psi
function [28.100]. The difference B62(1)− B62(n) was
calculated by Karshenboim [28.101] and confirmed by
Pachucki [28.99] who also calculated the n-independent
additive constant. For P states the calculated value
is [28.101]

B62 = 4

27

n2−1

n2
. (28.105)

This result has been confirmed by Jentschura and
Nándori [28.102] who also show that for D and higher
angular momentum states B62 = 0.

The single-logarithm coefficient B61 for S states has
been given as [28.99]

B61 = 39751

10800
+ 4N(n)

3
+ 55π2

27
− 616 ln 2

135

+ 3π2 ln 2

4
+ 40 ln2 2

9
− 9ζ(3)

8

+
(

304

135
− 32 ln 2

9

)

×

[
3

4
+γ +ψ(n)− ln n− 1

n
+ 1

4n2

]
,

(28.106)
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where N(n) is a term that was numerically evaluated for
the 1S state by Pachucki [28.99]. Jentschura [28.103]
has evaluated N(n) for excited S states with n = 2 to
n = 8, has made an improved evaluation for n = 1, and
has given an approximate fit to the calculated results in
order to extend them to higher n. Values of the func-
tion N(n) for the states of interest here are given in
Table 28.6. There are no results yet for P or D states for
B61. Based on the relative magnitude of A61 for the S,
P, and D states, we take as uncertainties un(B61)= 5.0
for P states and un(B61)= 0.5 for D states.

Recent work indicates that there may be an add-
itional contribution to B61 and/or B60 [28.104, 105].
The effect of such a contribution would be to change
the S-state energy levels by an amount that is likely
to be less than half the uncertainty of the nuclear size
correction due to uncertainty in the rms radius of the
nucleus.

The two-loop Bethe logarithm bL, which is expected
to be the dominant part of the no-log term B60, has been
calculated for the 1S and 2S states by Pachucki and
Jentschura [28.106] who obtained

bL = −81.4 (3) 1S state (28.107a)

bL = −66.6 (3) 2S state . (28.107b)

An additional contribution for S states,

bM = 10

9
N , (28.108)

was derived by Pachucki [28.99], where N is given in
Table 28.7 as a function of the state n. These contri-
butions can be combined to obtain an estimate for the
coefficient B60 for S states:

B60 = bL+ 10

9
N +· · · , (28.109)

where the dots represent uncalculated contributions to
B60 which are at the relative level of 15% [28.106]. In
order to obtain an approximate value for B60 for S states

Table 28.6 Values of N

n N

1 17.855 672 (1)

2 12.032 209 (1)

3 10.449 810 (1)

4 9.722 413 (1)

6 9.031 832 (1)

8 8.697 639 (1)

with n ≥ 3, we employ a simple extrapolation formula,

bL = a+ b

n
, (28.110)

with a and b fitted to the 1S and 2S values of bL, and
we include a component of uncertainty u0(bL)= 5.0.
The results for bL, along with the total estimated val-
ues of B60 for S states, are given in Table 28.7. For P
states, there is a calculation of fine-structure differences
[28.107], but because of the uncertainty in B61 for P
states, we do not include this result. We assume that for
both the P and D states, the uncertainty attributed to B61
is sufficiently large to account for the uncertainty in B60
and higher-order terms as well.

As in the case of the orderα self-energy and vacuum-
polarization contributions, the dominant effect of the
finite mass of the nucleus is taken into account by
multiplying each term of the two-photon contribution
by the reduced-mass factor (mr/me)

3, except that the
magnetic moment term, the second line of (28.101), is
instead multiplied by the factor (mr/me)

2. In addition,
the argument (Zα)−2 of the logarithms is replaced by
(me/mr)(Zα)−2.

28.3.7 Three-Photon Corrections

The leading contribution from three virtual photons is
assumed to have the form

E(6) =
(α

π

)3 (Zα)4

n3
mec2 [C40+C50(Zα)+· · · ] ,

(28.111)

in analogy with (28.99) for two photons. The level shifts
of order (α/π)3(Zα)4mec2 that contribute to C40 can
be characterized as the sum of a self-energy correction,
a magnetic-moment correction, and a vacuum polariza-
tion correction. The self-energy correction arises from
the slope of the Dirac form factor, and it has recently
been calculated by Melnikov and Ritbergen [28.108]

Table 28.7 Values of bL and B60

n bL B60

1 −81.4 (3) −61.6 (9.2)

2 −66.6 (3) −53.2 (8.0)

3 −61.7 (5.0) −50.1 (9.0)

4 −59.2 (5.0) −48.4 (8.8)

6 −56.7 (5.0) −46.7 (8.6)

8 −55.5 (5.0) −45.8 (8.5)
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who obtained

E(6)SE =
(α

π

)3 (Zα)4

n3 mec2
(
− 868a4

9
+ 25ζ(5)

2

− 17π2ζ(3)

6
− 2929ζ(3)

72
− 217 ln4 2

54

− 103π2 ln2 2

270
+ 41671π2 ln 2

540
+ 3899π4

6480

− 454979π2

9720
− 77513

46656

)
δl0 , (28.112)

where ζ is the Riemann zeta function and a4 =∑∞
n=1 1/

(
2nn4

) = 0.517 479 061 . . . . The magnetic-
moment correction comes from the known three-loop
electron anomalous magnetic moment [28.109], and is
given by

E(6)MM =
(α

π

)3 (Zα)4

n3
mec2

(
− 100a4

3
+ 215ζ(5)

24

− 83π2ζ(3)

72
− 139ζ(3)

18
− 25 ln4 2

18

+ 25π2 ln2 2

18
+ 298π2 ln 2

9
+ 239π4

2160

− 17101π2

810
− 28259

5184

)
1

κ(2l+1)
, (28.113)

and the vacuum-polarization correction is [28.110, 111]

E(6)VP =
(α

π

)2 (Zα)4

n3 mec2
(
− 8135ζ(3)

2304
+ 4π2 ln 2

15

− 23π2

90
+ 325805

93312

)
δl0 . (28.114)

The total for C40 is

C40 =
(
− 568a4

9
+ 85ζ(5)

24

− 121π2ζ(3)

72
− 84071ζ(3)

2304
− 71 ln4 2

27

− 239π2 ln2 2

135
+ 4787π2 ln 2

108
+ 1591π4

3240

− 252251π2

9720
+ 679441

93312

)
δl0

+
(
− 100a4

3
+ 215ζ(5)

24

− 83π2ζ(3)

72
− 139ζ(3)

18
− 25 ln4 2

18

+ 25π2 ln2 2

18
+ 298π2 ln 2

9
+ 239π4

2160

− 17101π2

810
− 28259

5184

)
1− δl0
κ(2l+1)

. (28.115)

An uncertainty in the three-photon correction is
assigned by taking u0(C50)= 30δl0 and un(C63)= 1,
where C63 is defined by the usual convention.

The dominant effect of the finite mass of the nucleus
is taken into account by multiplying C40 in (28.115) by
the reduced-mass factor (mr/me)

3 for l = 0 or by the
factor (mr/me)

2 for l �= 0.
The contribution from four photons is expected to

be of order
(α

π

)4 (Zα)4

n3 mec2 , (28.116)

which is about 10 Hz for the 1S state and is negligible
at the level of uncertainty of current interest.

28.3.8 Finite Nuclear Size

At low Z, the leading contribution due to the finite size
of the nucleus is

E(0)NS = ENSδl0 , (28.117)

with

ENS = 2

3

(
mr

me

)3
(Zα)2

n3
mec2

(
ZαRN

λC

)2

,

(28.118)

where RN is the bound-state root-mean-square (rms)
charge radius of the nucleus and λC is the Compton
wavelength of the electron divided by 2π. The lead-
ing higher-order contributions have been examined by
Friar [28.112], Friar and Payne [28.113], Karshen-
boim [28.114] (see also Mohr [28.115], Borisoglebski
and Trofimenko [28.89]). The expressions that we em-
ploy to evaluate the nuclear size correction are the same
as those discussed in more detail in [28.1].

For S states the leading and next-order corrections
are given by

ENS = ENS

{
1−Cη

mr

me

RN

λC
Zα−

[
ln

(
mr

me

RN

λC

Zα

n

)

+ψ(n)+γ−(5n+9)(n−1)

4n2 −Cθ

]
(Zα)2

}
,

(28.119)

where Cη and Cθ are constants that depend on the de-
tails of the assumed charge distribution in the nucleus.
The values used here are Cη = 1.7 (1) and Cθ = 0.47 (4)
for hydrogen or Cη = 2.0 (1) and Cθ = 0.38 (4) for
deuterium.

For the P1/2 states in hydrogen the leading term is

ENS = ENS
(Zα)2(n2−1)

4n2
. (28.120)
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For P3/2 states and D states the nuclear-size contribution
is negligible.

28.3.9 Nuclear-Size Correction to Self
Energy and Vacuum Polarization

In addition to the direct effect of finite nuclear size
on energy levels, its effect on the self energy and vac-
uum polarization contributions must also be considered.
This same correction is sometimes called the radiative
correction to the nuclear-size effect.

For the self energy, the additional contribution due
to the finite size of the nucleus is [28.116–119]

ENSE =
(

4 ln 2− 23

4

)
α(Zα)ENSδl0 , (28.121)

and for the vacuum polarization it is [28.117, 120, 121]

ENVP = 3

4
α(Zα)ENSδl0 . (28.122)

For the self-energy term, higher-order size correc-
tions for S states [28.118] and size corrections for
P states have been calculated [28.103, 122], but these
corrections are negligible for the current work, and are
not included. The D-state corrections are assumed to be
negligible.

28.3.10 Radiative-Recoil Corrections

The dominant effect of nuclear motion on the self energy
and vacuum polarization has been taken into account by
including appropriate reduced-mass factors. The add-
itional contributions beyond this prescription are termed
radiative-recoil effects with leading terms given by

ERR = m3
r

m2
emN

α(Zα)5

π2n3 mec2δl0

×

[
6ζ(3)−2π2 ln 2+ 35π2

36
− 448

27

+ 2

3
π(Zα) ln2 (Zα)−2+· · ·

]
. (28.123)

The leading constant term in (28.123) is the sum of
the analytic result for the electron-line contribution
[28.123, 124] and the vacuum-polarization contribution
[28.125,126]. The log-squared term has been calculated
by Pachucki and Karshenboim [28.63] and Melnikov and
Yelkhovski [28.64].

For the uncertainty, we take a term of order
(Zα) ln(Zα)−2 relative to the square brackets in (28.123)
with numerical coefficients 10 for u0 and 1 for un . These

coefficients are roughly what one would expect for the
higher-order uncalculated terms.

28.3.11 Nucleus Self Energy

An additional contribution due to the self energy of the
nucleus has been given by Pachucki [28.126]:

ESEN = 4Z2α(Zα)4

3πn3

m3
r

m2
N

c2

×

[
ln

(
mN

mr(Zα)2

)
δl0− ln k0(n, l)

]
.

(28.124)

This correction has also been examined by Eides
et al. [28.2], who consider how it is modified by the
effect of structure of the proton. The structure effect
leads to an additional model-dependent constant in the
square brackets in (28.124).

To evaluate the nucleus self-energy correction, we
use (28.124) and assign an uncertainty u0 that corre-
sponds to an additive constant of 0.5 in the square
brackets for S states. For P and D states, the correc-
tion is small and its uncertainty, compared to other
uncertainties, is negligible.

28.3.12 Total Energy and Uncertainty

The total energy E X
nL j of a particular level (where

L = S,P, . . . and X = H,D, . . . ) is the sum of the
various contributions listed above plus an additive cor-
rection δX

nL j that accounts for the uncertainty in the
theoretical expression for E X

nL j . Our theoretical esti-
mate of the value of δX

nL j for a particular level is
zero with a standard uncertainty of u

(
δX

nL j

)
equal to

the square root of the sum of the squares (rss) of the
individual uncertainties of the contributions, since, as
they are defined above, the contributions to the en-
ergy of a given level are independent. (Components of
uncertainty associated with the fundamental constants
are not explicitly shown here.) Thus we have for the
square of the uncertainty, or variance, of a particular
level

u2(δX
nL j)=

∑

i

u2
0i(X L j )+u2

ni(X L j )

n6
, (28.125)

where the individual values u0i(X L j )/n3 and
uni(X L j )/n3 are the components of uncertainty from
each of the contributions, labeled by i, discussed above.[
The factors of 1/n3 are isolated so that u0i(X L j ) is

explicitly independent of n.
]
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Table 28.8 Measured transition frequencies ν in hydrogen

Authors Laboratory Frequency interval Reported value ν/kHz

Hagley and Pipkin 28.127 Harvard Univ. νH(2S1/2−2P3/2) 9 911 200 (12)

Lundeen and Pipkin 28.128 Harvard Univ. νH(2P1/2−2S1/2) 1 057 845.0 (9.0)

Newton et al. 28.129 Univ. Sussex νH(2P1/2−2S1/2) 1 057 862 (20)

The covariance of any two δs follows from (F7) of
Appendix F of [28.1]. For a given isotope X, we have

u
(
δX

n1 L j , δ
X
n2 L j

)=
∑

i

u2
0i(X L j )

(n1n2)3
, (28.126)

which follows from the fact that u(u0i , uni)= 0 and
u
(
un1i , un2i

)= 0 for n1 �= n2. We also set

u
(
δX

n1 L1 j1 , δ
X
n2 L2 j2

)= 0 , (28.127)

if L1 �= L2 or j1 �= j2. For covariances between δs for
hydrogen and deuterium, we have for states of the same n

u
(
δH

nL j , δ
D
nL j

)

=
∑

i=ic

u0i(HL j )u0i(DL j )+uni(HL j )uni(DL j )

n6 ,

(28.128)

and for n1 �= n2

u
(
δH

n1 L j , δ
D
n2 L j

)=
∑

i=ic

u0i(HL j )u0i(DL j )

(n1n2)3
,

(28.129)

where the summation is over the uncertainties common
to hydrogen and deuterium. In most cases, the uncer-
tainties can in fact be viewed as common except for
a known multiplicative factor that contains all of the
mass dependence. We assume

u
(
δH

n1 L1 j1 , δ
D
n2 L2 j2

)= 0 , (28.130)

if L1 �= L2 or j1 �= j2. These covariances correspond to
correlation coefficients as large as 0.991.

Since the transitions between levels are measured
in frequency units (Hz), in order to apply the above
equations for the energy level contributions we divide
the theoretical expression for the energy difference ∆E
of the transition by the Planck constant h to convert it
to a frequency. Further, we replace the group of con-
stants α2mec2/2h in ∆E/h by cR∞ to calculate the
uncertainties.

28.3.13 Transition Frequencies
Between Levels with n = 2

As an indication of the consistency of the theory sum-
marized above and the experimental data, we list values
of the transition frequencies between levels with n = 2 in
hydrogen. These results are based on a variation of the
2002 least-squares adjustment in which the measure-
ments of these particular transitions are not included
[28.1]. The calculated values are

νH(2P1/2−2S1/2)= 1 057 844.5 (2.6) kHz ,

νH(2S1/2−2P3/2)= 9 911 197.1 (2.6) kHz ,

νH(2P1/2−2P3/2)= 10 969 041.57 (89) kHz .
(28.131)

These results compare favorably with the most recent
experimental values given in Table 28.8.

In addition, in He+, a recent experimental value of
the Lamb shift is S = 14 041.13 (17)MHz [28.130], and
the current theoretical value is S = 14 041.474 (42)MHz
[28.131].
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Parity Noncon29. Parity Nonconserving Effects in Atoms

Until 1957 the invariance of the laws of physics
under the process of parity inversion was assumed
to hold. The concept of this invariance has its origin
in atomic physics, where Laporte introduced it to
explain certain aspects of the iron spectrum. The
underlying theory of atomic structure, quantum
electrodynamics (QED), is an example of a theory
that has this invariance. However, it was shown
in 1957 that weak interaction processes are not
invariant under parity inversion. At that time
the only known weak interactions were charge
changing and thus did not affect the spectrum of
a stable atom. However, if charge conserving, or
neutral weak interactions exist, these can lead to

29.1 The Standard Model ............................. 450

29.2 PNC in Cesium ..................................... 451
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29.4 PNC Calculations .................................. 452
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29.6 Comparison with Experiment ................ 453
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parity nonconserving (PNC) processes in atoms.
These include electric dipole transitions between
states of the same parity and optical rotation.

It is now well established that such interactions do exist,
and are mediated by the Z boson. Unfortunately, be-
cause of the extremely small ratio of the energy scale
of atoms to the Z mass, PNC processes in atoms must
be correspondingly small. In 1974, however, the Bouchi-
ats [29.1], in a paper that laid the foundation for the field,
showed that parity nonconserving (PNC) transitions in
heavy atoms with atomic number Z were enhanced by
a factor of Z3. While still very small, this effect has been
observed in a variety of heavy atoms, specifically ce-
sium (Z = 55) [29.2–4], thallium (Z = 81) [29.5,6], lead
(Z = 82) [29.7], and bismuth (Z = 83) [29.8]. The accu-
rate calculation of the electronic structure of such atoms
is of course a very challenging atomic physics prob-
lem, and such calculations must be carried out before
the experiments can be interpreted in terms of particle
physics. This problem is not present for hydrogen, but
experimental problems have impeded progress in this
direction.

At the time of the Bouchiats’s paper, the question
of whether or not neutral currents existed was an im-
portant problem in weak interaction physics, and even
a qualitative observation of atomic PNC would have
been of great interest. However, now that neutral cur-
rents are well established, what now has become the
most important aspect of atomic PNC is the precise
measurement of the effect. This is because of the present

intense interest in possible modifications of the standard
model. While this model, described in more detail in the
next section, is extremely successful, it is incomplete in
some ways, in particular, in the way particle masses are
treated. In the standard model, for example, the mystery
of the fermion mass spectrum is simply transferred to
another mystery of the sizes of Yukawa coupling con-
stants that couple Higgs fields to fermions. It is hoped
that some deviation from the standard model will be un-
covered, generally referred to as ‘new physics’, that will
provide a hint as to a more satisfactory theory. At the
present time, since all standard model predictions are in
agreement with experiment at the few percent level, the
hoped for deviation will be small; and for this reason
high precision experiments combined with calculations
of similar accuracy are needed. For this reason atomic
PNC, while apparently a somewhat esoteric branch of
atomic physics, actually is involved with one of the most
central problems of the field, the accurate solution of
the Schrödinger equation for many-electron atoms. We
will describe an approach to this fundamental problem
below.

Another weak interaction effect important in atomic
physics has to do with CP noninvariance. While the
weak interactions are not invariant under parity inver-
sion (P), until 1964 it appeared that they were invariant
under the simultaneous operations of P and charge con-
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jugation (C), or CP. In 1964, however, measurements of
the neutral K meson system showed that CP invariance
is slightly broken. While this does not directly affect
atomic physics, it has been suggested that this still in-
completely explained breaking in the quark sector may
have a counterpart in the lepton sector, which could
have, as a consequence, a nonvanishing electron elec-
tric dipole moment (edm). This opens the possibility of
using precise atomic experiments to search for such an

effect. In this case, as with ‘ordinary’ PNC, a calcula-
tion of atomic structure is necessary. The requirements
of precision are not as important in this case, as the
simple detection of a non-zero atomic edm would be
a discovery of importance comparable to the detection
of CP noninvariance in the kaon system. Because of lim-
itations of space, we do not discuss this interesting field
further, referring the interested reader to the review of
the subject given in [29.9].

29.1 The Standard Model

The Standard Model is the present theory of the strong,
weak, and electromagnetic interactions. We are con-
cerned with the part of the standard model that unifies
the weak and electromagnetic interactions, which is re-
ferred to as the electroweak theory. This theory involves
the interactions of leptons and quarks with four vec-
tor bosons, the photon (A), a heavy neutral partner of
the photon (Z), and two charged bosons (W+, W−). In-
teractions involving the photon conserve parity, while
interactions between the other bosons do not. The neu-
tral currents affecting atomic PNC are described by the
following Lagrangian:

L =− e
∑

i

qiψ̄iγµψi Aµ− e

sin2θW

×
∑

i

ψ̄iγµ(Vi − Aiγ5)ψi Zµ , (29.1)

where i ranges over three types of fermions, the elec-
tron

(
qe =−1, Ve =− 1

2 +2sin2θW, Ae =− 1
2

)
, the up

quark
(
qu = 2

3 , Vu = 1
2 − 4

3 sin2θW, Au = 1
2

)
, and the

down quark
(
qd=− 1

3 , Vd=− 1
2 + 2

3 sin2θW, Ad=− 1
2

)
.

The weak angle θW is a fundamental parameter
of the standard model and is discussed further
below.

The physics in the above Lagrangian that leads to
atomic PNC is the exchange of a virtual Z, either be-
tween a quark in the nucleus and an electron, or between
two electrons, though calculations of the latter effect
show it to be negligible [29.10]. PNC arises when the
Z matrix element is a vector on the nucleus and an ax-
ial vector on the electron (VN Ae), or vice versa (ANVe).
The dominant PNC contribution comes from the for-
mer case, because all the quarks contribute coherently.
The latter case, however, cannot be neglected and is dis-
cussed further below. Because the nuclear current is of
vector nature, one can introduce a conserved charge, the

weak charge QW,

QW = 2Z(2Vu+Vd)+2N(Vu+2Vd) . (29.2)

Here Z is the number of protons and N the number of
neutrons. Putting in the above values of Vu and Vd then
gives

QW = Z
(
1−4 sin2 θW

)− N . (29.3)

It would appear that the dependence of QW on the
weak angle would allow its determination from atomic
PNC. While this can be done, it is important to note that
the above discussion has been at the tree level. One of
the most important features of the electroweak theory is
that radiative corrections can be calculated. These cor-
rections enter at the percent level, and must be included
for an accurate interpretation of experiments sensitive
to electroweak effects. Until recently, of the parameters
affecting the electroweak theory only the fine structure
constant and the muon decay rate were known with high
precision, leaving the weak angle a free parameter. How-
ever, now that the Z mass has been measured with very
high precision, it is now possible to use that measure-
ment to determine θW, and to then predict a large set of
radiatively corrected electroweak processes, including
atomic PNC [29.11]. While there is still some sensi-
tivity to the top quark and Higgs masses, as discussed
further below, using the Z mass allows the prediction for
cesium of, assuming a Higgs mass of 100 GeV,

QW = −73.20(0.13) . (29.4)

Therefore, the importance of atomic PNC for funda-
mental physics is not so much its ability to determine
the weak angle, but rather the fact that the standard
model makes a definite prediction for the size of the ef-
fect, and any disagreement indicates new physics; and
conversely, agreement to within a given precision puts
limits on new physics.
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29.2 PNC in Cesium

We concentrate on PNC in cesium because it is the sim-
plest atom in which the effect has been measured. This is
because it consists of a single electron outside a closed
xenonlike core which is relatively unpolarizable. This
should be contrasted with, for example, thallium. While
thallium nominally also consists of one 6p1/2 electron
outside a closed core, part of that core is a filled 6s2

1/2
subshell. It is quite easy to polarize the outer subshell,
so that one really has three electrons outside a closed
core. This leads to distinctly poorer convergence prop-
erties of many-body perturbation theory, the theoretical
method used for these calculations, and consequently
less accurate atomic theory predictions. Similar consid-
erations apply to lead and bismuth. The PNC transition
in cesium that has been studied is 6s1/2 → 7s1/2, and
accurate measurements have been made in Paris [29.2]
and Boulder [29.3, 4]. Cesium is a 55 electron atom
with a nucleus consisting of 78 neutrons and 55 protons
with nuclear spin I = 7/2. The total angular momen-
tum of atomic s-states is then F = 3 or F = 4. Both
of the transitions, 6s1/2(F = 4)→ 7s1/2(F = 3) and
6s1/2(F = 3)→ 7s1/2(F = 4), have been measured, al-
lowing the isolation of PNC effects that depend on the
spin of the nucleus. The bulk of atomic PNC comes
from the timelike contribution of the (VN Ae) exchange
discussed in the previous section, and can be described
by the effective Hamiltonian

HW = G F√
8

QWρnuc(r)γ5 . (29.5)

Here ρnuc(r) is a weighted average of the neutron and
proton distributions in the nucleus, which leads to nu-

clear structure uncertainties that will be discussed below.
Using this Hamiltonian, a large scale calculation [29.10]
leads to the prediction for the nuclear-spin-independent
part of the PNC transition

EPNC = −0.905(9)× 10−11i|e|a0(−QW/N ) .

(29.6)

Here the unknown QW has been factored out and di-
vided by its approximate value −N . This result is
in good agreement with independent MBPT calcula-
tions of the Novosibirsk [29.12] and Göteborg [29.13]
groups. When this is compared with the experimental
measurement [29.3, 4]

Eexp
PNC = −0.8374(67)× 10−11i|e|a0 , (29.7)

there results a prediction for QW of

QW = −72.17(0.58)[0.72] , (29.8)

where the first error is experimental and the second the-
oretical. The spacelike part of (VN Ae) exchange and the
timelike part of (ANVe) exchange are negligible, but the
spacelike part of the latter gives a nuclear spin-dependent
effect that will be discussed below. Also discussed below
is an interesting nuclear physics source of PNC known as
the anapole moment [29.14], which arises from photon
exchange with weak radiative corrections on the nuclear
vertex. This effect enters at the several percent level, but
in a way that can be subtracted out as will be described
below.

29.3 Many-Body Perturbation Theory

While there are a variety of ways of solving the
many-electron Schrödinger equation, the most accurate
treatments of cesium PNC are based on many-body per-
turbation theory (MBPT). In MBPT, the Hamiltonian is
broken up into H = H0+VC, where

H0 =
N∑

i=1

[
αi · pi +βim+U(ri)

]
(29.9)

and

VC = 1

2

∑

ij

α

|ri −r j | −
N∑

i=1

[
Zα

ri
+U(ri)

]
.

(29.10)

The starting potential U(r) is generally chosen to be
a frozen core Hartree–Fock (HF) potential. This model
of the atom is rather inaccurate: valence removal ener-
gies disagree with experiment by about 10%, and matrix
elements of the hyperfine operator by about 40%. Thus
it is essential for accurate calculations to include the
effects of VC as fully as possible. MBPT proceeds by
expanding the many-body wave function and the energy
in powers of VC. While going to second order in VC im-
proves agreement with experiment to the percent level
for energies and the few percent level for matrix ele-
ments [29.15], more powerful methods that sum infinite
classes of MBPT contributions are needed for higher ac-
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curacy, and we turn to a description of these all order
methods.

If the frozen-core HF wave function is denoted by
Ψ0, all-order singles–doubles methods add to it a correc-
tion ∆Ψ with either one or two orbitals in the HF wave
function excited:

δΨ =
(∑

am

ρmaa†maa +
∑

abmn

ρmnaba†ma†naaab

+
∑

m

ρmva
†
mav+

∑

amn

ρmnava
†
ma†naaav

)
Ψ0 .

(29.11)

The terms on the first line of (29.11) describe single and
double excitations of the closed core, while those on
the second line describe single and double excitations
of the atom where the valence orbital is also excited.
Substituting (29.11) into the Schrödinger equation, one
obtains a set of coupled equations for the expansion co-
efficients that can be found in [29.16]. The first and
second iterations of the equations for the expansion co-
efficients leads to results that are identical to first- and
second-order perturbation theory. In third-order pertur-
bation theory, terms associated with triple excitations
contribute to the energy. These terms have no coun-
terpart in the iterative solution to the equations under
consideration.

To account for such terms, it is necessary to add
to ∆Ψ a triple-excitation correction of the specific

form:

∆Ψ =
( ∑

abcmnr

ρmnrabca†na†ma†r aaabac

+
∑

abmnr

ρmnrabva
†
na†ma†r aaabav

)
Ψ0 . (29.12)

Such a term enters in two ways. First, there are a set
of equations giving the triple-excitation coefficients in
terms of the single-, double-, and triple-excitation coef-
ficients. Second, the triple-excitation coefficients enter
on the right-hand side of the equations for the single-
and double-excitation coefficients. Solving for the triple-
excitation coefficients in terms of the singles and doubles
(ignoring the triples on the right-hand sides of these
equations), one can use them on the right-hand sides
of the equations for the singles. This procedure leads
to equations which, when iterated to third order, in-
clude all of the terms from MBPT. However, the triples
also modify the the doubles equation, and this more
computationally demanding step has not yet been imple-
mented. As the effects of this modification enter first in
fourth-order MBPT, the calculation is complete through
third order, but still misses some fourth-order contribu-
tions. Nevertheless, the method is accurate enough to
predict PNC to 1%. Greater accuracy is expected when
the doubles equation is modified, which should lead to
a calculation complete through fourth order, and work
on this problem is in progress.

29.4 PNC Calculations

The above discussion of MBPT allows the calculation
on cesium to be accurate to a few tenths of percent for
energies and under one percent for ‘ordinary’ matrix
elements [29.16], and thus should allow a calculation of
similar accuracy for PNC. To calculate such transitions,
one modifies H0 by adding the weak-interaction hW to
the HF potential. This approach leads to a generalization
of the single-particle states in which each state acquires
an opposite-parity admixture, that is,

φk → φk + φ̃k . (29.13)

Thus, for example, each s1/2 orbital will pick up a small
p1/2 state admixture. One can then calculate a PNC
transition along the lines of a parity allowed transi-
tion calculation, simply replacing each orbital occuring
in the MBPT formulas in turn with its opposite par-
ity admixture. Details of this approach can be found
in [29.10].

There are a number of smaller effects that must be
considered when the 1% level of accuracy is reached.
The first stems from the fact that the Z couples to the
density of up and down quarks, which in turn is related
to the density of protons and neutrons in the cesium
nucleus. While experimental data is available on the
charge distribution [29.17], the neutron distribution is
available only theoretically. While this uncertainty can
be shown to be unimportant for Cs133 [29.10], there
has been interest in looking at PNC in several different
isotopes with the aim of taking ratios and greatly reduc-
ing atomic physics uncertainties. However, the neutron
distribution in different nuclei is more uncertain, and tak-
ing the ratio enhances the nuclear physics uncertainty.
This issue has been addressed recently by Chen and
Vogel [29.18], who estimate the nuclear physics uncer-
tainties to be smaller than the anticipated experimental
error.
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The next small effect is the interaction between the
nuclear axial-vector current and the electron vector cur-
rent from Z exchange. In the limit of nonrelativistic
nucleon motion, this interaction is given by the spin-
dependent Hamiltonian

h(2)W =− G√
2

K2
κ−1/2

I(I +1)
α · Iρ(r) . (29.14)

Here, κ = 4, I = 7/2 and K2 )−0.05 for the va-
lence proton of 133Cs. Additionally, parity violation
in the nucleus leads to a parity-violating nuclear mo-
ment, the anapole moment mentioned above, that
couples electromagnetically to the atomic electrons. The
anapole–electron interaction is described by a Hamilto-

nian similar to (29.14), with K2 replaced by −κ/(κ−
1/2)Ka, where Ka = 0.24−0.33 is determined from
nuclear model calculations [29.19]. Linear combina-
tions of amplitudes for different F → F′ transitions
can be used to isolate either the spin-dependent or
spin-independent parts of the interaction. The final
smaller effects are Z exchange between the electrons,
which as mentioned above turns out to be negligi-
ble, and the inclusion of the Breit interaction. While
the original estimate of the latter was a small 0.2%
effect, included in (29.6), this turned out to be an un-
derestimate, one of a number of unexpectedly large
contributions found in recent years, as discussed in the
next section.

29.5 Recent Developments

The Breit interaction was reexamined by Dere-
vianko [29.20] and found to be significantly larger than
the 0.2% mentioned above. The 0.6% includes the ef-
fects of negative energy states, which are enhanced in
the context of PNC. This was followed by the dis-
covery of a number of effects that contributed at the
several tenths of a percent level, with theory and ex-
periment going into and out of agreement with one
another as each effect was found. At present the sit-
uation has stabilized, and, as will be discussed in the
next section, no discrepancy with the standard model
is present. In the past eight years, the principal de-
velopments have been the discovery of a surprisingly

large two-loop radiative correction associated with vac-
uum polarziation [29.21,22], recalculation of the atomic
physics part of the calculation [29.23], which, however,
only reduced the theoretical error bar, an independent
measurement of the polarizability of cesium [29.24],
and the discovery that the self-energy radiative correc-
tion, which in lowest order is −α/2π, and is included in
the radiative corrections to QW presented in [29.11],
is strongly enhanced by binding corrections starting
at order Zα [29.25–27]. When taken together, these
different effects tend to cancel, so the qualitative pic-
ture of agreement with the standard model remains
correct.

29.6 Comparison with Experiment

We can now make use of the above analysis to extract
the value of the weak charge QW from experiment. The
PNC amplitudes measured by Wieman et al. [29.3, 4]
are

*(EPNC)

β
=
⎧
⎨

⎩
−1.6349(80) F = 4 → 3

−1.5576(77) F = 3 → 4
(29.15)

in units of mV/cm. The quantity β is the vector part of
the Stark induced polarizability for the 6s → 7s transi-
tion in cesium. This quantity has also been calculated
with an accuracy of better than 1% using the all-order
techniques outlined above, giving β = 27.00(20)a3

0. We
note that this quantity can also be obtained from ex-
periment, but at present two recent experiments [29.3,
4, 24] are in disagreement, so we use the number ob-

tained from theory. Eliminating the spin-dependence
from (29.15), by taking an appropriate linear com-
bination and using the theoretical value for β, one
finds

*(Eexp
PNC

)= −0.8252(184)[61]10−11|e|a0 ,

(29.16)

where the the first error is from experiment and the
second from theory. Combining this result with our
calculation of the spin-independent amplitude given
in (29.6), we obtain

QW = −72.17(0.58)[0.72] . (29.17)

Alternatively, taking the opposite linear combination
to eliminate the spin-independent terms in (29.15), we
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obtain the value

Ka− (κ−1/2)/κK2 = 0.72±0.10 (29.18)

for the constant governing the spin-dependent interac-
tion.

Radiative corrections to the weak charge QW incor-
porating a parameterization of new physics beyond the
standard model have been worked out by Marciano and
Rosner [29.11], who find

QW
(133Cs55

)= −73.20−0.8S−0.005T ±0.13 ,
(29.19)

assuming the values mt = 140 GeV for the top quark
mass and mH = 100 GeV for the Higgs particle mass.
The parameters S and T in (29.19) are associated partly
with deviations of the top quark and Higgs masses from
their assumed values and partly with new physics beyond
the standard model. In the absence of new physics, the
small factor multiplying T makes this prediction very
insensitive to the top quark mass. Unfortunately, both

the experimental and theoretical errors are presently
too large to make atomic PNC in cesium a precision
test of the standard model. However, there are two
features of cesium PNC that even at the present ac-
curacy lead to particle physics implications. The first
is the fact that large positive values of S, such as can
arise in technicolor theories [29.28], will lead to dis-
agreement of theory and experiment in cesium PNC.
The second is the effect of extra Z bosons, which is
not accounted for in (29.19). Exchange of new Z’s
can be shown to be strongly constrained by atomic
PNC [29.29]. Perhaps more interesting is the possibil-
ity of having entirely new physics that has not been
thought of. Since new physics affects different weak
interaction tests differently, it is important to have
as many such tests as possible. The value of atomic
PNC tests will increase when the next stage of ac-
curacy is reached, at which time atomic physics will
have a significant role in precision tests of the standard
model.
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Atomic Clocks30. Atomic Clocks and Constraints on Variations
of Fundamental Constants

Fundamental constants play an important role in
modern physics, being landmarks that designate
different areas. We call them constants, however,
as long as we only consider minor variations
with the cosmological time/space scale, their
constancy is an experimental fact rather than
a basic theoretical principle. Modern theories
unifying gravity with electromagnetic, weak,
and strong interactions, or even the developing
quantum gravity itself often suggest such
variations.

Many parameters that we call fundamental
constants, such as the electron charge and
mass [30.1, 2], are actually not truly fundamental
constants but effective parameters which are
affected by renormalization or the presence of
matter [30.3]. Living in a changing universe
we cannot expect that matter will affect these
parameters the same way during any given
cosmological epoch. An example is the inflationary
model of the universe which states that in
a very early epoch the universe experienced
a phase transition which, in particular, changed
a vacuum average of the so-called Higgs field
which determines the electron mass. The latter
was zero before this transition and reached
a value close or equal to the present value after
the transition.

The problem of variations of constants has
many facets and here we discuss aspects related
to atomic clocks and precision frequency
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measurements. Other related topics may be found
in [30.4].

Laboratory searches for a possible time variation of fun-
damental physical constants currently consist of two
important parts: (i) one has to measure a certain phys-
ical quantity at two different moments of time that are
separated by at least a few years; (ii) one has to be able
to interpret the result in terms of fundamental constants.
The latter is a strong requirement for a cross comparison
of different results.

The measurements which may be performed most
accurately are frequency measurements; and thus,
frequency standards or atomic clocks will be in-

volved in most of the laboratory searches. Frequency
metrology has shown great progress in the last
decade and will continue to do so for some time.
The constraints on the variations of the fundamen-
tal constants obtained in this manner are, so far,
somewhat weaker than those from other methods (as-
trophysics, geochemistry), but still competitive with
them. In contrast to other methods, however, fre-
quency measurements allow a very clear interpretation
of the final results and a transparent evaluation pro-
cedure, making them less vulnerable to systematic
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errors. While there is still potential for improvement,
the basic details of the method have been recently
fixed.

The most advanced atomic clocks are discussed
in Sect. 30.1. They are realized with many-electron
atoms and their frequency cannot be interpreted in terms

of fundamental constants. However, a much simpler
problem needs to be solved: to interpret their variation in
terms of fundamental constants. This idea is discussed
in Sect. 30.2. The current laboratory constraints on the
variations of the fundamental constants are summarized
in Sect. 30.3.

30.1 Atomic Clocks and Frequency Standards

Frequency standards are important tools for precision
measurements and serve various purposes which, in
turn, have different requirements that must be satis-
fied. In particular, it is not necessary for a frequency
standard to reproduce a frequency which is related to
a certain atomic transition although it may be expressed
in its terms. A well known example is the hydrogen
maser, where the frequency is affected by the wall shift
which may vary with time [30.5]. For the study of time
variations of fundamental constants it is necessary to
use standards similar to a primary caesium clock. In
this case, any deviation of its frequency from the un-
perturbed atomic transition frequency should be known
(within a known uncertainty) because this is a necessary
requirement for being a ‘primary’ standard.

From the point of view of fundamental physics, the
hydrogen maser is an artefact quite similar, in a sense,
to the prototype of the kilogram held at the Bureau
International des Poids et Mesures (BIPM) in Paris. Both
artefacts are somehow related to fundamental constants
(e.g., the mass of the prototype can be expressed in
terms of the nucleon masses and their number) but they
also have a kind of residual classical-physics flexibility
which allows their properties to change. In contrast, stan-
dards similar to the caesium clock have a frequency (or
other property) that is determined by a certain natural
constant which is not flexible, being of pure quantum
origin. It may change only if the fundamental constants
are changing.

In Sect. 30.3, results obtained with caesium and ru-
bidium fountains, a hydrogen beam, ultracold calcium
clouds, and trapped ions of ytterbium and mercury are
discussed. While caesium and rubidium clocks oper-
ate in the radio frequency domain, most of the other
standards listed above rely on optical transitions.

30.1.1 Caesium Atomic Fountain

Caesium clocks are the most accurate primary stan-
dards for time and frequency [30.6]. The hyperfine
splitting frequency between the F = 3 and F = 4 levels

of the 2S1/2 ground state of the 133Cs atom at 9.192 GHz
has been used for the definition of the SI second since
1967. In a so-called caesium fountain (Fig. 30.1), a di-
lute cloud of laser cooled caesium atoms at a temperature
of about 1 µK is launched upwards to initiate a free
parabolic flight with an apogee at about 1 m above the
cooling zone. A microwave cavity is mounted near the
lower endpoints of the parabola and is traversed by the
atoms twice – once during ascent, once during descent
– so that Ramsey’s method of interrogation with sepa-
rated oscillatory fields [30.5] can be realized. The total
interrogation time being on the order of 0.5 s, a res-
onance linewidth of 1 Hz is achieved, about a factor
of 100 narrower than in traditional devices using a ther-
mal atomic beam from an oven. Selection and detection

ν = 9 192 631 770 Hz � ∆

1 pair of vertical
laser beams

Clock
output

Quartz
oscillator

Microwave
synthesis

Electronics for
detection and control

Photodetector

2 pairs of horizontal
laser beams

Cold atoms: T = 1–2 µΚ
Launching velocity = 4 m/s

Microwave
cavity

Detection
laser

Launching
height

Fig. 30.1 Schematic of an atomic fountain clock
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of the hyperfine state is performed via optical pumping
and laser induced resonance fluorescence. In a care-
fully controlled setup, a relative uncertainty slightly
below 1 × 10−15 can be reached in the realization of
the resonance frequency of the unperturbed Cs atom.
The averaging time that is required to reach this level
of uncertainty is on the order of 104 s. One limiting
effect that contributes significantly to the systematic un-
certainty of the caesium fountain is the frequency shift
due to cold collisions between the atoms. In this re-
spect, a fountain frequency standard based on the ground
state hyperfine frequency of the 87Rb atom at about
6.835 GHz is more favorable, since its collisional shift
is lower by more than a factor of 50 for the same atomic
density. With the caesium frequency being fixed by def-
inition in the SI system, the 87Rb frequency is therefore
presently the most precisely measured atomic transition
frequency [30.7].

30.1.2 Single-Ion Trap

An alternative to interrogating atoms in free flight, and
a possibility to obtain practically unlimited interaction
time, is to store them in a trap. Ions are well suited be-
cause they carry electric charge and can be trapped in
radio frequency ion traps (Paul traps [30.8]) that provide
confinement around a field-free saddle point of an elec-
tric quadrupole potential. This ensures that the internal
level structure is only minimally perturbed by the trap.
Combined with laser cooling it is possible to reach the
so-called Lamb–Dicke regime where the linear Doppler
shift is eliminated. A single ion, trapped in an ultrahigh
vacuum is conceptually a very simple system that allows
good control of systematic frequency shifts [30.9]. The
use of the much higher, optical reference frequency al-
lows one to obtain a stability that is superior to micro-
wave frequency standards, although only a single ion
is used to obtain a correction signal for the reference
oscillator.

Metastable level

“Forbidden”
reference transition

Cooling transition
(dipole allowed)

Fig. 30.2 Double resonance scheme applied in single-ion-
trap frequency standards

A number of possible reference optical transitions
with a natural linewidth of the order of 1 Hz and be-
low are available in different ions, such as Yb+ [30.10]
and Hg+ [30.11, 12]. These ions possess a useful level
system, where both a dipole-allowed transition and a for-
bidden reference transition of the optical clock can be
driven with two different lasers from the ground state
(Fig. 30.2). The dipole transition is used for laser cooling
and for the optical detection of the ion via its reso-
nance fluorescence. If a second laser excites the ion to
the metastable upper level of the reference transition,
the fluorescence disappears and every single excitation
can thus be detected with practically hundred percent
efficiency as a dark period in the fluorescence signal.

Using these techniques and a femtosecond laser
frequency comb generator (see Sect. 30.1.5) for the link
to primary caesium clocks, the absolute frequencies
of the transitions 2S1/2 → 2D5/2 in 199Hg+ at 1065 THz
and 2S1/2→2D3/2 in171Yb+ at 688 THz have been
measured with relative uncertainties of only 9 × 10−15.
It is believed that single-ion optical frequency standards
offer the potential to ultimately reach the 10−18 level of
relative accuracy.

A similar double resonance technique can be em-
ployed if the reference transition is in the microwave
domain and a number of accurate measurements of
hyperfine structure intervals in trapped ions has been
performed. In particular, the HFS interval in 171Yb+ has
been measured several times [30.13–15] and can be used
to obtain constraints on temporal variations.

30.1.3 Laser-Cooled Neutral Atoms

Optical frequency standards have been developed
with free laser-cooled neutral atoms, most notably of
the alkaline-earth elements that possess narrow inter-
combination transitions. The atoms are collected in
a magneto-optical trap, are then released and in-
terogated by a sequence of laser pulses to realize
a frequency-sensitive Ramsey–Bordé atom interferom-
eter [30.16]. Of these systems, the one based on the
1S0 → 3P1 intercombination line of 40Ca at 657 nm has
reached the lowest relative uncertainty so far (about
2 × 10−14) [30.11, 12, 17, 18]. Limiting factors in the
uncertainty of these standards are the residual lin-
ear Doppler effect and phase front curvature of the
laser beams that excite the ballistically expanding atom
cloud. It has therefore been proposed to confine the
atoms in an optical lattice, i. e., in the array of in-
terference maxima produced by several intersecting,
red-detuned laser beams [30.19]. The detuning of the
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trapping laser could be chosen such that the light shift
it produces in the ground and excited state of the
reference transition are equal, and therefore it would
produce no shift of the reference frequency. This ap-
proach is presently being investigated and may be
applied to the very narrow (mHz natural linewidth)
1S0 → 3P0 transitions in neutral strontium, ytterbium,
or mercury.

30.1.4 Two-Photon Transitions
and Doppler-Free Spectroscopy

The linear Doppler shift of an absorption resonance can
also be avoided if a two-photon excitation is induced
by two counterpropagating laser beams. A prominent
example that has been studied with high precision is
the two-photon excitation of the 1S → 2S transition in
atomic hydrogen. The precise measurement of this fre-
quency is of importance for the determination of the
Rydberg constant and as a test of quantum electrody-
namics (QED). Hydrogen atoms are cooled by collisions
in a cryogenic nozzle and interact with a standing laser-
wave of 243 nm wavelength inside a resonator. Since
the atoms are not as cold as in laser cooled samples,
a correction for the second order Doppler effect is per-
formed. The laser excitation is interrupted periodically
and the excited atoms are detected in a time resolved
manner so that their velocity can be examined. An ac-
curacy of about 2 × 10−14 has been obtained in absolute
frequency measurements with a transportable caesium
fountain [30.20, 21].

30.1.5 Optical Frequency Measurements

In recent years, the progress in stability and accuracy
of optical frequency standards has been impressive; and
there is belief that in the future an optical clock may
supersede the microwave clocks because the optical os-
cillators offer a much higher number of periods in a given
time. In addition, some systematic effects, such as the
Zeeman effect, have an absolute order of magnitude
that does not scale with the transition frequency, and
consequently is relatively less important at higher tran-
sition frequencies. A long-standing problem, however,
was the precise conversion of an optical frequency to the
microwave domain, where frequencies can be counted
electronically in order to establish a time scale or can
easily be compared in a phase coherent way.

This problem has recently been solved by the
so-called femtosecond laser frequency comb gener-
ator [30.22]. Briefly, a mode-locked femtosecond laser

Time

∆t = 1/fr

Frequency

fn

fr

f = 0 fceo

Fig. 30.3 Frequency comb generated from femtosecond
laser pulses

produces, in the frequency domain, a comb of equally
spaced optical frequencies fn (Fig. 30.3) that can be
written as fn = n fr+ fceo (with fceo < fr), where fr is
the pulse repetition rate of the laser, the mode number
n is a large integer (of order 105), and fceo (carrier-
envelope-offset) is a shift of the whole comb that is
produced by group velocity dispersion in the laser. The
repetition rate fr can easily be measured with a fast
photodiode. In order to determine fceo, the comb is
broadened in a nonlinear medium so that it covers at
least one octave. Now the second harmonic of mode
n from the “red” wing of the spectrum, at frequency
2(n fr+ fceo), can be mixed with mode 2n from the
“blue” wing, at frequency 2n fr+ fceo, and fceo is ob-
tained as a difference frequency. In this way, the precise
relation between the two microwave frequencies fr and
fceo and the numerous optical frequencies fn is known.
The setup can now be used for an absolute optical
frequency measurement by referencing fr and fceo to
a microwave standard and recording the beat note be-
tween the optical frequency fo to be measured and the
closest comb frequency fn. Vice versa, the setup may
work as an optical clockwork, for example, by adjusting
fceo to zero and by stabilizing one comb line fn to fo
so that fr is now an exact subharmonic to order n of fo.
The precision of these transfer schemes has been investi-
gated and was found to be so high that it will not limit the
performance of optical clocks for the foreseeable future.

30.1.6 Limitations on Frequency Variations

The frequency standards described above have been suc-
cesfully developed and their accuracy has been improved
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Table 30.1 Limits on possible time variation of frequencies
of different transitions in SI units. Here δ f/ f is the frac-
tional uncertainty of the most accurate measurement of the
frequency f

Atom, f δ f/ f � f/�t Ref.
transition GHz (10−15) (Hz/yr)

H, Opt 2 466 061 14 −8 ± 16 [30.20, 21]

Ca, Opt 455 986 13 −4 ± 5 [30.17, 18]

Rb, HFS 6.835 1 (0 ±5) × 10−6 [30.7]

Yb+, Opt 688 359 9 −1 ± 3 [30.23]

Yb+, HFS 12.642 73 (4 ± 4) × 10−4 [30.13–15]

Hg+, Opt 1 064 721 9 0 ± 7 [30.11, 12]

in the last decade. This progress, as a consequence, has
led to certain constraints on the possible variations of
the fundamental constants. Considering frequency varia-

tions, one has to have in mind that not only the numerical
value but also the units may vary. For this reason, one
needs to deal with dimensionless quantities which are
unit-independent. During the last decade, a number of
transition frequencies were measured in the correspond-
ing SI unit, the hertz (see Table 30.1). These dimensional
results are actually related to dimensionless quantities
since a frequency measurement in SI is a measurement
with respect to the caesium hyperfine interval

{
f
}= 9 192 631 770 · f

fHFS(Cs)
, (30.1)

where
{

f
}

stands for the numerical value of the fre-
quency f . (Most absolute frequency measurements have
been realized as a direct comparison with a primary
caesium standard.) In Sect. 30.3, in order to simplify
notation, this symbol for the numerical value is dropped.

30.2 Atomic Spectra and their Dependence
on the Fundamental Constants

30.2.1 The Spectrum of Hydrogen
and Nonrelativistic Atoms

The hydrogen atom is the simplest atom and one can eas-
ily calculate the leading contribution to different kinds
of transitions in its spectrum [30.24, 25], such as the
gross, fine, and hyperfine structure. The scaling behav-
ior of these contributions with the values of the Rydberg
constant R∞, the fine structure constant α, and the mag-
netic moments of proton and Bohr magneton is clear.
The results for some typical hydrogenic transitions are

f(2p → 1s))3

4
cR∞ ,

f
(
2p3/2−2p1/2

)) 1

16
α2 cR∞ ,

fHFS(1s))4

3
α2 µp

µB
cR∞ . (30.2)

In the nonrelativistic approximation, the basic fre-
quencies and the fine and hyperfine structure intervals
of all atomic spectra have a similar dependence on the
fundamental constants. The presence of a few elec-
trons and a nuclear charge of Z �= 1 makes theory more
complicated and introduces certain multiplicative num-
bers but involves no new parameters. The importance
of this scaling for a search for the variations was first
pointed out in [30.26] and was applied to astrophysical

data. Similar results may be presented for molecular
transitions (electronic, vibrational, rotational and hyper-
fine) [30.27], however, up to now no measurement with
molecules has been performed at a level of accuracy
that is competitive with atomic transitions. They have
been used only in a search for variations of constants in
astrophysical observations [30.28].

30.2.2 Hyperfine Structure
and the Schmidt Model

The atomic hyperfine structure

fNR(HFS)= constα2 µ

µB
cR∞ (30.3)

involves nuclear magnetic moments µ which are dif-
ferent for different nuclei; thus, a comparison of the
constraints on the variations of nuclear magnetic mo-
ments has a reduced value. To compare them, one may
apply the Schmidt model [30.3, 29], which predicts all
the magnetic moments of nuclei with an odd number of
nucleons (odd value of atomic number A) in terms of
the proton and neutron g-factors, gp and gn, respectively,
and the nuclear magneton only. Unfortunately, the un-
certainty of the calculation within the Schmidt model
is quite high (usually from 10% to 50%). The Schmidt
model, being a kind of ab initio model, only allows for
improvements which, unfortunately, involve some ef-
fective phenomenological parameters. This would not
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really improve the situation, but return us to the case
where there are too many possibly varying independ-
ent parameters. A comparison of the Schmidt values to
the actual data is presented for caesium, rubidium, and
ytterbium in Table 30.2.

30.2.3 Atomic Spectra:
Relativistic Corrections

A theory based on the leading nonrelativistic approxima-
tion may not be accurate enough. Any atomic frequency
can be presented as

f = fNR Frel(α) , (30.4)

where the first (nonrelativistic) factor is determined by
a scaling similar to the hydrogenic transitions (30.2).
The second factor stands for relativistic corrections
which vanish at α= 0; and thus, Frel(0)= 1.

The importance of relativistic corrections for the
hyperfine structure was first emphasized in [30.30].
Relativistic many-body calculations for various tran-
sitions have been performed in [30.31–36]. A typical
accuracy is about 10%. Some results are summarized
in Tables 30.2 and 30.3, where we list the relative
sensitivity of the relativistic factors Frel to changes in α,

κ = ∂lnFrel

∂lnα
. (30.5)

Note that the relativistic corrections in heavy atoms are
proportional to (Zα)2 because of the singularity of rela-
tivistic operators. Due to this, the corrections rapidly
increase with the nuclear charge Z.

The signs and magnitudes of κ are explained by
a simple estimate of the relativistic correction. For
example, an approximate expression for the relativis-
tic correction factor for the hyperfine structure of an
s-wave electron in an alkali-like atom is [30.30]

Frel(α)= 1
√

1− (Zα)2 ·
1

1− (4/3)(Zα)2

) 1+ 11

6
(Zα)2 .

Table 30.2 Magnetic moments and relativistic corrections
for atoms involved in microwave standards. The relativis-
tic sensitivity κ is defined in Sect. 30.2.3. Here µ is an
actual value of the nuclear magnetic moment, µN is the nu-
clear magneton, and µS stands for the Schmidt value of
the nuclear magnetic moment; the nucleon g factors are
gp/2 ) 2.79 and gn/2 ) −1.91

Z Atom µ/µN µS/µN µ/µS κ

37 87Rb 2.75 gp/2+1 0.74 0.34

55 133Cs 2.58 7/18 · (10− gp) 1.50 0.83

70 171Yb+ 0.49 −gn/6 0.77 1.5

Table 30.3 Limits on possible time variation of the fre-
quencies of different transitions and their sensitivity to
variations in α due to relativistic corrections

Atom, transition ∂ f/ f∂t κ

H, 1s − 2s −3.2(63)× 10−15 yr−1 0.00
40Ca, 1S 0− 3P 1 −8(11)× 10−15 yr−1 0.03
171Yb+, 2S 1/2− 2D 3/2 −1.2(44)× 10−15 yr−1 0.9
199Hg+, 2S 1/2− 2D 5/2 −0.2(70)× 10−15 yr−1 −3.2

A similar rough estimation for the energy levels may be
performed for the gross structure:

E =− Z2
amc2α2

2n2∗

(
1+ (Zα)

2

n∗
1

j+1/2

)
. (30.6)

Here j is the electron angular momentum, n∗ is the
effective value of the principle quantum number (which
determines the nonrelativistic energy of the electron),
and Za is the charge “seen” by the valence electron – it
is 1 for neutral atoms, 2 for singly charged ions, etc. This
equation tells us that κ, for the excitation of the electron
from the orbital j to the orbital j ′, has a different sign
for j> j ′ and j< j ′. The difference of sign between the
sensitivities of the ytterbium and mercury transitions in
Table 30.3 reflects the fact that in Yb+ a 6s-electron is
excited to the empty 5d-shell, while in Hg+ a hole is
created in the filled 5d-shell if the electron is excited to
the 6s-shell.

30.3 Laboratory Constraints on Time the Variations
of the Fundamental Constants

Logarithmic derivatives (30.5) appear since we are look-
ing for a variation of the constants in relative units.
In other words, we are interested in a determination of,
e.g., ∆α/α∆t while the input data of interest are related

to ∆ f/ f ∆t. Their relation takes the form

∂ln f

∂t
= ∂ln fNR

∂t
+κ ∂lnα

∂t
. (30.7)
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If one compares transitions of the same type – gross
structure, fine structure – the first term cancels.

30.3.1 Constraints from Absolute Optical
Measurements

Absolute frequency measurements offer the possibility
to compare a number of optical transitions with fre-
quencies fNR, which scale as cR∞, with the caesium
hyperfine structure. One can rewrite (30.7) as

∂ln fopt

∂t
= ∂ ln cR∞

∂t
+κ ∂lnα

∂t
, (30.8)

where dimensional quantities, such as frequency and
the Rydberg constant, are stated in SI units (30.1). This
equation may be used in different ways. For example,
in Fig. 30.4 we plot experimental data for ∂ ln fopt/∂t
as a function of the sensitivity κ and derive a model-
independent constraint on the variation of the fine
structure constant

∂lnα

∂t
=
(
−0.3±2.0 × 10−15

)
y−1 (30.9)

and the numerical value of the Rydberg frequency cR∞
(Table 30.4) in the SI unit of Hertz. The latter is of
great metrological importance, being related to a com-
mon drift of optical clocks with respect to a caesium
clock, i. e., to the definition of the SI second. The
SI definition of the metre is unpractical and so, in prac-
tice, the optical wavelengths of reference lines calibrated
against the caesium standard are used to determine the
SI metre [30.37].

The constraints on the variations of α and cR∞ are
correlated and the standard uncertainty ellipse, defined
as

∑

i

1

u2
i

(
∂ln fi

∂t
− ∂lnRy

∂t
−κi

∂lnα

∂t

)2

= 1+χ2
min ,

is presented in Fig. 30.5. Here we sum over all available
data: ∂ (ln fi) /∂t is the central value of the observed drift
rate, ui its 1σ uncertainty, and χ2

min the minimized χ2

of the fit.

Table 30.4 Model-independent laboratory constraints on
the possible time variations of natural constants

X ∂lnX/∂t

α (−0.3±2.0)× 10−15 yr−1

{cR∞} (−2.1±3.1)× 10−15 yr−1

µCs/µB (3.0±6.8)× 10−15 yr−1

µRb/µCs (−0.2±1.2)× 10−15 yr−1

µYb/µCs (3±3)× 10−14 yr−1

The numerical value of the Rydberg constant, from
the point of view of fundamental physics, can be ex-
pressed in terms of the caesium hyperfine interval in
atomic units and its variation may be expressed in terms
of the variations of α and µCs/µB. A constraint for the
latter is presented in Table 30.4.

30.3.2 Constraints from Microwave Clocks

A model-independent comparison of different HFS
transitions is not simple because their nonrelativistic
contributions fNR are not the same, but involve differ-
ent magnetic moments. Applying (30.9) to experimental
data, one can obtain constraints on the relative variations
of the magnetic moments of Rb, Cs, and Yb (Table 30.4).
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Fig. 30.4 Frequency variations versus their sensitivity κ.
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Fig. 30.5 Constraints on the time variations of the fine
structure constant α and the numerical value of the Rydberg
constant. The preliminary data on Ca are not included
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30.3.3 Model-Dependent Constraints

In order to gain information on constants more funda-
mental than the nuclear magnetic moments, any further
evaluation of the experimental data should involve the
Schmidt model, which is far from perfect. Model-
dependent constraints are summarized in Table 30.5.

The nucleon g factors, in their turn, depend on a di-
mensionless fundamental constant mq/ΛQCD, where mq
is the quark mass and ΛQCD is the quantum chro-
modynamic (QCD) scale. A study of this dependence
may supply us with deep insight into the possible vari-
ations of the more fundamental properties of Nature

Table 30.5 Model-dependent laboratory constraints on
possible time variations of fundamental constants. The
uncertainties here do not include uncertainties from the
application of the Schmidt model

X ∂ ln X/∂t

me/mp (2.9±6.2)× 10−15 yr−1

µp/µe (2.9±5.8)× 10−15 yr−1

gp (−0.1±0.5)× 10−15 yr−1

gn (3±3)× 10−14 yr−1

(see [30.31,32] for details). This approach is promising,
but its accuracy needs to be better understood.

30.4 Summary

The results collected in Tables 30.4 and 30.5 are com-
petitive with data from other searches and have a more
reliable interpretation. The results from astrophysical
searches and the study of the samarium resonance from
Oklo data claim higher sensitivity (see, e.g., [30.4]),
however, they are more difficult to interpret. We have,
for example, not assumed any hierarchy in variation rates
or that some constants stay fixed while others vary, as it is
done in the study of the position of the Oklo resonance.
The evaluation presented here is transparent, and any
particular calculation or measurement can be checked. In
contrast, the astrophysical data show significant results
only after an intensive statistical evaluation.

The laboratory searches involving atomic clocks
have definitely shown progress and in a few years we
expect an increase in the accuracy of these clocks,
an increase in the number of different kinds of fre-
quency standards (e.g., optical Sr, Sr+, In+ standards
and a microwave Hg+ standard are being tried now),
and indeed an increase in the time separation between

accurate experiments, since it is now typically only
2–3 years. An optical clock based on a nuclear transi-
tion in Th-229 is also under consideration [30.38]. Such
a clock would offer different sensitivity to systematic ef-
fects, as well as to variations of different fundamental
constants.

Laboratory searches are not necessarily limited to
experiments with metrological accuracy. An example of
a high-sensitivity search with a relatively low accuracy is
the study of the dysprosium atom for a determination of
the splitting between the 4f105d 6s and 4f95d26s states,
which offers a great sensitivity value of κ ) 5.7 × 108

[30.36].
Variations of constants on the cosmological time

scale can be expected but the magnitude, as well as other
details, is unclear. Because of a broad range of options
there is a need for the development of as many different
searches as possible, and the laboratory search for vari-
ations is an attractive opportunity to open up a way that
could lead to new physics.
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Molecular Stru31. Molecular Structure

Molecular structure is a reflection of the Born–
Oppenheimer separation of electronic and
nuclear motion, which is in turn a consequence
of the large difference between the electron
and nuclear masses. One consequence of this
separation is the concept of a potential energy
surface for nuclear motion created by the faster
moving electrons. Corollaries include equilibrium
structures, transition states, and reaction paths
which are the foundation of the description
of molecular structure and reactivity. However
the Born–Oppenheimer approximation is not
uniformly applicable and its breakdown results in
perturbations in molecular spectra, radiationless
decay, and nonadiabatic chemical reactions.

There are many issues that can be addressed
in a discussion of molecular structure, including
the structure and bonding of individual classes
of molecules, computational and/or experimental
techniques used to determine or infer molecular
structure, the accuracy of those methods, etc.
In an effort to provide a broad view of the
essential aspects of molecular structure, this
Chapter considers issues in molecular structure
from a theoretical/computational perspective
using the Born–Oppenheimer approximation
as the point of origin. Rather than providing
a compendium of results, this chapter will explain
how issues in molecular structure are investigated
and how the questions that can be addressed
reflect the available methodology. Even with
these restrictions the scope of this topic remains
enormous and precludes a detailed presentation
of any one issue. Thus the abbreviated discussions
in this work are supplemented by ample references
to the literature.

Several aspects of potential energy surfaces
and their relation to molecular structure will be
considered: (i) the electronic structure techniques
used to determine a single point on a potential
energy surface, and the interactions that couple
the electronic states in question, (ii) the local
properties of potential energy surfaces, in
particular equilibrium structures and rovibrational
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levels that provide the link to experimental
inferences concerning molecular structure,
(iii) global chemistry deduced from potential
energy surfaces including reaction mechanisms
and reaction paths and (iv) phenomena resulting
from the nonadiabatic interactions that couple
potential energy surfaces.
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468 Part C Molecules

31.1 Concepts

31.1.1 Nonadiabatic Ansatz:
Born–Oppenheimer Approximation

Basic Quantities
The total Hamiltonian for electronic and nuclear motion
in the space fixed coordinate frame, in atomic units, is

HeN(r, R)=
N∑

α=1

−1

2Mα

∇2
α+He(r; R)

≡ T nuc+He(r; R) , (31.1)

where R denotes the 3N nuclear coordinates, with R=
(R1, R2, . . . , RN ), Ri = (Xi ,Yi , Zi), r denotes the 3M
electronic coordinates 2using similar conventions, T nuc

is the nuclear kinetic energy operator and He(r, R) is
the total electronic Hamiltonian taken as

He(r; R)= H0(r; R)+H rel(r; R) . (31.2)

Here H0(r; R) is the nonrelativistic Born–Oppenheimer
Hamiltonian

H0(r; R)=−1

2

M∑

i=1

∇2
i −

∑

K,i

Z K

|Rk −ri |

+ 1

2

M∑

i �= j

1

|ri −r j | +
1

2

N∑

K �=L

Z K ZL

|RK − RL | ,

(31.3)

and H rel(r; R) is the relativistic contribution to the
electronic Hamiltonian, for light atoms conventionally
treated within the Breit–Pauli approximation [31.1] and
discussed further in Sect. 31.3.2. Note that in (31.3) the
nuclear kinetic energy is absent, so that only the ri
are dynamical variables in (31.2) and (31.3). Using the
Born–Huang approach [31.2] to the Born–Oppenheimer
approximation, the total wave function Ψ eN

L (r, R) is ex-
panded in a basis of electronic states,Ψ e

I (r; R). The total
wave function for the system thus has the form

Ψ eN
L (r, R)=

∑

I

Ψ e
I (r; R)βL

I (R) . (31.4)

Equation (31.4) is valid for any complete set of
electronic states depending parametrically on nuclear
coordinates. The parametrical dependence of Ψ e

I (r; R)
on R, denoted by the semicolon, reflects the fact that
the R are not dynamical variables in (31.2) and (31.3).
As a practical matter it is necessary to make a particular
choice ofΨ e

I (r; R) in order to limit the size of the expan-
sion in electronic states. An adiabatic electronic state is

an eigenfunction of He(r; R) for fixed R. A particularly
useful choice of adiabatic state, denoted by Ψ 0

I (r; R),
employs H0(r; R) rather than the full He(r, R). These
electronic wave functions satisfy

H0(r; R)Ψ 0
I (r; R)= E0

I (R)Ψ
0
I (r; R) . (31.5)

The Ψ 0
I (r; R) are determined up to a geometry de-

pendent phase. This phase is usually chosen such that
the Ψ 0

I (r; R) are real. This assumption is acceptable
except in the situation where there is a conical inter-
section on the potential energy surface in question. In
that case, the real-valued Ψ 0

I (r; R) changes sign when
a closed loop surrounding the conical intersection point
is traversed, that is,Ψ 0

I (r; R) is not single-valued [31.3].
This geometric or Berry [31.4] phase condition has
consequences in such phenomena as the dynamic Jahn–
Teller effect [31.5, 6] but will not be addressed in detail
in this review.

As a consequence of the parametric dependence of
Ψ 0

I (r; R) on R, E0
I (R) becomes a function of R and

is referred to as the nonrelativistic Born–Oppenheimer
potential energy surface for reasons discussed below.
Approaches based on (31.5) are most appropriate for
molecular systems with only light atoms. However with
the use of pseudopotential techniques [31.7], formally
equivalent approaches can be developed for heavier
systems (Sect. 31.3.2).

Inserting (31.4) into the time independent Schrö-
dinger equation

[
HeN(r; R)− E

]
Ψ eN(r; R)= 0 and

taking the inner product with the electronic basis state
Ψ 0

I (r; R) gives the following system of coupled equa-
tions for the rovibronic functions βL

I (R) [31.8, 9]:
[
T nuc+ E0

I (R)− E
]
βI (R)

=−
∑

J

(
K̃ IJ (R)+HBP

IJ (R)

−
N∑

α=1

{ 1

2Mα

[
f IJ
α (R) ·∇α+∇α · f IJ

α (R)
]})

×βJ (R) , (31.6)

where the state label L on βL
I has been suppressed, and

f IJ
α (R)≡

[
f IJ
Xα (R), f IJ

Yα (R), f IJ
Zα (R)

]
, (31.7)

K̃ JI (R)=
∑

W,α

1

2Mα

k̃ JI
WαWα (R) , (31.8)

f JI
Wα (R)=

〈
Ψ 0

J (r; R)

∣∣∣∣
∂

∂Wα

Ψ 0
I (r; R)

〉

r
, (31.9)
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k̃ JI
WαW ′

β
=

〈
∂

∂Wα

Ψ 0
J (r; R)

∣∣
∣∣
∂

∂W ′
β

Ψ 0
I (r; R)

〉

r

,

(31.10)

with W = X,Y, Z, α= 1 · · · N . The subscript r on the
matrix elements in (31.9–31.10) denotes integration over
all electronic coordinates and the final ∇α in (31.6)
acts on both f IJ

α (R) and βJ (R). While this represen-
tation may not be optimal for a treatment of the nuclear
dynamics, since it employs a space fixed frame repre-
sentation, it is adequate for the present development as
it clearly displays the origins of the Born–Oppenheimer
approximation and its breakdown.

Modifications to the Nonrelativistic
Born–Oppenheimer Potential Energy Surface

When the interstate couplings on the right-hand side
of (31.6) can be neglected, the nuclear motion is gov-
erned by the effective potential given by V I (R) ≡
Ee

I (R)+K̃ II (R)≡ E0
I (R)+HBP

II (R)+ K̃ II (R) and the
Born–Oppenheimer approximation is valid. Here it is as-
sumed that f II

α (R)= 0, a sufficient condition for which
is that the Ψ 0

I (r; R) are chosen real-valued [see discus-
sion following (31.5)]. E0

I (R) is generally the principal
R-dependent contribution to V I (R). HBP

II (R) is referred
to as the relativistic contribution to the nonrelativistic
Born–Oppenheimer potential energy surface and is dis-
cussed further in Sect. 31.3.2. The contribution K̃ II (R)
is referred to as the adiabatic correction. Unlike E0

I (R)
and HBP

IJ (R), which are independent of mass, K̃ II (R)
is mass dependent (31.8 and 31.10). It has been com-
puted from first principles [31.10–12] and inferred from
experiments [31.13, 14] principally for diatomic sys-
tems.

31.1.2 Born–Oppenheimer Potential Energy
Surfaces and Their Topology

E0
I (R) is the main focus of this chapter. There have been

several recent reviews of ground state (I = 1) potential
energy surfaces [31.15, 16].

Equilibrium structures (stable or metastable species)
represent local minima on E0

I (R), that is gI
Wα
(R)≡

∂E0
I (R)/∂Wα = 0 for all Wα at R= Re. There may

be several equilibrium structures for a given set of nu-
clei; for example the atoms H, C and N form stable
molecules HCN and HNC. Saddle points or transition
states, extrema on E0

I (R)with one negative eigenvalue of
the Hessian matrix FI (R), whose elements are defined
by F I

WαWβ
(R)≡ ∂2 E0

I (R)/∂Wα∂Wβ , represent moun-
tain passes separating the various equilibrium structures

and the asymptotes – values ofR corresponding to iso-
lated molecular fragments. This situation is illustrated
in Fig. 31.1.

Reaction paths [31.17] connect the asymptotes, min-
ima, and saddle points. They can best be defined as
the steepest descent paths from a transition state struc-
ture down to local minima [31.17], although methods
for walking uphill (shallowest ascent path) [31.18]
also exist. Unlike equilibrium structures and saddle
points which are independent of the choice of coor-
dinate system used to representR, the reaction path
is coordinate system dependent. The intrinsic reac-
tion coordinate [31.17], the reaction coordinate in mass
weighted cartesian coordinates Ri → Ri Mi , is most fre-
quently used (Sect. 31.4.4)

These features of the potential energy surfaces and
their determination will be discussed further below.
Their determination consists of two parts: (i) the level
of treatment, i. e., the electronic structure technique
used to determine E0

I (R) and (ii) the characteriza-
tion of the features of E0

I (R), i. e., minima, saddle
points, and reaction paths [31.19,20] at the level of treat-
ment chosen. In this chapter, only fully ab initio levels
of treatment are considered [31.21, 22].

31.1.3 Classification of Interstate Couplings:
Adiabatic and Diabatic Bases

Intersurface couplings, shown on the right-hand side
of (31.6), result in the breakdown of the single poten-
tial energy surface Born–Oppenheimer approximation.
Within the Born–Huang ansatz such a nonadiabatic pro-
cess is interpreted in terms of motion on more than
one Born–Oppenheimer potential energy surface [31.8].
From (31.6), it is seen that there are three types of ma-
trix elements coupling the electronic states, K̃ IJ (R),
HBPIJ (R) and f IJ (R). Two of these couplings, K̃ IJ (R)

Transition state

Equilibrium
structure

Reaction path

Equilibrium
structure

Fig. 31.1 Schematic representation of a transition state and
reaction path connecting two minima
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470 Part C Molecules

and f IJ (R) arise from the nuclear kinetic energy op-
erator T nuc, while the third coupling arises from the
Breit–Pauli interaction HBP. This classification of the
intersurface interactions is a consequence of the choice
of the adiabatic electronic states through (31.5). Other
choices ofΨ 0

I (r; R), most notably the diabatic electronic
states [31.23–27], are possible.

In the adiabatic state basis, H0(r; R) is diagonal and
in the absence of relativistic effects, intersurface coup-
lings originate exclusively from the derivative coupling
terms in (31.9) and (31.10). The diabatic basis seeks to
‘transfer’ the intersurface coupling from these deriva-
tive operators to a potential term analogous in form to
HBP

IJ (R). The diabatic basis, Ψ 0−d
I (r; R), is a unitary

transformation of the adiabatic electronic basis, defined
such that [31.24]

f JI,d
Rα

≡
〈
Ψ 0−d

J (r; R)

∣∣∣
∣
∂

∂Rα
Ψ 0−d

I (r; R)
〉

r
= 0

(31.11)

where Rα is an internal coordinate. For polyatomic
systems (N > 2), rigorous diabatic bases do not ex-
ist [31.27] and approximate diabatic bases are sought
[31.27–30]. A discussion of this issue can be found
in [31.31].

31.1.4 Surfaces of Intersection of Potential
Energy Surfaces

The intersurface couplings are most effective in promot-
ing a nonadiabatic process when |V I (R)−V J (R)| is
small for some J on the right-hand side of (31.6), so

that

Ee
I (R)+ K̃ II (R)− [

Ee
J (R)+ K̃ JJ (R)

]

≡∆E0
IJ (R)+∆EBP

IJ (R)+∆KIJ (R) (31.12)

is small. Here

∆E0
IJ (R)≡ E0

I (R)− E0
J (R); , (31.13)

∆KIJ (R)≡ K̃ II (R)− K̃ JJ (R) , (31.14)

∆EBP
IJ (R)≡ HBP

II (R)−HBP
JJ (R) . (31.15)

Since in general ∆KIJ (R) is quite small, and for the
low atomic number systems considered here HBP

II is it-
self small, we are led to consider regions of nuclear
coordinate space for which the magnitude of ∆E0

IJ (R)
is small, referred to as avoided intersections when
∆E0

IJ (R) �= 0 and as conical and Renner-type [31.32]
intersections when∆E0

IJ (R)= 0. The set of R for which
∆E0

IJ (R)= 0, the noncrossing rule, was first discussed
in 1929 by von Neumann and Wigner [31.33]. The rule
states that for diatomic systems, crossings between two
potential energy curves of the same symmetry are not
possible (actually, are extremely rare), whereas for poly-
atomic systems, potential energy surface intersections
are allowed. Mathematically the noncrossing rule is ex-
pressed in terms of the dimensions of a surface, the
surface of intersection, on which a set of conditions
can be satisfied [31.3, 34]. For electronic states of the
same symmetry (neglecting electron spin degeneracy),
the dimension of the surface of conical intersection is
K −2, where K is the number of internal nuclear de-
grees of freedom. For states of different spin symmetry,
the dimension of the surface of intersection is K −1.

31.2 Characterization of Potential Energy Surfaces

This section is concerned with the determination of the
approximate solution of (31.5). For this purpose it is
frequently convenient to re-express H0(r; R) in second
quantized [31.35] form as

H0(r; R)=
∑

i, j

hija
†
i a j + 1

2

∑

i, j,k,l

(il| jk)a†i a†j akal ,

(31.16)

where hij and (il| jk) are standard abbreviations [31.36]
for the one electron (kinetic energy and nuclear–electron
attraction) and two electron (electron–electron repul-
sion) integrals respectively, and a†i and ai are the
fermion creation and destruction operators. The inte-
grals and the creation and destruction operators are

defined in terms of a basis of one electron func-
tions, usually molecular spin-orbitals φiγi , γi = α or β.
Thus

hij(R)=
〈
φi(rk)γi

∣∣− 1

2
∇2

k

−
∑

K

Z K

|RK −rk|
∣∣φ j(rk)γ j

〉
rk

(31.17)

(ij|kl)=
〈
φi(rm)γiφ j(rm)γ j

∣∣∣∣
1

|rm −rn|
×

∣∣∣∣φk(rn)γkφl(rn)γl

〉

rm ,rn

. (31.18)
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Equation (31.18) is referred to as the Mulliken no-
tation [31.37] for a two-electron integral. It differs
from the frequently used [31.36] bra-ket representa-
tion 〈ij|kl〉 = (ik| jl). The molecular orbitals φi(r j; R)
are in turn expanded in terms of a basis set
of atom-centered functions [31.38], χ(r j; R), with
φi(r j; R)=∑L

P=1χP(r j; R)TP,i(R). Note that here we
have distinguished between a spin-orbital φi(r j; R)γi
and a molecular orbital φi(r j; R), but we will fol-
low the usual convention of allowing the functions
in (31.17) and (31.18) to be molecular orbitals
or spin-orbitals with the use being clear from the
context.

Since H0(r; R) is independent of electron spin, it
can also be written in terms of the Ẽ pq , spin-averaged
excitation operators [31.39], where Ẽ pq =∑

γ a†pγaqγ ,
p, q label orbitals and γ = α, β so that

H0(r; R)=
∑

i, j

hij Ẽij

+ 1

2

∑

i, j,k,l

(ij|kl)Ẽij Ẽkl − δ jk Ẽil .

(31.19)

The Ẽ pq satisfy Ẽij , Ẽkl] = Ẽilδ jk − Ẽk jδil as a conse-
quence of the commutation relations for the a†i and ai and
are generators of the unitary group [31.40], (Chapt. 4).
This observation allows the powerful machinery of the
unitary group to be applied to the evaluation of E0

I (R)
[31.41] (Sect. 31.1.2).

The determination of E0
I (R) involves two steps;

(i) the determination of the molecular orbitals φi(r j; R),
and (ii) sometimes simultaneously, the determination of
the approximate wave function Ψ 0

I (r; R).
Wave functions discussed in this section are

constructed from functions that are antisymmetrized
products of spin-orbitals φi(r j; R)γi

Ψ 0
I (r; R)=A

M∏

i=1

φi(r j; R)γi , (31.20)

where γi = α or β. The antisymmetrizer A is required
to take into account the Fermi statistics of the elec-
trons. The wave function in (31.20) is referred to as
a Slater determinant and is an eigenfunction of Ms, the
z-component of total electron spin. A linear combina-
tion of Slater determinants that is also an eigenfunction
of S2 is referred to as a configuration state func-
tion (CSF) [31.42]. Equation (31.20) corresponds to
a particular distribution of electrons in the orbitals
φi(r j; R). This distribution is referred to as an electron
configuration.

In principle, it is possible to learn everything about
the topology of a potential energy surface from the
pointwise evaluation of E0

I (R). In practice however,
the determination of topological features, including
location of equilibrium structures, saddle points and
reaction paths, characterization of quadratic and an-
harmonic force fields [31.43], and even the evaluation
of derivative couplings [31.44], has benefitted im-
mensely from techniques in which the energy gradient
gI (R) or higher derivatives are determined directly
from knowledge of the wave function at the R in
question. These analytic derivative techniques, i. e.,
techniques that do not use divided difference dif-
ferentiation, have been actively developed since their
first introduction [31.45].

The techniques most commonly used to calculate
E0

I (R) and its derivatives are described below.

31.2.1 The Self-Consistent Field (SCF)
Method

The SCF Energy
In this most basic treatment, the electronic wave
function Ψ 0−SCF

I is taken as a single Slater de-
terminant or a single CSF. The spin-orbitals are
determined to give an extremum of the energy func-
tional

〈
Ψ 0−SCF

I (r; R)
∣∣H0(r; R)

∣∣Ψ 0−SCF
I (r; R)

〉
r . This

gives rise to the self-consistent field conditions. For re-
stricted closed shell wave functions [31.46], defined by
the conditions

Ψ 0−RSCF
I (r; R)

=A
L∏

i=1

φ2i(r2i; R)αφ2i+1(r2i+1; R)β (31.21)

with φ2i(r j; R)= φ2i−1(r j; R), i = 1, . . . , L and 2L =
M, the SCF equations are

εri = hri +
∑

j ∈ { jocc}
2(ir| jj )− (ij|r j )= 0 (31.22)

for φi , φr occupied and virtual orbitals, respectively.
Here, occupied orbitals jocc are those occurring in
the orbital product in (31.21), and the remainder of
the orbitals are referred to as virtual orbitals. The
solution to (31.22) is referred to as the canonical
SCF solution, provided the orbitals satisfy the SCF
equations

Fφi = λiφi , (31.23)
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where the Fock operator F is defined by Fri = εri
and λi = εii . The corresponding electronic energy is
E0

I (R)≡ E0−SCF
I (R)=∑

j ∈ { jocc}(ε jj +h jj).

SCF Energy Derivatives
The derivative of E0−SCF

i (R) can be expanded through
third order using analytic gradient techniques [31.47,
48], and through fourth order using divided differ-
ences and more recently using analytic derivative
techniques [31.43]. The ability to evaluate the energy
derivatives or force field through fourth order is im-
portant in the determination of vibrational properties of
molecules, as discussed in Sect. 31.4.2.

Direct SCF
The range of molecular systems accessible to treatment
at the SCF level has been expanded considerably by
the introduction of the direct SCF methods [31.49]. In
this method, none of the two-electron integrals in the
χ basis (pq|rs) are stored during the iterative solution of
(31.22) and (31.23). Since the number of such integrals
grows as L4/8, direct SCF procedures avoid the ‘L4-
storage bottleneck’, enabling SCF wave functions to be
determined for systems with more than 100 atoms and
basis sets with more than 1000 functions. (If all the L4/8
integrals were stored on disk this basis would require
≈ 1000 gigabytes).

31.2.2 Electron Correlation:
Wave Function Based Methods

Wave functions more accurate than SCF wave func-
tions are obtained by including the effects of electron
correlation. The correlation energy is defined as
Ecorr

I (R)≡ E0
I (R)− E0−SCF

I (R). Methods for the deter-
mination of Ecorr

I (R) are commonly classified as single
reference or mulitreference methods. In single reference
methods, an SCF wave function Ψ 0−SCF

I (r; R) given
by (31.20) is improved. In multireference methods, the
starting point is the space spanned by a set of terms
like (31.20). This space is referred to as the reference
space and the functions in the space as the reference con-
figurations. Sometimes the molecular orbitals φ(ri; R)
for the reference space are the SCF orbitals of a sin-
gle reference configuration calculation, but more often
the φ(ri; R) are chosen to satisfy multiconfigurational
self-consistent field (MCSCF) equations [31.50–53].

Single Reference Methods
Second Order Møller–Plesset Perturbation Theory
(MP2). In this approach [31.54], the solutions of the SCF

equations are used to determine E0
I (R) to second order

as

E0−MP2
I (R)= E0−SCF

I (R)

− 1

4

∑

a,b,i, j

(ab||ij )2
λa +λb−λi −λ j

,

(31.24)

where i, j denote occupied orbitals, a, b denote virtual
orbitals, and

(ab||ij )= (ai|b j )− (a j|bi)= 〈ab|ij〉−〈ab| ji〉 .

Both gradients of E0−MP2
I (R) and direct implementa-

tions of MP2 [31.37, 55] are currently available. Higher
order perturbation theories, also in common use, are dis-
cussed in the context of coupled cluster methods which
are considered next.

Coupled Cluster Method. Perhaps the most reliable
method currently available for characterizing near equi-
librium properties of moderately sized molecules is the
coupled cluster approach [31.56–60] (Chapt. 5). In this
approach, the exact wave function is written as a unitary
transformation of a reference wave function Φ0(r; R)[
usually, but not necessarily, the SCF wave function
Φ0(r; R)= Ψ 0−SCF

I (r; R)
]
,

Ψ 0−CC
I = exp(T )Φ0 . (31.25)

where T is an excitation operator defined as

T =
∑

p

Tp ; (31.26)

with

Tp = 1

p!2
∑

i, j,k,... ,a,b,c

tabc···
ijk··· a†aa†ba†c aia jak , (31.27)

where i, j, k denote occupied orbitals in Φ0 and a, b, c
denote virtual orbitals. Thus

Ψ 0−CC
I =Φ0+

∑

i,a

ta
i Φ

a
i +

1

4

∑

i, j,a,b

tab
ij Φ

ab
ij +· · · ,

(31.28)

where Φa
i , Φab

ij are single and double excitations
from Φ0, and it is the amplitudes t that must be de-
termined. Wave functions of the form in (31.25–31.28)
have the important property referred to as size con-
sistency [31.60] or size extensivity [31.59]. Consider
N noninteracting helium atoms. The electronic wave
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function for the ith helium atom in the natural orbital
basis [31.61] can be written as Ψi = [1+T2(i)]φ0(i), so
that the N atom electronic wave function becomes

Ψ =
∏

i

Ψi =
∏

i

[1+T2(i)]Φ0

=
[

exp
∑

i

T2(i)

]

Φ0 = exp(T2)Φ0 (31.29)

Thus this exponential type of solution scales properly
with the number of particles.

To obtain the amplitudes t, define HN = H0−
〈Φ0|H0|Φ0〉, E0−CC

I = ∆E0−CC
I + 〈Φ0|H0|Φ0〉 ≡

∆E0−CC
I + E0−0

I , P = |Φ0〉〈Φ0| and Q = 1− P. Then,
inserting (31.25–31.28) into (31.5) gives the energy
(31.30) and amplitude (31.31) equations, which define
the coupled cluster approach:

∆E0−CC
I = 〈Φ0|H̃N |Φ0〉 , (31.30)

〈Φabc···
ijk··· |H̃N |Φ0〉 = 0 for all Φabc···

ijk··· , (31.31)

where

H̃N = exp(−T )HN exp(T )

=−E0−0
I + exp(−T )H0 exp(T ) . (31.32)

To appreciate the nature of these equations, con-
sider the approximation T = T2 constructed from SCF
orbitals [31.36, 59], referred to as the coupled cluster
doubles (CCD) level. At this level the energy equation
becomes

E0−CCD
I = 〈Φ0| exp(−T2)H

0 exp(T2)|Φ0〉
= 〈Φ0|H0T2|Φ0〉+ E0−0

I

= E0−0
I + 1

4

∑

i, j,r,s

Φ0 H0a†r a†s aia jΦ0trs
ij

= E0−0
I + 1

4

∑

i, j,r,s

(rs||ij )trs
ij (31.33)

for i, j occupied and r, s virtual orbitals. The amplitude
equations become

〈Φrs
ij | exp(−T2)H

0 exp(T2)|Φ0〉
= 〈Φrs

ij |
(

1−T2+ 1

2
T 2

2

)
H0

×

(
1+T2+ 1

2
T 2

2

)
|Φ0〉

= 0 (31.34)

which reduces (after considerable commutator alge-
bra) [31.36] to

(λr +λs −λi −λ j)t
rs
ij =

− (rs||ij )−
∑

p>q

(rs||pq)t pq
ij −

∑

k>l

(kl||ij )trs
kl

+
∑

k,p

[
(ks|| jp)tr p

ik − (kr|| jp)tsp
ik

− (ks||i p)tr p
jk + (kr||i p)tsp

jk

]

−
∑

k>l;p>q

(kl||pq)
[
t pq
ij trs

kl −2
(

tr p
ij tsq

kl + tsq
ij tr p

kl

)

− 2
(

trs
ik t pq

jl + t pq
ik trs

jl

)
+4

(
tr p
ik tsq

jl + tsq
ik tr p

jl

) ]
.

(31.35)

The solution to (31.35) is obtained iteratively. The
first iteration gives trs

ij =−(rs||ij )/(λr +λs −λi −λ j),
which when inserted into (31.33) gives (31.24), i. e.,
the MP2 result. If the quadratic terms in (31.35) are
neglected, then the second iteration gives the third or-
der Møller–Plesset (MP3) result [31.36]. The result of
iterating (31.35) to convergence gives the CCD result.

Of the levels of coupled cluster treatments in current
use, those including T1, T2, T3, and T4 in (31.25) provide
the most reliable results [31.62–66].

Multireference Methods
Single reference methods provide probably the most
powerful tools for treating near-equilibrium properties
of ground electronic state systems. In other instances,
such as the study of electronically excited states, de-
termination of global potential energy surfaces and for
systems with multiple open shells such as diradicals,
multireference techniques are found to be extremely use-
ful. In the multireference techniques discussed below,
the wave function is written as

Ψ 0−MRF
I (r; R)=

∑

α

cI
αψα(r; R) (31.36)

where ψα(r; R) is a CSF. This expansion is usually
referred to as a configuration interaction (CI) expan-
sion, and the coefficients cI(R) are referred to as CI
coefficients [31.42]. Since (31.36) does not involve the
exponential ansatz, it is not automatically size extensive.
In the description of these wave functions, it is useful to
generalize the notion of occupied and virtual orbitals to
inactive, active, and virtual orbitals, where, referring to
the CSF’s defining the reference space, inactive orbitals
are fully occupied in all CSFs, virtual orbitals are not oc-
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cupied in any CSF and the active orbitals are (partially)
occupied in at least one CSF.

Most multireference techniques begin with the deter-
mination of a multiconfigurational self-consistent field
(MCSCF) wave function or state averaged MCSCF
(SA-MCSCF) wave function [31.50–53, 67]. This ap-
proach is capable of describing the internal or static
correlation energy, the part of the correlation energy that
leads to sizeable separation of two electrons in a pair,
and near-degeneracy effects. A particularly robust type
of MCSCF wave function, the complete active space
(CAS) [31.68–70] wave function, includes in (31.36) all
CSFs arising from the distribution of the available elec-
trons among the active orbitals. Note that a CAS wave
function is size consistent.

The remaining part of the correlation energy, the dy-
namic correlation, describes the two-electron cusp, i. e.,
the regions of space for which two electrons experience
the singularity in the Coulomb potential. Empirically,
it has been shown [31.71] that wave functions cap-
able of providing chemically accurate descriptions of
the dynamic correlation can be obtained by augmenting
the MCSCF or reference wave function with all CSFs
that differ by at most two molecular orbitals, double
excitations (31.28) from those of the reference space.
Such wave functions are generally referred to as mul-
tireference single and double excitation configuration
interaction (MR-SDCI) wave functions. First (second)
order wave functions [31.72] include all single (sin-
gle and double) excitations relative to a CAS reference
space.

Multiconfigurational Self-Consistent Field (MCSCF)
Theory. In the MCSCF approximation, a wave func-
tion Ψ 0−MCSCF

I (r; R)=∑
α cI
αψα(r; R) of the form in

(31.36) is to be determined. In this procedure, both
the molecular orbitals φ(r j; R) andcI(R) are determined
from the requirement that

E0−MCSCF
I

= 〈
Ψ 0−MCSCF

I (r; R)
∣∣H0

∣∣Ψ 0−MCSCF
I (r; R)

〉
r ,

(31.37)

be a minimum. In a popular variant, the state aver-
aged MCSCF (SA-MCSCF) [31.50–53] procedure, the
average energy functional

E0−SA−MCSCF =
K∑

I=2

wI
〈
Ψ 0−MCSCF

I (r; R)
∣∣H0

∣∣

× Ψ 0−MCSCF
I (r; R)

〉
r , (31.38)

where the weight vector w = (w1, w2, . . . , wK ) has
only positive elements, is minimized. This procedure
should be compared with the multireference CI ap-
proach described below in which a predetermined set
of molecular orbitals is used.

The optimum molecular orbitals and CI coeffients
can be written as unitary transformations of an initial set
of such quantities, i. e.,

Ψ 0−MCSCF
I = exp(γ) exp(∆)Φ0

I , (31.39)

where

γ =
∑

i,s

γs,ia
†
s ai , ∆=

∑

n,l

∆l,n
∣∣Φ0

l

〉〈
Φ0

n

∣∣ ,

(31.40)

and γ ,∆ are general anti-Hermitian matrices. Since
mi, j =−m j,i ≡ mij for m = γ , ∆, the upper triangle
of m forms a vector �m that enumerates the independent
parameters of m. The MCSCF or SA-MCSCF equations
can be succinctly formulated by inserting (31.39) into
(31.37) or (31.38), expanding the commutators to second
order and requiring ∂E/∂mij = 0 [31.36]. The result pro-
vides a system of Newton-Raphson equations that can
be solved iteratively for the γ , ∆ [31.52, 53, 67, 73].

Multireference Configuration Interaction Theory: The
MR-SDCI Method. In multireference configuration inter-
action theory, the wave function is again of the form
Ψ 0−MRCI

I (r; R)=∑
α cI
α(R)ψα(r; R), but now CSFs

involving the large space of virtual orbitals are included.
In this approach the CI coefficients are found for a prede-
termined set of molecular orbitals. The CSF expansions
at the MR-SDCI level become quite large (1–10 mil-
lion CSFs is routine), and even larger expansions are
tractable using specialized methods. The cI satisfy the
usual matrix equation

(
H0− E0

I

)
cI = 0 , (31.41)

where

H0
αβ = 〈ψα|H0|ψβ〉
=
∑

i, j

Aαβij hij +
∑

i, j,k,l

Aαβijkl(ij|kl) . (31.42)

It is the computationally elegant solution of (31.41) for
large expansions that is the essence of modern MR-SDCI
methods.

Because of the large dimension of the CSF space, it is
not possible (or even desirable) to find all the solutions
of (31.41). The few lowest eigenstates and eigenval-
ues can be found [31.74] using an iterative direct CI
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procedure [31.75] in which a subspace is generated se-
quentially from the residual defined at the kth iteration
by

σ(k)µ =
∑

ν

(
H0
µν− E(k−1)δµν

)
c(k−1)
ν , (31.43)

where for simplicity of notation, the state index
I is suppressed. The computationally demanding
step in this procedure is the efficient evaluation of
the Aαβijkl = 〈ψα|Ẽij Ẽkl − δ jk Ẽil|ψβ〉. Key to the effi-
ciency of this evaluation is the factorization formally
achieved by

〈ψα|Ẽij Ẽkl|ψβ〉 =
∑

m

〈ψα|Ẽij |ψm〉〈ψm |Ẽkl|ψβ〉 .

(31.44)

Using unitary group techniques, this apparently in-
tractable summation can be used to express the Aµνijkl
as a simple finite product [31.76].

Contracted CI and Complete Active Space Perturba-
tion Theory (CASPT 2). The direct approach outlined
above makes treatment of large MR-SDCI expansions
possible. However, as the size of the reference space
grows, the CSF space in the MR-SDCI expansion may
become intractably large, particularly if the full second-
order wave function is used. To avoid this bottleneck,
the reference CSFs may be selected from the active
space, and perturbation theory may be used to select
CSFs involving orbitals in the virtual space [31.42].
The use of selection procedures complicates the im-
plementation of ‘direct’ techniques although recently
progress in selected direct CI procedures has been re-
ported [31.77–79]. Alternatively, new techniques have
been developed that avoid this selection procedure. In
these approaches, the MCSCF wave function itself is
used as the reference wave function for CI or pertubation
theory techniques. The use of a reference wave function
rather than a reference space considerably reduces the
size of the CSF space to be handled. In this approach,
one of the principal computational complications is
that the excited functions are not necessarily mutually
orthogonal. Two computational procedures currently
in wide use, known as contracted CI [31.80–83] and
CASPT2 [31.84, 85], are based on this approach.

The CASPT2 method is a computationally efficient
variant of second order perturbation theory in which the
reference wave function is a CAS-MCSCF wave func-
tion and thus may itself contain tens of thousands of
CSFs. In this case the full multireference CI problem
would be intractable owing to the large space of double

excitations. A similar approach is adopted in the con-
tracted CI method, in that the excitations are defined
in terms of a general MCSCF reference wave func-
tion Ψ 0−MRF

I rather than the reference space as in the
MR-SDCI methods described above.

31.2.3 Electron Correlation:
Density Functional Theory

The approaches in Sect. 31.1.1 and 31.1.2 can be re-
ferred to as wave function based approaches in the
sense that determination of E0

I (R) is accompanied by
the determination of the corresponding electronic wave
function Ψ 0

I (r; R). An alternative approach is known as
density functional theory (DFT) [31.86]. The ultimate
goal of DFT is the determination of total densities and
energies without the determination of wave functions,
as in the Thomas–Fermi approximation. DFT is based
on the Hohenberg–Kohn Theorem [31.87], which states
that the total electronic density can be considered to be
the independent variable in a multi-electron theory (see
also Chapt. 20). Computationally viable approaches ex-
ploit the Kohn and Sham formulation [31.88], which
introduces molecular orbitals as an intermediate device.

The essential features of the Kohn–Sham (KS) the-
ory [31.86] are as follows [31.89]. Assume that the
real N-electron system for a particular arrangement
of the nuclei R has a total electron density ρ(r; R).
Consider a system of N independent noninteracting
electrons subject to a one-body potential V0 with to-
tal density ρ0(r; R) such that ρ(r; R)= ρ0(r; R). The
corresponding independent particle orbitals, the Kohn–
Sham orbitals φKS

i (r j; R), satisfy a Hartree–Fock-like
equation

(
− 1

2
∇2+V0− εi

)
φKS

i = 0 (31.45)

with

ρ0(r; R)=
∑

i

|φKS
i |2 . (31.46)

The relation between the energy of the ideal system and
that of the true system E0−DFT(R) is obtained from the
adiabatic connection formula [31.89].

In order to determine E0−DFT(R), functions φKS
i are

required, which in turn means that V0, the Kohn–Sham
noninteracting one-body potential, must be determined.
V0 is written as (31.3)

V0 = Ve−N+VCoul+Vxc (31.47)

where VCoul is the Coulomb interaction corresponding
to the electron density, Ve−N is the electron-nuclear at-
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traction interaction and Vxc is the exchange-correlation
density. The effect of (31.47) is to isolate from V0
the straightforward contributions VCoul and Ve−N, and
transfers our ignorance to the remaining portion Vxc.
Although, by the Hohenberg–Kohn theorem Vxc must
exist, its determination remains the challenge of modern
density functional theory, which currently uses approx-
imate functional forms. These approximate treatments
of Vxc are quite useful in practice, and for large systems,
DFT offers a promising alternative to wave function
based methods.

Through (31.45), the KS approach is formally sim-
ilar to SCF theory, although the Kohn–Sham theory is
in principle exact. This formal similarity is exploited in
the evaluation of the derivative E0−DFT(R) [31.90].

31.2.4 Weakly Interacting Systems

When attempting to describe weak chemical interac-
tions such as van der Waals or dispersion forces, the
techniques outlined in Sect. 31.2.2 must be modified
somewhat. These modifications arise from the finite-
ness, and hence incompleteness, of the basis (the set χ)

used to describe the molecular orbitals. Assume that
the interaction of two molecules A and B is to be de-
termined. Consider the description of molecule A as
the distance between A and B decreases from infin-
ity. The atom centered basis functions on molecule B
augment those on molecule A, lowering its energy, inde-
pendent of any physical interaction. This computational
artifact serves to overestimate the interaction energy, and
is known as the basis set superposition error [31.91,92].
In chemically bonded systems where interaction ener-
gies are large, it is of negligible importance. However in
weakly bonded systems for which the interaction ener-
gies may be on the order of 10 to 100 cm−1, the basis
set superpostion error can be significant.

The basis set superposition error can be reduced by
the counterpoise correction [31.93,94]. In this approach,
the interaction energy is evaluated directly as

E0−int
I (R)= E0

I (R)−
[
E0−A

I (R)+ E0−B
I (R)

]
,

(31.48)

where E0−A
I (R) and E0−B

I (R), the energies of A and B
respectively, are evaluated in the full basis.

31.3 Intersurface Interactions: Perturbations

The existence of interstate interactions can lead to ‘unex-
pected’ shifts in spectral lines as well as predissociation
of the states themselves [31.95]. These situations are il-
lustrated in Fig. 31.2a,b which present the 1, 2, 3 3Πg
potential energy curves for Al2 and the corresponding
derivative couplings f IJ (R) respectively. The derivative
couplings were evaluated using the method described
in Sect. 31.3.1. In this molecule, derivative couplings
between the 2, 3 3Πg states are responsible for the
perturbations in the vibrational levels of the bound
2, 3 3Πg states. Derivative couplings of these states with
the 1 3Πg state causes predissociation of all levels in
the 2, 3 3Πg manifold [31.96].

Section 31.1 describes two classes of interstate
matrix elements that can lead to these nonadiabatic
phenomena, the derivative coupling matrix elements in
(31.7–31.10) and H rel

IJ , which is usually treated for low
Z systems within the Breit–Pauli approximation. An il-
lustration of a nonadiabatic process induced by H rel is
provided in Sect. 31.5. A key issue in the treatment of
the electronic structure aspects of these phenomena is
the reliable evaluation of the interstate matrix elements.
The interstate interactions are usually of most interest
in regions of nuclear coordinate space far removed from

the equlibrium nuclear configuration. Thus it is desir-
able to evaluate these interactions using multireference
CI wave functions which (Sect. 31.1) are well suited for
use in these regions of coordinate space. The evaluation
of nonadiabatic interactions, based on SA-MCSCF/CI
wave functions, is discussed below.

31.3.1 Derivative Couplings

From (31.9–31.11), two classes of matrix elements are
required, k̃ JI

WαWβ
(R) and f JI

Wα
(R). In fact, techniques

to evaluate both of these exist [31.44]. However, it
is common to approximate k̃ JI

WαWβ
(R) by

k̃ JI
WαW ′

β
(R)=

∑

M

〈
∂

∂Wα

Ψ 0
J (r; R)

∣∣∣∣Ψ
0
M(r; R)

〉

r

×

〈

Ψ 0
M(r; R)

∣∣∣∣
∂

∂W ′
β

Ψ 0
I (r; R)

〉

r

=
∑

M

f MJ
Wα f MI

W ′
β
. (31.49)

with the (in principle infinite) summation over states
truncated to reflect only the states explicitly treated in the
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Fig. 31.2 (a) Adiabatic potential energy curves for the
1, 2, 3 3Πg states of Al2 from [31.96]. (b) Derivative coup-
lings F I j(R) for (I, J)= 1, 3 3Πg, 1, 2

3Πg and 2, 3 3Πg
from [31.96]

nonadiabatic dynamics. Thus it is sufficient to discuss
the determination of f JI

Wα
(R).

The use of analytic derivative theory [31.97, 98]
greatly improves the computational efficiency of eval-
uating f JI

Wα
(R) relative to the earlier divided difference

techniques [31.99]. The key ideas are given below. In this
presentation, the standard, real-valued normalization is
used. Additional contributions owing to the geometric
phase, if required, must be evaluated separately as they
do not follow from the electronic Schrödinger equation
at a single point [31.100].

Differentiation of the Ψ 0
I (r; R) defined in (31.36)

gives:

∂

∂Wα

Ψ 0
I (r; R)=

∑

λ

{[
∂

∂Wα

cI
λ(R)

]
ψλ(r; R)

+ cI
λ(R)

[
∂

∂Wα

ψλ(r; R)
]}
.

(31.50)

Thus f JI
Wα
(R), consists of two terms

f JI
Wα (R)= CI f JI

Wα (R)+ CSF f JI
Wα (R) , (31.51)

where the CI contribution is given by

CI f JI
Wα (R)=

∑

λ

cJ
λ(R)

[
∂

∂Wα

cI
λ(R)

]
, (31.52)

and the CSF contribution has the form

CSF f JI
Wα (R)

=
∑

λ,µ

cJ
λ(R)

〈
ψλ(r; R)

∣∣∣
∣
∂

∂Wα

ψ I
µ(r; R)

〉

r
cI
µ(R) .

(31.53)

Evaluation of CSF f JI
Wα
(R) is straightforward using analyt-

ical derivative techniques [31.101], so that the remainder
of the discussion focusses on CI f JI

Wα
(R). From (31.52),

it would appear that the derivative of the CI coefficients
∂/∂WαcI

λ(R)≡ V I
Wα,λ

(R) would be required to evaluate
CI f JI

Wα
(R). This is quite costly and is in fact not neces-

sary, since only the projection onto the state Ψ 0
J (r; R)

is required. Equation (31.52) for CI f JI
Wα
(R) can be recast

in a form similar to that of gI (R). This transformation
of (31.52) enables the explicit determination ofV I

Wα
(R)

to be avoided, and is the key to the efficient use of
analytic gradient techniques in the evaluation of f JI (R).

Differentiating (31.41) with respect to Wα gives
[

H0− E0
I (R)

]
V I

Wα (R)

=−
{
∂

∂Wα

[
H0− E0

I (R)
]}

cI (R) . (31.54)

Taking the inner product of (31.54) with cJ (R) gives

CI f JI
Wα (R)≡ cJ (R)†V I

Wα (R) (31.55)

=∆E0
IJ (R)

−1cJ (R)†
∂H0(R)
∂Wα

cI (R)

(31.56)

≡∆E0
IJ (R)

−1h JI
Wα (R) . (31.57)

Observe that (31.56) and (31.57) are not the Hellmann–
Feynman theorem [31.101, 102] (Chapt. 51), to which
they bear a formal resemblance, since it is not the
Hamiltonian operator H0(r; R) but rather the Hamil-
tonian matrix H0(R) that is being differentiated. Since
the energy gradient has the form [31.44]

∂

∂Wα

E0
I (R)= cI (R)†

∂H0(R)
∂Wα

cI (R) , (31.58)
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its relation to CI f JI
Wα
(R) is clear. This identification is the

key step in the evaluation of CI f JI
Wα
(R) using analytic

gradient techniques [31.97, 98].

31.3.2 Breit–Pauli Interactions

For light systems, it is possible to introduce relativistic
effects using the Breit–Pauli approximation [31.1], in
which the four component Dirac description of a sin-
gle electron is replaced by a two component (α, β)
description. The He(r; R) becomes [31.1, 103]

He(r; R)= H0(r; R)+H rel(r; R) , (31.59)

where, in parallel with (31.4–31.13) for the atomic case,
the relativistic correction H rel =

∑3
k=1 Hk(r; R) can be

divided into spin-dependent (SD) and spin-independent
(SI) parts, plus an external field interaction term Hext.
These are given by

H1 = HSD ≡ Hso+Hsoo+Hss , (31.60)

H2 = HSI ≡ Hmass+HD+Hssc+Hoo ,

(31.61)

H3 = Hext , (31.62)

where, in atomic units,

Hso = α
2

2

∑

K,i

Z K (ri − RK )× pi · si

|ri − RK |3
, (31.63)

Hsoo =−α
2

2

∑

i �= j

rij × pi · (si +2s j)
∣∣rij

∣∣3
, (31.64)

Hss = α2
∑

i< j

[
si · s j

|rij |3 −
3(rij · si)(rij · s j)

|rij |5
]
,

(31.65)

Hmass =−α
2

8

∑

i

p4
i , (31.66)

HD =−α
2

8

⎡

⎣
∑

K,i

Z K∇2
i |ri − RK |−1

−
∑

i �= j

∇2
i

∣∣rij
∣∣−1

⎤

⎦ , (31.67)

Hssc =−8πα2

3

∑

i< j

(si · s j)δ(rij) , (31.68)

Hoo =−α
2

4

⎛

⎝
∑

j �=i

pi · p j

|rij | − rij ·
[
rij · p j

]
pi

|rij |3

⎞

⎠ ,

(31.69)

Hext = α
2

2

∑

i

E(ri)× pi · si + iα2

4

∑

i

E(ri) · pi

+ 2µ
∑

i

H(ri) · si , (31.70)

E(r) and H(r) are electric and magnetic fields,
and µ= e�/(2me) is the Bohr magneton. The phys-
ical significance of these terms is discussed is
Sect. 21.1. One of the most important consequences
of these relativistic effects is that total electron
spin is no longer a good quantum number as it
is in H0(r; R). The term HSD couple states corre-
sponding to distinct eigenvalues of S2 and lead to
the nonadiabatic effects that are the subject of this
section.

The Breit–Pauli approximation is most useful for
light atoms, but the approximation breaks down when
Z becomes large [31.104–106]. One of the principal
effects omitted in a treatment which includes only
HSD is the relativistic contraction of the molecular
orbitals [31.107] due to the mass-velocity operator
(Hmass), an effect whose importance increases with Z.
Several approaches exist which attempt to correct this
situation while retaining the spirit and simplifications
of the Breit–Pauli approximation. The first of these is
the relativistic effective core potential (ECP) approxi-
mation [31.108–111]. In this approach, the results of
an atomic Dirac–Fock calculation [31.112] are used to
replace innermost or core electrons of a given atom
with (i) an effective one electron potential that mod-
ifies the electron-nuclear attraction term in H0 and
(ii) an effective one electron spin-orbit operator, so
that

He(r; R)→ He−ECP(r; R)

= H0−ECP(r; R)+Hso−ECP(r; R) . (31.71)

The formal similarity between He−ECP and He(r; R)
results in a similar phenomenological interpretation of
relativistically induced nonadiabatic processes. Applica-
tions of this approach have been reviewed [31.107,113].

A second approach includes all electrons explic-
itly, and uses HSD as defined above. The relativistic
contraction of the core electrons is included by
using a variational one-component spin-free approxima-
tion [31.114, 115] to the no-pair Hamiltonian [31.116]
at the orbital optimization stage. The variational na-
ture of the approximation provides advantages over
the use of the Hmass term. Applications of this ap-
proach to the spectra of CuH and NiH have been
reported [31.117, 118].
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In order to evaluate HSD
IJ (R), it is necessary to

specify the molecular orbitals to be used to con-
struct the Ψ 0

I (r; R). The choice of molecular orbitals
is dictated by the following considerations. Matrix el-
ements of HSD between different states are required.
The molecular orbitals appropriate for one state may
not be appropriate for the description of the sec-
ond state. Two approaches are available to handle
this situation. In one approach, distinct sets of (mu-
tually nonorthogonal) molecular orbitals are used to
describe each state [31.119]. This permits a more com-
pact description of the spaces in question. However
in this case one is required to evaluate the ma-
trix element of a two electron operator Hsoo and/or
Hss in a nonorthogonal molecular orbital basis, an
imposing computational task. This significantly lim-
its the size of the CSF space which is tractable.
The alternative approach is to use a common or-
thonormal basis balanced between the two spaces in
question, and to use larger CSF spaces [31.120–122].
The use of a common orthonormal basis decreases
significantly the computational effort required to eval-
uate the matrix elements. A symbolic matrix element
method [31.123] has been applied to HSD, as described
in the review [31.124].

31.3.3 Surfaces of Intersection

The preceding subsections have considered what must
be calculated in order to characterize an electron-
ically nonadiabatic process. As noted in Sect. 31.1,
it is also necessary to consider where in nuclear
coordinate space electronic nonadiabaticity is impor-
tant. Nonadiabatic processes are important in regions
of close approach of the potential energy surfaces
with regions of surface intersections being of pre-
eminent interest. Until recently, these surfaces of
intersection were determined by indirect methods,
i. e., the potential energy surfaces were characterized,
and then the surface of intersection was determined.
This made the determination of these surfaces of
intersection a computationally daunting task. How-
ever, computational advances have made it possible
to determine these surfaces of intersection directly,
i. e., without prior determination of the individual
potential energy surfaces. This point is discussed
next.

A point on the surface of conical intersec-
tion of two states of the same symmetry, subject
to a set of geometric equality constraints of the
form Ci(R)= 0, i = 1, . . . ,m, is determined from the

Newton–Raphson equations [31.125]

−

⎛

⎜⎜⎜
⎝

Q IJ (R, ξ, λ) gIJ (R) hIJ (R) k(R)

gIJ (R)† 0 0 0

hIJ (R)† 0 0 0

k(R)† 0† 0† 0

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

δR

δξ1

δξ2

δλ

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

gI (R)+ ξ1gIJ (R)+ ξ2hIJ (R)+∑m
i=1 λiki(R)

∆EIJ (R)

0

C(R)

⎞

⎟⎟
⎟
⎠

(31.72)

where δR= R′ − R, δλ= λ′ −λ, δξ = ξ ′ − ξ, gIJ
α (R)≡

∂∆EIJ (R)/∂Rα, ki
α(R)≡ ∂Ci(R)/∂Rα, hIJ

α (R)≡ cI †

(R)H0(R)/∂RαcJ (R) ,ξ and λ are Lagrange multipli-
ers, and Q IJ (R, ξ,λ) is a matrix of second derivatives
[31.125]. For two states of different symmetry, the ana-
logue of (31.72) is used with the terms related to ξ2
omitted [31.126]. The excellent performance of this
algorithm has been documented [31.125, 127].

Equations (31.72) can be motivated as follows. Rc is
sought so that E0

I (R) is minimized subject to the con-
straints E0

I (R)= E0
J (R) andC(R)= 0. The key is to

impose the first of these constraints, noting that at each
step in the Newton–Raphson procedure,cI (R) andcJ (R)
are eigenvectors. Equation (31.72) are the Newton-
Raphson equations corresponding to the Lagrangian
function [31.128]

L IJ (R, ξ,λ)= EI (R)+ ξ1∆EIJ (R)

+ ξ2 HIJ (R)+
M∑

k=1

λkCk(R) ,

(31.73)

provided that the gradient of H0
IJ (R) is interpreted as

a change in H0(R) within the subspace spanned by
cI (R) and cJ (R). This can be derived from quaside-
generate perturbation theory and understood as follows.
Assume for convenience that m = 0, i. e., there are no
geometrical constraints.

Consider an R for which (31.72) is not satisfied.
The 2 × 2 matrix H(R) with matrix elements HKL (R),
K, L ∈ {I, J} becomes at R+ δR

HIJ (R+ δR)

= cI †(R)

(

H(R)+
∑

α

∂H(R)
∂Rα

δRα

)

cJ (R) ,

(31.74)
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H(R) is diagonal but nondegenerate at R, i. e.,

H(R)=
(

E0
I (R)− E0

J (R) 0

0 0

)

. (31.75)

From (31.74) atRc = R+ δR, H(Rc) becomes, to first
order, ignoring an irrelevant uniform shift of the diagonal
elements,

H(Rc)=
(
∆EIJ (R)+ gIJ † · δR hIJ † · δR

hIJ † · δR 0

)

.

(31.76)

Thus (31.72) is seen to be the requirement that H(Rc)

has degenerate eigenvalues, with eigenvectors cI (R) and
cJ (R). When (31.72) have been solved, HIJ (Rc) is di-
agonal and degenerate, EI (Rc) has been minimized, and
gI (Rc)= 0, except along directions contained in the two
dimensional subspace spanned by gIJ (Rc) and hIJ (Rc).

From (31.76), it is these two directions which lift the
degeneracy ofH(Rc). Equation (31.72) is also relevant
to the reaction path in a nonadiabatic process as dis-
cussed in Sect. 31.4. A discussion of these points from
an alternative perspective has been presented by Radazos
et al. [31.129].

A solution to (31.72) is referred to as a conic-
al intersection, although rigorously degenerate states
cannot be obtained from a numerical procedure.
If required, the existence of a conical intersec-
tion can be rigorously established by showing that
the adiabatic wave functions undergo a change of
sign when transported around a closed loop con-
taining Rc in the plane defined by gIJ (Rc) and
hIJ (Rc). This is the geometric or Berry phase crite-
rion [31.130, 131]. It has been explicitly demonstrated
for a conical intersection in O3 by Ruedenberg and
coworkers [31.132].

31.4 Nuclear Motion

31.4.1 General Considerations

The determination of the rovibrational spectrum of
polyatomic systems from first principles is a problem
of primary importance since it allows the deter-
mination of molecular forces and structure from
spectral data. In the adiabiatic case, the solution
of (31.6)

[
T nuc(R)+ E0

I (Q)− EK
]
βK (R)= 0 (31.77)

is sought, where Q denotes a set of internal nuclear coor-
dinates. The reliability of the solution of (31.77) reflects
the accuracy of the Born–Oppenheimer potential energy
surface E0

I (Q) appearing in that equation. The meth-
ods for determining E0

I (Q)were discussed in Sect. 31.2.
Conversely, the determination of the EK from spectro-
scopic measurements can be used to infer information
concerning E0

I (Q). In either case, the accurate solution
of (31.77) is requisite and this section is concerned with
its solution.

The operator in (31.77) has a continuous spectrum
since T nuc includes translations of the nuclear center
of mass (cm). An operator with a discrete spectrum
is obtained by replacing the Hamiltonian in (31.77)
with one in which the translation of the nuclear c.m.
has been eliminated by transforming to the c.m. frame.
In the center of mass frame, (31.77) has the general

form [31.133]
[
T vr(Ω, Q)+T vib(Q)+ E0

I (Q)− EK
]
β(�,Q)= 0

(31.78)

where Ω are three rotational coordinates and T vr and
T vib are the rotational and vibrational kinetic energy op-
erators. In T vr(Ω,Q) all the complexity associated with
the coupling of nuclear and electronic angular momen-
tum is buried. The determination of the appropriate form
for (31.78) is by no means straightforward [31.134,135],
and treatment of the effects of multiple angular mo-
mentum is a complex problem in angular momentum
algebra.

In diatomic systems, the vibrational problem
involves only one internal coordinate and is straightfor-
ward. Angular momentum coupling is usually treated
using Hund’s case (a), (b), etc., or an intermediate
case approach [31.95] with Van Vleck’s reversed an-
gular momentum commutation relations being helpful
in analyzing the coupled angular momentum prob-
lem [31.134].

Polyatomic systems introduce new complications,
since in addition to the increased dimensionality of
the vibrational problem, internal and rotational coor-
dinates interconvert for colinear arrangements of the
nuclei; this is particularly relevant in triatomic systems.
In addition, since the C∞v point group has doubly degen-
erate representations at collinear geometries, electronic
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state degeneracies may arise (the Renner–Teller ef-
fect) [31.32,136,137], further complicating the analysis.
Techniques associated with the description of triatomic
systems involving coupled angular momentum and elec-
tronic degeneracy are illustrated in Sect. 31.4.3.

More generally, (31.78) can be rewritten as
[
T vr(Ω, Qe)+T vib(Q)+ Esep

I (Q)− EK
]
β(R)

=−∆T vr(Ω, Q)β(R)−∆E0
I (Q) , (31.79)

where

∆T vr(Ω, Q)≡ T vr(Ω, Q)−T vr(Ω, Qe) , (31.80)

∆E0
I (Q)≡ E0

I (Q)− Esep
I (Q) , (31.81)

Qe is an equilibrium structure, and Esep
I (Q) is a separa-

ble function of the normal coordinates. In this case, the
solution to the left-hand side of (31.79) can be factor-
ized into a rotational part and a vibrational part [31.138]
according to

ψ J
l =

∑

K

kJ
K DJ

K0(θ, χ)
∏

i

αli (Qi) (31.82)

where DJ
K0 is a symmetric top wave function [31.139],

and α j(Qi) is a pure vibrational wave function, e.g.,
harmonic oscillator function, for the ith internal normal
coordinate. It is in this approximation that the notion
of a molecule rotating and vibrating about a fixed mo-
lecular structure is achieved. In this case, EK is just
the sum of the pure rotational and vibrational energies.
These rigid rotator-vibrator solutions then form the basis
for the inclusion of the effects of the right-hand side us-
ing, for example, perturbation theory [31.140]. They can
also be used as a basis for a nonperturbative treatment
(Sect. 31.4.2).

The classic treatments of (31.77) [31.141–144] have
been periodically revisited [31.134, 145]. In these in-
vestigations, the contributions of electronic angular
momentum to this Hamiltonian were frequently sup-
pressed [31.144] so that these treatments are appropriate
to totally symmetric electronic states. Van Vleck [31.134]
has shown how the effects of electronic angular momen-
tum can be incorporated into these treatments.

For nonlinear polyatomic systems, the Hamiltonian
in (31.78) can be transformed to the Eckart or body
fixed frame in which the reference axis is a body
fixed axis oriented along the principal moments of in-
ertia [31.146], although other choices of the body fixed
axes are possible [31.147]. The principal moments of
inertia represent the eigenvectors of the inertial tensor

matrix Iij , i, j = x, y, z, where [31.144]

Ixx =
∑

i

Mi(R e
i · R e

i − Xe
i Xe

i ) , (31.83)

Ixy =−
∑

i

Mi(X
e
i Y e

i ) , (31.84)

and cyclic permutations, and R e denotes an equilibrium
structure. The Hamiltonian determined by this proce-
dure is referred to as the Watson Hamiltonian [31.145],
and is widely used in discussing the rovibrational
spectrum of nonlinear polyatomic molecules in singlet
electronic states. Treatments of the Watson Hamilto-
nian are mentioned in Sect. 31.4.2. For linear molecules,
an alternative treatment is required since there is one
fewer overall rotational coordinate and one more internal
coordinate [31.138].

31.4.2 Rotational-Vibrational Structure

Various approaches to the solution of (31.79) exist. The
principal issues, which are interrelated, are (i) the range
of nuclear configurations over which E0

I (Q) is known,
(ii) the coordinate system used to express the internal
coordinates, and (iii) particularly in larger systems, the
number of modes or internal coordinates retained in the
calculations (Sect. 31.4.3). With regard to point (i), two
approaches are currently in use. The force field method
uses a power series expansion of E0

I (Q) about E0
I (Q

e),
that is (using the Einstein summation convention)

E0
I (Q)= E0

I (Q
e)+ 1

2

∂2 E0
I (Q

e)

∂Qi∂Q j
∆Qi∆Q j

+ 1

6

∂3 E0
I (Q

e)

∂Qi∂Q j∂Qk
∆Qi∆Q j∆Qk (31.85)

together with perturbation theory to determine spec-
troscopic constants. In this approach, the force fields
[the partial derivatives in (31.85) are usually eval-
uated directly with the aid of analytic gradient
techniques (Sect. 31.2). Since the expansion of E0

I (Q)
is truncated, the results are not independent of the
coordinate system used. For example, significant differ-
ences in the description of Fermi-resonance parameters
[31.148, 149] in rectilinear and curvilinear coordi-
nates [31.150] have been reported.

Alternatively, E0
I (Q) can be represented by a grid

of points around Qe. In the most reliable calcula-
tions reported to date, E0

I (Q) is determined using
the coupled cluster techniques discussed in Sect. 31.2.
Then (31.79) can be solved in a basis analogous to
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ψ J
l in (31.82). This approach is frequently referred

to as the vibrational CI problem [31.151]. The relia-
bility of the results depends to a considerable extent
on the basis functions and coordinate system used to
describe the problem. Considerable success has been
reported for a technique in which the Watson Hamil-
tonian and harmonic oscillator functions are used to
solve (31.79) [31.151, 152].

31.4.3 Coupling of Electronic
and Rotational Angular Momentum
in Weakly Interacting

An understanding of the molecular structure of the
weakly bound compounds of noble gas atoms and
diatomic molecules provides important insights into
the nature of chemical bonding. The inference of
structural data from spectroscopic observations is an
important aspect of this problem. In this subsec-
tion, a theoretical framework for understanding the
spectroscopy of these systems is outlined as an il-
lustration of the methods used to treat coupling of
electronic and nuclear angular momentum in weakly
interacting triatomic molecular systems. Detailed dis-
cussion of this class of problems can be found
in [31.153–155].

As an example, consider the rovibronic structure
of a noble gas-diatom complex Rg-AB, in either its
1Σ+ or 1Π states (which may be closely spaced). Note
that degeneracy of the 1Π state will only persist for
collinear geometries of the triatom system. The rovi-
brational wave functions can be expanded in a product
basis of functions describing (i) the rovibronic struc-
ture of AB and (ii) the relative motion (vibrational and
end-over-end rotation) of Rg and AB. Since total angu-
lar momentum J and its space fixed projections M are
good quantum numbers, the rovibronic wave function
can be expanded as

Ψ JM = 1

R

∑

v jΩlε

C JM
jΩlεv(R)

× |ψRg〉|vI j〉|I jΩε, l; JM〉 , (31.86)

where ψRg is the ground state wave function for the
noble gas atom, l denotes the angular momentum asso-
ciated with the end-over-end motion, and v, j, ε and I
denote respectively the vibrational, angular momentum
(electronic + rotational), e/f symmetry index and state
label of the electronic state of the AB molecule in
Hund’s case (a) basis. The angular momentum coup-
ling algebra noted above is reflected in the definition of

|I jΩε, l; JM〉, which is

|I jΩε, l; JM〉
=

∑

m j ml

〈 jm jlml|JM〉Ylml (θ, φ)ψI jm jΩε(β, α) ,

(31.87)

where θ, φ and β, α are the polar and azimuthal an-
gles for the line connecting the noble gas atom to
the center of mass of the diatom and the diatom axis,
respectively, and 〈· · · | · · · 〉 is a Clebsch–Gordan coef-
ficient [31.156] (Chapt. 2). The ψI jm jΩε are defined in
turn by [31.95]

ψI jm jΩε =
(

2J +1

8π

)1/2

×
[
D j

m j ,Ω
(α, β, 0)∗|I2S+1Λ+(Σ)〉

+ εD j
m j ,−Ω(α, β, 0)

∗|I2S+1Λ−(−Σ)〉]
(31.88)

or

ψI jm jΩε =
(

2J +1

4π

)1/2

× D j
m j ,0

(α, β, 0)∗|I2S+1Λ(Σ)〉
(31.89)

when Λ=Σ = 0, where the electronic state has term
symbol I2S+1Λ withΩ =Λ+Σ.

The C JM(R) satisfy the usual close coupled equa-
tions [31.157, 158] Sect. 47.1.1

[(−1

2µ

d2

dR2
+ l(l+1)

2µR2

)
I− k2

2µ
+V(r)

]
C JM(r)

= 0 , (31.90)

where l(l+1) and k2/2µ designate the diagonal matri-
ces of orbital angular momentum and asymptotic net
scattering energy of individual channels.V(R) repre-
sents the matrix elements of He(r;R) in the vibronic
basis defined in (31.86–31.89). It is built from terms of
the form

〈
Ylm D j ∗

m jΩ
vI j

∣∣〈ψRg I2S+1Λ
∣∣He(r; R)

×
∣∣ψRg I ′2S′+1Λ′〉

r

∣∣vI ′ j ′Yl′m′ D j ′ ∗
m′

jΩ
′
〉

≡ 〈
Ylm D j ∗

m jΩ
vI j

∣∣He
II ′(R, β̃, r)

∣∣Yl′m′ D j ′ ∗
m′

jΩ
′vI ′ j ′

〉
.

(31.91)

The angle β̃ is the polar angle of the diatom with respect
to the atom-diatom axis. The angular integrations on the
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right-hand side of (31.91) are accomplished by expand-
ing the angular dependence of He

II ′ in d-matrices and
using angular momentum coupling algebra [31.158].
He

II ′ gives the interaction potential of the ground state
noble gas atom and the I2S+1Λ state of AB. It rep-
resents the potential coupling in the diabatic basis
ψRg|I2S+1Λ〉. These matrix elements are derived from
the corresponding adiabatic potential energy surfaces,
determined using the techniques of Sect. 31.2. Since the
van der Waals interaction is weak, the counterpoised
method discussed in Sect. 31.2.4 should be used. When
only one electronic state of a given symmetry is involved
(point group Cs in the case of a triatom), the adiabatic
and diabatic potentials are taken as equal. This is the
case if, for example, only the 1Π state of AB is con-
sidered. When more than one electronic state of a given
sysmmetry is involved, for example, when both 1Π and
1Σ+ electronic states of AB are included, the adiabatic
potentials are used to determine the diabatic state po-
tentials using an approximate adiabatic→ diabatic state
transformation [31.159, 160].

The solution to (31.90) can be obtained by either
variational methods or by direct integration [31.153].
Results for Ar-OH [31.161], Ar-BH [31.155], and
Ar-CH [31.162], based on potential energy surfaces
determined from multireference contracted CI wave
functions, are encouraging. In these studies, the
r-dependence of the potential energy surfaces was
neglected.

31.4.4 Reaction Path

The rovibrational spectrum reflects the molecular struc-
ture in the vicinity of an equilibrium structure of the
molecule. However a chemical reaction samples a much
broader range of molecular structures. The evolution of
molecular structure can be characterized by the reaction
path, which represents a minimum energy path along
the potential energy surface connecting the reactants and
products. The reaction path Hamiltonian [31.163, 164]
enables dynamical aspects of a chemical reaction to
be inferred from a characterization of the reaction
path.

The reaction path R(s) on potential energy sur-
face E0

I (R) is the curve in mass weighted Cartesian
coordinates given parametrically in terms of the arc
length s and is defined as that solution to the differential
equation

dR
ds

= gI/

√
gI†gI ≡ R′(s) (31.92)

which approaches the saddle point from below [31.17,
165], where the arc length is given by

ds2 =
N∑

i=1

dR2
i . (31.93)

At each point s, R(s) represents the molecular structure
in terms of 3N mass weighted Cartesian coordinates.
(In this subsection, the notation suppresses the differ-
ence between Cartesian and mass weighted Cartesian
coordinates.)

The reaction path can be obtained by integrat-
ing (31.92). Integration begins at the saddle point along
the direction of the single negative eigenvalue of FI ,
which is related to the reaction path curvature dR2/ds2,
by

dR2

ds2 ≡ dR′

ds
= [

FI R′ − (
R′†FI R′

)
R′
]/√

gI†gI .

(31.94)

Thus integration of (31.92) gives the steepest descent
path from the saddle point. This integration requires,
in principle, only knowledge of the energy gradient,
gI (R), which is readily available using analytic gradient
techniques (see Sect. 31.2). This approach works quite
well when the reaction path is used only to investigate
the topology of a potential energy surface. However if
quantities such as the curvature are desired, procedures
that follow the reaction path more closely are required.
Such procedures require higher derivatives of the energy,
as fully discussed in [31.165].

In a nonadiabatic process, the reaction path neces-
sarily involves more than one potential energy surface.
In the case of nonadiabatic reactions involving avoided
intersections, the reaction path is difficult to define since
the propensity for an intersurface transition spreads
out over a range of nuclear coordinates. However,
for nonadiabatic reactions that proceed though a sur-
face of intersection of two potential energy surfaces,
the reaction path passes through the minimum en-
ergy point on the surface of intersection of the two
potential energy surfaces [31.166]. An example of
such a process is provided in Sect. 31.5. The min-
imum energy point on the surface of intersection
satisfies (31.72) with no geometric constraints. For
a spin-forbidden reaction, the solution of (31.72) yields
gI R+ξ1gIJ (R)= 0, so that gI (R)= ξ1/(1+ξ1)gJ (R),
i. e., the gradients on the two surfaces are either par-
allel or anti-parallel depending on the value of ξ1.
The relationship between the gradients in the vicinity
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of an intersection of two states of the same sym-
metry is not as simple. The wave functions are not
differentiable at a point of intersection. In the vicin-
ity of the point of intersection, the condition gI (R)+
ξ1gIJ (R)+ξ2hIJ (R)≈ 0 holds, so that gI (R) andgJ (R)

will not be simply related. Finally, note that the adia-
batic correction, defined in Sect. 31.1, is large (and
positive) in the vicinity of the conical intersection, so
that the nuclear wave function exhibits a node at this
point.

31.5 Reaction Mechanisms: A Spin-Forbidden Chemical Reaction

This section presents an example to illustrate how
the ideas outlined in the preceding sections can
be used to obtain a mechanistic description of
a chemical reaction which could not be deduced on
intuitive grounds. Considered here is the ground state
reaction

CH
(
X 2Π

)+N2
(
X 1Σ+

g

)→ HCN2
(
1 2A′′ )

→ HCN2
(
1 4A′′)→ HCN

(
X 1Σ+)+N

(4S
)
,

(31.95)

which is of considerable importance in the chemistry of
planetary atmospheres [31.168, 169] and hydrocarbon
flames, having been suggested as the initial step in the
production of prompt or Fenimore NO [31.169–172].
However, because the reaction is spin-forbidden, its
importance has been questioned.

The reaction will be interpreted in terms of the inter-
mediate complex model [31.173,174]. In this model, the
reaction can occur despite a small probability for inter-
system crossing by repeatedly traversing the 2A′′–4A′′
surface of intersection. The repeated traversals result
from a local minimum on the 2A′′ potential energy sur-
face. This mechanism is operative for the spin-forbidden
oxygen quenching reactions [31.173, 174]

O
(1D

)+N2
(
X 1Σ+

g

)→ N2O∗

→ O
(3P

)+N2
(
X1Σ+

g

)
,

(31.96)

O
(1D

)+CO
(
X 1Σ+)→ CO∗

2

→ O
(3P

)+CO
(
X 1Σ+) ,

(31.97)

which are important in the chemistry of the atmosphere.
To demonstrate the feasibility of reaction (31.95) as

an intermediate complex assisted chemical reaction it
is necessary to (i) determine the energetically relevant
portion of the doublet-quartet surface of intersection,
(ii) determine the spin-orbit interaction coupling the
doublet and quartet surfaces, (iii) characterize a local
minimum on the doublet surface from which the surface

of intersection is accessible, (iv) characterize a path from
the reactant channel to this region, and (v) determine the
exit channel path on the quartet surface. The results of
electronic structure calculations at the MR-CI level, ad-
dressing these points [31.167,175–178] are summarized
below.

Local Extrema on the 2A′′–4A′′ Surface of Intersec-
tion. Points in the 2A′′–4A′′ surface of intersection were
determined from the solution to (31.72) [31.126, 175].
The minimum energy point on the surface of intersec-
tion, labelled CC2v

mex, has approximate C2v symmetry,
and is shown in Fig. 31.3. It is the region of this
crossing point that must be accessed from the doublet
surface.

a) b)

c)

H C
N1

N2

H

C

N1 N2
H

C

N1 N2

Fig. 31.3a–c Key bond distances in Å for (a) Rdative
min (CH)=

1.082, R dative
min (CN1) = 1.340, Rdative

min (N1N2) = 1.143;
(b) RC2v

min (CH)=1.071, RC2v
min (CN1)=1.311; RC2v

min (N1N2)=
1.735; RC2v

mex(CH) = 1.076, RC2v
mrex(CN1) = 1.3, RC2v

mex

(N1N2) = 2.221; (c) Rc
TS(CH) = 1.093, Rc

TS(CN1) =
1.515, Rc

TS(N
1N2)= 1.214. The notation is as defined

in Sect. 31.5. The dashed line in structure (c) indicates that
H is out of the plane of the paper. (a), (b) after [31.124],
(c) after [31.167]
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The Spin-Orbit Interaction. In the double group
corresponding to Cs symmetry, the 4A′′ and
2A′′ wave functions each carry degenerate irre-
ducible representations, Kramer’s doublets [31.179].
The following pairs of nonrelativistic zeroth-
order wave functions can be used to span
these degenerate representations (i) Ψ 0

[
2A′′( 1

2 )
]
,

Ψ 0
[
2A′′(− 1

2

)]
, (ii) iΨ 0

[
4A′′( 1

2

)]
, iΨ 0

[
4A′′(− 1

2

)]
,

and (iii) iΨ 0
[
4A′′( 3

2

)]
, iΨ 0

[
4A′′(− 3

2

)]
, where the

Ms value has been given parenthetically. In this
case, all nonvanishing matrix elements connecting the
components of the 4A′′ and 2A′′ states can be ex-
pressed in terms of the single real-valued matrix
element [31.139]

Hso(4A′′ , 2A′′)

≡
〈
iΨ 0

[
4A′′(3

2

)]∣∣∣Hso
∣
∣∣Ψ 0

[
2A′′(1

2

)]〉
, (31.98)

which was found to be≈ 12.5 cm−1 [31.126,175] in the
vicinity of the minimum energy crossing point deter-
mined above.

Local Extrema on the 2A′′ Potential Energy Surface.
Two local minima on the 2A′′ potential energy surface
have been found [31.175–177]. The local minimum con-
figuration labeled Cdative

min pictured in Fig. 31.3 represents
a datively bonded structure in which N2 donates a pair
of electrons to the empty CH(1π) orbital. This can be
thought of as a reactant channel structure, since the N–
N and C–H bond lengths are similar to those in the
isolated molecules. This point on the 2A′′ potential en-
ergy surface is stable by 20.2 kcal/mol relative to the
doublet asymptote in the reactant channel. The second
minimum on the 2A′′ potential energy surface is also
pictured in Fig. 31.3 and is seen to have C2v symme-
try. This configuration point, denoted CC2v

min , is stable by
22.3 kcal/mol relative to the doublet asymptote in the
reactant channel. Note that CC2v

min and CC2v
mex differ only in

the length of the N–N bond.

Reaction Path. From the above data it might ap-
pear that both the CC2v

min and Cdative
min structures are

involved in the mechanism of reaction (31.95). How-
ever, the energy of the transition state connecting
these two minima is quite large [31.177], so that the
reaction path avoids Cdative

min [31.167]. The true reac-
tion path involves CC2v

min , CC2v
mex, and a reactant channel

transition state Cc
TS that connects CC2v

min and the re-
actant channel species CH+N2. Cc

TS is also pictured

CH(a4 Σ–1)+N2

17
0

CH(X2Π)+N2

–21

56

1

HCN + N(2D)

HCN + N(4S)

H
C

N N

2A''

4A''

H
C

N N

H
C

N N

Fig. 31.4 Reaction path for CH(X2Π )+N2(X1Σ+
g )→

HCN(X1Σ+)+N(4S ) after [31.167]. Energy scale, which
is approximate, is in kcal/mol

in Fig. 31.3. It involves the nonplanar cis- approach of
HC to N2 [31.167]. The total reaction path is presented
in Fig. 31.4 [31.178]. Note that following intersys-
tem crossing, the system encounters a final transition
state before proceeding to the spin-forbidden prod-
ucts.

From this qualitative analysis, a bimodal picture
of the reaction of ground state CH with N2 emerges.
CH(2Π ) can be removed by either (i) forming a complex
Cdative

min which is stabilized by a third body colli-
sion or (ii) forming the spin-forbidden products with
the reaction mechanism indicated in Fig. 31.4. This
mechanism has been deduced entirely from the com-
putational results cited above. The key computational
findings responsible for this mechanism are (i) the
existence and geometrical relationship between CC2v

min
and CC2v

mex, (ii) the large barrier separating Cdative
min and

CC2v
min , and (iii) the entrance channel path across Cc

TS
to CC2v

min .
Since there is apparently no or little barrier to form-

ing Cdative
min [31.177], at low temperatures CH will be

removed exclusively by this process at a rate with
a small or negative temperature dependence, indicat-
ing a barrierless reaction. At higher temperatures, the
rate constant is expected to exhibit a more usual
Arrhenius type behavior as the spin-forbidden chan-
nel can be accessed [31.180]. These expectations are
consistent with previous low temperature measure-
ments [31.169, 181] and high temperature shock tube
results [31.172, 182, 183]. The above reaction path for
the spin-forbidden reaction has been used in a two in-
ternal coordinate model for reaction (31.95) [31.180]
that also supports the proposed description of this
reaction.
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31.6 Recent Developments

Added by Mark M. Cassar. If the motion of nuclei within
a molecule causes more than one Born-Oppenheimer
potential energy surface to intersect, then nonadiabatic
transitions become an essential process in molecu-
lar dynamics. These transitions are at the heart of
many biological processes, such as light harvesting
by plants [31.184, 185], which depends on electronic
excitation transfer, and a host of processes in the
upper atmosphere. In recent years, it has become
apparent that conical intersections (see Sect. 31.3.3
for a definition) of two states of the same sym-
metry are a fundamental element of electronically
nonadiabatic phenomena [31.186]. As an example,
conical intersections can facilitate transitions from
upper to lower electronic states. Transitions of this
nature provide efficient pathways to lower electronic
states, and are thus amenable to experimental study
(e.g., through dissociation products of photoexcita-
tion [31.187]).

Although points of conical intersection, which are
not individual but form seams, can be located in
a straightfoward manner, finding points of minimum

energy has proved more difficult. This difficulty has
been attributed to the erratic behavior of the parameters
used in the search algorithm. This seemingly intrinsic
problem which would preclude extrapolation – a conse-
quence of the singular nature of the intersection itself –
has been avoided through the use of extrapolatable func-
tions [31.188]. This recent work introduces functions
that vary smoothly (i. e., are well-behaved) as one moves
along the intersection seam, and hence allow the use of
extrapolation techniques.

The study of conical intersections has also been ex-
tended to include three-state intersections and first-order
relativistic effects. Accidental conical intersections (i. e.,
those not required by symmetry arguments) of three
states of the same symmetry, which may provide
an efficient mechanism for radiationless decay, have
been shown to exist [31.189]. Spin-orbit effects are
essential for the proper description of the nuclear dy-
namics in molecules containing an odd number of
electrons [31.190]. The topography of conical intersec-
tions changes in this case, requiring the development of
new algorithms [31.191].
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Molecular Sym32. Molecular Symmetry and Dynamics

Molecules are aggregates of two or more nuclei
bound by at least one electron. The nuclei
of most stable molecules can be imagined
to be points in a more or less rigid body
whose relative positions are constrained by
an electronic bonding potential. This potential
depends strongly upon the electronic state as
described in Chapt. 31. Most of this discussion
is about stable molecules in their electronic
ground state. In Sect. 32.6 some comments are
made about molecules with excited, or “loose”,
parts.
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32.1 Dynamics and Spectra of Molecular Rotors

Motions that stretch or compress the bonds are called
vibrational motions, and give rise to spectral resonances
in the infrared region of the spectrum. Typical fun-
damental vibrational quanta (ν0) lie between 80 cm−1

(the lowest GeBr4 mode) and 3020 cm−1 (the high-
est CH4 mode). (A 1000 cm−1 wave has a wavelength
of 10 µm and a frequency defined by the speed of
light: 29.979 2458 THz.) Vibrational amplitudes are
usually tiny since zero-point motions or vibrations
involving one or two quanta (ν = 0, 1, 2, . . . ) are
constrained by the steep bonding potential to less
than a few percent of the bond lengths, but high
overtones may lead to dissociation, i. e., molecular
breakup.

Overall rotation of molecules in free space is un-
constrained, and gives rise to far-infrared or microwave
pure rotational transitions or sidebands on top of vi-
brational spectra. Typical rotational quanta (2B) lie
between 0.18 cm−1 (5.4 GHz) for SF6 and 10.6 cm−1

for CH4. Individual molecules are free to rotate or
translate as a whole while undergoing tiny but usually
rapid vibrations. Vibrating molecules may be thought
of as tumbling collections of masses held together by
‘springs’ (the electronic vibrational potential or force
field), and are called semirigid rotors. The coupling of
rotational and vibrational motion is called rovibrational
coupling and includes centrifugal and Coriolis coupling,
which will be introduced in Sect. 32.6.
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492 Part C Molecules

This discussion of molecular dynamics and spec-
tra mainly involves molecular rotation and prop-
erties of rotationally excited molecules, particu-
larly those with high rotational quantum number
J = 10–200. However, the discussion also applies
to molecules in excited vibrational states, and
even certain cases of molecules in excited elec-
tronic states. The analysis of vibronic (vibrational-
electronic), rovibrational (rotation–vibration), or rovi-
bronic (all three) types of excitation can be very
complicated [32.1–5] and is beyond the scope
of this article, but these problems can all ben-
efit from the elementary considerations described
here.

32.1.1 Rigid Rotors

As a first approximation, and for the purposes of dis-
cussing basic molecular dynamics and spectra, one may
ignore vibrations and model stable molecules as ‘stick-
and-ball’ structures or rigid rotors. Then the Hamiltonian
has just three terms:

H = AJ2
x + BJ2

y +CJ2
z . (32.1)

Here {Jx, Jy, Jz} are rotational angular momentum op-
erators, and the rotational constants are half the inverses
of the principal moments of inertia Iα of the body:

A = 1

2Ix
, B = 1

2Iy
, C = 1

2Iz
. (32.2)

This implies that the J-coordinate system being used
is a special one fixed to the rotor’s body and aligned
to its principal axes, an elementary body, or Eckart,
frame.

Many molecules, particularly all diatomic mol-
ecules, have two of these rotational constants equal, say,
A = B. Such rotors are called symmetric tops, and their
Hamiltonian can be written in terms of the square of
the total angular momentum J · J and one other body
component Jz as

H = BJ2
x + BJ2

y +CJ2
z

= BJ2
x + BJ2

y + BJ2
z + (C− B)J2

z

= B J · J+ (C− B)J2
z (32.3)

This gives a simple formula for the symmetric top rota-
tional energy levels in terms of the quantum numbers J
for the total angular momentum and K for the body
z-component:

E(J, K)= BJ(J +1)+ (C− B)K2 (32.4)

However, this eigenvalue formula may be a little too
simple, since it hides the structure of the eigenstates or
eigenfunctions. Indeed, the full Schrödinger angular dif-
ferential equation based upon the Hamiltonian (32.1) is
more lengthy. One should remember that H is written in
a rotating body coordinate frame that must be connected
to a star-fixed, or laboratory, frame in order to get the
full theory.

32.1.2 Molecular States Inside and Out

Rotor angular momentum eigenfunctions can be ex-
pressed as continuous linear combinations of rotor
angular position states |αβγ 〉 defined by Euler angles
of the lab azimuth α, the polar angle β of body z-axis,
and the body azimuth, or ‘gauge twist’, γ . The eigen-
functions are,

∣∣∣∣
J

MK

〉
=
√

2J +1

8π2

2π∫

0

dα

π∫

0

sinβdβ

×

2π∫

0

dγDJ
MK

∗
(αβγ)|αβγ 〉 , (32.5)

where the rotor wave functions DJ
MK

∗
are just the

conjugates of the Wigner rotation matrices described
in Sect. 32.3.1, and row and column indices M and K ,
respectively, are the lab and body components of the
angular momentum [32.5–7].

An important feature of polyatomic molecules is that
their angular momentum states have two kinds of az-
imuthal quantum numbers. In addition to the usual lab
component of momentum M associated with the lab co-
ordinate α (α and β are usually labeled ϕ and ϑ), there
is a body component K associated with the Euler co-
ordinate γ , the body azimuthal angle of the laboratory
Z-axis relative to the body z-axis.

The physics of atomic or diatomic angular momen-
tum states has no internal or “body” structure, so the
quantum number K is always zero. Unless one sets
K = 0, the energy formula (32.4) blows up for a point
particle because z-inertia for a point is zero and C is
infinite. Also, the dimension of the angular momen-
tum state multiplet of a given J is larger than the usual
(2J+1) found in atomic or diatomic molecular physics.
In polyatomic rotors, the number of states for each J is
(2J +1)2, since both quantum numbers M and K range
between -J and +J .

A further important feature is that the molecular rotor
wave functions contain, as a special (K = 0) case, all
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Molecular Symmetry and Dynamics 32.1 Dynamics and Spectra of Molecular Rotors 493

the usual atomic spherical harmonics Yl
m complete with

correct normalization and phase, since

√
4πYl

m(ϕϑ)= Dl
m0(ϕϑ·)∗

√
2l+1) . (32.6)

This is part of a powerful symmetry principle: group
representations are quantum wave functions, and sym-
metry analysis is an extension of Fourier analysis – not
just for translations as in Fourier’s original work, but for
any group of symmetry operations. The usual Fourier
coefficients eikx are replaced by the D functions in the
rotational Fourier transform embodied by (32.5).

Molecular rotational analysis displays another im-
portant but little known aspect of symmetry analysis in
general. For every group of symmetry operations, such
as the external lab-based rotations familiar to atomic
physics, there is an independent dual group of internal
or body-based operations. The external symmetry of the
environment or laboratory is independent of the internal
symmetry of the molecular body, and all the operations
of one commute with all those of the other. The mo-
lecular rotation group is thus written as an outer product
R(3)LAB⊗ R(3)BODY of the external and internal parts,
and the degeneracy associated with this group’s repre-
sentations for a single J is (2J+1)2 as mentioned above.
It is a special ⊗-product, however, since the J-number
is shared.

The inversion or parity operator I(r →−r) can be
defined to be the same for both lab and body frames.
Including I with the rotational group R(3) gives the
orthogonal group O(3)= R(3)⊗{1, I}. If parity is con-
served (e.g., no weak neutral currents), the fundamental
molecular orthogonal group is O(3)LAB⊗O(3)BODY.

How this symmetry breaks down and which lev-
els split depends upon both the perturbative laboratory
environment and the internal molecular structure.
A spherical top Hamiltonian is (32.1) with A = B = C.
This has a full O(3)BODY (spherical) symmetry since it
is just B J · J. Given that the rotor is in an O(3)LAB labo-
ratory (empty space), the original symmetry O(3)LAB⊗
O(3)BODY remains intact and the (2J +1)2 degener-
acy is to be expected. However, a symmetric rotor in
a lab vacuum has its internal symmetry broken down
to O(2)BODY if A = B �= C, and the energies given
by (32.4) consist of internal quantum singlets for K = 0
and±K doublets for K �= 0. But each of these levels still
has a lab degeneracy of (2J +1) if O(3)LAB is still in
effect. So the (2J+1)2 level degeneracies are each split
into multiplets of degeneracy (2J+1) and 2(2J+1) for
K = 0 and K �= 0, respectively. The resulting levels are
often labeled Σ,Π,∆, Φ, Γ , . . . in a somewhat inap-

propriate analogy with the atomic s, p, d, f, g, . . . labels
of Bohr model electronic orbitals.

Only by perturbing the lab environment can one
reduce the O(3)LAB symmetry and split the M degen-
eracies. For example, a uniform electric field would
reduce the O(3)LAB to an O(2)LAB, giving Stark split-
tings which consist of external quantum singlets for
M = 0 and±M doublets for M �= 0. A uniform magnetic
field would reduce the O(3)LAB to an R(2)LAB, giv-
ing Zeeman splittings into external quantum singlets for
each M. The analogy between atomic external field split-
ting and internal molecular rotational structure splitting
is sometimes a useful one and will be used later.

32.1.3 Rigid Asymmetric Rotor
Eigensolutions and Dynamics

The general case for the rigid rotor Hamiltonian (32.1)
has three unequal principal moments of inertia
(A �= B �= C). This is called the rigid asymmetric top
Hamiltonian, and provides a first approximation for
modeling rotation of low symmetry molecules, such
as H20. Also, a number of properties of its eigenso-
lutions are shared by more complicated systems. The
dynamics of an asymmetric top is quite remarkable, as
demonstrated by tossing a tennis racquet in the air, flat
side up. The corresponding quantum behavior of such
a molecule is also nontrivial.

Given the total angular momentum J, one may con-
struct a (2J +1)-dimensional matrix representation of
H using standard matrix elements of the angular mo-
mentum operators Jx , Jy, and Jz, as given in Chapt. 2.
The H matrix connects states with (2J +1)-different
body quantum numbers K(−J ≤ K ≤ J ), but the ma-
trix is independent of the lab quantum numbers M, so
there are (2J +1) identical H matrices; one for each
value of the lab quantum number M(−J ≤ K ≤ J ).

A plot of the 21 eigenvalues of (32.1) for J = 10
is shown in Fig. 32.1. Here, the constants are set to
A = 0.2 cm−1 and C = 0.6 cm−1, while B is varied be-
tween B = A, which corresponds to a prolate symmetric
top (an elongated cylindrical object) and B = C, which
corresponds to an oblate symmetric top (a flattened
cylindrical object or discus). For all B values between
those of A and C, the object is asymmetric.

The left hand end
(
A = B = 0.2 cm−1, C =

0.6 cm−1
)

of the plot in Fig. 32.1 corresponds to a pro-
late symmetric top. The symmetric top level spectrum
is given by (32.4). It consists of a lowest singlet state
corresponding to K = 0 and an ascending quadratic lad-
der of doublets corresponding to K =±1,±2, . . . ,±J .
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Fig. 32.1 J = 10 eigenvalue plot for symmetric rigid rotors. (A = 0.2, C = 0.6 cm−1 A < B< C ). Prolate and oblate RE
surfaces are shown

The right hand end
(
A = 0.2 cm−1, B = C = 0.6 cm−1

)

of the plot corresponds to an oblate symmetric top with
a descending quadratic ladder of levels, the K = 0 level
being highest. Also, the internal K -axis of quantization
switches from the body z-axis for

(
A = B = 0.2 cm−1,

C = 0.6 cm−1
)

to the body x-axis for
(
A = 0.2 cm−1,

B = C = 0.6 cm−1
)
. Note that the lab M-degeneracy is

invisible here, but exists nevertheless.
For intermediate values of B, one has an asymmetric

top level structure and, strictly speaking, no single axis of
quantization. As a result, the eigenlevel spectrum is quite
different. A detailed display of asymmetric top levels for
the case

(
A = 0.2 cm−1, B = 0.4 cm−1, C = 0.6 cm−1

)

is given at the bottom of Fig. 32.2. They are shown to cor-
respond to semiclassical orbits discussed in Sect. 32.2.
This example is the most asymmetric top, since param-
eter B has a value midway between the symmetric top
limits of B = A and B = C.

The twenty-one J = 10 asymmetric top levels are
arranged into roughly ten asymmetry doublets and one
singlet. This resembles the symmetric top levels except
that doublets are split by varying amounts, and the sin-
glet is isolated from the other levels in the middle of the
band instead of being crowded at the top or bottom. The
doublet splittings are magnified in circles drawn next to
the levels, and these indicate that the splitting decreases
quasi-exponentially with each doublet’s separation from
the central singlet.

An asymmetric doublet splitting is also called su-
perfine structure and can be viewed as the result
of a dynamic tunneling process in a semiclassical
model of rotation [32.8–10]. Such a model clarifies
the classical-quantum correspondence for polyatomic
rovibrational dynamics in general. It can also help
to derive simple approximations for eigenvalues and
eigenvectors.

32.2 Rotational Energy Surfaces and Semiclassical Rotational Dynamics

A semiclassical model of molecular rotation can be
based upon what is called a rotational energy surface
(RES) [32.7–14]. Examples of RES for an asymmetric
top are shown in Fig. 32.2, and for prolate and oblate
symmetric tops in Fig. 32.1. Each surface is a radial
plot of the classical energy derived from the Hamil-

tonian (32.1) as a function of the polar direction of the
classical angular momentum J-vector in the body frame.
The magnitude of J is fixed for each surface. Note that
the J-vector in the lab frame is a classical constant of the
motion if there are no external perturbations. However,
J may gyrate considerably in the moving body frame,
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but its magnitude |J| stays the same in all frames for
free rotation.

An RES differs from what is called a constant en-
ergy surface (CES), which is obtained by simply plotting
E = H = const. in J-space using (32.1). A rigid rotor
CES is an ellipsoid covering a range of |J| values at
a single energy. An RE surface, on the other hand, is
a spherical harmonic plot at a single |J| value for a range
of energies. The latter is more appropriate for spectro-
scopic studies of fine structure, since one value of the
rotational quantum number J corresponds to a multiplet
of energy levels or transitions. An RES also shows loci
of high and low energy rotations. Also, it has roughly
the same shape as the body it represents, i. e., an RES is
long in the direction that the corresponding molecule is
long (but vice-versa for CES).

For a freely rotating molecule, the laboratory com-
ponents of the classical total angular momentum J are
constant. If one chooses to let J define the lab Z-axis,
then the direction of the J-vector in the body frame is
given by polar and body azimuthal coordinates β and γ ,
which are the second and third Euler angles, respec-
tively. (It is conventional to use the negatives −β and
−γ as polar coordinates, but this will not be necessary
here.) Then the body components of the J-vector are
written as

(
Jx = |J | sinβ cos γ , Jy = |J | sinβ sin γ ,

Jz = |J | cosβ
)
, (32.7)

where the magnitude of the quantum value |J | =√
J(J +1)∼= J + 1

2 .
Substituting this into the Hamiltonian (32.1) gives

an expression for the general rigid rotor RES radius in
polar coordinates:

E(β, γ)= 〈H〉 = J(J +1)

×
[
sin2 β

(
A cos2 γ + B sin2 γ

)
+C cos2 β

]
.

(32.8)

The prolate symmetric top (A = B< C) expression

E(β)= 〈H〉 = J(J +1)
[

B+ (C− B) cos2 β
]

(32.9)

is independent of azimuthal angle γ . The 3-dimensional
plots of these expressions are shown in Figs. 32.1
and 32.2.

The RES have topography lines of constant en-
ergy (E = const.) that are the intersection of an RES
(constant |J|) with spheres of constant energy. The to-
pography lines are allowed classical paths of the angular

momentum J-vector in the body frame, since these paths
conserve both energy and momentum.

The trajectories in these figures are special ones.
They are the quantizing trajectories for total angular
momentum J = 10. For the prolate symmetric top, the
quantizing trajectories have integral values for the body
z-component K of angular momentum. According to the
Dirac vector model, angular momentum vectors trace out
a cone of altitude K and slant height |J | = √

J(J +1).
The quantizing polar angles Θ J

k are given by

Θ J
K = cos−1 K√

J(J +1)
(32.10)

(K = J, J −1, · · · ,−J ) .

These are the latitude angles of the paths on the RES
in Fig. 32.1 for K = 10, 9, 8, . . . ,−10. (For the oblate
RES, the angles are relative to the x-axis.) If β = (

Θ J
K

)

is substituted into the symmetric top RES (32.9), the
result is

E
(
Θ J

K

)= J(J +1)B+ (C− B) K2 , (32.11)

which is precisely the symmetric top eigenvalue (32.4).
The quantizing paths are circles lying at the intersec-
tions of the Dirac angular momentum cones and the
RES. The angle

(
Θ J

K

)
is a measure of the angular mo-

mentum uncertainty ∆Jx or ∆Jy transverse to the z-axis
of quantization. Clearly, K =±J states have minimum
uncertainty.

For the asymmetric top, the classical paths that con-
serve both |J | and E are one of two types. First, there
are those pairs of equal-energy orbits that go around
the hills on the plus or minus end of the body z-axis,
which correspond to the ±K pairs of levels in the up-
per half of the level spectrum drawn in Fig. 32.2. Then
there are the pairs of levels belonging to the equal-energy
orbits in either of the two valleys surrounding the body
x-axis, which are associated with the pairs of levels in the
lower half of the level spectrum. Different eigensolutions
occupy different geography.

The upper pairs of paths are seen to be distorted
versions of the prolate top orbits seen on the left-hand
side of Fig. 32.1, while the lower pairs are distorted ver-
sions of the oblate top orbits seen on the right-hand
side of Fig. 32.1. The distortion makes Jz deviate from
a constant K -value and corresponds to K -mixing in the
quantum states. This also shows that more than one
axis of quantization must be considered; the prolate-
like paths are based on the z-axis, while the oblate-like
paths belong to the body x-axis.

The two types of orbits, x and y, are separated by
what is called a separatrix curve, which crosses the sad-
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dle points on either side of the body y-axis. In the
example shown in Fig. 32.2, the separatrix is associ-
ated with a single level which separates the upper and
lower energy doublets. The doublets that are closer to
the separatrix level are split more than those which are
farther away. Apart from the splitting, the energy levels
can be obtained by generalized Bohr quantization of the
classical paths on the RES. The quantization condition
is,

∫
Jz dγ = K , (32.12a)

where

Jz =
√

J(J +1)
(
C cos2 γ + B sin2 γ

)− E
(
C cos2 γ + B sin2 γ

)− A

(32.12b)

follows from (32.7) and (32.8). The resulting EK -values
are obtained by iteration.

The doublet, or superfine, splitting is a quantum ef-
fect which may be associated with tunneling between
orbits that would have had equal energies EK in the
purely classical or semiclassical model. Approximate
tunneling rates are obtained from integrals over the sad-
dle point between each pair of equal-energy quantizing
paths. The K -th rate, or amplitude, is,

SK = νK e−PK , (32.13)

where

PK = (32.14)

i

γ+∫

γ−
dγ

√
J(J +1)

(
C cos2 γ + B sin2 γ

)− EK(
C cos2 γ + B sin2 γ

)− A

is the saddle path integral between the points of closest
approach, γ+ and γ−, and νK is the classical preces-
sion frequency or quantum level spacing around energy
level EK . Since there are two tunneling paths, the ampli-
tude SK is doubled in a tunneling Hamiltoni an matrix
for the K -th semiclassical doublet of z and−z = z paths:

〈H〉K =
(

EK 2SK

2SK EK

)
|z〉
|z〉 . (32.15)

The resulting tunneling energy eigensolutions are given
in Table 32.1.

A- or B-states correspond to symmetric and anti-
symmetric combinations of waves localized on the two
semiclassical paths. Rotational symmetry is considered
in Sect. 32.3.

The total doublet splitting is 4SK , and decreases
exponentially with the saddle path integral (32.14).
The superfine A–B splittings in Fig. 32.2 are seen to
range from several GHz near the separatrix down to
only 26 kHz for the highest-K doublets at the band
edges.

Meanwhile, the typical interdoublet level spacing
or classical precessional frequency is about 150 GHz
for the J = 10 levels shown in Fig. 32.2. This K -level
spacing is called rotational fine structure splitting, and
is also present in the symmetric top case. (The superfine
splitting of the symmetric top doublets is exactly zero,
since they have O(2)BODY symmetry if A= B or B =C.
In this case, all tunneling amplitudes cancel.)

The classical precession of J in the body frame
follows a “left-hand rule” similar to what meteorolo-
gists use to determine Northern Hemisphere cyclonic
rotation. A left “thumbs-down” or “low” has counter-
clockwise precession as does an oblate rotor valley, but
a prolate RES “high” supports clockwise motion just
like a weather “high”.

Finally, consider the spacing between adjacent
J-levels, which is called rotational structure, in a spec-
trum. This spacing is

E(J, K )− E(J −1, K )= 2BJ , (32.16)

according to the symmetric top energy formulas (32.4).
For the example just treated, 2BJ is about 10 cm−1 or
300 GHz. This corresponds to the actual rotation fre-
quency of the body. It is the only kind of rotational
dynamics or spectrum that is possible for a simple di-
atomic rotor. A diatomic molecule, however, can have
internal electronic or nuclear spin rotation, which gives
an additional fine structure as discussed later [32.1,6,15].

To summarize, polyatomic molecules can be ex-
pected to exhibit all three types of rotational motion and
spectra (from faster to slower): rotational, precessional,
and precessional tunneling. These are related to three
kinds of spectral structure (from coarser to finer spec-
tra): rotational structure, fine structure, and superfine
structure, respectively. Again, this neglects internal ro-
tational and spin effects, which can have abnormally
strong rotational resonance coupling due to the superfine
structure [32.9,16]. Examples of this are discussed at the
end of this chapter.

Table 32.1 Tunneling energy eigensolutions

Eigenvectors |z〉 |z 〉 Eigenvalues

|A〉 1 1 E A(K)= EK +2SK

|B〉 1 −1 E B(K)= EK −2SK
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32.3 Symmetry of Molecular Rotors

Molecular rotational symmetry is most easily intro-
duced using examples of rigid rotors. Molecular rotor
structures may have more or less internal molecular
symmetry, depending on how their nuclei are positioned
relative to one another in the body frame. A molecule’s
rotational symmetry is described by one of the elemen-
tary rotational point symmetry groups. These are the
n-fold axial cyclic groups Cn and polygonal dihedral
groups Dn(n = 1, 2, . . . ), the tetrahedral group T , the
cubic-octahedral group O, or the icosahedral group Y .
All other point groups, such as Cnv, Td , and Oh , are
a combination of an elementary point group with the
inversion operation I(r →−r). Each of these groups
consist of operations which leave at least one point (ori-
gin) of a structure fixed while mapping identical atoms
or nuclei into each other in such a way that the appear-
ance of the structure is unchanged. The point groups are
subgroups of the nuclear permutation groups [32.17].

In other words, molecular symmetry is based upon
one of the most fundamental properties of atomic
physics: the absolute identity of all atoms or, more pre-
cisely, nuclei of a given atomic number Z and mass
number A. It is the identity of the so-called ‘elemen-
tary’ electronic and nucleonic constituent particles that
underlies the symmetry.

The Pauli principle states that all half-integer spin
particles are antisymmetrized with every other one of
their kind in the universe. The Pauli–Fermi antisym-
metrization principle and the related Bose–Einstein
symmetrization principle determine much of molecu-
lar symmetry and dynamics, just as the Pauli exclusion
principle is fundamental to electronic structure.

32.3.1 Asymmetric Rotor Symmetry Analysis

For an asymmetric rigid rotor, any rotation which inter-
changes x−, y−, or z-axes of the body cannot possibly
be a symmetry, since all three axes are assumed to have
different inertial constants. This restricts one to consider
only 180◦ rotations about the body axes, and these are
the elements of the rotor groups C2 and D2.

The two symmetry types for C2 are even (denoted
A or 02) and odd (denoted B or 12) with respect to
a 180◦ rotation. For D2, which is just C2⊗C2, the four

C2 1 R

A 1 1

B 1 −1
Table 32.2 Character table for
symmetry group C2

symmetry types are even-even (denoted A1), even-odd
(denoted A2), odd-even (denoted B1), and odd-odd (de-
noted B2) with respect to 180◦ rotations about the y- and
x-axes, respectively. (The z-symmetry is determined by
a product of the other two since Rz = Rx Ry.) This is
summarized in the character Tables 32.2 and 32.3.

The RES for the rigid rotor shown in Fig. 32.2 is in-
variant under 180◦ rotations about each of the three body
axes. Therefore, its Hamiltonian symmetry is D2 and its
quantum eigenlevels must correspond to one of the four
types listed under D2 in Table 32.3. The D2 symme-
try labels are called rotational (or in general rovibronic)
species of the molecular state. The species label the sym-
metry of a quantum wave function associated with a pair
of C2 symmetric semiclassical paths.

The classical J-paths come in D2 symmetric pairs,
but each individual classical J-path on the rigid rotor
RES has a C2 symmetry which is a subgroup of D2. Each
path in the valley around the x-axis is invariant under
just the 180◦ rotation around the x-axis. This is C2(x)
symmetry. The other member of its pair that goes around
the negative x-axis also has this local C2(x) symmetry.
The combined pair of paths has the full D2 symmetry but
classical mechanics does not permit occupation of two
separate paths. Multiple path occupation is a completely
quantum effect.

Similarly, each individual J-path on the hill around
the z-axis is invariant under just the 180◦ rotation around
the z-axis, so it has C2(z) symmetry as does the equiva-
lent path around the negative z-axis. Only the separatrix
has the full D2 symmetry, since its pairs are linked up
on the y-axis to form the boundary between the x and
z paths. No J-paths encircle the unstable y-axis since it
is a saddle point.

Each classical J-path near the x- or z-axis belongs
to a particular K -value through the semiclassical quan-
tization conditions (32.12). Depending upon whether
the K -value is even (02) or odd (12), the correspond-
ing K -doublet is correlated with a pair of D2 species
as shown in the columns of the correlation tables
in Fig. 32.3. These three correlation tables give the axial

Table 32.3 Character table for symmetry group D2

D2 1 Rx Ry Rz

A1 1 1 1 1

A2 1 −1 1 −1

B1 1 1 −1 −1

B2 1 −1 −1 1
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Fig. 32.3 Tables of correlations between D2 symmetry species and the even (02) and odd (I2) symmetric species of
subgroups C2(x), C2(y), and C2(z)

180◦ rotational symmetry of each D2 species for rota-
tion near each body axis x, y and z, respectively, but
only the stable rotation axes x and z support stable path
doublets for this Hamiltonian (32.1).

For example, consider the K = 10 paths which lie
lowest in the x-axis valleys. Since K = 10 is even (02),

it is correlated with an A1 and B1 superfine doublet
[see the 02 column of the C2(x) table]. On the high
end near the z-axis hilltop, K = 10 gives rise to an A1
and B2 doublet [see the 02 column of the C2(z) table].
All the doublets in Fig. 32.2 may be assigned in this
way.

32.4 Tetrahedral-Octahedral Rotational Dynamics and Spectra

The highest symmetry rigid rotor is the spherical top for
which the three inertial constants are equal (A= B =C).
The spherical top Hamiltonian

H = B J · J

has the full R(3)LAB⊗ R(3)BODY symmetry. With in-
version parity, the symmetry is O(3)LAB⊗O(3)BODY.
In any case, the J-levels are (2J +1)2-fold degener-
ate. The resulting BJ(J +1) energy expression is the
first approximation for molecules which have regular
polyhedral symmetry of, for example, a tetrahedron
(CF4), cube (C6H6), octahedron (SF6), dodecahedron
or icosahedron (C20H20, B12H12, or C60). Rigid regular

polyhedra have isotropic or equal inertial constants and
rotate just like they were perfectly spherical distributions
of mass.

However, no molecule can really have spherical
O(3)BODY symmetry; even molecules of the highest
symmetry contain a finite number of nuclear mass
points, and therefore have a finite internal point sym-
metry. Evidence of octahedral or tetrahedral symmetry
shows up in fine structure splittings analogous to those
for asymmetric tops. However, spherical top fine struc-
ture is due to symmetry breaking caused by anisotropic
or tensor rotational distortion. To discuss this, one needs
to consider what are called semirigid rotors.
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32.4.1 Semirigid Octahedral Rotors
and Centrifugal Tensor Hamiltonians

The lowest order tensor centrifugal distortion pertur-
bation has the same form for both tetrahedral and
octahedral molecules. It is simply a sum of fourth powers
of angular momentum operators given in the third term
below. The first two terms are the scalar rotor energy
and scalar centrifugal energy.

H = B |J |2+D |J |4+10t044

×
[

J4
x + J4

y + J4
z − (3/5)J4

]
. (32.17)

The tensor term includes the scalar (3/5)J4 to preserve
the center of gravity of the tensor level splitting. This
type of semirigid rotor Hamiltonian was first used in the
study of methane (CH4) spectra [32.18].

The scalar terms do not reduce the symmetry or
split the levels. The tensor term (t044) breaks the
molecular symmetry from O(3)LAB⊗ O(3)BODY to
the lower symmetry subgroup O(3)LAB⊗TdBODY, or
O(3)LAB⊗OhBODY, and splits the (2J +1)2-fold de-
generacy into intricate fine structure patterns which are
analogous to cubic crystal field splitting of atomic or-
bitals. The first calculations of the tensor spectrum were
done by direct numerical diagonalization [32.18–21]. As
a result, many of the subtle symmetry properties were
missed. The semiclassical analysis [32.22] described in
the following Sections exposes these properties.

32.4.2 Octahedral and Tetrahedral
Rotational Energy Surfaces

By substituting in (32.7) and plotting the energy as
a function of body polar angles β and γ , an RES is
obtained, two views of which are shown in Fig. 32.4.
Here the tensor term is exaggerated in order to exhibit
the topography clearly. (In (n = 0) SF6, the t044 coeffi-
cient is only about 5.44 Hz, while the rotational constant
is B = 0.09 cm−1. The t244 coefficient of (n = 1) SF6 is
much greater.)

A positive tensor coefficient (ta44 > 0) gives an oc-
tahedral shaped RES, as shown in Fig. 32.4. This is
appropriate for octahedral molecules since they are least
susceptible to distortion by rotations around the x-, y-,
and z-axes containing the strong radial bonds. Thus the
rotational energy is highest for a J-vector near one of
six body axes (±1, 0, 0), (0,±1, 0), or (0, 0,±1), i. e.,
one of the six RES hills in Fig. 32.4.

However, if the J-vector is set in any of the eight
interaxial directions (±1,±1,±1), the centrifugal force

will more easily bend the weaker angular bonds, raise the
molecular inertia, and lower the rotational energy. This
accounts for the eight valleys on the RES in Fig. 32.4.

A negative tensor coefficient (ta44 < 0) gives a cubic
shaped RES. This is usually appropriate for cubic and
tetrahedral molecules, since they are most susceptible
to distortion by rotations around the x-, y-, and z-axes
which lie between the strong radial bonds on the cubic
diagonals. Instead of six hills and eight valleys, one
finds six valleys and eight hills on the cubic RES. Both
freon CF4 and cubane C8H8 are examples of this type
of topology.

Note that a semirigid tetrahedral rotor may have the
same form of rotational Hamiltonian and RE surface as
a cubic rotor. The four tetrahedral atomic sites are in
the same directions as four of the eight cubic sites. The
other four cubic sites form an inverted tetrahedron of the
same shape.

If only tetrahedral symmetry were required, the
Hamiltonian could contain a third order tensor of the
form Jx Jy Jz . However, pure rotational Hamiltonians
must also satisfy time-reversal symmetry: the energy
for each J must be the same as for −J, and thus rota-
tional sense should not matter. This symmetry excludes
all odd powers of J. Simple rotor RES have inversion
symmetry even if their molecules do not. Compound ro-
tors containing spins or other rotors may have “lopsided”
pairs of RES as shown in Sect. 32.6.

32.4.3 Octahedral and Tetrahedral
Rotational Fine Structure

An example of rotational fine structure for angular mo-
mentum quantum number J = 30 is shown in Fig. 32.4.
The levels consist mainly of clusters of levels be-
longing to the octahedral symmetry species A1, A2,
E, T1, or T2. The characters of these species are
given in Table 32.4. (The tetrahedral Td group has
a similar table where T1 and T2 are often labeled F1
and F2).

The first column gives the dimension or degeneracy
of each species; A1, A2, are singlets, E is a doublet,

Table 32.4 Character table for symmetry group O

O 0◦ 120◦ 180◦ 90◦ 180◦

A1 1 O 1 1 1 1

A2 1 1 1 −1 −1

E 2 −1 2 0 0

T1 3 0 −1 1 −1

T2 3 0 −1 −1 1
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Fig. 32.4 J = 10 rotational energy surface related level spectrum for a semirigid octahedral or thetrahedral rotor

while T1 and T2 are triplets. These species form two
clusters (A1, T1, T2, A2) and (T2, E, T1) on the low

end of the spectrum and six clusters (T1, T2), (A2, T2,
E), (T1, T2), (E, T1, A1), (T1, T2), and (A2, T2, E) on
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the upper part of the spectrum. (See the right-hand side
of Fig. 32.4). Note that the total dimension or (near) de-
generacy for each of the two lower clusters is eight:
(1+3+3+1) and (3+2+3), while the upper clus-
ters each have a six-fold (near) degeneracy: (3+3),
(1+3+2), etc.

Each of the two lower eight-fold clusters can be as-
sociated with semiclassical quantizing paths in an RES
valley as shown in Fig. 32.4. The eight-fold dimension
or (near) degeneracy occurs because each quantizing
path is repeated eight times – once in each of the eight
identical valleys. Similarly, the six-fold cluster dimen-
sion occurs because there are six identical hills, and
each quantizing path is repeated six times around the
surface.

The majority of the paths lie on the hills because the
hills are bigger than the valleys. The hills subtend a half
angle of 35.3◦ to the separatrix, while the valleys only
have 19.5◦. To estimate the number of paths or clusters
in hills or valleys, the angular momentum cone angles
for J = 30 may be calculated using (32.10). The results
are displayed in Fig. 32.5. The results are consistent with
the spectrum in Fig. 32.4. Only the two highest K -values
of K = 29, 30 have cones small enough to fit in the
valleys, but the six states of K = 25–30 can all fit onto
the hills.

The angular momentum cone formula also provides
an estimate for each level cluster energy. The estimates
become more and more accurate as K increases (ap-
proaching J), while the uncertainty angleΘ J

K decreases.
Paths for higher K are more nearly circular and there-
fore more nearly correspond to symmetric top quantum
states of pure K . The paths on octahedral RE surfaces
are more nearly circular for a given K than are those
on the asymmetric top RE surface, and so the octahe-
dral rotor states can be better approximated by those of
a symmetric top.

Angular momentum cones for
J = 30

30

Θ = 10.3°  K = 30
Θ = 18.0°  K = 29
Θ = 23.3°  K = 28
Θ = 27.7°  K = 27
Θ = 31.5°  K = 26
Θ = 34.9°  K = 25
Θ = 38.1°  K = 24

3-fold
cutoff
19.5°

4-fold
cutoff
35.3°

Θ = arc cos [K/  J(J+1)]
30(31)

Fig. 32.5 J = 30 angular momentum cone half angles and octahe-
dral cutoffs

32.4.4 Octahedral Superfine Structure

The octahedral RES has many more local hills and
valleys and corresponding types of semiclassical paths
than are found on the rigid asymmetric top RES. The
tunneling between multiple paths produces an octahe-
dral superfine structure that is more complicated than
the asymmetric top doublets. Still, the same symmetry
correlations and tunneling mechanics may be used.

First, the octahedral symmetry must be correlated
with the local symmetry of the paths on the hills and in
the valleys. The hill paths have a C4 symmetry while
the valley paths have a local C3 symmetry. This is seen
most clearly for the low-K paths near the separatrix
which are less circular. The C3 and C4 correlations are
given in Fig. 32.6 with a sketch of the corresponding
molecular rotation for each type of path.

To find the octahedral species associated with a K3 =
30 path in a C3 valley one notes that 30 is 0 modulo 3.
Hence the desired species are found in the 03 column
of the C3 correlation table: (A1, A2, T1, T2). This is
what appears (not necessarily in that order) in the lower
left corner of Fig. 32.4. Similarly, the species (A2, E,
T2) for a K4 = 30 path on top of a C4 hill are found in
the 24 column of the C4 correlation table since 30 is 2
modulo 4; these appear on the other side of Fig. 32.4.
Clusters (T1, T2) for K4 = 29 and (A1, E, T1) for K4 =
28 are found in a similar manner.

A multiple path tunneling calculation analogous to
the one for rigid rotors can be applied to approximate oc-
tahedral superfine splittings. Consider the cluster (A1, E,
T1) for K4 = 28, for example. Six C4-symmetric paths
located on octahedral vertices on opposite sides of the x-,
y-, and z-axes may be labeled {|x〉, |x̄〉, |y〉, |ȳ〉, |z〉, |z̄〉}.
A tunneling matrix between the six paths follows:

〈H〉K4=28 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

H 0 S S S S

0 H S S S S

S S H 0 S S

S S 0 H S S

S S S S H 0

S S S S 0 H

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

|x〉
|x〉
|y〉
|y〉
|z〉
|z〉

,

(32.18)

where the tunneling amplitude between nearest neigh-
bor octahedral vertices is S, but is assumed to be zero
between antipodal vertices. The eigenvectors and eigen-
values for this matrix are given in the Table 32.5.

This predicts that the triplet (T1) level should fall be-
tween the singlet (A1) and the doublet (E) levels and
the singlet-triplet spacing (4S) should be twice the split-
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J

C3 C2

K3 K2 K4

A1

A2

E

T2

O3 13

A1

A2

T1

T2

O2 1223

T1

E

2

2

A1

A2

E

T2

O4 14 24

T1

34

C4

J J

Fig. 32.6 Tables of correlations between 0 symmetry species and the cyclic axial symmetry species (K p means K mod p)
of subgroups C3, C2 and C4

ting (-2S) between the triplet and doublet. This 2 : 1
ratio is observed in the (E, T1, A1) and (A2, T2, E)
clusters which can be resolved and also in numerical
calculation [32.18–21].

The tunneling amplitudes can be calculated by a sep-
aratrix path integral analogous to the asymmetric top

Table 32.5 Eigenvectors and eigenvalues of the tunneling matrix for the (A1, E, T1) cluster with K = 28
Eigenvector |x〉 |x〉 |y〉 |y〉 |z〉 |z〉 Eigenvalue√

6 |A1〉 = 1 1 1 1 1 1 E A1 = H+4S√
12 |E, 1〉 = 2 2 −1 −1 −1 −1 EE = H−2S

2 |E, 2〉 = 0 0 1 1 −1 −1√
2 |T1, 1〉 = 1 −1 0 0 0 0 ET1 = H√
2 |T1, 2〉 = 0 0 1 −1 0 0√
2 |T1, 3〉 = 0 0 0 0 1 −1

formula (32.13) [32.10, 11]. As shown in Fig. 32.4, the
tunneling rates or superfine splittings near the sep-
aratrix are ∼ 1 MHz, which is only slightly slower
than the classical precessional frequency. But as K ap-
proaches J on the hilltops, the tunneling rate slows down
to a few Hz.

32.5 High Resolution Rovibrational Structure

A display of spectral hierarchy for higher and higher
resolution is shown in Fig. 32.7 for the 630 cm−1 or
16 µm bands of CF4. This will serve to summarize

the possible rovibrational spectral structures and place
them in a larger context. The ν4 resonance in part (a)
corresponds to a dipole active n4 = 0 → 1 vibrational
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ν4  rotational structure

P(54) fine (centrifugal)
structure
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rotation
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3.0 Ghz

603.3 603.4 603.5 603.6 cm–1

2-fold
tumbling

P(54)

Hyperfine (nuclear spin) structure

3.5 mHz 9.7 mHz 9.4 Hz 110 Hz

Case (2) Case (1)

E F2 A2 F2 F1 A1 F1 E F2 F1

2.7 kHz
20 kHz

2.6 MHz 120 MHz 9.9 MHz
48 kHz

0.97 MHz

E F2 A2
F2 F1

F1A1 E F2 F1 F1 F2E
F1 F2E

F2A2 A1F1

�1–100 kHz
�50 kHz

Fig. 32.7a–e Rovibrational structure in the 630 cm−1 or 16 µm bands of CF4 [32.16]. (a) Vibrational resonances and
band profiles. (Raman spectra from [32.23]). (b) Rotational P, Q, and R band structur corresponding to J → J −1,
J → J +1 transitions. (FTIR spectra from [32.24]). (c) P(54) rotational fine structure due to rotation–vibration coupling
and angular momentum precessional motion. (Laser diode spectra from [32.25]). (d) Superfine structure due to precessional
tunneling [32.26]. (e) Hyperfine structure due to nuclear spin precession [32.26]
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transition, and is just one of many vibrational structures
to study. The P(54) sideband resonance in part (b) cor-
responds to a (J = 54)→ (J −1) rotational transition,
and is just one of hundreds of rotational structures to
study within the ν4 bands.

Each band is something like a Russian doll; it con-
tains structure within structure within structure down to
the resolution of few tens of Hz. Examples of rotational
fine and superfine structures described in Sect. 32.4
are shown in Fig. 32.7c, d, but even more resolution
is needed to see the hyperfine structure in Fig. 32.7e.
Such extremely high resolution has been reached with
a CO2 saturation absorption spectrometer [32.27, 28].
The 10 µm bands of SF6 and SiF4 have been studied in
this manner, the latter being similar to CF4 [32.26].

32.5.1 Tetrahedral Nuclear Hyperfine
Structure

High resolution spectral studies of SiF4 showed unantic-
ipated effects involving the four fluorine nuclear spin and
magnetic moments and their associated hyperfine states.
First, the Pauli principle restricts the nuclear spin multi-
plicity associated with each of the rotational symmetry
species in much the same way that atomic L− S coupled
states 2S+1L have certain spin multiplicities (2S+1) al-
lowed for a given orbital L species involving two or
more equivalent electrons. Second, since superfine split-
tings can easily be tiny, different spin species can end
up close enough that hyperfine interactions, however
small, can cause strongly resonant mixing of the nor-
mally inviolate species. Finally, a pure and simple form
of spontaneous symmetry breaking is observed in which
otherwise equivalent nuclei fall into different subsets
due to quantum rotor dynamics.

Connecting nuclear spin to rotational species is done
by correlating the full permutation symmetry (Sn for
XYn molecules) with the full molecular rotation and par-
ity symmetry [O(3)LAB⊗TdBODY for CF4 molecules or
O(3)LAB⊗OhBODY and for SF6]. For four spin-1/2 nu-
clei, the Pauli principle allows a spin of I = 2 and a spin
multiplicity of five (2I+1= 5) for (J+, A2) or (J−, A1)
species, but excludes (J−, A2) or (J+, A1) species alto-
gether. The Pauli allowed spin for (J+, T1) or (J−, T2)
species is I = 1 with a multiplicity of three, but there are
no allowed (J+, T2) or (J−, T1) species. Finally, both
(J+, E) and (J−, E) belong to singlet spin I = 0 and
are singlet partners to an inversion doublet. (None of the
other species can have both + and − parity.)

The E inversion doublet is analogous to the doublet
in NH3 which is responsible for the ammonia maser.

However, NH3-type inversion is not feasible in CF4
or SiF4, and so the splitting of the E doublet in these
molecules is due to hyperfine resonance [32.9, 16, 23].

The Pauli analysis gives the number of hyperfine
lines that each species would exhibit if it were isolated
and resolved, as shown in the center of Fig. 32.7e. The
rotational singlets A1 and A2 have five lines each, the
rotational triplets T1 and T2 are spin triplets, and the
rotational doublet E is a spin singlet but an inversion
doublet. If the hyperfine structure of a given species A1,
A2, T1, T2, or E is not resolved, then their line heights
are proportional to their total spin weights of 5, 5, 3, 3,
and 2, respectively.

If the unresolved species are clustered, then the total
spin weights of each add to give a characteristic clus-
ter line height. The line heights of the C4 clusters (T1,
T2), (A2, T2, E), (T1, T2), (E, T1, A1) are 6, 10, 6, 10,
respectively. The line heights of the C3 clusters (A1,
T1, T2, A2), (T1, E, T2), (T1, E, T2) are 16, 8, 8, respec-
tively. This is roughly what is seen in the P(54) spectrum
in Fig. 32.7c.

32.5.2 Superhyperfine Structure
and Spontaneous Symmetry
Breaking

The superfine cluster splittings (2S, 4S, etc.) are propor-
tional to the J-precessional tunneling or ‘tumbling’ rates
between equivalent C3 or C4 symmetry axes, and they
decrease with increasing K3 or K4. At some point, the
superfine splittings decrease to less than the hyperfine
splittings which are actually increasing with K . The re-
sulting collision of superfine and hyperfine structure has
been called superhyperfine structure or Case 2 clusters.
The following is a rough sketch of the phenomenology
of this very complex effect, using the results of Pfis-
ter [32.26].

As long as the tunneling rates are > 1 MHz, the
nuclear spins will tend to average over spherical top
motion. The spins couple into states of good total nu-
clear spin I , which in turn couple weakly with the overall
angular momentum and with well defined rovibrational
species A1, A2, T1, T2, or E as described above. The re-
sulting coupling is called Case 1, and is analogous to LS
coupling in atoms.

Stick figures for two examples of spectra observed
by Pfister [32.26] are shown in Fig. 32.8a and b. The first
Case 1 cluster, shown in (a), is a C4 type (04) cluster (A1,
T1, E), which was solved in Table 32.6. The other Case
1 cluster, shown in (b), is a C3 type (±13) cluster (T1,
E, T2) (recall the C3 correlations in Fig. 32.3). They are
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(mixed)

a) b)

c) d)

C4 Cluster (Case 1) C3 Cluster (Case 1)

C3 Cluster (Case 2)C4 Cluster (Case 2)

R(17)
K4 = 16 Θ17

16 = 23.8°

4S = 4.7 MHz

2S

A1 T1 E

R(32)
K4 = 32 Θ 32

32 =10.0°

A1 T1 E (mixed)

R(34)
K3 = 34 Θ34

34 = 9.7°

2S

T1 T2E

2S = 0.8 MHz

R(50)
K3 = 50 Θ50

50 = 8.0°

(S � 0)

�40 kHz

(S � 17 kHz)

T1 T2E

Fig. 32.8a–d Stick sketches for example of superfine
and hyperfine spectral structure found by Pfister [32.26];
(a),(b) Case 1 clusters (high tunneling amplitude S);
(c),(d) Case 2 clusters (low tunneling amplitude S)

similar to the corresponding sketches in Fig. 32.7e. One
notable difference is that the inversion doublet shows
little or no splitting in the (A1, T1, E) cluster, but does
split in the (T1, E, T2) cluster.

When the tunneling rates fall below 10 or 20 kHz,
the angular momentum can remain near a particular C3
or C4 symmetry axis for a time longer than the nu-
clear spin precession rates. Spin precession rates and
the corresponding hyperfine splittings are ≈ 50 kHz,
and increase with K . Hence, there is plenty of time
for each of the nuclear spins to align or anti-align with
the C3 or C4 symmetry axes of rotation. This is called
Case 2 coupling, and the resulting spectrum resembles
that of an NMR scan of the nuclei, but here the mag-
netic field is provided by the molecule’s own body frame
rotation.

If SiF4 rotates uniformly about one C4 symmetry
axis, then all four F nuclei occupy equivalent positions
at the same average distance from the rotation axis and
experience the same local magnetic fields. The mol-
ecule can be thought of as a paired diatomic F2–F2 rotor
with each one symmetrized or antisymmetrized so as
to make the whole state symmetric. Table 32.6 shows
the spin-1/2 base states arranged horizontally accord-
ing to the total projection Iz of nuclear spins on the C4
axis. Horizontal arrays (↑↓) of spins denote symmetric
states, while vertical arrays (-) denote antisymmetric
spin states.

The hyperfine energy is approximately propor-
tional to the projection Iz . The resulting spectrum

Table 32.6 Spin − 1
2 basis states for SiF4 rotating about

a C4 symmetry axis

Iz = 2 Iz = 1 Iz = 0 Iz = −1 Iz = −2
∣∣∣∣
↑ ↑
↓ ↓

〉

|↑↓ ↑↓〉
|↑↓ ↑↑〉 |↓↓ ↑↑〉 |↓↓ ↑↓〉

|↑↑ ↑↑〉 |↑↑ ↑↓〉 |↑↑ ↓↓〉 |↑↓ ↓↓〉 |↓↓ ↓↓〉

is (1, 2, 4, 2, 1)-degenerate pyramid of equally spaced
lines as shown in Fig. 32.8c. Four spin-1/2 states without
symmetry restrictions would give the standard binomial
(1, 4, 6, 4, 1)-degeneracy seen in NMR spectra.

If the molecule settles upon C3 symmetry axes of
rotation, the situation is markedly different. The four
nuclei no longer occupy equivalent positions. One nu-
cleus sits on the rotation axis, while the other three nuclei
occupy equivalent off-axis positions. The off-axis nuclei
experience a different local magnetic field than the sin-
gle on-axis nucleus (Fig. 32.8d). From the spectrum, it
appears that the spin-up to spin-down energy difference
is much greater for the lone on-axis nucleus than for
the three equatorial nuclei, whose spin states form the
energy quartet {|↑↑↑〉 , |↑↑↓〉 , |↑↓↓〉 , |↓↓↓〉}. The on-
axis nucleus has an energy doublet with a large splitting,
so that the four nuclei together give a doublet of quartets
as shown in the figure.

If the off-axis nuclei had experienced the greatest
splitting, then the spectrum would have been a quartet
of doublets instead of a doublet of quartets. Something
like this does occur in the SF6 superhyperfine struc-
ture, which shows a quintet of triplets for a Case-2
C4-symmetry cluster. For either one of these molecules,
it is remarkable how different the rovibrational ‘chem-
ical shifts’ can become for equivalent symmetry sites.
The result is a microscopic example of spontaneous
symmetry breaking.

32.5.3 Extreme Molecular Symmetry Effects

The most common high symmetry molecules belong to
either the tetrahedral Td or cubic-octahedral O groups.
Until the recent discovery of fullerenes and the structure
of virus coats, the occurrence of molecular point groups
of icosahedral symmetry was thought to be rare or non-
existent in nature [32.24, 25].

For an extreme example of symmetry breaking ef-
fects, consider the Buckminsterfullerene or Buckyball
molecule C60 which has the highest possible molecular
point symmetry Yh . A semiclassical approach to rota-
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tional symmetry and dynamics is useful here since the
rotational quantum constant is so small for the fullerenes
(for C60 2B = 0.0056 cm−1 or 168 MHz) [32.29–31].

Since there are two isotopes 12C (nuclear spin 0)
and 13C (nuclear spin 1/2) it is possible to have a Bose-
symmetric molecule (12C60), or Fermi-symmetric
molecule (13C60), or many broken-symmetry combin-
ations (12Cx

13C60−x ). The most likely combination is
12C59

13C, which has no rotational symmetry at all, only
one reflection plane. This may be the most extreme ex-
ample of molecular isotopic symmetry breaking; it goes
from the highest possible symmetry Yh to one of the
lowest, Ch .

The Fermi-symmetric molecule 13C60 has ten times
as many rotating spin-1/2 nuclei as SF6, and 210 times
as many hyperfine states, or about 1.15 × 1018 spin states
distributed among 10 symmetry species [32.32]. In con-
trast,the Bose-symmetric molecule 12C60 has only one
spin symmetry species allowed by the Bose exclusion
principle: A1g. It provides an even more extreme ex-
ample of Bose exclusion than the Os16O4 molecule. In
all, 119 of the 120 Yh rovibrational symmetry states are
Bose-excluded, giving 12C60 an extraordinarily sparse
rotational structure. However, it only takes the addi-
tion of a single neutron to make 12C59

13C. Then all the
excluded rovibrational states must return!

32.6 Composite Rotors and Multiple RES

So far, the discussion has focused on Hamiltonians and
RES involving functions of even mulipolarity, i. e., con-
stant (k = 0), quadrupole (k = 2), hexadecapole (k = 4),
while ignoring odd functions, i. e., dipole (k = 1), oc-
tupole (k = 3), for reasons of time-reversal symmetry.
However, for composite “rotor-rotors” any mulitpolarity
is possible, and the dipole is of primary utility.

A composite rotor is one composed of two or more
objects with more or less independent angular momenta.
This could be a molecule with attached methyl (CH3)
“gyro” or “pinwheel” sub-rotors, a system of consid-
erable biological interest. It could be a molecule with
a vibration or “phonon” excitation that couples strongly
to rotation. Also, any nuclear or electronic spin with
significant coupling may be regarded as an elemen-
tary sub-rotor. The classical analogy is a spacecraft with
gyros on board.

A rotor–rotor Hamiltonian has the general interac-
tion form

Hrotor R+S = HrotorR +HrotorS +VRS . (32.19)

A useful approximation assumes that rotor S, the
“gyro”, is fastened to the frame of rotor R, so that the
interaction VRS becomes a constraint, does no work,
and is thus assumed to be zero. An asymmetric top with
body-fixed spin has the Hamiltonian

HR+S(Body-fixed) = AR2
x + BR2

y +C R2
z +HrotorS

+ (∼ 0) , (32.20a)

which is a modified version of (32.1). The total
angular momentum of the system is a conserved
vectorJ = R+ S in the lab-frame and a conserved mag-
nitude |J| in the rotor-R body frame. So we use

R= J− S in place of R:

HR,S(fixed) = A (Jx − Sx)
2+ B

(
Jy − Sy

)2

+C (Jz − Sz)
2+HrotorS

= AJ2
x + B J2

y +C J2
z −2AJx Sx

−2B Jy Sy −2C Jz Sz +H ′
rotorS

.

(32.20b)

The gyro spin components Sa are first treated as constant
classical parameters Sa:

HR,S(fixed)= const. 1−2ASx Jx−2BSy Jy−2CSz Jz

+ AJ2
x + B J2

y +C J2
z

= M0T0
0 +

∑

d
DdT1

d +
∑

q
QqT2

q .

(32.20c)

This is a simple Hamiltonian multipole tensor op-
erator expansion having here just a monopole T0

0 term,
three dipole T1

a terms, and two quadrupole T2
q terms.

Figure 32.9 shows these three tensor terms, where each
graph is a radial plot of a spherical harmonic function
Yk

q (φ,Φ) representing a tensor operator Tk
q . The tensor

components are

T0
0 =

J2
x + J2

y + J2
z

3
(32.21a)

T1
x = Jx =

T 1+1+T 1−1√
2

T1
y = Jy =

T 1+1−T 1−1

i
√

2
T1

z = Jz = T1
0 (32.21b)
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Fig. 32.9a–c The six lowest order RES components
needed to describe rigid gyro-motors

T2
zz =

2J2
z − J2

x − J2
y

2
= T2

0

T2
x2−y2 = J2

x − J2
y =

2
(
T2

2 −T2−2

)

√
6

(32.21c)

The constant coefficients or moments indicate the
strength of each multipole symmetry:

M0 = A+ B+C+3H ′
rotorS

(32.22a)

Dx =−2ASx ,

Dy =−2BSy ,

Dz =−2CSz (32.22b)

Qzz = (2C− A− B) /6

Qx2−y2 = (A− B) /2 (32.22c)

The scalar monopole RES (a) is a sphere, the vector
dipole RES (b) are bi-spheres pointing along Cartesian
axes, and the RES (c) resemble quadrupole antenna
patterns. Also, Fig. 32.9a–c plot the six s, p, and d
Bohr–Schrödinger orbitals that are analogs for the six
octahedral J-tunneling states listed in Table 32.5.

The asymmetric and symmetric rotor Hamil-
tonians (32.1) and (32.1) are combinations of
a monopole (32.21a), which by itself makes a spher-
ical rotor, and varying amounts of the two quadrupole

terms (32.21c) to give the rigid rotor RES pic-
tured in Figs. 32.1 and Fig. 32.2. The Q coefficients
in (32.22c) are both zero for a spherical top
(A = B = C), but only one is zero for a symmetric top
(A = B).

Combining the monopole (32.21a) with the
dipole terms (32.21b) gives the gyro-rotor Hamilto-
nian (32.20b) for a spherical rotor (A = B = C):

H = const+ BJ2− gµS · J , (32.23)

where −gµ= 2A = 2B = 2C. This Hamiltonian re-
sembles a dipole potential −m · B for a magnetic
moment m = gJ that precesses clockwise around a lab-
fixed magnetic field B= µS. (The PE is least for J
along S.)

The Hamiltonian (32.23) is a simple example of
Coriolis rotational energy. It is least for J along S, where
|R| = |J− S| and the rotor kinetic energy BR2 are least.
(Magnitudes |J | and |S| are constant here.) The spher-
ical rotor-gyro RES in Fig. 32.10 has a minimum along
the body-axis+S and a maximum along−S, where BR2

is greatest.
As is the case for the rigid solid rotors in Figs. 32.1

and Fig. 32.2, the RES topography lines determine the
precession J-paths in the body frame, wherein gyro-S
is fixed, as shown in Fig. 32.10. The left-hand rule gives
the sense of the J-precession in the body S-frame, i. e.,
all J precess counterclockwise relative to the “low” on
the +S-axis, or clockwise relative to the “high” on the
−S-axis. In the lab, S precesses in a clockwise manner
around a fixed J.

Precessing
J vector

Linear
harmonic
precession
spectra

Lowest RE
for gyro-rotor
at North pole
fixed point

Highest RE for gyro-rotor
at South pole fixed point

S

Fig. 32.10 The spherical gyro-rotor RES is a cardioid of
revolution around gyro spin S
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Gyro-RES differ from solid rotor RES, which have
two opposite “highs” and/or two opposite “lows” sepa-
rated by saddle fixed points where the precessional flow
direction reverses, as seen in Fig. 32.2. The gyro-RES
in Fig. 32.10 has no saddle fixed points, and thus has only
one “high” and one direction of flow with the same har-
monic precession frequency for all J-vectors between
the high +S and low −S-axes. This is because the spec-
trum of the gyro-rotor Hamiltonian (32.23) is harmonic,
or linear, in the K :

〈
J
K

∣∣∣ H
∣∣∣J
K

〉
= const.+ BJ(J +1)−2BK . (32.24)

In contrast, even the symmetric rigid rotor spec-
trum (32.4) is quadratic in K . Other rotors shown
in Figs. 32.2 and Fig. 32.4 have levels that have an even
more nonlinear spacing.

32.6.1 3D-Rotor and 2D-Oscillator Analogy

Linear levels are usually associated with harmonic
oscillators not rotors, but the gyro-rotor’s linear spec-
trum highlights a 160-year-old analogy between the
motions of 3D rotors and 2D vibrations [32.33–45].
Stokes [32.35] first described 2D electric vibration or
optical polarization, by a 3D vector that became known
as the Stokes vector S, and later as the “spin” S.
The Stokes spin was based on Hamilton’s quater-
nions qµ [32.33,34]. The Pauli spinors σµ = iqµ [32.36]
were defined, 83 years later, as components of a general
2D Hermitian matrix H . Spinors square to the unit ma-
trix

(
σ2
µ = 1= σ0

)
, while quaternions square to –1. The

3D Hamiltonian is

H =
(

A B− iC

B+ iC D

)

= A+D

2
σ0+ A−D

2
σA+ BσB+CσC , (32.25)

where

σ0 =
(

1 0

0 1

)

, σA =
(

1 0

0 −1

)

,

σB =
(

0 1

1 0

)

, σC =
(

0 −i

i 0

)

.

The 3D-component labels A−D
2 (Asymmetric-

diagonal), B (Bilateral-balanced), and C (Circular-
Coriolis) are ABC mnemonics for Pauli’s z, x, and y,
respectively. The 2D operator H has a 1+ S · J form of

the Coriolis coupling Hamiltonian (32.23):

H = S01+ SA JA + SB JB+ SC JC

= S0 J0+ S · J , (32.26)

where

J0 = 1 , JA = σA

2
, JB = σB

2
, JC = σC

2
,

and

S0 = (A+D)/2 , SA = (A−D) , SB = 2B ,

SC = 2C .

The elementary 2D-oscillator ladder operators a†,
and a make the 2D-3D theory more powerful. This is
known as the Jordan–Schwinger map [32.37–39] be-
tween 2D oscillation and 3D rotation. In terms of the
ladder operators

J0 = N = a†1a1+a†2a2 , JA = 1

2

(
a†1a1−a†2a2

)
,

JB = 1

2

(
a†1a2+a†2a1

)
, JC = −i

2

(
a†1a2−a†2a1

)
.

(32.27)

where

a†1a1 =
(

1 0

0 0

)

, a†1a2 =
(

0 1

0 0

)

,

a†2a1 =
(

0 0

1 0

)

, a†2a2 =
(

0 0

0 1

)

.

The a†a-algebra gives Schwinger’s 3D angular mo-
mentum raising and lowering operators J+ = JB+
iJC = a†1a2 and J− = JB− iJC = a†2a1, where in two
dimensions 1 and 2 are spin-up (+�/2) and spin-down
(−�/2), instead of the x-and y-polarized states envi-
sioned by Stokes.

The angular 3D ladder operation is replaced by
a simpler 2D oscillator operation:

J+|n1n2〉 = a1
†a2 |n1n2〉 =√

n1+1
√

n2 |n1+1, n2−1〉 ,
J− |n1n2〉 = a†2a1 |n1n2〉 =√

n1

√
n2+1 |n1−1, n2+1〉 . (32.28)

The 2D oscillator states are labeled by the to-
tal number N = (n1+n2) of quanta and the net
quantum population ∆N = (n1−n2). The 3D angular
momentum states

∣∣J
K

〉
are labeled by the total mo-

mentum J = N/2 = (n1+n2)/2 and the z-component
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K =∆N/2 = (n1−−n2)/2, just half (or η/2) of N
and ∆N .

|n1, n2〉 =
(

a†1

)n1
(

a†2

)n2

√
n1!n2!

|0, 0〉 =

∣∣∣J
K

〉
=

(
a†1

)J+K (
a†2

)J−K

√
(J +K)! (J −K)! |0, 0〉 , (32.29)

where

n1 = J +K , n2 = J −K .

From this Schwinger [32.38] rederived the Wigner
matrices DJ

MK (αβγ), which appear in (32.5) and (32.6),
and the Wigner–Eckart or Clebsch–Gordan matrix val-
ues. This helps clarify the approximation of these values
by (J, K)−cone levels around RES hills or valleys
[recall (32.10) and (32.11)], since

〈
J ′

K

∣∣∣T k
0

∣∣∣
J

K

〉

= CkJJ
0KK 〈J ‖k‖ J〉 ∼ DJ

JK

(
Θ J

K

)
.

32.6.2 Gyro-Rotors
and 2D-Local Mode Analogy

The 2D–3D analogy provides insight into spin [32.40–
42] and rovibrational dynamics [32.40–45], as well as
having computational value. Consider extending a sin-
gle 2D-oscillator-rotor analogy in the Stokes model to

S

BA

–B fixed pt.
Anti-symmetric
normal mode

+B fixed pt.
Symmetric
normal mode

C (or y)

S

TT0
(0)

+ Dy
(1)Ty

(1)
+ Q0

(2)T0
(2)

Symmetric
normal
mode
becomes
unstable

+A fixed pt.
Local Mode-1

–A fixed pt.
Local Mode-2

a) b) c)Spherical gyro-rotor
or normal � B-modes

Perturbed gyro-rotor
or “soft”  + B-mode

Symmetric gyro-rotor
or local � A-mode
normal –B-mode

(or z) (or x)

TT0
(0)

+ Dy
(1)Ty

(1)

Fig. 32.11a–c A spherical gyro-rotor becomes a symmetric gyro-rotor by adding T2
0

a model of two 1D oscillators with coordinates x1 = x
and x2 = y.

Identical side-by-side oscillators have bilateral
B-symmetry. The Hamiltonian HB commutes with the
matrices σB (+45◦ mirror reflection of axes ±x�±y)
and −σB (−45◦ mirror reflection of axes ∓x�±y),
both of which switch oscillators. A first-order bilat-
eral Hamiltonian is HB = 2BσB. This is analogous to
a gyro rotor T1

x with S along the B-axis, as shown
in Fig. 32.11a. (The added unit operator T0

0 shifts levels,
but does not affect eigenstates.)

The eigenstates of HB are the symmetric and anti-
symmetric normal modes that belong to the fixed points
on the S-vector or ±B-axes of the 3D Stokes space.
If instead, the S-vector lies on the A-axis, the Hamil-
tonian is an asymmetric diagonal HA = 2AσA matrix.
From (32.25) we see that the operator σA reflects y into
−y but leaves x alone, so that the eigenvectors of HA
are localized on the x-oscillator or the y-oscillator, but
not on both. Such motions are local modes, but they are
not modes of HB since it does not commute with HA.

If the vector J is on the +A-axis (local x-mode),
the Hamiltonian HB rotates J to the −C-axis, then to
the −A-axis (local y-mode), then to the +C-axis, and
then back to the +A-axis. This J-path is the equator
of Fig. 32.11a. The ±C-axes label circular polariza-
tion with right and left chirality, respectively. Twice
during a B-beat, J passes the ±C-axes, where one vi-
brator’s phase is 90◦ ahead and resonantly pumping
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the other. Such bilateral beat and resonant transfer is
disrupted by adding anharmonic T2

0 or T2±2 terms to
the B-symmetry terms T1

x and T0
0 . Adding T2

0 causes
B-circles in Fig. 32.11(a) to distort near the B-axis, as
shown in Fig. 32.11b–c.

In molecular rotation theory, the T2
0 and T0

0 terms
comprise the initial unperturbed Hamiltonian (32.3) of
a symmetric top, while the gyro terms T1

q are viewed as
perturbations in (32.20), due to an “on-board” gyro rotor.
For vibration theory, the T1

q terms make up a normal-
mode Hamiltonian, and the T2

0 term is viewed as an
anharmonic perturbation.

The effect of T2
0 , seen in Fig. 32.11c, is to replace

the stable fixed point +B (representing the (+)-normal
mode) by a saddle point as B bifurcates (splits) into
a pair of fixed points that head toward the ±A-axes.
So one normal mode dies and begets two stable local
modes, wherein one mass may keep its energy, and not
lose it to the other through the usual B-beating process.
(The A-modes become anharmonically detuned.)

Pairs of classical modes, each localized on differ-
ent sides of the RES in Fig. 32.11, are analogous to
the asymmetric top ±K -precession pairs in Fig. 32.2
with degenerate energy in a classical RES picture. The
quantum-tunneling Hamiltonian (32.15) splits each tra-
jectory pair into a superfine doublet with (±)-eigenstates
sharing both RES paths, as seen in Table 32.1. The quan-
tum gyro-spin doublets also share ±J components both
up and down the A-axis, as seen in Fig. 32.11c.

a) Composite �S rotational
energy surface

b) c)Forward gyro-spin
+S = (1, 1, 1)

Time reversed gyro
–S = (–1, –1, –1)

S

Jz

–S

Jy

Jx

S

J R

JR

–S

Fig. 32.12a–c Asymmetric gyro-rotor RES (classical body-fixed-spin case); (a) Composite ±S; (b) Forward spin ±S;
(c) Reversed spin −S

32.6.3 Multiple Gyro-Rotor RES
and Eigensurfaces

While simple quantum rotors delocalize J to multiple
RES paths, a gyro-rotor J may delocalize to mul-
tiple paths and surfaces. Gyro-rotor RES vary with S,
and if S is a quantum spin, the possibility arises for
a distribution over multiple RES [32.46, 47]. A sim-
ple quantum theory of S allows both +S and −S at
once. The RES for each is plotted one on top of the
other, as in Fig. 32.12a, while component RES are shown
in Fig. 32.12b for +S and in Fig. 32.12c for −S. An
energy sphere is shown intersecting an RES pair for
an asymmetric gyro-rotor. If the spin S is set to zero,
the pair of RES collapses into a rigid asymmetric top
RES, shown in Fig. 32.2, having angular inversion (time-
reversal J →−J) and D2h reflection symmetry. The
composite RES in Fig. 32.12a has inversion symmetry,
but lacks reflection symmetry. Its parts in Fig. 32.12b
and c have neither inversion nor reflection symmetry if
gyro-spins ±S are off-axis.

The gyro-rotor Hamiltonian (32.20) allows tunnel-
ing or mixing of multiple RES. A two-state spin−1/2
gyro-spin model has a 2⊗2 Hamiltonian matrix and two
base-RES:

Hgyro = M0 J · J+Dx Sx Jx +Dy Sy Jy +Dz Sz Jz

+Qxx J2
x +Qyy J2

y +Qzz J2
z (32.30)
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As in (32.7), J is approximated by classical vector
components in the body frame:

(
Jx = |J | sinβ cos γ , Jy = |J | sinβ sin γ ,

Jz = |J | cosβ
)
. (32.31a)

But the gyro-spin S uses its quantum representation S=
|S|σ/2 =√

3σ/2 from (32.25):
〈
Hgyro

〉= M0 J2+Qxx J2
x +Qyy J2

y +Qzz J2
z

+Dx |S| σx Jx +Dy |S| σy Jy +Dz |S| σz Jz

=
(

h (J)+Dz |S| Jz |S| (Dx Jx − iDy Jy
)

|S| (Dx Jx + iDy Jy
)

h (J)−Dz |S| Jz

)

=

⎛

⎜⎜
⎜
⎝

h (J)+dz cosβ
(
dx cos γ − idy sin γ

)

× sinβ
(
dx cos γ + idy sin γ

)
h (J)−dz cosβ

× sinβ

⎞

⎟⎟⎟
⎠
,

(32.31b)

where

h (J)= M0 J2+Qxx J2
x +Qyy J2

y +Qzz J2
z

and

dµ = Dµ|S||J | . (32.31c)

The dynamics generated by Hamiltonian approx-
imations such as (32.31b) are analogous to other
semiclassical approximations, such as the Maxwell–
Bloch model of an atom in a cavity. Their solutions
are very complicated and often chaotic. The classical
variable (J in this case) follows phase contours on
a changing RES that depends on the instantaneous ex-
pectation values of the quantum variables (S in this
case), which in turn vary according to the instantaneous
classical variables.

In spite of this complexity, semiclassical spectra
may be approximated using RES pairs obtained from
eigenvalues of a 2⊗2 matrix such as (32.31b) for each
classical angular orientation (βγ) of the J-vector in the
body frame [32.46,47]. The results are pairs of surfaces
roughly like those in Fig. 32.12a, but without the inter-
section lines. The Wigner non-crossing effect prevents
degeneracy, except at isolated points.

Near-crossing RES are the rotational equivalent
of near-crossing vibrational-potential energy surfaces
(VES) described in treatments of Jahn–Teller ef-
fects [32.48, 49]. The classical, semiclassical, and
quantum theory for such loosely-bound or fluxional sys-
tems is still inits infancy, but is potentially a very rich
source of new effects.
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Radiative Tran33. Radiative Transition Probabilities

This chapter summarizes the theory of radia-
tive transition probabilities or intensities for
rotationally-resolved (high-resolution) molecular
spectra. A combined treatment of diatomic, linear,
symmetric-top, and asymmetric-top molecules is
based on angular momentum relations. General-
ity and symmetry relations are emphasized. The
energy-intensity model is founded in a rotating-
frame basis-set expansion of the wave functions,
Hamiltonians, and transition operators. The inten-
sities of the various rotational branches are calcu-
lated from a small number of transition-moment
matrix elements, whose relative values can be as-
sumed from the supposed nature of the transition,
or inferred by fitting experimental intensities.
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33.1 Overview

33.1.1 Intensity versus Line-Position
Spectroscopy

The fact that atoms and molecules absorb and emit ra-
diation with propensities that vary with wavelength is
the origin of the field called spectroscopy. The relatively
sharp intensity maxima are interpreted as corresponding
to transitions between discrete states or energy levels.
The frequencies or energies of these transitions are used

as the primary source of information about the internal
structure of the atom or molecule. Line positions can be
measured with very high precision (1 ppm or better).
Excellent calibration standards have been developed.
The quality of these experimental data has attracted ex-
tensive analytical and theoretical effort. Sophisticated
parametrized models have been developed in which the
smallest shifts from the expected line positions can be
used to identify perturbations or other subtle effects.
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For molecules, knowledge of the strengths of these
transitions is far less well developed. One reason is that
quantitative experimental data on rotationally-resolved
absorption cross sections and emission intensities are
much rarer and the experiments themselves are much
more difficult to calibrate. Few measurements claim
a precision better than 1% and agreement within
10% of measurements in different laboratories is typ-
ically viewed as good. This situation is undesirable

because most applications of molecular spectroscopy
are in fact measurements of intensity. In many cases
the strengths of absorptions or emissions are used
to infer gas composition, temperature, time evolution,
or other environmental conditions. In other examples
the actual absorption and emission is the primary
interest. Among the most important of these are atmo-
spheric absorption of solar radiation and the greenhouse
effect.

33.2 Molecular Wave Functions in the Rotating Frame

33.2.1 Symmetries of the Exact Wave
Function

The exact total wave function for any isolated molecule
with well-defined energy and total angular momentum
can be expressed in a basis-set expansion over configu-
rations with well-defined internal quantum numbers,

Φexact (33.1)

=Φtrans

∑

αβγδε

Cαβγδε Φ
α
rotΦ

β
vibΦ

γ

elecΦ
δ
espinΦ

ε
nspin .

In principle, the coefficients Cαβγδε can be found only
by diagonalizing the exact Hamiltonian. In practice one
attempts to find a sufficiently good approximation, con-
taining only a few terms, with coefficients chosen by
diagonalizing an approximate or model Hamiltonian.
This is the basis of the energy–intensity model developed
in Sect. 33.3. As discussed by Longuet-Higgins [33.1]
and Bunker [33.2], there are only six true symmetries of
the exact Hamiltonian of an isolated molecule:

1. translation of the center of mass;
2. permutation of electrons;
3. permutation of identical nuclei;
4. time reversal or momentum reversal;
5. inversion of all particles through the center of mass;
6. rotation about space-fixed axes.

Of these, only the symmetries numbered 5 and 6 give
quantum numbers (parity and the total angular momen-
tum F) that are both rigorous and useful spectroscopic
labels of the states of the molecule. The other symme-
tries are convenient for simplifying the description of
the molecular wave function, for the evaluation of rela-
tions between matrix elements, and for classification of
molecular states according to approximate symmetries.

The first symmetry, translation of the center of mass,
allows the choice of a coordinate system referenced to
the center of mass, and suppression of the portion of the

wave function describing motion through space (as long
as the molecule does not dissociate).

Symmetry number 2, exchange of electrons, does
not directly provide any labels or quantum numbers,
since the Fermi–Dirac statistics of electrons require that
all wave functions must be antisymmetric. However,
it provides considerable information about the proba-
ble electronic states since it controls whether molecular
orbitals can be doubly or only singly occupied. For
most (low-Z) molecules, each state will have a nearly
well-defined value of electron spin: singlet or triplet for
example. Admixture of other spin values usually can be
treated as a perturbation. These points will be elaborated
in Sects. 33.4.4 and 33.7.4.

Permutation of identical nuclei, symmetry num-
ber 3, also gives an identical quantum number to
all the states of the molecule (±1 depending on the
character of the permutation and on whether nuclei
with integral or half-integral spin are being permuted).
It supplies little direct information about the en-
ergy separations between the states of the molecule.
On the other hand, many molecules have identical
nuclei in geometrically or dynamically equivalent posi-
tions. The existence of spatial symmetry, for nonplanar
molecules, is really the same thing as permutational
symmetry. Consequently, nuclear permutation, com-
bined with inversion (symmetry number 5), is the basis
for naming the states according to the approximate
spatial symmetry group of the molecular frame and
vibrational motion. These concepts will be explored
in Sect. 33.4.3.

Symmetry number 4, time reversal, is both subtle
and simple. In the absence of external magnetic fields the
Hamiltonian for a molecule will contain only even com-
binations of angular momentum operators, e.g., FαFβ ,
FαLβ , or FαSβ . Thus changing the signs of all the
angular momenta should result in an equivalent wave
function. This will require that matrix elements retain

Part
C

3
3
.2



Radiative Transition Probabilities 33.2 Molecular Wave Functions in the Rotating Frame 517

the same absolute value when the angular quantum
numbers are reversed, leading in general to complex
conjugation [33.3].

Spatial inversion, symmetry number 5, is always
an allowed operation for any molecule, even if it ap-
pears to lack internal inversion symmetry. This operation
can be considered as a symmetry of the spherically-
symmetric laboratory in which the molecule resides.
If the molecule is linear, triatomic, rigid with a plane
of symmetry, or is nonrigid with accessible vibra-
tional or tunneling modes that correspond to plane
reflections, inversion symmetry divides the states of
the molecule into two classes, called parities. Pertur-
bations can occur only between states of the same
parity. For optical transitions, the change in parity
of the states must match the parity of the operator.
Otherwise, reflection of the molecule in a plane will
interchange inconvertible optical isomers. Such optical
isomers are energetically degenerate, so in all cases,
inversion through the center of mass remains a valid
symmetry of the rotating molecule. However, the sep-
aration of the states into two kinds does not provide
any selection rules. The two parity classes are perfectly
degenerate, thus there is always an allowed level with
the correct parity either for perturbations or for optical
transitions.

33.2.2 Rotation Matrices

The final symmetry, rotation about the center of mass,
restricts the discussion to states with well-defined
laboratory angular momentum, and to re-expression of
the exact wave function by changing variables from
laboratory coordinates to body-fixed or internal coor-
dinates, and introducing the Euler angles relating these
two coordinate systems,

Φ
F,MF
exact (lab)=

∑

KF

Φ
F,MF KF
rot (Euler angles)

×Φ(F,KF )
vesn (internal, spins) . (33.2)

Here F is the total angular momentum of the molecule,
including vibrational, mechanical-rotation, electron-
orbital, electron-spin, and nuclear-spin contributions.
MF and KF are the projections of F in the laboratory
and body-fixed frames, respectively. In the majority of
cases, the magnitude of nuclear hyperfine interactions is
sufficiently small that its influence can be ignored when
analyzing wave functions and computing energies. Thus
the quantum numbers J , MJ , and K J , or just J , M, and
K can be used.

Explanation is postponed of how the body-fixed
frame is to be selected, but for any choice, the wave func-
tion for rotation of the entire molecule can be expressed
using a rotation matrix [33.4, 5]

Φ
F,MF KF
rot (Euler angles)

=
(
(2F+1)

8π2

)1/2

D∗F
MF KF

(φ, θ, χ) . (33.3)

For diatomics, Zare [33.5] suggests multiplying by
(2π)1/2 and settingχ = 0. The internal wave function for
the vibrational, electronic, electron-spin, and nuclear-
spin degrees of freedom [thus the label (vesn)] can be
thought of as the partial summation

Φ(F,KF )
vesn (internal, spins)

=
∑

βγδε

C(FKF )βγδεΦ
β

vibΦ
γ

elecΦ
δ
espinΦ

ε
nspin , (33.4)

expressed in the internal or rotated coordinate system.
Note that the FKF designation is only a parametric label.
The rotational wave function has been absorbed into the
rotation matrix.

33.2.3 Transformation of Ordinary Objects
into the Rotating Frame

The assumption of rotational symmetry allows re-
expression of matrix elements between total wave
functions as a sum of matrix elements between
internal wave functions. For example, the tensor op-
erator T (L) belonging to the L representation of the
rotation group, can be written in the rotating frame
as [33.5–8]

T (L)p (lab)=
∑

q

D∗L
pq (φθχ)T

(L)
q (body) , (33.5)

and can be used to evaluate matrix elements that might
represent radiative transitions:

〈
ψF′,M′′

F+p
∣∣T (L)p (lab)

∣∣ΦF′′,M′′
F
〉

=
(
(2F′′ +1)

(2F′ +1)

)1/2 〈
F′′M′′

F, L p
∣∣F′M′′

F + p
〉

×
∑

qK ′′
F

〈
F′′K ′′

F, Lq
∣∣F′K ′′

F +q
〉

×
〈
ψ
(F′,K ′′

F+q)
vesn

∣∣T (L)q (body)
∣∣Φ
(F′′,K ′′

F )
vesn

〉
, (33.6)

where
〈
F′′M′′

F, L p
∣∣F′M′′

F + p
〉

and
〈
F′′K ′′

F, Lq
∣∣F′K ′′

F+q
〉

are Clebsch–Gordan coefficients that vanish if
|F′ − F′′|> L , |M′′

F + p|> F′, or |K ′′
F +q|> F′.
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This transformation forms the basis for the derivation
of rotational branch strengths (Sect. 33.7.2) and for the

description of electron motions that are weakly coupled
to the molecular frame (Sect. 33.7.4).

33.3 The Energy–Intensity Model

33.3.1 States, Levels, and Components

The previous section introduced the concept of repre-
senting the wave function of a molecule as a product of
five simpler wave functions:

ψ ≈ ψelecψvibψrotψespinψnspin . (33.7)

This construction yields a similar separation of the
Hamiltonian,

H ≈ Helec+Hvib+Hrot–fs+Hhf , (33.8)

and representations of the energies as sums of contribu-
tions,

E ≈ Te+Gv+ Fc(J ) , (33.9)

and absorption or emission transition strengths as prod-
ucts,

I ≈ Ielec Ivib Irot–fs Ihf . (33.10)

Whatever theoretical arguments might favor such
a separation, the real impetus is the empirical observa-
tion that most molecular absorption and emission spectra
exhibit recognizable patterns arising from the dissimi-
lar magnitudes of the energies associated with these five
degrees of freedom. Separation of the wave function
and the Hamiltonian into these four or five contributions
facilitates the assignment of molecular spectra, in addi-
tion to suggesting models with parameters that can be
adjusted to quantitatively represent the observed spectra.

Most states of molecules are dominated by a single
set of electronic and vibrational quantum numbers.
Electronic states are often well separated. With each
electronic state is associated a potential energy sur-
face, the energy at the minimum being labeled Te.
Motion of nuclei within this potential generates various
levels corresponding to different vibrational quantum
numbers, following regular patterns or progressions in
energy, summarized by a small number of parameters
called vibrational frequencies. The quantity Gv rep-
resents the energy of the the vibrational level above
the potential minimum. For each vibrational level,
a progression of rotational levels is expected. For lin-
ear molecules in electronic states without electronic

angular momentum (i. e., 1Σ states) the rotational
energies are also reproduced by a few rotational
constants.

For more complicated molecules and electronic
states, i. e., most cases, there are multiple energetically
distinct levels with the same value of J (in addition
to the 2J +1 orientational degeneracy of each level).
These multiple levels all share the same nominal quan-
tum numbers (additional analysis may subdivide them
into parity or permutational symmetry types). These sub-
levels are called “components” with energies expressed
by the notation Fc(J ). The quantity Nc, the number
of components expected, reflects the assignment of the
nature of the vibronic state. For linear molecules there
is a limited number of components corresponding to the
various orientations of electron spin and orbital angular
momentum. For example, a 2Π electronic state will have
four components for each value of J (except for J = 1/2,
where there are only two components). For nonlinear
molecules the number of components increases with J ,
proportional to 2J +1, corresponding to various pos-
sible projections of the total angular momentum onto
the tumbling molecular frame.

The conclusion of this analysis is that a basis set
be chosen, over which a model rotational and fine-
structure Hamiltonian can be expressed. The wave
functions then become vectors of numbers. A priori,
only the form of the matrix elements and their depen-
dence on J and body–frame projection (K or Ω) are
known. Little is known in advance about how strong
the interactions are in any given molecule. Thus one
tends to write the Hamiltonian with parameters that
are to be determined by fitting the observed energy
levels.

Similarly, the choice of the basis sets for the upper
and lower states specifies the overall form of the matrix
of transition moments between the basis functions. The
transition can be chosen to be of a simple standard form,
for example, parallel or perpendicular, with only one
unknown parameter representing the overall strength of
the transition. Alternatively, the transition matrix ele-
ments can be considered to be independently adjustable,
within the symmetry restrictions that are required (time
reversal) or assumed (spatial symmetry).
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33.3.2 The Basis Set and Matrix
Hamiltonian

For linear molecules it is convenient to choose a basis
set labeled by the projections of orbital and spin an-
gular momenta in the body–frame coordinate system,
represented symbolically by

|ΛΣ; JMΩ〉 =
(
(2J +1)

8π2

)1/2

D∗J
MΩ |ΛΣ〉 ,

(33.11)

where Ω =Λ+Σ. This is called the Hund’s case (a)
basis set, which is an accurate representation in a single
term if the body–frame angular momenta are nearly con-
served. This is true if the spin-orbit interaction is larger
than the separation between rotational levels. Under all
circumstances, this basis set facilitates construction of
the matrix Hamiltonian and representation of sources of
transition probability [33.9].

One parametrization for the spin–rotation Hamilto-
nian is provided by Brown et al. [33.10–12]:

Hspin–rot

= Te+Gv+ Bv N2−Dv N4

+ 1

2

[
Av+ ADv N2, Lz Sz

]
+

+ (
γv+γDv N2)N · S

+ 1

3

[
λv+λDv N2, 3S2

z − S2]
+

+ηvLz Sz
[
S2

z −
1

5

(
3S2−1

)]

− 1

4

[
ov+oDv N2,Λ2+S2−+Λ2−S2+

]
+

+ 1

4

[
pv+ pDv N2,Λ2+S−N−+Λ2−S+N+

]
+

+ 1

4

[
qv+qDv N2,Λ2+N2−+Λ2−N2+

]
+ , (33.12)

where [x, y]+ is the anticommutator (xy+ yx), and
N = J− S. Zare et al. [33.13] provide an alternative
parametrization, with different interpretations of the
spectroscopic constants (B, D, A, γ, λ, etc.) because
they multiply different symbolic operators. One signif-
icant difference is that Zare et al. use the “mechanical
angular momentum” R= J−L−Sas the expansion op-
erator, rather than N, which might be called the “spinless
angular momentum.” These differences mean that care
must be taken in attempting to construct simulated spec-
tra from published constants. In spite of much discussion
in the literature, there is little theoretical foundation for

preferring one parametrization over another, as long
as the observed levels are accurately fit. In a number
of cases naive assumptions about the origin of certain
types of interactions have been overturned. For example,
the spin–spin interaction, represented by the constant λ,
is often dominated by level shifts due to off-diagonal
spin-orbit perturbations [33.14].

For polyatomic molecules, a suitable basis set for
expansion can be chosen to have a similar form [33.8,
15, 16]

|lΛΣ; JMK〉 =
(
(2J +1)

8π2

)1/2

D∗J
MK |lΛΣ〉 ,

(33.13)

where Λ and Σ represent the projections of the
electron- orbital (L) and spin (S) angular momenta, and
l represents the projection of the vibrational angular mo-
mentum (p for degenerate vibrational modes). This is the
symmetric top basis set. Generalizing the work of Wat-
son [33.17, 18], the parametrized Hamiltonian might be
written in a form such as

Hrot =
∑

hαβγδεζηθl

{(
J2)α(Jz

)2β(J2γ
+ + J2γ

−
)

× (J · p)δ(J · L)ε(J · S)ζ

× (p · L)η(p · S)θ(L · S)l
}
,

(33.14)

where the {} indicates that an appropriately symmetric
combination be constructed with anticommutators.

For both linear and nonlinear molecules, it is conve-
nient to use the Wang transformation [33.19] to combine
basis functions with opposite sense of rotation: for di-
atomics

1√
2

[||Λ|,Σ;J,M,Ω〉± |−|Λ|,−Σ; J,M,−Ω〉] ;
(33.15)

and for polyatomics

1√
2
[|l,Λ,Σ; J,M, K〉
± |− l,−Λ,−Σ; J,M,−K〉] . (33.16)

For diatomic molecules, these combinations can be as-
signed the parity ±(−1)J+S+s, where s = 1 for Σ−
states, and 0 otherwise [33.13, 20]. For symmetric top
molecules, each term is to be accompanied by the ap-
propriate hidden nuclear-spin basis function [33.8, 21].

For asymmetric top molecules, the Wang transfor-
mation divides the basis functions into four symmetry
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classes E± and O± according to the combining sign
and whether K is even or odd. The eigenstates are of-
ten labeled by two projection quantum numbers called
K−1 and K1. Assuming that A ≥ B ≥ C, the asymmetry
parameter

κ = (2B− A−C)

(A−C)
(33.17)

ranges from −1 for a prolate symmetric top (B = C)
to 1 for an oblate symmetric top (B = A). A, B,
and C are the rotational constants, or reciprocals of
the moments of inertia, about the three principal top
axes. Each asymmetric top level can be correlated
with specific symmetric top levels (i. e., K -values)
in the two limits. The prolate limiting K -value is
called K−1 and the oblate limit is called K1 (i. e.,
κ =±1). Note that the symmetric-top principal axes
rotate by 90◦ during this correlation. The eigenstates
are given additional symmetry names (ee,eo,oe,oo)
according to whether K−1 and K1 are even or
odd. Papousek and Aliev [33.18] discuss the rela-
tions between the (E±, O±) and (ee,eo,oe,oo) labeling
schemes.

33.3.3 Fitting Experimental Energies

Having chosen a basis set and model Hamiltonian for
both the upper and lower levels, the observed transition
energies can be used to infer the numerical values of
the constants that best fit the spectrum. The following
quotation provides a good description of the process:

The calculational procedure logically divides into
three steps: (1) The matrix elements of the up-
per and lower state Hamiltonians are calculated
for each J value using initial values of the ad-
justable molecular constants; (2) both Hamiltonians
are numerically diagonalized and the resulting sets
of eigenvalues are used to construct a set of calcu-
lated line positions; and (3) from a least-squares fit
of the calculated to the observed line positions, an
improved set of molecular constants is generated.
This nonlinear least-squares procedure is repeated
until a satisfactory set of molecular constants is
obtained.

This quotation is taken from the article by Zare
et al. [33.13] in which they describe the basis for
the LINFIT computer program, one of the first to ac-
complish direct extraction of constants from diatomic
spectral line positions based on numerically diagonal-
ized Hamiltonians.

33.3.4 The Transition Moment Matrix

Diagonalization of the model Hamiltonians for the upper
and lower states yields vector wave functions that can
be used for calculating matrix elements, especially those
needed to evaluate radiative transition probabilities. The
wave functions for diatomic molecules have the form

ψ′J ′M′c′ =
∑

Λ′Σ′
bJ ′c′
Λ′Σ′ |Λ′Σ′; J ′M′Ω′〉′ ,

Φ′′
J ′′M′′c′′ =

∑

Λ′′Σ′′
aJ ′′c′′
Λ′′Σ′′ |Λ′′Σ′′; J ′′M′′Ω′′〉′′ .

(33.18)

Section 33.2.3 expresses matrix elements of labora-
tory-frame operators in terms of matrix elements in the
rotating body-fixed frame. Terms of the form

µK ′K ′′ = 〈
ψ(J

′K ′)∣∣T (L)q (body)
∣
∣Φ(J

′′K ′′)〉θ(−q)
(33.19)

need to be evaluated. These terms are multiplied by zero
if K ′ �= K ′′ +q. In the diatomic basis set these become

µΛ′Σ′Λ′′Σ′′ = ′ 〈Λ′Σ′∣∣T (L)q (body)
∣∣Λ′′Σ′′〉′′θ(−q) ,

(33.20)

where θ(−q) is a phase factor described in Sect. 33.7.2.
Only a few of these matrix elements are independent and
nonzero. For electric dipole transitions (L = 1), time-
reversal and inversion-symmetry can be used to establish
the relation

µ−Ω′−Ω′′ = η(−1)Ω
′−Ω′′

µΩ′Ω′′ . (33.21)

The sign of η=±1 is determined by the overall char-
acter of the electronic transition, and is related to the
classification of levels into e- and f -parity types and to
the determination of which components are involved in
the rotational branches (P, Q, and R). These concepts
are elaborated in Sect. 33.4.

33.3.5 Fitting Experimental Intensities

For allowed transitions in linear molecules and symmet-
ric tops, only one independent parameter is normally
expected in the transition moment matrix. Thus no
additional information is available from fitting the
experimental rotational branch strengths (assuming
the energy–intensity model is adequate). In diatomic
molecules, the intensities of different vibrational bands
can be used to infer the internuclear-distance depen-
dence of the electronic transition moment (for example,
see Luque and Crosley [33.22]).

Part
C

3
3
.3



Radiative Transition Probabilities 33.4 Selection Rules 521

For forbidden transitions and allowed transitions in
asymmetric tops, more than one independent parameter
is expected. The intensity of a single given rotational
line can be expressed in the form

I line =
∣∣∣
∣∣

∑

K ′K ′′
µK ′K ′′ Z K ′K ′′(line)

∣∣∣
∣∣

2

, (33.22)

where Z K ′K ′′(line) can be calculated in advance from
the energies (wave functions) and quantum numbers
alone, using the formulas in Sect. 33.7.2. Nonlinear
least-squares fitting can be used to derive the best inten-
sity parameters [33.23–26], analysis of which can help
characterize the nature of the transition, and identify the
sources of transition probability.

33.4 Selection Rules

33.4.1 Symmetry Types

Selection rules are guidelines for identifying which
transitions are expected to be strong and which are
expected to be weak. These rules are based on clas-
sifying rovibronic levels into labeled symmetry types.
Some symmetry distinctions are effectively exact: such
as total angular momentum F, or laboratory-inversion
parity. Others are approximate, derived from esti-
mates that certain matrix elements are expected to
be much larger than others. The most important of
these are based on electron spin (for light molecules)
and geometrical point-group symmetry (for relatively
rigid polyatomics). In actual fact, no transition is
completely forbidden. The multipole nature of elec-
tromagnetic radiation (electric-dipole, magnetic-dipole,
electric-quadrupole, etc.) implies that any change in
angular momentum or parity is possible in principle.
Practical interest emphasizes identification of the ori-
gin of the strongest source of transition probability, and
estimation of the strengths of the weak transitions rel-
ative to the stronger ones. The result is a collection
of propensity rules using selection rules as tools of
estimation.

Basis functions for expansion of the wave func-
tions for the upper and lower states were chosen in
Sect. 33.3.2. The first step in the symmetry classification
of rovibronic levels consists of identifying various linear
combinations of basis functions that block-diagonalize
the exact or approximate Hamiltonians. Symmetry-type
names are then assigned to these linear combinations
based on the value of F or J and knowledge of the
symmetry properties of the underlying vibrational and
electronic states. Thus each eigenfunction or rovibronic
level consists of an expansion over only one of the kinds
of linear combination, and the level can be assigned
a specific symmetry type.

Similarly, the basis-set expansion leads to a ma-
trix representation of the possible transitions. Spin- and
spatial-symmetry arguments establish relationships be-

tween these transition matrix elements, and provide
estimates of which are much smaller than the others.
Each combination of upper- and lower-state symme-
try types results in a specific pattern of rotational
branches. The most important patterns are ∆J even
(Q-branches) or odd (P- and R-branches), and inten-
sity alternation for consecutive values of J (nuclear spin
statistics).

33.4.2 Rotational Branches and Parity

The symmetry of time or momentum reversal implies
that changing the signs of all the angular momenta
should result in an equivalent wave function. For ex-
ample, the phase convention

Φ(F,−KF )
vesn (internal, spins)

= (−1)−F+KFΦ∗(F,KF )
vesn (internal,−spins) (33.23)

can be chosen to establish that the relative phases of
matrix elements of the Hamiltonian can be taken as

〈
D∗F

MF−K ′
F
Φ

(F,−K ′
F)

vesn

∣∣∣H
∣∣∣D∗F

MF−K ′′
F
Φ

(F,−K ′′
F)

vesn

〉

=
〈
D∗F

MF K ′
F
Φ

(F,K ′
F)

vesn

∣∣∣H
∣∣∣D∗F

MF K ′′
F
Φ

(F,K ′′
F)

vesn

〉∗
. (33.24)

The formula for matrix elements of optical transition
operators can also be reanalyzed,

〈
ψF′,M′′

F+p
∣∣T (L)p (lab)

∣∣ΦF′′,M′′
F
〉

(33.25)

=
[
(2F′′ +1)

(2F′ +1)

]1/2 〈
F′′M′′

F, L p|F′M′′
F + p

〉

×
1

2

∑

qK ′′

〈
F′′K ′′

F, Lq
∣∣F′K ′′

F +q
〉

×

{〈
ψ

(F′,K ′′
F+q)

vesn

∣∣∣T (L)q (body)
∣∣∣Φ

(F′′,K ′′
F)

vesn

〉

+ (−1)F
′+L−F′′

×
〈
ψ

(F′,−K ′′
F−q)

vesn

∣∣∣T (L)−q (body)
∣∣∣Φ

(F′′,−K ′′
F)

vesn

〉}
,
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to establish that all contributions are purely real or purely
imaginary [33.27]. Since such transition matrix elements
will be used as absolute squares, they can be treated as
if they were purely real.

Parity classification of molecular states according to
inversion through the center of mass is important for es-
tablishing which transitions are electric-dipole allowed
and which states can perturb each other. As discussed by
Larsson [33.4], such classification is not without subtlety
and opportunity for confusion. Inversion of the labora-
tory spatial coordinates (isp, also called E∗ [33.2]) is
equivalent to a reflection σ of the molecule-fixed elec-
tronic and nuclear coordinates in an arbitrary plane
followed by rotation of the molecular frame by 180◦
about an axis through the origin and perpendicular to
the reflection plane (if F is half-integral special care
must be taken about the sense of rotation). It follows
that

ispΦ
F,MF
exact (lab)

= E∗ΦF,MF
exact (lab)

= η(−1)F−γΦF,MF
exact (lab)

=
[
(2F+1)

8π2

]1/2

×
∑

KF

(−1)F−KF D∗F
MF−KF

σxzΦ
(F,KF )
vesn (33.26)

and

σxzΦ
(F,KF )
vesn = η(−1)KF−γΦ(F,−KF )

vesn , (33.27)

where γ = 0 or 1/2 for integral or half-integral F, re-
spectively, and η is the parity label for the state, having
values of ±1. In linear molecules, levels with η=+1
are called e-levels while those with η=−1 are called
f -levels [33.28, 29].

Inversion symmetry can be combined with time
reversal to establish that all matrix elements of the
Hamiltonian can be taken to be real [33.27]. The wave
function can also be expressed in the form of the Wang
transformation [33.19], uniting the ±KF components,

Φ
F,MF
exact (lab)

=
(
(2F+1)

8π2

)1/2 ∑

KF≥0

[
D∗F

MF KF
Φ(F,KF )

vesn

+ η(−1)−KF+γ D∗F
MF−KF

σxzΦ
(F,KF )
vesn

]

×
[
2(1+ δKF0)

]−1/2
. (33.28)

If the molecule is rigid and has a plane of sym-
metry, or is nonrigid with accessible vibrational or
tunneling modes that correspond to plane reflections, in-

version symmetry divides the states of the molecule into
two classes, according to the sign of η. Perturbations
can occur only for ∆F = 0 and η′η′′ = +1. For opti-
cal transitions, the change in parity of the states must
match the parity of the operator. Odd operators (e.g.,
electric-dipole) require η′η′′(−1)∆F =−1. Even op-
erators (e.g., magnetic-dipole and electric-quadrupole)
require η′η′′(−1)∆F =+1.

33.4.3 Nuclear Spin, Spatial Symmetry,
and Statistics

For most molecules, the coupling of nuclear spin with the
electron-spin, electron-orbital, and frame-rotational an-
gular momenta is sufficiently weak that treatment of the
energetics of hyperfine interactions can be postponed.
The first-order effect of nuclear spin is that rovibronic
wave functions for molecules containing identical nuclei
must be combined with appropriate nuclear spin wave
functions in order to obtain the necessary Fermi–Dirac or
Bose–Einstein nuclear permutation symmetry. For many
molecules, there exist combinations of nuclear permuta-
tions that correspond to combinations of frame rotations,
laboratory inversions, and feasible vibrational motions
(the rotational wave function makes a contribution be-
cause renumbering the nuclei requires a reanalysis of the
Euler angles). For rigid molecules, these permutations
(possibly including inversion) can be used to generate
the point symmetry group of the molecule. For flux-
ional molecules, with multiple energetically equivalent
nuclear configurations, a rather large “molecular sym-
metry group” can result, one that may not correspond to
any ordinary point group [33.1, 2].

In the discussion immediately following, consider
the case of N occurrences of one kind of nucleus, the
others being unique (e.g., PD3). The treatment can easily
be extended to the case of multiple kinds of identical
nuclei (e.g., C2H6). The exact wave function can be
rearranged into a sum over products of the form

Φexact =
∑

a,b

Φ(a)rvesΦ
(b)
nspin , (33.29)

where Φ(a)rves is a rovibronic wave function belonging to
the Γ (a) representation of the symmetric group SN of
permutations over N objects, andΦ(b)nspin is a nuclear spin
wave function, belonging to the Γ (b) representation of
SN . In order to obtain the correct permutation symme-
tries for the overall wave function, the only terms that can
appear in this sum are those for which the direct product
Γ (a)⊗Γ (b) contains the symmetric or antisymmetric
representation, for bosons or fermions, respectively.
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Assumption of negligible hyperfine interactions al-
lows evaluation of matrix elements of the form

〈
Φ(c)rvesΦ

(d)
nspin

∣∣H
∣∣Φ(a)rvesΦ

(b)
nspin

〉

= 〈
Φ(c)rves

∣∣H
∣∣Φ(a)rves

〉〈
Φ(d)nspin

∣∣Φ(b)nspin

〉
, (33.30)

which vanishes unless Γ (a)= Γ (c) and Γ (b)= Γ (d).
Thus the nearly-exact wave function can be written as
a sum over products where the rovibronic and nuclear-
spin factors correspond to basis functions from single
known representations:

Φexact ≈
∑

a,b

Φ(a)rvesΦ
(b)
nspin , (33.31)

with Γ (a)= Γrves and Γ (b)= Γnspin. This divides the
states of the molecule into a number of noninteract-
ing symmetry classes, labeled by the representations of
the symmetric group. In the absence of hyperfine in-
teractions, optical transitions are possible only within
a certain symmetry class.

Thus the existence of spatial or dynamical symmetry
implies that each rovibronic wave function transforms
according to a particular representation of a sub-
group of the permutation-inversion group (called CNPI
by Bunker [33.2]). Each representation includes only
specific values of nuclear spin, corresponding to the
permutational properties of the nuclear spin wave func-
tions. The most important effect of this analysis is to
assign statistical weights or relative intensities to the
different symmetry types. For example, the symmetry
group for NH3 is D3h (including umbrella inversion),
with representations A′1, A′2, A′′1, A′′2, E′, and E′′. The
A′1 and A′′1 representations must be combined with
the (nonexistent) antisymmetric spin function, yield-
ing a statistical weight of 0. Similarly, A′2 and A′′2
combine with the symmetric I = 3/2 spin function,
with a statistical weight of 4 (i. e., 2I +1). E′ and
E′′ combine with the nonsymmetric I = 1/2 spin func-
tions, with a statistical weight of 2. This material is
discussed from various viewpoints in numerous arti-
cles and text books, of which only a few can be cited
here [33.1, 2, 8, 18, 21, 30–36]. See Chapt. 32 for addi-
tional details and examples.

Although this analysis appears rather complicated,
the selection rules that result are actually the same,
at least in simple cases, as the ones that are deriv-
able from simpler ideas. For example, for a 1Σ+

g lower
state, even J levels are permutation symmetric and
have parity +1, while odd J levels are permutation
antisymmetric and have parity −1. For a 1Σ+

u upper
state, even J levels are permutation antisymmetric and

have parity +1, while odd J levels are permutation
symmetric and have parity −1. Both the parity se-
lection rule and permutation-symmetry selection rule
independently require that ∆J =±1 for electric-dipole
transitions. Similarly, that the permanent dipole mo-
ment of a symmetric-top molecule must lie along the
body-fixed axis replicates the ∆K = 0 selection rule
for pure-rotation transitions provided by permutational
symmetry arguments. This means that when simulating
absorption and emission spectra, the nuclear-spin wave
function can usually be ignored. The intensity alterna-
tion imposed by spin-statistics can be represented by
multiplying each wave function by the appropriate fac-
tor, for example, 0 or [(2I +1)/(2i+1)N ]1/2, where I is
the total nuclear spin, and i is the spin of one of the N
equivalent nuclei.

Group theory remains vital for understanding the rel-
ative strengths of vibrational transitions in polyatomics
(see Cotton [33.37], for example, and Sect. 33.6.2) and
becomes very interesting as interaction between vibra-
tion and rotation increases. For the purposes of this
discussion, the most important issue is identification of
which transition-moment matrix elementsµK ′K ′′ vanish
and which are related by symmetry.

33.4.4 Electron Orbital and Spin Angular
Momenta

For all molecules, the strongest transitions tend to
be those that conserve electron spin. The zero-order
transition-moment matrix is diagonal both in total spin
and in spin-projection onto the body–frame axis. In the
|ΛΣ〉 basis set for linear molecules this is expressed by

µΛ′Σ′Λ′′Σ′′ = µΛ′Λ′′δΣ′Σ′′ . (33.32)

The transition-moment tensor operator T (L)q (body) can
connect basis functions that differ in Λ by at most L .
Allowed electric-dipole transitions thus satisfy

µΛ′Λ′′ = 0, for |Λ′ −Λ′′|> 1 . (33.33)

In the usual case that the upper and lower states each
consist of only a single value of |Λ|, there is only one
independent, nonzero, matrix element µ|Λ′|,|Λ′′| with

µ−|Λ′|,−|Λ′′| = η(−1)|Λ′|−|Λ′′|µ|Λ′|,|Λ′′| . (33.34)

See Sect. 33.8 for a discussion of spin-forbidden and
orbitally-forbidden transitions. Similar arguments and
phase relationships can be developed for polyatomic
molecules with nonzero electron spin or degenerate
vibrational or electronic states.
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33.5 Absorption Cross Sections and Radiative Lifetimes

33.5.1 Radiation Relations

Among the most important radiation relations is the con-
nection between the absorption cross section and the rate
of spontaneous emission. Einstein [33.38] introduced his
A and B coefficients to describe the rates of absorption
and emission of radiation of a collection of two-level
atoms or molecules in equilibrium with a radiation field
at the same temperature. The discussion here follows
that of Condon and Shortley [33.39], Penner [33.40],
Thorne [33.41], and Steinfeld [33.42] (with corrections).
Also see Chapts. 10, 17, and 68 of this Handbook. The
number of absorption events per unit volume per unit
time is written as

Nl Bluρ(ν) . (33.35)

While the rate of emission is

Nu Bulρ(ν)+ Nu Aul . (33.36)

In thermal equilibrium, the radiative energy density is
given by the Planck blackbody law

ρ(ν)=
(

8πhν3

c3

) (
ehν/kT −1

)−1
, (33.37)

and the ground and excited state densities satisfy a Boltz-
mann relationship,

Nu

Nl
=
(

gu

gl

)
e−hν/kT , (33.38)

where gu and gl are the degeneracies of the upper and
lower states. The requirement that the rates of absorption
and emission must be equal leads to the relations

Aul =
(

8πhν3

c3

)
Bul =

(
8πhν3

c3

)(
gl

gu

)
Blu .

(33.39)

Numerical values of the B coefficients can be derived
from the optical absorption cross section, and thus

Aul =
(

8πν2

c2

)(
gl

gu

)∫
σabs(ν) dν

=
(

8πν2

c2

)∫
σse(ν) dν . (33.40)

Finally, the expression for the absorption oscillator
strength is

fabs = (4πε0)
(

mc3

8π2ν2e2

)(
gu

gl

)
Aul

= (4πε0)
( mc

πe2

) ∫
σabs(ν) dν . (33.41)

The emission oscillator strength is simply related to
that for absorption: fem =−(gl/gu) fabs. The oscilla-
tor strength offers considerable advantages as a means
of reporting and comparing the strengths of radiative
transitions. It is dimensionless, obeys the simple sum
rule (for electric-dipole transitions)

∑

u

ful = number of electrons , (33.42)

and is directly derivable from an experimental absorp-
tion cross section even before the assignment of the
upper level has been determined (i. e., before its degen-
eracy is known).

33.5.2 Transition Moments

In many cases, the intention is to construct model
quantum mechanical wave functions for the two states
involved in the transition under study. In addition, ab
initio electronic wave functions and matrix elements
may be available (see Chapt. 31). Quantum mechan-
ics suggests the following expression for the Einstein
A coefficient (see Sect. 11.5.1):

Aul =
(

64π4ν3

3hc3

)(
1

4πε0

)(
1

gu

)

×
∑

u′,l′′,p

∣∣〈ψ′u′
∣∣erp

∣∣ψ′′l′′
〉∣∣2 . (33.43)

The summation is over all three optical polarization di-
rections p (i. e., r p runs over x, y, and z in the lab frame),
all degenerate components l′′ of the lower state (i. e., gl
of them), and all degenerate components u′ of the up-
per state (i. e., gu of them). This triple sum is also called
the line strength Sul . Division by the upper-level degen-
eracy corrects for the fact that the transitions should be
averaged rather than summed over the initial levels.

In practice, choosing the appropriate degeneracy to
divide by is a question of some ambiguity. For atoms,
it is sufficient to understand how the individual ma-
trix elements and the line strength were calculated. For
example, Bethe and Salpeter [33.43] use a degener-
acy of (2L+1) for Schrödinger wave functions for the
hydrogen atom, and (2J +1) for Dirac wave functions.

For molecules with internal angular momentum, i. e.,
everything other than 1Σ states of linear molecules, the
situation is much more complicated. For electric-dipole
allowed transitions in light molecules, ab initio transi-
tion moments are calculated in a body-fixed coordinate
system, ignoring spin, and not summed over anything.
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For diatomic molecules, following the work of Whit-
ing et al. [33.44, 45], the transition probability from
a single upper-state component (J ′c′) to a single lower-
state component (J ′′c′′) is written as

AJ ′c′ J ′′c′′ =
(

64π4ν3

3hc3

)(
1

4πε0

)

×

(
1

2J ′ +1

)
qv′v′′ |Re|2Sc′c′′

J ′ J ′′ . (33.44)

In this formula qv′v′′ |Re|2 represents the rotationless
contribution to the transition moment, symbolically rep-
resented as a product of a vibrational overlap (qv′v′′ , i. e.,
a Franck–Condon factor) and an electronic-only compo-
nent |Re|2 (Sect. 33.6.1). All of the rotational complexity
is absorbed into the rotational-branch strength factor
Sc′c′′

J ′ J ′′ (Sects. 33.7.2 and 33.7.3). The issue to be ad-
dressed here is how to divide numerical factors between
|Re|2 and Sc′c′′

J ′ J ′′ . One approach is to construct an estimate
for the rotationless transition probability

Av′v′′ =
(

1

N ′
c

) ∑

c′ J ′′c′′
AJ ′c′ J ′′c′′ , (33.45)

where N ′
c is the number of internal spin-orbit compo-

nents of the upper state. Whiting et al. suggest that Sc′c′′
J ′ J ′′

be normalized such that for spin-allowed transitions∑

c′ J ′′c′′
Sc′c′′

J ′ J ′′ =
(
2− δ0,Λ′δ0,Λ′′

)(
2S+1

)(
2J ′ +1

)
.

(33.46)

The first factor is 1 forΣ–Σ transitions, and 2 for all oth-
ers. The final factor is replaced by

(
2J ′′ +1

)
if the sum

is over J ′ instead of J ′′. For spin-forbidden transitions
the following is a plausible extension of this sum rule,∑

c′ J ′′c′′
Sc′c′′

J ′ J ′′ = max
(
N ′

c, N ′′
c

)(
2J ′ +1

)
. (33.47)

Section 33.7.3 provides a corresponding sum rule for
polyatomic molecules. This normalization yields

Av′v′′ =
(

64π4ν3

3hc3

)(
1

4πε0

)

×

(
max

(
N ′

c, N ′′
c

)

N ′
c

)

qv′v′′ |Re|2 (33.48)

and for spin-allowed transitions, the simple spin-free
expressions for the electronic transition moments:

|Re|2 = |〈Λ|ez|Λ〉|2 (33.49)

for parallel transitions and

|Re|2 =
∣∣∣∣〈Λ+1|e 1√

2
(x+ iy)|Λ〉

∣∣∣∣
2

(33.50)

for perpendicular transitions.

33.6 Vibrational Band Strengths

33.6.1 Franck–Condon Factors

The Born–Oppenheimer separation of electron and nu-
clear motion suggests that during an optical transition
between different electronic states the nuclei should
change neither their position nor momentum. This con-
cept was developed from semiclassical arguments by
Franck [33.46] and justified quantum mechanically
by Condon [33.47]. Following Herzberg [33.48] and
Steinfeld [33.42] the vibronic transition moment can be
written as

µv′v′′ =
〈
ψ′eψ′v′

∣∣µ
∣∣ψ′′eψ′′v′′

〉
,

=
∫

dRψ∗′v′ (R)ψ
′′
v′′(R)

×
∫

dr ψ∗e
′
(r, R)ψ′′e (r, R)µ(r, R) ,

=
∫

dRψ∗′v′ (R)ψ
′′
v′′(R)µ(R) . (33.51)

If the R-dependence of µ(R) is sufficiently weak, it
can be factored out to obtain

µv′v′′ = Re

∫
dRψ∗′v′ (R)ψ

′′
v′′(R) , (33.52)

where Re is called the electronic transition moment. The
transition probability is proportional to the square of the
above, which is usually written as

I ≈ qv′v′′ R
2
e , (33.53)

where

qv′v′′ =
∣∣∣∣

∫
dRψ∗′v′ (R)ψ

′′
v′′(R)

∣∣∣∣

2

, (33.54)

the square of the overlap between initial and final vi-
brational wave functions, is called the Franck–Condon
factor.

The Franck–Condon factors satisfy the sum rule
∑

v′
qv′v′′ =

∑

v′′
qv′v′′ = 1 (33.55)
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provided the summations include the continuum vibra-
tional wave functions above the dissociation limits. The
Franck–Condon approach also can be used to calculate
intensities and cross sections for bound–free [33.49] and
free–free [33.50] emission and absorption.

In some cases the variation of µ(R) is significant.
Calculation of the effect on the intensities can usu-
ally be handled by the r-centroid method in which the
expression

r̄v′v′′ =
〈
ψ′
v′
∣∣R
∣∣ψ′′
v′′
〉

〈ψ′
v′ |ψ′′v′′ 〉

(33.56)

is used to calculate an effective internuclear dis-
tance for the transition. The transition strength is then
proportional to qv′v′ |µ(r̄v′v′′)|2. An advantage of this
formulation is that the vibrational overlaps can be calcu-
lated from energy information only, before the transition
moment function is known and before the transition
strengths are investigated experimentally. The quanti-
tative accuracy of the r-centroid method for transition
moments that are not linear in the internuclear distance,
has been addressed by a considerable literature, which
has been summarized by McCallum [33.51].

A second complication arises from the fact that the
vibrational wave functions themselves depend paramet-
rically on the rotational angular momentum. Calculation
of rotationally-dependent Franck–Condon factors is de-
scribed by Dwivedi et al. [33.52] who also discuss the
r-centroid method.

33.6.2 Vibrational Transitions

Vibrational transitions derive their strength from the
variation of the “permanent” dipole moment of the

molecule as a function of geometry or internuclear coor-
dinates. As described by several authors [33.31, 32, 34,
53] one can expand the dipole moment as a power series
in the internal-Cartesian or normal-mode coordinates

Mxyz(Q)= M0
xyz +

∑

i

(
∂Mxyz

∂Qi

)
Qi +· · ·

(33.57)

and calculate intensities from a formula like

I ≈ ∣∣〈ψv′1ψv′2 · · ·
∣∣M(Q)

∣∣ψv′′1ψv′′2 · · ·
〉∣∣2 . (33.58)

For homonuclear diatomic molecules, the dipole mo-
ment vanishes identically, so there is no rovibrational
spectrum. The dipole moment for heteronuclear di-
atomics is often close to linear in the internuclear
distance. The harmonic oscillator model suggests that
transitions with ∆v=±1 are the strongest, with inten-
sities approximated by

Iv+1,v ≈
∣∣∣∣

dM

dR

∣∣∣∣
2

(v+1) . (33.59)

Overtone bands, i. e., with |∆v| > 1, are observed,
as dramatically illustrated by the ∆v= 4, 5 emissions
from the OH radical observed from the Earth’s night
sky [33.54].

For polyatomic molecules, overtone and combina-
tion bands are often quite strong. The presence or
absence of which is used to establish the symmetries
of the vibrational modes. In general, it is difficult
to construct quantitative vibrational intensity formu-
las with only a few parameters that can be inferred
experimentally.

33.7 Rotational Branch Strengths

33.7.1 Branch Structure and Transition Type

The overall rotational structure of a molecular transi-
tion is determined by the relative values and phases
of the body–frame transition-moment matrix elements,
the relative values and phases of coefficients in the ex-
pansion of the upper-state and lower-state component
wave functions over the angular-momentum-projection
basis functions, the energy separations between the
components, and the relative values and phases of the
vector-coupling coefficients. In simple cases, each lower
component might be connected to only a single up-
per component [Hund’s case (b) or symmetric tops],

or ∆J =±1 (P- and R-branches) may dominate over
∆J = 0 (Q-branches).

For diatomic molecules, symmetry arguments are
used to divide the components into the two parity classes
e and f . For electric dipole transitions, the selection rules
from Sect. 33.4.2 imply that

(
N ′

e N ′′
e + N ′

f N ′′
f

)
P- and R-branches

(
N ′

e N ′′
f + N ′

f N ′′
e

)
Q-branches (33.60)

are expected, where Ne and N f indicate the number of
components of each parity class (Ne and N f differ by
no more than one). Rotational branches are labeled with
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the notation ∆R∆Jc′c′′ , using symbols P for−1, Q for 0,
and R for +1. ∆R indicates the “apparent” change in
mechanical rotational angular momentum (i. e., energy)
[see Hund’s case (b) in Sect. 33.7.4] and ∆J indicates
the “actual” change (i. e., quantum mechanical). The
labels c′c′′ indicate the components involved. Thus a
PQ21 branch is expected to be “red shaded” (∆R =−1)
with ∆J = 0 involving the second component of the
upper state and the first (lowest) component of the lower
state. The notation PQ21(J ) [or sometimes PQ21(R =
N ) forΣ lower states] identifies an individual rotational
line and specifies the rotational quantum number of the
lower state involved in the transition. If the upper- and
lower-state component numbers are the same, one of
them may be dropped. Thus P22 is sometimes written
as P2.

For symmetric top molecules, the rotational
branches are labeled ∆JK (e.g., P1). For asymmetric
tops, the branches are labeled by ∆J∆K−1,∆K1 , where
K−1 and K1 are the prolate- and oblate-limit angular
momenta projections (described in Sect. 33.3.2).

The transition dipole moment commonly lies paral-
lel or perpendicular to the body–frame axis. In the former
case, µK ′K ′′ vanishes for K ′ �= K ′′, and in the latter for
K ′ = K ′′. Thus parallel bands correspond to ∆K = 0
transitions, while perpendicular bands have ∆K =±1.
As enforced by the vector-coupling coefficients or Hönl–
London factors described below, for low values of K
(e.g., diatomics), ∆K = 0 implies strong ∆J =±1 (P
and R) branches and weak ∆J = 0 (Q) branches. On
the other hand, ∆K =±1 leads to Q-branches that
are approximately twice as strong as either the P- or
R-branches.

33.7.2 Hönl–London Factors

The matrix model Hamiltonians for the upper and lower
states have been diagonalized, yielding the wave func-
tions

ψ J ′M′
c′ =

∑

K ′
bK ′

J ′c′

((
2J ′ +1

)

8π2

)1/2

× D∗J ′
M′K ′(lab)χK ′(body) (33.61)

and

Φ J ′′M′′
c′′ =

∑

K ′′
aK ′′

J ′′c′′

((
2J ′′ +1

)

8π2

)1/2

× D∗J ′′
M′′K ′′(lab)ξK ′′(body) . (33.62)

In these expressions, the designations K ′ and K ′′ are
slightly symbolic. They represent the body–frame pro-
jection of the total angular momentum and also a running
index over basis functions. For complicated cases,
more than one basis function can have a given value
of K .

Following Sect. 33.2.3, the rotational branch
strength is then written as

Sc′c′′
J ′ J ′′

=
∑

pM′M′′

∣∣〈ψ J ′M′
c′

∣∣T (L)p (lab)
∣∣Φ J ′′M′′

c′′
〉∣∣2

= (2J ′′ +1)

∣∣∣
∣
∑

q′K ′K ′′
b∗K ′

J ′c′a
K ′′
J ′′c′′

〈
χK ′

∣∣T (L)q (body)
∣∣ξK ′′

〉

×
〈
J ′′K ′′, Lq

∣∣J ′K ′〉
∣
∣∣∣

2

(33.63)

or

Sc′c′′
J ′ J ′′ =

∣∣∣∣∣

∑

K ′K ′′
b∗K ′

J ′c′a
K ′′
J ′′c′′µK ′K ′′ζ

(
J ′,K ′, J ′′,K ′′)

∣∣∣∣∣

2

,

(33.64)

where

µK ′K ′′ = 〈
χK ′

∣∣T (L)q (body)
∣∣ξK ′′

〉
θ
(
K ′′ −K ′) (33.65)

is the body–frame transition-moment matrix introduced
in Sect. 33.3.4, with relative values that are hypothesized
based on interpretation of the nature of the transition,
calculated from ab initio wave functions, or inferred
by fitting the observed rotational branch strengths. The
Clebsch–Gordan expression

ζ
(
J ′, K ′, J ′′, K ′′)

= (
2J ′′ +1

)1/2〈
J ′′K ′′, L K ′ −K ′′∣∣J ′K ′〉

× θ
(
K ′′ −K ′)θ

(
J ′ − J ′′

)
(33.66)

represents the transformation of the radiation field from
the laboratory-frame to the body–frame, also related
to the “direction cosines” used by many authors. The
additional phase factors

θ(k)= sgn(k)=
⎧
⎨

⎩
+1 k ≥ 0

−1 k < 0
(33.67)

have been included here to make the signs and symme-
try relations of µK ′K ′′ and ζ

(
J ′, K ′, J ′′, K ′′) agree with

those already in use [33.9, 44, 55, 56]. They are related
to the choice of the leading signs when T+ and T− are
expressed as ±(Tx + iTy) and ±(Tx − iTy). Their inclu-
sion has no effect for spin-allowed transitions with only
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one source of transition probability, e.g., purely parallel
or perpendicular.

In the usual case of electric-dipole (or magnetic-
dipole) radiation (i. e., L = 1), ζ2 is the well-known
Hönl–London factor [33.57]. ζ

(
J ′, K ′, J ′′, K ′′) is

a real, signed quantity: negative for ∆J∆K > 0; or
∆J =∆K = 0 and K < 0; otherwise positive [33.9].

Setting L = 2 provides intensity formulas for
electric-quadrupole [33.58], Raman [33.59], and two-
photon [33.60,61] transitions. Additional Rayleigh-like
terms can appear for K ′ = K ′′ �= 0. Halpern et al. [33.61]
also give formulas for three-photon transitions in
diatomics, expressed in terms of Clebsch–Gordan co-
efficients with L = 3 and L = 1 (for |∆Ω| ≤ 1).

33.7.3 Sum Rules

The orthonormality relations for component eigenvec-
tors

∑

c′
b∗K ′

J ′c′b
K
J ′c′ = δK ′,K , (33.68)

∑

c′′
a∗K ′′

J ′′c′′a
K
J ′′c′′ = δK ′′,K (33.69)

can be used to construct the sum rule
∑

c′c′′
Sc′c′′

J ′ J ′′ =
∑

K ′K ′′

∣∣µK ′K ′′ζ
(
J ′, K ′, J ′′, K ′′)∣∣2 .

(33.70)

Finally, the orthonormality relations of the Clebsch–
Gordan coefficients result in

∑

J ′c′c′′
Sc′c′′

J ′ J ′′ =
(
2J ′′ +1

) ∑

K ′K ′′

∣∣µK ′K ′′
∣∣2 ,

(33.71)
∑

J ′′c′c′′
Sc′c′′

J ′ J ′′ =
(
2J ′ +1

) ∑

K ′K ′′

∣∣µK ′K ′′
∣∣2 .

(33.72)

As discussed in Sect. 33.5.2, it is convenient to have the
µK ′K ′′ matrix elements consist of numbers that repre-
sent the nature of the transition but not its strength, the
latter being expressed by the “vibrational” (qv′v′′ ) and
“electronic” (Re) contributions. Following Sect. 33.5.2,
for diatomic molecules, the “orientational” part µK ′K ′′
is taken to have a fixed sum rule

∑

K ′K ′′
|µK ′K ′′ |2 = max

(
N ′

c, N ′′
c

)
, (33.73)

where N ′
c is the number of components (K ′ values, or

basis functions) for the upper state, and N ′′
c is the num-

ber of components in the lower state. For polyatomic
molecules, the sum rule can be written as

(2J +1)2
(
µ2

a +µ2
b+µ2

c

)
max

(
N ′

c, N ′′
c

)
, (33.74)

where

µ2
a +µ2

b+µ2
c = |µ+|2+|µ−|2+|µ0|2 = 1 (33.75)

and N ′
c and N ′′

c are the numbers of spin-electronic-
vibrational components in the upper and lower states,
respectively. Also see Whiting et al. [33.44, 45] and
Brown et al. [33.7].

33.7.4 Hund’s Cases

In diatomic molecules, several limiting cases are useful
as short-hand or first-approximation concepts for classi-
fication of energy levels and rotational branch strengths.
These are called the Hund’s cases [33.62–64]. They are
distinguished by the extent to which the electron orbital
and spin angular momenta are rigidly attached to the
tumbling molecular frame, i. e., whether Λ, Σ, and S
are good quantum numbers. Hund’s cases are discussed
in many journal articles and in every textbook dealing
with the rotational structure of diatomic spectra. An ap-
pealing recent description is provided by Nikitin and
Zare [33.65].

In most works, the emphasis has been on finding
a favorable zero-order approximation for perturbation
expansion of energy levels. The advance of precision
measurement of transition energies and the availabil-
ity of sophisticated parametrical matrix models and fast
computers on which to realize them, has reduced the
importance of Hund’s cases for actual computations. In
particular, the need to derive and implement numerous
explicit energy and intensity formulas leads to unfor-
tunate transcription errors. Nevertheless, they remain
of value for qualitative and pedagogical understand-
ing, especially for estimates of the relative intensities
of rotational branches.

Hund’s case (a) describes the situation in which
Λ andΣ are separately well-defined. This is a common
case in which the separation between electronic states,
i. e., different values of |Λ|, is larger than the spin-orbit
interaction, which in turn, is larger than the separation
between rotational levels. At low J , there are (2S+1)
pairs of nearly-degenerate energy levels separated from
each other by the spin orbit constant: E ≈ AΛΣ+
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BJ(J +1). The wave functions are of the form

ψ JM
Ω± =

1√
2

(
(2J +1)

8π2

)1/2

×
[

D∗J
MΛ+Σ |Λ,Σ〉±D∗J

M−Λ−Σ |−Λ,−Σ〉
]

= 1√
2
[|Λ,Σ; J,M,Ω〉

± |−Λ,−Σ; J,M,−Ω〉] , (33.76)

with only two nonzero expansion coefficients aK
Jc. If

both the upper and lower states are well described by
Hund’s case (a), then each lower component is optically
connected only to the upper components with the same
value of |Σ|. Then

SΩ
′Ω′′

J ′ J ′′ = (
2J ′′ +1

)∣∣〈J ′′Ω′′, 1Ω′ −Ω∣∣J ′Ω′〉∣∣2 ,
(33.77)

withΩ′′ =Λ′′ +Σ and Ω′ =Λ′ +Σ.
Hund’s case (b) indicates that Λ is well-defined,

but spin-orbit coupling is weak. The components cor-
respond to well-defined values of N = J− S, ranging
from |J − S| to (J + S), with energies approximated by
E ≈ BN(N +1), and wave functions of the form

ψ JM
N± =

∑

Σ

(−1)S+Σ〈J −Ω, SΣ|N −Λ〉

×
1√
2
[|Λ,Σ; J,M,Ω〉

± |−Λ,−Σ; J,M,−Ω〉] . (33.78)

This equation is derivable from Mizushima’s equation
(2-3-26) [33.14] and Zare’s equations (2.8), (2.26), and
(3.105) [33.5], using the lab-to-body transformation

|SMS〉(lab)=
∑

Σ

D∗S
MSΣ

(φθχ)|SΣ〉(body) . (33.79)

It disagrees with Judd’s problem 9.1 [33.66] by a phase
factor (−1)J+2S+Σ−N but agrees with Mizushima’s
expansion of a 3Π state [33.14, p. 287] if the Clebsch–
Gordan coefficients are taken from Condon and Shortley
[33.39, p. 76].

If both the upper and lower states are well de-
scribed by Hund’s case (b), these wave functions can
be substituted into the general rotational-branch strength
equations above. Following Edmonds [33.67, (6.2.8) and
(6.2.13), and Table 5] yields the square of a product of
Clebsch–Gordan and Racah coefficients

SN ′N ′′
J ′ J ′′ =

(
2J ′′ +1

)(
2J ′ +1

)(
2N ′′ +1

)

×
∣∣〈N ′′Λ′′, 1Λ′ −Λ′′∣∣N ′Λ′〉

× W
(
N ′, J ′′, N ′′, J ′; S, 1

)∣∣2 . (33.80)

The Clebsch–Gordan coefficient enforces the case
(b) selection rule ∆N = 0,±1, while the Racah
coefficient provides the ∆J = ∆N propensity rule,
which becomes more precise as N increases. A sim-
ilar propensity rule, ∆F = ∆J , is common for
transitions between hyperfine components (see also Fe-
menias [33.68]).

Hund’s case (c) corresponds to the situation in which
spin-orbit coupling is so strong that each level described
by the projection Ω actually consists of multiple val-
ues of |Λ| (e.g., mixing of Σ and Π states) or multiple
values of S (e.g., mixing of singlet and triplet spins).
This limiting case is formally similar to Hund’s case
(a), but no assumptions can be made about the rela-
tive magnitudes of transition-moment matrix elements
µΩ′Ω′′ . Any of which can be nonzero for |∆Ω| ≤ 1, for
example

S
Ω′+Ω′′±
J ′ J ′′ = 1

4

∣∣µΩ′Ω′′ζ
(
J ′,Ω′, J ′′,Ω′′)

±µΩ′−Ω′′ζ
(
J ′,Ω′, J ′′,−Ω′′)

+µ−Ω′Ω′′ζ
(
J ′,−Ω′, J ′′,Ω′′)

±µ−Ω′−Ω′′ζ
(
J ′,−Ω′, J ′′,−Ω′′)∣∣2 .

(33.81)

The symmetry (sign) relations between µΩ′Ω′′ζ
(
J ′,Ω′,

J ′′,Ω′′) and µ−Ω′−Ω′′ζ
(
J ′,−Ω′, J ′′,−Ω′′) determine

whether this transition occurs only for ∆J = ±1
(P- and R-branches) or only for ∆J = 0 (Q-
branches).

The interest and complexity of Hund’s case (c)
were exemplified by a seminal work by Kopp and
Hougen [33.69], who considered Ω′ = 1/2, Ω′′ = 1/2
transitions, under the assumption that both states could
consist of arbitrary mixtures of 2Σ1/2 and 2Π1/2
character. Each of the six rotational branches shows
constructive or destructive interference of parallel
(∆Ω = 0) and perpendicular (∆Ω =±1) contributions.
Hund’s case (c) also describes spin-orbit mixing col-
lisions [33.70] or dissociation to specific spin-orbit
limits [33.71–73].

Hund’s case (d) arises in the investigation of
Rydberg series [33.74], in which the separation be-
tween Σ and Π from the same orbital configuration
approach each other as the principal quantum num-
ber (n) increases. Spin-orbit coupling between these
projections also diminishes. The eigenfunction compo-
nents correspond to well-defined values of R= J− L,
ranging from |J − L| to (J + L), with energies approx-
imated by E ≈ BR(R+1), and wave functions of the
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form

ψ JM
RL =

∑

Λ

(−1)L+Λ〈J −Λ, LΛ|R0〉|LΛ; JMΛ〉 .
(33.82)

Carroll [33.74] used intensity formulas provided by
Kovacs [33.58] to analyze, by spectral simulation, the
4p–15p

(1
Σ+

u and 1Πu
)

Rydberg states of N2 ex-
cited from the ground X1Σ+

g . Three strong Q-form
branches survive, correspondingto R′ = J ′′, two aris-
ing from Π←Σ and one from Σ←Σ case (a)
branches. The remaining O-form (R′ = J ′′ −2) and S-
form (R′ = J ′′ +2) branches fade rapidly as n increases.
With the phase conventions used here, this situation
corresponds to body–frame transition matrix elements
satisfying

µ00 = µ−10 =−µ10 . (33.83)

In the opposite case, corresponding to a parity change of
the parent-ion core [33.73], two of the Q-form branches
are extinguished, while one Q-form, one O-form, and
one S-form branch remain. The transition matrix elem-
ents would satisfy

µ00 = 0 , µ−10 = µ10 . (33.84)

Hund’s case (d) polyatomics are also known [33.8].
Hund’s case (e) would correspond to a situation

in which L and S are strongly coupled to each other,
but neither is strongly coupled to the internuclear
axis. No examples are known for bound states of
molecules.

33.7.5 Symmetric Tops

For transitions between nondegenerate vibronic states,
the transition moment must lie along the principal top
axis, leading to the selection rule ∆K = 0. Otherwise,
Hougen’s convenient quantum number [33.33] G =Λ+
l−K , provides the selection rule ∆G = 0,±n (for an

n-fold major symmetry axis) (Sects. Section 33.3.2, Sec-
tion 33.4.3, and Chapt. 32). Transitions with ∆G =±n
are much weaker than those with ∆G = 0 and are not
calculable from a simple formula. Branch intensities
can be calculated with the Hönl–London formulas of
Sect. 33.7.2.

33.7.6 Asymmetric Tops

In general, no assumptions can be made about
the orientation of the transition moment. The vec-
tor representations (µx, µy, µz), (µa, µb, µc), and
(µ0, µ+1, µ−1) can have any combination of indepen-
dent nonzero values. It is common that one of the
(µa, µb, µc) values is significantly larger than the others,
especially for planar molecules with a two-fold symme-
try axis. In this case one obtains a type A, B, or C band,
if µa, µb, µc dominates, respectively [33.31, 75]. The
tradition of analytic calculation of line strengths from
explicit representations of wave functions and transition
moments leads to formulas of considerable complexity,
with somewhat restrictive assumptions [33.35,36,76]. In
the more general notation of Sect. 33.7.2, the rotational
line strength can be written as

Sτ
′τ ′′

J ′ J ′′ =
∣∣∣∣
∑

K ′K ′′
b∗K ′

J ′τ ′a
K ′′
J ′′τ ′′

(
µ0δK ′K ′′ +µ+δK ′K ′′+1

+µ−δK ′K ′′−1
)
ζ
(
J ′, K ′, J ′′, K ′′)

∣∣∣∣

2

,

(33.85)

where

µ0 = µc, |µ+| = |µ−| ,
|µ+|2+|µ−|2 = µ2

a +µ2
b . (33.86)

Papousek and Aliev [33.18] and Zare [33.5] follow the
present formulation, but with somewhat less generality
with respect to wave function expansion coefficients or
transition moment components.

33.8 Forbidden Transitions

33.8.1 Spin-Changing Transitions

The formalism presented above permits simulation of
any allowed transition or forbidden transitions medi-
ated by spin-orbit or spin-spin perturbations, or any
perturbation that is diagonal in Ω. For spin-allowed
transitions, the transition moment matrix is taken to be

diagonal in and independent of the spin projection, so
that

µΛ′Σ′Λ′′Σ′′ = µΛ′Λ′′δΣ′Σ′′ . (33.87)

For forbidden transitions, or complicated Hund’s case
(c) mixings, the transition moment matrix elements
can be considered as independent variable parameters,
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limited only by the symmetry constraint

µ−Ω′−Ω′′ = η(−1)Ω
′−Ω′′

µΩ′Ω′′ , (33.88)

and the fact that terms with |∆Ω| > 1 will be
multiplied by zero. Alternatively, a specific set of can-
didate perturbers can be selected, and the Λ- and
Σ-dependence of their contributions to the transition-
moment matrix evaluated explicitly. For example,
first-order spin-orbit mixing would lead to terms of the
form

µS′S′′
Λ′Σ′Λ′′Σ′′

=
∑

Λ

[

µS′S′
Λ′Σ′ΛΣ′

〈
S′ΛΣ′∣∣HSO

∣∣S′′Λ′′Σ′′〉

∆E′′

+
(〈

S′Λ′Σ′∣∣HSO
∣
∣S′′ΛΣ′′〉

∆E′

)

µS′′S′′
ΛΣ′′Λ′′Σ′′

]

.

(33.89)

However, care must be taken in reducing these matrix el-
ements using the Wigner–Eckart theorem, for example,
following Lefebvre-Brion and Field [33.55], in order to
satisfy the ∆Ω = 0 requirement for matrix elements of
the rotationless Hamiltonian.

33.8.2 Orbitally-Forbidden Transitions

Even if the upper and lower states share the same
value of electron spin, the transition may still be for-
bidden. The change in orbital angular momentum may
be too large, |∆Λ|> 1, or a change in reflection parity,
Σ− →Σ+, may cause the zero-order transition ma-
trix elements to vanish. Spin-orbit mixing with other
2S+1Λ states, as described above, is usually the largest
source of transition probability. In addition, terms in
the Hamiltonian of the form J · L lead to contributions
to the transition strength that increase with J , and that
may mix-in higher values of Ω than were present in

the zero-order ΛΣ basis set for the upper and lower
states. This situation can be represented by general-
izing the formula from Sect. 33.7.2, following Huestis
et al. [33.23],

Sc′c′′
J ′ J ′′ =

∣∣
∣∣
∑

K ′K ′′
b∗K ′

J ′c′a
K ′′
J ′′c′′

×
1∑

i=−1

µ
(i)
K ′K ′′ζ(i)

(
J ′, K ′, J ′′, K ′′)

∣∣∣∣

2

,

(33.90)

where µ(0)K ′K ′′ is the rotationless contribution (µK ′K ′′
from Sect. 33.7.2) and µ(±1)

K ′K ′′ are the new rotation-
assisted terms. The new reflection-symmetry rule
is

µ
(i)
−K ′−K ′′ = η(−1)K

′−K ′′+iµ
(−i)
K ′K ′′ . (33.91)

The revised square-root Hönl–London factors are

ζ(0)
(
J ′, K ′, J ′′, K ′′)= ζ(J ′, K ′, J ′′, K ′′) (33.92)

(from Sect. 33.7.2) and

ζ(±1)(J ′, K ′, J ′′, K ′′)

= 1

2

{[
J ′
(
J ′ +1

)−K ′(K ′ ∓1
)]1/2

× ζ
(
J ′, K ′ ∓1, J ′′, K ′′)

+ [
J ′′
(
J ′′ +1

)−K ′′(K ′′ ±1
)]1/2

× ζ
(
J ′, K ′, J ′′, K ′′ ±1

)}
. (33.93)

As in Sect. 33.7.2 the symbols K ′ and K ′′ representΛ′Σ′
and Λ′′Σ′′ when used as labels, and Ω′ and Ω′′ when
used as numbers (a distinction that is relevant only when
S≥ |Λ| andΛ �= 0). This formulation is more symmetric
than that proposed by Huestis et al. [33.23], in that it
explicitly allows for either the upper or lower state to be
mixed by rotation (of significance only for low J and
∆Λ> 1).

33.9 Recent Developments

Added by Mark M. Cassar. Astronomical sky spectra
are important for an understanding of processes both in
Earth’s and other terrestrial environments. These spec-
tra are the background spectra obtained through the slit
of a spectrometer while excluding the object of primary
interest to the astronomer – the star, galaxy, etc. The
sky spectrum is subsequently subtracted from the object
spectrum so that the final product contains no emis-

sions from extraneous sources – nightglow, zodiacal
light, and the light of other stellar objects. This opera-
tion then leaves the astronomer with purer astronomical
spectra, which can then be compared to theoretical
transition probability calculations to identify emission
sources. This procedure has recently been used to iden-
tify the atomic oxygen green line in the Venus night
airglow [33.77], which relied on an understanding of
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molecular oxygen emissions. In addition, interpretation
of the intensities of molecular oxygen emissions also
furthers the understanding of the elementary processes
occurring in the Earth’s atmosphere [33.78].

Two recent studies have focused on the radiative
properties of the CaN and 39K85Rb molecules. In the
former study, the radiative transition probabilities and
lifetimes for the A4Π− X4Σ− and B4Σ−− X4Σ−
band systems were calculated [33.79]. These results
will in turn facilitate future spectroscopic studies of
CaN showing the essential interplay between theory
and experiment, which is required for a deeper un-

derstanding of these processes. (Radiative properties
are sensitive to electronic coupling schemes and to
configuration interaction, and thus present an impor-
tant testing ground for theoretical models [33.80, 81].)
The second study provides quantitative estimates for
the radiative cooling of heteronuclear translationally
ultracold molecules [33.82, 83]. By calculating the ra-
diative transition probabilities for 39K85Rb, which lead
to the radiative lifetime through the total Einstein A
coefficient, it has been shown that under appropriate
laboratory conditions such a cooling process is not
relevant [33.84].
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Molecular Pho34. Molecular Photodissociation

Molecular photodissociation is the photoinitiated
fragmentation of a bound molecule [34.1]. The
purpose of this chapter is to outline the ways in
which molecular photodissociation is studied in
the gas phase [34.2]. The results are particularly
relevant to the investigation of the species involved
in combustion and atmospheric reactions [34.3].
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Conceptually the photodissociation process can be di-
vided into three stages. During the first stage the
molecule absorbs a photon and is promoted to an excited
state. This is generally an excited electronic state, but can
be a highly excited vibrational state in the ground elec-
tronic state. In the second stage, the transient complex
evolves through a series of transition states, until finally,
in the third stage, the molecule enters the exit channel
and dissociates into the products. Schematically, this
might be represented, for a triatomic molecule ABC
(see Fig. 34.1), as

ABC+�ω→ (ABC)‡→ AB(v, j )+C . (34.1)

In the case of the triatomic molecule represented here,
the dissociation involves the transformation of one of
the vibrational modes to a translational, or dissocia-
tive, mode, another vibrational mode (the bending) to
rotational motion of the products ( j), whilst the third
vibrational mode is preserved (v).

When the molecule is promoted to an electronic state
which has a purely repulsive potential energy surface
(PES), it undergoes very rapid dissociation, often in
less than one vibrational period. This is called direct
dissociation. However, the dissociation of the transient
complex can be delayed, taking place over many vi-
brational periods. This is called indirect dissociation, or
predissociation, and has been divided into three different
categories [34.4], though as with the division between di-
rect and indirect, this is sometimes somewhat arbitrary.

Vibrational Predissociation (Herzberg Type II)
In this case, the transient complex is on a vibrationally
adiabatic potential energy surface (this is an effective
potential for the molecule when it is in a particular vi-
brational state v) which is not dissociative, or which has
a barrier to dissociation. Therefore, to dissociate it must
either tunnel through the barrier, which is the only pos-
sibility for v = 0, or undergo a nonadiabatic transition
to a lower vibrational state, thereby transferring energy
from a vibrational degree of freedom to the dissociative
mode. This process of energy exchange is commonly
called the intramolecular redistribution of vibrational
energy (IVR).

Rotational Predissociation (Herzberg Type III)
In this case, the transient complex is on a nondisso-
ciative rotationally adiabatic potential energy surface.
Therefore, in a similar manner to vibrational pre-
dissociation, if it is to dissociate it must undergo
a nonadiabatic transition to a lower rotational state,
thereby transferring energy from rotation to the disso-
ciative mode.

Electronic Predissociation (Herzberg Type I)
In this case, the PES of the electronic state of the
transient complex is not dissociative at the given en-
ergy, and in order to dissociate the molecule must
undergo a nonadiabatic transition to a second disso-
ciative electronic state. This involves the coupling of
nuclear and electronic motion and therefore leads to
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α

P[AB(A,α)]

P[AB(X,α)]

α

ω

σ(ω)

ABC(B̃) t� = 0 t� � 0

ABC(Ã)

t = 0 t � 0

ABC(X̃)

AB(A,α)+C

AB(X,α) + C

Dissociation coordinate R

Ã – X̃

B̃ –X̃

V

Fig. 34.1 Schematic representation of the uv photodis-
sociation of a triatomic molecule ABC into products
AB(α) and C, illustrating the total absorption cross
section σ(ω), evolution of the molecular wavepacket,
and asymptotic product state distributions P(α), for di-
rect and indirect dissociations on B̃ and Ã state PESs
respectively

a break down of the Born–Oppenheimer (BO) ap-
proximation. There are two main types of electronic
predissociation. In the first case, there is only a very
small coupling, and no actual crossing, between two
different electronic states, and the transition between
the two is driven by the very high density of vi-
brational states on the second electronic state. This
is called internal conversion for spin-allowed pro-
cesses, and intersystem crossing for spin-forbidden
processes. In the second case, the transition between
the electronic states is driven by strong coupling. This
coupling can be vibronic (vibrational-electronic) in
nature, e.g., for the Renner–Teller and Jahn–Teller ef-
fects, or purely electronic, as in the case of a conical
intersection.

Selection Rules
Two sets of selection rules apply to photodissocia-
tion. The first set governs the allowed states to which
the molecule can be promoted by the photon. These
selection rules are simply those for bound-state spec-
troscopy (Sect. 33.4). Note in particular the selection
rule ∆J = 0,±1. This has important practical impli-
cations since it means that a molecule which is initially
rotationally cold remains so after absorption of a photon.
Thus, those observables which are averaged over J will
have a clear structure experimentally, and will be easier
to calculate theoretically. This is in contrast to scatter-
ing experiments which in general involve a summation
over many J states (Chapt. 36).

The second set of selection rules governs the disso-
ciation process. The transient complex, or prepared (p)
state, will undergo transitions to a final ( f ) vibrational,
rotational or electronic state in order to dissociate; these
transitions have their own set of selection rules. As for all
selection rules, these are determined on the basis of sym-
metry. For a total wave function Ψ and a perturbation
function W , which consists of the coupling terms or ne-
glected terms in the Hamiltonian,

∫
Ψ ∗

p WΨ f dτ must be
nonzero for a transition to take place. As W forms a part
of the Hamiltonian, it is totally symmetric, and there-
fore the integral is nonzero only if the prepared and final
state irreducible representations are equal, Γ p = Γ f . If
there is a transition to an excited electronic state, the
point groups of the initial and final states are often not
the same, in which case the point group formed by the
joint elements of symmetry is used, or, in the case where
there is no stable geometry for one of the states, the sym-
metry of the potential is used. For a diatomic molecule
these selection rules are given in Table 49.2.

If the motion can be separated into vibrational, ro-
tational, and electronic parts, so that Ψ = Ψ vΨ rΨ e and
W = Wv+W r+We, it is then possible to derive three
separate selection rules: Γ r

p = Γ r
f for the rotational mo-

tion, i. e. conservation of internal angular momentum;
Γ e

p = Γ e
f for the electronic motion; and Γ v

p = Γ v
f for

the vibrational motion. Since the final vibrational state
is in the continuum, in practice all vibrational species
(Γ v

f ) are available at a given energy, so that the vi-
brational selection rule is not significantly restrictive.
This separation is not possible in the case of electronic
predissociation occurring through the Renner–Teller or
Jahn–Teller effect, where it is necessary to consider the
vibronic species of the initial and final states.
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34.1 Observables

Fundamental to any study of photodissociation is the
measurement or calculation of the characteristic prop-
erties, or observables, of the reaction, from which the
underlying dynamics of the fragmentation process can
be inferred.

34.1.1 Scalar Properties

The absorption cross section σ(ω) is a measure of the ca-
pacity of the molecule to absorb photons with frequency
ω. It is analogous to the line intensity in bound-state
spectroscopy. Assuming that the light-matter interac-
tion is weak (Chapt. 68), and that the light pulse is on
for a long time, the absorption cross section is given by

σ(ω) ∝ ω fi
∣
∣〈Ψ f

∣
∣E · µ̂∣∣Ψi

〉∣∣2 , (34.2)

where Ψi and Ψ f represent the initial and final states,
whose energies differ by �ω fi ; E is a unit vector in the
direction of the polarization of the electric field, and
µ̂ is the electric dipole operator of the molecule. As-
suming the Born–Oppenheimer separation of electronic
and nuclear motion, (34.2) can be rewritten as

σ(ω) ∝ ω fi
∣∣〈Ψ rv

f

∣∣µ fi
∣∣Ψ rv

i

〉∣∣2 , (34.3)

where the electronic transition dipole moment µ fi
equals 〈Ψ e

f |E · µ̂|Ψ e
i 〉, and is in general dependent on the

internal coordinates of the molecule. The superscripts
(r, v) will be dropped from now on, and Ψ will refer
to the wave function for the internal coordinates of the
molecule.

The absorption cross section reflects not only the
nature of the transient complex but also its evolution
through the transition states. For direct dissociation the
absorption cross section is usually very broad and struc-
tureless. In contrast, the absorption cross section for
predissociation is structured, containing lines which are
normally Lorentzian in shape, and whose widths Γ are
related to the lifetime of the transient complex at that
energy by τ = �/Γ .

The partial photodissociation cross sections σ(ω, α)
are a measure of the capacity of the molecule to ab-
sorb photons with frequency ω and to yield products in
quantum state α. They are defined by

σ(ω, α) ∝ ω fi
∣∣〈Ψαf

∣∣µ fi
∣∣Ψi

〉∣∣2 , (34.4)

where Ψαf is the final wave function for the products
in the quantum state α. The partial cross sections for
direct dissociation are broad and featureless. For predis-

sociation, similar structures are seen in the partial cross
sections as in the absorption cross section. The absorp-
tion or total cross section is given by the sum of the
partial cross sections over all final product states:

σ(ω)=
∑

α

σ(ω, α) . (34.5)

The rotational and vibrational product distributions
P(ω, α) provide information about the amount of prod-
uct formed by a photon with frequency ω in a particular
rotational or vibrational state α. These are related to the
partial cross sections by P(ω, α)= σ(ω, α)/σ(ω). The
rotational and vibrational product distributions reflect
the nature of the transient complex as it enters the exit
channel, as well as the dynamics in the exit channel.

The branching ratios for different chemical species
produced in photodissociation are defined as the fraction
of the total number of parent molecules that produce the
particular species of interest. In (34.1), the molecule
ABC dissociated into AB + C. It might equally well
have dissociated to A + BC, or indeed A + B + C. It
is clear then that there may be several different reaction
schemes, or channels, for the photodissociation of one
particular molecule. Thus, the branching ratio for form-
ing AB is the yield of this first channel divided by the
total dissociation yield into all possible channels. Fur-
ther, it would sometimes be possible to produce AB, or
any of the other chemical species, in various electronic,
vibrational or/and rotational quantum states. In this case,
the branching ratio for forming AB(α) is the yield of AB
in the specific quantum state α divided by the total yield
of AB; however, this describes the branching into only
this particular reaction channel.

For the reaction scheme represented in (34.1), the
quantum yields of the products AB and C are the same.
However, for example, in the reaction

ABC2+�ω→ (ABC2)
‡→ AB(v, j )+2C ,

(34.6)

the quantum yield of C is twice that for AB. In gen-
eral, the quantum yield of a particular product fragment
for one reaction channel is the ratio of the number of
fragments formed to the number of photons absorbed.
However, it is again possible for a molecule to dissociate
into various different reaction channels. In such a case,
to obtain the overall quantum yield for a particular prod-
uct, the quantum yield for each reaction channel must be
summed over all the available reaction channels, taking
into account the branching ratios for the channels.
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34.1.2 Vector Correlations

Photodissociation is by its very nature an anisotropic
process, as can be seen from (34.2). The operator µ̂ de-
fines a specific axis in the molecular body-fixed frame
of reference. At the instant of photoexcitation, µ̂ is
preferentially aligned parallel to the polarization of
the electric field E in the external laboratory space-
fixed frame of reference. Hence, E defines a specific
axis, and thus cylindrical symmetry in the body-fixed
frame. If fragmentation occurs on a time scale which
is short compared with overall rotation of the excited
complex, this correlation persists between the body-
fixed frame and the space-fixed frame, and a wealth
of information can be obtained. However, rotation of
the transient complex prior to fragmentation serves
to degrade this symmetry in the external body-fixed
frame.

Three vectors fully describe the photodissociation
process for both the parent molecule and the prod-
ucts: (i) µ̂ in the body-fixed frame (and hence E, in
the space-fixed frame, at the instant of photoexcita-
tion); (ii) v, the recoil velocity of the products; and
(iii) j, the rotational angular momenta of the frag-
ments. Vector correlations can exist between all of these
vectors [34.5].

The most commonly observed is the angular distri-
bution of the photofragments I(θ, α), i. e. the relation

I(θ, α) ∝ 1

4π

[
1+β(α)P2(cos θ)

]
(34.7)

between v and E. P2(x) is the second-order Legen-
dre polynomial and θ is the angle between v and E.
The anisotropy parameter β(α) ranges between −1
for a perpendicular transition and +2 for a paral-
lel transition. Thus, measuring the angular distribution
of the fragments provides information about the type
of electronic transition and hence the electronic sym-
metry of the excited state [34.6]. If the alignment
between the body-fixed and space-fixed frames is de-
stroyed, the angular distribution becomes isotropic and
β(α) = 0. The anisotropy parameter depends on the
product channel α.

A second vector correlation concerns the direc-
tion of j with respect to E. Fragmentation generates
rotational motion in the nuclear plane: for a perpen-
dicular transition this is perpendicular to the plane
containing the atoms, leading to the projection of j
being preferentially aligned parallel to µ̂, and thus
E in the space-fixed frame. For a parallel transition,
the opposite would be true, i. e. j would be aligned

Fig. 34.2 Spatial recoil anisotropies and Doppler line shape
profiles, for parallel and perpendicular transitions compared
with an isotropic distribution

in the plane perpendicular to µ̂. The alignment of
j leads to polarized emission/absorption depending
on whether molecules are created in an electroni-
cally excited/ground state. Therefore the orientation
of the product polarization with respect to the origi-
nal photolysis polarization E also yields information
about the symmetry of the electronic states involved in
dissociation.

The final association in this series is independent of
the space-fixed frame, since v and j are both defined
in the body-fixed frame. Unlike the two previous corre-
lations, a long lifetime does not destroy the alignment,
as it is not established until the bond breaks and the
two fragments recoil. For a tetratomic (or larger) mol-
ecule there are, in principle, two possible sources of
product rotational excitation: bending motion in a plane
of the molecule producing fragments with v perpen-
dicular to j; or torsional motion leading to fragment
rotation out of the plane. A prime example of this is the
distinction between frisbee and propeller type motion
of the two OH fragments in the dissociation of hydro-
gen peroxide [34.7, 8]. Measurement of only the scalar
properties cannot discriminate between these two pos-
sibilities, highlighting the additional information that
can be gained about the bond rupture and the exit
channel dynamics by the study of vector correlations
(Fig. 34.2).
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34.2 Experimental Techniques

Early photochemical experiments used broad white-
light continuum sources and large diffractome-
ters [34.4]. However, it has been the development of
lasers in combination with molecular-beam techniques
that has dramatically increased the understanding of
photodissociation processes. The ever increasing spec-
tral and time resolutions of lasers, in addition to the
power and range of wavelengths available, have made
it possible to excite molecules selectively and with high
efficiency. This has enabled state-specific preparation of
the parent molecule, study of time evolution, as well as
the measurement of the scalar and vector properties of
the asymptotic products [34.9].

Specification of the Initial State
A room temperature sample of a gas will have a Boltz-
mann distribution over rotational states. Molecular beam
techniques provide an improved specification of the
initial angular momenta in the parent molecule by isen-
tropically cooling its internal rotational energy [34.10].
Full quantum state specification can be achieved by
various two-photon excitation schemes, e.g., stimulated
emission pump (SEP) spectroscopy and vibrationally
mediated dissociation. SEP is commonly used to study
dissociation on the ground state PES; the molecules
are excited to a stable upper electronic state, stim-
ulated emission back to the ground state prepares
a single quasibound state. Vibrationally mediated dis-
sociation provides information about both ground and
upper electronic states; the molecules are excited to
a stable intermediate vibrational level on the ground
state and further excitation promotes this fully de-
fined wave function to an upper dissociative electronic
state [34.11].

Detailed Measurement
of the Absorption Cross Section

UV and VUV electronic spectroscopy has proven a very
powerful tool for examining the interaction of a pho-
ton with a parent molecule (Chapt. 69). Absorption
cross sections are typically measured by scanning
the frequency domain and monitoring either the in-
tensity of radiation absorbed or the flux of product
molecules produced. State specific detection of the
product flux yields the partial cross section σ(ω, α).
Explicit measurement of σ(ω) is a direct applica-
tion of the Beer–Lambert law (Sect. 69.1) and thus
depends on the length of the optical cavity: cavity
ring-down spectroscopy with multiple passes through

a cell provides an effective cell length of several tens of
kilometers.

Evolution of the Transient Complex
The evolution of the molecular wavepacket can be
probed by time-resolved spectroscopy, as discussed
in Chapt. 35 and [34.12]. Real-time analysis of the mo-
lecular wavepacket provides a direct insight into the
forces acting during molecular photodissociation. This
type of time-resolved spectroscopy and the energy-
resolved spectroscopy described above are mutually
exclusive due to the time-energy uncertainty principle
(Sect. 80.3.1).

Asymptotic Properties
The vast majority of photodissociation studies determine
asymptotic properties of the dissociation process, meas-
uring either internal energy, recoil velocity, or angular
distributions of the dissociation products. The prod-
uct state distributions are usually explicitly probed by
laser-induced fluorescence (LIF), resonance-enhanced
multiphoton ionization (REMPI) spectroscopy, or co-
herent Raman scattering with the relative populations of
the products obtained via line intensities.

The distribution and anisotropy of the recoil ve-
locities are measured using Doppler spectroscopy or
time-of-flight (TOF) techniques [34.13]. Doppler spec-
troscopy uses the Doppler-broadening of lines in the
LIF or REMPI excitation spectra (Sect. 69.5); the pro-
file of the line shape also depends on the recoil
anisotropy of the probed species (Fig. 34.2). How-
ever, many important molecular fragments are not
amenable to spectroscopic detection. Thus, though
lacking the ultimate state-specificity of spectroscopy,
TOF techniques by virtue of their general appli-
cability provide an appealing alternative route to
determine the product state distributions. In TOF
techniques, the time is recorded for photofragments
to recoil a known distance from the interaction
region to a detector. Due to total energy and
momentum conservation, the translational energy dis-
tribution of a fragment state specifically detected
directly implies the internal energy distribution of
the other partner product. In less favorable cases
where this is not possible, coincidence detection
schemes are employed to define the partition be-
tween translational and internal energies. Rotation of
the detection axis with respect to the polarization
of the photolysis laser yields the recoil anisotropy.
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Advances in spatially resolved detection schemes
are now providing an improved measure of vector
correlations.

Mass spectrometry can be used to measure branching
ratios and quantum yields, which can also be obtained
from the techniques described above.

34.3 Theoretical Techniques

The calculation of the observables of photodissociation
can be carried out using quantum mechanics either in
the time-independent or the time-dependent frame, as
well as using classical mechanics [34.1]. Theoretical
studies have contributed greatly to the understanding of
photodissociation processes, as they provide the ability
not only to calculate the observables, but also, through
the knowledge of the wave function, to view directly the
dissociation dynamics. This has enabled the inference
of the underlying dynamics from the observables of the
reaction to be more precisely established.

Due to computer limitations, the majority of quan-
tum mechanical studies currently treat fully only three
degrees of freedom, and thus have mainly concentrated
on triatomic molecules. Jacobi coordinates are usually
used, with the appropriate set for the dissociation of
ABC into AB and C as follows: R, denoting the dis-
tance between the atom C and the centre of mass of the
AB fragment; r, denoting the internal vibration coordi-
nate of AB; and γ , denoting the bending angle between
R and r.

The initial state Ψi is generally taken to be a single
bound state. It is obtained either by the solution of the
Schrödinger equation at a particular energy (Sect. 31.4),
or simply by taking a product of three Gaussians in the
three coordinates, with the parameters of the Gaussians
being determined from spectroscopic information on the
ground state.

Further, to calculate the observables it is also nec-
essary to have information about µ fi . However, this
is often assumed to be a constant, i. e. independent of
the internal coordinates of the molecule. The Franck–
Condon principle assumes that the nuclear geometry
changes after the electronic transition, and not during
it. Therefore a molecule, with a particular geometry,
will, when promoted by the photon to the excited elec-
tronic state, be centred around the same geometry,
which is thus referred to as the Franck–Condon region,
or point.

To carry out any dynamical calculations it is nec-
essary to have PESs for the electronic states involved.
These are usually obtained from ab initio calculations
which are described in Chapt. 31. The accuracy of the
PES surface largely determines the accuracy of the re-

sults obtained, as the PES essentially determines the
dynamics of the fragmentation process.

In the time-independent approach, a solution of the
time-independent Schrödinger equation

(
Ĥ− E

)
Ψα = 0 , (34.8)

is sought for a specific total energy E subject to appro-
priate boundary conditions at infinite product separation.
There are many different approaches to solving this
problem, but they can be broadly separated into two
groups: scattering methods and L2 methods. The scatter-
ing methods involve the solution of the coupled channel
equations described in Chapt. 36. These can be solved
directly to yield the wave functions, which can then be
used to calculate the observables, or can be solved in-
directly to provide similar information. The use of L2

methods, which attempt to expandΨ in a finite basis set,
is not directly applicable since the wave functions are
in the continuum and spread out to infinite distances in
the R coordinate. Thus various modifications have been
introduced in order to take this into account. The most
important of these use variational principles [34.14],
such as that due to Kohn [34.15]. In the Kohn variational
principle the wave function in the inner or interaction re-
gion is expanded in a finite L2 basis. However, in the
outer region, the wave function is expanded in an en-
ergy dependent basis of outgoing and incoming waves,
which are approximate solutions of the coupled channel
equations. Other methods which can sometimes be used
to indirectly extract information about the observables
are stabilization [34.16] and complex scaling [34.17].

In the time-dependent approach [34.18], one solves
the time-dependent Schrödinger equation

i�
∂

∂t
Φ(t)= ĤΦ(t) (34.9)

for the wavepacket Φ(t) with initial condition
Φ(0)= Ψi , i. e. it is assumed that the molecule is ver-
tically promoted by an infinitely short pulse to the
electronic state under consideration. The wavepacket
is a coherent superposition of stationary wave func-
tions Ψα (Chapt. 35), and since it comprises many of
the stationary states, it contains all the information
necessary to characterize the dissociation (see Fig. 34.3).
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Fig. 34.3 Time evolution of a wavepacket in the dissociation of FNO in the S1 state

The total absorption cross section is given by

σ(ω) ∝
+∞∫

−∞
dt S(t) e−iωt , (34.10)

where the autocorrelation function S(t) is defined as

S(t)= 〈Φ(0) |Φ(t)〉 . (34.11)

The autocorrelation function reflects the motion of the
wavepacket, and therefore is a convenient means for
visualizing the molecular dynamics. The individual par-
tial cross sections can be obtained in the limit t → ∞
by projection of the wavepacket onto the stationary
wave functions of the products, i. e. plane waves in the
dissociation coordinate and vibrational-rotational wave
functions for the free products.

34.4 Concepts in Dissociation

There has been substantial experimental and theoretical
work to elucidate the processes involved in photodisso-
ciation from knowledge of the observables, and much
progress has been made. In this section, an attempt is
made to present some of the simpler ideas which have
emerged [34.1].

34.4.1 Direct Dissociation

Direct dissociation is the very fast rupture of a bond af-
ter a molecule has been promoted to an electronic state
which has a purely repulsive PES. A very clear picture
of this process can be obtained from wavepacket calcu-
lations: the wavepacket which is placed on the repulsive
surface moves directly down the PES and into the exit
channel. The autocorrelation function decays from one

to zero in a short time and does not show any recur-
rences, i. e. oscillations in the autocorrelation function.
The absorption cross section σ(ω), which is the Fourier
transform of the autocorrelation function (34.10), is
therefore a very broad Gaussian with no structure. The
breadth of σ(ω) is inversely proportional to the width of
the autocorrelation function and can, using simple clas-
sical pictures, be taken to be approximately proportional
to the steepness of the potential at the Franck–Condon
point. The partial cross sections have a similar struc-
ture to the total cross section, though they have differing
intensities and are shifted relative to each other on the
energy scale.

The product distributions can be predicted using
simple classical pictures. These methods can be di-
vided into two groups, depending on the extent of the
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excitation/de-excitation, or coupling, in the exit chan-
nel. If there is very little excitation/de-excitation in
the exit channel, the rotational and vibrational product
distributions are best described using Franck–Condon
mapping. Another model which gives good results for
the rotational distributions is the impact parameter, or
impulsive, model. If excitation/de-excitation in the exit
channel is not negligible, the product distributions are
best described using the reflection principle. This re-
lates the distribution of the initial wavepacket in γ to
the final rotational distributions through the classical
excitation function. Similarly, the distribution of the
initial wavepacket in space is related to the final vibra-
tional distributions through another classical excitation
function.

Even for a purely repulsive PES, the potential may
be very flat in the Franck–Condon region so that the
molecule may be able to undergo one internal vibra-
tion before it dissociates. In this case, there is a diffuse
structure in σ(ω), associated with recurrences in the
autocorrelation function. The spacing of the structures
in σ(ω) are related to the period of the internal vibra-
tions by ∆E = 2π�/T . Diffuse structures in σ(ω) have
also been linked to unstable periodic orbits.

34.4.2 Vibrational Predissociation

Vibrational predissociation is dissociation delayed due
to the trapping of the energy of the molecule in modes
orthogonal to the dissociation coordinate. It can be ex-
plained very clearly in the time-independent picture as
resonances (sometimes known as Feshbach resonances),
which are simply extensions of the bound states into
the continuum. σ(ω) in this case consists of a series of
Lorentzian lines, whose width is inversely proportional
to the lifetime of the resonance. In the case where the
internal modes of the molecule are not strongly coupled
to each other or to the dissociation mode, these reso-
nance states can often be assigned, with the number of
quanta in each mode being specified. In this case, the
lines in σ(ω) form a series of progressions. The widths
of these lines, and thus the lifetimes of the resonance
states, often show trends relating the lifetimes to the as-
signment. This is called mode-specificity. In the case
that the system is strongly mixed, it is not possible to
make an assignment of the resonances, and the life-
times show strong fluctuations. This is called statistical
state-specificity [34.19].

The resonances can also be seen in the time-
dependent picture, where the autocorrelation function
shows many recurrences with periods T , depending

on the fundamental frequencies of the internal modes
ω= 2π/T (Chapt. 35).

The partial cross sections for vibrational predissoci-
ation also consist of Lorentzian lines, with positions and
widths exactly as for the total cross sections, but with
differing intensities. The partial widths, which describe
the rate of dissociation into each product channel, are
given by

Γα = Γ σ(ω, α)
σtot(ω)

. (34.12)

In the weak coupling case, simple pictures can be
used to describe the product distributions. The rotational
product distributions can be explained using again the
reflection principle; but in this case, instead of consider-
ing the distribution of the initial wave function in γ , the
distribution of the wave function at the transition state
is used. The vibrational product distributions can often
be well described by examining vibrationally adiabatic
curves.

In the case that the modes are strongly coupled, the
simple models break down. It is then sometimes pos-
sible to use statistical models to describe both the rates
and the product distributions. One example of these
unimolecular-statistical theories is the Ramsperger–
Rice–Karplus–Marcus (RRKM) theory, which is widely
used for the description of unimolecular dissocia-
tions [34.20]. Another example is phase space theory
(PST) [34.21, 22] which is often used to calculate the
product distributions for reactions which have no bar-
rier. The quantum mechanical results fluctuate about
these average values. These fluctuations, which can be
considered as being independent of the system, can be
described well by the predications of random matrix
theory [34.23].

34.4.3 Electronic Predissociation

Nonadiabatic transitions between two or more electronic
states are a common phenomenon in photodissocia-
tion [34.24] as well as in other chemical reactions
(Chapt. 49). Such transitions can result in the produc-
tion of both electronically excited and ground state
fragments.

Adiabatic molecular PESs can vary in complex fash-
ions. Many of these contortions arise from avoided
and real crossings of the surfaces, and in all such
cases, the physical and chemical understanding is
greatly facilitated by expressing the adiabats in terms
of the diabatic states (Chapt. 31). The electronic di-
abatic states are chosen to simplify the structure of
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the electronic wave functions by incorporating the off-
diagonal or coupling elements as a pure potential energy
term, rather than as a kinetic term, or a mixture of
both.

Under these conditions, the BO approximation is in-
adequate since there is coupling between the different
adiabatic states, and the electronic and nuclear motion
cannot be separated. Therefore the solution of the time-
dependent Schrödinger equation (Sect. 34.3) requires
the set of coupled equations

i�
∂

∂t

(
Ψ1

Ψ2

)

=
(

V11+T11 V12

V12 V22+T22

)(
Ψ1

Ψ2

)

,

(34.13)

to be propagated, where the coupling between the dia-
batic surfaces is in the potential (V ) and not the kinetic
(T ) terms. The wavepacket evolves on both diabatic (or
adiabatic) surfaces, and shows a complicated motion in
moving between the two surfaces. The coupling between
the nuclear and electronic motion can be thought of as
resulting in the nuclear motion forcing the transfer of
a valence electron to another molecular orbital. Since
the efficiency of this transfer is greatest when the or-
bitals are degenerate, the crossings of the wavepacket
between the PESs are generally localized around their
degeneracies. Finally, the wavepacket moves out on the
adiabatic surfaces towards the products, with which they
are correlated.

34.5 Recent Developments

In recent years, the field of photodissociation has seen
a number of intriguing applications and comparisons
between detailed experimental data and high-quality
ab initio calculations. These applications have become
feasible mainly because of the possibility to construct
accurate potential energy surfaces from first principle
electronic structure calculations. Cases in which the
fragmentation proceeds via two or several electronic
states have been especially concentrated on [34.26]. In
these cases the Born–Oppenheimer approximation is not
valid and the coupling between electronic and nuclear
degrees of freedom is essential (Sect. 34.4.3). A nice
example is the photodissociation of water in the sec-
ond absorption band. Since water has only 10 electrons,
highly accurate potential energy surfaces have been
calculated theoretically, and these have been used in
extensive dynamics calculations – including motion on
three potential energy surfaces [34.27]. The agreement
between the calculated and the measured absorption
cross section at room temperature is outstanding [34.28].
From the elaborate analysis of product state distributions
(rotational, vibrational, and electronic), many details
about the coupled motion on several potential energy
surfaces have been learned [34.29, 30]. The electronic
density of water is small, and therefore the photodisso-
ciation can be treated on a nearly exact level. For other
triatomic molecules, with more electrons and a higher
density of electronic states, this is generally not fea-
sible. An important example is ozone, which plays
a vital role in the atmosphere. The electronic structure of
O3 is illustrated in Fig. 34.4, where many spin-allowed
as well as spin-forbidden fragmentation pathways are
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Fig. 34.4 Electronic structure of ozone. Shown are cuts
through the potential energy surfaces for the singlet and
triplet states. After [34.25]
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Fig. 34.5 Overview of the calculated dissociation rates of HOCl as
a function of the excess energy. The solid line is the prediction of
a statistical model. After [34.32]

seen [34.25]. The photodissociation of ozone in the uv
range has been the target of many experimental stud-
ies [34.31]. The interpretation of the many experimental
results on the basis of realistic potential energy surfaces
is a great challenge for theoretical chemistry.

Photodissociation studies are particularly rewarding
if the lifetime in the excited electronic state is long be-
cause then the absorption spectrum shows well resolved
lines (resonances), the widths of which are inversely re-
lated to the state-specific lifetimes [34.33]. A typical
situation is the excitation of a particular vibrational-
rotational state in a bound electronic state which can
decay only via coupling to a dissociative electronic state.
The lifetime then reflects the coupling of this state to the
continuum of the dissociative state (predissociation). An
example is the photodissociation of HCO [34.34, 35];
in this case, the upper and the lower state are coupled
by Renner–Teller coupling. A similar example is the
photodissociation of HNO. For this molecule, the lower
state has a deep potential well which supports long-lived
states in its own continuum. The mixing between the
quasi-bound states of the upper state with the resonance
states of the lower state leads to interesting behavior

in the lifetime as a function of the rotational quantum
number [34.36] (resonance between resonances).

Resonances are also prominent features of ground
state potential energy surfaces; they are the continuation
of the true bound states into the continuum (Sect. 34.4.2).
Since resonances determine the kinetics of chemical
reactions, they are usually studied in the framework
of unimolecular dissociations or unimolecular reac-
tions [34.37]. On the other hand, these resonance states
can be excited by photons, and therefore it is meaningful
to discuss them also in the context of photodissoci-
ation. In the last few years, numerical methods have
been developed to efficiently calculate the resonance
parameters [34.38–40]; see [34.37] for a comprehensive
overview. Several triatomic molecules with dramatically
different intramolecular dynamics have been investi-
gated. The main observation is a strong fluctuation in
the resonance lifetimes over several orders of magni-
tude, even for molecules whose classical dynamics is
chaotic, such as NO2 [34.41]. Figure 34.5 shows the
results for HOCl → HO+Cl [34.32, 42]. The large
fluctuations of the lifetimes (or dissociation rates) are
believed to affect the fall-off behavior of recombination
rate coefficients [34.43].

The concept of first calculating a potential energy
surface as function of all coordinates and then perform-
ing dynamics calculations is suitable only for triatomics.
For molecules with more than four atoms it is not
applicable, simply because of the rapidly increasing
number of degrees of freedom. For larger molecules,
direct dynamics simulations, in which the methodology
of classical trajectory simulations is coupled directly
to electronic structure calculations, are the method of
choice [34.44, 45]. In these simulations, the derivatives
of the potential, which are required for the numerical
integration of the equations of motion, are obtained
directly from electronic structure theory without the
need for an analytic potential energy surface. An im-
portant application of direct dynamics is the study
of post-transition state intramolecular and unimolecu-
lar dynamics. When the dissociation proceeds through
a transition state, it may be sufficient to start trajectories
at the transition state and to follow them into the product
channels [34.46, 47]

34.6 Summary

Photodissociation of polyatomic molecules is an ideal
field for studying the details of molecular dynamics.
The primary goal of the experimental and theoreti-

cal approaches (Sects. 34.2, 34.3) is to understand
the connection between the observables (Sect. 34.1)
and the underlying chemical dynamics (Sect. 34.4).
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Once this connection has been established, it is
possible to have a detailed understanding of the dis-
sociation dynamics, transition state geometries, and
the PESs which ultimately govern the molecular

chemical reactivity. The interplay between powerful
experimental and theoretical techniques has enabled
this goal to be realized for many photodissociation
reactions.
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Time-Resolve35. Time-Resolved Molecular Dynamics

Time-resolved experiments have been performed
on a diversity of molecular systems. Applications of
spectroscopic techniques which work in the time-
domain range from the detection of simple vibra-
tional motion of a diatomic molecule to the direct
determination of relaxation times in polyatomic
molecules in a liquid environment, or the record-
ing of isomerization processes in biomolecules.
The underlying principles of these experiments
are more or less the same. In this chapter, a brief
description of the basic ideas of transient spec-
troscopy is given with the emphasis on gas-phase
molecules under collision-free conditions, as are
usually provided in a molecular beam.

For the development of ultrashort pulse
techniques and their application to areas as
different as optical engineering, solid state physics
or biology see the series of conference proceedings
in [35.1–14]. For special applications to molecular
physics and chemistry consult [35.15–22] and the
review in [35.23].

Besides an overall rotation and the transla-
tional motion of the molecular center of mass,
nuclei within a molecule possess vibrational
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degrees of freedom. The real-time detection
of internal vibrational dynamics is discussed
in what follows, but the considerations apply
equally well to the case of a fragmentation
process where the dissociation dynamics is
resolved.

Classically, a molecule can be imagined to consist of
atoms connected by springs, each spring represent-
ing a chemical bond. The atoms vibrate, performing
a periodic oscillation around an equilibrium position.
Quantum mechanically, the molecule has discrete vibra-
tional states ϕn , where n represents a set of vibrational
quantum numbers and εn are the corresponding eigenen-
ergies. A vibrational period Tvib is calculated from the
energy spacing as:

Tvib = 2π�

εn+1− εn . (35.1)

Typical vibrational periods for smaller molecules are of
the order of several hundred femtoseconds.

Traditional high resolution spectroscopy uses laser
pulses with a temporal width TP much larger than any of
the time-scales on which the internal molecular motion

takes place:

TP % Tvib . (35.2)

In the energy domain, this means that the spectral width
of the laser pulse is small enough to excite a single
eigenstate ϕn . The time-evolution of this state is that of
a stationary state

ψ(t)= an e−iεn t/�ϕn , (35.3)

where an is a complex number determined by the partic-
ular preparation process and the molecular properties.

To detect molecular motion within a time-resolved
measurement, pulses with a width TP smaller than the
vibrational period have to be used:

TP < Tvib . (35.4)
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Thus, to resolve vibrational dynamics of smaller
molecules, one needs ultrashort pulses in the fem-
tosecond regime. Because a short pulse has a broad
spectral distribution it is possible to excite several
eigenstates simultaneously: a coherent superposition
of the functions ϕn is prepared. The resulting
wave function is a vibrational wave packet of the
form

ψ(t)=
∑

n

an e−iεnt/�ϕn . (35.5)

Due to the time-dependent phase factors, the average
position of the wave packet changes as a function of time.
The principle of time-resolved molecular dynamics is to
create such wave packets within a molecule and follow
their motion in time.

Pulses in the femtosecond regime are now commer-
cially available. Schemes have been developed to use
these pulses to detect wave-packet dynamics. This is,
of course, not limited to bound state motion but applies
as well to fragmentation processes. In the latter case,
the sum in (35.5) has to be replaced by an integral over
continuum functions. The condition (35.4) then reads
TP<TF, where TF is the time during which the atoms
separate and do not interact with each other afterwards.
It is then possible to monitor the breaking of a chemical
bond.

Typical experimental schemes are described in
Sect. 35.1, and a theoretical treatment which closely
follows the experimental procedure is outlined in
Sect. 35.2. Applications are listed in Sect. 35.3 and
a brief overview highlighting recent developments is
presented in Sect. 35.4.

35.1 Pump–Probe Experiments

The experimental setup for a time-resolved measure-
ment commonly uses two ultra-short laser pulses which
are delayed with respect to each other. Therefore,
a single pulse is produced and split. The resulting two
pulses are delayed by sending them along different paths
until they reach the molecular sample. The temporal dif-
ference is adjusted by variation of the path length. The
first pulse (pump) excites the molecule and prepares
a wave packet, i. e., a coherent superposition of molecu-
lar eigenstates. The second pulse (probe) interacts with
the molecular sample after a defined delay-time and pre-
pares the system in yet another state. A signal is then
measured as a function of the delay-time between the
pulses. The idea is that, because the wave packet is lo-
cated in different spatial regions at different times, the
signal, in general, depends on the delay-time.

There are various detection schemes. If the probe-
pulse prepares the molecule in an energetically higher

electronic state, fluorescence can be measured. The
pump–probe signal then consists of the total fluores-
cence yield, recorded as a function of the delay-time
between the pulses. Because this signal is proportional
to the population created in the state from which the
radiative decay takes place, the signal reflects how ef-
fective the probe-pulse excitation occurs which, in turn,
depends on the wave packet dynamics in the interme-
diate state accessed by the pump-pulse excitation. It is
also possible to detect the transient absorption spectrum
of the system which is subject to the probe-pulse exci-
tation. If the parameters of the probe-pulse are chosen
such that the molecule is ionized, a total ion signal or
a photoelectron spectrum can be detected as a func-
tion of the pulse delay. Another technique involves
time-resolved four-wave mixing schemes, where coher-
ently emitted radiation is employed to track the system
dynamics.

35.2 Theoretical Description

There are several theoretical approaches to describe the
experiments which have been outlined in Sect. 35.1.
They are based on classical, quantum mechanical or
semi-classical descriptions [35.24, 25]. Under the con-
ditions specified at the beginning of this chapter, the
most straightforward approach is to solve the time-

dependent Schrödinger equation for the field coupled
nuclear motion in different electronic states. Here,
we outline this approach when only three electronic
states |i〉(i = 1, 2, 3) participate in the excitation pro-
cess and only the states (|i〉, |i±1〉) are coupled.
Then, the nuclear wave function ψ(r), where r denotes
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the nuclear co-ordinates, consists of three compo-
nents ψi . The equation of motion for the nuclei
reads

⎛

⎜
⎝

H1 W12 0

W12 H2 W23

0 W23 H3

⎞

⎟
⎠ψ(r, t)= i�

∂

∂t
ψ(r, t) , (35.6)

with the field-matter interaction

W ji(r, t)=−µ ji(r){ f(t−T1) cos[ω1(t−T1)]
+ f(t−T2) cos[ω2(t−T2)]} . (35.7)

Here, Hi denotes the nuclear Hamiltonian within the
electronic state |i〉. The components ψi(r, t) of the
wave function are coupled by the dipole interaction
terms W ji(r, t) containing the projection of the (clas-
sical) electric field vector on the transition dipole
moment µ ji(r) connecting states |i〉 and | j〉. The
field envelope function f(t) is assumed to be the
same for pump- and probe-pulses having frequencies
ω1, ω2, respectively. The pulses interact with the mol-
ecule around times T1, T2 so that the time-delay is
T = T2−T1.

Treating a pump-probe fluorescence set-up as an
example, we may assume that the population in the
state prepared by the probe-pulse is proportional to
the total fluorescence signal. Then it is sufficient to
determine the wave function ψ3(r, t) for a fixed pump-
probe delay and obtain the signal from its norm. To
do so it is, in principle, possible to integrate equa-
tion (35.6) numerically with a given initial condition.
This indeed is necessary if the fields are of high
intensity. In most cases, however, when the interest
is in the molecular dynamics rather than in non-
linear effects induced by high power laser pulses,
a perturbative approach is of conceptual and technical
advantage.

Except in the case when the two pulses have temporal
overlap, the pump-process and probe-process may be
separated. In first-order perturbation theory, the wave
function created by the pump-pulse in state |2〉 is

ψ2(r, 0)= 1

i�

+∞∫

−∞
dtU2(−t)W21(r, t)U1(t)ϕ1,n(r) ,

(35.8)

where time t = 0 refers to the end of the pump-pulse
interaction. The initial (stationary) vibrational state with
vibrational quantum numbers n and eigenenergy εn is
denoted as ϕ1,n and Ui is the propagator in electronic
state |i〉.

Expanding ψ2 in the set of vibrational eigenfunc-
tions {ϕ2,m} with eigenenergies Em in electronic state
|2〉 yields:

ψ2(r, 0)=
∑

m

ϕ2,m(r) cmn Imn(ω1) (35.9)

with the overlap integrals

cmn =
∫

drϕ2,m(r)µ21(r)ϕ1,n(r) (35.10)

and the time integrals

Imn(ω1)= 1

2

∞∫

−∞
dt f(t)ei(Em−εn−�ω1)t/� , (35.11)

where we have set T1 = 0 and replaced (within the ‘ro-
tating wave approximation’) the cosine-term in (35.7)
by 1

2 exp(−iω1t).
From (35.9–35.11) it is clear that ψ2 is a vibrational

wave packet. The weights of the states which build the
packet are determined by products of the overlap inte-
grals and the Fourier-transform of the pulse envelope
f(t) taken with respect to the energy Em − εn −�ω1. In
the limit of an infinite long pulse, Imn becomes propor-
tional to a δ-function and, for resonance excitation, only
a single vibrational state is excited.

Once the pump-pulse no longer interacts with the
system, the packet propagates unperturbed. This motion
is detected in a time-resolved experiment by exposing
the molecule to a probe-pulse at time T , thereby inducing
a transition to state |3〉. As above, the wave function in
state |3〉 can be written as

ψ3(r, T )

= 1

i�

∞∫

−∞
dtU3(−t)W32(r, t)U2(t

′ −T )ψ2(r, T ) .

(35.12)

There is an essential difference between the wave
functions ψ2 and ψ3. The wave packet created
by the pump-pulse results from a stationary initial
wave function, whereas ψ3, prepared by the probe-
pulse, contains the wave packet ψ2 as initial state.
The latter packet changes its position and is cen-
tered around different distances r for different delay
times T .

Because, during the short time the probe-pulse in-
teracts with the molecule, the heavy nuclei do not move
essentially, one may, to a good approximation, neglect
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the kinetic energy part of the propagators Ui in (35.12).
This approximation yields
ψ3(r, T )≈ µ32(r)ψ2(r, T )

×

∞∫

−∞
dt f(t)ei(V3(r)−V2(r)−�ω2)t/� ,

(35.13)

where Vi is the potential energy in electronic state |i〉.
The time integral has its largest modulus at the point
r = rM, where the equation

V3(r)−V2(r)= �ω2 (35.14)

holds. Assuming that the wave packet is localized, this
implies that the norm of ψ3, and thus the population in
state |3〉, is maximal at those times T when the center
of the moving wave packet ψ2 is located around rM,
where the difference potential V3(r)−V2(r) equals the
photon energy �ω2. This consideration shows the central
idea of a pump–probe scheme: for a fixed frequency ω2
it is possible to detect the wave packet each time it
reaches the region around the position rM because then
the pump–probe signal exhibits a maximum. If ω2 is
changed, the packet is detected when it visits a different
position rM.

35.3 Applications

It is not possible to give a complete account of the numer-
ous studies of molecular dynamics in the time-domain
here. Only selected examples are listed in what follows,
so that the cited work is to be taken as typical, being far
from a complete compilation.

35.3.1 Internal Vibrational Dynamics
of Diatomic Molecules in the Gas
Phase

Prototype experiments investigated the simplest case of
molecular motion: the vibration of a diatomic molecule.
The change of the bond-length within an electronically
excited state could be detected in real-time for molecules
such as I2 [35.26] or Na2 [35.27]. It was shown that
not only the vibrational periods but also the Born–
Oppenheimer bound-state potentials [35.27, 28] and
coordinate dependent transition dipole moments [35.29]
can be constructed from the data. In this connection, the
phenomena of wave packet dispersion and revival, i. e.,
the spreading and re-focusing of an initially localized
wave packet, was documented [35.26, 30]. The inter-
esting phenomenon of fractional revival, where a wave
packet splits into two or several parts was also verified
experimentally [35.31].

By using time-resolved CARS (coherent-antistokes-
raman-scattering) spectroscopy, the particular temporal
arrangement of three time-delayed pulses allows
one to monitor electronic ground- and excited-state
rotational/vibrational dynamics within a single experi-
ment [35.32].

Employing time-resolved photoelectron spectros-
copy [35.33, 34], the time-evolution of probability
densities could be directly mapped into the kinetic en-
ergy distributions of the photoelectrons, thus obtaining

a one-to-one picture of quantum mechanical wave packet
dynamics [35.35, 36].

35.3.2 Elementary Gas-Phase Chemical
Reactions

The study of gas phase chemical reactions in real-time
has been pioneered by Zewail and coworkers [35.23].
It is of primary interest to chemistry to monitor how
chemical bonds are formed and broken.

In the case of a direct bond rupture, the time-
scale to be resolved is much shorter than in cases
where long-lived resonances exist. In a first femtosec-
ond experiment, the ICN molecule was prepared in an
electronically excited state with a repulsive potential en-
ergy surface. and free CN was detected in a pump–probe
arrangement [35.37]. By changing the probe-laser fre-
quency, the atom-molecule separation could be recorded
in time and for different inter-nuclear distances rM.

The decay of a quasi-bound complex via electronic
predissociation was monitored. From the time-signal the
nonadiabatic coupling between a bound and a dissocia-
tive electronic state could be extracted for the NaI mol-
ecule [35.38]. Another type of indirect decay was studied
in the OClO molecule which fragments via different
decay channels with characteristic time scales [35.39].
The latter are determined by the coupling of internal nu-
clear degrees of freedom on one hand and the coupling
between electronic and nuclear motion on the other.

As an example of a reaction triggered by multi-pho-
ton absorption, we mention the multiple fragmentation
of Fe(CO)5. This prototype organometallic compound
was studied, and how the various CO-ligands emerge
from the complex as a function of time [35.40] was
determined.
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35.3.3 Molecular Dynamics in Liquid
and Solid Surroundings

One main application of time-resolved measurements
is the study of molecules embedded in a surrounding.
For example, transient spectroscopy has been applied
to study diatomic molecules in matrices [35.41, 42],
zeolites [35.43], and also nanotubes [35.44], thereby
revealing information about coherent dynamics, non-
adiabatic transitions and energy transfer mechanisms in
a solid environment.

Characteristics of relaxation processes were deter-
mined for, e.g., I2 in rare-gas environments which

allowed one to monitor the gas-phase to liquid state
transition dynamics [35.45–47]. Another important phe-
nomenon is that of the caging of a molecule in a liquid.
This effect describes the fragmentation and recombi-
nation of a molecule, the latter being induced by the
cage consisting of the surrounding molecules. This
effect has been detected within a time-resolved meas-
urement [35.48].

As other prominent examples we mention proton-
transfer processes in liquids [35.49], the dynamics
of hydrogen bonds [35.50], and also time-dependent
processes in carotenoids which have been reviewed
recently [35.51].

35.4 Recent Developments

The rapid advance in laser technology and the de-
velopment of sophisticated experiments have led to
a revolution in the spectroscopy with ultrashort pulses.
Experimental techniques used for time-resolved meas-
urements are evolving with incredible speed. In what
follows we list some recent developments which
will, along with other efforts, be the basis of future
applications.

35.4.1 Faster Dynamics

According to (35.1) and (35.4), the possibility of resolv-
ing molecular dynamics is determined by the relation
between the average energy spacing in a system and
the laser-pulse duration. Thus, if the aim is to observe
the dynamics of electrons taking place within a few
femtosecond, shorter pulses are necessary. The produc-
tion of attosecond pulses has been reported [35.52].
Although such pulses are far from being used in an ex-
periment needing a reasonable repetition rate, the first
steps towards a sub-femtosecond time-resolution have
been taken.

35.4.2 X-Ray Pulses

Much effort is spent in the generation of ultrashort pulses
having wavelengths reaching into the X-ray regime
[35.53, 54].

Concerning molecular motion, several prospects are
emerging. Firstly, using a high photon-energy pump-
pulse, it is possible to prepare core-excited states of
a molecule such that the following dynamics could
be detected with a time-delayed optical probe pulse.
As a second scenario, a uv-pump pulse initiating a chem-

ical reaction, could be followed by a time-delayed X-ray
pulse which then is able to selectively excite core lev-
els of the atoms involved in the process. Thus, a signal
would track the transient chemical shift of an atom un-
dergoing a molecular re-arrangement process. Here, the
first experimental results of this kind have been reported.
For example, employing soft X-ray laser pulses, it was
possible to monitor the photo-dissociation of the Br2
molecule [35.55]. Also, it became possible to synchro-
nize an optical pulse from a laser source with an X-ray
pulse from a storage ring [35.56] to monitor the temporal
changes of an oxidation state of Ru bound in a transition
metal complex [35.57].

35.4.3 Time-Resolved Diffraction

Diffraction experiments are of tremendous impor-
tance for structural analysis. Geometrical changes of
molecules or molecular decomposition could, in princi-
ple, be followed using ultrashort light or particle pulses.
Concerning time-resolved diffraction using electromag-
netic waves, much success has been reported in recent
years [35.58]. The applications, to date, are in mater-
ial science. For example, it is now possible to follow
phase transitions in time [35.59]. Concerning the appli-
cation of time-resolved X-ray diffraction to molecules,
the experimental difficulties are numerous. However,
first experiments on a chemical reaction in solutions
have been reported [35.60].

A promising technique employs not electromagnetic
light but pulses of electrons (UED = ultrafast electron
diffraction) [35.61]. Such pulses have been used in
monitoring, e.g., the structural dynamics of pyridine
molecules [35.62].
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35.4.4 Dynamics and Control

As has been discussed throughout this chapter, mo-
lecular motion can be traced with the help of
time-resolved spectroscopy. It is now possible to go
one step further and use laser pulses to control
molecular motion. Employing pulse shapers [35.63]

which allow for the amplitude- and phase-modulation
of a given input field, it was shown that, e.g., the
branching ratio of photo-products in a photochemical
reaction can be influenced by modulating the exci-
tation pulses using feedback algorithms [35.64]. The
field of laser control has been recently reviewed
extensively [35.65–67].
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Nonreactive S36. Nonreactive Scattering

The basic formulations of nonreactive scattering
are presented in the sections to follow. The
semiclassical and quantal approaches to this
problem are outlined. Specific symmetries,
and their closely related conservation laws,
which reduce the complexity of computation
are discussed, along with the usual coordinate
systems used to express the necessary scattering
equations. The chapter ends with prescriptions for
determining the various matrix elements needed
for a given calculation.
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36.1 Definitions

The cross section σ for a transition from state j ′ to j is
defined classically as

σ( j ← j ′)= 2π

∞∫

0

Pb( j ← j ′)bdb (36.1)

where Pb is the transition probability for impact pa-
rameter b (Fig. 36.1). The impact parameter is related
to the relative angular momentum quantum number, ,
by

2µEb2 = (+1)

= k2b2 (36.2)

where k is the wave number at relative collision energy E
and µ is the reduced mass; atomic units (e = me =
�= 1) are used throughout. Differentiating (36.2) and
setting d= 1 in the quantal limit,

bdb = 2+1

2k2
,

whence the quantum mechanical equivalent of (36.1)
may be obtained

σ( j ← j ′)= π

k2
j ′

∑



(2+1)P( j ← j ′) , (36.3)

k j ′ being the wave number in the initial channel. If the
initial state is degenerate and the ω j ′ degenerate sub-

states are labelled byΩ′, then

P( j ← j ′)= 1

ω j ′

∑

Ω′,Ω
|T( jΩ, j ′Ω′)|2 , (36.4)

where T is an element of the transmission matrix T,
which contains all the information on the scattering
event. The scattering matrix S is related to the T matrix
by

S= 1−T (36.5)

b

z
R t = 0

Fig. 36.1 Classical scattering by a fixed scattering cen-
ter. The trajectory is symmetric about the point of closest
approach, which is the time origin
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and thence to the reactance matrix K through

S= 1+ iK
1− iK

. (36.6)

The elements of the K matrix are real. Conservation of
the incident flux of particles requires that

∑

jΩ

|S( jΩ, j ′Ω′)|2 = 1 . (36.7)

Micro-reversibility (time-reversal symmetry) implies
that the S matrix is symmetric,

S( jΩ, j ′Ω′)= S( j ′Ω′, jΩ) ,

and hence

σ( j ← j ′)k2
j ′ω j ′ = σ( j ′ ← j )k2

jω j . (36.8)

The thermally averaged (Maxwellian) rate coefficient
is

〈σv〉 j← j ′ =
(

8kBT

πµ

) 1
2

∞∫

0

x j ′σ( j ← j ′)e−x j′ dx j ′ ,

(36.9)

where x j ′ = µv2
j ′/2kBT , v j ′ being the relative colli-

sion velocity; kB is Boltzmann’s constant, and
(8kBT/πµ)

1
2 may be identified with the mean thermal

velocity at temperature T . From (36.8) and (36.9),

〈σv〉 j← j ′ω j ′exp(−ε j ′/kBT )

= 〈σv〉 j ′← jω jexp(−ε j/kBT ) , (36.10)

where ε j ′ , ε j denote the energies of the states
j ′, j with respect to the reference level. Equation
(36.10) relates the rate coefficients of inverse tran-
sitions to their relative degeneracies and excitation
energies.

36.2 Semiclassical Method

If the collision dynamics are formulated using elem-
ents of both classical and quantum mechanics, then the
method is called “semiclassical”. Thus, the relative mo-
tion might be described by a classical trajectory, whilst
internal degrees of freedom (rotation, vibration, . . . )
are quantized. The de Broglie wavelength associated
with the linear motion of a proton attains the Bohr
radius at a collision energy of 0.29 eV, and a classi-
cal trajectory is a good approximation at much higher
energies.

The introduction of a classical trajectory leads to
a time-dependent Hamiltonian, and Schrödinger’s equa-
tion may be reduced to a set of coupled, first-order
differential equations of the form

iȧ = Va , (36.11)

where a is a column vector of transition amplitudes
and ȧ is the vector of their time derivatives. The square
matrix V is the interaction matrix, whose elements in-
corporate oscillatory factors of the type exp[(ε j ′ −ε j)t].
The trajectory is taken to be symmetric about the
point of closest approach, t = 0, and a is initialized
through

a j → δ j ′ j as t →−∞.
The differential equations (36.11) may be integrated
numerically, and the transition probabilities derived
from

Pb( j ← j ′)→ |a j(b)|2 as t →∞.
The cross sections are given by (36.1).

36.3 Quantal Method

The usual approach to nonreactive scattering [36.1] is
based on the Born–Oppenheimer approximation. The
interaction potential V is taken to be a known func-
tion of the nuclear coordinates, the electronic energy
being minimized for each geometry and separation of
target and projectile. The total Hamiltonian may then be

written

H =− 1

2µ
/2

R +h1(x1)+h2(x2)

+V(R, x1, x2) , (36.12)
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where the first term represents the relative kinetic energy
of the target and projectile, and h1, h2 are functions
of the intramolecular nuclear coordinates x1, x2. The
eigenfunctionsψ1, ψ2 of h1, h2 describe the vibrational
and rotational motions of the isolated molecules and
form a basis for expanding the total wave function Ψ of
the system:

Ψ(R, x1, x2)=
∑

α1α2m

F(α1α2m|R)
R

× Ym(Θ,Φ)ψ1(α1|x1)ψ2(α2|x2) .

(36.13)

In (36.13), α1, α2 denote the sets of quantum numbers
required to specify the states of the isolated molecules,
and Ym(Θ,Φ) is a spherical harmonic function of
the angular coordinates of the intermolecular vector R.
F(α1α2m|R) are R-dependent expansion coefficients
which are solutions of the Schrödinger equation

(H− E)Ψ = 0 . (36.14)

These solutions may be arranged as the columns of
a square matrix, F(R), in which each column is labelled
by a different initial scattering state. The radial functions
must satisfy the physical boundary conditions,

F(R)→ 0 as R → 0

F(R)→ J(R)A−N(R)B as R →∞ ,

where J and N are diagonal matrices whose non-
vanishing elements are given by

Jii = k
1
2
i R j(ki R) (36.15)

Nii = k
1
2
i Rn(ki R) , (36.16)

and j, n are spherical Bessel functions of the first,
second kinds; ki is the wave number in channel i (a given
set of values of the quantum numbers α1α2m). The
reactance matrix,

K = BA−1 , (36.17)

yields the state-to-state cross sections.

36.4 Symmetries and Conservation Laws

The expansion of the total wave function, (36.13),
does not explicitly incorporate the invariance of the
Hamiltonian under an arbitrary rotation in space or
reflection in the coordinate origin. The Hamiltonian
commutes with J2, where J is the total angular momen-
tum, and any component of J, Jx, Jy, or Jz , although
these components do not commute amongst themselves.
Eigenfunctions of H may, therefore, be chosen to be si-
multaneous eigenfunctions of J2 and (conventionally)
Jz , with eigenvalues J(J +1) and M. If j1 and j2 are
the angular momenta of the isolated molecules, then

j12 = j1+ j2
is their resultant and

J = j12+� ,

where � denotes the relative angular momentum of the
two molecules. The coupling of the angular momenta
to the multipolar expansion of the electromagnetic field
gives rise to collisional selection rules.

The parity operator, P, reflects the coordinates in the
origin. Because two successive operations with P restore
the original values of the coordinates, the corresponding
eigenvalue p satisfies the equation p2 = 1, or p =±1.
For electromagnetic interactions, the commutation of P
and H implies conservation of the parity of the system.

If one takes advantage of the conservation laws asso-
ciated with these symmetries of the system, substantial
savings in computing time can be made: only one value
of the total angular momentum and of the parity need to
be considered simultaneously.

36.5 Coordinate Systems

The natural choice of coordinate system in which to
express the interaction potential, V(R, x1, x2), is a body-
fixed (BF) system in which the z-axis coincides with the
direction of the intermolecular vector R= (R,Θ,Φ).
A rotation of the space-fixed (SF) coordinate system

through the Euler angles (Φ,Θ, 0) generates such a BF
frame. The intramolecular coordinates x1, x2 must then
be expressed relative to the BF frame, as must the
Laplacian operator /2

R which appears in the expres-
sion for the total Hamiltonian, (36.12). The latter may
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be written as

/2
R =

1

R

∂2

∂R2 R− 2

R2

= 1

R

∂2

∂R2
R− (J− j12)

2

R2
, (36.18)

which are the forms suitable for calculations in SF and
BF coordinates, respectively.

A unitary transformation relates the normalized
eigenfunctions of a given parity in SF and BF coor-
dinates. In Dirac notation,

| j12JM〉SF

=
∑

Ω̄

| j12Ω̄εJM〉BF〈 j12Ω̄εJM| j12JM〉, (36.19)

where Ω̄ = |Ω| and Ω is the projection of J on the
BF z-axis. As the projection of � on the intermolecular
axis is zero, Ω is also the projection of j12 on the BF

z-axis. The absolute value of Ω appears in the transfor-
mation because | j12±ΩJM〉 are not eigenfunctions of
the parity operator P, whereas the linear combinations

∣
∣ j12Ω̄εJM

〉= | j12ΩJM〉+ ε| j12−ΩJM〉
[
2
(
1+ δ

Ω̄0

)] 1
2

(ε =±1) are eigenfunctions of P. The factor [2(1+
δ
Ω̄0)]

1
2 ensures the correct normalization of these func-

tions. The elements of the matrix which performs the
unitary transformation (36.19) are

〈 j12Ω̄εJM| j12JM〉

=
(

2(2+1)

(1+ δ
Ω̄0)(2J +1)

) 1
2

C j12J

Ω̄0Ω̄
, (36.20)

where C j12J

Ω̄0Ω̄
is a Clebsch–Gordan coefficient.

36.6 Scattering Equations

Schrödinger’s equation for the scattering system
may be reduced to a set of coupled, ordinary,
second-order differential equations for the radial
functions F(R). Expressed in matrix form, they be-
come

[
1

d2

dR2
+W(R)

]
F(R)= 0 . (36.21)

There exists a set of equations (36.21) for each value of
the total angular momentum J and parity p (Sect. 36.4).
The matrix W may be written

W(R)= k2−2µVeff , (36.22)

where k2 is a diagonal matrix whose non-vanishing
elements are

k2
α1α2

= 2µ
(
E− εα1 − εα2

)
. (36.23)

kα1α2 is the wave number at infinite separation (R→∞)
when the molecules are in eigenstates α1, α2 with
eigenenergies εα1 , εα2 . Veff is the matrix of the effective
potential,

Veff = V(R, x1, x2)+ �2

2µR2 , (36.24)

in which V is the interaction potential and �2/
(
2µR2

)

may be identified with the centrifugal potential. There
exist standard computer codes for solving equations of
the form (36.21) [36.2, 3].

36.7 Matrix Elements

36.7.1 Centrifugal Potential

When evaluated in the SF frame, the matrix of the
centrifugal potential is diagonal, with non-vanishing
elements (+1)

/(
2µR2

)
. In the BF frame, the diago-

nal elements are [see (36.18)]

〈 j12Ω̄εJM|(J− j12)
2/2µR2| j12Ω̄εJM〉

= [
J(J +1)+ j12( j12+1)−2Ω̄2]/

(
2µR2) ,

(36.25)

and, in addition, there are off-diagonal elements

〈 j12Ω̄εJM|(J− j12)
2/2µR2| j12Ω̄±1εJM〉

= −
{(

1+ δ
Ω̄0

)(
1+ δ

Ω̄±1,0

)

× [J(J +1)− Ω̄(Ω̄±1)]
× [ j12( j12+1)− Ω̄(Ω̄±1)]

} 1
2
/
(
2µR2) .

(36.26)

The matrix elements (36.26), which are off-diagonal in
Ω̄, are associated with the rotation in space of the BF
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coordinate system (Coriolis coupling). In the “coupled
states” approximation [36.4], the off-diagonal elem-
ents (36.26) are neglected, and the diagonal elements
(36.25) are often replaced by their SF equivalent form
(+1)/(2µR2). The matrix of the interaction poten-
tial, on the other hand, continues to be evaluated in BF
coordinates. The net effect of these approximations is to
ignore the rotation of the BF frame in the course of the
collision, and the associated dynamical terms.

36.7.2 Interaction Potential

The interaction potential is usually expressed and com-
puted in BF coordinates. For the purposes of the analysis,
it is convenient to derive a multipolar expansion of the
potential from a least-squares fit to the original data
points. If the collision calculations are being done in the
BF frame, the potential matrix elements may be eval-
uated directly. However, if the SF frame is to be used,
the potential expansion must first be transformed into
SF form.

Consider the interaction between a symmetric top,
such as ammonia (NH3), and a rigid rotor, such as
H2 [36.5, 6]. This complicated example serves as
a paradigm, and simpler cases may be derived by reduc-
tion. In the BF frame, the potential can be expanded as

V
(
R, ω̂′1, r̂ ′2

)=
∑

λ1λ2
µν

vλ1λ2µν(R)

×Dλ1
µν

(
ω̂′1
)
Yλ2−ν

(
r̂ ′2
)
, (36.27)

where the Euler angles ω̂′1 =
(
φ′1, θ ′1, ψ′1

)
determine

the orientation of the principal axes of the top and
r̂ ′2 =

(
θ ′2, φ′2

)
the orientation of the axis of the rotor

(Fig. 36.2). Expanding the rotation matrix element Dλ1
µν

and the spherical harmonic Yλ2−ν, (36.27) becomes

V
(
R, ω̂′1, r̂ ′2

)=
∑

λ1λ2
µν

vλ1λ2µν(R)

(
2λ2+1

4π

) 1
2

× eiµψ′1 dλ1
µν

(
θ ′1
)

eiνφ′1 dλ2
0−ν

(
θ ′2
)

e−iνφ′2

(36.28)

where

d j
m′m(β)= 〈 jm′|exp(iβJy)| jm〉 (36.29)

according to the definition in [36.7]. We note that the
d j

m′m are real. The combination of positive and negative
values of the index ν in (36.28) reflects the invariance
of the potential under rotations about the intermolecu-

z� z�

x�

y�

θ�1

θ�2
ψ�1

�1

�2

�

�

Fig. 36.2 The body fixed coordinate system: scattering of
a rigid rotor and a symmetric top

lar axis
(
alternatively, its dependence on the difference

between φ′1 and φ′2
)
. In SF coordinates, the potential

becomes

V(R, ω̂1, r̂2)

=
∑

λ1λ2
λµ

vλ1λ2λµ(R)

×
∑

m1m2

Cλ1λ2λ
m1m2mDλ1

µm1

(
ω̂1
)
Yλ2m2

(
r̂2
)
Y∗
λm

(
R̂
)
.

(36.30)

The expansion coefficients in the SF and BF frames are
related by

vλ1λ2λµ(R)

=
(

4π

2λ+1

) 1
2 ∑

ν≥0

Cλ1λ2λ
ν−ν0 (1+ δν0)−1

×
[
vλ1λ2µν(R)+ (−1)λ1+λ2+λvλ1λ2µ−ν(R)

]
.

(36.31)

The matrix elements of the potential given by (36.30)
are

〈
j1k j2 j12JM

∣∣V
(
R, ω̂1, r̂2

)∣∣ j ′1k′ j ′2 j ′12
′ JM

〉

=
∑

λ1λ2
λµ

vλ1λ2λµ(R)(−1) j ′1+ j ′2+ j12+k′−J
(

2λ+1

4π

)

×
[
(2 j1+1)(2 j2+1)(2 j12+1)(2+1)(2λ2+1)

×
(
2′ +1

)(
2 j ′12+1

)(
2 j ′2+1

)(
2 j ′1+1

)] 1
2

×

(
λ  ′

0 0 0

)(
λ2 j2 j ′2
0 0 0

)(
λ1 j1 j ′1
µ k −k′

)

×

{
′  λ

j12 j ′12 J

}
⎧
⎪⎨

⎪⎩

j12 j2 j1
j ′12 j ′2 j ′1
λ λ2 λ1

⎫
⎪⎬

⎪⎭
(36.32)
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where k, k′ denote the projection of j1, j ′1 on the sym-

metry axis of the symmetric top;

(
· · ·
· · ·

)

is a Wigner

3 j-,

{
· · ·
· · ·

}

a 6 j-, and

⎧
⎪⎨

⎪⎩

· · ·
· · ·
· · ·

⎫
⎪⎬

⎪⎭
a 9 j-coefficient. The po-

tential matrix elements for other important cases may
be derived from (36.32). Rigid rotor-rigid rotor [36.8]
obtains when k = µ= 0, and atom-rigid rotor when, ad-
ditionally, j1 = λ1 = 0. References to numerical results
for specific systems have been compiled in Appendix 2
of [36.9].

In order to exploit conservation of the parity of the
total system, it is necessary to use symmetry adapted
rotational eigenfunctions

∣∣ j1k̄mη
〉= | j1km〉+η| j1− km〉

[
2
(
1+ δk̄0

)] 1
2

, (36.33)

where k̄ is the absolute magnitude of the projection
of j1 on the symmetry axis of the top. The par-
ity of the total wave function

∣∣ j1k̄η j2 j12JM
〉

is then
p = η(−1) j1+ j2++k̄ and is conserved during the col-
lision. This fact enables the coupled equations to be
separated into two non-interacting parity blocks. Be-
cause the orientation of the SF z-axis is arbitrary, the
matrix elements (36.32) must be independent of M.

The rotational eigenfunctions of an asymmetric top,
such as water (H2O) or formaldehyde (H2CO), may
be written as linear combinations of the symmetric top

functions of (36.33):

| j1τm〉 =
∑

k̄

∣∣ j1k̄mη
〉〈

j1k̄mη
∣∣ j1τm

〉
, (36.34)

where the expansion coefficients
〈
j1k̄mη

∣
∣ j1τm

〉
are

labelled by − j1 ≤ τ ≤ j1. The parity (inversion sym-
metry) of these functions is η(−1) j1+k̄. Because protons
are fermions, the total (rotational and spin) nuclear wave
function must be antisymmetric under exchange of the
two protons in H2O or in H2CO. Proton exchange is
equivalent to a rotation through π about the symmetry
axis of the molecule. The rotational functions (36.34)
are eigenfunctions of this operator with eigenvalues
(−1)k̄. As the ortho nuclear spin function is symmetric
under proton exchange, and the para function is anti-
symmetric, it follows that rotational states with k̄ odd are
ortho states, whereas those with k̄ even are para states.
Conservation of the parity η(−1) j1+k̄ then implies that
η is either 1 or −1 in the summation on the right hand
side of (36.34). Thus, the index τ implies k̄ = even or
k̄ = odd and η= 1 or η=−1. The molecular internal
Hamiltonian matrix has four non-interacting diagonal
blocks, corresponding to the four possible combinations
of k̄ and η [36.10, 11].

Recent studies of the rotational excitation of H2O
by H2 [36.12, 13] show that, at low energies, the cross
sections can be much larger for collisions with ortho-H2
( j2 odd) than with para-H2 ( j2 even). The long range
interaction between the (large) dipole moment of H2O
and the quadrupole moment of H2 – absent for para-H2 in
its ground state, j2 = 0 – is responsible for this difference
in behavior.
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Gas Phase Rea37. Gas Phase Reactions

The rates of gas phase chemical processes can
generally be described by rate laws in which the
rate of formation of products or disappearance of
reactants is related to the product of the concen-
trations of reactants raised to various powers [37.1].
Rate laws are deterministic expressions that are
usually accurate even though they are used to rep-
resent a stochastic reality. Rate equations may fail
in the limit of small numbers of reacting particles,
where both fluctuations and discrete aspects are
important. Exceptions to the reliability of rate
equations have been found recently in a vari-
ety of fields including surface chemistry on small
particles [37.2]. Moreover, both Monte Carlo and
master equation methods can be used in their
place, given sufficient computing power [37.3–6].
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As an example of a rate law, consider the rate of dis-
appearance of reactant A in a gas mixture containing
species A, B, and C. The rate law for this disappearance
can be expressed by the equation

d[A]/dt =−k[A]a[B]b[C]c , (37.1)

where the symbols [ ] refer to concentration, and the rate
coefficient k is dependent on temperature, and possibly
other parameters such as the total gas density. The above
law is not the most general that can be envisaged. For
example, if species A reacts via more than one set of
processes, more than one negative term on the right-hand
side of the equation will be needed. In addition, if the
reverse reaction to form A from products is appreciable,
a positive term must also be included. At equilibrium,
the rate of change of reactant must be zero.

The relation above does not necessarily refer to one
chemical reaction, but to a succession of elementary
reactions known collectively as a mechanism. The most
elementary reaction is a simple bimolecular process with
a second order rate law of the type

d[C]/dt =−d[A]/dt = k[A][B] , (37.2)

where two species A and B collide to form products,
one of which can be labeled C. In this law, the rate

coefficient k is related simply to the reaction cross
section σ via the equation

k = σv , (37.3)

where v is the relative velocity of reactants. The rate co-
efficient in a bimolecular process has units of volume per
time, typically cm3 s−1. In a thermal system, the rate co-
efficient k(T ) is averaged over all degrees of freedom of
the reactants, both internal and translational. The most
specific rate coefficient is termed a state-to-state co-
efficient and refers to a process in which reactant A in
quantum state a reacts with reactant B in quantum state b
at a specific translational energy T to form products in
specific states separating with a specific translational
energy [37.7].

Although normal bimolecular processes produce
more than one product, it is also possible for the two
reactants A and B to stick together if sufficient energy
is released in the form of a photon:

A+ B −→ AB+hν . (37.4)

Such a process is called radiative association [37.8],
and has mainly been studied for ion-molecule systems,
i. e., reactions in which one of the two reactants is an
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ion. The process of radiative association is normally
thought to occur in two steps. The first step produces a
collision complex AB∗, which is a molecule existing in
a transitory fashion above its dissociation limit:

A+ B −→ AB∗ . (37.5)

Once formed, the complex, which is often thought of
as an ergodic entity retaining memory only of its total
energy and angular momentum, can either redissociate
into reactants, or emit a photon of sufficient energy to
stabilize itself:

AB∗ −→ AB+hν . (37.6)

Since redissociation of the complex is generally more
rapid than radiative emission, radiative association rate
coefficients are normally small. Emission of one in-
frared photon is sufficient to achieve stabilization, but
stabilization of a complex via electronic emission may
be a more rapid mechanism if suitable electronic states
exist [37.8,9]. The lifetime of the complex against redis-
sociation into reactants is a strong direct function of the
binding energy of the species and the number of atoms
it possesses.

In addition to bimolecular processes, two other
types of reactions often referred to as elementary
are unimolecular and termolecular reactions. Although
complex reaction mechanisms are sometimes divided
into unimolecular and termolecular steps, these are not
strictly elementary because they can be subdivided into
a series of bimolecular steps. In a unimolecular reac-
tion [37.10,11], a molecule A is destroyed at sufficiently
high gas density by a process that has the seemingly
simple first order rate law

d[A]/dt =−k[A] . (37.7)

At low pressures, on the other hand, the rate law is
second order. A simplified series of events, called the
Lindemann mechanism, explains these limiting cases
by invoking the activation of species A by strong in-
elastic collisions with bath gas M to form an activated
complex A∗ which can either be deactivated by inelastic
collisions or spontaneously decompose, since it pos-
sesses sufficient energy to do so. The steps are written
as

A+M� A∗ +M , (37.8)

A∗ −→ B+C , (37.9)

where the spontaneous destruction of A∗ can be thought
of as a truly elementary unimolecular reaction, akin to

spontaneous emission of radiation. Studies of sponta-
neous dissociation occupy an important place in gas
phase reaction theory, and are discussed in Sects. 37.1.2
and 37.1.4 in the context of dissociation of intermedi-
ate complexes. If the rate coefficients for the forward
and reverse processes in (37.8) are labeled k1 and k−1
respectively, and the rate coefficient for spontaneous
dissociation of A∗ into products is labeled k2

(
s−1

)
,

application of the steady-state principle to the concen-
tration of the activated complex, namely,

d[A∗]/dt = k1[A][M ]− k−1[A∗][M ]− k2[A∗] ≈ 0

(37.10)

leads to the rate law

−d[A]/dt = k′[A][M ] , (37.11)

where

k′ = k1k2/ (k−1[M ]+ k2) . (37.12)

At low pressures, k−1[M ] & k2 and k′ ≈ k1 so that
a second order rate law prevails. At high pressures,
k−1[M ] % k2 and k′ ≈ k1k2/k−1[M ] so that the rate law
becomes first order:

− d[A]/dt ≈ (k1/k−1) k2[A] . (37.13)

Since both the activation and deactivation of complexes
occur stepwise, rather than in single strong collisions,
reality is far more complex than the Lindemann mech-
anism [37.12], and, at the highest degree of detail,
master equation treatments are needed, especially for
intermediate pressures [37.13].

In a termolecular reaction, which is actually the in-
verse of a unimolecular process [37.13], two species
B and C collide to form a collision complex A∗, which
can be regarded as the activated complex of stable
species A. The collision complex can be stabilized by
subsequent strong collisions with other species:

A∗ +M −→ A+M , (37.14)

or can redissociate into reactants. If the complex forma-
tion step occurs with a bimolecular rate coefficient k−2,
and k−1 and k2 refer to complex stabilization and disso-
ciation as in the unimolecular case, the rate law for the
termolecular process can be written

d[A]/dt = k′[B][C][M ] , (37.15)

where

k′ = k−2k−1/ (k−1[M ]+ k2) . (37.16)
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At low pressures, k′ ≈ k−2k−1/k2 and the rate law is
third order. At high pressures, when every activated
complex is deactivated, the rate law becomes second
order since k′ ≈ k−2/[M ]. Actually, at very low pres-
sures radiative stabilization of the complex dominates
and the rate law once again becomes second order. As in
the unimolecular case, the complex does not really un-
dergo strong inelastic collisions, so that reality is once

again more complex than pictured here [37.13]. For
detailed theories of thermal reactions, there is the addi-
tional problem in (37.12) and (37.16) of deciding when
thermalization of the partial rate coefficients should be
undertaken. In reality, the partial rate coefficients refer
to reactions with specific amounts of energy and angu-
lar momentum, and should not be thermally averaged
before incorporation into the equations for k′.

37.1 Normal Bimolecular Reactions

The rates of elementary (bimolecular) chemical re-
actions are governed by Born–Oppenheimer potential
surfaces, which contain electronic energies and nuclear-
nuclear repulsions. Reactions can be classified as
exoergic or endoergic depending upon whether the 0 K
energies of the products lie below or above those of the
reactants, respectively. In the simplest types of exoergic
chemical reactions, the potential energy flows down-
hill from reactants to products, or flows downhill from
reactants to a global minimum (the reaction complex)
after which it flows uphill to products. More commonly,
the morphology of the potential surface is such that af-
ter some long-range attraction, the potential rises as old
chemical bonds are broken before falling as new bonds
are formed. Generally, there is a minimum energy path-
way through the region of large potential referred to as
the reaction coordinate. The system is said to traverse
a transition state barrier, which refers to the configura-
tion of atoms at which a potential saddle point occurs.
The height of this transition state barrier is related to the
activation energy barrier Ea in the classical Arrhenius
rate law

k(T )= A(T ) exp
[− Ea/

(
kBT

)]
, (37.17)

for rate coefficients of bimolecular reactions which
contain short-range barriers [37.1]. In the Arrhenius
expression, kB is the Boltzmann constant, and the pre-
exponential factor A(T ) can be related to the form of
the long-range potential, or to an equilibrium coeffi-
cient between the transition state and reactants (see the
discussion of activated complex theory in Sect. 37.1.3).
Although fits of experimental data over short tempera-
ture ranges often assume the pre-exponential factor to
be totally independent of temperature, theories show that
this is not strictly true in most instances. A more seri-
ous problem with the expression undoubtedly occurs at
low temperatures since tunneling will clearly lead to
deviations.

Although, in principle, it is possible to calculate
reaction cross sections and rate coefficients via the
quantum theory of scattering, in practice few systems
have been studied by this technique given the immense
computational effort required [37.14, 15]. Another set
of approaches, which has been used to study a large
variety of systems, is known as classical molecular dy-
namics (see Chapt. 58). In these approaches, the atoms
move classically on the quantum mechanically gener-
ated Born–Oppenheimer potential surfaces. For many
reactions, however, neither technique is applicable, and
a variety of simpler approaches has been developed,
using capture and statistical approximations; these ap-
proaches will be emphasized here. Indeed, the use of an
ergodic complex in our preliminary discussion of associ-
ation and unimolecular reactions above presages the use
of statistical approximations. An excellent high-level re-
view article on many of the topics covered here has been
written by Troe [37.16].

37.1.1 Capture Theories

For reactions that do not possess a potential energy bar-
rier at short-range, it is tempting to apply long-range
capture theories between structureless particles to cal-
culate the reaction rate coefficient. Such theories assume
that (a) all hard collisions lead to reaction, and (b) hard
collisions occur for all partial waves up to a maximum
impact parameter bmax or relative angular momentum
quantum number Lmax. This is normally defined so that
the reactant translational energy TAB is just sufficient
to overcome a centrifugal barrier. The centrifugal bar-
rier produces a long-range maximum in the effective
potential energy function Veff given by the relation

Veff(r, b)= V(r)+TABb2/r2 , (37.18)

where r is the separation between reactants and
TABb2/r2 is the angular kinetic energy. If the reactants
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overcome the centrifugal barrier, they will spiral in to-
wards each other in the absence of short-range repulsive
forces. The approach has had its most notable success
for exoergic reactions between ions and nonpolar neu-
tral molecules [37.17]. The long-range potential in this
situation is simply (in cgs-esu units)

V(r)=−e2αd/2r4 , (37.19)

where αd is the polarizability of the neutral reactant.
This potential leads to the Langevin rate coefficient

k = vπb2
max = 2πe(αd/µ)

1/2 , (37.20)

where µ is the reduced mass of the reactants. The the-
ory leads to a temperature-independent rate coefficient
with magnitude ≈ 10−9 cm3 s−1. Numerous experi-
ments from above room temperature to below 30 K
confirm its validity for the majority of ion–molecule re-
actions, which appear rarely to possess potential energy
surfaces with short-range barriers [37.18, 19].

An analogous central force potential for structure-
less neutral–neutral reactants is the van der Waals or
Lennard–Jones attraction

V(r)=−C6/r
6 , (37.21)

where C6 can be defined simply in terms of the
ionization potentials and polarizabilities of the reac-
tants [37.20, 21]. The rate coefficient obtained using
a capture theory with this long-range potential is given,
after translational thermal averaging, by the equa-
tion [37.21]

k(T )= 8.56 C1/3
6 µ−1/2(kBT )1/6 , (37.22)

where all quantities are in cgs units. Equation (37.22)
leads to estimates for the rate coefficient at room tem-
perature in the range ≈10−10 –10−9 cm3 s−1. Unlike
the situation for ion–molecule reactions, this estimate
has not received much attention mainly because most
neutral–neutral reactions involve activation energy. Even
for those systems without activation energy, the approx-
imation appears to lead to rate coefficients that are too
large by at least a factor of a few [37.21]. In place of the
result of (37.22), kineticists often use the simple hard-
sphere model with atomic dimensions for the reaction
cross section. The hard-sphere model leads to a tem-
perature dependence of T 1/2, which is in disagreement
with a whole series of new experiments by Smith, Rowe,
and co-workers on fast neutral–neutral reactions down
to temperatures near 10 K [37.22].

Both long-range potentials considered above are
isotropic in nature. A variety of capture theo-

ries [37.23, 24] have been developed which take angular
degrees of freedom into account. For ion–molecule sys-
tems in which the neutral species has a permanent dipole
moment µd, the long-range potential becomes

V(r, θ)=− e2αd

2r4 − eµd cos θ

r2 , (37.23)

where θ is the angle between the radius vector from
the charged species to the center-of-mass of the dipolar
species and the dipole vector. Adiabatic effective (cen-
trifugal) potential energy curves can be defined at any
given fixed intermolecular separation r by diagonaliz-
ing angular kinetic energy and potential energy matrices
using a suitable basis set. If an atomic ion is reacting
with a linear neutral, a suitable basis set would con-
sist of spherical harmonics for the rotation of the linear
molecule (angular momentum j) as well as rotation ma-
trices for the relative motion (angular momentum L)
between the species. The eigenvalues of a matrix with
fixed total angular momentum J then correspond to the
effective radial potential energy functions Veff at each r.
The L, j labeling of the potential curves can be ascer-
tained by starting the calculation at sufficiently large r
so that L and j are reasonably good quantum num-
bers. Additional approximations, such as the centrifugal
sudden approximation, can be made to facilitate the cal-
culation [37.25]. Making the adiabatic assumption that
transitions between these potentials are not allowed at
long range, one obtains an adiabatic capture rate coeffi-
cient for each initial value of j and translational (radial
kinetic) energy TAB from the criterion

Veff( j, Lmax, R)= TAB , (37.24)

where R is the separation corresponding to the maxi-
mum effective potential. Unlike the Langevin approach,
the rate coefficients thermalized over translation for
each j show an inverse dependence on temperature,
with the j = 0 state showing the most severe depen-
dence since the dipole is essentially “locked” for this
state. Thermal averaging over j typically leads to rate
coefficients with an inverse dependence on temperature
between T−1/2 and T−1 [37.26]. Rate coefficients as
large as 10−7 cm3 s−1 can be obtained as the temperature
approaches 10 K. Although most ion–dipole reactions
seem to obey capture theory models at low temperature,
there are exceptions.

An alternative approach to ion–dipole reactions us-
ing the classical concept of adiabatic invariants has been
developed [37.27]. In addition, variants to the capture
theory discussed here have been formulated. A statis-
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tical adiabatic approach has been developed [37.23],
in which adiabatic effective potential maxima are not
used to define capture cross sections, but to define rate
coefficients via the activated complex (transition state)
theory discussed in Sect. 37.1.3, which posits thermal
equilibrium between reactants and the species existing
at the potential maxima. One advantage of this sim-
plification is that it permits the adiabatic treatment to
be more easily extended to complex geometries, espe-
cially if perturbation approximations are utilized. Other
approaches involve the variational principle; an upper
bound to the capture rate coefficient can be determined
within the transition state, or bottleneck approach, which
defines the transition state through minimization of the
number of available vibrational/rotational states at the
bottleneck [37.28] (see Sect. 37.1.3).

Nonspherical capture theories have also been
used [37.29,30] to study rapid neutral–neutral reactions.
The role of atomic fine structure at low temperatures is
an especially interesting application; reactions involv-
ing atomic C and O with a variety of reactants have been
studied. Use of an electrostatic potential shows that the
reactivity of C or O atoms in their 3P0 states with dipo-
lar species is minimal. This is particularly important for
atomic carbon since at low temperatures it lies primarily
in its ground 3P0 state. The choice of an electrostatic po-
tential has been disputed [37.21] because experimental
results for C–hydrocarbon reactions at room tempera-
ture are best understood if the long-range potential
is dispersive (Lennard–Jones) in character rather than
electrostatic.

Reactions between radicals in 2Π states (e.g. OH)
and 2Σ states (e.g. CN) and stable molecules have also
been considered, especially at low temperature, with
long range potentials that contain both electrostatic and
dispersion terms. The results can be compared with new
low temperature experimental results on the CN−O2
reaction, but the temperature dependence is not matched
by theory if the dispersion term is included [37.30, 31].
In general, even the most recent capture theories are not
as reliable as those for ion–molecule systems [37.32].
Rapid neutral–neutral reactions can also be treated by
transition state theories (see below) [37.33] or, rarely, by
detailed quantum mechanical means [37.34].

The last five years have witnessed a burgeoning
interest in rapid neutral–neutral reactions at low tem-
perature studied with the so-called CRESU technique
(an acronym for Cinétique de Réaction en Ecoule-
ment Supersonique Uniforme) [37.22, 35–37]. The
new data should provoke new attempts at theoretical
understanding.

37.1.2 Phase Space Theories

Capture theories tell us neither the products of reaction,
if several sets of exoergic products are available, nor
the distributions of quantum states of the products. The
simplest approach to these questions for reactions with
barrierless potentials is to make a statistical approxima-
tion – all detailed outcomes being equally probable as
long as energy and angular momentum are conserved.
Such a result requires strong coupling at short range. The
most prominent treatment along these lines is referred
to as phase space theory [37.38]. In this theory, the cross
section σ for a reaction between two species A and B
with angular momentum quantum numbers JA and JB
and in specific vibrational-electronic states colliding
with asymptotic translational kinetic energy TAB to form
products C and D in specific vibrational-electronic states
with angular momentum quantum numbers JC and JD
is

σ(JA, JB → JC, JD)= π�2

2µTAB

∑

Li ,J

(2Li +1)

× P(JA, JB, Li → J )P′(J → JC, JD) , (37.25)

where J is the total angular momentum of the combined
system, Li is the initial relative angular momentum
of reactants, P is the probability that the angular mo-
menta of the reactants add vectorially to form J , P′ is
the probability that the combined system with angu-
lar momentum J dissociates into the particular final
state of C and D, µ is the reduced mass of reac-
tants, and the summation is over the allowable ranges
of initial relative angular momentum and total angu-
lar momentum quantum numbers. P′ is equal to the
sum over the final relative angular momentum L f , of
angular momentum allowed (J → L f , JC, JD) com-
binations leading to the specific product state divided
by the sum of like combinations for all energetically
accessible product and reactant states. The ranges of
initial and final relative angular momenta are given
by appropriate capture models (e.g. Langevin, ion–
dipole, Lennard–Jones) as well as angular momentum
triangular rules. This procedure involves the implicit as-
sumption that strong coupling does not occur at long
range; rather, adiabatic effective potentials can be as-
sumed for initial and final states. The state-to-state rate
coefficient is simply the cross section multiplied by the
relative velocity of the two reactants. Summation over
all product states, as well as thermal averaging over the
reactant state distributions and the translational energy
distribution, can all be undertaken. Strategies for sum-
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ming/integrating over rotational/vibrational degrees of
freedom have been given [37.39]. As can be seen by
writing out the expression for P′, the phase space for-
mula for the state-to-state cross section in (37.25) obeys
microscopic reversibility:

2µTABσ(JA, JB → JC, JD)

= 2µ′T ′
ABσ(JA, JB ← JC, JD) (37.26)

where the reduced mass and asymptotic translational
energy of the products are denoted by primes. Thus,
thermalization of the forward and backward rates leads
to detailed balancing.

As a detailed theory for prediction of reaction prod-
ucts and their state distributions, phase space theory and
its variants have had mixed success. It is true that the
theory correctly predicts that exoergic reactions occur-
ring on barrierless potential surfaces proceed on every
strong collision. It is also true, however, that the theory
is generally not useful in predicting the branching ratios
among several sets of exoergic products because poten-
tial surfaces do not often show barrierless pathways for
more than one set of products. When applied to product
state distributions, the theory yields statistical results, so
that population inversions in nondegenerate degrees of
freedom (such as the vibrations of a diatomic molecule)
are not replicated. With respect to more thermalized en-
tities, such as total cross sections vs. collision energy for
endoergic reactions [37.40], the theory can be quite suc-
cessful, especially when the potential surface involves
a deep minimum or intermediate complex. In this in-
stance, the strong coupling hypothesis comes closest to
actuality. A deep well is also associated with a high dens-
ity of vibrational states in the quasicontinuum above the
dissociation limit of the molecular structure defined by
the potential minimum [37.1, 41, 42]. Such a high dens-
ity renders direct (specific) dynamical processess less
likely.

A useful variant of phase space theory if complex
lifetimes are needed [37.43] (see Sects.37.1.4 and 37.2)
is based on a unimolecular decay theory of Klots [37.44].
The reaction is considered to proceed via a capture cross
section to form the intermediate complex, which then
can dissociate into all available reactant and product
states consistent with conservation of energy and an-
gular momentum. The complex dissociation rate kuni
into a specific state can be obtained via the principle of
microscopic reversibility in terms of the capture cross
section from that state, obtained with P′ = 1 in (37.25),
to form the complex. In particular, if a complex with to-
tal angular momentum J can dissociate into one state of

reactants A and B separating with translational energy
TAB , then

kuni=ρ−1
vibg(J )−1g(JA)g(JB)2µTABσ(JA, JB→J ) ,

(37.27)

where ρvib is the density of complex vibrational states
obtained via a variety of prescriptions [37.1,41,42], and
g is the rotational degeneracy. A cross section analogous
to that in (37.25) can be formulated in terms of capture
to form the complex multiplied by the complex disso-
ciation rate into a particular state divided by the total
(summed) dissociation rate. Note that the dissociation
rate of the complex is proportional to ρ−1

vib. Since ρvib is
a strong function of the well depth, long-lived com-
plexes are associated with large well depths (>1 eV).
The Klots form for kuni is especially useful for ion–
molecule systems, where the cross section for complex
formation can be assumed to be Langevin or ion–dipole.
The concept of a long-range potential is less useful for
most neutral–neutral systems, so that unimolecular rate
coefficients for unstable entities are normally obtained
quite differently in terms of ρvib at the transition state
(Sect. 37.1.4).

For smaller reaction systems, especially those in-
volving ions, it is quite common for the electronic states
of reactants to correlate with more than one potential
surface of the combined system, although typically only
one surface leads to energetically accessible products.
In such instances, it is normal to assume statistical par-
titioning, although fine structure effects can complicate
this picture. A generalization of phase space theory to ac-
count for multiple potential surfaces has been proposed
for the C++H2 reaction [37.45].

Phase space theory has been used to predict prod-
uct branching ratios for dissociative recombination
reactions between polyatomic positive ions and elec-
trons [37.46]; its success here has been limited at
best.

37.1.3 Short-Range Barriers

Most reactions involving neutral molecules, as well as
a minority of ion–molecule reactions, possess potential
surfaces with short-range barriers. The experimen-
tal rate coefficients of these systems over selected
temperature ranges are normally fit to the Arrhenius
expression (37.17).

The simplest theoretical method of taking short-
range potential barriers into account is the line-of-
centers approach, which resembles the capture theories
previously discussed [37.7]. In this crude approxima-
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tion, it is assumed that structureless reactants colliding
with impact parameter b along a repulsive potential
must reach some minimum distance, d, for reaction to
occur. If the potential energy in the absence of angu-
lar momentum at d is E0, this condition implies that
the asymptotic translational energy of reactants TAB
must exceed the sum of E0 and the centrifugal energy
TABb2/d2, which in turn yields a maximum impact par-
ameter bmax. Thermal averaging of the rate coefficient
k = vπb2

max over a Maxwell–Boltzmann distribution
then yields

k(T )= πd2(8kBT/πµ)1/2 exp(−E0/kBT ) ,
(37.28)

which bears some resemblance to the Arrhenius expres-
sion if one equates the parameter E0 with the activation
energy. Assuming T = 300 K, µ= 10 u, and d = 1 Å,
the pre-exponential factor is 2.5 × 10−11 cm3 s−1, which
lies in a typical range.

The simple line-of-centers approach reduces the
problem to that of structureless particles. The standard
method of including all degrees of freedom is to use
canonical ensemble statistical mechanics and to imagine
that the transition state is in equilibrium with reactants.
In the transition state, one of the vibrational degrees of
freedom of a normal polyatomic molecule is replaced
by a degree of freedom (the reaction coordinate) along
which the potential is a maximum (with a corresponding
imaginary frequency of vibration). The reaction coordi-
nate is treated as a separable translation, so that the
reaction rate coefficient can be envisaged as the equi-
librium coefficient between transition state (minus one
coordinate) and reactants multiplied by the (average)
speed of the transition state structure over the saddle
point in the potential energy surface. The canonical
result for k(T ) is given by [37.1, 7]

k(T )= kBT

h

qAB†

qA qB
exp(−E0/kBT ) (37.29)

for reactants A and B, where E0 is the energy dif-
ference between the transition state and the reactants
referred to zero-point levels, the † refers to the tran-
sition state, and the q are partition functions per unit
volume. The partition functions can be factored into
products representing electronic, vibrational, rotational,
and translational degrees of freedom [37.47]. This for-
mulation for k(T ) is known as the activated complex
theory (ACT); a more appropriate name would be tran-
sition state theory since the term activated complex is
also used to refer to an unstable state of a molecule in
a deep potential well. The rate coefficient can also be

written in terms of the thermodynamic parameters ∆H†

and ∆S† [37.1].
Both the size and temperature dependence of the

pre-exponential factor depend critically on the char-
acteristics of transition state and reactants. Originally,
ACT theory was used mainly to fit transition state char-
acteristics to rate data. Increasingly accurate ab initio
calculations of potential surfaces now allow purely the-
oretical determinations of k(T ) [37.48].

In addition to the assumption of a separable re-
action coordinate that can be treated as a translation,
several other assumptions have gone into the deriva-
tion of the ACT rate coefficient. First, molecules at
the saddle point configuration (the transition state) have
been arbitrarily chosen to be in equilibrium with re-
actants. More recently, the transition state assumption
has been generalized to refer to that portion of the po-
tential surface in which the reaction flux or number of
states is a minimum [37.49], whether or not this oc-
curs at a well-defined saddle point. Loose transition
states can thus be defined even if there is no barrier
along the reaction coordinate [37.50]. The procedure
can be undertaken for transition states as a function of
temperature, energy, or, in its most detailed version, en-
ergy and angular momentum. The variational theorem
shows rate coefficients determined in this way to be up-
per bounds to the true rate coefficients, the more detailed
procedures leading to the better bounds [37.23, 49, 50].
Secondly, the implicit assumption is made that trans-
lation along the reaction coordinate at the transition
state structure invariably leads to products. Sometimes
a transmission coefficient κ is used as an unknown factor
in the expression for k(T ) to account for the possi-
bility that translation leads back to reactants instead.
Thirdly, the assumption is made that two-body colli-
sions can lead to canonical statistical equilibrium. This
assumption becomes worse as temperature declines, be-
cause at low temperatures the long-range centrifugal
constraints on angular momentum become more signifi-
cant [37.8]. The influence of the long-range potential on
ACT is contained in the statistical adiabatic theory dis-
cussed earlier [37.23]. Here loose transition states are
defined as the maxima of effective adiabatic potential
curves, and (37.29) must be modified since, as in de-
tailed variational transition state theory, the transition
states are themselves dependent on energy and angular
momentum. A related problem is how to treat angular
momentum constraints at low temperatures for potential
surfaces which also contain a large short-range barrier
or tight transition state. One approach is discussed in
Sect. 37.1.4.
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Rate coefficients derived from ACT do not indicate
what the reaction products or sets of products might be.
This information can be obtained from ab initio studies
of the potential surface if different transition states lead
to different products.

37.1.4 Complexes Followed by Barriers

Since long-range forces are always attractive, it makes
sense to consider theories in which attraction and re-
pulsion occur sequentially. For ion–molecule systems,
this is especially important because many potential sur-
faces are monotonically attractive from long range to
formation of a deep minimum at short range, but possess
transition state barriers in their exit channels which are
not large enough to prevent reaction but which affect the
reaction dynamics. In addition, there are ion–molecule
systems with potential surfaces closer to the norm for
neutral–neutral species; in these systems there is only
a weak long-range minimum followed by a short-range
transition state barrier with energy above that of reac-
tants. For the former type and, more arguably, for the
latter type of potential surface, one can assume that the
reaction proceeds through initial formation of an ergodic
complex, followed by dissociation of the complex back
into reactants or over the transition state barrier. If the
reactants are labeled A and B, the complex AB∗, and
the transition state AB†, the mechanism is

A+ B� AB∗ −→ AB† −→ Product , (37.30)

which leads to the steady-state rate law

d[A]/dt = − k[A][B] , (37.31)

k = kcf

kcd+ kcd′
kcd′ , (37.32)

where kcf, kcd, and kcd′ are the rate coefficients for
complex formation, redissociation into reactants, and
dissociation into products over the transition state, re-
spectively. One statistical approach to such systems is
to use a capture theory for complex formation, to use
the Klots formulation of complex redissociation into
reactants, and to use a different theory for the uni-
molecular dissociation of the complex into products.
Transition state theories of unimolecular complex decay
have been studied for many years [37.1]. The current
version is called RRKM theory, after the four authors
Rice, Ramsperger, Kassel, and Marcus [37.10–13]. This
theory builds upon the earlier RRK approach, in which
random intramolecular vibrational energy transfer leads
to large amounts of energy in the bond to be broken.

An alternative hypothesis, in which amplitudes of well-
defined normal modes add up to extend the bond to be
broken past a certain amount, is now discredited [37.51].
In the RRKM approach, which is perfectly analogous to
ACT theory, an equilibrium is envisaged between the
activated complex and transition state species. The main
use of the theory is in thermal unimolecular decay where
it explains complex activation, deactivation, and random
unimolecular dissociation as a function of gas density.
At high density in a thermal environment, an equilib-
rium among complex, activated complex, and transition
state leads to a thermal unimolecular decay rate (37.13)

kRRKM(T )= kBT

h

qAB†

qAB
exp(−E0/kBT ) , (37.33)

which is perfectly analogous to the ACT result. At
lower pressures, the activated complex is not in ther-
mal equilibrium with the stable complex and the details
of complex activation and deactivation are impor-
tant [37.12, 13].

In the microcanonical formulation of RRKM theory,
the dissociation rate coefficient kRRKM as a function of
(activated) complex total energy E and angular momen-
tum J is given by

kRRKM(E, J )= N†[E− E0− Erot(J )]
hρ∗[E− Erot(J )] , (37.34)

where N† refers to the total number of vibrational states
of the transition state from its minimum allowable saddle
point energy E0 through E, and ρ∗ refers to the density
of vibrational states of the complex at energy E. For
both the transition state and the complex, the available
vibrational energy is the total available energy minus the
rotational energy Erot(J ), which is a function of the an-
gular momentum. The energy not used for vibration and
rotation in the transition state is considered to belong to
the separable reaction coordinate. The most common ex-
pressions for the number and density of vibrational states
are the semiclassical empirical values [37.1, 41, 42]; di-
rect counting schemes also exist [37.52]. Both empirical
and direct counting refer to states representing a bath
of harmonic oscillators; anharmonic effects are rarely
treated.

A theory of reaction rates for the mechanism
in (37.30) incorporating a capture theory, and the Klots
and RRKM unimolecular decays has been applied suc-
cessfully to a variety of ion–molecule reactions in
competition with association channels for which the re-
action proceeds via a deep well and an exit channel
barrier (see Sect. 37.2.3) [37.53–55]. Some authors pre-
fer to use RRKM theory to describe redissociation of the
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complex into reactants [37.13, 56] by means of a loose
transition state [37.57], which can be defined via a va-
riety of variational and other methods [37.50]. Some
recent work on unimolecular decay of polyatomic ions
and neutrals following excitation indicates the superior-
ity of the variational RRKM approach to unimolecular
decay [37.58], especially if there is a significant amount
of energy. Both the Klots and RRKM approaches to
complex redissociation have problems associated with
them: the Klots expression obeys microscopic reversibil-
ity but requires both a capture cross section and the
assumption that the phase space formulation of the
probability of individual quantum states is accurate;
the RRKM expression does not obviously obey micros-
copic reversibility and, unless a variational calculation
is performed, can create a somewhat artificial transition
state.

Reaction mechanisms with more than one potential
barrier can also be treated via a combination of ACT,
capture, and unimolecular approaches [37.59, 60].

37.1.5 The Role of Tunneling

The role of tunneling in bimolecular and unimolecu-
lar reactions grows in importance as the temperature is
lowered and hopping over potential barriers becomes
more difficult. A simple one-dimensional correction for
tunneling in the ACT expression for bimolecular rate co-
efficients, obtained by Wigner [37.1, 61], appears to be
reasonable if the tunneling mechanism is not dominant.
This correction Γ > 1 is simply the quantum correction
to the partition function for the reaction coordinate:

Γ ≈ 1− (hνi)
2

24(kBT )2
+ · · · , (37.35)

where νi is the (imaginary) harmonic frequency at
the saddle point. Improved corrections have also been
developed [37.62, 63] and, for the H+H2 reaction,
tested versus accurate quantum calculations [37.64]. At
very low temperatures, such as those found in the in-
terstellar medium, tunneling corrections are likely to
be very large and to require proper multidimensional
treatments.

A one-dimensional tunneling correction to the
RRKM expression for the microcanonical unimolecular
decay rate coefficient also exists [37.65]. The effec-
tive potential representing the reaction coordinate at the
saddle point is assumed to be an Eckart barrier. The
probability of tunneling for each vibrational state of the
transition state is computed, and this probability takes
the place of simply counting the state in the standard

formula for kRRKM. In particular, N†(E− E0− Erot) in
the equation for kRRKM(E, J ) is replaced by

N†QM(E− E0− Erot)=
∑

n

P(E− E0− Erot− εn) ,
(37.36)

where εn is the vibrational energy of state n of the tran-
sition state with respect to its zero point energy, and
the sum is over all states n for which the energy in the
reaction coordinate (the energy in parentheses on the
right-hand-side) is negative, but not so negative that the
classical energy in the reaction coordinate lies below
the minimum of the complex potential well. In general,
only a few vibrational states of the transition state need
be considered for the tunneling correction.

This tunneling correction has been incorporated into
statistical theories for the rate of reactions that proceed
via complexes and transition state barriers [37.60]. It
has been used recently in a calculation of the slow ion–
molecule reaction

NH+
3 +H2 −→ NH+

4 +H , (37.37)

which successfully reproduces the observation that,
despite initially decreasing as the temperature is re-
duced below 300 K, the reaction rate coefficient begins
to increase as the temperature is decreased below
100 K [37.66]. The parameters for the calculation were
obtained from an ab initio calculation of the potential
surface, which shows the system to proceed through
a weakly-bound long-range complex before encoun-
tering a transition state with a rather small barrier of
≈ 0.25 eV. Although the dynamical theory is not quan-
titative (presumably because of the one-dimensional
tunneling approximation), it does reproduce the iso-
tope effects seen when the reactants NH+

3 +D2 and
ND+

3 +H2 are used, definitively showing that tunnel-
ing is the cause. The actual increase in rate at very low
temperature comes from the fact that the tunneling rate
is less dependent on temperature than the dissociation
rate of the complex into reactants. Similar calculations
have been performed for the analogous ion–molecule
reaction

C2H+
2 +H2 −→ C2H+

3 +H (37.38)

to explain a similar observation, although in this latter
instance there is still a controversy concerning whether
or not the reaction is truly exoergic [37.67]. It is in-
teresting to speculate on whether similar effects can be
detected for analogous neutral radical–H2 reactants with
moderate activation energy barriers, such as

CCH+H2 −→ C2H2+H . (37.39)
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This system possesses a transition state of rather moder-
ate energy [37.48], but the only long-range complex is
presumably the very weakly-bound van der Waals struc-
ture. Unlike the ion–molecule case, there are very few

experimental studies of low temperature neutral–neutral
reactions. Studies of pressure broadening at very low
temperatures do reveal, however, the strong influence of
the van der Waals bond [37.68].

37.2 Association Reactions

Association reactions have been studied for both
ion–molecule and neutral–neutral systems. For the ion–
molecule case, association processes can be investigated
in great detail at low densities near or in the radiative
association regime because ions can be stored in low
pressure traps. Review articles [37.69,70] describe such
experiments for small and large ions, respectively. The
results of many higher pressure studies of termolecular
ion–molecule association, especially those undertaken
in the SIFT apparatus, are also available [37.71]. In
general, below the high pressure limit, the rate of as-
sociation reactions without activation energy is known
to increase with (a) an increase in the size of the reac-
tants, (b) an increase in the bond energy of the product
species, and (c) a decrease in temperature. These trends
are all reproduced by statistical theories in which associ-
ation proceeds by the formation of a complex followed
by radiative and/or collisional stabilization [37.8]. More
limited data for termolecular neutral–neutral reactions,
with and without short-range potential barriers, have also
been reviewed [37.72]. Although radiative stabilization
can proceed via a single photon, collisional stabilization
proceeds most probably in a stepwise fashion rather than
in a single strong collision. The most detailed statistical
theories incorporating multistep collisional stabiliza-
tion use master equation techniques; in general it is
preferable to solve the inverse problem of unimolecular
dissociation via detailed RRKM theory and then invoke
detailed balance [37.13,56]. Such theories are more suc-
cessful than strong collision approaches, especially in
considering the dependence of ternary association rates
on pressure. This dependence can be especially difficult
to treat when association competes with an exoergic
channel which does not necessarily dominate because
of a barrier in the exit channel.

37.2.1 Radiative Stabilization

The problem of radiative association in the absence of
competitive exoergic channels is in principle much more
simple. In addition to the rates of complex formation and
dissociation, one needs only the rate of stabilization via

spontaneous emission. If the complex abundance is at
steady state, the rate law for radiative association of
species A and B is simply

d[A]/dt = − kra[A][B] , (37.40)

kra = kcf

kcd+ krad
krad , (37.41)

where kra represents the rate coefficient for radiative
association and krad refers to the rate coefficient for ra-
diative stabilization. If ternary association is considered
in addition, the rate coefficient for radiative associa-
tion is the low pressure limit of a more complex rate
expression.

Radiative stabilization, which is normally consid-
ered to proceed via emission of a single infrared photon,
has been studied in some detail [37.73–75]. If the
unstable complex is imagined to be a collection of har-
monic oscillators, each vibrational state i, which is best
regarded as a Feshbach resonance, can be expressed
as a set of occupation numbers ni

1, n
i
2, . . . ,

[
ni
]

for the
assorted modes. If it is further assumed that upon forma-
tion, the complex has a probability Pi of being formed
in state i, the rate of single-photon vibrational emission
krad

(
s−1

)
is then given by

krad =
∑

i, j

Pi Ai→ j =
∑

[ni ],[n j ]
P[ni ]A[ni ]→[n j ] ,

(37.42)

where the sum is over initial states i and final states j, and
A is the Einstein coefficient for spontaneous emission.
With some algebraic manipulation and the assumption
that dipole selection rules apply, the result simplifies to

krad =
s∑

k=1

∑

nk

Pk
nk

nk Ak
1→0 , (37.43)

where the index k refers to each of the s normal modes,
the index nk to the occupation number of mode k, and
the Einstein A coefficient, which here refers to the fun-
damental transition of mode k, can be expressed in terms
of the absorption intensity (see Chapt. 10). The proba-
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bility Pk
nk

that mode k is excited to state nk is given by
the statistical formula

Pk
nk
= ρ′vib(Evib−nkhνk)/ρvib(Evib) , (37.44)

where ρvib is the vibrational density of states and ρ′vib is
the reduced density of states when nk quanta are as-
signed to mode k. The role of overtone and combination
contributions to the radiative emission rate has also
been investigated [37.74], as have a canonical approx-
imation to the microcanonical formulation discussed
here [37.75] and the small additional effect of stabiliza-
tion by sequential emission [37.73]. With the use of the
classical approximation to the standard vibrational dens-
ity of state functions [37.41,42], (37.43) for krad reduces
to a linear function of the vibrational energy:

krad = Evib

s

s∑

k=1

Ak
1→0

hνk
. (37.45)

The constant of proportionality between krad and Evib
depends strongly on the fundamental intensities; many
of these can be obtained from infrared absorption spec-
tra, although there is normally insufficient information
for all of the active modes in polyatomic molecules,
especially ions. Reasonable estimates, as well as lim-
ited experimental data, show that krad varies between
10 and 1000 s−1 for vibrational energies up to a few
eV [37.69, 70, 73–75]. The radiative stabilization rate
typically decreases slightly with increasing molecular
size due to the inclusion of infrared inactive modes of
vibration. There also appears to be a distinction between
ions and neutral species, with rates for ions apparently
faster.

Since spontaneous emission rates between elec-
tronic states are often far more rapid than infrared
vibrational rates, the possibility that radiative stabi-
lization can proceed via electronic emission has been
examined [37.9]. The well-studied association between
C+ and H2 appears to proceed via electronic relax-
ation, with a radiative stabilization rate one to two orders
of magnitude larger than would be the case for vibra-
tional emission. Whether or not the association between
CH+

3 and H2 proceeds via an electronically excited com-
plex has been debated for some time; the answer is
apparently negative [37.69].

37.2.2 Complex Formation and Dissociation

The formation and dissociation of the complex can be
studied with a variety of statistical approximations other
than what is discussed in this section. In particular, com-
plex dissociation has been treated by a thermal RRKM

approach [37.70, 75], an energy but not angular mo-
mentum specific RRKM approach [37.73], variational
transition state theory, statistical adiabatic theory, and
flexible transition state theory [37.72]. We first consider
a simple thermal approximation for systems without
activation energy incorporating microscopic reversibil-
ity [37.8]. In the limit that the complex redissociation
into reactants is much more rapid than radiative stabi-
lization, the rate coefficient kra for radiative association
in the thermal model is

kra = K(T )krad , (37.46)

where K(T ) is the ratio between kcf and kcd in a ca-
nonical ensemble, and the radiative stabilization rate
has been assumed to be independent of temperature.
The equilibrium coefficient K(T ) between complex
and reactants can be rewritten in terms of partition
functions in the standard way [37.47]. However, the par-
tition function of the complex is best calculated via the
equation

qAB∗ =
∞∫

0

ρvr(E+D0) exp(−E/kBT ) dE ,

≈ ρvr(D0)kBT , D0 % kBT , (37.47)

where ρvr is the density of vibrational-rotational states
[37.41, 42], E is the energy of reactants, and D0 is the
bond energy of the complex. One immediate prediction
of this approach (deriving mainly from the rotational
partition functions of the reactants) is that kra pos-
sesses a strong inverse dependence on temperature
since

K(T )∝ T−(rA+rB+1)/2 , (37.48)

where r refers to the number of rotational degrees of free-
dom (two for a linear molecule and three for a nonlinear
one). It also predicts a strong dependence on well depth
and size of the complex since the density of complex
states is a strong function of both these parameters. Al-
though the thermal model agrees with the strong inverse
temperature dependence of the coefficients for both
radiative and, more commonly, ternary ion–molecule
association [37.8,71] (in which case, the thermal model
with strong collisions replaces krad with a collisional
rate coefficient), the absolute rate coefficients calculated
tend to range up to an order of magnitude too high. Given
the large range of values exhibited by radiative associa-
tion rate coefficients

(
10−20 –10−9 cm3 s−1

)
, this might

not seem too large a problem. It has been shown, how-
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ever, that the thermal model is deficient, especially at
low temperatures because thermal equilibrium cannot
be achieved by two-body collisions [37.8]. A revised
approach, called the modified thermal theory, replaces
the rovibrational density of complex states in the ther-
mal model with a vibrational density of states coupled
with sums over the allowable ranges of complex angular
momentum achievable from the specific capture model
assumed [37.8]. The result is a somewhat lessened in-
verse temperature dependence and somewhat smaller
rate coefficients, especially at low temperatures. Both
modifications result in better agreement with experi-
ment [37.8].

The modified thermal approach considers structure-
less reactants; full consideration of the internal states of
the reactants is achieved via the Klots version of phase
space theory, in which kcf and kcd in (37.41) are the cap-
ture and unimolecular rates discussed in Sect. 37.1.2.
The phase space treatment reduces to the modified ther-
mal treatment for small reactant angular momentum if
the possibility of saturation [kcd(E, J ) < krad] may be
ignored. Both conditions are normally met. The phase
space approach has also been used for ion–molecule
ternary association reactions, but here is coupled with
the strong collision hypothesis and must be regarded
as inferior to the more detailed RRKM calculations
with master equation treatments for collisional stabi-
lization [37.13, 56].

37.2.3 Competition with Exoergic Channels

There have been numerous reactions reported (es-
pecially ion–molecule reactions) in which exoergic
reaction channels compete with association channels,
both radiative (at low pressure) and ternary (at higher
pressures). One view of such competition is that it
occurs via a sequential mechanism in which the reac-
tants form a long-lived collision complex which either
redissociates, dissociates into exoergic products, or is
stabilized [37.53, 54]. The rate coefficient for competi-

tive radiative association is then given by the steady-state
expression

kra = kcf

kcd+ kcd′ + krad
krad , (37.49)

where kcd′ refers to complex dissociation into products.
The additional and normally large kcd′ term in the de-
nominator means that the thermal and modified thermal
theories cannot, in general, be used. The phase space
treatment for this mechanism [37.53, 54, 76, 77] shows
that association cannot compete with exoergic channels
unless there is a significant barrier in the exit chan-
nel which considerably slows the dissociation rate of
the complex into products, especially for partial waves
of high angular momentum. Such barriers tend to be
large enough to slow dissociation down, but not large
enough to require tunneling. Although the results of
phase space calculations are in good agreement with ex-
periment for a variety of competitive systems [37.69,76],
they are once again inferior to RRKM calculations
with master equation collisional deactivation when the
competition involves collisional stabilization of the com-
plex [37.13, 53, 54, 56].

Another mechanism exists for competition between
association and normal exoergic channels [37.69]. Ab
initio studies show that there is a parallel type of com-
petition in which the product and association channels
occur on different portions of the potential surface, with
a branching at long range in the entrance channel. For
example, the competing reactions [37.69, 78]

C2H+
2 +H2 −→C2H+

3 +H , (37.50)

C2H+
2 +H2 −→C2H+

4 , (37.51)

occur via distinct pathways. The former reaction is a pos-
sibly endoergic direct process in which the molecular
hydrogen attacks perpendicularly, leading to the cyclic
form of the C2H+

3 ion, whereas the association reac-
tion occurs via the deep well of the ethylene ion. The
competition in the analogous C3H++H2 system is not
currently well understood, with both parallel and series
mechanisms suggested [37.69, 79].

37.3 Concluding Remarks

While the study of chemical reaction dynamics and ki-
netics is a relatively mature area of investigation, many
challenges remain. A central one is the development
of an efficient, fully quantum mechanical method for
evaluating k(T ) that can be applied to a range of sys-
tems [37.80]. A second set of challenges comes in the

intrinsically non-adiabatic nature of chemical reactions.
As a system moves from reactants to products, there
is a dramatic change in the electronic wave function.
In fact the very existence of a transition state reflects
the avoided crossing of two potential energy surfaces.
There is experimental and theoretical evidence that the
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fact that the dynamics takes place on multiple potential
surfaces has a large effect on the gas-phase state-to-state
dynamics, and eventually the rate coefficients. Finally,
as the evaluation of the electronic structure of atoms and
molecules becomes more easily accomplished through

the use of sophisticated computer packages, researchers
will be able to ask more detailed questions about the re-
lationships between the topology of potential surfaces
and the corresponding rate coefficients than was possi-
ble as recently as ten years ago [37.81].
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Gas Phase Ion38. Gas Phase Ionic Reactions

Ionic reactions in the gas phase is a broad field
encompassing a multitude of interactions between
ions (both positively and negatively charged),
electrons and neutrals. These can be as simple as
the transfer of an electron between molecules, or
can be complex with considerable bond breaking,
reforming and rearrangement. Reactions of the
general type

A+‚−+B−‚n → products , (38.1)

illustrating this diversity, are given in Table 38.1.
The reaction process can be considered as
consisting of three parts: (a) the initial interaction,
in which the colliding particles, A+‚− and B−‚n

are drawn together by an attractive potential, (b)
the reaction intermediate and transition state, in
which reactants are transformed into products
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and (c) the weakening interaction as the product
particles separate. Interactions can also occur
where only elastic scattering is involved and these
are considered in Chapt. 67.

38.1 Overview

Part (a) of the interaction is readily studied theoretically
by classical mechanics in terms of reactant particle mo-
tions controlled by the interaction potential u(r) between
the particles, where r is the interparticle separation.
For ion–neutral interactions, this can take the form
(i) of an attractive ion-polarization or induced dipole
potential [38.1] u(r)=−αdq2/2r4, where αd is the po-
larizability of the neutral and q is the charge on the
ion; anisotropy in the polarizability can also be taken
into account [38.2], (ii) of an ion-permanent dipole po-
tential [38.3] with u(r) =−qµD cos θ/r2, where µD
is the permanent dipole of the neutral and θ is the
angle that the dipole makes with r, and (iii) of an ion-
quadrupole potential [38.4] with u(r)=−Qq(3 cos2 θ−
1)/2r3, where Q is the quadrupole moment and θ
is the angle the quadrupole axis makes with r. Such
capture theories are considered in Chapt. 37. Other in-
teraction potentials can be considered, but these are
of lesser significance. Coulombic interaction poten-
tials u(r)=−q1q2/r, where q1 and q2 are the charges
on the interacting particles, are appropriate for pos-
itive ion–negative ion recombination (more correctly

termed mutual neutralization) and electron–ion re-
combination. For processes involving electrons, i. e.,
electron attachment and electron–ion recombination,
the wave nature of the electron also has to be consid-
ered [38.5, 6].

In addition to providing a means of bringing the
reactant particles together, the attractive interaction po-
tential has another function. In part (b) of the reaction
mechanism, where considerable rearrangement of the
atoms in the colliding species may occur (i. e., in
the intermediate complex and transition state), there
may be barriers to reaction. Here, the kinetic energy
gained from the interaction potential is available in
the intermediate complex for overcoming such energy
barriers (very much less interaction energy is avail-
able in neutral-neutral reactions and the effects of
energy barriers are very much more evident [38.7]).
Of course, this energy has to be reconverted to po-
tential energy as the product particles separate, and is
therefore not available to drive the overall reaction.
However, the amount of energy returned may differ
from that initially converted to kinetic energy since
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Table 38.1 Examples illustrating the range of ionic reactions that can occur in the gas phase

Reaction Process Reaction Type

Ar+ + O2 → O+
2 + Ar Nondissociative charge transfer/charge exchange

O−
2 + NO2 → NO−

2 + O2

He+ + O2 → O+ + O + He Dissociative charge transfer

C3+
60 + Corannulene → Corannulene2+ + C+

60 Multiple charge transfer

O+ + N2 → NO+ + N Ion/atom interchange or atom abstraction

O− + CH4 → OH− + CH3 Atom abstraction

H3O+ + HCN → H2CN+ + H2O Proton transfer

OH− + HCN → CN− + H2O

OH− + H → H2O + e− Associative detachment

C+ + C2H2 → C3H+ + H Atom insertion

CH+
3 + H2 + M → CH+

5 + M Ternary collisional association

Cl− + BCl3 + M → BCl−4 + M

He+2 + e− → He2(2He) + hν Radiative electron–ion recombination

HCO+ + e− → H + CO Dissociative electron–ion recombination

NO+ + NO−
2 → NO + NO2 Ion–ion recombination (mutual neutralization)

e− + CCl4 → Cl− + CCl3 Dissociative electron attachment

e− + C7F14 → C7F−14 Nondissociative electron attachment

e− + O2 + M → O−
2 + M Ternary collisionally stabilized attachment

13C+ + 12CO� 12C+ + 13CO Isotope exchange

OD− + NH3� OH− + NH2D

the polarizability/dipole moment of the product neu-
tral(s) may differ from those of the reactant neutrals.
Generally, the final part (c) of the interaction has lit-
tle influence on the magnitude of the reaction rate
coefficient or on the product distribution once the
products have significantly separated (i. e., beyond the
range at which processes such as long range elec-
tron transfer can occur). Thus, to a major degree, part
(b) of the mechanism and the reaction energetics de-
termine the products of the reaction. Theories which
address this part of the interaction are also discussed
in Chapt. 37 and these have met with mixed success.
Thus, at present, experimental measurements are pro-
viding a more definitive understanding of reactions and
their mechanisms.

Also, the situation is not in general clear as to the
form of the thermodynamic energy that governs whether
a reaction will proceed spontaneously, i. e., whether it is
controlled by the enthalpy change ∆H in the reaction
or by the Gibbs’ free energy change ∆G =∆H−T∆S,
where ∆S is the entropy change in the reaction [38.8].
This is discussed in more detail in Sect. 38.2.

Rate coefficients and product distributions for
these reaction processes are important in all ionized
media where molecular species exist, such as interstel-
lar gas clouds [38.9], planetary atmospheres [38.10]
(including that of the Earth [38.11, 12]), comets
(Chapt. 83), the space shuttle environment [38.13], laser
plasmas [38.14], plasmas used to etch semiconduc-
tors [38.15], hydrocarbon flames [38.16], etc.

38.2 Reaction Energetics

The availability of sufficient energy is a primary consid-
eration for determining whether a reaction can proceed
spontaneously. Criteria for determining whether energy
is given out or absorbed in a reaction are (i) exo-
or endoergicity, ∆E representing the internal energy
change involved in a single interaction, (ii) exo- or
endothermicity for an ensemble of particles in ther-

mal equilibrium as defined by the enthalpy change per
mole, ∆H , in the reaction and (iii) exergonic or en-
dergonic as defined by the Gibbs’ free energy change,
∆G [38.17]. ∆E is related to ∆H at temperature T
by

∆HT ≈−N∆ET , (38.2)
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where N is Avogadro’s number. ∆E is usually
deduced from bond energies [38.18–20], ionization po-
tentials [38.21], electron affinities [38.22, 23], proton
affinities [38.22, 24, 25], gas phase basicities [38.22,
24–26], etc. ∆H0

T is determined from the heats of
formation H0

f,T by [38.27]

∆H0
T =

∑

products

H0
f,T −

∑

reactants

H0
f,T , (38.3)

where the superscript 0 refers to the standard
state [38.17] of the reactants and products [for exam-
ple, see (38.1)]. ∆G0

T is determined from ∆H0
T and the

entropy change ∆S0
T by

∆G0
T =∆H0

T −T∆S0
T , (38.4)

where

∆S0
T =

∑

products

S0
T −

∑

reactants

S0
T , (38.5)

and the S0
T are the standard entropies [38.17]. In cases

where all of the H0
f,T and S0

T are not available, they can
often be deduced by constructing other reactions involv-
ing the species of interest and other species for which the
required thermodynamic information is known ([38.17]
discusses the details of ways in which this can be
achieved). Alternatively, the magnitude of a thermo-
dynamic parameter can be calculated using equilibrium
statistical thermodynamics, if the energies of all of the
occupied molecular energy levels are known [38.28].
For studies where all reacting particles of a given type
have the same energy, such as in beam/beam interac-
tions where cross sections σ(E) are measured, then ∆E
is most appropriate. Alternatively, for reactions involv-
ing an ensemble of particles in thermal equilibrium at
a temperature T , such as those studied in high pressure
mass spectrometer ion sources or afterglows where rate
coefficients k(T ) are measured, ∆H and ∆G are more
appropriate. (The terms “rate coefficient” and “rate con-
stant” are used interchangeably in the literature.) σ(E)
and k(T ) are directly related via

k(T )=
∞∫

0

v(E) f(E)σ(E) dE , (38.6)

where v(E) is the relative speed of the reactants and f(E)
is the Maxwell–Boltzmann energy distribution. Whether
∆H or ∆G is more important for determining reaction
spontaneity depends on the degree of interaction of the
reacting systems with the surroundings during the course

of the whole reaction process. For example, if the reac-
tions occur at low pressure such that the reaction time is
much less than the collision time with the background
gas, there will be no interactions with the surroundings,
and the only energy available in the reactions will be
∆H . Here, ∆S can only determine the probability that
the intermediate complex dissociates forward to prod-
ucts or back to reactants. At the other extreme, if the
reactions are conducted at high pressure such that the
reaction species are always in thermal equilibrium with
the surroundings (the limiting case of this is reaction in
solution), then the additional energy T∆S is available,
and ∆G determines whether the reactions are sponta-
neous. Obviously, for intermediate pressures, there is
a varying degree of contact with the surroundings, and
which of ∆H and ∆G is most applicable is more ob-
scure. The definition of surrounding is also somewhat
loose, since in the present context it represents any-
thing that can provide a source of energy during the
reaction (for example, vibrational modes of the react-
ing species that are not involved in the interaction and
which could be cooled as the reaction proceeds). Usu-
ally, the T∆S term is not sufficiently large that ∆H
and ∆G have different signs so that confusion about
the spontaneity of reactions often does not arise. Re-
cently, however, reactions have been discovered which
appear to proceed spontaneously even though ∆H is
positive, and there has been considerable discussion of
this [38.8].

Eventually, all reaction processes will reach equilib-
rium as defined by

∆G =−RT ln K , (38.7)

where

K = (
pc

C pd
D

)/(
pa

A pb
B

)
(38.8)

is the equilibrium constant for the reaction

aA+bB� cC+dD . (38.9)

The subscripts to the pressures p denote the components
A to D, and the superscripts represent the stoichiome-
tries [38.17,28]. The equilibrium constant K also equals
kf/kr, the ratio of the forward to reverse rate coefficients,
obtained for thermalized particles at temperature T .
Thus, from measurements of k or the equilibrium con-
stant at a series of temperatures, ∆H and ∆S of the
reaction can be separately obtained.
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38.3 Chemical Kinetics

The rate coefficient k for the reaction process

A+ B → C+D (38.10)

is defined by the rate equation [38.29]

d[A]
dt

= d[B]
dt

=−k[A][B] , (38.11)

where the square parentheses represent the concentra-
tions of the enclosed species, and the units of k are
typically cm3 molec−1 s−1 (often molec−1 is not writ-
ten explicitly in the units). These k are deduced from the
time variation of specific concentrations of thermalized
reactants under a variety of conditions. For ion–neutral
reactions, with A being the positive or negative ion
species, the situation can usually be achieved in the
laboratory where [B] % [A], i. e., a pseudo first-order
reaction. Simple integration yields

[A]t = [A]0 exp(−k [B]0 t ) , (38.12)

where the subscript 0 indicates that this concentration
is time invariant. Similar circumstances apply to binary
electron attachment reactions, where [A] = [e], the elec-
tron number density (the symbol β is often used here in

place of k). If the reaction proceeds by association that
is stabilized by collision with a third body M then

A+ B+M → AB+M , (38.13)

and the solution is

[A]t = [A]0 exp(−k [B]0[M]0 t ) (38.14)

with k now having units of cm6 molec−2 s−1. Note that
situations exist where binary and ternary reactions can
occur simultaneously.

If [B] �% [A], the solution of (38.11) is different. For
the special case [B] = [A], integration yields

1/[A]t −1/[A]0 = kt , (38.15)

and similarly for [B]. This situation is usually achieved
in the laboratory for the determination of k for electron–
ion and ion–ion recombination (the symbols αe and αi
respectively are often used to replace k here). In many ap-
plications where several processes contribute to changes
in [A] and [B], and where the simple limits are not
applicable, the situation has to be analyzed numerically.

38.4 Reaction Processes

Recently, a nine volume series, concerned with all as-
pects of mass spectrometry, is being published of which
Volume 1 deals with theoretical and experimental as-
pects of ionic reactions in great detail [38.30]. The reader
is recommended to first consult the present chapter to
get an overview of the reaction processes, and to go to
this other text if more detail is required.

The wide variety of possible reaction processes is
listed in Table 38.1 by specific examples. However, the
reaction mechanisms illustrated are completely general.
Magnitudes of the rate coefficients for binary interac-
tions between charged and neutral particles, vary from
10−7 cm3 s−1 for electron attachment [38.31,32] to 10−8

or 10−9 cm3 s−1 for unit efficiency ion–molecule reac-
tions [38.33–36]. The efficiency is defined as the ratio of
the measured k to the theoretical collisional value, i. e.,
that determined using the appropriate interaction poten-
tial. Ion–molecule reactions involving molecules with
large permanent dipoles (for example, HCN at 2.98 D
and HCl at 1.08 D [38.37]), can have k > 10−7 cm3 s−1

at low T [38.37–39] due to locking of the dipole along
the line joining the reactant species, thereby maximiz-
ing the strength of the interaction. Rate coefficients

can be much smaller (by orders of magnitude) than
these upper limits if the efficiency of part (b) of the
mechanism is small. The part of the mechanism after
collision occurs is treated by transition state theory in
terms of the partition function of the transition state;
where the transition state is, and its partition function,
relates to the number of ways that the available en-
ergy can be distributed in the transition state [38.40].
More details of the theories are given in Chapt. 37
and [38.41].

For dissociative electron–ion recombination, the
upper limits on k are generally much larger as
a consequence of the long range Coulombic inter-
action potential, varying from ≈ 10−7 cm3 s−1 for
diatomic ions to > 10−6 cm3 s−1 for more polyatomic
species [38.42–45]. For ion–ion recombination, the rate
coefficients are about an order of magnitude smaller
than these values because of the larger mass of the
negative ion relative to the electron, and thus the
smaller interaction velocity (the σ of the two processes
are, in fact, similar) [38.46]. Electron–ion recombi-
nations that are radiatively stabilized generally have
a small k, as small as ≈ 10−12 cm3 s−1 [38.47], be-
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cause of the large magnitude of the radiative lifetime
of the reaction intermediate compared with the time for
autoionization. For most reaction types, experimental
rate coefficients are available at room temperature, and
for some, the temperature and/or energy dependencies
have also been determined [38.31, 32, 43, 44, 46, 48].
Generally, only the ion products are identified using
mass spectrometry, and the product neutrals are not de-
termined (unless the energetics allow only one neutral
product), and the states of excitation of the products are
not identified.

For ternary processes involving association, k varies
from totally saturated at the binary collision limit
to very small (≈ 10−32 cm6 s−1) for ion–neutral
reactions [38.33, 34] and similarly for electron attach-
ment [38.49]. Little is known about collision stabilized
recombination [38.50]. Each type of reaction process
has its own characteristic behavior and dependence on
temperature. Rate coefficients, temperature dependen-
cies, and product distributions (where available) have
been tabulated for ion–neutral reactions [38.33, 34, 51]
and electron attachment [38.31,32]. Less data are avail-
able for electron–ion and ion–ion recombination, so no
attempts have been made to compile these. Data are
available in [38.6, 42–44, 46].

38.4.1 Binary Ion–Neutral Reactions

Over the years, these reaction processes have been re-
viewed several times, but from different perspectives.
Most recently, studies of positive ion–molecules in flow
tubes [38.52] and negative ion–molecule reactions from
an organic mechanistic viewpoint [38.53] have been
discussed.

Charge Transfer and Charge Exchange
These processes involve the exchange of an electron
which can occur at relatively large interparticle separ-
ations (i. e., up to ≈ 6 Å [38.54]). Thus, in principle,
k values can be larger than the collision limiting value.
Such reactions are, in general, relatively fast, although
there are some notable exceptions (for example, He++
H2, k = 1 × 10−13 cm3 s−1; Ne++H2, k< 2 × 10−14 and
Ne++N2, k = 1.1 × 10−13 [38.33]). Attempts have been
made to relate the efficiency of charge transfer to the
Franck–Condon overlap between the neutral reactant
and the product ion, with mixed success [38.55]. More
energy is generally available in the positive ion reac-
tions than the negative ion reactions since ionization
potentials are much larger than electron affinities, and
thus more dissociative products would be expected, as

is usually observed. The reaction

He++N2 →
⎧
⎨

⎩
N++N+He+0.28 eV

N+
2 +He+9.00 eV ,

is particularly interesting and has been studied in consid-
erable detail. The product distribution slightly favors N+
(60%) rather than N+

2 [38.56], with the N+ channel be-
coming even more important with increasing vibrational
temperature of the N2 [38.57]. Spectroscopic emission
studies [38.58] have shown that a significant fraction
(≥5%) of the reactions proceed by charge transfer into
the N+

2

(
C 2Σ+

g

)
state followed by the radiative decay

N+
2

(
C 2Σ+

u

)→ N+
2

(
X 2Σ+

g

)+hν . (38.16)

This channel competes with the predissociation

N+
2

(
C 2Σ+

u

)→ N++N . (38.17)

A new mechanism has recently been observed in
which charge transfer occurs in parallel with chemi-
ionization (or, equivalently, electron detachment):

He++C60 → C2+
60 + e−+He . (38.18)

Such a process is, of course, only energetically pos-
sible for high recombination energy ions like He+ and
Ne+ [38.59]. Also, multiply charged C60

(
C3+

60

)
has been

seen to undergo two electron transfer with Corannulene
and some Polycyclic Aromatic Hydrocarbons (PAH’s),
generally in parallel with a whole series of other reaction
channels [38.60].

Proton Transfer
Where proton transfer is significantly exoergic, as de-
termined by the difference in the proton affinities of
the reactant and product neutrals, reaction usually pro-
ceeds at the collisional rate [38.61]. If the reaction is
close to thermoneutral, then the amount of phase space
available when the intermediate complex dissociates to
products is similar to that available when it dissoci-
ates back to the reactants, and the k approximates to
one-half the collisional value. For proton transfer re-
actions which are not highly exo- or endoergic, kf and
kr can be measured and thus ∆G determined [using
(38.7)]. If ∆S can be determined in some way, or if
kf/kr can be determined as a function of T , then ∆H
can be deduced and used to obtain the proton affin-
ity difference (∆S can also be determined in the latter
case). This has been used to construct proton affinity
scales [38.24, 25]. Care is required in such studies to

Part
C

3
8
.4



580 Part C Molecules

ensure that no vibrational excitation remains in the re-
actant ion due to its formation, and that the identities
(i. e., isomeric forms) of the reactant and product ions
are known (e.g. whether the ion is HCO+ or the higher
energy form COH+ [38.62]).

Often the individual reaction processes do not oc-
cur in isolation. For example, in the reactions of CH+

4
with COS, H2S, NH3, H2CO and CH3OH, both charge
transfer and proton transfer are energetically possible,
and both channels are observed. Here, the least exoergic
channel is favored in all cases [38.63]. Proton transfer
also occurs in negative ion reactions, for example those
of OH− and NH−

2 giving H2O and NH3 respectively
(e.g. see Table 38.1), and these types of reactions are
production sources for many negative ions [38.53, 64].

Ion–Atom Interchange and Atom Abstraction
In many simple cases, these two processes are the same,
for example

Ar++H2 → ArH++H , (38.19)

but not so for the more complicated molecules (e.g., O−
+ CH4; see Table 38.1). Such reactions, when exoergic,
usually occur close to the collisional rate although some-
what slower. Series of such reactions with H2 occur in
the interstellar medium and are responsible for produc-
ing the hydrogenation in many of the species observed
there, for example, in CH+

3 production from CH+, NH+
4

from NH+ and H3O+ from OH+ (see Chapt. 82). The
reaction,

NH+
3 +H2 → NH+

4 +H , (38.20)

is particularly interesting. At temperatures greater than
300 K, the reaction shows an activation energy barrier of
2 kcal mol−1. The rate coefficient k decreases with de-
creasing T , reaching a minimum of 2 × 10−13 cm3 s−1

at 80 K and then increases at lower T due to tunneling
through the barrier [38.48]. This behavior occurs be-
cause, at the higher temperatures, the lifetime of the
intermediate complex is not sufficient for significant
tunneling to occur, but there is sufficient energy in
the reacting species to overcome the barrier. At lower
temperatures, there is not sufficient energy available to
overcome the barrier, but the lifetime of the intermediate
complex becomes long enough for significant tunneling
to occur [38.65]. This explanation has been substanti-
ated by the isotopic studies of the reactions NH+

3 + D2,
and ND+

3 + H2 and D2 [38.66].
For some reactions, isotopic labeling has been

used to identify the reaction mechanism. For example,

the reaction

O++O2 → O+
2 +O (38.21)

has been shown to be predominantly charge transfer,
rather than ion–atom interchange, by labeling the ion as
18O+ [38.67, 68].

Associative Detachment
For negative ions, an additional process is possible for
which there is no equivalent positive ion analog (al-
though there is the related process of chemi-ionization,
i. e., AB+C → ABC++e−). In this process, the nega-
tive ion and the neutral associate, and the association is
stabilized by the ejection of the electron (see Table 38.1).
Such reactions can only occur when the electron detach-
ment energy is less than the energy of the bond that
is produced. Therefore, these reactions usually involve
radical species which produce stable molecules. k values
are usually an appreciable fraction of the collisional val-
ues [38.69, 70]. Infrared emissions have been detected
from a series of these reactions [38.71], for example O−
with CO and F−, Cl− and CN− with H, and show that
the reactions populate the highest vibrational levels that
are energetically accessible.

Other Binary Ion–Molecule Reaction Channels
As reactant species become more polyatomic, there is
a greater variety of reaction processes that can occur, and
these often occur in parallel. The processes that occur
are too numerous to list so a few examples will have
to suffice. Reactions that occur in isolation are insertion
reactions of the type [38.72]

C++CnHm → Cn+1H+
m−x + xH (38.22)

and

S++CnHm → Hm−1CnS++H . (38.23)

Multiple channels are very evident in reactions of ions
produced from species with large ionization potentials
and small proton affinities, for example, NH+ [38.73],

NH++CH3NH2→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H4CN++NH2

CH3NH+
2 +NH (charge tsfr.)

CH3NH+
3 +N (proton tsfr.)

H2CN++ (NH3+H)

H3CN++NH3 .

In addition to charge and proton transfer, other channels
requiring more rearrangement are evident.
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Isotopically Labeled Reactants
A great deal can be learned about reaction mechan-
isms in significantly exoergic ion–neutral reactions by
isotopic labeling. Some such reactions have been men-
tioned above, but a particularly graphic example is the
reaction

CH+
4 +CH4 → CH+

5 +CH3 , (38.24)

which was assumed to be either proton transfer and/or
H-atom abstraction, depending on the interaction en-
ergy. By studying the reaction with both the ion and
the neutral reactants separately deuterated, the reaction
was shown to be much more complex, with the prod-
uct ions being CH4D+ (10%), CH3D+

2 (22%), CH2D+
3

(43%) and CHD+
4 (25%) for the reaction of CH+

4 with
CD4 [38.74]. The reaction clearly proceeds via a long-
lived intermediate in which there is a large degree of
isotope mixing before unimolecular decomposition to
products.

A further class of isotopic reactions are those for
which the exoergicity is provided only by the differ-
ent zero point energies of the reactants and products.
Many such reactions have been studied. Examples of the
various types are: (i) The symmetrical charge transfer

15N+
2 + 14N2 → 14N+

2 + 15N2 , (38.25)

which proceeds in both directions at more than half the
collisional rate. This implies that the reaction proceeds
via long-range charge transfer, a conclusion substan-
tiated by the fact that no mixed product 14N 15N+ is
produced [38.67]. (ii) Proton transfer reactions exempli-
fied by 14N2H+ + 15N2 and H 12CO+ + 13CO, which
are both exoergic by about 1 meV [38.48]. Some iso-
topic scrambling has been observed in the latter reaction
by using the double isotopic substitution [38.75],

H12C18O++ 13C16O →

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H13C16O++ 12C18O

(≥ 90%)

H13C18O++ 12C16O

(≤ 10%) .

Other examples where considerable isotope scram-
bling occurs are H/D exchange in the reaction
systems H+

3 +H2, CH+
3 +H2, H3O++H2O, CH+

5 +
CH4, etc. [38.48]. Such scrambling reactions are be-
lieved to proceed via proton bound dimer intermediates
(e.g., H2O · · ·H+ · · ·D2O). (iii) Isotope exchange reac-
tions such as 13C++ 12CO → 12C++ 13CO have also
been studied. For this reaction, both kf and kr increase

with decreasing T due to an increase in the intermedi-
ate complex lifetime; kr decreases at lower T due to the
endoergicity in this reaction direction [38.74].

Isotope exchange is also observed to occur with
negative ions, viz.

DO−+MH→ HO−+MD , (38.26)

and is a common process. Particularly significant is the
comparison where MH is H2 and NH3. These species
have very similar gas phase acidities, and thus the exo-
ergicities of the reactions are similar. However, NH3
has a larger polarizability than H2 and, in addition, has
a permanent dipole moment. The observation that the
k for the NH3 reaction is a factor of ten larger than
that for the H2 reaction is explained as being due to the
stronger interaction potential which makes more energy
available in the intermediate complex and facilitates H/D
exchange [38.64].

Temperature Dependencies of Binary Reactions
When the k values at room temperature are close to the
collisional value, appreciably exoergic reactions gener-
ally exhibit little temperature dependence. For slower
reactions, a significant inverse temperature dependence
is observed, being ≈ T−1/2 for several reactions. This
behavior is rationalized as a decreasing lifetime of the
intermediate complex with increasing temperature, thus
allowing less time for reaction [38.48].

38.4.2 Ternary Ion–Molecule Reactions

In cases where binary channels are not energetically
possible, association reactions can still occur, both for
positive and negative ions. The reactions can be as
simple as

He++He+He→ He+2 +He , (38.27)

to associations more complex than those listed in Ta-
ble 38.1. Rate coefficients k3 at room temperature vary
from 1 × 10−31 cm6 s−1 for reactions such as (38.27) to
in excess of 1 × 10−25 cm6 s−1, this upper limit being
due to experimental constraints rather than the reaction
itself. The mechanism usually postulated is

A±+ B�
(
AB±

)∗
, (38.28)

(
AB±

)∗ +M → AB±+M∗ (38.29)

where M stabilizes the excited intermediate,
(
AB±

)∗
by removing energy in the collision. For this type of
reaction, there is a considerable dependence of k on T .
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Statistical theory predicts (see Chapt. 37),

k3 ∝ T−(/2+δ) , (38.30)

where  is the number of rotational degrees of freedom
in the separated reactants, and δ is a parameter attributed
to the temperature variation of the collision efficiency of
the stabilizing third body M. Experimentally, many as-
sociation reactions exhibit such power law dependencies
of the k3 [38.48, 51] with δ being small (≈ 0.2 or 0.3)
for a helium third body. Also, some evidence exists for
a contribution of vibrational degrees of freedom to the
temperature coefficient in cases where the vibrational
levels in the reactant neutral are closely spaced [38.76].

For complex reactant species, lifetimes of interme-
diate complexes become very long so that, in the higher
pressure experiments (see below), all intermediate com-
plexes are stabilized, and thus the reaction is independent
of the pressure of M. This form of “saturation” can be
eliminated in many cases by using low pressure experi-
ments, so that the time between collisions is long, and
normal ternary kinetics (38.14) are restored. Under these
conditions, sometimes there is still a pressure indepen-
dent component to the k which is postulated as being
due to radiative stabilization of the intermediate, viz.

(
AB±

)∗ → AB±+hν . (38.31)

An example of this is the reaction [38.77]

CH+
3 +CH3CN → CH+

3 ·CH3CN+hν . (38.32)

The stabilizing photon is often considered to be in the
infrared due to a vibrational transition within the ground
electronic state (with a radiative lifetime of ≈ 10−2 to
10−3 s). Note that only a photon with hν > 3/2kBT is
required for the complex (although still vibrationally
excited) to be stable against unimolecular dissociation.
However, there are cases where it is believed that an elec-
tronically excited state is accessed [38.78,79]. Examples
are

C++H2 → CH+
2 +hν (38.33)

and

Cl−+BCl3 → BCl−4 +hν . (38.34)

As yet, radiative association has not been observed di-
rectly (i. e., by the detection of the emitted photon),
however, the kinetic evidence is strong for the existence
of this process.

For the more rapid collisional associations, compe-
tition with binary channels is possible, for example

CH+
3 +NH3 →

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H4CN++H2 (70%)

NH+
4 +CH2 (10%)

He−→ CH+
3 ·NH3+He (20%)

where the percentages refer to product abundances at
a He pressure of 0.2 Torr [38.80].

38.5 Electron Attachment

These reactions have generally been studied by differ-
ent techniques from those used to examine ion–neutral
reactions and also by different workers [38.31, 32].
Analogous to the ion–neutral situation, there are dis-
sociative processes,

e−+CCl4 → Cl−+CCl3 , (38.35)

and nondissociative processes,

e−+C6F6 → C6F−6 , (38.36)

the former being stabilized by dissociation, and the latter
occurring because of the long lifetime of the interme-
diate against autodetachment with eventual collisional
stabilization (cf. saturation in ion–neutral association
reactions; Sect. 38.4.2). Measured rate coefficients vary
in the range 1 × 10−7 to the smallest measurable value
of ≈ 1 × 10−12 cm3 s−1 [38.31, 32]. The upper limit

on k for this process is determined, from a consider-
ation of the electron de Broglie wavelengthλ= λ/2π,
to be ≈ 5 × 10−7(300/T )1/2cm3 s−1 [38.81], or, more
rigorously,

k(E)=
∑

i

(
σ/πλ2)

i/[hρ(E)] , (38.37)

where ρ(E) is the density of states and

σ/πλ2 ≈ 1− exp
[− (

4γ 2T
)1/2]

, (38.38)

with γ 2 R∞ = (2µ/m)2αd/a3
0 [38.5]; σ is the collision

cross section, T the kinetic energy, αd the polarizability,
a0 the Bohr radius, µ the reduced mass, and i represents
the available product channels. Where k is less than the
upper limit value, this is usually due to activation energy
barriers, and k shows Arrhenius behavior

k(T )= k0 exp (−∆E/kBT ) , (38.39)
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where kB is the Boltzmann constant, with the barrier
height ∆E being in the range 0 to ≈ 300 meV [38.32].
If the attachment is nondissociative, and the lifetime of
the intermediate complex against autoionization is small
compared with the collision time (as occurs for less
complex species), the reaction exhibits normal ternary
behavior, for example,

e−+O2+M → O−
2 +M . (38.40)

Some interesting mechanisms have been identified for
attachment. Different product ions have been observed
in experiments conducted at very different pressures, for
example, in the reaction

C6F5I+ e− → C6F−5 + I (≥ 95%) (38.41)

→ C6F5I− (≤ 5%) . (38.42)

at high pressures (≈ 1 Torr), the products, as indicated,
were observed with an association channel [see (38.42)]

being detected [38.82]. This association channel was
not seen in low pressure experiments [38.83]. Such
behavior is explained in terms of the relative mag-
nitudes of the autodetachment lifetime and the time
between collisions. When the former time is larger, the
association product will dominate, whereas if the con-
verse is true, dissociation products dominate. Thus, the
different product distributions, rather than indicating dis-
crepancies, yield information about the autodetachment
lifetime.

In attachments to the Br-containing compounds,
CF2Br2, CFBr3, and CF2BrCF2Br and CH2BrCH2Br,
in which the Br atoms are on different carbon atoms, up
to a 20% Br−2 product is observed [38.84]. This shows
that atoms in product molecules can come from spatially
separated parts of the reactant molecule. Thus, consid-
erable distortion and rearrangement must occur in the
intermediate complex.

38.6 Recombination

This process has been much less studied than ion–
neutral reactions with only ≈ 100 reactions being
studied [38.44] compared to about 10 000 in the former
case [38.33]. Also, relatively little information is avail-
able concerning the products since these are neutral and
very much more difficult to detect than ions.

38.6.1 Electron–Ion Recombination

Electron–ion recombination can proceed by series of
mechanisms, which have been discussed in detail re-
cently [38.85], and these are included in Table 38.1.
In brief, these are radiative recombination, where the
neutralized ion (excited into the continuum) is stabi-
lized by radiation emission, dielectronic recombination,
which is similar to radiative recombination, except that
there is a double electron excitation into the contin-
uum, collisionally stabilized recombination, where the
intermediate is stabilized by collisions with electrons
or a heavy third body (combined collisional radiative
recombination is also possible), and dissociative recom-
bination. Dissociative recombination can obviously only
occur when the recombining ion is molecular, however,
when it occurs it is usually several orders of mag-
nitude faster than the other recombination processes.
Thus, only dissociative recombination will be discussed
here.

Rate coefficients for dissociative electron–ion re-
combination at room temperature vary from > 1 × 10−6

for polyatomic ions to ≈ 1 × 10−7 cm3 s−1 for diatomic
ions [38.42, 43]. For large k, there is little tempera-
ture dependence, temperature dependencies being more
marked for the slower reactions. Two mechanisms were
initially proposed: (i) the direct mechanism [38.86]
where the neutralized ion undergoes a radiationless
transition to a repulsive potential curve on which
dissociation to products occurs, and (ii) the indirect
mechanism [38.87] where the neutralized ion initially
transfers to a Rydberg state and then undergoes a ra-
diationless transition to the repulsive curve. For the
former process, the theoretical temperature dependence
is T−0.5

e , while it is T−1
v T−1.5

T for the latter, where the
subscripts T and e refer to the thermal ion vibrational
and electron temperatures respectively [38.6]. There
is no reason why these two processes cannot occur
in parallel, although it is not straightfoward to deter-
mine the relative contributions [38.87]. Fortunately, both
processes are automatically included in multichannel
quantum defect theory (MQDT) [38.88]. Experimen-
tal T -dependencies for reactions which are not close
to the collisional limit have power law dependencies
in the range ≈ 0.7 to 1.5 [38.43, 89, 90], i. e., between
the theoretical predictions. In cases where there is de-
tailed temperature data, e.g., for some hydrocarbon
ions

(
CH+

5 , C2H+
3 , C2H+

5 , C3H+
7 , C6H+

7

)
[38.89, 90],

the dependence changes from the lower dependence
at low temperature to the higher dependence at higher
temperature.
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Less is known about the products. Detailed theory
carried out for the diatomic ions O+

2 , NO+ and N+
2 , and

to a large degree HCO+, are in general agreement with
experiment [38.91, 92]. For the more polyatomic ions,
the theory is not yet sufficiently quantitative [38.93, 94]
and reliance is placed on experiment. H-atom contribu-
tions to the product distributions for ten ions

(
N2H+,

HCO+, HCO+
2 , N2OH+, OCSH+, H2CN+, H3O+,

H3S+, NH+
4 and CH+

5

)
vary from ≈ 20% for OCSH+

to 120% for CH+
5 [38.95]. OH is a substantial prod-

uct (30 to 65%) in the above reactions where it is
energetically possible [38.96] (i. e., excluding HCO+),
except in the case of OCSH+, perhaps indicating that
the proton is exclusively on the S-atom rather than the
O-atom (i. e., in the lowest energy form [38.97, 98]).
More complete product distributions are now being
obtained, initially using flowing afterglows

(
O2H+,

HCO+
2 , H2O+, H3O+) [38.99], but more recently using

storage rings
(
including H+

3 , CH+
2 , H2O+, NH+

2 , H3O+,
CH+

3 , NH+
4 , CH+

5

)
[38.100]. These studies are showing

that fragmentation to give three products is a common,
indeed dominant, mechanism [38.101]. Dissociative re-
combination has recently benn reviewed by [38.102].

Electron–ion recombination is an energetic process
and electronically excited states can also be populated.
Vibrational population distributions for these states can
readily be determined if Einstein A coefficients are
known for the observed transitions (I ∝ A[∗], where
I is the photon intensity, and [∗] is the number dens-
ity of the excited state). The N2 (B 3Πg) state and the
CO (a 3Πr) state vibrational population produced in
the recombinations of N2H+, HCO+, HCO+

2 and CO+
2

have been determined [38.103, 104]. Possible mechan-
isms [38.105] have been suggested for this vibrational
excitation: (i) the impulsive force on the molecular frag-
ments as the neutralized ion rapidly dissociates, and (ii)
the Franck–Condon overlap between the wave functions
of the molecular products (in various vibrational states)
and the wave function of this particular fragment in the
neutralized ion before it dissociates. Theory underes-
timates the populations of the higher levels, but does
predict the small observed oscillation in the occupancy
of the various vibrational levels in the CO (a 3Πr) state
generated in the recombination of HCO+ [38.106].

The theories of recombination discussed above as-
sume favorable potential curve crossings, however, it
has been shown both experimentally [38.107, 108] and
theoretically [38.109] that such are not necessary when
quantum tunneling can occur. Experimental evidence
has been obtained in the recombinations of N2H+ and
N2D+ where the populations of the ν′ = 6 vibrational

level of the N2 electronically excited (B 3Πg) state is
greatly enhanced (≈ 6 at 100 K) for N2H+ over N2D+.
This level is resonant with the ν = 0 vibrational level
of the recombining ion, making tunneling more facile;
and H atom tunneling is further enhanced because of the
smaller mass [38.108].

38.6.2 Ion–Ion Recombination
(Mutual Neutralization)

Less information is available on this process than
on electron–ion recombination; a detailed review
has recently been published [38.110]. k values vary
from about 4 × 10−8 to 1 × 10−7 cm3 s−1 at room
temperature [38.44, 46] with power law temperature
dependencies of ≈ 0.4 for the only two systems that
have been studied as a function of T (NO++NO−

2
and NH+

4 +Cl−) [38.46]. This is consistent with the-
ory [38.111] in which the Landau–Zener approximation
is used to determine the probability of a crossing be-
tween the Coulombic ion–ion attractive potential and
the potentials of the neutral products. This transition oc-
curs by an electron transfer (the optimum distance for
such a transfer when a favorable crossing exists is about
10 Å). Theory gives that

k ≈ 2
(
v2 Q

)(
µ/2πkBT

)1/2
, (38.43)

where Q is the cross section

Q = πR2
c

[
1+ (Rc E)−1] . (38.44)

Rc is the crossing distance, E is the interaction en-
ergy and v is the relative velocity at the crossing
point [38.111]. Once neutralized by electron transfer,
the products continue undeflected with the velocity
gained from the Coulombic field. Photon emission has
been detected from a series of excited state prod-
ucts. Following the early detection [38.112] of NO
(A 2Σ+) emissions from NO++NO−

2 , a variety of NO
emissions have been detected from NO+ recombina-
tions with molecular

(
SF−6 , C6F−6 , and C6F5CH−

3

)
and

atomic (Cl− and I−) negative ions [38.113, 114] and
He2 emissions from He+2 recombinations with C6F−6
and C6F5Cl− [38.113]. These emissions were inter-
preted in terms of long-range electron transfer [38.112],
however, in the recombination of Kr+ and Xe+ with
SF−6 , KrF, and XeF, excimer emissions have been
seen [38.113], suggesting an intimate encounter in these
cases. Also, few data are available on the effects of pres-
sure. For the reactions SF+3 +SF−5 and NO++NO−

2 ,
k increases by about a factor of 4 between 1 and
8 Torr [38.46, 50].
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Clusters are small aggregates of atoms or molecules
which are transitional forms of matter between
atoms or molecules and their corresponding bulk
forms. Just as this definition spans an incredibly
broad range of clusters from, say, He2 to Na10000,
so do the properties of these clusters span a broad
range. This chapter attempts to bring order to
this diverse cluster kingdom by first sorting them
into six general categories. Within each category,
the physics and chemistry of the more or less
similar cluster species are described. Particular
emphasis is placed on the unique properties
of clusters owing to their finite size and finite
lattice.

This chapter summarizes one of the youngest
topics in this volume. Much of what is known is
highly qualitative and has not yet been assembled
into overarching tables or equations. Thus, this
review is best regarded as a progress report on
the current knowledge in this rapidly advancing
field. Many of the concepts and the language used
to discuss clusters are derived from condensed
matter physics. The nature of these clusters impels
such descriptions.
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Clusters discussed in this chapter are isolated species
composed primarily of a single type of atom or mol-
ecule. Most of these clusters are highly reactive and
can only be made and studied under rarified condi-
tions such as in a molecular beam. In keeping with
the definition of clusters given above, this chapter will
not attempt to cover the truly vast literature on atomic
and molecular dimers and trimers. A great many of
these species have been thoroughly characterized, how-

ever they are better described as molecules rather than
“tiny clusters”. Stabilized clusters in the form of Zintl
ions, colloids, and nanoparticles have also been made.
While it is impossible to resist mentioning these clus-
ters throughout this chapter, they are more appropriate
to condensed matter physics. Finally, experimental and
theoretical techniques for forming and studying clusters
will not be covered; excellent reviews of these methods
are available elsewhere [39.1–6].
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39.1 Metal Clusters

Clusters of a wide variety of refractory and nonrefractory
metals have been made and studied. These include clus-
ters of alkali metals, transition metals, coinage metals,
main group metals, and lanthanides. Clusters of alkali
metals, particularly sodium, are the most well studied
and understood. The emerging picture of alkali clusters
is that they behave much like quasifree electron metal
spheres. Thus, approximations such as the jellium model
used for describing bulk metals explain a large number
of alkali metal properties quite well [39.2]. Other metal-
lic clusters, such as some main group metal and noble
metal clusters, can also be understood within the jel-
lium model. Nonetheless, there are examples of metallic
clusters which deviate significantly from these simple
models, particularly among the transition metal clusters.

39.1.1 Geometric Structures

The ground state geometry is known accurately for
only a handful of small metal clusters. Examples in-
clude lithium and sodium clusters containing up to
nine atoms, where electronic spectra are compared with
accurate ab initio quantum chemical calculations to de-
duce their structures [39.5–7]. Such an approach is not
a general one, either experimentally or theoretically.
As the size and/or atomic valency of the metal cluster
increases, the number of possible ground state struc-
tures grows enormously. Interpretation of experimental
spectra requires theoretical guidance, which means that
each one of these structures must be calculated using
an accurate electronic structure calculational method.
Thorough theoretical investigation is only practical with
current computational tools for clusters containing up
to about thirteen atoms. Methods such as molecular dy-
namics combined with density functional calculations
have been used to speed up the process of finding and
comparing various isomers [39.4, 8]. Such approaches
are still restricted by available computational power to
clusters with relatively few atoms and valence electrons
per atom. Metal clusters of atoms with higher valency,
e.g., mid-row transition metals, have proved to be quite
difficult to treat accurately [39.9]. The large electron
correlation problems inherent in these clusters must be
treated semi-empirically, leading to large uncertainties
in the relative energies between isomers of different spin
and geometry.

Despite these difficulties, approximate geometries
are known for many metal clusters. For cluster sizes
greater than, roughly, several tens of atoms, there is

strong experimental evidence that spherical close packed
geometries, particularly the Mackay filled icosahedra,
predominate the geometric structures [39.7,10,11] (The
Mackay filled icosahedra contain concentric closed
icosahedral shells of atoms plus one central atom. These
structures are pentagonally symmetric and occur every
n atoms by n = 13, 55, · · · 1/3(2n+1)

(
5n2+5n+3

)

[39.4]). These geometries have been deduced by a vari-
ety of means. For example, abundance mass spectra of
metal clusters up to sizes containing thousands of atoms
show intensity enhancements, termed magic numbers,
at each cluster size which corresponds to a complete
Mackay icosahedron. Saturation coverages of transition
metal clusters with various reagents can be explained in
terms of covering the icosahedral faces of these clusters.
The persistence of icosahedral structures to large clus-
ter sizes raises the question about where the crossover
to the metallic packing occurs. For example, a spherical
piece of an fcc metal would have cuboctohedral sym-
metry rather than noncrystalline icosahedral symmetry.
Ultrafine metal particles containing 104 to 105 atoms
typically have bulk crystalline geometries [39.12]. Little
theoretical or experimental data currently exist to re-
solve the question of when the bulk crystalline structure
emerges [39.10]. The point of crossover must involve
kinetic as well as energetic factors. Although icosa-
hedral packing is seen in beam experiments on metal
clusters containing hundreds to thousands of atoms,
high resolution electron microscopy experiments on sup-
ported metal particles in this size range show fluctuating
structures that can rapidly evolve between icosahedral,
cuboctohedral, and other crystalline arrangements, de-
pending on cluster temperature [39.13].

39.1.2 Electronic and Magnetic Properties

A number of electronic properties have been measured
for metallic clusters, particularly alkali metal and noble
metal clusters. These include ionization potentials, elec-
tronic affinities, polarizabilities, and photoabsorption
cross sections.

The spherical jellium approximation is generally
a good model for these properties in clusters of alkali
and noble metals [39.2,7]. This model treats the valence
electrons of the cluster as a delocalized sea of elec-
trons smeared over a uniform spherical background of
ionic cores. The energy levels of such a jellium sphere
can be calculated by confining the jellium electrons to
a three dimensional potential. A suitable form of this po-
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tential yields level spacings that are given by principal
and angular momentum quantum numbers (n) and (l).
There are no restrictions on l for a given n, and the
degeneracy of a given l level is 2(2l+1). The levels
order as 1s , 1p , 1d , 2s , 1f , 2p , 1g , 2d , 3s , · · · . The
electron configuration of a cluster is given by filling suc-
cessive energy levels (termed shells) with the available
valence electrons. Special stability occurs for those clus-
ters with a closed shell configuration. This stabilization
can be seen in the experimental measurements of the
dependences of total binding energies, ionization poten-
tials, electron affinities, and polarizabilities on cluster
size [39.2,7,10,11,13,14]. The potential used to calcu-
late the energy levels within the jellium model has been
formulated to include elliptical distortions of open shell
clusters [39.7]. This refinement has been successful in
describing the fine structures of these trends. Despite the
usefulness of the jellium model, it is not applicable for
very small or very large clusters. In many smaller clus-
ters containing up to a few tens of atoms, electron-ionic
lattice interactions cannot be neglected, and the spher-
ical approximation is poor. For these clusters, accurate
quantum chemical calculations must be used to deter-
mine the electronic structure. Alternatively, for clusters
larger than roughly 500 to 3000 atoms (depending on
which clusters and the cluster temperature), the level
spacings become increasingly continuous, blurring the
shell structure. When this occurs, other effects are seen
to dominate the trends in cluster stability, particularly
the stability arising from completing a geometric shell
of atoms on the cluster [39.7, 10, 11, 15, 16].

The convergence of cluster electronic structure to
bulk metal electronic structure has been seen in the evo-
lution of metal cluster ionization potentials (IP) and
electron affinities (Ae) as a function of cluster size.
A good approximation for the overall trend in the IP
as a function of cluster size (N is the number of atoms)
is given by the electrostatic model for the work function
of a classical conducting sphere [39.2]

IP,N = WB+ A
e2

RN
, (39.1)

where WB is the work function of the bulk metal, e is
the electron charge, and R is the cluster radius, which
is often set proportional to N1/3. A is a constant which
is found experimentally to have values of about 0.3 to
0.5; the theoretically derived value for A depends on the
model used [39.2, 11]. A similar form of (39.1), where
A is replaced by (A−1), describes the Ae of a nega-
tively charged cluster. Experimentally, the IP and Ae of
alkali metal, noble metal, and some main group metal

clusters behave as described by (39.1) with shell struc-
ture superimposed on the overall trend [39.2, 6, 14].
Equation (39.1) predicts a smooth convergence of the
work function to the bulk value with increasing cluster
size. This has been seen experimentally, such as in cop-
per cluster valence and inner shell Aewhich extrapolate
smoothly to the corresponding bulk values [39.17]. In
mercury clusters, the transition to bulk metallic behav-
ior occurs more abruptly and clusters with less than≈17
atoms appear to behave as nonmetals [39.18]. Transi-
tion metal clusters often deviate strongly from the trend
in (39.1) [39.10].

Electronic spectra are available for a number of
metal clusters including alkali, noble metal, transition
metal, and aluminum clusters [39.7, 10, 11]. Small al-
kali clusters exhibit rich spectra in the visible. Many of
these spectra have been assigned using accurate elec-
tronic structure calculations as described above. Visible
spectra of larger alkali metal clusters and other metal
clusters are typified by giant resonances with cross sec-
tions reaching values as large as 2000 Å2 [39.6, 7]. In
the absence of detailed electronic structure information,
these spectra have been assigned using comparisons with
bulk metal spectra. In particular, the giant resonances are
assigned to collective excitations of the cluster valence
electrons, in an analogy to bulk metal plasmon reso-
nances. Theoretical treatments of these giant resonances
for clusters have been derived from classical treatments
of conducting spheres driven by an external electro-
magnetic field [39.7, 10]. While the blue shift of the
resonance frequency with increasing cluster size is well
predicted by the classical models, other details are less
well described, such as the magnitude of the shift and
the width of the resonance. Clusters which are known to
be nonspherical from other measurements exhibit multi-
ple resonance peaks; these have yet to be quantitatively
described by theory. Transition metal clusters also show
evidence of collective excitations; however, the magni-
tudes of these absorptions are 2 to 5 times larger than
predicted by classical models [39.19]. An intriguing non
sequitur occurs when the classical models are extended
down to describe the resonances of small alkali clusters.
This is illustrated by the example of Na8, which exhibits
a large single resonance in the photoabsorption spec-
trum. At first glance, the classical jellium model does
fine: it predicts a spherical closed shell cluster which
should exhibit a single resonance. Yet, a more thor-
ough examination of the time dependence of this feature
has revealed that it consists of four overlapping ab-
sorptions [39.10,20]. These multiple absorptions clearly
must arise from one-electron excitations, not a collective
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all-electron excitation [39.5]. Further work is needed to
weave together the two disparate pictures of collective
versus one electron excitations in metal clusters.

Inner shell electrons of some metal clusters have
been probed spectroscopically. Whereas excitations of
the delocalized valence electrons primarily reflect the
entire cluster environment, excitations of the localized
inner shell electrons reflect the atomic environment. In
mercury clusters, excitation of the 5d core electrons
reveals a transition from insulating clusters at small
sizes to more metal-like clusters with increasing s-p hy-
bridization typical of bulk mercury [39.21]. Inner core
electron spectra of copper and antimony clusters also
reveal details regarding the evolution of the cluster lat-
tice structure as a function of size [39.11, 17]. Such
valuable information can be obtained from inner shell
electron spectra of metal clusters that more experiments
are warranted.

Magnetic moments have been measured and de-
scribed theoretically for a range of transition metal, rare
earth, and Group III metal clusters [39.5, 7, 10, 22–24].
Examples of clusters which exhibit a positive magnetic
moment include cobalt, iron, nickel, gadolinium, and
terbium clusters. Clusters of metals such as vanadium,
palladium, chromium, and aluminum are observed to be
diamagnetic. The effective moment per atom,µ, in mag-
netic clusters is greater than in the bulk because of the
lower average coordination number in clusters [39.24].
As the cluster size increases, the surface to volume atom
ratio decreases and µ converges to the bulk value. The
size of these magnetic clusters is smaller than the critical
domain size for bulk ferromagnetism, thus they are best
described as paramagnetic with a single moment given
by Nµ, where N is the number of atoms in the clus-
ter. Stern–Gerlach deflection data have been obtained
to measure µ. A critical parameter in interpreting these
data is the so-called blocking temperature TB, the tem-
perature at which the cluster moment unlocks from the
cluster axes and orients thermally in an external field.
For clusters with temperatures T> TB, the observed ef-
fective moment µeff for paramagnetic clusters is given
by [39.24]

µeff = µ
[

coth

(
NµH

kBT

)
− kBT

NµH

]
, (39.2)

where kB is the Boltzmann constant, and H is the mag-
netic field strength. Medium size iron and cobalt clusters
behave well according to this classically derived ex-
pression. Deviations from this model are observed in
internally cold clusters and rare earth clusters which can
be explained by partial and complete locking of the mag-

netic moment to the cluster lattice. Also, in very large
clusters, Nµ becomes sufficiently large that alignment
overwhelms thermal statistical behavior.

39.1.3 Chemical Properties

The chemistry of both charged and neutral metal clusters
has been studied, particularly for clusters of transi-
tion metals and Group III metals [39.6, 7, 25, 26]. Both
chemisorption and physisorption are seen, depending
on the type of metal cluster and reagent. In many cases,
the observed chemistry is quite similar to that observed
for the corresponding bulk metal. For example, plat-
inum clusters dehydrogenate hydrocarbons, hydrogen
chemisorbs on transition metal clusters with the excep-
tion of coinage metal clusters, and oxygen reacts readily
with aluminum and iron clusters.

Chemisorption reactions of metal clusters have been
seen with a wide variety of reagents. Products, reac-
tion rates, and activation barriers have been measured as
a function of cluster size. With a few notable exceptions,
such as the reactions of hydrogen with nickel and alu-
minum clusters, none of these reactions are understood
at the microscopic level [39.10, 11]. Macroscopically,
some correlations have been seen between reaction rates
and other measured cluster properties. For example,
some cluster reactions show evidence that the shell struc-
ture affects reaction rates, with open shell clusters having
much higher reaction rate and lower activation barriers
than clusters with closed shells. In other cases, the pat-
tern of cluster reaction rates with cluster size correlates
with the cluster IP’s. These correlations have been used
to infer the essential cluster-reagent interaction which
governs the reactivity for a given set of clusters with
a given reagent. For example, open shell clusters and
clusters with low IP’s favor reactions which involve elec-
tron donation from the cluster to the reagent at a critical
point along the reaction coordinate. Such generalities
must be made with caution, however, since they do not
hold up well over a broad range of cluster sizes, com-
positions, and reagents. Even a single cluster size can
exhibit complex reactivity: isomers with different reac-
tivity have been observed for niobium clusters and, in
some cases, these isomers have been interconverted by
annealing. Of course, complexity is to be expected, given
the richness and diversity of chemistry that is known to
occur for different metal systems in various electronic
and geometric environments.

Geometric structures of transition metal clusters
have been studied using physisorption reactions. Weakly
bound adsorbates such as hydrogen, water, and ammonia
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show strong saturation behavior in their uptake by metal
clusters [39.10,11,27,28]. Trends in the saturation cover-
age with cluster size yield information about the type of
binding site and total number of binding sites for a given
cluster size. Additional information regarding the nature
of the adsorbate site is often available from studies of
the corresponding physisorption on bulk metal surfaces.
This knowledge is used to sort through possible clus-
ter structures and deduce which geometries exhibit the
correct number and type of adsorbate binding sites. For
example, saturation coverages of iron, cobalt, and nickel
clusters correlate with icosahedrally packed geometries
over a wide range of sizes. Adsorbate binding energies
have also been determined in some cases [39.27, 28].

39.1.4 Stable Metal Cluster Molecules
and Metallocarbohedrenes

Thus far, this section has focussed entirely on the prop-
erties of metal clusters isolated in the gas phase. This
discussion would not be complete, however, without
mentioning that a number of metal cluster molecules
have been made which are sufficiently stable that they
can be made in quantity and bottled [39.7,10,11,29,30]!
Also, recently a new class of metal-carbon clusters has
been discovered, termed metallocarbohedrenes, that are
believed to be sufficiently stable and abundant that they
can be made in bulk. The brief overview of these isolat-
able clusters given below is not meant to be complete but
is intended to introduce the large and impressive body
of work in this field. Interested readers are encouraged
to consult the reviews cited and references therein.

Metal cluster molecules consist of a metal cluster
core surrounded by a stabilizing ligand shell. A large
number of such metal cluster molecules has been made,
including some with metal cores as large as 300 plat-
inum or 561 palladium atoms. In many cases, crystals
of single size clusters have been made with an exactly
known number of metal atoms in the core. The avail-
ability of macroscopic samples of these clusters has

made it possible to measure a number of their proper-
ties. Exact structures are known for many metal cluster
molecules from X-ray crystallography. Electronic and
magnetic properties have been determined which reveal
the development of metallic behavior within the metal
core. The ligand shell is found to interact strongly with
the metal atoms on the surface of the metal core. This
outer shell of metal atoms does not behave as a surface
of metal atoms with free valence electrons such as is
found on the surface of a bulk metal. Undoubtedly, such
strong interactions between surface metal atoms and co-
ordinating ligands are necessary to make a cluster which
is sufficiently stable to be isolated and crystallized with-
out coalescing. The core of atoms inside the outer metal
shell of atoms does not appear to be greatly perturbed by
the coordinating ligands. Studies of the electronic and
magnetic properties of the core show the onset of metal-
lic properties as a function of particle size and atomic
packing.

A distinct class of transition metal-carbon clusters
has been recently been found which have been termed
metallocarbohedrenes [39.31]. Within this class, the
clusters M8C12 (M = Ti, V, and Zr) are particularly
abundant and stable. Extensive electronic structure cal-
culations show that the structure of M8C12 is metallic
and should be viewed as a distorted M8 cube where
each face is decorated with a C2 dimer [39.32]. This
structure differs greatly from the corresponding bulk
metal carbides, which have cubic rock salt crystalline
forms. Furthermore, the metal carbide cluster forma-
tion conditions can be adjusted to yield cubic fragments
of the bulk. The related metal nitride clusters are only
observed to form cubic structures. Theoretical calcula-
tions on the metallocarbohedrene and cubic forms of
these metal carbides and nitrides show that they are
comparable in energy for the carbides, but that the cu-
bic structures are much more stable in the metal nitride
clusters [39.33]. Despite their apparent stability, none
of the metallocarbohedrenes has yet been isolated and
purified.

39.2 Carbon Clusters

The discovery of the especially stable, spherical clus-
ter of sixty carbon atoms, named buckminsterfullerene,
has ignited an intense research effort in carbon clus-
ters [39.7, 8, 10, 11, 34–39]. The family of pure carbon
clusters that have been made extends from the dimer all
the way up to tubular shaped clusters containing thou-
sands of atoms. Several of these clusters, most notably

C60 and C70, have been isolated as a single size in macro-
scopic quantities [39.40]. The fascinating properties of
bulk materials made of pure and doped C60 and C70 are
outside the scope of this review [39.8,10,11,37,39,41].

Carbon clusters can be roughly grouped into three
distinct classes. The first consists primarily of small
carbon clusters which have linear or ring geometries.
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Hollow spheres (termed fullerenes) appear at about
28 carbon atoms and persist up to at least several hundred
atoms. Very large carbon clusters containing hundreds
to thousands of atoms assume various forms, including
onion-like structures of concentric spheres and hollow
tubes.

39.2.1 Small Carbon Clusters

Theoretical and experimental studies have found that
rings and linear chains are the most stable configura-
tions for small carbon clusters. Below about ten atoms,
linear cumulenes are the most stable structures for
odd numbered carbon clusters and ionic carbon clus-
ters [39.13, 26, 42, 43]. For the even numbered neutral
carbon clusters, C4, C6, and C8, however, cyclic and lin-
ear geometries are nearly isoenergetic [39.7, 11, 13, 42].
Various theoretical and experimental studies have
yielded conflicting results as to which geometry is more
stable for each of these three clusters [39.7,42,44]. Much
of the controversy over the experimental evidence prob-
ably arises because the two structures are so close in
energy that either isomer or both may be present, de-
pending on the preparation conditions. By way of proof,
direct experimental data have been found for coexisting
linear and cyclic isomers of C+

7−9 and C11 [39.26, 44].
Also, some experimental probes are not equally sensitive
to the signature from a linear versus a cyclic geometry.

At ten carbon atoms, a distinct transition occurs
from linear to cyclic structures [39.26, 43, 44]. Start-
ing at this size, the additional bonding stabilization
accrued by joining the two ends of the linear chain
overcomes the strain energy resulting from ring clo-
sure. Stable monocyclic ring structures are observed
for carbon clusters over a surprisingly wide range of
sizes, even persisting into the size range where three di-
mensional fullerenes appear. Bicyclic rings, higher order
polycyclic rings, and graphitic fragments also occur in
this size range but many of these configurations appear
to be metastable [39.43, 45].

Ae’s and IP’s have been measured for these small
carbon clusters. Dramatic effects appear in the size de-
pendence of the Ae’s as a result of the changeover from
linear to ring structures [39.44]. Ae’s of the chain struc-
tures are noticeably higher than for ring structures for
carbon clusters containing similar numbers of atoms.
Distinct odd-even alternations in the Ae’s are also seen,
plus there is evidence for aromatic stabilization accord-
ing to the 4n+2 rule. No break in the IP’s is seen across
the structural transition, but the trend in the IP’s also
follows the 4n+2 rule expected for aromaticity.

Chemical reactions have been observed for both neu-
tral and charged small carbon clusters, particularly for
the cations [39.7, 26, 43]. In general, the linear cationic
clusters, containing fewer than ten atoms, react readily
with a variety of reagents and exhibit reactivity typical
of carbenes. The ring shaped cationic clusters with ten
or more atoms are much less reactive, and often show
no detectable reaction with reagents that react efficiently
with the smaller carbon clusters. It is this differential re-
activity which has revealed the presence of coexisting
linear and cyclic isomers. Evidence for polyacetylene
versus cumulene structure in the small linear chains can
also be seen in the cluster reaction patterns.

39.2.2 Fullerenes

Fullerenes make up a class of carbon clusters with
closed hollow carbon atom cage morphologies. The
term “fullerene” was inspired by the geodesic domes
of architect R. Buckminster Fuller, and has come into
widespread usage despite its nonstandard nomenclature.
The fullerene cage network is composed of interlocking
rings of sp2 hybridized carbon atoms, where every car-
bon atom is bonded to three other carbon atoms. Five
and six member rings predominate in the cages. Highly
strained four and smaller membered rings are unfavor-
able. Seven and higher membered rings usually can
facilely rearrange within the network to form five and six
membered rings. Delocalization of the π electrons over
the cage contributes significantly to the stabilization of
the fullerenes.

Assuming at least five-membered rings, the smallest
possible fullerene is C20, consisting of twelve pen-
tagons. However, the observed fullerenes all contain
about 30 atoms or more. Larger fullerenes are formed
by joining together pentagons, hexagons, and heptagons,
with the pentagons providing the curvature necessary to
close the cage. In fullerene structures composed entirely
of pentagons, hexagons, and heptagons, it can be rigor-
ously shown from Euler’s theorem that, N5 = N7+12,
where N5 is the number of pentagons and N7 the num-
ber of heptagons. By far the most abundant fullerene
that is seen is C60. There are 1812 possible isomers
for C60 but only one forms in great abundance [39.37],
which has each of its 12 pentagons isolated and sur-
rounded by its 20 hexagons. The resulting molecule,
resembling a soccer ball, belongs to the highest point
symmetry group Ih , where all the carbon atoms are
equivalent [39.34–37]. The isolated pentagon rule arises
out of minimizing strain and maximizing resonance en-
ergy and is a powerful tool for predicting the most stable
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fullerene isomers [39.37]. Besides C60, a number of
other fullerenes have been seen, most notably C70 which
is the next larger fullerene that can be constructed using
the isolated pentagon rule. The largest proven fullerene
structure contains 84 carbon atoms. It is possible to
construct increasingly larger fullerene cages contain-
ing hundreds of carbon atoms. Such giant fullerenes
have yet to be conclusively verified in experiments, how-
ever evidence for their existence has been seen in bulk
samples containing fullerene mixtures and in gas phase
abundances of carbon clusters [39.36, 37, 39].

A number of the fullerenes has been made and puri-
fied as a single size in macroscopic quantities [39.37,39,
40]. This has enabled their geometries to be determined
quite accurately using a wide variety of spectroscopic
and theoretical techniques. Even structures of fullerenes
such as C76, C78, and C84 which occur as isomeric mix-
tures have been elucidated. The electronic structures
of many of these fullerenes have been calculated and
compared with experiment [39.37, 38].

Yet to be resolved is the issue of how these low
entropy fullerene structures can form so efficiently in
carbon vapor. One proposal is that cup-like prefullerenes
form first which add new carbon moieties to close the
cage. Other suggestions include coalescence of small
carbon rings such as C6 or C10, or stacking of inter-
mediate size rings on a small “seed” ring such as C10,
or folding up of large defective graphitic fragments to
form closed hollow spheroids [39.8, 10, 36, 37]. Some
intriguing insights into this open question are provided
by experiments on nonfullerene metastable forms of car-
bon clusters in the fullerene size regime [39.43]. These
species can be made in the gas phase and are found to
have bicyclic, graphitic, and other polycyclic ring shapes
which are not in the form of partial fullerene cages.
Upon annealing, some of these ring forms are seen to
convert into the fullerenes, which suggests that they are
important intermediates for forming the fullerene cage.
Similar polycyclic ring shapes are observed during the
initial “melting” of fullerenes in molecular dynamics
simulations [39.46].

Since the fullerenes are hollow, much attention has
focussed on putting something inside. A wide variety
of noble gas atoms and metal atoms has been suc-
cessfully loaded into fullerenes, forming a family of
so-called “endohedral” complexes [39.36,37,39,47–51].
Noble gas atoms encapsulated in fullerenes appear
to assume central positions within the cage and do
not perturb the overall electronic structure of the
fullerene [39.11, 47, 52]. Endohedral complexes where
the encapsulated species is a metal atom, called metallo-

fullerenes, encompass a wide range of metals (M) and
fullerene sizes from U@C28 to Sc3@C82 (@ denotes
that the metal atom is inside the fullerene). Separa-
tion and purification of a macroscopic amount has been
achieved for several of these [39.48,49,51]. Theoretical
and experimental data indicate that the endohedral met-
allofullerenes have considerable charge transfer from
metal atom(s) to the fullerene cage [39.37,47,48,51,52].
This interaction affects the oxidation states of the metal
atom(s) and the cage and, in some cases, causes the metal
atom(s) to locate off-center. It is yet to be generally un-
derstood why, within the range of known fullerene sizes,
only some form endohedral complexes, particularly C28,
C60, C70, C74, C80, C82, and C84. The M@C28 endohe-
dral complex is especially intriguing because it appears
that C28 itself does not form as an empty fullerene.

The unsaturated surfaces of fullerenes undergo
a broad range of chemical reactions. The availabil-
ity of macroscopic samples of fullerenes, especially
C60 and C70, has enabled the preparation of numerous
fullerene derivatives. With their high electron affinities,
fullerenes readily form a wide variety of charge transfer
compounds. These include the so-called exohedral com-
plexes, where metal atoms are attached to the outside of
the cage. Particularly stable exohedral metal-fullerene
clusters have been observed which have one alkaline
earth atom decorating each ring of the cage [39.53].
The unsaturated double bonds of the fullerenes can be
functionalized with reagents such as halogens, aromat-
ics, and alcohols [39.37, 39]. Some of the bulk forms of
these complexes and derivatives exhibit amazing prop-
erties such as superconductivity at temperatures as high
as 33 K seen in C60 films doped with alkali or alkaline
earth metals [39.51]. References [39.37, 39, 51] contain
recent reviews.

39.2.3 Giant Carbon Clusters:
Tubes, Capsules, Onions,
Russian Dolls, Papier Mâché ...

Giant clusters of pure carbon have been found which
have tubular, capsular, and spherical shapes [39.8, 10,
37, 51, 54]. These clusters occur both as single entities
and with multiple concentric layers. The basic struc-
ture consists of a spiralled or rolled graphitic sheet
made up of hexagonal rings of sp2 hybridized carbon
atoms. Just as in the fullerenes, pentagonal rings pro-
vide the curvature required to form a ball or to cap the
ends of tube shapes. Negative curvature has also been
seen which is believed to result from heptagonal rings.
Carbon tubes and capsules are formed prolifically in
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the same carbon arcs which produce fullerenes. Typi-
cal diameters range from about 5 to 100 nm, depending
on the inner diameter and number of layers, and lengths
of up to several microns are seen. For concentric or
spiralled structures, the average interlayer spacing is
3.4 to 3.5 Å which is slightly larger than in crystalline
graphite. Although tubes and capsules are the most com-
monly seen morphologies, these are observed to convert
to layered spherical “onion” structures under intense
irradiation [39.8]. This suggests that collapsed onion
structures are more stable. Currently, there exists some
debate over whether the multilayer tubes or capsules
consist of layers of complete shells within shells, such as
in a “Russian doll”, or whether these layers are so highly
defective that the overall structures are best described
as “papier-mâché” consisting of numerous overlying
graphitic fragments [39.54].

Little experimental detail is available on the
electronic or mechanical properties of these tubes.
Theoretical calculations have been performed on the

electronic properties of perfect tubes constructed in
various ways [39.37, 51]. Numerous configurations of
tubes are possible, depending on the tube diameter and
the overall screw axis formed by the rows of carbon
hexagons wound around the tube waist. The geometri-
cal arrangement strongly affects the electronic properties
of a tube. Appropriate choices of diameter and tilt an-
gle of the screw axis yield tubes which are metallic or
semiconducting. Tubes and capsules with perfect lat-
tice arrangements are calculated to be extremely stiff,
forming the strongest carbon fibers known. Almost no
data exist on the chemical properties of carbon tubes,
capsules, and onions. While they are stable enough
to isolate in air, reaction occurs with O2 and CO2
at high temperatures which destroy the tubes [39.51].
Finally, as for the fullerenes, tubes, capsules, and
onions have a hollow cavity which can be filled. These
“nanocapsules” have been successfully loaded with lead
and gold atoms, as well as crystalline metal carbide
particles [39.51].

39.3 Ionic Clusters

A growing body of experimental and theoretical evi-
dence on alkali halide and alkaline earth oxide clusters
shows that these tiny clusters of ionic materials are
ionically bound. Most of these clusters have highly
ordered crystal structures even at very small sizes.
Thus, these clusters offer excellent systems for study-
ing electron localization on finite-sized crystalline
lattices.

39.3.1 Geometric Structures

Most ionic clusters of alkali halides and alkaline earth
oxides assume the cubic rock salt lattice typical of bulk
sodium chloride [39.6, 7, 10, 13, 55]. This lattice is fa-
vored not only for clusters of rock salt cubic solids
such as NaCl and NaF, but also for other clusters such
as CsxIy where the bulk form has the cesium chlo-
ride cubic crystal structure. Exceptions occur when
the cluster size is smaller than, roughly, a unit cube,
or when the cluster anions and cations differ greatly
in ionic radius, such as in lithium bromide clusters
(even though solid LiBr has the NaCl crystal struc-
ture) [39.10]. The bulk rock salt lattice is retained
even for clusters where the number of anions and
cations are unequal, as long as the deviation from sto-
ichiometry is not too great. In clusters with a large
excess of alkali atoms, the extra metal atoms seg-

regate to a face of the cluster and form a metallic
overlayer [39.55].

Maximization of ionic interactions and minimization
of surface energy leads to cuboid crystal morpholo-
gies for these clusters which have as many (1 0 0) faces
as possible. Particularly stable clusters occur for sizes
where the cuboid lattice is completely filled and has
nearly equal numbers of ions on all sides [39.55].
Excess electrons or holes also play a crucial role in
the stability of ionic clusters. For example, while the
[Na14Cl13]+ cluster forms a particularly stable cube
(with 9 atoms on each square face and one atom in the
center), its counterpart [Na13Cl14]+ does not because it
has fewer holes than the available electrons; however,
the anion [Na13Cl14]− does form a particularly stable
cube [39.11, 55].

39.3.2 Electronic and Chemical Properties

The IP’s, Ae’s, photoabsorption spectra and photoab-
sorption cross sections have all been measured for
ionic clusters, particularly alkali halide

[
M jXk

]
clusters.

Understanding the role of the coulombic interactions,
particularly excess electrons, in these clusters is key
to understanding the trends in their electronic proper-
ties with cluster size, composition, and overall charge.
Excess electrons are known to localize in at least four
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distinct ways: at anion vacancies, in weakly bound
surface states, on specific alkali metal ions, or in cation-
anion pair dipole fields [39.11, 55, 56].

First, there is a large class of ionic clusters which
contain equal numbers of electrons and holes, such
as clusters in the series

[
M j+1X j

]+. IP and Ae of
clusters within this class reflect the overall stability as-
sociated with forming the perfect filled cuboid lattices
described in Sect. 39.3.1. Such perfect clusters do not
chemisorb polar molecules, whereas the imperfect clus-
ters readily do [39.55]. The lowest energy absorptions
for clusters in this class result from charge transfer exci-
tations, just as in perfect ionic solids. Spectra obtained
for

[
Cs j+1I j

]+ clusters show large cross sections for
absorption, consistent with charge transfer, and features
which converge towards the bulk for the perfectly cubic
cluster, [Cs14I13]+ [39.57].

Other ionic clusters do not contain equal numbers of
electrons and holes; clusters with excess electrons have
been the most studied. One such class consists of clus-
ters with at least one anionic vacancy and one or more
excess electrons. In this class, e.g., [Na14Cl12]+, the
excess electron localizes at the lattice site of the miss-
ing anion. This is conceptually similar to an F-center
in an ionic bulk crystal. Enhanced stabilization is ob-
served for those size clusters within this class where the
excess electron sitting at an anionic site yields a filled
cuboid lattice. Nonetheless, because the localized elec-
tron has a large zero-point energy, its binding energy
is much less than an anion at the same site. This is

reflected in both the first and second IP’s, as well as
the Ae’s of this class of clusters [39.55]. Just as for
F-centers in ionic crystals, clusters with an excess elec-
tron localized on an anionic vacancy have strong optical
absorptions at energies well below the charge transfer
bands [39.55].

The next class of ionic clusters with excess electrons
consists of perfect cuboid ionic clusters which contain
one or more excess electrons, but do not have a defect
binding site such as an anionic vacancy or an excess
metal atom. In these clusters, e.g., Na14Cl13, the electron
is quite weakly bound in a surface state which primarily
involves the surface metal cations. These clusters have
particularly low electron binding energies; for example,
the IP of≈1.9 eV determined for Na14F13 is the lowest IP
measured for any compound [39.55].

In the other two known classes of ionic clus-
ters with excess electrons, the extra electrons have
been calculated to localize on a metal cation or in
a dipole potential well [39.58]. Some evidence for these
forms of localization has been seen in photoabsorption,
IP’s and Ae’s [39.10,11,55]. For example, the photoelec-
tron spectra of some

[
Na j+1Cl j

]− clusters show that the
two excess electrons are singlet-coupled, and localized
either at an anion vacancy, or at a single Na site so that
they behave as a Na− anion loosely bound to a neutral[
Na jCl j

]
cluster. The spectral behavior of other clusters

within this same series, however, suggests they have the
two excess electrons in a triplet coupled state, forming
the analog of a bipolaron in a solid [39.10].

39.4 Semiconductor Clusters

Semiconductor clusters make up a class of clusters
where, by analogy with bulk semiconductors, covalent
forces are expected to dominate electronic and geo-
metric structure. Silicon clusters are by far the most
studied of the semiconductor clusters. Some informa-
tion is available on germanium clusters and compound
clusters made of Groups III and V atoms or Groups
II and IV atoms. Also, there are the well known sta-
ble molecules of bulk semiconductors such as the
P4 tetrahedron and various sulfur rings; these have
been reviewed in detail elsewhere [39.3]. Clusters of
other possible semiconductors have been made, but
little data beyond their nascent distributions are avail-
able [39.3]. There is also a growing body of data on
silicon, III–V, and, especially II–VI semiconductor clus-
ters in the nanometer size regime where bulk samples
of stabilized forms of these clusters have been made

and isolated. The crystalline and electronic structure
properties, particularly quantum confinement effects,
are reviewed in [39.10, 11, 59–61].

39.4.1 Silicon and Germanium Clusters

The geometries of small silicon clusters depart rad-
ically from microcrystalline fragments of the bulk
silicon diamond lattice. The structures of silicon clusters
containing up to about 13 atoms have been studied ex-
tensively both experimentally and theoretically [39.62].
These structures are more compact and, starting at Si7
which has a pentagonal bipyramidal structure, have
higher coordination than silicon in the bulk lattice. Mul-
tiple isomers of similar energy also appear starting at
about Si10. For example, the tetracapped trigonal prism
and the symmetric tetracapped octahedron structures of
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Si10 are nearly isoenergetic; microcrystalline fragments
such as the adamantane form of Si10 are much higher
in energy. The geometric structures of larger silicon
clusters are less well known. The gross shapes of clus-
ters containing up to about 60 silicon atoms have been
found experimentally to undergo a transition between
Si20 and Si30 from increasingly elongated structures to
more spherical structures [39.26]. In the transition re-
gion, both prolate and oblate isomers are observed for
a single cluster size. Multiple isomers over a wide range
of silicon cluster sizes have been repeatedly observed in
various experiments; it appears that somewhat different
sets of isomers can be produced depending on the clus-
ter formation conditions [39.26]. Elucidating the ground
state structures of these larger clusters theoretically is, in
general, an intractable problem and requires simplifying
approaches. Use of semiempirical quantum mechanical
techniques or silicon interaction potentials derived from
bulk silicon, however, has led to unsatisfactory results,
which suggests that the silicon atoms in silicon clus-
ters are strongly reconstructed away from the usual sp3

silicon atom environment [39.63, 64]. Some consensus
has recently emerged that larger silicon clusters con-
sist of internal silicon atoms strongly interconnected to
a surrounding cage that has been described as a buckled
fullerene [39.63, 65, 66]. Such a silicon cage must not
be construed as a true fullerene, however, since silicon
does not form the strong double bonds which stabilize
the interconnected carbon rings of the fullerenes. Within
this scenario, the shape change is believed to occur at the
point where the cage begins to contain one or more inter-
nal atoms which provide the additional bonding needed
to stabilize a spherical geometry.

IP’s and Ae’s, cohesive energies, and photoabsorp-
tion spectra have been measured for silicon clusters
containing up to several hundred atoms. Silicon clus-
ter IP’s start near the Si atom IP, fall abruptly between
20 and 22 silicon atoms where the shape change has
been observed, and then slowly converge towards the
bulk work function. This convergence is apparently quite
gradual since little change is seen between Si100 and
Si200 [39.67]. Ae’s are only known for silicon clusters
up to ≈15 atoms and reflect the large structural changes
which occur in this small size regime [39.3]. Indication
of a structural shape change is not observed in either the
trends in the cohesive energies or the electronic spec-
tra for silicon clusters. The cohesive energies increase
smoothly with increasing size and exceed the cohe-
sive energy of bulk silicon by 10–20% [39.68]. Silicon
clusters exhibit strong sharp absorption spectra in the
near UV. A common set of absorption features appears

at ≈Si15 and persists up to at least Si70 [39.69]. This
suggests that the strong absorptions arise from local-
ized Si−Si bond excitations, and that these obscure the
delocalized excitations which are more sensitive to sili-
con cluster structure. The most unusual aspect of these
spectra is that the common signature for these minute
clusters which are strongly reconstructed from the bulk
is, nonetheless, strikingly similar to the spectrum of bulk
diamond-lattice crystalline silicon.

Silicon cluster ions are observed to react with a va-
riety of reagents [39.3, 26, 68]. For example, silicon
clusters chemisorb small organic molecules such as
ethylene, and inorganic molecules such as O2, NH3, and
XeF2. Some of these reactions are sufficiently exother-
mic that they cause cluster fragmentation, or loss of
small neutral fragments. The chemistry of silicon clus-
ters often bears a close relationship to that known for
bulk silicon surfaces; however, the clusters are often
much less reactive by as much as several orders of mag-
nitude. Silicon cluster reactions reveal the presence of
numerous isomers which differ in their reaction rate
for a given reagent. Isomerization has been induced by
adding sufficient thermal energy to some clusters; the
resulting more stable cluster form may or may not be
more reactive than the higher energy isomer. This is par-
ticularly well illustrated in reactions of oblate versus
prolate isomers where the more reactive isomer varies
depending on cluster size [39.26]. In general, differential
chemistry is not a useful predictor of cluster geometry
per se, and appears to correlate more readily with other
factors such as the number and type of dangling bonds
available for reaction.

Much less is known about germanium clusters. The
most stable structures that have been calculated for ger-
manium clusters are quite similar to those for silicon
clusters, although the overall binding energies are lower
for germanium clusters [39.3, 7]. Available data such
as Ae’s and photoelectron spectra for germanium clus-
ters also underscore their similarities to silicon clusters
in general [39.3]. The chemistry of germanium clusters
has not been reported.

39.4.2 Group III–V and Group II–VI
Semiconductor Clusters

Geometric structures have been calculated for some of
the smaller III–V and II–VI clusters, particularly alu-
minum phosphide, gallium arsenide, and magnesium
sulfide clusters [39.3,11,70–72]. As for silicon clusters,
these clusters differ significantly from microcrystalline
fragments snipped from their corresponding bulk crys-
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talline forms. Electronegativity differences between the
two constituent atoms play a major role in determin-
ing and stabilizing these structures. This is manifested
in several ways. The bonding arrangements in the most
stable structures have, in general, alternating electropos-
itive and electronegative atoms. In those clusters such
as III–V clusters where electronegativity differences
are smaller, covalent interactions predominate ionic in-
teractions and the energetics of the various geometric
structures are similar to those of the covalent silicon
clusters. In II–VI clusters, electronegativity differences
are much larger, and these clusters have structures more
comparable to those seen in ionic clusters where ionic
interactions are maximized.

Some data are available on the electronic structures
of III–V clusters. A strong even-odd alternation occurs
in both the IP’s and Ae’s of gallium arsenide clusters
where those clusters having a total even number of atoms
have higher IP’s and lower Ae’s than neighboring odd-
numbered clusters [39.3,73]. This has been explained by
electronic structure calculations which find that, in gen-
eral, the odd clusters are triplets while the even clusters

of gallium arsenide are singlets [39.70–72]. Electronic
absorption spectra have also been recorded for indium
phosphide clusters which exhibit strong differences with
cluster size and stoichiometry [39.74]. These spectra are
also consistent with odd-numbered InxPy clusters hav-
ing open-shell configurations, and even-numbered InxPy
clusters having closed-shell singlet ground states, even
for clusters which are considerably off-stoichiometry.
A strikingly similar strong continuum-like absorption
appears in the blue end of spectra for the even-numbered
InxPy clusters. The onset of these bsorptions lies close to
the bulk indium phosphide band gap. The overall spec-
tral behavior, however, is quantitatively similar to the
absorptions seen in semiconductor glasses.

Little is known about the chemical properties of
these clusters, with gallium arsenide clusters being
the only ones studied. Hydrogen chloride is observed
ubiquitously to etch [GaxAsy]−; however, multiple iso-
mers are seen with differing degrees of reactivity [39.3].
Chemisorption of ammonia on [GaxAsy]+ has also been
seen with the highest rates of reactivity occurring for the
stoichiometric (x = y) clusters [39.75].

39.5 Noble Gas Clusters

Clusters have been made of all of the stable noble gases
including helium. As a general class, these clusters are
the most weakly bound of all clusters, and are held to-
gether only by van der Waals forces. These interactions
are well understood theoretically, and thus noble gas
clusters are excellent model systems for studying a va-
riety of structural and electronic effects at finite sizes.
Helium clusters behave much as quantum liquids, and
are treated separately in the discussion below.

39.5.1 Geometric Structures

The overall evolution of noble gas cluster structures as
a function of size is well established [39.4,6,11,76,77].
Icosahedral packing dominates at small cluster sizes.
This packing involves polyicosahedral structures for
the small cluster sizes, and different noble gas clus-
ters exhibit somewhat different preferred arrangements.
Starting at 100 to 250 atoms (depending on which noble
gas), formation of closed-shell Mackay icosahedra dom-
inates the structures [39.78]. Finally, at somewhere in the
range 600 to 6000 atoms, the structures cross over to the
close-packed fcc arrangement of the noble gas solids.

The increased coordination characteristic of the
Mackay icosahedra explains why this morphology is

adopted at small cluster sizes. With the addition of each
successive icosahedral shell however, this five-fold sym-
metric packing becomes increasingly strained as a result
of both atom-atom radial compression and tangential di-
lation. At some size, icosahedral structures are no longer
more stable than fcc structures, and the noble gas clus-
ters undergo a phase change. Currently, the critical size
required for fcc packing is a matter of some dispute.
Experimental evidence for this transformation at ≈ 600
atoms comes from electron diffraction data [39.76]. The
spectral signatures of molecules doped in noble gas
clusters suggest however, that this transition occurs at
≈ 2000 atoms [39.77]. Theoretical studies find a range of
critical sizes, depending on the treatment used, but typ-
ically favor an even larger size regime [39.4,11,13,77].

Knowledge of accurate pair-wise interaction poten-
tials for noble gases has enabled extensive simulations
of the physical properties of noble gas clusters [39.4, 6,
7,79–81]. Phenomena such as specific heat, bond length
and coordination number fluctuations, phase equilib-
ria, dynamical freezing and melting, isomerization, and
solvation have been explored using various molecular
dynamics simulations. Numerous effects peculiar to the
finite sizes and proliferation of isomers in small noble
gas clusters are observed. For example, the melting
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temperature decreases significantly with an overall de-
crease in cluster size. Internal diffusion rates depend
strongly on cluster size and the stability of certain
favored structures such as the complete Mackay icosa-
hedra. A well-studied finite size effect is the dependence
of the mean energy per particle in a cluster versus
the particle temperature (the so-called caloric curve)
in the region where the particle is observed to “melt.”
Unlike in the bulk, calculations find hysteresis in the
melting transition of small noble gas clusters where
solid-like and liquid-like forms are observed to coex-
ist. Such coexistence is quite size-dependent. It becomes
more pronounced when the clusters are rapidly heated
or cooled, and appears to be a finite time averaging
effect [39.4, 6, 7].

39.5.2 Electronic Properties

The fragility of noble gas clusters has hampered
measurements of their IP’s and Ae’s. Extensive frag-
mentation is known to accompany ionization, making it
difficult to establish the size of the ionized parent cluster.
Nonetheless, IP’s have been measured for cluster sizes
containing up to several tens of atoms [39.82]. Meas-
ured IP’s agree with theoretical predictions which are
based on the assumption that the ionizing state within
the cluster is a dimer, trimer, or higher n-mer cationic
core [39.6,82]. Absorption profiles of noble gas cations
provide supporting evidence for the delocalization of the
positive charge over a n-mer unit within the cluster, al-
though consensus has yet to be reached on the size of
this cationic cluster within the cluster [39.6, 11].

Several distinct types of electronic excitations are
observed in absorption spectra of neutral noble gas
clusters [39.6, 7, 11, 83]. Clusters containing less than
≈ 30 atoms exhibit broad absorptions near the atomic
resonance lines. These absorptions are molecular-like,
but have not been described in detail above the dimer.
In addition, broad continuum absorptions assigned to
Rydberg excitations are observed at these small sizes.
Bulk-like excitations corresponding to surface and bulk
excitons in solid noble gases emerge for clusters larger
than≈ 50 atoms. The profiles of these excitonic absorp-
tions indicate that they arise from delocalized excitations
analogous to Wannier excitons in bulk solids. These
cluster exciton absorptions are blue-shifted relative to
the bulk as a result of quantum confinement of the ex-
citon within the small cluster. Another type of excitonic
excitation has also been reported which appears to be
a localized excitonic state whose character is sensitive to
the cluster structure. Relaxation of cluster excited states

is accompanied by extensive fragmentation [39.7]. De-
tails of the relaxation processes differ according to noble
gas, cluster size and cluster structure. Again, these dif-
ferences can be traced to finite size effects in these noble
gas clusters [39.4].

39.5.3 Doped Noble Gas Clusters

Various chromophores have been added to noble gas
clusters as a microscopic variation of matrix isolation
[39.3,4,7,10,11,77,84]. A wide range of chromophores
have been studied including other noble gas atoms,
metal atoms, small polyatomic molecules such as SF6,
CH3F, and HCl, and a variety of organic molecules
such as benzene, carbazole, and naphthalene. Compar-
isons of the electronic and vibrational spectra of these
guest molecules with their spectra in noble gas liquids
or solid matrices have revealed information such as
noble gas cluster structure, solvation effects, and solute
diffusion.

A crucial issue in understanding the spectral sig-
natures of doped noble gas clusters is the location
of the solute in or on the noble gas cluster. Chro-
mophores well-embedded in a noble gas cluster behave
as molecules surrounded by a dielectric medium, which
is most correctly viewed as both imperfect and finite
sized [39.4, 7, 84, 85]. The evolution of the spectral
changes with cluster size reflect the interplay of repul-
sive forces and collective dielectric effects as the cluster
builds the solvent shell around the solute core. Both
theoretical and experimental data illustrate this evolu-
tion and show how, once the first few solvent shells are
established, the spectrum converges asymptotically to
the matrix isolation value. For smaller clusters, the ef-
fects of too few or incomplete solvation shells appear
as shifts and/or broadening of the spectral lines rela-
tive to the bulk [39.3, 4]. Differential solvation of the
ground and excited states causes spectral shifts which
are typically to lower energy since the excited state is
usually more stabilized than is the ground state. Spectral
broadening results from multiple isomers. Broadened
electronic spectra have also been explained as a signa-
ture of cluster melting, although this interpretation has
been questioned [39.3, 4, 84, 85]. Some infrared spectra
of solute molecules have also yielded information on the
nature of the solute binding site, revealing that the sol-
vating noble gas cluster undergoes an icosahedral to fcc
phase transition in a critical size regime [39.77].

Not all dopant species are found well-solvated,
or wetted in the cluster interior. Both electronic and
infrared dopant spectra indicate the existence of chro-
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mophores bound to the cluster surface. In some cases,
the chromophore is ubiquitously nonwetting, such as
for SF6−Xen and SiF4−Arn , and resides exclusively
on the cluster surface [39.77]. In other systems, e.g.,
carbazole−Arn and CF3Cl−Arn , both wetting and non-
wetting are observed [39.7,77,84]. Systems such as these
have enabled measurements of solute diffusion rates
into or out of the cluster. Finally, wetting–nonwetting
transitions have been observed which depend on cluster
size and/or cluster temperature [39.7, 84]. Understand-
ing this wide variety of behavior requires modeling
cluster solute-solvent structures (in both ground and ex-
cited states in order to interpret electronic spectra) as
a function of size and temperature. To date, most of the
theoretical simulations have focussed on smaller clusters
at a given temperature [39.4, 7, 77, 84, 85]. Nonetheless,
theoretical models have provided qualitative and quanti-
tative explanations for some of the observed spectral
shifts, and have shown that the propensity for wet-
ting/nonwetting can be related to the degree to which
maximum possible coordination within the solvent is
attainable.

39.5.4 Helium Clusters

Quantum effects play a dominant role in helium clusters
since they consist of very weakly interacting small mass
particles. Statistical effects are also expected since 3He
is a fermion and 4He is a boson. Overall, helium clusters
are believed to be in fluid-like or superfluid-like states
with highly fluctional structures [39.86].

Neutral helium clusters have been made experi-
mentally in sizes ranging from the dimer up to 106

atoms [39.4, 11, 77]. The diatomic He2, has just been
detected recently and is found to have a binding en-
ergy of only ≈ 10−7 eV with an average internuclear
distance of≈ 55 Å [39.87,88]. Evidence for magic num-
bers in the helium cluster abundances is seen; however,
the sizes of these especially stable clusters differ sub-
stantially from what is seen in the other noble gas
clusters [39.4]. Helium cluster structures have been the-
oretically investigated using fully quantum mechanical
treatments [39.4, 86]. These studies find that 4Hen clus-
ters should be bound at all sizes, but that a minimum
number of atoms, ≈ 30, are required for 3Hen clusters
to be stable. The latter prediction has not yet been ver-
ified experimentally, owing to the expense of 3He, and
the difficulties of ascertaining the true size of helium
clusters since they easily boil off atoms upon ionization.
Calculations reveal that the packing of helium clusters
is highly delocalized with no evidence of icosahedral

morphology. The structures derived have been found to
be extremely sensitive to temperature and total angular
momentum. Cluster binding energies and densities in-
crease smoothly and monotonically with increasing size,
approaching bulk behavior at about 300 atoms. Thus, he-
lium clusters do not exhibit any especially stable sizes
(magic numbers) such as the heavier noble gases do. In
short, helium clusters behave as liquid-like quantum flu-
ids, and may even be superfluid-like at the temperatures
required to stabilize them in beam experiments. Based
on these calculations, it appears that the magic numbers
observed experimentally in abundance spectra pertain to
the more strongly bound ionized helium clusters, rather
than the neutral clusters which are the subject of this
discussion.

Electronic absorption spectra have recently been
recorded for clusters containing ≈ 50–106 helium
atoms [39.89]. Broad strong absorption bands are ob-
served which do not behave like the Wannier exciton
bands seen for the heavier noble gas clusters, nor are they
well-described by the Frenkel excitonic model. Note
that although the Wannier and Frenkel exciton models
were originally developed for solids with translational
symmetry, they are also good descriptions for excita-
tions in liquid noble gases [39.4]. At this writing, the
helium cluster electronic spectra cannot be compared
with absorption spectra of liquid or solid helium be-
cause these latter spectra have not yet been measured!
With this limitation and a current lack of sufficient the-
oretical guidance, the helium cluster spectra have not
yet been thoroughly interpreted. Theoretical calculations
are available which describe the collective excitations
in helium clusters on the electronic ground state sur-
face [39.86]. Spectra in this energy regime have not yet
been recorded.

Experimentally, it has been quite easy to dope helium
clusters with various atomic and molecular species such
as other noble gas atoms, oxygen, and SF6 [39.4,11,77].
Electrons, however, are not well-solvated and negatively
charged helium clusters only appear for sizes contain-
ing more than 105 –106 atoms [39.11]. Impurity species
provide a spectroscopic probe for studying the proper-
ties of the solvating helium cluster. Infrared spectra of
helium clusters doped with SF6 show that the impurity
molecule resides on the cluster surface, in contradiction
of theoretical calculations which predict that it should
be found inside a helium cluster. Understanding this
discrepancy has stimulated further theoretical investiga-
tions that reveal the dramatic structural effects which
can occur when angular momentum is added to these
very fragile clusters during dopant pick-up [39.90].
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39.6 Molecular Clusters

Molecular clusters are in many ways similar to noble
gas clusters. Both are weakly bound, and the interac-
tions between the particles which make up the cluster
can usually be described to a good approximation as the
sum of pairwise interactions. The molecule constituency
adds complexity, however, which is reflected in the di-
versity seen amongst these clusters. Molecular clusters
provide model systems for studying solvation, includ-
ing electron solvation, nucleation, and phase transitions
at finite sizes. Furthermore, properties which are often
difficult to study in the bulk, such as phase transition dy-
namics, are much more amenable to study in molecular
clusters.

Numerous molecular clusters have been made and
studied. By far the most work has focussed on the smaller
molecular clusters such as molecular dimers, trimers and
tetramers. A number of outstanding reviews are available
on this subset of molecular clusters [39.3,4,6,76,91,92].

39.6.1 Geometric Structures
and Phase Dynamics

In contrast to noble gas clusters, molecular clusters typ-
ically assume bulk phase structures at relatively small
sizes. Thus, the range of condensed phases of molecu-
lar solids is reflected in the variety of packing structures
found in molecular clusters. At one extreme are clusters
of small nearly-spherical molecules such CH4 and N2
which form clusters closely connected to noble gas
clusters [39.76]. Small clusters of these molecules are
packed in polyicosahedral arrangements at small sizes,
and cross over to fcc structures at sizes containing sev-
eral thousand atoms. At another extreme are clusters
such as water clusters where stronger hydrogen bond-
ing forces lead to the formation of crystalline networks
such as in a diamond cubic phase [39.76]. Some mo-
lecular clusters appear to be liquid-like with thermal
motion wiping out any persistent periodic order. The
liquid-like structure observed in clusters of molecules
such as benzene and various hydrocarbons may freeze
into a crystalline or amorphous state at sufficiently low
temperatures.

Some molecular clusters have been found to exhibit
a panoply of phases, depending on size and temperature.
For example, not only do clusters of TeF6 assemble
into the bulk body-centered cubic and orthorhombic
phases, they can also be made in other phases includ-
ing two trigonal forms, a rhombohedral phase, and
two monoclinic phases [39.93, 94]. Similarly complex

phase formation has been found in other clusters of
other hexafluoride molecules such as SF6, SeF6, MoF6,
and WF6.

Phase transitions in molecular clusters have been
examined both experimentally and theoretically using
molecular dynamics. Transition temperatures are found
to depend on cluster size, and span a much broader
range than in the corresponding bulk phase transitions.
Large rates for nucleation and phase changes are seen
in molecular clusters. Once the critical nucleus, which
initiates the phase change, forms in the interior of the
cluster, the remainder of the cluster transforms to the
new phase extremely rapidly. Critical nucleus sizes de-
pend on the cluster size and are typically quite small,
e.g., for TeF6 clusters, they contain only a few dozen
molecules for clusters consisting of a few hundred
molecules [39.10, 93, 94]. A key finding is that phase
transitions in molecular clusters appear to violate Ost-
wald’s step rule, which states that equilibrium systems
must pass through all intermediate-energy stable phases
during a transition from a higher energy to a lower energy
phase [39.10]. This noncompliance apparently occurs
because of the speed at which molecular clusters un-
dergo phase transitions: intermediate phases simply do
not have time to form.

39.6.2 Electronic Properties:
Charge Solvation

IP’s, Ae’s, and some spectral data are available for
larger molecular clusters. Nearly all of the spectra
measured pertain to clusters containing less than ten
molecules [39.3, 4, 6, 76, 91, 92]. Precise molecular
orientations within many of these clusters have been
derived from detailed analyses of these spectra. Such in-
formation has not yet emerged from the few spectra
that have been measured for larger molecular clus-
ters [39.3, 6]. Alternatively, measurements of electronic
properties of larger clusters have generally targeted a dif-
ferent issue: solvation of excess positive or negative
charge in a restricted bulk-like system.

Charged molecular clusters provide model systems
for studying the mechanism of charge stabilization
within the confines of a finite system. Excess posi-
tive charge appears to be highly localized in molecular
clusters, residing on a small unit containing at most
a few monomers. This positive core is surrounded and
stabilized by overlying shells of molecules. For example,(
CO2

)+
n clusters behave as the dimer cation

(
CO2

)+
2 ,
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surrounded by the remaining CO2 molecules [39.4].
Positively charged solutes such as alkali cations have
also been introduced to study solvation of positive
charge within molecular clusters [39.10]. For those
dopants which have much lower ionization potentials
than the solvating molecules, the positive charge re-
mains strongly localized on the impurity. The cluster
molecules are observed to build up solvation shells
around this central impurity. The first few solvation
shells are strongly affected by the positive charge,
which has a decreasing influence with each successive
layer. The structure of such a cluster reflects the ac-
commodation between the geometry of the molecules
influenced by the central positive charge, and those in
the outer solvation layers where intermolecular forces
predominate [39.10, 95]. Evidence for intracluster reac-
tions in positively charged clusters has also been seen,
such as proton transfer in cationic water or ammonia
clusters [39.3, 11].

Whereas virtually every molecular cluster con-
taining as little as two molecules exists stably as
a positive ion, the same cannot be said for the nega-
tive cluster ions. Measurements of the minimum number
of molecules required within the cluster to support

an additional electron show that, while the dimeric
(HCl)−2 ,

(
SO2

)−
2 , and

(
H2O

)−
2 clusters are stable, ≈ 35

or ≈ 41 molecule-clusters of ND3 or NH3, respec-
tively, are required to stabilize an electron [39.4].
Spectroscopic studies show evidence for internal and
external solvation of the excess electron in these anionic
clusters.

Charge solvation in water clusters has been ex-
amined in some detail. Of particular interest is the(
H2O

)
20 cluster which, from experimental and the-

oretical data, appears to form an especially stable,
well-defined clathrate cage. The interior of this cage
is large enough that it can and does hold various cations
such as NH+

4 , H3O+, and alkali ions [39.10]. This
cage is not observed to surround negative ions or elec-
trons, which instead, reside on the surface [39.10]. This
is a general result for excess negative charge in wa-
ter clusters in this size regime where excess charge
can be external to the cluster. Excess electrons in
water clusters are found on the cluster surface for
small cluster sizes up to 60 to 70 water molecules.
Above this size, the electron resides in the cluster in-
terior, and behaves analogously to hydrated electrons in
bulk water [39.4, 7].

39.7 Recent Developments

Added by Mark M. Cassar. Experimental and theoreti-
cal work on clusters has continued to be an active and
rapidly growing area of research over the past decade.
This Section provides a non-exhaustive snapshot of
some recent work in the vast field of cluster science.

The original focus on the scalable properties of
clusters (concerning a smooth transition from small
particles to bulk matter) has now extended to include
important non-scalable properties. These properties,
particularly at the nanoscale level, have enormous
potential for technological application [39.96–98]. Stud-
ies aimed at understanding the underlying atomic
structure of noble-metal clusters and nanoparticles,
which is the first step toward their controlled use
in future nanotechnologies, e.g., catalysis, labeling,
or photonics, have been carried out [39.99]. Ab
initio all-electron molecular-orbital calculations for
small (n = 7−11) and medium (n = 12−20) sili-
con clusters Sin have been performed in order to
study their structure and relative stability [39.100,

101]; such calculations are important in determin-
ing the scalability of present day semiconductor
technology.

Other interesting work has been done on the electron
transfer properties of metal clusters that could act as
conducting bridges between molecular wires [39.102];
and in the role that tetramanganese clusters play in one
of the active photosynthesis sites (photosystem II) in
green plants, and in certain bacteria and algae [39.103].

The reader is referred to various reviews that can
be found in the literature: for time-resolved photoelec-
tron spectroscopy (TRPES) of clusters, which allows
the dynamics along the entire reaction coordinate to be
followed, see [39.104]; for ultrafast dynamics in cluster
systems and atomic clusters, see [39.105,106]; for small
carbon clusters, important in the chemistry of carbon
stars, comets, interstellar molecular clouds, and hydro-
carbon flames, see [39.107]; for the relation between
electronic structure, atomic structure and magnetism of
clusters of transition elements, see [39.97].
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Infrared Spect40. Infrared Spectroscopy

Infrared spectroscopy consists of the measurement
of interactions of waves of the infrared (IR) part
of the electromagnetic spectrum with matter.
The IR spectrum starts just beyond the red
part of the visible spectrum at a wavelength
λ= 700 nm and extends to the microwave region
at λ= 0.1 cm. Electromagnetic waves are generally
described in terms of their frequency ν in Hz. In
IR spectroscopy it is common practice however
to use the spatial frequency σ= ν/c. These are
called wavenumbers and have units of cm−1.
In this way the near, mid and far IR spectrum
spans the frequencies from 14 300 cm−1 to 10 cm−1.
The interactions observed in the IR spectrum
involve principally the energies associated
with molecular structure change. Infrared
spectroscopy is therefore useful for molecular
structure elucidation and the identification and
quantification of different molecular species in
a sample [40.1].

The most common IR analysis of a sample
is by IR absorption spectroscopy. This involves
transmitting a beam of intense IR radiation
through the sample and observing the
distribution of wavenumbers absorbed by the
molecules. Molecules in a sample may also be
studied by IR emission spectroscopy simply by
observing specific wavenumbers being emitted
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by virtue of the nonzero absolute temperature
of the sample. Finally, radiation reflected from
a smooth surface of a solid sample also provides
information about the molecular structure of the
material by virtue of the anomalous dispersion
associated with absorption bands.

40.1 Intensities of Infrared Radiation

For strong interactions of electromagnetic waves with
matter, the emitted and absorbed intensities are governed
by Planck’s radiation law in addition to the emissiv-
ity and absorptivity of the material. Planck’s radiation
law for thermal radiation from an ideal black body
is

Pbb(σ) dσ = c1σ
3 dσ

exp(hσ/kBT )+1
, (40.1)

where c1 is a proportionality constant. Depending on
the definition of c1, Pbb(σ) may represent a radiation

density per unit spectral interval
(
cm−1

)
in a cavity

at temperature T in ergs/cm3, or an energy flux emit-
ted from a surface in W/cm2 steradians. At frequencies
low compared with h/kBT , the energy distribution in-
creases with σ2 and is approximately proportional to
T at a given σ . At high frequency, the energy distri-
bution falls off exponentially. In the near IR, a high
temperature is required to emit radiation. Room tem-
perature objects emit strongest in the 300 to 600 cm−1

region, and emit negligible energy above 3000 cm−1.
Materials cooled to liquid nitrogen temperature (77 K)
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only emit below 100 cm−1, while materials cooled
to liquid helium temperature (4.2 K) only emit be-
low 20 cm−1. In contrast to visible spectroscopy, IR

absorption spectroscopyis complicated by emission of
IR radiation from the sample and the surrounding
environment.

40.2 Sources for IR Absorption Spectroscopy

A silicon carbide element electrically heated to 1400 K
provides a strong continuum of IR radiation over a ma-
jor part of the IR spectrum. It is commonly used as
a source of radiation for IR absorption spectroscopy.
For near IR spectroscopy, a tungsten filament lamp op-
erated at 2800 K provides a strong continuum all the

way up to the visible part of the spectrum; it is not
useful below 3000 cm−1 because of absorption by the
glass or quartz envelope. Various electrically heated ce-
ramic elements, such as the Nernst glower and high
temperature carbon rods, have been devised to serve as
IR sources.

40.3 Source, Spectrometer, Sample and Detector Relationship

Since a sample at room temperature emits IR radiation
in the mid IR, it is important to distinguish between
transmitted radiation used in the determination of its
absorption spectrum and its emission spectrum. By em-
ploying an intense IR beam, the effect of emission is
minimized. Further distinction is achieved by encoding
the IR beam before it impinges on the sample.

With classical grating or prism spectrometers, the
source radiation is chopped by means of a mechani-
cal chopper before it passes through the sample. The
IR detector is provided with a means of synchronously
decoding the chopped signal, thereby eliminating the
emitted spectrum. Often the chopper is arranged such
that it alternately switches between an empty reference
beam and the sample. The logarithm of the ratio of the
demodulated sample and reference spectra provides the
absorption spectrum directly.

In Fourier Transform infrared (FTIR) Spectroscopy,
a scanning Michelson interferometer provides the en-
coding function directly and no chopper is required. The
interferometer is commonly placed before the sample so
that it does not encode the thermally emitted radiation
of the sample. Ratio recording of a sample against an
empty beam is not common in FTIR. Instead, the ab-
sorption spectrum is obtained by sequentially recording

the spectra of the sample and of the empty beam (sam-
ple removed), and computing the logarithm of the ratio
numerically.

If it is not convenient to place the sample after the
scanning Michelson interferometer, the absorption spec-
trum of a sample placed in front of the interferometer
can be deduced by subtracting the separately recorded
emission spectrum from the combined transmission plus
emission spectrum.

Infrared emission and reflection spectroscopy form
the basis for remote sensing. Solid and gaseous (cloud)
objects may be identified and quantified by direct obser-
vation of their IR spectra at a distance. Gaseous clouds
reflect poorly, providing only transmitted or emitted IR
radiation. Their emission spectrum is contrasted directly
with the spectrum of the scene or object beyond the
cloud. With a background at lower temperature than the
gas cloud, the gas spectrum appears in emission, while
with a warmer background the gas spectrum appears in
absorption.

Only a few solid materials transmit IR radiation
over a substantial thickness. Remote sensing of solid
objects relates therefore to surface emission and (dif-
fuse) reflection of IR radiation from the surrounding
environment.

40.4 Simplified Principle of FTIR Spectroscopy

In FTIR spectroscopy, the spectrum of a beam of in-
cident IR radiation is obtained by first generating and
recording an interferogram with a scanning Michel-

son interferometer. Subsequently the interferogram is
inverted by means of a cosine Fourier transform into the
spectrum.
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40.4.1 Interferogram Generation:
The Michelson Interferometer

The scanning Michelson interferometer shown in
Fig. 40.1 consists of a beam splitter, which is a sub-
strate with a dielectric coating such that 50% of an
incident beam is reflected and the remaining 50% is
transmitted, and two plane mirrors (M1 and M2), one
or both of which are translated along the direction of
the beam. After splitting, the two equal amplitude wave
fronts are propagated along different optical paths. The
mirrors at the end of each path return the wavefronts
to the beamsplitter, which then acts as a wavefront
combiner. Because of their common coherent origin,
the wavefronts interfere with one another when they
combine. The state of interference is varied by scan-
ning one or both of the mirrors such that there is
a variable time delay between the two separated beams.
The resulting intensity variation of the combined out-
put beam as a function of relative time delay is the
interferogram.

40.4.2 Description of Wavefront
Interference with Time Delay

The intensity I0(ν) at frequency ν of a plane wave in
space is given by the expectation value of its elec-
tric field vector E(ν, t) = E(ν) exp(i2πνt) according
to

I0(ν)= 〈E(ν, t)|E(ν, t)〉 = E(ν)2 . (40.2)

The intensity at the output of the interferometer due
to an incident intensity I0(ν) is given by I(ν, δ),
where δ is the time delay between the two wavefronts
which have been propagated along two different paths,
and

I(ν, δ)= 〈E(ν, t)+E(ν, t+δ)|E(ν, t)+E(ν, t+ δ)〉
= 1

4
E(ν)2

(
2+ e−i2πνδ+ ei2πνδ)

= 1

2
I0(ν)[1+ cos(2πνδ)] . (40.3)

As can be seen, the output intensity of a single frequency
source at the output of an ideal scanning Michelson
interferometer fluctuates sinusoidally between zero and
the input intensity I0(ν) as the time delay δ between the
separated wavefronts is varied by means of scanning one
of the mirrors.

The quantity δ is related to mirror displacement x
with respect to equal distance of the mirrors from the

M2 Fixed mirror

Compensator
Beam splitter

M1

Moving
mirror

Source

Collimator

Detector

Sample
focus

Fig. 40.1 The Michelson interferometer

beamsplitter by

δ= 2x cos θ/c , (40.4)

where θ is the angle between the wavefront and the
optical axis of the spectrometer, and the optical axis is
the normal to each plane mirror M1 and M2. From this,
(40.3) becomes

I0(ν, x)= 1

2
I0(ν){1+ cos[2πν(2x cos θ/c)]} ,

(40.5)

or, using σ = ν/c,

I0(σ, x)= 1

2
I0(σ){1+ cos[2πσ(2x cos θ)]} . (40.6)

Thus the output intensity fluctuates at frequency σ ′ =
2σ cos θ as a function of the mirror displacement x.

The incident intensity generally consists of a distri-
bution of intensities over many frequencies S(ν) dν with
integrated intensity

I0 =
∫

S(ν) dν . (40.7)

For this case, the output intensity of an ideal scanning
Michelson interferometer is given by

I0(δ)= 1

2

∫
S(ν)[1+ cos(2πνδ)] dν . (40.8)

The second term on the right side of (40.8) has the
form of the cosine Fourier transform of the spectrum.
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By rearrangement of (40.8), it is given by
∫

S(ν) cos(2πνδ) dν = 2I0(δ)− I0 . (40.9)

The constant term I0 provides no useful information
about the spectrum. The inverse cosine Fourier trans-
form of 2I0(δ) results in the spectrum S(ν) according
to

S(ν)=
∫

2I0(δ) cos(2πνδ) dδ , (40.10)

S(σ)=
∫

2I0(x) cos
(
2πσ ′x

)
dx . (40.11)

Contrary to classical spectrometers, where the spec-
trum is sequentially scanned, there is no segregation of
frequencies of the input intensity. All frequencies in the
source are modulated simultaneously by the scanning
Michelson interferometer into a single interferogram
signal. This multiplex mode of spectrum determination
was first exploited by Felgett [40.2]. It contributes to
a large advantage in sensitivity compared with other
spectrometers, and is referred to as the Felgett or multi-
plex advantage.

40.4.3 The Operation of Spectrum
Determination

The output interferogram is detected by an IR detector
which converts the intensity variations I0(x) as a func-
tion of different mirror positions x into an electrical
signal. Continuous determination of the inverse cosine
Fourier transform of the evolving interferogram re-
quires continuous multiplication of the signal by cosine
functions with all the different frequencies of the spec-
trum and integrating these products. Continuous Fourier
analysis with a bank of narrow band filters has been
implemented both in analog and digital form in early
versions of FTIRs [40.3].

It is, however, far more practical to capture the in-
terferogram signal in numeric form, using an analog to
digital converter, store it in computer memory, and com-
pute the Fourier transform numerically after the mirror
displacement range has been covered.

The numerical representation of the interferogram is
determined at known intervals of mirror displacement
∆x. The computed spectrum is then determined at reg-
ular intervals of spatial frequency ∆σ by the discrete
cosine Fourier transform

S( j∆σ)=
∑

n

2I0(n∆x) cos(2π jn∆σ∆x) .

(40.12)

The sampling interval ∆x of optical path difference
determines the extent of the numerically computed spec-
trum. A higher density of sampling permits a wider
spectral range to be determined, up to

σmax = 1

2∆x
. (40.13)

Beyond σmax, the spectrum repeats in reverse order,
and beyond 2σmax, the spectrum repeats as is. This is
called spectral aliasing, and results from the incomplete
knowledge of the full interferogram function between
the discrete numeric representation. In order to insure
that the numeric representation of the interferogram
describes the continuous function uniquely, it is im-
portant to band limit the interferogram information to
the range 0 to σmax by means of optical and electrical
filtering.

Conversely, the higher the density of sampling
in the spectral domain, the longer the interferogram
needs to be. For a wavenumber range ∆σ , the length
is

xmax = 1

2∆σ
. (40.14)

From the orthogonality property of the discrete
cosine Fourier transform, unique linearly independent
information can occur only at spectral intervals equal
to or greater than the sampling interval. Hence the
sampling interval in the spectrum is related to the
achievable resolution. The full width at half maxi-
mum of the representation of a single frequency in
the spectrum is 1.2∆σ . This factor applies for the
case where the single cosine wave interferogram has
been abruptly truncated at the end of the mirror scan.
The lineshape function for this case is quite oscilla-
tory due to the abrupt termination of the interferogram
signal at the end of the scan. This is not always sat-
isfactory, and frequently the interferogram is modified
by a windowing or apodization function to make the
lineshape more localized and monotonic. Apodization
always results in an increase in the full width at half
maximum.

A particularly convenient and accurate way to estab-
lish the sampling intervals of the interferogram is the use
of a single frequency laser directed coaxially with the
source radiation through the scanning Michelson inter-
ferometer. The intensity of the laser at the output of the
interferometer is a highly consistent cosine wave with
one cycle per change in mirror movement of one half
wavelength of the laser light.
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40.5 Optical Aspects of FTIR Technology

The description of wavefront interference developed
in Sect. 40.4.2 applies to interference of plane wave
fronts only. A plane wave of IR radiation is ob-
tained at the output of a collimator optics having
an IR point source at its focus. In practice a point
source has insignificant intensity. A finite size source,
which may be represented by a distribution of point
sources in the focal plane of the collimator, provides
a distribution of plane wavefronts with different an-
gles of propagation through the scanning Michelson
interferometer.

As shown in (40.6), this distribution of angles re-
sults in a distribution of modulation frequencies as
a function of mirror displacement x of the output in-
tensity for a given IR wavenumber. This is illustrated
in Fig. 40.2 which shows, for a single frequency IR
source, the distribution of output intensity modulation
frequencies for an ideal point source on the optical axis,
a circularly symmetric distribution of uniform intensity
about the optical axis, and finally a circularly symmet-
ric distribution positioned slightly off the axis of the
collimator.

As a result of illuminating the scanning Michel-
son interferometer with a finite size source, a single
IR frequency source is observed having a distribution
of modulation frequencies in its interferogram signal.
This distribution limits the ability to resolve two closely
spaced IR frequencies and determines the optical res-
olution limit of the FTIR: The larger the extent of the
source, the more restricted the resolution becomes. The
ratio σ/∆σ is the resolving power R of the scanning

a) Point source on optical axis

b) Circular source centered on optical axis

c) Circular source off axis or out of focus

Michelson interferometer and, based on (40.6), is given
by

R = 1/(1− cos θm) , (40.15)

where θm is the maximum off-axis angle of illumination.
For small θm, cos θm ≈ 1− 1

2θ
2
m, so that

R ∼ 2/θ2
m . (40.16)

From (40.14), a resolution limit is also imposed by
the maximum length of the interferogram recorded.
The interferogram length dependent resolution is
constant for all spectral regions, while the optical
resolution is proportional to the spectral frequency.
Both resolution limits combine to give the over-
all resolution of an FTIR. At low resolution, the
available throughput is so high that the optical res-
olution is often negligible compared with the length
resolution. At high resolution, throughput is at a pre-
mium and the optical resolution is often closely
matched to the length resolution at the frequency of
interest.

To insure a symmetrical frequency distribution,
the area integrated illumination must increase as
sin θ, which is approximately linear for small an-
gles, up to its maximum θm, as shown with the
centered circular illumination in Fig. 40.2. Any devi-
ation from this, such as off-axis positioning of the
circle, noncircular shapes, or a poorly focused cen-
tered symmetrical circle, will result in a gradual roll-off
of the distribution on the low frequency side only
[40.4]. This results in an asymmetric spectral line
shape.

For a collimator of given focal length and for a given
resolving power, it is easily shown that the area of the
source, or the stop that delineates it, is much larger than
the slit area for classical grating spectrometers. This is
particularly the case at high resolving powers.

This throughput advantage was first pointed out by
Jacquinot [40.5], and plays an important role in the large
sensitivity advantage of FTIR. The stop that delineates
the source extent for a scanning Michelson interferom-
eter is often referred to as the Jacquinot stop or the field
of view stop.

Fig. 40.2 Distribution of interferogram modulation fre-
quencies for a single optical frequency source
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40.6 The Scanning Michelson Interferometer

Optical throughput is not only determined by the area of
the field of view stop, but also the solid angle subtended
by the rays traversing this area. The solid angle Ω of
rays traversing a Jacquinot stop positioned in the focal
plane of an input collimator is given by the ratio of the
interferometer beam area divided by the square of the
focal length of the collimator.

For a given collimator focal length, the area of the
Jacquinot stop is inversely proportional to the resolving
power. To maintain equal throughput, the area of the
interferometer optics should be increased as resolving
power is increased in order to offset the decrease in the
Jacquinot stop area.

It is common to construct interferometers with
2.5 cm diameter optics for resolving powers up to 5000,
5.0 cm diameter optics for resolving powers up to 40 000
and 7.5 cm diameter optics for resolving powers up to
1 000 000.

In order to obtain a uniform state of interference
across the entire beam of the interferometer, the beam-
splitter substrate and the two mirrors must be flat to
within a small fraction of the wavelength used. Also,
these elements must be oriented correctly so that the op-
tical path difference error across the beam is less than
a small fraction of the wavelength.

Figure 40.1 shows two substrates at the beam-
splitter position. One of the substrates supports the
beamsplitting coating, while the companion substrate
of precisely the same thickness acts as a compensat-
ing element to insure identical optical paths through
the two arms of the interferometer. To avoid sec-
ondary interference effects, both beamsplitter and
compensator substrates are normally wedged. The di-
rection of the wedges of the two substrates must be
aligned again to insure symmetry in both arms of the
interferometer.

The maintenance of a very close orientational align-
ment tolerance of the two mirrors with respect to the
beamsplitter in a stable manner over time and while
scanning one of the mirrors is the greatest challenge of
interferometer design and is also the greatest weakness
of FTIR.

In early models of FTIRs, alignment was maintained
by means of a stable mechanical structure and a highly
precise linear air bearing for the scanning mirror. Sat-
isfactory operation required a stable environment and
frequent alignment tuning and could be achieved for
mirror displacements of only several centimeters, thus
limiting the maximum resolution.

Different techniques have been developed to over-
come this weakness in FTIR. The two most prominent
are (1) Dynamic alignment of the interferometer, where
optical alignment is servo-controlled using the refer-
ence laser not only for mirror displacement control
but also for mirror orientation control, and (2) the
use of cube corner mirrors in place of the flat mir-
rors in the interferometer. Dynamic alignment has the
advantage of retaining a high degree of simplicity in
the optical design of the interferometer. On the other
hand it is more complex electronically. Cube corners
have the property of always reflecting light 180◦ to in-
cident light independent of orientation. Cube corners
always insure wavefront parallelism at the point of re-
combination of the two beams in the interferometer.
Cube corners lack a defined optical axis. In a cube
corner interferometer, the optical axis is defined as
the direction in which the wavefronts undergo zero
shear.

The scanning Michelson Interferometer is normally
provided with a drive mechanism to displace one of the
mirrors precisely parallel to its initial position and at
uniform velocity. The uniform velocity translates the
mirror displacement dependent intensities into time de-
pendent intensities. This facilitates signal processing
electronics. In some measurement scenarios however,
where the sample spectrum may vary with time, it
is undesirable to deal with the multifrequency time-
varying intensities of the interferogram signal. In this
case it is preferable to scan the moving mirror in
a stepwise mode, where the mirror is momentarily sta-
tionary at the time of signal measurement and then
advanced rapidly to the next position. The mirror scan
velocity v can be varied so that electrical signals can
have different frequencies for the same optical frequen-
cies:

f = σ/2v . (40.17)

The scan velocity is normally selected to provide the
most favorable frequency regime for the detector and
electronics used and for the mechanical capabilities
of the mirror drive. Typically the velocity range is
from 0.05 cm/s to 4 cm/s, putting the frequencies in
the audio range. At these velocities, the measurement
scan may be completed in a shorter time than is de-
sired for signal averaging purposes. In this case it is
common to repeat the scan a number of times and
add the results together: this is called co-adding of
scans.
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40.7 Recent Developments

Added by Mark M. Cassar. Infrared spectromicroscopy,
which combines the well-established technique of
Fourier transform infrared (FTIR) spectroscopy with a
microscope, has been one of the main developments in
this area in the past decade. Recently, array detectors
have made infrared imaging practical and quick. The
brightness attainable in an IR spectromicroscope has
also been enhanced through the use of a synchrotron
radiation (SR) source, allowing the source beam to be

focused to a spot with a diameter ≤ 10 µm [40.6]. This
also allows, because of the high signal-to-noise ratio, the
measurement of dilute sample concentrations. One im-
portant application of SR-FTIR microscopy is to study
the effects of various stimuli on biomolecules in order
to understand how diseases start and spread [40.7, 8].

A testament to the robustness and versatility of
FTIR is given by its potential inclusion in future Mars
expeditions [40.9].

40.8 Conclusion

The modern technique of Fourier transform IR spec-
troscopy has evolved rapidly from its beginnings in
the early 1950s to being the dominant technique of
IR spectroscopy in many diverse disciplines. The As-
pen Conference on Fourier Spectroscopy in 1970 was
the watershed for FTIR, where many fundamental is-
sues of the technique were treated [40.10]. A practical
book by Griffith and de Haseth gives many examples of
applications of FTIR [40.11].

FTIR is a powerful technique for infrared spec-
troscopy. It has a large sensitivity advantage over
conventional dispersive spectrometers because of the ef-
ficient multiplexing of all the spectral elements and the
greater throughput of the Jacquinot stop. It can be used
efficiently for resolving powers from less than 1000 up
to 1 000 000. FTIR combines techniques of optical inter-
ferometry, laser metrology and digital signal processing.

The computation of the cosine Fourier transform
was initially a daunting task. Today, with highly
efficient factoring algorithms brought to FTIR by
Forman [40.12], and the widespread availability of in-
expensive high performance personal computers, the
computation time for a Fourier transform is only
a fraction of a second per 1000 data points in the
interferogram.

A traditional weakness of FTIR is the severe
demand of alignment stability and accuracy of the
scanning Michelson interferometer. Newer optical
designs and control procedures have largely over-
come this weakness. Now FTIR can be justified
not only for its high sensitivity but also for its
high degree of reproducibility and stability, per-
mitting demanding applications in quantitative IR
analysis.
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Laser Spectros41. Laser Spectroscopy in the Submillimeter
and Far-Infrared Regions

Recent technical developments in sub-millimeter
and far-infrared laser spectroscopy are described.
This includes new laser sources, both side-band
and difference-frequency generation. An exper-
iment which uses fixed-frequency far-infrared
lasers to study open-shell molecules (free rad-
icals) is described; the technique is known as
laser magnetic resonance (LMR). Sub-millimeter
and far-infrared laser spectroscopies are finding
expensive use in the detection and monitoring
of molecules in astrophysical sources and in the
earth’s atmosphere.
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Research in the submillimeter and far-infrared (SM-FIR)
regions of the electromagnetic spectrum (1000 to
150 µm, 0.3 to 2.0 THz; and 150 to 20 µm, 2.0
to 15 THz, respectively) had been relatively inac-
tive until about 30 years ago. Three events were
responsible for enhanced activity in this part of
the electromagnetic spectrum: the discovery of far-
infrared (FIR) lasers [41.1], the development of
background-limited detectors [41.2], and the inven-
tion of the FIR Fourier transform (FT) spectrom-
eter [41.3]. Following these developments major
discoveries have taken place in laboratory spectro-
scopic studies [41.4, 5], in astronomical observa-
tions [41.6], and in spectroscopic studies of our upper
atmosphere [41.7].

Rotational transition frequencies of light molecules
(such as hydrides) lie in this region, and the associ-
ated electric dipole transitions are especially strong at
these frequencies. In fact they are 10 000 times stronger
than at microwave frequencies because they are 100
times typical microwave frequencies and their peak
absorptivities depend approximately on the square of
the frequency. Fine structure transitions of atoms and
molecules also lie in this region; however, they are
much weaker, magnetic dipole transitions. The obser-
vation of fine structure spectra is very important in
determining atomic concentrations in astronomical and
atmospheric sources and for determining the local phys-
ical conditions. Bending frequencies of larger molecules
also lie in this region, but their transitions are not as

strong as rotational transitions (typically a factor of
103 weaker).

Spectral accuracy has been increased by several or-
ders of magnitude with the extension of direct frequency
measurement metrology into the SM-FIR region [41.8].
Transitions whose frequencies have been measured
(including absorptions and laser emissions) are use-
ful wavelength calibration sources (λvac = c/ν) for
FT spectrometers. FIR spectra of a series of rota-
tional transitions have been measured in CO [41.9],
HCl [41.10], HF [41.11], and CH3OH [41.12] to be
used for FT calibration standards. These lines are ten
to a hundred times more accurately measured than
can be realized in present state-of-the-art Fourier trans-
form spectrometers; thus, they are excellent calibration
standards. High-accuracy and high-resolution spec-
troscopy has permitted the spectroscopic assignment of
the SM-FIR lasing transitions themselves [41.13] re-
sulting in a much better understanding of the lasing
process.

Astronomical spectroscopy in this region [41.6] may
be in emission or absorption and is performed using
either interferometric [41.14] (wavelength-based), or
heterodyne (frequency-based) [41.15] techniques to re-
solve the individual spectral features.

Most high resolution spectra of our upper atmos-
phere have been taken with FT spectrometers flown
above the heavily absorbing water vapor region in the
lower atmosphere. Emission lines are generally observed
in these spectrometers [41.7].
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41.1 Experimental Techniques using Coherent SM-FIR Radiation

The earliest sources of coherent SM radiation came
from harmonics of klystron radiation generated in
point-contact semiconductor diodes [41.16]. Spectro-
scopically useful powers up to about one terahertz are
produced. This technique is being replaced by electronic
oscillators which oscillate to over one terahertz [41.17].
The group at Cologne University, Germany [41.18] has
been particularly successful with this approach. Spec-
troscopy above this frequency generally is performed
with either lasers or FT spectrometers (see Chapt. 40).

Laser techniques use either tunable radiation
synthesized from the radiation of other lasers, or fixed-
frequency SM-FIR laser radiation and tuning of the
transition frequency of the species by an electric or
magnetic field. Spectroscopy with tunable far-infrared
radiation is called TuFIR spectroscopy. Spectroscopy
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Lens

Microwave
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(Third-order
TuFIR only)
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v1

vw

Lenses Iris

CO2 line identifier

HgCdTe
detector

vw

v2

Iris Lens

IrisLenses

AOM

v1

v2

vw

CO2 laser 1

CO2 laser 2Waveguide
CO2 laser

PZT

PZT

PZT

AOM

CO2 Reference
cells

InSb
detector

InSb
detector

Fig. 41.1 Tunable far-infrared (TuFIR) spectrometer for second- or third-order operation using CO2 laser difference-
frequency generation in the MIM diode

with fixed frequency lasers is called either laser electric
resonance (LER) or laser magnetic resonance (LMR).
LMR is applicable only to paramagnetic species and
is noteworthy for its extreme sensitivity. LMR spec-
troscopy has been more widely applied than LER, and
is discussed in this chapter.

Tunable SM-FIR radiation has been generated ei-
ther by adding microwave sidebands to radiation from
a SM-FIR laser [41.19] or by using a pair of higher
frequency lasers and generating the frequency differ-
ence [41.20]. The sideband technique was first reported
by Dymanus [41.19] and uses a Schottky diode as
the mixing element. It has been used up to 4.25 THz
and produces a few microwatts of radiation [41.21].
Groups at Berkley, California [41.22] and Cologne, Ger-
many [41.23] have developed this technique to good
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effect. The CO2 laser frequency-difference technique
with difference generation in the metal-insulator-metal
(MIM) diode covers the FIR region out to over
6 THz and produces about 0.1 µW. This technique uses
fluorescence-stabilized CO2 lasers whose frequencies
have been directly measured, and it is about two orders of
magnitude more accurate than the sideband technique.
However, it is somewhat less sensitive because of the
decreased power available. There are several review ar-
ticles on the laser sideband technique [41.21, 24], and
only the laser difference technique is described here.

41.1.1 Tunable FIR Spectroscopy with CO2
Laser Difference Generation in a MIM
Diode

There are two different ways of generating FIR radiation
using a pair of CO2 lasers and the MIM diode. One is by
second-order generation, in which tunability is achieved
by using a tunable waveguide CO2 laser as one of the
CO2 lasers; it is operated at about 8 kPa (60 Torr) and
is tunable by about ±120 MHz. The second technique
uses third-order generation, in which tunable microwave
sidebands are added to the difference frequency of the
two CO2 lasers. The complete spectrometer which can
be operated in either second or third order is shown in
Fig. 41.1.

The FIR frequencies generated are:

second-order: νfir =
∣∣∣∣ν1,CO2

−ν
W,CO2

∣∣∣∣ (41.1a)

third-order: νfir =
∣∣∣∣ν1,CO2

−ν
W,CO2

∣∣∣∣±νmw

(41.1b)

where νfir is the tunable FIR radiation, ν1,CO2 and νW,CO2

are the CO2 laser frequencies, and νmw is the microwave
frequency.

Different MIM diodes are used for the two differ-
ent orders: in second-order, a tungsten whisker contacts
a nickel base and the normal oxide layer on nickel serves
as the insulating barrier; in third-order, a cobalt base with
its natural cobalt oxide layer is substituted for the nickel
base. The third-order cobalt diodes produce about one
third as much FIR radiation in each sideband as there is
in the second-order difference; hence third-order gener-
ation is not quite as sensitive as second-order. The much
larger tunability, however, makes it considerably easier
to use.

The common isotope of CO2 is used in both the
waveguide laser and in laser 2; in laser 1, one of four iso-
topic species is used. Ninety percent of all frequencies

from 0.3 to 4.5 THz can be synthesized; the coverage
decreases between 4.5 and 6.3 THz. Ninety megahertz
acoustooptic modulators (AOMs) are used in the output
beams of the two CO2 lasers which irradiate the MIM
diode; they increase the frequency coverage by an ad-
ditional 180 MHz and isolate the CO2 lasers from the
MIM diode. This isolation decreases amplitude noise in
the generated FIR radiation, caused by the feedback to
the CO2 laser from the MIM diode, by an order of mag-
nitude; hence, the spectrometer sensitivity increases by
an order of magnitude.

The radiations from laser 1 and the waveguide laser
are focused on the MIM diode. Laser 2 serves as a fre-
quency reference for the waveguide laser; the two lasers
beat with each other in the HgCdTe detector and a ser-
vosystem offset-locks the waveguide laser to laser 2.
Lasers 1 and 2 are frequency modulated using piezoelec-
tric drivers on the end mirrors, and they are servoed to
the line center of 4.3 µm saturated fluorescence signals
obtained from the external low-pressure CO2 reference
cells. In both second and third order, the CO2 reference
lasers are stabilized to line center with an uncertainty
of 10 kHz. The overall uncertainty in the FIR frequency
due to two lasers is thus

√
2 ×10 or 14 kHz. This number

was determined experimentally in a measurement of the
rotational frequencies of CO out to J = 38 (4.3 THz),
with the analysis of the data set determining the molecu-
lar constants [41.9].

The CO2 radiation is focused by a 25 mm focal
length lens onto the conically sharpened tip of the 25 µm
diameter tungsten whisker. The FIR radiation is emitted
from the 0.1 to 3 mm long whisker in a conical long-
wire antenna pattern. Then it is collimated to a polarized
beam by a corner reflector [41.25] and a 30 mm focal
length off-axis segment of a parabolic mirror.

The largest uncertainty in the measurement of a tran-
sition frequency comes from finding the centers of the
Doppler broadened lines. This is about 0.05 of the line
width for lines observed with a signal-to-noise ratio of
50 or better and corresponds to about 0.05 to 0.5 MHz.
A linefitting program [41.26] improves the line center
determinations by nearly an order of magnitude. The FIR
radiation is frequency modulated due to a 0.5 to 6 MHz
frequency modulation of CO2 laser 1; this modulation is
at a rate of 1 kHz. The FIR detector and lock-in ampli-
fier detect at this modulation rate; hence the derivatives
of the absorptions are recorded.

Absorption cells from 0.5 to 3.5 m in length with
diameters ranging from 19 to 30 mm have been used
in the spectrometer. The cells have either glass, copper,
or Teflon walls and have polyethylene or polypropylene
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windows at each end. These long absorption cells lend
themselves naturally to electrical discharges for the
study of molecular ions. A measurement of the HCO+
line at 1 THz exhibited a signal-to-noise ratio of 100 : 1
using a 1 s time constant; this is the same signal-to-
noise ratio that was obtained using the laser sideband
technique.

The instrumental resolution of the spectrometer is
limited by the combined frequency fluctuation from each
CO2 laser (about 15 kHz). This is less than any Doppler-
limited line width and, therefore, does not limit the res-
olution. The entire data system is computerized to facil-
itate the data recording and optimize the data handling.

Improvements in this TuFIR technique may come
from either better diodes or detection schemes. The
nonlinearity of the MIM diode is extremely small, and
conversion efficiencies could be much larger if a more ef-
ficient diode is discovered. Differential detection (which
requires more sensitive detectors) could also signifi-
cantly improve the sensitivity and permit the detection
of weaker lines.

41.1.2 Laser Magnetic Resonance

Laser magnetic resonance (LMR) is performed by
magnetically tuning the transition frequencies of para-
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Fig. 41.2 40 µm to 1000 µm Far-infrared laser magnetic resonance (LMR) spectrometer using an optically pumped FIR
laser

magnetic species into coincidence with the fixed
frequency radiation from a laser. LMR is a type of
Zeeman spectroscopy [41.27], and its chief forte is
its extreme sensitivity. Approximately one hundred
species have been observed in the SM-FIR region. These
include atoms, diatomics (especially hydrides), poly-
atomics, ions, metastables, metastable ions [41.28], and
many “first observations” of free radicals. These ob-
servations are summarized in several review articles on
LMR [41.29–31].

The FIR LMR spectrometer at NIST, Boulder is
shown in Fig. 41.2. This spectrometer has an intracav-
ity paramagnetic sample in a variable magnetic field
which is labeled “sample volume” in the figure. A reg-
ular 38 cm EPR magnet with a 7.5 cm air gap is used.
The laser cavity is divided into two parts by a Brew-
ster angle polypropylene beam splitter about 12 µm
thick. A CO2 laser optically pumps the FIR laser
gas. This pump beam makes many nearly perpendic-
ular passes reflected by the walls of the gold-lined
Pyrex tube. A 45◦ coupler serves to couple out the
FIR radiation from the cavity to the helium-cooled
detector. Mirrors each with an 89 cm radius of cur-
vature are used in the nearly confocal geometry of
the 94 cm cavity. One of the gold-coated end mir-
rors is moved with a micrometer to tune the cavity
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to resonance and also to determine the oscillating
wavelength by moving the end mirror several half-
wavelengths. The beam splitter is rotatable so that the
polarization of the laser can be varied with respect to
the magnetic field. Quartz spacers are used to mini-
mize the thermal expansion of the cavity. This LMR
spectrometer oscillates at wavelengths between 40 and
1000 µm. The technology of FIR lasers has been re-
viewed by Douglas [41.32].

The LMR technique requires a close coincidence
(typically within 20 GHz) between the absorption line
and the frequency of the laser. Zero field frequen-
cies which are 100 times more accurate than those
obtained from optical spectra are obtained from the
analysis of the Zeeman spectra observed (i. e. using
the laser frequency and the magnetic field values). The
accuracy is within 1 or 2 MHz and has permitted the
far infrared astronomical observation of many of these
species.

Atomic FIR LMR spectra are due to fine struc-
ture transitions and are magnetic dipole transitions;
hence, they are several orders of magnitude weaker
than electric dipole rotational spectra of molecules.
The production of a sufficient atomic number den-
sity can be difficult; however, “atomic flames” have
been very effective sources, and the high sensitivity of
LMR has been the most successful spectroscopic tech-
nique for measuring these transitions. The atoms O, C,
metastable Mg, S, Si, Fe, Al, N+, C+, P+, Fe+, and
F+ have been measured by FIR LMR. Atomic Zee-
man spectra are relatively simple to analyze, and fine
structure frequencies accurate to within 1 MHz can be
determined.

In a FIR LMR spectrometer the sample is inside
the laser cavity; hence, sub-Doppler line widths can be
observed by operating the sample at low pressure and
observing saturation dips in the signals. This has per-
mitted the resolution of proton hyperfine structure in
a number of hydrides. The observation of the resolved
hyperfine structure is useful in the identification of the
species involved and also yields accurate values of the
hyperfine splittings.

Rotational spectra of most hydrides lie in this spec-
tral region and many of the hydrides, such as OH, CH,
SH, and NH have been observed. Others, such as CaH,
MnH, TiH, and ZnH are excellent candidates for LMR
studies. Ions are much more difficult because of their
low concentrations; however, the use of a special mi-
crowave discharge operating in the magnetic field has
proved to be an extremely productive source of ions for
LMR studies [41.28].

The spectra of a number of polyatomic species
has been observed by LMR: for example, NO2,
HO2, HCO, PH2, CH2, NH2, AsH2, HO2, HS2,
CH3O, and CCH. The spectra of these polyatomic
species are more difficult to analyze, resulting in
a somewhat less accurate prediction of the zero-field
frequencies. Spectra of the extremely elusive CH2
and CD2 radicals have finally yielded to analysis
with the simultaneous observation of FIR LMR spec-
tra [41.33] and IR LMR spectra [41.34]. The data
yield rotational constants which predict the ground
state rotational transition frequencies and permit the
determination of the singlet–triplet splitting in that mol-
ecule [41.35].

In the last ten years, there has been an experimental
push to higher frequencies in FIR spectroscopy. In the
LMR spectrometer (shown in Fig. 41.2), this has been
achieved principally by reducing the internal diameter
of the gold-lined tube in the pumping region to 19 mm
so as to increase the overlap between the laser gain
medium and the FIR radiation field in the laser cavity.
As a result, many new laser lines have been discov-
ered; the system operates down to below 40 µm. This
has enabled molecules with larger fine-structure inter-
vals to be studied (e.g., FO and HF+ [41.36, 37]) and
has also led to the first detection of vibration-rotation
transitions in molecules with low-frequency bending
vibrations (CCN, HCCN, FeH2) [41.38–40].

The sensitivity of TuFIR is only about 1% of that of
laser magnetic resonance, but it is difficult to compare
the two because the sample can be very large in the
TuFIR spectrometer and is limited to about 2 cm3 in the
LMR spectrometer.

41.1.3 TuFIR and LMR Detectors

Four different detectors have been used in the TuFIR
and LMR spectrometers: (1) an InSb 4 K, liquid 4He-
cooled, hot-electron bolometer, operating from 0.3
to 0.6 THz with a noise equivalent power (NEP) of
about 10−13 W/

√
Hz; (2) a gallium doped germanium

bolometer, cooled to the lambda point of liquid-helium,
operating from 0.6 to 8.5 THz with an NEP of about
10−13 W/

√
Hz; (3) a similar, but liquid 3He-cooled

bolometer, with a NEP two orders of magnitude smaller;
and (4) an unstressed Ge:Ga photoconductor, cooled
to 4 K, with an NEP of 10−14 W/

√
Hz, operating

from 2.5 to 8.5 THz. The optimization of detector
systems for this new technique has been responsible
for a significant improvement in sensitivity of these
spectrometers.
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41.2 Submillimeter and FIR Astronomy

Submillimeter astronomy is reviewed in [41.6]. Many
atomic species (both neutrals and ions) and more than
100 molecules have been detected in interstellar space;
many were first observed in the submillimeter and
FIR region. In the microwave and submillimeter re-
gion, radio (heterodyne) techniques are employed in the
receivers. At higher frequencies, interferometric tech-
niques are used [41.14]; however, heterodyne techniques
recently have been employed at these higher frequen-
cies and have resulted in the detection of CO [41.41]
and OH [41.42] at 2.5 THz and a search for the IR
band of methylene [41.43] at 30 THz. Submillime-
ter radio astronomy observatories (at high altitudes
above much of the water vapor absorptions in our at-
mosphere) use laboratory determined frequencies. For
example, the Kuiper Airborne Observatory and the sub-
millimeter and FIR telescopes on Mauna Kea, Hawaii
require frequencies accurate to about 1 MHz in their
heterodyne receivers. For heterodyne detection, fixed
frequency FIR gas lasers generally serve as local os-
cillators, and the frequencies of these lasers must be
known.

The discovery and direct frequency measurement of
FIR laser lines has continued apace since the last ma-
jor review of this topic was published in 1986 [41.44].
Almost 1000 lines were listed in that publication; the
present number is at least twice this. Two main fac-
tors have fuelled this progress. First, the design of
CO2 lasers has continued to develop so that now
a single laser can produce 275 individual transitions

from the regular, hot [41.45], and sequence [41.46]
bands of CO2 with power levels from 2 to 30 W. Sec-
ondly, many new, short-wavelength laser lines have
been discovered in a cavity specially designed to pro-
mote them. As a result, many high frequency lines
have now been characterized, several in the range
of 26 to 45 µm. The main lasing molecules used
in this work are CH3OH [41.47–50] and hydrazine,
N2H4 [41.51].

Recent observations of FIR transitions in molecules
in the interstellar medium have been made from satellite-
based platforms such as the Infrared Space Observatory
(ISO) [41.52] using Fourier Transform methods. Atten-
tion has been paid to the measurement of less abundant
isotopic forms, such as 18OH and 17OH, because of
the information that they provide about star formation
processes.

There are four main goals of laboratory SM-FIR
spectroscopy which serve the needs of the SM-FIR radio
astronomy field:

1. to provide accurate frequencies of SM-FIR species
for their detection,

2. to find new far infrared active species,
3. to measure the frequencies of FIR species which can

be used to calibrate Fourier transform spectrometers,
and

4. to measure frequencies of far-infrared lasers for use
as local oscillators in radio astronomy receivers (and
to be used in the analysis of laboratory LMR data).

41.3 Upper Atmospheric Studies

A very impressive set of SM-FIR spectra of our
upper atmosphere has been observed using balloon-
borne FT spectrometers flown at altitudes where
the lines are narrow and the spectrometer is above
the “black”, heavily absorbing water vapor transi-
tions [41.7]. A number of very important species with
strong SM-FIR spectra have been observed. They in-
clude: O2, H2O, NO, ClO, OH, HO2, O3, and O.
Numerous lines have not yet been identified. It is
difficult to calibrate these instruments absolutely be-

cause the spectra come from the species emitting at
temperatures of about 200 K, and from an indetermi-
nate path length. The high sensitivity of LMR might
provide an alternate way of measuring the paramag-
netic species in our upper atmosphere by flying an
LMR spectrometer to high altitudes. A light-weight
solenoid magnet could be used to increase the path
length. Absolute concentrations of the paramagnetic
species such as OH, HO2, NO, and O could be
obtained.
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Spectroscopic42. Spectroscopic Techniques: Lasers

As a primary research tool, the laser plays a fun-
damental role in the spectroscopic study of atomic
and molecular systems. This Chapter describes
the basic operating principles, configurations,
and characteristic parameters of lasers. Laser de-
signs are discussed and then the details of the
interaction of the laser light with matter delin-
eated. The reader is also referred to Chapts. 70
(Laser Priciples) and 71 (Types of Lasers) for further
information.
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42.1 Laser Basics

42.1.1 Stimulated Emission

A cross section σ21 for absorption of radiation by
a lower state 1 engenders a balancing cross section σ12
for emission stimulated by radiation interacting with an
upper state 2. Detailed balance relates these two cross
sections according to

g2σ12 = g1σ21 , (42.1)

where g1 and g2 are the statistical degeneracies of their
respective states [42.1].

For a collection of emitting and absorbing states
with densities n2 and n1, amplification may occur when
n2σ12 > n1σ21, which leads to a requirement for an
inversion of the state populations:

n2/n1 > g2/g1 . (42.2)

The rate of spontaneous emission at frequency ν can be
modeled itself by stimulated emission induced by a noise
source of the magnitude of the density of states ρ(ν)

γ12(ν)= σ12(ν)ρ(ν)/c= σ12(ν)8πλ
−2 . (42.3)

42.1.2 Laser Configurations

A practical laser combines a population inversion with
a means for controlling the radiation.

The basic laser source is the laser oscillator, an am-
plifier possessing positive feedback. The usual form is
simply a piece of active gain medium placed inside a res-
onant optical cavity (Fig. 42.1). Tunability is produced if
the resonant cavity is frequency selective and adjustable
(Fig. 42.2). Many laser sources use an amplifier after the
oscillator.

42.1.3 Gain

The fundamental gain per pass is given by

G = J/J0 = exp[(κ−µ)L] , (42.4)

Gain medium

100%
mirror

Multipass cavity Partial
mirror

Output

θ0

z

w0

Fig. 42.1 Simple laser oscillator and beam parameters. Dis-
tances z are generally measured from the minimum beam
waist w0. The beam appears with a far-field divergence
angle θ0
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a) b)

c) d)

Φ

Grating Beam expander

z2 z1

Φ

Grating

Mirror

Fig. 42.2a–d Tunable laser oscillator geometries. (a) Fabry–
Perot: tuning is usually done by changing the cavity length,
although changing the index of refraction by changing the
temperature or current is common with solid state laser
diodes. (b) Littrow prism line selector: typical of atomic
ion lasers capable of multiple line output. (c) Littrow grat-
ing tuning: common in pulsed dye lasers with high gain
(> 10) per pass. Telescope increases resolution by filling,
and reducing angular divergence at the grating. (d) Grazing
incidence, mirror tuned, grating mount

where J/J0 is the ratio of light output to input, κ is the
gain coefficient, µ is the nonradiative loss rate, and L is
the path length. The gain coefficient

κ = n∗σ12 (42.5)

depends upon the net inversion n∗,

n∗ = n2− (g1/g2)n1 . (42.6)

If λ is the wavelength of radiation, F12 is the emission
line shape function normalized over frequency ν, τ2 is
the lifetime of the transition, and f12 is the branching
ratio for the upper state to undergo this transition, then
the stimulated emission cross section is

σ12 = λ
2 f12 F12(ν)

8πτ2
. (42.7)

For a Lorentzian lifetime-broadened line, the cross sec-
tion for stimulated emission at the line center becomes

σ12 = λ2 f12

4π2Γ12τ2
, (42.8)

where Γ12 is the full width at half maximum of the line.

42.1.4 Laser Light

Lasers are inherently bright sources of radiation: the ra-
diation field within a practical laser must be high enough
for stimulated emission to compete with spontaneous
emission. The effective source of spontaneous

fluctuations approximates that of the density of states.
In terms of the beam parameters photon flux J per solid
angleΩ, and frequency ν, this is

d2 J

dΩ dν
= 2ν2

εrc2 . (42.9)

Beam quality is given by the product of the angular
divergence times the beam width. Highest beam quality
is associated with diffraction limited light emitted from
a Gaussian spot. For circular laser beams traveling in
the z-direction, this corresponds to a solution of the
electromagnetic wave equation

u(r, φ, z)= ψ(r, z) exp(−ikz) , (42.10)

where u is a polarization component of the field. For high
values of k = 2π/λ, corresponding to short wavelength,
the adiabatic radial solution is also Gaussian:

ψ(r, z)= exp
{− i

[
P+ kr2/(2q)

]}
, (42.11)

where the complex phase shift P, beam parameter q,
and beam radius w are functions of z:

P(z)=−i ln
[
1− iλz/

(
πw2

0

)]

=−i ln
√

1+ [
λz/

(
πw2

0

)]2

− tan−1 [λz/
(
πw2

0

)]
, (42.12)

q(z)= iπw2
0/λ+ z , (42.13)

w2(z)=w2
0

⎡

⎣1+
(
λz

πw2
0

)2
⎤

⎦ . (42.14)

Here, w0 is the beam waist parameter, the minimum
width of the Gaussian beam at a focused spot. For Gaus-
sian beams, the product of the minimum beam waist and
beam divergence angle θ0 is given by

θ0w0 = λ/π . (42.15)

The beam waist and divergence follow optical imaging
according to paraxial ray theory.

Higher order circular modes with p radial nodes
and l angular node planes are specified by multiply-
ing (42.11) and (42.12) by angular and radial factors to
obtain

ψpl(r, φ, z)= (√
2r/w

)l
Ll

p

(
2r2/w2)eilφψ(r, z) ,

(42.16)

Ppl(z)= (2p+ l+1)P(z) . (42.17)

Here, the functions Ll
p(x) are the Laguerre polynomials

as defined in Sect. 9.4.2. The radial phase shifts produce
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a wave front curvature of effective radius

R = z+ [
(2p+ l+1)/2+w2

0π/λ
2]w2

0π/z .
(42.18)

Modes with the same values of 2p+ l have identi-
cal axial and radial phase shifts. The two polarization
components of the electromagnetic field double the de-
generacies of all modes considered here. Often these
degeneracies are split in practice by optical inhomo-
geneities of the medium through which they pass. More
details can be found in the summary of Kogelnick
and Li [42.2], or in the texts by Verdeyen [42.3] or
Svelto [42.4].

Some applications require knowledge of the elec-
tric field in additionto the flux density J . For
purely sinusoidal single mode beams, the rms field
is

〈E〉 =
(

hνJ

cε0

)1/2

. (42.19)

Nonlinear effects are often expressed in terms of powers
of the field by

〈En〉 = 2(n−1)/2〈E〉n (42.20)

for single mode and multimode radiation of random fre-
quency spacings. For m equally spaced modes, this is
increased by m!/(m−n)!.

42.2 Laser Designs

42.2.1 Cavities

The simple Fabry–Perot cavity consists of two spherical
mirrors facing one another. The surfaces are chosen to be
constant phase surfaces for the desired modes (42.18).
Stability criteria are shown in Fig. 42.3. A cavity is stable
when initial angles θ and displacements r of parax-
ial rays transform during a round trip into θ ′ and r ′
satisfying

−2<
∂θ ′

∂θ
+ ∂r

′

∂r
< 2 . (42.21)

At frequencies for which the round-trip phase change
per passage

δ(ν)= 2π(z2− z1)ν/c+2
[
Ppl(z2)− Ppl(z1)

]

≈ 2π(z2− z1)/λ+π(2p+ l+1) (42.22)

is an integer multiple of 2π, the phases from differ-
ent passages interfere constructively, giving longitudinal
modes. (Here Ppl(zi) gives the additional phase shift for
higher transverse modes at mirrors i = 1, 2.)

For a particular radial mode structure in an empty
Fabry–Perot cavity, the ratio of the maximum cavity
decay time for these standing waves to the minimum
cavity decay time for frequencies between longitudinal
modes is

(1+r)2/(1−r)2 . (42.23)

Here r is the reflectivity of the end mirrors; for cavi-
ties with mirrors having different reflectivities, one may
use the square root of the product of their reflectivities.
A simple Fabry–Perot cavity may be tuned by changing

6

4
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–4
0.0 1.0 2.0 3.0 4.0

y

x

Unstable

Plano r2

Unstable

Plano r1Unstable

Fig. 42.3 Stability parameters for simple two-mirror laser cavi-
ties of length L and mirror radii of curvature R1 and R2. Here,
x = 1

2 (L/R1− L/R2) is the mean curvature difference of the two
mirrors; y = 1

2 (L/R1 + L/R2) is the mean curvature of the two
mirrors. Cavities with parameters in the unshaded region are stable
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the cavity length or by changing the index of refrac-
tion of the cavity material. Since both of these may be
properties of temperature, temperature tuning may be
possible. The index of refraction of a material may also
be sensitive to the intensity of excitation. Diode lasers
consisting of a semiconductor die with polished, reflect-
ing faces are often tuned by changing temperature and
pumping current.

For lasers with a dispersive optical element within
the cavity, highest selectivity is obtained when the
light has low angular divergence and impinges upon
the dispersive element as nearly plane waves. A beam
expander may reduce the angular spread while simulta-
neously increasing the beam width. For a grating used
as a mirror in a Littrow mount, the dispersion equation
is

∆λ= (d/n) cosφ∆φ , (42.24)

where n is the diffraction order, d is the distance between
lines, and φ is the angle of incidence off normal.

Cavities with prisms or gratings can be conveniently
tuned by rotating the angle of the dispersive element.
For a grating used as a mirror in a Littrow mount, the
grating equation is

λ= (2d/n) sinφ . (42.25)

Often, more than one longitudinal cavity mode op-
erates within the selected frequency band, and tuning
consists of “hopping” from mode to mode, rather than
smoothly sweeping a single line across a band of fre-
quencies. Smooth frequency tuning can be achieved, for
example, in a design by Wallenstein and Hänsch [42.5],
in which the grating and Fabry–Perot cavity are placed
together inside a chamber. The whole laser is then tuned
by changing the index of refraction of the gas inside by
varying its pressure.

The current trend with pulsed lasers is to use
a very lossy, short oscillator cavity in which the lon-
gitudinal modes are nearly absent, making up for the
cavity losses with a very high gain lasing medium. The
front, output mirror of such a cavity may actually be
antireflection coated, with a reflectivity of only a percent
or less.

Low gain, continuous wave (cw) lasers often use
a combination of cavity length tuning along with dis-
persive element rotation, such as a prism or Lyot filter.
Often, lasing on a traveling wave in a ring configura-
tion is used to avoid longitudinal modes, as illustrated
in Fig. 42.4. Some commonly used gain media are listed
in Tables 42.1 and 42.2.

Pump beam Gain

Faraday
rotator

Etalon
Output

Lyot filter

λ /2

Fig. 42.4 Ring laser. The Faraday rotator and half-wave
plate permit circulation of the cavity fields in only one
direction

42.2.2 Pumping

Many methods, including electrical discharges and
flashlamps, have been used to pump the gain media of
lasers. Generally, the best pump is another laser.

Two notable pump lasers have dominated the field
of tunable, visible lasers: pulsed neodymium YAG,
frequency doubled to ≈ 503 nm, and cw Ar II ion at
514.5 nm. Both are extremely effective at exciting the
highly efficient rhodamine class dyes in the red–yellow
portion of the visible spectrum. The typical pump beam
of a Nd/YAG laser enters the amplifying dye cell trans-
versely along one on the faces of the cell. The typical
cw pump beam enters the dye almost collinearly with
the laser axis.

By temporarily “spoiling” the Q by making the
laser cavity lossy, lasing can be held off until the gain
medium stores a greater energy density than the min-
imum required for lasing. Rapidly switching off the
loss mechanism releases this energy in one giant pulse.
An electronic optical shutter, such as a Pockels cell, or
a saturable dye inside the laser cavity, designed to pho-
tobleach from the spontaneous emission just before the
laser reaches threshold, are commonly used.

Periodically spoiling the laser gain or the cavity Q
at the period of a round trip produces intense, short
pulses. Viewed from the frequency domain, the phases of
individual longitudinal modes are “locked” together to
produce a light packet circulating at the frequency of the
reciprocal of the mode spacing. Extremely short pulses
(< 1 ps) can be produced by mode locking. Practically,
mode locking can be achieved by using a thin, saturable
absorber near one of the cavity mirrors [42.6], or by
acoustically modulating an optical element in the cavity
– even an end mirror itself. One of the best ways of mode
locking is to pump a short lifetime gain medium, such as
a dye, with mode locked laser light, such as from a mode
locked argon ion laser [42.7].
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Table 42.1 Fixed frequency lasers

Laser Wavelength (nm) Excitation method

ArCl ≈170 (band) Pulsed, gas discharge

ArF ≈193 Pulsed, gas discharge

KrCl ≈222 Pulsed, gas discharge

KrF ≈248 Pulsed, gas discharge

XeBr ≈282 Pulsed, gas discharge

XeCl ≈308 Pulsed, gas discharge

XeF ≈351, 353 Pulsed, gas discharge

N2 ≈337.1 (other bands) Pulsed (1-10 ns), gasdischarge

Ar+ 488.0, 514.5 cw, gas discharge
(454.4, 457.9, 465.8, 472.7,
476.5, 501.7, 528.7)

Ar+2 351.1, 363.8 cw, gas discharge, high magnetic field

Kr+ 568.2, 647.1, (476.2, 520.8, 530.9) cw, gas discharge

Kr+2 350.7, 356.4, 406.7 cw, gas discharge, high magnetic field

Ne/He 632.8, 1152.3, 3390 (others) cw, gas discharge

Cr+3-Ruby 694.3 Pulsed, flashlamp

Nd+3-YAG ≈1065, ≈1300 Pulsed: flashlamp; cw: lamp, LED or laser diode

Nd+3-glass(various) ≈920, ≈1060, ≈1370 Pulsed, flashlamp

Yb+3-glass ≈1060 Pulsed, flashlamp

Er+3-glass(various) ≈1540, ≈1536, ≈1543, ≈1550 Pulsed: flashlamp; cw: lamp, LED or laser diode

Xe 3507 cw gas discharge

CO2 ≈10 600 (lines) cw: gas discharge or gas dynamic

Molecular vibration and rotation 1 × 105–3 × 106 (numerous lines) IR laser (CO2, CO, · · · )

Table 42.2 Approximate tuning ranges for tunable lasers

Laser Wavelengths (nm) Notes

Dye solution <330 – >1200 [≈10 each dye] Pulsed: laser, flashlamp; cw: laser

Alexandrite 700–820 Pulsed: lamp, laser; cw: laser

Ti+3/Sapphire 680–1100 Pulsed: laser, lamp; cw: laser

GaAs 840–900 pn junction

InGaAlP/GaAs 630–700 [1–10] pn junction

GaAsP 550–880 pn junction

AlGaAs, AlGaAs/GaAs ≈820 [1–20], 720–880 pn junction, temp. & current tuning

InP ≈900 pn junction, temp. & current tuning

GaInAs 906–3100 pn junction, temp. & current tuning

InGaAlAs/GaAs 800–1100 pn junction, temp. & current tuning

InPAs 900–4000 [1–50] pn junction, temp. & current tuning

InGaAsP/InP 1200–1650 pn junction, temp. & current tuning

InAs ≈3100 pn junction, temp. & current tuning

InSb ≈5200 pn junction, temp. & current tuning

PbS ≈4300 pn junction, temp. & current tuning

PbTe ≈6500 pn junction, temp. & current tuning

PbSe ≈8500 pn junction, temp. & current tuning

PbSnSeTe “Lead Salt Diode” 4500–15 000 [1–50] pn junction, temp. & current tuning
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Table 42.2 Approximate tuning ranges for tunable lasers, cont.

Laser Wavelengths (nm) Notes

Color Centers: (F2+)/LiF 800–1040 cw: laser, Ar, Kr

/NaF 900–1050 cw: laser, Ar, Kr

/KCl:Tl 1400–1700 cw: laser, Ar, Kr, Nd/YAG

/KF 1300–1400 cw: laser, Ar, Kr, Nd/YAG

/NaCl 1400–1600 cw: laser, Ar, Kr, Nd/YAG

/KCl 1600–1700 cw: laser, Ar, Kr, Nd/YAG

/KBr 1700–1900 cw: laser, Ar, Kr, Nd/YAG

/KCl:Li 2500–2900 cw: laser, Ar, Kr, Nd/YAG

/KCl:Na 1600–1950 cw: laser, Ar, Kr, Nd/YAG

42.3 Interaction of Laser Light with Matter

42.3.1 Linear Absorption

The absorption cross section σ fi for transition to the fi-
nal state | f 〉, when integrated over frequency ν, is given
theoretically by the leading first-order perturbation of
the initial state |i〉 in the electric dipole approxima-
tion

∫
σ fi(ν) dν = 4π2αν̄

∣∣∣〈 f |
∑

e

re · ε̂|i〉
∣∣∣
2
, (42.26)

where the sum is over all charges e at distances re,
ε̂ is a unit polarization vector, and ν̄ is the av-
eraged transition energy. Averaged over orientations
and summed over possible final states, each elec-
tron contributes to the total integrated absorption cross
section one electron oscillator, πr0c ≈ 0.03 cm2 s−1;
here, r0 is the classical electron radius. Electronic ab-
sorption bands typically contain an oscillator strength
f = 0.01–0.5 of an “electron oscillator”, while weaker
vibrational transitions have f = 10−6 –10−4 in each
band.

For narrow lines with radiation of broader band
width ∆ν at flux density J , the linear absorption rate
constant can be usefully estimated as (πr0c) f J/∆ν.

42.3.2 Multiphoton Absorption

Second-order perturbation theory gives the theoretical
two-photon contribution to the absorption. An absorp-
tion cross section σ(2) J1 for a photon of frequency ν2 is
induced by an off-resonance monochromatic field of fre-
quency ν1 and photon flux density J1. When integrated
over the frequency of the second photon, the second-

order cross section can be related to the dipole matrix
elements

∫
σ
(2)
fi (ν1, ν2)J1 dν2 = 4π2α2

ν1ν̄2
J1

×

∣∣∣∣∣

∑

m

ν fmνmi〈r fm〉〈rmi〉
νmi −ν1

∣∣∣∣∣

2

(42.27)

where

〈r fm〉 = 〈 f |
∑

e

re · ε̂2|m〉 ,

〈rmi〉 = 〈m|
∑

e

re · ε̂1|i〉 , (42.28)

and the sum is taken over intermediate states |m〉 having
frequencies νmi and ν fm for transitions to the initial and
final states. The energy for the overall transition comes
from two photons; hence the two-photon resonance con-
dition ν fi = ν1+ν2. A special case often occurs when
only one radiation frequency is used: then ν1 = ν2, and
two-photon resonance is achieved when the energy of
the transition corresponds to twice the frequency of the
radiation field.

This integrated, induced cross section is roughly
of the order α(πcr0)

2 J1/(ν1ν̄2). Two-photon absorption
becomes comparable to the one-photon absorption with
off-resonance fields on the order of

J1 ≈ ν1ν2

απcr0
, (42.29)

or about 1021 photons s−1 cm−2 (1017 W m−2 s−1 for
typical green light).
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Typical dipole-allowed molecular multiphoton ab-
sorption cross sections are≈ 10−58 m4 s for two photons
and 10−94 m6 s2 for three photons.

Multiphoton absorption was one of the first ef-
fects explored with lasers. Two-photon absorption was
first reported for inorganic crystals containing eu-
ropium ions [42.8]. Blue and ultraviolet fluorescence
appeared in the interaction of red ruby laser light with
organic compounds [42.9–12]. Others observed two-
photon absorption directly [42.13, 14]. Selection rules
for multiphoton absorption are summarized by Mc-
Clain [42.15]; recent work is reviewed by Ashfold and
Howe [42.16].

Highly excited states may subsequently ionize in the
intense fields in a multiphoton ionization (MPI) process.
The ionization signal is often detected in a proportional
ionization cell. A low pressure cell containing the vapor
of a transition metal organometallic, such as iron car-
bonyl or ferrocene which photodissociates to give the
metal atom, may be used for wavelength calibration by
MPI.

42.3.3 Level Shifts

High radiation power causes resonant frequencies to
shift, responding to the ac Stark effect [42.17,18]. Even
moderate fields, tuned near resonance, interact strongly
with an atom or small molecule, which undergoes rapid
excitation and stimulated emission at the characteristic
power dependent Rabi frequency,

νRabi = 2πg1

g1+ g2
σ21 J . (42.30)

Fluorescence from such an interacting system has
a characteristic “head and shoulders” spectrum best
understood as radiation at the fundamental frequency
amplitude modulated at the Rabi frequency [42.19].

42.3.4 Hole Burning

Radiation at a particular frequency generally moves pop-
ulation out of states that absorb that radiation. Molecules
that interact resonantly with the radiation may also
spontaneously emit at different frequencies, thereby
ending in nonabsorbing states. This optical pumping
effect can make resonance features in an absorption
spectrum disappear at high power levels [42.20]. De-
pletion may appear as a “hole” in the absorption
spectrum [42.21]. Recently, interest has shifted to per-
manent “hole burning” as a method of information
storage in materials.

Hole burning is the basis for Doppler-free Lamb-
dip spectroscopy, in which only absorbing atoms or
molecules having little or no velocity component along
the axis of two counterpropagating beams are tem-
porarily depleted [42.22]. This technique is commonly
used for laser frequency stabilization, such as with the
iodine-locked He−Ne laser.

42.3.5 Nonlinear Optics

Multiplying
Nonlinear susceptibility of an optical medium can gen-
erate radiation at frequencies which are multiples of
the frequency of laser radiation passing through. Phe-
nomenologically, the second order polarization

P2ν = ε0χ[2]E2
ν (42.31)

is given in terms of the second order nonlinear suscep-
tibility χ[2], a third rank tensor, and the electric field at
the fundamental frequency (see Chapt. 72). This nonlin-
ear susceptibility can range from 0.5–5 pm/V for typical
materials used for frequency doubling. Typical materials
and their use are reviewed by Bordui and Fejer [42.23].

For a nonlinear process occurring over a length l
in a cylindrical region with Gaussian waist w0 with
polarization P0 on axis, the far field flux is given by

J(R, θ)= π
4ν3n3w4

0 P2
0

4hc3ε0 R2

(
sin2[(k0− k cos θ)l/2]
(k0− k cos θ)2

)

× exp
[− k2w2

0 sin2(θ)/2
]
. (42.32)

Here, n is the index of refraction and k the propagation
constant for the induced radiation, while k0 is that for the
induced polarization, the vector sum of those of the orig-
inal radiation. When phase matched, k0− k cos θ = 0,
and the term in the brackets maximizes to (l/2)2.

The greatest difficulty is in selecting materials which
can be phase matched such that the relative phases of the
fundamental and overtone radiation propagate together
through the material; otherwise radiation at the higher
frequency generated at different places inside the ma-
terial destructively interfere. Phase matching is usually
achieved by either angle tuning of a birefringent crystal,
or by temperature tuning.

Only materials without a center of inversion in their
crystal structures have a second order nonlinear suscep-
tibility. All materials, including gases, will have a third
order nonlinear susceptibility χ[3]. This can be used
to generate third harmonics, especially in the vacuum
ultraviolet (VUV), where doubling materials are not
available [42.24, 25].
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Mixing
The same materials that permit frequency doubling and
tripling also allow 3-wave and 4-wave frequency mixing.
The frequency matching conditions are, respectively,

ν1±ν2 = ν3 ,

ν1±ν2±ν3 = ν4 . (42.33)

Tunable UV radiation may be generated by adding the
frequencies of a fixed and tunable visible outputs. Tun-
able IR has been obtained by differencing fixed and
tunable visible lasers. Mixing of radiation from an Ar
ion laser with that from a tuned R6G dye laser in lithium
iodate to produce tunable 2200–4600 nm radiation is
noteworthy.

Optical Parametric Oscillator
It is possible to reverse 3-wave mixing, generating two
frequencies whose sum is that of the input radiation. In
parametric generation, the output frequencies are given
by the phase match conditions. Both the desired fre-
quency and the secondary “idler” frequency must be
allowed to build up in the nonlinear medium. The idler
radiation is not present initially, but results from the fre-
quency mixing process itself. The process has many of
the characteristics of a laser oscillator, including that of
a gain threshold. This makes tuning of an optical para-
metric oscillator similar to that of a laser, but with more
degrees of freedom: now oscillation at two frequencies
must be attained simultaneously, along with the correct
phase matching of the nonlinear material [42.26].

42.3.6 Raman Scattering

It is possible to have one or more of the fields in a mixing
process belong to just polarization, rather than radiation.
The frequency additive case of multiphoton absorption
has already been consisdered; the frequency subtractive
case is Raman scattering.

Incoherent Raman Scattering
Radiation at a higher frequency can excite a lower fre-
quency vibration or rotation within a material, with
appearance of radiation at the frequency of the incident

radiation minus that of the absorption. The integrated
cross section for this effect is given by (42.27). However,
in this case the cross section is for emission of the second
photon. The rate of spontaneous Raman emission is ob-
tained by multiplying (42.27) by the spectral flux density
of the zero-point field, 8πν2/εrc. Typical vibrational Ra-
man cross sections for transparent molecules are about
10−34 m2 sr−1 in the blue–green (488 nm) [42.27].

Alternatively, energy can be extracted from an
excited state, with the inelastically scattered photon de-
parting with the sum of the incident frequency and that of
the deexcitation. The term “anti-Stokes” distinguishes it
from the more usual “Stokes” type of Raman scattering.

Coherent Raman Emission
The integrated cross section for emission stimulated at
the Raman frequency is given directly by (42.27).

A fourth-order mixing process that is less suscepti-
ble to saturation involves coherent anti-Stokes Raman
scattering (CARS). Two beams excite the material: the
difference of their frequencies corresponds to an excita-
tion of the material. Stimulated Raman scattering excites
the material, which then deexcites through an anti-
Stokes process, giving rise to a third, higher frequency
radiation field. The phase is determinate, and the radia-
tion leaves the region of scattering as a beam [42.28].

If the incident radiation induces a Raman process
over a sufficiently long path, the stimulated Raman
process can be used for gain at both the Stokes and
anti-Stokes frequencies. Since spontaneous Raman pro-
cesses are proportional to the integrated cross section,
while gain in the stimulated Raman process is propor-
tional to the peak cross section, simple materials with
sharp, simple line spectra are most suitable for Raman
gain media. While Raman lasers have been produced
using vibrational excitation of organic liquids, currently
the most important technical application is for Raman
shifting the output of lasers, tunable or otherwise, to fre-
quencies which otherwise would be inaccessible. The
high pressure H2 Raman shifter produces, at low pow-
ers, beams consisting almost entirely of well separated,
sharp lines shifted by 4160 cm−1 from the pump beam;
at high powers, a series of Stokes and anti-Stokes bands
appear, each separated by 4160 cm−1 from each other.

42.4 Recent Developments

One of the most exciting advancements in the past
decade in laser physics has been the generation of

optical frequency combs; and, more specifically, their
applicability in the domain of high-resolution laser spec-
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troscopy. Basically, through a superposition process of
many continuous wave modes, a short train of fre-
quency spikes may be produced from a mode-locked
laser [42.29] (see also Sect. 30.1.5). These spikes are
equally spaced and are referred to as a frequency comb.
The frequency ωn of the nth cavity mode may be ex-
pressed as

ωn = nωr +ω′ , (42.34)

where ωr is characteristic of the laser and ω′ is a fre-

quency offset due to the difference between the phase
and group velocity of the superposed waves.

The microwave frequencies ωr and ω′ are deter-
mined through the use of nonlinear optics. Once these
two parameters are determined, any unknown optical
frequencyωo may be measured by recording the beat fre-
quency between it and the closest comb frequency. This
technique gives experimenters a high-precision method
for the spectroscopic determination of such fundamen-
tal quantities as the fine structure constant, the Rydberg
constant, and the Lamb shift [42.30, 31].

Text and references updated by Mark M. Cassar
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Spectroscopic43. Spectroscopic Techniques:
Cavity-Enhanced Methods

Cavity enhanced spectroscopy (CES) methodology
provides a much higher degree of sensitivity
than that available from conventional absorption
spectrometers. The aim of this chapter is to
present the fundamentals of the method, and the
various modifications and extensions that have
been developed. In order to set the stage, the
limitations of traditional absorption spectrometers
are first discussed, followed by a description of
cavity ring-down spectroscopy (CRDS), the most
popular CES embodiment. A few other well-known
CES approaches are also described in detail. The
chapter concludes with a discussion of recent work
on extending CRDS to the study of liquids and
solids.
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43.1 Limitations of Traditional Absorption Spectrometers

An absorption spectrometer measures the difference in
intensity between the incident light intensity I0 and the
transmitted light intensity I(x, λ). Beer’s law relates the
absorbed light to the sample absorption α(λ)

I(x, λ)= I0 e−α(λ)x , (43.1)

where λ is wavelength, and x is path length. Absorption
is related to concentration C through the extinction coef-
ficient ε(λ) namely α(λ)= Cε(λ). Typically, a spectral
feature, called an absorption peak, of the target species
is measured in order to obtain its concentration. The
performance of a spectrometer has two figures of merit:
sensitivity and selectivity.

Sensitivity is the smallest detectable change in one
centimeter of path length that a spectrometer can meas-
ure during one second. If many measurements can be
made within a second, averaging may be used to further
improve (by a factor of the square root of the number
of measurements or the square root of the data acquisi-
tion rate) the achievable sensitivity. Sensitivity has units
of cm−1 Hz−1/2. Sensitivity can also be quantified us-
ing the minimum detectable absorption loss (MDAL),
i. e., the normalized standard deviation of the small-
est detectable change in absorption (units of cm−1).
Equation (43.1) shows that the sensitivity of a spectrom-

eter depends not only on the light path length through
the sample, but also on the intensity noise of the light
source.

Selectivity is the ability of a spectrometer to distin-
guish between two different species absorbing at similar
wavelengths. The instrument must be able to resolve
the different spectral lines. Thus, selectivity depends on
spectral resolution, which has units of frequency (MHz),
wavelength (nm), or wavenumbers (cm−1).

Traditional spectrometers, such as non-dispersive in-
frared (NDIR), and Fourier Transform infrared (FTIR),
use incoherent thermal light sources. For both tech-
niques, the physical length of their sample chamber
limits their sensitivity. Some devices try to fold the
light path several times through the sample cham-
ber in order to improve sensitivity, but this approach
encounters physical size and mechanical stability lim-
itations. Typical MDAL are in the 10−5 cm−1 range.
These instruments therefore rely on measuring the
strongest absorption transitions available, which are
found in the mid-infrared range (3 to 12 µm). Often,
however, the strongest transitions overlap with features
of other species found in the sample mixture. The in-
strument performance becomes a sensitivity-selectivity
tradeoff.
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Laser-based optical detection methods, called tun-
able diode laser absorption spectroscopy (TDLAS),
circumvent some of these problems by exploiting the co-
herent nature of laser light. A tunable continuous-wave
laser source brings two benefits:

• A narrow linewidth, which allows high spectral res-
olution scans to be performed, and• Low spatial beam divergence, which allows it to be
folded hundreds, if not thousands of times.

By transmitting laser light having a small beam
size over long distances, multi-pass cells can be
designed to achieve up to a kilometer of path
length enhancement. Multi-pass cell laser spec-
troscopy systems have demonstrated MDAL down
to 10−9 cm−1. However, such instruments still re-
main limited by laser intensity fluctuations and
interference fringes. Moreover, standard multi-pass
techniques do not provide an absolute optical loss
measurement.

43.2 Cavity Ring-Down Spectroscopy

Cavity ring-down spectroscopy (CRDS) is a more
recently developed TDLAS approach that replaces
a multi-pass cell with a stable optical resonator, called
the ring-down cavity (RDC). CRDS is based on the prin-
ciple of measuring the rate of decay of light intensity
inside the RDC. The transmitted wave decays exponen-
tially in time. The decay rate is proportional to the total
optical losses inside the RDC.

In a typical CRDS setup, light from a laser is first
injected into the RDC, and is then interrupted. The
circulating light inside the RDC is both scattered and
transmitted by the mirrors on every round-trip, and can
be monitored using a photodetector placed behind one
of the cavity mirrors. The decay constant, also called
the ring-down time τ is then measured as a function of
laser wavelength to obtain a spectrum of the cavity op-
tical losses. Detailed mathematical treatments of CRDS
can be found in [43.1]. A simple derivation is presented
here.

For a given wavelength λ the transmitted light I(t, λ)
from the RDC is given by

I(t, λ)= I0 e−
t
τ(λ) , (43.2)

where I0 is the transmitted light at the time the light
source is shut off, and τ(λ) is the ring-down time
constant. The total optical loss inside the cavity is
L(λ)= [cτ(λ)]−1 lrt where c is the speed of light. The
total optical loss comprises the empty cavity optical loss
and the sample optical loss. CRDS provides an abso-
lute measurement of these optical losses. The empty
cavity (round-trip) optical loss Lempty(λ) comprises
the scattering and transmission losses of the mirrors.
In general, better mirrors provide lower empty cavity
losses and higher sensitivity. The sample (round-trip)
optical loss is A(λ)= α(λ)lrt where lrt is the cavity
round-trip length, and is simply the difference between
total cavity losses and empty cavity losses, namely

A(λ)= L(λ)− Lempty(λ). Once the absorption spec-
trum α(λ) of the sample has been measured, then the
sample concentration can be readily computed using the
absorption cross section and lineshape parameters.

The MDAL for a CRDS system is defined by

αmin = 1

leff

(
∆τ

τ

)
, (43.3)

where (∆τ/τ) is called the shot-to-shot noise of the sys-
tem. The effective path length of a CRDS measurement
is leff = cτ . For typical RDC mirrors having a reflectivity
of 99.995%, and scattering losses of less than 0.0005%,
the path length enhancement can exceed 20 000. For
a 20 cm long sample cell, the effective path length is
8 km, which exceeds the best performance of multi-pass
spectroscopy by a factor of three, based on effective
path length alone. A good CRDS system can achieve
a shot to shot variation of 0.03%, leading to a MDAL
of 4 × 10−10 cm−1. Note also that the CRDS measure-
ment is not dependent on either the initial intensity of
the light inside the cavity, provided that the signal has
a sufficient signal to noise ratio at the detector, or on the
physical sample path length like traditional absorption
spectroscopy. Moreover, CRDS can use laser sources
having narrow linewidths and achieving high spectral
resolution.

CRDS can resolve all three limitations of absorp-
tion spectroscopy, namely sensitivity, selectivity, and
dependence on intensity noise of the light source [43.1].
CRDS has been implemented using many different ap-
proaches. This chapter will discuss several commonly
used variations on the CRDS technique.

43.2.1 Pulsed Cavity Ring-Down
Spectroscopy

Early implementations of CRDS used pulsed lasers
sources (P-CRDS) [43.2]. A typical P-CRDS setup
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Fig. 43.1 Typical P-CRDS setup

is shown in Fig. 43.1. Today, CRDS has been imple-
mented in the broadest possible range of wavelengths,
from the UV (216 nm) to the mid-infrared (10 µm).
Because of its experimental simplicity, P-CRDS has
become a widespread tool for chemists and spectro-
scopists, finding applications in the measurement of
predissociation dynamics, photolysis products, radiative
lifetimes, aerosols or soot detection, temporal imaging,
overtone vibrational spectroscopy, and kinetic studies.
Typical P-CRDS sensitivity is 1 × 10−9 cm−1Hz−1/2.

P-CRDS methods have also been combined with
other detection methodologies. Variations on P-CRDS
include:

• Fourier-transform (FT) P-CRDS [43.3], where an
RDC is excited with a broadband source and time-
resolved FT scans of the RDC output waveform are
taken. Inversion of the interferogram then produces
time-dependent ring-down waveforms at all resolved
frequencies within the source wavelength range.• Polarization P-CRDS [43.4], where the spectral
splitting induced by the magnetic field is observed
from the difference of the ring-down spectra of the
two orthogonal polarizations.• Pulse-stacked P-CRDS [43.5], where the length of
the RDC is set so that pulses from a very high repe-
tition rate pulsed source coherently add together,
which increases the effective cavity light through-
put to yield improved detection of the ring-down
waveform.

Spectral resolution and sensitivity of P-CRDS are,
however, limited by the use of short-pulse lasers. The
effects of pulsed laser bandwidth on spectral resolu-
tion of P-CRDS have been studied extensively and have
led to system designs where only a single longitudi-
nal and transverse mode of the RDC is excited [43.6].
However, single-mode P-CRDS is difficult to implement
experimentally, and still has limited sensitivity because

the laser pulse is substantially attenuated by the RDC
mirrors at the cavity output. The requirement for im-
proving CRDS sensitivity by reducing the variability in
the measurement of the decay constant from shot to shot
with single-mode excitation, and improving the light
transmission through the cavity to increase the signal to
noise ratio of the decay waveform on the detector, pro-
vided the catalyst to implement continuous wave (CW)
lasers in CRDS.

43.2.2 Continuous-Wave Cavity Ring-Down
Spectroscopy (CW-CRDS)

CW lasers have narrow linewidths (< 50 MHz) and can
be tuned in small spectral increments (< 50 MHz) to
achieve high spectral resolution with excellent wave-
length reproducibility. Moreover, owing to their narrow
linewidths, they are better suited for efficiently coupling
into a single mode of a high finesse RDC, thereby reduc-
ing shot-to-shot variations in measured ring-down decay
constant. Furthermore, they can be directly modulated,
thereby allowing higher data repetition rates, leading in
turn to improved sensitivity.

The first efforts in CW-CRDS involved optically
locking a laser diode to a high-finesse cavity, but the per-
formance was limited because the laser diode would drift
and lock to different RDC modes. The use of sufficient
optical isolation and an external optical switch resolved
this issue. The most common approach used today is
to sweep a RDC mode through the emission profile of
a diode laser, and shut the laser off with an acousto-optic
modulator (AOM) (Fig. 43.2) when sufficient light is in-
jected into the cavity [43.7]. Numerous variations on this
approach exist. For example, CW-CRDS can be imple-
mented by rapidly sweeping the cavity mode into and

High reflectivity mirrors:
Cavity/Sample chamber

CW laser

Mode-matching
optics (optional)

Detector
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A/D

Converter

Driver
AOM

Threshold
trigger

First-order
deflected
beam

PZT actuator

Fig. 43.2 Typical CW-CRDS setup
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out of resonance with the laser. The simplest approach
is to sweep the laser wavelength into and out of reson-
ance with a cavity mode and directly modulate the laser
source current [43.8]. The most popular CW lasers used
today are distributed feedback (DFB) diode lasers.

In most CW-CRDS embodiments, the ring-down
cavities are linear, i. e., consist of two mirrors. Ring
resonators (e.g., triangular or bow-tie cavities) can also
be used. Ring cavities provide the benefits of mini-
mizing optical feedback and eliminating the need for
extensive isolation or frequency shifting of the laser
source. Moreover, ring resonators break the frequency
degeneracy between cavity modes having orthogonal po-
larizations, effectively creating two coupled resonators
having high and low finesse, respectively. The low fi-
nesse cavity can be used to lock the laser to a single
cavity mode, while the high finesse cavity can be used
for CRDS. The AOM acts as both a frequency-shifter
and an on-off switch. This method was used to demon-
strate the highest CRDS sensitivity achieved to date,
namely 1.0 × 10−12 cm−1Hz−1/2 [43.9].

Prism-based, rather than mirror-based cavities
have also been used [43.10]. Such cavities comprise
two prisms whose intra-cavity facing angles are at
Brewster’s angle, and whose extra-cavity facing angles
are such that total internal reflection occurs, and results
in unit reflectivity. One of the prisms has a curved facet
to create a stable optical resonator. The purpose of this
design is to extend operation over a much broader range
of wavelengths than can be achieved using dielectric
coatings. Currently, high reflectivity mirrors are limited
in bandwidth to about±15% of their center wavelength.

CW-CRDS has been applied over a wide range of
wavelengths. It has been used for medical breath an-

alysis, trace gas detection in environmental and process
control applications, and isotopic analysis. In the near-
infrared, CW-CRDS systems achieve sensitivities of
10−11 cm−1Hz−1/2, and a concentration measurement
repeatability of 1 part in 5000. Similar performance
in the mid-infrared (3 µm) resulted in the detection of
parts-per-trillion ethylene concentrations [43.11].

Extensions of the basic CW-CRDS technique have
also been developed:

• Phase-shifted CW-CRDS [43.12]: the phase shift
accrued by a sinusoidally modulated CW laser is
measured for both an empty RDC and one having
a sample. The concentration is deduced from these
two measurements.• Heterodyne CW-CRDS [43.13]: enhances the power
in the ring-down decay waveform by mixing with
a local oscillator. For example, the local oscillator
can be the orthogonal polarization used to lock the
laser to the RDC, or can be the reflected signal from
the RDC when laser is frequency-shifted (by the
local oscillator frequency) off resonance from the
RDC mode. Heterodyne CRDS can approach the
shot-noise limit.• V-cavity CW-CRDS [43.14]: a three-mirror V-
shaped RDC is exploited to achieve consistent
repetitive optical locking of a DFB diode laser to
a single cavity mode, thereby significantly enhan-
cing light throughput.

CW-CRDS is now maturing to a level of robust-
ness and reliability that it can be commercially deployed
in industrial applications, where the sensitivity require-
ments can no longer be met by FTIR, NDIR, or gas
chromatography.

43.3 Cavity Enhanced Spectroscopy

Most CRDS systems capture the ring-down waveform
using a digital oscilloscope. The Levenberg–Marquardt
(LM) method produces the optimal fit, so that LM
methods have become the de facto “gold standard” in
CRDS [43.15]. However, the LM algorithm can require
multiple iterations, thereby limiting the data acquisition
times to several hundred Hz. Fast-fitting algorithms that
closely approximate the LM fit, but allow data acquisi-
tion rates up to 10 kHz have recently gained widespread
deployment [43.16]. Today, the data acquisition rates are
no longer limited by the back-end numerical fit. Rather,
the speed of CRDS systems is limited by the speed of
laser modulation itself.

Cavity enhanced spectroscopy (CES) was developed
in an effort to simplify CRDS and eliminate the require-
ment for digitization of a time-domain signal and laser
modulation. CES has many different implementations.
All CES methods are based on the principle that the build
up of intracavity power, and hence cavity throughput, de-
pends on intracavity losses, which include absorption by
a sample. CES involves measuring the steady-state trans-
mission through a cavity as a function of wavelength
in order to determine changes in integrated transmitted
intensity caused by the absorbing species.

For a cavity having two mirrors of intensity re-
flectivity, R, and length, L , the effective steady-state
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path length is Leff = L/(1− R). If an absorbing gas
is present, the reflectivity will be “reduced” by the
Beer–Lambert factor e−αL namely R′ = Re−αL so that
one can effectively relate the ratio R′/R to the Beer–
Lambert ratio I/I0 for a single pass. The steady state
transmitted laser intensity for such a cavity is given by
I = ILC pT [2(1− R)]−1 where T is the intensity trans-
missivity IL is the laser intensity, and C p is the coupling
efficiency in the cavity mode. Thus, for an absorbing gas,
the change in transmitted intensity at a given wavelength
is:

∆I/I = G A (1+G A)−1 , (43.4)

where A = 1− e−αL and G = R/(1− R) so that for
αL & 1, (∆I/I)≈ G A ≈ GαL . This latter relation has
been interpreted as a linear response in absorption loss,
multiplied by an effective cavity “gain” of R/(1− R),
i. e., the absorbance is measured over the effective length
of the cavity which corresponds to the number of cav-
ity passes occurring within the cavity ring-down time
constant. Note that the transmitted power level will
be attenuated by the mirror transmissivity, T , so that
these methods are limited by laser power and detector
sensitivity.

Because CES techniques measure transmitted light
intensity, they are no longer immune to laser intensity
noise. Furthermore, when the absorbance becomes com-
parable to the cavity loss, the sensitivity improvement of
CES saturates, as the sample absorption begins to domi-
nate the effective number of cavity passes. Note that for
this case, the effective path length becomes a function
of the sample concentration, which underlines another
limitation of CES: this technique is not independent of
the cavity length and hence depends on cavity align-
ment. Moreover, CES systems are not self-calibrated
to the species extinction coefficient, and therefore re-
quire calibration against a known sample concentration,
or against the absolute cavity loss, often measured us-
ing CRDS. Finally, it should be noted that the rate of
data collection in CES is limited by the RDC time con-
stant, because the cavity acts like a single-pole, low pass
filter having a 3 dB frequency of (2πτ)−1 which can
range from 5 to 50 kHz. Unlike CRDS, CES does not re-
quire fast digitization of the decay waveform followed
by a non-linear fit, so that the data acquisition hardware
can be a much slower, less expensive A/D converter and
spectral data can be acquired almost instantaneously.

Five distinguishable variants of CES have been
developed and are discussed. The first three
methods, called cavity enhanced transmission spec-
troscopy (CETS), find their origins in CRDS. These

methods are cavity enhanced absorption spectroscopy
(CEAS) [43.17], integrated cavity output spectroscopy
(ICOS) [43.18], and off-axis ICOS [43.19]. For these
three approaches, the laser intensity is no longer inter-
rupted to observe a “ring-down event”, although the
path length enhancing properties of the RDC remain.
More sensitive CES methods involve locking the laser
to the cavity mode resonance. These will be referred to as
locked cavity enhanced transmission spectroscopy and
have two variations: locked cavity enhanced transmis-
sion spectroscopy (L-CETS) [43.20] and noise-immune,
cavity-enhanced optical heterodyne molecular spec-
troscopy (NICE-OHMS) [43.21].

43.3.1 Cavity Enhanced Transmission
Spectroscopy (CETS)

CETS has been implemented using several variations,
all of which are based on measuring the time-integrated
transmission through a high finesse RDC as function of
wavelength. As stated earlier, the transmitted light pro-
vides an effectively enhanced path length to any sample
absorption inside the cavity. The transmitted light inten-
sity in all CETS approaches is a small fraction [about
(1− R)] of the incident intensity, which reduces the
signal to noise on detection, so that averaging is re-
quired. All CETS approaches are also dependent on laser
intensity noise and sample path length.

The trade-off in using a high finesse cavity is that in
steady state, its transmission is a non-uniform function
of wavelength, and consists of a series of sharp cav-
ity mode peaks, namely the transverse and longitudinal
modes. This transmission pattern repeats itself periodic-
ally every free spectral range (FSR). The density of the
mode spacing is a function of the cavity design: round-
trip length and mirror radius of curvature. The quality
of mode matching between the laser and the RDC deter-
mines the number of modes into which light can couple
efficiently.

CEAS is the simplest CETS approach: the laser,
coupled through a RDC, is tuned in wavelength over
the absorption feature of interest, and the integrated
cavity transmission is measured as a function of wave-
length [43.17]. The cavity length is free-running (neither
modulated nor locked to the laser). In order to minimize
the non-uniformity of cavity transmission, CEAS ex-
ploits cavity geometries such that the inherent mode
structure is as dense as possible. No mode-matching is
employed, so that laser light is coupled into as many
modes as possible. The laser is scanned multiple times
over the cavity modes in order to time average over
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the unstabilized cavity length. Extensive averaging can
be required to achieve reasonable performance. The
residual mode structure of the cavity can be significant
and produces intensity modulation in the spectrum. Typ-
ically, the laser linewidth is larger than the individual
cavity mode resonances, so that the output can be very
noisy. CEAS does appear to have mechanical stability
advantages, in that a cavity length change or deforma-
tion is in fact desirable to randomize the excited modes
over wavelength. Typical sensitivities of CEAS range
from are 5 × 10−7 cm−1Hz−1/2.

ICOS tries to achieve uniform transmission through
the RDC by systematically disrupting the cavity
mode resonances, in order to recover the frequency-
averaged response of the cavity as a function of
wavelength [43.18]. RDC length modulation was im-
plemented by either moving one of the cavity mirrors
using a piezo-electric transducer (PZT), or by slightly
modulating the angle of injection in the cavity using
a PZT-driven mirror mount. When the laser is scanned
over the desired wavelength range with only the RDC
modulation sweeping the modes (5 to 10 free spectral
ranges), the resulting absorption spectra show an inten-
sity modulation of about 10%. This intensity modulation
results from a periodic non-uniformity in the mirror
movement at the turning points of the PZT modulation,
where the increased overlap time between the cavity
mode and laser produces a higher transmitted light in-
tensity. In order to eliminate this intensity modulation,
the laser wavelength is frequency modulated simultane-
ously. The typical sensitivity of ICOS approach is about
2 × 10−7 cm−1Hz−1/2.

A third approach, called off-axis ICOS, resolves the
cavity transmission uniformity problem of CEAS, and
eliminates the need for modulation of ICOS. In off-
axis ICOS, shown in Fig. 43.3, the RDC is aligned so
as to generate a set of spatially separated reflections

High reflectivity mirrors:
Cavity/Sample chamber

CW laser

Mode-matching
optics (optional)

Detector

PC Integrator

Fig. 43.3 Typical off-axis ICOS setup

within the cavity that eventually satisfy the re-entrant
condition [43.19]. Furthermore, the mirrors are slightly
astigmatized, which results in Lissajous spot patterns
on the mirrors. The combination of this alignment and
slight astigmatism significantly reduces the RDC mode
degeneracy. As a result, the cavity mode spacing can
become smaller than the cavity mode width, the cavity
transmission appears to become largely frequency inde-
pendent, or “white”. Thus, the RDC provides path length
enhancement, without introducing intensity noise in the
transmitted spectrum. However, increasing the number
of spots on the mirrors usually requires larger mirrors
(e.g., 2 inches for off-axis ICOS versus 0.5 inches for
CRDS), which in turn results in a larger cavity (sample)
volume. In cases of low sample flow, sample chamber
filling times can limit the measurement time. Moreover,
the system is now dependent on the mechanical sta-
bility of the cavity and the laser to cavity alignment.
The best off-axis ICOS sensitivity achieved to date is
3 × 10−11 cm−1Hz−1/2 and is comparable to CW-CRDS.

43.3.2 Locked Cavity Enhanced
Transmission Spectroscopy (L-CETS)

An alternative approach (L-CETS) achieves higher sen-
sitivity by locking the laser frequency to a single cavity
resonance and then scanning the cavity over the absorp-
tion feature of interest [43.20]. In this case, the cavity
throughput becomes uniform across the entire spectral
scan, and the cavity transmission increases to the maxi-
mum theoretical value, leading to better signal to noise
at the detector than CETS approaches. Laser wavelength
jitter at high frequencies, which cannot be compensated
by the locking control loops, will lead to increased noise
in the spectral scans. In order to lock the laser and cav-
ity together robustly, the laser linewidth typically cannot
exceed the cavity mode resonance linewidth, so that for
a high finesse sample cavity, the laser choice can be
limited. Sensitivities of 10−11 cm−1Hz−1/2 have been
demonstrated using L-CETS.

The NICE-OHMS technique was developed to over-
come the dependence of L-CETS on laser wavelength
jitter [43.21]. NICE-OHMS combines the benefits of
frequency modulation (FM) spectroscopy with the path
length enhancements of a high finesse optical resonator.
The technique is called “noise immune”, because it does
not depend on the quality of the laser and cavity lock.
Effectively, it is immune to laser frequency noise al-
though residual amplitude modulation can reduce the
performance. NICE- OHMS sensitivity depends on the
transmitted laser power, the efficiency and bandwidth of
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the photodetector, and the FM modulation index. NICE-
OHMS has exploited cavities having a finesse of 100 000
to achieve sensitivities of 1 × 10−14 cm−1Hz−1/2. NICE-
OHMS holds the world record in detection sensitivity of
all cavity enhanced techniques.

In a NICE-OHMS experiment, phase modulation of
the laser produces side bands that are set to equal the
free spectral range of the high finesse resonator. Be-
cause the sidebands are transmitted by the cavity in the
same manner as the carrier, any small wavelength fluc-
tuations in the laser or small optical phase shifts of the
transmitted carrier that contribute to noise in the trans-
mitted intensity will appear identically in the sidebands.
After demodulation, this noise will cancel out. Thus, the
transmitted carrier and sidebands are an accurate repre-
sentation of the carrier and sidebands impinging on the
input mirror of the cavity. The carrier laser frequency is
locked to the peak of the optical cavity mode and tracks

this mode if the cavity length is changed in order to pro-
duce a spectral scan. The sidebands are detected and
demodulated as in conventional FM spectroscopy. The
key to NICE-OHMS is that the noise level can approach
the intrinsic shot noise of the laser at the FSR frequency
(namely hundreds of MHz).

If there is no sample in the cavity, the transmitted
sidebands will cancel after demodulation because they
have opposite phases. No signal will be observed. If there
is a sample in the cavity, the sidebands will experience
different transmission amplitudes, so that demodulation
will produce a signal proportional to the difference in
absorption between the sideband frequencies. In addi-
tion, the absorption feature produces a phase shift that
pulls the carrier cavity mode frequency, so that the side-
bands become detuned from the mode peak and acquire
a phase shift on transmission. This sideband phase shift
contributes to the demodulated signal.

43.4 Extensions to Solids and Liquids

Thus far, the discussion of cavity-enhanced techniques
has addressed traditional optical resonators formed us-
ing high reflectivity dielectric mirrors that encompass
gas samples. Extensions of cavity enhanced methods to
liquid and solid media has required additional innova-
tion, specifically in the optical cavities used.

Evanescent-wave CRDS (EW-CRDS) exploits the
fact that total internal reflection allows probing the sur-
face layer of a sample in contact with a prism. The
simplest configuration places a Brewster prism inside
a linear ring-down cavity. The prism folds the cavity
beam path by 90 degrees, thereby producing one point
in the prism having total internal reflection [43.22]. The
evanescent wave produced by this internal reflection can
be used to probe liquid or solid samples. Another pos-
sible embodiment is a ring cavity having its optical path
inside a multi-faceted polygon, where at each facet, total
internal reflection occurs [43.23]. Light is coupled into
and out from the polygon by photon tunneling – which
effectively controls the overall finesse of the cavity. The
absorbing sample material can then be placed on any
one or more of the polygon facets, and its detection is
done using the polygon’s evanescent waves.

Fiber cavities are attractive because they can extend
the use of CRDS into harsh environments, can probe
liquids as well as gases, and can be used to measure
pressure [43.24]. The high reflectivity mirrors on each
end of the fiber can be either dielectrically coated, as
in a traditional ring-down cavity design, or can con-

sist of Fiber Bragg gratings. Fiber-based CRDS has also
been applied to detection in liquid media via a fiber
loop cavity wherein a liquid sample replaced the index
matching fluid in the gap between fibers at the connec-
tor splice [43.25]. This approach produced a 100-fold
enhancement over linear detection.

More direct approaches to measuring liquid samples
involved confining the liquid samples within a more tra-
ditional RDC. The most direct method involves placing
a liquid directly into the cavity, but this approach re-
sults in very limited sensitivity. By placing a Brewster
cell filled with liquid sample in a RDC, the sensitivity
of the P-CRDS can be slightly improved. By matching
the Brewster angles to the refractive indices of the adja-
cent media (the outside angle matches the air-filled RDC,
while the inner angle matches the index of the liquid), the
sensitivity can be dramatically improved [43.26]. The
peak-to-peak baseline noise level of such a P-CRDS sys-
tem was 1.0 × 10−5 absorbance units (AU), rivaling the
best available commercial ultraviolet-visible (UV-VIS)
direct absorption detectors. The performance remained
limited by the excitation of multiple cavity modes
A CW-CRDS system using the same angle-matched
Brewster cell [43.27] improved the peak-to-peak base-
line noise by a factor of 50 to 2 × 10−7 AU. This CRDS
detector outperformed the best commercially available
UV-VIS detector by a factor of 30, again illustrating
the potential for CRDS to replace standard absorption
spectroscopy techniques.
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Solid samples have also been placed inside linear
CRDS cavities for characterization. Mostly, P-CRDS
are used. Examples of applications include character-
ization of C-60 films, thin-film coatings, and silicon
wafers.

It is anticipated that CRDS will eventually reach
sensitivities for liquid and thin film samples that
are comparable to those achieved in gases. CRDS

is also expected to find commercial applications in
high performance liquid chromatography, thin film
characterization, and biological detection. Combination
techniques of CRDS and fluorescence, or CRDS and
Raman spectroscopy, may also be on the not-so-distant
horizon, where CRDS provides the quantification,
while the complementary technique provides identifi-
cation [43.28].
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Spectroscopic44. Spectroscopic Techniques: Ultraviolet

The design of UV spectroscopic experiments
and apparatus must conform to the constraints
associated with producing, dispersing, and
detecting UV photons. In this chapter, we
review the instrumentation available for UV
spectroscopy, concentrating on the VUV, where
special instrumentation is necessary. Recent
advances are stressed, particularly in the areas of
synchrotron radiation and the production of VUV
laser light.

The most inclusive, up-to-date review
of vacuum ultraviolet techniques is Vacuum
Ultraviolet Spectroscopy I & II (1998), edited by
Samson and Ederer [44.1]. This text significantly
expands on Samson’s classic, authoritative
review of VUV instrumentation, first published
in 1967 [44.2]. There are many comprehensive
reviews of VUV light sources, spectrometers, and
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detectors, which are referenced in the appropriate
sections of this chapter.

The ultraviolet (UV) spectral region extends from the
short wavelength side of the visible, about 400 nm, to
the long wavelength side of the X-ray region at ap-
proximately 10 nm. Ultraviolet photon energies range
from about 3 to 120 eV. Because laboratory air at
STP does not transmit below about 200 nm, the UV
region is conventionally subdivided into the near ul-
traviolet, wavelengths λ > 200 nm, and the vacuum
ultraviolet (VUV), λ < 200 nm. Further subdivisions
are widespread, but not uniformly adopted. The term
middle ultraviolet (MUV) is sometimes used to des-
ignate the 200 to 300 nm wavelength region, with
the term near UV used only for 300 to 400 nm.
VUV wavelengths are often divided into the far ul-
traviolet (FUV), 100 to 200 nm, and the extreme
ultraviolet (EUV), 10 to 100 nm. In this review, we
will simply refer to the UV (10 to 400 nm), the

near UV (200 to 400 nm), and the VUV (10 to
200 nm).

The absorption of UV radiation by atoms and
molecules involves transitions to highly excited dis-
crete and continuum levels. The relevant atomic and
molecular physics of highly excited states is discussed
in Chapts. 14, 24, 25, and 61. Ultraviolet absorption
initiates many important photochemical reactions; ap-
plications in astrophysics, aeronomy, and combustion
are reviewed in Chapts. 82, 84, and 88. The ex-
perimental techniques used at ultraviolet wavelengths
include high-resolution spectroscopic measurements of
wavelengths and line shapes (Chapt. 10) , absolute pho-
toabsorption oscillator strength and radiative lifetime
measurements (Chapt. 17), fluorescence spectroscopy,
and energy, angle, and spin-resolved photoelectron spec-
troscopy (Chapt. 61).
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44.1 Light Sources

44.1.1 Synchrotron Radiation

Synchrotron radiation (SR) facilities provide intense
continuum radiation in the visible, UV, and soft X-ray
spectral regions. The radiation is emitted by relativis-
tic electrons (or positrons) accelerated by the Lorentz
force of a magnetic field. In addition to its contin-
uum nature, synchrotron radiation is characterized by
high degrees of collimation and polarization. Advances
in specialized magnet designs, e.g., wigglers and un-
dulators, that dramatically increase spectral brightness
at selectable wavelengths, have stimulated continuing
growth in synchrotron-radiation-based spectroscopic re-
search. References [44.3–13] give general reviews on the
nature of synchrotron radiation and on specific SR-based
experimental techniques.

SR facilities use either a linear accelerator,
a microtron, or a synchrotron to accelerate electrons or
positrons to relativistic energies (0.1 to 10 GeV). The
particles are then injected into a storage ring, where a se-
ries of bending magnets steers them in a closed orbit.
The particles in the storage ring radiate energy, which
is replaced by radio frequency accelerating cavities that
are part of the ring. These accelerating systems pro-
duce well-defined, regularly spaced bunches of stored
particles, so that radiation from SR facilities is character-
ized by sub-nanosecond pulses at 1 to 10 MHz repetition
rates.

Typical storage ring currents are on the order of
100 to 1 A. The current decreases continuously be-
cause of collisions with residual gas molecules
and electron–electron (or positron–positron) scattering.
Beam lifetimes in most facilities range from a few to
about 20 hours. The longest lifetimes are achieved by
positron beams, which repel any ions produced in resid-
ual gas collisions. Storage ring pressures must be in the
10−10 Torr range in order to reduce collisions to accept-
able levels; such pressure requirements can restrict the
types of measurements performed at SR facilities.

The spectral properties of synchrotron radiation can
be derived from Larmor’s formula for an accelerat-
ing relativistic charged particle [44.4, 14–18]. The total
power P radiated by a beam of current I and energy E
in a bending magnet field B is

P = 0.0265E3 IB kW , (44.1)

where, throughout this chapter, I is in mA, E is in GeV,
and B is in Tesla. For example, a 300 mA beam of 1 GeV
electrons radiates about 8 kW when traversing the field

of a typical 1.0 T bending magnet. One-half of the to-
tal power is radiated above the critical wavelength, λc,
where

λc = 1.9/
(

BE2
)

nm . (44.2)

For the example just considered, λc = 1.9 nm.
The power radiated by, and the flux from, syn-

chrotron radiation sources is often expressed per
fractional (or percent) bandwidth. For example the
flux Φ, in units of photons

(
cm2s

)−1
, at 10 nm (124 eV)

per 1% bandwidth is the flux in a 0.1 nm band at 10 nm,
which is the same as that in a 1.24 eV energy band.
The radiated power per fractional bandwidth peaks at
λ≈ 0.75 λc.

The flux per fractional bandwidth reaches a broad
maximum at λ≈ 3.3 λc and decreases slowly at longer
wavelengths, with a limiting behavior that is propor-
tional to λ−1/3 for λ% λc. Thus, although the photon
flux typically peaks in the soft X-ray region, a high flux is
also present throughout the VUV wavelength range. Be-
low λc, the flux drops rapidly, with little usable radiation
at wavelengths below about 0.1 λc.

The angular distribution of the radiated light is
sharply peaked in the instantaneous direction of the
beam of radiating particles. Practically all the radiation
is emitted into an opening half-angle θ that at λ= λc is
equal to 1/γ , where γ = E/mc2; i. e.,

θ = 1/γ = 5.11 × 10−4/E rad . (44.3)

Radiation from beams with energies of a few GeV has
a divergence somewhat less than 1 mrad at λc. The
divergence increases at longer wavelengths, with

θ ≈ (γ)−1(λ/λc)
1/3 rad . (44.4)

Radiation from bending magnets maintains this narrow
divergence only in the vertical plane; in the orbital plane,
the radiation is emitted in an opening angle equal to
the bending angle of the magnet. Typical beam cross
sections are 0.01 to 1 mm2. Thus, the extremely high
spectral brightness, i. e., photon flux per unit solid angle
and % bandwidth, of synchrotron sources reflects both
the very low divergence of the radiation and the small
source size. A typical brightness associated with bend-
ing magnet radiation is on the order of 1012 photons
(s mm2 mrad2 0.1% bandwidth)−1.

Synchrotron radiation has well-characterized polar-
ization properties. Within the orbital plane the radiation
is completely linearly polarized with the electric field
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vector in the orbital plane; above and below the orbital
plane the radiation is elliptically polarized, with the de-
gree of polarization dependent on both wavelength and
viewing angle. Undulator designs incorporating either
crossed planar magnets or a helical array of magnets
can produce circularly polarized light (e.g., [44.19]),
allowing for the development of circular dichroism spec-
troscopies in the vacuum ultraviolet [44.20].

The pulsed nature of the radiation at synchrotron
facilities is ideal for sub-nanosecond time-resolved spec-
troscopies [44.21–25]. Electron bunch lengths lb are
typically a few centimeters; radiation is observed from
each bunch for a time interval approximately equal to
lb/c ≈ 100 ps. The time for one full orbit is determined
by the size of the storage ring and varies from about
20 ns at the smallest rings to 500 to 1000 ns at the larger
rings. The number of bunches is typically on the order
of a few hundred, resulting in pulse repetition rates from
a few MHz to about 500 MHz.

Many synchrotron facilities incorporate straight
sections between bending magnets to accommodate in-
sertion devices such as wigglers and undulators. These
are linear arrays of magnets with alternating polarities
that cause the beam trajectory to oscillate, although no
net displacement of the beam occurs. The oscillations
produce synchrotron radiation that is characterized by
extremely high brightness and that can be spectrally
tailored to individual experiments [44.4, 13, 17, 26, 27].

Wigglers and undulators are distinguished by the
value of their deflection parameter K , which is a measure
of the maximum bending angle of the stored particle
beam in units of θ, the angular divergence of the emitted
radiation. The deflection parameter K is determined by
the peak strength of the alternating magnetic field B0
and its spatial period xB by

K = 0.934B0xB , (44.5)

with xB in cm.
In the wiggler regime, K % 1; i. e., the angle at

which the magnets deflect the electron beam is large
compared with θ. The resulting spectrum resembles that
from a bending magnet, but is brighter by a factor of
Nm , the number of magnet periods (usually 10 to 100).
Wigglers are generally used as wavelength shifters; mag-
netic fields larger than those available in conventional
bending magnets decrease the critical wavelength of the
spectral distribution and shift the overall spectrum to
shorter wavelengths.

In the undulator regime, K & 1; i. e., the angle at
which the electrons are deflected is close to θ and ra-
diation from individual oscillations adds coherently at

certain resonant wavelengths, producing a gain of N2
m .

Undulator radiation is characterized by sharp peaks at
a fundamental wavelength λ1 and its odd harmonics.
λ1 is determined by the beam energy and xB:

λ1 ≈ 0.1 xB/
(

2γ 2
)
= 1.3 xB E−2 nm , (44.6)

where xB is in cm. For example, the fundamental
wavelength is 6.5 nm for a 1 GeV beam traversing an
undulator with a spatial period of 5 cm. The fractional
bandwidth of the peaks in an undulator spectrum is
≈ 1/Nm . Unlike the radiation from a bending mag-
net, the angular divergence of undulator radiation is
sharply peaked both vertically and in the orbital plane;
the brightness of undulator radiation is ≈ 1018 to
1019 photons/(s mm2 mrad2 0.1% bandwidth), about six
orders of magnitude greater than bending magnet radia-
tion. The wavelength of the fundamental is tunable; the
strength of the peak magnetic field is altered via changes
in the size of the gaps between the poles of the magnets.

44.1.2 Laser-Produced Plasmas

When the output of a high-power pulsed laser is fo-
cused onto a solid target, a short-lived, high-temperature
(T ≈ 50 to 100 eV), high-density

(
ne ≈ 1021 cm−3

)

plasma is created. The radiation from certain target
materials, particularly the rare earths (57 ≤ Z ≤ 71)
and neighboring metals on the periodic table, produces
a strong VUV quasicontinuum that is essentially free
of discrete lines [44.28, 29]. The continua are most in-
tense in the 4 to 30 nm region but often extend to about
180 nm. A review of laser-produced plasmas and their
applications in the VUV can be found in [44.30].

The primary mechanisms responsible for the con-
tinua are recombination radiation (ionization stages up
to ≈ 16 are attained) and bremsstrahlung. The ab-
sence of discrete features in rare earth plasmas is
thought to be caused by the extreme complexity of
rare earth atomic energy level structures; individual
emission lines are blended into an apparent contin-
uum [44.31]. The necessary peak laser powers, which
are in the range of 1010 to 1011 W cm−2 [44.32, 33],
are easily achieved with most commercially available
Q-switched lasers. The continuum pulse duration is
comparable to the duration of the laser pulse. Peak out-
put intensities are significantly greater than those from
other pulsed table-top continuum sources such as spark
discharges; synchrotron sources produce much higher
average intensities [44.33]. The target material is usu-
ally a cylindrical rod that is rotated to present a fresh
surface for each laser shot. References [44.32, 34–38]
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present and discuss the spectral characteristics of several
laser-produced plasma sources. Atomic photoabsorption
techniques based on laser-produced plasma sources are
described in [44.33, 39–41].

44.1.3 Arcs, Sparks, and Discharges

Several laboratory sources of VUV line and continuum
radiation are based on gas discharges, high-pressure
arcs, and low-pressure and vacuum sparks. While these
well-established radiation sources are not as intense as
synchrotron radiation and laser-produced plasmas, the
traditional sources have the advantages of being portable
and inexpensive. Reviews can be found in [44.42, 43]

H2 and D2 Discharges
Direct current discharges (approximately 100 to
500 mA) through 1 to 2 Torr of H2 or D2 generate con-
tinuum radiation from about 165 to 350 nm [44.2, 44].
The continuum is produced by transitions from the
bound 1sσ 2sσ a3Σ+

g state to the repulsive 1sσ 2pσ b3Σ+
u

state [44.45]; the very steep potential curve of the lower
state results in the extended nature of the continuum. The
photon flux per unit wavelength from such lamps peaks
at about 185 nm; below 165 nm the many-line spectra of
H2 or D2 begin to dominate.

Ar Mini-Arc
A high-current (20 to 50 A) wall-stabilized arc dis-
charge through 1 to 2 atm of Ar, known as a mini-arc,
produces a continuum associated with recombination
radiation. The continuum extends from the near UV
down to approximately 110 nm [44.44, 46]. The stabil-
ity and reproducibility of the output of the mini-arc has
led to its use as a secondary radiometric standard in the
VUV [44.46, 47].

Noble Gas Discharges
High voltage (10 kV), mildly condensed, repetitive
(5 kHz) discharges through the noble gases produce
continua associated with molecular transitions between
bound excited states and the very weakly bound ground
states of the noble gas dimers [44.2, 48, 49]. These con-
tinua begin at the first resonance line of the atomic
species and extend a few tens of nanometers to longer
wavelengths. For example, the onset of the He contin-
uum is approximately 59 nm, while the useful continuum
extends from 65 to 95 nm with a peak intensity at about
80 nm. Discharges through He, Ar, Kr, and Xe cover
the 65 to 180 nm region. Optimum discharge pressures
vary from about 40 Torr for He up to a few hundred Torr

for Kr and Xe. Differential pumping is required when
using these discharge sources at wavelengths shortward
of 105 nm, the short wavelength transmission limit of
window materials (see Sect. 44.5).

Flash Discharges and Vacuum Sparks
Flash discharges of approximately 1 µs duration through
low-pressure (approximately 0.02 Torr) gases in ceramic
or glass capillaries yield useful continua down to about
30 nm [44.2,50]. The continua are produced by passage
of the discharge through sputtered wall materials and are
independent of the carrier gas. The BRV source [44.51],
a pulsed vacuum spark with extremely low inductance,
utilizes a high-Z anode (e.g., W or U) to generate
a smooth continuum down to about 10 nm. The short
pulse duration (approximately 50 ns) [44.52] and well-
defined triggering make this source useful for transient
absorption studies at short wavelengths.

Line Radiation Sources
Hollow cathode discharges [44.53, 54], which are
easy and inexpensive to construct and operate, are
the most common line-emission sources used in UV
spectroscopy. Low power (approximately 5 W) lamps
designed to produce the spectra of about 70 elements are
commercially available for spectrochemical and atomic
absorption spectroscopy. Line widths are narrow, so
blends are avoided. Most manufacturers can provide
lamps with special windows for use at VUV wavelengths
(Sect. 44.5).

High-current, differentially-pumped hollow cathode
sources, which have been developed for use as ra-
diometric standards in the 40 to 125 nm wavelength
range [44.55], can also be used as line sources. At shorter
wavelengths, e.g., 5 to 40 nm, the Penning discharge has
proved to be a useful source of line radiation [44.43,56,
57]. Electron-beam excitation sources [44.43] produce
stable and reproducible line emission spectra and find
use as VUV calibration standards [44.54, 58]. Electron-
beam ion trap (EBIT) sources [44.59,60] generate VUV
and X-ray spectra of highly ionized atomic species.

44.1.4 Supercontinuum Radiation

Continua extending throughout the near UV wave-
length range to below 200 nm can be produced by
focusing femtosecond laser pulses in both liquids and
noble gases. This supercontinuum generation [44.61]
allows for time-resolved, sub-picosecond spectroscopy
of photochemical reactions [44.62, 63]. The supercon-
tinuum arises from a number of competing nonlinear
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processes [44.64–66]. Access to the UV has been
demonstrated both by focusing 308 nm laser pulses
in water [44.67] and by focusing 248 nm laser pulses
in high pressure (10 to 40 atm) cells of Ne, Ar,

and Kr [44.68]. The continuum produced using H2O
is particularly broad, extending from 200 to 600 nm.
The neon continuum extends into the VUV to at
least 187 nm.

44.2 VUV Lasers

Advances in laser technologies have led to an impres-
sive increase in spectroscopically useful VUV laser
sources. Recent reviews can be found in [44.69, 70].
The following summary of VUV lasers does not cover
the rapidly developing fields of X-ray and soft X-ray
lasers [44.71, 72] or the development of free electron
lasers operating in the VUV ([44.73, 74] and references
therein).

Primary Lasers
Pulsed lasing at VUV wavelengths has been achieved in
a number of media, including the molecular gases H2,
CO, and F2, excimer systems (Ar2, Kr2, Xe2, ArF), and
Auger-pumped noble gases (Xe, Kr) [44.75]. The fun-
damental barrier to producing stimulated emission in the
VUV is the ν3 dependence of the spontaneous emission
rate, which necessitates very high pump powers to cre-
ate and maintain population inversions. Existing VUV
primary lasers have generally not been widely used in
spectroscopic applications because of either a lack of
tunability or unacceptably broad line widths.

Pulsed lasing in CO, H2, and F2 occurs between
rovibronic levels of a high-lying electronic state and ex-
cited vibrational levels of the ground electronic state.
The lasing output consists of discrete lines and is not
tunable. The CO and H2 outputs [44.76, 77] span rela-
tively broad regions (181 to 197 nm and 110 to 164 nm,
respectively), while the F2 laser output consists of two or
three closely-spaced lines at 157 nm [44.78]. Pulse en-
ergies are in the 1 to 100 µJ range for CO and H2 lasers.
Commercially available F2 lasers offer pulse energies of
about 50 mJ at 50 Hz repetition rates.

Noble-gas and noble-gas-halide excimer lasers op-
erate via bound-upper-level to continuum-lower-level
transitions. (Retrospective reviews of excimer laser tech-
nologies can be found in [44.79,80].) The resulting gain
profiles are broad and the outputs are typically tunable
over about 2 nm. ArF excimer systems (193 nm) are
pumped by high pressure gas discharges; lasers with
pulse energies of ≈ 20 to 40 mJ are commercially avail-
able. Xe2 (173 nm), Kr2 (146 nm), and Ar2 (126 nm)
lasers [44.81–83] produce comparable pulse energies but
require electron beam excitation. Auger-pumped lasers

achieve a population inversion through the ejection of
an inner-shell electron from a neutral atom to produce
a highly excited singly ionized species, followed by
Auger decay to excited states of the doubly ionized
species. The soft X-ray (approximately 100 eV) pump
photons often originate from a laser-produced plasma.
The lasing output is nontunable. Lasing in Xe (108.9 nm)
and Kr (90.7 nm) [44.84,85] has been achieved with out-
put pulses in the range of a few µJ, and Auger-pumped
lasing in Zn (at approximately 130 nm) has also been
reported [44.86].

Nonlinear Techniques
In the past thirty years, developments in the techniques
of nonlinear optics have extended the range of tun-
able, pulsed coherent radiation to VUV wavelengths.
Nonlinear frequency conversion techniques, such as
stimulated anti-Stokes Raman scattering, harmonic gen-
eration, and sum- and difference-frequency mixing (see
Chapt. 72) , can produce narrow-bandwidth radiation
spanning the entire VUV. The generated VUV radia-
tion has the spectral and spatial characteristics of the
input laser radiation. Pulses of 1010 to 1012 photons
are commonly generated with bandwidths on the order
of 0.1 cm−1 (2 × 10−4 nm). Many reviews are available
on this subject [44.75, 87–95]. The standard nonlinear
techniques for producing tunable coherent radiation with
λ < 200 nm are summarized below.

Second harmonic generation in nonlinear optical
crystals is a well-established method for generating
tunable laser light in the near UV (Chapt. 42). At the
shortest wavelengths, second harmonic generation in β-
barium borate (BBO) produces usable outputs down to
approximately 205 nm, below which the phase matching
requirement between the fundamental and the sec-
ond harmonic cannot be met. Sum-frequency mixing
(ω= ω1+ω2) in BBO [44.96,97], where ω1 is typically
the Nd:YAG fundamental (1064 nm) and ω2 is tunable
UV light, extends the useful range of BBO to approxi-
mately 190 nm, where the crystal begins to exhibit strong
absorption.

Stimulated anti-Stokes Raman scattering of UV laser
light in molecular gases (e.g., H2, N2, CH4) is used
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to generate coherent radiation down to about 120 nm,
although low conversion efficiencies often restrict the us-
able output to λ > 160 nm. The scattering is a four-wave
mixing process resulting in a series of output frequen-
cies shifted from the pump laser frequency by multiples
of the vibrational splitting of the ground electronic state
of the gas [44.98, 99]. Because high anti-Stokes orders
are not efficiently generated, H2, with its large ground
state vibrational splitting of 4155 cm−1, is often the
gas of choice. The experimental requirements are rel-
atively minimal; a tunable visible or UV source (e.g.,
a frequency-doubled dye laser) and a high pressure gas
cell (about 2 to 10 atm of H2 in a 1 m cell). Conver-
sion efficiencies of a few percent are reported for the
first few anti-Stokes orders in H2 with pump laser ener-
gies of about 10 to 50 mJ [44.100,101]; efficiencies then
drop continuously, reaching about 10−5 to 10−6 for the
highest orders (n = 9 to 13) reported. Stokes seeding
techniques [44.102] have been shown to increase effi-
ciencies for the highest anti-Stokes orders by as much
as a factor of 100.

Third harmonic generation (ω = 3ω1), sum-
frequency mixing (ω = 2ω1+ω2), and difference-
frequency mixing (ω= 2ω1−ω2) in appropriate noble
gases and metal vapors are the most broadly applica-
ble methods for producing tunable VUV light. These
processes result from the presence of the third-order
nonlinear term in the expansion of the induced macro-
scopic polarization of the gas as a power series in
the electric field (Chapt. 72). (The second-order term,
which is responsible for frequency doubling in crys-
tals, is zero for isotropic media such as gases.) The
power generated in third-order effects is proportional
to

N2
∣∣∣χ(3)

∣∣∣
2

P2
1 P2 F , (44.7)

where N is the number density of the gas, χ(3) is the
third-order nonlinear susceptibility, P1 and P2 are the
input laser powers at ω1 and ω2, and the factor F de-
scribes the phase matching between the generated VUV
light and the induced polarization [44.88, 89]. For third
harmonic generation, P2

1 P2 is replaced by P3
1 .

The most critical constraint in third-order frequency
conversion is the phase matching requirement; a compre-
hensive treatment is presented in [44.103]. The factor F
is a function of the product b∆k, where b is the confo-
cal beam parameter of the focused input radiation and
∆k is the phase mismatch between the generated VUV
light and the input radiation:

∆k = k− (2k1+ k2) . (44.8)

where ki is the wave vector of the radiation with fre-
quencyωi . In the standard case of tight focusing (b& L ,
where L is the linear dimension of the gas cell) for
sum-frequency mixing and third harmonic generation
processes, F is nonzero only for ∆k < 0. Therefore,
these techniques are applicable only in spectral re-
gions where the gas exhibits negative dispersion. In
contrast, for difference-frequency mixing, the factor
F is nonzero in regions of both positive and nega-
tive dispersion, and wider tuning ranges are generally
possible.

Conversion efficiencies for sum- and difference-
frequency mixing schemes are usually in the range of
10−7 to 10−4 with input peak laser powers of 1 to
10 MW. Resonant enhancement of χ(3), achieved by
tuning the input radiation to transition frequencies in
the gas, dramatically increases conversion efficiencies
(by factors of about 104 and allows for much lower
(≈ 1 kW) input laser powers. Most commonly, one of the
incident frequencies is tuned to an allowed two-photon
transition, with the second input frequency providing
subsequent tunability in the VUV; resonant methods
therefore require two tunable inputs.

Metal vapors (e.g., Mg, Zn, Hg) are negatively
dispersive over fairly broad regions of the VUV be-
tween 85 and 200 nm and are consequently used for
sum-frequency mixing and third harmonic genera-
tion. Conversion efficiencies are further enhanced in
these vapors by three photon resonances (2ω1+ω2)
with the ionization continuum or broad autoionizing
features [44.91]. One experimental drawback is the com-
plexity associated with generating the metal vapors in
ovens or heat pipes.

Noble gases are generally less suited for sum-
frequency mixing because they exhibit negative dis-
persion over fairly limited spectral ranges in the VUV.
However, they do provide an experimentally simple
medium for difference-frequency mixing schemes. In
particular, Xe, Kr, and Ar (as well as H2) have been used
in resonant and nonresonant difference-frequency mix-
ing schemes to produce tunable radiation over the 100 to
200 nm region [44.104–110]. The noble gases are also
used for sum-frequency mixing and third harmonic gen-
eration. Kr, Ar, and Ne are used for the generation of
tunable radiation down to 65 nm [44.104,111–114]. Be-
low the LiF transmission cutoff (105 nm) the gases are
introduced as pulsed jets. Hollenstein et al. [44.115]
describe an ultra-narrow bandwidth

(≈ 0.008 cm−1
)

system, utilizing resonance-enhanced sum-frequency
mixing in rare gases, capable of producing coherent
radiation between 73 and 124 nm. A representative sum-
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mary of third-order frequency conversion schemes is
presented in Table 44.1

Higher-order frequency conversion techniques have
been used to generate both fixed frequency and tunable
coherent radiation shortward of 70 nm. For example,
radiation at 53.2 nm and 38.0 nm has been produced
via fifth and seventh harmonic generation in He, us-

ing the 266.1 nm Nd:YAG fourth harmonic [44.116].
Tunable radiation at 58 nm has been produced through
fifth harmonic generation in C2H2 using the frequency-
doubled output of a dye laser [44.117, 118]. A system
with continuous tunability over the 40 to 100 nm re-
gion with sub-cm−1 resolution has been developed using
high-order harmonic generation in Ar and Kr [44.119].

44.3 Spectrometers

44.3.1 Grating Spectrometers

The design and characteristics of VUV grating
spectrometers and monochromators are reviewed by
many authors [44.2, 50, 129–134]. Two basic types
of spectrometer are used in the VUV; normal inci-
dence instruments for 200 nm> λ> 30 nm and grazing
incidence instruments for 50 nm> λ > 2 nm. The par-
ticulars of these two types are largely dictated by the low
reflectivities of both metal and dielectric surfaces in the
VUV.

Concave gratings are used almost exclusively in
VUV spectrometers. Such gratings provide both dis-
persion and focusing, thus eliminating the need for
additional mirrors and their associated reflection losses.
Most VUV spectrometers make use of the focusing prop-
erties of the Rowland circle, which is tangent to the
grating at its center, lies in a plane perpendicular to the
grating grooves, and has a diameter equal to the radius of
curvature of the grating [44.2, 135]. A source on a hor-
izontal Rowland circle is focused horozontally by the
grating to a location also on the circle. The dispersion
introduced by the grating results in a focused, diffracted
spectrum lying on the Rowland circle. Almost all nor-
mal incidence and grazing incidence VUV instruments
are designed with the entrance and exit slits (or pho-
tographic plate) lying on, or nearly on, the Rowland
circle.

The image formed by a concave grating is not stig-
matic, i. e., the vertical focus does not coincide with the
horizontal focus. Hence, a point source is imaged into
a vertical line on the Rowland circle [44.2, 131, 136].
Astigmatism is particularly severe at grazing incidence
angles, resulting in both loss of signal (the image of the
entrance slit being larger in extent than the exit slit) and
loss of resolution (the image of the entrance slit is curved
in the dispersion direction). Aspherical concave gratings
(e.g., toroidal gratings) reduce the astigmatism associ-
ated with conventional spherical gratings ([44.136] and

references in [44.137]). The most important recent ad-
vances in concave grating production are the use of
interference techniques to produce holographic grat-
ings [44.137–139] and the development of variable line
spacing gratings [44.140, 141]. Interference techniques
eliminate the periodic irregularities in conventionally
ruled gratings that lead to spectroscopic “ghosts”, re-
duce the level of scattered light by significant amounts,
allow for very high groove densities (e.g., 4800 mm−1),
and can be relatively easily applied to aspheric sur-
faces. Mechanically-ruled variable line spacing gratings
correct for spherical aberrations and allow for rela-
tively simple focusing and scanning designs in EUV
spectrometers and monochromators [44.141].

Table 44.1 Representative third-order frequency conver-
sion schemes for generation of tunable coherent VUV light

Medium λ (nm) Process Ref.

Sr 165–200 res. diff. mixing [44.120]

178–196 res. sum mixing [44.121]

Mg 121–174 res. sum mixing [44.91]

Zn 106–140 res. sum mixing [44.122]

Hg 142–182 nonres. tripling [44.88]

117–122 res. sum mixing [44.123]

104–108 res. sum mixing [44.124]

85–125 res. sum mixing [44.125]

Xe 160–206 nonres. diff. mixing [44.105]

140–147 nonres. tripling [44.126]

113–119 nonres. sum mixing [44.105]

Kr 117–150 res. diff. mixing [44.127]

110–116 nonres. sum mixing [44.105]

120–124 nonres. tripling [44.128]

127–180 res. diff. mixing [44.104]

72–83 res. sum mixing [44.104]

Ar 102–124 res. diff. mixing [44.108]

97–105 nonres. tripling [44.111]

Ne 72–74 nonres. tripling [44.112]
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Normal incidence grating designs are appropriate for
wavelengths greater than about 30 to 40 nm. The most
common types include the Eagle, Wadsworth, and Seya–
Namioka designs [44.129,131,132]. Eagle mounts, with
entrance and exit slits on the Rowland circle and approx-
imately equal angles of incidence and reflection (< 10◦),
can be either in-plane or off-plane. Photographic resolv-
ing powersλ/δλof more than 2.5 × 105 and photoelectric
resolving powers of ≈ 1 to 2 × 105 have been achieved
in the 100 nm region with 6.65 m Eagle mount instru-
ments [44.142–145]. In the Wadsworth mount, the light
source is at a large distance from the grating and no
entrance slit is required. This design is appropriate for
collimated light sources such as synchrotron radiation.
It has the advantages of high throughput and minimal
astigmatism [44.2, 130]. The Seya–Namioka mount is
a Rowland circle instrument in which the angle sub-
tended by the fixed entrance and exit slits relative to
the center of the grating is approximately 70◦. The
spectrometer remains in good focus for small grating
rotations, resulting in a simple scanning mechanism and
thus an inexpensive design [44.2]. Seya–Namioka in-
struments provide high throughput at moderate spectral
resolutions (typically 0.02 to 0.05 nm) [44.130].

The normal incidence reflectance of all standard
metal coatings is no greater than a few percent for
λ < 30 nm [44.131]; in this wavelength region graz-
ing incidence instruments take advantage of the total
reflection of photons at extreme grazing angles. There
is a sharp reflectance cutoff at photon energies above
a characteristic energy that typically limits the use
of grazing incidence optics to λ � 1 nm. Grazing
incidence designs, tailored to the constraints of syn-
chrotron radiation facilities, are described in [44.4,
130, 133]. Astigmatism becomes severe at grazing an-
gles; interferometrically produced aspherical gratings
and mechanically ruled variable line spacing gratings
are used to reduce this aberration [44.139, 141]. The
resolving power of a grazing incidence instrument is
generally lower than that of a comparably sized nor-
mal incidence instrument, in large part because of the
decreased effective width of the grating at grazing inci-
dence [44.2]. The largest grazing incidence instruments

achieve resolving powers of about 105 in the 5 to 40 nm
region [44.146, 147].

A number of nonstandard instrument designs are
reported in the literature, often for use in VUV astron-
omy and aeronomy applications. These novel designs
take advantage of the properties of conical diffrac-
tion [44.148–150] and dual-grating crossed dispersion
or echelle mounts [44.151, 152] to reduce the effects of
aberrations. Reference [44.129] reviews many special-
ized VUV spectrometer designs.

44.3.2 Fourier Transform Spectrometers

Fourier transform spectroscopy (FTS) is a well-
established technique for high-resolution emission and
absorption spectroscopy at infrared and visible wave-
lengths. The technique has been extended into the near
UV and VUV regions, where FTS is characterized
by the large optical throughput, high spectral resolu-
tion, and accurate linear wavenumber scale available at
longer wavelengths [44.153]. However, the multiplex
advantage of FTS is not realized at UV wavelengths be-
cause the signal-to-noise ratio is photon-noise limited
rather than detector limited. A review of interferometric
techniques in the VUV can be found in [44.154].

A scanning Michelson interferometer with a fused
silica beamsplitter has achieved a resolving power of
1.8 × 106 at wavelengths down to 178 nm [44.153]. The
same interferometer design, with a MgF2 beamsplitter,
has achieved a resolving power of 8.5 × 105 at wave-
lengths shorter than 140 nm [44.155]. This spectral
resolution is significantly better than that realized by
the best VUV grating instruments.

At shorter wavelengths, diffraction gratings can be
used as division-of-amplitude beamsplitters to create
all-reflecting interference spectrometers for VUV wave-
lengths. This technique has been used to create spatial
heterodyned spectrometers for astronomical applica-
tions [44.156–158]. The interferometer mirrors are not
moved in such instruments; the interferogram is viewed
by an array detector. The design of a wave-front-division
interferometer for wavelengths down to 60 nm is de-
scribed in [44.159].

44.4 Detectors

There is a wide variety of photon detectors with use-
ful response and sensitivity at VUV wavelengths. With
the exception of those involving the photo-ionization
of gases, VUV detectors are based on the same un-

derlying principles as their counterparts in the visible
and infrared regions – the common detection schemes
are initiated by surface photoemission, electron–hole
pair creation in semiconducting materials, or chemical
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changes in photographic emulsions. The details of the
design of VUV detectors, and the constraints on their
use, are most often determined by the low levels of
transmission of VUV light through suitable window and
semiconducting materials. Nevertheless, VUV detectors
with single photon counting sensitivities and/or imag-
ing capabilities are widely available. Reviews of VUV
detectors can be found in [44.1, 2, 50, 160–163]. Refer-
ences [44.164–166] review the operating characteristics
and calibration of VUV detector standards. A more gen-
eral summary of photon detector technology is presented
in [44.167,168]. Below we summarize and compare the
most common VUV detection schemes, including the
use of photographic plates, photomultiplier tubes and
vacuum photodiodes, multichannel plate detectors, sili-
con photodiodes, charge-coupled devices, and ionization
chambers.

Photographic Plates
Photographic plates have long been used at VUV
wavelengths for spectroscopic measurements, and they
are still sometimes the detector of choice for both
spectroscopic surveys and high resolution wavelength
measurements. They have the advantages of being
imaging detectors with very high spatial resolution;
spectral line positions can be determined with an
uncertainty of about 1 µm. Plates also have mul-
tiplexing and very flexible integrating capabilities,
being insensitive to fluctuations in signal intensities
during the period of exposure. However, when com-
pared with photoelectric detectors, photographic plates
have the disadvantages of limited dynamic range and
a nonlinear response, which makes radiometric mea-
surements very problematic when plates are used.
The gelatin base used in standard photographic emul-
sions strongly absorbs VUV radiation, so special
plates with no gelatin base are required for VUV
work [44.2].

Photomultiplier Tubes
Photomultiplier tubes (PMTs) [44.169] are used through
the VUV for single-photon-counting, nonimaging, ap-
plications. Dark count rates are low

(
about 1 s−1

)

for solar-blind tubes with 1 cm2 photocathodes; pulse
rise times are about 1 to 10 ns ([44.170] for a gen-
eral review of amplifying detectors in the VUV). In
the 105 to 200 nm region, useful PMT window ma-
terials are fused silica, MgF2, and LiF; sapphire is
also used in environments where ionizing radiation,
which causes sapphire to fluoresce, is not present.
In the windowless region of the VUV wavelength

range (2 nm ≤ λ≤ 105 nm), two options are available:
the PMT may be operated bare, i. e., without a win-
dow, or a fluorescent coating can be deposited on the
window to down-convert the VUV light to longer wave-
lengths.

Peak quantum efficiencies for VUV photomultiplier
tubes are about 15 to 20%. Some of the most useful
coatings for photocathodes in the VUV are CsI, KBr,
and other alkali halides. These materials combine high
VUV quantum efficiencies with a solar blind response –
their relatively high photoelectric work functions result
in long wavelength cutoffs between 150 and 300 nm.
Solar blind PMTs have low dark count rates and have
minimal response to stray ambient light.

Bare PMTs, although used in some applications,
are constrained by the degradation of many photo-
cathode and dynode surfaces upon exposure to air
and humidity. Metal surfaces such as tungsten and
aluminum/Al2O3 [44.162] must be used rather than
the higher efficiency alkali halide coated surfaces.
Sodium salicylate is the most commonly used VUV-
visible conversion phosphor; others include liumogen,
terphenyl, and coronene [44.2, 171, 172]. The conver-
sion efficiency of sodium salicylate (peak fluorescence
about 430 nm) is relatively constant for VUV light
from 30 to 200 nm. It displays some aging effects,
which may be associated with contaminants such as
oil vapor in the associated vacuum system [44.2].
The fluorescent decay time of sodium salicylate
is ≈ 10 ns [44.2].

Vacuum Photodiodes
Vacuum photodiodes consist of a photocathode and
an anode, with no amplifying dynode chain. The cur-
rent leaving the photocathode is measured. (A review
of vacuum photodiode designs and performance can
be found in [44.173].) Because of their stability, spa-
tial uniformity, and portability, vacuum photodiodes are
used as radiometric transfer-standard detectors through-
out much of the VUV [44.162, 174, 175]. There is no
gain in vacuum photodiodes, so minimum signal lev-
els that can be accurately measured are on the order
of 106 photons/s. For fast timing applications, vacuum
photodiodes have been designed with risetimes as short
as about 60 ps [44.160].

Microchannel Plates
The microchannel plate (MCP) detector is a photo-
emissive array detector that combines the single-photon
counting sensitivity of a PMT with high resolution imag-
ing capability [44.161–163, 170, 176, 177]. An MCP
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consists of an array of semiconducting glass channels
with diameters of about 10 to 25 µm and length-to-
diameter ratios of about 50 : 1. Electrons ejected from
the front surface of an MCP via the photoelectric effect
are accelerated through the channels; repeated colli-
sions with the channel walls result in an amplification
of the charge by about 106. The exiting charge clouds
are detected by a variety of position-sensing anode
structures.

Bare MCPs have quantum efficiencies of about
10% for λ ≤ 100 nm and a long wavelength cut-
off about 120 nm [44.178]. Alkali halide coatings
increase the quantum efficiency to about 20%
and extend MCP sensitivities toward longer wave-
lengths [44.178–180]. Feedback instabilities pro-
duced by positive ions created in the channels
during the electron cloud amplification are mini-
mized through two common channel geometries; the
chevron configuration, where two or more straight-
channel MCPs oriented at different angles are cas-
caded [44.176], or a configuration with one set of curved
channels [44.181, 182].

Readout schemes for determining the position of
individual detected photons rely on either direct de-
tection of the resulting electron cloud, or conversion
of the electron cloud into visible photons via a phos-
phor to produce an optical image [44.170, 183]. Direct
detection schemes include centroid-detecting anodes
such as the wedge and strip design [44.178, 184],
cross strip anodes [44.185]. Other designs are described
in [44.186, 187]. Discrete anode arrays that digitally lo-
cate event positions include the MAMA (multianode
microchannel array) [44.188, 189] and the CODACON
systems [44.190]. Spatial resolutions of 15 µm are
possible.

Silicon Photodiodes
Broad use of silicon photodiodes at VUV wave-
lengths has traditionally been limited by the strong
absorption of VUV photons in the outer SiO2 pas-
sivation layer that covers the p–n junction of these
devices. Standard silicon detectors are sensitive through-
out the infrared and visible regions and also in the
soft X-ray (λ < 2 nm) and X-ray regions. Significant
improvements in silicon photodiode sensitivities in
the VUV are realized by thinning the SiO2 passi-
vation region to thicknesses of about 5 to 10 nm.
References [44.173, 191] review VUV semiconductor
photodiode designs; references [44.192, 193] describe
the development of non-silicon-based photodiodes, e.g.,
wide bandgap materials such as GaN, for this spec-

tral range. References [44.194–197] report devices with
a quantum efficiency of 120% (electron–hole pairs per
incident photon) at 100 nm. The development of such
photodiodes with appreciable VUV sensitivity and good
temporal stability has led to their use as radiometric
transfer standards [44.198, 199]. Because silicon pho-
todiodes respond strongly to radiation throughout the
visible, ir, and X-ray regions, a method for rejection
of stray light is essential for their effective use in the
VUV. Reference [44.200] reports on the use of thin-film
filters, deposited on the photodiode surface, to restrict
the bandpass of the radiation impinging on the diode
to selected VUV wavelengths. Wide bandgap semicon-
ductors reject visible light with their natural solar-blind
response [44.199].

Charge-Coupled Devices
CCDs are widely used for low light level imaging ap-
plications throughout the visible and near-ir regions. In
the VUV, charge-coupled devices suffer from strong
absorption both by surface gate structures and by the in-
active passivation layer [44.170]. Two approaches are
employed to overcome these limitations: the CCD front
surface is overcoated with a photon down-converting
phosphor [44.201,202], or a thinned and surface-treated
CCD is back-illuminated with VUV light [44.203,204].
Such techniques have resulted in CCD VUV quantum
efficiencies that rival those of photoemissive devices
such as microchannel plates. A comparison of CCD and
MCP performance in the VUV is given by [44.178];
they conclude that MCPs are most appropriate for low
light-level imaging where photon counting is applicable,
while the larger dynamic range and readout capabili-
ties of CCDs make them suitable for higher light level
applications.

Ionization Chambers
In gas ionization chambers, the impact of VUV pho-
tons with gas atoms or molecules produces electron–ion
pairs which are then collected by the application of an
appropriate voltage [44.205]. The photoionization ef-
ficiency and the detection efficiency approach 100%
for photon energies above the ionization threshold
of the gas [44.2, 162]. With appropriate gain, ion-
ization chambers can detect individual photons (e.g.,
the Geiger counter); these chambers require relatively
high gas pressures (100 to 2000 Torr) and there-
fore cannot be used in the windowless region of
the VUV. The double ionization chamber described
by [44.206] serves as a primary standard detector from 5
to 100 nm [44.162].
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44.5 Optical Materials

The design of VUV instrumentation is dictated in large
part by the constraints of VUV optical materials. Trans-
mission through bulk materials is limited to λ� 105 nm,
the short wavelength transmission limit of LiF. Normal
incidence reflectance from metal surfaces and coatings
decreases dramatically at short wavelengths; polarizers
and narrow-band interference filters are relatively diffi-
cult to produce because of the lack of materials with
suitable optical constants. Below we briefly summa-
rize the properties and uses of VUV optical materials.
Comprehensive discussions can be found in [44.1,2,50].

Windows
Few bulk materials transmit light below 200 nm; none
transmit light from about 2 nm to 105 nm. In the 105
to 200 nm wavelength region, the most common win-
dow materials are synthetic fused quartz or suprasil
(with a short λ transmission cutoff about 160 nm), sap-
phire (145 nm), CaF2 (125 nm) MgF2 (112 nm), and
LiF (105 nm). Compilations of the transmission char-
acteristics of these and other materials are presented
in [44.2,50,131,207,208]. Single crystal windows with
dimensions up to 10 cm can be obtained for most of
these materials. Sapphire fluoresces when struck by ion-
izing radiation and is therefore not suitable for certain
environments.

Capillaries
In the windowless region, 2 to 105 nm, it is standard
practice to use differentially pumped slits or circular
apertures to isolate different pressure regions, e.g., to iso-
late an absorption cell from a vacuum spectrometer. This
technique has the drawback of requiring large pumping
capacities and limiting optical throughputs. Thin films
(see below) can be used below 105 nm as windows, but
they provide limited transmission in narrow bandpasses
and cannot support large pressure differentials. Refer-
ence [44.209] describes a differentially pumped MCP
capillary array as an alternative window in the VUV.
The capillaries are typically ≈ 3 mm in length and have
diameters of 10 to 100 µm. Measured optical transmis-
sions are in the 20 to 50% range throughout the VUV;
tradeoffs must be considered between optical through-
put and gas conductance. The main limitation to an MCP
window is its small angular aperture.

Thin Films
Below 105 nm, thin (about 10 to 200 nm) metallic films
are used as transmission filters with bandpasses of ap-

proximately 10 to 50 nm. Details of filter properties
are given in [44.208, 210]. A review of thin film filter
preparation techniques is presented in [44.211]. Refer-
ence [44.212] describes composite metallic filters (e.g.,
Al/Ti/C, Ti/Sb/Al), developed for the Extreme Ultra-
violet Explorer satellite, with transmission bandpasses
of about 10 to 20 nm and high rejection at wavelengths
of strong VUV geocoronal lines.

Coatings
Above 120 nm, the principal broadband reflector for
VUV wavelengths is Al with a thin protective over-
coat of MgF2, having a normal incidence reflectance of
≈ 80 to 85% [44.2, 213]. The normal incidence reflec-
tivities of all materials drop dramatically below about
100 nm. A compilation of coating reflectivities at nor-
mal and grazing incidence is presented in [44.214].
Materials with the highest reflectivities include Os,
Pt, Au, and Ir, with reflectivities of 15 to 30% from
30 to 110 nm [44.2, 215]. [44.216] reviews the prepa-
ration of VUV reflectance coatings for diffraction
gratings. Reference [44.217] reports grazing incidence
reflection coefficients for Rh, Os, Pt, and Au from
5 to 30 nm; Rh has the highest reflectivity in this
region.

Interference Filters and Multilayer Coatings
The development of interference filters for VUV wave-
lengths has been limited by the availability of coating
materials with both high transmission and apprecia-
ble range of refractive differentials [44.218]. Multilayer
dielectric reflectors thus require many layers to compen-
sate for the small reflectivities at the material interfaces.
The theory of multilayer reflecting optics and optic
designs are reviewed in [44.219]. Reference [44.215]
evaluates the commercially available VUV reflectance
filters, antireflection coatings, and neutral density filters
as of 1983. Developments as of the earlys 1990s are
described in [44.220–223]. More recent advances are
presented in [44.224–227].

Normal incidence optics with multilayer reflec-
tion coatings can be used in the nominally grazing
incidence spectral region below 30 nm [44.228–
231]. Reference [44.232] summarizes synthesis pro-
cedures and models of multilayer structures. Ref-
erences [44.233–238] describe normal incidence
gratings coated with Mo/Si multilayers. The perfor-
mances of other multilayer coatings are described
in [44.239–242].

Part
C

4
4
.5



652 Part C Molecules

Polarizers
The production and detection of linearly polarized light
in the VUV is discussed in [44.2,131,243–247]. Above
about 112 nm, transmission polarizers, based on the

birefringence of MgF2, are employed [44.248, 249].
Reflection polarizers must be used below 112 nm. An
analysis of double-reflection circular polarizers is given
in [44.250].
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Elastic Scatter45. Elastic Scattering: Classical, Quantal,
and Semiclassical

Scattering cross sections determine the rates
at which gas phase processes and chemical
reactions happen, whether in the atmosphere,
or in an industrial reactor. This chapter provides
a handy compendium of equations, formulae,
and expressions for the classical, quantal, and
semiclassical approaches to elastic scattering.
Reactive systems and model potentials are also
considered.
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45.1 Classical Scattering Formulae

Central Field. The total energy E > 0 and orbital angular
momentum L of relative planar motion are conserved.
For a particle of mass M with coordinates (R, ψ), a sym-
metric potential V(R), and asymptotic speed v,

E = p2(R)

2M
+V(R)+ L2

2MR2 =
1

2
Mv2= constant ,

(45.1)

L2 = (2ME)b2 = M2v2b2

=
[

MR2(t)ψ̇(t)
]2 = constant . (45.2)

Equation (45.2) implies constant areal velocity.

Radial momentum p(R):

p(R; E, b)= (2ME)1/2
(

1− V(R)

E
− b2

R2

)1/2

.

(45.3)

Effective potential:

Veff(R)= V(R)+ L2

2MR2 = V(R)+ b2

R2 E . (45.4)

The turning points Ri(E, b) are the roots of
E = Veff(R). The smallest Ri is the distance of clos-
est approach Rc(E, b) at the pericenter. The maximum
impact parameter bX and angular momentum L X for
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660 Part D Scattering Theory

approach to within a distance RX are

b2
X = R2

X [1−V(RX)/E] , (45.5a)

L2
X = 2MR2

X [E−V(RX)] . (45.5b)

The trajectory is defined by R = R(t; E, b), ψ =
ψ(t; E, b), where R is the distance from the scattering
center O and ψ is measured with respect to the apse
line OA joining O to the pericenter Rc. Taking t(Rc)= 0,
(45.1) implies

t(R)=
(

M

2E

)1/2 R∫

Rc

(
1− V(R)

E
− b2

R2

)1/2

dR ,

(45.6)

which implicitly provides R = R(t; E, b).

ψ(t; E, b)= L

M

t∫

0

R−2(t) dt

=
(
2MEb2

)1/2

M

t∫

0

R−2(t) dt. (45.7)

Orbit integral (0 ≤ ψ ≤ π): ψ is symmetrical about
and measured from the apse line joining O and Rc.

ψ(R; E, b)= b

R∫

Rc

dR/R2

[
1−V(R)/E−b2/R2

]1/2

(45.8)

=− ∂
∂b

R∫

Rc

(
1− V(R)

E
− b2

R2

)1/2

dR .

(45.9)

For large b and/or small V(R)/E & 1, (45.9) reduces to

ψ(R; E, b)= π
2
− sin−1 b

R
+ 1

2E

∂

∂b

×

R∫

b

V(R) dR
[
1−b2/R2

]1/2 , (45.10)

ψ(R →∞; E, b)= π
2
+ b

2E

×

∞∫

b

(
dV

dR

)
dR

(
R2−b2

)1/2
.

(45.11a)

For a straight-line path, R2 = b2+ Z2, where Z is the
distance along the scattering axis, and

ψ(R →∞; E, b)= π
2
+ 1

4E

∂

∂b

∞∫

−∞
V(b, Z) dZ .

(45.11b)

45.1.1 Deflection Functions

The deflection function χ(E, b), (−∞≤ χ < π), is de-
fined to be χ(E, b)= π−2ψ(R →∞; E, b). Then

χ(E, b)= π−2b

∞∫

Rc

dR/R2

[
1−V(R)/E−b2/R2

]1/2 ,

(45.12)

= π−2

×

1∫

0

({
1−V(Rc/x)/E

1−V(Rc)/E

}
− x2

)−1/2

dx .

(45.13)

An expression which avoids spurious divergences is

χ(E, b)= π+2
∂

∂b
(45.14)

×

∞∫

Rc

[
1−V(R)/E−b2/R2

]1/2
dR .

Small-angle scattering, V(Rc)/E & 1, b ∼ Rc:

χ(E, b)=
(

Rc

E

) ∞∫

Rc

[V(Rc)−V(R)] R dR
(
R2− R2

c

)3/2 (45.15a)

= 1

E

1∫

0

[V(Rc)−V(Rc/x)] dx
(
1− x2

)3/2
, (45.15b)

where x = Rc/R. From (45.10)–(45.11b), other forms
are

χ(E, b)=− 1

E

∂

∂b

∞∫

b

V(R) dR
(
1−b2/R2

)1/2 (45.16a)

=− b

E

∞∫

b

(
dV

dR

)
dR

(
R2−b2

)1/2

(45.16b)

=− 1

2E

∂

∂b

∞∫

−∞
V(b, Z)dZ . (45.16c)
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Elastic Scattering: Classical, Quantal, and Semiclassical 45.1 Classical Scattering Formulae 661

For straight-line paths R2 = b2+v2t2, (45.12)
yields the impulse-momentum result

χ(E, b)= (Mv)−1

∞∫

−∞
F⊥(t) dt =∆p⊥/p∞ ,

(45.17)

where ∆p⊥ is the momentum transferred perpendicu-
lar to the incident direction and F⊥ = −(∂V/∂R)(b/R)
is the impulsive force causing scattering. Special cases
are

Head-on collisions (b = 0):χ(E, 0)= π.

Overall repulsion: 0< χ ≤ π.

Overall attraction: −∞≤ χ ≤ 0.

Forward glory: χ =−2nπ.

Backward glory: χ =−(2n−1)π,

n = 0, 1, 2, . . . .

Rainbow scattering: (dχ/db)= 0 at χr < 0.

Deflection range: χr ≤ χ ≤ π.

Orbiting collisions: cf. (45.34).

Diffraction scattering: χ→ 0 as b →∞.

The scattered particle may wind or spiral many
times around (χ→ −∞) the scattering center. The
experimentally observed quantity is the scattering an-
gle θ (0 ≤ θ ≤ π) which is associated with various
deflections

χi =+θ,−θ,−2π± θ,−4π± θ, . . .
(i = 1, 2, . . . n)

resulting from n different impact parameters bi .

Gauss–Mehler Quadrature Evaluation of the Deflec-
tion Function.

χ(E, b)= π
⎡

⎣1−
(

b

Rc

)
1

n

n∑

j=1

akg(a j)

⎤

⎦ ,

(45.18)

where

ak = cos

(
2 j−1

4n
π

)
, k = n+1− j , and

g(x)=
[
1−V(Rc/x)/E−b2x2/R2

c

]−1/2
,

0 ≤ x ≤ 1 .

45.1.2 Elastic Scattering Cross Section

Differential cross section:

dσ(θ, E)

dΩ
≡ I(θ; E)≡ σ(θ; E) ,

σ(θ, E)=
n∑

i=1

| bi dbi

d(cosχi)
| =

n∑

i=1

Ii(θ) . (45.19)

Integral cross section for scattering by angles θ ≥ θ0:

σ0(E)= 2π

π∫

θ0

I(θ; E) d(cos θ)= 2π

b0(θ0)∫

0

b db ,

(45.20)

where θ0 results from one b0 = b(θ0). When θ0 results
from three impact parameters b1, b2, b3, for example,
then

σ0(E)= 2π

b1∫

0

b db+2π

b3∫

b2

b db

= π
(

b2
1+b2

3−b2
2

)
. (45.21)

Diffusion (momentum-transfer) cross section:

σd(E)= 2π

π∫

0

[1− cos θ(E, b)] I(θ) d(cos θ) ,

(45.22a)

= 2π

∞∫

0

[1− cos θ(E, b)] b db , (45.22b)

= 4π

∞∫

0

sin2
[

1

2
θ(E, b)

]
b db . (45.22c)

Viscosity cross section:

σv(E)= 2π

π∫

0

[
1− cos2 θ(E, b)

]
I(θ) d(cos θ) ,

(45.23a)

= 2π

∞∫

0

[
1− cos2 θ(E, b)

]
b db , (45.23b)

= 2π

∞∫

0

[
sin2 θ(E, b)

]
b db . (45.23c)
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662 Part D Scattering Theory

Small-Angle Diffraction Scattering. The small-angle
scattering regime is defined by the conditions
V(Rc)/E & 1, b ≥ Rc, where θ = |χ|. The main con-
tribution to dσ/dΩ for small-angle scattering arises
from the asymptotic branch of the deflection func-
tion χ at large impact parameters b, and is primarily
determined by the long-range (attractive) part of the
potential V(R) (Sect. 45.3.6).

Large-Angle Scattering. The main contribution to
dσ/dΩ for large-angle scattering arises from the pos-
itive branch of χ at small b and is mainly determined by
the repulsive part of the potential.

45.1.3 Center-of-Mass to Laboratory
Coordinate Conversion

Let ψ1, ψ2 be the angles for scattering and recoil, re-
spectively, of the projectile by a target initially at rest in
the lab frame. Then

σ1(ψ1)dΩ1 = σ2(ψ2)dΩ2 = σ(1,2)cm (θ)dΩcm ,

0 ≤ θ ≤ π ; (45.24)

σ(2)cm (θ, φ)= σ(1)cm (π− θ, φ+π) . (45.25)

(A) Two-body elastic scattering process without
conversion of translational kinetic energy into internal
energy: (1)+ (2)→ (1)+ (2).

σ1(ψ1)= σcm(θ)

(
1+2x cos θ+ x2

)3/2

|1+ x cos θ| ; (45.26)

σ2(ψ2)= σcm(θ)

∣∣∣∣4 sin
1

2
θ

∣∣∣∣ ;

ψ2 = 1

2
(π− θ) , 0 ≤ ψ2 ≤ 1

2
π ; (45.27)

tanψ1 = sin θ

(x+ cos θ)
, x = M1/M2 . (45.28)

M1 > M2: As 0 ≤ θ ≤ θc = cos−1(−M2/M1) ,

0 ≤ ψ1 → ψmax
1 = sin−1(M2/M1) <

1

2
π .

As θc ≤ θ→ π, ψmax
1 ≤ ψ1 → 0 .

θ is a double-valued function of ψ ;

M1 = M2: σ1(ψ1)= (4 cosψ1)σcm(θ = 2ψ1) ,

0 ≤ ψ1 ≤ 1

2
π,ψ1+ψ2 = 1

2
π ;

no backscattering .

M1 & M2:σ1(ψ1)= σcm(θ = ψ1) ;

lab and cm frames identical.

(B) Two-body elastic scattering process with con-
version of translational kinetic energy into internal
energy: (1)+ (2)→ (3)+ (4). For conversion of inter-
nal energy εi so that kinetic energy of relative motion
(in the cm frame) increases from Ei to E f = Ei + εi .
For j = 3, 4,

σ j(ψ j)= σcm(θ)

[
1+2x j cos θ+ x2

j

]3/2

∣∣1+ x j cos θ
∣∣ , (45.29)

x3 =
(

M1 M3 Ei

M2 M4 E f

)1/2

,

x4 =−
(

M1 M4 Ei

M2 M3 E f

)1/2

,

tanψ3 = sin θ

(x3+ cos θ)
, tanψ4 = sin θ

(|x4|− cos θ)
.

45.1.4 Glory and Rainbow Scattering

Glory. The deflection function χ passes through −2nπ
(forward glory) or−(2n+1)π (backward glory) at finite
impact parameters bg. Then sin θ→ 0 as θ→ θg so that
classical cross section diverges as

σ(E, θ)=
(

2bg

sin θ

) ∣∣∣∣
db

dχ

∣∣∣∣
g

as θ→ θg . (45.30)

Rainbow. The deflection function χ passes through
a negative minimum at b = br; (dχ/db)r → 0 so that

χ(b)= χ(br)+ωr(b−br)
2 , (45.31)

ωr = 1

2

(
d2χ

db2

)

br

> 0 . (45.32)

The classical cross section diverges as

σ(E, θ)= br

2 sin θ
[ωr(θr− θ)]−1/2 , θ < θr ,

(45.33)

and is augmented by the contribution from the positive
branch of χ(b).

45.1.5 Orbiting and Spiraling Collisions

Attractive interactions V(R)=−C/Rn (n ≥ 2) can sup-
port quasibound states with positive energy within the
angular momentum barrier. Particles with b< b0 spiral
towards the scattering center. Those with b = b0 are in
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Elastic Scattering: Classical, Quantal, and Semiclassical 45.1 Classical Scattering Formulae 663

unstable circular orbits of radius R0. The radius R0 is
determined from the two conditions

(
dVeff

dR

)

R0

= 0 , E = Veff(R0) , (45.34)

which, when combined, yields

E = Veff(R0)= V(R0)+ 1

2
R0

(
dV

dR

)

R0

. (45.35)

The angular momentum L0 of the circular orbit is

L2
0 = (2ME)b2

0 = 2MR2
0

[
E−V(R0)

]
. (45.36)

Thus b2
0 = R2

0 F, where

F = 1− V(R0)

E
= 1

2

(
R0

E

)(
dV

dR

)

R0

(45.37)

is the focusing factor. The orbiting and spiraling cross
section is then

σorb(E)= πb2
0 = πR2

0 F . (45.38)

45.1.6 Quantities Derived
from Classical Scattering

The semiclassical phase η(E, b)≡ η(E, λ), with
λ= (

+ 1
2

)= kb is a function of b or λ. The quanti-
tites p(R)≡ p(R; E, L) and p0(R)≡ p0(R; E, L) are
radial momenta in the presence and absence of the
potential V(R), respectively.

ηSC(E, b)= 1

�

⎡

⎢
⎣

∞∫

Rc

p(R) dR−
∞∫

b

p0(R) dR

⎤

⎥
⎦

(45.39)

= k

∞∫

Rc

[
1−V/E−b2/R2

]1/2
dR

− k

∞∫

b

[
1−b2/R2

]1/2
dR . (45.40)

Asymptotic speed v: E = 1
2 Mv2 = �

2k2/2M,
k/2E = 1/�v.

Jeffrey–Born phase function:
For small V/E and b ∼ Rc,

ηJB(E, b)=− k

2E

∞∫

b

V(R)dR
(
1−b2/R2

)1/2
. (45.41)

Eikonal phase function:
For small V/E and a linear trajectory R2 = b2+ Z2,

ηE(E, b)=− k

4E

∞∫

−∞
V(b, Z) dZ . (45.42)

Semiclassical cross sections:

σ(E)= 8π

∞∫

0

[
sin2 η(E, b)

]
b db , (45.43)

=
(

8π/k2
) ∞∫

0

sin2 η(E, λ)λdλ . (45.44)

Landau–Lifshitz cross section:

σLL(E)= 8π

∞∫

0

[
sin2 ηJB(E, b)

]
b db . (45.45)

Massey–Mohr cross section:

η(E, b0)= 1

2
,
〈
sin2 η(E, b< b0)

〉= 1

2
, (45.46)

σMM(E)= 2πb2
0+8π

∞∫

b0

η2
JB(E, b)b db . (45.47)

Schiff cross section:

σc(E) = 4

∞∫

−∞
dX

∞∫

−∞
dY

[
sin2 ηE(X,Y )

]
. (45.48)

This reduces to (45.45) for spherical V(R); b ≡ (x, y).
Random-phase approximation (RPA):

For angle α,

4π

∞∫

0

P(b) sin2 α(b)b db = 2π

bc∫

0

P(b)b db ,

(45.49)

where α(bc)= 1/π.
Collision delay time function:

τ(E, λ)= 2�
∂η(E, λ)

∂E
= 2

v

∂η(k)

∂k
. (45.50)

Deflection-angle phase function relation:

χ(E, λ)= 2

k

∂η(E, b)

∂b
= 2

∂η(E, λ)

∂λ
. (45.51)
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664 Part D Scattering Theory

45.1.7 Collision Action

The classical collision action along a classical path with
deflection χ = χ(E, L), measured relative to the action
along the path of the undeflected particle, is

S C(E, L;χ)= SR(E, L)− Lχ(E, L) (45.52a)

= 2ηSC(E, L)�− Lχ . (45.52b)

Radial component of collision action S C:

SR(E, L)= 2

∞∫

Rc(E,L)

p(R)dR−2

∞∫

b(E,L)

p0(R) dR

(45.53a)

= 2ηSC(E, L)� (45.53b)

Collision delay time function:

τ(E, L)= 2M

⎛

⎜
⎝

∞∫

Rc

dR

p(R)
−

∞∫

b

dR

p0(R)

⎞

⎟
⎠ (45.54a)

=
(
∂SR

∂E

)

L
. (45.54b)

Deflection angle function:

χ(E, L)= π−2L

∞∫

Rc

dR/R2

p(R)
(45.55a)

=
(
∂SR

∂L

)

E
. (45.55b)

Radial collision action change:

dSR = τ(E, L)dE+χ(E, L)dL = 2�dηSC (45.56)

45.2 Quantal Scattering Formulae

The basic quantity in quantal elastic scattering is the
complex scattering amplitude f(E, θ), expressed in
terms of the phase shifts η(E) associated with scat-
tering of the  th partial wave. Derived quantities are the
diagonal elements of the scattering matrix S, transition
matrix T and reactance matrix K .

Reduced Energy: k2 = (
2M/�2

)
E.

Reduced Potential: U(R)= (
2M/�2

)
V(R).

45.2.1 Basic Formulae

Wave function: As R →∞,

Ψ(R)→ exp(ikZ)+ 1

R
f(θ) exp(ikR) (45.57)

for symmetric interactions V = V(R).
Elastic scattering DCS:

dσ

dΩ
= I(θ)= | f(θ)|2 . (45.58)

Scattering, transition and reactance matrix elements
in terms of η:

S(k)= exp(2iη) , (45.59a)

T(k)= sin η exp(iη) , (45.59b)

K(k)= tan η . (45.59c)

Scattering amplitudes f(θ):

f(θ)= 1

2ik

∞∑

=0

(2+1)
[
exp(2iη)−1

]
P(cos θ)

=
∞∑

=0

f(θ) , (45.60a)

f(θ)= 1

2ik

∞∑

=0

(2+1) [S(k)−1] P(cos θ) ,

(45.60b)

f(θ)= 1

k

∞∑

=0

(2+1)T(k)P(cos θ) , (45.60c)

f(θ)= 1

2ik

∞∑

=0

S(k)P(cos θ) , θ �= 0 , (45.60d)

= 1

k

∞∑

=0

(2+1)T(k), θ = 0 . (45.60e)

Integral cross sections σ(E):

σ(E)= 2π

π∫

0

I(θ)d(cos θ) , (45.61a)

= 4π

k2

∞∑

=0

(2+1) sin2 η . (45.61b)
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Elastic Scattering: Classical, Quantal, and Semiclassical 45.2 Quantal Scattering Formulae 665

Optical theorem:

σ(E)= (4π/k) Im[ f(0)] . (45.62)

Partial cross sections σ(E):

σ(E)=
∞∑

=0

σ(E) (45.63)

σ(E)= 4π

k2 (2+1) sin2 η (45.64a)

= 4π

k2 (2+1)|T|2

= 2π

k
(2+1) [1−Re(S)] . (45.64b)

Upper limit:

σ(E)≤
(
4π/k2)(2+1) . (45.65)

Unitarity, flux conservation, η is real:

|S|2 = 1, |T|2 = Im(T) . (45.66)

Differential cross sections (DCS):

dσ(E, θ)

dΩ
= | f(θ)|2 = I(θ)= A(θ)2+ B(θ)2 ,

(45.67)

A(θ)= Re[ f(θ)]

= 1

2k

∞∑

=0

(2+1) sin 2ηP(cos θ) ,

B(θ)= Im[ f(θ)]

= 1

2k

∞∑

=0

(2+1) [1− cos 2η] P(cos θ) .

∫
A(θ)2 dΩ = 4π

k2

∞∑

=0

(2+1) sin2 η cos2 η ,

(45.68a)
∫

B(θ)2 dΩ = 4π

k2

∞∑

=0

(2+1) sin4 η , (45.68b)

dσ(E, θ)

dΩ
= 1

k2

∞∑

L=0

aL (E)PL(cos θ) , (45.69a)

aL =
∞∑

=0

+L∑

′=|−L|
(2+1)(2′ +1)

(′00 | ′L0)2

× sin η sin η′ cos(η−η′) , (45.69b)

where (′mm′ | ′L M) are the Clebsch–Gordan Coef-
ficients.

Three-term expansion:

dσ(E, θ)

dΩ
= 1

k2

[(
a0− 1

2
a2

)
+a1 cos θ

+ 3

2
a2 cos2 θ

]
(45.70)

a0(E)=
∞∑

=0

(2+1) sin2 η , (45.71a)

a1(E)= 6
∞∑

=0

(+1) sin η sin η+1

× cos(η+1−η) , (45.71b)

a2(E)= 5
∞∑

=0

[
b sin2 η+ c sin η sin η+2

× cos(η+2−η)
]
. (45.71c)

with coefficients

b = (+1)(2+1)

(2−1)(2+3)
, (45.72a)

c = 3(+1)(+2)

(2+3)
. (45.72b)

S, P wave (= 0, 1) net contribution:

dσ

dΩ
= 1

k2

{
sin2 η0+ [6 sin η0 sin η1 cos(η1−η0)]

× cos θ+ 9 sin2 η1 cos2 θ
}
, (45.73)

σ(E)= 4π

k2

(
sin2 η0+3 sin2 η1

)
. (45.74)

For pure S-wave scattering, the DCS is isotropic. For
pure P-wave scattering, the DCS is symmetric about θ =
π/2, where it vanishes; the DCS rises to equal maxima
at θ = 0, π. For combined S- and P-wave scattering, the
DCS is asymmetric with forward-backward asymmetry.

Transport cross sections (n ≥ 1):

σ(n)(E)= 2π

(
1− 1+ (−1)n

2(n+1)

)−1

×

π∫

0

(
1− cosn θ

)
I(θ) d(cos θ) . (45.75)

The diffusion and viscosity cross sections (45.22a)
and (45.23a) are given by the transport cross sec-
tions σ(1) and 2

3σ
(2), respectively.
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666 Part D Scattering Theory

σ(1)(E)= 4π

k2

∞∑

=0

(+1) sin2(η−η+1) ,

(45.76a)

σ(2)(E)= 4π

k2

(
3

2

) ∞∑

=0

(+1)(+2)

(2+3)

× sin2(η−η+2) ,

(45.76b)

σ(3)(E)= 4π

k2

∞∑

=0

(+1)

(2+5)

×

[
(+2)(+3)

(2+3)
sin2(η−η+3)

+ 3
(
2+2−1

)

(2−1)
sin2(η−η+1)

]

,

(45.76c)

σ(4)(E)= 4π

k2

(
5

4

) ∞∑

=0

(+1)(+2)

(2+3)(2+7)

×

[
(+3)(+4)

(2+5)
sin2(η−η+4)

+ 2
(
22+6−3

)

(2−1)
sin2(η−η+2)

]

.

(45.76d)

Collision integrals: Averages of σ(n)(E) over
a Maxwellian distribution at temperature T are

Ω(n,s)(T)=
[
(s+1)!(kT )s+2

]−1
∞∫

0

σ(n)(E)

× exp(−E/kT )Es+1 dE . (45.77)

Normalization factors are chosen so that the above ex-
pressions for σ(n) andΩ(n,s) reduce to πd2 for classical
rigid spheres of diameter d.

Mobility: The mobility K of ions of charge e in a gas
of density N is given by the Chapman–Enskog formula

K = 3e

8N

(
π

2MkT

)1/2 [
Ω(1,1)(T )

]−1
. (45.78)

Phase shiftsη can be determined from the numerical
solution of the radial Schrödinger equation (45.93), from
an integral equation (45.179b), from solving a nonlinear
first-order differential equation (45.179a), from Log-
arithmic Derviatives (Sect. 45.2.5) or from variational
techniques (Sect. 45.2.4).

45.2.2 Identical Particles:
Symmetry Oscillations

Colliding Particles, each with spin s, in a Total Spin St
Resolved State in the Range (0 → 2s). Particle inter-
change: Ψ(R)= (−1)StΨ(−R)

IA,S(θ)= 1

2
| f(θ)∓ f(π− θ)|2 , (45.79)

ΨA,S(R)→
[
exp(ikZ)∓ exp(−ikZ)

]

+ 1

R

[
f(θ)∓ f(π− θ)] exp(ikR) ,

(45.80)

IA,S(θ)= 1

4k2

∣
∣∣∣

∞∑

=0

ω(2+1)
[
exp 2iη−1

]

× P(cos θ)

∣∣∣∣

2

, (45.81)

σA,S(E)= 4π

k2

∞∑

=0

ω(2+1) sin2 η , (45.82)

where A and S denote antisymmetric and symmetric
wave functions (with respect to particle interchange) for
collisions of identical particles with odd and even total
spin St

A: St odd ω = 0 ( even); ω = 2 ( odd);
S: St evenω = 2 ( even); ω = 0 ( odd).

Spin-States St Unresolved. S/A combination:

I(θ)= gA IA(θ)+ gS IS(θ) , (45.83)

σ(E)= gAσA(E)+ gSσS(E) , (45.84)

where gA and gS are the fractions of states with odd and
even total spins St = 0, 1, 2, . . . , 2s. For Fermions (F)
with half integer spin s, and Bosons (B) with integral
spin s

F: gA = (s+1)/(2s+1) ,gS = s/(2s+1) ,
B: gA = s/(2s+1) , gS = (s+1)/(2s+1) ,

so that (45.83) and (45.84) have the alternative forms

I(F)= | f(θ)|2+| f(π− θ)|2−I , (45.85a)

σ(F)= 1

2
[σS+σA]− 1

2
[σS−σA] /(2s+1) ,

(45.85b)

I(B)= | f(θ)|2+| f(π− θ)|2+I , (45.85c)

σ(B)= 1

2
[σS+σA]+ 1

2
[σS−σA] /(2s+1) ,

(45.85d)
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where the interference term is

I=
(

2

2s+1

)
Re

[
f(θ) f ∗(π− θ)] . (45.86)

Example: For fermions with spin 1/2,

σ(E)= 2π

k2

[ ∞∑

=even

(2+1) sin2 η

+3
∞∑

=odd

(2+1) sin2 η

]
. (45.87)

Symmetry oscillations originate from the inter-
ference between unscattered incident particles in the
forward (θ = 0) direction and backward scattered par-
ticles (θ = π, = 0). Symmetry oscillations are sensitive
to the repulsive wall of the interaction.

Resonant Charge Transfer and Transport Cross Sec-
tions for A+–A Collisions. The phase shifts for elastic
scattering by the gerade (g) and ungerade (u) poten-
tials of A+2 are, respectively, ηg

 and ηu
 . The charge

transfer (X) and transport cross sections are

σX(E)= π

k2

∞∑

=0

(2+1) sin2 (ηg
 −ηu



)
,

(45.88a)

σ
(1)
A,S(E)=

4π

k2

∞∑

=0

(+1) sin2(β−β+1) ,

(45.88b)

σ
(2)
A,S(E)=

4π

k2

(
3

2

) ∞∑

=0

(+1)(+2)

(2+3)

× sin2(β−β+2) ; (45.88c)

A: β = ηg
 ( even), or ηu

 ( odd) ,

S: β = ηu
 ( even), or ηg

 ( odd) .

σ
(1)
A,S contains (g/u) interference; σ(2)A,S does not.

When nuclear spin degeneracy is acknowledged, the
cross sections σA,S are summed according to (45.85b)
or (45.85d).

Since there is no coupling between molecular states
of different electronic angular momentum, the scattering
by the 2Σg,u pair and the 2Πg,u pair of Ne+2 potentials
(for example) is independent and

σX(E)= 1

3
σΣ(E)+ 2

3
σΠ(E) . (45.89)

Singlet–Triplet Spin Flip Cross Section.

σST(E)= π

k2

∞∑

=0

(2+1) sin2 (ηs
−ηt



)
, (45.90)

where ηS,T
 are the phase shifts for individual scattering

by the singlet and triplet potentials, respectively.

45.2.3 Partial Wave Expansion

Ψ(R)= 1

kR

∞∑

=0

Av(kR)P(cos θ) , (45.91)

A = i(2+1) exp(iη) . (45.92)

Radial Schrödinger equation (RSE):

d2v

dR2
+
[

k2−U(R)− (+1)

R2

]
v(R)= 0 (45.93)

where v is normalized so that

v(R)
R>R0= cos ηF(kR)+ sin ηG(kR) (45.94)

→ sin

(
kR− 1

2
π+η

)
as R →∞ .

The regular (nonsingular) solution (zero at R = 0)
of the field-free RSE (45.93) with U(R)= 0 is

F(kR)= (kR) j(kR)=
(

1

2
πkR

)1/2

J+1/2(kR)

(45.95)

→
{
(kR)+1/(2+1)!!, R → 0

sin
(

kR− 1
2π

)
, R →∞,

(45.96)

where j is the spherical Bessel function. Equation
(45.91) with v = F is the partial-wave expansion for
the incident plane-wave exp(ikZ).

The irregular solution (divergent at R = 0) of the
field-free RSE is

G(kR)=−(kR)n(kR)

=
(

1

2
πkR

)1/2

J−(+1/2)(kR) (45.97)

→
{
(2−1)!!/(kR), R → 0

cos
(

kR− 1
2π

)
, R →∞,

(45.98)

where n is the spherical Neumann function.
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The full asymptotic scattering solution is the com-
bination (45.94) of the regular and irregular solutions.
The mixture depends upon:

Forms of Normalization for v�. In (45.91), possible
choices of normalization are:

(a) A = i(2+1) exp iη , (45.99a)

v(R)∼ sin

(
kR− 1

2
π+η

)
; (45.99b)

(b) A = i(2+1) cos η , (45.100a)

v(R)∼ sin

(
kR− 1

2
π

)
+K cos

(
kR− 1

2
π

)
;

(45.100b)

(c) A = i(2+1) , (45.101a)

v(R)∼ sin

(
kR− 1

2
π

)
+Te

i(kR−π/2) ;
(45.101b)

(d) A = 1

2
i+1(2+1) , (45.102a)

v(R)∼ e−i(kR−π/2)− S ei(kR−π/2) ; (45.102b)

S = 1+2iT; K = T/(1+ iT) ;
(45.103)

T = sin η eiη ; 1+ iT = cos η eiη .

(45.104)

Significance of η�, K�, T�, and S�. The effect of
scattering is therefore to: (1) introduce a phase shift
η in (45.99b) to the regular standing wave, (2) leave
the regular standing wave alone and introduce ei-
ther an irregular standing wave of real amplitude K
in (45.100b) or, a spherical outgoing wave of amplitude
T in (45.101b), and (3) to convert in (45.102b) an in-
coming spherical wave of unit amplitude to an outgoing
spherical wave of amplitude S.

Levinson’s Theorem. A local potential U(R) can support
n bound states of angular momentum  and energy En
such that

lim
k→0

η0(k)=
⎧
⎨

⎩
n0π , En < 0(

n0+ 1
2

)
π , En+1 = 0 ,

(45.105)

lim
k→0

η(k)= nπ ,  > 0 . (45.106)

45.2.4 Scattering Length
and Effective Range

Blatt–Jackson Effective Range Formula. For short-
range potentials,

k cot η0 =− 1

as
+ 1

2
Rek2+O

(
k4) . (45.107)

Effective range:

Re = 2

∞∫

0

[
u2

0(R)−v2
0(R)

]
dR , (45.108)

where u0 = sin(kR+η0)/ sin η0 is the k = 0 limit of the
potential-free = 0 radial wave function and normalized
so that u0(R) goes to unity as k → 0. The potential
distorted = 0 radial function v0 is normalized at large
R to u0(R). The effective range is a measure of the
distance over which v0 differs from u0. The outside
factor of 2 in (45.108) is chosen such that Re = a for
a square well of range a.

Scattering length:

as =− lim
k→0

f(θ) . (45.109)

Relation with k → 0 Elastic Cross Section.

σ(k → 0)= 4π

k2
sin2 η0

= 4πa2
s

[(
1− 1

2
k2as Re

)2

+ k2a2
s

]−1

(45.110)

∼ 4πa2
s

[
1+ask

2(Re−as)
]

(45.111)

Relation with Bound Levels. If a = 0 bound level of
energy En =−�2k2

n/2M lies sufficiently near the disso-
ciation limit the effective range and scattering lengths,
Re and as, respectively, are related by,

− 1

as
=−kn + 1

2
Rek2

n +· · · (45.112)

Wigner Causality Condition. If η provides the domi-
nant contribution to f(θ) then

∂η(k)

∂k
≥−as (45.113)

where as is the scattering length (= 0) and is a measure
of the range of the interaction.
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Effective Range Formulae. The Blatt–Jackson formula
must be modified [45.1–5] for long-range interactions
as follows.

(1) Modified Coulomb potential: V(R)∼ Z1 Z2e2/R

2(K/a0)=−(1/as)+ 1

2
Rek2 (45.114)

K = π cot η0

e2πα−1
− lnβ−0.5772

+β2
∞∑

n=1

[
n
(

n2+β2
)]−1

(45.115)

where β = Z1 Z2e2/�v= Z1 Z2/(ka0).
(2) Polarization potential: V(R)=−αde2/2R4 ,

tan η0 =−ask−π
3

C4k2−4

3
C4ask

3 ln(ka0)

+Dk3+Fk4 , (45.116)

tan η1 = π

15
C4k2−a(1)s k3 , (45.117)

tan η = πC4k2

(2+3)(2+1)(2−1)
+O

(
k2+1

)
,

(45.118)

for  > 1, where

C4 = 2M

�2

(
αde2

2

)
=
(
αd

a0

)(
M

me

)
. (45.119)

Example: e−–Ar low energy collisions: The values

as = −1.459a0 ;D = 68.93a3
0

a(1)s = 8.69a3
0 ; F =−97a4

0

provide an accurate fit to recent measurements [45.6] of
(45.76a) for the diffusion cross section σd.

(3) Van der Waals potential: V(R)=−C/R6

k cot η0 = − 1

as
+ 1

2
Rek2− π

15a2
s

(
2MC

�2

)
k3

− 4

15as

(
2MC

�2

)
k4 ln(ka0)+O

(
k4
)
.

(45.120)

e–Atom Collisions with Polarization Attraction. As
k → 0, the differential cross section is

dσ

dΩ
= a2

s

[
1+ C4

as
k sin

θ

2
+ 8

3
C4k2 ln(ka0)+· · ·

]

(45.121)

and the elastic and diffusion cross sections are

σ(k → 0)= 4πa2
s

[
1+ 2πC4k

3as

+8

3
C4k2 ln(ka0)+· · ·

]
(45.122)

σd(k → 0)= 4πa2
s

[
1+ 4πC4k

5as

+8

3
C4k2 ln(ka0)+· · ·

]

(45.123)

For e−–noble gas collisions, the scattering lengths
are

He Ne Ar Kr Xe

as (a0) 1.19 0.24 -1.459 -3.7 -6.5

For atoms with as < 0, a Ramsauer–Townsend min-
imum appears in both σ and σd at low energies,
provided that scattering from higher partial waves
can be neglected, because from (45.116), η0 ) 0 at
k =−3as/πC4.

Semiclassical Scattering Lengths. For heavy particle
collisions, ηSC(E → 0, b) tends to

ηSC
0 =

(
2M

�2

)1/2 ∞∫

R0

|V(R)|1/2 dR . (45.124)

(a) Hard-core + well:

V(R)=

⎧
⎪⎨

⎪⎩

∞, R< R0

−V0, R0 ≤ R< R1

0, R1 < R ,

as =
[
1− tan ηSC

0 /(kR1)
]

R1 , (45.125)

ηSC
0 = k(R1+ R0) , k2 = 2MV0/�

2 . (45.126)

The phase-averaged scattering length is 〈as〉 = R1.
(b) Hard-core + power-law (n > 2):

V(R)=
{

∞ , R< R0

±C/Rn , R> R0
. (45.127)

Repulsion (+): with γ 2 = 2MC/�2,

a(+)s =
(
γ

n−2

)2/(n−2)

Γ

(
n−3

n−2

)
/Γ

(
n−1

n−2

)
.

(45.128)
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Attraction (−): with θn = π/(n−2),

a(−)s = a(+)s

[
1− tan θn tan

(
ηSC

0 − 1

2
θn

) ]
cos θn ,

(45.129)

ηSC
0 = γ

∞∫

R0

R−n/2 dR = 2γR1−n/2
0

n−2
, (45.130)

〈a(−)s 〉 = a(+)s cos θn . (45.131)

Number of bound states:

Nb = int

{
1

π

[
ηSC

0 − 1

2
(n−1)θn

]}
+1 , (45.132)

where int(x) denotes the largest integer of the real argu-
ment x. For integer x, a(−)s is infinite and a new bound
state appears at zero energy.

45.2.5 Logarithmic Derivatives

Phase shift calculations can be based on the logarithmic
derivative at R = a separating internal and external re-
gions. Two equivalent forms using sets (R, j, n) or
(v, F,G) when R = v/kR are

K(k)= k j ′(ka)−γ(k) j(ka)

kn′(ka)−γ(k)n(ka)
= tan η ,

(45.133a)

=− kF′
(ka)− L(k)F(ka)

kG′
(ka)− L(k)G(ka)

, (45.133b)

where the logarithmic derivative of the internal solution
at R = a appropriate to either set, is

γ =
(

R−1
 dR/dR

)

R=a
, (45.134)

or alternatively, L = [v−1
 dv/dR]R=a. The primes de-

note differentiation with respect to the argument, i. e.

B′(ka)=
(

dB(x)

dx

)

x=ka
= 1

k

(
dB(kR)

dR

)

R=a
,

(45.135)

where B denotes the functions F, G, j, and n.

Decomposition of the S-Matrix Element.

S(k)= e2iη =
(
γ− (r− is)

γ− (r+ is)

)
e2iηH

 , (45.136)

where

ηH
 (k)=− j(ka)− in(ka)

j(ka)+ in(ka)
, (45.137)

r+ is = k

(
j ′(ka)+ in′(ka)

j(ka)+ in(ka)

)
. (45.138)

Decomposition of the Phase Shift.

η = ηH
 + δ , (45.139)

where ηH
 is determined by (45.137), and where δ is

determined by

tan δ = s
γ−r

, (45.140)

which depends on the shape of U via the logarithmic
derivative γ of (45.134), and can vary rapidly with k,
thereby giving rise to resonances.

Examples. (1) Hard sphere: if V(R)=∞ for R< a, and
V(R)= 0 for R> a, then γ =∞, and

K (HS)


= tan η(HS)
 (k)= j(ka)

n(ka)
(45.141)

→
{ −(ka)2+1/ [(2+1)!!(2−1)!!], ka & 1

− tan
(

ka− 1
2π

)
, ka % 1

(45.142)

S(HS)
 = exp

(
2iη(HS)



)
=− j(ka)− in(ka)

j(ka)+ in(ka)

= 1+2iT (HS)
 . (45.143)

The phase shift ηH
 in the decomposition (45.139) is

therefore identified as η(HS)
 for hard sphere scattering.

σ(E → 0)= 4πa2 . (45.144)

Diffraction pattern: As E →∞,

dσ

dΩ
→ 1

4
a2

[
1+ cot2

(
1

2
θ

)
J2

1 (ka sin θ)

]
,

(45.145)

σ(E)→ 2πa2 . (45.146)

Classical hard sphere scattering and diffraction about
the sharp edge each contribute πa2 to σ .

(2) Spherical Well: if U(R)=−U0 for R ≤ a, and
U(R)= 0 for R> a, then

γ(k)= κ j ′(κa)
j(κa)

; κ2 =U0+ k2 ≡ k2
0+ k2 .

(45.147)
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S-wave (= 0) properties:

η0(k)=−ka+ tan−1 [(k/κ) tan κa] . (45.148)

As k → 0, σ0(E)→ 4πa2
s , where the scattering length

is

as = [1− tan(k0a)/(k0a)] a . (45.149)

For a shallow well k0a & 1: σ0(E)= (4π/9)U2
0 a6,

which agrees with the Born result (45.171) as k → 0.
The condition for = 0 bound state with energy

En =−(�2k2
n/2M) is

kn tan κ′a =−κ′, κ′2 = k2
0− k2

n . (45.150)

As the well is further deepened,σ0(E) oscillates between
zero, where tan k0a = k0a, and ∞, where k0a = nπ/2,
the condition both for appearance of a new level n at
energy E and for a0 →∞. In the neighborhood of these
infinite resonances,

σ0(E)= 4π

k2+κ′2 , (45.151)

where κ′ = κ/ tan κa.

45.2.6 Coulomb Scattering

Direct solution of RSE (45.93) yields

v ∼ sin

(
kR− 1

2
π+η(C) −β ln 2kR

)
, (45.152)

β = Z1 Z2e2/
�v= Z1 Z2/(ka0) . (45.153)

Coulomb phase shift:

η
(C)
 = argΓ(+1+ iβ)= Im [lnΓ(+1+ iβ)] .

(45.154)

Coulomb S-matrix element:

S(C)
 = exp

(
2iη(C)



)
= Γ(+1+ iβ)

Γ(+1− iβ)
. (45.155)

Coulomb scattering amplitude:

fC(θ)=−
β exp

[
2iη(C)

 − iβ ln
(

sin2 1
2θ
)]

2k sin2 1
2θ

.

(45.156)

Coulomb differential cross section:

dσ

dΩ
= β2

4k2 sin4 1
2θ

= Z2
1 Z2

2e4

16E2
csc4 1

2
θ , (45.157)

which is the Rutherford scattering cross section.

Mott Formula. For the Coulomb scattering of two iden-
tical particles: From (45.85a) and (45.85c)

(a) spin-zero bosons (e.g. 4He–4He):

dσ

dΩ
= β2

4k2

(
csc4 1

2
θ+ sec4 1

2
θ

+2 csc2 1

2
θ sec2 1

2
θ cosΓ

)
, (45.158)

(b) spin- 1
2 fermions (e.g. H+–H+, e±–e±)

dσ

dΩ
= β2

4k2

(
csc4 1

2
θ+ sec4 1

2
θ

− csc2 1

2
θ sec2 1

2
θ cosΓ

)
, (45.159)

where Γ = 2β ln
(

tan 1
2θ
)

.

45.2.7 Resonance Scattering

Zero-Energy Broad Resonances. The spherical well ex-
ample (45.147) serves to illustrate broad resonances.
When the well depth U0 is strong enough to accomodate
the (n0+1) th energy level at zero energy, the bound
state condition (45.150) implies that η0(k → 0)= (n0+
1)π, illustrating Levinson’s theorem (45.105). As k in-
creases, η0 generally decreases through either (2n−
1)π/2, or (n−1)π, where σ0 has, respectively, a max-
imum value 4π/k2 and a minimum value of zero. If
the phase shifts η for  > 0 are small, then a nonzero
minimum value inσ(E) is evident. This is the Ramsauer–
Townsend minimum manifest when the potential is just
strong enough to introduce one or more wavelengths into
the well with no observable scattering. Since the rate
of decrease of η0 cannot be arbitrarily rapid, (45.105),
broad resonances will be exhibited in contrast to narrow
(Breit–Wigner) resonances when η increases rapidly
through (2n−1)π/2 over a small energy range ∆E.

Narrow Resonances. The general decomposition
(45.139) can be used to analyze narrow resonances.
When γ varies rapidly within an energy width Γ about
a resonance energy Er then δ increases through odd
multiples of π/2 and

δ = δr
 = tan−1 Γ

2(Er− E)
, (45.160)

so that (45.60a) with (45.59a) and (45.59b) is

f = (2+1)

k

(
T (HS)
 + S(HS)



Γ/2

Er− E− i
2Γ

)

× P(cos θ) . (45.161)
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672 Part D Scattering Theory

Breit–Wigner Formula. For a pure resonance with no
background phase shift, S(HS)

 = 1 and the cross section
has the Lorentz shape

σ(E)= 4π(2+1)

k2

×

(
Γ 2/4

(E− Er)2+Γ 2/4

)
. (45.162)

Shape Resonances. (Also called quasibound state or
tunneling resonances). At very low impact energies
near or below the energy threshold for orbiting, sharp
spikes superimposed on the glory oscillations may be
evident in the E-dependance of σ(E). These are due
to quasibound states with positive energy En sup-
ported by the effective potential V(r)+ L2/

(
2Mr2

)
.

In heavy particle collisions, quasibound levels are the
continuation of the bound rotational levels to positive
energies En > 0.

Systems in quasibound states (n), with nonresonant
eigenenergy En and phase shift η(0) , have

E = En− i

2
Γn , (45.163a)

η = η(0) +η(r)
 , (45.163b)

η = η(0) + tan−1 Γn

2(En− E)
; (45.163c)

S(E)= e2iη =
(

E− En− i
2Γn

E− En+ i
2Γn

)
e2iη(0) .

(45.164)

The phase shift η(r)
 increases by π as E increases

through En at a rate determined by Γn. The dominant
amplitude shifts from the external to the quasibound
internal regions at E = En.

Partial-Wave Scattering Amplitude.

f(θ)= 1

2ik
(2+1) exp

(
2iη0



)
P(cos θ)

×

(
1− iΓn

(E− En+ i
2Γn)

)
; (45.165)

= background potential scattering amplitude

+ resonance scattering amplitude.

The partial-wave cross section is composed of the
following: potential resonance and interference contri-

butions to σ = | f(θ)|2:

σ = 4π

k2
(2+1)

(
sin2 η

(0)


+ Γ
2
n cos 2η(0) +2Γn(En− E) sin 2η(0)

4(E− En)2+Γ 2
n

)

(45.166a)

= 4π

k2
(2+1)

[
sin2 η

(0)


×

(
(E− En)

2

(E− En)
2+ (Γn/2)2

)

+ cos2 η
(0)


(
(Γn/2)2

(E− En)2+ (Γn/2)2

)

+ sin 2η(0)

(
(Γn/2)(En− E)

(E− En)
2+ (Γn/2)2

)]
,

(45.166b)

σ(E)=
∞∑

=0

σ = σ0(E)+σres(E) . (45.166c)

Resonance Shapes. Resonance shapes depend on the
value of the background phase shift η(0) . The case
η
(0)
 = 0 gives a Lorentz line shape through the Breit–

Wigner formula

σ = 4π(2+1)

k2

Γ 2
n/4

(E− En)2+Γ 2
n/4

. (45.167)

The other cases from (45.166b) are

η
(0)
 = nπ large positive spike;

η
(0)
 =

(
n+ 1

2

)
π large negative spike;

nπ < η(0) <
(

n+ 1
2

)
π positive then negative;

(
n+ 1

2

)
π<η

(0)
 <(n+1)π negative then positive.

(45.168)

Time Delay.

τ = 2�

(
∂η

∂E

)



= 2�

(
∂η
(0)


∂E

)

+ 4�

Γn
. (45.169)

The time for capture into quasibound levels is
τc = 4�/Γn, and the capture frequency is νc = Γn/4�.
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45.2.8 Integral Equation for Phase Shift

sin η =−1

k

∞∫

0

F(kR)U(R)v(A) (kR) dR ,

(45.170a)

K = tan η =−1

k

∞∫

0

F(kR)U(R)v(B) (kR) dR ,

(45.170b)

T = eiη sin η

=−1

k

∞∫

0

F(kR)U(R)v(C ) (kR) dR ,

(45.170c)

S−1 = exp(2iη)−1 (45.170d)

=−1

k

∞∫

0

F(kR)U(R)v(D) (kR) dR ,

(45.170e)

where v(A) , v
(B)
 , v

(C)
 , v

(D)
 are so chosen to have asymp-

totes prescribed by (45.99b)–(45.102b), respectively.

Born Approximation for Phase Shifts. Set v = F in
(45.170a)–(45.170d) to obtain

tan ηB
 (k)=−k

∞∫

0

U(R) [ j(kR)]2 R2 dR .

(45.171)

For λ= (+1/2)% ka, substitute

〈
k2 R2 [ j(kR)]2 〉= 1

2

(
1−λ2/k2 R2

)−1/2
.

(45.172)

For the Jeffrey–Born (JB) phase shift function, % ka,

tan ηJB(λ)=− k

2E

∞∫

λ/k

V(R)dR
[
1−λ2/(kR)2

]1/2
,

(45.173)

which agrees with (45.41) since bk = + 1
2 = λ. For lin-

ear trajectories R2 = b2+ Z2, the eikonal phase (45.42)
is recovered.

Born S-Wave Phase Shift.

tan ηB
0 (k)=−1

k

∞∫

0

U(R) sin2(kR)dR (45.174)

Examples: (i) U =U0
e−αR

R
, (ii) U = U0

(
R2+ R2

0

)2 ;

(i) tan ηB
0 =−U0

4k
ln
(

1+4k2/α2
)
, (45.175)

(ii) tan ηB
0 =− πU0

4kR3
0

[
1− (1+2kR0)e

−2kR0
]
.

(45.176)

Born Phase Shifts (Large ). For % ka,

tan ηB
 =− k2+1

[(2+1)!!]2

∞∫

0

U(R)R2+2 dR ,

(45.177)

valid only for finite range interactions U(R> a)= 0.
Example: U =−U0, R ≤ a and U = 0, R> a.

tan ηB
 (% ka)=U0a2 (ka)2+1

[(2+1)!!]2 (2+3)
.

(45.178)

For % ka, η+1/η ∼ (ka/2)2 .

45.2.9 Variable Phase Method

The phase function η(R) is defined to be the scattering
phase shift produced by the part of the potential V(R)
contained within a sphere of radius R. It satisfies the
nonlinear differential equation for η(R)

dη
dR

=−kR2U(R) [cos η(R) j(kR)

− sin η(R)n(kR)]2 . (45.179a)

The corresponding integral equation for η(R) is

η(R)=−k

R∫

0

[
cos η(R) j(kR)

− sin η(R)n(kR)
]2

U(R)R2 dR .
(45.179b)

The Born approximation (45.171) is recovered by sub-
stituting η = 0 on the RHS of (45.179b) as R →∞.
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45.2.10 General Amplitudes

For a general potential V(R), define the reduced poten-
tial U(R)= (

2M/�2
)

V(R). The plane wave scattering
states are

φk(R)= exp (ik · R)= φ−k∗(R) , (45.180)

and the full scattering solutions have the form

Ψ
(±)
k (R)∼ φk(R)+ f(k, k′)

R
exp (±ikR) ,

(45.181)

where the scattering amplitude is

f(k, k′)=− 1

4π

〈
φk′(R) |U(R) | Ψ(+)k (R)

〉

(45.182a)

=− 1

4π

〈
Ψ
(−)
k′ (R) |U(R) | φk(R)

〉

(45.182b)

≡− 1

4π

〈
φk′(R) |T |φk(R)

〉
. (45.182c)

The last equation defines the T -matrix element.

First Born Approximation.
Set Ψ+

k = φk in (45.182a). Then

fB(K)=− 1

4π

∫
U(R) exp (iK · R) dR , (45.183)

where the momentum change is K = k−k′, and
K = 2k sin 1

2θ. For a symmetric potential,

fB(K)=−
∫

sin K R

K R
U(R)R2 dR . (45.184)

Connection with partial wave analysis:

sin K R

K R
=

∞∑

=0

(2+1) [ j(kR)]2 P(cos θ) .

(45.185)

which is consistent with (45.171).
The static e−–atom scattering potential and Born

scattering amplitude are

V(R)=− Ze2

R
+ e2

∫ |ψ(r)|2 dr
|R−r| , (45.186)

fB(K)= 2Me2

�2

[Z− F(K)]

K2 . (45.187)

where the elastic form factor is

F(K)=
∫ ∣

∣ψ(r)
∣
∣2 exp

(
iK ·r

)
dr .

For a pure Coulomb field, F(K)= 0 and σB(θ, E)=
| fB(K)|2 reduces to (45.157).

Two Potential Formulae. For scattering from the com-
bined potential U(R)=U0(R)+U1(R),

f(k, k′)=− 1

4π

[〈
φk′(R) |U0(R) | χ(+)k (R)

〉

+ 〈
χ
(−)
k′ (R) |U1(R) | Ψ(+)k

〉]
,

(45.188a)

where χ(±)k (R) and Ψ(±)k (R) are full solutions for scat-
tering by V0 and V0+V1, respectively. For symmetric
interactions,

f(θ)= 1

k

∞∑

=0

(2+1)
(

T (0) +T (1)

)
P(cos θ) ,

(45.189)

T (0) = exp
(

iη(0)

)
sin η(0) (45.190a)

=−1

k

∞∫

0

dR [F(R)U0(R)u(R)] , (45.190b)

T (1) = exp
(

2iη(0)

)
exp

(
iη(1)

)
sin η(1) , (45.191a)

T (1) =−1

k

∞∫

0

dR
[
u(R)U1(R)v(R)

]
, (45.191b)

where u and v are the radial wave functions in (45.93),
with phase-shifts η(0) and η = η(0) +η(1) , for scattering
by V0 and V0+V1, respectively, normalized according
to (45.101b).

Distorted-Wave Approximation.

Ψ
(+)
k (R)∼ χ(+)k (R)

f(k, k′)=− 1

4π

[〈
φk′(R) |U0(R) | χ(+)k (R)

〉

+
〈
χ
(−)
k′ (R) |U1(R) | χ(+)k (R)

〉]
.

(45.192)
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45.3 Semiclassical Scattering Formulae

45.3.1 Scattering Amplitude:
Exact Poisson Sum Representation

Poisson Sum Formula. With λ= + 1
2 ,

∞∑

=0

F

(
+ 1

2

)
=

∞∑

m=−∞
(−1)m

∞∫

0

F(λ)ei2mπλ dλ .

(45.193)

When applied to (45.60b),

f(θ)= (ik)−1
∞∑

m=−∞
(−1)m

∞∫

0

λ
(

e2iη(λ)−1
)

× P
λ− 1

2
(cos θ)ei2mπλ dλ , (45.194)

where η(λ) and Pλ−1/2 ≡ P(λ, θ) are now phase
functions and Legendre functions of the continuous vari-
able λ, being interpolated from discrete to continuous .
This infinite-sum-of-integrals representation for f(θ) is
in principle exact. It is the appropriate technique for
conversion from a sum over (quantal) discrete values of
a variable to a continuous integration over that variable
which classically can assume any value. The particular
merit here is that the index m labels the classical paths
that have encircled the (attractive) scattering center m
times, and that the terms with m < 0 have no regions
of stationary phase (SP). For deflections χ in the range
−π< χ< π, the only SP contribution is the m = 0 term.

45.3.2 Semiclassical Procedure

Semiclassical analysis [45.7–9] involves reduc-
ing (45.194) by the three approximations represented
by cases A to C below. Since the integrands can os-
cillate very rapidly over large regions of λ, the main
contributions to the integrals arise from points λi of sta-
tionary phase of each integrand. The amplitude can then
be evaluated by the method of stationary phase, the basis
of semiclassical analysis.

A. Legendre Function Asymptotic Expansions
Main range: sin θ > λ−1, θ not within λ−1 of zero or π.

P(cos θ)= (2/(πλ sin θ))1/2 cos (λθ−π/4) .
(45.195)

Forward formula: θ within λ−1 of zero.

P(cos θ)= [θ/ sin θ]1/2 J0(λθ) , (45.196a)

J0(λθ)
1

π

π∫

0

e−iλθ cosφ dφ . (45.196b)

Backward formula: θ within λ−1 of π.

P(cos θ)=
(
π− θ
sin θ

)1/2

× J0 [λ(π− θ)] e−iπ(λ−1/2) . (45.197)

Equations (45.195–45.197) are useful for analysis of
caustics (rainbows), diffraction and forward and back-
ward glories, respectively. Also, a useful identity is

∞∑

=0

(2+1)P(cos θ)=
{

4δ(1− cos θ), θ > 0

0 θ = 0

where δ(x) is the Dirac delta function.

B. JWKB Phase Shift Functions

η(λ)=
∞∫

Rc

kλ(R) dR−
∞∫

λ/k

(
k2− λ

2

R2

)1/2

dR

(45.198a)

= lim
R→∞

⎡

⎢
⎣

∞∫

Rc

k(R
′) dR′ − kR

⎤

⎥
⎦+ 1

2
λπ .

(45.198b)

Local wave number:

k2
λ(R)= k2−U(R)−λ2/R2 . (45.199)

The Langer modification:

b =
√
(+1)

k
= +1/2

k
= λ

k
. (45.200)

Useful identity: As R →∞,

sin

⎡

⎢
⎣

R∫

λ/k

(
k2−λ2/R2

)1/2
dR+ π

4

⎤

⎥
⎦

→ sin

(
kR− 1

2
π

)

(45.201)
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676 Part D Scattering Theory

JWKB phase functions are valid when variation
of the potential over the local wavenumber k−1

λ (R)
is a small fraction of the available kinetic energy
E−V(R). Many wavelengths can then be accomo-
dated within a range ∆R for a characteristic potential
change ∆V . The classical method is valid when
(1/k)(dV/dR)& (E−V).

Phase−Deflection Function Relation.

χ(λ)= 2
∂η(λ)

∂λ
. (45.202)

C. Stationary Phase Approximations (SPA)
to Generic Integrals

A±(θ)=
∞∫

−∞
g(θ; λ) exp [±iγ(θ; λ)] dλ (45.203)

for parametric θ. In cases where the phase function γ
has two stationary points, a phase minimum γ1 at λ1 and
a phase maximum γ2 at λ2, then γ ′i = 0, γ ′′1 > 0, γ ′′2 < 0
where γ ′i = (dγ/dλ) at λi and γ ′′i = (d2γ/dλ2) for i =
1, 2. Since g is real, A− = (A+)∗, gi(θ)= g(θ, λi).

Uniform Airy result.

A+(θ)= a1(θ)e
i(γ1+π/4)F∗(γ21)

+ a2(θ)e
i(γ2−π/4)F(γ21) , (45.204)

ai(θ)=
[
2π/|γ ′′i |

]1/2
gi(θ) , i = 1, 2 ,

(45.205)

γ21(θ)= γ2−γ1

≡ 4

3
|z(θ)|3/2 > 0 , (45.206)

F[γ21(θ)] =
[
z1/4Ai (−z)+ iz−1/4Ai′(−z)

]√
π

× e−i(γ21/2−π/4) , (45.207)

where Ai and Ai′ are the Airy function and its derivative.
This result holds for all separations (λ2−λ1) in

location of stationary phases including a caustic (or rain-
bow), which is a point of inflection in γ , i. e. γ1 = γ2,
γ ′i = 0 = γ ′′i . An equivalent expression is [45.9].

A+(θ)=
[
(a1+a2)z

1/4Ai (−z)

− i(a1−a2)z
−1/4Ai′ (−z)

]√
π eiγ̄ ,

(45.208)

where the mean phase is γ̄ = 1
2 (γ1+γ2). The first

form (45.204) is useful for analysis of widely sepa-
rated regions of stationary phase when γ21 % 0 and

F → 1. The equivalent second form (45.208) is valu-
able in the neighborhood of caustics or rainbows when
the stationary phase regions coalesce as a1 → a2.

Primitive result. For widely separated regionsλ1 andλ2,
F → 1 and

A±(ε)= [
a1(ε)∓ ia2(ε)e

±iγ21
]

e±i(γ1+π/4) ,
(45.209a)

A±(ε)= a1(ε) exp
[
±i

(
γ1+ π

4

)]

+ a2(ε) exp
[
±i

(
γ2− π

4

)]
. (45.209b)

Note that the minimum phase γ1 is increased by π/4
and the maximum phase γ2 is reduced by π/4.

Transitional Airy Result. In the neighborhood of a caus-
tic or rainbow where γ ′′ = 0, at the inflection point
λ1 = λ2 = λr , then

A±(θ)= 2π| 2

γ ′′′(λr)
|1/3g(θ; λr)Ai (−z)e±iγ(θ;λr)

(45.210)

z = | 2

γ ′′′(λr)|1/3γ ′(θ; λr)
. (45.211)

Only over a very small angular range does this re-
sult agree in practice with the uniform result (45.204),
which uniformly connects (45.209a) and (45.210).
These stationary-phase formulae are not only applica-
ble to integrals involving (λ, θ) but also to (t, E) and
(R, p) combinations which occur in the Method of Vari-
ation of Constants and in Franck–Condon overlaps of
vibrational wave functions, respectively.

45.3.3 Semiclassical Amplitudes:
Integral Representation

A. Off-Axis Scattering: sin θ > λ−1

Except in the forward and backward directions, (45.194)
with (45.195) reduces to

f(θ)=− 1

k(2π sin θ)1/2

∞∑

m=−∞
(−1)m

×

∞∫

0

dλ λ1/2

×
(

ei∆+(λ,m)− ei∆−(λ;m)) , (45.212)

∆±(λ;m)= 2η(λ)+2mπλ±λθ±π/4 (45.213)

≡ S C±π/4 , (45.214)
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Elastic Scattering: Classical, Quantal, and Semiclassical 45.3 Semiclassical Scattering Formulae 677

where SC is the classical action (45.52b) divided by �.
The stationary phase condition d∆±/dλ= 0 yields

the deflection function χ to scattering angle θ relation

χ(λi)=∓θ−2mπ , (45.215)

where λi are points of stationary phase (SP). Since
π ≥ χ ≥−∞, integrals with m < 0 have no SP’s and
vanish under the SPA. For cases involving no orbiting
(where χ→−∞) and when π > χ >−π, then inte-
grals with m > 0 also vanish under SPA so that the
only remaining contribution from m = 0 to (45.214)
is

f(θ)=− 1

k(2π sin θ)1/2

×

∞∫

0

λ1/2
[

ei∆+(λ)− ei∆−(λ)
]

dλ ,

(45.216)

∆±(λ)= 2η(λ)±λθ±π/4 . (45.217)

The attractive branch ∆+ contributes only negative
deflections and the repulsive branch∆− contributes only
positive deflections and has one SP point at λ1 where∆−
is maximum.

Rainbow angle θr: (∆+)′′λr
= 0, so that χ ′(λr)= 0

where χ(λr) < 0 has reached its most negative value.

θ < θr:∆+ has two SP points λ2,3;
a maximum at λ2 and
a minimum at λ3.

θ = θr:λ2 = λ3: SP’s coalesce.

θ > θr: no classical attractive scattering.
∆+ has no SP points.

B. Forward Amplitude: sin θ ∼ θ < λ−1

f(θ)= 1

ik

(
θ

sin θ

)1/2 ∞∑

m=−∞
e−imπ

∞∫

0

λJ0(λθ)

×
(

e2iη(λ)−1
)

e2imπλ dλ . (45.218)

Stationary phase points: γ ′(λm)= 0.

χ(λm)= 2

(
∂η

∂λ

)
=−2mπ . (45.219)

Terms with m < 0 therefore make no SP contribution to
f(θ) since χ ≤ π. The m = 0 term provides diffraction
due to χ→ 0, χ ′ → 0 at long range, and a forward glory
due to χ→ 0 at a finite λg and nonzero χ ′g.

C. Backward Amplitude: θ ∼ π−O(λ−1).

f(θ)= 1

k

(
π− θ
sin θ

)1/2

×
∞∑

m=−∞
eimπ

∞∫

0

λJ0 [λ(π− θ)]

× ei[2η(λ)+(2m−1)πλ] dλ . (45.220)

Stationary phase points:

χ(λm)= 2

(
∂η

∂λ

)
=−(2m−1)π . (45.221)

There are no SP for m < 0. The m = 0 term provides
a normal backward amplitude due to repulsive collisions
(χ = π), and m > 0 terms are due to attractive half-
windings.

D. Eikonal Amplitude
The m = 0 term of (45.218) gives

fE(θ)= 1

ik

∞∫

0

λ
(

e2iη(λ)−1
)

J0(λθ) dλ (45.222a)

=−ik

∞∫

0

(
e2iη(b)−1

)
J0(kbθ)b db . (45.222b)

From the optical theorem,

σE(E)= 8π

∞∫

0

sin2 η(b, E)b db . (45.223)

For potentials with cylindrical symmetry, kbθ can be
replaced by 2kb sin 1

2θ = K ·b, and

fE(θ)=− ik

2π

∫ (
e2iη(b)−1

)
J0(K ·b) db . (45.224)

45.3.4 Semiclassical Amplitudes
and Cross Sections

Amplitude addition:

f(θ)=
N∑

j=1

f j(θ) , (45.225)

where each classical path b j = b j(θ) or SP-point λ j =
λ j(θ) contributes f j(θ) to the amplitude.

Primitive amplitudes:

f j(θ)=−iα jβ jσ
1/2
j (θ) exp

[
iSC

j (θ)
]

(45.226)
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χ ′j = (dχ/dλ) j (45.227)

α j = e±iπ/4; (+), χ ′j > 0; (−), χ ′j < 0 ;
(45.228a)

β j = e±iπ/4; (+), χ j > 0; (−), χ j < 0 .
(45.228b)

Classical cross section:

σ j(θ)=
∣∣
∣∣

bdb

d(cosχ)

∣∣
∣∣
χ j

= 1

k2

λ j

sin θ|χ ′j |
. (45.229)

N classical deflections χ j provide the same θ:

χ j = χ(λ j)= θ,−θ,−2π± θ,−4π± θ , . . . .
(45.230)

Classical collision action S C(E, L;χ)/�:

SC
j = 2η(λ j)−λ jχ(λ j) (45.231a)

= 2η(λ j)−λ jθ, 0 ≤ χ ≤ π (45.231b)

= 2η(λ j)+λ jθ−mπ, χ < 0 , (45.231c)

where m = 0, 1, 2, . . . is the number of times the ray
has traversed the backward direction during its attractive
windings about the scattering center.

A. Amplitude Addition:
For Three Well Separated Regions of Stationary
Phase λ1 < λ2 < λ3

A scattering angle θ in the range 0< θ < θr
(rainbow angle) typically results from deflec-
tions χ j at three impact parameters b (or λ):
θ = {χ(b1),−χ(b2),−χ(b3)} ≡

{
χ j
}
. Scattering in the

range θr ≤ θ < π results from one deflection at b1. b1 is
in the positive branch (inner repulsion) and b2,3 are in the
negative branch (outer attraction) of the deflection func-
tion χ(b) such that b1 < b2 < b3. kb = (+1/2)= λ.
Thus

f(θ)=
3∑

j=1

f j(θ)=
3∑

j=1

[
σ j(θ)

]1/2 exp(iSj) ,

(45.232)

where the overall phases of each f j are

S1 = 2η(λ1)−λ1θ−π/2 , (45.233a)

S2 = 2η(λ2)+λ2θ−π , (45.233b)

S3 = 2η(λ3)+λ3θ−π/2 , (45.233c)

which are appropriate, respectively, to deflectionsχ1 = θ
at λ1, χ2 =−θ at λ2 and χ3 =−θ at λ3, within the range
−π ≤ χ ≤ π.

The elastic differential cross section

σ(θ)=
3∑

j=1

σ j(θ)

+2
3∑

i< j

[
σi(θ)σ j(θ)

]1/2 cos(Si − Sj)

≡ σc(θ)+∆σ(θ) (45.234)

exhibits interference effects. The first term σc is the
classical background DCS with no oscillations. The sec-
ond term ∆σ provides the oscillatory structure which
originates from interference between classical actions
associated with the different trajectories resulting in
a given θ. The part of Sij = Si − Sj most rapidly vary-
ing with θ are the angular action changes (λ1+λ2)θ,
(λ1+λ3)θ and (λ2−λ3)θ. Interference oscillations be-
tween the action phases S1 and S2 or between S1 and S3
then have angular separations

∆θ1;(2,3) = 2πn

(λ1+λ2,3)
, (45.235)

which are much smaller than the separation

∆θ2;3 = 2πn

(λ2−λ3)
(45.236)

for interference between phases S2 and S3. The os-
cillatory structure in ∆σ(θ) is composed therefore of
supernumerary rainbow oscillations with large angular
separations ∆θ2;3 from S2 and S3 interference, with su-
perimposed rapid oscillations with smaller separation
∆θ1,(2,3) from interference between S1 and S2 or S1
and S3.

For deflections χ j = θ, −θ, −2π∓θ, −4π∓θ, · · · ,
then the ∆+-branch of (45.212) provides additional
contributions to (45.232) with phases

S±2m = 2η(λ2m)±λ2mθ−2mπ−π , (45.237a)

S±3m = 2η(λ3m)±λ3mθ−2mπ−π/2 ,
(45.237b)

for m = 1, 2, 3, . . . .

B. Uniform Airy Result: For Two Regions of
Stationary Phase Which can Coalesce

The combined contribution f23(θ) from the λ2 and λ3
attractive regions in ∆+ branch is

f23(θ)= σ1/2
2 eiS2 F23+σ1/2

3 eiS3 F∗
23 , (45.238a)
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F23 = (A+ iB) e−i(S23/2) , (45.238b)

S23 = S2− S3

= 2(η2−η3)+ (λ2−λ3)θ− 1

2
π,

(45.238c)

A(z)= π1/2z1/4Ai (−z) , (45.238d)

B(z)= π1/2z−1/4Ai′ (−z) , (45.238e)

4

3
|z|3/2 = SC

2 − SC
3 = S23+ 1

2
π. (45.238f)

The amplitude f23 tends to the primitive result f2(θ)+
f3(θ) in the limit of well-separated regions (z % 1) when
F23 → 1. An equivalent form of (45.238a) is

f23(θ)=
[

A
(
σ

1/2
2 +σ1/2

3

)
+ iB

(
σ

1/2
2 −σ1/2

3

)]

× exp(iS̄) , (45.239)

where the mean phase S̄ = 1
2 (S2+ S3). This form is

useful for analysis of caustic regions at θ ∼ θr where
z → 0.

C. Transitional Result: Neighborhood
of Caustic or Rainbow at (θ r‚br‚λr)

In the vicinity of rainbow angle θ ≈ θr,

χ ′ = ∂χ
∂λ

= [
2(θr− θ)χ ′′(λr)

]1/2
(45.240)

z = (θr− θ)
[
2/χ ′′(λr)

]1/3
> 0 (45.241)

Sr = 1

2
(S1+ S2)= 2η(λr)+λrθr− 3

4
π . (45.242)

The scattering amplitude

f23(θr)=
(

2πλr

k2 sin θr

)1/2 ( 2

χ ′′(λr)

)1/3

Ai (−z)eiSr ,

(45.243)

is finite at the rainbow angle θr . In (45.239), the
(θr− θ)−1/4 divergence in |χ ′|1/2 of (45.240) aris-
ing in the constructive interference term

(
σ

1/2
2 +σ1/2

3

)

is exactly balanced by the z1/4 term of A(z). Also(
σ

1/2
2 −σ1/2

3

)→ 0 in (45.239) more rapidly than z−1/4

in B(z) so that (45.239) at θr is finite and repro-
duces (45.243).

The uniform semiclassical DCS

dσ

dΩ
=
∣∣∣σ1/2

1 (θ)eiS1 +σ1/2
2 (θ)F23 eiS2

+σ1/2
3 F∗

23 eiS3

∣∣∣
2

(45.244)

contains, in addition to the Si/Sj interference oscilla-
tions in the primitive result (45.234), the θ-variation

of the Airy Function |Ai (z)|2, which has a princi-
pal finite (rainbow) maximum at θ ≤ θr, the classical
rainbow angle, and subsidiary maxima (supernumary
rainbows) at smaller angles. The DCS decreases ex-
ponentially as θ increases past θr into the classical
forbidden region and tends to σ1(θ) at larger angles.
For θr < θ < π,

f(θ)= σ1/2
1 (θ) exp(iS1) . (45.245)

45.3.5 Diffraction and Glory Amplitudes

Diffraction. Diffraction arises from the outer (attractive)
part of the potential. Many contributions arise from the
attractive∆+ branch appropriate for negativeχ at large b
where η is small. Here χ, χ ′ both tend to zero.

Glory. The deflection function χ passes through zero
at a finite λg. A confluence of the two maxima
of each phase shift from the positive and negative
branches of χ(b) occurs at b1 = b2 = bg = λg/k. ηg is
maximum for χ = 0. In general χ(bm)=−2mπ (for-
ward glory); χ(bm)=−(2m−1)π (backward glory);
m = 0, 1, 2, . . . . There is only a forward glory at χ = 0
when the deflection at the rainbow is |χr| < 2π. In
contrast to diffraction, the glory contribution can be
calculated by the stationary phase approximation.

Transitional Results for Forward
and Backward Glories

Forward Glories. Contributions arise from χ = ±θ,
−2π±θ, · · · ,−2mπ±θ as θ→ 0. The stationary phase
points λm are located at

χ(λm)= χm =−2mπ; m ≥ 0 . (45.246)

The phase function in the neighborhood of a glory is

η(λ)= ηm −mπ(λ−λm)+ 1

4
χ ′m(λ−λm)

2.

(45.247)

The m = 0 term provides zero deflection χ due to
a net balance of attractive and repulsive scattering for
a finite impact parameter bg or λg where η(λ) attains
its maximum value ηm . The glories at θ are due to
a confluence of the two contributions from the deflec-
tions χm =−2mπ± θ at the stationary phase points
λmn = λm1 and λm2. SP integration of (45.218) with
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680 Part D Scattering Theory

(45.247) yields the forward glory amplitude

fFG = 1

k

2∑

n=1

∞∑

m=0

λmn

(
2π

|χ ′m |
)1/2

× J0(λmnθ)e
iS(g)

mn , (45.248)

S(g)
mn = 2η(λmn)+mπ(λmn −1)− 3

4
π . (45.249)

Backward Glories. Contributions arising from χ =
−π±α, −3π±α, · · · , −(2m−1)π±α coalesce as
α ≡ π− θ→ 0. The phase function near a backward
glory is

η(λ)= η(λm)+ 1

2
χm(λ−λm)+ 1

4
χ ′m(λ−λm)

2 .

(45.250)

The m = 0 term provides the normal backward ampli-
tude due to head-on (b = 0) repulsive collisions. m > 0
terms provide contributions from attractive collisions for
which there are two points λmn of stationary phase for
each m in χm =−(2m−1)π±α.

The backward glory amplitude at θ = π−α is

fBG = 1

k

2∑

n=1

∞∑

m=0

λmn

(
2π

|χ ′mn|
)1/2

× J0(λmnα)e
iS(g)

mn , (45.251)

S(g)
mn = 2η(λmn)+π(2m−1)

(
λmn − 1

2

)
− 3

4
π .

(45.252)

In contrast to the Bessel amplitudes (below), these
transitional formulae do not uniformly connect with the
primitive semiclassical results for ( f1+ f2) away from
the critical glory angles.

Uniform Bessel Amplitude for Glory Scattering
The combined contributions from χ1 =−Nπ+ θ and
χ2 =−Nπ− θ, where N = 2m, for forward and N =
2m−1 for backward scattering, yield [45.9]

fG(θ)= α j

2i
e−iNπ/2

(
πS(C )21

)1/2
exp

[
iS̄(C )(θ)

]

×

[
(σ

1/2
1 +σ1/2

2 )J0

(
1

2
S(C )21

)

− i(σ1/2
1 −σ1/2

2 )J1

(
1

2
S(C )21

)]
, (45.253)

where S(C )21 (θ)= S(C )2 − S(C )1 is the difference of the
collision actions (45.231a),

S(C )i (θ)= 2η(λi)−λiχi , i = 1, 2 , (45.254)

with mean

S̄(C )21 (θ)=
1

2

(
S(C )2 + S(C )1

)
, (45.255)

and phases

α j = e±iπ/4; (+), χ ′j > 0; (−), χ ′j < 0 ,
(45.256)

and the ordinary Bessel functions Jn(Z) satisfy the
relationships J1(z)=−J ′0(z), J1(−z)=−J1(z). This
formula, valid for both forward (θ ∼ 0) and backward
(θ ∼ π) glories, does uniformly connect the primitive
result for ( f1+ f2), valid when S(C )21 % 1 to the transi-
tional results (45.248) and (45.251), valid only in the
vicinity of the glories.

45.3.6 Small-Angle (Diffraction) Scattering

Diffraction originates from scattering in the forward di-
rection by the long-range attractive tail of V(R) where
χ, χ ′ and η→ 0. The main contributions to (45.222a)
arise from a large number of small η(λ) at large λ. The
Jeffrey–Born phase function (45.173) can therefore be
used in (45.222b) for f(θ) and in (45.45) and (45.47),
respectively, for σ(E). A finite forward diffraction peak
as θ→ 0 is obtained for f(θ) in contrast to the classical
infinite result.

Integral Cross Sections
For V(R) = −C/Rn , the Landau–Lifshitz (LL) and
Massey–Mohr (MM) cross sections are [cf. (45.346)]

σLL(E)= π
(

2CF(n)

(n−1)�v

)2/(n−1)

× π

[
sin

(
π

n−1

)
Γ

(
2

n−1

)]−1

,

(45.257)

σMM(E)= π
(

2CF(n)

(n−1)�v

)2/(n−1) (2n−3

n−2

)
,

(45.258)

where F(n)=√
πΓ

( 1
2 n+ 1

2

)
/Γ

( 1
2 n
)

and v is the rela-
tive speed. For σMM, the phases are η(λ)= 1

2 (0< λ <
λ0) and η(λ)= ηJB (λ > λ0). For σLL, phases are ηJB
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for all λ. Both σLL and σMM have the general form

σD(E)= γ
(

C

�v

)2/(n−1)

. (45.259)

Ion–Atom Collisions. For n = 4 attraction at low energy,
σD ∼ v−2/3. γLL = 11.373, γMM = 10.613. For n = 12
repulsion at high energy, σD ∼ v−2/11. γLL = 6.584,
γMM = 6.296.

Atom–Atom Collisions. For n = 6 (attraction), σD ∼
v−2/5, γLL = 8.083, γMM = 7.547 Fig. 45.1.

Exact numerical calculations favor σLL over σMM
([45.10], pp. 1325 for details).

Differential Cross Section

dσ

dΩ
= f 2

i (θ)+ f 2
r (θ) , (45.260a)

fi = 2

k

∞∫

0

λ sin2 η(λ)

(
1− 1

4
λ2θ2

)
dλ (45.260b)

= kσD(E)

4π

[
1−

(
k2σD

16π

)
g1(n)θ

2
]
, (45.260c)

fr = 1

k

∞∫

0

λ sin 2η(λ)

(
1− 1

4
λ2θ2

)
dλ (45.260d)

= kσD(E)

4π

[
1−

(
k2σD

16π

)
g2(n)θ

2
]

× tan

(
π

n−1

)
, (45.260e)

where σD is given by (45.259), and

g j(n)= π−1 tan

(
jπ

n−1

) {Γ [2/(n−1)]}2
Γ [4/(n−1)]

.

(45.261)

The optical theorem (45.62) is satisfied, and

fD(θ ∼ 0)= σ1/2
D (E)eiSD(n) , (45.262)

where the (energy-independent) phase is

SD(n)= π(n−3)

2(n−1)
. (45.263)

45.3.7 Small-Angle (Glory) Scattering

Amplitude and Cross Section. The other contribution to
forward scattering is the forward glory, which originates
from the combined null effect of attraction and repul-

sion at a specified glory impact parameter bg = λg/k,
where η(λ) attains a maximum value of ηg. The m = 0
term of (45.248) yields

fG(θ)= σ1/2
G (θ) exp [iSG(E)] , (45.264a)

σG(θ)=
λ2

g

k2

(
2π

|χ ′g|
)

J2
0 (λgθ) , (45.264b)

SG(E)= 2ηg(E)− 3

4
π , (45.264c)

where J2
0 (x)∼ 1− 1

4 x2+· · · . The classical re-
sult (45.30) is recovered by averaging (45.264b) over
several oscillations with

〈
J2

0 (x)
〉= (πx)−1.

Diffraction-Glory Oscillations.

σ(E)= 4π

k
Im [ fD(0)+ fG(0)] (45.265a)

= σD(E)+∆σG(E) , (45.265b)

where the diffraction cross section is (45.259), and
where

∆σG(E)= 4π

k2
λg

(
2π

|χ ′g|

)1/2

sin

(
2ηg(E)− 3

4
π

)

(45.266)

oscillates with E.
For sufficiently deep attractive wells, the phase

shift ηg successively decreases with increasing E

100

10

1

0.1
0.001 0.01 0.1 1 10 100

Glory number N Symmetry
oscillations8 6 4 2 1

RT Orbiting
resonances

E*= 0.8

× 10

~v *0
–2/5

~v *0
–2/11

Fig. 45.1 Illustration of all the various oscillatory effects
for elastic scattering by a Lennard–Jones (12,6) poten-
tial of well depth ε and equilibrium distance Re. Ordinate
σ∗ = σ/(2πR2

e), abscissa v∗ = �v/(εRe)
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through a series of multiples of π/2. Writing
ηg(E)= π

(
N −3/8

)
, maxima appear at N = 1, 2, . . . ,

and minima at N = 3/2, 5/2, 7/2, . . . . The glories are
indexed by N in order of appearance, starting at high en-
ergies. ηg(E → 0) is related to the number n of bound
states by Levinson’s theorem: η0(E → 0)= (

n+1/2
)
π.

Diffraction-glory oscillations also occur in the DCS at
a frequency governed entirely by the energy variation of
ηg(E) and n of (45.263).

JWKB Formulae for Shape Resonances
and Tunneling Predissociation

For the three classical turning points R1 < R2 < R3 at
energies E below the orbiting threshold Vmax at RX , the
JWKB phase shift

η =
[
η
(0)
 − 1

2
φ(γ)

]
+η(r) (45.267)

is composed of (a) the phase shift

η
(0)
 = lim

R→∞

⎡

⎢
⎣

∞∫

R3

k(R) dR− kR+ 1

2
(+ 1

2
)π

⎤

⎥
⎦

(45.268)

appropriate to one turning point at R3, (b) a contri-
bution η(r) arising from the region between the two
inner turning points R2 and R3 due to penetration of
the centrifugal barrier and given by

tan η(r) (E)=
([

1+ exp(−2γ)
]1/2−1

[
1+ exp(−2γ)

]1/2+1

)

× tan

(
α− 1

2
φ

)
, (45.269)

and (c) a phase correction factor

φ(γ)= argΓ

(
1

2
+ iε

)
− ε ln |ε|+ ε , (45.270)

where ε =−γ/π. The radial action JR(E) is 2�α(E).
For motion within the potential well α is

α(E)=
R2∫

R1

k(R) dR , (45.271)

and is

γ(E < Emax)=
R3∫

R2

|k(R)| dR (45.272)

in the classically forbidden region of the potential hump.

The above expressions also hold for energies E >
Vmax, except that (45.272) is replaced by

γ(E > Emax)=−i

R+∫

R−

k(R) dR , (45.273)

where R± are the complex roots of k(R)= 0. For the
quadratic form

V(R)= Vmax− 1

2
Mω2∗(R− Rmax)

2 , (45.274)

appropriate in the vicinity of the potential hump, γ for
both cases reduces to

γ = π(Vmax− E)/�ω∗ . (45.275)

The deflection function χ = 2(∂η/∂) no longer
diverges at the orbiting angular momentum 0 or im-
pact parameter b0. The singularities in η of (45.51) are
exactly canceled by − 1

2 (∂φ/∂) in (45.270).
Limiting cases:
(a) E % Vmax. Then γ →−∞ and φ→

−(π/24γ)→ 0, so that η(r) → α and η reduces to
the single turning point result (45.268) with R3 = R1.

(b) E & Vmax. Then γ% 1 and

η
(r)
 (E)= tan−1

[
1

2
e−2γ tan

(
α− 1

2
φ

)]
,

(45.276)

which remains negligible except for those energies E
close to quasibound energy levels En determined via
the Bohr quantization condition

α(E)− 1

2
φ(E)=

(
n+ 1

2

)
π . (45.277)

As E increases past each En, η
(r)
 increases rapidly

byπ. Since (∂J/∂E)n = ν−1
n = 2π/ωn, the time period

for radial oscillation within the potential barrier, the level
spacing is �ωn = hνn = π(∂E/∂α)n.

Shape Resonance. In the neighborhood of En ∼ E,

α(E)= αn(En)+
(
π

�ωn

)
(E− En) ,

(45.278)

and, under the assumption that the energy variation of φ
can be neglected, (valid for E not close to Vmax), then
η reduces to the Breit–Wigner form

η(E)= η(0) (E)+ tan−1
(
Γn/2

En− E

)
, (45.279)
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with resonance width

Γn = 2

(
�ωn

π

) [
1+ exp(−2γn)

]1/2−1
[
1+ exp(−2γn)

]1/2+1
,

(45.280)

where γn = γ(En). The partial cross sections are
then determined by (45.166a,b) with η(0) replaced by
η
(0)
 − 1

2φ(γ) of (45.268).

Gamow’s Result. For E & Vmax, γn% 1, then

Γn
γ%1−→

(
�ωn

2π

)
exp(−2γn) . (45.281)

The probabilities of transmission through and re-
flection from a barrier for unit incident flux from the left
are:

Transmission Probability:

T =
(

1+ e2γ
)−1 γ%1−→ e−2γ . (45.282)

Reflection Probability:

R =
(

1+ e−2γ
)−1 γ%1−→ 1 . (45.283)

Frequency of leakage:

νT = Γn/�=
(ωn

2π

)
e−2γ . (45.284)

45.3.8 Oscillations in Elastic Scattering

Figure 45.1 is an illustration [45.11] of all the various
oscillatory structure and effects – Ramsauer–Townsend
minimum (Sect. 45.2.4), orbiting resonances (45.340),
diffraction-glory oscillations (45.265b) and symmetry
oscillations (45.82) – for elastic scattering by a Lennard–
Jones (12, 6) potential. Note the shift of velocity
dependence from v−2/5 at low v to v−2/11 at high v.
σ = 2πR2

e is the averaged cross section 2πb2
0 in (45.47)

at b0 = Re. The region σ∗ > 1 probes the attractive
part of the potential at low speeds and σ∗ < 1 probes
the repulsive part at high speeds. The four distinct
types of structure originate from nonrandom behav-
ior of sin2 η in (45.45). Orbiting trajectories exist for
E < 0.8ε (Sect. 45.5).

45.4 Elastic Scattering in Reactive Systems

All nonelastic processes (e.g. inelastic scattering and
rearrangement collisions/chemical reactions) can be
viewed as a net absorption from the incident beam
current vector J and modeled by a complex optical
potential

V(R)= Vr(R)+ iVi(R) . (45.285)

The continuity equation is then

∇ · J =−2

�
Vi(R)|Ψ(R)|2 , (45.286)

so that particle absorption implies Vi > 0 and particle
creation Vi < 0. Since particle conservation implies
|S|2 = 1, the phase shift

δ(k)= η(k)+ iγ(k) (45.287)

is also complex since then

S = A(k) exp(2iη) , (45.288)

where the absorption (inelasticity) factor is

A = exp(−2γ)≤ 1 . (45.289)

45.4.1 Quantal Elastic, Absorption
and Total Cross Sections

fel(θ)= 1

2ik

∞∑

=0

(2+1)
(

A e2iη −1
)

P(cos θ) ,

(45.290a)

σel(k)= π

k2

∞∑

=0

(2+1)|A e2iη −1|2 , (45.290b)

σabs(k)= π

k2

∞∑

=0

(2+1)
(

1− A2


)
, (45.290c)

σtot(k)= σel(k)+σabs(k)

= 2π

k2

∞∑

=0

(2+1) (1− A cos 2η) .

(45.290d)

Upper limits to the partial cross sections are

σel
 ≤ 4π

k2 (2+1), σabs
 ≤ π

k2 (2+1) ,

(45.291a)
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σ tot
 ≤ 4π

k2 (2+1)= 4π

k
Im

[
f el
 (θ = 0)

]
.

(45.291b)

For pure elastic scattering with no absorption, A = 1.
All nonelastic processes (0 ≤ A < 1) are always ac-
companied by elastic scattering, even in the (A = 0)
limit of full absorption.

Eikonal Formulae for Forward Reactive Scattering.

fel(θ)=−ik

∞∫

0

(
e2iδ−1

)
J0(2kb sin

1

2
θ)b db ,

(45.292a)

σel(k)= 2π

∞∫

0

|
(

1− e−2γ e2iη
)
|2b db , (45.292b)

σabs(k)= 2π

∞∫

0

(
1− e−4γ

)
b db , (45.292c)

σtot(k)= 4π

∞∫

0

(
1− e−2γ cos 2η

)
b db , (45.292d)

where the phase shift function δ = η+ iγ at impact
parameter b can be either the Jeffrey–Born phase

δJB(b)=− 1

2k

∞∫

b

U(R) dR
(
1−b2/R2

)1/2 , (45.293)

where kb = λ= (+1/2), or the eikonal phase

δE(b)=− 1

4k

∞∫

−∞
U(b, Z) dZ , (45.294)

where the reduced interaction is U = (
2m/�2

)
V .

Fraunhofer Diffraction by a Black Sphere. For a com-
plex spherical well U

U =
{

Ur+ iUi , R< a

0, R> a .
(45.295)

The eikonal phase function (45.294) is

δ(b)=
{
(U/2k)

(
a2−b2

)1/2
, 0 ≤ b ≤ a

0 b> a .
(45.296)

The absorption factor is

A(b)2 ≡ e−4γ = exp

[
−2

(
a2−b2

)1/2
/λ

]
,

(45.297)

where λ= k/Ui is the mean free path towards absorp-
tion. For strong absorption, λ& a, so that

fel(θ)= ik

a∫

0

J0(2kb sin
1

2
θ)b db , (45.298)

dσel

dΩ
= (ka)2

⎛

⎝
J1

(
2ka sin 1

2θ
)

2ka sin 1
2θ

⎞

⎠

2

a2 , (45.299)

which has a diffraction shaped peak of width
∼θ ≤ (ka)−1 about the forward direction, and

σtot = 4π

k
Im

[
fel(θ = 0)

]
= 2πa2 (45.300)

is composed of πa2 for classical absorption and πa2

for edge diffraction or shadow (nonclassical) elastic
scattering. This result also holds for the perfectly re-
flecting sphere (πa2 for classical elastic and πa2 for
edge diffraction).

45.5 Results for Model Potentials

Exact results for various quantities in classical, quantal,
and semiclassical elastic scattering are obtained for the
model potentials (a)–(s) in Table 45.1.

Classical Deflection Functions
for Model Potentials

(a) Hard Sphere.

θ(b; E)= χ =
{
π−2 sin−1 b/a, b ≤ a ;

0, b> a .
(45.301)

b(θ)= a cos
1

2
θ , (45.302)

σ(θ)= dσ

dΩ
= 1

4
a2; isotropic, (45.303)

σ = πa2 = geometric cross section; (45.304)

θ, σ(θ) and σ are all independent of energy E.

(b) Potential Barrier. For E < V0, classical scatter-
ing is the same as for hard sphere reflection as given
by (45.301–45.304). For E > V0 and θ = χ, define
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n2 = 1−V0/E, b0 = na. Then

θ(b)=
{

2
[
sin−1(b/na)− sin−1(b/a)

]
0 ≤ b ≤ b0

π−2 sin−1(b/a) , b0 ≤ b ≤ a
(45.305)

and θmax = 2 cos−1 n. For a given θ, the two impact
parameters which contribute are

b1(θ)= an sin 1
2θ(

1−2n cos 1
2θ+n2

)1/2 , 0< b1 ≤ b0

(45.306)

b2(θ)= a cos
1

2
θ , b0 < b2 ≤ a

(45.307)

Table 45.1 Model interaction potentials

Potential V(R)

(a) Hard sphere ∞, R ≤ a; 0, R> a

(b) Barrier V0, R ≤ a; 0, R> a

(c) Well −V0, R ≤ a; 0, R> a

(d) Coulomb (±) ±k/R

(e) Finite-range Coulomb −k/R+ k/Rs R ≤ Rs; 0, R> Rs

(f) Pure dipole ±α/R2

(g) Finite-range dipole ±α
(

1

R2
− 1

a2

)
, R ≤ a; 0, R> a

(h) Dipole + hard sphere ±α/R2, R ≤ a; 0, R> a

(i) Power law attractive −C/Rn, (n > 2)

(j) Fixed dipole + polarization − De cos θd

R2
− αde2

2R4

(k) Fixed dipole + Coulomb − De cos θd

R2
+ e2

R

(l) Lennard- Jones (n, 6)
εn

n−6

[
6

n

(
Re

R

)n

−
(

Re

R

)6
]

(m) Polarization (n, 4)
εn

n−4

[
4

n

(
Re

R

)n

−
(

Re

R

)4
]

(n) Multiple-term power law
Cm

Rm
− Cn

Rn
= Vm(R)−Vn(R)

(o) Exponential V0 exp(−αR)

(p) Screened Coulomb V0 exp(−αR)/R

(q) Morse ε
[

e2β(Re−R)−2eβ(Re−R)
]

(r) Gaussian V0 exp(−α2 R2)

(s) Polarization finite −V0/(R2+ R2
0)

2

For 0 ≤ θ ≤ θmax,

dσ

dΩ
= 1

4
a2+

a2n2
(

n cos 1
2θ−1

)(
n− cos 1

2θ
)

4 cos 1
2θ

(
1+n2−2 cos 1

2θ
) ,

(45.308)

and dσ/dΩ = 0 for θmax ≤ θ ≤ π. Finally,

σ =
θmax∫

θ=0

(
dσ

dΩ

)
dΩ = πa2 . (45.309)

(c) Potential Well. Results are similar to the potential
barrier case above, except that there is only a single scat-
tering trajectory with θ =−χ, and n = (1+V0/E)1/2 is
the effective index of refraction for the equivalent prob-
lem in geometrical optics. Refraction occurs on entering
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and exiting the well. Then

θ(b)=−2
[
sin−1(b/na)− sin−1(b/a)

]
,

(45.310)

θ(b = a)= θmax = 2 cos−1(1/n) , (45.311)

b(θ)= −an sin 1
2θ(

1−2n cos 1
2θ+n2

)1/2
, (45.312)

dσ

dΩ
=

a2n2
(

n cos 1
2θ−1

) (
n− cos 1

2θ
)

4 cos 1
2θ

(
n2+1−2n cos 1

2θ
)2 ,

(45.313)

σ = πa2 (45.314)

(d) Rutherford or Coulomb.

θ(b, E)= |χ| = 2 csc−1
[
1+ (2bE/k)2

]1/2
,

(45.315)

b(θ, E)= (k/2E) cot
1

2
θ , (45.316)

σ(θ)= dσ

dΩ
=
(

k

4E

)2

csc4 1

2
θ . (45.317)

(e) Finite Range Coulomb.

R0(E)= k

2E
, α(E)= R0(E)/Rs ,

dσ

dΩ
= R2

0

4

(
1+α

α2+ (1+2α) sin2 1
2θ

)2

. (45.318)

(f) Pure Dipole. R2
0(E)= α/E.

Repulsion (+): χ > 0, χ = θ ,

b2(χ)= R2
0

[(
1

χ
+ 1

2π−χ
)
π

2
−1

]
, (45.319)

dσ

dΩ
= πR2

0

4 sin θ
| 1

θ2
− 1

(2π− θ)2 | . (45.320)

Attraction (−): χ < 0.

b2(χ)= R2
0

[(
1

|χ| −
1

|χ|+2π

)
π

2
+1

]
. (45.321)

There is an infinite number of (negative) deflections χ =
χ±n associated with a given scattering angle θ:

|χ+n | = 2πn+ θ, n = 0, 1, 2, . . . , (45.322a)

|χ−n | = 2πn− θ, n = 1, 2, 3, . . . . (45.322b)

The infinite sum over contributions from b±n = b(χ±n )
for the attractive dipole yields

dσ

dΩ
= πR2

0

4 sin θ

∣∣∣
∣

1

θ2
+ 1

(2π− θ)2
∣∣∣
∣ . (45.323)

(g) Finite Range Dipole Scattering. R2
0 = α/E,(

R±c
)2 = b2± R2

0,
(
b±0

)2 = a2± R2
0.

Repulsion (+): for b ≤ a,

χ(b)= π
(
R+c −b

)

R+c
+ 2b

R+c
sin−1

(
R+c
b+0

)

−2 sin−1
(

b

a

)
, (45.324)

χ(0)= π , χ(b ≥ a)= 0 , σ = πa2 .

Attraction (−): for b> R0,

χ(b)= π
(
R−c −b

)

R−c
+ 2b

R−c
sin−1

(
R−c
b−0

)

−2 sin−1
(

b

a

)
, (45.325)

χ(R0)→∞ , χ(b ≥ a)= 0 , σ = πa2 .

(h) Dipole + Hard Sphere Scattering. R2
0 = α/E,

(R±c )2 = b2± R2
0, (b±0 )2 = a2± R2

0.
Repulsion (+): for 0 ≤ b ≤ b0,

χ(b)= π
(
R+c −b

)

R+c
+ 2b

R+c
sin−1

(
R+c
a

)

−2 sin−1
(

b

a

)
, (45.326)

b0 ≤ b ≤ a; χ(b)= π−2 sin−1(b/a) ,
(45.327)

χ(0)= π , χ(b ≥ a)= 0 , σ = πa2 .

(45.328)

Attraction (−): for b> R0,

χ(b)= π(R
−
c −b)

R−c
+ 2b

R−c
sin−1

(
R−c
a

)

−2 sin−1
(

b

a

)
, (45.329)

χ(b)= χmin at b = a ,

χ(0)= π , χ(b ≥ a)= 0 , σ = πa2 .
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Orbiting or Spiraling Collisions
From Sect. 45.1.7, the parameters are

Orbiting radius: R0.
Focusing factor: F = [1−V(R0)/E].
Orbiting cross section: σorb = πR2

0 F.

(i) Attractive Power Law Potentials.

Veff(R0)= (1− 1

2
n)V(R0), n > 2,

R0(E)=
(
(n−2)C

2E

)1/n

, F =
(

n

(n−2)

)
,

(45.330)

σorb(E)= π
(

n

(n−2)

)(
(n−2)C

2E

)2/n

.

(45.331)

For the case n = 4 with V(R)=−αde2/2R4, this
gives the Langevin cross section

σL(E)= 2πR2
0 = 2π

(
αde2

2E

)1/2

(45.332)

for orbiting collisions, and the Langevin rate

kL = vσL(E)= 2π
(
αde2/M

)1/2
, (45.333)

which is independent of E.
The case n = 6 with V(R)=−C/R6 is the van der

Waals potential for which

σorb(E)= 3

2
πR2

0 =
3

2
π (2C/E)1/3 . (45.334)

(j) Fixed Dipole plus Polarization Potential.

R2
0(E)=

(
αde2

2E

)1/2

, (45.335)

σorb(E)= 2π

(
αde2

2E

)1/2

+
(
πDe cos θd

E

)
.

(45.336)

For a locked-in dipole, the orientation angle is θd = 0,
and σorb(E) > 0 for all θd when E > Ec = (D2/2αd).

On averaging over all θd from 0 to θmax =
[ 1

2π+
sin−1

(
2ER2

0/De
)]

, which satisfies σorb(E) > 0 for all
E, then

〈
σorb(E)

〉
θd
= π

[(
αde2

2E

)1/2

+
(
αde2

2Ec

)1/2]

+ πDe

4E

(
1− E

Ec

)
(45.337a)

→ σL(E)asE → Ec . (45.337b)

(k) Fixed Dipole + Coulomb Repulsion.

R2
0(E)= e2/2E . (45.338)

For all E and fixed rotations in the range 0≤ θd ≤ θmax =
cos−1

(
e2/2De

)
,

σorb(E)= (πDe cos θd)/E−πR2
0(E) . (45.339)

(l) Lennard–Jones (n‚6). For the following two inter-
actions, there are two roots of E = Veff(R0)= V(R0)+
1
2 R0V ′(R0). They correspond to stable and unstable cir-
cular orbits [with different angular momenta associated
with the minimum and maxima of the different Veff(R)].
Analytical expressions can only be derived for the orbit-
ing cross section at the critical energy Emax above which
no orbiting can occur.

For the Lennard–Jones (n, 6) potential, orbiting oc-
curs for E < Emax = 2ε[4/(n−2)]6/(n−6). The orbiting
radius at Emax is

R0(Emax)= Re [(n−2)/4]1/(n−6) .

The orbiting cross section at Emax = 2ε(Re/R0)
6 is

σorb(Emax)= πb2
0(Emax)= 3

2
πR2

0

(
n

n−2

)
.

(45.340)

n = 12 : Emax = 4ε/5 , R0 = 1.165Re ,

σorb = 2.4πR2
e .

(m) Polarization (n‚4). As discussed for case (l),

Emax = ε
(

2

n−2

)4/(n−4)

, (45.341)

R0(Emax)= Re

(
n−2

2

)1/(n−4)

, (45.342)

σorb(Emax)= 2πR2
0

n

(n−2)
, (45.343)

n = 12 : Emax = ε/
√

5 ;
R0 = 1.22Re ; σorb = 3.6πR2

e .

Small-Angle Scattering
For the power law potential V(R)=−C/Rn , (45.12) can
be expanded in powers of V(R)/E to obtain analytic
expressions for χ and ηJB. The general form is

χ(b)=
∞∑

j=1

(
V(b)

E

) j

Fj(n)= 2

k

∂η

∂b
, (45.344)

Fj(n)=
π1/2Γ

(
1
2 jn+ 1

2

)

Γ( j+1)Γ
(

1
2 jn− j+1

) . (45.345)
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The leading j = 1 terms equivalent to (45.16b) are
F1(n)≡ F(n), as defined following (45.257). Then to
first order in V/E,

ηJB =−
(

k

2E

)(
CF(n)

n−1

)
b1−n , (45.346)

dσ

dΩ
= Ic(θ)=

(
CF(n)

Eθ

)2/n 1

nθ sin θ
. (45.347)

From a log–log plot of sin θ(dσ/dΩ) versus E, C and n
can both be determined.

The integral cross sections for scattering by θ ≥ θ0
is

σ(E)= 2π

π∫

θ0

Ic(θ)d(cos θ)= 2π

bmax∫

0

b db

= π
(

CF(n)

Eθ0

)2/n

, (45.348)

where θ0 is the smallest measured scattering angle
corresponding to a trajectory with impact parameter,
bmax = [CF(n)/Eθ0]1/n . A plot of ln σ(E) versus ln E
is a straight line with slope (−2/n).

The Landau–Lifshitz cross section (45.257) and the
Massey–Mohr cross section (45.258) follow from use of
the JB phases (45.346).

The diffusion cross section in the Random Phase
Approximation (45.49) is

σd(E)= 4π

bc∫

0

〈
sin2 θ/2

〉
b db , |χ(bc)| = 2

π

= π(C/2E)2/n [πF(n)]2/n . (45.349)

(n) Multiple-Term Power-Law Potentials.

χ(E, b)= 1

E
[Vm(b)F(m)−Vn(b)F(n)] . (45.350)

For example a Lennard–Jones (n, 6) potential Table 45.1
has the following features:

Forward Glory: χ = 0 when bg = α1/(n−6)
n Re,

where αn = 6F(n)/ [nF(6)].
Rainbow: dχ/db = 0 at br = (nαn/6)1/(n−6)Re.

χr =−F(n)(E/E)(Re/br)
n , (45.351)

ωr = 1

2

(
d2χr/db2

)

r
= 3n

b2
r

∣∣χ(br)
∣∣ . (45.352)

(o) Exponential Potential.

ηJB(E, b)=−1

2
kb

V0

E
K1(αb)R →∞−→

− 1

2
kb

V(b)

E

(
πb

2α

)1/2

.

(p) Screened Coulomb Potential.

χ(E, b)= α (V0/E) K1(αb)

large b−→
(

1

2
παb

)1/2

V(b)/E , (45.353)

ηJB(E, b)= − k

2E
V0K0(αb)

large b−→ − k

2E
V(b)

(
πb

2α

)1/2

. (45.354)

(q) Morse Potential.

χ(E, b)= (2βb)
( ε

E

) [
e2βRe K0(2βb)

−eβRe K0(βb)
]

large b−→ (πβb)1/2
( ε

E

) [
e2β(Re−b)

−√2eβ(Re−b)] ,

br = Re+ (2β)−1 ln 2 ,

χr = − (πβbr)
1/2(ε/2E) ,

ωr =β2|χr|R2
e .

Large-Angle Scattering
For power law potentials V(R)= C/Rn ,

χ(b)= π−
n∑

j=1

(
E

V(b)

)(2 j−1)/n

G j(n) ,

(45.355)

G j(n)= (−1) j−1

Γ( j)Γ(k)

(
2π1/2

n

)
Γ

(
2 j−1

n

)
,

(45.356)

with k = [(2 j−1)/n]− j− 1
2 . For the j = 1 term,

χ(b)= π−
(

E

C

)1/n

G1(n)b , (45.357)

Ic(θ)= dσ

dΩ
=
(

C

E

)2/n

G−2
1 (n) , (45.358)

which is isotropic. Including both j = 1 and 2 terms
provides a good approximation to the entire repulsive
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branch of the deflection function χ. Series (45.355)
for large angles and (45.344) for small angles even-
tually diverge for impact parameters b< bc and b> bc,
respectively, where

bc = n1/2
(

C

2E

)1/n |n−2|1/n
|n−2|1/2 . (45.359)

45.5.1 Born Amplitudes and Cross Sections
for Model Potentials

k2 = 2ME/�2 , K = 2k sin
1

2
θ ,

U0 = 2MV0/�
2 , U0/k

2 = V0/E .

(a) Exponential. V(R)= V0 exp(−αR)

fB(θ)=− 2αU0
(
α2+K2

)2 , (45.360)

σB(E)= 16

3
πU2

0

(
3α4+12α2k2+16k4

α4(α2+4k2)3

)
,

E→∞−→ 4

3
π

(
V0

E

)(
U0

α4

)
. (45.361)

(b) Gaussian. V(R)= V0 exp
(−α2 R2

)

fB(θ)=−
(
π1/2U0

4α2

)
exp

(−K2/4α2) ,

(45.362)

σB(E)=
(
π2U0

8α4

)(
V0

E

)[
1− exp

(−2k2/α2)
]
.

(45.363)

(c) Spherical Well. V(R)= V0 for R< a, V(R)= 0 for
R> a

fB(θ)=−U0

K3 (sin Ka−Ka cos Ka) , (45.364)

σB(E)= π
2

V0

E
(U0a4)

[
1− (ka)−2+ (ka)−3 sin 2ka

− (ka)−4 sin2 2ka
]
. (45.365)

(d) Screened Coulomb. V(R)= V0 exp(−αR)/R, V0 =
Ze2, U0 = 2Z/a0

fB(θ)=− U0

α2+K2 , (45.366)

σB(E)= 4πU2
0

α2
(
α2+4k2

) → π

(
V0

E

)(
U0

α2

)
.

(45.367)

When α→ 0, then fB(θ)=−U0/K2.

(e) e−–Atom.

V(R)=−Ne2 [Z/a0+1/R] exp(−2Z R/a0) ,

(45.368)

H(1s): N= 1, Z= 1; He
(
1s2

)
: N= 2; Z= 27/16.

fB(θ)= 2N

a0

(
2α2+K2

(
α2+K2

)2

)

, α= 2Z/a0 ,

(45.369)

σB(E)= πa2
0 N2

(
12Z4+18Z2k2a2

0 +7k4a4
0

)

3Z2
(
Z2+ k2a2

0

)3 .

(45.370)

Also, fB decomposes (45.187) as

fB(K)= f eZ
B (K)+ f ee

B (K)F(K) , (45.371)

where f ij
B are two-body Coulomb amplitudes for (i, j)

scattering, and where

F(K)=
∫
|Ψ0(R)|2 exp (iK · R) dR (45.372)

is the elastic form factor.

(f) Dipole. V(R)= V0/R2.

fB(θ)= πU0/2K . (45.373)

(g) Polarization potential. V(R)= V0/
(
R2+ R2

0

)2

fB(θ)=−1

4
π

(
U0

R0

)
exp(−K R0) , (45.374)

σB(E)=
(
π3U0

32R4
0

)(
V0

E

)
[1− (1

+4kR0) exp(−4kR0)
]
. (45.375)
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Orientation a46. Orientation and Alignment in Atomic
and Molecular Collisions

This chapter deals with the concepts of orientation
and alignment in atomic and molecular physics.
The terms refer to parameters related to the shape
and dynamics of an excited atomic or molecu-
lar level, as it is manifested in a nonstatistical
population of the magnetic sublevels. To take full
advantages of the possibilities of this approach,
one utilizes “third generation experiments”, i. e.,
scattering experiments which exploit the planar
scattering symmetry, contrary to an angular dif-
ferential cross section determination (a “second
generation experiment”) having cylindrical sym-
metry, or a total cross section measurement (a “first
generation experiment”) integrating over all scat-
tering angles. In this way one is often able to probe
atomic collision theories at a more fundamental
level, and in favorable cases approach a “per-
fect scattering experiment” in which the complex
quantal scattering amplitudes are completely de-
termined. This term was coined by Bederson [46.1]
and has since served as an ideal towards which
scattering experiments attempt to strive.

46.1 Collisions Involving Unpolarized Beams . 694
46.1.1 The Fully Coherent Case.............. 694

46.1.2 The Incoherent Case
with Conservation of Atomic
Reflection Symmetry .................. 697

46.1.3 The Incoherent Case
without Conservation of Atomic
Reflection Symmetry .................. 697

46.2 Collisions Involving
Spin-Polarized Beams .......................... 699
46.2.1 The Fully Coherent Case.............. 699
46.2.2 The Incoherent Case

with Conservation of Atomic
Reflection Symmetry .................. 699

46.2.3 The Incoherent Case
without Conservation of Atomic
Reflection Symmetry .................. 700
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46.3.1 The First Born Approximation ..... 702

46.4 Recent Developments........................... 703
46.4.1 S → D Excitation ....................... 703
46.4.2 P → P Excitation ....................... 703
46.4.3 Relativistic Effects

in S → P Excitation.................... 703

46.5 Summary ............................................ 703

References .................................................. 703

The study of anisotropies has a long history in atomic
physics, with light polarization, or Stokes parame-
ter analysis, as a prominent example. A pioneering
review by Fano and Macek [46.2] layed the mathe-
matical and conceptual foundation for most of the later
work. Advances in coincidence techniques, laser prepa-
ration methods, and development of efficient sources
for polarized electrons [46.3] have boosted the field fur-
ther. Parallel developments of powerful computational
codes have enabled a matching theoretical effort. In
this way, detailed insights into the collision dynam-
ics have been obtained, such as the locking radius
model for low energy atomic collisions, propensity
rules for orientation in fast electronic and atomic colli-

sions, and spin effects in polarized electron-heavy atom
scattering. Presentations of these developments are con-
tained in [46.4] and Chapts. 37, 50, 51, 63, 64, and
66. A comprehensive and critical review of the litera-
ture and the mathematical formalism was initiated by
NIST [46.5–7].

Space limitations allow only presentation of the
formalism for the simplest case of excitation. Recent
developments in the description of processes involving
polarized beams are included. The presentation is re-
stricted to atomic outer-shell excitation. Other reviews
describe excitation of inner shells [46.8] and molecu-
lar levels [46.9]. Related material on density matrices is
contained in Chapt. 7 [46.10].
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694 Part D Scattering Theory

46.1 Collisions Involving Unpolarized Beams

46.1.1 The Fully Coherent Case

Consider first the simplest nontrivial case of S→ P exci-
tation. A general property of an atomic collision is that
the total reflection symmetry with respect to the scat-
tering plane of the total wave function describing the
system is conserved. In simple cases, such as electron
impact excitation of He singlet states, or atom excita-
tion by fast, heavy particle impact, the projectile acts
as a structureless particle, with only the target atom
changing its quantum state. In this case, the reflection
symmetry of the target wave function alone is conserved.

Figure 46.1 shows the angular parts of the simplest
|lm〉 states with l = 0, 1, 2. The arrows indicate how the
two families of states with positive or negative reflection
symmetry may couple internally. Thus, in an S → P
transition, an atom initially in an S-state may be excited
to the (p+1, p−1) subspace, while the p0 state is not
accessible. A characteristic feature of the corresponding
electron charge cloud is that it has “zero height”, i. e.,
zero electron density in the direction perpendicular to

d–2 d–1 d0 d1 d–1

p–1 p0 p1

s0+ +
– –

Reflection
symmetry

Fig. 46.1 Illustration of the reflection symmetry of the
simplest spherical harmonics, corresponding to S, P, and
D states

the scattering plane. Furthermore, the expectation value
of the orbital angular momentum has a nonvanishing
component in this direction only.

The resulting electron charge cloud may thus have
a shape as shown on Fig. 46.2a. We shall now discuss
the parametrization of the wave function of this state
and analyze the connection between the wave function
and the corresponding photon radiation pattern emitted
when the state decays back to the initial S-state, using
the properties of electric dipole radiation.

Basic Definitions and Coordinate Frames
The coordinate frames of particular use in describing
the wave function are as follows. The collision frame,
(xc, yc, zc), is defined by ẑc ‖ kin and ŷc ‖ kin × kout.
The natural frame, (xn, yn, zn), is defined by x̂n ‖ kin
and ẑn ‖ kin × kout. Finally, the atomic frame is iden-
tical to the natural frame, except that the frame is
rotated by an angle γ around zn = za such that xa

is parallel to the major symmetry axis of the P-state
charge cloud, as shown in Fig. 46.2. Most scattering

a) b)

c) d)

+
–

yc, zn, za

xc, yn

xa

Θcoll

γ

zc, xn
kout

xc, yn

xa

zc, xn

γkin

Fig. 46.2 (a) Shows the shape, or the angular part, of
a P-state with positive reflection symmetry with respect to
the scattering plane. Some relevant coordinate frames are
also indicated; (b) shows a cut of this shape in the scatter-
ing plane. (c) is the angular distribution of photons emitted
in the scattering plane; (d) is the polarization ellipse for
light emitted in the direction perpendicular to the plane, as
observed from above
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Orientation and Alignment in Atomic and Molecular Collisions 46.1 Collisions Involving Unpolarized Beams 695

calculations use the collision coordinate system as ref-
erence frame, while mathematical analysis is often most
conveniently performed in the natural frame, where the
algebra is particularly simple. Many expressions are
even simpler in the atomic frame, but it has the disadvan-
tage that the angle γ varies with collision parameters,
such as impact velocity, impact parameter, etc.

The expansion of the P-state wave function in the
three coordinate systems is

|Ψ 〉 = ac+1

∣∣pc+1

〉+ac
0

∣∣pc
0

〉+ac−1

∣∣pc−1

〉
(46.1)

= an+1

∣∣pn+1

〉+an−1

∣∣pn−1

〉
(46.2)

= aa+1

∣∣pa+1

〉+aa−1

∣∣pa−1

〉
. (46.3)

Conservation of reflection symmetry in the scattering
plane implies

ac+1 = −ac−1 , (46.4)

an
0 = 0 , (46.5)

aa
0 = 0 . (46.6)

The normalization condition implies
∣∣ac

0

∣∣2+2
∣∣ac+1

∣∣2 = ∣∣an+1

∣∣2+∣∣an−1

∣∣2 = ∣∣aa+1

∣∣2+∣∣aa−1

∣∣2

= 1 . (46.7)

Finally, the am coefficients are related to the scattering
amplitudes fm and the differential cross section σ(θ) by

am = fm(kout/kin)
1
2 σ(θ)−

1
2 (46.8)

σ(θ)= (kout/kin)
(∣∣ f c

0

∣∣2+2
∣∣ f c+1

∣∣2) , etc. (46.9)

Except for an arbitrary phase factor, the pure state (46.1)
may thus be characterized by two dimensionless param-
eters. Traditionally, they have been chosen as (λ, χ)
defined as [46.11]

λ=
∣∣ac

0

∣∣2
∣∣ac

0

∣∣2+2
∣∣ac+1

∣∣2
, (46.10)

χ = arg
(
ac+1ac

0
∗)
. (46.11)

An alternative parametrization (L⊥, γ ) is given by [46.5]

L⊥ =
∣∣an+1

∣∣2− ∣∣an−1

∣∣2
∣∣an+1

∣∣2+ ∣∣an−1

∣∣2
, (46.12)

γ = 1

2
arg

(
an−1an+1

∗)± π
2
,

= − 1

2
(δ±π) , (46.13)

f+1

f–1
δ

Fig. 46.3 Fully coherent S → P excitation may be
described by two independent scattering amplitudes, char-
acterized by their relative size and phase

with the notation of Fig. 46.3. Referring to the natural
coordinate frame, the expectation value of the electronic
orbital angular momentum is thus

〈Ψ |L|Ψ 〉 = (0, 0, L⊥) . (46.14)

Coherence Analysis: Stokes Parameters
We now discuss the information obtainable from a po-
larization analysis of the emitted light. In the notation
of classical optics (see, e.g., Born and Wolf [46.12])
the components of the Stokes vector (P1, P2, P3) meas-
ured in the direction +yc (+zn) perpendicular to the
scattering plane and defined by

IP1 = I(0◦)− I(90◦) , (46.15)

IP2 = I(45◦)− I(135◦) , (46.16)

IP3 = I(RHC)− I(LHC) , (46.17)

with

I = I(0◦)+ I(90◦)
= I(45◦)+ I(135◦)
= I(RHC)+ I(LHC) , (46.18)

are given by

P1 = 2λ−1 , (46.19)

P2 = −2
√
λ(1−λ) cosχ , (46.20)

P3 = 2
√
λ(1−λ) sinχ , (46.21)

or, alternatively,

P1 = Pl cos 2γ , (46.22)

P2 = Pl sin 2γ , (46.23)

P3 = − L⊥ , (46.24)

with

Pl =
√

P2
1 + P2

2 . (46.25)

Part
D

4
6
.1



696 Part D Scattering Theory

Here, I(θ) is the intensity transmitted through an ideal
linear polarizer with transmission direction tilted by an
angle θ with respect to the zc or xn direction. Similarly,
RHC (LHC) refers to photons with negative (posi-
tive) helicity. Inspection of (46.19) to (46.25) shows
that determination of the Stokes vector in the direc-
tion perpendicular to the collision plane determines the
wave function (46.1) completely. A determination of
the Stokes vector thus constitutes a “perfect scattering
experiment”.

The Stokes vector (P1, P2, P3) is a unit vector char-
acterizing the state |Ψ 〉, and it may be represented by
a point on the Poincaré sphere, see Fig. 46.4.

Correlation Analysis
Another experimental approach is to map the angular
distribution of the photons emitted in the subsequent
S → P decay. For this purpose we first note that the
angular part Υ(θ, φ) of the electron probability density
〈Ψ |Ψ 〉 corresponding to the wave function (46.1) may
be written as

Υ(θ, φ)= 1

2
[1+ Pl cos 2(φ−γ)] sin2 θ . (46.26)

Figure 46.2(b) shows a cut of this charge cloud in the
scattering plane,

Υ
(1

2
π, φ

)
= 1

2
[1+ Pl cos 2(φ−γ)] . (46.27)

P3

P2

P1

Pl

(P1, P2, P3)

2γ

Fig. 46.4 The Poincaré sphere. The Stokes vector for a pure
state |Ψ 〉 corresponds to a characteristic polarization ellipse,
represented by a point on the unit sphere

The relative length, l, and width, w of the charge cloud
are given by

l = 1

2
(1+ Pl) , (46.28)

w= 1

2
(1− Pl) . (46.29)

The degree of linear polarization Pl is thus a measure of
the shape of the charge cloud, since

Pl = l−w
l+w . (46.30)

According to the properties of electric dipole radia-
tion, the pattern I(φ) in the scattering plane is

I(φ)= 1

2
[1− Pl cos 2(φ−γ)] . (46.31)

A mapping of the radiation pattern in the collision plane
determines γ and Pl , and thereby the absolute value of
the angular momentum by

|L⊥| =
√

1− P2
l . (46.32)

However, the sign of L⊥ cannot be determined by cor-
relation analysis, and this approach accordingly does
not qualify for classification as “a perfect scattering
experiment”.

Density Matrix Representation
Recalling that ρmn = ama∗n , the density matices in the
various basis sets introduced above are

ρc= 1√
8

⎛

⎜⎜⎜⎜
⎝

1√
2
(1−P1) −P2+iP3 − 1√

2
(1−P1)

−P2−iP3
√

2(1+P1) P2+iP3

− 1√
2
(1−P1) P2−iP3

1√
2
(1−P1)

⎞

⎟⎟⎟⎟
⎠
,

(46.33)

ρn= 1

2

⎛

⎜
⎝

1+ L⊥ 0 −Pl e−2iγ

0 0 0

−Pl e2iγ 0 1− L⊥

⎞

⎟
⎠ , (46.34)

ρa= 1

2

⎛

⎜
⎝

1+ L⊥ 0 −Pl

0 0 0

−Pl 0 1− L⊥

⎞

⎟
⎠ . (46.35)

The density matrices illustrate the algebraic simpli-
fications obtained using the natural coordinate frame.
In the following, this frame will be used unless other-
wise stated, and we therefore suppress the superscript n
below.
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Postcollisional Depolarization due to Fine
Structure and Hyperfine Structure Effects

After the collision, the isolated atom evolves under
the influence of internal forces, such as fine structure
and hyperfine structure, until the optical decay. While
typical collision times are of the order 10−15 s, the
light emission occurs after a time interval of 10−9 s.
This is long compared with the Larmor precession time
of the electron spin (∼10−12 s) and one can thus assume
that the atom has completely relaxed into, e.g., its 2P1/2
and 2P3/2 states before the photon emission. For the sim-
plest nontrivial case of electron spin S = 1

2 , the Stokes
vector P(S) of the subsequent 2P → 2S transition is
modified to become

P1,2

(
1

2

)
= 3

7
P1,2(0) , (46.36)

P3

(
1

2

)
=P3(0) , (46.37)

and the Stokes vector is thus no longer a unit vector. In
general, the Stokes vector components are reduced by
depolarization factors ci (a table of ci coefficients for
the most common values of electron and nuclear spin is
given in Appendix B of [46.5])

Pi(S)= ci Pi(0) . (46.38)

This suggests introduction of reduced polarizations

Pi = Pi(S)/ci . (46.39)

The reduced Stokes vector (P1, P2, P3) is again a unit
vector, and the formalism developed above for the spin-
less case can then be applied. We shall assume that
this correction has been made, and the “bar” will be
dropped.

46.1.2 The Incoherent Case
with Conservation of Atomic
Reflection Symmetry

The picture outlined above has to be modified in
cases where the experiment sums over several, in prin-
ciple distinguishable, channels, each of which, however,
conserves reflection symmetry. Prototype examples are
electron impact excitation of hydrogen or light alkali
atoms. Here, the excitation process is described by
singlet and triplet scattering amplitudes respectively,
and we have the possibility of direct and exchange
scattering. This doubles the number of scattering am-
plitudes from two to four. The experimental results are
thus an incoherent sum over these channels (singlet

and triplet), the unraveling of which would require ap-
plication of spin-polarized beams, see Sect. 46.2. The
atomic P-state can no longer be described as a sin-
gle pure state, (46.1), but as a mixed state (Chapt. 7).
The expressions (46.33) to (46.35) for the density ma-
trix are unchanged, but the matrix elements are now
sums of the contributions from the individual channels
(We shall discuss its decomposition below). Pl and L⊥
are now independent quantities, and the (reduced)
Stokes vector P is generally no longer a unit vector.
The degree of polarization P may thus be less than
one, i. e.,

P2 = P2
1 + P2

2 + P2
3 = P2

l + L2⊥ ≤ 1 . (46.40)

For electron impact excitation, deviation of the param-
eter P from unity may thus serve as a measure of the
effect of electron exchange. We have accordingly three
independent observables, e.g., (L⊥, γ, Pl). This set of
variables is frame-independent. A photon correlation ex-
periment in the scattering plane may extract the (γ, Pl)
pair, while coherence analysis in the z direction provides
the complete set. An alternative set of (frame-dependent)
parameters used in particular for hydrogen is (λ, R, I),
with

λ= 1

2
(1+ P1) , (46.41)

R =− 1√
8

P2 , (46.42)

I = 1√
8

P3 . (46.43)

46.1.3 The Incoherent Case
without Conservation of Atomic
Reflection Symmetry

In the general case, the assumption of positive reflec-
tion symmetry with respect to the scattering plane for
the wave function of the excited atom cannot be main-
tained. For example, for electron impact excitation of
a P-state of a heavy atom, spin-orbit effects may be
so strong that they flip the electron spin, thereby al-
lowing population of the |pn

0〉 state. Thus, the total
number of scattering amplitudes is now six. Typical ex-
amples are mercury, or the heavy noble gases. The total
angular momentum of the excited state is J = 1, the
fine structure being completely resolved in these cases.
Strictly speaking, the density matrix elements no longer
describe the electronic charge cloud, but rather the ex-
cited state (J = 1) distribution. Similarly, L⊥ should be
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replaced by J⊥, but for simplicity we keep the nota-
tion. This state radiates as a set of classical oscillators,
completely analogous to the 1P1 state described above,
so we shall maintain our previous notation, simply re-
placing the term charge cloud density by oscillator
density. The main difference from the cases consid-
ered above is that the density now displays a height,
see Fig. 46.5.

Blum, da Paixão and collaborators, [46.13,14], were
the first to formulate a parametrization of the general
case. Here, we shall use as starting point the expression
for the density matrix in the natural frame and decom-
pose it into the two terms with positive and negative
reflection symmetry, respectively,

ρn = (1−h)
1

2

⎛

⎜
⎝

1− P3 0 −P+
l e−2iγ

0 0 0

−P+
l e2iγ 0 1+ P3

⎞

⎟
⎠

+h

⎛

⎜
⎝

0 0 0

0 1 0

0 0 0

⎞

⎟
⎠ , (46.44)

a) b)

ya

xa

za

xa

za

ya

Fig. 46.5 The top row shows classical oscillator densities
for height parameters h = 0 and h = 1/3, respectively. The
alignment angle is γ = 35◦ and P+

l = 0.6 in both cases.
Below are shown cuts along the symmetry axes

where the linear polarization P+
l is labeled with a “+”

referring to the positive reflection symmetry. Similarly,
we define

L+⊥ ≡ − P3 , (46.45)

P+2 ≡ P2
1 + P2

2 + P2
3 ≤ 1 . (46.46)

The shape of the density is now characterized by the
three parameters

l = (1−h)
1

2
(1+ Pl) , (46.47)

w= (1−h)
1

2
(1− Pl) , (46.48)

h = ρ00 , (46.49)

with l+w+h = 1. There are thus four independent ob-
servables, chosen as (L+⊥, γ, P+

l , h). Again, this set of
variables is frame-independent. Determination of the
height parameter evidently requires observation from
a direction other than the zn-direction. Traditionally,
the Stokes parameter (P4, 0, 0) is measured from the
yn-direction to obtain

h = (1+ P1)(1− P4)

4− (1− P1)(1− P4)
. (46.50)

Thus, all four parameters may be obtained from analysis
of the light coherence, but two directions of observa-
tion are necessary. Similarly, photon correlation analysis
in two planes are required to extract (γ, P+

l , h), see,
e.g., [46.5] for a discussion.

The various cases with unpolarized beams discussed
in this Section are summarized in Table 46.1.

Table 46.1 Summary of cases of increasing complexity,
and the orientation and alignment parameters necessary
for unpolarized beams. Np is the number of independent
parameters, and Nd is the number of observation directions
required

Variable Sect. 46.1.1 Sect. 46.1.2 Sect. 46.1.3

Forces Coulomb +exchange +spin–orbit

Representation wave func. ρmn ρmn

Refl. symmetry + + +,−
Ang. mom. L⊥ L⊥ L+⊥
Align. angle γ γ γ

Linear pol. Pl Pl P+
l

Degree of pol. P = 1 P ≤ 1 P+ ≤ 1

Height h = 0 h = 0 h ≥ 0

Np 2 3 4

Nd 1 1 2
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46.2 Collisions Involving Spin-Polarized Beams

In this section we discuss the additional informa-
tion that can be gained by application of a polarized
beam compared with an unpolarized beam. Colli-
sions with polarized electron beams are discussed in
particular, but most of the ideas presented are eas-
ily generalized to beams of atoms in polarized, or
otherwise prepared, states. We shall keep the order
of increasing complexity introduced in the previous
section.

46.2.1 The Fully Coherent Case

As seen in Sect. 46.1.2, a simple example of a fully co-
herent excitation process is He 1 1S → n 1P excitation,
for which complete information can be obtained from
experiments using unpolarized beams. Consequently, in
this case application of polarized electrons will add noth-
ing new. Also, the polarization of the scattered electron
can be trivially predicted, since no change is possible in
the scattering process.

46.2.2 The Incoherent Case
with Conservation of Atomic
Reflection Symmetry

The targets of interest here are hydrogen or light al-
kali atoms with an electron spin S = 1

2 . Since we
now have the possibility of triplet (t) and singlet
(s) scattering, this doubles the number of scatter-

δt

f t
+1

f t
–1

f s
+1

f s
–1

∆+1

∆–1

δs

Fig. 46.6 For 2S → 2P electron impact excitation of hy-
drogen or light alkali atoms, four scattering amplitudes
come into play

ing amplitudes from two to four (recall that f0 = 0)
see Fig. 46.6.

The amplitudes of interest are

f t+1 = α+ eiφ+ , (46.51)

f t−1 = α− eiφ− , (46.52)

f s+1 = β+ eiψ+ , (46.53)

f s−1 = β− eiψ− . (46.54)

Neglecting an overall phase, seven independent par-
ameters are needed to characterize the amplitudes
completely. Traditionally, one is chosen as the differ-
ential cross section σu corresponding to unpolarized
particles. Six additional dimensionless parameters may
be defined: three to characterize the relative lengths of
the four vectors, and three to define their relative phase
angles.

The density matrix is parametrized, in analogy to the
unpolarized beam case, according to [46.15]

ρt = σ t 1

2

⎛

⎜
⎝

1+ L t⊥ 0 −Pt
l e−2 i γ t

0 0 0

−Pt
l e 2 i γ t

0 1− L t⊥

⎞

⎟
⎠ , (46.55)

ρs = σ s 1

2

⎛

⎜
⎝

1+ Ls⊥ 0 −Ps
l e−2 i γ s

0 0 0

−Ps
l e 2 i γ s

0 1− Ls⊥

⎞

⎟
⎠ ,

(46.56)

where

σ t = α2++α2− , (46.57)

σ s = β2++β2− , (46.58)

L t⊥ =
1

σ t

(
α2+−α2−

)
, (46.59)

Ls⊥ =
1

σ s

(
β2+−β2−

)
, (46.60)

Pt
l e2iγ t = Pt

1+ i Pt
2 =−2α+α−

σ t e−iδt , (46.61)

Ps
l e2iγ s = Ps

1 + i Ps
2 =−2β+β−

σ s e−iδs . (46.62)

In the case of an unpolarized beam, the total density
matrix becomes the weighted sum of the two matrices
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ρs and ρt, i. e.,

ρu = σu
1

2

⎛

⎜
⎝

1+ L⊥ 0 −Pl e−2 i γ

0 0 0

−Pl e2 i γ 0 1− L⊥

⎞

⎟
⎠

= 3wt σu
1

2

⎛

⎜
⎝

1+ L t⊥ 0 −Pt
l e−2 i γ t

0 0 0

−Ptl e 2 i γ t
0 1− L t⊥

⎞

⎟
⎠

+ws σu
1

2

⎛

⎜
⎝

1+ Ls⊥ 0 −Ps
l e−2 i γ s

0 0 0

−Ps
l e 2 i γ s

0 1− Ls⊥

⎞

⎟
⎠

(46.63)

where

wt = σ t

σ s+3σ t =
σ t

4σu
, (46.64)

ws = σ s

σ s+3σ t =
σ s

4σu
= 1−3wt , (46.65)

σu = (3wt+ws)σu = 3

4
σ t+ 1

4
σ s . (46.66)

The six parameters σu, w
t, L t⊥, Ls⊥, γ t, and γ s have now

been introduced, leaving one parameter still to be cho-
sen. Inspection of Fig. 46.6 suggests, for example, the
angle ∆+. The fourth angle, ∆−, is then fixed through
the relation

∆+−∆− = δt− δs = 2
(
γ s−γ t) . (46.67)

The following set of six dimensioness parameters is thus
complete:

wt, L t⊥, Ls⊥, γ t, γ s,∆+ . (46.68)

Detailed recipes for extraction of the parameters from
coherence experiments are somewhat complicated, and
we refer to discussions in the literature [46.7, 15, 16].
Using spin-polarized electrons and spin-polarized tar-
gets, all parameters may be determined, except for
information about singlet-triplet phase differences, such
as ∆+.

The reduced Stokes vector P of the unpolarized
beam experiment is given by the singlet and triplet (unit)
Stokes vectors Ps,t as

P = 3wt Pt+ws Ps , (46.69)

from which the set of parameters (L⊥, γ, Pl) for the
unpolarized beam experiment may be evaluated from

L⊥ = 3wt L t⊥+ws Ls⊥ , (46.70)

Pl e 2 i γ = 3wt Pt
l e 2 i γ t +ws Ps

l e 2 i γ s
. (46.71)

Since in general, L t⊥ �= Ls⊥ and γ t �= γ s, this causes the
(reduced) degree of polarization P to be smaller than
unity.

To summarize this section, Stokes parameter anal-
ysis may provide five dimensionless parameters, the
relative phase between the two f t+1 and f t−1 ampli-
tudes and the relative phase between the two f s+1
and f s−1 amplitudes, as well as the relative sizes of
all four amplitudes. However, none of the relative
phases between any triplet and singlet amplitude can
be determined, and coherence analysis alone is thus
not able to provide a “perfect scattering experiment”.
The missing phase may be extracted from the STU
parameters of the scattered electron, ( [46.16, 17] and
Chapt. 7).

46.2.3 The Incoherent Case
without Conservation of Atomic
Reflection Symmetry

The results of coherence analysis of a J = 0e → J = 1o

transition will now be discussed. We only analyze
the photon polarization in the exit channel, not the
electron spin parameters. There are six independent
scattering amplitudes for a J = 0 → J = 1 transition
(Fig. 46.7), thereby requiring the determination of one
absolute differential cross section, five relative magni-
tudes, and another five relative phases of the scattering
amplitudes.

This large number of independent parameters
leads to considerable complications. Nevertheless, the

∆+

∆0

f+1

f–1

δ

δ

δ

f–1

f0

f0

∆–

f+1

Fig. 46.7 For J = 0→ J = 1 electron impact excitation of
heavy atoms six scattering amplitudes come into play since
spin-flip may occur
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natural coordinate system enables disentangling of
the scattering amplitudes and generalization of the
parametrization of the density matrix for the case of
unpolarized beams in a straightforward way [46.7, 18].
The nonvanishing amplitudes f n(M f ,m f ,mi) in the
natural frame (Fig. 46.7) for a J = 0→ J = 1 transition
are

f n
(

1,
1

2
,

1

2

)
≡ f ↑+1 = α+ eiφ+ , (46.72)

f n
(

1,−1

2
,−1

2

)
≡ f ↓+1 = β+ eiψ+ , (46.73)

f n
(
−1,

1

2
,

1

2

)
≡ f ↑−1 = αiφ−−e , (46.74)

f n
(
−1,−1

2
,−1

2

)
≡ f ↓−1 = β− eiψ− , (46.75)

f n
(

0,
1

2
,−1

2

)
≡ f ↓0 = β0 eiψ0 , (46.76)

f n
(

0,−1

2
,

1

2

)
≡ f ↑0 = αiφ0

0e , (46.77)

where we have omitted Ji = Mi = 0 and J f = 1. Equa-
tions (46.72–46.75) represent noflip amplitudes that
leave the projectile spin unchanged while (46.76) and
(46.77) describe the cases where the electron spin is
flipped.

We first assume a polarization perpendicular to the
scattering plane, i. e., along the z-direction. In (46.44),
the density matrix for heavy atoms such as Xe or Hg
was decomposed into a pair of matrices with one having
positive reflection symmetry with respect to the scatter-
ing plane and the other one having negative reflection
symmetry, respectively. The extension of this decompos-
ition to the case of polarized electron beams is a pair of
density matrices, one for spin-up electron impact ex-
citation and one for spin-down excitation where “up”
and “down” correspond to the initial spin compo-
nent orientation with respect to the scattering plane.
Hence,

ρu

= σu

⎡

⎢
⎣(1−h)

1

2

⎛

⎜
⎝

1+ L+⊥ 0 −P+
l e−2 i γ

0 0 0

−P+
l e 2 i γ 0 1− L+⊥

⎞

⎟
⎠

+h

⎛

⎜
⎝

0 0 0

0 1 0

0 0 0

⎞

⎟
⎠

⎤

⎥
⎦

=w↑ρ↑ +w↓ρ↓

=w↑σu

⎡

⎢
⎣
(
1−h↑

)1

2

×

⎛

⎜
⎝

1+ L+↑⊥ 0 −P+↑
l e−2 i γ↑

0 0 0

−P+↑
l e 2 i γ↑ 0 1− L+↑⊥

⎞

⎟
⎠

+h↑

⎛

⎜
⎝

0 0 0

0 1 0

0 0 0

⎞

⎟
⎠

⎤

⎥
⎦

+w↓σu

⎡

⎢
⎣
(
1−h↓

)1

2

×

⎛

⎜
⎝

1+ L+↓⊥ 0 −P+↓
l e−2 i γ↓

0 0 0

−P+↓
l e 2 i γ↓ 0 1− L+↓⊥

⎞

⎟
⎠

+h↓

⎛

⎜
⎝

0 0 0

0 1 0

0 0 0

⎞

⎟
⎠

⎤

⎥
⎦ . (46.78)

Here we have defined

L+↑⊥ = α
2+−α2−
α2++α2−

=−P↑
3 , (46.79)

L+↓⊥ = β
2+−β2−
β2++β2−

= −P↓
3 , (46.80)

P+↑
l e2iγ↑ = P↑

1 + iP↑
2 =−2α+α− ei(φ−−φ+)

α2++α2−
,

(46.81)

P+↓
l e2iγ↓ = P↓

1 + iP↓
2 =−2β+β− ei(ψ−−ψ+)

β2++β2−
,

(46.82)

σ↑ = α2++α2−+α2
0 , (46.83)

σ↓ = β2++β2−+β2
0 , (46.84)

σu = 1

2

(
α2++α2−+α2

0+β2++β2−+β2
0

)

= 1

2

(
σ↑ +σ↓) , (46.85)

h↑ = α2
0/σ

↑ , (46.86)

h↓ = β2
0/σ

↓ , (46.87)

w↑ = σ↑/(2 σu) , (46.88)

w↓ = σ↓/(2 σu)= 1−w↑ . (46.89)
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From these definitions it follows that

(1−h) L+⊥ =w↑
(
1−h↑

)
L+↑⊥

+ w↓ (1−h↓
)

L+↓⊥ , (46.90)

(1−h) P+
l e2iγ =w↑ (1−h↑

)
P+↑

l e2iγ↑

+ w↓ (1−h↓
)

P+↓
l e2iγ↓ ,

(46.91)

h =w↑h↑ +w↓h↓

= (
α2

0+β2
0

)
/(2σu) , (46.92)

P+↑
l

2+ L+↑⊥
2 = P+↑

l

2+ P↑
3

2 = 1 , (46.93)

P+↓
l

2+ L+↓⊥
2 = P+↓

l

2+ P↓
3

2 = 1 . (46.94)

Extraction of these parameters is facilitated by intro-
duction of “generalized Stoke parameters” [46.18]. In
this way, L+↑⊥ , L+↓⊥ , γ↑, γ↓ may be determined. If, in
addition, h is known, e.g., by polarization analysis in
the y-direction, the following set of seven dimension-
less independent parameters can be derived from the
generalized Stokes parameters in the z-direction:

L+↑⊥ , L+↓⊥ , h↑, h↓, w↑; γ↑, γ↓. (46.95)

This leaves three relative phases unknown. In the nota-
tion of Fig. 46.7, we see from inspection that

∆+−∆− = δ↑− δ↓ = 2
(
γ↓ −γ↑) , (46.96)

in analogy to (46.67). A convenient choice for the
remaining phase angles is

(
∆+, ∆0, δ↑↓

)
, with

δ↑↓ ≡ φ+−ψ0 . (46.97)

A complete set of dimensionless independent param-
eters is then given by

(w↑, L+↑⊥ , L+↓⊥ , h
↑, h↓, γ↑, γ↓,∆+,∆0, δ↑↓) .

(46.98)

Information about the remaining three phase angles
may be obtained in experiments with in-plane spin
polarization. Further analysis shows that the general-
ized Stokes parameters in the y (or x) direction with
in-plane spin polarization Py or Px provides two addi-
tional phases. None of the relative phases ∆+ between
f
↑
+1

and f
↓
+1

, etc. enter. Determination of the final re-
maining angle requires determination of generalized
STU parameters, describing the electron spin in the exit
channel.

Table 46.2 summarizes the various cases with polar-
ized beams discussed in this section.

Table 46.2 Summary of cases of increasing complexity
for spin-polarized beams. The number of independent di-
mensionless parameters Np is listed, along with NOA, the
number determined from orientation and alignment only.
Nd is the number of observation directions required

Variable Sect. 46.2.1 Sect. 46.2.2 Sect. 46.2.3

Forces Coulomb +exchange +spin–orbit

Representation wave func. ρt,s
mn ρ

↑,↓
mn

Refl. symmetry + + +,−
Np 2 6 10

NOA 2 5 9

Nd 1 1 2

46.3 Example

46.3.1 The First Born Approximation

As a simple, illustrative example, consider the predic-
tions of the first Born approximation (FBA). Here, S→P
excitation by electron impact is described as creation of
a pure p-orbital along the direction of the linear momen-
tum transfer ∆k= kin−kout, along which there is axial
symmetry. Evidently

LFBA⊥ = 0 , (46.99)

and consequently

PFBA
l = 1 . (46.100)

The alignment angle is found from simple geometri-
cal considerations, see Fig. 46.8. Denoting the incident

energy by E and the energy loss by ∆E, the re-
lation between the projectile scattering angle Θcol
and the alignment angle γ is directly read from the

kout�(E – ∆E)1/2

kin�E1/2

∆kγFBA
Θcol

Fig. 46.8 Diagram for evaluation of the alignment angle γ
in the first Born approximation
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figure,

tan γFBA = sinΘcol

cosΘcol− x
, (46.101)

where x = [E/(E−∆E)]1/2. For ∆E > 0, γFBA is al-
ways negative, with its minimum value when ∆k⊥ kout.
Any theoretical effort beyond the FBA involves serious
computations.

46.4 Recent Developments

46.4.1 S → D Excitation

The generalization of the formalism of Sect. 46.2.2 to
the case of S → D excitation involves the introduction
of three scattering amplitudes, corresponding to a com-
plete parameter set of one cross section, two relative
amplitude sizes, and two relative phases. Analysis shows
that a full coherence analysis of the light emitted in the
subsequent D → P optical decay is not sufficient for
a complete experiment, instead two solutions are ob-
tained. A triple coincidence experiment may resolve the
ambiguity [46.19].

46.4.2 P → P Excitation

By proper optical preparation of the atomic target,
collision studies involving specific excited states may
be performed as a function of scattering angle. For
collision-induced P→ P transitions, a systematic prepa-
ration of specific initial P states, combined with Stokes
parameter analysis of the radiation pattern from the final
P state, may lead to a complete scattering experiment.
The corresponding complete set of nine parameters
describes the process in terms of five independent

scattering amplitudes. In addition to the charge cloud
shape and orientation parameters, three Euler angles
are needed to describe the atomic reference frame
of the charge cloud with respect to the laboratory
frame [46.20].

46.4.3 Relativistic Effects
in S → P Excitation

It has been discussed to what extent relativistic ef-
fects can be studied for excitation of the two fine
structure components of the resonance transitions of
heavy alkali atoms, such as Rb or Cs. For electron-
impact excitation, standard Stokes parameter analysis
turns out to be extremely insensitive to the inclu-
sion of relativistic effects in the numerical treatment,
which explains the success of nonrelativistic theories.
If spin-polarized electrons are used, either in the inci-
dent channel through measurement of spin asymmetries,
or in the final channels by performing a time-reversed
generalized Stokes parameter experiment with a laser-
prepared target and a spin-polarized electron beam,
distinct relativistic effects, typically at the 5% level, may
be revealed [46.21].

46.5 Summary

A selection of fundamental formulas describing ori-
entation and alignment in atomic collisions is given,
with emphasis on the simplest case, S → P excita-

tion. A tutorial introduction to the field with a series
of examples and applications may be found in a recent
textbook [46.22].
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Electron–Atom47. Electron–Atom, Electron–Ion,
and Electron–Molecule

Collisions
This chapter reviews the theory of electron
collisions with atoms, ions and molecules.
Section 47.1 discusses elastic, inelastic and ionizing
collisions with atoms and atomic ions from close to
threshold to high energies where the Born series
becomes applicable. Section 47.2 extends the
theory to treat electron collisions with molecules.
Finally in Sect. 47.3 the theory of electron atom
collisions in intense laser fields is discussed. This
chapter will not present detailed comparisons
of theoretical predictions with experiment.
Such comparisons are given in recent review
articles [47.1–3] and in Chapt. 63.
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47.1 Electron–Atom and Electron–Ion Collisions

47.1.1 Low-Energy Elastic Scattering
and Excitation

In this section we consider the process

e−+ Ai → e−+ A j , (47.1)

where Ai and A j are bound states of the target atom or
ion and where the velocity of the incident or scattered
electron is of the same order or less than that of the target
electrons actively involved in the collision.

Assume initially that all relativistic effects can
be neglected, which restricts the treatment to low-Z
atoms and ions. The Schrödinger equation describ-
ing the scattering of an electron by a target atom or
ion containing N electrons and nuclear charge Z is
then

HN+1Ψ = EΨ , (47.2)

where E is the total energy of the system. The (N +1)-
electron nonrelativistic Hamiltonian HN+1 is given in
atomic units by

HN+1 =
N+1∑

i=1

(
−1

2
∇2

i −
Z

ri

)
+

N+1∑

i> j=1

1

rij
, (47.3)

where rij = |ri − r j |, and ri and r j are the vector co-
ordinates of electrons i and j relative to the origin of
coordinates taken to be the target nucleus, which is
assumed to have infinite mass.

The target eigenstates Φi and the corresponding
eigenenergies wi satisfy the equation

〈Φi |HN |Φ j〉 =wiδij , (47.4)

where HN is defined by (47.3) with N+1 replaced by N .
The calculation of accurate target states is discussed in
Chapt. 21. The solution of (47.2), corresponding to the
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process (47.1), then has the asymptotic form

Ψi ≈
r→∞Φiχ 1

2 mi
eiki z +

∑

j

Φ jχ 1
2 m j

f ji (θ, φ) eik jr .

(47.5)

In (47.5), χ 1
2 mi

andχ 1
2 m j

are the spin eigenfunctions of
the incident and scattered electrons, where the direction
of spin quantization is usually taken to be the incident
beam direction, and f ji(θ, φ) is the scattering amplitude,
the spherical polar coordinates of the scattered electron
being denoted by r, θ and φ. Also the wave numbers
ki and k j are related to the total energy of the system
by

E =wi + 1

2
k2

i =w j + 1

2
k2

j . (47.6)

The outgoing wave term in (47.5) contains contribu-
tions from all target states that are energetically allowed;
i. e., for which k2

j ≥ 0. If the energy is above the ioniza-
tion threshold, this includes target continuum states. For
an atomic ion, a logarithmic phase factor is also needed
as discussed below.

The differential cross section for a transition from
an initial state |i〉 = ∣∣ki , Φi , χ 1

2 mi

〉
to a final state

| j〉 = |k j , Φ j , χ 1
2 m j

〉 is given by

dσ ji

dΩ
= k j

ki
| f ji (θ, φ) |2 , (47.7)

and the total cross section is obtained by averaging over
initial spin states, summing over final spin states and
integrating over all scattering angles.

In order to solve the Schrödinger equation to obtain
the scattering amplitude and cross section at low ener-
gies, we make a partial wave expansion of the total wave
function

ΨΓj (XN+1)

=A
n∑

i=1

Φ
Γ

i

(
x1, . . . , xN ; r̂N+1σN+1

)

×r−1
N+1 FΓij (rN+1)

+
m∑

i=1

χΓi (x1, . . . , xN+1) bΓij , (47.8)

where XN+1 ≡ x1, x2 · · · xN+1 represents the space and
spin coordinates of all N +1 electrons, xi ≡ riσi repre-
sents the space and spin coordinates of the ith electron
and A is the operator that antisymmetrizes the first sum-
mation with respect to exchange of all pairs of electrons
in accordance with the Pauli exclusion principle. The

channel functions Φ
Γ

i , assumed to be n in number, are
obtained by coupling the orbital and spin angular mo-
menta of the target states Φi with those of the scattered
electron to form eigenstates of the total orbital and spin
angular momenta, their z components and the parity π,
where

Γ ≡ L ML SMSπ (47.9)

is conserved in the collision. The square integrable cor-
relation functions χΓi allow for additional correlation
effects not included in the first expansion in (47.8) that
goes over a limited number of target eigenstates, and
possibly pseudostates.

By substituting (47.8) into the Schrödinger equa-
tion (47.2), projecting onto the channel functions
Φ
Γ

i and onto the square integrable functions χΓi , and
eliminating the coefficients bΓij , we obtain n coupled
integrodifferential equations satisfied by the reduced
radial functions FΓij representing the motion of the
scattered electron of the form

(
d2

dr2
− i (i +1)

r2
+ 2(Z− N)

r
+ k2

i

)
FΓij (r)

= 2
∑



{
VΓi (r) FΓ j (r)

+
∞∫

0

[
KΓi

(
r, r ′

)+ XΓi
(
r, r ′

)]
FΓ j

(
r ′
)

dr ′
}
.

(47.10)

Here i is the orbital angular momentum of the scat-
tered electron, and VΓi , WΓ

i and XΓi are the local direct,
nonlocal exchange and nonlocal correlation potentials
respectively. If the correlation potential which arises
from the χΓi terms in (47.8) is not included, then (47.10)
are called the close coupling equations.

The direct potential can be written as

VΓij (rN+1)

=
〈
Φ
Γ

i

(
x1, . . . , xN ; r̂N+1σN+1

)

×

∣∣∣∣∣

N∑

i=1

1

riN+1
− N

rN+1

∣∣∣∣∣

×Φ
Γ

j

(
x1, . . . , xN ; r̂N+1σN+1

) 〉
, (47.11)

where the integral is taken over all electron space and
spin coordinates, except the radial coordinate of the
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(N +1)th electron. This potential has the asymptotic
form

VΓij (r)=
λmax∑

λ=1

aλijr
−λ−1, r ≥ a (47.12)

where a is the range beyond which the orbitals in the
target states Φi included in the first expansion in (47.8),
are negligible. The λ= 1 term in (47.12) gives rise, in
second-order, to the long-range attractive polarization
potential

V (r) →
r→∞−1

2

α

r4
(47.13)

seen by an electron incident on an atom. For an s-state
atom in a stateΦ0 the dipole polarizability α is given by

α= 2
∑

j

∣∣∣〈Φ0|
(

4π
3

)1/2 ∑N
i=1 riY10

(
r̂i
)|Φ j〉

∣∣∣
2

w j −w0
.

(47.14)

These long-range potentials have a profound influence
on low-energy scattering.

The exchange and correlation potentials, unlike the
direct potential, are both nonlocal and the exchange
potential vanishes exponentially for large r. Explicit
expressions for these potentials are too complicated to
write down, except in the case of e−–H scattering where
the direct and exchange potentials were first given by
Percival and Seaton [47.4]. Instead they are determined
by general computer programs.

The scattering amplitude and cross section can be
obtained by solving (47.10) for all relevant conserved
quantum numbers Γ subject to the following K -matrix
asymptotic boundary conditions

FΓij ≈
r→∞ k

− 1
2

i

(
sin θiδij + cos θi KΓij

)
,

open channels k2
i ≥ 0

FΓij ≈
r→∞ 0 ,

closed channels k2
i < 0 (47.15)

where

θi = kir− 1

2
iπ+ z

ki
ln (2kir)+σi (47.16)

with z = Z − N , and σi = argΓ (i +1− iz/ki). The
S-matrix and T -matrix are related to the K -matrix de-
fined by (47.15) by the matrix equations

SΓ = I+ iKΓ

I− iKΓ
, TΓ = SΓ − I = 2iKΓ

I− iKΓ
,

(47.17)

where the dimensions of the matrices in these equations
are na × na, where na is the number of open channels
at the energy under consideration for the given Γ . The
Hermiticity and time reversal invariance of the Hamil-
tonian ensures that KΓ is real and symmetric, and SΓ is
unitary and symmetric.

The scattering amplitude defined by (47.5) can be ex-
pressed in terms of the T -matrix elements. For a neutral
target,

f ji (θ, φ)= i

(
π

kik j

) 1
2 ∑

L Sπ
i  j

i i− j (2i +1)
1
2

×
(
Li MLi i0|Lii L ML

)

×

(
Si MSi

1

2
mi |Si

1

2
SMS

)

× (L j ML j  jm j |L j j L ML)

×

(
Sj MS j

1

2
m j |Sj

1

2
SMS

)
TΓji Y j m j

(θ, φ) ,

(47.18)

which describes a transition from an initial state
αi Li Si MLi MSi mi to a final state α j L j S j ML j MS j m j ,
where αi and α j represent any additional quantum
numbers required to completely define the initial and
final states. The corresponding total cross section, ob-
tained by averaging over the initial magnetic quantum
numbers, summing over the final magnetic quantum
numbers, and integrating over all scattering angles,
is

σtot (i → j)= π

k2
i

∑

L Sπ
i j

(2L+1) (2S+1)

2 (2Li +1) (2Si +1)

∣∣TΓji
∣∣2 ,

(47.19)

which describes a transition from an initial target state
αi Li Si to a final target state α j L j S j . In applications, it
is also useful to define a collision strength by

Ω (i, j)= k2
i (2Li +1) (2Si +1) σtot (i → j) ,

(47.20)

which is dimensionless and symmetric with respect to
interchange of the intial and final states denoted by
i and j. For scattering by an ion, the above expres-
sion for f ji (θ, φ) is modified by the inclusion of the
Coulomb scattering amplitude when the initial and final
states are identical.

For incident electron energies insufficient to excite
the atom or ion, only elastic scattering is possible and the
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above expressions simplify. Consider low energy elastic
electron scattering by a neutral atom is a 1S ground state.
Then the expression for the scattering amplitude (47.18)
reduces to

f (θ)= 1

2ik

∞∑

=0

(2+1)
(

e2iδ −1
)

P (cos θ) ,

(47.21)

where 
(= L = i =  j

)
is the angular momentum of

the scattered electron, k is its wave number, and the
phase shift δ can be expressed in terms of the K -
matrix, which now has only one element since na = 1,
by

tan δ = KΓ11 . (47.22)

The corresponding expression for the total cross section
is then

σtot = 4π

k2

∞∑

=0

(2+1) sin2 δ . (47.23)

A diffusion, or momentum transfer cross section, can
also be defined as

σD = 2π

π∫

0

| f (θ) |2 (1− cos θ) sin θ dθ

= 4π

k2

∞∑

=0

(+1) sin2 (δ+1− δ) , (47.24)

which is important when considering the diffusion of
electrons through gases.

At low incident electron energies, the behav-
ior of the phase shift for an atom in a s-state is
dominated by the long-range polarization potential
(47.13). O’Malley et al. [47.5] showed that for s-
wave scattering k cot δ0 satisfies the effective range
expansion

k cot δ0 = − 1

as
+ πα

3a2
s

k

+ 2α

3as
k2 ln

(
αk2

16

)
+O

(
k2) , (47.25)

where as is the scattering length, while for ≥ 1

k2 cot δ =
8
(
+ 3

2

) (
+ 1

2

)(
− 1

2

)

πα
+· · · .

(47.26)

It follows that close to threshold, the total elastic cross
section has the form

σtot = 4πa2
s +

8

3
π2αask+· · · . (47.27)

When an electron is elastically scattered by a positive
or negative ion, then these formulae for the low-energy
behavior of the phase shift are modified. For scattering
by a positive ion, Seaton [47.6] has shown that

cot δ (k)

1− e2πη = cot
[
πµ

(
k2)

]
, (47.28)

where η=−z/k, and whereµ
(
k2
)

is the analytic contin-
uation of the quantum defects of the electron–ion bound
states to positive energies. This quantum defect theory
enables spectroscopic observations of bound state en-
ergies to be extrapolated to positive energies to yield
electron–ion scattering phase shifts. For a negative ion,
where the Coulomb potential is repulsive, the phase shift
behaves as

δ →
k→0

exp(2πz/k) , (47.29)

which vanishes rapidly as k tends to zero since z is now
negative.

47.1.2 Relativistic Effects for Heavy Atoms
and Ions

As the nuclear charge Z of the target increases, rela-
tivistic effects become important even for low energy
scattering. There are two ways in which relativistic
effects play a role. First, there is a direct effect cor-
responding to the relativistic distortion of the wave
function describing the scattered electron by the strong
nuclear Coulomb potential. Second, there is an indirect
effect caused by the change in the charge distribution of
the target due to the use of relativistic wave functions
discussed in Chapt. 22. We will concentrate on the direct
effect in this section.

For atoms and ions with small Z, the K -matrices can
first be calculated in LS coupling, neglecting relativis-
tic effects. The K -matrices are then recoupled to yield
transitions between fine-structure levels. We introduce
the pair-coupling scheme

Li + Si = Ji , Ji +�i = Ki , Ki + s = J ,
(47.30)

where Ji is the total angular momentum of the target,
�i is the orbital angular momentum of the scattered elec-
tron, s is its spin, and J is the total angular momentum,
which with the parity π is conserved in the collision.

Part
D

4
7
.1



Electron–Atom, Electron–Ion, and Electron–Molecule Collisions 47.1 Electron–Atom and Electron–Ion Collisions 709

The transition from LS coupling involves the recoupling
coefficient

〈
[(Li Si) Ji , i ]Ki ,

1

2
; JMJ |(Lii)L,

(
Si

1

2

)
S; JMJ

〉

= [(2Ji +1) (2L+1) (2Ki +1) (2S+1)]
1
2

× W (Li Si Ji; Li Ki)W

(
L JSi

1

2
; SKi

)
,

(47.31)

and the corresponding K -matrix transforms as

K Jπ
ij =

∑

L S

〈
((Li Si) Ji , i) Ki ,

1

2
;

×JMJ | (Lii) L,

(
Si

1

2

)
S; JMJ

〉
× KΓij

×

〈(
L j j

)
L,

(
Sj

1

2

)
S;

×JMJ |
((

L j S j
)

J j ,  j
)

K j ,
1

2
; JMJ

〉
.

(47.32)

This transformation has been implemented in a computer
program by Saraph [47.7, 8].

For intermediate-Z atoms and ions, relativistic
effects can be included by adding terms from the Breit–
Pauli Hamiltonian to the nonrelativistic Hamiltonian
(Jones [47.9], Scott and Burke [47.10]). We write

HBP
N+1 = Hnr

N+1+H rel
N+1 (47.33)

where Hnr
N+1 is defined by (47.3) and H rel

N+1 consists
of one- and two-body relativistic terms. The one-body
terms are (Sect. 21.1)

Hmass
N+1 =−1

8
α2

N+1∑

i=1

∇4
i mass-correction term ,

HD1
N+1 =−1

8
α2 Z

N+1∑

i=1

∇2
i

(
1

ri

)

one-body Darwin term ,

Hso
N+1 =

1

2
α2

N+1∑

i=1

1

ri

∂V

∂ri
(�i · si) spin–orbit term .

The two-body terms are less important and are usually
not included in collision calculations.

The modified Schrödinger equation defined by
(47.2), with HN+1 replaced by HBP

N+1, is solved by adopt-
ing an expansion similar in form to (47.8), but now using

the pair coupling scheme in the definition of the chan-
nel functions and quadratically integrable functions. We
then obtain coupled integrodifferential equations similar
in form to (47.10), from which the K -matrix, S-matrix
and T -matrix can be obtained. The corresponding total
cross section in the pair-coupling scheme analogous to
(47.19) is

σtot (i → j)

= π

2k2
i (2Ji +1)

∑

Jπ
Ki K ji j

(2J +1)
∣∣T Jπ

ji

∣∣2 ,

(47.34)

which describes a transition from an initial target state
αi Ji to a final target state α j J j . The corresponding
collision strength is

Ω (i, j)= k2
i (2Ji +1) σtot (i → j) . (47.35)

For high-Z atoms and ions, the Dirac Hamilto-
nian [47.11, 12] (Sect. 47.2)

HD
N+1 =

N+1∑

i=1

(
cα · pi +β′c2− Z

ri

)
+

N+1∑

i> j=1

1

rij

(47.36)

must be used instead of (47.3), where β′ = β−1 and
α and β are the usual Dirac matrices. The expansion of
the total wave functions for a particular JMJπ takes the
general form of (47.8). However, now both the bound
orbitals in the target, and correlation functions and the
orbitals representing the scattered electron are repre-
sented by Dirac orbitals. These are defined in terms of
large and small components P(r) and Q(r) by

φ (r, σ)= 1

r

(
Pa (r) χκm

(
r̂, σ

)

Qa (r) χ−κm
(
r̂, σ

)

)

(47.37)

for the bound orbitals, and

F (r, σ)= 1

r

(
Pc (r) χκm

(
r̂, σ

)

Qc (r) χ−κm
(
r̂, σ

)

)

(47.38)

for the continuum orbitals, where a = nκm, c= kκm and
the spherical spinor

χκm
(
r̂,σ

)

=
∑

mmi

(
m

1

2
mi |1

2
jm

)
Ym (θ, φ) χ 1

2 mi
(σ) ,

(47.39)

where κ = j+ 1
2 when = j+ 1

2 , and κ =− j− 1
2 when

= j− 1
2 . We can now derive coupled integrodiffer-

ential equations for the functions Pc (r) and Qc (r)
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in a similar way to the derivation of (47.10), except
that these are now coupled first-order equations instead
of coupled second-order equations. The K -matrix, and
hence the S-matrix and T -matrix, can be obtained from
the asymptotic form of these equations. The total cross
section in the j– j coupling scheme, is then given by
(47.34), and the corresponding collision strength is given
by (47.35).

47.1.3 Multichannel Resonance Theory

General resonance theories have been developed by
Fano [47.13, 14], Feshbach [47.15, 16], and Brenig and
Haag [47.17]. They are also discussed in Chapt. 25. Here
we will limit our discussion to the effect that resonances
have on electron collision cross sections.

Following Feshbach, we introduce the projection op-
erators P and Q, where P projects onto a finite set of
low energy channels in (47.8) and Q projects onto the
orthogonal space, where we restrict our consideration to
the space corresponding to a particular set of conserved
quantum numbers Γ . In this space we have

P2 = P, Q2 = Q, P+Q = 1 . (47.40)

The Schrödinger equation (47.2) can then be written as

P (H− E) (P+Q) Ψ = 0 (47.41)

and

Q (H− E) (P+Q) Ψ = 0 (47.42)

where we have omitted the subscript N +1 on H and
the superscript Γ on Ψ . After solving (47.42) for QΨ
and substituting into (47.41), we find that

P

(
H− PHQ

1

Q (H− E) Q
Q HP− E

)
PΨ = 0 ,

(47.43)

where the term

Vop =−PHQ
1

Q (H− E) Q
Q HP , (47.44)

called the optical potential, allows for propagation in
the Q-space channels.

We now introduce the eigenfunctions φi and eigen-
values εi of the operator Q HQ by

Q HQφi = εiφi . (47.45)

It follows that the discrete eigenvalues εi each give rise to
poles in Vop at εi . If the energy E is in the neighborhood

of an isolated pole or bound state εi , we can rewrite
(47.43) as

⎛

⎝PHP−
∑

j �=i

PHQ
|φ j〉〈φ j |
ε j − E

Q HP− E

⎞

⎠ PΨ

= PHQ
|φi〉〈φi |
εi − E

Q HPΨ , (47.46)

where the rapidly varying part of the optical potential
has been separated and put on the right-hand-side of
(47.46). This equation can be solved by introducing the
Green’s function G0 and the solutions ψ0 j of the opera-
tor on the left-hand side of (47.46). We find that the pole
term on the right-hand side of this equation gives rise to
a Feshbach resonance whose position is

Ei = εi +∆i − 1

2
iΓi = Ei,r− 1

2
iΓi , (47.47)

is where the resonance shift

∆i = 〈φi |Q HP G0 PHQ|φi〉 , (47.48)

and the resonance width is

Γi = 2π
∑

j

|〈φi | Q HP | ψ0 j〉|2 , (47.49)

where the summation in this equation is taken over all
continuum states corresponding to the operator on the
left-hand-side of (47.46) and these states are normalized
to a delta function in energy.

In the neighborhood of the resonance energy Ei,r,
the S-matrix is rapidly varying with the form

S= S
1
2
0

(

I− iΓ
γi ×γ i

E− Ei,r+ 1
2 iΓi

)

S
1
2
0 , (47.50)

where S0 is the slowly varying nonresonant or back-
ground S-matrix corresponding to ψ0, and the partial
widths γi are defined by

〈φi | Q HP | ψ0〉 = Γ
1
2

i γi · S
1
2
0 , (47.51)

where γi ·γi = 1. A corresponding resonant expression
can be derived for the K -matrix (Burke [47.18]).

Let us now diagonalize the S-matrix as follows:

S= A exp (2i∆) AT , (47.52)

where A is an orthogonal matrix and ∆ is a diago-
nal matrix whose diagonal elements, δi , i = 1, . . . , na,
are called the eigenphases. If we define the eigenphase
sum δsum by

δsum =
na∑

i=1

δi , (47.53)
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then we can show from (47.50) that in the neighborhood
of the resonance

δsum (E)= δ0,sum (E)+ tan−1

(
1
2Γi

Ei,r− E

)

,

(47.54)

where δ0,sum is the slowly varying background eigen-
phase sum obtained by replacing S by S0 in (47.52) and
(47.53). It follows from (47.54) that the eigenphase sum
increases by π radians in the neighborhood of the res-
onance energy. If there are m resonances, that may be
overlapping, (47.54) generalizes to

δsum (E)= δ0,sum(E)+
m∑

i=1

tan−1

(
1
2Γi

Ei,r− E

)

.

(47.55)

This result has proved to be very useful in analyz-
ing closely spaced resonances to obtain the individual
resonance positions and widths.

47.1.4 Multichannel Quantum Defect Theory

When an electron scatters from a positive ion, the op-
erator Q HQ in (47.45) has an infinite series of bound
states, supported by the long-range attractive Coulomb
potential, converging to the lowest energy threshold of
Q HQ. Multichannel quantum defect theory (MQDT),
developed by Seaton [47.6,19,20], relates the S-matrices
and K -matrices above and below thresholds using gen-
eral analytic properties of the Coulomb wave function.
In this way the cross sections above and below threshold
can be related and whole Rydberg series of resonances
rather than individual resonances can be predicted.

When all the channels are open, the S-matrix is
related to the K -matrix by (47.17), rewritten here as

S= (iI−K) (iI+K)−1 . (47.56)

In the energy region where some channels are closed,
Seaton showed that the S-matrix can be written as

S= (iI−K) (tI+K)−1 , (47.57)

where t is a diagonal matrix with nonzero matrix elem-
ents given by

tii = i , open channels k2
i ≥ 0

tii = tanπνi , closed channels k2
i < 0 (47.58)

where νi is defined in the closed channels by

k2
i =−z2/ν2

i . (47.59)

When some channels are closed, Rydberg series of res-
onances occur because of the terms tanπνi . We now
introduce the matrix

χ = (iI−K) (iI+K)−1 , (47.60)

which is analytic through the thresholds. When all the
channels are open then clearly S= χ. Let us partition
the S-matrix and the χ-matrix into open (subscript o)
and closed (subscript c) channel matrices as follows:

S=
(

Soo Soc

Sco Scc

)

, χ =
(

χoo χoc

χco χcc

)

. (47.61)

Then eliminating K between (47.57) and (47.60) and
using (47.61), the open–open submatrix of S is

Soo = χoo−χoc

(
χcc− e−2πiνc I

)−1
χco . (47.62)

This is an expression for the open channel S-matrix in
terms of quantities that can be analytically continued
through the thresholds.

A similar expression can be obtained for the open
channel, or contracted, K -matrix Kop defined in analogy
with (47.56) by

Soo =
(
iI−Kop

) (
iI+Kop

)−1
. (47.63)

Partitioning the K -matrix into open and closed channels
as

K =
(

Koo Koc

Kco Kcc

)

, (47.64)

and substituting into (47.57) yields the expression

Kop = Koo−Koc (Kcc+ tanπνc)
−1 Kco . (47.65)

This equation enables cross sections and the resonance
parameters in an energy region where some channels are
closed to be predicted by calculating K at a few energies
where all channels are open and then extrapolating it to
the region where some channels are closed.

A simple one channel example has already been dis-
cussed following (47.28). In this case, it follows from
(47.22) that K = tan δ. Also, from (47.57), a pole in the
S-matrix occurs below threshold when

tanπν+K = 0 . (47.66)

Since from (47.59), the bound state energies correspond
to ν = n−µ, where n is an integer andµ is the quantum
defect, then (47.66) shows that δ extrapolates below
threshold to give πµ. This result agrees with (47.28)
since 1− exp (2πη)≈ 1 close to threshold.
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The above theory has been extended by Gaili-
tis [47.21] who showed that the collision strengths
defined by (47.20) can also be extrapolated through
thresholds. Provided that the separation between the
resonances is large compared with their widths, then
the collision strength averaged over resonances below
a threshold denoted byΩ (i, f ), can be written as

Ω (i, f )=Ω> (i, f )+
∑

j

Ω>(i, j)Ω> ( j, f )
∑

k
Ω> ( j, k)

,

(47.67)

where Ω> are the collision strengths determined above
the threshold and extrapolated to energies below this
threshold. Also in (47.67), j is summed over the de-
generate closed channels of the new threshold and k is
summed over all open channels. This result is particu-
larly useful in applications to plasmas where it is often
only the collision strength averaged over a Maxwellian
distribution of electron energies that is required.

Multichannel quantum defect theory has been ex-
tended to molecules by Fano [47.22], where it has
proved to be important in the analysis of resonances
occuring in partial cross sections involving rovibra-
tional and dissociating channels as well as electronic
channels [47.23, 24].

47.1.5 Solution of the Coupled
Integrodifferential Equations

This section considers methods that have been developed
for solving the coupled integrodifferential equations
(47.10). These equations arise in low-energy electron–
atom and electron–ion collisions. Section 47.2.2 shows
that similar equations also arise in low energy electron–
molecule collisions in the fixed-nuclei approximation.
Thus the methods discussed in this section are also
applicable for electron–molecule collisions.

R-Matrix Method
This method was first introduced in nuclear
physics [47.25, 26] in a study of resonance reactions. It
has now been applied to wide range of atomic, molecular
and optical processes, as reviewed in [47.27].

This method starts by partitioning configuration
space into two regions by a sphere of radius a, chosen
so that the direct potential has achieved its asymptotic
form given by (47.12) and the exchange and correlation
potentials are negligible for r ≥ a. The objective is then

to calculate the R-matrix RΓij (E), which is defined by

FΓij (a)=
n∑

=1

RΓi (E)

(

a
dFΓ j

dr
−bFΓ j

)

r=a

,

(47.68)

by solving (47.10) in the internal region.
The collision problem is solved in the internal region

by expanding the wave function, in analogy with (47.8),
in the form

ΨΓk (XN+1)

=A
∑

ij

Φ
Γ

i

(
x1, . . . , xN ; r̂N+1σN+1

)

×r−1
N+1u j (rN+1) aΓijk

+
∑

i

χΓi (x1, . . . , xN+1) bΓik , (47.69)

where the u j are radial basis functions defined over the
range 0≤ r ≤ a. For radial basis functions u j satisfying
arbitrary boundary conditions at r = a, the Hamiltonian
HN+1 defined by (47.3) is not Hermitian in the internal
region due to the kinetic energy operators. It can however
be made Hermitian by adding the Bloch operator [47.28]

Lb =
n∑

i=1

∣∣∣Φ
Γ

i

〉1

2
δ(r−a)

(
d

dr
− bi −1

r

) 〈
Φ
Γ

i

∣∣∣

(47.70)

to HN+1, where bi is an arbitrary parameter. The
Schrödinger equation (47.2) then becomes

(HN+1+ Lb− E) ΨΓ = LbΨ
Γ , (47.71)

which can be formally solved, giving

ΨΓ = (HN+1+ Lb− E)−1 LbΨ
Γ . (47.72)

Next, expand the Green’s function (HN+1+ Lb− E)−1

in terms of the basis ΨΓk , where the coefficients aΓijk
and bΓik in (47.69) are chosen to diagonalize HN+1+ Lb,
giving

〈
ΨΓk

∣∣HN+1+ Lb
∣∣ΨΓk′

〉= EΓk δkk′ . (47.73)

Equation (47.72) can then be written as

∣∣ΨΓ
〉=

∑

k

∣∣ΨΓk
〉 〈
ΨΓk

∣∣

EΓk − E
Lb

∣∣ΨΓ
〉
. (47.74)

Finally, we project this equation onto the channel func-
tionsΦ

Γ

i , and evaluate it at r = a. AssumingΨΓ is given
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by (47.8), we retrieve (47.68), where the R-matrix can
be calculated from the expansion

RΓij (E)=
1

2a

∑

k

wΓikw
Γ
jk

EΓk − E
, (47.75)

and where we have introduced the surface amplitudes

wΓik =
∑

j

u j (a) aΓijk . (47.76)

The main part of the calculation involves setting up and
diagonalizing the matrix given by (47.73). This has to
be carried out once to determine the R-matrix for all
energies E.

In the external region r ≥ a, (47.10) reduces to
coupled differential equations, coupled by the po-
tential VΓij (r) which has achieved its asymptotic
form (47.12).These equations can be integrated out-
wards from r = a for each energy of interest, subject to
the boundary conditions (47.68), to yield the K -matrix
given by (47.15), and hence the S-matrix and collision
cross sections.

Kohn Variational Method
The application of variational methods in electron atom
collision theory has been reviewed by Nesbet [47.29].
An S-matrix or complex Kohn version of this method
has been developed [47.30], which has eliminated sin-
gularities present in earlier K -matrix versions of the
theory. This new method has been particularly important
in electron–molecule collision calculations [47.31].

This approach starts from the basic expansion given
by (47.8), where the reduced radial functions are chosen
to satisfy the T -matrix asymptotic boundary conditions

FΓij ∼
r→∞ k

− 1
2

i

(
sin θiδij + (2i)−1 eiθi TΓij

)
, (47.77)

which follows by taking linear combinations of the
na solutions defined by (47.15) and using (47.17). We
then define the integral

IΓ =−1

2

∞∫

0

(
FΓ

)T
L FΓ dr , (47.78)

where L is the integrodifferential operator given by
(47.10) with all terms taken onto the left-hand side of
the equation.

Now consider variations of the integral IΓ resulting
from arbitrary variations δFΓ of the functions FΓ about
the exact solution of (47.10), where these solutions sat-
isfy the boundary conditions (47.77), and the variations

satisfy the boundary condition

δFΓ ∼
r→∞ (2i)−1 k−

1
2 eiθδTΓ . (47.79)

The corresponding variation in IΓ to first-order is

δIΓ =−1

2

∞∫

0

[(
δFΓ

)T
L FΓ + (

FΓ
)T

LδFΓ
]

dr ,

(47.80)

which after some manipulation yields

δIΓ = (4i)−1δTΓ . (47.81)

It follows that the functional
[
TΓ

]= TΓ −4i IΓ (47.82)

is stationary for small variations about the exact solution.
This is the complex Kohn variational principle.

This variational principle can be used to solve
(47.10) by representing the reduced radial functions FΓij
by the expansion

FΓij (r)=wΓ1i (r) δij + (2i)−1wΓ2i (r) TΓij

+
∑

k

φΓk (r) cΓijk , (47.83)

where wΓ1i and wΓ2i are zero at the origin and have the
asymptotic forms

wΓ1i (r) ∼
r→∞ k

− 1
2

i sin θi ; (47.84)

wΓ2i (r) ∼
r→∞ k

− 1
2

i exp iθi , (47.85)

while φΓk are square integrable basis functions. The co-
efficients cΓijk and the T -matrix elements TΓij can then be
determined as variational parameters in the variational
principle (47.82).

Schwinger Variational Method
This method has been used to calculate electron–
molecule collision cross sections by McKoy and
co-workers [47.32]. The method starts from the
Lippmann–Schwinger integral equation, which cor-
responds to the integrodifferential equations (47.10),
together with the K -matrix or T -matrix boundary con-
dition defined by (47.15) or (47.77) respectively. The
T -matrix form of the Lippmann–Schwinger integral
equation is

FΓij (r)=wΓ1i (r) δij +
∑

k

∞∫

0

∞∫

0

GΓ (+)ik

(
r, r ′

)

×UΓk
(
r ′, r ′′

)
FΓ j

(
r ′′
)

dr ′ dr ′′ (47.86)
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where UΓk represents the sum of the potential terms
2
(
VΓk+KΓk+ XΓk

)
in (47.10), and the multichannel

outgoing wave Green’s function GΓ(+)ik is defined as-
suming all channels are open by

GΓ (+)ij

(
r, r ′

)=
⎧
⎨

⎩
−wΓ1i (r)w

Γ
2i

(
r ′
)
δij , r < r ′

−wΓ2i (r)w
Γ
1i

(
r ′
)
δij , r ≥ r

′

(47.87)

wherewΓ1i andwΓ2i are solutions of the Coulomb equation
(

d2

dr2
− i (i +1)

r2
+ 2 (Z− N)

r
+ k2

i

)
wi (r)= 0

(47.88)

that satisfy the asymptotic boundary conditions (47.84)
and (47.85), respectively.

An integral expression for the T -matrix can be ob-
tained by comparing (47.77) and (47.86). This gives

TΓij =−2i
∑

k

∞∫

0

∞∫

0

wΓ1i (r)UΓik
(
r, r ′

)
FΓk j

(
r ′
)

dr dr ′

(47.89)

or, rewriting this equation using Dirac bracket notation,

T =−2i
〈
w1

∣∣U
∣∣F(+)

〉
, (47.90)

where the plus sign indicates that F(+) satisfies the
outgoing wave boundary condition (47.77), and where
for convenience we have suppressed the superscript Γ .
In a similar way, the Lippmann–Schwinger equation
corresponding to the ingoing wave boundary condition

FΓij ∼
r→∞ k

− 1
2

i

(
sin θiδij − (2i)−1 e−iθi TΓ ∗ij

)
,

(47.91)

can be introduced, from which follows the integral
expression

T =−2i
〈
F(−)

∣∣U
∣∣w1

〉
, (47.92)

where F(−) satisfies the ingoing wave boundary con-
dition (47.91). A further integral expression for the
T -matrix is obtained by substituting for w1 in (47.92)
from (47.86) giving

T =−2i
〈
F(−)

∣∣U −UG(+)U
∣∣F(+)

〉
. (47.93)

Hence, a combination of (47.90), (47.92) and (47.93)
yields the functional

[T] = −2i
〈
w1

∣∣U
∣∣F(+)

〉

×
(〈

F(−)
∣∣U −UG(+)U

∣∣F(+)
〉)−1

×
〈
F(−)

∣∣U
∣∣w1

〉
. (47.94)

This functional is stationary for small variations of F(+)
and F(−) about the exact solution of (47.10) satisfying
the boundary conditions (47.77) and (47.91) respec-
tively, and forms the basis of numerical calculations.

Linear Algebraic Equations Method
In this method, the integrodifferential (47.10) are
reduced directly to a set of linear algebraic (LA) equa-
tions [47.33], or alternatively, (47.10) are first converted
to integral form, given by (47.86), which are then re-
duced to a set of linear algebraic equations [47.34].

A direct approach [47.33] has been widely used for
electron–atom and electron–ion collisions. As in the
R-matrix method, configuration space is first divided
into two regions. A mesh of N points is then used to
span the internal region r ≤ a where

r1 = 0; rk−1 < rk, k = 1, . . . , N; rN = a .
(47.95)

In addition, two further mesh points rN+1 and rN+2 are
introduced to enable the solution in the internal region to
be matched to the solution in the external region r ≥ a.
In the external region, (47.10) reduces to coupled differ-
ential equations that can be solved by one of the same
methods as adopted in the R-matrix approach.

The n functions FΓij (r) , i = 1, . . . , n, in (47.10) are
represented by their values at the mesh points rk. Using
a finite difference representation of the differential and
integral operators, (47.10) then reduces to a set of linear
algebraic equations for the unknown values FΓij (rk) in
the internal region. These equations can be solved using
standard methods for each linearly independent solu-
tion j = 1, . . . , na defined by the asymptotic boundary
conditions (47.15).

47.1.6 Intermediate and High Energy
Elastic Scattering and Excitation

For electron–atom and electron–ion collisions at elec-
tron impact energies greater than the ionization threshold
of the target, an infinite number of channels is open so
that they cannot all be included explicitly in the ex-
pansion of the total wave function. Several approaches
have been developed to treat collisions at these ener-
gies, such as extensions of low energy methods based
on expansion (47.8) to intermediate energies, the devel-
opment of optical potentials that take account of loss
of flux into the infinity of open channels in some aver-
age way, and extensions of the Born approximation to
lower energies by including higher-order terms in the
Born Series.
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Pseudostate Methods
In this approach, expansion (47.8) is extended by
including a set of suitably chosen square-integrable
pseudostatesΦ p

i that are orthogonal to the eigenstatesΦi
retained in expansion (47.8). These pseudostates are usu-
ally defined by diagonalizing the target Hamiltonian HN
in a square-integrable basis yielding an equation analo-
gous to (47.4), viz

〈
Φ

p
i

∣∣HN
∣∣Φ p

j

〉= ωp
i δij , (47.96)

where the energies ωp
i lie just below the ionization

threshold or in the continuum. The pseudostates Φ p
i

thus represent in an average way the high lying Rydberg
states and the continuum states of the target rather than
just the low lying target bound states as in (47.4). This
enables loss of flux into the continuum states to be repre-
sented enabling accurate excitation cross sections to be
calculated at intermediate energies. In addition, by cal-
culating the amplitudes for exciting these pseudostates
accurate ionization cross sections can be determined, as
discussed in Sect. 47.1.7.

A proposal to include pseudostates in expansion
(47.8) for e–H scattering was first made by Burke
and Schey [47.35]. Also a modification of this expan-
sion to include polarized pseudostates which allowed
for the long-range dipole and quadrupole polarizabil-
ity in e–H scattering was proposed by Damburg and
Karule [47.36]. Later detailed e–H scattering calcu-
lations which included pseudostates were carried out
by a number of authors [47.37–40] with considerable
success showing the validity of this approach.

More recently the R-matrix method, discussed in
Sect. 47.1.5, has been extended to include pseudostates
giving rise to the intermediate energy R-matrix (IERM)
method [47.41–44] and the R-matrix with pseudostates
(RMPS) method [47.45–48], the latter approach be-
ing applicable to multi-electron atoms and ions. Both
of these methods have enabled excitation and ioniza-
tion cross sections to be accurately calculated above the
ionization threshold.

Methods have also been developed in which the
pseudostates are represented by Sturmian functions. An
expansion of this type was first proposed by Roten-
berg [47.49] and in a more recent major development the
convergent close coupling (CCC) method has been de-
veloped by Bray, Stelbovics and co-workers [47.50–56]
which has been applied with considerable success for
both electron impact excitation and ionization.

As an example of the CCC method, we consider
e−–H scattering. In this case the radial basis of the target

states are expanded in the complete Laguerre basis

ξk(r)=
(
λ(k−1)!
(2+1+ k)!

)1/2

× (λr)
+1 exp(λr/2)L

2+2
k−1 (λr) , (47.97)

where L2+2
k−1 (λr) are associated Laguerre polynomials

and k ranges from 1 to the basis size N which depends
on the angular momentum . The target states Φi are
expanded for each angular momentum as follows

Φi =
N∑

k=1

ξk(r)cki , i = 1, . . . , N , (47.98)

where the coefficients cki are obtained by diagonalizing
the target Hamiltonian H1 as follows

〈Φi|H1|Φ j〉 =wiδij . (47.99)

The states Φi corresponding to the lowest energies wi
provide an accurate representation of the lowest bound
eigenstates of the target for each , while the states
corresponding to the higher energies wi correspond
to pseudostates representing the high lying Rydberg
states and the continuum. As N is increased for fixed
range paramenterλ in (47.98), more bound target eigen-
states are accurately represented while at the same time
the states corresponding to the higher energies provide
a denser and more accurate representation of the con-
tinuum. The scattering amplitude is written in the close
coupling approximation as

〈ψ f |H2− E
∣∣Ψ S+

i

〉

) 〈ψ f |I(H2− E)
[
1+ (−1)SP

]
I
∣∣Ψ S+

i

〉
,

(47.100)

where P is the space exchange operator which ensures
that the total wave function has the correct symmetry for
each total spin S, I is the projection operator onto the
target statesΦi retained in the calculation and 〈ψ f | is an
eigenstate of the asymptotic Hamiltonian. The scattering
amplitude is then obtained by solving the close coupling
equations in momentum space [47.50].

Optical Potential Methods
An approach which is also capable in principle of in-
cluding the effect of all excited and continuum states is
the optical potential method [47.57]. Adopting Feshbach
projection operators P and Q as in (47.40), an optical po-
tential Vop is defined by (47.44), where now P projects
onto those low-energy channels that can be treated ex-
actly, for example by solving equations (47.10), and

Part
D

4
7
.1



716 Part D Scattering Theory

Q allows for the remaining infinity of coupled channels,
including the continuum.

At sufficiently high energies, it is appropriate to
make a perturbation expansion of Vop, where the second-
order term is given by

V (2) = PVQ
1

E−Te−HN + iε
QVP , (47.101)

V being the electron–atom (ion) interaction poten-
tial, Te the kinetic energy operator of the scattered
electron, and HN the target Hamiltonian. Byron and
Joachain [47.58] converted the lowest-order terms of
perturbation theory into an ab initio local complex po-
tential for the elastic scattering of electrons and positrons
from a number of atoms.

The optical potential calculated in second-order has
also been used by Bransden et al. [47.59,60] to describe
e−–H collisions, while McCarthy [47.61] has studied an
optical-potential approximation that goes beyond sec-
ond order, and also makes allowance for exchange. This
method is called the coupled channels optical (CCO)
model. Finally, Callaway and Oza [47.62] have con-
structed an optical potential using a set of pseudostates
to evaluate the sum over intermediate states and have
obtained encouraging results for elastic scattering and
excitation of the n = 2 states in e−–H collisions.

Born Series Methods
In the high energy domain, which can usually be as-
sumed to extend from several times the ionization
threshold of the target upwards, methods based on the
Born series give reliable results. Ignoring electron ex-
change for the moment, the Born series for the direct
scattering amplitude can be written as [47.63, 64]

f =
∞∑

n=1

fn,B , (47.102)

where the nth Born term fn,B contains the interaction V
between the scattered electron and the target atom or ion
n times, and the Green’s function

G(+)0 = (HN +Te− E− iε)−1 (47.103)

(n−1) times, where Te and HN are defined following
(47.101).

It is important to retain consistently all terms in the
Born series with similar energy and momentum-transfer
∆= |ki −k f | dependencies. For elastic scattering, the
scattering amplitude converges to the first Born approx-
imation for all∆, but at lower energies it is necessary to
include Re( f3,B), as well as the second Born terms, to
obtain the cross section correct to k−2. In the forward di-
rection, convergence to the first Born approximation is

slow because of the contribution from Im( f2,B) which,
from the optical theorem, corresponds to loss of flux into
all open channels.

For inelastic scattering, the first Born approximation
does not give the correct high energy limit for large ∆.
Instead this comes from Im( f2,B). Physically, this can
be understood by noting that inelastic scattering at large
angles involves two collisions: a collision of the incident
electron with the nucleus to give the large scattering
angle, followed or preceeded by an inelastic collision
with the bound electrons to give excitation. Again, in
the forward direction, it is necessary to retain Re( f3,B)

to obtain the cross section correct to k−2.
Since the third Born term is difficult to calculate, By-

ron and Joachain [47.65] suggested that to third-order,
the scattering amplitude should be calculated using the
eikonal Born series (EBS) approximation

fEBS = f1,B+ f2,B+ f3,G+ goch , (47.104)

where f3,G is the third-order term in the expansion of
the Glauber amplitude [47.66] in powers of V , which
can be more easily calculated than f3,B, and goch is
the Ochkur electron exchange amplitude [47.67]. The
EBS method has been very successful when perturbation
theory converges rapidly; namely, at high energies, at
small and intermediate scattering angles, and for light
atoms.

Distorted Wave Methods
Distorted wave methods are characterized by a separa-
tion of the interaction into two parts, one which is treated
exactly and the other which is treated in first-order. The
usual approach is based on the integral expressions for
the T -matrix given by (47.90) or (47.92). The distorted
wave approximation is obtained by replacing the exact
solution of (47.10), denoted by F(+) and F(−) in (47.90)
and (47.92) respectively, by approximate solutions, usu-
ally obtained by omitting all channels except the final or
initial channels of interest. In addition, the potential in-
teraction U is often approximated by just the direct term
in (47.10).

This method becomes more accurate at intermediate
energies as Z−N increases, and as the angular momen-
tum of the scattered electron becomes large. However,
it gives poor results at low energies where the coupling
between the channels in (47.10) is strong, and where res-
onances are often important. It has proved to be a very
useful way of calculating electron–ion total and differ-
ential cross sections at intermediate and high energies
well removed from threshold.
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47.1.7 Ionization

This section discusses processes where electrons are
ejected from the target during the collision, giving rise to
ionization. The main focus is single ionization, or (e, 2e)
processes given by

e− (Ei)+ Ai → A+j + e− (EA)+ e− (EB) ,

(47.105)

where Ei, EA and EB are the incident, scattered and
ejected electron energies respectively. They are related
through the energy conservation relation

Ei = EA+ EB+ ε , (47.106)

where ε is the binding energy of the ejected atomic
electron. The threshold behavior of the ionization cross
section leading to the Wannier threshold law is treated
in Chapt. 52.

The scattering amplitude for the direct ionization
process is [47.68]

fi (kA, kB)= − (2π) 1
2 eiχ(kA,kB)

×
〈
(HN+1− E)Φ

∣∣∣Ψ(+)i

〉
(47.107)

whereΨ(+)i is an exact solution of (47.2) satisfying plane
wave plus outgoing wave boundary conditions given by
(47.5), and where Φ is a solution of the equation

(HN+1−V − E)Φ = 0 (47.108)

satisfying ingoing wave boundary conditions. Also,
kA and kB are the momenta of the two outgoing electrons
defined in terms of EA and EB by

1

2
k2

A = EA,
1

2
k2

B = EB . (47.109)

In practice the potential V is chosen so that Φ has
a simple form. Thus, for electron scattering by H-like
ions with nuclear charge Z, V is often chosen as

V =− Z− ZA

r1
− Z− ZB

r2
+ 1

r12
, (47.110)

so that

Φ (r1, r2)= Ψ(−)C (ZA, kA, r1) Ψ
(−)
C (ZB, kB, r2) ,

(47.111)

where the Ψ(−)C are Coulomb wave functions satisfying
ingoing-wave boundary conditions, and ZA and ZB are
the effective charges seen by the two electrons. In order

that the scattering amplitude does not contain a divergent
phase factor, ZA and ZB must satisfy

ZA

kA
+ ZB

kB
= Z

kA
+ Z

kB
− 1
|kA−kB| , (47.112)

and the phase factor in (47.107) is then given by

χ (kA, kB)= ZA

kA
ln

k2
A

k2
A+ k2

B

+ ZB

kB
ln

k2
B

k2
A+ k2

B

.

(47.113)

The exchange ionization amplitude gi (kA, kB) can be
obtained from the Peterkop theorem [47.69]

gi (kA, kB)= fi (kB, kA) . (47.114)

This result follows from the fact that the amplitudes
fi (kB, kA) and gi (kA, kB) describe the same physical
process where the electron at rN+1 has momentum kA,
and the electron at rN has momentum kB. In practice, the
Peterkop theorem is not valid if approximate wave func-
tions are used to calculate the ionization amplitude. For
this reason, a relative phase τi (kA, kB) between these
two amplitudes is sometimes introduced by

gi (kA, kB)= eiτ(kA,kB) fi (kB, kA) . (47.115)

This adds an element of arbitrariness into the calculation
since different choices of this phase leads to different
cross sections [47.70].

The ionization cross sections can be obtained di-
rectly from the scattering amplitudes. For random
electron spin orientations, the triple differential cross
section (TDCS) for ionization of a target with one ac-
tive electron from an initial state denoted by |i〉 is given
by

d3σi

dΩA dΩB dE
= kAkB

ki

(
1

4
| fi + gi |2+ 3

4
| fi−gi |2

)
.

(47.116)

By integrating the TDCS with respect to dΩA, dΩB
or dE, we can form three different double differen-
tial cross sections, and three different single differential
cross sections. The total ionization cross section ob-
tained by integrating (47.116) over all outgoing electron
scattering angles and energies is

σi = 1

ki

E/2∫

0

dE kAkB

∫
dΩA

×
∫

dΩB

[
1

4
| fi + gi |2+ 3

4
| fi − gi |2

]
,

(47.117)

Part
D

4
7
.1



718 Part D Scattering Theory

where the upper limit of integration over the energy
variable is E/2 because the two outgoing electrons are
indistinguishable.

We conclude this general discussion of the theory of
electron impact ionization by mentioning recent work
in which an integral representation for the ionization
amplitude has been developed [47.71] which is free from
the ambiguity and divergence problems associated with
earlier work [47.68, 69, 72, 73]. An important aspect of
this new development is that it has a form which can be
used for practical calculations.

We now consider several approaches which have
been used to obtain accurate ionization cross sections
commencing, as in electron impact excitation with low
energy methods and concluding with Born and distorted
wave methods.

Pseudostate Methods
An important recent development is the realization that
accurate ionization cross sections close to threshold
can be obtained by representing the ionization contin-
uum by suitably chosen square-integrable pseudostates.
As already discussed when we considered pseudostate
methods in Sect. 47.1.6 several methods including the
intermediate energy R-matrix method [47.41–44], the
R-matrix with pseudostates method [47.45–48] and the
convergent close coupling method [47.50–56] have been
used to obtain accurate ionization cross sections in this
energy range.

Time-Dependent Close Coupling Method
Electron impact excitation and ionization ampli-
tudes and cross sections can also be determined by
solving the time-dependent Schrödinger equation di-
rectly [47.74–77]. In the case of electron scattering by
atomic hydrogen or by an atom or atomic ion with one
electron outside a closed inert shell, the total wave func-
tion can be expanded for each conserved L Sπ symmetry
as

ΨΓ (r1, r2, t)=
∑

12

(r1r2)
−1 PL S

12
(r1, r2, t)

×YL ML
12

(
r̂1, r̂2

)
, (47.118)

where Γ is defined by (47.9) and the coupled spherical
harmonics YL ML

12
are defined by

YL ML
12

(
r̂1, r̂2

)

=
∑

m1m2

(1m12m2|12L ML)

× Y1m1(θ1, φ1)Y2m2(θ2, φ2) . (47.119)

Substituting (47.118) into the time-dependent Schrödin-
ger equation and projecting onto the coupled spherical
harmonics YL ML

12
then yields the following coupled

differential equations

i
∂PL S
12
(r1, r2, t)

∂t
= T12(r1, r2)P

L S
12
(r1, r2, t)

+
∑

′1′2

V L
12

′
1
′
2
(r1, r2, t)P

L S
′1′2
(r1, r2, t) ,

(47.120)

where

T12(r1, r2)=−1

2

∂2

∂r2
1

− 1

2

∂2

∂r2
2

+V1(r1)+V2(r2) . (47.121)

In this equation V is an -dependent pseudopotential
representing the interaction of the valence or scattered
electrons with the closed shell core and V L

12
′
1
′
2

are the
radial coupling potentials obtained by taking the ma-
trix elements of the r−1

12 interaction between the valence
and scattered electrons. Equations (47.120) are solved on
a two-dimensional grid using an explicit time propagator
which can be readily implemented on parallel comput-
ers. Commencing at time t = 0 with a wave function
which is constructed as the appropriately symmetrized
product of an incoming radial wave packet for one elec-
tron and the lowest energy bound stationary state for the
other electron, the time-dependent equations (47.120)
are integrated forward in time. Electron impact excita-
tion and ionization amplitudes and cross sections are
determined by projecting the time-evolved radial wave
function PL S

12
(r1, r2, t) onto a complete set of target

states.

Exterior Complex Scaling Method
In this approach, developed by Rescigno et al. [47.78–
80], the time-independent Schrödinger equation for
three charged particles is solve numerically on
a two-dimensional grid without explicitly imposing
asymptotic boundary conditions for three-body break-
up. In the case of electron hydrogen atom scattering, the
total wave function is partioned into the sum of an ap-
propriately symmetrized unperturbed wave functionψΓki
describing a free electron with momentum ki incident on
the target ground state and a scattered wave functionΨΓsc
which is expanded in the form

ΨΓsc (r1, r2)=
∑

L12

r−1
1 r−1

2 ψL S
12
(r1, r2)Y

L0
12

(
r̂1, r̂2

)
.

(47.122)
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Since the z-axis is defined to lie along the incident beam
direction then ML in the coupled spherical harmonics
defined by (47.119) is zero. Also, since parity is con-
served the summation in (47.122) is limited to terms for
which L+1+2 is even.

Substituting the expression for the total wave func-
tion into the Schrödinger equation then yields the
following set of coupled two-dimensional equations for
the radial functions ψL S

12
for each L and S:

(E−H1(r1)−H2(r2))ψ
L S
12
(r1, r2)

−
∑

′1′2

V L
12

′
1
′
2
(r1, r2)ψ

L S
′1′2
(r1, r2)

= χL S
12
(r1, r2) . (47.123)

In this equation H(r) is the radial hydrogenic Hamilto-
nian

H(r)=−1

2

d2

dr2
+ (+1)

2r2
− 1

r
, (47.124)

V L
12

′
1
′
2
, as in (47.120), are the radial coupling po-

tentials obtained by taking the matrix elements of the
electron–electron interaction r−1

12 and the inhomoge-
neous term χL S

12
(r1, r2) arises from the partial wave

expansion of the incident wave term.
The coupled differential equations (47.123) are

solved on a two-dimensional grid using exterior com-
plex scaling (ECS) boundary conditions which avoid
imposing detailed asymptotic boundary conditions. The
ECS transformation is taken as a mapping r → z(r) of
all radial coordinates to a contour

z(r)≡
{

r, r ≤ R0

R0+ (r− R0)eiη r > R0
, (47.125)

that is real for r ≤ R0 but is rotated into the upper half of
the complex plane for r > R0. This transformation has
the desirable property that any outgoing wave evaluated
on this contour dies exponentially as the coordinate be-
comes large. Thus the ECS procedure transforms any
outgoing wave into a function that falls off exponen-
tially outside R0 but is equal to the infinite range wave
over the finite region of space where the coordinates are
real. Producing meaningful ionization cross sections at
energies several eV above the ionization threshold re-
quires R0 to be at least 100 a0. The grid must extend
beyond R0 far enough to allow the complex scaled ra-
dial function to decay effectively to zero at the edge of
the grid requiring grids that extend an additional 25 a0
beyond R0. A detailed discussion of this method is given
by McCurdy et al. [47.80].

Born and Distorted Wave Methods
The integral expression (47.107) for the direct ionization
amplitude provides a starting point for the calculation
of cross sections at higher energies. Both the Born se-
ries methods and distorted wave methods, which were
described in Sect. 47.1.6 when we considered interme-
diate and high energy elastic scattering and excitation,
have been used to obtain ionization amplitudes.

Recently an important development of the dis-
torted wave method has been made by Jones and
Madison [47.81–83]. This new approach entitled the
continuum distorted wave with eikonal initial state
(CDW-EIS), commences from the two-potential expres-
sion for the transition amplitude given by Gell-Mann and
Goldberger [47.84]

T fi =
〈
χ−f

∣∣W+
f

∣∣Ψ+
i

〉+ 〈
χ−f

∣∣Vi −W+
f

∣∣βi
〉
. (47.126)

In the first term in this equation Ψ+
i is the exact scat-

tering wave function developed from the initial state
satisfying outgoing wave boundary conditions, χ−f is
a distorted wave corresponding to the final state sat-
isfying incoming wave boundary conditions and the
corresponding perturbation W+

f is the adjoint of the
operator W f and operates to the left. In the second term,
βi is the unperturbed initial state which in the case of
electron hydrogen atom scattering is

βi = (2π)−3/2 exp(ik0r1)ψi(r2) , (47.127)

and Vi is the initial state interaction potential given in
this case by

Vi =− 1

r1
+ 1

r12
. (47.128)

An eikonal approximation is made for the initial state
wave function Ψ+

i in (47.126) and the final state wave
function χ−f is represented by a CDW wave func-
tion [47.85]. In this way distortion effects are included
in both initial and final state wave functions. Results us-
ing the CDC-EIS approximation have been compared
with ECS calculations for electron hydrogen atom triple
ionization cross sections at 54.4 eV [47.86]. The two cal-
culations are generally in very good agreement for equal
energy sharing between the outgoing electrons which
was considered in this work.

A further development of the distorted wave method
for ionization has been made when the incident electron
is fast and interacts weakly with the target atom or ion
and the ejected electron is slow and interacts strongly
with the residual ion [47.87, 88]. In this case (47.107)
is applicable where the ionizing electron is represented
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by plane waves or distorted waves while the initial tar-
get state and the ejected electron and residual ion state
are both represented by the close coupling expansion
(47.8). This approximation is particularly useful when
the ejected electron can be captured into an autoionizing
state of the target atom or ion which then decays giv-
ing rise to the following excitation-autoionization (EA)
process

e−+ Aq+ → [
Aq+]+ e− → [

A(q+1)+]+2e− .
(47.129)

In this equation the bracket indicates a resonance state,
while q is the charge on the atom A. This process
together with related resonant excitation double autoion-
ization (REDA) process

e−+ Aq+ → [
A(q−1)+]→ [

Aq+]+ e−

→ [
A(q+1)+]+2e− , (47.130)

and the resonant excitation auto-double ionization
(READI) process

e−+ Aq+ → [
A(q−1)+]→ [

A(q+1)+]+2e− ,
(47.131)

have attracted considerable experimental and theoreti-
cal interest [47.89–93]. However, while the EA process
can be accurately treated using a distorted wave method
if the incident electron is fast, both the REDA and
READI processes involve capture of the incident elec-
tron into a resonant state and a strong coupling approach
is required.

An Example and Conclusions
We conclude this section by mentioning a recent
comparison that has been made between theory and ex-

periment for electron impact ionization of hydrogen at
17.6 eV [47.94]. At this energy, which is only 4 eV above
the ionization threshold, strong coupling effects between
the incident and ejected electrons and the residual proton
are important and hence Born series and distorted wave
methods are not applicable. This comparison thus pro-
vides a stringent test of theoretical calculations. In this
work triple-differential cross section measurements with
coplanar outgoing electrons both having 2 eV energy
were compared with exterior complex scaling (ECS)
and convergent close coupling (CCC) calculations. The
two calculations show excellent overall agreement both
with the shape and the magnitude of the experiment for
a wide range of scattering angles.

It is clear that a detailed theoretical understand-
ing of electron hydrogen atom ionization has now been
obtained over a wide range of energies. Although fur-
ther work is required to predict accurate cross sections
involving highly excited states of interest in plasma
physics and astrophysical applications, for example in
astrophysical H II regions [47.95], methods have been
developed which should enable these cross sections to
be accurately determined.

Good progress has also been made in the study of
electron impact ionization of multi-electron atoms and
ions. However major problems still remain both due
to the need to obtain accurate target states, which also
applies to elastic scattering and excitation, and due to
fundamental difficulties in carrying out accurate cal-
culations for REDA and READI processes defined by
(47.130) and (47.131) respectively. In the latter case
major theoretical difficulties still arise in the accurate
treatment of resonance states which decay with the
emission of more than one electron.

47.2 Electron–Molecule Collisions

47.2.1 Laboratory Frame Representation

The processes that occur in electron collisions with
molecules are more varied than those that occur in elec-
tron collisions with atoms and atomic ions because of
the possibility of exciting degrees of freedom associ-
ated with the motion of the nuclei. In addition, the
multicenter and nonspherical nature of the electron mol-
ecule interaction considerably complicates the solution
of the collision problem by reducing its symmetry and
by introducing multicenter integrals that are more dif-
ficult to calculate than those occurring for atoms and
ions.

We first consider the derivation of the equations
describing the collision in the laboratory frame of ref-
erence discussed by Arthurs and Dalgarno [47.96]. The
Schrödinger equation describing the electron–molecule
system is

(Hm+Te+V ) Ψ = EΨ , (47.132)

where Hm is the molecular Hamiltonian, Te is the kinetic
energy operator of the scattered electron and V is the
electron–molecule interaction potential

V(R, rm, r)=
∑

i

1

|r−ri | −
∑

i

Zi

|r− Ri | .
(47.133)
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Here, R represents the coordinates Ri of all the nuclei,
rm represents the coordinates ri of the electrons in the
target molecule, and r represents the coordinates of the
scattered electron. The total energy E in (47.132) refers
to the frame of reference where the c.m. of the whole
system is at rest.

As in the case of electron–atom and electron–ion
collisions, introduce target eigenstates, and possibly
pseudostates Φi , by the equation

〈Φi |Hm|Φ j〉 =wiδij , (47.134)

and then expand the total wave function Ψ , in analogy
with (47.8), in the form

Ψ j =A
∑

i

Φi (R, rm)Fij (r)

+
∑

i

χi (R, rm, r) bij , (47.135)

where the spin variables have been suppressed for
notation simplicity, and we have not carried out
a partial-wave decomposition of the wave function
Fij representing the scattered electron. The subscripts
i and j now represent the rotational and vibrational states
of the molecule as well as its electronic states.

Coupled equations for the functions Fij can be ob-
tained by substituting expansion (47.135) into (47.132),
and projecting onto the target states Φi and onto the
square integrable functions χ j . After eliminating the
coefficients bij , the coupled integrodifferential equations

(∇2+ k2
i

)
Fij (r)= 2

∑



(Vi+Wi+ Xi) F j (r)

(47.136)

are obtained, where k2
i = 2 (E−wi) and where Vi, Wi,

and Xi are the direct, nonlocal exchange, and nonlocal
correlation potentials. By expanding Fij in partial waves,
a set of coupled radial integrodifferential equations re-
sult, analagous to (47.10) for atoms and ions.

The scattering amplitude and cross section for
a transition from an initial state |i〉 = |ki , Φi , χ 1

2 mi
〉 to

a final state | j〉 = |k j , Φ j , χ 1
2 m j

〉 is then given by (47.7),
where now the subscripts i and j refer collectively to
the ro-vibrational and electronic states of the molecule.

47.2.2 Molecular Frame Representation

The theory described in the previous section is com-
pletely general, and has been the basis of a number of
early calculations for simple diatomic molecules such
as H2. However, major computational difficulties arise

because of the very large number of rovibrational chan-
nels that need to be retained in expansion (47.135) for
all but the simplest low-energy calculations.

This difficulty can be overcome by making a Born–
Oppenheimer separation of the electronic and nuclear
motion. The electronic motion is first determined with
the nuclei held fixed. This is referred to as the fixed-
nuclei approximation. The molecular rotational and
vibrational motion is then included in a second step of
the calculation. This procedure owes its validity to the
large ratio of the nuclear mass to the electronic mass,
and can be adopted when the collision time is much
shorter than the periods of molecular rotation and vibra-
tion. Thus it is expected to be valid when the scattered
electron energy is not close to a threshold, or when the
energy does not coincide with that of a narrow reso-
nance. In these cases, further developments described
below are needed to obtain reliable cross sections.

In order to formulate the collision process in this
representation, adopt a frame of reference that is rigidly
attached to the molecule. The fixed-nuclei approxima-
tion then starts from the Schrödinger equation

(Hel+Te+V ) ψ = Eψ , (47.137)

where Hel is the electronic part of the target Hamiltonian
obtained by assuming that the target nuclei have fixed
coordinates denoted collectively by R. It follows that
Hel is related to Hm in (47.132) by

Hm = Hel+TR , (47.138)

where TR is the kinetic energy operator for the rotational
and vibrational motion of the nuclei. The remaining
quantities Te and V are the same as in (47.132).

The solution of (47.137) proceeds in an analogous
way to the solution of (47.2) for electron collisions
with atoms and ions. We adopt an expansion similar
to (47.8), where we now expand the function repre-
senting the motion of the scattered electron in terms of
symmetry-adapted angular functions that transform as
an appropriate irreducable representation (IRR) of the
molecular point group (Burke et al. [47.97]). Substitut-
ing this expansion into (47.137), and projecting onto the
corresponding channel functions and onto the square
integrable functions, yields a set of coupled integrodif-
ferential equations with the form given by (47.10), where
now the channel indices i, j and  represent the com-
ponent of the IRR, as well as the electronic state of the
target, and where Γ represents the conserved quantum
numbers that now include the IRR and the total spin.

The final step is to solve these coupled integrodif-
ferential equations for each set of nuclear coordinates R
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of importance in the collision, using one of the methods
discussed in Sect. 47.1.5. This yields the K -matrices,
S-matrices and cross sections for fixed R. For scattering
calculations where only the ground electronic state has
been included in the expansion, a number of approaches
have been developed that replace the nonlocal exchange
and correlation potentials by local potentials [47.2].
These approaches have proved particularly important in
describing electronically elastic collisions of electrons
with polyatomic molecules.

47.2.3 Inclusion of the Nuclear Motion

This section discusses how observables involving the
nuclear motion, such as rotational and vibrational exci-
tation cross sections, and dissociative attachment cross
sections, can be obtained from the solutions of the
fixed-nuclei equations.

The most widely used approach is the adiabatic-
nuclei approximation [47.98–100]. In the case of
diatomic molecules in a 1Σ state, the scattering am-
plitude for a transition between electronic, vibrational
and rotational states represented by iv jmj and i ′v′ j ′m′

j
is given by

fi ′v′ j ′m′
j
,iv jm j

(
k̂ · r̂

)=
〈
χi ′v′(R)Y j ′m′

j

(
R̂
)∣∣∣ fi ′i

(
k̂ · r̂; R

)∣∣∣χiv(R)Y jm j

(
R̂
)〉
,

(47.139)

where fi ′i
(
k̂ · r̂; R

)
is the fixed-nuclei scattering am-

plitude, which depends parametrically on the nuclear
coordinates R, and χiv and Y jm j are the molecular vibra-
tional and rotational eigenfunctions, respectively. This
approximation is valid provided that the collision time is
short compared with the vibration and/or rotation times,
and is widely used in such situations.

The cross section is usually averaged over the de-
generate sublevels m j and summed over m′

j , giving
the cross section for the transition iv j to i ′v′ j ′. This
leads to the relation

dσi ′v′ j ′,iv j

dΩ
=

j+ j ′∑

jt=| j− j ′|

[(
j0 jt0 | jjt j ′0

)]2 dσi ′v′ jt,iv0

dΩ
,

(47.140)

provided that the small differences in the wave numbers
for the different rotational channels can be neglected.
A similar relation holds for symmetric top molecules
such as NH3. For spherical top molecules such as CH4,

the equivalent relation is [47.101, 102]

dσi ′v′ j ′,iv j

dΩ
= 2 j ′ +1

2 j+1

j+ j ′∑

jt=| j− j ′|

1

2 jt+1

dσi ′v′ jt,iv0

dΩ
.

(47.141)

The sum in (47.140) or (47.141) over the final rotational
state j ′ is independent of the initial state j. Also, if the
cross section is multiplied by the transition energy and
then sum over j ′, the result, which is in the mean energy
loss by the incident electron, is still independent of j.

The adiabatic-nuclei approximation breaks down
close to threshold or in the neighborhood of narrow res-
onances [47.103]. A straightforward way of including
nonadiabatic effects that arise in vibrational excitation
is to retain the vibrational terms in the Hamiltonian, but
still to treat the rotational motion adiabatically. Hence,
instead of (47.137), the equation

(Hel+Tvib+Te+V ) ψ̃ = Eψ̃ (47.142)

is solved, where Tvib is the kinetic energy operator for
the nuclear vibrational motion, and where the other
quantities have the same meaning as in (47.137). Adopt-
ing a frame of reference in which the molecule has
fixed spacial orientation, and separating out the angular
variables of the scattered electron, coupled integrodif-
ferential equations coupling the target vibrational states
as well the electronic states can be obtained. This ap-
proach has been adopted with success [47.104, 105],
but is computationally demanding since the number of
coupled channels can become very large.

Vibrational excitation and dissociative attachment
are particularly important in resonance regions when
the scattered electron spends an appreciable time in the
neighborhood of the molecule. As a result, a number
of approaches has been developed describing these pro-
cesses based on electron molecule resonance theories
(e.g., [47.106–110]). The basic idea is that a series of
fixed-nuclei resonance states ψ(r)n are introduced for
a range of values of R, either by imposing Siegert
outgoing wave boundary conditions [47.111], or by in-
troducing Feshbach projection operators [47.15,16]. The
amplitude for a transition from an initial electronic–
vibrational state iv to a final state i ′v′ is then given
by

Ti ′v′,iv =
∑

n

〈
χi ′v′

(
R′
)
ζni ′

(
R′
)∣∣G(r)n

(
R′, R

)

×
∣∣ζni (R) χiv (R)

〉
, (47.143)

where χiv are the vibrational eigenfunctions, ζni are the
“entry amplitudes” from the initial or final electronic
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states into the resonance states ψ(r)n , and G(r)n are the
Green’s functions that describe the propagation in the
intermediate resonance states ψ(r)n . Dissociative attach-
ment can be described by a straightforward extension of
this theory.

The fixed-nuclei R-matrix method has also been ex-
tended to treat vibrational excitation and dissociative
attachment [47.112]. A generalized R-matrix is intro-
duced by an equation which, in analogy with(47.143),
can be written as

Ri ′v′,iv = 1

2a

∑

k

〈
χi ′v′

(
R′
)
wΓi ′k

(
R′
) ∣∣G RM

k

(
R′, R

)

×
∣∣wΓik (R) χiv (R)

〉
, (47.144)

where the surface amplitudes wΓik (R) are defined by
(47.76), and the Green’s function G RM

k now describes
the propagation in the intermediate R-matrix states de-
fined by (47.73). Once the generalized R-matrix has
been determined, the final step in the calculation is to
solve the collision problem in the external region which,
for diatomic molecules, is defined by the condition that
the scattered electron coordinate r is greater than some
given radius a, and the internuclear coordinate R is
greater than some given radius A.

Another approach that includes nonadiabatic effects
is the energy-modified adiabatic approximation intro-
duced by Nesbet [47.113]. In this approach, the S-matrix
elements connecting the vibrational states are defined by

Si ′v′,iv = 〈χi ′v′ | Si ′i (E−Hi; R) | χiv〉 , (47.145)

where Si ′i (E−Hi; R) is the S-matrix calculated in
the fixed nuclei approximation at the internuclear
separation R at an energy defined by the operator
Hi = Ei (R)+Tvib. This has the effect of including the
internal energy of the target into the S-matrix elements,
giving the correct threshold energies.

Finally, we mention an off-shell T -matrix approach
for including nonadiabatic effects discussed first by
Shugard and Hazi [47.114]. This approach can also
extend the range of validity of the adiabatic-nuclei
approximation, while retaining much of its inherent
simplicity. This has recently been applied with suc-
cess to low-energy vibrational excitation of H2 and
CH4 [47.115].

47.2.4 Electron Collisions with Polyatomic
Molecules

In the last few years computer programs based on the ab
initio methods described in Sect. 47.1.5 have been de-
veloped and used to calculate cross sections for electron
collisions with polyatomic molecules of importance in
many applications.

Recent work includes electron collisions with ni-
trous oxide which is an important species in the
upper atmosphere where it plays a role in ozone
destruction. N2O lasers are also of importance.
Fixed-nuclei total cross sections, calculated using in-
dependent Bonn [47.116] and UK [47.117] polyatomic
R-matrix programs are in good agreement with experi-
ment [47.118], showing a 2Π shape resonance near
2 eV. The UK R-matrix program has also been used
to study electron collisions with the open-shell radical
OClO [47.119]. An important process in the strato-
spheric polar vortex involves the coupling of chlorine
and bromine chemistry, in which OClO plays a key
role. In this case OClO is formed by the reaction
BrO+ClO → Br+OClO. Fixed-nuclei total cross sec-
tions were calculated including eight electronic states in
the R-matrix expansion, giving good agreement with ex-
periment [47.120], reproducing a shoulder in the cross
section between 2 and 6 eV.

Important advances have also been made in the theo-
retical treatment of vibrational excitation in polyatomic
molecules. Electron collisions with CO2 molecules
were calculated in the fixed-nuclei approximation using
an electron–polyatomic molecular scattering program
based on the complex Kohn variational method [47.121].
At low energies the cross section is dominated by a vir-
tual state at threshold and a 2Πu shape resonance at
3.8 eV. As the molecule bends from its ground state
linear configuration, the shape resonance splits into non-
degenerate 2A1 and 2B1 configurations. The fixed-nuclei
complex resonance energy surfaces are parametrized
and motion on these surfaces is computed using a gener-
alization of the Boomerang model [47.122]. The results
reproduce the oscillations resulting from the interfer-
ence between the nuclear and electronic motion seen
experimentally by Allen [47.123, 124].

47.3 Electron–Atom Collisions in a Laser Field

Electron–atom collisions in the presence of an intense
laser field have recently attracted considerable attention
because of the importance of these processes in applica-

tions such as laser plasma interactions, and also because
of their fundamental interest in atomic collision theory.
This section summarizes the basic theory, commenc-
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ing with the scattering of electrons by a potential in the
presence of a laser field. The discussion is then general-
ized to the scattering of electrons by complex atoms and
ions, where ‘dressing’ of the atomic eigenstates by the
laser field must be considered, and where simultaneous
electron photon excitation (SEPE) processes, defined
by

nhν+ e−+ Ai → e−+ A j , (47.146)

can occur. Recent reviews of aspects of this subject
have been given by Mason [47.3], Newell [47.125] and
Mittleman [47.126].

47.3.1 Potential Scattering

We adopt a semiclassical description of the collision
process in which the electrons and the target atom are
described by the nonrelativistic Schrödinger equation,
and the laser field is described classically. This is valid
for most high intensity fields of current interest, where
a typical coherence volume of the field contains a very
large number of photons [47.126].

The time-dependent Schrödinger equation describ-
ing an electron scattered by a potential V (r) in the
presence of an external electromagnetic (laser) field is
then

i
∂

∂t
Ψ (r, t)=

[
−1

2
∇2− i

c
A (r, t) ·∇

+ 1

2c2 A2 (r, t)+V (r)
]
Ψ (r, t) ,

(47.147)

in the Coulomb gauge such that the vector potential
satisfies ∇ · A= 0. We also assume that the laser field
is monochromatic, monomode, linearly polarized, and
spacially homogeneous (i. e., its wavelength is large
compared with the range of the potential, or more
generally with the size of the atom). Hence we can
write

A (r, t)= A (t)= ε̂A0 cosωt , (47.148)

where ε̂ is a unit vector along the field polarization di-
rection and ω is the angular frequency. The A2 term in
(47.147) can be removed by the unitary transformation

Ψ (r, t)= exp

⎛

⎝− i

2c2

t∫
A2 (t′

)
dt′
⎞

⎠ΨV (r, t) ,

(47.149)

where ΨV satisfies the Schrödinger equation in the vel-
ocity gauge given by

i
∂

∂t
ΨV (r, t)=

[
−1

2
∇2− i

c
A (t) ·∇+V (r)

]

×ΨV (r, t) . (47.150)

The corresponding equation for the free electron with
V = 0 is readily solved to give the Volkov wave func-
tion [47.127]

χk (r, t)

= (2π)− 3
2 exp [i (k ·r−k ·α0 sinωt− Et)] ,

(47.151)

where k is the wave vector and E = 1
2 k2 the kinetic

energy. The quantity α(t) is defined by

α (t)= 1

c

t∫
A
(
t′
)

dt′ = α0 sinωt , (47.152)

where α0 = E0/ω
2, E0 being the electric field strength.

To solve (47.150), introduce the causal Green’s func-
tion G(+)0

(
r, t; r ′, t′

)
satisfying the equation

(
i
∂

∂t
+ 1

2
∇2+ i

c
A (t) ·∇

)
G(+)0

(
r, t; r ′, t′

)

= δ (r−r ′
)
δ
(
t− t′

)
. (47.153)

This Green’s function is given by

G(+)0

(
r, t; r ′, t′

)

=−iθ
(
t− t′

) ∫
χk (r, t) χ

∗
k
(r ′, t′)dk , (47.154)

where θ(x)= 1 for x> 0 and θ(x)= 0 for x< 0. The cor-
responding causal outgoing wave solution of (47.150)
is

Ψ
(+)
k (r, t)= χk(r, t)+

t∫

−∞
dt′

∫
dr ′ G(+)0

(
r, t; r ′, t′

)

× V
(
r ′
)
Ψ
(+)
k

(
r ′, t

)
, (47.155)

and the S-matrix element for a transition ki → k f in the
presence of the laser field is given by

Sk f ,ki =−i
〈
χk f

∣∣∣V
∣∣∣Ψ(+)ki

〉
, (47.156)

where an integration is carried out over all space and time
in this matrix element. The time integration in (47.156)
can be performed using the relation

exp (ix sin u)=
∞∑

n=−∞
Jn (x) exp (inu) , (47.157)
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where Jn(x) is an ordinary Bessel function of order n.
Then

Sk f ,ki =−2πi
∞∑

n=−∞
δ
(
Ek f − Eki −nω

)
T n

k f ,ki

(47.158)

where the delta function ensures energy conservation,
and n is the number of photons absorbed or emitted.
The differential cross section for the scattering process
ki → k f with exchange of n photons can then be defined
in terms of the T -matrix elements T n

k f ,ki
by

dσn

dΩ
= (2π)4 k f

ki

∣∣T n
k f ,ki

∣∣2 . (47.159)

There are two limiting cases in which consider-
able simplification in this expression occurs. First, at
high energies or for weak potentials, the first Born ap-
proximation can be used to describe scattering by the
potential V(r). In this case (47.159) reduces to

dσ1,B
n

dΩ
= (2π)4 k f

ki
J2

n (∆ ·α0) |V(∆)|2 , (47.160)

where ∆= ki −k f is the momentum transfer vector and

V(∆)= (2π)−3
∫

exp(i∆ ·r)V(r)dr . (47.161)

It follows immediately that

dσ1,B
n

dΩ
= J2

n (∆ ·α0)
dσ1,B

dΩ
, (47.162)

where dσ1,B/dΩ is the field-free first Born differential
cross section. Using the sum rule

∞∑

n=−∞
J2

n (x)= 1 , (47.163)

(47.162) immediately yields
∞∑

n=−∞

dσ1,B
n

dΩ
= dσ1,B

dΩ
. (47.164)

The second limiting case is the low frequency (soft
photon) limit, where the laser photon energy ω is small
compared with the electron energy Eki . In this limit, the
T -matrix element is given by [47.128]

T n
k f ,ki

= Jn(∆ ·α0)
〈
χk′f

∣∣T
(
Ek′i

)∣∣χk′i
〉+O

(
w2) ,

(47.165)

where k′i and k′f are the shifted wave vectors

k′i = ki + nω

∆ ·α0
α0 , k′f = k f + nω

∆ ·α0
α0 (47.166)

and T (Ek′i ) is the T -operator in the absence of the
laser corresponding to the energy Ek′i = k′2i /2. The dif-
ferential cross section for the transfer of n photons is
then

dσn

dΩ
= k f

ki
J2

n (∆ ·α0)
dσ

dΩ

(
k′f , k′i

)+O
(
ω2) ,

(47.167)

where dσ(k′f , k′i)/dΩ refers to the transition k′i → k′f in
the absence of the laser. If the frequency is small enough
to neglect the n dependence of k′i and k′f , then using the
sum rule (47.163), (47.167) becomes

∞∑

n=−∞

dσn

dΩ
= dσ

dΩ
, (47.168)

where dσ/dΩ is the field-free differential cross sec-
tion. The Kroll–Watson result (47.167) has been found
to be surprisingly accurate, even for cases where
ω/Eki ≈ 0.5 [47.129, 130]. A nonrigorous extension
of the Kroll–Watson result to inelastic processes has
been considered by a number of authors, and has been
found to give qualitative agreement with experiments on
helium [47.131].

47.3.2 Scattering by Complex Atoms
and Ions

The time-dependent Schrödinger equation describing an
electron scattered by an N-electron atom or ion in the
presence of a laser field can be written in analogy with
(47.147) as

i
∂

∂t
Ψ (XN+1, t)

=
[

HN+1− i

c

N+1∑

i=1

A (ri , t) ·∇i

+ 1

2c2

N+1∑

i=1

A2 (ri , t)

]

Ψ (XN+1, t) ,

(47.169)

where HN+1 is the (N +1)-electron Hamiltonian de-
fined by (47.3) and XN+1 represents the space and spin
coordinates of all N +1 electrons defined as in (47.8).

With the same assumptions made in the reduction
of (47.147) to (47.150), (47.163) can be rewritten in the
velocity gauge form

i
∂

∂t
ΨV (XN+1, t)

=
(

HN+1+ 1

c
A (t) · PN+1

)
ΨV (XN+1, t) ,

(47.170)
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where

PN+1 =
N+1∑

i=1

−i∇i (47.171)

is the total momentum operator.
The solution of (47.170) for e−–H scattering in

a strong laser field at high electron impact energies has
been considered by Francken and Joachain [47.132].
They discussed the use of the Born series and the eikonal
Born series (EBS) approximations, given by (47.104),
to describe the electron–atom collision, and included the
dressed wave function of the atomic hydrogen target to
first-order in the field strength E0. Important effects re-
lated to the dressing of the target are the appearance in
the cross sections of asymmetries between the absorp-
tion and the emission of a given number of laser photons,
as well as the appearance of new resonance structures in
the cross sections.

So far, detailed studies of low-energy electron–atom
and electron–ion collisions in laser fields have been very
limited. Pioneering work on e−–H+ collisions by Dimou
and Faisal [47.133], and by Collins and Csanak [47.134]
have shown important resonance effects caused by the
field coupling bound states to the continuum. In addition,
multichannel quantum defect theory has been applied
by Zoller and co-workers [47.135, 136] to study the be-
havior of Rydberg states in laser fields. We conclude
this section by briefly describing the R-matrix–Floquet
method [47.137] for treating electron collisions with
complex atoms and ions in a laser field, based on the
R-matrix method discussed in Sect. 47.1.5.

In this approach, configuration space is divided into
internal and external regions, as in the field-free case.
In the internal region, a further gauge transformation of
the field is made to the length gauge, so that the time-
dependent Schrödinger equation (47.170) now becomes

i
∂

∂t
ΨL(XN+1, t)

= [HN+1+E (t) · RN+1]ΨL (XN+1, t) , (47.172)

where RN+1 =∑N+1
i=1 ri , and we assume that the electric

field E (t) is given by

E(t)=−1

c

d

dt
A(t)= ε̂E0 cosωt . (47.173)

In order to solve (47.172), we introduce the Floquet–
Fourier expansion [47.138, 139]

ΨL(XN+1, t)= e−iEt
∞∑

n=−∞
e−inωtΨL

n (XN+1) .

(47.174)

Substituting this equation into (47.172), using (47.173)
and equating the coefficients of exp[−i(E+nω)t] to
zero gives

(HN+1− E−nω)ΨL
n +DN+1

(
ΨL

n−1+ΨL
n+1

)= 0 ,

(47.175)

where we have introduced the operator

DN+1 = 1

2
E0ε̂ · RN+1 . (47.176)

The functions ΨL
n can be regarded as the components

of a vector ΨL in photon space. Equation (47.175) can
then be written in this space as

(HF− E I)ΨL = 0 , (47.177)

where the Floquet Hamiltonian HF is an infinite tridiag-
onal matrix.

In order to solve (47.177) in the internal region,
the components ΨL

n are expanded in a basis which, in
analogy with (47.69), has the form

ΨL
kn(XN+1)

=A
∑

Γ ij

Φ
Γ

i

(
x1, . . . , xN ; r̂N+1σN+1

)
r−1

N+1

× u j (rN+1) aΓijkn

+
∑

Γ i

χΓi (x1, . . . , xN+1) bΓikn , (47.178)

where the summation over Γ is required since the to-
tal orbital angular momentum L and the total parity
π in (47.9) are no longer conserved. The coeffi-
cients aΓijkn and bΓikn are then determined by diagonaliz-
ing HF+Lb, where Lb is an appropriate Bloch operator.

In the external region, the wave function de-
scribing the scattered electron is transformed to the
velocity gauge, and the corresponding coupled equa-
tions integrated outwards from the internal region
boundary for each energy of interest [47.140]. Af-
ter a further transformation to the acceleration frame
(or Kramers–Henneberger frame [47.141]) the wave
function can be fitted to an asymptotic form to yield
the K -matrix, S-matrix and collision cross sections.
This approach has been used to calculate laser-assisted
electron scattering by H and He atoms [47.142, 143]
and a detailed discussion of the theory has been
given [47.144].
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Positron Collis48. Positron Collisions

The positron is the antiparticle of the electron,
having the same mass but opposite charge.
Positrons undergo collisions with atomic and
molecular systems in much the same way as
electrons do. Thus, the standard scattering theory
for electrons (see Chapt. 47) can also be applied to
positron scattering. However, there are a number
of important differences from electron scattering
which we outline below.

Since the positron is a distinct particle from
the atomic electrons, it cannot undergo an
exchange process with the bound electrons during
a collision, as is possible with electrons. Thus,
the nonlocal exchange terms which arise in the
description of electron scattering are not present
for positrons. This leads to a simplification of the
scattering equations from those for electrons.
However, there are scattering channels available
with positron scattering which do not exist with
electrons. These are dealt with in Sect. 48.1.

Historically beams of low-energy positrons
were difficult to obtain and consequently there is
considerably less experimental data available for
positrons than for electrons. This was particularly
true for quantities which required large incident
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positron fluxes, such as differential scattering cross
sections and coincidence parameters. However,
the recent development of cold trap-based
positron beams with high resolution and high
brightness by the San Diego group [48.1] has the
potential to revolutionize this field and put it on
a par with electron scattering.

Throughout this chapter we will employ atomic
units unless otherwise noted.

48.1 Scattering Channels

Positrons colliding with atomic and molecular sys-
tems have the same scattering channels available as
for electrons, viz., elastic, inelastic, ionization, and for
molecules, dissociation. However, two channels exist
for positrons which do not exist for electrons, viz.,
positronium formation and annihilation.

48.1.1 Postronium Formation

Positronium, a bound state of an electron–positron
pair (Chapt. 27), can be formed during the collision
of a positron with an atomic or molecular target. The
positronium ‘atom’ can escape to infinity leaving the
target in a ionized state with a positive charge of one.

Thus, this process can be difficult to distinguish exper-
imentally from true ionization where both the incident
positron and the ionized electron are asymptotically free
particles. The positronium atom can exist in its ground
state or in any one of an infinite number of excited states
after the collision. The level structure of positronium is,
to order α2, where α is the fine-structure constant, iden-
tical to that of hydrogen but with each level having half
the energy of the corresponding hydrogenic state.

Positronium formation is a rearrangement channel,
and thus, is a two-centre problem. Because positronium
is a light particle, having a reduced mass one-half of
that of an electron, the semi-classical type of approxi-
mations used in ion–atom collisions (Chapt. 50) are not
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732 Part D Scattering Theory

applicable here. We will discuss various theoretical ap-
proaches to this process in Sect. 48.2 and give references
to experimental results in Sect. 48.3.

Positronium formation in the ground state has
a threshold which is 1/4 of a Hartree (6.802 85 eV) below
the ionization threshold of the target. This means that
it is normally the lowest inelastic channel in positron
scattering from neutral atoms. For atoms with a small
ionization potential, such as the alkalis, this channel is
always open. The energy range between the positronium
threshold and the first excited state of the atom is known
as the Ore gap. In this range, positronium formation is
the only possible inelastic process.

48.1.2 Annihilation

Annihilation is a process in which an electron–positron
pair is converted into two or more photons. It can oc-
cur either directly with a bound atomic electron or after
positronium formation has taken place. The direct anni-
hilation cross section for a positron of momentum k
colliding with an atomic or molecular target can be
written as [48.2]

σa = α
3 Zeff

k

(
πa2

0

)
, (48.1)

where Zeff can be thought of as the effective number
of electrons in the target with which the positron can
annihilate. If Ψ(r1, r2, . . . , rN , x) is the wave function
for the system of a positron, with coordinate x, colliding
with an N-electron target, then

Zeff=
N∑

i=1

∫
dr1 dr2 . . . drN

∣∣Ψ(r1, r2, . . . , rN ; ri)
∣∣2 .

(48.2)

While this formula can be naively derived by assuming
that the positron can only annihilate with an electron
if it is at the identical location, it actually follows
from a quantum electrodynamical treatment of the pro-
cess [48.3]. If the wave function Ψ is approximated by
the product of the undistorted target wave function times
a positron scattering function F(x), then

Zeff =
∫

drρ(r)
∣∣F(r)

∣∣2 , (48.3)

where ρ is the electron number density of the target.
Thus, in the Born approximation, where F is taken as
a plane wave, Zeff simply becomes the total number of
electrons Z in the target. However, a pronounced en-
hancement of the annihilation rate in the vicinity of the

Ps formation threshold due to virtual Ps formation was
predicted [48.4, 5]. Subsequently, the Born approxima-
tion was shown to be grossly inadequate by the San
Diego group, who found annihilation rates Zeff at room
temperature which are an order of magnitude larger for
some atoms and even up to five orders of magnitude
larger in large hydrocarbon molecules. Furthermore,
there is evidence that only the outer shell of electrons
takes part in the annihilation process. Two mechanisms
have been proposed in order to explain these large val-
ues for Zeff. One involves the enhancement of the direct
annihilation process below the Ps formation threshold
due to the attractive nature of the positron–electron in-
teraction, which increases the overlap of positron and
electron densities on the atom or molecule. The sec-
ond mechanism is referred to as resonant annihilation,
which occurs after the positron has been captured into
a Feshbach resonance, where the positron is bound to
a vibrationally excited molecule. A summary of the
above results can be found in the recent article by Barnes
et al. [48.6].

When a positron annihilates with an atomic elec-
tron, two 511 keV photons is the most likely result, if the
positron–electron pair are in a singlet spin state (para-
positronium). In the centre-of-mass frame of the pair, the
photons are emitted in opposite directions to conserve
momentum. However, in the laboratory frame the bound
electron has a momentum distribution which is reflected
in the photon directions not being exactly 180 degrees
apart. This slight angular deviation, called the angu-
lar correlation, can be measured, and gives information
about the momentum distribution of the bound electrons.
This quantity is given by [48.3]

S(q)=
N∑

i=1

∫
dr1 . . . dri−1 dri+1 . . . drN (48.4)

×
∫

dridxeiq·x ∣∣Ψ(r1, r2, . . . , rN ; x) δ(ri − x)
∣∣2 ,

where q is the resultant momentum of the annihilating
pair. In evaluating this quantity, the positron is assumed
to be thermalized in the gas before undergoing anni-
hilation. Experimentally, only one component of q is
measured, so that S(q) is integrated over the other two
components of the momentum to obtain the measured
quantity. The spin triplet component of an electron–
positron pair (orthopositronium) can only decay with
the emission of three or more photons which do not
have well defined energies. This is a much less proba-
ble process than the two photon decay from the singlet
component.
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Positron Collisions 48.2 Theoretical Methods 733

48.2 Theoretical Methods

The basic theoretical approaches to the calculation of
positron scattering from atoms and molecules were orig-
inally developed for electron scattering and later applied
to the positron case. Thus, we emphasize here only the
differences that arise between the electron and positron
cases, both in the theoretical formulations, and in later
sections, in the nature of the results.

The lowest-order interaction between a free positron
and an atomic or molecular target is the repulsive static
potential of the target

Vs =
〈
ψ0

∣
∣V
∣
∣ψ0

〉
, (48.5)

where ψ0 is the unperturbed target wave function and
V is the electrostatic interaction potential between the
positron and the target. Since this interaction has the
opposite sign from that for electron scattering, the static
potential also has the opposite sign in these two cases.
On the other hand, the next higher-order of interaction is
polarization, which arises from the distortion of the atom
by the incident particle. If we represent this distortion
of the target to first-order by the wave function ψ1, as in
the polarized-orbital approximation, for example [48.9],
then the polarization interaction can be represented by
the potential

Vp =
〈
ψ0

∣∣V
∣∣ψ1

〉
. (48.6)

This potential is attractive for both positron and electron
scattering and has an asymptotic form with leading term
−αd/2r4, where αd is the static dipole polarizability
(Sect. 23.2.3) of the target. Thus, the static and polariza-
tion potentials for positron scattering from ground state
systems are of opposite sign and tend to cancel one an-
other. This leads to very different behaviour from the
electron case where they are of the same sign. In par-
ticular, the elastic scattering cross sections for positron
scattering from an atom are much smaller than for elec-
tron scattering, and the phase shifts (Sect. 47.1.1) have
very different magnitudes and dependences on energy.
This is illustrated for the case of scattering from helium
in Figs. 48.1–48.3, where the results of the highly accu-
rate variational calculations for scattering by electrons
and positrons are shown. Note the difference in sign be-
tween the electron and positron s-wave phase shifts for
very small values of the incident momentum. The fact
that the positron phase shift goes through zero leads
to the Ramsauer minimum in the positron total cross
section, as shown in Fig. 48.3. The large difference in
magnitudes between the electron and positron s- and

s-wave phase shift

Momentum (a.u.)
0.0

–0.1

–0.5

–0.9

–1.3
0.4 0.8 1.2

Fig. 48.1 Variational s-wave phase shifts for electron [48.7]
(dashed line) and positron [48.8] (solid line) scattering from
helium atoms

p-wave phase shifts leads to the large difference in the
total elastic cross sections as shown.

Higher-order terms in the interaction potential may
also give important contributions to scattering cross
sections. For a detailed discussion, see the article by
Drachman and Temkin [48.10].

A simple potential scattering calculation using the
sum of the static and polarization potentials, but with-
out the exchange terms that are present for the electron
case, can be applied to elastic scattering calculations for
closed shell systems (see Sect. 48.3.3).

The potentials defined above can also be used in
a distorted-wave approximation (Chapt. 47) which can
be applied to excitation and ionization by positron im-
pact. Once again, the complicated exchange terms which
arise in electron scattering are absent here. Sienkiwicz
and Baylis [48.11] have included such potentials in
a Dirac–Fock formulation of positron scattering which
treats the positron as an electron with negative energy.

For positrons with high enough incident energies
(≈ 1 keV), the first Born approximation will become
valid (Chapt. 47). Since the first Born approximation
is independent of the sign of the charge of the incident
particles, this indicates that as the incident energy in-
creases, the corresponding cross sections for electron
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p-wave phase shift

Momentum (a.u.)
0.00

0.3

0.2

0.1

0.0
0.40 0.80 1.20

Fig. 48.2 Variational p-wave phase shifts for elec-
tron [48.7] (dashed line) and positron [48.15] (solid line)
from helium atoms

and positron scattering will eventually merge. From flux
conservation arguments, this means that the positron-
ium formation cross section will rapidly decrease as the
incident energy increases. In fact, from experimental
measurements, the total cross sections (summed over all
possible channels) for electron and positron scattering
appear to merge at a much lower energy than the cross
sections for individual channels [48.12]. More elaborate
calculations for high energy scattering have been car-
ried out in the eikonal-Born series [48.13] (Chapt. 47).
These approximations allow for both polarization and
absorption (i. e., inelastic processes) and yield good
agreement with elastic experimental measurements of
differential cross sections at energies above 100 eV.
A detailed analysis [48.13, 14] of the various contri-
butions to the scattering indicates that absorption effects
due to the various open inelastic channels plays a much
more important role here than for electron scattering.

A more elaborate treatment of positron scattering is
based on the close-coupling approximation (Chapt. 47),
where the wave function for the total system of positron
plus target is expanded using a basis set comprised of
the wave functions of the target. Once again, there are no
exchange terms involving the positron and, in principle,
a complete expansion including the continuum states of
the target would include the possibility of positronium
formation. However, such an expansion is not practi-

Momentum (a.u.)
0.00

1

0.40 0.80

0.1

Total cross section (πa0)
2

Fig. 48.3 Total elastic cross sections for electron (dashed
line) and positron (solid line) from helium atoms calculated
from the phase shifts shown in Figs. 48.1 and 48.2. The
higher-order phase shifts were calculated from effective
range theory (Sect. 47.1.1)

cable if one wants to calculate explicit cross sections
for positronium formation. Even in cases where such
cross sections are not required, the considerable effect
that the positronium formation channels can have on
the other scattering cross sections is best included by
a close-coupling expansion that includes terms repre-
senting positronium states plus the residual target ion.
There is a problem of double counting of states in
such an expansion but, in practice, this does not ap-
pear to be a problem if the number of states in the
expansion is not large. Also, in many cases, additional
pseudostates have to be included in the expansion in
order to correctly represent the long-range polarization
interaction.

A close-coupling expansion including positronium
states is a two-centre problem, i. e., it includes the cen-
tres of mass of both the target and the positronium states.
Since positronium is a light system, the semi-classical
approach often used to treat rearrangement collisions
between heavy systems (Chapt. 50) is not applicable
here. This means that one is faced with a problem of
considerable computational complexity [48.16–21].

Another way to take into account the effects of open
inelastic channels without the complications of a full
close-coupling approach is to use optical potentials.
These are often based on a close-coupling formal-
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Positron Collisions 48.3 Particular Applications 735

ism [48.14, 22] and lead to a complex potential, the
real part of which represents distortions of the target
(such as polarization) while the complex part allows for
absorption (i. e., flux into open channels not explicitly
represented).

Bray and Stelbovics [48.23] have applied the conver-
gent close-coupling method to the scattering of positrons
from atoms. This method includes contributions from
the continuum states of the target and sufficient terms in
the expansion are included to ensure numerical conver-
gence. At the present time, however, positronium states
have not been explicitly included.

Finally, there is the variational method (Chapt. 47),
which uses an analytic form of trial wave function to
represent the total system. The parameters of this an-
alytic function are determined as part of the method.
Given a trial wave function with sufficient flexibility and
a large enough number of parameters, essentially exact
results can be obtained in the elastic energy range and

the Ore gap. Because the complexity of the trial func-
tion increases as the square of the number of electrons in
the target, only positron scattering from hydrogen, he-
lium and lithium and the hydrogen molecule have been
treated by this method, to date [48.8, 24].

In the case of ionization there appears to be quite
distinct threshold behaviour of the cross sections for
electron and positron collisions. For electrons, the Wan-
nier threshold law (Sect. 52.2.1) has exponent 1.127,
while a similar analysis for positrons [48.25] yields an
exponent of 2.651. However, the existence of the positro-
nium formation channel leaves in question whether
this analysis will give the dominant term at thresh-
old. For a fuller discussion see [48.26], and references
therein.

There has been an investigation [48.27] of the be-
haviour of the elastic cross sections at the positronium
formation threshold which predicts the occurrence of
a Wigner cusp for the lighter noble gases.

48.3 Particular Applications

48.3.1 Atomic Hydrogen

Because of the difficulty of making measurements in
atomic hydrogen, the available experimental data is re-
stricted so far to total cross sections, as well as to
total ionization and positronium formation cross sec-
tions. Essentially exact variational calculations have
been carried out in the elastic energy regime and the
Ore gap [48.8].

Ionization cross sections have been measured by
both the Bielefeld and London groups [48.28, 29] (and
references therein) and have been calculated in a number
of approximations [48.23, 30–32]. However, disagree-
ments between the experimental measurements mean
that there is at present no reliable way of assessing the
various approximations used. More elaborate calcula-
tions with asymptotically correct wave functions have
been used to determine triple differential cross sections
for ionization [48.33,34]. However, the task of integrat-
ing these to produce total cross sections is a formidable
one.

The total positron–hydrogen cross section has also
been measured by the Detroit group [48.35], and is in
quite good agreement with calculations based upon the
coupled-pseudostate method [48.32] except at very low
energies where the experimental uncertainties are the
greatest.

In order to determine reliable positronium formation
cross sections, the explicit positronium states have to
be included. Several such calculations have been carried
out [48.17–20]. These indicate the necessity of explicitly
including positronium formation channels in the expan-
sion of the total wave function in order to obtain accurate
results, even for elastic scattering. The most recent cal-
culations [48.32, 36] are in quite good agreement with
various experiments [48.28,37] over the majority of the
energy range.

As is the case for electron scattering, positron cross
sections exhibit resonances (Sect. 47.1.3). These have
been extensively studied by Ho [48.38] using variational
and complex rotation methods.

48.3.2 Noble Gases

Because the noble gases are convenient experimental
targets, a good deal of effort has gone into calculations
for these targets, particularly for elastic scattering, ion-
ization, and Ps formation. In the purely elastic energy
range, i. e., for energies below the positronium forma-
tion threshold, the simple potential scattering approach
using the static and polarization potentials defined above
yields quite good results. Since the long-range behaviour
of the sum of the potentials is attractive, the scattering
phase shifts for positrons must be positive for suffi-
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ciently low energies. However, as its incident energy
increases, the positron probes the repulsive inner part
of the potential and the phase shifts become negative.
This behaviour leads to the well-known Ramsauer min-
imum in the integral elastic cross sections (Chapt. 47)
for the lighter noble gases (helium, neon and possibly
argon), but not for krypton and xenon [48.15, 39] (and
references therein). This differs from electron scatter-
ing, where some low-energy phase shifts can be negative
(modulo π) because of the existence of bound orbitals
of the same symmetry.

Another difference between positron and electron
scattering is exhibited by the differential cross sections
(Chapt. 47). As a result of the low intensity and width
of positron beams, most measurements of differential
cross sections are relative, with the normalization of-
ten being made to theoretical calculations at specific
angles. For electrons, the shape of the cross section is
determined by a few dominant phase shifts, whereas
for positrons, many phase shifts contribute to the final
shape [48.40]. Because of this behaviour, the differ-
ential cross sections for positron scattering have much
less overall structure than for electron scattering. How-
ever, the differential cross sections for positrons for
many of the noble gases have a single minimum at
relatively small angles, both below and above the first
inelastic channel. These have been reviewed by Kaup-
pila et al. [48.41]. At intermediate energies, the simple
potential scattering approximation is no longer suffi-
cient and the inelastic channels have to be taken into
account via, for example, the use of an optical po-
tential [48.13, 14, 42]. Furthermore, in the inelastic
scattering regime, the existence of open channels has
a much more marked effect on the shape of the dif-
ferential cross sections for positron scattering than for
electrons [48.43].

The first absolute differential cross sections were
measured for argon and krypton at very low energies
using a magnetized beam of cold positrons [48.44, 45].
These results are in excellent agreement with a variety
of different theoretical predictions [48.46–48].

There is relatively very little experimental data for
the excitation of the noble gases. Some experimen-
tal work has been carried out for the lighter noble
gases, helium, neon and argon [48.49] (and references
therein), and there is satisfactory agreement between
these measurements and close-coupling [48.50], as well
as distorted-wave [48.51] calculations.

The first state-resolved absolute excitation cross sec-
tions for the 4s [1/2]o1 and 4s [3/2]o1 states of argon and
the 6s [3/2]o1 state of xenon have been measured by the

San Diego group [48.6, 52]. Relativistic distorted-wave
calculations are in satisfactory agreement with the ex-
periment for argon [48.53], but less so for xenon [48.54].

The total ionization and positronium cross sections
have been measured extensively for all of the noble
gases. In general, there is good agreement amongst the
various experiments for the ionization cross section,
but much less so for the positronium formation cross
section. A summary of the experimental work on the
ionization and positronium cross sections for neon, ar-
gon, krypton and xenon can be found in the article by
Laricchia et al. [48.55] (and references therein), while
a more detailed analysis of these cross sections in ar-
gon can be found in recent articles by the San Diego
group [48.6, 56].

There has also been an extensive investigation of
the energy dependence of the elastic and positronium
formation cross section near the Ps formation threshold
for all the inert gases [48.57] (and references therein).

There exist some measurements of Zeff and angular
correlation parameters for these gases [48.58], mainly at
room temperature, and calculations for them have been
made in the polarized-orbital approximation [48.59].

48.3.3 Other Atoms

In the case of positron scattering from the alkali atoms,
the positronium formation channel is always open
and the simple potential scattering approach does not
yield reliable results. The Detroit group has meas-
ured the total cross section, as well as upper and
lower bounds to the positronium formation cross sec-
tion for sodium, potassium, and rubidium. Although
early close-coupling calculations of the elastic and ex-
citation cross sections [48.60–62] were in surprisingly
good agreement with the experimental total cross sec-
tion, these calculations did not include the positronium
formation channel. Subsequently, much more sophis-
ticated calculations were carried out by the Belfast
group using the coupled-pseudostate method, which
included both eigenstates of the target as well as positro-
nium [48.32, 63–65]. These calculations also showed
the increasing importance of positronium formation
in excited states for the alkalis potassium, rubidium,
and caesium. The overall agreement between experi-
mental results and those from the coupled-pseudostate
method are quite good for both potassium and rubid-
ium, however, for sodium, the experimental positronium
formation cross section is significantly above these the-
oretical calculations. A summary of the experimental
work on the alkalis can be found in [48.35], while
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a corresponding summary of theoretical work is given
in [48.32].

Substantial resonance features have been found in
these positron–alkali atom cross sections [48.66].

The positronium formation threshold for magnesium
is very low, only 0.844 eV, and hence, the elastic and
positronium formation cross sections will dominate in
the low energy region. Upper and lower bounds to the
Ps formation cross section in magnesium have been de-
termined [48.35, 67], and are in agreement with both
close-coupling calculations [48.68] and the results of
many-body theory [48.69].

48.3.4 Molecular Hydrogen

By its fundamental nature, molecular hydrogen has at-
tracted considerable attention both experimentally and
theoretically. The total elastic cross section has been
measured by both the Detroit group [48.37] and the Lon-
don group [48.70], with good agreement between both
sets of data. There have been several theoretical calcu-
lations of this cross section by a variety of methods:
Kohn variational [48.71], R-matrix [48.72], distributed
positron model [48.73], and recently, a Schwinger multi-
channel method [48.74], with [48.72, 73] being in
satisfactory agreement with experiment. Once again,
the elastic cross section is strongly influenced by the
positronium formation channel near threshold.

Quite recently the vibrational (0 → 1) excitation
cross section of molecular hydrogen has been measured
between 0.55 and 4 eV by Sullivan et al. [48.75]. Their
data are in quite good agreement with theoretical cal-
culations. The San Diego group has also measured the
electronic excitation of the B1Σ state from threshold
to 30 eV [48.52]. Their data are in reasonable agree-
ment with the Schwinger multichannel calculation of
Lino et al. [48.76]. Interestingly, the measured positron
excitation cross section appears to be larger than that
determined for electron excitation.

The ionization cross section has been determined
over a wide range of energies by a number of different
groups [48.77–81] (and references therein). Since all of
the above measurements are relative, they must be nor-
malized to one another at particular energies. Although

there are some differences between these experiments,
near threshold the positron cross section increases less
rapidly, in general, than the corresponding electron cross
section, in accordance with the Wannier law. Theoret-
ical calculations are in satisfactory agreement with the
measurements [48.82] (and references therein).

The positronium formation cross section has also
been measured by a number of different groups with
coupled-channels calculations being carried out for this
process [48.83].

48.3.5 Other Molecules

For diatomic and triatomic molecules, most of the ex-
perimental and theoretical work has been carried out for
CO, CO2, O2, and N2. Total cross sections for O2, N2,
and CO2 have been measured from threshold to several
hundred eV [48.70] (and references therein). Relative
differential cross sections have been measured for CO,
CO2, O2, N2, as well as N2O, on both sides of the
positronium formation threshold [48.84]. Absolute dif-
ferential cross sections have been measured for CO at
6.75 eV [48.45]. At low energies the gases N2, O2, and
CO exhibit a minimum in the DCS at small angles, as
per the heavier noble gases. This minimum gradually
disappears as the energy increases.

Vibrational excitation cross sections for CO and CO2
have been measured [48.75] and are in excellent agree-
ment with the theoretical calculations of [48.85] for
CO, and in satisfactory agreement with theory [48.86]
for CO2. Electron excitation of the a1Π and a′1Σ
states of N2 have been measured from threshold to
20 eV [48.52]. Interestingly, the positron cross sec-
tion near threshold is approximately double that for
electrons.

For polyatomic molecules, the majority of exper-
imental and theoretical work has been carried out
for CH4. This includes the total cross section and
quasi-elastic (summed over vibration–rotational levels)
differential cross sections. At low energies there is a min-
imum in these DCS at small angles, as per the heavier
noble gases which, in turn, also disappears at higher en-
ergies. The positronium formation cross section has also
been measured.

48.4 Binding of Positrons to Atoms

There have been many recent investigations of the
possible binding of positrons to a variety atoms. As
was mentioned in Sect. 46.2.2, such binding could

greatly enhance the annihilation cross section and help
to explain the large measured values of Zeff for both
atoms and molecules. It has been shown theoretically
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that a positron will bind to a large number of one-
and two-electron atomic systems [48.87] (and refer-
ences therein). For one-electron systems, where the
ionization potential is less than 6.802 85 eV, the dom-
inant configuration is a polarized positronium (Ps)
cluster moving in the field of the residual positive
ion, while for two-electron systems, with an ioniza-

tion potential greater than 6.802 85 eV, the dominant
configuration involves a positron orbiting a polarized
neutral atom [48.88]. So far, there is no experimen-
tal evidence for these positronic atoms. However, there
is considerable evidence that positrons will bind to
large hydrocarbon molecules [48.6] (and references
therein).

48.5 Reviews

For a number of years a Positron Workshop has been
held as a satellite of the International Conference on the
Physics of Electronic and Atomic Collisions. Their pro-
ceedings [48.89–100] give an excellent summary of the
state of positron scattering research, both experimen-
tal and theoretical, including such additional topics as
positronium scattering from atoms, the formation of an-
tihydrogen, inner shell ionization, and applications to
astrophysics.

There are several review articles on positron
scattering in gases, including the early historical
development [48.101], more comprehensive arti-
cles [48.2, 102–104], as well as a more recent
review [48.105], which also discusses the future for
positron physics.

A recent book [48.106] discusses various as-
pects of both experimental and theoretical positron
physics.
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Adiabatic and49. Adiabatic and Diabatic Collision Processes
at Low Energies

Adiabatic and diabatic electronic states of a sys-
tem of atoms are defined and their properties
are described. Nonadiabatic interaction for slow
quasiclassical motion of atoms is discussed
within two-state common-trajectory approx-
imation. Analytical formulae for nonadiabatic
transition probabilities are presented for par-
ticular modles with reference to single and
double passage of coupling regions (Landau–
Zener–Stückelberg, Rosen–Zener–Demkov, Nikitin
models). Generalization for multiple passage is
described.
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49.1 Basic Definitions

49.1.1 Slow Quasiclassical Collisions

Slow collisions of atoms or molecules (neutral or
charged) are defined as collisions for which the velocity
of the relative motion of colliding particles v is substan-
tially lower than the velocity of valence electrons ve:

v/ve & 1 . (49.1)

If ve is estimated as ve ≈ 1 a.u. ≈ 108 cm/s, then (49.1)
is fulfilled for medium mass nuclei (∼ 10 amu) up to
several keV.

Quasiclassical collisions are those for which the
de Broglie wavelength λdB for the relative motion is
substantially smaller than the range parameter a of the
interaction potential

λdB & a . (49.2)

The two conditions (49.1) and (49.2) define the energy
range within which collisions are slow and quasiclas-
sical. For medium mass nuclei, this energy range covers
collision energies above room temperature and below
hundreds of eV. The paramater a should not be confused
with another important parameter L0 which character-
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742 Part D Scattering Theory

izes the extent of the interaction region. For instance, for
the exchange interaction between two atoms, L0 cor-
responds to the distance of closest approach of the
colliding particles, while a is the range of the exponen-
tial decrease of the interaction. Typically, L0 noticeably
exceeds a.

49.1.2 Adiabatic
and Diabatic Electronic States

Let r refer to a set of electronic coordinates in
a body-fixed frame related to the nuclear framework
of a colliding system, and let R refer to a set of
nuclear coordinates determining the relative position
of nuclei in this system. A configuration of electrons
and nuclei in a frame fixed in space is completely
determined by r, R, and the set of Euler angles Ω,
which relate the body-fixed frame to the space-fixed
frame. If the total Hamiltonian of the system is
H(r,R,Ω), the stationary state wave function satisfies
the equation

H(r,R,Ω)ΨE(r,R,Ω)= EΨE(r,R,Ω) . (49.3)

The electronic adiabatic Hamiltonian H(r;R) is defined
to be the part of H(r,R,Ω) in which the kinetic energy
of the nuclei is ignored. The adiabatic electronic func-
tionsψn(r;R) are defined as eigenfunctions of H(r;R)
at a fixed nuclear configuration R:

H(r;R)ψn(r;R)=Un(R)ψn(r;R) . (49.4)

The eigenvalues Un(R) are called adiabatic potential
energy surfaces (adiabatic PES). In the case of a diatom,
the set R collapses into a single coordinate, the internu-
clear distance R, and the PES become potential energy
curves, Un(R). The functions ψn(r;R) depend expli-
citly on R and implicitly on the Euler angles Ω. The
significance of the adiabatic PES is related to the fact
that in the limit of very low velocities, a system of nuclei
will move across a single PES. In this approximation,
called the adiabatic approximation, the function Un(R)
plays the part of the potential energy which drives the
motion of the nuclei.

An electronic diabatic Hamiltonian is defined for-
mally as a part of H , i. e., H0 = H +∆H . The
partitioning of H into H0 and ∆H is dictated by the
requirement that the eigenfunctions of H0, called dia-
batic electronic functions φn , depend weakly on the
configuration R. The physical meaning of this weak de-
pendence is different for different problems. A perfect
diabatic basis set φn(r) is R-independent; for practical

purposes one can use a diabatic set which is consid-
ered as R-independent within a certain region of the
configuration space R.

Two basis sets ψn and φn generate the matrices

〈φm |H|φn〉 = Hmn ,

〈φm |H |φn〉 = Hmn +Dmn ,

〈ψm |H |ψn〉 =Un(R)δmn +Dmn . (49.5)

The eigenvalues of the matrix Hmn are Un . Dmn is the
matrix of dynamic coupling in the diabatic basis, and
Dmn is the matrix of dynamic coupling in the adiabatic
basis; the former matrix vanishes for a perfect diabatic
basis. All the above matrices are, in principle, of infi-
nite order. For low-energy collisions, the use of finite
matrices of moderate dimension, will usually suffice.

Diabatic PES are defined as the diagonal elem-
ents Hnn . The significance of the diabatic PES is that for
velocities which are high [but still satisfy (49.1)] the sys-
tem moves preferentially across diabatic PES, provided
that the additional conditions discussed in Sect. 49.3 are
fulfilled.

For a given finite adiabatic basis ψn(r;R), a perfect
diabatic basisφn′(r) can be constructed by diagonalizing
the matrix Dnm(R). The two basis sets are related by
a unitary transformation

ψn (r;R)=
∑

n′
Cnn′ (R) φn′(r) . (49.6)

49.1.3 Nonadiabatic Transitions:
The Massey Parameter

Deviations from the adiabatic approximation manifest
themselves in transitions between different PES which
are induced by the dynamic coupling matrix D . At low
energies, the transitions usually occur in localized re-
gions of nonadiabatic coupling (NAR). In these regions,
the motion of nuclei in different electronic states is
coupled, and in general it cannot be interpreted as being
driven by a single potential.

An important simplifying feature of slow adiabatic
collisions is that typically the distance between differ-
ent NAR is substantially larger than the extents of each
NAR. This makes it possible to formulate simple models
for the coupling in isolated NAR, and subsequently to
incorporate the solution for nonadiabatic coupling into
the overall dynamics of the system.

For a system of s nuclear degrees of freedom, there
are the following possibilities for the behavior of PES
within NAR:
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(i) If two s-dimensional PES correspond to electronic
states of different symmetry, they can cross along an
(s−1)-dimensional line. For a system of two atoms,
s = 1, and so two potential curves of different symmetry
can cross at a point.
(ii) If two s-dimensional PES correspond to electronic
states of the same symmetry, they can cross along an
(s−2)-dimensional line. For a system of two atoms,
s = 1, and so two potential curves of different symmetry
cannot cross. If they have a tendency to cross, they will
exhibit a pattern which is called an avoided crossing or
a pseudocrossing.
(iii) If two s-dimensional PES correspond to electronic
states of the same symmetry in the presence of spin–orbit
coupling, they can cross along an (s−3)-dimensional
line.

Statement (ii) applied to a two-atom system is known
as the Wigner–Witmer noncrossing rule.

The efficiency of the nonadiabatic coupling between
two adiabatic electronic states is determined, according
to the adiabatic principle of mechanics (both classical
and quantum), by the value of the Massey parameter ζ ,
which represents the product of the electronic transition
frequencyωel and the time τnuc that characterizes the rate
of change of electronic function due to nuclear motion.
Putting ωel ≈∆U(R)/�, (∆U is the spacing between
any two adiabatic PES), and τnuc =∆L/v(R), (∆L is
a certain range which depends on the type of coupling),
we get

ζ(R)= ωelτnuc =∆U(R)∆L/�v(R) . (49.7)

The nonadiabatic coupling is inefficient at those con-
figurations R where ζ(R)% 1. If ζ(R) is less than or of
the order of unity, the nonadiabatic coupling is efficient,
and a change in adiabatic dynamics of nuclear motion is
very substantial.

The following relations usually hold for the param-
eters ∆L, a, L0 for slow collisions:

∆L & a & L0 . (49.8)

When the nonadiabatic coupling is taken into
account, the total (electronic and nuclear) wave func-
tion ΨE can be represented as a series expansion in
ψn or φn (the Euler anglesΩ are suppressed for brevity):

ΨE(r,R)=
∑

n

ψn(r;R)χnE(R)

=
∑

n

φn(r)κnE(R) . (49.9)

Here χnE(R) and κnE(R) are the functions which
have to be found as solutions to the coupled equa-
tions formulated in the adiabatic or diabatic electronic
basis, repectively [49.1, 2]. In general, different contri-
butions to the first sum in (49.9) can be associated with
nonadiabatic transition probabilities between different
electronic states.

A practical means of calculating functions χnE(R)
[or κnE(R)] consists of expanding them over certain
basis functions Ξnν(R

′), where R′ denotes all coordi-
nates R except for the interparticle distance R. Writing

χnE(R)=
∑

ν

Ξnν(R
′)ξnνE(R) , (49.10)

one arrives at a set of coupled second-order equations
for the unknown functions ξnνE(R) (the scattering equa-
tions) [49.1]. In the semiclassical approximation, these
equations become a set of first-order equations for the
amplitudes of the WKB counterparts of ξnνE(R). At the
next step of simplification, in the common trajectory ap-
proximation, the variable R is changed into the time
variable t, the latter being related to R via the classical
trajectory R = R(t) [49.2]. In the adiabatic approxima-
tion, the total wave function is represented by a single
term in the first sum of (49.9):

ΨE(r,R)= ψn(r;R)χnE(R) . (49.11)

49.2 Two-State Approximation

49.2.1 Relation Between Adiabatic
and Diabatic Basis Functions

In the two-state approximation, the basis of electronic
functions consists of two states. In this case, the elements
of the matrix C in (49.6) are expressed through a single
parameter only, a mixing or rotation angle θ:

ψ1(r;R)= cos θ(R)φ1(r)+ sin θ(R)φ2(r) ,

ψ2(r;R)= − sin θ(R)φ1(r)+ cos θ(R)φ2(r) .
(49.12)

The rotation angle, θ(R), is expressed via the diag-
onal and off-diagonal matrix elements of the adiabatic
Hamiltonian H in the diabatic basis φ1, φ2:

tan 2θ(R)= 2H12(R)

H11(R)−H22(R)
. (49.13)
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The eigenvalues of H in terms of Hik are

U1,2(R)= [H11(R)+H22(R)] /2±∆U(R)/2 ,
(49.14)

where

∆U(R)= {
[H11(R)−H22(R)]

2+4H2
12(R)

}1/2
.

(49.15)

The matrix elements Hik are expressed via the adia-
batic potentials and the rotation angle by

H11(R)+H22(R)=U1(R)+U2(R) ,

H11(R)−H22(R)=∆U(R) cos 2θ(R) ,

H12(R)= (1/2)∆U(R) sin 2θ(R) .
(49.16)

49.2.2 Coupled Equations
and Transition Probabilities
in the Common Trajectory
Approximation

A two-state nonadiabatic wave function Ψ(r,R) can be
written as an expansion into either adiabatic or diabatic
electronic wave functions:

Ψ(r;R)= ψ1(r;R) α1(R)+ψ2(r;R) α2(R) ,

Ψ(r;R)= φ1(r)β1(R)+φ2(r)β2(R) , (49.17)

in which the nuclear wave functions satisfy two coupled
s-dimensional Schrödinger equations [49.1].

In the common trajectory approximation, the motion
of the nuclei is described by the classical trajectory, i. e.,
by a one-dimensional manifold Q(t) embedded in the
s-dimensional manifold R. A section of PES along this
one-dimensional manifold determines a set of effective
potential energy curves (PEC). In the case of atomic
collisions, Q coincides with the interatomic distance R,
and the effective PEC are just ordinary PEC.

A common trajectory counterpart of (49.17) is

Ψ(r, t)= ψ1 [r;Q(t)] a1(t)+ψ2 [r;Q(t)] a2(t) ,

Ψ(r; t)= φ1(r)b1(t)+φ2(r)b2(t) . (49.18)

The adiabatic expansion coefficients ak(t) satisfy the set
of equations

i�
da1

dt
=U1(Q)a1+ iQ̇g(Q)a2 ,

i�
da2

dt
= − iQ̇g(Q)a1+U2(Q)a2 , (49.19)

where g(Q)= 〈ψ1|∂/∂Q|ψ2〉 = dθ/dQ, and Q=Q(t).
The diabatic expansion coefficients bk(t) satisfy the set
of equations

i�
db1

dt
= H11(Q)b1+H12(Q)b2 ,

i�
db2

dt
= H21(Q)b1+H22(Q)b2 . (49.20)

Clearly, for a system of two atoms, Q≡ R.
Solutions to (49.19) and (49.20) are equivalent, pro-

vided that the initial conditions are matched, and the
transition probability is properly defined.

For a given trajectory, it is customary to identify
the center of the NAR with a value of Q =Qp which
corresponds to the real part of the complex-valued co-
ordinate Qc at which two adiabatic PES cross. The
crossing conditions in the adiabatic and diabatic rep-
resentations are

U1(Qc)−U2(Qc)= 0 , (49.21)

or
[
H11(Qc)−H22(Qc)

]2+4H2
12(Qc)= 0 . (49.22)

Since Q represents a one-dimensional manifold, the
crossing condition (49.22) is satisfied for a complex
value of Q=Qs unless H12 = 0. Then, by definition, the
location of the NAR centeris identified with Qp through

Qp = Re(Qc) , (49.23)

where Qc is that value of Qs which possesses the
smallest imaginary part, and Re denotes the real part.

For the case when the regions of nonadiabatic coup-
ling are well localized, the function g(Q) possesses
a pronounced maximum at (or close to) Qp, the width
∆Qp of which determines the range of the NAR; nor-
mally ∆Qp is about Im (Qc), with Im denoting the
imaginary part. The two Eqs. (49.19) decouple on both
sides of this maximum. A solution of the equations for
the nonadiabatic coupling across an isolated maximum
of g(Q) yields the so-called single-passage (or one-way)
transition amplitude and transition probability. For this
problem, the time t = 0 can be assigned to the maxi-
mum point of g[Q(t)]. Assuming that away from t = 0
the decoupling occurs rapidly enough, the nonadiabatic
transition probability

P12 = |a2(∞)|2 , (49.24)

provided that a solution to (49.19) corresponds to the
initial conditions,

a1(−∞)= 1 , a2(−∞)= 0 . (49.25)
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In the limit of almost adiabatic conditions where P12 is
very small, the following equation holds [49.3]:

P12 = exp

[
− 2

�

∣∣∣∣ Im

( tc∫

tr

{
U1[Q(t)]−U2[Q(t)]

}
dt

)∣∣∣∣

]
,

(49.26)

where tc is a root of

Q(tc)=Qc . (49.27)

Here tr is any real-valued time. Equation (49.26) is valid
when the exponent is large, so that P12 is exponentially
small.

The property of the function g(Q) to pass through
a single narrow maximum ensures that the rotation angle
away from the maximum tends to constant values, and
adiabatic functions in these regions are expressed by
certain linear combinations of diabatic functions with
constant mixing coefficients. These linear combinations
should serve as the initial condition on one side of the
coupling region, and as the proper final state on the
other, when the problem of a nonadiabatic transition
between adiabatic states is treated in the diabatic rep-
resentation. The same property of the function g(Q)
implies that a common trajectory needs to be defined
only locally, within a given NAR, and not globally, in
the full configuration space.

49.2.3 Selection Rules
for Nonadiabatic Coupling

In the general case, the coupling between adiabatic states
or diabatic states is controlled by certain selection rules.
The most detailed selection rules exist for a system of
two colliding atoms, since this system possesses a high

Table 49.1 Selection rules for the coupling between diabatic and adiabatic states of a diatomic quasimolecule (w= g, u;
σ =+,−)

Interaction 2S+1Λ
(σ)
w nomenclature Ω

(σ)
w nomenclature

Configuration interaction ∆Λ= 0, ∆S = 0 ∆Ω = 0

(electrostatic) g �� u, + ��− g �� u, + ��−
Spin–orbit interaction ∆Λ= 0, ±1, ∆S = 0, ±1 ∆Ω = 0

g �� u, +�− g �� u, + ��−
Radial motion ∆Λ= 0, ∆S = 0 ∆Ω = 0

g �� u, + ��− g �� u, + ��−
Rotational motion ∆Λ=±1, ∆S = 0 ∆Ω =±1

g �� u, + ��− g �� u, + ��−
Hyperfine interaction ∆Λ= 0, ±1, ∆S = 0, ±1 ∆Ω = 0, ±1

g� u, +�− g� u, +�−

symmetry (C∞v or, for identical atoms, D∞h point sym-
metry in the adiabatic approximation). In the adiabatic
representation, the coupling is due to the elements of
the matrix D . They fall into two different categories:
those proportional to the radial nuclear velocity (coup-
ling by radial motion or radial coupling), and those
proportional to the angular velocity of rotation of the mo-
lecular axis (coupling by rotational motion or Coriolis
coupling).

In a diabatic representation, provided that the effect
of the D matrix is neglected, the coupling is due to the
parts of the interaction potential neglected in the defi-
nition of the diabatic Hamiltonian H0. In typical cases,
these parts are the electrostatic interaction between dif-
ferent electronic states constructed as certain electronic
configurations (H0 corresponds to a self-consistent field
Hamiltonian); spin–orbit interaction (H0 corresponds
to a nonrelativistic Hamiltonian); hyperfine interaction
(H0 ignores the magnetic interaction of electronic and
nuclear spins as well as the electrostatic interaction be-
tween electrons and nuclear quadrupole moments). The
selection rules for the above interactions in the case
of two atoms are listed in Table 49.1 for two conven-
tional nomenclatures for molecular states: Hund’s case
(a), 2S+1Λ

(σ)
w and Hund’s case (c), Ω(σ)w [49.3].

For molecular systems with more than two nuclei,
the selection rules cannot be put in a detailed form
since, in general, the symmetry of the system is quite
low. For the important case of three atoms, a general
configuration is planar (Cs symmetry); particular con-
figurations correspond to an isosceles triangle if two
atoms are identical (C2v symmetry), to an equilateral
triangle for three identical atoms (D3h symmetry) or
to a linear configuration. For the last case, the selec-
tion rules are the same as for a system of two atoms.
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746 Part D Scattering Theory

The selection rules for the dynamic coupling between
adiabatic states classified according to the irreducible
representations of the Cs and C2v groups are listed in
Table 49.2. In this table, z and y refer to two modes of
the relative nuclear motion in the system plane, Rz and
Ry refer to two rotations about principal axes of iner-
tia lying in the system plane, and Rx refers to a rotation
about the principal axis of inertia perpendicular to the
system plane.

Table 49.2 Selection rules for dynamic coupling between
adiabatic states of a system of three atoms

Cs A′ A′′

C2v A1 B1 A2 B2

A′ A1 z y, Rx Rz Ry

B1 y, Rx z Ry Rz

A′′ A2 Rz Ry z y, Rx

B2 Ry Rz y, Rx z

49.3 Single-Passage Transition Probabilities: Analytical Models

49.3.1 Crossing
and Narrow Avoided Crossing
of Potential Energy Curves:
The Landau–Zener Model
in the Common Trajectory
Approximation

The Landau–Zener model applies to a situation when
the effective adiabatic PEC cross or show a narrow
avoided crossing. The latter is defined by the condition
that the spacing between adiabatic PEC within a NAR is
much smaller than the spacing between adiabatic PEC
away from the NAR. The cases of crossing and narrow
avoided crossing of adiabatic PEC can be considered
within a unified model since a narrow avoided crossing
of adiabatic PEC corresponds to a crossing of diabatic
PEC. Therefore, in both cases, one considers the cross-
ing of zero-order PES (adiabatic or diabatic) and the
interaction between them (dynamic or static). However,
the definition of transition probability is different for
crossing and avoided crossing.

In the framework of the Landau–Zener model [49.4–
6], the two zero-order PEC which cross at
a point Qp along a trajectory Q(t) are approx-
imated by functions linear in ∆Q = Q−Qp, and
the off-diagonal matrix element is assumed to be
a constant.

For the avoided crossing adiabatic PEC (crossing
diabatic PEC), the matrix Hjk within a NAR is approxi-
mated as

H11(Q)= E0− F1(Q−Qp) ,

H22(Q)= E0− F2(Q−Qp) ,

H12(Q)= V = constant , (49.28)

from which the spacing between adiabatic PEC is

∆U =
[
(∆F)2(Q−Qp)

2+4|V |2
]1/2

, (49.29)

with ∆F = |F1− F2|.
The common trajectory is assumed to be a linear

function of t,

Q=Qp+vpt , (49.30)

where vp is the velocity of Q-motion at point Qp.
For this model, adiabatic wave functions on both

sides of the nonadiabaticity region (in the limits
−∞< t<+∞) coincide with diabatic functions, but
their ordering is reversed. Explicitly,

ψ1 = φ1 ; ψ2 = φ2 for t →−∞ ,

ψ1 = φ2 ; ψ2 =−φ1 for t →+∞ . (49.31)

The transition probability between pseudocrossing adi-
abatic curves for the Hamiltonian (49.28) and the
trajectory (49.30) is given by the Landau–Zener formula

Ppsc
12 = PLZ

12 = exp
(−2πζLZ) ;

ζLZ = V 2/(�∆Fvp) , (49.32)

where ζLZ is the appropriate Massey parameter at the
pseudocrossing point. Note that for the LZ model, the
single-passage transition probability depends on one di-
mensionless parameter ζLZ. A remarkable property of
the Landau–Zener model is that the probability PLZ

12 is
given by (49.26) for an arbitrary value of the exponent,
and not only for large ones when the probability is very
low.

With a change of the velocity from very low to very
high values, the transition probability varies from zero
to unity. In the near-adiabatic limit, ζLZ % 1, the nuclei
preferentially move across single adiabatic PEC, while
in the sudden limit, ζLZ & 1, they move across single
diabatic PEC. It is the latter property of the LZ transition
probability that allows one to interpret diabatic energies
H11 and H22 as the potentials which drive the nuclear
motion at high velocities.
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The region of applicability of the Landau–Zener
formula is determined by the condition that the ex-
tension of the region of nonadiabatic interaction ∆Q
should be small compared with the range a over which
potential curves deviate substantially from linear func-
tions. The condition ∆Q& a actually implies the two
conditions [49.2]

2V/∆F & a , (49.33)

and

2
(
�vp/∆F

)1/2 & a . (49.34)

Clearly, the range parameter a does not enter the LZ
formula since it controls the behavior of adiabatic curves
away from the crossing point.

The constant velocity approximation (49.30) im-
poses yet another condition:

V & µv2
p/2 . (49.35)

The actual application of (49.32) requires the specifi-
cation of V and vp for each particular trajectory Q(t).
For the case of avoided crossing between two poten-
tial curves of a diatom, V does not depend on the
trajectory and represents, according to Table 49.2, the
matrix element of the electrostatic interaction, spin–orbit
interaction or hyperfine interaction.

For crossing adiabatic PEC, the Landau–Zener
model assumes the following approximation for adia-
batic potentials and the dynamic coupling:

U1(Q)= E0− F1(Q−Qc) ,

U1(Q)= E0− F2(Q−Qc) ,

D12(Q)= D = constant , (49.36)

with the trajectory parametrization given by (49.30)
where vp is replaced by vc. Since the ordering of adia-
batic PEC for crossing and pseudocrossing is reversed
on one side of a NAR, the following relation exists be-
tween transition probabilities for the crossing case Pc

12,
and the survival probability for the pseudocrossing case
1− Ppsc

12 :

Pc
12 = 1− Ppsc

12 , (49.37)

provided that D and vc in the crossing situation are
replaced by V and vp in the pseudocrossing situation.
Conditions (49.33) and (49.34) applied to the case of
the dynamic coupling often imply that this coupling is
weak [49.2]. Therefore, (49.37) yields

Pc
12 =

2πD2

�∆Fvc
. (49.38)

Usually, the matrix element D is related to the Coriolis
coupling, and it is proportional to the angular velocity of
rotation of the molecular frame at the crossing point Qc.

49.3.2 Arbitrary Avoided Crossing
and Diverging Potential
Energy Curves: The Nikitin Model
in the Common Trajectory
Approximation

The restrictions of narrow avoided crossing [(49.33) and
(49.34) for the LZ model] are relaxed in a more gen-
eral model suggested by Nikitin [49.7]. This model uses
a more flexible exponential parametrization, instead of
the linear parametrization for diabatic matrix elements
(49.36).

In a diabatic basis, the model is formulated with the
Hamiltonian

H11(Q)=U0(Q)−∆E/2+(A/2)cos 2ϑexp(−αQ) ,
H22(Q)=U0(Q)+∆E/2−(A/2)cos 2ϑexp(−αQ) ,
H12(Q)= (A/2) sin 2ϑ exp(−αQ) . (49.39)

The spacing between adiabatic PEC is

∆U =∆E
{
1−2 cos 2ϑ exp

[−α(Q−Qp
)]

+ exp
[−2α

(
Q−Qp

)]}1/2
, (49.40)

where Qp is introduced instead of A via (49.21) and
(49.23). At the center of an NAR, where Q = Qp, the
spacing between adiabatic PEC, ∆Up=∆U(Qp), is

∆Up = 2∆E sinϑ . (49.41)

The common trajectory within the NAR is taken in
a form identical to (49.30) in which vp is now the
velocity of Q motion at the center of the coupling
region Qp.

For this model, adiabatic wave functions coincide
with diabatic functions before entering the coupling re-
gion (in the limit α(Q−Qp)% 1), but after exiting the
coupling region [in the limit α(Q−Qp)&−1] they are
linear combinations of the diabatic functions

ψ1(r;Q)= φ1(r) , ψ2(r;Q)= φ2(r) ,

forα(Q−Qp)% 1 ;
ψ1 = φ1 cosϑ+φ2 sinϑ ,

ψ2 = −φ1 sinϑ+φ2 cosϑ ,

forα(Q−Qp)&−1 . (49.42)

The latter equation identifies the parameter ϑ that enters
into the definition of the diabatic Hamiltonian in (49.39)
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748 Part D Scattering Theory

with the asymptotic value of the mixing angle θ (49.12)
for α(Q−Qp)&−1.

The transition probability P12 between adiabatic
PEC for the Hamiltonian (49.39) and the trajectory
(49.30) is

PN
12 = exp(−πζp) sinh(πζ −πζp)

sinh(πζ)
, (49.43)

where ζ =∆E/(�αvp) and ζp = ζ sin2 ϑ. With the
change in velocity from very low to very high values,
the transition probability varies from zero to cos2 ϑ. As
ϑ changes from very small values to π, the pattern of
adiabatic potential curves changes from narrow to wide
pseudocrossing and ultimately to strong divergence.

Since the single-passage transition probability
(49.43) depends on two parameters, the Nikitin model
is more versatile than the Landau–Zener one.

In three limiting cases,ϑ& 1, ζ% 1,ϑ = π/4, ζ ar-
bitrary, andϑ arbitrary, ζ = 0, (49.43) may be simplified.
In the first case, the diabatic Hamiltonian (49.39) be-
comes the Landau–Zener Hamiltonian (49.28). Also,
(49.43) reduces to a single exponential which gives the
LZ transition probability,

PN
12 = PLZ

12 = exp(−2πζp) , (49.44)

with ζp identical to ζLZ. The two conditions ϑ& 1
and ζ % 1 are equivalent to the two conditions (49.33)
and (49.34). In the second case (ϑ = π/4), the diabatic
Hamitonian reads

H11(R)= E0−∆E/2 ,

H22(R)= E0+∆E/2 ,

H12(R)= (A/2) exp(−αQ) . (49.45)

The transition probability in this case is given by the
Rosen–Zener–Demkov formula [49.8, 9]

PRZD
12 = exp(−πζ)

1+ exp(−πζ) , ζ =∆E/(�vpα) . (49.46)

In the third case (ζ = 0), also called the resonance
case since ∆E = 0, the transition probability reads

PRes
12 = cos2 ϑ . (49.47)

Equation (49.47) is a particular example of transitions
between initially degenerate states. This kind of tran-
sition occurs in the recoupling of angular momenta
in collisions of atoms possessing nonzero electronic
angular momentum [49.10].

For the general case, the nuclei preferentially move
across single adiabatic PEC in the near-adiabatic limit,

ζ % 1, while in the sudden limit, ζ & 1, they move
across both diabatic PEC, unless the condition of narrow
avoided crossing, ϑ& 1, is fulfilled.

49.3.3 Beyond the Common Trajectory
Approximation

The common trajectory approximation is valid when the
spacing between adiabatic PEC within an NAR is small
compared to the local kinetic energy of the nuclei. The
relaxation of this restriction is not unambiguous since
one should pass from a one-dimensional manifold (time
as a progress variable) to a multi-dimensional coordi-
nate (configuration space manifold). Only if the latter is
one-dimensional (a single coordinate as a progress vari-
able, as is the case for atom-atom collisions), one can
suggest a generalization of the common trajectory tran-
sition probability. We consider this case, taking R to be
such a single coordinate, and assume that the quantum
motion across the adiabatic PEC satisfies standard qua-
siclassical conditions [49.3]. For a two-state problem
with adiabatic potentials U1(R) and U2(R), the gen-
eral condition of the common trajectory apporximation
reads

E− 1

2

[
U1(Rp)+U2(Rp)

]% ∣∣U1(Rp)−U2(Rp)
∣∣ ,

(49.48)

where E is the total (conserved) energy and Rp is the
coordinate of the NAR center.

The quantum generalization of the expression for
the transition probability in the near-adiabatic condition,
(49.26), is given by the original Landau formula [49.4, 5]

P12 = exp

⎧
⎨

⎩
−2

�

∣∣∣∣∣∣
Im

⎛

⎝
Rc∫

R

√
2µ

[
E−U1(R)

]
dR

−
Rc∫

R

√
2µ

[
E−U2(R)

]
dR

⎞

⎠

∣∣∣∣∣∣

⎫
⎬

⎭
, (49.49)

where µ is the reduced mass of the colliding atoms,
Rc is the complex-valued coordinate of the crossing
of U1(R) and U2(R) and R is any value of the co-
ordinate in the classically accessible region of motion
of the nuclei. The nonadiabatic transition is local-
ized in the region of width ∆R = Im(Rc) centered
at Rp = Re(Rc). Equation (49.49) becomes the com-
mon trajectory equation (49.26) under the condition
(49.48).

The quantum generalization of the LZ transition
probability can not be represented by an exact analyti-
cal expression though it is known that it depends on two
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Adiabatic and Diabatic Collision Processes at Low Energies 49.4 Double-Passage Transition Probabilities and Cross Sections 749

parameters (and not on one, as in the case for the com-
mon trajectory approximation) [49.2]. A recommended
approximate expression for E > E0 reads [49.11]

PLZ
12

= exp

⎡

⎢
⎣−2πζLZ

⎛

⎝ 2

1+
√

1+ε−2
p
[ 1

160 εp(ζ
LZ)2+0.7

]

⎞

⎠

1/2
⎤

⎥
⎦ ,

(49.50)

where

εp =
µv2

p

2V

∆F

2
√|F1 F2| .

Equation (49.50) becomes the common trajectory
(49.32) under the condition εp % 1; it turns out that the
latter condition may be less restrictive than the general
condition (49.48).

The quantum generalization of the Nikitin
transition probability is possible provided U0(R)
in (49.39) is given by an exponential func-
tion, U0(R) ≈ exp(−αR). The transition probability
reads [49.11]:

PN
12 = exp(−πδp)

sinh(πδ−πδp)

sinh(πδ)
(49.51)

and depends on three parameters of the model (and not
two as is the case for the common trajectory approxi-
mation). These parameters enter into δp and δ through
complicated contour integrals. If the general condition
of the common trajectory approximation, (49.48) , is ful-
filled, δp and δ reduce to ζp and ζ so that (49.51) becomes
(49.43).

More discussions of two-state models within and
beyond the common trajectory approximation can be
found elsewhere [49.2, 11–14].

49.4 Double-Passage Transition Probabilities and Cross Sections

49.4.1 Mean Transition Probability
and the Stückelberg Phase

In the case of an atomic collision, the set R shrinks into
a single coordinate R. If there is only one NAR over
the whole range of R, the colliding system traverses it
twice, as the atoms approach and then recede. In this
case, there are two different paths between the center
of the NAR, Rp, and the turning points Rt1 and Rt2
on the adiabatic potential curves U1(R) and U2(R).
The double-passage transition probability P12 is ex-
pressed via the single-passage transition probability P12,
the single-passage survival probability 1− P12, and the
Stückelberg interference term cos ∆Φ12 [49.15],

P12 = 2P12(1− P12)(1− cos ∆Φ12)

= 4P12(1− P12) sin2(∆Φ12/2) . (49.52)

The Stückelberg phase ∆Φ12/2 is expressed as the
phase difference ∆Φ

(0)
12 /2 which is accumulated during

the motion of a diatom from the center of the NAR to
the turning points, together with an additional phase φ12
by

∆Φ12/2 =∆Φ
(0)
12 /2+φ12 . (49.53)

Generally, (49.53) is valid provided ∆Φ12/2 % 1. For
transitions between electronic states of the same ax-
ial symmetry, the relative angular momentum  of the

colliding atoms is conserved, and we have

∆Φ
(0)
12 /2 =

Rt1∫

Rp

[
2µE−�

2(+1)/R2−2µU1(r)
]1/2 dR/�

−
Rt2∫

Rp

[
2µE−�

2(+1)/R2−2µU2(r)
]1/2 dR/� ,

(49.54)

where Rt1 and Rt2 are the turning points for adiabatic
motion on potential curves U1 and U2, E is the total
energy. Once Rp is chosen, ∆Φ(0)12 /2 is well-defined and
is independent of the dynamic details of a nonadiabatic
transition. On the other hand, P12 and φ12 do depend
on these details. In particular, for the models discussed
in Sect. 49.3, the velocity vp that enters into the Massey
parameter, is

vp =
(

2

µ

)1/2
(

E−Up− �
2(+1)

2µR2
p

)1/2

,

(49.55)

where Up ≈U1(Rp)≈U2(Rp). As a function of E and ,
the double-passage transition probability is symmetric
with respect to the initial and final states.

Part
D

4
9
.4
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In many applications, one can use the mean transi-
tion probability 〈P12〉, which is obtained from P12 by
averaging over several oscillations:

〈P12〉 = 2P12(1− P12) . (49.56)

The important limiting cases of the double-passage
Nikitin model are:
(i) Double-passage Landau–Zener–Stückelberg equa-
tion,

P LZS
12 = 4 exp

(−2πζLZ) [1− exp
(−2πζLZ)]

× sin2
(
∆Φ

(0)
12 /2+φLZS

12

)
, (49.57)

where ζLZ is given by (49.32), ∆Φ
(0)
12 /2 by (49.54)

and the expression for φLZS
12 is available [49.2]. When

ζLZ changes from zero to infinity,
〈
P LZS

12

〉
passes through

a maximum, 〈P12〉max = 1/2, and φLZS
12 decreases

from π/4 to zero.
(ii) Double-passage Rosen–Zener–Demkov equation:

P RZD
12 = sin2

(
∆Φ

(0)
12 /2+φRZD

12

)

cosh2(πζ/2)
. (49.58)

where ζ is given by (49.46) and the expression for φRZD
12

is available [49.2]. Under certain conditions [49.2, 9],
the Stückelberg phase in (49.58) can be identified with
the phase accumulated during the motion of a diatom
from infinitely large distance to the turning points.
(iii) Double-passage equation for a resonance process
(∆E =0):

P res
12 = sin2 (2ϑ

)
sin2 (∆Φ12/2

)
. (49.59)

The general resonance case (zero energy change,
∆E = 0) is also called an accidental resonance. For
the accidental resonance, the diagonal diabatic matrix
elements are not equal to each other. A particular case
of an accidental resonance is a symmetric resonance,
for which the diabatic matrix elements are the same. For
the Nikitin model, symmetric resonance corresponds to
ϑ = π/4, and (49.59) reads

P
symm
12 = sin2 (∆Φ12/2

)
. (49.60)

Equation (49.60) also follows from (49.58) in the limit
ζ → 0. Actually, (49.60) is valid for any symmetric
resonance case [not necessarily for the model Hamil-
tonians (49.39) and (49.45)] and for the arbitrary values
of the phase ∆Φ12/2. This phase can be identified
with ∆Φ

(0)
12 /2 from (49.54) provided Rp is taken to be

infinitely large.

49.4.2 Approximate Formulae
for the Transition Probabilities

Several approximate formulae are available for 〈P12〉 in
the case where H12 depends on time in a bell-shaped
manner, and ∆H = H11−H22 can be represented as
�ω+∆V , with ∆V also having a bell-shaped form.
Define

v=
(

1

�

) +∞∫

−∞
H12(t) dt ;

w0 =
(

1

�

) +∞∫

−∞
H12(t) exp(iωt) dt ,

w=
(

1

�

) +∞∫

−∞
H12(t) exp

[
(i/�)

t∫

0

∆H(t)dt

]
dt ,

u =
(

1

2�

) +∞∫

−∞
∆V12(t) dt , (49.61)

and

S(t)= (1/�)
t∫

0

[
∆H2(t)+4H2

12(t)
]1/2 dt . (49.62)

Then the various approximate formulae, as suggested by
different authors [49.2], read

P12 ∼= (w0/v)
2 sin2 v , (49.63)

P12 ∼= sin2w , (49.64)

P12 ∼= w2
0

u2
0+w2

0

sin2
√
(u2

0+w2
0) , (49.65)

P12 ∼=
∣∣∣∣∣∣

+∞∫

−∞
H12(t) exp[iS(t)]dt/�

∣∣∣∣∣∣

2

, (49.66)

P12 ∼= sin2 S′c
cosh2 S′′c

. (49.67)

In (49.67), S′c and S′′c are the real and imaginary
parts of the complex quantity Sc = S(tc) from (49.62).
The complex-valued time tc is found from

∆H2(tc)+4H2
12(tc)= 0 , (49.68)

under the condition that tc possesses the smallest im-
aginary part of all roots of this equation.
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49.4.3 Integral Cross Sections
for a Double-Passage
Transition Probability

The quasiclassical inelastic integral cross section σi f for
the transition i → f is related to Pi f by

σi f = π

µEi

∞∫

0

Pi f d , (49.69)

where Ei is the initial collision energy, Ei = E−Ui(∞).
The cross section defined by (49.69) typically shows the
following qualitative dependence on the collision ve-
locity: σi f increases rapidly with Ei at low energies,
reaches a maximum and then slowly falls off at high
energies. The position of the maximum roughly cor-
responds to the energy Ei = E∗

i at which the relevant
Massey parameter at the NAR center, ζ(Rp), is of the
order of unity. The conditions Ei < E∗

i and Ei > E∗
i cor-

respond to the near-adiabatic and strongly nonadiabatic
(also called diabatic) regimes, respectively.

In calculating σi f , one usually neglects the Stück-
elberg oscillating term and sets the upper limit in the
integral in (49.69) to a value = m beyond which the
integrand begins to fall off quickly. Yet another sim-
plification is possible, in the framework of the impact
parameter approximation, when the relative motion of
atoms is described by a rectilinear trajectory R(t) with

constant velocity v and impact parameter b = �/µv:

R(t)= (
b2+v2t2)1/2

. (49.70)

For instance, for the Landau–Zener model m =
µvRp/�, and the cross section depends on one dimen-
sionless parameter γ = 2πV 2/(∆F�v) according to

σ12(γ)=2πR2
p

1∫

0

exp(−γ/√x )
[
1− exp(−γ/√x )

]
dx

= 4πR2
p

[
E3(γ)− E3(2γ)

]
, (49.71)

where E3(z) is the exponential integral.
For the symmetric resonance, the cross section reads

σi f (v)= 2π

∞∫

0

sin2

(
∆ΦRes

i f (b, v)

2

)

bdb ≈ π
2

b2
m(v) ,

(49.72)

where bm is found from the Firsov criterion [49.2]:

∆ΦRes
i f

(
bm, v

)

2
=

∞∫

b∗

[
Ui(R)−U f (R)

]

�v
√

R2−b2
m

dR = 2

π
.

(49.73)

The cross section in (49.71) first increases and then de-
creases with the collision velocity v, while that in (49.72)
slowly decreases with v.

49.5 Multiple-Passage Transition Probabilities

49.5.1 Multiple Passage in Atomic Collisions

In the case of atomic collisions, there is only one
nuclear coordinate R. If there exist several NAR on
the R-axis, those which are classically accessible (for
given total energy E and total angular momentum J)
can be traversed several times. In the semiclassical
approximation [49.16], the multiple-passage transition
amplitude Ai f for a given transition between inital state i
and final state f can be calculated as a sum of transi-
tion amplitudes AL

i f , over all possible classical ways
L which connect these states, and which run along
a one-dimensional manifold R:

Ai f =
∑

L

AL
i f , (49.74)

where each AL
i f can be expressed through the probabil-

ity PL
i f and the phase ΦL

i f by [49.13]

AL
i f =

[
PL

i f

]1/2 exp
(
iΦL

i f

)
. (49.75)

The net transition probability is then

Pi f = |Ai f |2 (49.76)

=
∑

L

PL
i f+

∑

L,L′

′[
PL

i f P
L′
i f

]1/2 cos
(
ΦL

i f −ΦL′
i f

)
.

The first sum runs over all different paths, and the sec-
ond (primed) over all different pairs of paths. The primed
sum usually yields a contribution to the transition prob-
ability which oscillates rapidly with a change of the
parameters entering into Pi f (i. e., E and J) and repre-
sents a multiple-passage counterpart to the Stückelberg
oscillations.

If the Stückelberg oscillations are neglected, Pi f is
equivalent to a mean transition probability 〈Pi f 〉:

〈Pi f 〉 =
∑

L

PL
i f . (49.77)

For one NAR, there are two equivalent paths, and P (1)
i f =

P (2)
i f = Pi f (1− Pi f ). Then (49.77) yields (49.56).
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49.5.2 Multiple Passage
in Molecular Collisions

For molecular collsions, (49.74) and (49.75) apply as
well. However, the manifold of R to which a trajec-
tory Q(t) belongs now comprises 3N −5 (for a linear
arrangement of nuclei) or 3N −6 (for a nonlinear ar-
rangement) degrees of freedom, where N is the number
of atoms in the system. The approximation (49.77) is
called, in the context of inelastic molecular collisions,
the surface-hopping approximation [49.17, 18]. Each
time a trajectory reaches an NAR, it bifurcates, and the
system makes a hop from one PES to another with a cer-
tain probability. Keeping track of all the bifurcations
and associated probabilities, one calculates PL

i f along
a path L made up of different portions of trajectories
running across different PES. Because of the compli-
cated sequence of nonadiabatic events leading from the
initial state to the final state, each PL

i f is a complicated
function of different single passage transition probabil-
ities Pnm , and survival probabilities 1− Pnm . Even if

all Pnm are known in analytical form, the calculation of
〈Pi f 〉 requires numerical computations to keep track of
individual nonadiabatic events [49.17].

The manifold R can be reduced in size if one treats
other degrees of freedom, besides electronic ones, on
the same footing. In this way one introduces adiabatic
vibronic (vibrational + electronic) states and adiabatic
vibronic PES, and considers nonadiabatic transitions
between them [49.19]. In the vibronic representation,
the formal theory remains the same; however its imple-
mentation is more difficult since there are many more
possibilities for trajectory branching. Finally, under cer-
tain conditions, one can use a fully adiabatic description
of all degrees of freedom save one – the intermolecular
distance R. This approach provides a basis for the statis-
tical adiabatic channel model (SACM) of unimolecular
reactions [49.20] where the receding fragments are scat-
tered adiabatically in the exit channels after leaving the
region of a statistical complex.

For a latest review of the theory of molecular nona-
diabatic dynamics, see [49.21] and papers in [49.22].

References

49.1 R. B. Bernstein (Ed.): Atom-Molecule Collision The-
ory: A Guide for the Experimentalist (Plenum, New
York 1979)

49.2 E. E. Nikitin, S. Ya. Unamskii: Theory of Slow Atomic
Collisions (Springer, Berlin, Heidelberg 1984)

49.3 L. D. Landau, E. M. Lifshitz: Quantum Mechanics
(Pergamon, Oxford 1977)

49.4 L. D. Landau: Phys. Z. Sowjetunion 1, 88 (1932)
49.5 L. D. Landau: Phys. Z. Sowjetunion 2, 46 (1932)
49.6 C. Zener: Proc. Roy. Soc. 137, 396 (1932)
49.7 E. E. Nikitin: Discuss. Faraday Soc. 33, 14 (1962)
49.8 N. Rosen, C. Zener: Phys. Rev. 40, 502 (1932)
49.9 Yu. N. Demkov: Sov. Phys. JETP 18, 138 (1964)
49.10 E. I. Dashevskaya, E. E. Nikitin: Quasiclassical ap-

proximation in the theory of scattering of polarized
atoms. In: Atomic Physics Methods in Modern Re-
search, Lecture Notes in Physics, Vol. 499, ed. by
K. Jungmann, J. Kowalski, I. Reinhard, F. Träger
(Springer, Berlin, Heidelberg 1997) p. 185

49.11 H. Nakamura: Nonadiabatic Transition: Concepts,
Basic Theories and Applications (World Scientific,
Singapore 2002)

49.12 M. S. Child: Semiclassical Mechanics with Molecular
Applications (Clarendon, Oxford 1994)

49.13 S. F. C. O’Rourke, B. S. Nesbitt, D. S. F. Crothers: Adv.
Chem. Phys. 103, 217 (1998)

49.14 E. S. Medvedev, V. I. Osherov: Radiationless Tran-
sitions in Polyatomic Molecules (Springer, Berlin,
Heidelberg 1994)

49.15 E. C. G. Stückelberg: Helv. Phys. Acta 5, 369
(1932)

49.16 W. H. Miller: Adv. Chem. Phys. 30, 77 (1975)
49.17 S. Chapman: Adv. Chem. Phys. 82, 423 (1992)
49.18 J. C. Tully: Nonadiabatic dynamics. In: Modern

Methods for Multidimensional Dynamics Compu-
tations in Chemistry, ed. by D. L. Thompson (World
Scientific, Singapore 1998) p. 34

49.19 V. Sidis: Adv. At. Opt. Phys. 26, 161 (1990)
49.20 M. Quack, J. Troe: Statistical adiabatic channel

models. In: Encyclopedia of Computational Chem-
istry, Vol. 4, ed. by P. v. R. Schleyer, N. L. Allinger,
T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schae-
fer III, P. R. Schreiner (Wiley, Chichester 1998)
p. 2708

49.21 A. W. Jasper, B. K. Kendrick, C. A. Mead, D. G. Truh-
lar: Non-Born–Oppenheimer chemistry: Potential
surfaces, couplings, and dynamics. In: Modern
Trends in Chemical Reaction Dynamics: Experiment
and Theory (Part I), ed. by X. Yang, K. Lui (World
Scientific, Singapore 2004) p. 329

49.22 A. Lagana, G. Lendvay (Eds.): Theory of Chemical
Reaction Dynamics (Kluwer, Dordrecht 2004)

Part
D

4
9



753

Ion–Atom and50. Ion–Atom and Atom–Atom Collisions

This chapter summarizes the principal features
of theoretical treatments of ion–atom and
atom–atom collisions. This is a broad topic
and the goal here is a general overview that
introduces the main concepts, terminology, and
methods in the field. Attention will focus on
intermediate and high collision velocities, for
which the relative velocity between the projectile
and target is on the order of, or larger than,
the orbital speed of the electrons active in the
transition.
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Low energy collisions are treated in Chapt. 49. Charge
transfer reactions are treated in Chapt. 51. We will
emphasize therefore excitation and ionization tran-
sitions, and discuss charge transfer only as it is
interrelated with these transitions. The description of
these heavy particle collisions has many features in
common with electron and positron collisions with
atoms and ions (Chapts. 47 and 48) and this chap-
ter should be studied in parallel with those. There are
also chapters dealing with special phenomena in ion–
atom collisions: excitation at high collision energies
and the Thomas peak (Chapt. 57), electron emission
in high energy ion–atom collisions (Chapt. 53), and
alignment and orientation (Chapt. 46). Other chapters
deal with certain specific theoretical methods: contin-
uum distorted wave (CDW) approximations (Chapt. 52),
the binary encounter approximation (Chapt. 56), and
classical trajectory Monte Carlo (CTMC) techniques
(Chapt. 58). The emphasis of the present chap-
ter is coupled-states calculations of excitation and
ionization. There are several review articles and mono-
graphs [50.1, 2].

The collisions considered here involve a projectile
ion or atom and a target atom. The collision kinemat-
ics can be described in the lab frame, where the target
atom is assumed to be initially at rest and the collision
energy is the kinetic energy of the projectile when it is
far from the target prior to the collision, or in the cen-
ter of mass frame. The primary quantities of interest are
the cross sections for producing various final states of

the system for given initial states of the target and pro-
jectile. The total cross sections depend on the initial and
final quantum state of the target and projectile and on
the collision energy. Let A denote the projectile atom or
ion with ionic charge q, and B denote the target atom.
Let A∗ and B∗ denote excited states. Some examples of
processes for which the cross section is of interest are

Aq++ B →
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Aq+)∗ + B , projectile excitation

Aq++ B∗ , target excitation

Aq++ B++ e− , target single ionization

A(q+1)++ B+ e− , projectile single ionization

A(q−1)++ B+, single e− charge transfer .

For a multi-electron collision system, combinations of
the above quantities are possible. A few representative
examples are

Aq++ B →
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aq++ B+++2e− , target double ionization

Aq++ (B+)∗ + e− , target excitation-

ionization

A(q−1)++ (B+)∗ , transfer-excitation

A(q−1)++ B+++ e− , transfer-ionization .
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For each of these processes, the projectile and/or tar-
get can be initially in excited states. A class of ion–atom
collisions that has received much theoretical attention
because of the relative simplicity is the one where the
projectile ion is initially bare, with charge q = Zp, the
projectile nuclear charge. One can also consider various
differential cross sections: differential in the projectile
scattering angle, in the energy and angle of emission
of ionized electrons, in recoil momentum of the tar-
get, etc.

Theoretical calculations of these cross sections
can be classified according to the approximations
and/or methods used. We will discuss four such clas-
sifications: treatment of the heavy particle motion,
independent particle model (IPM) versus inclusion
of correlation in multi-electron systems, analytical
approximations (PWBA, SCA, Glauber, etc.) versus
numerical methods (such as coupled-states) for ob-
taining cross sections, and treatments of the ionization
continuum.

50.1 Treatment of Heavy Particle Motion

Only at very low energies must the motion of the nuclei
be described quantum mechanically. At the interme-
diate and high collision velocities considered here the
semiclassical approximation, in which the motion of
the nuclei can be described classically and only the
electrons need be described by quantum mechanical
wave functions, is accurate [50.3]. The projectile nu-
cleus then moves on a predetermined classical path. At
high collision energies this path can often be taken to
be a straight line path with constant speed. At some-
what lower energies the deflection and change in speed
of the projectile due to the projectile–target interaction
is often incorporated [50.4–6]. The Coulomb trajec-
tory due to the nucleus–nucleus interaction can be
used, and the screening effects of the projectile and
target electrons can be included. For a bare positive
ion projectile, the Coulomb trajectory effects increase
the distance of closest approach for a given impact
parameter and reduce the projectile speed in the interac-
tion region. Projectile trajectory effects are particularly
strong for projectiles less massive than protons (pos-
itive or negative muons [50.7], for example). The
semiclassical approach with trajectory effects has even
been used for electron impact excitation and ioniza-
tion [50.7]. Coulomb trajectories are also important
when small impact parameter collisions are consid-
ered. The recoil of the target nucleus can also be
treated classically and this recoil can affect the cross
sections [50.8–10].

In the semiclassical approximation, the vector
R(b, t) that locates the projectile relative to the target nu-
cleus is a function of the impact parameter b and time t.
The specific functional dependence is determined by
the trajectory being used. For a straight line, constant
velocity v path, R= b+vt. For the case of a bare pro-
jectile ion and a one-electron target, the time-dependent

projectile–target interaction is given by

V(b, t)= −ZPe2

|r− R(b, t)| +
ZP ZTe2

R(b, t)
, (50.1)

where ZP and ZT are the projectile and target nuclear
charges and r is the position vector of the electron rel-
ative to the target nucleus. If the collision calculation
starting from (50.1) is done exactly the nuclear repulsion
term ZP ZTe2/R(b, t) does not involve the electronic
coordinates and makes no contribution to total cross
sections for anything other than elastic scattering. This
term makes a nonzero contribution in an approximate
calculation, such as a first-order perturbation theory cal-
culation with nonorthogonal initial and final states, and
this is a defect of such calculations.

A deficiency of the semiclassical approximation as
described above is that, since a predetermined classical
path is used, there is no coupling between the energy
and momentum given to the target electron and that lost
by the projectile. A simple improvement, in cases where
the energy lost by the projectile when the target transi-
tion occurs is an appreciable fraction of its total energy,
is to use some average of the projectile’s initial and final
speeds as the asymptotic projectile speed. This results
in a projectile trajectory that depends on the cross sec-
tion being calculated. This lack of coupling between the
projectile motion and the states of the electrons can be
a particular deficiency when cross sections differential in
the scattering angleΘ of the projectile are computed. If
the collision energy is large and the projectile is scattered
primarily by the static potential of the target, a classical
treatment of the scattering can be used to relate b to Θ.
Even when straight line, constant speed projectile paths
are used to calculate the transition probabilities, differ-
ential cross sections can be extracted by relating b toΘ.
At lower energies, where the de Broglie wavelength of
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the projectile is not small compared with the range of
the interaction, eikonal methods can be used to convert
impact parameter dependent probabilities to differential
cross sections [50.11–13]. A particularly striking exam-
ple where there is strong coupling between the projectile
motion and the final quantum state of the electron is
proton impact single and double ionization of helium
differential in the projectile scattering angle [50.14,15].
The projectile can be deflected by interaction with the
target nucleus. In this case the projectile scattering angle
can be related to the impact parameter by the equations
of classical mechanics, and the projectile can be scat-

tered by up to 180◦ as b is decreased to zero. But the
projectile can also be scattered by a close interaction
with a target electron, and the kinematics then can be
quite different. Such an interaction has a low probability
for scattering the projectile to a large angle. Classically,
from energy and momentum considerations, the maxi-
mum angle through which a proton can be scattered by an
electron initially at rest is about 0.5 mrads; and if the pro-
ton is scattered through 0.5 mrads, the electron acquires
large energy and momentum. The combined effects of
both projectile scattering mechanisms are difficult to
treat in a semiclassical model [50.16].

50.2 Independent-Particle Models Versus Many-Electron Treatments

In the semiclassical impact parameter method, as de-
scribed in Sect. 50.1, for a single electron collision
system one has to calculate a single particle wave func-
tion and from it single-electron transition amplitudes.
A multi-electron collision problem can be treated as an
effective single-electron problem if only one projectile–
electron interaction is considered and the other electrons
merely provide an effective single-particle potential in
which the active electron moves.

In an independent particle model (IPM), the
electron–electron interactions are replaced by effective
single-electron potentials. Since the projectile–target in-
teraction is a sum of single-electron interactions, the
many-electron collision problem reduces to an uncou-
pled set of single electron problems. Their solution at
each impact parameter gives single electron transition
amplitudes aij and transition probabilities ρij = |aij |2.
Cross sections for multi-electron transitions can still be
calculated by combining the single-electron amplitudes
in an appropriate way [50.17,18]. In doing this, it is im-
portant to distinguish between inclusive and exclusive
processes. For an inclusive cross section, one final or-
bital occupancy, or a few final orbital occupancies, is
specified, but the final states of the remaining electrons
are not specified and all possibilities are summed over.
For a totally exclusive process, all final orbital occu-
pancies are specified. For example, consider a p+Ne
collision. For the inclusive cross section for K -shell va-
cancy production, at least one K -shell vacancy in the
final state is specified. The other electrons could remain
in their original orbitals, there could be two K -shell va-
cancies, the K -shell vacancy could be accompanied by
any number of L-shell vacancies, etc., and all these pos-
sible final states are summed over. An example of an

exclusive cross section is the cross section for produc-
ing a single K -shell vacancy with the specification that
the final state of the target have no additional vacancies.

In calculating inclusive cross sections from single-
electron transition amplitudes in an IPM it is important to
take proper account of time-ordering and Pauli exclusion
effects, as well as all multi-electron processes that lead to
the specified final state. Again using the p+Ne collision
example, a two-electron process that leads to a K -shell
vacancy is for the projectile to first ionize an L-shell
electron, and then in the same collision to excite a K -
shell electron into the L-shell hole just produced. But
the K -shell electron must have the same spin component
as the L-shell electron that was removed, and the K to L
excitation can occur only after the L-hole has been made.
This can lead to correlations among the single-electron
amplitudes that have been called Pauli correlations or
Pauli blocking effects.

For a totally inclusive process where only one final
occupancy is specified, all the multi-electron contri-
butions cancel in any IPM and the probability for
producing, for example, a hole in the initially occupied
orbital labeled 1, without any other specification of final
state orbital occupancies, is given by

ρ1 =
∑

k<N

|ak1|2 , (50.2)

where k runs over the unoccupied bound orbitals of the
target, the bound orbitals of the projectile, and the con-
tinuum orbitals. This expression says that the inclusive
probability of producing a hole in the initially occu-
pied orbital 1 is given by the sum of the probabilities
of exciting an electron from this orbital to any initially
unoccupied orbitals of the projectile–target system. The
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cross section is then exactly the same as if only a sin-
gle target electron were interacting with the projectile.
However, for an inclusive process in which two vacan-
cies in orbitals of the same spin are specified in the final
state, say orbitals 1 and 2, then the probability of produc-
ing this final state is not the product of the independent
probabilities of producing a vacancy in orbital 1 and in
orbital 2 [50.17, 18]. The correlation produced by an-
tisymmetry destroys the independence of probabilities
for this process. Specific expressions, and also a dis-
cussion of how to derive the correct expressions to use
for any particular inclusive process, can be found in
the literature [50.17–19]. If these Pauli correlations are
neglected, and products of independent single-electron
transition probabilities are used, then the distribution of
multiple vacancies within a shell, such as the L-shell,
are given in terms of a binomial distribution [50.20–22].

The IPM treatment is inadequate if electron correla-
tion plays an important role in the collision. One notable
set of examples is two-electron transitions in which the
projectile–target interaction is weak, such as at high col-
lision energies. It is useful to characterize multi-electron
transitions as being either externally or internally in-
duced [50.23]. In an externally induced two-electron
process, the projectile interacts with both electrons and
induces the transition of each. In the internal process,
energy is transferred to just one electron; this energy is
then shared with the other electron through the internal
action of the correlating electron–electron force.

Consider double ionization. At sufficiently high
energies, the external reaction has an amplitude pro-
portional to Z2

P. To lowest order, the reaction proceeds
through two consecutive first-order Born collisions,
perhaps more correctly described as a two-particle
second-order Born collision. This is called a two step
mechanism, TS2. The internal reaction amplitude, again
at sufficiently high energies, is proportional to ZP; one
first-order Born reaction initiates the process. The shar-
ing of energy with the second electron can be thought of
in two ways. If the first electron leaves without interact-
ing with the second, there is a change in the screening
that can be thought of as being responsible for shaking
the second electron off. The main role of the electron–

electron force here is to introduce correlation into the
initial ground state wave function. A second way for
both electrons to be ionized is for the first electron to
strike the second on the way out. This has been var-
iously called interception or TS1 [50.21, 24–26]. The
role of the electron–electron force here is to introduce
correlation into the final two-electron wave function.
At asymptotic energies the first Born term will eventu-
ally dominate, and the internal correlated mechanism
is solely responsible for double ionization. At lower
energies, the external and internal amplitudes are of
the same order, and thus they interfere. The interfer-
ence produces terms in the transition probability that are
proportional to odd powers of ZP, and therefore pro-
duces a cross section that changes when the sign of the
projectile charge changes. One example is the double
ionization of helium in the MeV/amu collision energy
region, where antiprotons (ZP =−1) produce a double
ionization cross section a factor of two larger than that
for protons (ZP =+1) around 1 MeV/amu [50.25,26]. It
is possible to account for electron correlation directly by
putting the electron-electron interaction into the Hamil-
tonian and solving for the many-electron correlated wave
function of the collision system. In coupled-states cal-
culations (Sect. 50.3), this approach is computationally
intractable if more than a few coupled channels are
important, which is usually the case at intermediate col-
lision energies; but some full electron calculations have
been carried out [50.27–31]. In low-energy collisions
where molecular basis expansions are appropriate, only
a few channels can be important, i. e., those involved in
potential curve crossings or near crossings, and full elec-
tron calculations are more feasible. Some alternatives to
full electron quantum calculations have been developed,
such as the independent event model [50.32], classi-
cal dynamics calculations (Chapt. 58), time-dependent
Hartree–Fock (TDHF) [50.33, 34], and the forced im-
pulse method (FIM) [50.25, 26]. The FIM divides the
collision time into short sequential segments such that
an impulse approximation is forced to be valid. The sys-
tem is allowed to collapse back into a fully correlated
eigenstate at the end of each segment, but the electrons
propagate independently during each segment.

50.3 Analytical Approximations Versus Numerical Calculations

There is a wide variety of techniques used for computing
cross sections for ion–atom and atom–atom collisions.
One class uses approximate analytical methods. The ex-

pressions and the wave functions that enter into them
may be sufficiently complicated that they must be eval-
uated on a computer, but they can be written down as
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closed form expressions. One important example is the
first Born approximation, in which the projectile–target
interaction is treated in first-order. Hence, the first Born
approximation is most accurate for weak interactions,
for example for small projectile charge and large colli-
sion energy. The first Born approximation is commonly
expressed in either of two forms: the plane wave Born
approximation (PWBA) [50.35], where the projectile
nuclear motion wave function is taken to be a plane
wave, or the semiclassical approximation (SCA) [50.3]
which is an impact parameter approach that uses a clas-
sical path for the projectile motion. At the high collision
velocities where the first Born approximation is accu-
rate, and for projectiles that are at least as massive as
a proton, the PWBA and SCA give identical results.
Since it is based on first-order perturbation theory, the
first Born approximation only requires computation of
the matrix element of the projectile interaction between
initial and final state wave functions. For example, the
first Born transition amplitude for a bare ion (charge ZP,
mass M) incident on a one electron target is

f ji = 2MZPe2

�2K2

∫
φ∗j (r)eiK ·rφi(r)d3r , (50.3)

where �K is the momentum transfer vector and φi ,
φ j are the initial and final state wave functions. For
a hydrogenic system, analytical expressions for the
PWBA amplitudes for bound–bound transitions can be
derived [50.36] and for bound–continuum transitions
(ionization) the cross section can be expressed in terms
of a two-dimensional integral over energy and momen-
tum transfer, where the integrand is given by a simple
analytical expression [50.37]. First Born calculations
are also carried out with relativistic wave functions; rel-
ativistic target wave function effects are important for
the inner shells of heavy atoms [50.38].

There is a number of other approximate methods
that lead to simple analytic expressions, such as the
Glauber approximation [50.39–41], continuum distorted
wave (CDW) and eikonal methods (Chapt. 52), the bi-
nary encounter approximation (BEA, Chapt. 56), and
second Born calculations [50.42]. A difficulty with all
these methods is that they do not admit to a sequence
of successive improvements; there is no procedure for
systematically driving them to convergence.

One class of approximation methods very widely
used for inner shell processes, such as inner shell va-
cancy production, is based on perturbed stationary state
(PSS) methods. One variation is the energy loss and
Coulomb deflection effects perturbed stationary state
approximation with relativistic correction (ECPSSR)

theory, developed originally by Brandt and co-workers
and since extended and applied by others [50.43, 44].
This approximation involves procedures for correcting
the first Born approximation. It is quite successful in
fitting K -, L-, and M-shell vacancy production cross
sections.

Another approach is to calculate the electronic wave
function for the collision system by expanding it in
some basis set [50.45, 46]. This procedure is called
the coupled-channels, coupled-states, or close-coupling
method. It is convenient to diagonalize the target and
projectile systems in the chosen basis to produce matrix
eigenfunctions for the target and projectile. Putting this
expansion into the time-dependent Schrodinger equa-
tion leads to a set of coupled first-order equations for the
time-dependent expansion coefficients. This set of equa-
tions is solved subject to the boundary condition that
long before the collision, the expansion coefficient for
the initial state wave function is unity and all other coef-
ficients are zero. Then the expansion coefficients a long
time after the collision give the transition amplitudes for
transitions into those states.

Several types of expansions are used. The notation
appropriate to a single-electron problem will be used for
simplicity.

50.3.1 Single-Centered Expansion

In the single-centered expansion [50.47, 48], the wave
function is expanded in a set of target centered basis
functions. Diagonalization of the target Hamiltonian in
this basis yields a set of target eigenfunctions φT

j (r) and
energies E j . The expansion of the time-dependent wave
function for the collision system is then

ψi(r, b, t)=
∑

j

a ji(b, t)e
−i(E j−Ei )t/�φT

j (r) . (50.4)

If the electron is initially in the target state i, the initial
boundary condition is a ji(b,−∞)= δ ji . The expansion
coefficients at times long after the collision, a ji(b,+∞),
give the transition amplitudes for transitions from target
state i to j. Ionization probabilities and the description
of the ionization continuum will be described in the next
section. It will suffice to say here that some of the φ j(r)
represent ionized states and account for transitions that
leave the electron no longer in a target bound state. This
single centered expansion does not directly allow for
calculation of charge transfer amplitudes. However, it
has been shown that if the number of angular momenta
included in the set of φ j(r) is large enough, the basis
can accurately describe electron loss from the target
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bound states even in cases where the charge transfer
probability is large [50.47, 48]. If the charge transfer
amplitude is small, it can be extracted from ψi(r, b, t)
by use of a first-order T -matrix expression of the form

aP
ki(b,+∞)=

〈
φP

k (r− R )
∣∣U(r, R)

∣∣ψi(r, b, t)
〉
,

(50.5)

where φP
k is a projectile state eigenfunction and U(r, R)

is the projectile–target interaction [50.49, 50].

50.3.2 Two-Centered Expansion

In a two-centered expansion [50.45,46,51–54], the time-
dependent wave function for the collision system is
expanded in two sets of functions: a set of eigenfunc-
tions centered on the target φT

j (r) and a set of projectile
centered eigenfunctions φP

k (r− R),

ψi(r, b, t)=
∑

j

aT
ji(b, t)

× exp
[−i(E j − Ei)t/�

]
φT

j (r)

+
∑

k

aP
ki(b, t) exp [−i(Ek − Ei)t/�]

× exp [ip ·r/�]φP
k (r− R) . (50.6)

Here exp [ip ·r/�] is an electron translation factor that
accounts for the momentum p that the electron has rela-
tive to the target when it moves with the projectile. The
energies Ek also contain the kinetic energy in the target
frame that the electron has when it moves with the pro-
jectile. The problem of electron translation factors when
a two centered molecular basis is used instead of the
atomic basis has been extensively addressed [50.45,46].

The coefficients aT
ji(b,+∞) and aP

ki(b,+∞) are the
transition amplitudes for transitions into target and pro-
jectile states. The two-centered expansion allows for
charge transfer amplitudes to be calculated directly and
is capable of an accurate description of the electron flux

loss from the target due to charge transfer, but the com-
putational difficulty is significantly greater. It is difficult
in practice to include enough basis functions for con-
vergence. Also, computational linear dependence can
arise if the projectile and target are close because the
projectile-centred basis set can become nearly identical
to the target-centred basis set.

Calculations have also been done with a triple-
centered expansion [50.55,56]. Bound atomic states are
centered on each nucleus and on a third center (the center
of charge) in order to simulate the molecular character of
slow collisions. The orbitals on this third center represent
the united-atom character of the wave function.

50.3.3 One-and-a-Half Centered
Expansion

To account for flux loss from the target region due
to charge transfer, while retaining the computational
efficiency of the single-centered expansion, a hybrid
method called the one-and-a-half centered expansion
(OHCE) was developed [50.57]. It is of the same form as
the two-centered expansion except that the coefficients
aP

ki(b, t) of the projectile-centered states have predeter-
mined rather than variable time dependence. The time
dependence of the aP

ki(b, t) must be such that the aP
ki

are all zero as t →−∞, and as t →+∞ they be-
come constants that are identified as the charge transfer
amplitudes. This ansatz greatly reduces the computa-
tional cost of propagating the coupled equations forward
in time, but the projectile-centered functions are still
present to allow explicitly for charge transfer channels
at large times. At intermediate times, when the pro-
jectile and target separation is within the range of the
target-centered basis, the target-centered part of the ex-
pansion, if enough basis functions are used, is sufficient
to describe the time dependence of ψi(r, b, t) and the
projectile-centered part of the expansion is redundant.
The OHCE has been applied to several collision systems
with good success [50.58].

50.4 Description of the Ionization Continuum

In ion–atom and atom–atom collision calculations de-
scription of the ionization continuum presents particular
difficulties. For hydrogenic systems, the exact con-
tinuum wave functions are known analytically, and
these may be used in analytic approximations such
as the PWBA. For nonhydrogenic systems, screened
hydrogenic wave functions or numerical wave func-

tions computed from some local effective potential,
such as the Hartree–Fock–Slater approximation, can
be used [50.59]. But for coupled states calcula-
tions, that involve expansion of the system wave
function in terms of a discrete set of functions,
some discretization of the continuum must be per-
formed.
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A simple procedure for generating a discrete rep-
resentation of the continuum is to diagonalize the
target (or projectile) Hamiltonian in a finite basis of
square integrable basis functions. Some commonly used
basis functions are Sturmian [50.45, 46], Gaussian,
or Slater-type orbitals. This diagonalization produces
a set of discrete matrix eigenvalues and eigenvectors,
called pseudostates. For a one-electron or effective
one-electron system, the exact energy spectrum of the
Hamiltonian consists of an infinite set of discrete bound
states and an ionization continuum and the interpre-
tation of the pseudostates is straightforward. The N
matrix eigenvalues below the first ionization threshold
represent the bound states. By the Hylleraas–Undheim
Theorem, they are upper bounds to the first N exact
energies (Sect. 11.2.1). The matrix eigenvectors with
positive eigenvalues provide a discrete representation
of the ionization continuum [50.60]. Each pseudostate
is accurately proportional to the exact continuum wave
function at the pseudostate energy for values of r out
to the range of the basis. The proportionality con-
stant gives the energy width of the pseudostate – the
energy region of the continuum represented by that
pseudostate [50.49,50]. These widths are approximately
equal to the energy spacing between pseudostates. The
pseudostates represent the continuum in the sense that
the total ionization cross section is equal to the sum
of the continuum pseudostate cross sections. Coupled-
states calculations have also been carried out with wave

packets constructed at discrete energies from the exact
continuum wave functions [50.61]. What all these dis-
cretization methods do is to provide a quadrature rule
for evaluating the integration over the energy of the ion-
ized electron. Differential cross sections, differential in
the ionized electron’s energy, have also been extracted
from discretized continuum calculations [50.62–65].

The situation is more complex for two-electron or
multi-electron systems. The energy spectrum of a two-
electron atom consists of an infinite set of bound states,
an infinite set of overlapping single ionization con-
tinua that correspond to different residual ion states,
and overlapping the higher energy part of these sin-
gle ionization continua, a double ionization continuum
where both electrons are unbound. The exact wave
function for two electrons in the continuum of an ion
is not known, but there are a number of approximate
forms [50.66–68]. The interpretation of two electron
pseudostates is also complicated. For energies below
the second single ionization threshold the energy of
a pseudostate clearly identifies whether it represents
a bound state or an ionized state. But in the energy region
where there are overlapping continua there are ambi-
guities. For example, a pseudostate with energy above
the double ionization threshold can represent a doubly
ionized state, a singly ionized state of the same total
energy, or some admixture of the two. A method has
been developed to solve this pseudostate interpretation
problem [50.25, 26].
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Ion–Atom Cha51. Ion–Atom Charge Transfer Reactions
at Low Energies

Ion–atom charge exchange reactions contribute
significantly to the ionization balance of complex
ions in many natural environments (astrophysical
photoionized plasmas such as planetary nebulae,
nova shells, etc.) [51.1]. For electron temperatures
lower than 106 K, the abundance of neutral
atomic H or He can be sufficient for the charge
exchange rate to exceed the radiative (direct or
dielectronic) recombination rate for ions with
charge q≥ 2 [51.2]. In the case of singly charged
ions, accidental resonance conditions are required
for the charge exchange rate to be large at thermal
energies. In this chapter, we shall limit discussion
to the case of q≥ 2. We may distinguish two types
of reaction: type I, for which electron capture
takes place with no change in the configuration of
the core electrons, and type II, for which electron
capture is accompanied by a rearrangement of the
core electron configuration.

We shall concentrate on the low energy range
(less than a few hundred eV), where an adiabatic
representation of the collision complex can
successfully describe the collision dynamics [51.3].
Nonadiabatic transitions tend to occur in the
vicinity of avoided potential energy crossings. For
the transition probability to be appreciable, the
energy separation ∆X at the crossing radius RX
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must be neither too large nor too small (0.1<∆X <

3 eV). Since the size of ∆X is determined by electron
exchange, whose effect varies exponentially
with internuclear distance, only crossings in
the range 3≤ RX ≤ 15a0 induce nonadiabatic
transitions. Because of this constraint, the
number of effective curve crossings is quite small
and the electron capture process is very state
selective [51.3].

In general, electron capture is of type I for q ≥ 3 and of
type II for q = 2. In a few cases, type II processes can
also occur for q = 3.

Although there are a few direct experimental meas-
urements at eV energies [51.4], most measurements
have been carried out at collision energies exceed-
ing a few 100 eV [51.5]. Unfortunately, the processes
which dominate in the higher energy range become
negligible at eV energies (and vice versa). Most es-
timates of the cross sections in the thermal–eV range
are based on theoretical models. Since at thermal ener-
gies, orbiting and tunneling effects may be considerable,
a quantum mechanical description of the collision is
preferable.

The dynamic coupling matrix elements between
different molecular states depend on the origin of
the electronic coordinates, and the corresponding scat-
tering equations are not invariant with respect to
a Galilean transformation. In a semiclassical formu-
lation of the dynamics, this defect can be removed
by the introduction of translation factors [51.6–12].
However, in a quantum mechanical formulation, it
is more appropriate to introduce reaction coordinates
of a more flexible form than those used traditionally
in the Born–Oppenheimer approximation. The most
convenient is the Eckart coordinate system [51.9],
which leads to a simple modification of the nonadia-
batic coupling matrix elements, and which is well

Part
D

5
1



762 Part D Scattering Theory

adapted to cases where long range avoided crossings
are dominant [51.10]. If a semiclassical approximation
is introduced, the scattering equations become almost
identical to those obtained directly using translation
factors of the CTF (common translation factor) type
[51.11, 12].

Three representative systems are chosen to illustrate
the basic features of the problem: Al3+/H and B3+/He
which are typical of type I, and O2+/H which is typical
of type II. In the Al3+/H system, charge transfer takes
place via the reaction [51.13]

Al3+
(
3s2)2S+H→ Al2+

(
3s23p

)2P+H+ (51.1)

involving a network of twoΣ and oneΠ adiabatic states.
In the B3+/He system, charge exchange occurs via a net-
work of threeΣ and oneΠ states involving two avoided
crossings [51.14]. The two possible capture channels are

B3+(1s2)+He → B2+(1s2nl
)+He+,

nl = 2s, 2p . (51.2)

The O2+/H system is a good example of a type II reac-
tion which plays an important role in astrophysical plas-
mas [51.15, 16]. The dominant reaction at low energies

O2+(2s22p2)3P+H→ O+(2s2p4)4P+H+ (51.3)

involves only quartet states.

51.1 Molecular Structure Calculations

The construction of the network of adiabatic states of
the molecular ion complex constitutes the first step in
analyzing the dynamics of the ion–atom system. In prin-
ciple, standard techniques of quantum chemistry can be
employed. For doubly charged ions, where type II pro-
cesses dominate and the effective avoided crossings take
place at relatively short range, ab initio methods are re-
quired. On the other hand, for trebly and more highly
charged ions, where type I processes dominate, the ef-
fective avoided crossings occur at long range where ab
initio methods can be quite inaccurate. Model potential
methods are then often more satisfactory.

51.1.1 Ab Initio Methods

Both molecular orbital and valence-bond methods have
been extensively used and (provided a sufficient number
of configurations are included) should be satisfactory
in principle. A simple test is the location of the long
range crossings, which is very sensitive to the en-
ergy difference of the initial and final channels. But
this test is insufficient. For example, in the C3+/H
system, for which both the molecular orbital and va-
lence bond methods yield comparable results in regions
well away from avoided crossings, there are significant
discrepancies in the important region of the avoided
acrossings [51.17, 18]. In the present state of the art,
the absolute accuracy of theoretical calculations in the
crossing region is difficult to ascertain. Of course, since
the computed electron capture cross sections depend
sensitively on the minimum energy separation, experi-
mental data at low collision energies makes some tests
possible. Unfortunately, there is not yet much reliable
data at low eV energies.

Figures 51.1 and 51.2 present the adiabatic network
of the 4Σ−, 4Π and 2Σ+, 2Π , 2∆ states of the O2+/H
system. These have been obtained by means of a configu-
ration interaction molecular orbital method with several
hundred configurations [51.15]. It is clear from these
calculations that the only effective avoided crossings are
those involving the 4Σ− and 4Π at 3.7 and 4.8 a0, for
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Fig. 51.1 Adiabatic potential energy curves of the 4Σ− and
4Π states of the OH2+ molecular ion. The solid curves
designate 4Π states, the dashed curves 4Σ− states. The
dissociation limits A and B correspond respectively to [O2+
(3P) + H (2S)] and [O+ (4P) + H+]
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Fig. 51.2 Adiabatic potential energy curves of the 2Σ+, 2Π

and 2∆ states of the OH2+ molecular ion. The solid curves
designate 2Σ+ states, the dashed curves 2Π states and the
dotted curve a 2∆ state. The dissociation limits A, B, C and
D correspond respectively to [O2+ (1S) + H (2S)], [O2+
(1D)+H (2S)], [O+ (2D)+H+] and [O2+ (3P)+H (2S)]

which the energy separation is ≈ 0.1 eV. The avoided
crossings involving the doublet states at 8.0, 8.5 and
10 a0, for which the energy separation is ≈ 0.02 eV, are
diabatic. The avoided crossings for type II transitions oc-
cur at much shorter distances than for type I transitions.

51.1.2 Model Potential Methods

Model potential methods offer an attractive alternative to
ab initio methods in treating type I reactions. To illustrate
the method [51.19, 20], we consider an effective one-
electron system composed of a spherically symmetric
ion Xq+ and a hydrogen atom. The model Hamiltonian
of the molecular ion XHq+ is written as

H = T +VX(rb)− 1

ra
+VX(R) , (51.4)

where T is the electronic kinetic energy, ra and rb are
respectively the position vectors of the Rydberg electron
with respect to nuclei A and B, and VX(r) is the effective
potential of the ion core. The latter is usually expressed
in the parametric form

VX(r)=−
[
q+ (Z−q)

(
1+αr+βr2+γr3)e−δr

]
,

(51.5)

where Z is the ionic nuclear charge and the parameters
α, β, γ, δ, . . . are optimized to the spectroscopic data so
that the asymptotic energies of those Rydberg states of
X(q−1)+ which govern the charge transfer process are
essentially exact.

The eigenvalues of H for a given internuclear
distance R are determined by standard variational tech-
niques, using a basis set of Slater-type orbitals in
prolate spheroidal coordinates [51.3]. As an example,
we present in Fig. 51.3 the potential energy curves of
the Al3+ system which presents one Σ–Σ avoided
crossing around RX = 7.2 a0. Model potential methods
can also be used to treat multielectron systems such
as (XHe)q+. In long range collisions, the transition
probabilities are primarily determined by the asymp-
totic form of the electron wave functions far from the
nuclei. Thus even when multielectron targets are in-
volved, the effect of dynamic correlation can be small.
Since the asymptotic form of the wave functions may
be easily generated by model potential techniques, the
effect of static correlation can be taken into account
in a rather simple way. The method proposed here is
quite similar to that used by Grice and Herschbach
[51.21] to treat the long range configuration interac-
tion of ionic and covalent states in neutral atom–atom
collisions.

Internuclear distance (a0)
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Adiabatic energies (arb. units)

Al+3/H

Fig. 51.3 Adiabatic potential energies of AlH3+. The full
curve designates the 2Σ state correlated to the [Al3+(3p)+
H (1s)] entry channel. The dotted and dashed curves des-
ignate respectively the 2Σ and 2Π states correlated to the
[Al2+(3p) + H+] electron capture channel
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For example, in the system Xq+ He, where as previ-
ously Xq+ is a closed shell ion, the energy separation at
a long range avoided crossing is given by [51.22]

∆ε(Rc)≡ 2
√

2
〈
b1σ

∣∣b′1s

〉〈anlλ|VX +q/R|b〉 , (51.6)

where the molecular orbitals anlλ
(
dissociating to

X(q−1)+
nl

)
and b1σ (dissociating to a 1s orbital of He)

are generated from a model Hamiltonian of the form

H = T +VX(rb)−V
He
(ra)+V

X,He
(R) , (51.7)

where V
He

is an effective potential describing the 1s
orbital of He. The orbital b′1s is the 1s orbital of He+.
This expression is the optimal form of ∆ε(Rc) which
can be achieved without the use of explicitly correlated
wave functions. Since both the anlλ and b1σ orbitals
are generated from the same model Hamiltonian, the
calculation of the interaction matrix element in (51.6) is
simple. As an example, Fig. 51.4 presents the adiabatic
energies of the B3+/He system which has two avoided
Σ−Σ crossings, one at 4.6 a0, the other at 7.4 a0.

A similar extension to treat the case of capture by an
ion with one electron in a p shell can be made along the
same lines. See [51.23] for an application to the reaction

O3+(2p)2P+H→ O2+(2p3p)3P+H+ . (51.8)

A combination of model potential methods to rep-
resent the core electrons and ab initio molecular orbital
methods for the valence electrons has been successfully
developed [51.24] to treat some complex systems such
as C3+/H where both type I and II transitions take place.
The flexibility of the model potential parameters makes
it possible to choose them so that the energies of the
initial and final states are accurately reproduced.

51.1.3 Empirical Estimates

Electron capture cross sections at low energies are
largely controlled by two parameters: the crossing ra-
dius RX and the minimum energy separation∆X . These
are the basic parameters required for the Landau–Zener
model, and it is useful to have a simple way of es-
timating them without having recourse to a complex
molecular structure calculation. Many empirical esti-
mates [51.25–27] have been proposed. However, it is
generally necessary to take into account the strong
-dependence of the electron capture channel states.
Defining α =√

It/13.6, where It is the ionization po-
tential of the target (in eV), then Taulbjerg’s formula

Internuclear distance (a0)
2

–0.5

4 6 8 10

Adiabatic energies (arb. units)

–1

1s

2p

2s

Fig. 51.4 Adiabatic potential energies of BHe3+. The dot-
ted curve designates the 1Σ state correlated to the [B3+ +
He(1s2)] entry channel. The short and long dashed curves
designate respectively the 1Σ and 1Π states correlated to
the [B2+ (2p) + He+(1s)] electron capture channel. The
full curve designates the 1Σ state correlated to the [B2+
(2s) + He+(1s)] entry channel

is [51.27]

∆X(Rc)= 18.26√
q

fnl exp(−1.324αRc
√

q ) , (51.9)

where
fnl = (−1)n+l−1

√
2l+1Γ(n)

[Γ(n+ l+1)Γ(n− l)]1/2 . (51.10)

For type I systems, (51.9) is generally quite sat-
isfactory when the energy levels of the capture states
are well separated [51.28]. In that case, it can be used
to predict the main electron capture reaction windows
and obtain a reliable first estimate of the cross sec-
tions (in the energy range for which the Landau–Zener
model is valid). On the other hand, in cases where
there is a near degeneracy of the l states, serious er-
rors can occur [51.28] and the predictions are less
satisfactory.

For type II reactions, (51.9) must be modified by
a corrective factor to take account of the simultaneous
excitation of an electron from a 2s to 2p orbital. One
such modification, proposed by Butler and Dalgarno
[51.29], may give some useful idea of the main electron
capture processes, but its precision is uncertain.
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51.2 Dynamics of the Collision

The first step is to introduce a suitable set of scattering
coordinates which can automatically describe both the
excitation and rearrangement channels. The particular
choice of coordinate system is conditioned by practical
considerations. We have found Eckart coordinates to be
convenient [51.10]. Their application is straightforward
since it involves nonadiabatic matrix elements which can
be calculated by the conventional techniques of quan-
tum chemistry. The practical implementation of Eckart
coordinates leads to the introduction of an adiabatic
variable ξ defined as

ξ =√
µ

(
R+ 1

µ
s
)
,

where

s = r · R
R2

(
r− r · R

2R2 R
)
, (51.11)

µ is the reduced mass of the colliding system, r the
coordinate of the active electron with respect to the c.m.
of the colliding system and R the relative position vector
of the nuclei.

The adiabatic Eckart and Born–Oppenheimer equa-
tions differ only by terms of the order of 1/µ. It may
be assumed that the Eckart states are given to sufficient
accuracy by the Born–Oppenheimer adiabatic states des-
ignated by χi(r; R). We expand the total wave function
of the system in the form

Ψ(r, ξ)=
∑
χi(r; ξ)Fi(ξ) . (51.12)

(For a many-electron system, r represents the ensemble
of electron coordinates.) Decomposing Fi(ξ) on a basis
set of symmetric top functions according to

Fi(ξ)=
∑

K,M

(−1)K
(

2K +1

4π

)1/2

× DK
Λ,M(θ, φ)

g(k)i (ξ)

ξ
, (51.13)

where {θ, φ} are the spherical polar coordinates of ξ , then
the radial functions g(k)i (ξ) are solutions of the equation

d2

dξ2 g(K)+2A
d

dξ
g(K)+Wg(K) = 0 , (51.14)

where

Amn(ξ)=
〈
χm

∣∣∣∣
∂

∂ξ
+ z

ξ

∂

∂z

∣∣∣∣χn

〉
δ(Λm,Λn) ,

(51.15)

Bmn =
〈
χm

∣
∣∣∣
∂2

∂ξ2

∣
∣∣∣χn

〉
, (51.16)

Wmn =
[

2µ(E− εn)−
[
K(K +1)−Λ2

n

]

R2

]

δmn

+ Bmn + 2

R2

√
K(K +1) Lmn , (51.17)

Lmn =∓
〈
χm

∣
∣∣∣−2x

∂

∂z

∣∣∣∣χn

〉
δ(Λm,Λm ±1) ,

(51.18)

z, x are the components of r parallel to and perpendicular
to the direction of ξ in the classical collision plane,
respectively.

Since the ratio 1/µ is small, it is legitimate to replace
the matrix element 〈χm |∂/∂ξ|χn〉 by 〈χm |∂/∂R|χn〉 in
(51.15) and (51.16). Furthermore, all the matrix elem-
ents Amn and Lmn vanish asymptotically to first order
in 1/µ. The modified radial and rotational matrix elem-
ents are identical to those obtained in the semiclassical
formalism with common translation factors.

The simplest way to solve (51.14) is to eliminate
the first-order derivative by transforming to a diabatic
representation in which the radial matrix elements van-
ish [51.30]

g(K) = Ch(K) , (51.19)

where

d

dξ
C+ AC = 0 , C(∞)= I . (51.20)

Equation (51.14) then reduces to

d2

dξ2
h(K)−2µVdh(K)

+
(

2µE− K(K +1)

ξ2

)
h(K) = 0 (51.21)

with

Vd = Vd
E −

√
K(K +1)

µR2
V D

R , (51.22)

Vd
E = C−1εC , V D

R = C−1LC . (51.23)

The solution of (51.21) and the subsequent extraction
of the scattering matrix S may be carried out us-
ing an extension of the log derivative method [51.31],
adapted to the case of a repulsive Coulomb poten-
tial in one or more of the scattering channels [51.32].
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This method is particularly stable and advantageous
to use at low energies for problems of the type con-
sidered here. Of course, at energies exceeding a few
hundred eV, rapid oscillations of the radial function ren-

der the method rather time consuming. But the method
is usable up to keV energies. However, for higher
energies exceeding 1 keV, semiclassical methods are
preferable.

51.3 Radial and Rotational Coupling Matrix Elements

Two independent methods are employed for the de-
termination of radial coupling matrix elements Amn :
the first based on a direct numerical differentiation of
the expansion coefficients of the wave function, the
second on a variant of the Hellman–Feynman (HF)
theorem. In principle, the HF method is three times
faster than the direct numerical method, since the eigen-
vectors need to be calculated only at the value of R
concerned. However, the real gain in computing is not
always appreciable, the HF theorem being more sen-

Radial couplings

0

–0.5

Internuclear distance (a0)
2 4 106 8

Origin = Al+3

CTF

Al+3/H

Origin = H

Fig. 51.5 Radial coupling matrix elements between the two
2Σ states of AlH3+. The full curve designates the ma-
trix element of the CTF (or Eckart) type. The short and
long dashed curves designate the radial derivative with the
origin of electron coordinates respectively on the Al and
H nuclei

Fig. 51.6 Rotational coupling matrix elements between
the 2Σ and 2Π states correlated to the electron capture
channel. The designation of the curves is the same as
for Fig. 51.5

sitive to errors in the wave function than the direct
method. To achieve comparable accuracy, a larger ba-
sis set would be required in the molecular calculations,
and this offsets much of the theoretical gain in com-
puting time. The rotational coupling matrix elements
Lmn are calculated numerically for each internuclear
distance.

Typical results for the radial and rotational matrix
elements are presented in Figs. 51.5 and 51.6 for the
Al3+/H system, illustrating the influence of translation
effects. The origin dependence of the matrix element
(without inclusion of translation) is weak in the vicin-
ity of an avoided crossing. Away from the crossing,
the origin dependence can be considerable. The corre-
sponding diabatic energies and couplings are given in
Figs. 51.7 and 51.8. For internuclear distances on the in-
ward side of the crossing, the diabatic states correspond
to a mixing of adiabatic states: it is clear that the mathe-
matical definition (51.20) of the diabatic representation
does not correspond to the empirical definition of the
Landau–Zener model (Sect. 51.5).

Internuclear distance (a0)
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Fig. 51.7 Diagonal elements of the diabatic matrix of
ALH3+
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Diabatic couplings

Fig. 51.8 Off-diagonal diabatic matrix element between the
two 2Σ states of AlH3+

51.4 Total Electron Capture Cross Sections

Although the selection rules for electron capture at low
energies are primarily governed by the avoided cross-
ings between adiabatic states of the same symmetry,
the combined effects of radial and rotational coupling
can be quite complex. In general, rotational coupling
effects are weak when capture occurs via an S state,
but they can be strong for capture to P, D and higher
L states.

In the case of Al3+/H, where capture to the (3p) 2P
state of Al2+ takes place via a three-state network of
two Σ and one Π states, rotational coupling between the
Σ and Π states is strong in the vicinity of the avoided
crossing and enhances the capture cross section con-
siderably. This phenomenon is illustrated in Fig. 51.9,
which shows the calculated total cross section at differ-
ent energies as a function of∆, the energy separation of
the quasidegenerate diabatic 2Σ and 2Π exit channels at
the 2Σ –2Σ crossing radius. The total cross section has
a maximum for ∆= 0.08 eV. The cause can be easily
seen from the corresponding adiabatic potential ener-
gies (Fig. 51.10). For ∆= 0.8 eV, the potential energies
of the adiabatic 2Σ entry channel and the 2Π exit chan-
nel become tangential to one another, thereby inducing
a resonant effect.

100

50

0

Cross sections (a2)

10–2 10–1

Energy separation σ3p–π3p(σo)

Al+3/H

E = 141.2 eV/amu

E = 84.7 eV/amu

E = 28.2 eV/amu

E = 8.5 eV/amu

Fig. 51.9 Results of three state (two 2Σ and one 2Π ) cal-
culations for electron capture in the Al3+/H system. The
cross sections are plotted as a function of the parameter ∆
(see text). The extreme sensitivity to ∆ illustrates the ne-
cessity of knowing the 2Σ – 2Π energy separation to high
accuracy. The numerical values on the curves designate the
collision energies in units of eV/amu
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Al+3/H adiabatic energies (arb. units)

σ1sH

σ3pAl

Fig. 51.10 Schematic diagram of the nondiagonal matrix
elements of AlH3+ in the vicinity of the curve cross-
ing. The three broken curves correspond to different 2Π

state potentials shifted from their calculated value by small
amounts

In the case of the B3+/He system, four molecu-
lar states are implicated in the collision process: three
Σ states (Σ1 correlated to the 2S exit channel, Σ2 cor-
related to the 2P exit channel and Σ3 correlated to the
entry channel) and one Π state (correlated to the 2P
exit channel). In order to understand better the rota-

0.02

0.01

0

0 2 4 6 8

Cross section (a0
2)

Impact parameter (a0)

B+3/He
Elab = 6 keV

2s

2p

Fig. 51.11 Transition amplitudes for 2S and 2P electron cap-
ture as a function of impact parameter in B3+/He collisions.
The solid curve refers to the 2P contribution, the dotted
curve to the 2S contribution

0 2 4 6 8

0.006

0.004

0.002

0

Cross section (a0
2)

Impact parameter (a0)

B+3/He

Elab = 6 keV
with rot. coupling
without rot. coupling

Fig. 51.12 Influence of rotational coupling on the 2P elec-
tron capture cross section in B3+/He collisions. The
solid curve refers to the complete calculation, the dot-
ted curve to the calculation with only radial coupling
included

tional coupling mechanism, Figs. 51.11 and 51.12 show
the 2S and 2P electron capture transition amplitudes as
a function of angular momentum (impact parameter)
for an energy of 6 keV, where rotational coupling is
of major importance [51.14, 33]. The 2P electron cap-
ture transition amplitude exhibits 2 maxima, one for
an impact parameter of 1.6 a0, the other for an impact
parameter of 5.7 a0, corresponding respectively to cap-
ture via Σ2–Π crossing around R = 2 a0 and the outer
Σ2–Σ3 crossing around R = 7.4 a0. It is clear from
Fig. 51.12 that at very short internuclear distances, ro-
tational coupling is much more important than radial
coupling. At the outer crossing (which is nearly dia-
batic), radial coupling is dominant. This result may be
generalized. When the avoided crossing has a largely
diabatic character, as for 3p capture in Si2+/H [51.34]
or 3d capture in C4+/H [51.10], the inclusion of rota-
tional coupling is fairly weak, affecting principally the
population of the sub-m levels and less appreciably the
total capture cross section into a given l state. In this
case, translation effects are of more importance than
rotational coupling.

In the case of O2+/H (a particularly important sys-
tem in astrophysical plasmas), the existence of several
adiabatic states correlated to the entry channel leads to
many interesting features, typical of open p shell ions.
The favored reaction channel via the 4Σ− and 4Π states
involves simultaneous electron capture into a 2p orbital
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and excitation of a 2s orbital. The avoided crossing is due
to electron correlation. Rotational mixing of the 4Σ−
and 4Π states leads to a large enhancement of the cross
section at energies exceeding a few tens of eV [51.16].
On the other hand, the avoided crossings involving the

2Σ+ and 2Π states around 8 a0 are too diabatic to con-
tribute to an electronic transition. As a consequence, the
metastable 1D ions can only react via a curve crossing
at small distances (2.5 a0). The cross section is much
smaller than for ground 3P state capture.

51.5 Landau–Zener Approximation

If a rapid estimation of the cross sections is all that
is needed, the Landau–Zener method can be used with
advantage, provided that the molecular structure par-
ameters are known accurately. This method, based on
an approximate solution of the dynamical equations in
a semiclassical formalism (Chapt. 49), is satisfactory
for the dominant channels. Aside from the transi-
tion being assumed to be localized at the crossing
point, the method can easily take account of trajec-
tory effects at low energies. On the other hand, it is
unreliable for the weaker channels and it makes al-
lowance neither for translation effects nor for rotational
coupling.

The cross section for capture into a state n via a curve
crossing located at RX is given by

QLZ
n = 2π

ρmax∫

0

2p(1− p)ρ dρ , (51.24)

where p, the probability for a single passage trajec-
tory (impact parameter) through the crossing, is given
by

p = exp

[

−2π

(
∆Enl

2

)2 1

v∆F

]

, (51.25)

∆F being the difference in slope of the covalent and
ionic diabatic curves at RX , ∆X the energy separation

of the diabatic curves at RX and v the radial vel-
ocity at RX . It should be recalled that there is no very
rigorous definition of the diabatic curves (which are re-
quired to obtain DF).For long distance crossings, the
simplest (and probably the most satisfactory) estimate
is that based on the asymptotic forms of the diabatic
states

∆F = ∂

∂R

[
V1(R)− q−1

R

]

R=RX

,

V1(R)=−q2αd

2R4
, (51.26)

where αd is the polarizability of the target. The radial
velocity is given by

v=
[

2E

µ

(

1− ρ2

R2
X

− V1(RX)

E

)]1/2

. (51.27)

The inclusion of the attractive polarization poten-
tial V1 considerably increases the cross section at low
energies, since trajectories with impact parameters much
greater than RX contribute to the cross section. This
effect can introduce a negative energy dependence of
the cross section in the limit of low energies, of the
same kind as the Langevin model for ion–molecule
reactions.

51.6 Differential Cross Sections

Differential cross sections at large scattering angles (cor-
responding to small impact parameters) enable one to
probe details of the collision dynamics not readily ob-
tainable from total cross sections, which tend to be
dominated by the contribution from small angle scat-
tering (large impact parameters).

Their determination is staightforward once the S ma-
trix elements have been extracted from the asymptotic
solution of the coupled equations (51.21). The scattering

amplitude f fi(ϑ) for scattering through the c.m. angle ϑ
is given by

f fi(ϑ)= 1

2i(kik f )1/2

∞∑

l=0

(2l+1)
[
Sl

fi − δ fi
]

× Pl(cosϑ) exp[iα f (l)] , (51.28)

where ki and k f are the wave numbers of the initial
and final channels, Sl

fi the S-matrix element for the i to
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Fig. 51.13 Differential cross sections (10−16 cm2/sr) for electron capture in B3+/He collisions as a function of scattering
angle for ion energies of 0.3, 1.8 and 6 keV. The solid curves refer to 2S capture, the dotted curves to 2P capture

f transition, and α f (l) the partial wave Coulomb phase
shift for the final channel:

α f (l)= arg Γ(l+1+ iγ f ) , γ f = µq1q2

k f
.

(51.29)

The charges of the two collision partners in the final
state are designated q1 and q2, and µ is the nuclear
reduced mass. The differential cross section is evaluated

as

dσ fi

dΩ
(ϑ)= k f

ki
| f fi(ϑ)|2 . (51.30)

Figure 51.13 shows some typical differential cross
sections for capture to the (2s)2S and (2p)2P states of
B2+ in the B3+/He system. The oscillations observed
in the differential cross sections are of Stückelberg type.
A knowledge of differential cross sections is essential for
estimating acceptance angles in laboratory experiments.

51.7 Orientation Effects

Recent experiments on the B3+/He system [51.35, 36]
show that there is a strong tendency for electron capture
to produce strongly oriented states at small scatter-
ing angles. This propensity for orientation is a direct
measure of rotational coupling between the Σ and
Π molecular states converging to the 2P asymptotic
state [51.37].

The orientation and alignment parameters, which
characterize the polarization of the emitted photons,

can be simply expressed in terms of the scattering
amplitudes for electron capture to the magnetic sub-
levels. These scattering amplitudes can be directly
obtained from the scattering matrix. However, care
must be exercised in the definition of the scattering
amplitudes. In most applications where an adiabatic
representation of the collision dynamics is used, the
quantization axis is taken to be in the direction of
the internuclear axis. For most polarization measure-
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ments, it is more convenient to define the quantization
axis with respect to an axis perpendicular to the col-
lison plane. But it is straightforward to express the
orientation and alignment parameters in terms of the
scattering amplitudes obtained with respect to the mo-
lecular frame.

In accordance with customary conventions, in
Fig. 51.14, the scattering plane contains the X and
Z axes. The Y axis, perpendicular to the scattering
plane, is taken to be the quantization axis. Let XYZ
be the laboratory frame and xyz the body-fixed frame
defined as above. The scattering amplitudes calculated
in Sect. 51.3 are expressed with respect to the body-fixed
frame xyz. The scattering amplitudes fMY=±1 in the lab-
oratory frame are related to the amplitudes fΣZ , fΠ+

Z
in

the body-fixed frame by

fMY=±1 = 1√
2

(
fΣZ ∓ fΠ+

Z

)
. (51.31)

The right-hand and left-hand circular polarizations
(RHC and LHC respectively) are then defined as

RHC = | fMY=−1|2

= 1

2

(∣∣ fΣZ

∣∣2+ ∣∣ fΠ+
Z

∣∣2
)
+ Im

(
fΣZ f ∗

Π+
Z

)
,

(51.32)

LHC = | fMY=+1|2

= 1

2

(∣∣ fΣZ

∣∣2+ ∣∣ fΠ+
Z

∣∣2
)
− Im

(
fΣZ f ∗

Π+
Z

)
,

(51.33)

and the circular polarization as

L= RHC−LHC

RHC+LHC
=

2 Im

(
fΣZ f ∗

Π+
Z

)

∣∣ fΣZ

∣∣2+ ∣∣ fΠ+
Z

∣∣2
. (51.34)

Figures 51.15 and 51.16 show the RHC, LHC and
L quantities for an incident ion energy of 1.5 keV,
where comparison with experiments [51.35, 36] can

v

b

X, z

Z, y

Y, x

Fig. 51.14 coordinate systems for scattering

be made. The strong propensity for orientation of the
2P state is clearly exhibited for small scattering angle
(ϑ< 0.2◦). At larger angles (smaller impact parameters),
the propensity decreases and even reverses (ϑ > 0.4◦).
We have also plotted on Fig. 51.16 the experimental data
of Roncin et al. [51.35]. The agreement with experiment
is very satisfactory.
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Fig. 51.15 Right-hand circular polarization (full curve) and
left-hand circular polarization (dashed curve) for 2P elec-
tron capture in B3+/He collisions as a function of scattering
angle for E = 1.5 keV
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Fig. 51.16 Circular polarization for 2P electron capture in
B3+/He collisions as a function of scattering angle for
E = 1.5 keV. The solid circles (with the error bars) are
taken from [51.35]
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51.8 New Developments

During the last eight years there have been some interest-
ing new developments [51.38–40] using hyperspherical
coordinates to describe the dynamics of ion–atom col-
lisions. Of particular interest for this chapter are the
calculations of Le et al. [51.40] for charge transfer in
the Si4+/H(D) and Be4+/H systems. Their calculated
cross sections are almost identical to those obtained by
Pieksma et al. [51.41] using the Thorson–Delos-type
[51.8] approximate Jacobi coordinates introduced in
Sect. 49.3. This confirms the close connection between
the hyerspherical and the Thorson–Delos-type coordi-
nates which had already been observed by Gargaud et al.
[51.10] for two-state systems.

Another aspect of the theoretical formulation which
has been clarified recently concerns the adiabatic–
diabatic transformation (51.20). The radial differential

equations (51.21) only take this simple form if it can be
assumed that

B= d

dξ
A− A2 . (51.35)

However, (51.35) is only strictly satisfied if the basis
set is complete. And indeed, it has been found [51.10]
from direct calculations of the matrix elements Bmn that
it is not well satisfied for any choice of Jacobi coor-
dinates. On the other hand, the calculations show that
(51.35) is well satisfied for a minimal basis set using the
Thorson–Delos reaction coordinates. This result con-
firms that convergence of an adiabatic basis set can
indeed be achieved using appropriate reaction coordi-
nates and also explains why the calculations of Le et al.
[51.40] and Pieksma et al. [51.41, 42] agree so well.
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Continuum Di52. Continuum Distorted Wave and Wannier Methods

The continuum distorted wave model has been ex-
tensively applied to charge transfer and ionization
processes. We present both the perturbative and
variational capture theories as well as highlighting
the suitability of this model in describing the con-
tinuum final states in both heavy and light particle
ionization. We then develop the Wannier theory
for threshold ionization, and further theoretical
work which led to the modern quantal semiclas-
sical approximation. This very successful theory
has provided the first absolute cross sections
which are in good agreement with experiment.
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The most recent developments include third-order
continuum distorted wave double-scattering 1s–1s tran-
sitions (Sect. 52.1.1), relativistic continuum distorted
waves (Sect. 52.1.2), and new theory on magnetic-
ally quantized continuum distorted waves [52.1, 2]
(Sect. 52.1.4). A novel ionization theory for low en-
ergies (below 80 keV) is also reported in which the
target is considered as a one electron atom and
the interactions between this active electron and the
remaining target electrons are treated by a model
potential including both short and long range ef-

fects. In the final channel the usual product of
two continuum distorted wave functions, each asso-
ciated with a distinct electron–nucleus interaction, is
used [52.3].

In addition, Sect. 52.2 on the Wannier Method re-
ports the major progress made over the last eight years.
These major advances include (a) the development of
below-threshold semiclassical theory for the study of
doubly excited states [52.4–7] (b) a more accurate vari-
ant of the semi-classical quantum-mechanical treatment
of Crothers [52.8].

52.1 Continuum Distorted Wave Method

52.1.1 Perturbation Theory

Continuum distorted wave theory (CDW) is one of
the most advanced and complete perturbative the-
ories of heavy particle collisions which has been
formulated to date. It was originally introduced by
Cheshire [52.9] to model the process of charge
transfer during the collision of an atom/ion with
an ion (specifically the resonant process of p+
H(1s)→ H(1s)+p). These types of three-body colli-
sions are made amenable to the perturbative approach
when the ratio of the projectile impact velocity v

to the electron initial bound state mean velocity vb

satisfies
v

vb
� 3 . (52.1)

The criterion for nonrelativistic collisions, in which
electron capture is a dominant process, is that both
v and vb are small compared with the speed of light.
The theoretical description of collisions which involve
the disturbance of a bound electron of mass me by
the field of a fast moving heavy particle of mass M
can be greatly simplified by exploiting the fact that
since the ratio me/M is so small, the heavy par-
ticle follows a straight-line trajectory throughout the
collision.
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This allows the parametrization of the internuclear
vector R in terms of an impact parameter b, such that

R= b+vt . (52.2)

This impact parameter picture (IPP) of the collision is
equivalent to the full quantal or wave treatment when
the eikonal criterion for small angle scattering is satis-
fied [52.10].

It has become standard to work in a generalized
nonorthogonal coordinate system in which the vectors rT
(rP) from the target (projectile) to the electron are treated,
along with R, as independent variables [52.11]. Working
in the frame centered on the target nucleus and using
atomic units, the Lagrangian is given by

H− i
d

dt rT

=− 1

2
∇2

rT
+VT(rT)− i

∂

∂t
− 1

2
∇2

rP

+VP(rP)+ iv · ∆

rP

+VTP(R)− ∆

rP · ∆

rT , (52.3)

where d/dtrT refers to differentiation with respect to t,
keeping rT fixed, and where

VT = −ZT

rT
, VP = −ZP

rP
, VTP = ZT ZP

R
. (52.4)

Since these potentials are pure Coulomb potentials, they
continue to affect the relevant wave functions even at
infinity. These long range Coulomb boundary conditions
are defined in (52.10) and (52.11). The + iv · ∆

rP term
gives rise to the Bates–McCarroll electron translation
factors which are required to satisfy Galilean invariance.

The Lagrangian above has been written in such a way
as to highlight the three two-body decompositions ex-
ploited in CDW, with the− ∆

rP · ∆

rT term, the so-called
nonorthogonal kinetic energy, coupling the systems. The
essence of CDW is to treat the bound electron as simul-
taneously being in the continuum of the other heavy
particle.

The initial wave function can be written as

ξ±i = D±−v(rP)Φi(rT, t)C(R, t) , (52.5)

where D±−v is the distortion from the projectile, and
C is due to the internuclear potential, VTP. The bound
stateΦi = φi(rT) exp (−iεi t), where φi(rT) is the initial
eigenstate, and εi is the initial eigenenergy.

In this form, the action of the Lagrangian can be split
into three separate differential equations plus a residual
interaction. This gives the following solutions: for the
distortion D,

D+−v = N(ζP)1 F1(iζP; 1; iv ·rP+ ivrP) ,

D−
v = (

D+−v

)∗
, (52.6)

with

N(ζ)= exp(πζ/2)Γ(1− iζ) , ζT,P = ZT,P/v ;
(52.7)

and for the internuclear function C,

C(R, t)= exp

[
i
ZP ZT

v
ln(vR−v2t)

]
. (52.8)

Similarly it can be shown that

ξ±f = D±
v (rT)Φ f (rP, t)C

∗(R,−t)

× exp

(
iv ·rT− i

v2

2
t

)
, (52.9)

where iv ·rT− i v
2

2 t results from the Galilean transfor-
mation to the target frame. The superscripts plus and
minus refer to outgoing and incoming Coulomb bound-
ary conditions respectively. These are determined by the
asymptotic form of the wave functions

lim
t→−∞ ξ

+
i ∼Φi(rT, t)

× exp

[
i
ZP(ZT−1)

v
ln(vR−v2t)

]
,

(52.10)

and

lim
t→+∞ ξ

−
f ∼Φ f (rP, t) exp

(
iv ·rT− i

v2

2
t

)

× exp

[
−i

ZT(ZP−1)

v
ln(vR+v2t)

]
.

(52.11)

Of course, ξ+i and ξ−f are not exact solutions of the
three-body Schrödinger equation; in fact,

(
H− i

d

dtrT

)
ξ+i = Wiξ

+
i =− ∆

rP D+−v · ∆

rTΦi ,

(52.12)

and
(

H− i
d

dtrT

)
ξ−f = W f ξ

−
f

= − eiv·rT−i v
2
2 t∇rT D−

v ·∇rPφ f .

(52.13)

The CDW transition amplitude is written as

Ai f =−i

+∞∫

−∞
dt
〈
ξ−f

∣∣∣TCDW

∣∣∣ξ+i
〉
. (52.14)
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A perturbative expansion via the distorted wave
Lippmann–Schwinger equation can be made for TCDW,
either in the post form

T+
CDW = W†f (1+GV Wi)+T+

CDWGi VGV Wi ,

(52.15)

or in the prior form

T−
CDW =

(
1+W†f GV

)
Wi +W†f GV VG f T−

CDW ,

(52.16)

where the Green functions are given by

Gi, f =
(

i
d

dtrT

−H+Wi, f + iε

)−1

, (52.17)

GV =
(

i
d

dtrT

−H+V + iε

)−1

, (52.18)

and V is any potential which ensures that the kernels of
the integral equations for TCDW are continuous [52.13].

By taking the first term in the expansions (52.15)
and (52.16), we get the post and prior forms of the
CDW1 amplitude as used by Cheshire. When calculating
these amplitudes, the separable nature of the CDW wave
function is best exploited by using Fourier transforms to
move to the time-independent wave picture. A similar
transformation is not suitable in the coupled channel
approach discussed in Sect. 52.1.3.

Crothers [52.13], working in the wave treatment, has
calculated the second order CDW2 amplitude using var-
ious approximations for the Green functions, and has
shown that the CDW perturbation series has converged
very well to first-order in most parts of the differen-
tial cross section. This is in contrast to the standard
Born or Brinkman–Kramers approximations which do
not start to converge until expanded to second-order.
CDW1 is the only first-order perturbation theory, apart
from asymmetric hybrid models derived from it, which
produces a Thomas peak. Unfortunately, due to the ac-
cidental cancellation of the leading order terms, CDW1
has an extreme dip at the Thomas angle, a defect re-
moved in CDW2 [52.14]. This is illustrated in Fig. 52.1
which also includes both folded and unfolded versions of
the asymmetric target CDW (TCDW) theory discussed
below, as well as experimental data [52.12].

Further work in this area has included the de-
velopment of the Thomas double-scattering electron
capture at asymptotically high velocity within the third-
order continuum distorted-wave perturbation theory for
1s–1s transitions in proton hydrogen collisions. It has
been shown [52.15] that at the critical proton scatter-
ing angles, namely the forward peak, Thomas double

encounter peak, small angles, and the interference min-
imum, the CDW series has converged at second order.
Moreover, it is proven that the third-order correction
makes no contribution to the velocity dependent v−11

and v−12 behavior of the Thomas double-scattering total
cross section at the leading angles. In contrast, it may
be seen in [52.15] that the Oppenheimer–Brinkman–
Kramers (OBK) travelling atomic orbital theory (which
in general suffers from a common phase factor which
embraces intermediate elastic divergences [52.16] in
the first and higher-order terms) has not converged at
second order. It remains an open question as to whether
fourth-order terms or higher in the OBK approxima-
tion contribute to various differential cross-sections. It
is concluded that the CDW model gives a superior de-
scription of the Thomas double-scattering mechanism
when compared with the OBK model.

Anomalously large cross sections are obtained at low
energies if the CDW wave function is not normalized at
all times throughout the collision [52.11]. This is best
demonstrated by the presence of the N(ζ) terms in

lim
t→+∞ ξ

+
i = N(ζP)Φi(rT, t)

× exp

[
i
ZP ZT

v
ln(vR−v2t)

]
(52.19)

10–18
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10–20

10–21
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(dσ/d   )lab (cm2/sr)Ω

θlab (mrad)

Fig. 52.1 Differential cross sections for electron capture in
the collision H+ + H(1s) → H(1s) + H+ as a function
of laboratory scattering angle (θlab) for impact energy of
5 MeV: solid line TCDW, folded over the experimental res-
olution of Vogt et al. [52.12]. Unfolded theoretical results:
dashed line TCDW; dotted line CDW1. Experimental data;
circles, Vogt et al. [52.12]
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and

lim
t→−∞ ξ

−
f = N∗(ζT)Φ f (rP, t) exp

(
iv ·rT− i

v2t

2

)

× exp

[
−i

ZT ZP

v
ln(vR+v2t)

]
.

(52.20)

Using

lim
v→0

| N(Z/v)|2 ∼ 2πZ

v
(52.21)

it is clear that the problem gets worse as v decreases. It
can be corrected by defining

ξ̂±i, f = ξ±i, f

〈
ξ±i, f

∣∣∣ξ±i, f

〉−1/2
. (52.22)

Simpler distorted wave models can be generated through
further approximations. Two of the most popular
are Target CDW [D−v(rP)→ 1] and Projectile CDW
[Dv(rT)→ 1]. These approximations are justified when
ZT > ZP and ZP > ZT, respectively, and are particularly
simple to calculate when the simple Born-like residual
interaction is used rather than the full CDW form.

The asymptotic forms of the CDW wave functions
can be used throughout the collision, ensuring nor-
malization, and this leads to the eikonal or symmetric
eikonal models.

52.1.2 Relativistic Continuum-Distorted
Waves

The CDW model can be naturally extended to the two-
center time-dependent Dirac equation, so that a Lorentz
invariant theory is obtained. When the electron orbital
velocity αZc, or the collision velocity v, approaches the
speed of light c, the kinematics are modified by time
dilation. In addition, the particle interactions change be-
cause of retardation and the fact that spin-orbit effects are
now important. Moreover, vacuum interactions such as
radiative emissions and electron–positron pair produc-
tion begin to play a role. A comprehensive account of
atomic processes in relativistic heavy-particle collisions
can be found in two recent books [52.17, 18]. At high
collision energies, γ ≡ (

1−v2/c2
)−1/2 % 1, and high-

charge states of the ions, the Dirac sea of negative energy
states becomes energetically accessible and strongly
coupled. The process of electron capture, for exam-
ple, may be mediated by spin-flip transitions [52.19], or
spontaneous X-ray emission (radiative electron capture)
[52.20] and even electron capture via pair produc-
tion [52.21, 22]. Although the importance of vacuum
processes diminishes with energy, these mechanisms

dominate in the extreme relativistic regime. Indeed the
last of these processes was used to produce antihydrogen
in the laboratory [52.23] at GeV u−1 energies.

At relativistic energies, the principal inelastic
process is collisional ionization [52.17, 18]. The ex-
tensions of the distorted-wave theory to accommodate
Lorentz invariance has been developed by Rivarola and
Deco [52.24, 25] and Crothers and coworkers [52.19]
following work on the Born series [52.26] and im-
pulse approximation [52.27]. In practical applications
to electron capture cross sections, the symmetric semi-
relativistic CDW theory of Glass et al. [52.19] was
found to be in very good agreement with experiments
in the GeV u−1 energy range with charges ZP,T ∼ 6–80.
For non-radiative electron capture, it was found that
second-order retardation dominates at extreme relativis-
tic velocities so that σ ∼ γ−1(ln γ)2 [52.28]. However,
the momentum transfer kinematics for this process are
unfavorable, and a more efficient mechanism based on
electron–positron pair production with capture of the
created electron is more strongly coupled. Theoretical
estimates of this process using relativistic CDW [52.29]
compared with experiments [52.30] are in very good
agreement.

The same model has been applied to estimate yields
of antihydrogen following antiproton impact with neu-
tral high-Z atoms [52.23] following experiments at
CERN and Fermilab. The virtual photon model of
Baur [52.30] gives cross sections that agree well with
the limited data [52.23]. However, these estimates are
roughly ten times larger than the relativistic CDW results
[52.17] and one hundred times the first-Born estimate
[52.31]. It appears that additional studies, both experi-
mental and theoretical, would be worthwhile in order to
understand this process more fully.

52.1.3 Variational CDW

As the ratio of v/vb decreases, perturbation theory starts
to fail. This is due to the effective interaction time be-
tween the projectile and target atoms being long enough
for strong three-body coupling. In this environment
variational methods have proved successful. This pro-
cedure ensures both gauge invariance and unitarity –
two fundamental attributes perturbation theory usually
cannot guarantee. Continuing in the IPP, we use the Sil
variational principle, which gives

δ

+∞∫

−∞
dt〈Ψ |H− i

d

dtrT

|Ψ 〉 = 0 . (52.23)
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In the two-state CDW approximation we may assume

ΨCDW = c0(t)ξ
+
i + c1(t)ξ

−
f (52.24)

subject to the boundary conditions c0(−∞)= 1 and
c1(−∞)= 0. Variation of c∗0 and c∗1 gives the standard
coupled equations

iN00ċ0+ iN01ċ1 = H00c0+H01c1 , (52.25)

iN10ċ0+ iN11ċ1 = H10c0+H11c1 , (52.26)

where

N00 =
〈
ξ+i

∣∣∣ξ+i
〉
,

N11 =
〈
ξ−f

∣∣∣ξ−f
〉
,

N01 =
〈
ξ+i

∣∣
∣ξ−f

〉
= N∗

10 ,

and

H00 =
〈
ξ+i

∣∣H− i
d

dtrT

∣∣ξ+i
〉
,

H01 =
〈
ξ+i

∣∣H− i
d

dtrT

∣∣ξ−f
〉
,

H10 =
〈
ξ−f

∣∣H− i
d

dtrT

∣∣ξ+i
〉
,

H11 =
〈
ξ−f

∣∣H− i
d

dtrT

∣∣ξ−f
〉
.

Equations (52.25) and (52.26) can clearly be written as
a matrix equation,

iNċ = H c , (52.27)

which is then easily generalized for larger expansions
ofΨ . By using an orthogonalized basis set of normalized
functions in the manner of Löwdin [52.32,33], the N ma-
trix reduces to the unit matrix. This will be understood
when considering expansions for Ψ from now on.

Another interesting, but potentially ruinous, result
of the asymptotic forms (52.19) and (52.20) is their fail-
ure to obey the correct long-range Coulomb boundary
conditions; compare this with their expressions at the op-
posite time extreme in (52.10) and (52.11). This has no
consequence until second-order VCDW is calculated in
which divergent integrals arise as a direct result of this
feature of the wave functions. These terms are analo-
gous to the well-known intermediate elastic divergences
which occur in Born-type expansions which do not have
the correct Coulomb phases.

A novel way to avoid this problem [52.34, 35] is to
split the time plane into two parts, allowing the well-

behaved set {ξ+} to be used exclusively for t ≤ 0, while
the set {ξ−} forms the basis for t ≥ 0. This phase integral
halfway house VCDW is based on the factorization of
the scattering matrix S into a product of two Møller
matrices,

S=Ω
†
−Ω+ , (52.28)

where Ω
†
− represents the propagation of the initial state

from t =−∞ to t = 0−, while Ω+ represents the prop-
agation of the final state from t =+∞ to t = 0+.

The total wave function is similarly split into two
expansions over an orthogonal basis ψ, with

Ψ− = c−ψ+ , t< 0 , (52.29)

Ψ+ = c+ψ− , t> 0 , (52.30)

where the superscripts on the Ψ correspond to the re-
spective heavy-particle motion. This in turn divides the
coupled equations into two sets

iċ− = H++c− , t< 0 , (52.31)

iċ+ = H−−c+ , t> 0 , (52.32)

where

H±± = 〈Ψ± | H− i
d

dtrT

| Ψ±〉 . (52.33)

The coefficients c± then have to be matched over a lo-
cal discontinuity in the total wave function at t = 0,
such that c+(0)= c−(0). Halfway house VCDW has all
the appealing attributes of a variational theory but, by
explicitly satisfying the long-range Coulomb boundary
conditions, it is divergence free.

52.1.4 Ionization

CDW, by treating the Coulomb interactions to such
a high degree, has obvious attractions for modelling
the ionization process. Single ionization of an electron
from an atom by a high-energy projectile is a pertur-
bative process and the Born approximation will match
experimental total cross sections rather well. How-
ever CDW-like representations of the initial and final
states generate better results at lower energies, as well
as producing features in the differential cross sec-
tions which are beyond the reach of the first Born
approximation.

In full CDW ionization theory, the initial state is
given by the usual charge transfer wave function ξi
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(52.5), while the final state takes the form

ξ−f = (2π)−2/3 exp

(
ik ·rT− i

k2

2
t

)

× exp

[
−i

ZT ZP

v
ln(vR+v · R)

]

× N∗(ZT/k)1 F1

× (−iZT/k; 1; −ik · rT− ikrT)

× N∗(ZP/p)1 F1

× (−iZP/p; 1; −ip · rP− iprP) , (52.34)

where k (p = k−v) is the momentum of the electron
relative to the target (projectile) nucleus.

CDW ionization theories presented prior to 1982
produced spuriously large results due to the unnormal-
ized initial state. Since the matrix element 〈ξ+i | ξ+i 〉 is
computationally expensive to calculate as a function of
b and t, a very successful alternative is to take the initial
state as an eikonal distorted state [52.36], thus ensuring
normalization. The initial state in this CDW-EIS theory
is taken to be

ξEIS
i = D̂+−v(rP)Φi(rT, t)C(R, t) , (52.35)

where now

D̂+−v(rP)= exp

[
−i

ZP

v
ln(vrP+v ·rP)

]
. (52.36)

The final state remains as in (52.34).
The CDW final state is most effective when differ-

ential cross sections are studied. The most interesting
features are in the forward θ = 0 ejection angle; i. e., the
soft collision peak (k ) 0), the electron capture to the
continuum peak ECC (k ) v) and the binary encounter
peak (k ) 2v). CDW theories are especially suited to
the description of the ECC peak which results theoret-
ically from the presence of the N(ZP/p) factor in the
wave function. This peak can be analyzed in detail via
a multipole expansion and much theoretical work has
centered on the dipole parameter β. A negative β is
strongly suggested by both experiment and physical in-
tuition. CDW, CDW-EIS and halfway house VCDW all
predict different values for β with the last theory be-
ing the only one which gives a high energy limit which
remains negative [52.37].

Magnetically quantized continuum distorted wave
theory also has been considered [52.1] in the description
of ionization in ion–atom collisions. This generalizes
the CDW-EIS theory of Crothers and McCann [52.2]
to incorporate the azimuthal angle dependence of each
CDW in the final state wave function. This is accom-
plished by the analytic continuation of hydrogenic-like

wave functions from below to above threshold, using
parabolic coordinates and quantum numbers, includ-
ing magnetic quantum numbers, thus providing a more
complete set of states. The continuation applies to ex-
citation, charge transfer, ionization, and double and
hybrid events for both light- and heavy-particle colli-
sions. It has successfully been applied to the calculation
of double differential cross sections for the single ioniza-
tion of the hydrogen atom and for a hydrogen molecule
by a proton for electrons ejected in the forward di-
rection at a collision energy of 50 keV and 100 keV,
respectively.

It is well known that the CDW-EIS models are
the best suited to the intermediate and high energy re-
gions. Recent results for proton-argon total ionization
cross sections [52.38] highlight large discrepancies be-
tween CDW-EIS theory and experiment for energies
below 80 keV. This problem has recently been ad-
dressed [52.3]. Here, following the theory of [52.39] the
authors in [52.3] use a Born initial state wave function.
In the final channel, the usual product of two continuum
distorted wave functions each associated with a distinct
electron–nucleus interaction is used. In their treatment
the target is considered as a one-electron atom and the
interactions between this active electron and remain-
ing target electrons are treated by a model potential
including both short- and long-range effects. The suc-
cess of this new theory for low energies is shown in
Fig. 52.2. Here it is clear that the calculation in [52.3]
gives good agreement for the total cross sections in
the energy range 10–300 keV with the measurements
of Rudd et al. [52.40].

Double ionization in general remains an extremely
difficult area for theoretical models based on perturba-
tive expansions – even those with explicit distortions
built in. In this process, the explicit correlation between
the electrons in the target atom is vitally important.
However, one example where CDW theory can over-
come these problems is in the bound state wave function
of Pluvinage [52.41]. This very successful treatment,
which also includes a variationally determined param-
eter, is just the CDW analogy in bound state theory,
although this appeared well before Cheshire’s paper on
scattering. The Pluvinage wave function for the ground
state of a two-electron atom is given by

φ = c(κ)

(
Z3

T

π

)

exp [−ZT(r1+r2)+ iκr12]

× 1 F1

(
1+ 1

2iκ
; 2; 2iκr12

)
, (52.37)
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where r1,2 are the distances of the two electrons from the
target nucleus, and r12 is the inter-electron separation.

Fig. 52.2 Total ionization cross section for the proton-
impact single ionization of Ar: solid line theoretical results
of [52.3], dashed line theoretical results of OPM [52.38]
and dotted line HFS [52.38]. Experimental data; circles,
Rudd et al. [52.40]

The constant κ is variationally determined to be 0.41,
giving the normalization constant c = (0.364 05)1/2.

An analogous wave function for two electrons
in the target continuum was derived [52.11] and
implemented later in a successful CDW treatment
of ionization by electrons and positrons [52.42].
This BBK theory, so named in deference to the
authors, demonstrates the high resolution CDW fi-
nal states obtained, right down to triply differential
cross sections. However, this model suffers from the
low-energy normalization problems associated with
CDW, and is also unable to describe the thresh-
old effects which are in the domain of Wannier
theory.

52.2 Wannier Method

52.2.1 The Wannier Threshold Law

In 1953, Wannier [52.43] deduced the relationship be-
tween the cross section at the threshold of a reaction,
and the excess-of-threshold energy of the incident par-
ticle for a three-body ionization problem, where the final
state consists of a residual unit positive charge and two
electrons, with each body moving in the continuum of
the other two. This extended to three bodies the earlier
two-body threshold law derived by Wigner [52.44] (see
Sect. 60.2.1).

For final states with L = 0, Wannier employed hy-
perspherical coordinates (ρ, α, θ12), where

ρ2 = r2
1 +r2

2 , α= tan−1
(

r2

r1

)
,

θ12 = cos−1(r̂1 · r̂2) . (52.38)

Here we assume that the residual ion is infinitely mas-
sive and at rest with respect to the two electrons. By
converting the two-electron problem to the case of mo-
tion of a single point in six-dimensional space, we
can take the hyperradius ρ as the ‘size’ of the hy-
persphere, α as the radial correlation of the electrons
and θ12 as their angular correlation. This allows the
Schrödinger equation for the final state to be written

(in a.u.) as
(

h0− l2
(
r̂1
)

ρ2 cos2 α
− l2

(
r̂2
)

ρ2 sin2 α
+2E

+ 2Z(α, θ12)

ρ

)
Ψ(r1, r2)= 0 , (52.39)

where

h0 = 1

ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+ 1

ρ2 sin2 α cos2 α

∂

∂α

×

(
sin2 α cos2 α

∂

∂α

)
(52.40)

and

Z(α, θ12)= 1

cosα
+ 1

sinα
− 1

(1− cos θ12 sin 2α)
1
2

(52.41)

is the potential surface on which the particle is mov-
ing [52.45].

The most likely configuration of the electrons lead-
ing to double escape at threshold corresponds to the
region r1 =−r2, i. e., the two electrons escape in oppo-
site directions from the reaction zone, corresponding to
the saddle point of the potential surface Z(α, θ12), and
defined as the Wannier ridge. Also, dynamic screening
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between the two electrons means there would be equal
partitioning of the available energy for the two particles,
and so they would have equal but opposite velocities on
escape. In hyperspherical coordinates, the most impor-
tant region for double escape is, therefore, α= π/4, and
θ12 = π.

The main conclusion of Wannier’s theory is that the
total cross section for electron impact single ionization
scales as

σ = kEm12 , (52.42)

where E is the excess-of-threshold energy,

m12 =−1

4
+ 1

4

(
100Z−9

4Z−1

) 1
2

, (52.43)

and Z the residual charge; m12 is 1.127 for unit residual
charge, with m12 → 1 as Z →∞.

52.2.2 Peterkop’s Semiclassical Theory

The Wannier threshold law has been verified both semi-
classically [52.46] and quantum mechanically [52.47].
Peterkop [52.46] adopted a semiclassical JWKB ap-
proach to the problem, by using the three-dimensional
WKB ansatz

Ψ0 = P
1
2 exp

(
iS

�

)
, (52.44)

for the final-state wave function, where S and P are,
respectively, the solutions of the Hamilton–Jacobi equa-
tion,

(∇1S)2+ (∇2S)2 = 2(E−V ) , (52.45)

and the continuity equation,

∇1(P∇1S)+∇2(P∇2S)= 0 . (52.46)

In hyperspherical coordinates, these equations become
(
∂S

∂ρ

)2

+ 1

ρ2

(
∂S

∂α

)2

+ 4

ρ2 sin2 2α

(
∂S

∂θ12

)2

= 2E+ 2Z

ρ
(52.47)

and

D0

(
P
∂S

∂ρ

)
+ 1

ρ2

×

[
D1

(
P
∂S

∂α

)
+D2

(
∂S

∂θ12

)]
= 0 , (52.48)

where

D0 f = 1

ρ5

∂

∂ρ
(ρ5 f ) , (52.49)

D1 f = 1

sin2 2α

∂

∂α

(
f sin2 2α

)
, (52.50)

D2 f = 4

sin2 2α

1

sin θ12

∂

∂θ12
( f sin θ12) . (52.51)

Following Wannier’s hypothesis, solutions of these
equations are found in the region α = π/4, θ12 = π.
Taking the Taylor expansion for Z(α, θ12) as

Z(α, θ12)= Z0+ 1

2
Z1(∆α)

2+ 1

8
Z2(∆θ12)

2+· · · ,
(52.52)

where ∆α = α−π/4 and ∆θ12 = θ12−π, it follows
from (52.41) that

Z0 = 3√
2
, Z1 = 11√

2
, Z2 =− 1√

2
. (52.53)

Similarly, taking the solution of (52.47) in the form

S = S0(ρ)+ 1

2
S1(ρ)(∆α)

2+ 1

8
S2(ρ)(∆θ12)

2+· · ·
(52.54)

gives

dS0

dρ
= ω , (52.55)

ω
dSi

dρ
+ S2

i

ρ2 =
Zi

ρ
, i = 1, 2 , (52.56)

where ω= (2E+2Z0/ρ)
1
2 . The solutions are

S0 = ρω+ Z0

χ
ln
ρ(χ+ω)2

2Z0
, (52.57)

Si = ρ2ω
1

ui

dui

dρ
, i = 1, 2 , (52.58)

where χ = (2E)
1
2 and

ui = Ci1ui1+Ci2ui2 , (52.59)

uij = ρmij
2 F1

(
mij ,mij +1; 2mij + 3

2
; −Eρ

Z0

)
,

(52.60)

mi1 = − 1

4
− 1

2
µi ,mi2 =−1

4
+ 1

2
µi , (52.61)

µi = 1

2

(
1+ 8Zi

Z0

) 1
2

. (52.62)

where, for i = 2, the principal branch is understood.
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Expanding P in the same form as S, and restricting
the solution to finding P0, gives

P0 = C

ρ5ωu1u2
2

, (52.63)

where C ∼ C12 E1−m12 . By solving these equations, Pe-
terkop extracted the Wannier cross section behavior by
matching the exact wave function with an approximate
one for which the energy dependence is known at some
arbitrarily finite value r0 of ρ, giving the total cross
section as

σtot ∼ E1.127 , (52.64)

as required. However, neither this method of Peterkop
nor the quantum mechanical approach of [52.47] were
able to deduce the constant of proportionality.

52.2.3 The Quantal Semiclassical
Approximation

As can be seen from the form of (52.63) for P0, u2
vanishes in the double limit ρ→+∞, E → 0, and
so, the semiclassical theory breaks down at the very
configuration of importance. To avoid this problem,
Crothers [52.8] adopted a change of the dependent vari-
able to obtain a uniform JWKB approximation. Taking
α= π/4, (i. e., ∆α= 0) as the natural barrier, he set the
final-state wave function as

Ψ−∗ = x| sin(α−π/4)|1/2
ρ5/2 sinα cosα(sin θ12)1/2

, (52.65)

so that
[
∂2

∂ρ2
+ 1

ρ2 sin |∆α|
∂

∂α

(
sin |∆α| ∂

∂α

)

+ 1

ρ2 sin2 α cos2 α

∂2

∂θ2
12

+2E+ 2Z

ρ

+ ( 1
4 + 1

4 csc2 ∆θ12)

ρ2 sin2 α cos2 α
− csc2 |∆α|

4ρ2

]

x = 0 ,

(52.66)

where |∆α| and θ12 are, respectively, the polar and az-
imuthal angles. Near θ12 = π and α = π/4, (i. e., at
∆θ12 =∆α = 0), the term (4ρ2)−1 is negligible com-
pared with csc2 θ12/(4ρ2). Also the θ12 pseudopotential
is clearly attractive while theα potential is repulsive, and
both potentials are large just at the region of importance,
i. e., at ∆α= 0 =∆θ12.

Again, following the method of Peterkop, the fi-
nal state wave function is written in the form (52.44),

(52.47) and (52.48), where now the action perturbation
expression S must be generalized to

S = s0 ln |∆α|+ s1 ln(∆θ12)+ S0(ρ)

+ 1

2
S1(ρ)(∆α)

2+ 1

8
S2(ρ)(∆θ12)

2+ . . . ,
(52.67)

where the extra logarithmic phases indicate long-
range Coulomb potentials. By applying the Kohn
variational principle perturbatively, and invoking the Jef-
freys’ [52.48] connection formula on the Wannier ridge
with ρ = 0 as the classical turning point, the final state
wave function is [52.8]

Ψ−∗
f = c1/2 Em12/2ρm12/2+1/4r(2Z0)

1/4(−χ/2π)1/2
(2Z0/ρ)1/4ρ5/2 sinα cosα

× δ
(
k̂1− r̂1

)
δ
(
k̂2− r̂2

)

× exp
[
4i(8Z0ρ)

−1/2(∆θ12)
−2
]

×

{
exp

[
−i(8Z0ρ)

1/2− 1

2
i(∆α)2

× (2Z0ρ)
1/2m12− 1

8
i(∆θ12)

2

×(2Z0ρ)
1/2m21− 1

4
iπ

]
− c.c

}
, (52.68)

where χ = 2πIm(m21).
Taking the total cross section for distinguishable

particles as

σ = π
2a2

0

k0

∫ ∫
dk̂1dk̂2

πZ2 tanhχ

(2E)1/2

∣∣∣ f
(
k̂1, k̂2

)∣∣∣
2

× exp

[ −Z2

4(2E)1/2
(∆Θ12)

2π tanhχ

]
, (52.69)

where f is the scattering amplitude, then the correspond-
ing triple-differential cross section is

d3σ

dk̂1 dk̂2 d
(

1
2 k2

1

)

= 2π2a2
0

k0

d

dE

πZ2 tanhχ

(2E)1/2

× exp

[ −Z2

4(2E)1/2
(Θ12− Rπ)2π tanhχ

]

×
∣∣∣ f

(
k̂1, k̂2

) ∣∣∣
2
. (52.70)

Assuming the contribution from triplet states is negligi-
ble, | f |2 can be written as

1

4

∣∣∣ f
(
k̂1, k̂2

)+ f
(
k̂2, k̂1

)∣∣∣
2
, (52.71)
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where f
(
k̂1, k̂2

)
(and by permutation f

(
k̂2, k̂1

)
, here-

after referred to as f and g respectively) is given
by

f )2i

π

∫
dr1dr2dr3Ψ

−∗
f φ f (2, r3)

× (H− E) exp(ik0 ·r1)ψi(r2, r3) . (52.72)

As a test of the above formulation for the process
e−+He → He++2e− near the ionization threshold,
Crothers [52.8] used an independent-electron open-shell
wave function for the initial bound state helium target,
written as

ψi(r2, r3)= φ(r2, z0)φ(r3, β)+φ(r3, z0)φ(r2, β)

[2(1+ S)]1/2 ,

(52.73)

where

φ(r, z0)= z3/2
0 π−1/2 exp(−z0r) , (52.74)

S =
[∫

φ(r, z0)φ(r, β)dr
]2

=
(

4z0β

(z0+β)2
)3

, (52.75)

and z0 and β take the physical values z0 = 1.80721/2

and β = 2. The total singlet cross section was found to
be (in atomic units)

σ = 2.37Em12a2
0 , (52.76)

in line with Wannier’s threshold law, and with ex-
periment [52.49], while the corresponding absolute
triple differential cross sections (TDCS) were expressed
as

d3σ

dk̂1dk̂2d
(

1
2 k2

1

) = 70cz2
021/2χ tanhχ

πR∞Z1/2
0 m12

| f + g|2

×

[
d

dE
Em12−1/2 exp

(−Z2(Θ12−π)2π tanhχ

4(2E)1/2

)]

(52.77)

in units of 10−19 cm2 sr−2 eV−1, where

c = Γ(m12+3/2)Γ(m12+1)

2πZm12
0 Γ(2m12+3/2)

, (52.78)

and where f (and similarly g for Θ2) is given by

f =
∞∫

0

dρρ3/2+m21/2+1/4
Lmax∑

L=0

iL(2L+1) jL

( ρz0

21/2

)

× PL(cosΘ1) exp

{
1

8

× Im
[
m21(Θ12−π)2(2Z0ρ)

1/2
]}

× 2 cos

{
(8Z0ρ)

1/2+ 1

8

× Re
[
m21(Θ12−π)2(2Z0ρ)

1/2
]}

×r(ρ,Θ12) (52.79)

with

(1+ S)1/2r(ρ,Θ12)

= exp
(
− ρz0

21/2

)(
21/2z0− 1

(1− cosΘ12)1/2

)

+ exp(−21/2ρ)

[
64(2)1/2(z0−1)

(z0+2)3

+ 32

(z0+2)3
[2(2)1/2

+ (z0+2)ρ] exp

(−ρ(z0+2)

21/2

)]
. (52.80)

These results have been found to compare favorably
with both the relative experimental results of [52.50]
and the absolute experimental results of [52.51]. The
Crothers quantal semiclassical approximation has been
successfully applied to other threshold (e, 2e) and
(photon, 2e) collisions, namely two-electron photode-
tachment from H− [52.52], He

(
4P0

5/2

)
[52.53] and

K− [52.54]. Further investigations of the TDCS for
helium at threshold have since been carried out. The
3P0 triplet contribution to the TDCS was studied
in [52.55], where small but notable improvements
in the comparison with experimental results [52.50]
and [52.51] were achieved for most configurations
of the angles θ1 and θ2. The inclusion of contri-
butions from 3De,0 or 3F0 to the absolute TDCS
were found to be negligible in comparison with the
effect of the 3P0 [52.56], although the admittedly
non-Wannier effective-charge investigation of θ12 = π
by Pan and Starace [52.57] suggests that 3F0 may
be important at θ1 = π/6 or 5π/6, in line with
the experiment of Rösel et al. [52.51]. Another as-
pect which is thought to contribute to the TDCS is
explicit correlation in the initial bound state wave
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Continuum Distorted Wave and Wannier Methods 52.2 Wannier Method 785

function for the helium target, in which the inter-
electronic distance r23 is explicitly contained. Absolute
singlet triple-differential cross sections have been ob-
tained [52.58], using a helium ground state wave
function developed by Le Sech [52.59]. Again, excel-
lent agreement with the singlet results of [52.8] has
been achieved, and, in most configurations, notable
improvements with the corresponding experimental
data are obtained, as shown in Fig. 52.3 for scat-
tering angle θ1 = 60◦ (a) and 90◦ (b), indicating
that electron correlation should also be considered
if a full picture of threshold ionization is to be
achieved.

The last eight years has seen significant new
developments and contributions to the Wannier the-
ory. One notable achievement has been the analytical
continuation of the uniform semi-classical wave func-
tion [52.8] to below the energy threshold to calculate
the complex eigenenergies for doubly excited states
of helium using a complex Bohr–Sommerfeld quan-
tization rule with at least one complex transition
point [52.4, 5]. The real parts of the eigenvalues
were found to be in good agreement with the ex-
perimental results of Buckman et al. [52.60, 61] for
the resonance positions while the imaginary parts

a) b)

(a) θ1 = 60° (b) θ1 = 90°

Fig. 52.3a,b Helium triply differential ionization cross section for coplanar geometry, E1 = E2 = 1 eV and E = 2 eV,
calculated (full curve) TDCS of Copeland and Crothers [52.58] in polar coordinates, with polar coordinates as θ2, for
scattering angles θ1 = 60◦ (a) and θ1 = 90◦ (b), in comparison with absolute experimental (circles) data of Rösel et al.
[52.44], and theoretical results (broken curve) of Crothers [52.40]. The radius of each circle is 1.0 × 10−19 cm2sr−2eV−1

give the explicit widths of the resonances from
which the intensities have been estimated. The theory
in [52.4] was considered initially for the inaugu-
ral case of L = 0. Further investigation [52.5–7] has
extended the theory to include resonant states for
L = 1 and L = 2. In the case of L = 1, an irra-
tional quantum number was obtained and attosecond
lifetimes were obtained. Excellent results were ob-
tained for the resonance positions, lifetimes, intensities,
and scaling rules in comparison with the experimen-
tal data [52.60]. This success persuaded Deb and
Crothers [52.62] to re-visit the problem of quantal
near-threshold ionization of He by electron impact.
In particular they re-examined the problem of above
threshold ionization of He by electron impact by re-
taining the term 2L(L +1)/ρ2 in the hyperspherical
equation

(
1

ρ5

∂

∂ρ
ρ5 ∂

∂ρ
+ 1

ρ2 sin2 2α

∂

∂α
sin2 2α

∂

∂α

+ 4

ρ2 sin θ12

∂

∂θ12
sin θ12

∂

∂θ12
+2E

+ 2ζ(α, θ12)

ρ

2L(L+1)

ρ2

)
Ψ = 0 . (52.81)
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Following the procedure of Crothers [52.8], they ob-
tained

Ψ−∗
f = c1/2 Em12/2u1/2

1

ω̃1/2ρ5/2 sinα cosα
δ
(

k̂1− r̂1
)

× δ
(

k̂2− r̂2
)

exp
[
4i(8Z0ρ)

−1/2(∆θ12)
−2
]

× exp

{
−i

[
S0+ 1

2
S1(∆α)

2

+ 1

8
S2(∆θ12)

2+ π
4

]
− conjugate

}
,

(52.82)

where the classical action variables are given by

S0 =
ρ∫

0

dρ̃ω̃ , (52.83)

Si = ρ2ω(ln ui)
′ , i = 1, 2 (52.84)

with

ω̃=
[
ω2−ω (lnu2 −i ln u1)

′]1/2
, (52.85)

ω2 = 2E+2Z0/ρ−2L(L+1)/ρ2 . (52.86)

The primes in (52.84) and (52.85) denote derivatives
with respect to ρ and ρ̃ respectively. It is to be noted
here that the original work used the approximated form
of ω by dropping the L-dependent term in (52.86). The
inclusion of this angular momentum term moves the
classical turning point from the origin to ρ+, where

ρ+ =
−Z0+

√
Z2

0+4EL(L+1)

2E
. (52.87)

As a result, the lower limit of ρ integration will be
replaced by ρ+. The classical action variables S1 and
S2 are now evaluated without introducing the limit
Eρ → 0. Using the final state wave function in (52.82)
we have calculated first the direct ionization amplitude.
The exchange ionization amplitudes for the two indis-
tinguishable atomic electrons were then obtained by
interchanging the angles θ1 and θ2 in the direct ampli-
tude. Singlet and triplet contributions are then accounted
for in the usual ratio of 1:3.

Equation (52.82) is a more accurate variant of
(52.68) used in the original theory of Crothers [52.8].
Using this refinement of the wave function, all partial
wave contributions for singlets and triplets are accounted
for up to L = 6 for the case of He by electron impact
at an excess of 2 eV above threshold. It has been found
that within the co-planar geometry, both the symmetric
and asymmetric triple differential cross sections, peak-
ing at and near the Wannier ridge, are greatly improved
when compared with experiment [52.63]. However, far
away from the Wannier ridge the triple differential cross
sections tend to show qualitative differences from mea-
surement [52.63].

The improved theory [52.62] has also successfully
been applied to the calculation of total cross sections
of positron impact ionization of helium for energies
0.5–10 eV above threshold [52.64]. Excellent agreement
with available experimental data [52.65] was obtained
for the absolute theoretical calculation of positron im-
pact ionization [52.64].

Finally this recent work has answered some ques-
tions concerning near-threshold processes, a large and
interesting area of study and we firmly believe that fur-
ther development of this powerful theory will answer
many more.
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Ionization in53. Ionization in High Energy Ion–Atom Collisions

Atomic species moving at high velocities form
an important component of ionizing radiation.
When these species interact with matter, they
effect chemical and biological changes which
originate with primary collision processes, usually
the ejection of electrons. This chapter gives an
overview of this primary process that has emerged
from studies of the energy and angular distribution
of electrons ejected by the impact of atomic or
ionic projectiles on atomic targets. It seeks to
highlight those features which are most
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ubiquitous [53.1, 2]. Atomic units [53.3] are used,
although e, m, and � are sometimes exhibited
explicitly to show the connection with standard
treatments of the first Born approximation [53.1].

When high-velocity projectiles strike atomic targets,
electrons are ejected from the target atoms, and, if
the projectiles have some electrons, from the projec-
tile ions also. For partially ionized projectiles, there are
two groups of electrons, one from the target and one
from the projectile. In principle, these two groups of
electrons cannot be separately identified, but in prac-
tice each group often predominates in separate energy
and angular regions, and can be identified with the help
of computed distributions. These disstributions are ex-
pressed in terms of doubly differential cross sections

(DDCS). Two somewhat different cross sections are
used. The Galilean invariant cross sections are differ-
ential in the wave vectors k of the Schrödinger waves
for the ejected electrons and are denoted by d3σ/dk3.
The wave vectors k refer to the laboratory or tar-
get frame. The Galilean invariant cross sections take
the same form in any reference frame, including the
projectile frame. In this frame the electron wave vec-
tors are denoted by primes, k′. The DDCS is given
in terms of an alternative expression in Sect. 53.1,
(53.9).

53.1 Born Approximation

The first Born approximation, often referred to as FBA or
B1, provides an excellent framework to understand qual-
itatively most of the prominent features observed in fast
ion–atom collisions. For a bare ion projectile of charge
ZP impinging upon a neutral atom target of nuclear
charge ZT, the Hamiltonian of the system is written as

H = H0+H1 , (53.1)

where

H0 = P2
P

2µ
+

ZT∑

j=1

⎛

⎝
p2

j

2m
− ZTe2

rj
+

ZT∑

i> j

e2

|ri −rj |

⎞

⎠ ,

H1 = ZP ZTe2

R
−

ZT∑

j=1

Z2
P

|R−rj | , (53.2)

and where µ is the projectile reduced mass, m the
electron mass, R the position vector of the pro-
jectile with respect to the target nucleus, PP the
corresponding momentum operator, rj the position
vector of the ith target electron and pj the cor-
responding momentum operator. The first Born ap-
proximation consists of breaking H as in (53.1):
the wave functions employed are antisymmetric
products of the target eigenfunctions of H0 and
a plane wave of relative motion for the target
and projectile. Transitions are induced by the in-
teraction term H1. For an inelastic collision, the
target wave function is orthogonal to the initial state
wave function and the matrix element of the first
term in H1, ZP ZTe2/R, vanishes. Using Bethe’s
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integral
∫

eiq·R

|R−r| d3r = 4π

q2
eiq·R , (53.3)

the inelastic cross section becomes [53.4]

σi f = 4µ2e4

�4

K f

Ki

∫
dΩK f

Z2
P

q4

× |〈Φ f |
∑

j

exp(iq ·rj)|Φi〉|2 , (53.4)

where �Ki and �K f are the initial and final momenta of
the projectile, �q = �(K f −Ki) is the momentum trans-
ferred from the projectile to the target, Φ( f,i) represents
the wave functions for the final ( f ) and initial (i) states
of the target electrons, ΩK f is the solid angle of the
scattered projectile, j sums over all target electron coor-
dinates rj , and an average over initial and sum over final
states is assumed [53.4]. The integral over dΩK f can be
performed by making the change of variables

dΩK f ≡ sin θK f dθK f dφK f =
1

Ki K f
q dq dφK f

(53.5)

and substituting �Ki = µvi to obtain

σi f = 8πa2
0 Z2

P

(vi/vB)2

×

K+∫

K−

dq

q

|〈Φ f |∑ZT
j=1 exp(iq ·rj)|Φi〉|2
(qa0)2

,

(53.6)

where vi is the initial relative velocity and vB = αc is
the atomic unit of velocity. (vi/vB)

2 = T/R in the no-
tation of [53.4]. From the definition of q, the limits of
integration are K± = |Ki ±K f |. The cross section is
independent of the mass of the incident projectile.

The dimensionless generalized oscillator strength
(GOS) is defined by [53.5]

fi f (q)≡ ∆E

R∞
|〈Φ f |∑ j exp(iq ·rj)|Φi〉|2

(qa0)2
, (53.7)

where ∆E is the energy lost by the projectile in the
collsion; again, an average over initial and sum over final
magnetic substates is assumed. In terms of the GOS, the
cross section becomes

σi f = 8πa2
0 Z2

P

(vi/vB)2

K+∫

K−

fi f (q)

∆E/R∞
dq

q
. (53.8)

The DDCS, as defined, is related to the Galilean invariant
cross section d3σ/dk3 by [53.6]

d3σi f

dEk dΩk
=
( m

�2

)
k

d3σi f

d3k
, (53.9)

but it is more useful for describing the low energy
ejected electrons since it connects smoothly with cross
sections for discrete excitations of the target. The first
Born approximation for both excitation and ionization
by a bare projectile scale as Z2

P. The advantage of the
GOS is that, in the limit q → 0, it approaches the op-
tical oscillator strength – a relationship that connects
ionization in fast ion–atom collisions with photoioniza-
tion [53.7].

For an ionization process where an electron of
momentum �k is ejected from the target, the DDCS, dif-
ferential in ejected electron energy Ek and angle Ωk,
denoted by d3σi f /dEk dΩk, is also given by (53.4)
with the proviso that the Φf becomes Φ−

f , representing
a target ion plus an ejected (continuum) electron with
incoming wave boundary conditions [53.5], normalized
on the energy scale [53.3], i. e.,

〈
Φ−

f (E)
∣∣Φ−

f

(
E′)〉= δ(E− E′) . (53.10)

If the energy is in Rydbergs, the asymptotic form of the
radial part, r →∞, of the continuum wave function of
angular momentum  is given by [53.7]

1

r

( 1

πk

)1
2
sin

(
kr−π/2+ k−1 ln 2kr+σ+ δ

)
,

(53.11)

where σ ≡ argΓ(+1− i/k) is the Coulomb phase
shift, and δ is the non-Coulomb phase shift due to
the short range part of the potential. For normalization
on the energy scale, in atomic units (1 a.u.= 2R∞),
this asymptotic form is multiplied by

√
2, and for

normalization on the k-scale, (53.11) is multiplied by√
2k [53.3].

One can also obtain the single differential cross sec-
tion (SDS), dσi f /dEk, by integrating over Ωk. This
cross section can be expressed in terms of the differential
GOS density in the continuum [53.5],

d fi f (q)

dEk
= ∆E

R∞
1

(qa0)2

×
∫
|〈Φ−

f |
ZT∑

j=1

exp(iq · rj)|Φi〉|2 dΩk ,

(53.12)
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as

dσi f

dEk
= 8πa2

0

(vi/vB)2

∫
d fi f (q)/dEk

∆E/R

dq

q
, (53.13)

with ∆E = Ek+ IT, and IT is the ionization energy of
the target. Finally, the total ionization cross section is
obtained by integration of dσi f /dEk over Ek,

σi f = 8πa2
0 Z2

P

(vi/vB)2

∫
Z2

P
d fi f (q)/dEk

∆E/R

dq

q
dEk .

(53.14)

Let us now consider a collision in which the projectile
brings in its own NP electrons. The Hamiltonian for the
system becomes

H = H0+H1

H0 = p2
P

2µ
+

ZT∑

j=1

⎛

⎝
p2

j

2m
− ZTe2

rj
+

ZT∑

i> j

e2

|ri −rj |

⎞

⎠

+
NP∑

k=1

(
p2

k

2m
− ZPe2

rk
+

NP∑

i>k

e2

|ri −rk|

)

H1 = ZP ZTe2

R
−

ZT∑

j=1

ZPe2

|R−rj | −
NP∑

k=1

ZTe2

|R+rk|

+
ZT∑

j=1

NP∑

k=1

e2

|R+rk −rj | (53.15)

where pk and rk refer to projectile electrons. Under
these conditions, the solutions of H0 include the wave
function of the projectile electrons in the antisymmetric
product. For an inelastic collision, the matrix element
of the first term of H1 vanishes as before. However,
there are two extra terms in H1: the interaction of the
projectile electrons with the target nucleus, and the inter-
action of the target electrons with projectile electrons.
These projectile electrons open physically distinct, al-
ternative possibilities for the ionization process [53.2]:
(a) target ionization, projectile remains in initial state;
(b) target ionization, projectile excited (including ioniza-
tion); (c) projectile ionization, target remains in initial
state; (d) projectile ionization, target excited (including
ionization).

For process (a), evaluation of the first Born cross sec-
tion gives (53.4) with the projectile charge Z2

P replaced
by |ZP− Fii(q)|2, where the elastic form factor Fii(q) is

given by

Fii(q)=
〈
ΦP

i

∣∣
NP∑

k=1

exp(iq ·rk)
∣∣ΦP

i

〉
, (53.16)

and ΦP
( f,i) represents the wave function for the final and

initial electron state of the projectile. Thus, the effect
of the projectile electrons on process (a) is to screen
the projectile nucleus, and the dynamical screen-
ing depends upon the momentum transfer q. Clearly
from (53.16), Fii(0) = NP and Fii(∞) = 0. Thus,
for small energy transfer, which implies small q
(large impact parameter), ZP → ZP− NP, i. e., full
screening of the projectile by its electrons. For
large energy transfer, which implies q (small im-
pact parameter), ZP remains unmodified, i. e., no
screening.

10–18

10–19

10–20
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10–22
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ε (Ry)

υ = 60°
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He+
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eV sr

cm2δ2σ
δεδ�

Fig. 53.1 Theoretical double differential cross sections
(DDCS) for the ionization of He by equal velocity H+,
He++ and He+ (target ionization with no projectile exci-
tation only) as a function of ejected electron energy in Ry
for an ejection angle of 60◦. The incident velocity cor-
responds to 0.5 MeV H+ and 2.0 MeV He+ and He++
which all have the same velocity as a 20 Ry (272 eV)
electron
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To illustrate this effect, a calculation of process (a) is
presented in Fig. 53.1 for the DDCS for 2 MeV He++He
collisions, along with a DDCS calculation for equal
velocity H+ and He++ projectiles [53.8]. From these
results it is seen that for small energy transfer, the He+
projectile behaves almost like a heavy proton. With in-
creasing ejected electron energy, however, it is seen to
approach He++-like behavior. Note that this result is
process (a) alone.

Looking at process (b), the situation is rather dif-
ferent. Now two electrons change their state so that
transition matrix elements of all terms except the
electron–electron term in H1 vanish. In this case, Z2

P in
(53.4) is replaced by the square of the inelastic projectile
form factor |Ffi |2, where

F fi(q)=
〈
ΦP

f

∣
∣

NP∑

k=1

exp(iq ·rk)
∣
∣ΦP

i

〉
. (53.17)

Owing to the orthogonality of initial and final projec-
tile states, this form factor vanishes in both the limits,
q → 0 and q →∞. Thus, the total target DDCS is
process (a) plus the sum over all of the possible pro-
jectile excitations (including projectile ionization) of
process (b). Since there is an infinite number of pro-
jectile excitations, it is useful to have a method for
summing over all of them. Using the closure relation,

the sum over all projectile excitations at fixed q is given
by [53.2]

∑

f �=i

|Ffi(q)|2 = NP−|Fii(q)|2+
〈
ΦP

i

∣∣

×
NP∑

j, j ′, j �= j ′
exp[iq · (rj −r j ′)]

∣
∣ΦP

i

〉
,

(53.18)

where only the initial state wave function of the pro-
jectile electrons appears. While this sum rule is exact,
it cannot be substituted exactly into (53.4) because of
the transformation between cos θK f and q, and hence
the limits of integration over q vary with the excitation
energy of the final state of the projectile. Various ways
of choosing approximate integration limits have been
suggested [53.9].

Projectile ionization alone, and with target excita-
tion, process (c) and (d) above, are handled exactly as
(a) and (b), but in the projectile reference frame. Thus,
ionization of the projectile by the target is calculated
using the methodology detailed above, after which the
results are transformed into the laboratory frame using
the invariance of d3σi f /d3k and kL = kP+Ki/µ. The
subscripts L and P refer to the laboratory and projectile
frame, respectively.

53.2 Prominent Features

A plot of d3σ/dk3 superimposes electrons from the tar-
get and electrons from the projectile. To sort out the
main features of the two groups of electrons, first con-
sider impact of bare ions on neutral targets, where the
DDCS exhibits only electrons ejected from the target.
Figure 53.2 shows a computed cross section for pro-
tons on H. The wave vectors are resolved into two
components: a component k‖, which is parallel to the
wave vector Ki of the projectile in the laboratory frame,
and a component k⊥ perpendicular to Ki . In most
cases, integration is over the direction of K f so that
Ki is an axis of symmetry. Then the DDCS is in-
dependent of the direction of k⊥. Because Fig. 53.2
was computed using an approximate theory described
in Sect. 53.2.1, the details are not necessarily accu-
rate, but these computations are qualitatively reliable
over an electron energy and angular range which ex-
cludes very low electron energies, i. e., the region around
k = 0.

53.2.1 Target Electrons

The Bethe Ridge
Figure 53.2 provides a useful starting point to exam-
ine electron energy and angular distributions. The most
prominent feature is the semicircular ridge, called the
Bethe ridge, surrounding a valley. The center of the semi-
circle is at k= v, where v= Ki/MP is the velocity of
the projectile in the lab frame. In the projectile frame,
where k′ = k−v, the center of the circle is at k′ = 0 and
the ridge is at k′ = v. This region corresponds to ion-
ization events where the momementum J = q−k of the
recoiling target ion vanishes. Momentum conservation
implies that

Ki = K f +k+ J , (53.19)

while energy conservation is expressed as

K2
i

2MP
+ εi =

K2
f

2MP
+ k2

2
+ J2

2MT
, (53.20)
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where MT is the mass of the ionized target. At the Bethe
ridge, J ≈ 0 so that (53.19) and (53.20) combine to
determine the value of k at this point, called kB;

[(1+m/MP)kB−v]2 = v2+ (1+m/MP)εi
(53.21)

where εi is the initial electron eigenenergy. In the ap-
proximation that m/MP is set equal to zero and the
inital binding energy is small compared with 1/2v2,
(53.21) shows that the prominent ridge seen in Fig. 53.2
at k′ = v corresponds to collisions where all of the mo-
mentum lost by the projectile is transferred to the ejected
electron. This ridge extends from Ek = 0 up to electron
energies of the order of 2v2. Generally, ejected elec-
trons move in the combined field of both the target
and the projectile. Electrons with momenta k‖ in the
region 0< k‖ < vZP/(ZP+ ZP) will be referred to as
low energy electrons since they move in regions where
the target potential is stronger than that of the projec-
tile. For very fast projectiles, many more electrons are
in the low energy region than at higher energies, thus
this region is of special interest. Since the target poten-
tial influences the motion significantly, the ionization
process in this region represents a continuation of ex-
citation across the ionization threshold. To analyze this
region, cross sections differential in Ek and angle Ωk
in the target frame are preferable since they connect
smoothly with cross sections for exciting target states
(53.4). Because the DDCS is independent of the az-
imuthal angle ϕk, the DDCS integrated over ϕk is often
employed.

As the variables Ek, θk suggest, the main features
of the low energy electrons emerge in plots of energy
and angular distributions. For fixed energy, the Bethe
ridge appears at an angle θB given by (53.21) and can be
written as a relation between cos θB and Ek as

cos θB =
(

Ek+ εi√
2Ek

)
1

v
. (53.22)

For fixed Ek �= 0, the DDCS maximizes at an angle
that approaches 90◦ as v→∞; in particular this an-
gle is obtained when Ek =−εi . Figure 53.3 shows
the angular distribution of 13.6 eV electrons ejected
from He by 5 MeV proton impact [53.10]. The cross
section maximizes at, and is nearly symmetric about,
90◦. This feature is understandable from the Born
approximation.

For small deflection angles, (53.20) gives

q‖ ≈ Ki −K f ≈ Ek+ εi

v
. (53.23)
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Fig. 53.2 Plot of the Galilean invariant DDCS for electrons ejected
from atomic hydrogen by 1.5 keV proton impact computed in the
distorted wave strong potential Born approximation (DSPB)

For electron energies Ek of the order of the initial
binding energy |εi | and large v, the parallel compon-
ent of q is much smaller than the magnitude given
by (53.19), so that q is predominantly perpendicular
to the beam direction. From (53.4), electrons ejected

2
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0 40 80 120 160
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Fig. 53.3 Plot of the angular distribution of 13.6 eV elec-
trons ejected from He by 5 keV proton impact [53.10]. The
solid curve is the Born approximation and the points are
the measured values
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from isotropic inital states are distributed symmetrically
about this axis, i. e., about 90◦, in first approxima-
tion. Because q is averaged over in forming the cross
section, all directions contribute to some extent, and
the distribution is not completely symmetric. The solid
curve in Fig. 53.3 represents a distribution computed
in the Bethe–Born approximation, and it is seen to
peak at 90◦ but is somewhat asymmeteric about this
angle, reflecting effects of averaging over the direc-
tion of q. Such distributions are well described by
only a few partial waves for the outgoing electron. In-
deed, the theoretical distribution is well described by
a combination of s and p waves. The calculations fit
the experimental data except in the forward direction
where the experimental distribution increases sharply.
Such sharp increases must reflect the presence of many
partial waves not described by the Born approximation.
Since the main disagreement between theory and ex-
periment is confined to a small angular region near
0◦ which contributes only a small part to the total
cross section, the Bethe–Born approximation represents
a well-founded theoretical framework for interpreting
features that appear in the low-electron-energy portion
of the DDCS.

While the main contribution to total ionization cross
sections comes from the low energy region, electrons
in the high energy region (v/2< k) carry more energy
per electron, and therefore play a prominent role in pro-
cesses initiated by fast electrons. The fast electrons on
the Bethe ridge correspond to collisions where the mo-
mentum q lost by the incident projectile is transferred
mainly to the ejected electron. Because the momen-
tum k of the ejected electrons is much larger than the
mean value of the electron momentum in the initial
state, given by

√
2εi , this portion of the spectrum can

be interpreted in terms of a binary collision between
the incident projectile and the target electron treated as
quasifree. By quasifree we understand that the electron
has a nonzero binding energy εi , but is otherwise re-
garded as a free electron with an initial momentum s,
distributed over a range of values centered around the
mean value. In the projectile reference frame, the elec-
tron has the momentum s−v. The electron scatters
elastically from the projectile and emerges with a fi-
nal momentum k′ = k−v. This simple picture is known
as the elastic scattering model, and is often employed
for processes involving weakly bound electrons [53.11].
There are several quantal versions of this picture, indeed
any theory of ionization must reduce to the electron scat-
tering model in the limit that the initial binding energy εi
vanishes.

When the projectile P is a bare ion so that the bi-
nary scattering process is just Rutherford scattering, the
Bethe–Born approximation is in accord with this picture.
It works because the electrons are fast so that effects of
the target potential in the final state are unimportant,
and because a first-order computation of Rutherford
scattering gives the same scattering cross section as
the exact Rutherford amplitude. For that reason the
domain of applicability of the first Born approxima-
tion includes the Bethe ridge, even in the high energy
region.

The binary encounter peak shows new features
when the projectile carries electrons. The target elec-
trons scatter from a partially screened ion and the
Bethe ridge reflects properties of the elastic scatter-
ing cross section for the complex projectile species. In
contrast to the Rutherford cross section, elastic scat-
tering cross sections for complex species may have
maxima and minima as functions of the electron en-
ergy and angle. Such features have been identified in
collisions of highly charged ions with neutral atomic
targets [53.12].

The Continuum Electron Capture Cusp
Figure 53.2 shows a sharp cusp-like structure when
the momentum of the ejected electron in the projectile
frame k′ vanishes. Then the ejected electron moves with
a velocity exactly equal to the projectile velocity. For
charged projectiles, it is virtually impossible to deter-
mine whether such electron states are Rydberg states
of high principal quantum number n′, or continuum
states with Ek′ = 1

2 k′2 much less than εi . Indeed, the
physical similarity of such atomic states implies that the
cross section for electron capture to states of high n′ dif-
fers from the ionization cross section near k′ = 0 only
by a density of states factor. This factor is just dEk′
for ionization processes and dEn′ = Z2

Pn′−3 for cap-
ture. It follows that the cross section d3σ/dEk′ dΩk′
is a smooth function of Ek′ which is nonzero and fi-
nite at Ek′ = 0. The Galilean invariant cross section
of Fig. 53.2, however, is not smooth; rather it is given
by

d3σ

dk3
= d3σ

dk′3
= 1

k′
d3σ

dEk′ dΩk′
. (53.24)

Since d3σ/dEk′ dΩk′ is nonzero at k′ = 0, it follows that
the DDCS has a k′−1 singularity at k′ = 0. Experiments
measure cross sections averaged over this singular fac-
tor. The averaging results in the cusp-shaped feature at
k′ = 0 seen in Fig. 53.2 [53.13–15].
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The theoretical description of the cusp feature re-
quires that the electron in the final state move mainly
in the field of the projectile rather than that of the tar-
get. While the appropriate final state wave function can
be introduced into (53.4), the result is quantitatively in-
accurate. A more accurate amplitude emerges when the
exact amplitude is expanded in powers the interaction
potential VT of the electron with the final state target
ion [53.16], since VT has a much smaller effect than the
interaction VP. Approximate evaluation of the ioniza-
tion amplitude in an independent particle approximation
gives [53.17]

Tfi =
∫

d3s Ṽ T(J+ s)ϕ̃i(s)

× 〈ψ−k′ (r)| exp[i(J+ s)]|ψs−v(r)〉 , (53.25)

and

d3σ

dEk dΩk
= (2π)4µ2

∫
|Tfi |2 dΩK f (53.26)

where µ is the reduced mass given by

µ= MP(MP+1)/(MP+MT+1) , (53.27)

and ϕ̃i(s) is the momentum space independent-particle
orbital wave function for the active electron in the in-
tial state, Ṽ T is the corresponding effective interaction
potential, and the ψ±k′ are normalized on the momentum
scale.

Figure 53.4 gives a pictorial interpretation of this
amplitude. The initial momentum distribtution of the
electron is given by ϕ̃i(s). In the projectile frame,
this electron has momentum s− v and moves in
a projectile continuum state represented by ψ+s−v(r).
Owing to the interaction with the target represented by
exp[i(J +s)] ṼT(J+ s), a transition to the final projec-
tile state ψ−k′ occurs as illustrated in Fig. 53.4 (b). The
final state ψ−k′ has a 1/

√
k′ normalization that gives rise

to the cusp at k= v seen in Fig. 53.2. This picture de-
scribes ionization in terms of the free–free transition,
ψ−s−v → ψ+k′ .

The amplitude in (53.25), known as the dis-
torted wave strong potential Born amplitude (DSPB)
[53.18], or the projectile impulse approximation ampli-
tude [53.19], also describes binary encounter electrons.
Thus the regions of applicability of (53.4) and (53.25)
overlap considerably. In the binary encounter region,
where k‖ > v/2 and J ≈ 0, the cross section given by
(53.9) and (53.25) reduces to the elastic scattering model
(ESM) [53.20], where the incident electron with projec-
tile frame momentum −J−v quasi-elastically scatters

a)

b)

P

T

e–s-v

rP

rT

(s-v)21–
2

k' 21–
2

V
~

T(J + s)e–i(J+S) r

Fig. 53.4a,b Free–free transition picture of ionization.
(a) Schematic representation of a target electron with mo-
mentum s−v in the projectile frame. (b) A free–free
transition from the projectile eigenstate ψ−s−v to the fi-
nal eigenstate ψ+k′ occurs with the target interaction as the
transition operator

from the projectile into a final state with projectile
frame momentum k′. This quasi-elastic cross section
is averaged over the initial momentum distribution of
the electron |ϕ̃i(−J)|2 d3 J so that

d5σESM =
[
(2π)4

k′

v
|T elas(k′,−J−v)|2|dΩk′

]

× |ϕ̃i(−J)|2 d3 J . (53.28)

The projectile frame cross section is recovered
upon using the relation d3 J = µ fµiv dΩK f k′2 dk′ in
(53.25).

The two approximations (53.4) and (53.25) describe
all of the major features that emerge in the ioniza-
tion of one-electron targets by fully ionized projectiles.
Both theories also incorporate some multi-electron ef-
fects that appear when either the target or projectile
(or both) have several electrons. Equation (53.28) is
useful for describing effects of target ionization by
multi-electron projectiles when the projectile electrons
remain in their ground state since T elas incorporates,
in principle, the exact amplitude for electrons to scat-
ter from the projectile in its ground state. Of course,
the multi-electron projectile can also become excited
or ionized owing to its interaction with the target elec-
trons. These processes are not incorporated in the ESM
cross section (53.28); rather the Born amplitude of
(53.4) represents a more tractable theory to analyze these
features.
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53.2.2 Projectile Electrons

When the incident atomic species carries some attached
electrons, these electrons may be removed in the col-
lision with a target. Essentially all of the features that
appear for the target electrons also appear for the pro-
jectile electrons; however the DDCS is shifted by the
Galilean transformation to the projectile frame. The
transformation from the laboratory frame to the projec-
tile frame is an essential step for interpreting features of
the projectile electrons. This transformation has the ef-
fect of spreading out the electron energy distribution
since at θk = 0◦ a small energy interval ∆Ek in the

lab frame relates to a small energy interval ∆E′
k in the

projectile frame according to

∆Ek =∆E′
k

(
1+ v√

2vEk′

)
. (53.29)

For example, when the projectile energy is 1.5 MeV/au,
a projectile frame electron energy interval 0< E′

k <

0.1 eV maps into an interval of ±8.3 eV centered at
Ek = 817 eV. This amplification of both the electron en-
ergy and the electron energy interval proves useful for
measuring features of projectile species with high reso-
lution [53.21].

53.3 Recent Developments
Added by Mark M. Cassar. The theoretical study of ion-
ization processes in atomic collisions remains an active
research field. At present, there are three main quantum
mechanical approaches to the simplest colliding sys-
tems with one active electron. The first approach is to
solve directly the time-dependent Schrödinger equation
by taking advantage of modern-day computing power.
The accuracy of these calculations, however, is still in-
sufficient, and further computational and technological
advancements are necessary. The second approach ex-
pands the total wave function in atomic or molecular
bases; satisfactory agreement with experimental results
is obtained, but at the expense of having to include a large

number of basis set members in the expansions. The
third approach involves the use of Sturmian expansions,
along with a specific scaling and transformation of the
wave functions. This technique overcomes many of the
difficulties that others suffer from, and at the same time
provides the best agreement with experimental data over
a broad range of energies.

Problems in our understanding of the ionization pro-
cess remain, even for the simplest colliding system
H+-H, and extensions and refinements of the present
theoretical and experimental methods are needed.
The reader is referred to the in-depth review by
Macek et al. [53.22].
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Electron–Ion54. Electron–Ion and Ion–Ion Recombination

Electron–ion and ion–ion recombination
processes are of key importance in under-
standing the properties of plasmas, whether
they are in the upper atmosphere, the so-
lar corona, or industrial reactors on earth.
This is a collection of formulae, expressions,
and specific equations that cover the vari-
ous aspects, approximations, and approaches
to electron-ion and ion-ion recombination
processes.
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54.1 Recombination Processes

54.1.1 Electron–Ion Recombination

This proceeds via the following four processes:
(a) radiative recombination (RR)

e−+ A+(i)→ A(n)+hν , (54.1)

(b) three-body collisional-radiative recombination

e−+ A++ e− → A+ e− , (54.2a)

e−+ A++M → A+M , (54.2b)

where the third body can be an electron or a neutral gas.
(c) dielectronic recombination (DLR)

e−+ AZ+(i)�
[

AZ+(k)− e−
]

n

→ A(Z−1)+
n′′ ( f )+hν , (54.3)

(d) dissociative recombination (DR)

e−+ AB+ → A+ B∗ . (54.4)

Electron recombination with bare ions can proceed
only via (a) and (b), while (c) and (d) provide additional
pathways for ions with at least one electron initially
or for molecular ions AB+. Electron radiative capture
denotes the combined effect of RR and DLR.

54.1.2 Positive–Ion Negative–Ion
Recombination

This proceeds via the following three processes:
(e) mutual neutralization

A++ B− → A+ B∗ , (54.5)

(f) three-body (termolecular) recombination

A++ B−+M → AB+M , (54.6)

(g) tidal recombination

AB++C−+M → AC+ B+M (54.7a)

→ BC+ A+M , (54.7b)

where M is some third species (atomic, molecular or
ionic). Although (e) always occurs when no gas M is
present, it is greatly enhanced by coupling to (f). The
dependence of the rate α̂ on density N of background
gas M is different for all three cases, (e)–(g).

Processes (a), (c), (d) and (e) are elementary pro-
cesses in that microscopic detailed balance (proper
balance) exists with their true inverses, i. e., with pho-
toionization (both with and without autoionization) as
in (c) and (a), associative ionization and ion-pair for-
mation as in (d) and (e), respectively. Processes (b), (f)
and (g) in general involve a complex sequence of elem-
entary energy-changing mechanisms as collisional and
radiative cascade and their overall rates are determined
by an input-output continuity equation involving micro-
scopic continuum-bound and bound–bound collisional
and radiative rates.

54.1.3 Balances

Proper Balances
Proper balances are detailed microscopic balances be-
tween forward and reverse mechanisms that are direct
inverses of one another, as in

(a) Maxwellian: e−(v1)+ e−(v2)� e−(v′1)+ e−(v′2) ,
(54.8)

where the kinetic energy of the particles is redistributed;

(b) Saha: e−+H(n)� e−+H++ e− (54.9)

between direct ionization from and direct recombination
into a given level n;

(c) Boltzmann: e−+H(n)� e−+H(n′, ′) (54.10)

between excitation and de-excitation among bound
levels;

(d) Planck: e−+H+� H(n)+hν , (54.11)

which involves interaction between radiation and atoms
in photoionization/recombination to a given level n.

Improper Balances
Improper balances maintain constant densities via pro-
duction and destruction mechanisms that are not pure
inverses of each other. They are associated with flux
activity on a macroscopic level as in the transport of
particles into the system for recombination and net
production and transport of particles (i. e. e−, A+) for
ionization. Improper balances can then exist between
dissimilar elementary production–depletion processes
as in (a) coronal balance between electron-excitation
into and radiative decay out of level n. (b) radiative
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balance between radiative capture into and radiative cas-
cade out of level n. (c) excitation saturation balance
between upward collisional excitations n−1→ n → n+

1 between adjacent levels. (d) de-excitation saturation
balance between downward collisional de-excitations
n+1 → n → n−1 into and out of level n.

54.2 Collisional-Radiative Recombination

Radiative Recombination
Process (54.1) involves a free-bound electronic tran-
sition with radiation spread over the recombination
continuum. It is the inverse of photoionization without
autoionization and favors high energy gaps with tran-
sitions to low n ≈ 1, 2, 3 and low angular momentum
states ≈ 0, 1, 2 at higher electron energies.

Three-Body Electron–Ion Recombination
Processes (54.2a,b) favor free-bound collisional tran-
sitions to high levels n, within a few kBT of the
ionization limit of A(n) and collisional transitions
across small energy gaps. Recombination becomes sta-
bilized by collisional-radiative cascade through the
lower bound levels of A. Collisions of the e−−A+
pair with third bodies becomes more important for
higher levels n and radiative emission is important
down to and among the lower levels n. In optically
thin plasmas this radiation is lost, while in optically
thick plasmas it may be re-absorbed. At low electron
densities radiative recombination dominates with pre-
dominant transitions taking place to the ground level.
For process (54.2a) at high electron densities, three-
body collisions into high Rydberg levels dominate,
followed by cascade which is collision dominated at
low electron temperatures Te and radiation dominated
at high Te. For process (54.2b) at low gas densities N ,
the recombination is collisionally-radiatively controlled
while, at high N , it eventually becomes controlled
by the rate of diffusional drift (54.61) through the
gas M.

Collisional-Radiative Recombination
Here the cascade collisions and radiation are coupled
via the continuity equation. The population ni of an
individual excited level i of energy Ei is determined by
the rate equations

dni

dt
= ∂ni

∂t
+∇ · (nivi) (54.12)

=
∑

i �= f

[
n f ν fi −niνi f

]= Pi −ni Di , (54.13)

which involve temporal and spatial relaxation in (54.12)
and collisional-radiative production rates Pi and destruc-
tion frequencies Di of the elementary processes included
in (54.13). The total collisional and radiative transition
frequency between levels i and f is νi f and the f -sum
is taken over all discrete and continuous (c) states of the
recombining species. The transition frequency νi f in-
cludes all contributing elementary processes that directly
link states i and f , e.g., collisional excitation and de-
excitation, ionization (i → c) and recombination (c→ i)
by electrons and heavy particles, radiative recombin-
ation (c→ i), radiative decay (i → f ), possibly radiative
absorption for optically thick plasmas, autoionization
and dielectronic recombination.

Production Rates and Processes
The production rate for a level i is

Pi =
∑

f �=i

n en f K c
fi +n2

e N+kR
ci

+
∑

f>i

n f
(
A fi + B fiρν

)

+n e N+ (
α̂RR

i +βiρν
)
, (54.14)

where the terms in the above order represent (1) col-
lisional excitation and de-excitation by e−–A( f )
collisions, (2) three-body e−–A+ collisional recom-
bination into level i, (3) spontaneous and stimulated
radiative cascade, and (4) spontaneous and stimulated
radiative recombination.

Destruction Rates and Processes
The destruction rate for a level i is

ni Di = n eni

∑

f �=i

K c
i f +n eni Si

+ni

∑

f<i

(
Ai f + Bi f ρν

)

+ni

∑

f>i

Bi f ρν+ni Bicρν , (54.15)

where the terms in the above order represent
(1) collisional destruction, (2) collisional ionization,
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(3) spontantaneous and stimulated emission, (4) photo-
excitation, and (5) photoionization.

54.2.1 Saha and Boltzmann Distributions

Collisions of A(n) with third bodies such as e− and M
are more rapid than radiative decay above a certain
excited level n∗. Since each collision process is ac-
companied by its exact inverse the principle of detailed
balance determines the population of levels i > n∗.

Saha Distribution
This connects equilibrium densities ñi , ñ e and Ñ+ of
bound levels i, of free electrons at temperature Te and
of ions by

ñi

ñ e Ñ+ =
(

g(i)

geg+A

)
h3

(2πm ekTe)3/2
exp(Ii/kBTe) ,

(54.16)

where the electronic statistical weights of the free elec-
tron, the ion of charge Z+1 and the recombined e−−A+
species of net charge Z and ionization potential Ii are
ge = 2, g+A and g(i), respectively. Since ni ≤ ñi for
all i, then the Saha–Boltzmann distributions imply that
n1 % ni and n e % ni for i �= 1, 2, where i = 1 is the
ground state.

Boltzmann Distribution
This connects the equilibrium populations of bound
levels i of energy Ei by

ñi/ñ j = [g(i)/g( j )] exp
[−(Ei − E j)/kBTe

]
.

(54.17)

54.2.2 Quasi-Steady State Distributions

The reciprocal lifetime of level i is the sum of radia-
tive and collisional components and is therefore shorter
than the pure radiative lifetime τR ≈ 10−7 Z−4 s. The
lifetime τ1 for the ground level is collisionally con-
trolled, is dependent upon n e, and generally is within
the range of 102 and 104 s for most laboratory plasmas
and the solar atmosphere. The excited level lifetimes τi
are then much shorter than τ1. The (spatial) diffusion
or plasma decay (recombination) time is then much
longer than τi and the total number of recombined
species is much smaller than the ground-state popu-
lation n1. The recombination proceeds on a timescale
much longer than the time for population/destruction of
the excited levels. The condition for quasisteady state, or

QSS-condition, dni/dt = 0 for the bound levels i �= 1,
therefore holds. The QSS distributions ni therefore sat-
isfy Pi = ni Di .

54.2.3 Ionization and Recombination
Coefficients

Under QSS, the continuity equation (54.13) then reduces
to a finite set of simultaneous equations Pi = ni Di . This
gives a matrix equation which is solved numerically for
ni(i �= 1)≤ ñi in terms of n1 and n e. The net ground-
state population frequency per unit volume (cm−3 s−1)
can then be expressed as

dn1

dt
= n e N+α̂CR−n en1SCR , (54.18)

where α̂CR and SCR, respectively, are the overall rate
coefficients for recombination and ionization via the
collisional-radiative sequence. The determined α̂CR
equals the direct (c → 1) recombination to the ground
level supplemented by the net collisional-radiative cas-
cade from that portion of bound-state population which
originated from the continuum. The determined SCR
equals direct depletion (excitation and ionization) of the
ground state reduced by the de-excitation collisional ra-
diative cascade from that portion of the bound levels
accessed originally from the ground level. At low n e,
α̂CR and SCR reduce, respectively, to the radiative re-
combination coefficient summed over all levels and to
the collisional ionization coefficient for the ground level.

C, E and � Blocks of Energy Levels
For the recombination processes (54.2a), (54.2b) and
(54.6) which involve a sequence of elementary reac-
tions, the e−− A+ or A+− B− continuum levels and
the ground A(n = 1) or the lowest vibrational levels of
AB are therefore treated as two large particle reservoirs
of reactants and products. These two reservoirs act as
reactant and as sink blocks C and � which are, respec-
tively, drained and filled at the same rate via a conduit
of highly excited levels which comprise an intermediate
block of levels E . This C draining and � filling pro-
ceeds, via block E , on a timescale large compared with
the short time for a small amount from the reservoirs to
be re-distributed within block E . This forms the basis of
QSS.

54.2.4 Working Rate Formulae

For electron–atomic–ion collisional-radiative recombin-
ation (54.2a), detailed QSS calculations can be fitted by
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the rate [54.1]

α̂CR =
(

3.8 × 10−9T−4.5
e n e+1.55 × 10−10T−0.63

e

+6 × 10−9T−2.18
e n0.37

e

)
cm3 s−1 (54.19)

agrees with experiment for a Lyman α optically thick
plasma with n e and Te in the range 109 cm−3 ≤ n e ≤
1013 cm−3 and 2.5 K ≤ Te ≤ 4000 K. The first term is
the pure collisional rate (54.49), the second term is the
radiative cascade contribution, and the third term arises
from collisional-radiative coupling.

For
(

e−−He+2
)

recombination in a high (5–
100 Torr) pressure helium afterglow the rate for (54.2b)
is [54.2]

α̂CR =
[
(4±0.5)× 10−20n e

]
(Te/293)−(4±0.5)

+
[
(5±1)× 10−27n(He)

+ (2.5±2.5)× 10−10
]

× (Te/293)−(1±1) cm3/s. (54.20)

The first two terms are in accord with the purely colli-
sional rates (54.49) and (54.52b), respectively.

54.3 Macroscopic Methods

54.3.1 Resonant Capture-Stabilization
Model: Dissociative and Dielectronic
Recombination

The electron is captured dielectronically (54.41) into an
energy-resonant long-lived intermediate collision com-
plex of super-excited states d which can autoionize or be
stabilized irreversibly into the final product channel f
either by molecular fragmentation

e−+ AB+(i)
kc�
νa

AB∗∗ νs→ A+ B∗ , (54.21)

as in direct dissociative recombination (DR), or by
emission of radiation as in dielectronic recombination
(DLR)

e−+ AZ+(i)
kc�
νa

[
AZ+(k)− e−

]

n
νs→ A(Z−1)+

n′′ ( f )+hν . (54.22)

Production Rate of Super-Excited States d

dn∗d
dt

= n e N+kc(d)−n∗d [νA(d)+νS(d)] ; (54.23)

νA(d)=
∑

i ′
νa(d → i ′) , (54.24a)

νS(d)=
∑

f ′
νs(d → f ′) . (54.24b)

Steady-State Distribution
For a steady-state distribution, the capture volume is

n∗d
n e N+ = kc(d)

νA(d)+νS(d)
. (54.25)

Recombination Rate
and Stabilization Probability

The recombination rate to channel f is

α̂ f =
∑

d

(
kc(d)νs(d → f )

νA(d)+νS(d)

)
, (54.26a)

and the rate to all product channels is

α̂=
∑

d

kc(d)νS(d)

νA(d)+νS(d)
. (54.26b)

In the above, the quantities

PS
f (d)= νs(d → f )/ [νA(d)+νS(d)] , (54.27)

PS(d)= νS(d)/ [νA(d)+νS(d)] , (54.28)

represent the corresponding stabilization probabilities.

Macroscopic Detailed Balance
and Saha Distribution

Kdi(T )= ñ∗d
ñ e Ñ+ = kc(d)

νa(d → i)
= kc(d)τa(d → i)

(54.29a)

= h3

(2πmekBT )3/2

(
ω(d)

2ω+

)

× exp
(−E∗

di/kBT
)
, (54.29b)

where E∗
di is the energy of super-excited neutral levels

AB∗∗ above that for ion level AB+(i), and ω are the
corresponding statistical weights.

Alternative Rate Formula

α̂ f =
∑

d

Kdi

(
νa(d → i)νs(d → f )

νA(d)+νS(d)

)
. (54.30)
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Normalized Excited State Distributions

ρd = n∗d/ñ∗d =
νa(d → i)

[νA(d)+νS(d)]
, (54.31)

α̂=
∑

d

kc(d)P
S(d)=

∑

d

KdiρdνS(d) (54.32a)

=
∑

d

kc(d) [ρdνS(d)τa(d → i)] . (54.32b)

Although equivalent, (54.26a) and (54.30) are nor-
mally invoked for (54.21) and (54.22), respectively,
since PS ≤ 1 for DR so that α̂DR → kc; and νA % νS
for DLR with n & 50 so that α̂→ Kdiνs. For n % 50,
νS % νA and α̂→ kc. The above results (54.26a) and
(54.30) can also be derived from microscopic Breit–
Wigner scattering theory for isolated (nonoverlapping)
resonances.

54.3.2 Reactive Sphere Model:
Three-Body Electron–Ion
and Ion–Ion Recombination

Since the Coulomb attraction cannot support quasibound
levels, three body electron–ion and ion–ion recom-
bination do not in general proceed via time-delayed
resonances, but rather by reactive (energy-reducing)
collisions with the third body M. This is particularly
effective for A–B separations R≤ R0, as in the sequence

A+ B
kc�
νd

AB∗(R ≤ R0) , (54.33a)

AB∗(R ≤ R0)+M
νs�
ν−s

AB+M . (54.33b)

In contrast to (54.21) and (54.22) where the stabilization
is irreversible, the forward step in (54.33b) is reversible.
The sequence (54.33a) and (54.33b) represents a closed
system where thermodynamic equilibrium is eventually
established.

Steady State Distribution of AB ∗ Complex

n∗ =
(

kc

νs+νd

)
n A(t)nB(t)+

(
ν−s

νs+νd

)
ns(t) .

(54.34)

Saha and Boltzmann balances:

Saha: ñ AñBkc = ñ∗νd ,

Boltzmann: ñsν−s = ñ∗νs .
(54.35)

ñ∗ is in Saha balance with reactant block C and in
Boltzmann balance with product block �.

Normalized Distributions

ρ∗ = n∗

ñ∗
= PDγc(t)+ PSγs(t) , (54.36a)

γc(t)= n A(t)nB(t)

ñ AñB
, γs(t)= ns(t)

ñs
. (54.36b)

Stabilization and Dissociation Probabilities

PS = νs

(νs+νd)
, PD = νd

(νs+νd)
. (54.37)

Time Dependent Equations

dnc

dt
=−kc PSñ AñB [γc(t)−γs(t)] , (54.38a)

dns

dt
=−ν−s PDñs [γs(t)−γc(t)] , (54.38b)

dnc

dt
=−α̂3n A(t)nB(t)+ kdns(t) . (54.39)

where the recombination rate coefficient
(
cm3/s

)
and

dissociation frequency are, respectively,

α̂3 = kc PS = kcνs

(νs+νd)
, (54.40)

kd = ν−s PD = ν−sνd

(νs+νd)
, (54.41)

which also satisfy the macroscopic detailed balance
relation

α̂3ñ AñB = kdñs . (54.42)

Time Independent Treatment
The rate α̂3 given by the time dependent treatment can
also be deduced by viewing the recombination process
as a source block C kept fully filled with dissociated
species A and B maintained at equilibrium concentra-
tions ñ A, ñB (i. e. γc = 1) and draining at the rate α̂3ñ AñB
through a steady-state intermediate block E of excited
levels into a fully absorbing sink block � of fully associ-
ated species AB kept fully depleted with γs = 0 so that
there is no backward re-dissociation from block �. The
frequency kd is deduced as if the reverse scenario, γs = 1
and γc = 0, holds. This picture uncouples α̂ and kd,
and allows each coefficient to be calculated indepen-
dently. Both dissociation (or ionization) and association
(recombination) occur within block E .

If γc = 1 and γs = 0, then

ρ∗ = n∗/ñ∗ = νd/(νs+νd) , (54.43a)

K = ñ∗/ñ AñB = kc/νd = kcτd , (54.43b)

PS = νs/(νs+νd)= ρ∗νsτs , (54.43c)
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Electron–Ion and Ion–Ion Recombination 54.3 Macroscopic Methods 805

and the recombination coefficient is

α̂= kc PS = kc
(
ρ∗νsτd

)= Kρ∗νs . (54.44)

Microscopic Generalization
From (54.167), the microscopic generalizations of rate
(54.40) and probability (54.43c) are, respectively,

α̂= v
∞∫

0

εe−ε dε

b0∫

0

2πb dbPS(ε, b; R0) , (54.45a)

PS(ε, b; R0)=
R0∮

Ri

ρi(R)ν
b
i (R) dt ≡ 〈ρνs〉 τd ,

(54.45b)

where ρi(R)= n(ε, b; R)/ñ(ε, b; R); ν(b)i is the fre-
quency (54.164a) of (A–B)–M continuum-bound
collisional transitions at fixed A–B separation R, Ri
is the pericenter of the orbit, |i〉 ≡ |ε, b〉, and

b2
0 = R2

0 [1−V(R)/E] , ε= E/kBT , (54.45c)

α̂≡ kc
〈
PS〉

ε,b , v= (8kBT/πMAB)
1/2 , (54.45d)

kc =
{
πR2

0 [1−V(R0)/kBT ] v
}
. (54.45e)

where MAB is the reduced mass of A and B.

Low Gas Densities
Here ρi(R)= 1 for E > 0,

PS(ε, b; R0)=
R0∮

Ri

ν(t) dt =
R0∮

Ri

ds/λi . (54.46)

λi = (Nσ)−1 is the microscopic path length towards the
(A–B)–M reactive collision with frequency ν = Nvσ .
For λi constant, the rate (54.45a) reduces at low N to

α̂= (vσ0 N )

R0∫

0

(
1− V(R)

kBT

)
4πR2 dR (54.47)

which is linear in the gas density N .

54.3.3 Working Formulae
for Three-Body Collisional
Recombination at Low Density

For three-body ion–ion collisional recombination of the
form A++ B−+M in a gas at low density N , set V(R)=
−e2/R. Then (54.47) yields

α̂c(T )=
(

8kBT

πMAB

)1/2 4

3
πR3

0

(
1+ 3

2

Re

R0

)
(σ0 N ) ,

(54.48)

where Re = e2/kBT , and the trapping radius R0, deter-
mined by the classical variational method, is 0.41Re, in
agreement with detailed calculation. The special cases
are:

(a) e− +A+ + e−
Here, σ0 = 1

9πR2
e for (e−− e−) collisions for scattering

angles θ ≥ π/2 so that

α̂c
ee(T )= 2.7 × 10−20

(
300

T

)4.5

n e cm3 s−1

(54.49)

in agreement with Mansbach and Keck [54.3].

(b) A+ +B− +M
Here, σ0v≈ 10−9 cm3 s−1, which is independent of T
for polarization attraction. Then

α̂3(T )= 2 × 10−25
(

300

T

)2.5

N cm3 s−1 . (54.50)

(c) e− +A+ +M
Only a small fraction δ = 2m/M of the electron’s en-
ergy is lost upon (e−−M) collision so that (54.45a) for
constant λ is modified to

α̂eM = σ0 N

R0∫

0

4πR2 dR

Em∫

0

ñ(R, E)v dE (54.51a)

= veσ0 N

R0∫

0

4πR2 dR

εm∫

0

(
1− V(R)

E

)
εe−ε dε

(54.51b)

where ε= E/kBT , and Em = δe2/R = εmkBT is the
maximum energy for collisional trapping. Hence,

α̂eM(Te)= 4πδ

(
8kBTe

πm e

)1/2

R2
e R0 [σ0 N] (54.52a)

≈ 10−26

M

(
300

T

)2.5

Ncm3 s−1 , (54.52b)

where the mass M of the gas atom is now in u.
This result agrees with the energy diffusion result of
Pitaevskiı̆ [54.4] when R0 is taken as the Thomson radius
RT = 2

3 Re.
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806 Part D Scattering Theory

54.3.4 Recombination
Influenced by Diffusional Drift
at High Gas Densities

Diffusional-Drift Current
The drift current of A+ towards B− in a gas under an
A+–B− attractive potential V(R) is

J(R)=−D∇n(R)−
[

K

e
∇V(R)

]
n(R) (54.53a)

=−
(

DÑA ÑB e−V(R)/kBT ∂ρ

∂R

)
R̂ . (54.53b)

Relative Diffusion and Mobility Coefficients

D = DA +DB ,

K = K A +K B , De = K(kBT ) , (54.54)

where the Di and Ki are, respectively, the diffusion and
mobility coefficients of species i in gas M.

Normalized Ion-Pair R-Distribution

ρ(R)= n(R)

ÑA ÑB exp [−V(R)/kBT ]
. (54.55)

Continuity Equations for Currents and Rates

∂n

∂t
+∇ · J = 0 , R ≥ R0 (54.56a)

α̂RN(R0)ρ(R0)= α̂ρ(∞) (54.56b)

The rate of reaction for ion-pairs with separations
R ≤ R0 is αRN(R0). This is the recombination rate
that would be obtained for a thermodynamic equilib-
rium distribution of ion pairs with R ≥ R0, i. e. for
ρ(R ≥ R0)= 1.

Steady-State Rate of Recombination

α̂ÑA ÑB =
∞∫

R0

(
∂n

∂t

)
dR=−4πR2

0 J(R0) . (54.57)

Steady-State Solution

ρ(R)= ρ(∞)
(

1− α̂

α̂TR(R)

)
, R ≥ R0

(54.58a)

ρ(R0)= ρ(∞)
[
α̂/α̂RN(R0)

]
. (54.58b)

Recombination Rate

α̂= α̂RN(R0)α̂TR(R0)

α̂RN(R0)+ α̂TR(R0)
(54.59a)

→
{
α̂RN, N → 0

α̂TR, N →∞ .
(54.59b)

Diffusional-Drift Transport Rate

α̂TR(R0)= 4πD

⎛

⎜
⎝

∞∫

R0

eV(R)/kBT

R2 dR

⎞

⎟
⎠

−1

. (54.60)

With V(R)=−e2/R,

α̂TR(R0)= 4πKe
[
1− exp(−Re/R0)

]−1
, (54.61)

where Re = e2/kBT provides a natural unit of length.

Langevin Rate
For R0 & Re, the transport rate

α̂TR → α̂L = 4πKe , (54.62)

tends to the Langevin rate which varies as N−1.

Reaction Rate
When R0 is large enough that R0-pairs are in

(
E, L2

)

equilibrium (54.167),

α̂RN(R0)= v
∞∫

0

εe−ε dε

b0∫

0

2πb dbPS(ε, b; R0)

(54.63a)

≡ v
∞∫

0

εe−ε dε
[
πb2

0 PS(ε; R0)
]

(54.63b)

≡ vπb2
max PS(R0) , (54.63c)

where

b2
0 = R2

0 [1−V(R0)/E] , ε= E/kBT , (54.64a)

v= (8kT/πMAB)
1/2 , (54.64b)

b2
max = R2

0

(
1− V(R0)

kBT

)
. (54.64c)

The probability PS and its averages over b and (b, E)
for reaction between pairs with R ≤ R0 is determined in
(54.63a–c) from solutions of coupled master equations.
PS increases linearly with N initially and tends to unity
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at high N . The recombination rate (54.59a) with (54.63a)
and (54.61) therefore increases linearly with N initially,
reaches a maximum when α̂TR ≈ α̂RN and then decreases
eventually as N−1, in accord with (i).

Reaction Probability
The classical absorption solution of (54.157) is

PS(E, b; R0)= 1− exp

⎛

⎜
⎝−

R0∮

Ri

dsi

λi

⎞

⎟
⎠ . (54.65)

With the binary decomposition λ−1
i = λ−1

i A +λ−1
iB ,

PS = PA + PB − PA PB . (54.66)

Exact b2–Averaged Probability
With Vc = −e2/R for the A+–B− interaction in
(54.63b), and at low gas densities N ,

PA,B(E, R0)=
4R0

3λA,B

(
1− 3Vc(R0)

2Ei

)

[1−Vc(R0)/Ei ]
(54.67)

appropriate for constant mean free path λi .

(E,b2)–Averaged Probability
PS(R0) in (54.63c) at low gas density is

PA,B(R0)= PA,B(E = kBT, R0) . (54.68)

Thomson Trapping Distance
When the kinetic energy gained from Coulomb attrac-
tion is assumed lost upon collision with third bodies,

then bound A− B pairs are formed with R ≤ RT. Since
E = 3

2 kBT − e2/R, then

RT = 2

3

(
e2

kBT

)
= 2

3
Re . (54.69)

Thomson Straight-Line Probability
The E →∞ limit of (54.65) is

PT
A,B(b; RT)= 1− exp

[
−2

(
R2

T−b2)/λA,B

]
.

(54.70)

The b2-average is the Thomson probability

PT
A,B(RT)= 1− 1

2X2

[
1− e−2X(1+2X)

]

(54.71a)

for reaction of (A− B) pairs with R ≤ RT. As N → 0

PT
A,B(RT)→ 4

3
X
(

1− 3

4
X+ 2

5
X2− 1

6
X3+· · ·

)

(54.71b)

and tends to unity at high N . X = RT/λA,B = N(σ0 RT).
These probabilites have been generalized [54.5] to in-
clude hyperbolic and general trajectories.

Thomson Reaction Rate

α̂T = πR2
Tv

(
PT

A + PT
B − PT

A PT
B

)

→
⎧
⎨

⎩

4
3πR3

T

(
λ−1

A +λ−1
B

)
, N → 0

πR2
Tv, N →∞ .

(54.72)

54.4 Dissociative Recombination

54.4.1 Curve-Crossing Mechanisms

Direct Process.
Dissociative recombination (DR) for diatomic ions can
occur via a crossing at RX between the bound and repul-
sive potential energy curves V+(R) and Vd(R) for AB+
and AB∗∗, respectively. Here, DR involves the two-stage
sequence

e−+ AB+(vi)
kc�
νa
(AB∗∗)R

νd−→ A+ B∗ . (54.73)

The first stage is dielectronic capture whereby the free
electron of energy ε= Vd(R)−V+(R) excites an elec-
tron of the diatomic ion AB+ with internal separation R
and is then resonantly captured by the ion, at rate kc, to

form a repulsive state d of the doubly excited molecule
AB∗∗, which in turn can either autoionize at probability
frequency νa, or else in the second stage predissoci-
ate into various channels at probability frequency νd .
This competition continues until the (electronically ex-
cited) neutral fragments accelerate past the crossing
at RX . Beyond RX the increasing energy of relative sep-
aration reduces the total electronic energy to such an
extent that autoionization is essentially precluded and
the neutralization is then rendered permanent past the
stabilization point RX . This interpretation [54.6] has re-
mained intact and robust in the current light of ab initio
quantum chemistry and quantal scattering calculations
for the simple diatomics

(
O+

2 , N+
2 , Ne+2 , etc.

)
. Mechan-

ism (54.73) is termed the direct process which, in terms
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808 Part D Scattering Theory

of the macroscopic frequencies in (54.73), proceeds at
the rate

α̂= kc PS = kc [νd/(νa+νd)] , (54.74)

where PS is probability for A− B∗ survival against
autoionization from the initial capture at Rc to the cross-
ing point RX . Configuration mixing theories of this
direct process are available in the quantal [54.7] and
semiclassical-classical path formulations [54.8].

Indirect Process
In the three-stage sequence

e−+ AB+(v+i )→
[
AB+(v f )− e−

]
n → (AB∗∗)d

→ A+ B∗ (54.75)

the so-called indirect process [54.7] might contribute.
Here the accelerating electron loses energy by vibra-
tional excitation

(
v+i → v f

)
of the ion and is then

resonantly captured into a Rydberg orbital of the bound
molecule AB∗ in vibrational level v f , which then inter-
acts one way (via configuration mixing) with the doubly
excited repulsive molecule AB∗∗. The capture initially
proceeds via a small effect – vibronic coupling (the ma-
trix element of the nuclear kinetic energy) induced by the
breakdown of the Born-Oppenheimer approximation –
at certain resonance energies εn = E(v f )− E

(
v+i

)
and,

in the absence of the direct channel (54.73), would there-
fore be manifest by a series of characteristic very narrow
Lorentz profiles in the cross section. Uncoupled from
(54.73) the indirect process would augment the rate. Vi-
bronic capture proceeds more easily when v f = v+i +1
so that Rydberg states with n ≈ 7−9 would be involved[
for H+

2

(
v+i = 0

)]
so that the resulting longer periods of

the Rydberg electron would permit changes in nuclear
motion to compete with the electronic dissociation. Re-
combination then proceeds as in the second stage of
(54.73), i. e., by electronic coupling to the dissociative
state d at the crossing point. A multichannel quantum
defect theory [54.9] has combined the direct and indirect
mechanisms

Interrupted Recombination
The process

e−+ AB+(vi)
kc�
νa
(AB∗∗)d

νd→ A+ B∗

νnd � νdn[
AB+(v)− e−

]
n (54.76)

proceeds via the first (dielectronic capture) stage of
(54.73) followed by a two-way electronic transition

with frequency νdn and νnd between the d and n states.
All (n, v) Rydberg states can be populated, particularly
those in low n and high v since the electronic d−n inter-
action varies as n−1.5 with broad structure. Although
the dissociation process proceeds here via a second or-
der effect (νdn and νnd), the electronic coupling may
dominate the indirect vibronic capture and interrupt the
recombination, in contrast to (54.75) which, as written
in the one-way direction, feeds the recombination. Both
dip and spike structure has been observed [54.10].

54.4.2 Quantal Cross Section

The cross section for direct dissociative recombination

e−+ AB+
(
v+i

)
�

(
AB∗∗

)
r −→ A+ B∗ (54.77)

of electrons of energy ε, wavenumber k e and spin
statistical weight 2, for a molecular ion AB+(v+i ) of
electronic statistical weight ω+AB in vibrational level v+i
is

σDR(ε)= π

k2
e

(
ω∗AB

2ω+

) ∣∣aQ
∣∣2

=
(

h2

8πmeε

)(
ω∗AB

2ω+

) ∣∣aQ
∣∣2 . (54.78)

Here ω∗AB is the electronic statistical weight of the dis-
sociative neutral state of AB∗ whose potential energy
curve Vd crosses the corresponding potential energy
curve V+ of the ionic state. The transition T-matrix
element for autoionization of AB∗ embedded in the
(moving) electronic continuum of AB++ e− is the
quantal probability amplitude

aQ(v)= 2π

∞∫

0

V∗
dε(R)

[
ψ+∗v (R)ψd(R)

]
dR

(54.79)

for autoionization. Here ψ+v and ψd are the nuclear
bound and continuum vibrational wave functions for
AB+ and AB∗, respectively, while

Vdε(R)= 〈φd|Hel(r, R(t))|φε(r, R)〉r,ε̂
= V∗

εd(R) (54.80)

are the bound-continuum electronic matrix elements
coupling the diabatic electronic bound state wave func-
tions ψd(r, R) for AB∗ with the electronic continuum
state wave functions φε(r, R) for AB++ e−. The matrix
element is an average over electronic coordinates r and
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Electron–Ion and Ion–Ion Recombination 54.4 Dissociative Recombination 809

all directions ε̂ of the continuum electron. Both con-
tinuum electronic and vibrational wave functions are
energy normalized (Sect. 54.8.3), and

Γ (R)= 2π
∣
∣V∗

dε(R)
∣
∣2 (54.81)

is the energy width for autoionization at a given nu-
clear separation R. GivenΓ(R) from quantum chemistry
codes, the problem reduces to evaluation of continuum
vibrational wave functions in the presence of autoioniza-
tion. The rate associated with a Maxwellian distribution
of electrons at temperature T is

α̂= ve

∫
ε σDR(ε)e

−ε/kBT dε/(kBT )2 (54.82)

where ve is the mean speed (Sect. 54.9).

Maximum Cross Section and Rate
Since the probability for recombination must remain less
than unity,

∣∣aQ
∣∣2 ≤ 1 so that the maximum cross section

and rates are

σmax
DR (ε)=

π

k2
e

(
ω∗AB

2ω+

)
=
(

h2

8πmeε

)
(2+1) ,

(54.83)

where ω∗AB has been replaced by 2(2+1)ω+ under the
assumption that the captured electron is bound in a high
level Rydberg state of angular momentum , and

α̂max(T )= ve σ
max
DR (ε= kBT ) (54.84a)

≈ 5 × 10−7
(

300

T

)1/2

(2+1) cm3/s .

(54.84b)

Cross section maxima of 5(2+1)(300/T )× 10−14 cm2

are therefore possible, being consistent with the rate
(54.84b).

First-Order Quantal Approximation
When the effect of autoionization on the continuum vi-
brational wave function ψd(R) for AB∗ is ignored, then
a first-order undistorted approximation to the quantal
amplitude (54.79) is

TB(v
+)= 2π

∞∫

0

V∗
dε(R)

[
ψ+∗v (R)ψ

(0)
d (R)

]
dR

(54.85)

where ψ(0)d is ψd in the absence of the back reaction of
autoionization. Under this assumption, (54.78) reduces
to

σc(ε, v
+)= π

k2
e

(
ω∗AB

2ω+

) ∣∣TB
(
v+

)∣∣2 , (54.86)

which is then the cross section for initial electron cap-
ture since autoionization has been precluded. Although
the Born T -matrix (54.85) violates unitarity, the cap-
ture cross section (54.86) must remain less then the
maximum value

σmax
c = π

k2
e

(
ω∗AB

2ω+

)
=
(

h2

8πmeε

)(
ω∗AB

2ω+

)
,

(54.87)

since
∣∣aQ

∣∣2 ≤ 1. So as to acknowledge after the fact the
effect of autoionization, assumed small, and neglected
by (54.85), the DR cross section can be approximated
as

σDR
(
ε, v+

)= σc
(
ε, v+

)
PS , (54.88)

where PS is the probability of survival against autoion-
ization on the Vd curve until stabilization takes place at
some crossing point RX .

Approximate Capture Cross Section
With the energy-normalized Winans–Stückelberg vibra-
tional wave function

ψ
(0)
d (R)= ∣∣V ′

d(R)
∣∣−1/2

δ(R− Rc) , (54.89)

where Rc is the classical turning point for (A− B∗)
relative motion, (54.86) reduces to

σc(ε, v
+)= π

k2
e

(
ω∗AB

2ω+

)
[2πΓ(Rc)]

{∣∣ψ+v (Rc)
∣∣2

|V ′
d(Rc)|

}

(54.90)

where the term inside the braces in (54.90) is the effec-
tive Franck–Condon factor.

Six Approximate Stabilization Probabilities
(1) A unitarized T -matrix is

T = TB

1+
∣∣∣ 1

2 TB

∣∣∣
2 , (54.91)

so that PS = |T |2 / |TB|2 to give

PS(low ε)

=
(

1+ 1

4
|TB|2

)−2

=

⎧
⎪⎨

⎪⎩
1+π2

∣∣∣∣∣∣

∞∫

0

V∗
dε(R)

[
ψ+∗v (R)ψ

(0)
d (R)

]
dr

∣∣∣∣∣∣

2
⎫
⎪⎬

⎪⎭

−2

(54.92a)
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which is valid at low ε when only one vibrational
level v+, i. e., the initial level of the ion is repopulated
by autoionization.

(2) At higher ε, when population of many other ionic
levels v+f occurs, then

PS(ε)=
⎡

⎣1+ 1

4

∑

f

∣∣∣TB
(
v+f

)∣∣∣
2

⎤

⎦

−2

, (54.92b)

where the summation is over all the open vibrational
levels v+f of the ion. When no intermediate Rydberg
AB∗(v) states are energy resonant with the initial
e−+ AB+

(
v+

)
state, i. e., coupling with the indirect

mechanism is neglected, then (54.88) with (54.92b) is
the direct DR cross section normally calculated.

(3) In the high-ε limit when an infinite number of
v+f levels are populated following autoionization, the
survival probability, with the aid of closure, is then

PS =
⎡

⎢
⎣1+π2

RX∫

Rc

∣∣V∗
dε(R)

∣∣2
∣∣∣ψ(0)d (R)

∣∣∣
2

dR

⎤

⎥
⎦

−2

.

(54.93)

(4) On adopting in (54.93) the JWKB semiclassical
wave function for ψ(0)d , then

PS(high ε)=
⎡

⎢
⎣1+ 1

2�

RX∫

Rc

Γ(R)

v(R)
dR

⎤

⎥
⎦

−2

=
⎡

⎣1+ 1

2

tX∫

tc

νa(t) dt

⎤

⎦

−2

, (54.94)

where v(R) is the local radial speed of A− B relative
motion, and where the frequency νa(t) of autoionization
is Γ/�.

(5) A classical path local approximation for PS yields

PS = exp

⎛

⎝−
tX∫

tc

νa(t) dt

⎞

⎠ , (54.95)

which agrees to first-order for small νwith the expansion
of (54.94).

(6) A partitioning of (54.73) yields

PS = νd/(νa+νd)= (1+νaτd)
−1 , (54.96)

on adopting macroscopic averaged frequencies νi and
associated lifetimes τi = ν−1

i . The six surivival prob-
abilities in (54.92a,b), (54.93–54.96) are all suitable for
use in the DR cross section (54.88).

54.4.3 Noncrossing Mechanism

The dissociative recombination (DR) processes

e−+H+
3 →H2+H

→H+H+H (54.97)

at low electron energy ε, and

e−+HeH+ → He+H(n=2) (54.98)

have spurred renewed theoretical interest because they
both proceed at respective rates of

(
2 × 10−7 to 2 × 10−8

)

cm3 s−1 and 10−8 cm3 s−1 at 300 K. Such rates are gen-
erally associated with the direct DR, which involves
favorable curve crossings between the potential energy
surfaces, V+(R) and Vd(R) for the ion AB+ and neu-
tral dissociative AB∗∗ states. The difficulty with (54.97)
and (54.98) is that there are no such curve crossings,
except at ε≥ 8 eV for (54.97). In this instance, the pre-
vious standard theories would support only extremely
small rates when electronic resonant conditions do not
prevail at thermal energies. Theories [54.11,12] are cur-
rently being developed for application to processes such
as (54.97).

54.5 Mutual Neutralization

A++ B− → A+ B . (54.99)

Diabatic Potentials
V (0)i (R) and V (0)f (R) for initial (ionic) and final (cova-
lent) states are diagonal elements of

Vi f (R)=〈Ψi(r, R)|Hel(r, R)|Ψ f (r, R)〉r , (54.100)

where Ψi, f are diabatic states and Hel is the electronic
Hamiltonian at fixed internuclear distance R.

Adiabatic Potentials for a Two-State System

V±(R)= V0(R)±
[
∆2(R)+ ∣∣Vi f (R)

∣∣2
]1/2

,

(54.101a)

V0(R)= 1

2

[
V (0)i (R)+V (0)f (R)

]
, (54.101b)

∆(R)=
[
V (0)i (R)−V (0)f (R)

]
. (54.101c)
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For a single crossing of diabatic potentials at RX then
V (0)i (RX)= V (0)f (RX) and the adiabatic potentials at RX
are,

V±(RX)= V (0)i (RX)±Vi f (RX) (54.102)

with energy separation 2Vi f (RX).

54.5.1 Landau–Zener Probability for Single
Crossing at RX

On assuming∆(R)= (R− RX)∆
′(RX),where∆′(R)=

d∆(R)/dR, the probability for single crossing is

Pi f (RX)= exp [η(RX)/vX(b)] (54.103a)

η(RX)=
(

2π

�

) ∣
∣Vi f (RX)

∣
∣2

∆′(RX)
(54.103b)

vX(b)=
[
1−V (0)i (RX)/E−b2/R2

X

]1/2
.

(54.103c)

Overall Charge-Transfer Probability
From the incoming and outgoing legs of the trajectory,

PX(E)= 2Pi f (1− Pi f ) . (54.104)

54.5.2 Cross Section and Rate Coefficient
for Mutual Neutralization

σM(E)= 4π

bX∫

0

Pi f (1− Pi f )b db

= πb2
X PM , (54.105a)

πb2
X = π

(

1− V (0)i (RX)

E

)

R2
X

= π
(

1+ 14.4

RX
(
Å
)
E(eV)

)

R2
X . (54.105b)

PM is the b2-averaged probability (54.104) for charge-
transfer reaction within a sphere of radius RX .

The rate is

α̂M = (8kBT/πMAB)
1/2

∞∫

0

εσM(ε)e
−ε dε (54.106)

where ε = E/kBT .

54.6 One-Way Microscopic Equilibrium Current, Flux,
and Pair-Distributions

Notation:
M reduced mass MA MB/(MA +MB)

R internal separation of A− B

E orbital energy 1
2 Mv2+V(R)

L orbital angular momentum

L2 2MEb2 for E > 0

vR radial speed |Ṙ|
v mean relative speed (8kT/πMAB)

1/2

ε normalized energy E/kBT

ni pair distribution function n+i +n−i
n±i component of ni with Ṙ > 0 (+) and Ṙ < 0 (−).

All quantities on the RHS in the expressions (a)–(e)
below are to be multiplied by ÑA ÑB [ωAB/ωAωB]
where the ωi denote the statistical weights of
species i which are not included by the density of
states associated with the E, L2 orbital degrees of
freedom.

Case (a). |i〉 ≡ ∣∣R, E, L2
〉
.

Current: j±i (R)= n±(R, E, L2)vR ≡ n±i vR

Flux: 4πR2j±i (R)dE dL2= 4π2 e−E/kBT

(2πMkBT )3/2
dE dL2 .

(54.107)

This flux is independent of R. For dissociated pairs
E > 0,

4πR2 j±i (R)dE dL2 = [
vεe−ε dε

]
[2πbdb] .

(54.108)

(
R, E, L2

)
-Distribution:

n
(
R, E, L2)dRdE dL2

=
(
8π2/vR

)
e−E/kBT

(2πMkBT )3/2

(
dR

4πR2

)
dE dL2 . (54.109)
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Case (b). |i〉 ≡ |R, E〉; L2-integrated quantities.

Current: j±i (R)=
1

2
vn±(R, E)≡ 1

2
vn±i , (54.110)

Flux: 4πR2 j±i (R)dE = [
vεe−ε dε

]
πb2

0 ,

(54.111a)

πb2
0 = πR2 [1−V(R)/E] , (54.111b)

(R, E)-Distribution:

n(R, E)dRdE

= 2√
π

[
E−V(R)

kBT

]1/2

e−ε dεdR

≡ G MB(E, R)dR , (54.112)

which defines the Maxwell–Boltzmann velocity vistri-
bution G MB in the presence of the field V(R).

Case (c).
(
E, L2

)
-integrated quantities.

Current: j±(R)= 1

4
ve−V(R)/kBT , (54.113)

Flux: 4πR2 j±(R)= πR2ve−V(R)/kBT , (54.114)

Distribution: n(R)= e−V(R)/kBT . (54.115)

When E-integration is only over dissociated states
(E > 0), the above quantities are

j±d (R)=
1

4
v [1−V(R)/kBT ] , (54.116)

4πR2 j±d (R)= πR2
(

1− V(R)

kBT

)
v≡ πb2

maxv ,

(54.117)

n(R)= [1−V(R)/kBT ] . (54.118)

Case (d).
(
E, L2

)
-distribution. For Bound Levels

n(E, L2)dE dL2 = 4π2τR(E, L)

(2πMkBT )3/2
e−E/kBTdE dL2 ,

(54.119)

where τR =
∮

dt = (∂JR/∂E) is the period for bounded
radial motion of energy E and radial action
JR(E, L)= M

∮
vR dR.

Case (e). E-distribution. For bound levels

n(E)dE = 2e−ε√
π

dε

RA∫

0

(
E−V

kBT

)1/2

dR , (54.120)

where RA is the turning point E = V(RA).

Example. For electron–ion bounded motion, V(R)=
−Ze2/R, RA = Ze2/|E|, Re = Ze2/kBT , ε= E/kBT .
Then τR = 2π(m/Ze2)1/2(RA/2)3/2,

RA∫

0

(
Re

R
−|ε|

)1/2

dR= π
2

4
R5/2

A R1/2
e , (54.121)

and

ns(E)dE =
(

2e−ε√
π

dε

)
π2

4
R5/2

A R1/2
e (54.122)

=
(

2e−ε√
π

dε

)(
π2 R3

e

4 |ε|5/2
)
. (54.123)

For closely spaced levels in a hydrogenic e−− AZ+
system,

ns(p, )= n
(
E, L2)

(
dE

dp

)(
dL2

d

)
(54.124a)

ns(p)= n(E)

(
dE

dp

)
. (54.124b)

Using E =−(2p2
)−1(

Z2e2/a0
)

and L2 = (+
1/2)2�2 for level (p, ) then

τR(E, L)
dE

dp

(
dL2

d

)
=
(

dJR

dp

)(
dL2

d

)
(54.125)

= h
(
(2+1)�2) (54.126)

ns(p, )

n e N+ = 2(2+1)

2ω+A

h3

(2πmekBT )3/2
eIp/kBT ,

(54.127a)

ns(p)

n e N+ = 2p2

2ω+A

h3

(2πmekBT )3/2
eIp/kBT , (54.127b)

in agreement with the Saha ionization formula (54.16)
where N+ is the equilibrium concentration of AZ+ ions
in their ground electronic states. The spin statistical
weights are ωeA = ωe = 2.

54.7 Microscopic Methods for Termolecular Ion–Ion Recombination

At low gas density, the basic process

A++ B−+M → AB+M (54.128)

is characterized by nonequilibrium with respect to E.
Dissociated and bound A+–B− ion pairs are in equilib-
rium with respect to their separation R, but bound pairs

Part
D

5
4
.7



Electron–Ion and Ion–Ion Recombination 54.7 Microscopic Methods for Termolecular Ion–Ion Recombination 813

are not in E-equilibrium with each other. L2-equilibrium
can be assumed for ion–ion recombination but not for
ion–atom association reactions.

At higher gas densities N , there is nonequilibrium
in the ion-pair distributions with respect to R, E and L2.
In the limit of high N , there is only nonequilibrium with
respect to R. See [54.13] and the appropriate reference
list for full details of theory.

54.7.1 Time Dependent Method:
Low Gas Density

Energy levels Ei of A+–B− pairs are so close that they
form a quasicontinuum with a nonequilibrium distribu-
tion over Ei determined by the master equation

dni(t)

dt
=

∞∫

−D

(
niνi f −n f ν fi

)
dE f , (54.129)

where ni dEi is the number density of pairs in the interval
dEi about Ei , and νi f dE f is the frequency of i-pair
collisions with M that change the i-pair orbital energy
from Ei to between E f and E f + dE f . The greatest
binding energy of the A+–B− pair is D.

Association Rate

RA(t)=
∞∫

−D

PS
i

(
dni

dt

)
dEi (54.130a)

= α̂NA(t)NB(t)− kns(t) , (54.130b)

where PS
i is the probability for collisional stabiliza-

tion (recombination) of i-pairs via a sequence of energy
changing collisions with M. The coefficients for C → �
recombination out of the C-block with ion concentra-
tions NA(t), NB(t) (in cm−3) into the � block of total
ion-pair concentrations ns(t) and for � →C dissociation
are α̂

(
cm3 s−1

)
and k

(
s−1

)
, respectively.

One-Way Equilibrium Collisional Rate
and Detailed Balance

Ci f = ñiνi f = ñ f ν fi = C fi , (54.131)

where the tilde denotes equilibrium (Saha) distributions.

Normalized Distribution Functions

γi(t)= ni(t)/ñ
S
i , γs(t)= ns(t)/ñ

B
s (t) , (54.132)

γc(t)= NA(t)NB(t)/ÑA ÑB , (54.133)

where ñS
i and ñB are the Saha and Boltzmann distribu-

tions.

Master Equation for γi(t)

dγi(t)

dt
=−

∞∫

−D

[
γi(t)−γ f (t)

]
νi f dE f . (54.134)

Quasi-Steady State (QSS) Reduction
Set

γi(t)= PD
i γc(t)+ PS

i γs(t)
t→∞−→1 (54.135)

where PD
i and PS

i are the respective time-independent
portions of the normalized distribution γi which ori-
ginate, respectively, from blocks C and �. The energy
separation between the C and � blocks is so large
that PS

i = 0 (Ei ≥ 0, C block), PS
i ≤ 1 (0> Ei ≥−S,

E block), PS
i = 1 (−S ≥ Ei ≥ −D, � block). Since

PS
i + PD

i = 1, then

dγi(t)

dt
=− [γc(t)−γs(t)]

∞∫

−D

(
PD

i − PD
f

)
Ci f dE f .

(54.136)

Recombination and Dissociation Coefficients
Equation (54.135) in (54.130a) enables the recombin-
ation rate in (54.130b) to be written as

α̂ÑA ÑB =
∞∫

−D

PD
i dEi

∞∫

−D

(
PD

i − PD
f

)
Ci f dE f .

(54.137)

The QSS condition (dni/dt = 0 in block E) is then

PD
i

∞∫

−D

νi f dE f =
E∫

−D

νi f PD
f dE f , (54.138)

which involves only time independent quantities. Under
QSS, (54.137) reduces to the net downward current
across bound level −E,

α̂ÑA ÑB =
∞∫

−E

dEi

−E∫

−D

(
PD

i − PD
f

)
Ci f dE f ,

(54.139)

which is independent of the energy level (−E) in the
range 0 ≥−E ≥−S of block E .

The dissociation frequency k in (54.130b) is

kñs =
−E∫

−D

dEi

∞∫

−E

(
PS

i − PS
f

)
Ci f dE f , (54.140)
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and macroscopic detailed balance α̂ÑA ÑB = kñs is
automatically satisfied. α̂ is the direct (C → �) colli-
sional contribution (small) plus the (much larger) net col-
lisional cascade downward contribution from that frac-
tion of bound levels which originated in the continuum
C. kd is the direct dissociation frequency (small) plus the
net collisional cascade upward contribution from that
fraction of bound levels which originated in block �.

54.7.2 Time Independent Methods:
Low Gas Density

QSS-Rate. Since recombination and dissociation (ion-
ization) involve only that fraction of the bound state
population which originated from the C and � blocks,
respectivel,y recombination can be viewed as time inde-
pendent with

NA NB = ÑA ÑB, ns(t)= 0 , (54.141a)

ρi = ni/ñi ≡ PD
i (54.141b)

α̂ÑA ÑB =
∞∫

−E

dEi

−E∫

−D

(
ρi −ρ f

)
Ci f dE f . (54.141c)

QSS Integral Equation.

ρi

∞∫

−D

νi f dE f =
∞∫

−S

ρ f νi f dE f (54.142)

is solved subject to the boundary condition

ρi = 1(Ei ≥ 0) , ρi = 0(−S ≥ Ei ≥−D) .
(54.143)

Collisional Energy-Change Moments.

D(m)(Ei)= 1

m!
∞∫

−D

(E f − Ei)
mCi f dE f , (54.144)

D(m)i = 1

m!
d

dt

〈
(∆E)m

〉
. (54.145)

Averaged Energy-Change Frequency. For an equilib-
rium distribution ñi of Ei -pairs per unit interval dEi per
second,

D(1)i = d

dt
〈∆E〉 .

Averaged Energy-Change per Collision.

〈∆E〉 = D(1)i /D(0)i .

Time Independent Dissociation. The time independent
picture corresponds to

ns(t)= ñs, γc(t)= 0, ρi = ni/ñi ≡ PS
i ,

(54.146)

in analogy to the macroscopic reduction of (54.38a,b).

Variational Principle
The QSS-condition (54.135) implies that the fraction PD

i
of bound levels i with precursor C are so distributed
over i that (54.137) for α̂ is a minimum. Hence PD

i or ρi
are obtained either from the solution of (54.142) or from
minimizing the variational functional

α̂ÑA ÑB =
∞∫

−D

ni dEi

∞∫

−D

(
ρi −ρ f

)
νi f dE f

(54.147a)

= 1

2

∞∫

−D

dEi

∞∫

−D

(
ρi −ρ f

)2
Ci f dE f

(54.147b)

with respect to variational parameters contained in a trial
analytic expression for ρi . Minimization of the quadratic
functional (54.147b) has an analogy with the prin-
ciple of least dissipation in the theory of electrical
networks.

Diffusion-in-Energy-Space Method
Integral Equation (54.142) can be expanded in terms of
energy-change moments, via a Fokker–Planck analysis
to yield the differential equation

∂

∂Ei

(
D(2)i

∂ρi

∂Ei

)
= 0 , (54.148)

with the QSS analytical solution

ρi(Ei)=
⎛

⎜
⎝

0∫

Ei

dE

D(2)(E)

⎞

⎟
⎠

⎛

⎝
0∫

−S

dE

D(2)(E)

⎞

⎠

−1

(54.149)

of Pitaevskiı̆ [54.4] for (e−+ A++M) recombination
where collisional energy changes are small. This distri-
bution does not satisfy the exact QSS condition (54.142).
When inserted in the exact non-QSS rate (54.147b),
highly accurate α̂ for heavy-particle recombination are
obtained.
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Bottleneck Method
The one-way equilibrium rate

(
cm−3 s−1

)
across −E,

i. e., (54.141c) with ρi = 1 and ρ f = 0, is

α̂(−E)ÑA ÑB =
∞∫

−E

dEi

−E∫

−D

Ci f dE f . (54.150)

This is an upper limit to (54.141c) and exhibits a min-
imum at −E∗, the bottleneck location. The least upper
limit to α̂ is then α̂(−E∗).

Trapping Radius Method
Assume that pairs with internal separation R ≤ RT re-
combine with unit probability so that the one-way
equilibrium rate across the dissociation limit at E = 0
for these pairs is

α̂(RT)ÑA ÑB =
RT∫

0

dR

0∫

V(R)

Ci f (R)dE f , (54.151)

where V(R)=−e2/R, and Ci f (R)= ñi(R)νi f (R) is the
rate per unit interval (dRdEi)dE f for the Ei → E f
collisional transitions at fixed R in

(
A+− B−

)
Ei ,R

+M → (
A+− B−

)
E f ,R

+M .

(54.152)

The concentration
(
cm−3

)
of pairs with internal

separation R and orbital energy Ei in the interval
dRdEi about (R, Ei) is ñi(R)dRdEi . Agreement with
the exact treatment [54.13] is found by assigning
RT = (0.48 - 0.55)

(
e2/kBT

)
for the recombination of

equal mass ions in an equal mass gas for various ion–
neutral interactions. For further details on the above
methods, see the appropriate references on termolecular
recombination in the general references on page 825.

54.7.3 Recombination
at Higher Gas Densities

As the density N of the gas M is raised, the recombin-
ation rate α̂ increases initially as N to such an extent that
there are increasingly more pairs n−i (R, E) in a state of
contraction in R than there are those n+i (R, E) in a state
of expansion; i. e., the ion-pair distribution densities
n±i (R, E) per unit interval dE dR are not in equilib-
rium with respect to R in blocks C and E . Those in the
highly excited block E in addition are not in equilib-
rium with respect to energy E. Basic sets of coupled
master equations have been developed [54.13] for the
microscopic nonequilibrium distributions n±

(
R, E, L2

)

and n±(R, E) of expanding (+) and contracting (−)
pairs with respect to A–B separation R, orbital en-
ergy E and orbital angular momentum L2. With
n
(
R, Ei , L2

i

)≡ ni(R), and using the notation defined
at the beginning of Sect. 54.6, the distinct regimes
for the master equations discussed in Sect. 54.7.4 are:

Low N Equilibrium in R, but not in E, L2

→ master equation for n
(
E, L2

)
.

Pure Coulomb Equilibrium in L2

attraction → master equation for n(E).

High N Nonequilibrium in R, E, L2

→ master equation for n±i (R).
Highest N Equilibrium in

(
E, L2

)
but not in R

→ macroscopic transport equation

(54.56a) in n(R).

Normalized Distributions
For a state |i〉 ≡ ∣∣E, L2

〉
,

ρi(R)= ni(R)

ñi(R)
, ρ±i (R)=

n±i (R)
ñ±i (R)

,

ρi(R)= 1

2

(
ρ+i +ρ−i

)
. (54.153)

Orbital Energy and Angular Momentum

Ei = 1

2
MABv

2+V(R) , (54.154a)

Ei = 1

2
MABv

2
R+Vi(R) , (54.154b)

Vi(R)= V(R)+ L2
i

2MAB R2
, (54.154c)

Li = |R× MABv| ,
L2

i = (2MAB Ei)b
2, Ei > 0 . (54.154d)

Maximum Orbital Angular Momenta
(1) A specified separation R can be accessed by all orbits
of energy Ei with L2

i between 0 and

L2
im(Ei , R)= 2MAB R2 [Ei −V(R)] . (54.155a)

(2) Bounded orbits of energy Ei < 0 can have L2
i be-

tween 0 and

L2
ic(Ei)= 2MAB R2

c [Ei −V(Rc)] , (54.155b)

where Rc is the radius of the circular orbit determined
by ∂Vi/∂R = 0, i. e., by Ei = V(Rc)+ 1

2 Rc(∂V/∂R)Rc .
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54.7.4 Master Equations

Master Equation for n±i (R)±
(
R, Ei , L2

i

)
[54.13]

± 1

R2

∂

∂R

[
R2n±i (R) |vR|

]

Ei ,L2
i

=−
∞∫

V(R)

dE f

L2
f m∫

0

dL2
f

[
n±i (R)νi f (R)

−n±f (R)ν fi(R)
]
. (54.156)

The set of master equations [54.13] for n+i is coupled
to the n−i set by the boundary conditions n−i

(
R∓i

)=
n+i

(
R∓i

)
at the pericenter R−i for all Ei and apocenter

R+i for Ei < 0 of the Ei , L2
i -orbit.

Master Equations
for Normalized Distributions [54.13]

±|vR| ∂ρ
±
i

∂R
=−

∞∫

V(R)

dE f

L2
f m∫

0

dL2
f (54.157)

×
[
ρ±i (R)−ρ±f (R)

]
νi f (R) .

Corresponding Master equations for the L2 integrated
distributions n±(R, E) and ρ±(R, E) have been de-
rived [54.13].

Continuity Equations

Ji =
[
n+i (R)−n−i (R)

] |vR| =
(
ρ+i −ρ−i

)
j̃±i

(54.158)

1

R2

∂

∂R
(R2 Ji)=−

∞∫

V(R)

dE f

L2
f m∫

0

dL2
f

×
[
ni(R)νi f (R)−n f (R)ν fi(R)

]
,

(54.159)

1

2
|vR| ∂

[
ρ+i (R)−ρ−i (R)

]

∂R

=−
∞∫

V(R)

dE f

L2
f m∫

0

dL2
f

[
ρi(R)−ρ f (R)

]
νi f (R) .

(54.160)

54.7.5 Recombination Rate

Flux Representation
The R0 →∞ limit of

α̂ÑA ÑB =−4πR2
0 J(R0) (54.161)

has the microscopic generalization

α̂ÑA ÑB =
∞∫

V(R0)

dEi

L2
ic∫

0

dL2
i

[
4πR2

0 j̃±i (R0)
]

×
[
ρ−i (R0)−ρ+i (R0)

]
, (54.162)

where L2
ic is given by (54.155b) with Rc = R0 for bound

states and is infinite for dissociated states, and where

ρ−i (R0)−ρ+i (R0)=
R0∮

Ri

ρi(R)
[
νb

i (R)+νc
i (R)

]
dt ,

(54.163)

with

ρi(R)ν
b
i (R)=

V(R0)∫

V(R)

dE f

L2
f m∫

0

dL2
f

[
ρi(R)−ρ f (R)

]

× νi f (R) , (54.164a)

ρi(R)ν
c
i (R)=

∞∫

V(R0)

dE f

L2
f m∫

0

dL2
f

[
ρi(R)−ρ f (R)

]

× νi f (R) . (54.164b)

Collisional Representation

α̂ÑA ÑB =
∞∫

V(R0)

dEi

L2
ic∫

0

dL2
i

R0∫

Ri

ñi(R) dR

×
[
ρi(R)ν

b
i (R)

]
, (54.165)

which is the microscopic generalization of the macro-
scopic result α̂= Kρ∗νs = αRN (R0)ρ(R0).

The flux for dissociated pairs Ei > 0 is

4πR2 |vR| ñ±i (R) dE dL2

= [
vεe−ε dε

]
[2πb db] ÑA ÑB , (54.166)

so the rate (54.165) as R0 →∞ is

α̂= v
∞∫

0

εe−ε dε

b0∫

0

2πb db

R0∮

Ri

ρi(R)ν
b
i (R) dt ,

(54.167)
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which is the microscopic generalization (54.45) of the
macroscopic result α̂= kc PS of (54.44).

Reaction Rate αRN (R0)

On solving (54.157) subject to ρ(R0)= 1, then
according to (54.56b), α̂ determined by (54.162)
is the rate α̂RN of recombination within the
(A− B) sphere of radius R0. The overall rate

of recombination α̂ is then given by the full
diffusional-drift reaction rate (54.59b) where the
rate of transport to R0 is determined uniquely by
(54.60).

For development of theory [54.13] and computer
simulations, see the reference list on Termolecu-
lar Ion–Ion Recombination: Theory, and Simulations,
respectively.

54.8 Radiative Recombination

In the radiative recombination (RR) process

e−(E, ′)+ AZ+(c)→ A(Z−1)+(c, n)+hν ,
(54.168)

the accelerating electron e− with energy and angular
momentum (E, ′) is captured, via coupling with the
weak quantum electrodynamical interaction (e/mec)A·
p associated with the electromagnetic field of the mov-
ing ion, into an excited state n with binding energy In
about the parent ion AZ+ (initially in an electronic
state c). The simultaneously emitted photon carries away
the excess energy hν = E+ In and angular momentum
difference between the initial and final electronic states.
The cross section σn

R (E) for RR is calculated (a) from
the Einstein A coefficient for free–bound transitions
or (b) from the cross section σn

I (hν) for photoion-
ization (PI) via the detailed balance (DB) relationship
appropriate to (54.168).

The rates 〈veσR〉 and averaged cross sections 〈σR〉
for a Maxwellian distribution of electron speeds ve are
then determined from either

α̂n
R (Te)= ve

∞∫

0

εσn
R (ε) exp(−ε)dε

= ve

〈
σn

R (Te)
〉
, (54.169)

where ε = E/kBTe, or from the Milne DB relation
(54.243) between the forward and reverse macroscopic
rates of (54.168). Using the hydrogenic semiclassical σn

I
of Kramers [54.5], together with an asymptotic ex-
pansion [54.14] for the g-factor of Gaunt [54.15], the
quantal/semiclassical cross section ratio in (54.249),
Seaton [54.16] calculated α̂n

R .
The rate of electron energy loss in RR is
〈

dE

dt

〉

n
= n eve(kBTe)

∞∫

0

ε2σn
R (ε)e

−ε dε ,

(54.170)

and the radiated power produced in RR is

〈
d(hν)

dt

〉

n
= n eve

∞∫

0

εhνσn
R (ε)e

−ε dε . (54.171)

Standard Conversions

E = p2
e/2m e = �

2k2
e/2m e = k2

ea2
0

(
e2/2a0

)

(54.172a)

= κ2(Z2e2/2a0
)= ε(Z2e2/2a0

)
, (54.172b)

Eν = hν = �ω= �kνc = (In + E) (54.172c)

≡ (
1+n2ε

)(
Z2e2/2n2a0

)
, (54.172d)

hν/In = 1+n2ε, k2
ea2

0 = 2E/
(
e2/a0

)
, (54.172e)

kνa0 = (hν)α/
(
e2/a0

)
, (54.172f)

k2
ν/k

2
e = (hν)2/

(
2Emec2) (54.172g)

= α2(hν)2/
[
2E

(
e2/a0

)]
, (54.172h)

IH = e2/2a0, α= e2/�c = 1/137.035 9895 ,

α−2 = mec2/
(
e2/a0

)
, In =

(
Z2/n2)IH .

(54.172i)

The electron and photon wavenumbers are k e and kν ,
respectively.

54.8.1 Detailed Balance
and Recombination-Ionization
Cross Sections

Cross sections σn
R (E) and σn

I (hν) for radiative re-
combination (RR) into and photoionization (PI) out
of level n of atom A are interrelated by the detailed
balance relation

geg+A k2
eσ

n
R (E)= gνgA k2

νσ
n
I (hν) , (54.173)

where ge = gν = 2. Electronic statistical weights of
A and A+ are gA and g+A , respectively. Thus, using
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(54.172g) for k2
ν/k

2
e,

σn
R (E)=

(
gA

2g+A

)(
(hν)2

Emec2

)
σn

I (hν) . (54.174)

The statistical factors are:
(a) For

(
A++ e−

)
state c

[
Sc, Lc; ε, ′,m′]:

g+A = (2Sc+1)(2Lc+1).

(b) For A(n) state b[Sc, Lc; n, ]SL:
gA = (2S+1)(2L+1).

(c) For n electron outside a closed shell:
g+A = 1, gA = 2(2+1).

Cross sections are averaged over initial and summed
over final degenerate states. For case (c),

σn
I =

1

n2

n−1∑

=0

(2+1)σn
I ; (54.175a)

σn
R =

n−1∑

=0

2(2+1)σn
R . (54.175b)

54.8.2 Kramers Cross Sections, Rates,
Electron Energy-Loss Rates
and Radiated Power
for Hydrogenic Systems

These are all calculated from application of detailed bal-
ance (54.173) to the original σn

I (hν) of Kramers [54.5].

Semiclassical (Kramers) Cross Sections
For hydrogenic systems,

In = Z2e2

2n2a0
, hν = In + E . (54.176)

The results below are expressed in terms of the quantities

bn = In

kBTe
, (54.177)

σn
I0 =

64πa2
0α

3
√

3

( n

Z2

)

= 7.907 071 × 10−18(n/Z2) cm2 ,

(54.178)

σR0(E)=
(

8πa2
0α

3

3
√

3

)(
Z2e2/a0

)

E
, (54.179)

α̂0(Te)= ve

(
8πa2

0α
3

3
√

3

)(
Z2e2/a0

)

kBTe
(54.180)

PI and RR Cross Sections for Level n. In the Kramer (K)
semiclassical approximation,

Kσ
n
I (hν)=

(
In

hν

)3

σn
I0 = Kσ

n
I (hν) , (54.181)

Kσ
n
R(E)= σR0(E)

(
2

n

)(
In

In + E

)
(54.182)

= 3.897 × 10−20

×
[
nε
(
13.606+n2ε2)

]−1
cm2 ,

where ε is in units of eV and is given by

ε= E/Z2 ≡ (
2.585 × 10−2/Z2)(Te/300

)
.

(54.183)

Equation (54.182) illustrates that RR into low n at low E
is favored.

Cross Section for RR into Level n.

Kσ
n
R =

[
(2+1)/n2

]
Kσ

n
R . (54.184)

Rate for RR into Level n.

α̂n
R(Te)= α̂0(Te) (2/n) bn ebn E1(bn) , (54.185a)

which tends for large bn (i. e., kBTe & In) to

α̂n
R(Te → 0)= α̂0(Te) (2/n)

×
(

1−b−1
n +2b−2

n −6b−3
n +· · ·

)
.

(54.185b)

The Kramers cross section for photoionization at
threshold is σn

I0 and

σn
R0 = 2σR0/n; α̂n

0 = 2α̂0/n (54.186)

provide the corresponding Kramers cross section
and rate for recombination as E → 0 and Te → 0,
respectively.

RR Cross Sections and Rates into All Levels n ≥ n f .

σT
R(E)=

∞∫

n f

σn
R(E) dn

= σR0(E) ln(1+ I f /E) , (54.187a)

α̂T
R(Te)= α̂0(Te)

[
γ + ln b f + eb f E1(b f )

]

(54.187b)
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Useful Integrals.

∞∫

0

e−x ln x dx = γ , (54.188a)

∞∫

b

x−1 e−x dx = E1(b) , (54.188b)

b∫

0

ex E1(x) dx = γ + ln b+ eb E1(b) , (54.188c)

b∫

0

[
1− x ex E1(x)

]
dx

= γ + ln b+ eb(1−b)E1(b) , (54.188d)

where γ = 0.577 2157 is Euler’s constant, and E1(b) is
the first exponential integral such that

beb E1(b)
b%1−→1−b−1+2b−2−6b−3+24b−4+· · · .

Electron Energy Loss Rate
Energy Loss Rate for RR into Level n.

〈
dE

dt

〉

n
= n eα̂

n
R(Te)kBTe

(
1−bn ebn E1(bn)

ebn E1(bn)

)
,

(54.189a)

which for large bn (i. e. (kBTe)& In) tends to

n eα̂
n
R(Te)kBTe

(
1−b−1

n +3b−2
n −13b−3

n +· · ·
)

(54.189b)

with (54.185a) for α̂n
R.

Energy Loss Rate for RR into All Levels n≥ nf .

〈
dE

dt

〉

= n ekBTeα̂0(Te)
[
γ + ln b f + eb f E1(b f )(1−b f )

]

(54.190a)

= n e(kBTe)
[
α̂T

R(Te)− α̂0(Te)b f eb f E1(b f )
]

(54.190b)

with (54.187b) and (54.180) for α̂T
R and α̂0.

Radiated Power
Radiated Power for RR into Level n.

〈
d(hν)

dt

〉

n
= n eα̂

n
R(Te)In

[
bn ebn E1(bn)

]−1
,

(54.191a)

which for large bn (i. e. (kBTe)& In) tends to

n eα̂
n
R(Te)In

(
1+b−1

n −b−2
n +3b−3

n +· · ·
)
.

(54.191b)

Radiated Power for RR into All Levels n≥ nf .
〈

d(hν)

dt

〉
= n eα̂0(Te)I f . (54.192)

To allow n-summation, rather than integration as in
(54.187a), to each of the above expressions is added
1/2σ

n f
R , 1/2α̂

n f
R , 1/2〈dE/dt〉n f and 1/2〈d(hν)/dt〉n f ,

respectively. The expressions valid for bare nuclei of
charge Z are also fairly accurate for recombination to
a core of charge Zc and atomic number Z A, provided
that Z is identified as 1/2(Z A + Zc).

Differential Cross Sections for Coulomb Elastic Scat-
tering.

σc(E, θ)= b2
0

4 sin4 1
2θ
, b2

0 = (Ze2/2E)2 .

(54.193)

The integral cross section for Coulomb scattering by
θ ≥ π/2 at energy E = (3/2)kBT is

σc(E)= πb2
0 =

1

9
πR2

e, Re = e2/kBT . (54.194)

Photon Emission Probability.

Pν = σn
R(E)/σc(E) . (54.195a)

This is small and increases with decreasing n as

Pν(E)=
(

8α3

3
√

3

)
8

n

E

(e2/a0)

(
In

hν

)
. (54.195b)

54.8.3 Basic Formulae for Quantal Cross
Sections

Radiative Recombination
and Photoionization Cross Sections

The cross section σn
R for recombination follows from

the continuum-bound transition probability Pi f per unit
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time. It is also provided by the detailed balance relation
(54.173) in terms of σn

I which follows from Pfi . The
number of radiative transitions per second is[

geg+Aρ(E) dE dk̂e

]
Pi f

[
ρ(Eν) dEν dk̂ν

]

= geg+Ave
dpe

(2π�)3
σR(ke)= gνgA c

dkν
(2π)3

σI(kν) ,

(54.196)

where the electron current
(
cm−2 s−1

)
is

ve dpe

(2π�)3
=
(

2mE

h3

)
dE dk̂e , (54.197)

and the photon current
(
cm−2 s−1

)
is

c
dkν
(2π)3

= c
(hν)2

(2π�c)3
dEν dk̂ν . (54.198)

Time Dependent Quantum Electrodynamical Inter-
action.

V(r, t)= e

mc
A· p = ie

(
2πhν

V

)1/2

(ε̂ ·r)e−i(kν·r−ωt)

≡ V(r)eiωt . (54.199)

In the dipole approximation, e−ikν·r ≈ 1.

Continuum-Bound State-to-State Probability.

Pi f = 2π

�

∣∣V fi
∣∣2 δ [Eν− (E+ In)]

V fi = 〈Ψnm(r)| V(r) |Ψi(r, ke)〉 . (54.200)

Number of Photon States in Volume V.

ρ
(
Eν, k̂ν

)
dEν dk̂ν =V(hν)2/(2π�c)3 dEν dk̂ν

(54.201a)

=V
[
ω2/(2πc)3

]
dω dk̂ν .

(54.201b)

Continuum-Bound Transition Rate. On summing over
the two directions (gν = 2) of polarization, the rate for
transitions into all final photon states is

Anm
(
E, k̂e

)=
∫

Pi f ρ(Eν) dEν dk̂ν

= 4e2

3�

(hν)3

(3�c)3
|〈Ψnm |r|Ψi(ke)〉|2 .

(54.202)

Transition Frequency: Alternative Formula.

Anm
(
E, k̂e

)= (2π/�) ∣∣D fi
∣∣2 , (54.203)

where the dipole atom-radiation interaction coupling is

D fi(ke)=
(

2ω3

3πc3

)1/2

〈Ψnm |e r|Ψi(ke)〉 . (54.204)

RR Cross Section into Level (nm).

σnm
R (E)= 1

4π

∫
σnm

R (ke)dk̂e

= h3ρ(E)

8πm e E

∫
Anm

(
E, k̂e

)
dk̂e . (54.205)

RR Cross Section into Level (n).

σn
R (E)=

8π2

3

(
(αhν)3

2(e2/a0)E

)
ρ(E)Rn

I (E)

Rn
I (E)=

∫
dk̂e

∑

m

|〈Ψnm |r|Ψi(ke)〉|2 . (54.206)

Transition T-Matrix for RR.

σn
R (E)=

πa2
0

(ka0)2
|TR|2 ρ(E) , (54.207)

|TR|2 = 4π2
∫ ∑

m

∣∣D fi
∣∣2 dk̂e . (54.208)

Photoionization Cross Section. From detailed balance
in (54.196), σn

I is

σn
I (hν)=

(
8π2

3

)
αhν

(
g+A
gA

)

ρ(E)Rn
I (E) .

(54.209)

Continuum Wave Function Expansion.

Ψi(ke, r)=
∑

′m′
i
′
eiη′ RE′(r)Y′m′

(
k̂e
)
Y′m′(r̂) .

(54.210)

Energy Normalization. With ρ(E)= 1,∫
Ψi(ke; r)Ψ ∗

i

(
k′e; r

)
dr = δ(E− E′)δ

(
k̂e− k̂′e

)
.

(54.211)

Plane Wave Expansion.

eik·r = 4π
∞∑

=0

i j(kr)Y∗
m

(
k̂
)
Ym(r̂) (54.212)

j(kr)∼ sin

(
kr− 1

2
π

)
/(kr) . (54.213)

For bound states,

Ψnm(r)= Rn(r)Ym(r̂) . (54.214)

RR and PI Cross Sections and Radial Integrals.

σn
R (E)=

8π2

3

(
(αhν)3

2(e2/a0)E

)
ρ(E)RI(E; n) .

(54.215)
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For an electron outside a closed core,

g+A = 1, gA = 2(2+1)

σn
I (hν)=

4π2αhνρ(E)

3(2+1)
RI(E; n) , (54.216a)

Rε,
′

n =
∞∫

0

(Rε′ r Rn) r2 dr , (54.216b)

RI(E; n)= 
∣∣∣Rε,−1

n

∣∣∣
2+ (+1)

∣∣∣Rε,+1
n

∣∣∣
2
.

(54.216c)

For an electron outside an unfilled core (c) in the
process

(
A++ e−

)→ A(n), the weights are
State i: [Sc, Lc; ε] , g+A = (2Sc+1)(2Lc+1)
State f : [(Sc, Lc; n)S, L] , gA = (2S+1)(2L+1).

RI(E; n)= (2L+1)

(2Lc+1)

×
∑

′=±1

∑

L ′

(
2L ′ +1

)
{
 L Lc

L ′ ′ 1

}2

× max

∣∣∣∣∣∣

∞∫

0

(Rε′ r Rn) r2 dr

∣∣∣∣∣∣

2

.

(54.217)

This reduces to (54.216c) when the radial functions Ri, f
do not depend on (Sc, Lc, S, L).

Cross Section for Dielectronic Recombination

σn
DLR(E)=

πa2
0

(ka0)2
|TDLR(E)|2 ρ(E) , (54.218)

|TDLR(E)|2 = 4π2
∫

dk̂e

×
∑

j

∣∣∣∣∣

〈
Ψ f

∣∣ D
∣∣Ψ j

〉 〈
Ψ j

∣∣ V |Ψi(ke)〉(
E− ε j + iΓ j/2

)

∣∣∣∣∣

2

,

(54.219)

which is the generalization of the T -matrix (54.208)
to include the effect of intermediate doubly-excited
autoionizing states

∣∣Ψ j
〉

in energy resonance to within
width Γ j of the initial continuum state Ψi . The
electrostatic interaction V = e2 ∑N

i=1(ri −rN+1)
−1 ini-

tially produces dielectronic capture by coupling the
initial state i with the resonant states j which be-
come stabilized by coupling via the dipole radiation
field interaction D = (

2ω3/3πc3
)1/2 ∑N+1

i=1 (eri) to
the final stabilized state f . The above cross section for
(54.3) is valid for isolated, nonoverlapping resonances.

Continuum Wave Normalization
and Density of States

The basic formulae (54.206) for σn
R depends on the

density of states ρ(E) which in turn varies according to
the particular normalization constant N adopted for the
continuum radial wave,

RE(r)∼ N sin

(
kr− 1

2
π+η

)/
r , (54.220)

in (54.210) where the phase is

η = argΓ(+1+ iβ)−β ln 2kr+ δ . (54.221)

The phase corresponding to the Hartree–Fock short-
range interaction is δ. The Coulomb phase shift for
electron motion under

(− Ze2/r
)

is (η− δ) with
β = Z/(ka0).

For a plane wave φk(r)= N ′ exp(ik ·r),
〈
φk(r)|φ 0k′(r)

〉
dk= (2π)3 ∣∣N ′∣∣2 ρ(k) dk δ

(
k−k′

)

≡
(

h3

m p

) ∣∣N ′∣∣2 ρ(E, k̂) dE dk̂ δ
(
E− E′)δ

(
k̂− k̂′

)
.

(54.222)

On integrating (54.222) over all E and k̂ for a single
particle distributed over all |E, k̂〉 states, N ′ and ρ are
then interrelated by

∣∣N ′∣∣2 ρ
(
E, k̂

)= m p/h3 . (54.223)

The incident current is

j dE dk̂e = v
∣∣N ′∣∣2 ρ(E, k̂) dE dk̂e (54.224a)

=
(

2mE/h3
)

dE dk̂e = vdpe/h
3 .

(54.224b)

Radial Wave Connection. From (54.210) and (54.212),
N = (4πN ′/k), so that the connection between N of
(54.220) and ρ(E) is

|N|2 ρ(E, k̂)=
(
2m/�2

)

πk
= (2/π)

ka0e2 . (54.225)

RR Cross Sections
for Common Normalization Factors
of Continuum Radial Functions

(a) N = 1; ρ(E)=
(
2m/�2

)

πk
= (2/π)

(ka0)e2 , (54.226)

σn
R (E)=

8π2a2
0

(ka0)3

∫ ∑

m

∣∣D fi
∣∣2 dk̂e , (54.227)

where D fi of (54.204) is dimensionless.
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(b) N = k−1; ρ(E)= (
2m/�2)(k/π) , (54.228)

σn
R (E)=

16πa2
0

3
√

2

(
αhν

e2/a0

)3
√(

e2/a0
)

E

(
RI

a5
0

)

,

(54.229)

where (54.216b) and (54.216c) for RI has dimen-
sion

[
L5
]
.

(c) N = k−1/2; ρ(E)=
(
2m/�2

)

π
, (54.230)

σn
R (E)=

8πa2
0

3

(
α3(hν)3
(
e2/a0

)2
E

)(
RI

a4
0

)

, (54.231)

where RI has dimensions of
[
L4
]
.

(d) N = (
2m/�2π2 E

)1/4; ρ(E)= 1 , (54.232)

σn
R (E)=

4(πa0)
2

3

(
α3(hν)3
(
e2/a0

)2
E

)(
RI

e2a0

)
,

(54.233)

where RI has dimensions of
[
L2 E−1

]
.

54.8.4 Bound-Free Oscillator Strengths

For a transition n→ E to E+ dE,
d fn

dE
= 2

3

(hν)

(e2/a0)

1

(2+1)

∑

m

∑

′m′

∣∣∣rε
′m′

nm

∣∣∣
2
,

(54.234)

RI(ε; n)=
∫

dk̂e

∑

m

|〈Ψnm |r|Ψi(ke)〉 E|2

=
∑

m,′,m′

∣∣∣rε
′m′

nm

∣∣∣
2
, (54.235)

σn
R (E)= 2π2αa2

0gA

(
k2
ν

k2
e

)(
e2

a0

)
d fn

dE
,

(54.236a)

σn
I (hν)= 2π2αa2

0g+A
(

e2

a0

)
d fn

dE
. (54.236b)

Semiclassical Hydrogenic Systems

gA = gn = 2(2+1) , g+A = 1 ,

σn
R(E)=

n−1∑

=0

σn
R (E)= 2π2αa2

0

(
k2
ν

k2
e

)
dFn

dE
,

(54.237)

dFn

dE
=

n−1∑

=0

gn
d fn

dE
= 2

∑

,m

d fnm

dE
. (54.238)

Bound–Bound Absorption Oscillator Strength. For
a transition n → n′,

Fnn′ = 2
∑

m

∑

′m′
f n′′m′
nm (54.239a)

= 26

3
√

3π

[(
1

n2 −
1

n′2

)−3
]

1

n3

1

n′3
,

(54.239b)

dFn

dE
= 25

3
√

3π
n

I2
n

(hν)3
= 2n2 d fn

dE
, (54.239c)

σn
R(E)=

25α3

3
√

3

(
nI2

n

E(hν)

)
πa2

0 , (54.239d)

σn
I (hν)=

26α

3
√

3

n

Z2

(
In

hν

)3

πa2
0 , (54.239e)

= 7.907 071
( n

Z2

)( In

hν

)3

Mb . (54.239f)

This semiclassical analysis yields exactly Kramers
PI and associated RR cross sections in Sect. 54.8.2.

54.8.5 Radiative Recombination Rate

α̂n
R (Te)= ve

∞∫

0

ε σn
R (ε)e

−ε dε (54.240a)

≡ ve

〈
σn

R (Te)
〉
, (54.240b)

where ε= E/kBT and
〈
σn

R (Te)
〉

is the Maxwellian-
averaged cross section for radiative recombination.

In terms of the continuum-bound An(E),

α̂n
R (Te)= h3

(2πmekBT )3/2

∞∫

0

(
dAn

dε

)
e−ε dε ,

(54.241)

dAn

dE
= ρ(E)

∑

m

∫
Anm(E, k̂e) dk̂e . (54.242)

Milne Detailed Balance Relation
In terms of σn

I (hν),

α̂n
R (Te)

= ve

(
gA

2g+A

)(
kBTe

mc2

)(
In

kBTe

)2 〈
σn

I (Te)
〉
,

(54.243)

where, in reduced unitsω= hν/In , T = kBTe/In = b−1
n ,

the averaged PI cross section corresponding to (54.174)
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is
〈
σn

I (T )
〉
= e1/T

T

∞∫

1

ω2σn
I (ω)e

−ω/T dω . (54.244)

When σn
I (ω) is expressed in Mb

(
10−18 cm2

)
,

α̂n
R (Te)= 1.508 × 10−13

(
300

Te

)1/2( In

IH

)2
(

gA

2g+A

)

×
〈
σn

I (T)
〉

cm3 s−1 . (54.245)

When σI can be expressed in terms of the threshold cross
section σn

0 (54.178) as

σn
I (hν)= (In/hν)

pσ0(n); (p = 0, 1, 2, 3) ,
(54.246)

then
〈
σn

I (T)
〉= Sp(T )σ0(n), where

S0(T )= 1+2T +2T 2 , S1(T )= 1+T ,

(54.247a)

S2(T )= 1 , (54.247b)

S3(T )=
(

e1/T/T
)

E1(1/T ) (54.247c)

T&1∼ 1−T +2T 2−6T 3 . (54.247d)

The case p= 3 corresponds to Kramers PI cross section
(54.181) so that

Kα̂
n
R (Te)= (2+1)

n2

2

n
α̂0(Te)S3(T ) (54.248a)

≡ Kα̂
n
R (Te → 0)S3(T ) , (54.248b)

such that Kα̂
n
R ∼ Z2/

(
n3T 1/2

e
)

as T = (kBTe/In)→ 0.

54.8.6 Gaunt Factor, Cross Sections
and Rates for Hydrogenic Systems

The Gaunt factor Gn is the ratio of the quantal to
Kramers (K) semiclassical PI cross section such that

σn
I (hν)= Kσ

n
I (hν)Gn(ω) ; (54.249)

ω= hν/In = 1+ E/In .

(a) Radiative Recombination Cross Section

σn
R (E)=

(
gA

g+A

)(
α2(hν)2

2E(e2/a0)

)
Gn(ω)Kσ

n
I (hν)

(54.250a)

= Gn(ω)Kσ
n
R (E) (54.250b)

=
[
(2+1)

n2
Gn(ω)

]

K
σn

R(E) , (54.250c)

σn
R(E)= Gn(ω)Kσ

n
R(E) (54.250d)

where the quantum mechanical correction, or Gaunt
factor, to the semiclassical cross sections

Gn(ω)→
{

1, ω→ 1

ω−(+1/2), ω→∞ (54.251)

favors low n states. The -averaged Gaunt factor is

Gn(ω)=
(
1/n2)

n−1∑

=0

(2+1)Gn(ω) . (54.252)

Approximations for Gn : as ε increases from zero,

Gn(ε)=
[

1+ 4

3
(an +bn)+ 28

18
a2

n

]−3/4

(54.253a)

) 1− (an +bn)+ 7

3
anbn + 7

6
b2

n (54.253b)

where E = ε(Z2e2/2a0
)
, ω= 1+n2ε, and

an(ε)= 0.172 825
(
1−n2ε

)
cn(ε) , (54.254a)

bn(ε)= 0.049 59

(
1+ 4

3
n2ε+n4ε2

)
c2

n(ε) ,

(54.254b)

cn(ε)= n−2/3(1+n2ε
)−2/3

. (54.254c)

Radiative Recombination Rate

α̂n
R (Te)= Kα̂

n
R (Te → 0)Fn(T ) ,

(54.255)

α̂n
R (Te → 0)= (2+1)

n2

(
2

n

)
α̂0(Te) , (54.256)

in accordance with (54.185b).

Fn(T )= e1/T

T

∞∫

1

Gn(ω)

ω
e−ω/T dω . (54.257)

The multiplicative factors F and G convert the semi-
classical (Kramers) Te → 0 rate and cross section to
their quantal values. Departures from the scaling rule(
Z2/n3T 1/2

e
)

for RR rates is measured by Fn(T ).

54.8.7 Exact Universal Rate Scaling Law
and Results for Hydrogenic Systems

α̂n
R (Z, Te)= Zα̂n

R

(
1, Te/Z2) (54.258)

as exhibited by (54.243) with (54.239e) and (54.244).
Recombination rates are greatest into low n levels

and the ω−−1/2 variation of Gn preferentially popu-
lates states with low ≈ 2–5. Highly accurate analytical
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fits for Gn(ω) have been obtained for n ≤ 20 so
that (54.249) can be expressed in terms of known
functions of fit parameters [54.17]. This procedure
(which does not violate the S2 sum rule) has been ex-
tended to nonhydrogenic systems of neon-like Fe XVII,
where σn

I (ω) is a monotonically decreasing function
of ω.

The variation of the -averaged values

n−2
n−1∑

=0

(2+1)Fn(T )

is close in both shape and magnitude to the correspond-
ing semiclassical function S3(T ), given by (54.257) with
Gn(ω)= 1. Hence the -averaged recombination rate is

α̂n
R(Z, T )= (300/T )1/2

(
Z2/n

)
Fn(T )

× 1.1932 × 10−12 cm3 s−1 ,

where Fn can be calculated directly from (54.257) or
be approximated as Gn(1)S(T ). A computer program
based on a three-term expansion of Gn is also avail-
able [54.18]. From a three-term expansion for G, the rate
of radiative recombination into all levels of a hydrogenic

system is

α̂(Z, T )= 5.2 × 10−14 Zλ1/2

×

(
0.43+ 1

2
lnλ+0.47/λ1/2

)
,

(54.259)

where λ= 1.58 × 105 Z2/T and [α̂] = cm3/s. Tables
[54.19] exist for the effective rate

α̂n
E (T )=

∞∑

n′=n

n′−1∑

′=0

α̂n′′
R Cn′′,n (54.260)

of populating a given level n of H via radiative recom-
bination into all levels n′ ≥ n with subsequent radiative
cascade (i → f ) with probability Ci, f via all possible
intermediate paths. Tables [54.19] also exist for the full
rate

α̂N
F (T )=

∞∑

n=N

n−1∑

=0

α̂n
R (54.261)

of recombination, into all levels above N = 1, 2, 3, 4, of
hydrogen. They are useful in deducing time scales of
radiative recombination and rates for complex ions.

54.9 Useful Quantities

(a) Mean Speed

ve =
(

8kBT

πm e

)1/2

= 1.076 042 × 107
(

T

300

)1/2

cm/s

= 6.692 38 × 107T 1/2
eV cm/s

vi = 2.511 16 × 105
(

T

300

)1/2 (
mp/mi

)1/2 cm/s

where (mp/m e)
1/2= 42.850 352, and T= 11 604.45 TeV

relates the temperature in K and in eV.

(b) Natural Radius
|V(Re)| = e2/Re = kBT .

Re = e2

kBT
= 557

(
300

T

)
Å =

(
14.4

TeV

)
Å .

(c) Boltzmann Average Momentum

〈p〉 =
∞∫

−∞
e−p2/2mkBT dp = (2πmekBT )1/2 .

(d) De Broglie Wavelength

λdB = h

〈p〉 =
h

(2πm ekBT )1/2

= 7.453 818 × 10−6

T 1/2
e

cm

= 43.035

(
300

Te

)1/2

Å = 6.9194

T 1/2
eV

Å .
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Dielectronic R55. Dielectronic Recombination

Dielectronic recombination (DR) is a two-step
process that greatly increases the effciency for
electrons and ions to recombine in a plasma. The
process therefore plays an important role in the
theoretical modeling of plasmas, whether in the
laboratory or in astrophysical sources such as the
solar corona. The purpose of this chapter is to
present the theoretical formulation for DR, and the
principal methods for calculating rate coefficients.
The results are compared with experiment over a
broad range of low-Z ions and high-Z ions where
relativistic effects become important.
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and Relativistic Effects ............... 831

55.3 Radiative-Dielectronic Recombination
Interference ........................................ 832

55.4 Dielectronic Recombination
in Plasmas .......................................... 833
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Electron–ion recombination into a particular final re-
combined state may be schematically represented as

e−+ Aq+
i → A(q−1)+

f +�ω , (55.1)

and

e−+ Aq+
i →

[
A(q−1)+

j

]
→ A(q−1)+

f +�ω , (55.2)

where q is the charge on the atomic ion A, ω is
the frequency of the emitted light, and the brackets
in (55.2) indicate a doubly-excited resonance state. The
first process is called radiative recombination (RR),
while the second is called dielectronic recombination
(DR). Both recombination mechanisms are the inverse
of photoionization. At sufficiently high electron dens-
ity, three-body recombination becomes possible. The
three-body mechanism is the inverse of electron impact
ionization.

The review article by Seaton and Storey [55.1] in-
cludes an interesting history of the theoretical work
on dielectronic recombination. The process was first
referred to as dielectronic recombination by Massey
and Bates [55.2], after a suggestion of its possible
importance in the ionosphere by Sayers in 1939. How-
ever, estimates of the rate coefficient for this process
indicated that DR is not an important process in
the ionosphere, where the temperatures are too low
to excite anything but the lower energy resonance
states.

In 1961, Unsold, in a letter to Seaton, suggested
that DR might account for a well-known tempera-
ture discrepancy in the solar corona. Seaton initially
concluded that DR would not significantly increase re-
combination in the solar corona. However, he had only
included the lower energy resonance states in his analy-
sis; Burgess [55.3] showed that when one includes the
higher members of the Rydberg series of resonance
states that are populated at coronal temperatures, DR
can indeed explain this discrepancy.

Dielectronic recombination has since received much
theoretical attention due, in part, to its importance
in modeling high temperature plasmas. Various ap-
proaches to the theory are discussed in a review by
Hahn [55.4] and in [55.5]. Recently, there have been
various projects aimed at the generation of large quan-
tities of DR data for use in astrophysical and fusion
plasma modeling. One such project is based on the re-
sults of the AUTOSTRUCTURE code, with both the
total and partial (i. e., resolved by recombined level)
DR rate coefficients being archived. The methodology
is outlined in Badnell et al. [55.6]. Data are calcu-
lated for all members of an isoelectronic sequence
from H to Ar, along with various ions relevant to
astrophysics or fusion, namely Ca, Ti, Cr, Fe, Ni,
Zn, Kr, Mo, and Xe. Work has been completed for
the oxygen [55.7], beryllium [55.8], carbon [55.9],
lithium [55.10], boron [55.11], neon [55.12] and nitro-
gen [55.13] isoelectronic sequences. There has also been
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a large quantity of data generated using a fully relativistic
Dirac–Fock code [55.14]. This data includes calcula-
tions of Na-like ions [55.15] and H-like through to
Ne-like [55.16] ions of certain astrophysically important
elements.

Interest in dielectronic recombination has in-
creased dramatically in the last twenty years. Mitchell
et al. [55.17] published the DR cross section for C+ us-
ing a merged electron–ion beams apparatus, and Belic
et al. [55.18] reported on a crossed beams measure-
ment of the DR cross section for Mg+. Also, Dittner
et al. [55.19] published merged beams measurements
of the DR cross section for the multiply charged ions

B2+ and C3+. Since that time, atomic physics exper-
iments carried out using heavy-ion traps, accelerators,
and storage-cooler rings have produced high-resolution
mappings of the resonance structures associated with
electron-ion recombination. The experiments have been
carried out using a wide range of facilities and technolo-
gies, such as the test storage ring (TSR) at Heidelberg,
the experimental storage ring (ESR) at Darmstadt, the
accelerator-cooler ring facility at Aarhus, the electron
beam ion trap (EBIT) at Livermore, and the electron
beam ion source (EBIS) at Kansas State. A good review
of the dramatic experimental progress in DR measure-
ments is again found in the NATO proceedings [55.5].

55.1 Theoretical Formulation

In the independent-processes approximation, the two
paths for recombination are summed incoherently. The
radiative recombination cross section for (55.1), in
lowest-order of perturbation theory, is given by

σRR = 8π2

k3

×
∑

 j

∑

JM

∑

M0

1

2g1

∣∣∣
〈
α0 J0 M0

∣∣D
∣∣α1 J1 jJM

〉∣∣∣
2
.

(55.3)

The set (α1 J1) represents the quantum numbers for
the N-electron target ion state, (α0 J0 M0) represents the
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Fig. 55.1 Dielectronic Recombination for O5+. Calcula-
tions were performed for fields of 0 V/cm (dotted curve),
3 V/cm (dashed curve), 5 V/cm (chain curve), and 7 V/cm
(solid curve)

quantum numbers for the (N +1)-electron recombined
ion state, (k j ) represents the quantum numbers for the
continuum electron state, (JM) represents the quantum
numbers for the (N +1)-electron system of target plus
free electron state, and g1 is the statistical weight of
a J1 level. The dipole radiation field operator is given
by

D =
√

2ω3

3πc3

N+1∑

s=1

rs . (55.4)

Continuum normalization is chosen as one times a sine
function, and atomic units (e = �= m = 1) are used. In
the isolated-resonance approximation, the dielectronic
recombination cross section for (55.2), in lowest-order
perturbation theory, is given by

σDR = 8π2

k3

∑

 j

∑

JM

∑

M0

1

2g1

×
∑

αi Ji Mi

∣∣∣∣
〈α0 J0 M0|D|αi Ji Mi 〉〈αi Ji Mi |V |α1 J1 jJM〉

E0− Ei + iΓi/2

∣∣∣∣
2

,

(55.5)

where the set (αi Ji Mi) represents the quantum numbers
for a resonance state with energy Ei and total width Γi ,
and the electrostatic interaction between electrons is
given by

V =
N∑

s=1

|rs −rN+1|−1 . (55.6)

By the principle of detailed balance, σRR of (55.3)
is proportional to the photoionization cross section from
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the bound state, while the energy-averaged σDR may be
written as

〈σDR〉 = 2π2

∆εk2

∑

αi Ji Mi

1

2g1

Aa Ar

Γi
, (55.7)

where the autoionization decay rate Aa is given by

Aa = 4

k

∑

 j

∑

JM

|〈α1 J1 jJM|V |αi Ji Mi〉|2 , (55.8)

the radiative decay rate Ar is given by

Ar = 2π
∑

M0

|〈α0 J0 M0|D|αi Ji Mi〉|2 , (55.9)

and ∆ε is the energy bin width. Each resonance level
in (55.7) makes a contribution at a fixed continuum en-
ergy k2/2; thus 〈σDR〉 plotted as a function of energy is
a histogram.

55.2 Comparisons with Experiment

55.2.1 Low-Z Ions

For the most part, the agreement between the re-
cent high-resolution measurements and theoretical
calculations based on the independent-processes and
isolated-resonance (IPIR) approximations is quite
good [55.20–38]. We illustrate the agreement with ex-
periment obtained by calculations employing the IPIR
approximations with three examples from the Li isoelec-
tronic sequence. The pathways for dielectronic capture,
in terms of specific levels, are given by

e−+ Aq+(2s1/2)→
[

A(q−1)+(2p1/2nl j )
]

↘ [
A(q−1)+(2p3/2nl j )

]
, (55.10)

where a 1s2 core is assumed to be present. Both Rydberg
series autoionize by the reverse of the paths in (55.10),
while for sufficiently high n, the 2p3/2 nl j levels may au-
toionize to the 2p1/2 continuum. Both series radiatively
stabilize by either a 2p → 2s core orbital transition, or by
a nl j → n′l′ j ′ valence orbital transition, where 2p j n′l′ j ′
with j = 1

2 ,
3
2 is a bound level.

Dielectronic recombination cross section calcula-
tions [55.28] in the IPIR approximation for O5+ are
compared with experiment in Fig. 55.1. Fine-structure
splitting of the two series of (55.10) is minimal for
this light ion, so there appears only one Rydberg se-
ries. The 2p 6 resonances are located at 2.5 eV, the
2p 7 at 5.0 eV, and so on; accumulating at the se-
ries limit around 11.3 eV. Electric field effects on the
high-n resonances are strong in O5+, so that calcula-
tions were done for fields of 0, 3, 5, and 7 V/cm. Since
the precise electric field strength in the experiment is
not known, the accuracy of an electric field dependent
theory, in this case, has yet to be determined. However,
the effects of state mixing by extrinsic fields in the col-
lision region for the dielectronic recombination of Mg+

have been investigated both experimentally [55.39] and
theoretically [55.40].

There have been a significant number of recent
experiments on low-Z ions. These experiments, in
general, show good agreement with theory, see Fogle
et al. [55.37] and Schnell et al. [55.38]. However, it is
also clear that discrepancies remain between theory and
experiment for certain low energy resonances, due to the
difficulty in calculating the energy positions of such res-
onances. As has been pointed out in Savin et al. [55.41]
and Schippers et al. [55.42], this can lead to significant
uncertainties in low temperature DR rate coefficients.
Calculating such low energy resonances to sufficient ac-
curacy for low temperature DR rate coefficients remains
a significant challenge for theory. Some success in this
area has been achieved using relativistic many-body per-
turbation theory, obtaining very good agreement with
low energy resonance positions for a range of sys-
tems, see, for example, Lindroth et al. [55.43], Fogle
et al. [55.44], and Tokman et al. [55.45].

55.2.2 High-Z Ions and Relativistic Effects

Dielectronic recombination cross section calcula-
tions [55.31] in the IPIR approximation for Cu26+ are
compared with experiment in Fig. 55.2. The two fine-
structure Rydberg series are now clearly resolved; the
fine-structure splitting is about 27 eV for Cu26+. The
2p1/2 13 resonances are just above threshold, while the
2p3/2 11 resonances are found around 5.0 eV. Electric
fields in the range 0–50 V/cm have little effect on the
Cu26+ spectrum. Overall, the agreement between theory
and experiment is excellent.

Electron-ion recombination cross section calcula-
tions [55.32] in the IPIR approximation for low-lying
resonances in Au76+ are compared with experiment in
Fig. 55.3. The 2p1/2 nl j series limit is at 217 eV, while
the 2p3/2 nl j series limit is at 2.24 keV; yielding a fine
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Fig. 55.2 Dielectronic Recombination for Cu26+

structure splitting of 2.03 keV. QED effects alone shift
the 2p3/2 nl j series limit by 22.0 eV. Thus accurate
atomic structure calculations must be made to locate
the 2p3/2 6l j resonances in the 0–50 eV energy range of
the experiment. The figure shows that the perturbative
relativistic, semirelativistic, and fully relativistic calcu-
lations for the dielectronic recombination cross section
ride on top of a strong radiative recombination back-
ground. In principle, the fully relativistic theory contains
the most physics, and thus it is comforting that on the
whole it is in good agreement with the experiment. It is
instructive, however, to see how well the computation-
ally simpler perturbative relativistic and semirelativistic
theories do for such a highly charged ion.
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Fig. 55.3a–c Dielectronic recombination for Au76+. The
curves show (a) perturbative relativistic, (b) semirelativis-
tic, and (c) fully relativistic calculations for the dielectronic
recombination cross section

There have been several recent experimental
measurements on high-Z ions, in particular, for astro-
physically abundant species. In general, there is good
agreement between theory and experiment. Examples
of high-Z element DR studies include those done on
Fe XXI and Fe XXII by Savin et al. [55.41], and on
Fe XX by Savin et al. [55.46].

55.3 Radiative-Dielectronic Recombination Interference

There has been a great deal of effort in recent years to
develop a more general theory of electron-ion recombi-

nation which would go beyond the IPIR approximation
to include radiative–dielectronic recombination inter-

Part
D

5
5
.3



Dielectronic Recombination References 833

ference and overlapping (and interacting) resonance
structures [55.47–54]. In almost all cases, the interfer-
ence between a dielectronic recombination resonance
and the radiative recombination background is quite
small and difficult to observe. The best possibility for ob-
servation of RR-DR interference appears to be in highly
charged atomic ions. In the cases studied to date, the
combination of electron and photon continuum coupling
selection rules and the requirement of near energy degen-
eracy make the overlapping (and interacting) resonance
effects small and difficult to observe. Heavy ions in rela-
tively low stages of ionization are the best place to look,
since there are resonance series attached to the large
numbers of L S terms or fine structure levels.

The distorted wave approximation (Chapt. 52) has
been so successful in describing dielectronic recombi-
nation cross sections for most atomic ions because, for
low charged ions, the DR cross section is proportional to
the radiative rate, while for highly charged ions the DR
cross section is proportional to the autoionization rate.
Thus the weakness of the distorted wave method in cal-
culating accurate autoionization rates for low charged
ions is masked by a DR cross section that is highly de-
pendent on radiative atomic structure. As one moves to
more highly charged ions, the DR cross section becomes
more sensitive to the autoionization rates, but at the same
time, the distorted-wave method becomes increasingly
more accurate.

55.4 Dielectronic Recombination

Dielectronic recombination is an important atomic pro-
cess that is included in the theoretical modeling of the
ionization state and emission of radiating ions, which
is fundamental to the interpretation of spectral emission
from both fusion and astrophysical plasmas (Chapts. 82,
86, and 87). The dielectronic recombination rate coef-
ficient, into a particular final recombined state, is given
by

αDR =
√

2

πT 3 k2∆ε 〈σDR (i → f )〉 exp

(−k2

2T

)
,

(55.11)

where T is the electron temperature. Dielectronic re-
combination rate coefficients, from the ground and
metastable states of a target ion into fully resolved
low-lying states and bundled high-lying states of a re-
combined ion, are required for a generalized collisional
radiative treatment [55.55, 56] of highly populated
metastable states, the influence of finite plasma dens-
ity on excited state populations, and of ionization in
dynamic plasmas.
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Rydberg Collis56. Rydberg Collisions: Binary Encounter,
Born and Impulse Approximations

Rydberg collisions are collisions of electrons, ions
and neutral particles with atomic or molecular
targets which are in highly excited Rydberg states
characterized by large principal quantum numbers
(n% 1). Rydberg collisions of atoms and molecules
with neutral and charged particles include the
study of collision-induced transitions both to
and from Rydberg states and transitions among
Rydberg levels. The basic quantum mechanical
structural properties of Rydberg states are given
in Chapt. 14. This Chapter collects together many
of the equations used to study theoretically the
collisional properties of both charged and neutral
particles with atoms and molecules in Rydberg
states or orbitals. The primary theoretical scattering
approximations enumerated in this Chapter are
the impulse approximation, binary encounter
approximation and the Born approximation. The
theoretical techniques used to study Rydberg
collisions complement and supplement the
eigenfunction expansion approximations used for
collisions with target atoms and molecules in their
ground (n= 1) or first few excited states (n > 1),
as discussed in Chapt. 47. Direct application of
eigenfunction expansion techniques to Rydberg
collisions, wherein the target particle can be in
a Rydberg orbital with principal quantum number
in the range n ≥ 100, is prohibitively difficult
due to the need to compute numerically and
store wave functions with n3 nodes. For n= 100
this amounts to ∼ 106 nodes for each of the
wave functions represented in the eigenfunction
expansion. Therefore, a variety of approximate
scattering theories have been developed to deal
specifically with the pecularities of Rydberg
collisions.
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56.1 Rydberg Collision Processes

(A) State-Changing Collisions
Quasi-elastic  -mixing collisions:

A∗(n)+ B → A∗(n′)+ B . (56.1)

Quasi-elastic J-mixing collisions: Fine structure
transitions with J = |±1/2| → J ′ = |±1/2| are

A∗(nJ )+ B → A∗(nJ ′)+ B . (56.2)

Energy transfer n-changing collisions:

A∗(n)+ B(β)→ A∗(n′)+ B(β′) , (56.3)

where, if B is a molecule, the transition β→ β′
represents an inelastic energy transfer to the rotational-
vibrational degrees of freedom of the molecule B from
the Rydberg atom A∗.

Elastic scattering:

A∗(γ)+ B → A∗(γ)+ B , (56.4)

where the label γ denotes the set of quantum numbers
n,  or n, , J used.

Depolarization collisions:

A∗(nm)+ B → A∗(nm′)+ B , (56.5a)

A∗(nJM)+ B → A∗(nJM′)+ B . (56.5b)

(B) Ionizing Collisions
Direct and associative ionization:

A∗(γ)+ B(β)→
⎧
⎨

⎩
A+ + B(β′)+ e−

BA+ + e− .
(56.6)

Penning ionization:

A∗(γ)+ B → A+ B++ e− . (56.7)

Ion pair formation:

A∗(γ)+ B → A++ B− . (56.8)

Dissociative attachment:

A∗(γ)+ BC → A+B−+C . (56.9)

56.2 General Properties of Rydberg States

Table 56.1 displays the general n-dependence of a num-
ber of key properties of Rydberg states and some specific
representative values for hydrogen.

56.2.1 Dipole Moments

Definition. Di→ f =−eXi→ f where

Xi→ f = 〈φ f |
∑

j

eik·rj rj |φi〉 . (56.10)

Hydrogenic Dipole Moments. See Bethe and
Salpeter [56.1] and the references by Khandelwal and
co-workers [56.2–5] for details and tables.

Exact Expressions. In the limit |k| → 0, the dipole al-
lowed transitions summed over final states are

∣∣X1s→n
∣∣2= 28

3
n7 (n−1)2n−5

(n+1)2n+5 , (56.11a)

∣∣X2s→n
∣∣2= 25

3n3

(
1
2 −1n

)2n−7

(
1
2 +1n

)2n+7

(
1

4
− 1

n2

)(
1− 1

n2

)
,

(56.11b)

∣∣X2p→n
∣∣2= 25

144

1

n3

(
1
2 − 1

n

)2n−7

(
1
2 + 1

n

)2n+7

(
11− 12

n2

)
.

(56.11c)

Asymptotic Expressions. For n % 1,

n3
∣∣X1s→n

∣∣2 ≈ 1.563+ 5.731

n2
+ 13.163

n4
+ 24.295

n6

+ 39.426

n8
+ 58.808

n10
, (56.12a)

n3
∣∣X2s→n

∣∣2 ≈ 14.658+ 180.785

n2
+ 1435.854

n4

+ 9341.634

n6
+ 54 208.306

n8

+ 292 202.232

n10
, (56.12b)

n3
∣∣X2p→n

∣∣2 ≈ 13.437+ 218.245

n2
+ 2172.891

n4

+ 17 118.786

n6
+ 117 251.682

n8

+ 731427.003

n10
. (56.12c)
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Table 56.1 General n-dependence of characteristic properties of Rydberg states. After [56.6]

Property n−dependence n = 10 n = 100 n = 500 n = 1000

Radius (cm) n2a0/Z 5.3 × 10−7 5.3 × 10−5 1.3 × 10−3 5.3 × 10−3

Velocity (cm/s) vB Z/n 2.18 × 107 2.18 × 106 4.4 × 105 2.18 × 105

Area (cm2) πa2
0n4/Z2 8.8 × 10−13 8.8 × 10−9 5.5 × 10−6 8.8 × 10−5

Ionization potential (eV) Z2 R∞/n2 1.36 × 10−1 1.36 × 10−3 5.44 × 10−5 1.36 × 10−6

Radiative lifetime (s)a n5(3 ln n− 1
4 )/(A0 Z4) 8.4 × 10−5 17 7.3 × 104 7.22 hours

Period of classical motion (s) 2π/ωn,n±1 = hn3/(2Z2 R∞) 1.5 × 10−13 1.5 × 10−10 1.9 × 10−8 1.5 × 10−7

Transition frequency (s−1) ωn,n±1 = 2Z2 R∞/(�n3) 4.1 × 1013 4.1 × 1010 3.3 × 108 4.1 × 107

Wavelength (cm) λn,n±1 = 2πc/ωn,n±1 4.6 × 10−3 4.6 570 4.5609 × 103

a A0 =
[
8α3/(3

√
3π)

]
(vB/a0)

56.2.2 Radial Integrals
Definition.

Rn′′
n ≡

∞∫

0

Rn(r)rRn′′(r)r
2 dr , (56.13)

where Rn(r) are solutions to the radial Schrödinger
equation. See Chapt. 9 for specific representations of
Rn for hydrogen.

Exact Results for Hydrogen. For ′ = −1 and n �=
n′ [56.7],

Rn′−1
n = a0

Z

(−1)n
′−(4nn′)+1(n−n′)n+n′−2−2

4(2−1)!(n+n′)n+n′

×

[
(n+)!(n′ +−1)!
(n′ +′)!(n−−1)!

]1/2

×

{

2 F1(−n++1,−n′ +; 2; Y )

−
(

n−n′

n+n′

)2

2 F1(−n+−1,−n′+; 2; Y )

}
,

(56.14)

where Y =−4nn′/(n−n′)2. For n = n′,

Rn−1
n =

(
a0

Z

)
3

2
n
√

n2−2 . (56.15)

Semiclassical Quantum Defect Representation [56.8].

∣∣∣Rn′′
n

∣∣∣
2 =

(
a0

Z

)2∣∣∣∣
n2

c

2∆

[(
1− ∆ >

nc

)
J∆−1(−x)

−
(

1+ ∆ >

nc

)
J∆+1(−x)

+ 2

π
sin(π∆)(1− e)

]∣∣∣∣
2

, (56.16)

where
nc = 2n∗n∗′/(n∗ +n∗′) , (56.17a)

∆= n∗′ −n∗ , (56.17b)

∆= ′ −, > = max(, ′) , (56.17c)

x = e∆, e =
√

1− (>/nc)2 , (56.17d)

and Jn(y) is the Anger function.
The energies of the states n and n′′ are given in

terms of the quantum defects by

En = − Z2 R∞/n∗2, n∗ = n− δ , (56.18a)

En′′ = − Z2 R∞/n∗′2, n∗′ = n′ − δ′ . (56.18b)

Sum Rule. For hydrogen
∑

n′

∣∣∣Rn′−1
n

∣∣∣
2 =

∑

n′

∣∣∣Rn′+1
n

∣∣∣
2

(56.19a)

= n2a2
0

2 Z2

[
5n2+1−3(+1)

]
.

(56.19b)

See §61 of [56.1] for additional sum rules.

56.2.3 Line Strengths

Definition.

S(n′′, n)= e2(2+1)
∣∣rn′′,n

∣∣2 (56.20a)

= e2 max(, ′)
∣
∣∣Rn′′

n

∣∣∣
2
, (56.20b)

where ′ = ±1. For hydrogen

S(n′, n)= 32
(ea0

Z

)2
(nn′)6 (n−n′)2(n+n′)−3

(n+n′)2(n+n′)+4

×
{ [

2 F1(−n′,−n+1; 1; Y )
]2

− [
2 F1(−n′ +1,−n; 1; Y )

]2 }
, (56.21)

where Y =−4nn′/(n−n′)2.
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Semiclassical Representation [56.9].

S(n′, n)= 32

π
√

3

(ea0

Z

)2 (εε′)3/2

(ε− ε′)4 G(∆n) , (56.22)

where ε= 1/n2, ε′ = 1/n′2, and the Gaunt factor G(∆n)
is given by

G(∆n)= π√3
∣∣∆n

∣∣J∆n(∆n)J′∆n(∆n) , (56.23)

where the prime on the Anger function denotes differ-
entiation with respect to the argument ∆n. Equation
(56.23) can be approximated to within 2% by the
expression

1− 1

4|∆n| . (56.24)

Relation to Oscillator Strength.

S(n′, n)=
∑

,′
S(n′′, n)

= 3e2a2
0

R∞
�ω

∑

,′
fn′′,n . (56.25)

Connection with Radial Integral.

− fn′′,n = �ω

3R∞
max(, ′)
(2+1)

∣∣Rn′′
n

∣∣ . (56.26)

Density of Line Strengths. For bound-free n→ E′
transitions in a Coulomb field, the semiclassical repre-
sentation [56.6] is

d

dE
S(n, E)= 2n(2+1)

(
R∞
�ω

)2

×

[
J′∆(e∆)2+

(
1− 1

e2

)
J∆(e∆)2

]
e2a2

0

R∞
,

(56.27)

where ∆ = �ωn3/2R∞ and e =
√

1− (
+ 1

2

)2
/n2.

Asymptotic expression for ∆% 1:

d

dE
S(n, E)= 2(2+1)

3π2

(
R∞
�ω

)2
(
+ 1

2

)4

n3

×
[

K2
1/3(η)+K2

2/3(η)
] e2a2

0

R∞
,

(56.28)

where η = (E/R∞)(+1/2)3/6 and the Kν(x) are
Bessel functions of the third kind.

Line Strength of Line n.

Sn ≡ S(n)=
∑

k �=0

S(n+ k, n)
1

k3 . (56.29)

Born Approximation to Line Strength Sn [56.6].

SB
n = Z2 R∞

E

⎡

⎣1

2
ln(1+ εe/ε)

∑

k �=0

(
1− 1

4k

)
1

k4

+ 4

3

εe

ε+ εe

∑

k �=0

(
1− 0.60

k

)
1

k3

⎤

⎦

= Z2 R∞
E

[
0.82 ln

(
1+ εe

ε

)
+ 1.47εe

ε+ εe

]
, (56.30)

where ε= |En |Z2/R∞ and εe = ε/Z2 R∞.

56.2.4 Form Factors

Fn′n(Q)=
∑

,m

∑

′,m′

∣∣〈nm
∣∣eiQ·r ∣∣n′′m′〉∣∣2 . (56.31)

Connection with Generalized Oscillator Strengths.

fn′n(Q)= Z2∆E

n2 Q2a2
0

Fn′n(Q) . (56.32)

Semiclassical Limit.

lim
Q→0

fn′n(Q)= 32

3n2

(
nn′

∆n(n+n′)

)3

×∆n J∆n(∆n)J ′∆n(∆n) , (56.33)

where Jm(y) denotes the Bessel function.

Representation as Microcanonical Distribution.

Fn′,n(Q)= (2+1)
2Z2 R∞

n′3

∫
dp|gn(p)|2

× δ

(
(p−�Q)2

2m
− p2

2m
− En′ − En

)
,

(56.34)

Fn′,n(Q)= 4Z2 R∞2

(nn′)3

∫
dp dr
(2π�)3

δ

(
p2

2m
− Ze2

r
−En

)

× δ

(
(p−�Q)2

2m
− Ze2

r
− En′

)
,

(56.35)

= 29

3π(nn′)3
κ5

(κ2+κ2+)3(κ2+κ2−)3
,

(56.36)

where κ = Qa0/Z and κ± = |1/n±1/n′|.
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Rydberg Collisions: Binary Encounter, Born and Impulse Approximations 56.3 Correspondence Principles 839

56.2.5 Impact Broadening

The total broadening cross section of a level n is

σn =
(
πa2

0/Z4
)

n4Sn . (56.37)

The width of a line n → n+ k is [56.10]

γn,n+k = ne
[〈vσn〉+〈vσn+k〉

]
, (56.38)

where ne is the number density of electrons, and

〈vσn〉 =
∑

k �=0

〈vσn+k,n〉 = n4

Z3 Kn (56.39a)

= n4πa2
0vB

Z3θ3/2

∞∫

0

e−E/kBT Sn
E dE

(Z2 R∞)2
,

(56.39b)

where θ = kBT/Z2 R∞. See Chapt. 59 for collisional line
broadening.

56.3 Correspondence Principles

Correspondence principles are used to connect quantum
mechanical observables with the corresponding classical
quantities in the limit of large n. See [56.11] for details
on the equations in this section.

56.3.1 Bohr–Sommerfeld Quantization

Ai = Ji∆wi

∮
pi dqi = 2π�(ni +αi) , (56.40)

where ni = 0, 1, 2, . . . and αi = 0 if the generalized
coordinate qi represents rotation, and αi = 1/2 if qi rep-
resents a libration.

56.3.2 Bohr Correspondence Principle

En+s − En = hνn+s,n ∼ s�ωn, s = 1, 2, . . .& n ,
(56.41)

where νn+s,n is the line emission frequency and ωn is
the angular frequency of classical orbital motion. The
number of states with quantum numbers in the range
∆n is

∆N =
D∏

i=1

∆n =
D∏

i=1

(∆Ji∆wi) /(2π�)
D

=
D∏

i=1

(∆pi∆qi)/(2π�)
D , (56.42)

for systems with D degrees of freedom, and the mean
value F̄ of a physical quantity F(q) in the quantum
state Ψ is

F̄ = 〈Ψ |F(q)|Ψ 〉 =
∑

n,m

a∗man F(q)mn eiωmnt , (56.43)

where the F(q)mn are the quantal matrix elements between
time independent states.

The first order S-matrix is

S fi =− iω

2π�

∞∫

−∞
dt

2π/ω∫

0

V [R(t), r(t1)]eisω(t1−t) dt1 ,

(56.44)

where R denotes the classical path of the projectile and
r the orbital of the Rydberg electron.

56.3.3 Heisenberg Correspondence
Principle

For one degree of freedom [56.11],

F(q)mn (R)=
∞∫

0

φ∗m(r)F(r, R)φn(r) dr (56.45)

= ω

2π

2π/ω∫

0

F(c)
[
r(t)

]
eisωt dt . (56.46)

The three-dimensional generalization is [56.11]

F(q)n,n′ ∼ F(c)s (J)= 1

8π3

∫
Fc[r(J,w)

]
eis·w dw ,

(56.47)

where n, n′ denotes the triple of quantum numbers
(n, ,m), (n′, ′,m′), respectively, and s = n−n′.

The correspondence between the three dimensional
quantal and classical matrix elements in (56.47) follows
from the general Fourier expansion for any classical
function F(c)(r) periodic in r,

F(c)
[
r(t)

]=
∑

s

F(c)s (J) exp(−is ·w) , (56.48)

where J,w denotes the action-angle conjugate vari-
ables for the motion. For the three dimensional Coulomb
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problem, the action-angle variables are

Jn = n� , wn =
(
∂E

∂Jn

)
t+ δ ,

J =
(
+ 1

2

)
� , w = ψE ,

Jm = m� , wm = φE , (56.49)

where ψE is the Euler angle between the line of nodes
and a direction in the plane of the orbit (usually taken
to be the direction of the perihelion or perigee), and is
constant for a Coulomb potential. The Euler angle φE is
the angle between the line of nodes and the fixed x-axis.
See [56.11] for details.

The first order S-matrix is

S fi =− iω

2π�

2π/ω∫

0

dte

∞∫

−∞
dt V

[
R(t), r(t+ te)

]
eisωte ,

(56.50)

with s = i− f , R is the classical path of the projectile,
and r(te) is the classical internal motion of the Rydberg
electron.

56.3.4 Strong Coupling Correspondence
Principle

The S-matrix is

S fi = ω

2π

2π/ω∫

0

dte exp
{

i(sωte)

− i

�

∞∫

−∞
V
[
R(t), r(t+ te)

]
dt
}
. (56.51)

See [56.11–14] for additional details.

56.3.5 Equivalent Oscillator Theorem
∑∫

n

an(t)V fn(t)e
iω fn t =

∑∫

d=− f

ad+ f (t)Vd(t)e
−idωt .

(56.52)

The S-matrix is

Sn′,n = an′(t →∞) (56.53)

=
2π∫

0

dw

8π3
exp

[
is ·w− i

�

∞∫

−∞
V(w+ωt, t)dt

]
.

56.4 Distribution Functions

The function Wα(x)dx characterizes the probability
(distribution) of finding an electron in a Rydberg or-
bital α within a volume dx centered at the point x in
phase space. Integration of the distribution function Wα

over all phase space volumes dx yields, depending upon
the normalization chosen, either unity or the density of
states appropriate to the orbital α.

56.4.1 Spatial Distributions

Distribution over n, ,m [56.6]:

Wnm(r, θ)r
2 sin θ dr dθ (56.54)

= r2 sin θ dr dθ

π2a2r
{ [

e2− (1−r/a)2
] [

sin2 θ− (m/)2] }1/2 ,

where a = Ze2/2|E| = n2
�

2/m Ze2
�

2 is the semimajor
axis, and e2 = 1− (/n)2 is the eccentricity.

Distribution over n, :

Wn(r, θ)r
2 sin θ dr dθ

= g(n)
r2 sin θ dr dθ

2πa2r
[
e2− (1−r/a)2

]1/2 , (56.55)

where g(n)= 2.

Distribution over n:

Wn(r)r
2 dr = g(n)

2

π

[
1−

(
1− r

a

)2
]1/2 r dr

a2
,

(56.56)

with g(n)= n2.

56.4.2 Momentum Distributions

Distribution over n,  [56.6]:

Wn(p)p
2 dp = g(n)

4

π

dx
(
1+ x2

)2
, (56.57)

where x = p/pn and p2
n = 2m|E|.

Distribution over n:

Wn(p)p
2 dp = g(n)

32

π

x2 dx
(
1+ x2

)4 . (56.58)

Sum Rules.
1

n2

∑

,m

∣∣Gnm(k)
∣∣2 =

(na0

Z

)3 8

π2
(
x2+1

)4 ,

(56.59a)
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1

n2

n−1∑

=0

(2+1)
∣∣gn(k)

∣∣2k2 = 32na0x2

πZ
(
x2+1

)4 ,

(56.59b)

where x = nka0/Z, and

Gnm(k)=gn(k)Ym(k̂) , (56.60a)

gn(k)=
(

2

π

(n−−1)!
(n+)!

)1/2 (a0

Z

)3/2
22(+1)n2!

×
(−ix)

(
x2+1

)+2
C(+1)

n−−1

(
x2−1

x2+1

)
,

(56.60b)

where C( j)
i (y) is the associated Gegenbauer polynomial.

See Chapt. 9 for additional details on hydrogenic wave
functions.

Quantum Defect Representation [56.15].

gn(k)= −
(

2

π

Γ (n∗−1)

Γ (n∗++1)

)1/2

n∗(a0/Z)3/222(+1)

×
(+1)!(−ix)
(
x2+1

)+2
J(n∗, +1; X) ,

(56.61)

where n∗ = n− δ, δ being the quantum defect, and
x = n∗ka0/Z. The function J is given by the recurrence
relation

J(n∗, +1; X)= − 1

2(2+2)

∂

∂X
J(n∗, ; X) ,

(56.62)

J(n∗, 0; X)= − n∗ sin
[
n∗(β−π)]

sin(β−π)

− sin n∗π
π

1∫

0

(
1− s2

)
sn∗

(
1−2Xs+ s2

) ds ,

(56.63)

where X = (
x2−1

)
/
(
x2+1

)
, and β = cos−1 X. In the

limit & n∗, (56.61) becomes

|gn(k)|2=4

(
n∗a0

Z

)3 1−(−1) cos
[
2n∗(β−π)]

πx2(x2+1)2
.

(56.64)

Classical Density of States.

ρ(E)=
∫
δ [E−H(p, r)]

dpdr
(2π�)3

= n5
�

2

m Z2e4 .

(56.65)

56.5 Classical Theory

The classical cross section for energy transfer ∆E be-
tween two particles, with arbitrary masses m1, m2 and
charges Z1, Z2, is given by [56.16]

σ∆E(v1, v2)= 2π(Z1 Z2e2V )2

v2
∣∣∆E

∣∣3
(56.66)

×

(
1+ cos2 θ̄+ ∆E

µvV
cos θ̄

)
,

valid for−1≤ cos θ̄−∆E/(µvV )≤ 1, andσ∆E(v1, v2)

= 0 otherwise, where

v= v1−v2 , (56.67a)

V = (m1v1+m2v2)/M , (56.67b)

cos θ̄ = 1

vV
v · V , (56.67c)

and µ= m1m2/M, M = m1+m2. If particle 2 has an
isotropic velocity distribution in the lab frame, the ef-

fective cross section averaged over the direction n̂2
of v2 is

v1σ
(eff)
∆E (v1, v2)= 1

4π

∫
dn̂2|v1−v2n̂2|σ∆E(v1, v2) .

(56.68)

If v1 is also isotropic, then the average of (56.68),
together with (56.66), gives for the special case of
a Coulomb potential

σ
(eff)
∆E (v1, v2)

= π
(
Z1 Z2e2

)2

4|∆E|3v2
1v2

[(
v2

1−v2
2

)(
v′22 −v′21

)(
v−1

l −v−1
u

)

+ (
v2

1+v2
2+v′21 +v′22

)
(vu −v)− 1

3

(
v3

u −v3
l

)]
,

(56.69)

where

v′1 =
(
v2

1−2∆E/m1
)1/2

, (56.70)
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v′2 =
(
v2

2+2∆E/m2
)1/2

, (56.71)

and vu , vl are defined below for cases 1.–4. With the
definitions

∆ε12= 4m1m2(E1−E2)/M2 , ∆m12=|m1−m2| ,
∆ε̃12= 4m1m2

M2

(
E1
v2

v1
− E2

v1

v2

)
,

the four cases are

1. ∆E ≥∆ε12+|∆ε̃12| ≥ 0, and 2m2v2 ≥∆m12v1:

vl = v′2−v′1 , vu = v′1+v′2 , ∆E ≥ 0 ;
(56.72a)

vl = v2−v1 , vu = v1+v2 , ∆E ≤ 0 .
(56.72b)

If 2m2v2 <∆m12v1, then σeff
∆E(v1, v2)= 0,

2. ∆ε12−∆ε̃12 ≤∆E ≤∆ε12+∆ε̃12, and m1 > m2:

vl = v′2−v′1 , vu = v1+v2 , ∆E ≥ 0 ;
(56.72c)

vl = v2−v1 , vu = v′1+v′2 , ∆E ≤ 0
(56.72d)

3. ∆E ≤∆ε12−|∆ε̃12| ≤ 0, and 2m1v1 ≥∆m12v2:

vl = v1−v2 , vu = v1+v2 , ∆E ≥ 0 ;
(56.72e)

vl = v′1−v′2 , vu = v′1+v′2 , ∆E ≤ 0 .
(56.72f)

If 2m1v1 <∆m12v2, then σeff
∆E(v1, v2)= 0,

4. ∆ε12+∆ε̃12 ≤∆E ≤∆ε12−∆ε̃12, and m1 < m2:

vl = v1−v2 , vu = v′1+v′2 , ∆E ≥ 0 ;
(56.72g)

vl = v′1−v′2 , vu = v1+v2 , ∆E ≤ 0 .
(56.72h)

If 2m1v1 <∆m12v2, then σeff
∆E(v1, v2)= 0.

Since v′1 and v′2, given by (56.70) and (56.71) respec-
tively, must be real, σ∆E(v1, v2)= 0 for ∆E outside the
range

−1

2
m2v

2
2 ≤∆E ≤ 1

2
m1v

2
1 , (56.73)

which simply expresses the fact that the particle losing
energy in the collision cannot lose more than its initial
kinetic energy.

The cross section (56.69) must be integrated over
the classically allowed range of energy transfer ∆E
and averaged over a prescribed speed distribution
W(v2) before comparison with experiment can be made.
See [56.16, 17] for details.

Classical Removal Cross Section [56.18]. The cross
section for removal of an electron from a shell is given by

σr(V )=
∞∫

0

f(v)σ∆E(v1, v2)dv . (56.74)

Total Removal Cross Section [56.18]. In an independent
electron model,

σ total
r (V )= Nshellσr(V ) , (56.75)

where Nshell is the number of equivalent electrons in
a shell. In a shielding model,

σ total
r (V )=

[
1− (Nshell−1)

4πr̄2 σr(V )

]
Nshellσr(V ) ,

(56.76)

where r̄2 is the root mean square distance between elec-
trons within a shell. Experiment [56.19] favors (56.76)
over (56.75). See Fig. 4a–e of [56.18] for details.

Classical trajectory and Monte-Carlo methods are
covered in Chapt. 58.

56.6 Working Formulae for Rydberg Collisions

56.6.1 Inelastic n,�-Changing Transitions

A∗(n)+ B → A∗(n′)+ B+∆En′,n , (56.77)

where ∆En′,n = En′ − En is the energy defect. The
cross section for (56.77) in the quasifree electron

model [56.20] is

σn′,n(V )= 2πa2
s

(
V/vB

)2
n′3

fn′,n(λ) , & n ,

(56.78)

where as is the scattering length for e− + B
scattering, λ = n∗a0ωn′,n/V , ωn′,n = |∆En′,n|/�,
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En′ = −R∞/n′2, and En =−R∞/n∗2, with
n∗ = n− δ. Also, vB is the atomic unit of velocity
(see Chapt. 1), and

fn′,n(λ)= 2

π

[
tan−1

(
2

λ

)
− λ

2
ln

(
1+ 4

λ2

)]
.

(56.79)

Limiting cases: fn′,n(λ)→ 1 as λ→ 0, and fn′,n(λ)∼
8/

(
3πλ3

)
for λ% 1. Then

σn′,n ∼

⎧
⎪⎪⎨

⎪⎪⎩

2πa2
s

(V/vB)2n′3
, λ→ 0 ,

16a2
s Vn3

3vB|δ+∆n|3 , λ% 1 .

(56.80)

Rate Coefficients.

〈σn′,n(V )〉 ≡ 〈Vσn′,n(V )〉/〈V 〉 (56.81a)

= 2πa2
s

(
V T/vB

)2
n′3
ϕn′,n(λT) , (56.81b)

where VT = √
2kBT/µ, λT = n∗a0ωn′,n/VT ,

∆n = n′ −n, and µ is the reduced mass of A–B. The
function ϕn′,n(λT) in (56.81b) is given by

ϕn′,n(λT)= eλ
2
T/4erfc

(
1

2
λT

)
(56.82a)

− λT

π

∞∫

0

du√
u

e−u ln

(

1+ 4

λ2
T

)

=

⎧
⎪⎨

⎪⎩

1− λT√
π

ln
(

1/λ2
T

)
, λT → 0

2/
(√
πλ3

T

)
, λT % 1

(56.82b)

and erfc (x) is the complementary error function.

56.6.2 Inelastic n → n′ Transitions
A∗(n)+ B → A∗(n′)+ B+∆En′n . (56.83)

(A) Cross Sections.

σn′n =
∑

′

(2+1)

n2
σn′′,n , (56.84)

σn′,n(V )= 2πa2
s

(V/vB)2n′3
Fn′n(λ) , (56.85)

where λ= na0ωn′n/V = |∆n|vB/(n2V ), and

Fn′n(λ)= 2

π

[

tan−1
(

2

λ

)
− 2λ

(
3λ2+20

)

3
(
4+λ2

)2

]

.

(56.86)

Limiting cases:

σn′n ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2πa2
s(

V/v2
Bn′ 3

) , λ& 1 ,

256σelastic
e−−B (V/vB)

3 n7

15π|∆n|5 , λ% 1 ,

(56.87)

where σ−e − Belastic is the elastic cross section for e−+ B
scattering.

(B) Rate Coefficients.

Kn′′,n(T )= 〈Vσn′′,n〉 , (56.88a)

Kn′n(T )=
∑

,′

(2+1)

n2
Kn′′,n , (56.88b)

Kn′n(T )=
vBσ

elastic
e−−B√

πn3 (VT /vB)
Φn′n(λT ) , (56.88c)

where

Φn′n(λT)= eλ
2
T/8

[

eλ
2
T/8erfc

(1

2
λT

)
− λ2

T√
2π

D−3

(λT

2

)

− 5λT√
π

D−4

(
λT√

2

)]
(56.89a)

∼
⎧
⎨

⎩
1−8λT/3

√
π , λT & 1

26/
(√
πλ5

T

)
, λT % 1

, (56.89b)

where D−ν(y) denotes the parabolic cylinder function.
Limiting cases:

Kn′n(T )∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
µR∞
πmekBT

)1/2 vBσ
elastic
e−−B

n3 , λT → 0 ,

26vBσ
elastic
e−B n7

π|∆n|5

(
2kBT

µv2
B

)2

, λT % 1 .

(56.90)

Born Results:

σn′n = 8π

k2

1

n2

k+k′∫

|k−k′|
Fn′n(Q)

d(Qa0)

(Qa0)3
. (56.91)

(A) Electron–Rydberg Atom Collision.

σn′n= 8πa2
0 R∞

Z2 En2

[(
1− 1

4∆n

)
(εε′)3/2

(∆ε)4
ln (1+ εe/ε)

+
(

1− 0.6

∆n

)
εe

ε+ εe

(ε′)3/2

(∆ε)2

(
4

3∆n
+ 1

ε

)]

(56.92)
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for n′> n, where εe = E/
(
Z2 R∞

)
, ε= 1/n2, ε′= 1/n′2,

and ∆ε= ε− ε′.

(B) Heavy Particle–Rydberg Atom Collision.

σn′n = 8πa2
0Z

2

Z4n2εe

[(
1− 1

4∆n

)
(εε′)3/2

(∆ε)4
ln(1+ εe/ε)

+
(

1− 0.6

∆n

)
ε e
ε+εe

(ε′)3/2

(∆ε)2

(
4

3∆n
+ 1

ε

)]
,

(56.93)

where εe = mε/MZ2 R∞ with heavy particle mass and
charge denoted above by M and Z, respectively, and all
other terms retain their meaning as in (56.92).

56.6.3 Quasi-Elastic �-Mixing Transitions

σ
(−mixing)
n ≡

∑

′ �=
σn′′,n (56.94a)

∼
⎧
⎨

⎩
σgeo = 4πa2

0n4 , n & nmax ,

2πa2
s v

2
B/V

2n3 , n % nmax .

(56.94b)

The two limits correspond to strong (close) coupling for
n & nmax, and weak coupling for n % nmax, and expres-
sions (56.94b) are valid when the quantum defect δ of
the initial Rydberg orbital n is small. nmax is the princi-
pal quantum number, where the -mixing cross section
reaches a maximum [56.21],

nmax ∼
(
vB|as|
Va0

)2/7

. (56.95)

For Rydberg atom–noble gas atom scattering, nmax = 8
to 20, while for Rydberg atom–alkali atom scattering
nmax = 15 to 30.

56.6.4 Elastic n � → n �′ Transitions

A∗(n)+ B → A∗(n′)+ B . (56.96)

(A) Cross Sections.

σelastic
ns (V )= 2πCssa2

s

(V/vB)2n∗4 , (56.97)

valid for n∗ % [vB|as|/(4Va0)]1/4 with

Css = 8

π2

1/
√

2∫

0

[K(k)]2 dk , (56.98)

where K(k) denotes the complete elliptic integral of the
first kind.

(B) Rate Coefficients [56.22] (Three Cases). With the
definitions

νB = vB/vrms , vrms =
√
(8kBT )/µπ , (56.99)

f(y)= y−1/2(1− (1− y)e−y)+ y3/2Ei (y) ,
(56.100)

y = (νBas)
2/(4πa2

0n∗8) , (56.101)

n1 = (|as|νB/4a0)
1/4 , (56.102)

n2 = 0.7
[
|as|ν5/6

B /
(
αda3

0

)1/6
]1/3

, (56.103)

where αd is the dipole polarizability of A∗, then

〈
σel

ns

〉
∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

8πa2
0n∗4 , n∗ ≤ n1 ,

4π1/2a0|as|νB f(y) , n1 ≤ n∗ ≤ n2 ,

7(αdνB)
2/3+ 4a2

s ν
2
B

n∗4

−2.7a2
s ν

2
B(αdνB)

1/3

a0n∗6
, n∗ ≥ n2 .

(56.104)

56.6.5 Fine Structure
n � J → n � J′ Transitions

A∗(nJ )+ B → A∗(nJ ′)+ B+∆EJ ′ J . (56.105)

(A) Cross Sections (Two Cases).

σnJ ′
nJ (V )=

2J ′ +1

2(2+1)
cnorm4πa2

0n∗4 , (56.106)

valid for n∗ ≤ n0(V ), and

σnJ ′
nJ (V )=

2πC()J ′ J a2
s v

2
B

V 2n∗4
ϕ
()

J ′ J (νJ ′ J )

(

1− n8
0(V )

2n∗8

)

,

(56.107)

valid for n∗ ≥ n0(V ), where the quantity n0(V ) is the
effective principal quantum number such that the impact
parameter ρ0 of B (moving with relative velocity V )
equals the radius 2n∗2a0 of the Rydberg atom A∗. n0(V )
is given by the solution to the following transcendental
equation

n8
0(V )=

(2+1)C()J ′ J
2(2J ′+1)cnorm

(
vBas

Va0

)2

ϕ
()

J ′J
(
νJ ′J [n0(V )]

)
.

(56.108)
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The constant cnorm in (56.106) is equal to 5/8 if σgeo =
π〈r2〉n, or 1 if σgeo = 4πa2

0n∗4. The function ϕ()J ′J (νJ ′ J )
in (56.107) is given in general by [56.23, 24]

ϕ
()

J ′ J (νJ ′ J )= ξ()J ′ J (νJ ′ J )/ξ
()

J ′ J (0) , (56.109a)

ξ
()

J ′ J (νJ ′ J )=
∑

s=0

A(2s)
J ′,J

∞∫

νJ ′ J

j2
s (z)J

2
s (z)z dz ,

(56.109b)

νJ ′ J = |δJ ′ − δJ | vB

Vn∗
, (56.109c)

where js(z) is the spherical Bessel function and
the coefficients C()J ′ J and A(2s)

J ′,J in (56.107) and
(56.109b), respectively, are given in table 5.1 of Beigman
and Lebedev [56.6]. The quantum defect of Rydberg
state nJ is δJ . For elastic scattering, νJJ = 0, and
ϕ
()
JJ (0)= 1.

Symmetry relation:

ξ
()

JJ ′(νJ ′ J )= 2J +1

2J ′ +1
ξ
()

J ′ J (νJ ′ J ) . (56.110)

(B) Rate Coefficients.

〈σnJ ′
nJ 〉 =

(
cnorm(2J ′ +1)C()J ′ J

2(2+1)

)1/2

× πa2
0 F(ζ)

(
vB|as|
VTa0

)
, (56.111)

where ζ = n8
0(VT)/n∗8, and

F(ζ)≡√
ζ

[
E2(ζ)+ 1

ζ
(1− e−ζ )

]
, (56.112)

where E2(x) is an exponential integral.
Limiting cases:

〈
σnJ ′

nJ

〉
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2J ′ +1

2(2+1)
cnorm4πa2

0n∗4 , n∗ & n∗max ,

2πC()J ′ J a2
s v

2
B

V 2
T n∗4

, n∗ % n∗max ,

(56.113)

where n∗max = (3/2)1/8n0(V ) if νJ ′ J & 1.

56.7 Impulse Approximation

56.7.1 Quantal Impulse Approximation

Basic Formulation [56.25]
Consider a Rydberg collision between a projectile (1)
of charge Z1 and a target with a valence electron (3) in
orbital ψi bound to a core (2). The full three-body wave
function for the system of projectile + target is denoted
by Ψi . The relative distance between 1 and the center-
of-mass of 2−3 is denoted by σ , while the separation
of 2 from the center-of-mass of 1−3 is ρ.

Formal Scattering Theory.

Ψ
(+)
i =Ω(+)ψi , (56.114)

where the Möller scattering operatorΩ(+) = 1+G+Vi ,
and Vi = V12+V13.

Let χm be a complete set of free-particle wave
functions satisfying

(H0− Em)χm = 0 , (56.115)

and define operators ω+ij (m) by

ω+ij (m)χm =
(

1+ 1

Em −H0−Vij + iε
Vij

)
χm ,

(56.116)

where Vij denotes the pairwise interaction potential be-
tween particles i and j (i, j = 1, 2, 3). Then the action of
the full Green’s function G+ on the two-body potential
Vij is

G+Vij =
[
ω+ij (m)−1

]

+G+[(Em−E)+V12+V13+V23−Vij
]

×
[
ω+ij (m)−1

]
. (56.117)

Projection Operators.

b+ij (m)= ω+ij (m)−1 , (56.118a)

b+ij =
∑

m

b+ij (m)|χm〉〈χm | , ω+ij = b+ij +1 .

(56.118b)

G+Vij |ψi〉 =
∑

m

G+Vij |χm〉〈χm |ψi〉 (56.119a)

=
[

b+ij +G+ [
V23, b

+
ij

]

+G+ [
V12+V13−Vij

]
b+ij (m)

]
|ψi〉 .

(56.119b)
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Möller Scattering Operator.

Ω+ = (
ω+13+ω+12−1

)+G+ [
V23,

(
b+13+b+12

)]

+G+ (
V13b+12+V12b+13

)
. (56.120)

Exact T-Matrix.

Ti f =
〈
ψ f

∣∣V f
∣∣(ω+13+ω+12−1

)
ψi
〉

+ 〈
ψ f

∣∣V f
∣∣G+ [

V23,
(
b+13+b+12

)]
ψi
〉

+ 〈
ψ f

∣∣V f
∣∣G+(V13b+12+V12b+13

)
ψi
〉
.

(56.121)

The impulse approximation to the exact T -matrix
element (56.121) is obtained by ignoring the second
term involving the commutator of V23.

Ψi −→ Ψ
imp
i = (

ω+13+ω+12−1
)
ψi . (56.122)

Impulse Approximation: Post Form.

T imp
i f = 〈ψ f |V f

∣∣(ω+13+ω+12−1
)
ψi
〉
. (56.123)

The impulse approximation can also be expressed using
incoming-wave boundary conditions by making use of
the prior operators

ω−ij (m)χm =
(

1+ 1

Em −H0−Vij − iε
Vij

)
χm ,

(56.124a)

ω−ij =
∑

m

ω−ij (m)|χm〉〈χm | . (56.124b)

The impulse approximation (56.123) is exact if V23 is
a constant since the commutator of V23 vanishes in that
case.

Applications [56.25]

(1) Electron Capture. X++H(i)→ X( f )+H+.

T imp
i f = 〈

ψ f
∣∣V12+V23

(
ω+12+ω+13−1

)
ψi
〉
.

(56.125)

Wave functions: ψi = eiki ·σϕi(r), ψ f = eik f ·ρϕ f (x),
χm = (2π)−3 exp [i(K · x+k ·ρ)], where the ϕn are hy-
drogenic wave functions.

If X above is a heavy particle, the V12 term in
(56.125) may be omitted due to the difference in mass
between the projectile 1 and the bound Rydberg elec-
tron 3. See [56.25] and references therein for details.

With the definitions

z = 4αδ2

(T −2δ)(T −2αδ)
, T = β2+ P2 ,

δ= iβK − p · K , ν = aZ1/K ,

t1 = K/a+v , N(ν)= eπν/2Γ (1− iν) ,

a = M1

M1+me
, b = M2

M2+me
,

k= ak2− (1−a)k f , K = ak1− (1−a)ki ,

t = (K − p)/a , p = ak f −ki ,

β = aZ1/n ,

and n is the principal quantum number, the impulse
approximation to the T -matrix becomes, in this case,

T imp
i f ∼ 〈

ψ f
∣
∣V23

∣
∣ω+13ψi

〉
(56.126)

= −1

2π2a3

∫
dK
t2

N(ν)gi(t1)F ( f, K , p) ,

(56.127)

where, for a general final s-state,

F ( f, K , p)=
∫
ϕ∗f (x)eip·x

1 F1
[
iν, 1; i

(
Kx

−K · x
)]

dx , (56.128)

and gi(t1) denotes the Fourier transform of the
initial state. The normalization of the Fourier trans-
form is chosen such that momentum and coordinate
space hydrogenic wave functions are related by
ϕn(r) = (2π)−3

∫
exp(it1 · r)gn(t1) dt1. For the case

f = 1s,

F (1s, K , p)= − β
3/2

√
π

∂

∂β
I(ν, 0, β,−K , p)

= 8
√
πβ3/2

[
(1− iν)β

T 2

+ iν(β− iK)

T(T −2δ)

(
T

T −2δ

)iν]

(56.129)

evaluated at β = aZ1. For the case f = 2s,

F (2s, K , p)= − β
3/2

√
π

[(
∂

∂β
+β ∂

2

∂β2

)

×I
(
ν, 0, β,−K , p

)]
(56.130)

evaluated at β = aZ1/2. For a general final ns-state f ,

I(ν, α, β, K , p)= 4
√
π

T

(
T −2αδ

T −2δ

)iν

(56.131)

× (U coshπν± iV sinhπν) ,
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where the complex quantity U + iV is

U + iV = (4z)iν
Γ
( 1

2 + iν
)

Γ(1+ iν)
× 2 F1(−iν,−iν; 1−2iν; 1/z) . (56.132)

(2) Electron Impact Excitation.

e−+H(i)→ e−+H( f ) . (56.133)

Neglecting V12 and exchange yields the approximate
T -matrix element

T imp
i f ∼ 〈

ψ f
∣∣V13

∣∣ω+13ψi
〉

= −Z1

(2πa)3

∫
dx

∫
dr eiq·σϕ∗f (r)

1

x

×
∫

dK N(ν)gi(t1)eit1·r
1 F1(iν, 1; iKx− iK · x)

(56.134)

= −Z1

(2πa)3

∫
dK N(ν)gi(t1)g∗f (t2)

×I
(
ν, 0, 0,−K ,−q

)
, (56.135)

where

I(ν, 0, 0,−K ,−q)

= lim
β→0

4π

β2+q2

(
β2+q2

β2+q2+2q · K −2iβK

)iν

(56.136)

= 4π

q2

∣∣∣∣1+
2K

q
cos θ

∣∣∣∣

−iν

A(cos θ) , (56.137)

with

A(cos θ)=
⎧
⎨

⎩
1 , cos θ >−q/2K ,

e−πν , cos θ <−q/2K ,
(56.138)

and cos θ = K̂ · q̂, t2 = t1+bq and q = ki −k f .

(3) Heavy Particle Excitation [56.26].

H++H(1s)→ H++H(2s) . (56.139)

T imp
i f = − Z1215/2b5

πa3q2

∞∫

0

dK N(K)K2

1∫

−1

d(cos θ)

×

∣∣∣∣1+
2K

q
cos θ

∣∣∣∣
−iν

Ã(cos θ) ,

(56.140)

where

Ã(cos θ)= 2π

D4

(
αD

(
D−2b2

)

(
α2−β2

)3/2
+ 8

(
3b2−D

)

(
α2−β2

)1/2

− 48γ 2D2b2

(
γ 2−δ2

)5/2
+ 16D

[
γD−(3γ+4α)b2

]

(
γ 2− δ2

)3/2

+ 32
(
D−3b2

)

(
γ 2− δ2

)1/2

)

A(cos θ) , (56.141)

with A(cos θ) given by (56.138), and

α= b2+v2+ K2

a2
+ K

aq

(
q2

µ
+∆E

)
cos θ ,

(56.142a)

β = K

aq
sin θ

[

4v2q2−
(

q2

µ
+∆E

)2]1/2

, (56.142b)

δ= 4β, γ = 4α+D , (56.142c)

D = 4bq

a
(q+2K cos θ) , (56.142d)

while ν and N(ν) retain their meaning from (56.127).

(4) Ionization. e−+H(i)→ e−+H++ e−.

T imp
i f ∼−4π

q2
N(ν)gi(k−bq)

(
q2

q2−2q · K

)iν

,

(56.143)

where K = a(k−bq−v) and q = ki −k f and exchange
and V12 are neglected.

(5) Rydberg Atom Collisions [56.11, 27].

A+ B(n)→ A+ B(n′) (56.144)

→ A+ B++ e− . (56.145)

Consider a Rydberg collision between a projectile (3)
and a target with an electron (1) bound in a Rydberg
orbital to a core (2) [56.11, 27].

Full T -matrix element:

T fi(k3, k′3) (56.146)

= 〈
φ f (r1)e

ik′3·r3
∣∣V(r1, r3)

∣∣Ψ(+)i (r1, r3; k3)
〉
,

with primes denoting quantities after the collision, and
where the potential V is

V(r1, r3)= V13(r)+V3C(r3+ar1) , r = r1−r3 ,

(56.147)

with a = M1/(M1+M2), while the subscript C labels
the core. The impulse approximation to the full, outgoing
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wave function Ψ(+)i is written

Ψ
imp
i = (2π)3/2

∫
gi(k1)Φ(k1, k3; r1, r3)dk1 ,

(56.148)

gi(k1)= 1

(2π)3/2

∫
φi(r1)e

−ik1·r1 dr1 . (56.149)

Impulse approximation:

T imp
fi (k3, k′3)=

∫
dk1

∫
dk′1 g∗f (k′1)gi(k1)T13(k, k′)

× δ
[
P− (k′1−k1)

]
, (56.150)

where T13 is the exact off-shell T -matrix for 1–3 scat-
tering,

T13(k, k′)=
〈
exp(ik′ ·r)|V13(r)|ψ(k, r)

〉
. (56.151)

The delta function in (56.150) ensures linear momentum,
K = k1+k3 = k′1+k′3, is conserved in 1–3 collisions,
with

k′1 = k1+ (k3−k′3)≡ k1+ P , (56.152a)

k′ = M3

M1+M3
(k1+k3)−k′3 = k+ P . (56.152b)

Elastic scattering:

Tii(k3, k3)=
∫

g∗f (k1)gi(k1)T13(k, k)dk1 ,

(56.153)

where k= (M3/M)k1+ (M1/M)k3 and M = M1+M3.
Integral cross section: for 3–(1,2) scattering,

σi f (k3)=
(

MAB

M13

)2 k′3
k3

∫ ∣∣〈g f (k1+ P)
∣∣

× f13(k, k′)gi(k1)〉
∣∣2 dk̂′3 , (56.154)

where MAB is the reduced mass of the 3–(1,2) sys-
tem, M13 the reduced mass of 1–3. The 1–3 scattering
amplitude f13 is given by

f13(k, k′)=− 1

4π

(
2M13

�2

)
T13(k, k′) . (56.155)

Six Approximations to (56.150)

(1) Optical Theorem.

σtot(k3)= 1

k3

2MAB

�2 Tii(k3, k′3)

= 1

v3

∫ ∣∣gi(k1)
∣∣2 [v13σ

T
13(v13)

]
dk1 ,

(56.156)

where σT
13 is the total cross section for 1–3 scatter-

ing at relative speed v13. The resultant cross section
(56.156) is an upper limit and contains no interference
terms.

(2) Plane-Wave Final State.

φ f (r1)= (2π)−3/2 exp(iκ′1 ·r1) , (56.157)

g f (k′1)= δ(k′1−κ′1) , (56.158)

T fi(k3, k′3)= gi(k1)T13(k, k′) , k1 = κ1− P ,
(56.159)

dσi f

dk̂′3 dk′1
=
(

MAB

M13

)2 k′3
k3

∣∣gi(k1)
∣∣2∣∣ f13(k, k′)

∣∣2 .

(56.160)

(3) Closure.

∑∫

f

g f (k′1)g∗f (k′′1)= δ(k′1−k′′1) , (56.161)

dσT
i

dk̂′3
= k̄′3

k3

(
MAB

M13

)2 ∫ ∣∣gi(k1)
∣∣2∣∣ f13(k, k′)

∣∣2 dk1 ,

(56.162)

where k′1 = (M3/M)(k1+k3)−k′3.
Conditions for validity of (56.162): (a) k3 is high

enough to excite all atomic bound and continuum
states, and (b) k′23 = (k2

3 −2ε fi/MAB) can be approxi-
mated by k3, or by an averaged wavenumber k̄′3 = (k2

3−
2ε̄ fi/MAB)

1/2, where the averaged excitation energy is

ε̄ fi = ln〈ε fi〉 =
∑

j

fij ln εij

(∑

j

fij

)−1

, (56.163)

and the fij are the oscillator strengths.

(4) Peaking Approximation.

T peak
fi (k3, k′3)= F fi(P)T13(k, k′) , (56.164)

where F fi is the inelastic form factor

F fi(P)=
∫

g∗f (k1+ P)gi(k1)dk1 (56.165)

= 〈ψ f (r) exp(iP ·r)|ψi(r)〉 . (56.166)

(5) T13 = T13(P).

T fi(k3, k′3)= T13(P)F fi(P) . (56.167)
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Rydberg Collisions: Binary Encounter, Born and Impulse Approximations 56.7 Impulse Approximation 849

(6) T13 = constant. f13 ≡ as = constant scattering
length.

σi f (k3)= 2πa2
s

k2
3

(
MAB

M13

)2
k3+k′3∫

k3−k′3

∣∣F fi(P)
∣∣2 P dP ,

(56.168)

σtot(k3)=
⎧
⎨

⎩
4πa2

s , v3 % v1

〈v1〉4πa2
s /v3 , v3 & v1 .

(56.169)

Validity Criteria
(A) Intuitive Formulation [56.27]. (i) Particle 3 scatters
separately from 1 and 2, i. e., r12 % A1,2; the relative
separation of (1,2) % the scattering lengths of 1 and 2.
(ii) λ13 & r12, i. e., the reduced wavelength for 1–3 rel-
ative motion & r12. Interference effects of 1 and 2 can
be ignored and 1, 2 treated as independent scattering
centers.
(iii) 2–3 collisions do not contribute to inelastic 1–3
scattering.
(iv) Momentum impulsively transferred to 1 during col-
lision (time τcoll) with 3 % momentum transferred to 1
due to V12, i. e.,

P % 〈ψn|−∇V12|ψn〉τcoll . (56.170)

For a precise formulation of validity criteria based
upon the two-potential formula see the Appendix
of [56.27].

Two classes of interaction in A–B(n) Rydberg col-
lisions justify use of the impulse approximation for the
T -matrix for 1–3 collisions: (i) quasiclassical binding
with Vcore = const., and (ii) weak binding with

E3 %∆Ec ∼ 〈ψn(r)|V1C(r)|ψn(r)〉 , (56.171a)

〈ψn(r1)|− �
2

2M12
∇2

1 |ψn(r1)〉 ∼ |εn| , (56.171b)

where E3 is the kinetic energy of relative motion of 3,
and ∆Ec is the energy shift in the core. The fractional
error is [56.28]

f13

λ

∆Ec

�

(
�

E3
+ τdelay

)
& 1 , (56.172)

whereλ∼ k−1
3 is the reduced wavelength of 3, f13 is the

scattering amplitude for 1–3 collisions and τdelay is the
time delay associated with 1–3 collisions.

Special Case: for nonresonant scattering with
τdelay = 0

f13

λ

|εn|
E3

& 1 , (56.173)

which follows from (56.172) upon identifying the shift
in the core energy ∆Ec with the binding energy |ε|.

Condition (56.173) is less restrictive than (56.171a)
or (56.171b) since f13 can be either less than or greater
thanλ.

56.7.2 Classical Impulse Approximation

(A) Ionization. For electron impact on heavy par-
ticles [56.29], the cross section for ionization of
a particle moving with velocity t by a projectile with
velocity s is

Q(s, t)= 1

u2

2s

m2

s2∫

1

dz

z2

[
A(z)

z
+ B(z)

]
, (56.174)

where

A(z)= 1

2st3

[
1

3

(
x3/2

02 − x3/2
01

)

−2
(

s2+ t2
)(

x1/2
02 − x1/2

01

)]

−
(
s2− t2

)2

2ts3

(
x−1/2

02 − x−1/2
01

)
, (56.175a)

B(z)= 1

2m2st3

[
(m1+m2)

(
s2− t2)

(
x−1/2

02 − x−1/2
01

)

− (m2−m1)
(

x1/2
02 − x1/2

01

)]
. (56.175b)

For electron impact, (56.175b) is evaluated at
m1 = 1. The remaining terms above are given by

s2 = v2
2/v

2
0 , t2 = v2

1/v
2
0 = E1/u ,

E2 = m2v
2
2 ,

u = v2
0 = Ionization potential of target ,

x0i = (s2+ t2−2st cos θi) , i = 1, 2 ,

cos θi =

⎧
⎪⎪⎨

⎪⎪⎩

κ0±κ1 , |κ0±κ1| ≤ 1

1 , κ0±κ1 > 1

−1 , κ0±κ1 <−1

,

κ0±κ1=−1

2

(
1− m1

m2

)
z

st
±
√(

1+ z

t2

)(
1− z

s2

)
.

Equal Mass Case: (m1 = m2)

Q(s, t)=

⎧
⎪⎪⎨

⎪⎪⎩

4

3s2

1

u2

2(s2−1)3/2

t
, 1 ≤ s2 ≤ t2+1 ,

4

3s2

1

u2

(
2t2+3− 3

s2− t2

)
, s2 ≥ t2+1 .

(56.176)
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Integrating over the speed distribution (Sect. 56.4),

Q(s)= 32

π

1

u2

∞∫

0

Q(s, t)t2 dt

(t2+1)4
, (56.177)

which is then numerically evaluated. For electrons, the
integral can be done analytically with the result

Q(y)= 8

3πy2(y+1)4

×

[ (
5y4+15y3−3y2−7y+6

)
(y−1)1/2

+
(

5y5+17y4+15y3−25y2+20y
)

× tan−1(y−1)1/2

−24y3/2 ln

∣
∣∣∣

√
y+√y−1√
y−√y−1

∣∣∣∣

]
, (56.178)

with y = s2.
Thomson’s Result:

QT(y)= 4

y

1

u2

(
1− 1

y

)
. (56.179)

(B) Electron Loss Cross Section [56.18].

A(V )+ B(u)→ A++ e−+ B( f ) , (56.180)

where B( f ) denotes that the target B is left in any state
(either bound or free) after the collision with the pro-
jectile A. The initial velocity of the projectile is V
while the velocity of the Rydberg electron relative to
the core is u, and the ionization potential of the target B
is I .

σloss= 1

3πν2

∞∫

τ/4ν

dx σT(xū)

(
8νx−1− (ν− x)2−2τ

[
1+ (ν− x)2

]3

+ 1
[
1+ (ν+ x)2− τ]2

)

, (56.181)

where ν = V/ū, τ = I/ 1
2 meū2, ū =√

2I/me, and σT is
the total electron scattering cross section at speed xū.
The cross section (56.181) is valid only for particles
being stripped (or lost from the projectile) which are
not strongly bound. See [56.18, 30, 31] for details and
numerous results.

(C) Capture Cross Section from Shell i [56.18].

σ i
capture(V )

= 25/2 Niπ

3V 7

ri∫

0

dr

C(+1)∫

C(−1)

d(cos η′) [Pi(r)]
2

×

√
1+ y2

[
4ε2− (

ε2− y2
) (

1+ ε2+a2− y2
)]

r3/2ε9/2
(
1+a2

)3 √
y2−a2

,

(56.182)

where C denotes that the integration range [−1,+1] is
restricted such that the integrand is real and positive and
that |1− ε|<√

y2−a2. The dimensionless variables a
and y above are defined as

y2 = 2

me
|V(R)|V 2 , a2 = 2

m e
IiV

2 , (56.183)

and with Pi(r)/r representing the Hartree–Fock–Slater
radial wave function for shell i, with normalization

ri∫

0

[Pi(r)]
2 dr = 1 . (56.184)

The ionization potential and number of electrons in
shell i are denoted above, respectively, by Ii and Ni .

(D) Total Capture Cross Section [56.18].

σ total
capture(V )=

∑

i

σ i
capture . (56.185)

(E) Universal Capture Cross Section [56.18]. A uni-
versal curve independent of projectile mass M and
charge Z is obtained from the above expressions for
the capture cross section by plotting the scaled cross
section

σ̃ total
capture =

E11/4

M11/4 Z7/2λ3/4 σ
total
capture (56.186)

versus the scaled energy

Ẽ = me

M

E

I
, (56.187)

where me is the mass of the particle captured, which
is usually taken to be a single electron, and I is the
ionization potential of the target. The term λ in (56.186)
is the coupling constant in the target potential, V(R)=
meλ/R2, which the electron being captured experiences
during the collision. See Fig. 11 of [56.18] for details.
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56.7.3 Semiquantal Impulse Approximation

Basic Expression [56.27, 32,33].

dσ

dεdP dk1 dk dφ1
= k′21

J55

k′3
k3

(
M3

M13

)2 ∣∣gi(k1)
∣∣2

×
∣∣ f13(k, k′)

∣∣2 . (56.188)

J55 is the 5-dimensional Jacobian of the transformation

(P, ε, k1, k, φ1)→
(
k̂′3, k′1

)
, (56.189a)

J55 = ∂ (P, ε, k1, k, φ1)

∂
(
cos θ ′3φ′3, k′1, cos θ ′1, φ′1

) .

(56.189b)

Expression for Elemental Cross Section [56.27]. In the
(P, ε, k1, k, φ1) representation,

dσ = dεdP

M2
13v

2
3

[
|gi(k1)|2k2

1 dk1 dφ1

v1

]

×
| f13(k, k′)|2 dg2

√(
g2+− g2

) (
g2− g2−

) , (56.190)

where g2± = 1
2 B±

√
1
4 B2−C, and

B = B(ε, P, v1; v3)

= a

(1+a)2
P2

M2
13

+
(
v2

1+v′21 +v2
3+v′23 +

2∆3

M13

)

− 4ε(ε+∆3)

P2
,

C = C(ε, P, v1; v3)

= v
2
1+av2

3

1+a

P2

M2
13

+
(
v2

1−v2
3

) (
v′21 −v′23

)

+ 2∆3

M13

(
v2

1+v2
3

)
+ 4∆3

P2

[
v2

1(ε+∆3)− εv2
3

]
,

a = M2 M3

M1(M1+M2+M3)
,

M̃1 = M1(1+M1/M2) ,

v′21 = v2
1+

2ε

M̃1
, v′23 = v2

3−
2(ε+∆3)

MAB
,

and ∆3 is the change in internal energy of particle 3,
while ε denotes the energy change in the target 1−2.

Hydrogenic Systems gi(k1)= gn‘(k1)Y‘m(θ 1‚φ1). The
gn are the hydrogenic wave functions in momentum
space. See Chapt. 9 for details on hydrogenic wave
functions.

Elemental Cross Sections (m-Averaged and φ1-
Integrated).

dσ = dεdP

M2
13v

2
3

Wn(v1)dv1

2v1

| f13(P, g)|2 dg2
√(

g2+− g2
) (

g2− g2−
) ,

(56.191)

where the speed distribution Wn is given by (56.57).

Two Representations for 1–3 Scattering Ampli-
tude [56.27]. (i) f13 = f13(P, g) is a function of
momentum transferred and relative speed. Then

σ(v3)= 1

M2
13v

2
3

ε2∫

ε1

dε

∞∫

v10

Wn(v1)dv1

v1

P+∫

P−
dP

×

g+∫

g−

| f13(P, g)|2 dg2
√(

g2+− g2
) (

g2− g2−
) , (56.192)

where v2
10(ε)= max [0, (2ε/M)], and the limits to the

P integral are

P+ = P+ (ε, v1; v3)

= min
[
M(v′1+v1),MAB(v

′
3+v3)

]
,

(56.193a)

P− = P− (ε, v1; v3)

= max
[
M
∣∣v′1−v1

∣∣,MAB
∣∣v′3−v3

∣∣] ,
(56.193b)

and unless P+ > P−, the P integral is zero.
(ii) f13 = f13(g, ψ) is a function of relative speed and
scattering angle. Then

σ(v3)= 1

v2
3

ε2∫

ε1

dε

∞∫

v10

Wn(v1) dv1

v1

g+∫

g−

g dg

S(v1, g; v3)

×

ψ+∫

ψ−

| f13(g, ψ)|2 d(cosψ)
√(

cosψ+− cosψ
)(

cosψ− cosψ−
) ,

(56.194)

where

S(v1, g; v3)= M13

1+a

[
(1+a)

(
v2

1+av2
3

)−ag2
]1/2

.

Scattering angle ψ-limits,

cosψ± = cosψ±(ε, v1, g; v3) (56.195)

= g

g′
1

α2+β2

{
α(α+ ε̃)±β

[
ω2

(
α2+β2

)

− (α+ ε̃)2
]1/2

}
, (56.196)
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where

α= α(v1, g; v3)

= 1

2
M13

[
v2

1−v2
3+

(
1−a

1+a

)
g2
]
,

β = β(v1, g; v3)

= 1

2
M13

[(
2v2

1+2v2
3− g2

)
g2−

(
v2

1−v2
3

)2
]1/2

,

ω= g′/g , ε̃= ε+ a

1+a
∆3 .

Special Case: f13 = f13(P).

σ(v3)= π

M2
13v

2
3

ε2∫

ε1

dε

∞∫

v10

Wn(v1)dv1

v1

×

P+∫

P−
| f13(P)|2 dP . (56.197)

56.8 Binary Encounter Approximation

The basic assumption of the binary encounter approx-
imation is that an excitation or ionization process is
caused solely by the interaction of the incoming charged
or neutral projectile with the Rydberg electron bound to
its parent ion. If, for example, the cross section depends
only on the momentum transfer P to the Rydberg elec-
tron (as in the Born approximation), then the total cross
section is obtained by integrating σP over the momen-
tum distribution of the Rydberg electron. The basic cross
sections required are given in the following section. For
further details see [56.34] and references therein.

56.8.1 Differential Cross Sections

Cross Section per Unit Momentum Transfer
Let the masses, velocities and charges of the particles be
(m1, v1, Z1, e) and (m2, v2, Z2, e), with v = |v1−v2|
denoting the relative velocity and quantities after the
collision are denoted by primes. Then for distinguishable
particles,

σP = 8πZ2
1 Z2

2 e4 P

v2

∣∣∣∣
exp(iηP)

P2

∣∣∣∣
2

, (56.198)

where the phase shift ηP is

ηP =−2γ ln(P/2µv)+2η0+π , (56.199)

and with

µ= m1m2

m1+m2
, γ = Z1 Z2e2

�v
, e2iη0 = Γ(1+ iγ)

Γ(1− iγ)
.

(56.200)

For identical particles,

σ±P = 8πZ2
1 Z2

2 e4 P

v2

∣∣∣∣
eiηP

P2 ± eiηS

S2

∣∣∣∣
2

, (56.201)

where ηP is given by (56.199) and ηS is

ηS =−2γ ln(S/2µv)+2η0+π , (56.202)

while η0 is given by (56.200). The momenta P and S
transferred by direct and exchange collisions, respec-
tively, are given by

P = m1(v1−v′1)= m2(v1−v′2) , (56.203a)

S= m1(v1−v′2)= m2(v
′
1−v2) . (56.203b)

The collision rates (in cm3/s) are

α̂P = v1σP , α̂±P = v1σ
±
P . (56.204)

Cross Section per Unit Momentum
Transferred per Unit Steradian

Differential relationships:

αE,P = d2α

dP dE
= d2α

dP dϕ

dϕ

dE
= αP,ϕ

dϕ

dE
. (56.205)

For distinguishable particles,

αP = 2πv1σP,ϕ = 2παP,ϕ , (56.206a)

αP,ϕ = 4Z2
1 Z2

2e4 P

v

∣∣∣∣
eiηP

P2

∣∣∣∣

2

, (56.206b)

αE,P = v1σE,P = 8Z2
1 Z2

2e4

v1v2
√

X

∣∣∣∣
eiηP

P2

∣∣∣∣

2

. (56.206c)

For identical particles,

α±P,ϕ =
4Z2

1 Z2
2e4 P

v

∣∣∣∣
eiηP

P2
± eiηS

S2

∣∣∣∣

2

, (56.207a)

α±E,P = v1σ
±
E,P =

8Z2
1 Z2

2e4

v1v2
√

X

∣∣∣∣
eiηP

P2
± eiηS

S2

∣∣∣∣

2

,

(56.207b)
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Rydberg Collisions: Binary Encounter, Born and Impulse Approximations 56.8 Binary Encounter Approximation 853

where

X =− cos2 φ+2
(
v̂1 · P̂

)(
v̂2 · P̂

)
cosφ+1

− (
v̂1 · P̂

)2− (
v̂2 · P̂

)2
(56.208a)

= (cosφmin− cosφ)(cosφ− cosφmax) (56.208b)

=
(

v

v1v2 P

)2

(Emax− E)(E− Emin) , (56.208c)

with φ being the angle between the velocity vectors v1
and v2.

For the special case of electron impact, M2 = me,
Z2 =−1, and

σE,P(φ)= 8Z2
1e4

v2
1v2 P4

√
X
, (56.209)

σ±E,P(φ)= 8e4v2
1v2

√
X

×

(
1

P4 +
1

S4

2 cos
(
ηP −ηS

)

P2S2

)

, (56.210)

where ηP − ηS = −2γ ln(P/S) = (
2e2/�v

)
ln(S/P),

and X is given by (56.208b).

Integrated Cross Sections
For incident heavy particles:

σE,P =
π∫

0

σE,P(φ)
1

2
sinφ dφ = 4πZ2

1e4

v2
1v2 P4

. (56.211)

For incident electrons:

σ±E,P =
π∫

0

σ±E,P(φ)
1

2
sinφ dφ (56.212a)

= 4πe4

v2
1v2

(
1

P4
+ v

2
1+v2

2− P2/2m2
e −2E2/P2

m4
e

∣∣v2
1−v2

2−2E/me
∣∣3

± 2Φ

m2
e P2

∣∣v2
1−v2

2−2E/me
∣∣

)

, (56.212b)

where Φ can be approximated [56.35] by

Φ ∼ cos

(∣∣∣∣
R∞

E3− E2

∣∣∣∣
1/2

ln

∣∣∣∣
E

E3− E2− E

∣∣∣∣

)

.

(56.213)

and E3 is defined in [56.35].

Cross Sections per Unit Energy
For incident heavy particles (three cases):

σE = 2πZ2
1e4

mev
2
1

(
1

E2
+ 2mev

2
2

3E2

)

, (56.214)

which is valid for 2v1 ≥ v2+v′2, E ≤ 2mev1(v1−v2),
or

σE = πZ2
1e4

3v2
1v2 E3

(
4v3

1−
1

2
(v′2−v2)

2
)
, (56.215)

which is valid for v′2−v2 ≤ 2v1 ≤ v′2+v2, 2mev1
(v1−v2) ≤ E ≤ 2mev1(v1+v2), or otherwise, σE = 0
for E ≥ mev1(v

′
2+v2).

For incident electrons (two cases):

σ±E =
2πe4

mev
2
1

(
1

E2
+ 2mev

2
2

3E3
+ 1

D2
+ 2mev

2
2

3D3
± 2Φ

ED

)

,

(56.216)

which is valid for me(v2−v′2)≤ me(v
′
1−v1),

me(v
′
2+v2) ≤ me(v1+v′1), D ≥ 0, or

σE = 2πe4

mev
2
1

(
1

E2 +
2mev

′2
1

3E3 + 1

D2

+ 2mev
′2
1

3|D|3 ± 2Φ

E|D|
)
v′1
v1
, (56.217)

which is valid for me(v
′
2−v2)≤ m(v1−v′1),

me(v1+v′1) ≤ me(v
′
2+v2), D ≤ 0. In the expressions

above, the exchange energy D transferred during the
collision is

D = 1

2
mev

2
1−

1

2
mev

′2
2 = 1

2
mev

2
1−

1

2
mev

2
2− E .

(56.218)

56.8.2 Integral Cross Sections

e−(T )+ A(E2)→ e−(E)+ A++ e− , (56.219)

where T is the initial kinetic energy of the projectile
electron, while the Rydberg electron, initially bound in
potential Ui to the core A+, has kinetic energy E2. The
cross section per unit energy E is denoted below by σE.
See the review by Vriens [56.34] for details.

For electron impact, there are two collision mod-
els: the unsymmetrical collision model of Thomson and
Gryzinski assumes that the incident electron has zero
potential energy, and the symmetrical collision model
of Thomas and Burgess assumes that the incident elec-
tron is accelerated initially by the target (and thereby
gains kinetic energy) while losing an equal amount of
potential energy.

Unsymmetrical model (two cases):

σE = πe4

T

(
1

E2 +
4E2

3E3 +
1

D2 +
4E2

3D3 −
Φ

ED

)
,

(56.220)
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which is valid for D = T − E2− E ≥ 0 or,

σE = πe4

T

(
1

E2
+ 4T ′

3E3
+ 1

D2
+ 4T ′

3|D|3 −
Φ

E|D|
)

×

(
T ′

E2

)1/2

(56.221)

which is valid for D ≤ 0 and T ≥ E; and where T ′ ≡
T − E.

Symmetrical model (two cases):

σE = πe4

Ti

(
1

E2 +
4E2

3E3 +
1

X2
i

+ 4E2

3X3
i

− Φ

EXi

)

,

(56.222)

which is valid for Xi ≡ T +Ui − E ≥ 0, with Ti ≡
T +Ui + E2, and

σE = πe4

Ti

(
1

E2
+ 4T ′

i

3E3
+ 1

X2
i

+ 4T ′
i

3|Xi |3 −
Φ

E|Xi |

)

×

(
T ′

i

E2

)1/2

(56.223)

which is valid for 0≤ T ′
i ≤ E2, T ≥ 0, with T ′

i ≡ Ti − E,
and where Φ is given by (56.213).

For incident heavy particles, the unsymmetrical
model (56.220) should be used.

Single Particle Ionization
The total ionization cross section per atomic electron for
incident heavy particles is

Qi = 2πZ2
1e4

mev
2
1

(
1

Ui
+ mev

2
2

3U2
i

− 1

2me
(
v2

1−v2
2

)

)

,

(56.224)

which is valid for Ui ≤ 2mev1(v1−v2), or

Qi = πZ2
1e4

mev
2
1

{
1

2mev2(v1+v2)
+ 1

Ui

+ me

3v2U2
i

[
2v3

1+v3
2−

(
2Ui/me+v2

2

)3/2
]}
,

(56.225)

which is valid for 2mev1(v1 − v2) ≤ Ui ≤ 2mev1
(v1+v2), or otherwise Qi = 0 for Ui ≥ 2mev1(v1+v2).

For electron impact,

Qi = 1

2

(
Qdir

i +Qex
i +Qint

i

)
. (56.226)

In the unsymmetrical model, Qex
i diverges, hence the

exchange and interference terms above are omitted in

the unsymmetrical model for electrons to obtain

Qdir
i = πe4

T

(
1

Ui
+ 2E2

3U2
i

− 1

T − E2

)

, (56.227)

which is valid for T ≥ E2+Ui , or

Qdir
i = 2πe4

3T

(T −Ui)
3/2

U2
i

√
E2

, (56.228)

which is valid for Ui ≤ T ≤ E2+Ui .
In the symmetrical model,

Qdir
i = Qex

i

= πe4

Ti

[
1

Ui
− 1

T
+ 2

3

(
E2

U2
i

− E2

T 2

)]

, (56.229)

Qint
i =−πe4

Ti

(
2Φ′

T +Ui
ln

T

Ui

)
, (56.230)

where Φ′ can be approximated by [56.35]

Φ′ = cos

[(
R∞

E1+Ui

)1/2

ln
E1

Ui

]

. (56.231)

and E1 is defined in [56.35].
The sum of (56.229) and (56.230) yields

Qi = πe4

Ti

[
1

Ui
− 1

T
+ 2

3

(
E2

Ui
− E2

T 2

)

− Φ′

T +Ui
ln

T

Ui

]
, (56.232)

which is also obtained by integrating the expression
(56.223) for σE,

Qi =
1
2 (T+Ui )∫

Ui

σE dE . (56.233)

Ionization Rate Coefficients. For heavy particle im-
pact [56.29],

〈Q〉 = a2
0

κ2

{
128

9

(
κ3b3−b3/2

)

+ 1

3
λb

(
35− 58

3
b

8

3
b2
)

+ 2

3
κab

[ (
5−4κ2

)(
3a2+ 3

2
ab+b2

)

−λκ
(

15

2
+9a+5b

)]
−16κa4 ln

(
4κ21

)

+ θ
[

35

6
−κ2a

(
5

2
+3a+4a2+8a3

)]}
,

(56.234)
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Rydberg Collisions: Binary Encounter, Born and Impulse Approximations 56.8 Binary Encounter Approximation 855

where

κ = v1/v0 ,

λ= κ− (4κ)−1 ,

θ = π+2 tan−1 λ ,

a = (1+κ2)−1 ,

b = (1+λ2)−1 .

〈σE,P dP dE〉 = 64e4v5
0

3v2
1 P4

×

(∣∣∣∣
E

P
− P

2me

∣∣∣∣

2

v2
0

)−3

dP dE ,

(56.235)

where 1
2 mev

2
0 is the ionization energy of H(1s).

Scaling Laws. Given the binary encounter cross section
for ionization by protons of energy E1 of an atom with
binding energy ua, the cross section for ionization of an
atom with different binding energy ub and scaled proton
energy E′

1 can be determined to be [56.18]

σion
(
E′

1, ub
)=

(
u2

a

u2
b

)

σion(E1, ua) , (56.236)

E′
1 = (ub/ua)E1 , (56.237)

where σion(E, u) is the ionization cross section for re-
moval of a single electron from an atom with binding
energy u by impact with a proton with initial energy E.

Double Ionization. See [56.36] for binary encounter
cross section formulae for the direct double ionization
of two-electron atoms by electron impact.

Excitation. Excitation is generally less violent than
ionization and hence binary encounter theory is less
applicable. Binary encounter theory can be applied to ex-
change excitation transitions, e.g., e− +He(n1L)→ e−
+ He(n′3L), with the restriction of large incident electron
velocities. The cross section is

Qex
e =

Un+1∫

Un

σE,ex dE

= πe4

Ti

[
1

Tn+1
− 1

Tn
+ 2

3

(
E2

T 2
n+1

− E2

T 2
n

)]

,

(56.238)

valid for T ≥Un+1, with Tn ≡ T +Ui −Un and Tn+1 ≡
T +Ui +Un+1, or

Qex
e =

T∫

Un

σE,ex dE (56.239)

= πe4

Ti

[
1

Ui
− 1

Tn
+ 2

3

(
E2

U2
i

− E2

T 2
n

)]

,

valid for Un ≤ T ≤Un+1. Un and Un+1 denote the
excitation energies for levels n and n+1, respectively.

56.8.3 Classical Ionization Cross Section

Applying the classical energy-change cross section
result (56.69) of Gerjuoy [56.16] to the case of electron-
impact ionization yields the four cases [56.17]

σion(v1, v2)∼
∆Eu∫

∆E

σeff
∆E(v1, v2;m1/m2) d(∆E)

= π
(
Z1 Z2e2

)2

3v2
1v2

(
−2v3

2

(∆E)2
− 6v2

m2∆E

)

,

(56.240)
which is valid for 0<∆E < b, or

σion (v1, v2)= π
(
Z1 Z2e2

)2

3v2
1v2

×

(
4
(
v1−2v′1

)

m2
1

(
v1−v′1

)2 +
4
(
v2−2v′2

)

m2
2

(
v2−v′2

)2

)

,

(56.241)

which is valid for b<∆E < a, or

σion (v1, v2)= π(Z1 Z2e2)2

3v2
1v2

(
−2v′31
(∆E)2

)

, (56.242)

which is valid for ∆E > a, 2m2v2 > |m1−m2|v1, or
otherwise is zero for ∆E > a, 2m2v2 < |m1−m2|v1.

The limits ∆E,u to the ∆E integration in each of
the four cases is indicated in the appropriate validity
conditions. The constants a and b above are given by

a = 4m1m2

(m1+m2)2

[
E1− E2+ 1

2
v1v2(m1−m2)

]
,

b = 4m1m2

(m1+m2)2

[
E1− E2− 1

2
v1v2(m1−m2)

]
.

The expressions above for σion(v1, v2)must be averaged
over the speed distribution of v2 before comparison with
experiment. See [56.17] for explicit formulae for the
case of a delta function speed distribution.
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56.8.4 Classical Charge Transfer Cross
Section

Applying the classical energy-change cross section
result (56.69) of Gerjuoy [56.16] to the case of charge-
transfer yields the four cases [56.17]

σCX(v1, v2)∼
∆Eu∫

∆E

σ
(eff)
∆E (v1, v2)d∆E

= πe4

3v2
1v2

(

− 2v3
2

(∆E)2
− 6v2/m2

∆E

)

,

(56.243)

which is valid for 0<∆E < b, or

σCX(v1, v2)= πe4

3v2
1v2

⎛

⎝3
v1/m1−v2/m2

∆E

+
(
v′32 −v3

2

)− (
v′31 +v3

1

)

(∆E)2

)

,

(56.244)

which is valid for b<∆E < a, or

σCX(v1, v2)= πe4

3v2
1v2

(

− 2v′21
(∆E)2

)

, (56.245)

which is valid for ∆E > a, mev2 > (m1−me)v1, or
otherwise σCX = 0 when ∆E > a, mev2 < (m1−me)v1.
The above expressions for σCX(v1, v2)must be averaged
over the speed distribution W(v2) before comparison
with experiment. See [56.17] for details. The constants
a and b above are as defined in Sect. 56.8.3, and the
limits ∆E,u are given by

∆E = 1

2
mev

2
1+UA −UB , (56.246a)

∆Eu = 1

2
mev

2
1+UA +UB , (56.246b)

v2 =
√

2UA/me , (56.246c)

where UA,B are the binding energies of atoms A and B.
The expressions above for σCX diverge for some v1 > 0
if UA <UB . If UA =UB then σCX diverges at v1 = 0.
To avoid the divergence, employ Gerjuoy’s modification,
∆E = 1

2 mev
2
1+UA.

56.9 Born Approximation

See reviews [56.37,38], as well as any standard textbook
on scattering theory, for background details on the Born
approximation, and [56.39–42] for extensive tables of
Born cross sections.

56.9.1 Form Factors

The basic formulation of the first Born approximation
for high energy heavy particle scattering is discussed
in Sect. 53.1. For the general atom–atom or ion–atom
scattering process

A(i)+ B(i ′)→ A( f)+ B( f ′) , (56.247)

with nuclear charges Z A and Z B respectively, let �Ki
and �K f be the initial and final momenta of the
projectile A, and �q = �K f −�Ki be the momentum
transferred to the target. Then (53.6) can be written in
the generalized form

σ
i ′ f ′
i f = 8πa2

0

s2

t+∫

t−

dt

t3

∣∣∣Z Aδi f − F A
i f (t)

∣∣∣
2

×
∣∣∣Z Bδi ′ f ′ − F B

i ′ f ′(t)
∣∣∣
2
, (56.248)

where the momentum transfer is t = qa0, and s = v/vB
is the initial relative velocity in units of vB. The form

factors are

F A
i f (t)=

〈
ΦA

f

∣∣
NA∑

k=1

exp(it ·ra/a0)
∣∣ΦA

i

〉
, (56.249)

where NA is the number of electrons associated with
atom A, and similarly for F B

i f (t). The limits of integra-
tion are t± = |K f ±Ki |a0. For heavy particle collisions,
t+ ∼∞ and

t− = (Ki −K f )a0

) ∆Ei f

2s

(
1+ me∆Ei f

4Ms2

)
, (56.250)

where M = MA MB/(MA +MB).

Limiting Cases. As discussed in Sect. 53.1, for the case
i = f , F A

i f (t)→ NA as t → 0, so that Z A − F A
i f (t)→

Z A − NA. For the case i �= f , F A
i f (t)→ 0 as t → 0 and

t →∞.

56.9.2 Hydrogenic Form Factors

Bound–Bound Transitions. In terms of τ = t/Z,

|F1s,1s| = 16
(
4+ τ2

)2 , (56.251a)
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Rydberg Collisions: Binary Encounter, Born and Impulse Approximations 56.9 Born Approximation 857

|F1s,2s| = 217/2 τ2

(
4τ2+9

)3 , (56.251b)

|F1s,2p| = 215/2 3τ
(
4τ2+9

)3 , (56.251c)

|F1s,3s| = 2437/2

(
27τ2+16

)
τ2

(
9τ2+16

)4
, (56.251d)

|F1s,3p| = 211/233

(
27τ2+16

)
τ

(
9τ2+16

)4
, (56.251e)

|F1s,3d | = 217/237/2 τ2

(
9τ2+16

)4 . (56.251f)

Bound–Continuum Transitions. In terms of the scaled
wave vector κ = ka0/Z for the ejected electron,

|F1s,κ |2= 28κτ2
(
1+3τ2+κ2

)
exp (−2θ/κ)

3
[
1+(τ−κ)2]3[

1+(τ+κ)2]3(
1− e−2π/κ

)

(56.252)

where θ = tan−1
[
2κ/

(
1+ τ2−κ2

)]
. Expressions for

the bound–continuum Form Factors for the L-shell
(2→ κ) and M-shell (3→ κ) transitions can be
found in [56.43] and [56.44], respectively. See also §4
of [56.45] for further details.

General Expressions and Trends
For final ns states

|F1s,ns|2 = 24n
[
(n−1)2+n2τ2

]n−1

τ2
[
(n+1)2+n2τ2

]n+1

× sin2(n tan−1 x+ tan−1 y) , (56.253)

where

x = 2τ

n(τ2+1−n−2)
, y = 2τ

τ2−1+n−2 .

(56.254)

For final n states [56.46]

F1s,n(τ)

= (iτ)23(+1)
√

2+1(+1)!
(
(n−−1)!
(n+)!

)1/2

× n+1

[
(n−1)2+n2τ2

](n−−3)/2

[
(n+1)2+n2τ2

](n++3)/2

[
anC

(+2)
n−−1(x)

− bnC
(+2)
n−−2(x)+ cnC

(+2)
n−−3(x)

]
, (56.255)

with coefficients an, bn and cn given by

an = (n+1)
[
(n−1)2+n2τ2

]
,

bn = 2n
√[
(n−1)2+n2τ2

] [
(n+1)2+n2τ2

]
,

cn = (n−1)
[
(n+1)2+n2τ2

]
,

and argument

x = n2−1+n2τ2
√[
(n+1)2+n2τ2

] [
(n−1)2+n2τ2

] .

Summation over final  states:

|F1s,n |2 =
∑



|F1s,n|2

= 28n7τ2
[

1

3

(
n2−1

)
+n2τ2

]

×

[
(n−1)2+n2τ2

]n−3

[
(n+1)2+n2τ2

]n+3 . (56.256)

which becomes for large n,

|F1s,n |2 ∼ 28τ2
(
3τ2+1

)

3n3
(
τ2+1

)6
exp

( −4

(τ2+1)

)
.

(56.257)

For initial 2s and 2p states,

|F2s,n |2 = 24n7τ2
[
− 1

3
+ 1

2
n2− 3

16
n4+ 1

48
n6

+n2τ2
(

1

3
− 2

3
n2+ 19

48
n4
)

+n4τ4
(

5

3
− 7

6
n2
)
+n6τ6

]

×

[( 1
2 n−1

)2+n2τ2
]n−4

[( 1
2 n+1

)2+n2τ2
]n+4

, (56.258)

|F2p,n |2 = 24n9τ2

3

[
1

4
− 7

24
n2+ 11

192
n4

−n2τ2
(

5

6
− 23

24
n2
)
+ 1

4
n4τ4

]

×

[( 1
2 n−1

)2+n2τ2
]n−4

[( 1
2 n+1

)2+n2τ2
]n+4

. (56.259)
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Power Series Expansion. τ2 & 1 [56.3]

|F1s,ns(τ)|2 = A(n)τ4+ B(n)τ6+C(n)τ8+· · · ,
(56.260)

where

A(n)= 28n9(n−1)2n−6

32(n+1)2n+6
,

B(n)=−29n11
(
n2+11

)
(n−1)2n−8

325(n+1)2n+8 ,

C(n)=−28n13
(
313n4−1654n2−2067

)

32527(n+1)2n+10

× (n−1)2n−10 .

For analytical expressions for A(n), B(n) and C(n) for
final n p and nd states see [56.47, 48].

General Trends in Hydrogenic Form Factors [56.49].
The inelastic form factor |Fn→n′′ | oscillates with ′ on
an increasing background until the value

′max = min

(

(n′ −1), n

(
2(n+3)

(n+1)

)1/2

− 1

2

)

(56.261)

is reached, after which a rapid decline for  > ′max
occurs. See [56.49] for illustrative graphs.

56.9.3 Excitation Cross Sections

Atom-Atom Collisions [56.50,51]
Single Excitation. For the process

A(i)+ B → A( f )+ B , (56.262)

(56.248) reduces to

σi f = 8πa2
0

s2

∞∫

t−

dt

t3

∣∣F A
i f

∣∣2∣∣Z B − F B
i ′i ′
∣∣2 . (56.263)

Double Excitation. For the process

H(1s)+H(1s)→ H(n)+H(n′′) , (56.264)

σ
1s,n′l′
1s,n = 8πa2

0

s2

∞∫

t−

dt

t3

∣∣F1s,n
∣∣2∣∣F1s,n′′

∣∣2 . (56.265)

Special cases are [56.52]

σ
1s,2s
1s,2s =

230πa2
0

(
880t4−+396t2−+81

)

495s2
(
4t2−+9

)11
,

(56.266a)

σ
1s,2p
1s,2p =

23034πa2
0

11s2
(
4t2−+9

)11
, (56.266b)

σ
1s,2p
1s,2s = 22932

(
44t2−+9

)

55s2
(
4t2−+9

)11
, (56.266c)

with t2− =
[
9/

(
16s2

)] [
1+3me/

(
4Ms2

)+· · · ] .

Ion–Atom Collisions. For the proton impact process

H++H(1s)→ H++H(n) , (56.267)

(56.248) reduces to

σ1s,n = 8πa2
0

s2

∞∫

t−

dt

t3

∣∣F1s,n(t)
∣∣2 , (56.268)

with t− =
(
1−n−2

)
/(2s).

Asymptotic Expansions

σ1s,ns = 4πa2
0

(
n2−1

) |X1s→ns|2
24s2n2

[
Cs(n)− 1

s2

+n2+11

20n2s4 +
313n4−1654n2−2067

8400n4s6

]
,

(56.269)

σ1s,n p = 210πa2
0n7(n−1)2n−5

3s2(n+1)2n+5

[
C p(n)+ ln s2

+ n2+11

10n2s2 +
313n4−1654n2−2067

5600n4s4

]
,

(56.270)

σ1s,nd = 211πa2
0

(
n2−4

)
n5
(
n2−1

)2
(n−1)2n−7

325s2(n+1)2n+7

×

[
Cd(n)− 1

s2
+ 11n2+13

28n2s4

]
, (56.271)

where Cs(2)= 16/5, Cs(3)= 117/32, Cs(4)≈ 3.386,
and

γnC p(n)= 1.3026

n3
+ 1.7433

n5
+ 16.918

n7 , (56.272)

γnCd(n)= 2.0502

n3
+ 7.6125

n5
, (56.273)

with

γn ≡ 28n7(n−1)(2n−5)

3(n+1)(2n+5)
. (56.274)
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Rydberg Collisions: Binary Encounter, Born and Impulse Approximations 56.9 Born Approximation 859

Further asymptotic expansion results can be found
in [56.2–5].

A general expression for Born excitation and ioniza-
tion cross sections for hydrogenic systems in terms of
a parabolic coordinate representation (Chapt. 9) is given
in [56.53].

Number of Independent Transitions Ni Between
Levels n and n′. [56.53]

Ni = n2
[
n′ −

(n

3

)]
+
(n

3

)
. (56.275)

Validity Criterion. The Born approximation is valid
provided that [56.54]

nE % ln

(
4E

Jn

)
(56.276)

for transitions n → n′ when n, n′ % 1 and |n−n′| ∼ 1.
The constant Jn is undetermined (see [56.54] for details)
but is generally taken to be the ionization potential of
level n.

56.9.4 Ionization Cross Sections

e−(k)+H → e−(k′)+H++ e−(κ) . (56.277)

The general expression for the Born differential ioniza-
tion cross section can be evaluated in closed form using
screened hydrogenic wave functions. The differential
cross section per incident electron scattered into solid
angle dΩk′ , integrated over directions κ for the ejected
electron (treated as distinguishable) is [56.55–57]

I(θ, φ) dΩk′ dκ
′ = 4k′

kq4a0 Z̃4
B

∣∣Fn,κ′
∣∣2(q)dΩk′ dκ

′ ,

(56.278)

where the form factor is given by (56.253)) for the case
n= 1s, with the ejected electron wavenumber κ and
momentum transferred q in the collision, κ′ = κa0/Z̃ B ,
q = (k′ −k)a0/Z̃ B , being scaled by the screened nu-
clear charge Z̃ B appropriate to the n-shell from which
the electron is ejected. The total Born ionization cross
section per electron is

σB
ion =

κmax∫

0

dκ′
k+k′∫

k−k′
I(q, κ′) dq , (56.279)

which is generally evaluated numerically.

56.9.5 Capture Cross Sections

Electron Capture.

A++ B(n)→ A(n′ ′)+ B+ . (56.280)

In the Oppenheimer–Brinkman–Kramers (OBK) ap-
proximation [56.58],

σn,n′′ = M2

2π�3

v f

vi

1∫

−1

d(cos θ)
∣∣Fn→n′′

∣∣2 ,

(56.281)

where vi = vi n̂i , v f = v f n̂ f , θ is the angle between n̂i
and n̂ f , M = MA MB/(MA+MB), and

∣∣Fn,n′′
∣∣=

∫∫
dr ds ϕi(r)ϕ∗f (s)

(
Z Ae2

r

)

× ei(α·r+β·s) , (56.282)

with

α= k f n̂ f + ki n̂i
MA

MA +m e
,

β =−ki n̂i − k f n̂ f
MB

MB +m e
,

ki = v f

�

MB(MA+me)

(MA +MB +me)
,

k f = v f

�

(MB +me)MA

(MA +MB +me)
.

The Jackson–Schiff correction factor [56.59] is

γJS = 1

192

(
127+ 56

p2
+ 32

p4

)

− tan−1 1
2 p

48p

(
83+ 60

p2
+ 32

p4

)

+
(

tan−1 1
2 p

)2

24p2

(
31+ 32

p2
+ 16

p4

)
, (56.283)

and the capture cross section is

σ(nii , n f  f )= γJSπa2
0

p2 C(nii , n f  f )

×

∞∫

x

F(nii , n f  f ; x) dx , (56.284)

with

p = mvi

�
, a = Z A

ni
, b = Z B

n f
,

x =
[

p2+ (a+b)2
] [

p2+ (a−b)2
]/

4p2 .
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860 Part D Scattering Theory

Table 56.2 Coefficients C(nii → n f  f ) in the Born cap-
ture cross section formula (56.284)

n f � f C(1s → n f � f )

1s 28 Z5
A Z5

B

2s 25 Z5
A Z5

B

2p 25 Z5
A Z7

B

3s 28 Z5
A Z5

B/3
3

3p 213 Z5
A Z7

B/3
6

3d 215 Z5
A Z9

B/3
9

4s 22 Z5
A Z5

B

4p 5Z5
A Z7

B

4d Z5
A Z9

B

4 f Z5
A Z11

B /20

C(2s → n f  f ) = C(1s → n f  f )/8

C(2p → n f  f ) = C(1s → n f  f )/24

The coefficients C in (56.284) are given in Table 56.2,
while the functions F are given in Table 56.3 [56.58]. In

Table 56.3 Functions F(nii → n f  f ; x) in the Born cap-
ture cross section formula (56.284)

n f � f F(ni�i,n f � f ; x)

1s x−6

2s (x−2b2)2x−8

2p (x−b2)x−8

3s (x2− 16
3 b2x+ 16

3 b4)2x−10

3p (x−b2)(x−2b2)2x−10

3d (x−b2)2x−10

4s (x−2b2)2(x2−8b2x+8b4)2x−12

4p (x−b2)(x2− 24
5 b2x+ 24

5 b4)2x−12

4d (x−b2)2(x−2b2)2x−12

4 f (x−b2)3x−12

F(2s, n f  f ; x) = (x−2a2)2x−2 F(1s, n f  f ; x)

F(2p, n f  f ; x) = (x−a2)x−2 F(1s, n f  f ; x)

Table 56.3, the appropriate value of a and b is indicated
by the quantum numbers ni , i and n f ,  f .
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Mass Transfer57. Mass Transfer at High Energies: Thomas Peak

Thomas peaks correspond to singular second-
order quantum effects whose location may be
determined by classical two step kinematics. The
widths of these peaks (or ridges) may be estimated
using the uncertainty principle. A second-order
quantum calculation is required to obtain the
magnitude of these peaks. Thomas peaks and
ridges have been observed in various reactions
in atomic and molecular collisions involving mass
transfer and also ionization.

57.1 The Classical Thomas Process ................ 863

57.2 Quantum Description ........................... 864
57.2.1 Uncertainty Effects .................... 864

57.2.2 Conservation
of Overall Energy and Momentum 864

57.2.3 Conservation
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Proton–Helium Scattering .......... 865

57.3 Off-Energy-Shell Effects ....................... 866

57.4 Dispersion Relations ............................ 866

57.5 Destructive Interference
of Amplitudes ..................................... 867

57.6 Recent Developments........................... 867

References .................................................. 868

Transfer of mass is a quasiforbidden process. Simple
transfer of a stationary mass M2 to a moving mass M1
is forbidden by conservation of energy and momen-
tum. If M1 < M2 then M1 rebounds, if M1 = M2 then
M1 stops and M2 continues on, and if M1 > M2 then
M2 leaves faster than M1. In none of these cases
do M1 and M2 leave together. Thomas [57.1] under-
stood this in 1927 and further realized that transfer of
mass occurs only when a third mass is present and
all three masses interact. The simplest allowable pro-
cess is a two-step process now called a Thomas process
[57.2, 3].

Quantum mechanically [57.4], the second Born term
at high energies is the largest Born term and corresponds
to the simplest allowed classical process, namely the
Thomas process. While the classically forbidden first
Born term is not zero (saved by the uncertainty prin-
ciple), the first Born cross section varies at high v as
v−12, in contrast to the second Born cross section which
varies as v−11, thus dominating. Higher Born terms cor-
respond to multistep processes that are unlikely in fast
collisions where there is not enough time for compli-
cated processes. The higher Born terms (n > 2) are also
smaller than the second Born term.

57.1 The Classical Thomas Process

The basic Thomas process is shown in Fig. 57.1. Here,
the entire collision is coplanar since particles 1 and 2
go off together (that is what is meant by mass trans-
fer). We assume that all the masses and the incident
velocities v are known. Thus, there are six unknowns,
v′, v f and v3, each with two components. Conservation
of momentum gives two equations of constraint for each
collision. Conservation of overall energy gives a fifth
constraint, and conservation of energy in the interme-
diate state (which only holds classically) gives a sixth

constraint. With six equations of constraint, all six un-
knowns may be completely determined. The allowed
values of v′, v f and v3 depend on the masses M1,
M2 and M3. For example, in the case of the transfer
of an electron from atomic hydrogen to a proton, i. e.,
p+ = H → H+p+, it is easily verified that the angles
are α= (M2/M1) sin 60◦, β = 60◦ and γ = 120◦, where
m′ = M2 =me and M1 = M3 = Mp = 1836 me. For the
case e++H→ Ps+p+, it may be verified that α= 45◦,
β = 45◦ and γ = 90◦.
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1 + (2, 3) (1, 2) + 3

Z1M1 v

mf v

Zf

Z3

M3 v3

Zf

Zf

Mfvf

mfvf

α

γ

�

α

Fig. 57.1 Diagram for mass transfer via a Thomas two-step
process

In general, the intermediate mass m′ may be equal
to M1,M2 or M3. We shall regard these as different
Thomas processes, and label them B, A, and C respec-
tively. The standard Thomas process (the one actually
considered by Thomas in 1927) is case A, and corre-
sponds to the first example given above. Lieber diagrams
for the Thomas processes A, B, and C [57.5] are illus-
trated in Fig. 57.2. In the Lieber diagram, mass regions
in which solutions exist for processes A, B, and C are
shown. (An equivalent diagram was given earlier by

3

2

1

∞

1 2 3 ∞
M3/M2

M1/M2

A and C
allowed

A and B
allowed

C only

Tw
o-step forbidden

Two-step forbidden

A

B

C

M1 M2 M3

M1

M2

M3

M1 M3 M2

B only

Fig. 57.2 Lieber diagram for mass transfer

Detmann and Liebfried [57.3].) There are some regions
in which two-step processes are forbidden. In these re-
gions the theory of mass transfer is not fully understood
at present.

57.2 Quantum Description

57.2.1 Uncertainty Effects

In quantum mechanics, energy conservation in the in-
termediate states may be violated within the limits of
the uncertainty principle, ∆E ≥ �/∆t, where ∆t is the
uncertainty in time of mass transfer. It is not possible
to determine if mass transfer actually occurs at the be-
ginning, in the middle, or at the end of the collision.
Thus, we choose ∆t = r̄/v̄, where r̄ is the size of the
collision region and v̄ is the mean collision velocity.
Taking r̄ ≈ a0/Ztarget and v̄≈ v, the projectile velocity,
we have

∆E ≈ �

∆t
= �v̄

r̄
= �v

a0/Ztarget
= �Ztarget

a0
. (57.1)

Here, a0 is the Bohr radius and Ztarget is the nuclear
charge of the target in units of the electron charge.
Within this range of energy ∆E, the constraint of en-
ergy conservation in the intermediate state does not
apply.

57.2.2 Conservation of Overall Energy
and Momentum

Conservation of overall energy and momentum then
gives three equations of constraint on the four un-
knowns v f and v3 [57.6], namely,

M1v=
(
M f + M̃ f

)
v f +M3v3 , (57.2)

M1v
2 = (

M f + M̃ f
)
v2

f +M3v
2
3 , (57.3)

where M f
(
M̃ f

)
is the mass of the upper (lower) particle

in the final state of the bound system shown in Fig. 57.1,
in which m′ is the mass of the intermediate particle
M1,M2 or M3. From (57.2) and (57.3) it may be shown
that the velocity of the recoil particle is constrained by
the condition

2v3 · v̂= 2 cos γ = M1+M2+M3

M1

v3

v
− M2

M3

v

v3
.

(57.4)

Thus, the magnitude and the direction of v3 are not
independent. Specifying either v3 or v̂3 is sufficient, to-
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Mass Transfer at High Energies: Thomas Peak 57.2 Quantum Description 865

gether with the equations of constraint, to determine the
energies and directions of all particles in the final state.
Similarly, one may express the equations of constraint
in terms of v f and v̂ f .

57.2.3 Conservation of Intermediate Energy

In a classical two-step process, the projectile hits
a particle in the target, and the intermediate mass m′
then propagates and subsequently undergoes a second
collision. Quantum mechanically, this corresponds to
a second-Born term represented by V1G0V2, where V
represents an interaction and G0 is the propagator of the
intermediate state, namely,

G0 = (E−H0+ iε)−1

=−iπδ(E−H0)+℘ 1

E−H0
, (57.5)

where ℘ is the Cauchy principal value of G0 which
excludes the singularity at E = H0. This singularity cor-
responds to conservation of energy in the intermediate
state. It is this singularity which gives rise to the weaker
secondary ridge in Fig. 57.3 at v3 = v. The width of the
secondary ridge is given approximately by ∆E = �/∆t,
as discussed above. The intersection of the ridges is
the Thomas peak. At very high collision velocities, the
Thomas peak dominates the total cross section for mass
transfer.

10–23

10–28

10–33

v–10v0

v+
10v0

R
ec

oi
l s

pe
ed

, v
3

Recoil angle, γ

π
4

π
2

3π
2

v

p + He H + He+++ e

(arb. unit)
d2σ
dv3

Fig. 57.3 Counting rate (or cross section) on the vertical
axis versus recoil speed v3 and recoil angle γ for a Thomas
process in which a proton (projectile) picks up an electron
from helium (target). The captured electron bounces off the
second target electron

The constraint imposed by conservation of inter-
mediate energy may be expressed by replacing the
speed of the recoil particle v3 by the scaled variable
K = M3v3/m′v. Then it may be shown that the conser-
vation of intermediate energy may be expressed in the
form [57.6]:

(
M3v3

m′v

)2

≡ K2 = 1 . (57.6)

The constraints of conservation of overall energy and
momentum, i. e., (57.4), may be easily written in terms
of K as

2 cos γ = r
m′

M2
K − M2

m′
1

K
, (57.7)

where r = (M1+M2+M3)M2/(M1 M3).

57.2.4 Example: Proton–Helium Scattering

The effect of the constraints of conservation of overall
energy and momentum may be seen in Fig. 57.3, where
a sharp ridge is evident in the reaction

p++He → H+He+++ e− , (57.8)

and M1 = Mp, M2 = M3 = me. Here v3 is the speed
of the recoiling ionized target electron, and the target
nucleus is not directly involved in the reaction. The width

10–25

10–26

10–27

10–28

60 90 120
Emission angle (deg)

(cm2/sr eV)d2σ/dEd�

Fig. 57.4 Observation of a slice of the Thomas ridge struc-
ture in p+ + He → H + He++ + e− at 1 MeV by Palinkas
et al. [57.7]
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866 Part D Scattering Theory

of the sharp ridge is due to the momentum spread of the
electrons in helium and may be regarded as being caused
by the uncertainty principle since this momentum (or
velocity) spread corresponds to ∆p = �/∆r where ∆r
is taken as the radius of the helium atom.

The locus of the sharp ridge in Fig. 57.3, correspond-
ing to conservation of overall energy and momentum,
is given by (57.8). The locus of the weaker ridge,
corresponding to the conservation of energy in the in-
termediate state, is given by (57.7). The intersection of
these two loci gives the unique classical result suggested

by Thomas. The width of these ridges may be estimated
from the uncertainty principle as described above.

Experimental evidence for the double ridge structure
has been reported by Palinkas et al. [57.7] corresponding
to the calculations given in Fig. 57.3, but at a collision
energy of 1 MeV, as shown below.

The data in Fig. 57.4 corresponds to a slice across
the sharp ridge of Fig. 57.3 at v= v3. The solid line is
a second Born calculation [57.8,9] at 1 MeV. The bump
of data above a smooth backgroud is the indication of
the ridge structure.

57.3 Off-Energy-Shell Effects

In (57.6), the Green’s function G0 contains an energy-
conserving term iπδ(E−H0) which is imaginary, and
a real energy-nonconserving term ℘[1/(E−H0)]. The
latter does not occur classically; it is permitted by the
uncertainty principle and represents the contribution of
virtual (off-the-energy-shell or energy-nonconserving)
states within ±∆E = �/∆t about the classical value
E = H0. This quantum term also represents the effect
of time-ordering in the second Born amplitude [57.10].
In plane wave second-Born calculations, the off-
energy-shell term gives the real part of the scattering
amplitude f2, while the on-shell (energy conserving)
term gives the imaginary part of f2. These two contri-
butions are shown in Fig. 57.5.

Half of the Thomas peak comes from energy-non-
conserving contributions which are not included in
a classical description. Also, the energy-nonconserving
contribution plays a significant role in determining the
shape of the standard Thomas peak, which has been
observed [57.11].

2.0

1.0

0.0

–1.0
1 2 3 4 5

λ = (4M sin   )2θ–
2

Scattering amplitude (10–6 a. u.)

Thomas peak

ReT2
(off-shell)

50 MeVp + H     H + p

ImT2
(on-shell)

Fig. 57.5 Energy-conserving (on-shell) and energy-non-
conserving contributions to the second Born scattering
amplitude

57.4 Dispersion Relations

Because of the form of the Green’s function of (57.6), the
second Born contribution f2 to the scattering amplitude
has a single pole in the lower half of the complex plane.
Consequently it obeys the dispersion relation

Re[ f2(λ)] = − 1

π
℘

+∞∫

−∞

Im[ f2(λ
′)]

λ−λ′ dλ′ ,

Im[ f2(λ)] = 1

π
℘

+∞∫

−∞

Re[ f2(λ
′)]

λ−λ′ dλ′ . (57.9)

where Re f2 and Im f2 denote the real and imaginary
parts of f2. Thus the energy-nonconserving part of f2
is related to an integral over the energy-conserving part
and vice versa. In the case of the dielectric constant
it is well known that the real and imaginary parts of
ε are also related by a dispersion relation, namely the
Kramers–Kronig relatio [57.12].

Resonances are usually a function of energy E. The
width of a resonance gives the lifetime τ of the reso-
nance. Classically, τ is how long the projectile orbits
the target before it leaves, corresponding to a delay
or shift in time of the projectile during the interac-
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Mass Transfer at High Energies: Thomas Peak 57.6 Recent Developments 867

tion. If the width of the resonance is ∆E, then the
lifetime is τ = �/∆E. E and τ are conjugate vari-
ables. The Thomas peak is an overdamped resonance
in scattering angle, corresponding to a shift in the im-

pact parameter of the scattering event [57.13]. However,
unlike energy resonances, our Thomas resonance in
the scattering angle seems to have no classical ana-
log [57.14].

57.5 Destructive Interference of Amplitudes

It has already been noted that the location of the Thomas
peaks depends on the mass of the collision partners. For
the process

p++Atom→ Atom+H , (57.10)

there are two separate Thomas peaks [57.2, 15] cor-
responding to cases A and B in the Lieber diagram
(Fig. 57.2). Experimental evidence exists for both peaks.
The standard Thomas peak occurs at small forward an-
gles [57.11], while the second peak [57.16] occurs at
about 60◦. If the mass of the projectile is reduced,
the positions of these Thomas peaks move toward one
another [57.17] as illustrated in Fig. 57.6.

When M1 = M2, then both Thomas peaks occur
at 45◦. This occurs in positronium formation where
M1 = M2 = me, i. e.,

e++He → Ps+He+++ e− . (57.11)

In cases A and B of Fig. 57.2, the two V1G0V2 sec-
ond Born terms are of opposite sign because V2 is of
opposite sign in diagrams A and B. This leads to de-
structive interference for 1s−1s electron capture (which
is dominant at high velocities) as was first discussed by
Shakeshaft and Wadehra [57.17]. Consequently, the ob-
served Thomas peak structure is expected [57.18, 19]
to be quite different for e+ impact than for impact
of p+ or other projectiles heavier than an electron.
The double ridge structure for transfer ionization of
helium by e+ is expected to differ significantly from

Thomas peak

60° Peak

p+

θT 60° θ

dσ
d�

dσ
d�

Destructive
interference

e+

45° θ

Fig. 57.6 Change of position and nature of the Thomas
peaks with decreasing projectile mass

the structure shown in Fig. 57.3. Understanding such
destructive interference between resonant amplitudes
may give deeper insight into the physical nature of the
intermediate states in this special few-body collision
system.

57.6 Recent Developments

In the late 1990’s observations [57.20] of the Thomas
peak in the case of transfer ionization (where one
electron is ionized and another is transferred) differ-
ential in the momentum of the ejected electron provided
new specific detail on the kinematics of the two step
process [57.21]. In 2001 the Thomas peak was dis-
cussed [57.22] in the context of quantum time ordering.

In this case time ordering surprisingly is not signif-
icant at the center of the peak, in contradiction to
the classical picture that there is a definite order in
the two step process for transfer ionization. How-
ever, time ordering does contribute to the shape of the
Thomas peak. In 2002 the Stockholm group [57.23]
reported that at very high velocities, the ratio of trans-
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868 Part D Scattering Theory

fer ionization to total transfer approaches the same
asymptotic limit as in double to single ionization in
(non-Compton) photoionization, namely 1.66%. This

was interpreted in terms of a common shake process oc-
curring when the wavefunction collapses after a sudden
collision.
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Classical Traje58. Classical Trajectory and Monte Carlo Techniques

The classical trajectory Monte Carlo (CTMC)
method originated with Hirschfelder, who
studied the H + D2 exchange reaction using
a mechanical calculator [58.1]. With the availability
of computers, the CTMC method was actively
applied to a large number of chemical systems
to determine reaction rates, and final state
vibrational and rotational populations (see, e.g.,
Karplus et al. [58.2]). For atomic physics problems,
a major step was introduced by Abrines and
Percival [58.3] who employed Kepler’s equations
and the Bohr–Sommerfield model for atomic
hydrogen to investigate electron capture and
ionization for intermediate velocity collisions
of H+ + H. An excellent description is given by
Percival and Richards [58.4]. The CTMC method has
a wide range of applicability to strongly-coupled
systems, such as collisions by multiply-charged
ions [58.5]. In such systems, perturbation methods
fail, and basis set limitations of coupled-channel
molecular- and atomic-orbital techniques have
difficulty in representing the multitude of active
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excitation, electron capture, and ionization
channels. Vector- and parallel-processors now
allow increasingly detailed study of the dynamics
of the heavy projectile and target, along with the
active electrons.

58.1 Theoretical Background

58.1.1 Hydrogenic Targets

For a simple three-body collision system comprised of
a fully-stripped projectile (a), a bare target nucleus (b),
and an active electron (c), one begins with the classical
Hamiltonian for the system,

H = p2
a/2ma + p2

b/2mb+ p2
c/2mc

+ Za Zb/rab+ Za Zc/rac+ Zb Zc/rbc , (58.1)

where pi are the momenta and Zi Z f /ri f are the
Coulomb potentials between the individual particles.
From (58.1), one obtains a set of 18 coupled, first-order
differential equations arising from the necessity to de-
termine the time evolution of the Cartesian coordinates
of each particle,

dqi/dt = ∂H/∂pi , (58.2)

and their corresponding momenta,

dpi/dt =−∂H/∂qi . (58.3)

Five random numbers, constrained by Kepler’s equa-
tion, are then used to initialize the plane and eccentricity
of the electron’s orbit, and another is used to determine
the impact parameter within the range of interac-
tion [58.4, 5]. A fourth-order Runge–Kutta integration
method is suitable because of its ease of use and its abil-
ity to vary the time step-size. This latter requirement
is essential since it is not uncommon for the time step
to vary by three orders of magnitude during a single
trajectory.

In essence, the CTMC method is a computer experi-
ment. Total cross sections for a particular process are
determined by

σR = (NR/N )πb2
max , (58.4)
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where N is the total number of trajectories run within
a given maximum impact parameter bmax, and NR is the
number of positive tests for a reaction, such as electron
capture or ionization. Angle and energy differential cross
sections are easily generalized from the above. As in
an experiment, the cross section given by (58.4) has
a standard deviation of

∆σR = σ[(N − NR)/NNR]1/2 , (58.5)

which for large N is proportional to 1/N1/2
R . Here lies

one of the major difficulties associated with the CTMC
method: it takes considerable computation time to deter-
mine minor or highly differential cross sections. Present
day desktop workstations can provide a partial remedy
of this statistics problem. To decrease the statistical er-
ror of a cross section by a factor of two, four times as
many trajectories must be evaluated.

58.1.2 Nonhydrogenic One-Electron Models

For many-electron target atoms, it is sometimes ade-
quate to treat the problem within a one-electron model
and employ the independent electron approximation to
approximate atomic shell structure [58.6]. For an ac-
curate calculation, it is necessary to use an interaction
potential that simulates the screening of the target nu-
cleus by the electrons. One can simply apply a Coulomb
potential with an effective charge Zeff obtained from, for
example, Slater’s rules. Then, the computational proce-
dure is the same as for the hydrogenic case. However,
the boundary conditions for the long- and short-range
interactions are poorly satisfied.

To improve the electronic representation of the
target, potentials derived from quantum mechanical
calculations are now routinely used. Here, the simple
solution of Kepler’s equation cannot be applied. How-
ever, Peach et al. [58.7] and Reinhold and Falcón [58.8]
have provided the appropriate methods that yield a target
representation that is correct under the microcanonical
distribution. The method of Reinhold and Falcón is pop-
ular because of its ease of use and generalizability. For
the effective interaction potential, Garvey et al. [58.9]
have performed a large set of Hartree–Fock calculations,
and have parametrized their results in the form

V(R)=−[Z− NS(R)]/R , (58.6)

with the screening of the core given by

S(R)= 1−{(η/ξ)[exp(ξR)−1]+1}−1/2 , (58.7)

where Z and N denote the nuclear charge and number
of nonactive electrons in the target core, and η and ξ are

screening parameters. Screening parameters are given
in [58.9] for all ions and atoms with Z ≤ 54. This
potential can also be used for the representation of
partially-stripped projectile ions.

58.1.3 Multiply-Charged Projectiles
and Many-Electron Targets

Multiple ionization and electron capture mechanisms
in energetic collisions between multiply-charged ions
and many-electron atoms is poorly understood because
major approximations must be made to solve a many-
electron problem associated with transitions between
two centers. For a representative collision system such
as

Aq++ B → A(q− j)++ Bi++ (i− j)e− , (58.8)

it is essential that the theoretical method be able to
predict simultaneously the various charge states of the
projectile and recoil ions, and also the energy and angu-
lar spectra of the ejected electrons. Theoretical methods
based on the independent electron model fail because
the varying ionization energies of the electrons are not
well represented by a constant value, especially for outer
shells. To present, only the nCTMC method, which is
a direct extension of the hydrogenic CTMC method to
an n-electron system, has been able to make reasonable
predictions of the cross sections and scattering dynam-
ics of such strongly-coupled systems [58.10]. As such,
the number of coupled equations rises to 6n+12, where
n is the number of electrons included in the calculation.
However, computing time does not increase linearly,
since modern vector-processors become very efficient
with coupled equations for multiples of 64.

In the nCTMC technique, all interactions of the
projectile and target nuclei with each other and the elec-
trons are implicitly included in the calculations. The
inclusion of all the particles then allows a direct determi-
nation of their angular scattering, along with an estimate
of the energy deposition to electrons and heavy par-
ticles. Post collision interactions are included between
projectile and recoil ions with the electrons; however,
electron–electron interactions are introduced only in the
bound initial state via a screening factor in a central-
field approximation. This theoretical model has been
very successful in predicting the single and double dif-
ferential cross sections for the ionized electron spectra.
Moreover, since a fixed target nucleus approximation is
not used, this method has been the only one available to
help understand and predict the results for the new field
of recoil-ion momentum spectroscopy [58.11].
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Only a modest amount of work has been com-
pleted on molecular targets. At present, only an H2
target has been formulated for application to the CTMC
method [58.12]. For H2, a fixed internuclear axis is
assumed which is then randomly orientated for each tra-
jectory. The electrons are initialized in terms of two
one-electron microcanonical distributions constructed

from the quantum mechanical wave function for the
ground state of H2. Total cross sections for a variety
of projectiles are in reasonable accord with experiment.
The effect of the orientation of the molecular axis on the
cross sections was also investigated, along with tests as
to the validity of assuming that the cross sections for H2
are simply the product of twice the H values.

58.2 Region of Validity

The CTMC method has a demonstrated region of ap-
plicability for ion–atom collisions in the intermediate
velocity regime, particularly in the elucidation of both
heavy-particle and electron collision dynamics. The
method can be termed a semiclassical method in that
the initial conditions for the electron orbits are deter-
mined by quantum mechanically determined interaction
potentials with the parent nucleus. Since the method
is most applicable to strongly-coupled systems, it has
been applied successfully to a variety of intermediate
energy multiply-charged ion collisions. Figure 58.1 de-
scribes pictorially the regions of validity of theoretical
models. Both the atomic orbital (AO) and molecular or-
bital (MO) basis set expansion methods (Chapt. 50) work
well until ionization strongly mediates the collision,
since the theoretical description of the ionization con-
tinuum is not well-founded and relies on pseudostates
to span all ejected electron energies and angles. We
have arbitrarily limited these methods to a projectile
charge to target charge ratio of, ZP/ZT, ) 8, since
above this value the number of terms in the basis set
becomes prohibitively large. The CTMC method does
not include molecular effects, and thus it is restricted
from low velocities, except in the case of high-charge-
state projectiles that capture electrons into high-lying
Rydberg states which are well-described classically.
Likewise, at high velocities the method is inapplica-
ble in the perturbation regime where quantum tunneling
is important, and thus is restricted to strongly cou-

100
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0.1
0.1 1 10 100

Zp

Zt

v/ve

CTMC

CDW

BORN

AO

MO

Fig. 58.1 Approximate regions of validity of various theo-
retical methods. ZP/ZT is the ratio of the projectile charge
to the target charge, and v/ve is the ratio of the collision
velocity to the velocity of the active target electron. The-
oretical methods: molecular orbital (MO), atomic orbital
(AO), classical trajectory Monte Carlo (CTMC), contin-
uum distorted wave (CDW), and first-order perturbation
theory (BORN)

pled systems. The continuum distorted wave (CDW)
method (Chapt. 52) greatly extends the region of ap-
plicability of first-order perturbation methods and has
demonstrated validity in high-charge state ionization
collisions.

58.3 Applications

58.3.1 Hydrogenic Atom Targets

The original application of the CTMC method to atomic
physics collisions were done on the H+ + H sys-
tem [58.3]. Here, the electron capture and ionization

total cross sections were found to be in very good accord
with experiment. The Abrines and Percival procedure
casts the coupled equations into the c.m. coordinate sys-
tem to reduce the three-body problem to 12 coupled
equations. However, this reduction complicates exten-
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sions of the code to laser processes and collisions in
electric fields or with many electrons.

An ideal application for the CTMC method is
for collisions involving excited targets. Such pro-
cesses are well-described classically, and basis set
expansion methods show limited applicability due to
computer memory constraints. Considerable early work
has been done on Rydberg atom collisions which in-
cludes state-selective electron capture, ionization, and
electric fields [58.13–15]. Presently, there is a resur-
gence of work on Rydberg atom collisions because new
crossed-field experimental techniques allow the produc-
tion of these atoms with specific spatial orientations and
eccentricities [58.16].

For hydrogenic ion–ion collision processes, one
must be careful to apply the CTMC method only
for projectile charges ZP ≥ ZT because after the ini-
tialization of the active electron’s orbit and energy,
there is no classical constraint on the orbital energy of
a captured electron. For a low-charge-state ion collid-
ing with a ground state highly charged ion, one will
obtain unphysical results because a captured electron
will tend to preserve its original binding energy. Thus,
excess probability will be calculated for electron or-
bits that lead to unrealistic deeply bound states of the
projectile.

58.3.2 Pseudo One-Electron Targets

Collisions involving alkali atoms are of interest be-
cause of their relevance to applied programs, such as
plasma diagnostics in tokamak nuclear fusion reac-
tors. They are also a testing ground for theoretical
methods since experimental benchmarks are difficult
to realize with hydrogenic targets, but are amenable
for such cases as alkali atoms. In such collisions, it
is essential that a theoretical formalism be used that
correctly simulates the screening of the nucleus by the
core electrons (Sect. 58.1.2), since a simple −Zeff/R
Coulomb potential is inadequate for both large and
small R.

One can also apply the methods of Sect. 58.1.2 to
partially or completely filled atomic shells. This works
reasonably well for collisions with a low charge state
ion such as a proton, but fails for strong collisions in-
volving multiply-charged ions. The reason is that the
independent electron approximation [58.6] must be ap-
plied to the calculated transition probabilities in order to
simulate the shell structure. This latter method can only
maintain its validity if the transition probability is low.
Otherwise, it will greatly overestimate the multiple elec-

tron removal processes since the first ionization potential
is inherently assumed for each subsequent electron that
is removed from the shell, leading to an underestimate
of the energy deposition.

58.3.3 State-Selective Electron Capture

One of the powers of the CTMC method is that it
can be applied to electron capture and excitation of
high-lying states that are not accessible with basis
set expansion techniques [58.17]. For the C4+ + Li
system, where AO calculations and experimental data
exist, the CTMC method agrees quite favorably with
both [58.18].

The procedure is first to define a classical number nc
related to the calculated binding energy E of the ac-
tive electron to either the projectile (electron capture) or
target nucleus (excitation) as

E =−Z2/
(
2n2

c

)
. (58.9)

Then, nc is related to the principal quantum number n
of the final state by the condition [58.19]

[
n

(
n− 1

2

)
(n−1)

]1/3

< nc ≤
[
n

(
n+ 1

2

)
(n+1)

]1/3

.

(58.10)

From the electron’s normalized classical angular mo-
mentum lc = (n/nc)(r × k), lc is related to the orbital
quantum number l of the final state by

l < lc ≤ l+1 . (58.11)

The magnetic quantum number ml is then obtained from

2ml −1

2l+1
≤ lz

lc
<

2ml +1

2l+1
, (58.12)

where lz is the z-projection of the angular momentum
obtained from calculations [58.20]. In principle, it is also
possible to analyze the final-state distributions from the
effective quantum number

n∗ = n− δl , (58.13)

where δl is the quantum defect. In this latter case,
it is necessary to sort the angular momentum quan-
tum numbers first, and then sort the principal quantum
numbers.

The CTMC method has been widely applied to col-
lisions of multiply-charged ions and hydrogen targets
in the nuclear fusion program. Here, the calculated nl
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charge exchange cross sections are used to predict the
resulting visible and UV line emissions arising after
electron capture to high principle quantum numbers.
These line emission cross sections are routinely used as
a diagnostic for tokamak fusion plasmas [58.21]. Like-
wise, for low energy collisions, CTMC results have been
used to provide an explanation for the X-ray emission
discovered from comets as they orbit through our solar
system [58.22, 23].

58.3.4 Exotic Projectiles

The study of collisions involving antimatter projectiles,
such as positrons and antiprotons, is a rapidly growing
field which is being spurred on by recent experimental
advances. Such scattering processes are of basic inter-
est, and they also contribute to a better understanding of
normal matter-atom collisions. Antimatter-atom studies
highlight the underlying differences in the dynamics of
the collision, as well as on the partitioning of the overall
scattering. In the Born approximation, ionization cross
sections depend on the square of the projectile’s charge
and are independent of its mass. Thus, the comparison
of the cross sections for electron, positron, proton and
antiproton scattering from a specific target gives a di-
rect indication of higher-order corrections to scattering
theories.

Early work using the CTMC method concentrated
on the spectra of ionized electrons for antimatter pro-
jectiles [58.24]. Later work focused on the angular
scattering of the projectiles during electron removal col-
lisions, such as positronium formation, on ratios of the
electron removal cross sections, and on ejected elec-
tron ‘cusp’ and ‘anticusp’ formation. A recent review
that compares various theoretical results and available
experiments is given in [58.25].

58.3.5 Heavy Particle Dynamics

A major attribute of the CTMC method is that it inher-
ently includes the motion of the heavy particles after the
collision. A straight-line trajectory for the projectile is
not assumed, nor is the target nucleus constrained to be
fixed. This allows one to compute easily the differential
cross sections for projectile scattering or the recoil mo-
menta of the target nucleus. As a computational note, the
angular scattering of the projectile should be computed
from the momentum components, not the position coor-
dinates after the collision, since faster convergence of the
cross sections using the projectile momenta is obtained.
For recoil ion momentum transfer studies, one must ini-

tialize the target atom such that the c.m. of the nucleus
plus its electrons has zero momentum so that there is no
initial momentum associated with the target. A common
error is to initialize only the target nucleus momenta
to zero. Then the target atom after a collision has an
artificial residual momentum that is associated with the
Compton profile of the electrons because target–electron
interactions are included in the calculations. Examples
of recoil and projectile scattering cross sections are given
in [58.10, 11].

The field of recoil ion momentum spectroscopy is
rapidly expanding and the CTMC theoretical method has
impacted the interpretation and understanding of experi-
mental results because the method inherently provides
a kinematically complete description of the collision
products. For the studied systems, primarily He targets
because of experimental constraints, it is necessary that
a theoretical method be able to follow all ejected elec-
trons and the heavy particles after a collision. As an
example, it has been possible to observe the backward
recoil of the target nucleus in electron capture reac-
tions, which is due to conservation of momentum when
the active electron is transferred from the target’s to
the projectile’s frame of [58.26]. Theoretical methods
are being tested further with the recent development of
magneto-optical-taps (MOT) that provide frozen alkali
metal atomic targets (T & 1 mK) from which to perform
recoil ion studies [58.27].

For three- and four-body systems, it is now possible
to measure the momenta of all collision products. These
observations provide a severe test of theory, since all
projectile and target interactions must be included in
calculations. The CTMC method includes all projectile
interactions with the target nucleus and electrons. Thus,
it is possible to calculate fully differential cross sections.
It is of interest that recent triply differential cross sec-
tions calculated using the CTMC method compare very
favorably with sophisticated continuum distorted wave
methods [58.28].

The CTMC technique allows one to incorporate
electrons on both the projectile and target nuclear cen-
ters. All interactions between centers are included. The
only interaction that needs to be approximated is the
electron–electron interactions on a given center. Here,
simple screening parameters derived from Hartree–Fock
calculations are employed to eliminate nonphysical
autoionization. Within this many-electron model, the
signatures of the electron–electron and electron–nuclear
interactions on the dynamics of the collisions have
been observed [58.29,30]. Further, projectile ionization
studies can be undertaken [58.31].
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58.4 Conclusions

In many ways it is surprising that a classical model
can be successful in a quantum mechanical world, es-
pecially since the classical radial distribution for the
hydrogen atom is described so poorly. However, hy-
drogen’s classical momentum distribution is exactly
equivalent to the quantum one, and since collision
processes are primarily determined by velocity match-
ing between projectile and electron, reasonable results
can be expected. Moreover, the CTMC method pre-

serves conservation of flux, energy, and momentum;
and Coulomb scattering is the same in both quantal and
classical frameworks.

Of significant importance is that the CTMC method
is not restricted to one-electron systems and can eas-
ily be extended to more complicated systems involving
electrons on both projectile and target. For these latter
cases, multiple electron capture and ionization reactions
can be investigated.
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Collisional Bro59. Collisional Broadening of Spectral Lines

One-photon processes only are discussed and
aspects of line broadening directly related to
collisions between the emitting (or absorbing)
atom and one perturber are considered. Molecular
lines and bands are not considered here. Pointers
to other aspects are included and a comprehensive
bibliography of work on atomic line shapes,
widths, and shifts already exists [59.1–7]. The
perturber may be an electron, a neutral atom or
an atomic ion and can interact weakly or strongly
with the emitter. The emitter is either a hydrogenic
or nonhydrogenic atom that is either neutral or
ionized. In general, transitions in nonhydrogenic
atoms can be treated as isolated, that is the
separation between neighboring lines is much
greater than the width of an individual line.
When the emitter is hydrogen or a hydrogenic
ion, the additional degeneracy of the energy
levels with respect to orbital angular momentum
quantum number means that lines overlap and
are coupled.

Pressure broadening is a general term that
describes any broadening and shift of a spectral
line produced by fields generated by a background
gas or plasma. The term Stark broadening implies
that the perturbers are atomic ions and/or
electrons, and collisional broadening implies
that the ‘collision’ model is appropriate; this
term is often used to describe an isolated line
perturbed by electrons. Neutral atom broadening
indicates neutral atomic perturbers; this implies
short-range emitter-perturber interactions which
in turn influence the approximations made.
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General reviews of the theory of pressure
broadening have been given [59.8–10], and
Chapt. 2, Chapt. 10, Chapt. 14, Chapt. 19, Chapt. 45,
Chapt. 47, and Chapt. 86 discuss topics relevant to
the theory of collisional broadening of spectral
lines. The International Conference on Spectral
Line Shapes (ICSLS) is devoted exclusively to this
subject.

59.1 Impact Approximation

If the perturbers are rapidly moving, the broad-
ening and shift of the line arise from a series
of binary collisions between the atom and one
of the perturbers. The theory assumes that al-
though weak collisions may occur simultaneously,
strong collisions are relatively rare and only occur

one at a time. The impact approximation is valid
if

wτ & 1 , V̄τ/�& 1 , (59.1)

where w is the half width at half maximum, τ is the
average time of collision and V̄ is the average emitter-
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876 Part D Scattering Theory

perturber interaction. It is not only widely applicable
to electron and neutral atom broadening, but also, for
certain plasma conditions, to broadening by atomic ions.
The power radiated per unit time and per unit interval in
circular frequency ω, in terms of the line profile I (ω), is

P (ω)= 4

3

ω4

c3 I (ω) . (59.2)

For an isolated line produced by a transition from an up-
per energy level i to a lower level f , the line profile is
Lorentzian with a shift d:

I (ω)= 1

π

〈〈
i f ∗ |∆| i f ∗

〉〉 w
(
ω−ωi f −d

)2+w2
,

(59.3)

and if the profile is for a transition between an upper
set of levels i, i ′ and a lower set f, f ′ with quantum
numbers Ji Mi , Ji ′ Mi ′ , J f M f , and J f ′ M f ′ , then

I (ω)= 1

π
Re

( ∑

ii ′ f f ′

〈〈
i f ∗ |∆| i ′ f ′∗

〉〉
(59.4)

×
〈〈

i ′ f ′∗
∣∣∣
[
w+id−i

(
ω−ωi f

)
I
]−1

∣∣∣ i f ∗
〉〉)
,

where I is the unit operator and w and d are width and
shift operators. In (59.4) ∆ is an operator corresponding
to the dipole line strength defined by

〈〈
i f ∗ |∆| i ′ f ′∗

〉〉≡ q2 〈i |r| f 〉 · 〈i ′ |r| f ′
〉
, (59.5)

where r represents the internal emitter coordinates, q2 =
e2/ (4πε0) is the square of the electronic charge, and ε0
is the permittivity of vacuum in SI units of J m. On taking
the average over all degenerate magnetic sublevels,

I (ω)= 1

π
Re

( ∑

ii ′ f f ′

〈〈
i f ∗ ‖∆‖ i ′ f ′∗

〉〉
(59.6)

×
〈〈

i ′ f ′∗
∥∥∥
[
w+ id− i

(
ω−ωi f

)
I
]−1

∥∥∥i f ∗
〉〉)

in terms of reduced matrix elements that are independent
of magnetic quantum numbers. They are defined by

〈〈
i f ∗ |∆| i ′ f ′∗

〉〉= Di fi ′ f ′
〈〈
i f ∗ ‖∆‖ i ′ f ′∗

〉〉
, (59.7)

where

Di fi ′ f ′ =
∑

µ

(−1)Ji+Ji′−Mi−Mi′

×

(
Ji 1 J f

−Mi µ M f

)(
Ji ′ 1 J f ′

−Mi ′ µ M f ′

)

,

(59.8)
〈〈
i ′ f ′∗

∥∥[w+ id− i(ω−ωi f )I
]s∥∥ i f ∗

〉〉

=
∑

Mi ,Mi′ ,M f ,M f ′
Di fi ′ f ′

×
〈〈
i ′ f ′∗

∣∣[w+ id− i(ω−ωi f )I
]s∣∣ i f ∗

〉〉
(59.9)

with s =−1, 1. For the line profile (59.3), the width and
each have a single matrix element:

γ = 2w= 〈〈
i f ∗ ||2w|| i f ∗

〉〉
, d = 〈〈

i f ∗ ||d|| i f ∗
〉〉
,

(59.10)

where γ is the full width at half maximum.
Throughout the rest of this article it will be as-

sumed that collisions only connect the set of upper
levels i, i ′ or the set of lower levels f, f ′ which is valid
when w& ω; pressure broadening of spectral lines is
also assumed to be independent of Doppler broaden-
ing. However, for microwave spectra of molecules, w
can be of the order of ω and collisions connecting the
upper to the lower levels become important; for further
details see Ben-Reuven [59.11, 12]. Also for microwave
spectra, pressure broadening and Doppler broadening
cannot be considered to be independent effects and
a generalized theory has been developed by Ciuryło and
Pine [59.13].

59.2 Isolated Lines

59.2.1 Semiclassical Theory

The motion of the perturber relative to the emitter is
treated classically and is assumed to be independent
of the internal states of the emitter and perturber. This
common trajectory is specified by an emitter–perturber
separation

R≡ R (b, v, t) , b ·v= 0 , (59.11)

where v is the relative velocity and b is the impact
parameter. The time-dependent wave equation for the
emitter-perturber system is

i�
dΨ

dt
= HΨ (59.12)

and the eigenfunctions ψi for the unperturbed emitter
obey

H0ψi = Eiψi , i = 0, 1, 2, . . . . (59.13)
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Collisional Broadening of Spectral Lines 59.2 Isolated Lines 877

If Ψ (r, R) is expanded in the form

Ψ(r, R)=
∑

j

a ji(t)ψ j(r) exp(−iE jt/�) , (59.14)

where initially at time t =−∞
a ji (−∞)= δ ji , (59.15)

and (59.12)–(59.14) give

i�
da ji

dt
=
∑

k

aki Vjk exp
(
iω jkt

)
,

i, j, k = 0, 1, 2, . . . , (59.16)

where

Vjk (R)=
∫
ψ∗j (r) V (r, R) ψk (r) dr (59.17)

in which V (r, R) is the emitter-perturber interaction and

�ω jk = E j − Ek . (59.18)

Integration of equations (59.16) for −∞≤ t ≤∞ gives
the unitary scattering matrix S, with elements

Sji (b, v)≡ a ji (∞) , i, j = 0, 1, 2, . . . . (59.19)

Then

w+ id = 2πN

∞∫

0

v f (v) dv

×

∞∫

0

[
δi ′iδ f ′ f − Si ′i (b, v) S∗f ′ f (b, v)

]

av
bdb ,

(59.20)

where Ji ′ = Ji and J f ′ = J f , N is the perturber
density and [· · · ]av denotes an average over all orien-
tations of the collision and over the magnetic sublevels
[see Eq. (59.9)]. In (59.20), f (v) is the Maxwell veloc-
ity distribution at temperature T for an emitter-perturber
system of reduced mass µ:

f (v)= 4πv2
(

µ

2πkBT

)3/2

exp

(
− µv2

2kBT

)
,

∞∫

0

f (v) dv= 1 . (59.21)

59.2.2 Simple Formulae

These are useful for making quick estimates, but in indi-
vidual cases may give results in error by a factor of two

or more. If it is assumed in (59.17) that

Vij (R)= Vjj (R) δij , (59.22)

where Vjj (R) is a simple central potential

Vjj (R)= �C j R−p , j = i, f , (59.23)

and C j depends only on the state j of the emitter, and if
the relative motion is along the straight line

R= b+vt , (59.24)

then
[

Si ′i (b, v) S∗f ′ f (b, v)
]

av
= exp

[
2i
(
ηi −η f

)]
,

(59.25)

where the phase shifts are

η j (b, v)=− 1

2�

∞∫

−∞
Vjj (R) dt , j = i, f .

(59.26)

Equations (59.20)–(59.26) give

w+ id = πN v̄

(
βp

∣∣C p
∣∣

v̄

)2/(p−1)

×Γ

(
p−3

p−1

)
exp

(
± iπ

p−1

)
αp , (59.27)

where

αp = Γ

(
2p−3

p−1

)(π
4

)−1/(p−1)
,

βp =√
π

Γ
(

1
2 (p−1)

)

Γ
(

1
2 p

) ,

C p = Ci −C f ,

v̄=
∞∫

0

v f (v) dv=
(

8kBT

πµ

)1/2

. (59.28)

In (59.27) the ± sign indicates the sign of C p, αp ) 1
for p ≥ 3, and Γ (· · · ) is the gamma function.

The cases p = 3, 4, and 6 correspond to reso-
nance, quadratic Stark and van der Waals broadening,
respectively. This approximation is invalid for the
dipole case (p = 2) for which (59.27) is not finite.
The dipole–dipole interaction (p = 3) occurs when
emitter and perturber are identical atoms (apart from
isotopic differences). If the level i is connected to
the ground state by a strong allowed transition with
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absorption oscillator strength fgi , and the perturba-
tion of the level f can be neglected by comparison,
then

C3 = cd
q2 fgi

2me
∣∣ωgi

∣∣ ,

cd = 1+ 1

2
√

3
ln
(

2+√3
)
= 1.380 173 . (59.29)

Also, if g j is the statistical weight of level j, the constant
cd may be replaced by an empirical value

cd = 4

π

(
gg

gi

)1/2

, (59.30)

and this gives a width correct to about 10% [59.14].
Equation (59.27) does not predict a finite shift. Quadratic
Stark broadening occurs when a nonhydrogenic emitter
is polarized by electron perturbers. Then

C4 =−q2

2�

(
αi −α f

)
, (59.31)

where αi and α f are the dipole polarizabilities of states
i and f , respectively. Van der Waals broadening occurs
when the emitter and perturber are nonidentical neutral
atoms. If energy level separations of importance in the
perturbing atom are much greater than those of the emit-
ter (e.g., alkali spectra broadened by noble gases), C6 is
given by

C6 =−q2

�
αd

(
r2

i −r2
f

)
, (59.32)

where αd is the dipole polarizability of the perturber.
The mean square radii can be calculated from the nor-
malized radial wave functions 1

r Pn∗j l j (r) or estimated
from

r2
j =

∞∫

0

P2
n∗j l j
(r) r2 dr

) n∗2
j a2

0

2z2

[
5n∗2

j +1−3l j
(
l j +1

)]
,

j = i, f (59.33)

in which the effective principal quantum numbers n∗j are
given by

E j ≡− z2

n∗2
j

Ih , z = Ze+1 , (59.34)

where Ih = hcR∞ is the Rydberg energy, Ze is the
charge on the emitter and z = 1 in this case.

59.2.3 Perturbation Theory

An approximate solution of (59.16) is given by [59.8–
10, 15, 16]

Sji (b, v)= δ ji − i

�

∞∫

−∞
Vji (t) exp

(
iω ji t

)
dt

− 1

�2

∑

k

[ ∞∫

−∞
Vjk (t) exp

(
iω jkt

)
dt

×

t∫

−∞
Vki

(
t′
)

exp
(
iωki t

′) dt′
]
. (59.35)

This gives a cross section for the collisional transition
i → j:

σij (v)= 2π

∞∫

0

[
Pij (b, v)

]
av b db ,

i, j = 0, 1, 2, . . . , (59.36)

where

Pij (b, v)=
∣∣δ ji − Sji (b, v)

∣∣2 , (59.37)

2 Re [1− Sii (b, v)] =
∑

j

Pij (b, v) , (59.38)

correct to second-order in V (r, R) on both sides. Using
(59.10), (59.20) and (59.36)–(59.38), the full width is

γ = N

∞∫

0

v f (v) dv

×

⎡

⎣
∑

j �=i

σij (v)+
∑

j �= f

σ f j (v)+ σ̃i f (v)

⎤

⎦ ,

(59.39)

where the sums are taken over all energy-changing
transitions, the tilde indicates an interference term, and

σ̃i f (v)= 2π

∞∫

0

[
P̃i f (b, v)

]
av b db , (59.40)

in which

P̃i f (b, v)=
∣∣∣∣∣∣

1

�

∞∫

−∞

[
Vii (t)−V f f (t)

]
dt

∣∣∣∣∣∣

2

.

(59.41)
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59.2.4 Broadening by Charged Particles

The total emitter-perturber interaction is

zZpq2

R
− Zpq2

|R−r| ) V0 (R)+V (r, R) , (59.42)

where Zp is the charge on the perturber and

V0 (R)= Ze Zpq2

R
, V (r, R)=−Zpq2 r · R

R3
.

(59.43)

If Ze = 0, the relative motion is described by (59.24),
but if Ze �= 0, the trajectory is hyperbolic and is given
by

µ
d2 R
dt2

=−∇V0 = Ze Zpq2

R3
R , (59.44)

with the resulting hyperbola characterized by a semi-
major axis a and an eccentricity ε, where

b2 = a2
(
ε2−1

)
, a =

∣∣Ze Zp
∣∣ q2

µv2
. (59.45)

On using (59.17), (59.20), (59.36)–(59.41) and (59.43),

Vii (t)= 0 , P̃i f (b, v)= 0 , σ̃i f (v)= 0 ,
(59.46)

and

w+ id = 2πN

∞∫

0

v f (v) dv

×

[ ∞∫

0

∑

j �=i

Qij (b, v)+
∑

j �= f

Q f j (b, v)

]
b db ,

(59.47)

where

Qij (v)=
4Z2

p I2
h a2

0

�me
∣∣ωij

∣∣
fij

b2v2 [A (β, ξ)+ iB (β, ξ)] ,

2 Re[Qij (v)] =
[
Pij (b, v)

]
av . (59.48)

If

ξ ≡ a
∣∣ωij

∣∣

v
, β ≡ ξε , δ≡ ε

2−1

ε2 , (59.49)

the functions A (β, ξ) and B (β, ξ) in (59.48) are given
by

A (β, ξ)= δ exp (∓πξ) β2

×

[∣∣∣K ′
iξ (β)

∣∣∣
2+ δ ∣∣Kiξ (β)

∣∣2
]

(59.50)

B (β, ξ)= 2β

π
℘

∞∫

0

A
(
β′, ξ

)
dβ′

(
β2−β′2) , (59.51)

where Kiξ (β) is a modified Bessel function. In (59.50),
the ∓ sign corresponds to Ze Zp =± ∣∣Ze Zp

∣∣ , and in
(59.51), ℘ indicates the Cauchy principal value. If Ze =
0, then

ξ = 0 , β = b

∣∣ωij
∣∣

v
, δ= 1 (59.52)

in (59.50) and (59.51).
Approximation (59.48) breaks down at small values

of b because of assumption (59.43) and the lack of uni-
tarity of S as given by (59.35). This problem is discussed
elsewhere [59.8, 15, 16], and all methods used involve
choosing a cutoff at b = b0, where b2

0 � r2
f , and using

(59.48) only for b> b0 . For b ≤ b0 , an effective con-
stant probability is introduced and the method works
well as long as the contribution from b ≤ b0 is small.
For b> b0 (or β > β0), the contribution to σij (v) in
(59.39) is evaluated using (59.47)–(59.50) and (59.52),
where

∞∫

b0

A (β, ξ)
db

b
=−e∓πξβ0 K ′

iξ (β0) Kiξ (β0) .

(59.53)

A similar treatment exists for the quadrupole contribu-
tion to V (r, R) in (59.43) [59.8, 15, 16].

59.2.5 Empirical Formulae

An empirical formula based on the theory of Sect. 59.2.4
for the width of an atomic line Stark broadened by elec-
trons has been developed [59.17]. Konjević [59.18] has
reviewed the data available for nonhydrogenic lines and
has provided simple analytical representations of the
experimental results for widths and shifts.

The full half-width is given by (59.39), where σ̃i f =
0 and

∞∫

0

v fe(v)
∑

k �= j

σ jk(v) dv= 8π2

3
√

3

(
�

me

)2

v−1

×

⎡

⎣Tj g(x j)+
∑

l j′=l j±1

T̃ jj ′ g̃(x jj ′)

⎤

⎦ , j = i, f ,

(59.54)
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880 Part D Scattering Theory

where

v−1 =
∞∫

0

v−1 fe (v) dv=
(

2me

πkBT

)1/2

, (59.55)

and fe (v)= f (v) with µ= me. In (59.54),

Tj =
(

3n∗j
2z

)2
1

9

[
n∗2

j +3l j
(
l j +1

)+11
]
, (59.56)

T̃ jj ′ = l>(
2l j +1

) R2
jj ′
(
n∗l>, n

∗
l<, l>

)
, (59.57)

l< = min
(
l j , l j ′

)
, l> = max

(
l j , l j ′

)
,

with

R jj ′
(
n∗l>, n

∗
l<, l>

)≡ a−1
0

∞∫

0

Pn∗l> l> (r) rPn∗l< l< (r)dr .

(59.58)

The radial matrix element (59.58) can be written as

R jj ′
(
n∗l>, n

∗
l<, l>

)

= R̃ jj ′
(
n∗l>, l>

)
φ
(
n∗l>, n

∗
l<, l>

)

≡ 3n∗l>
2z

(
n∗2

l> − l2
>

)1/2
φ
(
n∗l>, n

∗
l<, l>

)
(59.59)

and φ
(
n∗l>, n

∗
l<
, l>

)
is tabulated elsewhere [59.19]. The

effective principal quantum numbers n∗l> and n∗l< of
the states j and j ′ in (59.57)–(59.59) both corre-
spond to principal quantum number n j and φ ) 1 for

(
n∗l> −n∗l<

)& 1. The effective Gaunt factors g (x) and
g̃ (x) are given by

g̃ (x)= 0.7−1.1/z+ g (x) , x = 3kBT

2∆E
, (59.60)

where

x ≤ 2 3 5 10 30 100

g (x) 0.20 0.24 0.33 0.56 0.98 1.33

is used for x < 50, and for x > 50

g̃ (x)= g (x)=
√

3

π

[
1

2
+ ln

(
4

3z

|E|
Ih

x

)]
, (59.61)

with (59.60) and (59.61) joined smoothly near x = 50.
The energy E = E j is given by (59.34) and x j and x jj ′
in (59.54) are evaluated using

∆E j = 2z2

n∗3
j

Ih , ∆E jj ′ =
∣∣E j − E j ′

∣∣ . (59.62)

For Ze = 2 and 3, (59.54) is generally accurate to within
±30% and ±50%. For Ze ≥ 4, (59.54) is less accu-
rate, as relativistic effects and resonances become more
important. Accuracy increases for transitions to higher
Rydberg levels as long as the line remains isolated.

Tables in appendices IV and V of [59.8] give widths
for atoms with Ze = 0, 1 and other semi-empirical
formulas based on detailed calculations have been de-
veloped by Seaton [59.20, 21] for use in the Opacity
Project where simple estimates of many thousands of
line widths are required.

59.3 Overlapping Lines

59.3.1 Transitions in Hydrogen
and Hydrogenic Ions

The most important case is that of lines of hydrogenic
systems emitted by a plasma with overall electrical neu-
trality, broadened by perturbing electrons and atomic
ions. The line profile is given by (59.4)–(59.9) in which
(59.20) is generalized to give

〈〈
i ′ f ′∗ ‖w+ id‖ i f ∗

〉〉= 2πN

∞∫

0

v f (v) dv

×

∞∫

0

[
δi ′iδ f ′ f − Si ′i (b, v) S∗f ′ f (b, v)

]

av
b db .

(59.63)

The superscripts and suffices e and i will be used to de-
note electron and ion quantities, and em indicates that
averaging over magnetic quantum numbers has not been
carried out. In the impact approximation, electron and
ion contributions evaluated using (59.63) are additive
and the matrix to be inverted is of order nin f . How-
ever, under typical conditions in a laboratory plasma,
e.g., a hydrogen plasma with Ne = Ni = 1022 m−3, per-
turbing atomic ions cannot be treated using the impact
approximation. The ions collectively generate a static
field at the emitter which produces first-order Stark
splitting of the upper and lower levels. The ions are
randomly distributed around the emitter and the field
distribution W (F) used assumes that each ion is De-
bye screened by electrons; allowance is made for these
heavy composite perturbers interacting with each other
as well as with the emitter. If the ion field has a slow
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Collisional Broadening of Spectral Lines 59.3 Overlapping Lines 881

time variation, ion dynamic effects on the line are pro-
duced [59.8, 9, 22].

The shift produced by electron perturbers is very
small and the usual model adopted is to assume that
the ions split the line into its Stark components, and
that each component is broadened by electron impact.
In both cases, only the dipole interactions in (59.43) are
included and the profile is symmetric. Then (59.4) takes
the form

I (ω)= 1

π
Re

∫
W (F) dF

∑

ii ′ f f ′

〈〈
i f ∗ |∆| i ′ f ′∗

〉〉

×
〈〈

i ′ f ′∗
∣∣∣
[
w+ id− i

(
ω−ωi f

)
I
]−1

∣∣∣ i f ∗
〉〉
,

(59.64)

and the destruction of the degeneracy by the ion field
means that the matrix to be inverted in (59.64) is of or-
der

(
nin f

)2. Inclusion of higher multipoles in V(r, R) in
(59.43) introduces small asymmetries. The Stark repre-
sentation for the hydrogenic wave functions is often used
because it diagonalizes the shift matrix in (59.64). The
transformation is given by (see Sect. 9.1.2 and 13.4.2)

∣∣n j K jm j
〉=

n j−1∑

l j=|m j |
(−1)K

(
2l j +1

)1/2

×

(
N N l j

M1 M2 −m j

)
∣∣n jl jm j

〉
,

j = i, i ′, f, f ′ , (59.65)

where quantum number K j replaces l j and

n j = K j +K ′
j +

∣∣m j
∣∣+1 , N = 1

2

(
n j −1

)
,

K = 1

2

(
2K ′

j +
∣∣m j

∣∣+m j

)
+1 ,

0 ≤ K j ≤
(
n j −1

)
,

M1 = 1

2

(
m j +K ′

j −K j

)
,

M2 = 1

2

(
m j +K j −K ′

j

)
. (59.66)

For the electron impact broadening, it is convenient
to separate the energy-changing and the zero energy-
change transitions, so that (59.39) is generalized to
give

γem = γ 0
em + γ̃em ≡ 〈〈

i ′ f ′∗ |2we| i f ∗
〉〉
, (59.67)

where

γ 0
em ≡

〈〈
i ′ f ′∗

∣
∣∣2w0

e

∣
∣∣ i f ∗

〉〉
= Ne

∞∫

0

v fe (v) dv

×

⎡

⎣
∑

j �=i

σem
ij (v)+

∑

j �= f

σem
f j (v)

⎤

⎦ δii ′δ f f ′ ,

(59.68)

γ̃em ≡ 〈〈
i ′ f ′∗ |2w̃e| i f ∗

〉〉

= Ne

∞∫

0

v fe (v) dv σ̃em
i ′ f ′i f (v) . (59.69)

In (59.68),
∣
∣ni −n j

∣
∣ �= 0 and

∣
∣n f −n j

∣
∣ �= 0 in

the first and second terms, respectively, and in
(59.69) (ni ′ −ni)=

(
n f ′ −n f

)= 0 . The matrix elem-
ent (59.68) can be evaluated using (59.36), (59.48),
(59.50), and (59.52) as before. In (59.68),

σem
ij (v)= 2π

∞∫

0

[
P e

ij (b, v)
]

av0
bdb ,

i, j = 0, 1, 2, . . . , (59.70)

and in (59.69)

σ̃em
i ′ f ′i f (v)= 2π

∞∫

0

[
P̃ e

i ′ f ′i f (b, v)
]

av0
b db (59.71)

by analogy with (59.36) and (59.40), where av0 indicates
an average over all orientations of the collision only. On
using (59.48)–(59.50), (59.59) and (59.8) with ji = li ,
ji ′ = li ′ , j f = l f , and j f ′ = l f ′ ,

[
P̃ e

i ′ f ′i f (b, v)
]

av0
= 8Iha2

0

3meb2v2
Di fi ′ f ′ R̃i ′ f ′i f A(0, 0) ,

(59.72)

where

R̃i ′ f ′i f

≡
⎡

⎣
∑

l j=li±1

R̃2
ij (ni , li>)+

∑

l j=l f ±1

R̃2
f j

(
n f , l f>

)
⎤

⎦

× δli′ li δl f ′ l f

−2R̃i ′i(ni , li>)R̃ f ′ f
(
n f , l f>

)
δli′ li±1δl f ′ l f ±1 .

(59.73)

From (59.45) and (59.49)–(59.53)

A (0, 0)= δ ,
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b1∫

b0

A (0, 0)
db

b
=
{

ln (ε1/ε0) , Ze �= 0 ,

ln (b1/b0) , Ze = 0 .
(59.74)

(59.53). The impact approximation neglects electron–
electron correlations and the finite duration of collisions,
so the long-range dipole interaction leads to a logarith-
mic divergence at large impact parameters in (59.74).
Therefore, a second cutoff parameter is introduced
which is chosen to be the smaller of the Debye length
bD and vτ :

b1 = min

[

bD ≡
(

kBT

4πq2 Ne

)1/2

, vτ

]

, (59.75)

but estimating τ in this case is not straightforward; it
depends on the splitting of the Stark components [59.8].

59.3.2 Infrared and Radio Lines

If the density Ni is low enough, the impact approxima-
tion becomes valid for the perturbing atomic ions, and
since impact shifts are unimportant, (59.6) gives

I (ω)= 1

π
Re

∑

ii ′ f f ′

〈〈
i f ∗ ‖∆‖ i ′ f ′∗

〉〉

×
〈〈

i ′ f ′∗
∥∥∥
[
we+wi− i

(
ω−ωi f

)
I
]−1

∥∥∥i f ∗
〉〉

(59.76)

where in (59.76)

γe,i = γ 0
e,i+ γ̃e,i ≡

〈〈
i ′ f ′∗

∥∥2we,i
∥∥ i f ∗

〉〉
, (59.77)

γ 0
e,i ≡

〈〈
i ′ f ′∗

∥∥∥2w0
e,i

∥∥∥ i f ∗
〉〉
= Ne,i

∞∫

0

v fe,i (v) dv

×

⎡

⎣
∑

j �=i

σ
e,i
ij (v)+

∑

j �= f

σ
e,i
f j (v)

⎤

⎦δi ′iδ f ′ f , (59.78)

γ̃e,i ≡
〈〈
i ′ f ′∗

∥∥2w̃e,i
∥∥ i f ∗

〉〉

= Ne,i

∞∫

0

v fe,i (v) dv σ̃e,i
i ′ f ′i f (v) . (59.79)

In general, cross sections for electron and heavy-particle
impact are roughly comparable for the same velocity
and hence different impact energies. Therefore, using
(59.78) and (59.79),

γ 0
e % γ 0

i , γ̃e & γ̃i , (59.80)

and this result is consistent with approximation (59.64)
for high density plasmas. If

(
ni −n f

)= 1, 2, say, as n f
increases, the relative contributions from (59.78) and
(59.79) decrease because there is increasing coherence,
and hence cancellation in σ̃e

i ′ f ′i f (v) and σ̃ i
i ′ f ′i f (v) be-

tween the effects of levels i, i ′ and f, f ′.
Radio lines of hydrogen are observed in galactic HII

regions where principal quantum numbers are of the or-
der of n f ) 100, temperatures are Te = Ti ) 104 K, and
densities are Ne = Ni ) 109 m−3. If γ is the full-half
width and γ̃ is the full-half width when only contribu-
tions (59.79) are retained, the effect of cancellation is
illustrated by

ni −n f = 1 electrons protons + electrons

n f γ̃ /γ γ̃ /γ

5 0.81 0.99

10 0.44 0.95

15 0.21 0.87

20 0.11 0.75

25 0.06 0.61

50 0.00 0.32

100 0.00 0.16

59.4 Quantum-Mechanical Theory

59.4.1 Impact Approximation

The scattering amplitude for a collisional transition
i → j is given in terms of elements of the transition
matrix T = 1− S by

f
(
k j , ki

)≡ f
(
χ j M jk j , χi Miki

)

= 2πi
(
kik j

)1/2

∑

lml′m′
il−l′Y∗

lm

(
k̂i

)
Yl′m′

(
k̂ j

)

× T
(
χ j M jl

′m′;χi Milm
)
, (59.81)

where the quantities ki lm and k j l′m′ refer to the
motion of the perturber relative to the emitter be-
fore and after the collision, and χi and χ j represent
all nonmagnetic quantum numbers associated with
the unperturbed states i and j of the emitter.
The total energy of the emitter-perturber system is
given by

EJ = E j + ε j , ε j = �
2

2µ
k2

j ,

(J, j)= (I, i) , (F, f ) , (59.82)
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and for an isolated line, γ is given by (59.39), where

σij (v)= k j

ki

1

4πgi

×
∑

Mi M j

∫ ∣∣ f
(
χ j M jk j , χi Miki

)∣∣2 dk̂i dk̂ j ,

ki = µv/� , (59.83)

and the interference term σ̃i f (v)≡ σ̃i fi f (v) is given by

σ̃i f (v)= 1

4π

∑

Mi Mi′
M f M f ′

Di fi ′ f ′
∫ ∣∣ f(χi Mi ′k

′, χi Mik)

− f(χ f M f ′k
′, χ f M f k)

∣∣2 dk̂ dk̂′ , (59.84)

with k = k′ = µv/�. From (59.8) and (59.20),

w+ id = π
(
�

µ

)2

N

∞∫

0

1

v
f(v) dv

×
∞∑

l=0

(2l+1)
[
1− Sii(l, v)S

∗
f f (l, v)

]
,

(59.85)

where

(µvb)2 2⇒ �
2l (l+1) (59.86)

and the integral over b has been replaced by a summation
over l . In (59.85)), Sii (l, v) S∗f f (l, v) is given by

Sii (l, v) S∗f f (l, v)

= 1

(2l+1)

∑

Mi M′
i M f M′

f
mm′

Di fi ′ f ′ SI
(
χi ′ Mi ′lm

′;χi Milm
)

× S∗F
(
χ f ′ M f ′lm

′;χ f M f lm
)

(59.87)

and subscripts I and F are introduced to empha-
size that the S-matrix elements correspond to different
total energies EI and EF defined by (59.82). If
scattering by the emitter in a state j is treated
using a central potential, the amplitude for elastic
scattering is

f
(
k′, k

)= i

2k

∞∑

l=0

(2l+1) Tjj (l, v) Pl

(
k̂′· k̂

)
,

(59.88)

where

1−Tjj (l, v)= Sjj (l, v)= exp
[
2iη j (l, k)

]
,

j = i, f , (59.89)

[cf. (59.23), (59.25), and (59.26)]. For the case of over-
lapping lines, (59.63) becomes

〈〈
i ′ f ′∗ ‖w+ id‖ i f ∗

〉〉= π
(
�

µ

)2

N

∞∫

0

1

v
f (v) dv

×
∞∑

l=0

(2l+1)
[
δi ′iδ f ′ f − Si ′i (l, v) S∗f ′ f (l, v)

]

(59.90)

on generalizing (59.85) and using (59.87). Formulae
(59.85) and (59.90) have been obtained by assuming
that a collision produces no change in the angular mo-
mentum of the relative emitter-perturber motion. This
corresponds to the assumption of a common trajectory
in semiclassical theory, and means that the total angular
momentum of the emitter-perturber system is not con-
served. This assumption is removed in the derivation
of the more general expressions given in the following
sections.

59.4.2 Broadening by Electrons

Different coupling schemes can be used to describe the
emitter-perturber collision. For L S coupling,

χ j M j ⇒ χ0
j L j M j SMS , j = i, i ′, f, f ′ , (59.91)

in (59.81), where χ0
j denotes all other quantum numbers

required to describe state j that do not change during
the collision. Then

∣∣∣∣L j M j SMSlm
1

2
ms

〉
=

∑

LT
j MT

j ST MS

C
L jlLT

j

M j mMT
S

C
S 1

2 ST

MSms MT
S

×

∣∣∣∣L j Sl
1

2
LT

j MT
j ST MT

S

〉
,

(59.92)

where C j1 j2 j3
m1m2m3 is a vector coupling coefficient, the

superscript T denotes quantum numbers of the emitter-
perturber system, and 1

2 , ms are the spin quantum
numbers of the scattered electron. On using (59.92),
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(59.90) is replaced by
〈〈
i ′ f ′∗ ‖w+ id‖ i f ∗

〉〉= π (�/me)
2 N

×
∑

LT
i LT

f ST ll′
(−1)Li+Li′+l+l′

(
2LT

i +1
)(

2LT
f +1

)

×

(
2ST +1

)

2 (2S+1)

{
LT

f LT
i 1

Li L f l

}{
LT

f LT
i 1

Li ′ L f ′ l′

}

×

∞∫

0

1

v
fe(v) dv

[
δl′lδLi′ Li δL f ′ L f

− SI

(
Li ′ Sl′ 1

2
LT

i ST ; Li Sl
1

2
LT

i ST
)

× S∗F
(

L f ′ Sl′ 1
2

LT
f ST ; L f Sl

1

2
LT

f ST
)]

, (59.93)

where, for an isolated line, the width and shift are given
by (59.93) with Li ′ = Li and L f ′ = L f . For hydrogenic
systems, where states i, i ′ and f, f ′ with different an-
gular momenta are degenerate, a logarithmic divergence
occurs for large values of l and l′ [cf. Eq. (59.74)], and
must be removed by using (59.75) and (59.86).

If a jj coupling scheme is used χ j M j ⇒ χ0
j J j M j ,

j = i, i ′, f, f ′ in (59.81), and
∣∣∣∣J j M jlm

1

2
ms

〉

=
∑

JT
j MT

j jm′
C

Jj jJT
j

M j m′MT
j
C

l 1
2 j

mmsm′
∣∣∣J jl jJT

j MT
j

〉
, (59.94)

then (59.93) becomes
〈〈
i ′ f ′∗ ‖w+ id‖ i f ∗

〉〉= π (�/me)
2 N

×
∑

JT
i JT

f jj ′ll′
(−1)Ji+Ji′+2JT

f + j+ j ′ 1

2
(2JT

i +1)(2JT
f +1)

×

{
JT

f JT
i 1

Ji J f j

}{
JT

f JT
i 1

Ji ′ J f ′ j ′

}

×

∞∫

0

1

v
fe(v) dv

[
δl′lδ j ′ jδJi′ Ji δJ f ′ J f

− SI (Ji ′l
′ j ′ JT

i ; Jil jJT
i ) S∗F(J f ′l

′ j ′ JT
f ; J f l jJT

f )

]
,

(59.95)

where Ji ′ = Ji and J f ′ = J f for an isolated line. If the
spectrum of the emitter is classified using L S coupling,

it is often sufficient to use energies defined by

EL j S =
∑

J j

(
2J j +1

)

(
2L j +1

) (
2Sj +1

) EL j SJ j , (59.96)

and obtain the S-matrix elements in an L S coupling
scheme. They are then transformed to jj coupling by
using the algebraic transformation

S
(

J j ′ l
′ j ′ JT

j ; J jl jJT
j

)

= [(
2J j +1

) (
2J j ′ +1

)
(2 j+1)

(
2 j ′ +1

)]1/2

×
∑

LT
j ST

(2LT
j +1)(2ST +1)

×

⎧
⎪⎨

⎪⎩

L j l LT
j

S 1
2 ST

Jj j JT
j

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

L j ′ l′ LT
j

S 1
2 ST

Jj ′ j ′ JT
j

⎫
⎪⎬

⎪⎭

× S

(
L j ′ Sl′ 1

2
LT

j ST ; L j Sl
1

2
LT

j ST
)
, (59.97)

and introducing the splitting of the fine structure com-
ponents in (59.4) or (59.6). If in L S coupling the line
is isolated, but nevertheless the broadened fine structure
components overlap significantly, then the interference
terms in (59.6) must be included.

59.4.3 Broadening by Atoms

The formal result is very similar to (59.95), but in this
case, the relative motion only gives rise to orbital angular
momentum. Thus

〈〈
i ′ f ′∗ ‖w+ id‖ i f ∗

〉〉= π (�/µ)2 N

×
∑

JT
i JT

f ll′
(−1)Ji+Ji′+2JT

f +l+l′
(2JT

i +1)(2JT
f +1)

×

{
JT

f JT
i 1

Ji J f l

}{
JT

f JT
i 1

Ji ′ J f ′ l′

}

×

∞∫

0

1

v
f(v) dv

[
δl′lδJi′ Ji δJ f ′ J f

− SI

(
Ji ′l

′ JT
i ; Jil JT

i

)
S∗F

(
J f ′l

′ JT
f ; J f l JT

f

) ]
.

(59.98)

For many cases of practical interest, transitions of type
Ji → J f are isolated and so have line profiles given by
(59.3), (59.10), and (59.98), where Ji = Ji ′ and J f = J f ′
[59.14]. In order to obtain the S-matrix elements in
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(59.98), it is usually sufficient to use adiabatic poten-
tials for the emitter-perturber system that have been
calculated neglecting fine structure. Since T is typi-
cally a few hundred degrees, only coupling between
adiabatic states that tend to the appropriate separated-
atom limit are retained in the scattering problem. The

coupled scattering equations are then solved with fine
structure introduced by applying an algebraic trans-
formation to the adiabatic potentials, and using the
observed splittings of the energy levels. The Born–
Oppenheimer approximation is valid, and details are
given in [59.23].

59.5 One-Perturber Approximation

59.5.1 General Approach and Utility

If only one perturber is effective in producing broad-
ening, I (ω) can be obtained by considering a dipole
transition between initial and final states I and F of the
emitter-perturber system. Then P (ω) is given by (59.2),
where

I (ω)= [
δ (ω−ωIF)

〈〈
IF∗ |∆| IF∗〉〉]

av ,

�ωIF = EI − EF , (59.99)

and av denotes an average over states I and a sum over
states F [59.9]. Wave functions ΨJ are given by

ΨJ (r, R)=O
∑

j

ψ j (r) φ
(
k j , k j0; R

)
, (59.100)

where J = I, F, and O is an operator that takes account
of any symmetry properties of the emitter-perturber sys-
tem. The energies EI and EF are given by (59.82). The
perturber wave functions for initial state j0 and final
state j are expanded in the form

φ
(
k j , k j0; R

)= 2πi
∑

l j0 m j0 l j m j

il j0 k−1/2
j0

Y∗
l j0 m j0

(
k̂ j0

)

× Yl j m j

(
R̂
) 1

R
F
(
Γ j , Γ j0; R

)

(59.101)

where Γ j denotes a channel characterized by

Γ j = χ j M jl jm j , j = 0, 1, 2, . . . , (59.102)

[see Eq. (59.81)]. In (59.101), the radial perturber wave
function has the limiting forms

F
(
Γ j , Γ j0; R

)
R→0∼ Rl j+1

R→∞∼ k−1/2
j

[
δΓ jΓ j0

exp
(−iθ j

)

−SJ
(
Γ j;Γ j0

)
exp

(
iθ j

)]
,

(59.103)

with

θ j = k j R− 1

2
l jπ− z

ki
ln
(
2k j R

)

+ arg Γ

(
l j +1+ i

z

k j

)
,

z = µq2

�2 Ze Zp . (59.104)

The coupled equations obtained by using (59.12),
(59.13), (59.100), and (59.101), where

Ψ (r, R, t)= ΨJ (r, R) exp (−iEJ t/�) , (59.105)

are integrated to give functions F
(
Γ j , Γ j0; R

)
. Using

(59.100) and (59.101), (59.99) becomes

I (ω)= 1

2
N

∑

Γi0ΓiΓi′Γ f0Γ f Γ f ′
ui0

〈〈
ΓiΓ f

∗ |∆|Γi ′Γ f ′
∗〉〉

×

∞∫

0

1

v
f(v) dvF (Γ, v) , (59.106)

where

F (Γ, v)=
∞∫

0

F∗ (Γi , Γi0; R
)

F
(
Γ f , Γ f0; R

)
dR

×

∞∫

0

F
(
Γi ′ , Γi0; R

)
F∗(Γ f ′ , Γ f0; R

)
dR ,

(59.107)

ui0 = gi0

/∑

i ′0

gi ′0 , v= �ki0

µ
. (59.108)

The one-perturber approximation is valid when

∆ω≡ |ω−ωi f | %w ; V % V̄ , (59.109)

where V is the effective interaction potential required to
produce a shift∆ω . In the center of the line, many-body
effects are always important and the one-perturber ap-
proximation diverges as ∆ω→ 0 . In many cases, there
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is a region of overlap where criteria (59.1) and (59.109)
are all valid, but when ∆ωτ % 1, (59.99) is a static ap-
proximation, since the average time between collisions
is ∆ω−1.

59.5.2 Broadening by Electrons

If L S coupling is used, definition of channel Γ j in
(59.104) is replaced by

Γ j = L j Sl j
1

2
LT

j ST , j = i0, i, i
′, f0, f, f ′ ,

(59.110)

[cf. (59.91) and (59.92)]. Then assuming that the weights
ui0 of all the levels i0 that effectively contribute to the
line are the same, (59.106) becomes

I (ω)= 1

2
Ne

∑

Γi0
ΓiΓi′

Γ f0
Γ f Γ f ′

〈〈
Li S

(
L f S

)∗ ‖∆‖ Li ′ S
(
L f ′ S

)∗〉〉

× δli l f δli′ l f ′ δLT
i0

LT
i
δLT

f0
LT

f
δLT

i0
LT

i′
δLT

f0
LT

f ′

× (−1)Li+Li′+li+li′
(
2ST +1

)

2 (2S+1)

×
(

2LT
i +1

)(
2LT

f +1
)

×

{
LT

f LT
i 1

Li L f l

}{
LT

f LT
i 1

Li ′ L f ′ li ′

}

×

∞∫

0

1

v
fe(v) dvF (Γ, v) , (59.111)

where F (Γ, v) is defined by (59.107) and (59.111). If
the functions F

(
Γ j ′ , Γ j0; R

)
in (59.107) are replaced by

their asymptotic forms (59.103), then

F (Γ, v))∆ω−2 (�/me)
2

×
[
δΓi0Γi δΓ f0Γ f − SI

(
Γi;Γi0

)
S∗F

(
Γ f ;Γ f0

)]

×
[
δΓi0Γi′ δΓ f0Γ f ′ − S∗I

(
Γi ′ ;Γi0

)
SF

(
Γ f ′ ;Γ f0

)]
.

(59.112)

On substituting (59.112) into (59.111), summing over
Γi0 and Γ f0 and using the unitary property of the
S-matrix,

I (ω)

= 1

π∆ω2

∑

LT
i LT

f ST ll′

〈〈
Li S

(
L f S

)∗ ‖∆‖ Li ′ S
(
L f ′ S

)∗〉〉

×
〈〈
i ′ f ′∗ ‖w‖ i f ∗

〉〉
, (59.113)

where
〈〈
i ′ f ′∗ ‖w‖ i f ∗

〉〉
is given by (59.93). Line shape

(59.113) is identical to that obtained from (59.6) when
∆ω%w . If the jj coupling scheme specified by (59.94)
is used, and channel Γ j is defined by

Γ j = J jl j j j JT
j , j = i0, i, i

′, f0, f, f ′ , (59.114)

Equation (59.106) becomes [cf. (59.95)]

I(ω)

= 1

2
Ne

∑

Γi0ΓiΓi′Γ f0Γ f Γ f ′

〈〈
Ji
(
J f
)∗ ‖∆‖ Ji ′

(
J f ′

)∗〉〉

× δli l f δli′ l f ′ δ ji j f δ ji′ j f ′ δJT
i0

JT
i
δJT

f0
JT

f
δJT

i0
JT

i′
δJT

f0
JT

f ′

× (−1)Ji+Ji′+2JT
f + ji+ ji′

×
1

2

(
2JT

i +1
)(

2JT
f +1

)

×

{
JT

f JT
i 1

Ji J f ji

}{
JT

f JT
i 1

Ji ′ J f ′ ji ′

}

×

∞∫

0

1

v
fe(v) dvF (Γ, v) , (59.115)

where F (Γ, v) is given by (59.107) and (59.114).

59.5.3 Broadening by Atoms

In the wings of a line where � |∆ω| ) ∣∣EJi − EJi′
∣∣ , j =

i0, i, i ′, f0, f, f ′, coupling between the fine structure
levels is important. If channel Γ j is defined by

Γ j = J jl j JT
j , j = i0, i, i

′, f0, f, f ′ , (59.116)

Equation (59.106) becomes [cf. (59.115)]

I (ω)= 1

2
N

∑

Γi0ΓiΓi′Γ f0Γ f Γ f ′

〈〈
Ji
(
J f
)∗ ‖∆‖ Ji ′

(
J f ′

)∗〉〉

× δli l f δli′ l f ′ δJT
i0

JT
i
δJT

f0
JT

f
δJT

i0
JT

i′
δJT

f0
JT

f ′

× (−1)Ji+Ji′+2JT
f +li+li′

(
2JT

i +1
)(

2JT
f +1

)

×

{
JT

f JT
i 1

Ji J f li

}{
JT

f JT
i 1

Ji ′ J f ′ li ′

}

×

∞∫

0

1

v
f (v) dvF (Γ, v) , (59.117)

where F (Γ, v) is given by (59.107) and (59.116).
In the far wings, where � |∆ω| % ∣∣EJi − EJi′

∣∣ , j =
i0, i, i ′, f0, f, f ′, an adiabatic approximation is valid.
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Adiabatic states of the diatomic molecule formed by the
emitter-perturber system are considered in which the to-
tal spin is assumed to be decoupled from the total orbital
angular momentum of the electrons. The coupling be-
tween rotational and electronic angular momentum can
also be neglected, because typically, contributions to the
line profile come from 0 ≤ l j � 400, whereas Λ j � 2.
Therefore, transitions take place between channels de-
fined by

Γ j =Λ j L j SL j , j = i, f , (59.118)

where the unperturbed emitter in state j has quan-
tum numbers L j S, the quantum number Λ j represents
the projection of the orbital angular momentum on the
internuclear axis, and (59.100) is replaced by

ΨJ (r, R)=O
∑

j

ψ j (r; R) φ
(
k j , k j0 ; R

)
,

(59.119)

where k j = k j0 and ψ j (r; R) is the wave function for
molecular state Λ j . In (59.119), the only molecular
states retained are those that correlate with emitter states
i and f . The scattering is described by

[
d2

dR2
− l j

(
l j +1

)

R2
− 2z

R
− 2µ

�2
VΛ j (R)+ k2

j

]

× Fj (R)= 0 ,

(59.120)

where k j = k j0 and

Fj (R)= Pv j l j (R) or

Fj (R)≡ F
(
Γ j , Γ j; R

)= Fkili (R) (59.121)

for vibrational or free states, respectively, and VΛ j (R)
is the potential energy of stateΛ j . Free–free transitions
always contribute to the line profile, but bound-free and
free-bound transitions only contribute on the red and
blue wings, respectively. On using (59.82), (59.99), and
(59.109), �∆ω= εi −ε f , and ε j becomes the energy of
bound state j with vibrational quantum number v j when
ε j < 0 . If

G
(
Γ, εi , ε f

)≡
∣∣∣∣∣∣

∞∫

0

F∗
i (R) ∆̄ (R) F f (R) dR

∣∣∣∣∣∣

2

(59.122)

[cf. (59.107)], where

∆̄ (R)=−q
∫
ψ∗i (r; R) r ψ f (r; R) dr (59.123)

is the dipole moment, then using (59.119)), the free–free
contribution is given by

I0 (ω)= N

2

∑

ΓiΓ f

uΛi δli l f (2li +1)

×

∞∫

0

f(v)

v
dvG(Γ, εi, ε f ) ,

(59.124)

where εi = 1
2µv

2, and uΛi is the relative weight of
state Λi [cf. Eqs. (59.106)–(59.108)]. The bound-free
contribution is

I1 (ω)= N

2

∑

ΓiΓ f

uΛi δli l f (2li +1)

×
∑

i

g (εi)G
(
Γ, εi , ε f

)

(59.125)

and the free–bound contribution is

I2 (ω)= 1

2
N
∑

ΓiΓ f

uΛi δli l f (2li +1) exp

(
−�∆ω

kBT

)

×
∑

f

g
(
ε f
)
G
(
Γ, εi , ε f

)
, (59.126)

where

g(ε)= 2π

(
�

µ

)2 f(v)

v2

= 8π2
(
�

µ

)2 (
µ

2πkBT

)3/2

exp

(
− ε

kBT

)
,

(59.127)

on using (59.21) with ε= 1
2µv

2. The full line profile is
then given by (59.124)–(59.126), so that

I (ω)=
2∑

j=0

I j (ω) . (59.128)

The satellite features that are often seen in line wings
arise because turning points in the difference potential[
VΛi (R)−VΛ f (R)

]
produce a phenomenon analogous

to the formation of rainbows in scattering theory. The
JWKB approximation is often used for the functions
Fk jl j (R) , and can be shown to lead to the correct
static limit in which transitions take place at fixed
values of R called ‘Condon points’, i.e., the Franck–
Condon principle is valid. Further details are given
in [59.9, 10, 24–26].
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59.6 Unified Theories and Conclusions

The pressure broadening of spectral lines is in general
a time-dependent many-body problem and as such can-
not be solved exactly. After all, even the problem of two
free electrons scattered by a proton is still a subject of
active research. There is no practical theory that leads to
the full static profile in the limit of high density (or low
temperature) and to the full impact profile in the limit
of low density (or high temperature). As with so many
problems in physics, it is the intermediate problem that is
intractable because no particular feature can be singled
out as providing a weak perturbation on a known phys-
ical situation. However, much progress has been made
over the last thirty years in developing theories that take
into account many of the key features of the intermedi-
ate problem and they are often successful in predicting
line profiles for practical applications [59.8–10,24–26].

More recently, time-dependent many-body problems
have been tackled using computer-oriented approaches
that invoke Monte Carlo and other simulation meth-
ods to study line broadening in dense, high-temperature
plasmas, see for example [59.27]. In this chapter, the
emphasis has been on aspects of the subject that relate
directly to electron-atom and low-energy atom–atom
scattering. Many experts in the fields of electron–atom
and atom–atom collisions are still not exploiting the di-
rect applicability of their work to line broadening. It
is hoped that this contribution will encourage more re-
search workers to study these fascinating problems that
not only provide links with plasma physics and in par-
ticular with the physics of fusion plasmas, but also with
a quite distinct body of laboratory-based experimental
data.
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Photodetachm60. Photodetachment

Investigations of photon-ion interactions have
grown rapidly over the past few decades due
primarily to the increased availability of laser
and synchrotron light sources. At photon ener-
gies below about 1 keV the dominant radiative
process is the electric dipole induced pho-
toelectric effect. In the gaseous phase the
photoelectric effect is referred to as either
photoionization (atoms and positive ions) or
photodetachment (negative ions). This chapter
reviews developments in the field of pho-
todetachment that have taken place over the
past decade. The focus will be on accelerator-
based investigations of the photodetachment
of atomic negative ions. The monographs of
Massey [60.1] and Smirnov [60.2] offer a good
introduction to the subject of negative ions.
Recent reviews of negative ions and pho-
todetachment include those of Bates [60.3],
Buckman and Clark [60.4], Blondel [60.5], An-
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References .................................................. 898

dersen [60.6], Andersen et al. [60.7] and Bilodeau
and Haugen [60.8].

60.1 Negative Ions

Interest in negative ions stems from the fact that their
structure and dynamics are qualitatively different from
those of isoelectronic atoms and positive ions. This can
be traced to the nature of the force that binds the out-
ermost electron. In the case of atoms and positive ions,
the outermost electron moves asymptotically in the long
range Coulomb field of the positively charged core.
The relatively strong 1/r potential is able to support
an infinite spectrum of bound states that converge on
the ionization limit. In contrast, the outermost electron
in a negative ion experiences the short-range induced-
dipole field of the atomic core. The relatively weak 1/r4

polarization potential is shallow and typically can only
support a single bound state. The weakness of the bind-
ing is reflected in the magnitudes of electron affinities
of atoms, which are numerically equal to the binding
energies of the outermost electron in the corresponding
negative ion. Electron affinities are typically an order
of magnitude smaller than the ionization energies of

atoms. Excited bound states of negative ions are rare.
With the possible exception of Os−, all such states that
exist have the same configuration, and therefore parity,
as the ground state. A rich spectrum of unbound excited
states, however, are associated with most ions. These
discrete states are embedded in the continua lying above
the first detachment limit.

Electron correlation plays an important role in de-
termining the structure and dynamics of many-electron
systems [60.9]. Weakly bound systems such as neg-
ative ions are ideally suited for investigations of the
effects of correlation. As a result of the more effi-
cient shielding of the nucleus by the atomic core, the
electron–electron interactions become relatively more
important than the electron-nucleus interaction in neg-
ative ions. The goal of photodetachment experiments
is to measure, in high resolution, correlation-sensitive
quantities such as electron affinities and the ener-
gies and widths of resonant states. These quantities
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provide sensitive tests of the ability of theorists to in-
corporate electron correlation into their calculations.
The stimulating interplay between experiment and

theory continues to help elucidate the role of many-
electron effects in the structure and dynamics of atomic
systems.

60.2 Photodetachment

Essentially all information about the structure and
dynamics of negative ions comes from controlled ex-
periments in which electrons are detached from the
ions when they interact with photons or other par-
ticles. Photodetachment is the preferred method of
studying negative ion structure and dynamics since
the energy resolution associated with such measure-
ments is typically much higher than that attainable
in any particle-induced detachment process. Generally,
one or more electrons are detached from a nega-
tive ion following the absorption of one or more
photons in the photodetachment process. Most measure-
ments to date, however, involve the simplest process
of single electron detachment following single pho-
ton absorption. Cross sections for this process start
at zero at threshold, rise to a maximum a few eV
above threshold and then decrease monotonically. Pho-
todetachment cross sections at their maximum have
a typical magnitude of ≈ 10–100 Mb. Threshold be-
havior and resonance structure in detachment cross
sections are of particular interest since they both
involve a high degree of correlation between the
electrons.

60.2.1 Threshold Behavior

Cross sections for photodetachment are zero at thresh-
old, in contrast to the finite value characteristic of
photoionization cross sections. The threshold behavior
is determined by the dynamics of two particles in the
final continuum state. The Wigner law [60.10] governs
the energy dependence of the near-threshold cross sec-
tion for the photodetachment of a single electron from
an atomic negative ion. The Wigner law can be written
as

σ = Ak2l+1 = B(E− Et)
l+1/2 , (60.1)

where k represents the wavenumber of the detached
electron, (E− Et) is the excess energy of the elec-
tron above threshold and l is the smallest value of
the orbital angular momentum quantum number. As
a result of the electric dipole selection rules, the de-
tached electron is represented, in general, by two

partial waves with l = l0+1 and l0−1, where l0
is the angular momentum of the bound electron in
the negative ion prior to detachment. Wigner demon-
strated that for a two-body final state the near-threshold
cross section depends only on the dominant long-
range interaction between the two product particles.
In the case of photodetachment involving electrons
with l > 0, this contribution arises from the centrifugal
force. Shorter-range interactions, such as the polariza-
tion force, will not change the form of the threshold
behavior but they will limit the range of validity of
the Wigner law. There is no a priori way of deter-
mining the range of validity of the Wigner law in
any particular experiment. It depends on the strengths
of short-range interactions. Measured threshold data
is usually fit to the Wigner law in order to deter-
mine the threshold energy. In principle, it is possible
to extend the range of the fit beyond that of the
Wigner law. O’Malley [60.11], for example, considered
the effects of multipole forces on threshold behavior.
O’Malley’s formalism, however, does not treat polar-
ization explicitly. This is, however, accounted for in
the modified effective range theory of Watanabe and
Greene [60.12]. Recently, Sandstroem et al. [60.13]
have used a modified effective range theory to fit pho-
todetachment data taken at excited state thresholds of
the alkali-metal atoms, Li and K. In these cases the
dipole polarizability is very high and consequently the
range of validity of the Wigner law is correspondingly
small.

60.2.2 Resonance Structure

Negative ion resonances correspond to states in which
an electron and an atom are transiently associated.
Such states are the subject of a review by Buckman
and Clark [60.4]. In photodetachment they arise when
more than one electron, or a core electron, is excited.
These unbound discrete states are embedded in the con-
tinua above the first detachment limit and are therefore
subject to decay via the spontaneous process of au-
todetachment. The allowed autodetachment process is
induced by the relatively strong electrostatic interaction
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between the outermost electrons. This process causes
discrete continuum states to be very short lived. If the
selection rules on the allowed Coulomb-induced autode-
tachment process are violated, however, the state may
live much longer. Metastable states eventually decay
via autodetachment processes induced by the weaker
magnetic interactions. The He− ion is the prototypical
metastable negative ion. It is formed in the spin-aligned
1s2s2p 4P0 state when an electron attaches itself to
a He atom in the metastable 1s2s 3S . It is bound by
77.516 meV [60.14]. The decay of a discrete state in the
continuum by autodetachment is manifested as a res-
onance structure in the detachment cross section. The
shape of a resonance is determined by the interference
between the two pathways for reaching the same final
continuum state: direct detachment and detachment via
the discrete state embedded in the continuum. A reso-
nance can be parametrized by fitting it to a Fano [60.15]
or Shore profile [60.16]. The energy and width of
the discrete continuum state are extracted from the
fit.

60.2.3 Higher Order Processes

With the advent of high power, pulsed lasers it became
possible to observe multiphoton detachment. In this pro-
cess a single electron is ejected following the absorption
of two or more photons. Early work in this area has
been reviewed by Crance [60.17], Davidson [60.18] and
Blondel [60.5]. More recently, Haugen and coworkers
have used two photon E1 transitions to determine fine
structure splittings in the ground state of negative ions
and to measure the binding energies of excited states of
negative ions that have the same parity as the ground
state. Bilodeau and Haugen [60.8] have reviewed these
measurements.

Multielectron detachment involves the detachment
of two or more electrons following the absorption of
a single photon. This process, which appears to be
initiated by the detachment of an inner shell electron,
requires photons with energies higher than can be gen-
erated by lasers. Such measurements can be performed
at synchrotron radiation sites.

60.3 Experimental Procedures

60.3.1 Production of Negative Ions

Negative ions are created in exoergic attachment pro-
cesses when an electron is captured by an atom or
molecule. These quantum systems are weakly bound
with diffuse outer orbitals. As a consequence, they are
easily destroyed in collisions with other particles. Due
to their fragility they are rarely observed in bulk matter.
The production of negative ions with a density suffi-
ciently high for spectroscopic studies poses a challenge
to the experimentalist since processes involved in their
creation must compete with more probable destruction
processes. The most versatile source of production of
negative ions for accelerator-based experiments is the
Cs sputter ion source [60.19]. This source has been used
to generate a wide variety of atomic, molecular, and
cluster negative ions.

Negative ions can be produced and maintained in
ion traps [60.20]. In this case, the ions are produced
inside the trap by electron-induced dissociative attach-
ment collisions and photodetachment is investigated
by monitoring the depletion of the negative ions. The
most commonly used source for spectroscopic studies
of negative ions is, however, a beam produced by an
accelerator. In an accelerator-based apparatus the ions

are extracted from the ion source and focused to form
a collimated beam that is accelerated to a desired en-
ergy, typically 1–10 keV. Mass analysis of the ions is
used to produce an elementally and isotopically pure
beam that is essentially mono–energetic and unidirec-
tional. The directed particles then drift to the interaction
region through a beam line that is maintained at low
pressure to minimize destructive collisions between the
ions and the residual gas. Recently, negative ions have
been injected into storage rings. In this case the ions
make repeated passes through the interaction region.
The enhanced luminosity associated with multiple-pass
experiments makes it possible to investigate relatively
rare processes that would be impossible in single-pass
experiments.

60.3.2 Interacting Beams

The well-defined spatial dimensions of an ion beam
readily permit an efficient overlap with a beam of pho-
tons. The two interacting beams are most often mated in
either crossed or collinear beam geometries. The choice
of geometry is typically determined by the types of par-
ticles to be detected, the detection geometry to be used,
and the level of sensitivity and resolution required in
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the experiment. The crossed beam arrangement is best
suited for spectroscopic studies of the photoelectrons
ejected following photodetachment, since the electrons
can most easily be collected from a spatially well defined
interaction region. In a collinear beam arrangement it is
better to detect the residual heavy particles produced
in the photodetachment process since they all travel in
the same direction, the direction of motion of the ion
beam, and can be collected with high efficiency. Both
the sensitivity and energy resolution attainable using
a collinear beam apparatus are typically much higher
than for a crossed beam apparatus. Nowadays, most
experiments employ an apparatus in which the photon
and ions are collinearly merged and the present chap-
ter will focus on this arrangement. Figure 60.1 shows
a typical collinear beam apparatus that was designed
by Hanstorp [60.21]. The signal is enhanced when the
photon and ion beams are collinearly merged due to
the extended interaction region and the high collection
and detection efficiencies of the heavy residual par-
ticles. The major source of background noise in collinear
beam experiments is associated with the production of
atoms or positive ions by collisions of the beam ions
with the atoms or molecules of the residual gas in the
vacuum chamber. By maintaining a high vacuum, typic-
ally 10−9 mTorr or better, one can keep the background
contribution to a tolerable level. In interacting beam ex-
periments involving the detection of the heavy residual
particles, the energy resolution that is attainable is usu-
ally limited by kinematic broadening. The amount of
broadening is determined by the properties of the ion
and photon beams and how they are overlapped. The
longitudinal velocity distribution of the ions in a beam
is compressed when the ions undergo acceleration af-
ter leaving the ion source [60.22]. If the photon beam
is merged collinearly with the “cooled” ion beam, the
photons sample the narrowed velocity distribution, thus
significantly reducing the contribution from Doppler
broadening. If kinematic broadening is rendered neg-
ligible, the energy resolution is usually determined by
the bandwidth of the light source.

60.3.3 Light Sources

Since the particle density in the ion beam is typically
low, it is important to have a light source that gen-
erates an intense beam of photons. In addition, the
output of the light source must be tunable. Pulsed lasers
are most often used in photodetachment experiments.
Their time structure is often used to advantage in time-
of-flight schemes to enhance the signal-to-background
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Fig. 60.1 A schematic of a collinear laser-negative ion
beam apparatus. The quadrupole deflector is used to merge
the laser and ion beam in the interaction region. The first
laser is used to photodetach electrons from the ions. A sec-
ond laser beam is directed along the common path of the first
laser beam and the ion beam. This laser is used in the state-
selective detection scheme based on resonance ionization.
The positive ions produced in the sequential interaction of
the negative ions with both laser beams and the external
electric field are detected in a channel electron multiplier.
The directions of the laser beams can be reversed

ratio. The large peak powers characteristic of pulsed
lasers are required in multiphoton experiments. Lasers
or laser-based sources used in photodetachment experi-
ments span the wavelength range from the ultraviolet
to the infrared. Second harmonic generation in a non-
linear crystal is the conventional method of producing
UV radiation. The generation of tunable infrared ra-
diation with wavelengths of a few µm has proven
to be more difficult. Recently, however, Haugen and
coworkers have performed experiments using infrared
radiation produced in a laser-pumped Raman conversion
cell [60.8]. Commercial optical parametric oscillators
are also becoming more readily available. In order to
investigate inner shell excitation and detachment pro-
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cesses it is necessary to access the VUV or X-ray
region. These regions are currently outside the limits of
lasers and can only be accessed at synchrotron radiation
facilities.

60.3.4 Detection Schemes

Photodetachment events can be monitored by either
measuring the attenuation of the negative ions or by de-
tecting the particles (electrons, atoms or positive ions)
produced in the breakup of the ion. In accelerator-based
measurements the ion beam is too tenuous to be able to

monitor attenuation and particle detection must be em-
ployed. The heavy residual particles, atoms or positive
ions, are usually detected in experiments that employ
collinearly merged beams of photons and negative ions.
The selectivity and sensitivity of a measurement is
improved significantly if the residual particles are state-
selectively detected. In the case of residual excited
atoms, the method most often employed is based on
the use of a second laser to excite the atoms to a state
near the ionization limit. This resonance step is followed
by electric field ionization. The resulting positive ions
constitute the signal.

60.4 Results

There have been several new developments in ac-
celerator-based photodetachment measurements during
the past decade. Tunable infrared radiation has been
used in single photon and multiphoton experiments.
State-selective detection schemes based on resonance
ionization have been successfully employed in meas-
urements of thresholds and resonances. The lifetimes of
long-lived negative ions have been determined by the use
of magnetic storage rings. Synchrotron radiation sources
have been instrumental in the pioneering studies of inner
shell processes in negative ions.

60.4.1 Threshold Measurements

A measurement of a threshold energy using photode-
tachment allows one to determine the binding energy of
the extra electron in the negative ion or, equivalently, the
electron affinity of the parent atom. Andersen et al. [60.7]
have recently published a review of the methods cur-
rently used to measure the binding energies of atomic
negative ions. The article includes an up-to-date compi-
lation of recommended electron affinities. The simplest,
and potentially the most accurate, method of deter-
mining binding energies is the laser photodetachment
threshold (LPT) method. In this technique, the normal-
ized yield of residual atoms is recorded as a function
of the photon energy in the near-threshold region of the
cross section. In most cases, the Wigner law can be fit-
ted to the data and the threshold energy is determined by
extrapolation. The Wigner law demonstrates that not all
thresholds have the same energy dependence. The most
accurate measurements to date involve detachment into
an s-wave continuum. In the case of l = 0, the thresh-
old energy dependence of E1/2 is more pronounced

than for cases with l > 0. S-wave photodetachment re-
quires that a p-orbital electron be ejected. Haugen and
coworkers have used tunable infrared spectroscopy to
measure the binding energies of negative ions with open
p-shells [60.23–25]. In these experiments the detach-
ment process left the residual atom in its ground state so
that state-selective detection was not needed.

Considerable experimental and theoretical effort
have gone into investigating the negative ions of
the alkaline earth elements since the experimental
discovery [60.26] and subsequent theoretical confirma-
tion [60.27] of the existence of a stable Ca− ion in
1987. Prior to this time it was generally accepted that
the closed s-shell configurations of the alkaline earth
atoms would inhibit the production of stable negative
ions. Andersen et al. [60.28] have reviewed progress in
this field. Andersen and coworkers used the LPT method
combined with state-selective detection to determine the
binding energies of the negative ions of the heavier al-
kaline earths Ca−,Sr− and Ba− [60.29–31]. No stable
negative ions of Be and Mg have been found, but the
Be− ion is known to be metastable. These heavier ions
are weakly bound but tunable infrared sources were not
available at the time to detach them into the ground state
of the parent atom. Instead, UV radiation was used to
access an excited state threshold. In the case of Ca− the
4s5s 3S threshold was used since it allowed access to an
s-wave continuum. In order to suppress the background
noise in the experiment, the Ca atoms left in this excited
state following detachment were selectively detected by
a method based on resonance ionization. Before the ex-
cited Ca atom could radiatively decay, a second laser was
used to induce a transition from the excited state to a high
lying Rydberg state. The Rydberg atoms were efficiently
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ionized in an electrostatic field applied to the beam. The
Ca+ ion thus produced were used as the signal that, once
normalized, was proportional to the photodetachment
cross section. The structures of the heavy alkaline earths
are very difficult to calculate. Three relatively loosely
bound electrons move in the field of a highly polarizable
core. Electron correlation and relativistic effects must be
included in a theoretical description of their structure.
As calculations became more sophisticated it became
clear that correlations between the core electrons and
between the valence and core electrons had to be taken
into account in addition to the correlations between the
valence electrons [60.32].

The negative ions of the alkali-metal elements have
a closed s-shell configuration. In this case it is nec-
essary to access an excited state threshold in order
to detach into an s-wave continuum. Hanstorp and
coworkers have used the LPT method combined with
state-selective detection to measure the electron affini-
ties of Li [60.33] and K [60.34]. Since accelerator-based
measurements involve the use of fast and unidirectional
beams of ions, one must take into account Doppler
shifts in accurate measurements of threshold energies.
In the K− experiment [60.34], two separate sets of
data were accumulated, one with the laser and ion
beams co-propagating and the other with them counter-
propagating. The Doppler shift can be eliminated to all
orders by taking the geometric mean of the measured
red-shifted and blue-shifted threshold energies [60.35].

LPT measurements can be used to selectively sup-
press one isotope relative to other isotopes of the same
element, thereby changing the relative abundances from
their natural values. This technique could be applied,
for example, to the problem of sensitivity enhancement
in mass spectrometry by suppressing unwanted isotopic
interferences. Sandstroem et al. [60.36] recently per-
formed a proof-of-principle experiment using the 34S
and 32S isotopes. The goal of the experiment was to en-
rich the 34S isotope relative to the more abundant 32S
isotope. Due to the large differential Doppler shifts as-
sociated with the fast moving ions of the two isotopes
of different masses, it was possible to selectively pho-
todetach one isotope and leave the other untouched. In
this feasibility experiment, the 34S/32S ration was en-
hanced by a factor of > 50 over its natural value. With
a better vacuum and the selection of a more suitable
laser, it is predicted that the enhancement ratio could be
significantly improved. The application of LPT to mass
spectrometry clearly has the potential for enhancing the
sensitivity in measurements of the abundances of rare
and ultra-rare isotopes.

60.4.2 Resonance Parameters

The simplest negative ion is the two-electron H− ion.
This three-body Coulomb system is fundamentally im-
portant in our understanding of the role played by
electron correlation in atomic structure. The pioneering
measurements of the photodetachment of one and two
electrons from the H− ion were performed by Bryant
and coworkers [60.37–39] several decades ago. The
ASTRID (Aarhus storage ring Denmark) heavy ion stor-
age ring has been used in two new measurements of
the resonance structure in the vicinity of the H(n = 2)
threshold [60.40, 41]. The energy resolution of these
storage ring experiments was much higher than that
attained in previous experiments. As a consequence, An-
dersen et al. [60.41] were able to observe, for the first
time, a second resonance below the H(n = 2) threshold.
In principle, the 1/r2 dipolar potential should support
an infinite series of resonances below each excited state
of the H atom [60.42]. Calculations, however, indicate
that the series will be truncated after the third member
by relativistic and radiative interactions [60.43].

Detachment continua contain a wealth of structure
and many measurements of Feshbach resonances in
non-hydrogenic negative ions have been reported dur-
ing the past decade. The dipole polarizability of an
atom increases with the degree of excitation, making
it easier for electrons to attach to the excited parent
atom. Series of Feshbach resonances containing several
members are often found below excited state thresh-
olds. Resonances in the photodetachment spectra of
the metastable He− ion [60.44] and the alkali-metal
negative ions [60.45–49] have been studied exten-
sively by Hanstorp and coworkers using the collinear
beam apparatus shown in Fig. 60.1. R-matrix calcu-
lations [60.50–53] have generally been successful in
predicting the energies and widths of most of the res-
onances observed in the experiments. There has been
keen interest in the similarities and differences between
the photodetachment spectra of Li− and H−.

The He− ion is a metastable negative ion but it
is sufficiently long lived to pass from the ion source
to the interaction region with relatively little attenua-
tion via autodetachment. Electric dipole selection rules
limit photon-induced transitions from the 1s2s2p 4P0

ground state to excited states with 4S, 4P and 4D sym-
metry. The spectra of Feshbach resonances that lie
below the He(n = 3, 4, 5) thresholds have been inves-
tigated using the collinear beam apparatus shown in
Fig. 60.1 [60.44,54,55]. Resonance ionization was used
to state selectively detect the residual excited He atoms.

Part
E

6
0
.4



Photodetachment 60.4 Results 897

Figure 60.2 shows a high resolution spectrum of the res-
onance structure in the range 3.7–4.0 eV, a range that
encompasses the H(n = 4) thresholds. In this relatively
small energy range Kiyan et al. [60.44] found many res-
onances exhibiting a variety of different shapes. The
resonances labeled a,c,e are members of the 4P series
with dominant configurations of 1s4pnp (n = 4, 5, 6).
The resonances labeled b,d appear to be the n = 5, 6
members of the 1s4sns 4S series.

Recent studies using synchrotron radiation have re-
vealed resonances in photodetachment cross sections
in the X-ray and VUV regions that can be associated
with the excitation of inner shell electrons. Resonances
arising from K-shell excitation in the Li− ion have
been reported by Kjeldsen et al. [60.56] and Berrah
et al. [60.57]. Similarly, resonances were found in
a study of He− [60.58] and C− [60.59]. Resonances
associated with L-shell excitation of the Na− ion were
observed by Covington et al. [60.60]. Figure 60.3 shows

80

60

40

20

0
3.75 3.80 3.85 3.90 3.95 4.00

Photon energy (eV)

Normalised He+ signal

a b c d e f

43S 43P 43D

43P

d e

3.95 3.96 3.97

Fig. 60.2 Partial cross section for the photodetachment of
He− via the He(1s3p 3P)+e(kp) continuum channel in the
energy range 3.73–4.00 eV. The open circles represent the
measured data. The fits to the sum of Shore profiles are
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part of the spectrum in which the dominant feature is
a resonance at ≈ 36 eV that arises from the excitation
of a pair of electrons – a 2p core electron and a 3s va-
lence electron. Absolute cross sections were measured
in most of the experiments. R-matrix calculations of
the cross sections at energies corresponding to K-shell
excitation have successfully accounted for most of the
observations [60.61–63].

60.4.3 Lifetimes of Metastable Negative
Ions

Heavy ion storage rings are well suited for studies
of the radiative or autodetaching decay of long lived
excited states of negative ions. They have also been
used to investigate the effect of blackbody radiation
on weakly bound stable negative ions [60.64]. Ander-
sen and coworkers have used the ASTRID facility to
measure the lifetimes of the metastable negative ions
Be− [60.65] and He− [60.66] against autodetaching de-
cay. The decay rate was measured by simply detecting
the neutral atoms produced in the ring as a function of
time after injection. The range of autodetaching life-
times that can be measured in a storage ring depends on
the size of the ring and on the destruction rate of the
ions by collisional detachment with the residual gas in
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the ring. More recently, Ellman et al. [60.67] have used
the CRYRING facility (at the Manne Siegbahn Labora-
tory in Stockholm) to measure the radiative lifetime of
a bound excited state of a negative ion. In this proof-of-
principle experiment, the lifetime of the 5p5 2P1/2 level
of Te− was measured to be 0.42( 5) s. This value is in ex-
cellent agreement with the result of a multi-configuration
Dirac Hartree-Fock (MCDHF) calculation. The J = 1/2
level radiatively decays to the J = 3/2 ground level, pri-
marily via M1 transitions. The idea of the experiment
was to monitor the population of the J = 1/2 level as
a function of time after injection of the Te− into the
ring. This was accomplished by selectively photodetach-
ing ions in the J = 1/2 level as the Te− ions repeatedly
passed through the field of a laser beam situated along
one arm of the ring. The neutral Te atoms thus pro-
duced were used as the signal. Corrections were made
for collisionally-induced detachment and repopulation.
Data was taken at four different ring pressures. A lin-

ear fit to this data yielded the zero-pressure radiative
lifetime of the excited J = 1/2 level.

60.4.4 Multielectron Detachment

Synchrotron radiation has been used over the past few
years in order to study how negative ions respond to
the absorption of high-energy photons. Photons in the
VUV and X-ray regions will excite and/or detach inner
shell electrons. Multiple electron detachment appears to
be initiated by the detachment of a core electron. This
process triggers the ejection of one or more valence
electrons either by shake off or by interactions of the
detached core electron with the valence electrons as it
leaves the atom. The ALS (Advanced Light Source) has
been used to investigate multiple electron detachment.
Measurements of the absolute cross sections for the de-
tachment of two electrons from the closed shell ions
Cl− [60.68] and F− [60.69] have been reported.
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Photon–Atom61. Photon–Atom Interactions: Low Energy

Theoretical and experimental aspects of the atomic
photoelectric effect at photon energies up to
about 1 keV are presented. Relevant formulae
and interpretations are given for the various
excitation and decay processes. Techniques
and results of photoelectron spectrometry in
conjunction with synchrotron radiation are
emphasized.

61.1 Theoretical Concepts ............................ 901
61.1.1 Differential Analysis .................. 901
61.1.2 Electron Correlation Effects ......... 904

61.2 Experimental Methods ......................... 907
61.2.1 Synchrotron Radiation Source ..... 907
61.2.2 Photoelectron Spectrometry ....... 908
61.2.3 Resolution and Natural Width ..... 910

61.3 Additional Considerations .................... 911
References .................................................. 912

61.1 Theoretical Concepts

Scattering of low-energy photons proceeds predomi-
nantly through the photoelectric effect. In this process
a photon γ of energy hν, angular momentum jγ = 1,
and parity πγ =−1 interacts with a free atom or mol-
ecule A, having total energy Ei , angular momentum Ji ,
and parity πi to produce an electron of energy ε, spin
s = 1/2, orbital angular momentum , total angular mo-
mentum j, and parity πe = (−1) and an ion A+ with
final total energy E f , angular momentum J f , and parity
π f . This process can be written as the reaction

γ(hν, jγ=1, πγ=−1)+ A(Ei , Ji , πi)

→ A+(E f , J f , π f )+ e−[ε, s j, πe=(−1)] .
(61.1)

Conservation laws require that

hν+ Ei = ε+ E f ,

Ji + jγ = J f + s+ ,
πi ·πγ = π f ·πe = (−1) ·π f . (61.2)

Since E f − Ei becomes quite large for inner shells or
deep core levels, scattering of low-energy photons in-
volves the removal of an electron from a valence or
shallow core level. In the low-energy regime, from the
first ionization threshold to hν ≈ 1 keV, the photoelec-
tric effect accounts for more than 99.6% of the photon
interactions in the elements, with elastic scattering con-
tributing the remainder [61.1, 2]. Ionization by inelastic
scattering, the Compton effect, assumes increasing im-
portance with the higher photon energies and the lower
Z elements. Above the first ionization potential, the

total photoabsorption cross section and the photoioniza-
tion cross section are essentially equivalent at the lower
photon energies.

The cross section σi f for producing a given final
ionic state in the photoionization process is given by

σi f = 4π2α2

k

∑
|〈 Ψ f | T̂ | Ψi 〉|2 , (61.3)

where k is the photon momentum, T̂ is the transition op-
erator, Ψi and Ψ f are the wave functions of the initial
and final states, and the summation includes an average
over all initial states and a summation over all the unob-
served variables in the final state. A detailed derivation
of this expression, including the different forms for T̂ ,
is given in the articles by Fano and Cooper [61.3] and
Starace [61.4] and in Chapt. 24. The total cross section
is given by the sum of all these different partial cross
sections, σi f .

61.1.1 Differential Analysis

Detailed information about the photoionization process
can be obtained most directly in emission measurements,
especially those involving the photoelectron. The re-
sulting photoelectron spectrum yields the energy and
intensity for a given interaction. Further differentiation
is obtained by varying the angle of observation and by
a spin analysis of the photoelectron. Hence, electron
emission analysis can reveal all energetically allowed
photoprocesses connecting an initial atomic state i to
a final ionic state f and yield their dynamic prop-
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erties. When averaged over the spin, the differential
cross section dσi f /dΩ is given in terms of the par-
tial cross section σi f and an expression involving an
expansion in Legendre polynomials of order n with the
coefficients Bn :

dσi f

dΩ
=
(σi f

4π

) ∑

n

Bn Pn(cos θ) , (61.4)

where the angle θ is measured between the direction of
the emitted electron and the unpolarized incoming pho-
ton beam. In the dipole approximation, which describes
the dominant process at low energy, only the terms con-
taining P0 and P2 contribute. Then (61.4) reduces, for
a photon beam with linear polarization p, to

dσi f

dΩ
=
(σi f

4π

)[
1+ βi f

4
(1+3p cos 2θ)

]
, (61.5)

where the angle θ lies in the plane perpendicular to
the direction of propagation and is measured with re-
spect to the major axis of the polarization ellipse [61.5].
Then, the differential cross section, or photoelectron an-
gular distribution, is characterized by the single angular
distribution or anisotropy parameter βi f for a partic-
ular process i → f . For observation at the so-called
pseudomagic angle θm, defined as

θm = 1

2
cos−1

(−1

3p

)
, (61.6)

the differential cross section dσi f /dΩ becomes propor-
tional to the angle-integrated, or partial, cross section
σi f .

In the absence of correlation effects, the partial
cross section σi f for the production of an individual
final state and the corresponding anisotropy parame-
ter βi f are given by simple expressions derived from
a single-particle model [61.1, 4]. For the central field
potential,

σi f = 4π2α

3
a2

o Nnhν

×

[(


2+1

)
R2−+

(
+1

2+1

)
R2+

]
, (61.7)

where Nn is the occupation number of the subshell, and

βi f = (−1)R2−+ (+1)(+2)R2+
(2+1)

[
R2−+ (+1)R2+

]

− 6(+1)R+R− cos∆

(2+1)
[
R2−+ (+1)R2+

] . (61.8)

The subscripts + and − refer to the (+1) and (−1)
channels respectively, and ∆= δ+− δ− is the differ-
ence in phase shift between these two allowed outgoing
waves. The parameter R± is the radial dipole matrix el-
ement connecting the electron in the bound orbital with
orbital angular momentum  with the outgoing wave
having orbital angular momentum ±1.

Effects of the electron correlation on the direct pho-
toionization process can result in values for β which are
not reproduced by the Cooper–Zare expression (61.8)
[61.4]. The contribution of the different partial waves to
the outgoing wave function can, however, be ascertained
through the angular momentum transfer formalism de-
veloped by Fano and Dill [61.6]. In this approach, one
defines the angular momentum transferred from the
photon to the unobserved variables jt as

jt = jγ −�= J f + s− Ji , (61.9)

where the second portion of the equality results from the
conservation of angular momentum. For each allowed
value of jt the associated transfer can be defined as either
parity favored or parity unfavored according to whether
the product πiπ f is equal to +(−1) jt or −(−1) jt re-
spectively. (All symbols have the same definition as in
(61.1).) Calculation of the partial cross section for the
production of a given final state characterized by the
values J f and s is then determined from the cross sec-
tion corresponding to each angular momentum transfer
according to

σi f =
∑

jt

σ( jt) . (61.10)

The associated anisotropy parameter βi f is derived from
a similar sum:

σi f βi f =
∑

jt=fav

σ( jt)fav β( jt)fav−
∑

jt=unfav

σ( jt)unfav .

(61.11)

The second equation derives from the fact that β( jt)
for each parity-favored value must be calculated sepa-
rately, whereas for the parity-unfavored case β( jt)=−1
always.

The physical effect described by the angular mo-
mentum transfer approach is the interaction between
an electron and the anisotropic distribution of the other
electrons in the atom. Thus, it becomes most useful in
the case of ionization from an open-shell atom having
an extra electron or a hole in a shell with  �= 0. An il-
lustrative example is the 3s ionization of chlorine. Here
βi f = 2 identically in (61.8) because only the single
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value = 1 is allowed in the single-particle model. How-
ever, the three possible values, jt = 0, 1, 2 are allowed,
of which only the first corresponds to the Cooper–Zare or
single-particle, central field result [61.4]. That β �= 2 for
3s ionization of atomic chlorine has been demonstrated
experimentally [61.7].

It is generally the case for ionization of elements
which are found naturally in the atomic state that there
is an equal population in all the fine-structure compo-
nents of the initial state. This is because of the relatively
small energies associated with the fine-structure split-
ting. (This does not necessarily apply to atomic species
generated through a process of molecular dissociation or
high-temperature metal vaporization.) Thus, the deter-
mination of all cross sections and angular distributions
involves an average over these fine-structure compo-
nents. However, it is possible to generate atoms in
which one of the fine-structure components is pref-
erentially populated. In this case there can also be
a preferential ionization to a particular J-component
of the final ionic state even in the limit in which the
electron correlation is neglected, i. e., the geometri-
cal limit. The partial intensities for the production of
a given ionic state characterized by the angular mo-
menta L f S f J f by removal of an electron from an
orbital  of a state characterized by Li Si Ji are given
by

R
L f S f J f
 = [J f ][L f ][S f ]

[1/2][] g(, Li, Si , L f , S f )

×
j=+1/2∑

j=−1/2

[ j]

⎧
⎪⎨

⎪⎩

 1/2 j

Li Si Ji

L f S f J f

⎫
⎪⎬

⎪⎭

2

. (61.12)

Here the term in curly brackets is a 9–j symbol,
and the notation [J] = 2J +1 is used. The quantities
g(, Li, Si , L f , S f ) are weighting factors determined
solely by the initial-state wave function. For the case
in which  represents a closed shell, these factors are
equal to unity [61.8].

In situations in which the target atoms possess an
initial orientation, i. e., have an average value 〈 Jz 〉 �= 0,
or if the ionization is performed with circularly polar-
ized radiation, the electrons which are produced have
a net spin [61.9, 10]. It is also possible that unpolarized
atoms which are ionized by unpolarized photons can
have a net spin, provided that the detection is carried out
at a specific angle, and the ionization is from a given
fine-structure component of the initial state to a given
fine-structure component of the final state. In the latter

case, the transverse spin polarization is given by

P = −2ξ sin θ cos θ

1+βP2(cos θ)
, (61.13)

for linearly polarized radiation, and by

P = 2ξ sin θ cos θ

2−βP2(cos θ)
, (61.14)

for unpolarized radiation [61.11, 12]. The angle θ is the
same as in the angular distribution measurement; the
parameter ξ is the spin parameter analogous to β; and
P2(cos θ) is the Legendre polynomial of order 2.

Yet another parameter which describes the differ-
entiation inherent in the photoionization process is
the alignment A, which reflects an anisotropy in the
quadrupole distribution of the angular momentum J f of
the ion [61.12]. For the cylindrically symmetric coor-
dinate system appropriate to dipole photon excitation,
only one moment A0 of the distribution is nonzero. This
is defined by

A0 =
∑

m j

[
3m2

j − J f (J f +1)
]
σ(m j)

J f (J f +1)
∑

m j
σ(m j)

, (61.15)

where σ(m j) is the partial cross section for produc-
tion of a given m j component of J f . A very useful
approach to the interpretation of the alignment can be
obtained through the angular-momentum-transfer for-
malism [61.13]. In this approach the angular momentum
transfer jt is defined as

jt = jγ − J f . (61.16)

In contrast to the case of the electron angular distribu-
tion, it is possible to derive an alignment for each value
of jt as a function of the angular momentum J f of the
ion. The net alignment is then the incoherent sum of the
contributions corresponding to each:

A0 =
∑

jt

A0( jt)σ( jt)

/∑

jt

σ( jt) (61.17)

If the photoionization produces an ion in an excited state
which decays by photoemission, the parameter A0 is
reflected either in the angular distribution of the fluores-
cence photons I(θ) or the linear polarization P measured
at one angle, typically 90◦, according to

I(θ)= I0

[
1− 1

2
h(2)A0 P2(cos θ)

+ 3

4
h(2)A0 sin2 θ cos(2χ) cos(2η)

]
(61.18)
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or, for θ = π/2 and χ = 0,

P = I(η= 0)− I(η= π/2)
I(η= 0)+ I(η= π/2) =

3h(2)A0

4+h(2)A0
,

(61.19)

respectively. The angle θ is the angle at which the flu-
orescence is determined, and the angle χ is measured
between the axis of the polarization selected by the
detector and the quantization axis. The polarization of
the fluorescence is given by ζ = (cos η, i sin η, 0). The
quantity h(2) is a ratio of 6–j symbols depending on the
angular momenta J f of the intermediate ion and the final
state J ′f :

h(2) = (−1)J f −J ′f

×

{
J f J f 2

1 1 J ′f

}/{
J f J f 2

1 1 J f

}

.

(61.20)

When it is energetically allowed, a hole in a shal-
low inner-shell will preferentially undergo Auger decay,
emitting an electron with an energy εA determined
by the energy difference between the energy E f of
the ion and E′

f of the state of the doubly-charged
ion to which the decay occurs. Angular analysis of
the Auger electrons reflects the alignment of the in-
termediate ionic state, which is different from, and
does not bear a one-to-one relationship to, the angular
distribution parameter β of the photoelectrons. Nor-
mally, Auger decay is regarded as a two-step process
in which the first step is the production of the hole
and the release of the primary photoelectron, followed
by the decay and the release of the second electron.
Within this approximation [61.14], the angular dis-
tribution of the Auger electrons takes on the simple
form

I(θ)=
(

I0

4π

)
[1+α2 A0 P2(cos θ)] . (61.21)

Here P2(cos θ) is the second-order Legendre polyno-
mial, and α2 is the matrix element corresponding to the
Auger decay. For the specific case in which the Auger de-
cay is to a final ionic state of 1S0 symmetry, α2 is purely
geometric, and a measurement of the angular distribu-
tion leads directly to a determination of the alignment.
Correspondingly, if the alignment of a specific state can
be determined through such a decay, then analysis of the
angular distribution of the decay to other states provides
a value for α2.

61.1.2 Electron Correlation Effects

The primary focus of advanced studies in photoion-
ization is to determine the role played by electron
correlation in the structure and dynamics of electron
motion above the lowest ionization threshold. Because
the form of the interaction potential for the Coulomb in-
teraction is very well known, theory can focus on the
many-body aspects of the process (Chapt. 23). Electron
correlation manifests itself in many ways. Most promi-
nent are the appearance of autoionization structure due
to the excitation of one or two electrons, the production
of correlation satellites due primarily to the ionization of
one electron accompanied by the excitation of another,
and the creation of two continuum electrons in a double
ionization process.

Autoionization resonances are perhaps the oldest
known features associated with electron correlation
(Chapt. 25). These features arise when the absorption
of a photon creates a localized state which lies in en-
ergy above at least one ionization limit. This state is
then degenerate in energy with a state of an electron in
the continuum, and the interaction between these states
results in the decay of the quasi-localized state into the
continuum. Such resonance states appear in an absorp-
tion spectrum in the form of strong, localized variations
over an energy range characteristic of the width Γ of the
feature, which is in turn related to the lifetime τ of the
state by

Γ = �/τ . (61.22)

In contrast to absorption features between bound states,
autoionization resonances are characterized by having
an asymmetric line shape. When only one localized state
and one continuum are involved, these line shapes can be
derived analytically, as first shown by Fano [61.15] and
later by Shore [61.16], resulting in simple parametrized
forms which are suitable for numerical calculation of
overlap integrals for determining widths. For the Fano
profile

σ(ε)= σa
(ε+q)2

ε2+1
+σb , (61.23)

with

ε = E− Er

(Γ/2)
, (61.24)

the parameter q describes the asymmetry of the line, Er is
the resonance position, andΓ is the width of the line. The
parameters σa and σb reflect the relative contributions to
states in the continuum which do and do not interact with
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the autoionizing state respectively. The energy Er does
not correspond to the peak energy Em of the resonance
feature but is related to the maximum through

Em = Er+ Γ

2q
. (61.25)

The Shore profile,

σ(ε)= C(ε)+ Aε+ B

ε2+1
, (61.26)

describes the same phenomenon except that the inter-
pretation of the parameters A and B is different. In this
case, they represent products of dipole and Coulomb
matrix elements. C(ε) is the continuum contribution.

From an experimental point of view, the
parametrized forms for the Fano and Shore profiles are
very useful as a basis for fitting autoionization spectra.
However, they both have the limitation that they only
describe the interaction of an isolated state with the con-
tinuum. While they can be extended to include several
continuua [61.4], they do not allow for an interaction
among two or more localized states [61.17, 18]. Never-
theless, it is possible to use these functions to achieve
often good fits of states which do interact with each other,
as these functions are mathematical representations of
localized resonances in a continuous spectral distribu-
tion. If this is done, the parameters no longer have the
physical meaning which they have for the noninteracting
case.

Mixing of discrete ionization channels with com-
peting continuum channels adds complexity to the
photoionization process, not just in the classical au-
toioinization regime but also in the vicinity of inner
shells [61.19–21]. In a rigorous application of the
Mies formalism [61.17], feasible with modern com-
puter power, even complex experimental spectra can
now be satisfactorily interpreted and reproduced. A case
in point is the excitation spectrum from the 2p level of
the open-shell chlorine atom [61.19].

The process of autoionization is discussed in more
detail in Chapt. 25. In Fig. 61.1 an example is shown of
the set of 2s2p3(4S)→ 2s2p3np, n ≥ 3 autoionization
resonances which decay into the 3P ground state of the
N+ ion [61.22]. The energies En of these resonances are
related to the ionization limit E∞ of the series by the
Rydberg formula

En = E∞− R∞/(n−µs)
2 (61.27)

where n is the principal quantum number and µs is
the quantum defect characteristic of a given series and
reflecting the short-range electrostatic interactions of the

electron with the ion core. Values of µs for s, p, d, and
f electrons have been calculated for atoms and ions up
to Z = 50 [61.23]. For high precision work, the reduced
Rydberg constant

RM = R∞
1+5.485 799 × 10−4/(MA−me)

(61.28)

should be used instead of the value R∞ for infinite nu-
clear mass (Chapt. 1). The atomic mass MA and the
electron mass me are in a.u.

A process closely related to the autoionization
phenomenon is resonant Auger decay. This process
differs from the ordinary Auger process [61.24] in
that an electron from an inner shell is not ionized
but excited to either a partially filled or an empty
subshell. It may be viewed either as an Auger pro-
cess or as autoionization. Such an inner-shell excited
state of a neutral atom (molecule) lies above one
or more of the ionization limits of the singly ion-
ized species and consequently must decay by electron
emission unless the decay is forbidden by selection
rules. As a result, resonance structure will appear
superimposed on the continua of direct photoioniza-
tion from the various subshells. From a most general
point of view, the resonant Auger process can be
considered as resonances in the continua of single
photoionization, while the ordinary Auger process can
be regarded as resonances in the continua of double
photoionization. If excitation proceeds to a partially
filled subshell within a principal shell, as, for ex-
ample, Mn 3p → 3d [61.20], interference between the
direct photoionization channels and the indirect reso-
nance channel may be strong, and the lineshapes are
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Fig. 61.1 Autoionization resonances 2s22p3(4S)→ 2s2p3np
in atomic nitrogen
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given by (61.23) with arbitrary q values and σa/σb ra-
tios. If, however, the excitation proceeds to an empty
shell, as, for example, Mg 2p → ns or n d, n ≥ 4, in-
terference with the direct channels is likely to be
negligible, and the resulting resonances are distin-
guished by essentially Lorentzian line shapes (as for
normal Auger lines) with q % 1 and σa/σb % 1 in
(61.23). For a given excitation state a number of
resonance peaks may arise because more than one
ionization channel is usually available and, in addi-
tion, the excited electron can change its orbital from
n to n′ = n ± 1, 2, . . . in a shakeup or shakedown pro-
cess [61.25].

As a consequence of the electron–electron interac-
tions which occur simultaneously with the electron–
photon interaction, ions are produced in states which
do not correspond to those which would be expected
based on an interpretation using an independent particle
model, which allows for only a single-electron transi-
tion (Chapt. 24). Evidence for these states appears as
correlation satellites in the photoelectron spectrum, the
Auger electron spectrum or the X-ray spectrum [61.26].
Figure 61.2 [61.27] presents as an example the pho-
toelectron spectrum of argon produced by photons
with hν =60.6 eV. In addition to the 3s main line
of single electron photoionization (and the 3p main
lines not shown) numerous satellite lines are seen as
the manifestation of two-electron transitions involving
ionization-with-excitation correlations. It is convenient
to categorize the satellites in a photoelectron spec-
trum according to various electron correlations, as,
for example, initial state interactions which mix dif-
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55°

× 3

Fig. 61.2 Photoelectron spectrum (PES) of 3s, 3p satellites
in argon at a photon energy of 60.6 eV. Note the reduced
intensity of the satellites compared to the 3s main line

ferent configurations into the initial state, and final
state interactions, which include core relaxation and
electron–electron interactions in the final ionic state,
electron–continuum, and continuum–continuum inter-
actions. While initial-state correlations are essentially
independent of the photon energy, final-state correla-
tions depend on the energy of the photon through the
interactions with the continuum channels. However, the
heuristic value of placing correlation effects into a strict
classification scheme is limited by the fact that their rela-
tive strengths depend on the basis set used in a particular
theoretical model and its expansion into a “fully corre-
lated” system within a given gauge [61.3, 4, 28, 29] (see
also Chapt. 24).

Another manifestation of double-electron processes
is the simultaneous excitation of two electrons to bound
states. These states may decay by electron or photon
emission and are seen as resonance structures above the
thresholds of inner-shell ionization or near autoionizing
members of Rydberg series. As single or double ion-
ization continua are usually strong in the spectral range
of the double excitations, interference occurs, and the
lineshapes can display dispersion forms. Typically, the
cross section for the sum of all correlation processes
is between 10 and 30% of that for single photoioniza-
tion, but may exceed this range considerably in special
cases.

Photon scattering near thresholds is complex be-
cause of the possibility of strong interactions between
the various particles created and the different modes
of deexcitation (Chapt. 62). In the case of ionization-
with-excitation processes, the threshold cross section is
finite, as it is for single electron photoionization, in ac-
cord with Wigner’s theorem [61.30] (Sect. 60.2.1). In
the case of double photoionization, the cross section is
zero at threshold and then rises according to Wannier’s
law [61.31] (Chapt. 52). For the motion of two electrons
with essentially zero kinetic energies in the field of the
ionic core,

σ ∝ E(2µ−1)/4 , (61.29)

where µ depends on the value of the nuclear charge Z
through

µ= 1

2

(
(100Z−9)

(4Z−1)

) 1
2

. (61.30)

For Z = 1 the Wannier exponent has the value 1.127.
In the case of Auger decay following ionization

at threshold, interaction between the two electrons
results in a shift in the energy of the Auger
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electron and a corresponding shift in that of the
photoelectron (to conserve energy), as well as an
asymmetry in the shape of the Auger electron peak
and a corresponding asymmetry in the photoelectron
peak shape. In this so-called post-collision interaction
(Chapt. 62), the lineshape, averaged over angles, has the
form [61.32]

K(ε)= (Γ/2π)

(ε− εA)2+ (Γ/2)2 f(ε) (61.31)

with

f(ε)= πψ

sinh(πψ)
exp

[
2ψ tan−1

(
ε− εA

(Γ/2)

)]
.

(61.32)

In the above equations, ε is the energy of the Auger line,
εA is the nominal Auger energy, Γ is the initial hole-
state width, and the parameter ψ = 1/

√
2εe−1/

√
2εA,

with εe being the energy of the photoelectron, and
εA ≥ εe.

61.2 Experimental Methods

An overview of the experimental approaches to the
study of photon interactions at low energies is given
in Fig. 61.3. The sketch emphasizes the interaction of
a polarized photon beam with a small static or particle-
beam target of atoms, ions, molecules, or clusters, and
the detection of the reaction products at various angles
in a plane perpendicular to the direction of propaga-
tion of the photon beam, where the general equation
(61.5) is valid. Emission products, such as electrons,
ions, or photons, may be studied by way of the total

Dispersive element
and detector

Photon monitor
(flux, polarization)

Dispersive element and
detector (electron, fluor-
escence, or ion spectro-
meter, spin or polariza-
tion analyzer)

Target source
(oven, gas discharge, plasma,
static gas, particle beam)

Photon source
(laser, lamp, plasma,
synchrotron)

Total yield
detector (ions,
electrons,
photons)

ẑ

ŷ

x̂E

θ

Fig. 61.3 Generic arrangement for detection of particles
in an emission measurement. The incoming radiation is
assumed to be linearly polarized along the z-axis

yields, which can be related to the total photoionization
cross section, or by differential analysis in a spectrome-
ter according to energy, intensity, emission angle, and
polarization. The various particles may be measured
independently, simultaneously, or in coincidence. The
photon monitor provides the information for normaliza-
tion of the data with regard to flux and polarization. The
photon monitor can also be used for a measurement of
the total photoionization cross section, equivalent to the
photoabsorption or photoattenuation coefficient at low
photon energies. For this purpose, the size of the tar-
get source is advantageously increased in the direction
of the photon beam. While experimental apparatus dif-
fers, sometimes drastically, for the photon sources as
well as for the spectrometry of electrons, ions, and flu-
orescence photons, many features are common, and the
relationships of the measured quantities to basic prop-
erties of the atoms and the photon–atom interaction are
similar. Thus, the following will place emphasis only on
the roles of the synchrotron radiation source and pho-
toelectron spectrometry, whereas specific references to
other methods can be found elsewhere [61.5, 33–38].

61.2.1 Synchrotron Radiation Source

The primary source of photons over a broad energy
range for experiments in the VUV and soft X-ray re-
gion of the spectrum is the synchrotron radiation source
[61.39, 40]. In a synchrotron or electron storage ring,
radiation is produced as the electrons are bent to main-
tain the closed orbit. Such bending magnet radiation is
emitted in a broad continuous spectrum which begins in
the infra-red and ends sharply at a critical photon en-
ergy given by hνc = κE2

e , where Ee is the energy of the
electrons in the ring and κ is a constant characteristic of
the ring. Synchrotron radiation can also be generated by
introducing additional magnetic field structures [61.41]
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into the ring, such as undulators or wigglers, which pro-
duce a deviation of the electron motion from a straight
path in a well-defined manner. Wiggler radiation has
the same spectrum as a bending magnet, except that the
critical energy is generally much higher because the ef-
fective magnetic fields can be larger than those of the
bending magnet. Undulator radiation is very different in
that it consists of a sharp spiked profile of about a 1%
bandwidth at energies determined by the magnetic field
within the undulator and by the electron beam energy in
the storage ring.

Synchrotron radiation, no matter what the magnetic
field structure of the source, requires monochromati-
zation before it can be used for experiments. For the
wavelengths of interest in low-energy photon scattering,
this can be achieved by using grating instruments with
a metallic coating on the grating surface. The highest res-
olution possible is obtained through the use of a normal
incidence monochromator (NIM) with a plane grating
set at normal incidence. However, because the reflectiv-
ity of the metallic coating at normal beam incidence
decreases drastically as the photon energy increases,
use of a NIM has an upper limit of about 40 eV. At
energies above this, up to about 1 keV, gratings can
still be used but must be mounted at grazing inci-
dence. There is a number of functional designs for these
grazing-incidence instruments which vary in the shape
of the grating – spherical, toroidal, or plane surfaces
(SGM, TGM, PGM) – and the associated optics. Above
1 keV, gratings are no longer suitable, and crystal diffrac-
tion must be used. While the radiation emerging from
a beamline which couples the monochromator to a bend-
ing magnet, wiggler, or undulator has a high degree
of linear polarization, varying from 80 to 99% in the
plane of the electron orbit, a useful flux of circularly
polarized radiation can be derived from out-of-plane ra-
diation [61.33], by the use of multiple reflection optics,
or from a helical undulator.

61.2.2 Photoelectron Spectrometry

The primary particle emitted in photoionization is the
photoelectron. Hence, a photoelectron spectrum pro-
vides a detailed view of the photon interaction by (a)
specifying the individual processes from an initial state i
to a final state f by way of the electron energy, (b)
determining their differential and partial cross sections
by recording the number of electrons as a function of
emission angle, and (c) measuring the polarization of
the electrons by a spin analysis (spin polarimetry). The
experimental approach is governed largely by the rela-

tions (61.3), (61.5), and (61.6). The number of electrons
Ni f (e) detected per unit time at an angle θ within an en-
ergy interval dε and within a solid angle dΩ is given
by

Ni f (e)= G N(hν)N(A) f(hν) f(ε)
dσi f

dΩ
dε (61.33)

where G is a geometry factor, which includes the source
dimensions, N(hν) the number of photons, N(A) the
number of atoms in the source, f(hν) and f(ε) efficiency
factors depending, respectively, on photon and elec-
tron kinetic energies, and dσi f /dΩ is the differential
cross section for a particular transition i → f . Equa-
tion (61.33) assumes that dΩ and dε are sufficiently
small that integration over the pertinent parameters is
not needed. Since Ni f ∝ dσi f /dΩ, a measurement at
two angles, e.g., θ = 0◦ and 90◦, yields the electron
angular distribution parameter βi f according to (61.5),
and a measurement at θm (61.6) yields the partial cross
section σi f . In the case of closed-shell atoms, n j no-
tation is sufficient to designate single ionization to an
ε continuum, e.g., 3p1/2,3/2 → εs or εd in argon, but
for open-shell atoms L SJ notation is required, e.g.,
3p5(2Po

3/2)→ 3p4(3Pe
2,1,0,

1De
2,

1Se
0)ε(

2De, 2Pe, 2Se)

in chlorine. Similarly, for ionization-with-excitation
transitions, the final state requires an open-shell des-
ignation.

The sum of the partial cross sections is equal to the
total photoionization or absorption cross section

σtot =
∑

i, f

σi f (61.34)

where the σi f encompass (a) single ionization events in
all energetically accessible subshells n j, or the L SJ
multiplet components, (b) ionization-with-excitation
events (shakeup or shakedown), and (c) double ion-
ization events (shakeoff). All σi f can be determined
from a photoelectron spectrum from its discrete peaks
(cf. Fig. 61.2) and from the continuum distribution of
multiple ionization. However, the latter process is meas-
ured more readily by observing the multiply charged
ions in a mass spectrometer.

The differentiation afforded by measuring the var-
ious partial cross sections, and the associated β

parameters, can be augmented by differentiating the
continuum channels according to the spin using a spin
polarimeter [61.33]. In closed-shell atoms, this allows
for an experimental determination of the relevant matrix
elements and phase shifts, and hence for a direct com-
parison with theory at the most basic level [61.34, 35].
In a more global measurement, the cross section σtot is
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obtained by ion or mass spectrometry from

σtot = σ(A+)+σ(A2+)+σ(A3+)+· · · . (61.35)

Generally, the charge states can be correlated with the
various initial photoionization processes if allowance is
made for Auger transitions and the fluorescence yield
upon exceeding the binding energies of core levels.

If the charge states are not distinguished, as in a total
ion yield measurement, σtot is obtained directly. Simi-
larly, a direct measurement of the global quantity σtot
is obtained by the total electron yield, although care
must be exercised to avoid discrimination by angular
distribution effects. At photon energies below about
1 keV, ionization, absorption, and attenuation are vir-
tually equivalent, and σtot can also be determined in an
ion chamber setup [61.36] or in a photoabsorption mea-
surement in which the number of photons ∆N absorbed
in a source of length d and having an atom density n is
given by

∆N = N(ph)[1− exp(−σtotnd)] (61.36)

with N(ph) being the flux of incident photons. As a rule,
in all experiments employing the relation (61.5), the
total, partial, or differential cross sections are determined
on a relative rather than an absolute scale because it is
very difficult to know accurately such factors as the

Photon energy, hv

Electron kinetic energy ε

CIS (EB = hv–   = const.)ε

EB

CKE (    = hv– EB = const.)ε

PES ( hv = EB +   = const.)ε

Fig. 61.4 Energy relationship among the three different
operational modes of the technique of photoelectron spec-
trometry. EB is the binding energy of the level

geometry of the source volume and the number density.
However, once a single absolute value of σtot or any σi f
is available, all relative values of the other quantities can
be converted to absolute values.

An electron spectrometric experiment can be car-
ried out in three different operational modes, as defined
in Fig. 61.4. In the most conventional mode, PES, the
photon energy is fixed, and a scan of the electron ki-
netic energy reveals all the electron-emission processes
possible and yields their properties. The CIS (constant
ionic state) mode is especially suited to follow con-
tinuously a selected process as a function of photon
energy by locking onto a given state E f − Ei (denoted
by EB) which requires a strict synchronization of the
photon energy (hν) and electron kinetic energy (ε) dur-
ing a scan. This mode is particularly advantageous to
elucidate resonance features, such as autoionization res-
onances. Finally, a CKE (constant kinetic energy) scan
allows one to access various processes sequentially or,
most importantly, follow a process of fixed energy, such
as an Auger transition, as a function of photon energy.
This description also includes the technique of zero-

3s23p6(fs0)

E
3s3p6np(1p1

0)
n = 100

n = 6

n = 5

PES

3s23p5    lε
3p1⁄2 3p3⁄2

n = 4

CIS–σtot

ε 2 ε 1

3s np
26.62 eV

3p  lε

Fig. 61.5 Connection between the PES and CIS techniques
as illustrated by the 3s → np autoionization resonances in
argon
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kinetic-energy measurements. Most frequently, the PES
and CIS modes are employed, and Fig. 61.5 gives a self-
explanatory example of an actual experiment directed at
the characterization of the argon 3s → np autoionizing
resonances. It should be stressed that the cross section
σtot can be partitioned into its components by CIS scans
that differentiate between the 3p1/2 and 3p3/2 doublet
states.

Energy analysis can be performed either by electro-
static energy analyzers or by time-of-flight techniques.
The latter is well-suited to those electrons which have
very low kinetic energy, including threshold electrons
with ε ≈0 eV. Of the electrostatic energy analyzers now
in use, two designs are prevalent, the cylindrical mir-
ror analyzer (CMA) and the hemispherical analyzer,
where the latter readily lends itself to the application
of multichannel detectors.

61.2.3 Resolution and Natural Width

The details that can be gleaned from an experiment us-
ing photons depend on the resolution achievable with
the particular photon source and spectrometry used, the
particular excitation or analysis modes and the target
conditions chosen, and, ultimately, on the natural width
of either the levels or transitions examined as well as
any fine structure present. Generally, the instrumental
and operational resolution should approach, but need
not exceed by much, the natural width inherent in the
photoprocess under scrutiny. The demands are most se-
vere for processes involving outer levels because of their
typically very narrow widths, and are relatively mild for
processes involving inner levels [61.5,35]. It is desirable
that in the former case the resolving power (the inverse
of the resolution) of the instrument exceed 105, while in
the latter case 104 may suffice. If the target atoms move
randomly, a resolution limit is set by the thermal motion,
namely

∆ε= 0.723 (εT/M)1/2 (meV) , (61.37)

where, in an experiment involving photoelectron spec-
trometry, ε is the kinetic energy of the photoelectron in
eV , T the temperature in K, and M the mass in a.u.
of the target atom. This contribution can be limited
in first order by employing a suitably directed atomic
beam.

The experimental peak-width and shape generally
contain the natural width; the extent to which instru-
mental factors enter depends on the specific experiment.
In a measurement of the total or partial photoionization

cross section in which either the fluorescence photons,
the electrons, or the ions are monitored, the resolution of
the photon source (often called the bandpass) is the only
instrumental contributor. This applies specifically to the
CIS mode of electron spectrometry, in which features
are scanned in photon energy and the electron serves
solely as a monitor. However, in such a CIS study, or
a corresponding fluorescence study, the resolution of
the electron or fluorescence spectrometer must be ade-
quate to be able to distinguish adjacent processes. For
the example of Fig. 61.5, the 3p3/2 and 3p1/2 levels of Ar
need to be separated if the partial photoionization cross
sections are to be determined across the resonances. In
such a case of more than one open ionization chan-
nel, the natural widths of the features will be identical
in all channels [61.4], but the shapes may be different.
In emission processes subsequent to initial photoioniza-
tion, namely electron (Auger) decay or photon (X-ray)
emission, the resolution of only the spectrometer per-
forming the detection counts on the instrumental side.
In the PES mode (Fig. 61.4) the observed lines con-
tain contributions from all sources, the photon source or
photon monochromator, the electron analyzer, thermal
broadening, and the natural level width. In the special
case of photoprocesses near inner thresholds, the post-
collision interaction influences the position and shape of
photoelectron and Auger lines (Chapt. 62).

Excluding threshold regions and the resonant Ra-
man effect, the line profile observed in the various
experiments is given by the Voigt function

V(ω, ω0)=
∫

L(ω′ −ω)G(ω′ −ω0)dω
′ . (61.38)

In this the Lorentzian function L represents the natural
level or transition profile, and the Gaussian function G
is representative of the window functions of the dis-
persive apparatus. Although the integral representing
the Voigt profile has no analytic form, it can be repre-
sented for practical purposes by the analytic Pearson-7
function [61.42]

P7(ε)= A

(
1+ (ε− ε0)

2

B2C

)−C

, (61.39)

where A is the peak height, ε0 the peak position, B the
nominal half-width-half-maximum of the peak, and C
the shape of the peak. In the limit in which C = 1, this
function is identically a Lorentzian; in the limit C →∞,
the function is essentially Gaussian. Use of this function
allows one to fit the resulting photoelectron spectrum
using standard numerical techniques. If the width of
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the feature is the only quantity of interest, the simple
approximate expression

ΓL

ΓV
= 1−

(
ΓG

ΓV

)2

(61.40)

which relates the Voigt width ΓV with the Lorentzian
width ΓL and the Gaussian width ΓG can be used
to determine either ΓL or ΓG from the measured
ΓV [61.5]. Often the observed feature exhibits a dis-
persive shape given by the Fano or Shore profile. In
this instance the instrumental function must be con-
voluted with the resonance profiles given by (61.23)
or (61.26) in order to fit the data and to extract the
parameters [61.43].

For the special case of resonant Auger decay in
which the bandpass of the exciting radiation is very
narrow compared with the natural width of the excited
state, the experimental linewidth is governed by the
width of the exciting radiation, and will be more narrow
than the natural width of the line. The resulting line-
shape in this resonant Raman effect is then the simple
product [61.24]

L ′(ω, ω0)= L(ω)G(ω−ω0) , (61.41)

where L(ω) is the line profile as determined by
the natural width, typically Lorentzian for resonant
Auger decay, and G(ω−ω0) is the, usually, Gaus-
sian function representing the bandpass of the exciting
radiation.

61.3 Additional Considerations

Although low-energy photon interactions are well de-
scribed nonrelativistically in the dipole approximation,
relativistic and higher multipole effects which become
increasingly important at higher energies cannot be
ignored even below 1 keV. Spin-orbit effects [61.44]
and relativistic effects [61.45] are of special signifi-
cance even at low energies in Cooper minima, where
one of the transition matrix elements becomes zero.
Moreover, the use of intermediate coupling, which
includes both the spin-orbit and electrostatic interac-
tions [61.46], is required in open-shell systems, as
exemplified for the halogen atoms and atomic oxy-
gen [61.47]. Level energies of heavy elements also
require a relativistic treatment [61.48] (Chapt. 22), and
it is natural to employ relativistic formulations for
calculating the spin parameters appearing in photoion-
ization [61.49].

Although low energy photon scattering is domi-
nated by the dipole contribution, experiments and theory
have shown higher multipole effects to be present
at hν <1 keV [61.50–57]. As a result, measurements
that take the dipole formulations as a basis (61.5)
and (61.6) can incur a discernible error in both the
differential cross sections dσi f /dΩ and the partial
cross sections σi f . A more accurate determination of
dσi f /dΩ can be made [61.51,55,56] on the basis of the
equation

dσi f

dΩ
=
(σi f

4π

) [
1+βP2(cos θ)

+ (δ+γ cos2 θ) sin θ cosφ
]
, (61.42)

using linearly polarized radiation, where P2(cos θ) is
the second-order Legendre polynomial, θ is the angle
between the electron emission direction and the elec-
tric vector, φ is the angle between the electron and
photon directions, β is the angular distribution param-
eter related to B2, and the parameters δ and γ are
related to B1 and B3 in (61.4). Figure 61.6 shows
the geometry for the relationship between the pho-
toelectron momentum vector, the polarization vector,
and the photon propagation vector as used in (61.42).
It serves as the template for the arrangement and
motion of the electron detector, or, for added effi-
ciency and accuracy, several detectors [61.51–53, 56].
The parameters β, δ, and γ have been calculated
for most subshells of the noble gases for photo-
electron energies between 100 eV and 5 keV [61.55]

Polarization (E)

Photon (k)

x

y

z
Electron (p)

Φ

θ

Fig. 61.6 Geometry of the relationship between the photo-
electron momentum p, the polarization vector E, and the
photon momentum k. (Courtesy of O. Hemmers)
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and 20 eV to 5 keV [61.57]. Generally, the electric
quadrupole (E2) and magnetic dipole (M1) photoion-
ization channels are the most important beyond the
dipole (E1) photoionization channel. Similar to the

dipole angular distribution parameter β, the parame-
ter γ may also be subject to interchannel coupling
and relativistic effects, as demonstrated for xenon 5s
photoionization [61.51].
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Photon–Atom62. Photon–Atom Interactions:
Intermediate Energies

The main photon-atom interaction processes in the
energy range from ≈ 1 keV to ≈ 1 MeV are outlined.
The atomic response to inelastic photon scattering
is discussed; essential aspects of radiative and
radiationless transitions are described, including
hole-state widths and fluorescence yields, in
the two-step approximation which applies well
above threshold where atomic de-excitation is
nearly independent of the excitation process.
Multi-electron photoexcitation that transcends
the independent-electron model is briefly
considered.

Threshold phenomena that arise when the
two-step model breaks down, so that excitation
and de-excitation must be treated as a single
second-order quantum process are described.
The time-independent resonant scattering
approach that leads to a unified description of
photoexcitation, ionization, and Auger electron or
X-ray emission is outlined. In terms of this theory,
Raman processes and post-collision interaction
are described.
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62.1 Overview

62.1.1 Photon-Atom Processes

It is convenient to divide photon-atom interactions into
elastic and inelastic processes, depending on whether or
not the photon energy changes in the c.m. frame. This
separation, while useful, is somewhat arbitrary [62.1]:
the radiative corrections of quantum electrodynamics
(Chapt. 27) and the possibility of emitting very soft pho-
tons, as well as target recoil, make all processes in fact
inelastic, while experimental comparison of incident and
scattered photon energies is limited by source bandwidth
and detector resolution.

Elastic photon-atom interactions (Chapt. 45) include
scattering from bound electrons (Rayleigh scattering)
with transition amplitude AR and nuclear Thomson
scattering, Delbrück scattering, and nuclear resonance
scattering, with amplitudes ANT, AD, and ANR, re-
spectively. These amplitudes are coherent, i. e., not

physically distinguishable: they add, retaining relative
phase information, in the total atom elastic scattering
amplitude A [62.1]. In the commonly used approxima-
tion, that is however “neither unique nor exact” [62.2],
we have

A = AR+ ANT+ AD+ ANR . (62.1)

The total atom elastic cross section is proportional to A2.
Inelastic photon-atom interactions are photoex-

citation (including ionization) (Chapt. 24), Compton
scattering, and pair production. The pair produc-
tion threshold at 2mec2 lies above the energy region
considered here (Chapt. 27). Inelastic scattering pro-
cesses are generally incoherent, e.g., ejected Compton
electrons originating from different orbitals can be dis-
tinguished [62.1]. However, coherence can enter even
between photoionization and Compton scattering in the
infrared-divergence limit [62.1, 3–5].
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Fig. 62.1 Contributions of the photoeffect, elastic, and in-
elastic scattering to the total photon interaction cross section
of copper. (After [62.6], by permission, University of Cal-
ifornia, Lawrence Livermore National Laboratory; work
performed under the auspices of the U.S. Department of
Energy)

The cross sections for the main elastic and inelas-
tic photon-atom processes comprising the photoeffect
are illustrated in Fig. 62.1 for Cu [62.6] in which, how-
ever, resonant pieces of the inelastic (Compton) cross
section are omitted. Elastic exceeds inelastic scatter-
ing up to well above the K edge; this is true for all
atomic numbers. The total cross section is dominated
by the photoeffect up to photon energies that increase
with atomic number, from ≈ 6 keV for He [62.5] to
≈ 25 keV for C and ≈ 700 keV for U [62.6–8]. (See also
Sect. 24.2.2 and Sect. 92.3.2). For a summary of some
current developments in the field see [62.9]
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62.2 Elastic Photon-Atom Scattering

62.2.1 Rayleigh Scattering

The term Rayleigh scattering is applied to elastic photon
scattering from bound atomic electrons (Sect. 68.6.1).
The Rayleigh scattering amplitude for neutral atoms
dominates the total atom elastic scattering amplitude,
at all angles, for photon energies below ≈ 1 MeV and
dominates forward scattering at higher energies [62.1].
At angles other than 0°, Rayleigh scattering occurs
increasingly from inner atomic shells as the photon en-
ergy is raised. Depending on the energy, the process
can thus sensitively probe atomic structure in distinct
regions [62.1].

Rayleigh scattering has been reviewed by
Henke [62.10], Gavrila [62.11], Kissel and Pratt [62.1],
and Kane et al. [62.12]. The process has commonly
been estimated in a simple form-factor approxima-
tion, which represents scattering from a free charge
distribution; this underlies comprehensive tabulations
of elastic scattering cross sections and attenuation
coefficients [62.7, 8]. The form factor relates cross sec-
tions to classical theory, and has been derived from
both nonrelativistic and relativistic quantum mechan-
ics. It is attractive because of calculational simpli-
city [62.2, 13].

The form factor f(q) for a spherically symmetric
charge number density ρ(r) is the Fourier transform of

the charge density:

f(q)≡
∫
ρ( r)eiq·r dr =

∞∫

0

ρ(r)
sin(qr)

qr
r2 dr ,

(62.2)

where

�q = (2�ω/c) sin (θ/2) (62.3)

is the momentum transfer, and θ the scattering angle.
In elastic photon scattering, f(q) corrects the Thom-
son point charge scattering cross section for scattering
from an extended charge distribution. In the form fac-
tor approximation, the differential Rayleigh scattering
cross section (neglecting other coherent processes) for
unpolarized photons, averaged over final polarization, is

dσ

dΩ
= 1

2
r2

e

(
1+ cos2 θ

)| f(q)|2 , (62.4)

where re = e2
/(

mec2
)

is the classical electron radius
and the terms multiplying | f(q)|2 are the Thomson cross
section.

Even with modifications and corrections [62.1, 2],
the range of validity for the form factor approxima-
tion for elastic photon scattering is limited [62.13].
Predictions based on this approach are often wrong
in quantitative detail, although they lend insight into
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qualitative features of the Rayleigh amplitude [62.2]
Fig. 62.2.

The shortcomings of the form factor approximation
arise from the absence of binding effects in the Thomson
cross section, which pertains to photon scattering from
a free charged particle. Specifically, accurate Rayleigh
amplitudes must include the interaction of the electron
with the atomic potential in the initial, intermediate, and
final states [62.1]. The form factor approximation fails,
especially for photons of low energy compared with the
electron binding energy, and for large scattering angles
(high momentum transfer), but O

(
Zα2

)
discrepancies

remain at all energies and angles [62.2].
Substantial progress in the understanding of elas-

tic photon-atom scattering was made with the advent
of numerical calculations of the amplitudes based on
the second-order S-matrix of quantum electrodynamics
and relativistic wave functions [62.2,14]. These numer-
ical partial wave calculations include binding effects in
the intermediate state exactly to all orders. They consti-
tute an approach that leads to amplitudes with errors of
O(1%). However, some limitations do exist: (1) great
computer time requirements make it necessary to em-
ploy simpler (e.g., modified form factor) methods for
outer shell contributions, (2) only lowest-order terms
of the S-matrix expansion in powers of e are included,
and (3) most electron-electron correlation effects are not
taken into account [62.1].

Measurements of Rayleigh scattering in the en-
ergy range here considered are rather scarce [62.12].
Gamma rays from radioactive sources have been used
in most experiments, but discrimination from inelastic
contributions has been a problem [62.15]. Comparison
of measurements on medium- and high-Z targets with
theory, albeit incomplete, has however been encourag-
ing [62.1, 12, 15].

62.2.2 Nuclear Scattering

The nucleus contributes to the total atom elastic scatter-
ing amplitude through nuclear Thomson, Delbrück, and
nuclear resonance scattering. Only the first two of these
processes are important in the energy range considered
here.

Nuclear Thomson Scattering
Photon scattering by the nuclear charge can be ap-
proximated by treating the nucleus as a rigid, spinless
sphere of charge Ze, mass M, and radius rN. In the sim-
plest point-charge form factor approximation, nuclear
Thomson scattering is included by replacing | f(q)| in

30°
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90°

120°

60°

90°

120°

30°0

150° 180° 150°

10 keV 100 200 300

3 keV

1 keV

30 keV

300 keV
100 keV

Fig. 62.2 Differential elastic photon-atom scattering cross
section (in b/atom) for neutral lead in form factor approx-
imation. The contribution of nuclear Thomson scattering
(see Sect. 62.2.2) to the amplitude is included (After [62.1])

(62.4) by
∣∣ f(q)+ Z2(me/M)

∣∣. If the finite nuclear ra-
dius rN is taken into account, the nuclear form factor is
approximately [62.1]

fN ≈ Z2
(

1− ω2

3c2
〈r2

N〉
)
. (62.5)

The nuclear Thomson scattering cross section is

dσNT

dΩ
= r2

e

2

∣∣∣
me

M
fN

∣∣∣
2
(1+ cos2 θ) (62.6)

if other coherent processes can be neglected. For some
energies, scattering angles, and target atoms, the nuclear
Thomson scattering contribution to elastic scattering can
dominate. A few measurements exist that confirm the
preceding predictions with fN ∼= Z2 [62.1].

Delbrück Scattering
Scattering of photons by virtual electron-positron pairs
created in the screened nuclear Coulomb potential is
called Delbrück scattering [62.1, 16]. The imaginary
part of the amplitude describes photon absorption due
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to pair production; it vanishes for �ω≤ 2mec2. The
real part of the amplitude, which adds coherently to
the Rayleigh and nuclear Thomson amplitudes, arises
from vacuum polarization. Together with photon-photon
scattering, photon splitting and coalescence in an exter-
nal field, Delbrück scattering belongs to the nonlinear
effects of quantum electrodynamics that have no clas-
sical analog (Sect. 27.2) [62.17]. In the photon energy
range 0.1–1 MeV, the Delbrück amplitude can be sig-
nificant at intermediate scattering angles for high-Z
targets [62.1]. Theory and experiment have been re-
viewed by Papatzacos and Mork [62.16] and more
recently by Kissel and Pratt [62.1] and by Milstein

and Schumacher [62.18]. Lowest-order Born approxi-
mation calculations of the Delbrück amplitude scale as
α
(
Zα2

)
. Experiments to verify the process have been

performed since 1933, but only recently has the neces-
sary accuracy been attained [62.18]; a major obstacle
in the interpretation was the lack of accurate predic-
tions of the Rayleigh amplitude, a problem that is now
being solved to a considerable extent (Sect. 62.2.1).
Recent measurements agree with the Born approxi-
mation predictions to a few percent below Z = 60;
but for heavier targets, Coulomb corections appear to
play a significant role that have only recently been
calculated [62.19].

62.3 Inelastic Photon-Atom Interactions

62.3.1 Photoionization

Photoexcitation and ionization are important processes
for the investigation of atomic structure and dynamics
(Chapt. 61). Early reviews of the theory of the atomic
photoelectric effect are by Fano and Cooper [62.20]
(low photon energy) and by Pratt et al. [62.21]
(�ω > 10 keV). See also recent comprehensive mono-
graphs by Starace [62.22] and Amusia [62.23]. In the
present volume, the theory of atomic photoionization
for photon energies below 1 keV is summarized in
Chapt. 24. Experimental aspects have been reviewed,
e.g., by Samson [62.22,24] and by Siegbahn and Karls-
son [62.25].

An extensive compilation of measured X-ray atten-
uation coefficients or total absorption cross sections, as
well as calculated photoelectric cross sections (com-
puted with relativistic Hartree-Slater wave functions),
has been published by Saloman et al. [62.26]. Based on
the National Bureau of Standards (now the National In-
stitute of Standards and Technology) data base, this work
covers the photon energy range from 0.1–100 keV and
includes all elements with atomic numbers 1≤ Z ≤ 92;
an extensive bibliography is included. Very useful tables
of theoretical subshell photoionization cross sections
covering all elements and the photon energy range
1–1500 keV have been computed by Scofield [62.27];
the atomic electrons are treated relativistically as mov-
ing in a Hartree-Slater central potential, and all relevant
multipoles as well as retardation effects are included.
Accuracy of the results is borne out by systematic com-
parisons with experiment and detailed tests [62.28]. A
useful energy range for applications in electron spec-
trometry is covered by a tabulation of subshell cross

sections calculated by Yeh and Lindau [62.29] in the
dipole approximation with nonrelativistic Hartree-Fock-
Slater wave functions. Because they were obtained in
a frozen-core model, these cross sections like those
of Scofield [62.27] automatically include all multi-
ple excitations [62.30]. Such multi-electron processes
(Sect. 62.4.4) can make substantial contributions, e.g.,
≈ 40% of the 1s photoionization in the threshold region
of Kr [62.31]. A very useful family of codes being devel-
oped by I Grant’s Oxford group is “GRASP – A General
Purpose Relativistic Atomic Structure Program”, sev-
eral versions of which are being distributed through the
Computer Physics Communications Program Library
(Elsevier Science).

The usefulness of photoexcitation and ionization
for experimental studies of atomic structure and pro-
cesses has been greatly enhanced by the advent
of synchrotron radiation sources beginning in the
1960’s [62.1, 32, 33]. At first, experiments were per-
formed mostly “parasitically”. Later, they were done
with dedicated sources, taking advantage of the high
brightness, narrow bandwidth and wide tunability of
the radiation (with suitable monochromators, from the
visible to the hard X-ray regime), its high degree of
polarization and sharp time structure [62.34]. In the
1990’s, “third-generation” sources are being commis-
sioned in which radiation is primarily derived from
insertion devices, wigglers and undulators [62.35],
entailing further increase of the power of this experi-
mental tool. There is a growing literature on research
applications of synchrotron radiation in atomic and
molecular physics, including handbooks [62.36–38],
proceedings of the series of conferences on X-ray
and atomic inner-shell physics [62.39], and mono-
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graphs [62.40–43]. Much of the physics described in
the remainder of this chapter is being explored with
synchrotron radiation.

62.3.2 Compton Scattering

Compton scattering denotes the scattering of photons
from free electrons. The term is also used for in-
elastic photon scattering from bound electrons, which
approaches the free electron case when the photon en-
ergy greatly exceeds the electron binding energy [62.1].
The theory of the process is discussed in standard text-
books [62.17, 44, 45]. Photon scattering from a free
electron at rest is expressed, within lowest-order rela-
tivistic quantum electrodynamics, by the Klein–Nishina
formula. A low energy approximation to the Klein–
Nishina cross section is

σKN = σT
(

1+ 2�ω

mec2
+· · ·

)
, �ω& mec2 ,

(62.7)

where σT is the classical total Thomson cross section,

σT = (8π/3)r2
e . (62.8)

The energy �ω′ of a photon scattered through an angle
θ is related to the incident photon energy �ω by the

Compton relation

�ω′ = �ω

1+ (
�ω/mec2

)(
1− cos θ

) . (62.9)

The differential cross section for Compton scattering
from free electrons, averaged over initial and summed
over final photon and electron polarizations, is

dσKN

dΩ
= r2

e

2

(
ω′

ω

)2 (
ω

ω′
+ ω

′

ω
− sin2 θ

)
. (62.10)

In the limit ω′ → ω, this reduces to the Thomson differ-
ential cross section,

dσT

dΩ
= r2

e

2

(
1+ cos2 θ

)
(62.11)

contained in (62.4).
Compton scattering from bound electrons has

extensive applications in the study of electron mo-
mentum distributions in atoms and solids [62.46].
An exact second-order S-matrix code for the rel-
ativistic numerical calculation of cross sections for
Compton scattering of photons by bound electrons
within the independent particle approximation has been
developed [62.47].

A systematic treatment of elastic and inelastic pho-
ton scattering, starting from many-body formalism, has
been described by Pratt, Kissel, and Bergstrom [62.48].

62.4 Atomic Response to Inelastic Photon-Atom Interactions

62.4.1 Auger Transitions

Atomic inner shell vacancy states tend to decay pre-
dominantly through radiationless or Auger transitions,
which are autoionization processes (see also Chapt. 25
and Chapt. 61) that arise from the Coulomb interac-
tion between electrons [62.1,1,22,49–55]. Radiationless
transitions dominate over radiative ones, except for 1s
vacancies in atoms with atomic numbers Z < 30, pri-
marily because of the magnitude of the matrix elements
and because far fewer channels are allowed by elec-
tric dipole X-ray emission selection rules (Sect. 62.4.2,
62.4.3) than by the selection rules for Auger transitions,
which in pure L S coupling are

∆L =∆S =∆ML =∆MS = 0 ,

∆J =∆M = 0 , Πi =Π f . (62.12)

Thus, for example, 2784 electron-electron interaction
matrix elements can contribute to the radiationless decay
of a 2p3/2 hole state in Hg.

In the simplest approach, ionization and subsequent
Auger decay are treated as two distinct steps. This ap-
proximation is valid if the electron which is ejected in
the ionization process is sufficiently energetic so that it
does not interact significantly with the Auger electron,
and the interaction of the core hole state with the Auger
continuum is weak. Then the hole state can be consid-
ered to be quasi-stationary and the decay rate can be
expressed according to Wentzel’s ansatz, formulated in
1927 and later known as Fermi’s Golden Rule No. 2
of time dependent perturbation theory [62.49]. In the
independent-electron central-field approximation, this
leads to the following nonrelativistic matrix element for
a direct Auger transition:

D =
∫ ∫

ψ∗n′′′′ f ′′(1)ψ
∗∞A jA

(2)

∣∣∣∣
e2

r1−r2

∣∣∣∣

×ψn j(1)ψn′′ j ′(2)dτ1 dτ2 , (62.13)

where the quantum numbers n, , j characterize elec-
trons that are identified schematically in Fig. 62.3. The
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Fig. 62.3 Energy levels involved in the direct (D) and ex-
change (E) Auger processes, and notation for the principal,
orbital angular momentum, and total angular momentum
quantum numbers that characterize the pertinent electron
states

state of the continuum (Auger) electron is labeled
by∞A jA. In the physically indistinguishable exchange
process, described by a matrix element E, the roles of
electrons n j and n′′ j ′ are interchanged (Fig. 62.3).
The radiationless transition probability per unit time is

w fi = 2π

�

∣∣D− E
∣∣2ρ

(
E f

)
, (62.14)

where ρ(E f ) is the density of final states for the energy
E f that satisfies energy conservation. With the con-
tinuum wave function normalized to one electron ejected
per unit time, we have ρ(E f )= (2π�)−1 ([62.22, 52],
Appendix E).

The matrix elements D and E in (62.14) can be sep-
arated into radial and angular factors. Evaluation of the
angular factors depends upon the choice of an appropri-
ate angular momentum coupling scheme [62.1, 51, 53],
ranging from the (L SJM) representation of Russell-
Saunders coupling for the lightest atoms in which the
spin-orbit interaction can be neglected, through inter-
mediate coupling, to j– j coupling in the high-Z limit.
The coupling scheme particularly affects intensity ratios
among multiplet components of Auger spectra, which
can vary by more than an order of magnitude depend-
ing upon its choice. Furthermore, realistic calculations
of Auger energies and rates call for the use of rela-
tivistic wave functions and inclusion of correlation and
relaxation effects [62.1,54]. It is this extreme sensitivity
of Auger transitions to the details of the atomic model
that makes them an exceedingly useful probe of atomic
structure (see also Chapt. 23 and Chapt. 61).

Classification of Auger transitions in the central
field model is conventionally based on the nomenclature
summarized in Table 62.1.

The spectroscopic notation s, p, d, f, . . . is em-
ployed for orbital angular momentum quantum numbers

Table 62.1 Nomenclature for vacancy states. The sub-
scripts in the column headings are the values of j = l± s,
and n is the principal quantum number

n s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2

1 K

2 L1 L2 L3

3 M1 M2 M3 M4 M5

4 N1 N2 N3 N4 N5 N6 N7

= 0, 1, 2, 3, . . . , and shells with principal quantum
numbers n = 1, 2, 3, . . . are denoted by K, L,M, . . . .
Let an inner shell vacancy be created initially in a sub-
shell Xν and consider a radiationless transition in which
an electron from subshell Yµ fills that vacancy and a
Zξ -electron is ejected, in the direct process. This transi-
tion is denoted by Xν-YµZξ , which stands for (n′′′′ j ′′)
-(n j)(n′′ j ′) in terms of the vacancies indicated in
Fig. 62.3

Coster–Kronig transitions are a subclass of Auger
transitions in which a vacancy “bubbles up” among
subshells of the same shell, i. e., Xν-XµYξ . These are
exceptionally fast because the low energy of the ejected
electron tends to prevent cancellations of its wave func-
tion overlap with the other factors in the matrix element
(62.13) and the overlap of the bound state wave functions
can be large owing to their similarity. Coster–Kronig
transitions can therefore lead to hole-state widths in
excess of 10 eV (lifetimes < 10−16 s) for the L1,2 sub-
shells of the heaviest elements, for example. McGuire
has coined the name super-Coster–Kronig transitions for
the (even faster) type Xν-XµXξ [62.50]. Here the ini-
tial state can no longer be considered quasi-stationary,
the width becomes energy-dependent and the two-step
model breaks down.

The Auger transition energy or kinetic energy of the
ejected electron is, within the central field model,

E A = En′′′′ j ′′ − En j,n′′ j ′ , (62.15)

where, in the notation of Fig. 62.3, En′′′′ j ′′ is the ab-
solute value of the energy of the atom with an n′′′′ j ′′
vacancy, with reference to the neutral atom energy, and
En j,n′′ j ′ is the energy of the atom with two vacancies in
the states indicated by the subscripts. This latter energy
can be approximated by a mean of measured single-
ionization energies of the atom under consideration and
that with the next higher atomic number (the “Z+1
rule” [62.49]); with present-day computers it is readily
calculated through one of the nonrelativistic [62.56, 57]
or relativistic [62.58] self-consistent-field codes.
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Photoionization and, even more so, ionization by
charged particle impact, often produces more than
one vacancy in the target atom (see Sect. 61.1.2 and
Sect. 62.4.4). The ensuing Auger spectrum can then ex-
hibit satellite lines shifted in energy, due to the presence
of spectator vacancies and electrons, with respect to
the diagram lines that arise from the decay of a singly
ionized atom [62.1, 50, 53].

62.4.2 X-Ray Emission

The emission of X-rays by atoms ionized in inner shells
was studied long before the discovery of the much more
probable radiationless transitions, and has played a cru-
cial role in the investigation of atomic structure and
interactions with the environment [62.59]. At present,
X-ray spectrometry is providing important insights into
the structure of highly ionized species produced, e.g.,
in electron beam ion traps [62.60] or plasmas [62.61],
and for the very precise experimental evaluation of
inner-vacancy level energies [62.1, 62].

A classical treatment of multipole radiation by
atomic and nuclear systems is given by Jackson [62.44],
who shows by a simple argument that for atoms the
electric dipole transition rate is ≈ (137/Zeff)

2 times
more intense than electric quadrupole or magnetic
dipole emission, where Zeff is the effective (screened)
nuclear charge. The quantum theory of atomic radia-
tion is presented in the treatises by Sakurai [62.63],
Mizushima [62.64], Berestetskii et al. [62.17], and
Sobel’man [62.65], for example. X-ray emission has
been reviewed by Scofield [62.50, 66] and, with em-
phasis on relativistic effects, by Chen [62.1, 54, 60,
67]. In the present volume, radiative transitions are
treated in Chapt. 33 to which the reader is referred for
details.

62.4.3 Widths and Fluorescence Yields

The energy profile of an atomic hole state that decays
exponentially with time is found to be the same from
quantum as from classical theory [62.68]; it has the
resonance or Lorentz shape

I(ω)dω= I0(Γ/2π)d(�ω)

(�ω−�ω0)2+ 1
4Γ

2
. (62.16)

The full width Γ at half maximum of this energy dis-
tribution is proportional to the total decay rate τ−1 of
the state, in accordance with Heisenberg’s uncertainty
principle Γ τ = �.

The decay rate τ−1 = Γ/� of an atomic hole state is
commonly given in units of eV/� or in atomic units (a.u.)
of inverse time, with the corresponding level width Γ
in eV or a.u. Thus, for the decay rate,

1

τ
= 1 a.u.= 4.134 14 × 1016 s−1 = 27.2116

eV

�
.

(62.17)

K -level (1s hole-state) widths increase monotonically
with atomic number, from 0.24 eV for Ne to 96 eV for U,
closely following the approximate relation [62.49]

Γ (1 s)= 1.73 Z3.93 × 10−6 eV . (62.18)

L-subshell widths, as functions of atomic number, ex-
hibit sharp discontinuities that correspond to energetic
cutoffs and onsets of intense Coster–Kronig chan-
nels (Sect. 62.4.1) [62.69].

If there are several decay channels, their partial
widths Γi add:

Γ =
∑

i

Γi . (62.19)

The main decay channels for inner shell hole states are
radiative, with a partial width ΓR, and radiationless or
Auger, with a partial width ΓA.

The fluorescence yield ωi of a hole state i is de-
fined as the relative probability that the state decays
radiatively:

ωi ≡ ΓR(i)/Γ (i) . (62.20)

Macroscopically, for example, the K-shell fluores-
cence yield ωK is the number of characteristic K
X-ray photons emitted from a sample divided by the
number of primary K-shell vacancies created in the
sample. This ratio rises from 0.04 for Al to 0.97
for U [62.49]. The definition of fluorescence yields
of shells above the K-shell is more complicated be-
cause the higher shells consist of several subshells and
Coster–Kronig transitions (Sect. 62.4.1) can shift pri-
mary vacancies to higher subshells before they are filled
radiatively.

The concept of fluorescence yields is useful in many
applications, particularly where the transport of radiant
energy through matter is an issue, as in space sciences,
medical radiology, and some fields of engineering as
well as in physics. Tables of fluorescence yields can
be found in the review by Bambynek et al. [62.49]
and in the compilations by Krause [62.70] and Hubbell
et al. [62.71]. Considerable uncertainty persists in the
fluorescence yields of higher shells.
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62.4.4 Multi-Electron Excitations

In atomic inner-shell photoionization, more than one
electron can be excited with significant probability.
Final states are thus produced that can be described
approximately by removal of a core electron and ex-
citation of additional electrons to higher bound states
(shakeup) or to the continuum (shakeoff). These mul-
tiple excitation processes exhibit themselves through
satellites in photoelectron spectra (Sect. 61.1.2) and in
the Auger and X-ray spectra emitted when the ex-
cited states decay, as well as in some cases by features
in absorption spectra [62.72]. As the photon-electron
interaction is described by a one-electron operator,
the frozen-core, central field model does not predict
changes of state under photon impact by more than
one electron. Direct multiple excitation processes are
thus a result of electron-electron correlation (Chapt. 23,
Sect. 61.1.2).

Cross sections for photoexcitation and ionization of
two inner shell electrons have been evaluated [62.72]
by the multichannel multiconfiguration Dirac–Fock
(MMCDF) method [62.73]. Within this model, the corre-
lation effects that cause direct two-electron processes are
(i) relaxation or core rearrangement, (ii) initial state con-
figuration interaction, (iii) final ionic state configuration
interaction, and (iv) final continuum state configuration,
or final state channel interaction.

Mechanisms that contribute to two-electron pho-
toionization of the outermost shells of noble gas
atoms have been separated within many-body per-
turbation theory [62.74]. In first order of the
combined perturbations by the photon field and
electron correlations, the important contributions are
core rearrangement, initial state correlations, vir-
tual Auger transitions, and “direct collisions” by
the photoelectron with another orbital electron. If
treated nonperturbatively, these mechanisms belong
within the MMCDF scheme to categories (i)–(iv) de-
scribed above. The different mechanisms have been
found to be of varying importance, depending on
the photon energy relative to the double ionization
threshold energy, the orbitals which are ionized, and
the relative final state energies of the active elec-
trons. Interest in the theory [62.75, 76] has been
enhanced by experiments with synchrotron radiation
on the double ionization of He [62.77], a process
that epitomizes the problem. Above ≈ 5 keV pho-
ton energy, the double ionization of He has been
shown to be dominated by Compton scattering, not
photoeffect [62.78].

62.4.5 Momentum Spectroscopy

We close with a few examples of fruitful recent advances
in approaches to the study of electron-atom interactions.
A step-function advance in viewing atomic collision
dynamics, including photon-electron interactions, arose
from the development (first in the University of Frank-
furt by Schmidt-Böcking and his group) of Cold-Target
Recoil-Ion Momentum Spectroscopy (COLTRIMS), a
“momentum microscope” to view the dynamics of
photon-atom collisions [62.79–81]. This novel momen-
tum space imaging technique allows the investigation
of the dynamics of ion, electron, or photon impact re-
actions with atoms or molecules. Studies performed
with this technique yield kinematically complete pic-
tures of the fragments of atomic and molecular breakup
processes, unprecedented in resolution, detail and com-
pleteness. The multiple-dimensional momentum-space
images often directly unveil the physical mechanism
underlying the many-particle transitions that are being
investigated [62.82]. Important applications are being
developed [62.83, 84].

62.4.6 Ultrashort Light Pulses

Advances in laser technology have made it pos-
sible to obtain high-intensity (up to 1014 W/cm2),
short (5 fs) pulses, making laser-atom [62.85] and
laser-molecule interactions [62.86–89] amenable to
experimental study. In the latter category, nonlinear
phenomena such as above-threshold ionization and
laser-induced molecular potentials have already been
explained theoretically [62.90–92].

Ultrashort light pulses make it possible to follow
ultrafast relaxation processes on never-before-accessed
time scales and to study light-matter interactions at
unprecedented intensity levels [62.85, 93].

Ultrafast optics has permitted the generation of light
wave packets comprising only a few oscillation cycles
of the electric and magnetic fields. The spatial exten-
sion of these wave packets along the direction of their
propagation is limited to a few times the wavelength of
the radiation. The pulses can be focused to a spot size
comparable to the wavelength. Radiation can thus be
temporarily confined to a few cubic micrometers, form-
ing a “light bullet”. The extreme temporal and spatial
confinement allows moderate pulse energies of the or-
der of one microjoule to result in peak intensities higher
than 1015 W/cm2. These field strengths exceed those of
the static field seen by outer-shell electrons in atoms. The
laser field consequently is strong enough to suppress the
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binding Coulomb potential in atoms and triggers optical
field ionization [62.94, 95].

Attosecond
(
10−18 s

)
trains from high-harmonic

generation have been discovered [62.90–92]. High har-
monics, generated in a gas jet by a femtosecond laser
pulse, have a well-defined phase relation with respect to
each other. The relative phases result in strong amplitude
beating between the various harmonics. The emerging
radiation thus consists of attosecond pulses.

The process of harmonic generation can be thought
of as consisting of three steps [62.92]: a (rate-limiting)
field ionization of the atom at times near the electric
field maxima, followed by acceleration of the free elec-
tron which, due to the ac character of the driving light,
eventually makes the electron recollide at high energy
with its parent ion. Radiative recapture of this fast elec-
tron into the ground state, strongly favored due to the
remaining coherence between the two parts of what was
initially the same wave function, completes the harmonic
generation process without any change to the atom.

In summary, intense few-cycle light pulses open
up never yet accessed parameters in high-field
physics [62.85]. Strong-field processes induced by few-
cycle laser fields may permit access to the phase of the
carrier wave and hence to the light fields for the first
time. Phase-controlled light pulses may allow control
of high-intensity light-matter interaction on a subcycle
time scale. The search for laser-driven ultrafast X-ray
sources is also drawing benefits from this research area.
Substantial major progress can be anticipated in this new
field.

62.4.7 Nondipolar Interactions

A powerful tool for exploring photon-atom in-
teractions has been photoionization of atoms and
molecules [62.96]. Analysis of photoelectron angu-
lar distribution measurements was routinely performed
in the electric-dipole approximation, in which all
higher-order multipoles are neglected [62.97]. While
breakdown of the dipole approximation at higher photon

energies (above 5 keV) was known, so that a proper de-
scription requires inclusion of many multipoles [62.98],
experimental limitations appeared to make such exten-
sion unnecessary. A notable exception was a hint found
by Krause, who noticed deviations from the dipole
approximation in measurements on rare gases using
unpolarized X-rays [62.99].

Only when more sophisticated radiation sources
became available, notably synchrotron radiation, and
advances in detector technology took place, did it
become possible to gain data on nondipolar photoioniza-
tion [62.98]. Intense experimental and theoretical work
ensued.

Photoelectron angular distributions depend upon dy-
namical parameters of the target atoms and upon the
polarization of the photon beam. Peshkin developed a
systematic analysis of the restrictions imposed by sym-
metry, through a geometric description of polarization
that is easily visualized and has been found useful in
planning experiments [62.100].

Earlier theories predicted nondipolar asymmetries
of 1s photoelectron distributions in the point-Coulomb
potential. More recently, photoionization amplitudes
are calculated in screened potentials, predicting richer
Z-dependent and subshell-dependent energy variations
of nondipole asymmetries [62.97]. A full relativis-
tic multipole expansion, incuding screening effects,
in the independent-particle approximation was dis-
cussed by Tseng et al. [62.97]. In addition, leading
correction terms to the dipole approximation can
be included by adopting the “retardation expansion”
of the exponential factor exp(ik · r) [62.101, 102]
which, unlike the multipole expansion, includes a fi-
nite number of multipoles within the long-wavelength
limit [62.103]. A lucid summary of the develop-
ment of the subject can be found in the paper by
Krässig et al.on nondipole asymmetries of Kr 1s photo-
electrons [62.104]. Extending the subject, experiments
and theory on electric-octupole and pure-electric-
quadruple effects on soft-X-ray photoemission have
been described by Derevianko et al. [62.105].

62.5 Threshold Phenomena

During the creation of a core vacancy by photoexci-
tation or ionization, the escape of the photoelectron
from an inner shell involves complex dynamics of
electron excitations with multiple correlational aspects.
The entire process of inner shell photoionization and

subsequent de-excitation has drastically different char-
acteristics near threshold from that in the high energy
limit. In the latter case, discussed in the preceding sec-
tions, if an X-ray photon promotes an inner shell electron
to an energetic continuum state, the atom first relaxes in
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its excited (hole) state. In a practically distinct second
step, the hole is then filled—most often by a radia-
tionless transition, under emission of an Auger electron
with diagram energy that can readily be calculated from
the wave function of the stationary, real intermediate
state [62.1, 53].

On the other hand, in the vicinity of core-level
energy thresholds, atomic photoexcitation and the en-
suing X-ray or Auger electron emission occur in a
single second-order quantum process, the resonant Ra-
man effect. Here, the intermediate states are virtual
and there is no relaxation phase. The resonant Raman
regime, comprising the energy region just below thresh-
old, is linked by the post-collision interaction regime
(Sect. 62.5.2) above threshold to the (asymptotically)
two-step regime.

The primary process of photoionization and Auger
electron emission can be viewed as resonant double pho-
toionization mediated by a complete set of intermediate
states; these correspond to an intermediate virtual inner
shell hole and an electron in excited bound or con-
tinuum states. A unified treatment of the process, as
well as of resonant X-ray Raman scattering, has been
developed within the framework of relativistic time in-
dependent resonant scattering theory [62.48, 106–108].
As the energy of the incoming photons is increased,
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Fig. 62.4 Energy of the Xe L3–M4M5 (1G4) Auger electron peak, as
a function of exciting photon energy. Near threshold Auger satellites,
caused by the spectator photoelectron in bound orbits, exhibit linear
Raman dispersion. The post-collision interaction shift (right-hand
scale) vanishes only in the asymptotic limit (After [62.83])

sweeping through an inner shell threshold, continuous
asymmetric electron distributions associated with differ-
ent two-hole multiplets evolve into Auger-electron lines
with characteristic energies. The shapes and energies
of the characteristic lines continue to change until the
energy of the photoelectron exceeds that of the Auger
electron. The nonresonant two-electron emission ampli-
tude is usually negligible in this region, compared with
the resonant amplitude.

62.5.1 Raman Processes

Resonant Raman transitions to bound final states are
the inelastic analog of resonance fluorescence [62.68],
with which they share two characteristic features:
(1) the emitted radiation can have a narrower bandwidth
than the natural lifetime width of the correspond-
ing diagram line, and (2) the energy of the emitted
radiation exhibits linear dispersion with excitation en-
ergy. Radiative resonant Raman scattering was first
observed by Sparks in 1974 [62.109] and subsequently
explored with synchrotron radiation by Eisenberger
et al.(see [62.48, 48, 108, 110]). Radiationless resonant
Raman scattering was identified by Brown et al. [62.111]
and in subsequent studies [62.112] of the deformation
of Auger-electron lines near threshold (Fig. 62.4). The
connection between resonant Raman and Compton scat-
tering has been pointed out by Bergstrom et al. [62.47].

According to a generalization of time independent
resonant scattering theory [62.106, 107], a transition
matrix element can be constructed that accounts for
photoexcitation and either radiative or radiationless de-
excitation, including resonance structure [62.48, 108].
The wave functions represent both the atomic and photon
fields and include all electrons throughout the process.
The conventional two-step model of X-ray fluorescence
and Auger electron emission is but a special case of the
transition amplitude

Tβα=
〈

ψ−
βεε′

∣∣∣∣∣
Vγ+

∑

ν

∫
dτ
(H− E)|ψτν〉〈ψτν|Vγ

E− Eτν(E)

∣∣∣∣∣
ψα

〉

(62.21)

where H is the total Hamiltonian, Vγ the photon-electron
interaction operator, and E = �ω1+ Eα is the total en-
ergy. The first term in Tβα represents direct nonresonant
Raman scattering; the resonance behavior is embedded
in the second amplitude. The complex eigenenergies
Eτν(E) satisfy a complicated secular equation that in-
volves diagonal and nondiagonal matrix elements of the
level shifts and widths [62.1,3,48,108]. The initial state
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wave functionψα is a direct product of the initial atomic
state wave function and a one-photon state |k1,e1〉, where
k1 is the wave vector and e1, the polarization vector. The
final state scattering wave function ψ−

βεε′ corresponds,
in the radiative case, to a scattered photon in a definite
state |k2,e2〉 and an electron plus ion in a given quantum
state, which may involve the linear momentum � ke of
the electron if the latter is in the continuum. In the radi-
ationless case, there are an ion and two electrons, both
of which may be in a continuum state |ke, k′e〉. The wave
function ψ−

βεε′ fulfills the ingoing-wave boundary con-
dition with respect to the electron(s) and accounts for
final state channel interaction effects.

Work on inner shell Raman processes is as yet in
its infancy. Synchrotron radiation experiments, inter-
preted in light of the theory outlined above, promise
to become a useful tool in atomic physics and materials
science [62.113, 114].

62.5.2 Post-Collision Interaction

In the radiationless decay of an atom that has been pho-
toionized near an inner shell threshold, the Coulomb
field of the receding photoelectron perturbs the Auger
electron energy and line shape. This post-collision in-
teraction provides continuity in the energy evolution of
inner shell dynamics between the Raman and asymptotic
two-step regimes. In Auger decay, following photoion-
ization, the Auger electron initially screens the ionic
Coulomb field seen by the receding photoelectron. This
screening subsides when the (usually fast) Auger elec-
tron passes the slow photoelectron. Distortion of the
Auger line shape results, and the Auger energy is raised
at the expense of the photoelectron energy (Fig. 62.4).

A semiclassical potential curve model of post-
collision interaction leads to intuitive insight and
surprisingly accurate predictions [62.115, 116]. In sim-

ple terms, the attractive potential well in which the slow
photoelectron moves is deepened suddenly when the
residual singly ionized atom undergoes Auger decay
and its net charge changes from +e to +2e. The pho-
toelectron sinks down into this deeper well, there being
no time for it to speed up, and the energy lost by the
photoelectron is transferred to the Auger electron. The
photoelectron slows down and may even be recaptured
by the atom from which it was emitted [62.117].

Quantum theoretically, post-collision interaction can
be treated from the point of view of resonant scattering
theory (Sect. 62.5.1). A lowest-order line shape for-
mula, corresponding to a shakedown mechanism, can
be shown to emerge from approximations of the gen-
eral multichannel transition matrix element [62.118];
the phenomenon thus arises as a consequence of a reso-
nant rearrangement collision in which a photon and an
atom in the initial channel turn into an ion and two elec-
trons (one of which has nearly characteristic energy) in
the final channel. In this lowest order, the results can be
interpreted in terms of an analytic line shape formula
based on asymptotic Coulomb wave functions [62.118].
The line shape depends only on the excess photon en-
ergy, the lifetime of the initial state of the Auger process,
and the change of the ionic charge during Auger electron
emission.

The interaction between the photoelectron and the
Auger electron in the final state can be included by rein-
terpreting the ionic charge seen by the photoelectron
on the basis of asymptotic properties of the continuum
wave function pertaining to the two outgoing elec-
trons [62.119, 120]. This results in a procedure which
is consistent with semiclassical models that account for
the time required for the Auger electron to overtake
the photoelectron. Calculations based on this approach
agree very well with measurements performed with
synchrotron radiation [62.120].
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Electron–Atom63. Electron–Atom and Electron–Molecule Collisions

Electron–atom and electron–molecule collision
processes play a prominent role in a variety
of systems ranging from discharge or electron-
beam lasers and plasma processing devices
to aurorae and solar plasmas. Early studies of
these interactions contributed significantly to the
understanding of the quantum nature of matter.
Experimental activities in this field, initiated by
Franck and Hertz [63.1], flourished in the 1930s
and, after a dormant period of about a quarter
of a century, have had a renaissance in recent
years.

When electrons collide with atomic or mo-
lecular targets, a large variety of reactions can
take place (see Sect. 63.1.1). We limit our dis-
cussion to electron collisions with gaseous
targets, where single collision conditions pre-
vail. Furthermore, we discuss only low-energy
(threshold to few hundred eV) impact processes
where the interaction between the valence-shell
electrons of the target and the free electron
dominates.

Comprehensive discussions on electron–atom
(molecule) collision physics can be found in the
books of Massey et al. [63.2], McDaniel [63.3] and
the volumes of Advances in Atomic and Molecular
(since 1990 Atomic, Molecular and Optical) Physics.
The latest developments are usually published in
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Electronic and Atomic Collisions (ICPEAC).

63.1 Basic Concepts

63.1.1 Electron Impact Processes

Lox energy electrons can very effectively interact with
the valence-shell electrons of atoms and molecules, in
part because they have similar speeds. In elastic scat-
tering, the continuum electron changes direction and
transfers momentum to the target. Inelastic collisions
include also a transfer of kinetic energy to the target,
such as excitation of valence electrons to discrete en-
ergy levels, to the ionization continuum, and, in the case
of molecules, excitation of nuclear motion (rotational,

vibrational) and excitation to states which dissociate
into neutral or ionic fragments. Various combinations
of these processes are also possible, e.g., dissociative at-
tachment, excitation or ionization. Excitation of more
than one valence electron at the same time, or excitation
of electrons from intermediate and inner shells, may also
occur but these processes are more likely at impact en-
ergies of a few keV. These excitations lie above the first
ionization limit and lead, therefore, with high probabil-
ity, to autoionization, except for heavy elements where
X-ray emission is an important competing process.
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63.1.2 Definition of Cross Sections

The parameters which characterize collision processes
are the cross sections. Electron collision cross sections
depend on impact energy E0 and scattering polar angles
θ and φ. The differential cross section, for a specific
well-defined excitation process indicated by the index n
is defined as

dσn(E0,Ω)

dΩ
= k f

ki
| fn(E0,Ω)|2 , (63.1)

where Ω is the polar angle of detection, ki and k f
are the initial and final electron momenta, and fn is
the complex scattering amplitude (n = 0 refers to elas-
tic scattering). Integration over the energy-loss profile
is assumed. If the energy-loss spectrum is broad, dif-
ferentiation with respect to energy loss also has to
be included. For certain processes it may be neces-
sary to define differential cross sections with respect
to angle and energy for both primary and secondary
particles.

Integration over all scattering angles yields the inte-
gral cross sections

σn(E0)=
2π∫

0

π∫

0

dσn(E0,Ω)

dΩ
sin θ dθ dφ . (63.2)

In the case of elastic scattering, the momentum transfer
cross section is defined as

σM
0 (E0)=

2π∫

0

π∫

0

dσ0(E0,Ω)

dΩ
(1− cos θ) sin θ dθ dφ .

(63.3)

The total electron scattering cross section is obtained by
summing all integral cross sections:

σtot(E0)=
∑

n

σn(E0)+
∑

m

σm(E0) , (63.4)

where σm are the cross sections for other possible
channels. Experimental cross sections typically rep-
resent averages over indistinguishable processes (e.g.,
magnetic sublevels, hyperfine states, rotational states
etc.). The cross section obtained this way corresponds
to an average over initial and sum over final indis-
tinguishable states with equal weight given to the
initial states. (This may not always be true, as dis-
cussed later.) If the target molecules are randomly
oriented, the cross section averaged over these ori-
entations is independent of φ. In addition, there is

an averaging over the finite energy and angular res-
olution of the apparatus. It is important, therefore,
to specify clearly the nature of the measured cross
section, otherwise their utilization and comparison
with other experimental and theoretical cross sections
become meaningless. We denote the conventionally
measured differential and integral cross sections by
Dn(E0, θ) and Qn(E0), with the various averagings
implied. Similarly, QM(E0) and Qtot(E0) are the cor-
responding momentum transfer and total scattering cross
sections.

The collision strength for a process i → j, which
is the particle equivalent of the oscillator strength, is
defined by

Ωij(E0)= qi E0σij(E0) , (63.5)

where qi is the statistical weight of the initial state [qi =
(2Li +1)(2Ji +1)], E0 is in Rydbergs and σij is in units
of πa2

0.
The rate for a specific collision process (e.g., excita-

tion) for electrons of energy E0 is given as

Rij(E0)= NI(E0)σij(E0) , (63.6)

where N is the density of the target particles
(
m−3

)
,

and I(E0) is the electron flux
(
m−2 s−1

)
; σij is in m2,

yielding Rij in units of m−3 s−1. For nonmonoenergetic
electron beams, (63.6) must be integrated over E0 to get
the average rate.

63.1.3 Scattering Measurements

Most scattering experiments, are carried out in a beam–
beam arrangement (Fig. 63.1). A beam of nearly

Energy
selector

Optics

Gun
Photons
Electrons
Ions

Detector

Signal

Energy analyzer

Optics
θ

Fig. 63.1 A schematic diagram for electron scattering
measurements
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monoenergetic electrons is formed by extracting elec-
trons from a hot filament and selecting a narrow segment
of the thermal energy distribution. For the formation
and control of the electron beam, electrostatic lenses
are used and the energy selection is achieved with
electrostatic energy selectors. A magnetic field may
also be applied to obtain a magnetically collimated
electron beam. The target beam is formed by let-
ting the sample gas effuse from an orifice, tube or
capillary array with various degrees of collimation.
Target species which are in the condensed phase at
room temperature need to be placed in a crucible and
evaporated by heating. Extensive discussion of this
technique has been given by Scoles [63.4]. The elec-
tron beam intersects the target beam at a 90◦ angle
and electrons scattered into a specific direction, over
a small solid angle

(≈ 10−3 sr
)
, are detected. How-

ever the scattered electron is not necessarily the same
as the incoming electron. Exchange with the target elec-
trons may occur, and is required for spin-forbidden
transitions in light elements. The detector system con-
sists of electron lenses and energy analyzers similar
to those used in the electron gun. The actual detec-
tor is an electron multiplier which generates a pulse
for each electron. In the scattering process, secondary
species (electrons, photons, ions, neutral fragments)
may also be generated and can be detected individu-
ally or in various coincidence schemes. The experiments
are carried out in a vacuum chamber and it is im-
portant to minimize stray electric and magnetic fields.
More details about the apparatus and procedures can
be found in a review by Trajmar and Register [63.5].
The primary information gained in these experiments
is the energy and angular distribution of the scattered
electrons.

There are several methods used to carry out scat-
tering measurements. In the most commonly used
energy-loss mode, the impact energy and scattering an-
gle are fixed, and the scattering signal as a function of
energy lost by the electron is measured by applying pulse
counting and multichannel scaling techniques. The re-
sult of such an experiment is an energy-loss spectrum.
The elastic scattering feature appears at zero energy loss;
the other features correspond to various excitation pro-
cesses and to ionization. Energy-loss spectra can also
be generated in the constant residual energy mode. In
this case, the detector is set to detect only electrons with
a specific residual energy ER = E0−∆E at a fixed scat-
tering angle, and E0 and ∆E are simultaneously varied.
Each feature in the energy-loss spectrum is obtained then
at the same energy above its own threshold. An exam-

250

200

150

100

50

0

20 21 22 23 24 25

c/s

Energy loss (eV)

He
90°

Er = 1.2 eV

4

5
6 IE

n = 2

3

×8

Fig. 63.2 Energy-loss spectrum of He at a constant residual
energy of 1.2 eV and scattering angle of 90◦. The inelastic
features with the corresponding principal quantum numbers
are shown. IE is the ionization potential of He (24.58 eV).
No background is subtracted and true signal zero is in-
dicated by a dotted line under the expand portion of the
spectrum m. (Taken from Allen [63.6])

ple, taken from the work of Allan [63.6], ist shown in
Fig. 63.2.

The energy loss spectrum becomes equivalent to the
photoabsorption spectrum in the limit of small momen-
tum transfer K , where K = k f −ki (i. e., high impact
energy, small scattering angle). The equivalence of elec-
trons and photons in this limit follows from the Born
approximation, and it can be used to obtain optical
absorption and ionization cross sections. The correspon-
dence is defined through the Limit Theorem

lim
K→0

f G
n (K)= f opt

n , (63.7)

f G
n (K)=

∆E

2

ki

k f
K2 dσn

dΩ
(k) , (63.8)

where f G
n is the generalized oscillator strength for

excitation process n, and f opt
n is the corresponding

optical f -value. Equation (63.7) was originally de-
rived by Bethe [63.7] from the Born cross section.
It was extended later by Lassettre et al. [63.8] to
cases where the Born approximation does not hold. In
this case, f G

n (K) is replaced by f app
n (K), the appar-

ent generalized oscillator strength. The Limit Theorem
implies that, in the limit of small K , optical selec-
tion rules apply to electron impact excitation. The
practical problem is that the limit is nonphysical and
the extrapolation to zero K involves some arbitrari-
ness. When K is significantly different from zero,
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Fig. 63.3 Variation of energy-loss spectra (and DCSs) with
scattering angle for He at 40 eV impact energy. Spectra are
shown at 5◦, 50◦ and 125◦ scattering angles

optical-type selection rules do not apply to electron-
impact excitation. As can be seen from Fig. 63.3, spin
and/or symmetry forbidden transitions then readily oc-
cur and can be an efficient way of producing metastable
species.

Selection rules for electron impact excitations can
be derived from group theoretical arguments [63.9, 10].
For atoms, the selection rule Sg ↔ Su applies in gen-
eral and scattering to 0◦ and 180◦ is forbidden if
(Li +Πi + L f +Π f ) is odd. Here, Li and L f are the
angular momenta and Πi and Π f are the parities. For
molecules, selection rules can be derived under two
special conditions: (a) rules concerning 0◦ and 180◦
scattering for arbitrary orientation of the molecule, and
(b) rules concerning scattering to any angle but for spe-
cific orientation of the molecule. An important example
of the first case is theΣ− ↔/ Σ+ selection rule for linear
molecules at 0◦ and 180◦ scattering angles.

6

4

2

0
19.2 19.3 19.4 19.5

E0 (eV)

103 counts /channel

He
θ = 90°
∆E = OeV

Fig. 63.4 The 19.37 eV He resonance observed in the elas-
tic channel at 90◦ scattering angle

The energy dependence of cross sections is obtained
by fixing the energy-loss value (scattering channel) and
studying the variation of scattering signal with impact
energy at a given angle or integrated over all scatter-
ing angles. In general, cross sections associated with
spin forbidden and optically allowed transitions peak
near and at several times the threshold impact energy
respectively, and they usually vary smoothly with im-
pact energy. However, resonances may appear at certain
specific impact energies. These sudden changes are asso-
ciated with temporary electron capture and are the result
of quantum mechanical interference between two indis-
tinguishable paths. An example is shown in Fig. 63.4 for
He in the elastic channel at 19.37 eV impact energy.

Integral cross sections can be obtained from ex-
trapolation of the measured Dn(E0, θ) to 0◦ and 180◦
scattering angles and integration over all angles. Re-
cently, incorporation of an “angle-changing” device has
enabled measurements to be extended over the whole
range of scatering angles [63.11, 12]. In certain cases it
is possible to measure integral cross sections directly by
detecting secondary products such as photons and ions.
These procedures and the resulting cross sections will
be discussed in some detail in Sect. 63.2.
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63.2 Collision Processes

In addition to the basic elastic and inelastic processes
defined in Sect. 63.1.2, we now also explicitly include
dissociation (to neutral and charged fragments) cross
sections QD(E0); and ionization cross sections QI(E0).
Each of these is now considered separately.

63.2.1 Total Scattering Cross Sections

Total electron scattering cross sections represent the sum
of all integral cross sections:

Qtot(E0)=
∑

n

Qn(E0)+QI(E0)+QD(E0) ,

(63.9)

Qtot(E0) are useful for checking the validity of scat-
tering theories, and the consistency of available data,
for normalization of integral and differential cross sec-
tions, and as input to the Boltzmann equation. At low
impact energies, elastic scattering dominates, while at
intermediate and high impact energies, electronic ex-
citations and ionization become major contributors to
Qtot. Figure 63.5 shows the various cross sections for
electron–helium collisions. The data are from the rec-
ommended values of Trajmar and Kanik [63.13].

Two methods are commonly used for measuring
Qtot(E0): the transmission method and the target recoil
method (for details see [63.5,14]). Total scattering cross
sections measured by these techniques are, in general,
accurate to within a few percent. The extensive reviews
by Zecca and co-workers [63.15–17] should be noted.

63.2.2 Elastic Scattering Cross Sections

Elastic scattering cross sections Q0(E0) are not as
readily available as Qtot(E0). They are obtained from
differential scattering experiments over limited angular
ranges by extrapolation and integration of the measured
values. Typical error limits are 5 to 20%. For molecu-
lar species rotational excitation is usually not resolved
but is included in the D0(E0, θ) and Q0(E0) values.
In order to obtain the absolute D0(E0, θ) directly from
the scattering signal, one has to know the electron flux,
the number of scattering species, the scattering geom-
etry and the overall response function of the apparatus.
A direct measurement of these parameters can be made
at high energies (> 100 eV). However, at low electron
energies, this approach is not feasible. A number of
methods have been devised to derive relative D0(E0, θ)

from the measured scattering intensities and then to nor-
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Fig. 63.5 Cross sections for various processes in the
electron–helium collision (see text for data sources)

malize the D0(E0, θ) to the absolute scale. We briefly
outline here only the most commonly used procedure.

The most practical and reliable method of obtain-
ing the absolute D0(E0, θ) is the relative flow technique
in which scattering signals for a known standard gas
and an unknown test gas are compared at each energy
and angle [63.5, 18–20]. The He elastic cross section is
the natural choice of standard since it is known accu-
rately over a wide energy and angular range, and He is
experimentally easy to handle. Only the relative elec-
tron beam flux and molecular beam densities (and their
distributions) need be known in the two measurements.
The flow rate of the test gas is adjusted so that the flux
and density distribution patterns of the two gases are
identical, and all geometrical factors cancel in the scat-
tering intensity ratios. The absolute D0(E0, θ) for the
sample gas is obtained from the measured scattering in-
tensity, target density, and electron beam intensity ratios
and the standard D0(E0, θ) value. See [63.5, 20, 21] for
a detailed discussion of this technique.

63.2.3 Momentum Transfer Cross Sections

QM(E0) can be obtained both from the elastic DCSs
and from swarm measurements. At low electron-impact
energies (from 0.05 to a few eV), where only a few
collision channels are open, the electron swarm tech-
nique is the most accurate (≈ 3%) way to determine
the momentum transfer cross sections. Beam–beam ex-
periments are mandatory at higher energies. A detailed

Part
E

6
3
.2



934 Part E Scattering Experiment

discussion of these techniques is given by Trajmar and
Register [63.5].

63.2.4 Excitation Cross Sections

Dn(E0, θ) and Qn(E0) can be derived from energy-loss
spectra obtained in beam–beam scattering experi-
ments. The relative Dn(E0, θ) is usually normalized to
D0(E0, θ) which in turn is normalized to the helium
D0(E0, θ) by the relative flow technique described in
Sect. 63.2.2. There are, however, complications and un-
certainties associated with this technique because of the
sensitivity of the instrument response function to the
residual energy of the scattered electrons. For more de-
tails, see Trajmar and McConkey [63.21]. Data obtained
by this procedure are rather limited, partly due to experi-
mental difficulties and partly due to the time required to
carry out such measurements.

For cases where an excited state j is formed which
can radiatively decay by means of a short-lived (dipole-
allowed) transition to a lower lying state i, the intensity
of the resultant radiation is directly related to the cross
section for production of the excited state in the origin-
al collision process. An optical emission cross section,
Q ji(E0), is defined by

Q ji(E0)= N jΓ ji

In0τ j
, (63.10)

where N j and n0 are the densities in the excited and
ground states, respectively, Γ ji is the branching ratio for
radiative decay from state j to state i, I is the electron
beam flux, and τ j is the natural radiative lifetime of
state j. Since the excited state may be produced either
by direct electron impact or by cascade from higher-
lying states k, also formed in the collision process, we
may define the direct excitation cross section Qd

j(E0)

by

Qd
j(E0)=

∑

i

Q ji(E0)−
∑

k

Qk j(E0) . (63.11)

The last term subtracts the cascade contribution from
higher lying states. The quantity Qa

j(E0)=∑
i Q ji(E0)

is known as the apparent excitation cross section
for level j. Clearly, to obtain Qd

j(E0) from Qa
j(E0),

the cascade contribution must be known.
In (63.10), N jΓ ji/τ j gives the steady state number

of j → i photons per unit time per unit volume emitted
from the interaction region. Since observation is made
in a particular direction care must be taken to correct for
any anisotropy in the radiation pattern. Alternatively,
if observation is made at the so-called “magic” angle

(54◦ 44′) to the electron beam direction, the emission
intensity per unit solid angle is equal to the average inten-
sity per unit solid angle irrespective of the polarization of
the emitted radiation. However, even at this magic angle,
care must be taken to avoid problems with polarization
sensitivity of the detection equipment [63.22, 23].

The phenomenon of radiation trapping is often
a problem if the radiative decay channels of the excited
state include a dipole allowed channel to the ground
state. Repeated absorption and re-emission of the ra-
diation can occur and can lead to a diffuse emitting
region much larger than the original interaction region,
and the polarization of the emitted light can also be
altered. Often a study of the variation of the emitted
intensity or polarization with the target gas pressure is
sufficient to reveal the presence of radiation trapping or
other secondary effects.

The emission cross sections of certain lines have
been measured with great care and now serve as
bench-marks for other work. Examples of these are the
measurements of van Zyl et al. [63.24] on the n1S levels
of He in the visible spectral region or the measurements
of the cross section for production of Lymanα from H2 in
the VUV region (see [63.25] for a full discussion of this
including many references). Use of secondary standards
is particularly important when crossed-beam measure-
ments are being carried out because of the cancellation
of geometrical and other effects which occur.

The Bethe–Born theory [63.26] provides a conve-
nient calibration of the detection system for optically
allowed transitions of known oscillator strength. At suf-
ficiently high energies, the excitation cross section, Qn ,
of level n is given by

Qn = 4πa2
0

E0/R∞
f opt
n

∆En/R∞
ln(4cn E0/R∞) . (63.12)

Here ∆En is the excitation energy, and cn is a constant
dependent on the transition. A plot of Qn E0 versus ln E0
is a straight line with a slope proportional to f opt

n and the
intercept with the ln E0 axis yields an experimental value
for cn independent of the normalization. For example,
the He n1P –11S optical oscillator strengths are very
accurately known, as are cascade contributions. Thus
accurate normalization of the slope of the Bethe plot can
be made, yielding accurate excitation cross sections.

As mentioned above, the excitation cross sections
display characteristic shapes as a function of energy.
For optically allowed transitions, the cross section rises
relatively slowly from threshold to a broad maximum ap-
proximately five times the threshold energy. At higher
energies the (ln E0)/E0 dependence of the cross section
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predicted by (63.12) is observed. For exchange pro-
cesses, e.g., a triplet excited state from a singlet ground
state, the cross section peaks sharply close to threshold
and falls off at high energy as E−3. If the excitation is
spin allowed but optically forbidden, e.g., He n1D from
11S , then the Bethe theory predicts an E−1 dependence
of the cross section at high energies.

When excitation occurs to a long-lived (metastable
or Rydberg) state following electron impact, it is often
possible to detect the excited particle directly. Time-
of-flight (T.O.F.) techniques are used to distinguish the
long lived species from other products, e.g., photons,
produced in the collisions.

63.2.5 Dissociation Cross Sections

Dissociation of a molecular target can result in frag-
ments which may be excited or ionized. Such processes
may be studied using the techniques discussed in the pre-
vious section or in the following section, where charged
particle detection is considered. Because a repulsive
state of the molecule is accessed, the fragments can
leave the interaction region with considerable kinetic
energy (several eV). If the fragment is in a long-lived
metastable or Rydberg state, T.O.F. techniques may be
used to distinguish the long-lived species from other
products such as photons, and also to measure the
energies of the excited fragments, and thus provide in-
formation on the repulsive states responsible for the
dissociation. For further discussion see the reviews by
Compton and Bardsley [63.27], Freund [63.28], and
Zipf [63.29]. If the detector can be made sensitive to
a particular excited species, its excitation can be iso-
lated and studied. Examples are the work of McConkey
and co-workers [63.30,31] on O(1S ) and S(1S0) produc-
tion from various molecules. The detection of unexcited
neutral fragments is more challenging. One early method
was to trap selectively the dissociation products using
a getter and measure the resulting pressure decrease.
In a more sophisticated approach, Cosby [63.32] pro-
duced a fast (≈ 1 keV) target molecular beam by resonant
charge exchange and subjected it to electron impact dis-
sociation. The fast dissociation products were detected
by conventional particle detectors in a time correlated
measurement. Laser techniques, such as laser-induced
fluorescence or multiphoton ionization, have also been
used recently to detect the dissociation products.

The Franck–Condon principle largely governs mo-
lecular dissociation. The principle states that if the
excitation takes place on a time scale which is short
compared with vibrational motion of the atomic nu-

clei the transition occurs vertically between potential
energy curves. Since dissociation rapidly follows a ver-
tical transition to the repulsive part of a potential energy
curve, compared with the period of molecular rotation,
the dissociation products tend to move in the direction of
vibrational motion. Since the excitation probability de-
pends on the relative orientation of the electron beam and
the molecule, dissociation products often demonstrate
pronounced anisotropic angular distributions. The an-
gular distributions have been analyzed by Dunn [63.33]
using symmetry considerations.

63.2.6 Ionization Cross Sections

Tate and Smith [63.34] some 60 years ago developed
the basic techniques for measuring total ionization
cross sections. These were later improved by Rapp and
Englander-Golden [63.35]. Full details of the experi-
mental methods are given in the reviews and books
already cited. Märk and Dunn [63.36] reviewed the situ-
ation as it existed in the mid 1980s. In the basic “parallel
plate” method, the electron beam is directed through
a beam or a static target gas between collector plates
which detect the resultant ions. Unstable species can be
studied by the “fast neutral beam” technique [63.37],
in which the neutral target species is formed by charge
neutralization from a fast ion beam, and is subsequently
ionized by a crossed electron beam. For the determi-
nation of partial ionization cross sections specific to
a given ion species in a given ionization stage, mass
spectroscopic (quadrupole mass spectrometer, electro-
static or magnetic charged particle analyzer or time of
flight) methods are used. Fourier Transform Mass Spec-
trometry (FTMS) has also been used effectively to study
fragmentation with formation of both positive and neg-
ative ions. Reference [63.38] is a recent example of this.
Absolute total ionization cross sections have been meas-
ured for a large number of species with an accuracy
of better than 10%. Christophorou and colleagues have
presented helpful compilations of ionization and other
data of particular relevance to the plasma processing
industry, [63.39, and earlier references in this journal].

A large number of mechanisms can contribute to
the ionization of atoms and molecules by electron im-
pact. For targets with only a few atomic electrons,
the dominant process is single ionization of the outer
shell, with the resultant ion being left in its ground
state. The process is direct and is characterized by
large impact parameters b and small momentum trans-
fers. The cross section varies with incident electron
energy in a way very similar to the optically allowed
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excitation processes discussed in Sect. 63.2.4. Processes
involving ionization of more than one outer shell elec-
tron become more important as the size of the target
increases. These events are associated with small b
and electron–electron correlations are usually strong.
Autoionization increases in significance for heavier tar-
gets. Here also, collisions with small b dominate and
electron–electron correlations are strong. For heavier
targets, inner shell effects, such as Auger electron or
X-ray emission, become progressively more important.
For molecular targets, dissociative ionization (either di-

rectly or through a highly excited intermediate state) and
ion pair formation also play a significant role.

In addition to measurement of gross ion production,
it is also possible to study the ionization process by
monitoring the electron(s) ejected or scattered inelas-
tically. Conventional electron spectroscopic techniques
are used for this purpose. The addition of coincidence
techniques (e–2e measurements) in which the momenta
of all the electrons involved are completely specified has
allowed many of the fine details of the ionization process
to be extracted [63.40].

63.3 Coincidence and Superelastic Measurements

The cross section measurements described so far do not
yield complete information on electron scattering pro-
cesses. As mentioned in Sect. 63.1.2, these cross sections
do not distinguish for magnetic sublevels, electron spin
etc.and represent summation of cross sections over these
experimentally indistinguishable processes (summation
of the square moduli of the corresponding scattering
amplitudes). The quantum mechanical description of
a scattering process is given in terms of scattering am-
plitudes and under certain conditions requires summing
up amplitudes and squaring the sum. This leads to inter-
ference terms which arise from the coherent nature of
the scattering process. A complete characterization of
a scattering process, therefore, requires knowledge of
the complex scattering amplitudes.

Sophisticated experimental techniques have been
developed in recent years, which go beyond the conven-
tional scattering cross section measurements and yield
information on magnetic sublevel specific scattering am-
plitudes and the polarization (alignment and orientation)
of the excited atomic ensemble. The experimental tech-
niques fall into two main categories: a) electron–photon
coincidence measurements, and b) superelastic scatter-
ing measurements involving coherently excited species.
(We still consider unpolarized electron beams in the
description of these two techniques here and will ad-
dress the question of spin polarization in the following
section.)

In electron–photon coincidence measurements, the
radiation pattern emitted by the excited atom is deter-
mined for a given direction of the scattered electron.
A scattering plane is defined by ki and k f , and hence
the symmetry is lowered from cylindrical (around the
incident beam direction) to planar, (Fig. 63.6).

It is now possible to determine, at least in principle,
both the atomic alignment (i. e., the shape of the excited

state charge cloud and its alignment in space) and its
orientation (i. e., the angular momentum transferred to
the atom during the course of the collision). Complete
sets of excitation amplitudes for the coherently excited
atomic states and their relative phases have been meas-
ured in some cases. A comparison with theory can then
be made at the most fundamental level. See [63.41] for
full discussion and analysis.

+
–

z

y

x

kin

kout

l

h

θcol

γ

L⊥

w

Fig. 63.6 Schematic illustration of a collisionally induced
charge cloud in a p-state atom. The scattering plane is fixed
by the direction of incoming kin and outgoing kout momen-
tum vectors of the electrons. The atom is characterized by
the relative length (l), width (w), and height (h) of the
charge cloud, by its alignment angle γ , and by its inherent
angular momentum L⊥. The coordinate frame is the nat-
ural frame with the z-axis perpendicular to the scattering
plane and with the x- and y-axes defined as shown in the
figure relative to kin and kout
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The electron–photon coincidence measurements can
be carried out in two ways: (1) measuring polarization
correlations, and (2) measuring angular correlations.
In (1), polarization analysis of the emitted photon in
a given direction occurs, while in (2), the angular
distribution of the emitted photons is determined with-
out polarization analysis. We will describe here only
method (1) in some detail.

Method (1) has the advantage that it measures di-
rectly the angular momentum (perpendicular to the
scattering plane) transferred in the collision. For P-state
excitation from a 1S0 ground state, four parameters
plus a cross section are needed to describe fully the
collisionally excited P-state. The natural parameters
introduced by Andersen et al. [63.41] are defined as fol-
lows (Fig. 63.6): γ is the alignment angle of the excited
state charge cloud relative to the electron beam axis,
P+
 is the linear polarization in the scattering plane,

L+⊥ is the orbital angular momentum perpendicular to
the scattering plane that is transferred to the atom in
the collision, and ρ00 is the relative height of the charge
cloud perpendicular to the scattering plane at the point
of origin. The+ superscript indicates positive reflection
symmetry with respect to the scattering plane.

In polarization correlation experiments, one typic-
ally measures two linear (P1, P2) and one circular (P3)
polarization correlation parameters perpendicular to the
scattering plane. One additional linear polarization cor-
relation parameter P4 is measured in the scattering plane.
Each parameter is the result of two intensity meas-
urements for different orientations of the polarization
analyzer:

P1 = I(0◦)− I(90◦)
I(0◦)+ I(90◦)

β−1 ,

P2 = I(45◦)− I(135◦)
I(45◦)+ I(135◦)

β−1 ,

P3 = I R − I L

I R + I L
β−1 ,

P4 = I(0◦)− I(90◦)
I(0◦)+ I(90◦)

β−1 . (63.13)

Here I(α) denotes the photon intensity measured for
a polarizer orientation α with respect to the electron
beam axis, IR and IL refer to right- and left-handed
circularly polarized light and β denotes the polarization
sensitivity of the polarization analyzer. The relationships
between the experimentally determined polarization cor-
relation parameters and the natural parameters are given
by

γ = 1

2
tan−1(P2/P1) ,

P+
 = (

P2
1 + P2

2

)1/2
,

L+⊥ = −P3 ,

ρ00 = (1+ P1)(1− P4)

4− (1− P1)(1− P4)
. (63.14)

The total polarization P+
tot, which is defined as

P+
tot =

[(
P+


)2+ (
L+⊥

)2
]1/2

= (
P2

1 + P2
2 + P2

3

)1/2
, (63.15)

is a measure for the degree of coherence in the excitation
process. In the absence of atomic depolarizing effects
due to, for example, fine and/or hyperfine interactions,
a value of P+

tot =+1 for the emitted radiation indicates
total coherence of the excitation process.

Much of the earlier work involved excitation of he-
lium n1P state. Here the situation is simplified as L–S
coupling applies strictly: P4 = 1 and ρ00 is zero. Excita-
tion of the 21P state, for example, is fully coherent and
hence the excitation is completely specified by just two
parameters, γ and L⊥

(
or P since P =

(
1− L2⊥

)1/2).
More recently, the techniques have been applied to
heavier targets and more complicated excitation pro-
cesses [63.42–46].

The superelastic scattering experiments could be
looked at as time inverse electron–photon coincidence
experiments (although this is not exactly the case). In
these experiments, a laser beam is utilized to prepare
a coherently excited, polarized ensemble of target atoms
for the electron scattering measurement. The superelas-
tic scattering intensity is then measured as a function
of laser-beam polarization and/or angle with respect to
a reference direction. Linearly polarized laser light pro-
duces an aligned target (uneven population in magnetic
sublevels for quantum numbers of different |MJ | value).
Circularly polarized laser light produces oriented targets
(uneven population in MJ =+m and MJ =−m mag-
netic sublevels). From these measurements the same
electron impact coherence parameters can be deduced
as from the coincidence experiments. This approach has
been applied to atomic species (mainly metal atoms)
which are conveniently excited with available lasers.
Detailed descriptions of the experimental techniques,
the underlying theoretical background, and the interpre-
tation of the experimental data are given in [63.47–56].

It should be noted that electron scattering by co-
herently excited atoms can be utilized not only for
obtaining electron impact coherence parameters for in-
elastic processes originating from ground state but for
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elastic, inelastic, and superelastic transitions involving
excited states. These measurements yield information on
creation, destruction, and transfer of alignment and ori-

entation in electron collision processes which is needed,
e.g., in the application of plasma polarization spec-
troscopy [63.57].

63.4 Experiments with Polarized Electrons

So far we have considered the utilization of unpolarized
electron beams which yield spin averaged cross sec-
tions. Little information on spin dependent interactions
is gained from these experiments. However, these inter-
actions can be studied using polarized electron beam
techniques. Developments on both the production and
detection of spin-polarized electron beams have resulted
in a wide range of elegant experiments probing these
effects. The theory is also highly developed. For a de-
tailed discussion see the works of Kessler [63.58, 59],
Blum and Kleinpoppen [63.60], Hanne [63.61–63] and
Andersen et al. [63.44, 45] and the references therein.
Some basic concepts are presented here.

The degree of polarization P of an electron beam is
given by

P = N(↑)− N(↓)
N(↑)+ N(↓) , (63.16)

where N(↑) and N(↓) are the numbers of electrons with
spins respectively parallel and antiparallel to a particular
quantization direction. Measurements of P both before
and after the collision enable one to probe directly for
specific spin dependent processes. For example, in elas-
tic scattering from heavy spinless atoms any changes in
the polarization of the electrons must be caused by spin–
orbit interactions alone since, in this instance, it is not
possible to alter the polarization of the electron beam
by electron exchange. Measurements have been carried
out for Hg and Xe and both direct (f) and spin-flip (g)
scattering amplitudes, as well as their phase differences,
have been determined [63.59].

The spin–orbit interaction for the continuum elec-
tron caused by the target nucleus leads to different
scattering potentials and consequently to different cross
sections for spin-up and spin-down electrons (called
Mott scattering). Consequently, an initially unpolarized
electron beam can become spin polarized after scattering
by a specific angle according to

P′ = Sp(θ)n̂ , (63.17)

where n is the unit vector normal to the scattering plane,
Sp(θ) is the polarization function and P′ is the polariza-
tion of the scattered beam. For the same reasons, when

a spin-polarized electron beam is scattered by an an-
gle θ to the left and to the right, an asymmetry is found
in the scattering cross sections. Furthermore, an existing
polarization P′ can be detected through the left–right
asymmetry A in the differential cross section, which is
given by

A ≡ σl(θ)−σr(θ)

σl(θ)+σr(θ)
= SA(θ)P′ · n̂ , (63.18)

where σl(θ) and σr(θ) are the differential cross sec-
tions for scattering at an angle θ relative to the incident
beam axis to the left and to the right, respectively. For
elastic scattering, the polarization function SP, and the
asymmetry function SA are identical and are called the
Sherman function.

When electron exchange is studied under conditions
where other explicitly spin-dependent forces can be ne-
glected, the cross sections for scattering of polarized
electrons from polarized atoms depend on the rela-
tive orientation of the polarization vectors. According
to [63.59]

σ(θ)= σu(θ)[1− Aex(θ)Pe · PA] , (63.19)

where Pe and PA are the electron and atom polarization
vectors, and σu(θ) is the cross section for unpolarized
electrons. Hence, an “exchange asymmetry” Aex(θ) can
be defined by

Aex(θ) Pe · PA = σ↑↓(θ)−σ↑↑(θ)
σ↑↓(θ)+σ↑↑(θ) , (63.20)

where σ↑↑(θ) and σ↑↓(θ) denote the cross sections
for parallel and antiparallel polarization vectors respec-
tively. As Bartschat [63.64] points out, an asymmetry
can occur even if the scattering angle is not defined. In
this case the function Aex(θ) is averaged over all an-
gles. Differential and integral measurements of this kind
have been performed for elastic scattering, excitation
and ionization.

For heavy target systems it is necessary to consider
a combination of effects together with a description of
the target states in the intermediate or fully coupled
scheme. Consequently, the number of independent par-
ameters can become very large and the “complete”
experiments, which disentangle the various contribu-
tions to any observed asymmetry in the scattering, are
rarely possible.
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Even for very light target atoms, where conven-
tional Mott scattering is negligible, Hanne [63.61] has
shown that the “fine structure” effect, in which elec-
tron scattering from individual fine structure levels of
a multiplet occurs, can lead to polarization effects. In
fact it can be a dominating effect for inelastic collision
processes.

For full details of these various mechanisms and how
density matrix theory and other theoretical techniques

have been applied to scattering involving polarization
effects, the reader is referred to the review articles cited,
particularly Andersen et al. [63.44].

In certain cases, experiments involving spin po-
larized electron beams coupled with coincidence (or
superelastic) measurements allow one to extract the
maximum possible information for a given process, and
are termed as complete or perfect in the sense defined
by Bederson [63.65–67].

63.5 Electron Collisions with Excited Species

There are many plasma systems where electron colli-
sions with excited atoms and molecules play a prominent
role, e.g., electron beam and discharge pumped lasers,
planetary and astrophysical plasmas. Especially im-
portant are electron collisions with metastable species
because of the long lifetime, large cross section and large
amount of excitation energy associated with them. Elec-
tron collision studies and cross section data in this area
are scarce mainly due to experimental difficulties associ-
ated with the production of target beams with sufficiently
high densities of excited species. With the application
of lasers for the preparation of the excited species this
problem can be overcome. However, this approach has
not yet been extensively exploited. Reviews of this field
are given by Lin and Anderson [63.68], Trajmar and
Nickel [63.69] and Christophorou and Olthoff [63.70].

Since electron collisions with excited species nec-
essarily involve a method of preparation, they are two
step processes. Excitation and ionization in these cases
are frequently referred to as stepwise excitation and ion-
ization. The target preparation leads to mixed beams
containing both ground and excited atoms or molecules.
Preparation of excited atoms is achieved by electron im-
pact or photoabsorption. Fast metastable beams can be
produced by near-resonance charge exchange. For more
details see [63.69, 71, 72]. Electron impact excitation is
simple and effective but highly nonspecific, and charac-
terization of the composition of the mixture is difficult.

Laser excitation is more involved but very well defined.
Specific fine and hyperfine levels of individual isotopes
can be excited. When laser excitation is used in con-
junction with superelastic electron scattering, an energy
resolution of 10−8 eV is easily achieved, compared with
the 10−2 eV resolution possible in conventional electron
scattering.

Depending on the method of preparation, the popu-
lation distribution in the magnetic sublevels of the target
atoms may be uneven and some degree of polarization
(alignment or orientation) may be present. The scattering
will then be φ-dependent. For polarized target atoms the
measured electron collision cross sections do not cor-
respond to the conventional cross sections (which are
summed over final and averaged over initial experimen-
tally indistinguishable states, with equal populations in
the initial states). One, therefore, has to characterize pre-
cisely the state of the target beam in order to be able to
deduce a well defined, meaningful cross section. Polar-
ization of atoms can be conveniently controlled, in the
case of excitation with laser light, through the control of
the laser light polarization (as discussed in Sect. 63.3).
Since the atomic ensemble is coherently excited in this
case, the scattering cross sections will depend on the
azimuthal scattering angle φ. These considerations also
come into play when one tries to relate measured inelas-
tic and corresponding inverse superelastic cross sections
by the principle of detailed balancing.

63.6 Electron Collisions in Traps

A technique which has recently begun to be exploited
involves collisions with trapped atoms. Pioneered by
Lin and colleagues [63.73, 74], using Rb targets the
technique has many advantages over more conventional
techniques, not least of which is the fact that the absolute
number density of the target need not be known. Cross

section data are obtained from measurements of trap loss
and electron beam current density. Because up to half of
the atoms in the trap can be in the excited state, it is pos-
sible to make measurements of cross sections involving
excited states as well [63.75]. Measurements involving
Cs targets have also been reported [63.76].
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63.7 Future Developments

Electron-driven processes have been identified as being
of fundamental importance in a wide range of environ-
mentally and technologically significant areas [63.77].
Boudaiffa et al. [63.78] have shown that electron at-
tachment is a significant process in bond-breaking in
DNA. Electron-initiated dissociation of large molecules
can act as a catalyst for reactive chemistry in envi-
ronmentally sensitive situations. Developments in large

scale computing have opened the door to calculations
involving large molecules which could not even have
been contemplated a few years ago. Electron colli-
sions in intense laser field situations is an exciting new
field which is rapidly expanding [63.79, 80]. Electron–
cluster interactions allow one to probe how interactions
change as one progresses from the gaseous to the solid
phase.
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Ion–Atom Sca64. Ion–Atom Scattering Experiments: Low Energy

This chapter outlines the physical principles
and experimental methods used to investigate
low energy ion–atom collisions. A low energy
collision is here defined as one in which the
initial ion–atom relative velocity is less than
the mean orbital velocity 〈ve〉 of the electrons
affected by the collision. For outer or valence
electrons, 〈ve〉 ) vB, where vB = 2.1877× 108 cm/s
is the Bohr velocity. In terms of the energy of
a projectile ion, vB corresponds to 24.8 keV/N,
where N is the projectile nuclear number (e.g.,
16 for O+).

The theory and results of ion–atom scatter-
ing studies are further discussed in Chapts. 37,
38, and 47 to 51. The focus here is on the ex-
perimental techniques. Since several of these
depend on the characteristics of a specific pro-
cess, the following section presents a summary
of the physics of low-energy ion–atom colli-
sions. See Chapts. 50 and 51 for more detailed
information.
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64.1 Low Energy Ion–Atom Collision Processes

The most important and widely studied inelastic ion–
atom collision process in the low energy region is
electron capture (also referred to as charge exchange,
charge transfer or electron transfer) represented by

A+q + B → A+q−k + Bk++Q , (64.1)

where Q is the potential energy difference between the
initial and final states. For an exoergic process, Q > 0
and this energy appears as excess kinetic energy of the
products after the collision. For an endoergic process,
Q < 0 and must be provided by the initial kinetic en-
ergy of the reactants, so that the corresponding cross
section is usually small at low collision energies. Cross
sections for electron capture are appreciable even at very
low energies if Q is zero or very small (resonant or near-
resonant process). Electron capture by multiply charged
ions from atoms is predominantly an exoergic process,
for which cross sections may also be large at low ener-
gies. In this case, electrons are preferentially captured

into excited levels of A+q−k . The typical cross section
behavior for single electron capture (k= 1) by a multiply
charged ion from atomic hydrogen is shown in Fig. 64.1.
The initial ionic charge is the major determinant of the
cross section at intermediate and high collision ener-
gies, whereas the cross section at low energies depends
strongly on the structure of the transient quasimolecule
formed during the collision.

Multiple electron capture (k> 1) from multielectron
atoms occurs predominantly into multiply excited levels,
which stabilize either radiatively, leading to stabilized or
“true” double capture, or via autoionization. The latter
process is usually referred to as transfer ionization,

A+q + B → A+q−k + Bm++ (m− k)e−+Q .
(64.2)

At low energies, transfer ionization is particularly
important in collisions of highly charged ions with
multi-electron atoms.
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Fig. 64.1 Typical cross section variation with collision
energy for electron capture by a multiply charged ion
from hydrogen. The low energy behavior depends on
the structure of the quasimolecule formed during the
collision

Adiabatic potential energy curves representing the
collision of a multiply charged ion with a neutral
atom are presented in Fig. 64.2. For such collisions, the
Coulomb repulsion in the final state produces avoided
crossings of the initial and final state potential curves,
the positions of which are determined by the binding
energy of the atomic electron and electronic energy
level structure of the product ion. Generally, reac-
tion channels that are moderately exoergic produce
curve crossings at internuclear separations where there
is sufficient overlap of the electron clouds for elec-
tron capture to be a likely process. The Landau–Zener
curve-crossing model [64.1] (Chapt. 49), the classical
over-barrier model for single capture [64.2] and the
extended classical over-barrier model for multiple cap-
ture [64.3], are useful in predicting the important final
product states, and in providing a semiquantitative inter-
pretation. In the case of single electron capture by a bare
multiply charged ion (of charge q = Z) from a hydro-
gen atom, the principal quantum number np of the most
probable final ionic state is given in this model [64.2]
by

np =
√

2Z1/2+1

Z+2Z1/2
. (64.3)

2

1

0
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A+q + B
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A+q–2 + B 2+

A+q–1 + B+

A+q–2 + B 2+

Fig. 64.2 Schematic representation of potential energy
curves for the collision of a multiply charged ion Aq+ with
a multielectron atom B

The internuclear separation Rp at which the potential
curves cross in this case is given by

Rp = 2(Z−1)

Z2/n2
p−1

. (64.4)

There has been much discussion of the role of elec-
tron correlation in the multiple electron capture process.
At issue is the relative importance of the mechanism
whereby several electrons are transferred (in a cor-
related manner) at a single curve crossing compared
with that whereby single electrons are transferred suc-
cessively at different curve crossings. Experimental
evidence exists for both mechanisms, with the rela-
tive importance depending on the electronic structure
of the transient quasimolecule that is formed during the
collision. Measurements of the distribution of final ion
product electronic states provides the major insight into
such collision mechanisms [64.4].

Other inelastic ion–atom collision processes, such
as direct electronic excitation and ionization, are endo-
thermic, with relatively small cross sections that fall
off with decreasing energy below a few tens of keV/N.
Exceptions are collisions involving Rydberg atoms and
collisional excitation of fine structure transitions, for
which the required energy transfer is relatively small.
Relatively little experimental data are available for di-
rect excitation and ionization processes at low collision
energies.
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64.2 Experimental Methods for Total Cross Section Measurements

In the present context, a total cross section measurement
refers to an integration or summation over scattering
angles, product kinetic energies and (frequently) elec-
tronic states. The total cross section is usually measured
as a function of relative collision energy or velocity.

64.2.1 Gas Target
Beam Attenuation Method

The attenuation of a collimated ion beam of incident
intensity I0 in a differentially pumped gas target cell or
gas jet is related to the collision cross section σ by

I = I0 e−σNL , (64.5)

where I is the intensity after traversing an effective
length L of the target gas, and N is the number density of
target atoms. For a gas target cell with entrance and exit
apertures of diameter d1 and d2 which are much less than
the physical length z of the gas cell, L is given to a good
approximation by z+ (d1+d2)/2. This is valid under
molecular flow conditions, for which the mean free path
between collisions of target atoms is much larger than
the dimensions of the gas cell.

In designing the gas cell for measurements of to-
tal cross sections, d2 and the beam detector must be
large enough that elastic scattering may be eliminated
as a contributor to the measured attenuation. Usually
d2 is made larger than d1. Measurement of the gas pres-
sure in a target cell is usually made using a capacitance
manometer connected to the cell via a tube whose con-
ductance is much larger than that of the gas cell apertures
so that, to a good approximation, the pressure will be the
same in both the manometer and the gas cell. For gas jet
targets, the effective target thickness NL is usually de-
termined by in situ normalization to some well-known
cross section.

The quantity σ in (64.5) refers to an effective cross
section for removing projectile ions from the incident
beam, which is the sum of cross sections for all such
processes. In many cases, a single process (e.g., electron
capture) is dominant, and σ primarily describes that pro-
cess. Whether a collision process removes a projectile
ion from the reactant beam or not depends on the con-
figuration of the experiment. For example, the projectile
particle may remain physically in the beam after pass-
ing through the target, but with a changed charge due to
a collision. This would be registered as an attenuation
of the primary ion beam if the beam is charge analyzed
after the reaction.

64.2.2 Gas Target Product Growth Method

The product growth method is similar to the beam at-
tenuation method; the major difference that the growth
of reaction products is measured rather than the loss of
reactant projectiles. The products may be derived from
either the projectile beam or the gas target, or both. The
main advantage of this method is its higher degree of se-
lectivity of a specific collision process. In addition, the
reactants and products can usually be registered simul-
taneously, or in some cases in coincidence, eliminating
the sensitivity of the measurement to temporal variation
of ion beam intensity.

An important criterion is that the target gas density
be low enough that single collision conditions prevail
(i. e. that the likelihood of an ion passing through the
gas target and interacting with more than one target
atom is negligibly small). This must in general be satis-
fied in order for (64.5) to relate correctly the measured
attenuation to the collision cross section of interest, and
is critical to the product growth method [64.5]. In this
case, under single collision conditions, one may set the
number of products Ip = I0− I , and (64.5) then may be
written as

Ip

I0
= 1− e−σNL ≈ σNL . (64.6)

The approximate expression is useful for σNL & 1,
which is a requirement for single collision conditions. It
is also important that the products not be lost in a sub-
sequent collision in the gas cell, so the magnitudes of
cross sections for loss of products in the target gas must
also be considered. The products in such an experiment
may be derived from either the projectile beam or the
target gas (e.g., collection of slow product ions in a gas
cell), or from both in coincidence to enhance the speci-
ficity of the method. The method may in principle be
used to determine either total or differential cross sec-
tions, depending on the degree of selectivity of collision
products.

64.2.3 Crossed Ion
and Thermal Beams Method

Replacement of the gas target cell by an effusive ther-
mal beam is advantageous for studying collisions of ions
with reactive species such as atomic hydrogen, as well as
for collecting slow ion products. The use of accelerating
electrodes or grids for slow charged products allows co-
incident detection of fast and slow products, permitting
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measurement of ionization as well as electron-capture
cross sections. Use of an effusive source or gas jet
precludes accurate measurement of the effective target
thickness, and in situ normalization to the cross sec-
tion for some well known process is usually employed.
A comprehensive discussion of such methods as ap-
plied to collisions of multiply charged ions with atomic
hydrogen is given by Gilbody [64.6].

64.2.4 Fast Merged Beams Method

Cross sections for ion–atom collision processes at very
low energies have been measured by merging fast beams
of ions and neutral atoms [64.7], as in Fig. 64.3. In this
case, σ is determined from experimental parameters by

σ = R

ε

e

I+ I0

v+v0

|v+−v0| F , (64.7)

where R is the number of products detected per second,
ε is the product detection efficiency, e is the electronic
charge, I+ is the ion current, I0 is the flux of atoms,
v+ and v0 are the laboratory velocities of the ion and
atom beams, vrel is their relative velocity, and F is the
form factor that describes the spatial overlap of the two
beams. If the z-axis is chosen to be the direction of
propagation of the beams, the form factor has units of
length and is given by

F =
∫∫

I+(x, y, z)dx dy
∫∫

I0(x, y, z)dx dy
∫∫∫

I+(x, y, z)I0(x, y, z)dx dy dz
.

(64.8)

The two-dimensional integrals in the numerator repre-
sent the total intensities of the two beams, which are
independent of z, so that F is also independent of z.

Collision region
(50 cm)

H

H

Neutral
beam detector

H+

Faraday cup

Channel electron
multiplier

xq+

x(q–1)+

xq+

Fig. 64.3 Schematic of the merged beams arrangement
used by Havener et al. [64.7] to study low energy electron
capture collisions of multicharged ions with H atoms

The relative collision energy Erel in eV/u is given
by

Erel

µ
= E+

m+
+ E0

m0
−2

√
E+
m+

E0

m0
cos θ , (64.9)

where E+, m+ and E0, m0 are the energies and masses
of the ion and atom, respectively, and µ is their reduced
mass. For collinear merged beams, θ = 0, and Erel can
be reduced to zero by making the two beam veloci-
ties the same. In practice, the finite divergences of the
beams place a lower limit on the energy and the energy
resolution. The fast neutral atom beam is created by
neutralizing an accelerated ion beam by electron capture
by a positive ion beam in a gas, by electron detachment of
a negative ion beam either in a gas, or using a laser beam.
In gas collisions, a small fraction of the neutral beam is
produced in excited n-levels (with an n−3 distribution),
which may influence the measurements.

With fast colliding beams, the maximum effective
beam densities are invariably much smaller than the
background gas density, even under ultrahigh vacuum
conditions. For example, a typical 10 keV proton beam
with a circular cross section of diameter 3 mm and
a current I = 10 µA has an average effective density
n = I/(eAv)= 1.6 × 106 cm−3 (A is the beam cross sec-
tional area and v is its velocity). It is therefore necessary
either to modulate the beams or to use coincidence
techniques to separate signal events due to beam–beam
collisions from background events produced by colli-
sions of either beam with background gas. A typical
two-beam modulation scheme is shown in Fig. 64.4. To
eliminate the production of spurious signals, the detec-
tor gates are delayed for a short time after the beams are
switched, and the beam modulation period is made much
shorter than the pressure time constant of the vacuum
system.

Absolute electron-capture cross sections have been
measured for O5++H collisions to energies below
1 eV/N, where the attractive ion-induced-dipole (polar-
ization) interaction is expected to play a role [64.7]. The
inverse velocity dependence of the cross section in this
region is suggestive of the classical Langevin orbiting
model for ion–neutral collisions [64.8].

64.2.5 Trapped Ion Method

The trapped ion method is used to determine rate co-
efficients and effective cross sections for ion–atom
collisions at near thermal energies. The technique in-
volves storing ions in an electrostatic or electromagnetic
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Fig. 64.4 Fast two-beam modulation scheme to separate
the signal due to beam–beam collisions from events due to
beam collisions with residual gas or surfaces [64.7]

trap, and measuring the rate of loss of ions from the trap
after a small quantity of neutral gas is admitted [64.9].
Like the beam attenuation method, the trap technique

cannot distinguish different processes that cause ions
to be lost from the trap. The mean collision energy is
estimated from an analysis of the ion dynamics in the
trap.

64.2.6 Swarm Method

The swarm method, using the flowing afterglow, drift
tube or selected-ion flow tube, has been used suc-
cessfully to study ion–atom collisions at very low
energies [64.10]. Ions are injected into a homogeneous
electric field and drift through a suitable low-density
buffer gas such as helium. The ions move as a swarm
whose mean energy depends on the applied electric field
and on collisions with the buffer gas, and can be varied
from the near-thermal region to tens of eV. The method
involves measuring the additional attenuation of the di-
rected ion swarm by a known quantity of added reactant
gas, and is the major technique that has been used for
the study of ion–atom collisions at near-thermal ener-
gies [64.11]. As with ion beam attenuation and ion trap
methods, the drift tube is not selective of the process that
leads to attenuation of the ion swarm.

64.3 Methods for State and Angular Selective Measurements

Three principal methods have been developed and ap-
plied to the measurement of partial cross sections
for population of specific product electronic states in
ion–atom collisions involving electron capture [64.12].
These are based on spectroscopic measurements of
photon emission, translational energy spectroscopy and
electron emission in collisions of ion beams with gas
targets.

64.3.1 Photon Emission Spectroscopy

Since electron capture from atoms by multiply charged
ions populates excited levels, photon emission spec-
troscopy may be employed to determine state-selective
partial cross sections [64.13]. An ion beam is directed
through a gas cell or jet, and a photomultiplier or suit-
able detector registers photons analyzed by an optical
filter, a grating or a crystal spectrometer. The measured
photon signal at a given angle depends on the detection
solid angle, the polarization of the emitted radiation, the
absolute efficiencies of the dispersive device and de-
tector, and (for emission by fast ions) the lifetime of
the radiating state. Depending on the spectral region,
the photon detection system may be absolutely cali-

brated using a standard photon source or detector, or by
using a reference ion or electron beam and well estab-
lished cross section data for photon emission [64.14].
Cascading from higher populated levels must also be
considered whenever measured spectral line emission
intensities are used to infer cross sections for populating
specific energy levels. Successful state-selective cross
section measurements have been made for transitions in
the visible, VUV and X-ray spectral regions.

64.3.2 Translational Energy Spectroscopy

Translational energy loss or energy gain spectroscopy
provides a convenient method to determine the distri-
bution of final states in low energy ion–atom collisions
that are either endoergic or exoergic (Q �= 0). For ex-
ample, this method has been used extensively by the
Belfast group [64.15] to study the predominantly exo-
ergic process of electron capture by multiply charged
ions from hydrogen atoms. An ion beam with a well de-
fined energy is directed through a gas target, and the
energy of the product ion beam is energy analyzed after
the collision. Since the energy gain or loss to be meas-
ured is only a very small fraction of the initial kinetic
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energy, it is usually necessary to reduce the initial en-
ergy spread to a few tenths of an eV by decelerating
the reactant ion beam prior to energy selection by an
electrostatic analyzer. If the scattering angle of the ion
is very small, its energy change is approximately equal
to Q. Since the ion beam is attenuated by deceleration
and energy analysis, cross sections for collisionally pop-
ulating specific states are determined by normalizing the
measured product-state distributions to total cross sec-
tion data. The attainable state resolution is not as good
as for photon emission spectroscopy.

64.3.3 Electron Emission Spectroscopy

As noted in Sect. 64.1, multiple electron capture by mul-
tiply charged ions from atoms at low energies occurs
primarily into multiply excited states, which decay ei-
ther radiatively or via autoionization (with a branching
ratio) [64.4]. The latter decay pathway (transfer ioniza-
tion) provides an experimental method to determine the
product ionic states by ejected-electron spectroscopy.
Analysis of electrons emitted into the forward (ion
beam) direction (zero degree spectroscopy) offers sig-
nificant advantages for analysis of low energy electrons
with high resolution [64.16]. Since a gas jet is often
employed and absolute electron collection and spec-
trometer efficiencies are difficult to determine, some
normalization procedure is usually employed to de-
termine state-selective cross sections by this method.
Electrons and product projectile or recoil ions have also
been detected in coincidence to increase the specificity
of the method.

64.3.4 Angular Differential Measurements

The measurement of angular distributions of scattered
ions in low energy ion–atom collisions has been facil-
itated by the availability of position-sensitive particle
detectors consisting of a microchannel plate and a re-
sistive or segmented anode [64.17]. The method for

processes that have forward-peaked angular distribu-
tions involves directing a highly collimated ion beam
through a gas target cell, and counting the scattered
projectile ions on a position-sensitive particle detector.
Product ions produced by electron capture can be se-
lected by the use of electrostatic retarding grids mounted
immediately in front of the detector, to reject the primary
ion beam.

64.3.5 Recoil Ion Momentum Spectroscopy

Perhaps the most significant experimental development
of the last decade, cold target recoil-ion momentum
spectroscopy (COLTRIMS) [64.18] has been made pos-
sible by advances in position-sensitive particle detection.
This technique, based on momentum imaging and also
called a “reaction microscope”, has yielded important
new insights into the dynamics of ion–atom collision
processes [64.19] as well as other types of interactions
involving cold atoms and molecules. The method is
particularly suited to studies of charge-changing and
molecular fragmentation processes.

In this method, an ion beam intersects a cold su-
personic atomic beam in an interaction volume within
which small electric and magnetic fields are imposed in
order to guide slow ions and ejected electrons to fast
position-sensitive detectors. The charge and the trans-
verse and longitudinal components of the momentum
of the slow (recoil) ion are measured by a combination
of position and time-of-flight measurements, permitting
the Q-value of the collision and the final electronic states
of the projectile and recoil ions to be uniquely deter-
mined. The position measurement additionally provides
information about the angular scattering during the colli-
sion. Coincident measurement of the scattered projectile
ion and determination of its charge state by electro-
static deflection, and/or time-of-flight measurements of
ejected electrons have provided new insights into com-
plex multielectron processes occurring in low-energy
ion–atom collisions.
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Ion–Atom Col65. Ion–Atom Collisions – High Energy

This chapter deals with inelastic processes which
occur in collisions between fast, often highly
charged, ions and atoms. Fast collisions are here
defined to be those for which V/ve ≥ 1, where V is
the projectile velocity and ve the orbital velocity
of this electron. For processes involving outer
shell target electrons, this implies V � 1 a.u., or the
projectile energy � 25 keV/a.m.u. For inner shell
electrons, typically, V � Z2/n a.u., where Z2 is the
target nuclear charge and n the principal quantum
number of the active electron. A useful relationship
is V = 6.35

√
E/M, where V is in a.u., E is in MeV, and

M is in a.m.u. Fast collisions involving outer shell
processes can be studied using relatively small
accelerators, while those involving inner shell
processes require larger van de Graaffs, LINACs, etc.
Because the motion of the inner shell electrons
is dominated by the nuclear Coulomb field of
the target, and because transitions involving
these electrons take place rather independently
of what transpires with the outer shell electrons,
it has proven somewhat easier to understand one
electron processes involving inner shell electrons.
Thus, for a long time, a great deal of the work
on fast ion–atom collisions has concentrated
on inner shell processes involving heavy target
atoms. However, more recently, new experimental
techniques have led to a shift of this focus to

65.1 Basic One-Electron Processes ................ 951
65.1.1 Perturbative Processes ............... 951
65.1.2 Nonperturbative Processes ......... 955

65.2 Multi-Electron Processes ...................... 957

65.3 Electron Spectra in Ion–Atom Collisions . 959
65.3.1 General Characteristics............... 959
65.3.2 High Resolution Measurements ... 960

65.4 Quasi-Free Electron Processes
in Ion–Atom Collisions ......................... 961
65.4.1 Radiative Electron Capture ......... 961
65.4.2 Resonant Transfer and Excitation 961
65.4.3 Excitation and Ionization ........... 961

65.5 Some Exotic Processes .......................... 962
65.5.1 Molecular Orbital X-Rays ............ 962
65.5.2 Positron Production

from Atomic Processes ............... 962

References .................................................. 963

inelastic processes involving light target atoms.
Furthermore, present investigations go beyond
the one-electron picture to include the influence
of the electron–electron interaction. The present
chapter outlines some of the developments in
this area over a very active past few decades. The
literature is vast, and only a small sampling of
references is given. Emphasis is on experimental
results (for the theory see Chapts. 45–57)

65.1 Basic One-Electron Processes

65.1.1 Perturbative Processes

Inner Shell Ionization of Heavy Targets
For ion–atom collisions involving projectile and target
nuclear charges Z1 and Z2 respectively, the param-
eters η1 =

[
�V/

(
Z1e2)

]2 and η2 =
[
�ve/

(
Z2e2

)]2 are
useful in characterizing the strength of the interaction
between Z1, Z2, and the target electron. If η2 & η1,
(i. e., Z1/Z2 & V/ve), the effect of the projectile on the
target wave function can be treated perturbatively. Per-
turbation treatments of inner shell ionization by lighter
projectiles have been extensively studied and reviewed

[65.1–8]. Two well-known formulations have been used:
the plane wave Born approximation (PWBA) [65.1–4],
and the semiclassical approximation (SCA) [65.9, 10].
The former represents the nuclear motion with plane
waves, while the latter is formulated in terms of the
impact parameter b with the nuclear motion treated clas-
sically. For straight line motion of the nuclei, the results
are equivalent [65.11]. The total cross section for ioniz-
ing the K-shell of a target of charge Z2 by a projectile
of charge Z1 is given within the PWBA by

σi =
(
8πZ2

1/Z4
2η2

)
f(θ2, η2) a2

0 , (65.1)
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where θ2 = 2ukn2/Z2
2 and uk is the target binding en-

ergy. The function f rises rapidly for V< ve, reaching
a value near unity near V = ve and falling very slowly
thereafter. Tables of f for K- and L-shell ionization
are given in [65.3, 4]. Figure 65.1 shows a compari-
son of experimental data for K vacancy production by
protons with PWBA calculations, and with a classical bi-
nary encounter approximation [65.12] for a large range
of proton data [65.6]. For larger Z1, corrections to the
PWBA and SCA must be made for the effective increase
of uk due to the presence of the projectile during the
ionization, for nuclear projectile deflection, for relativis-
tic corrections, and for the polarization of the electron
cloud, as reviewed in [65.13–17]. Total cross section
measurements for inner shell vacancy production in the
perturbative region are reviewed in [65.15, 16].

In the SCA treatment, the heavy particle motion
is taken to be classical, and the evolution of the elec-
tronic wave function under the influence of the projectile
field is calculated by time-dependent perturbation the-
ory. The assumption of classical motion is valid if the

10–19

10–20

10–21

10–22

10–23

10–24

10–25

10–3 10–2 10–1 100 101

U2
k σk /Z1

2
 (keV2 cm2)

E/λUk

Fig. 65.1 Comparison of experimental cross sections for
K-shell vacancy production with PWBA (dashed) and bi-
nary encounter (solid) theories. Uk is the target binding
energy in keV andλ the projectile/electron mass ratio [65.6]

Bohr parameter K = 2Z1 Z2e2/(�V ) is much larger than
unity [65.18]. If this condition is satisfied, the projec-
tile scattering angle can be associated with a particular b
through a classical deflection function. For K-shell ion-
ization, the action occurs typically at sufficiently small b
that a screened Coulomb potential is sufficient for cal-
culating the deflection. In the absence of screening,
θ = r0/b, where r0 = Z1 Z2e2/E with θ and E expressed
in either the laboratory or c.m. system. Calculations for
K- and L-shell ionization have been carried out [65.10].
The typical ionization probability P(b) for V ∼ ve and
b = 0 is P(0)∼ (Z1/Z2)

2. For V< ve, P(b) decreases
with increasing b with a characteristic scale length of
rad = V/ω, the adiabatic radius, whereω is the transition
energy. For V> ve, P(b) cuts off near the K-shell radius
of the target. A more sophisticated relativistic SCA pro-
gram has been written [65.19], and is widely used for
calculating P(b), cross sections, and probabilities differ-
ential in final electron energy and angle. Experimentally,
the probability P(b) for inner shell ionization can be
determined from

P(b)= 1

εω∆Ω

(
Y

N[θ(b)]
)
, (65.2)

where Y is the coincidence yield for the scattering of
N(θ) ions into a well-defined angle θ(b) accompanied
by X-ray (or Auger electron) emission with fluorescence
yieldω into a detector of efficiency ε and solid angle ∆Ω

[65.20]. The necessary ω can be obtained from calcu-
lations for neutral targets [65.21] (Chapt. 62). However,
they must be corrected for changes due to extensive outer
shell ionization during the collision. Such corrections are
particularly important for targets with low fluorescence
yields, for Z2 below 30, and for collisions in which the
L-shell is nearly depleted in the collision [65.15,16]. Val-
ues of P(b) have been measured for many systems and
generally show good agreement (better than 10%) with
the SCA for fast light projectiles such as protons, with
increasing deviation as higher Z1 or slower V are used
[65.22]. Examples of P(b) for K vacancy production for
several systems are shown in Fig. 65.2, showing the evo-
lution away from the SCA as the collision becomes less
perturbative.

Ionization of Light Target Atoms
Ionization of light target atoms by bare ion impact is
a particularly suitable process to study the atomic few-
body problem. In the case of an atomic hydrogen target
the collision represents a three-body system, i. e., the
simplest system for which the Schrödinger equation is
not analytically solvable. However, because of the ex-
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Fig. 65.2 P(b) for K-shell vacancy production versus b/rad

for several systems (see text). The ratio V/ve is desig-
nated as “V” in this figure. For protons p, agreement with
the SCA theory is found [65.10], while for higher Z1/Z2,
P(b) moves to larger impact parameters as one leaves the
perturbative region [65.22]

perimental difficulties associated with atomic hydrogen,
measurements with this target species are rare [65.23]
and experimental studies have focused on helium tar-
gets. Here, the collision still constitutes a relatively
simple four-body system. With regard to the few-body
problem, studies of ionization processes have the im-
portant advantage that, in contrast to pure excitation and
capture processes, the final state involves at least three
independently moving particles.

Detailed information about the few-body dynamics
in a collision can be extracted from multiply differential
measurements. This can be accomplished by measur-
ing the kinematic properties (e.g., energy, momentum,
ejection angle) of one or more of the collision frag-
ments. The first experimental multiply differential single
ionization cross sections were obtained by studying
the ionized electron spectra as a function of energy
and ejection angle. Such studies were reviewed by

Rudd et al. [65.24] and are discussed in more detail
in Sect. 65.3. More recently, complementary multiply
differential data were obtained by measuring projectile
energy-loss spectra as a function of scattering angle in
p+He collisions [65.25, 26].

A comprehensive picture of ionizing collisions can
be obtained from kinematically complete experiments.
In such a study the momentum vectors of all collision
fragments need to be determined. However, in the case
of single ionization it is sufficient to directly measure
the momentum vectors of any two particles in the final
state; the third one is then readily determined by mo-
mentum conservation. For ionization by electron impact,
this has been accomplished by momentum-analyzing
the scattered and the ionized electrons (for a review
see [65.27]). For ion impact, this approach is difficult
because of the very small scattering angles and energy
losses (relative to the initial collision energy) resulting
from the large projectile mass. Consequently, the only
kinematically complete experiments involving a direct
projectile-momentum analysis were reported for light
ions at relatively low projectile energies [65.28]. For
heavy-ion impact at high projectile energies, in con-
trast, the complete determination of the final space state
is only possible through a direct measurement of the
ionized electron and recoil-ion momenta [65.29].

The technology to measure recoil-ion momenta with
sufficient resolution, and therefore to perform kinemat-
ically complete experiments for heavy-ion impact, has
only become available over the last decade (for re-
views, see [65.30–32]). Figure 65.3 shows measured
(top) and calculated (bottom) three-dimensional angu-
lar distributions of electrons ionized in 100 MeV/a.m.u.
C6++He collisions for fully determined kinematic con-
ditions [65.33]. The arrows labeled po and q indicate
the direction of the initial projectile momentum and the
momentum transfer defined as the difference between
p0 and the final projectile momentum pf. This plot is
rich in information about the dynamics of the ioniza-
tion process. The main feature is a pronounced peak in
the direction of q. It can be explained in terms of a bi-
nary interaction between the projectile and the electron,
i. e., a first-order process, and is thus dubbed the “Bi-
nary Peak”. A second, significantly smaller, structure is
a contribution centered on the direction of−q (called the
“Recoil Peak”). This has been interpreted as a two-step
mechanism where the electron is initially kicked by the
projectile in the direction of q and then backscattered by
the residual target ion by 180◦. Although this process in-
volves two interactions of the electron, it is nevertheless
a first-order process in the projectile–target atom inter-
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Fig. 65.3 Three-dimensional angular distribution for fully
determined kinematic conditions of electrons ionized in
100 MeV/a.m.u.C6++He collisions. Top, experimental
data; bottom, CDW calculation (see text)

action. Therefore, as expected for this very large value
of η1 = 100 (in a.u.), the ionization cross sections are
dominated by first-order contributions.

The basic features of the data in Fig. 65.3 are
well reproduced even by the relatively simple first
Born approximation (FBA). Furthermore, the calcula-
tion shown in the bottom of Fig. 65.3, which is based
on the more sophisticated continuum distorted wave ap-
proach (CDW)([65.35–37] see also Chapt. 52), yields
practically identical results to the FBA. In the CDW
method, higher-order contributions are accounted for
in the final-state scattering wavefunction. Apart from
this good overall agreement, a closer inspection of the
comparison between experiment and theory also reveals
some significant discrepancies. While in the calculation
the Binary and Recoil peaks are sharply separated by
a minimum near the origin, in the data this minimum
is almost completely filled up giving rise to a “ring-
like” shape of the recoil peak. This was explained by
a higher-order ionization mechanism involving an in-
teraction between the projectile and the residual target

ion [65.33,37,38]. Although the contribution of this pro-
cess to the total cross section is negligible, it is a very
surprising result that for selected kinematic conditions
higher-order processes can be important even at large
projectile energies. A sobering conclusion of recent re-
search on ionization of light target atoms is that even well
inside the perturbative regime the atomic few-body prob-
lem is not nearly as well understood as was previously
assumed based on studies for restricted collision geom-
etries. At large perturbation, the lack of understanding
is dramatic [65.39].

Excitation
Inner shell excitation can be treated within the same
perturbative framework, which leads to a cross section
given in terms of the generalized oscillator strength for
the transition [65.40–42]. For inner shell vacancy pro-
duction by light projectiles, the excitation is generally
much smaller than the ionization, since the strongest os-
cillator strengths are to low-lying occupied orbitals, as
reviewed by Inokuti [65.41]. Excitation cross sections
can be deduced from photon production cross sections
and from inelastic energy loss experiments. An example
of the cross section for excitation of the n = 2 level of H
by protons, measured by the latter technique, is shown
in Fig. 65.4 [65.34].

0 10 20 30 40
Energy loss (eV)

Contributions of individual terms in dσ/d�

σ (n = 4)

σ (n = 3)

Continuum terms
σ (n = 2)

Fig. 65.4 Energy loss spectrum for 50 keV protons in
atomic hydrogen, showing excitation to discrete states in
H proceeding smoothly into ionization at the continuum
limit [65.34]
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Capture
As Z1/Z2 is raised, the probability for direct trans-
fer of inner shell electrons from projectile to target
becomes competitive with, and can even exceed, that
for ionization of the target electron into the continuum.
The first-order perturbation treatment for electron cap-
ture, given by Oppenheimer [65.43] and by Brinkman
and Kramers [65.44] (OBK) ([65.11], p. 379) results in
a cross section per atom

σOBK = 29π(Z1 Z2)
5/5 V 2ν5n3β5 a2

0 , (65.3)

from a filled shell ν to all final states n, where

β = 1

4
V 2

[
V 4+2V 2(Z2

2/ν
2+ Z2

1/n
2)

+ (
Z2

2/ν
2− Z2

1/n
2)2

]
. (65.4)

Both the PWBA/SCA and the OBK cross sections
maximize near the matching velocity, but the OBK falls
off much more strongly with increasing V beyond this,
eventually falling as V−12, while the ionization cross
section only falls as V−2 ln V . The OBK amplitude for
capture is simply the momentum space overlap of the
initial wave function with the final state wave func-
tion, where the latter is simply a bound state on the
projectile but moving at a velocity V relative to the
initial bound state. The integral is done only over the
transverse momentum, since the longitudinal momen-
tum transfer is fixed by energy conservation [65.11].
This capture amplitude thus depends heavily on there
being enough momentum present in the initial and/or
final wave function to enable the transfer, and the loss of
this match is what leads to the steep decrease in the OBK
cross section above velocity matching. Cross sections
for K-shell capture have been measured by detection of
K Auger electrons and K X-rays in coincidence with
charge capture by the projectiles [65.22, 45, 46]. On the
basis of these and many other data on electron cap-
ture, the OBK is a factor of approximately three too
large [65.45–48]. This factor comes from a fundamental
failure of first-order perturbation theory for electron cap-
ture. As pointed out already in 1927 by Thomas [65.49],
who proposed a classical two-collision mechanism for
capture, it is essential that the electron interacts with
both nuclei during the collision in order to be captured
(Chapt. 57). In quantum theories, this corresponds to the
fundamental need to include second-order terms (and
higher) in the capture amplitude. In the limit of large V ,
the second-order cross section decreases more slowly
than the OBK term, as V−10, and thus is asymptotically
larger than the first-order term [65.50]. At large V , the

coefficient of the V−12 term, the dominant one at most
experimentally reachable V , is 0.29 times the OBK cross
section when the theory is carried out to second-order
in the projectile potential [65.50,51]. Roughly speaking,
this provides an explanation for the factor of three. Much
more sophisticated treatments of high velocity capture
are now available [65.52–60]. The underlying role of
the second-order scattering process was confirmed ex-
perimentally by the detection of the Thomas peak in the
angular distribution of protons capturing electrons from
He and H [65.61, 62] (Chapt. 57).

In spite of the basic importance of second-order
amplitudes in perturbative capture, the OBK gives an
excellent account of the relative contributions from and
to different final shells over a large range of V above ve,
and is thus, when appropriately reduced, still useful as an
estimate for perturbative capture cross sections between
well defined ν and n for large V .

For electron capture, as in the case of ionization (see
previous section), the development of recoil-ion mo-
mentum spectroscopy (RIMS) has enabled much more
detailed studies of the collision dynamics. The trans-
verse (perpendicular to the beam direction) recoil-ion
momentum component p⊥ reflects the closeness of the
collision both relative to the target nucleus and the elec-
trons. The longitudinal (parallel to the beam direction)
component pz , on the other hand, is related to the internal
energy transfer Q in the collision by (in a.u.)

pz =−Q/V −nV/2 , (65.5)

where n is the number of captured electrons. A meas-
urement of pz is therefore equivalent to a measurement
of Q. The advantage over measuring Q from the projec-
tile energy loss is that at large collision energies a much
better energy resolution is achievable. A sample Q meas-
urement with RIMS is shown in Fig. 65.5 [65.63]. Very
recently, RIMS was applied to study capture processes
in collisions with an atomic hydrogen target [65.64].
This could be an important breakthrough in advancing
our understanding of the atomic few-body problem as it
opens the possibility to perform kinematically complete
experiments on the true three-body system X Z++H,
where X can be any bare projectile.

65.1.2 Nonperturbative Processes

Fano–Lichten Model
When the collision becomes increasingly perturba-
tive, either due to a decreased V or increased Z1/Z2,
higher-order effects become generally more impor-
tant. One approach to account for such contributions
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Fig. 65.5 Longitudinal momentum spectrum of recoil ions
from 0.25 MeV He2+ capturing a single electron from a cold
He target, showing clear resolution of capture to n = 1 from
that which leaves target or projectile excited [65.63]

is the continuum distorted wave–eikonal initial state
(CDW-EIS)model ([65.35, 36, 65], see also Chapt. 52
and Sect. 65.1.1). The range of validity of CDW-EIS is
roughly given by Z1/V 2 & 1 [65.35]. Therefore, if the
perturbation is large due to the projectile charge, the col-
lision may still be treated perturbatively provided that
the collision energy is sufficiently large. Otherwise, the
perturbation treatment is replaced by a molecular orbital
treatment.

Fano and Lichten [65.67] pointed out that the ra-
tio V/ve can be small for inner orbitals even for V
of several a.u., and thus an adiabatic picture of the
collision holds. K vacancy production cross sections
become much larger than the perturbation treatments
above predict and extend to much larger b. In the mo-
lecular orbital picture, the collision system is described
in terms of time-dependent molecular orbitals (MO)
formed when the inner shells of the systems overlap.
Vacancy production occurs due to rotational, radial, and
potential coupling terms between these orbitals during
the collision. The independent electron model is used,
but the results in any specific collision are quite sen-
sitive to the occupation numbers (or vacancies) in the
initial orbitals. These are very difficult to control in
ion–atom collisions in solids and even problematic in
gases, since outer shell couplings can produce vacan-
cies at large internuclear distances which then enable
transfers at smaller distances. Numerous reviews of
the subject are available, including [65.68–72]. The
most famous MO ionization mechanism involves the
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Fig. 65.6 Schematic correlation diagram for the Cl−Ar
system, indicating the rotational coupling and radial coup-
lings important for K vacancy production and the 4fσ orbital
whose promotion leads to L vacancy production [65.66]

promotion of the 4fσ orbital in a symmetric collision
(Fig. 65.6), which promotes both target and projectile
L electrons to higher energies where they are easily
lost to the continuum during the collision. There are
now many treatments of inner shell vacancy produc-
tion mechanisms based on MO expansions (Chapts.
50, 51). For the case of K vacancy production in
quasisymmetric collisions, an important MO mecha-
nism is the transfer of L vacancies in the projectile
to the K-shell of the target through the rotational cou-
pling between 2pπ and 2pσ orbitals which correlate
to the L- and K-shells respectively of the separated
systems (Fig. 65.6) [65.73, 74]. The process can be
dynamically altered by the sharing at large b be-
tween L vacancies of target and projectile through
a radial coupling mechanism [65.75, 76]. This shar-
ing mechanism can also give rise to the direct transfer
of K vacancies from projectile to target (KK shar-
ing). In symmetric systems, the KK sharing results in
an oscillation of the K vacancy back and forth be-
tween target and projectile during the collision, and
leads to an oscillatory behavior of the transfer prob-
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ability with V and b [65.77, 78]. Both of the above
vacancy production mechanisms are electron transfer
processes rather than direct ionization processes, in that
no inner shell electron need be liberated into the con-
tinuum. Between the perturbation region and the full
MO region the importance of transfer increases rela-

tive to ionization. While the MO correlation diagrams
and mechanisms are qualitatively useful, actual close
coupling calculations for both inner and outer shell
processes are often carried out using atomic orbitals
instead of molecular orbitals, as well as other basis
sets (Chapts. 50, 51).

65.2 Multi-Electron Processes

In a single collision between multi-electron partners,
two or more electrons may be simultaneously excited
or ionized. The electric fields created during a violent
ion–atom collision are so large that the probability of
such multi-electron processes can be of order unity.
While there are many similarities between ion–atom col-
lisions and the interaction of atoms with photons (X-rays
or short laser pulses) or electrons, the dominance of
multi-electron processes is very much less common in
the photon and electron cases. As an example, when
a K-shell electron is removed from a target atom by the
passage of a fast highly charged ion through its heart,
the probability that L-shell electrons will be removed
at the same time can be large. This gives rise to target
X-ray and Auger-electron spectra which are dominated
by satellite structure [65.20]. For example, the spectrum
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Fig. 65.7 K X-ray spectrum of Ti for various projectiles, showing dominance of multi-electron transitions when
K vacancies are collisionally produced by heavily ionizing projectiles

(
16O beam

)
[65.79]

of X-rays from Ti bombarded by 30 MeV oxygen shows
that the production of the K vacancy is accompanied
by multiple L vacancy production, and that the domi-
nant K X-rays are those of systems which are missing
several L electrons [65.79] (Fig. 65.7).

When a gas target is used, the recoil target ion is
heavily ionized and/or excited electronically without re-
ceiving much translational kinetic energy. In the impulse
approximation the transverse momentum ∆p⊥ received
by the target from a projectile passing at impact par-
ameter b is given in a.u. by ∆p⊥ = 2Z1 Z2/bV . This
expression ignores the exchange of electronic trans-
lational momentum but gives a good estimate. The
resulting recoil energies are typically quite small, rang-
ing from thermal to a few eV. This subject has been
reviewed in [65.63,80]. These slow moving recoils have
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been used to provide information about the primary col-
lision dynamics, and as secondary highly charged ions
from a fast-beam-pumped ion source. Such an ion source
has, for moderately charged ions, a high brightness
and has been used extensively for energy-gain measure-
ments. The primary recoil production process is difficult
to treat without the independent electron model, and
even in this model the nonperturbative nature of the col-
lision makes the theory difficult. The most successful
treatments have been the CTMC (see Chapt. 58) and
a solution of the Vlasov equation [65.64].

Studies of many-electron transitions in collisions
of bare projectiles with a He target are particularly
suitable to investigate the role of electron–electron cor-
relation effects because such collisions represent the
simplest systems where the electron–electron inter-
action is present. Such studies have been performed
extensively for a variety of processes, such as dou-
ble ionization, transfer-ionization, double excitation,
transfer-excitation, or double capture (for reviews
see [65.82–84]). It is common to distinguish (somewhat
artificially) between such correlations in the initial state,
the final state, and during the transition (dynamic cor-
relation). From a theoretical point of view, the biggest
challenge is to describe electron–electron correlation
effects and the dynamics of the two-center potential
generated by the projectile and the target nucleus si-
multaneously with sufficient accuracy.

In the case of double ionization, an experimental
method, based on the so-called correlation func-
tion [65.81], was developed to analyze electron–electron
correlations independently of the collision dynamics.
Here, a measured two-electron spectrum (for example
the momentum difference spectrum of both ionized elec-
trons) is normalized to the corresponding spectrum one
would obtain for two independent electrons. An example
of such a correlation function R is shown in Fig. 65.8 for
three very different collision systems (η1 ranging from
0.05 to 100 and η2 from 0.01 to 0.5 in a.u.). The similar-
ity in these three data sets illustrates that R is remarkably
insensitive to the collision dynamics. Rather, the shape
of R is determined predominantly by correlations in
the final state [65.81, 85]. However, for selected kin-
ematic conditions, R can also be sensitive to initial-state
correlations [65.86]. Clear signatures of initial-state cor-
relations were found in the recoil-ion momentum spectra
for transfer-ionization [65.87].

Early attempts to identify dynamic correlations were
based on measurements of the ratio of double to single
ionization cross sections [65.88, 89]. From such stud-
ies, it was found that at small V double ionization

0.8

0.4

0.0

–0.4

–0.8

0 2 4 6 8

R

	p1–p2	(a. u.)

100 MeV/amu C6+ + He
3.6 MeV/AMU Au53++ He
3.6 MeV/AMU Au53++ Ne

Fig. 65.8 Correlation function R for double ionization in
the collisions indicated in the legend as a function of the
momentum difference between the two electrons [65.81].
R is defined as R = Iexp/IIEM−1, where Iexp is the directly
measured momentum spectrum and IIEM the one obtained
for independent electrons

is dominated by an uncorrelated mechanism involving
two independent interactions of the projectile with both
electrons. In contrast, at large V the double to single
ionization ratio asymptotically approaches a common
value for all collision systems [65.90]. This is indica-
tive of the dominance of first-order double ionization
mechanisms, where the projectile interacts with only
one electron and the second electron is ionized through
an electron–electron correlation effect. This may either
be a rearrangement process of the target atom adjusting
to a new Hamiltonian (shake-off, an initial-state cor-
relation), or a direct interaction with the first electron
(i. e., dynamic correlation). However, a recent nearly
kinematically complete experiment on double ioniza-
tion in p + He collisions revealed that even at large V
higher-order contributions are not negligible [65.91].
In Fig. 65.9 the ejection angles of both electrons are
plotted against each other for almost completely deter-
mined kinematics. For comparison, the bottom part of
Fig. 65.9 shows the corresponding spectra for electron
impact at the same V [65.92]. For both projectiles, the
basic features of these spectra are determined by the
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Fig. 65.9a–f Differential double ionization cross sections in 6 MeV p+He (top) and 2 keV e−+He (bottom) collisions
as a function of the polar emission angle of both electrons, which are emitted into the scattering plane. The electrons have
equal energy and data are shown for small (left), medium (center), and large momentum transfers (right) [65.91]

electric dipole selection rules, which again is indica-
tive of dominating first-order contributions. However,
a closer inspection of the comparison between the pro-
ton and electron impact data shows some non-negligible

differences. Since in a first-order treatment the cross sec-
tions should be identical for both projectile species, this
demonstrates that higher-order contributions cannot be
ignored.

65.3 Electron Spectra in Ion–Atom Collisions

65.3.1 General Characteristics

An ionizing collision between a single ion and a neutral
atom ejects electrons into the continuum via two major
processes. Electrons ejected during the collision form
broad features or continua, and are traditionally referred
to as delta rays; electrons ejected after the collisions
from the Auger decay of vacancies created during the
collision form sharp lines in the spectra. The distribu-
tions of energy and angle of all electrons determine the
electronic stopping power and characteristics of track
formation of ions in matter (Chapt. 91), and the study

of these distributions in the binary encounter of one ion
with one atom form the basis of any detailed understand-
ing of these averaged quantities. Figure 65.10 shows
a typical electron spectrum from the collision of a fast
O ion with O2 [65.93, 94]. Electrons from the projectile
can be identified in the cusp peak (electron loss, P) or
ELC, and the O-K-Auger (P) peak. Electrons from the
target include the soft (large b) collision electrons (T)
which are ejected directly by Coulomb ionization by
the projectile, the binary collision (or encounter) elec-
trons coming from hard collisions between projectile and
quasifree target electrons, and the target O-K-Auger (T)
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electrons. The electron loss peak is widely called the
cusp peak because the doubly differential cross section
in the laboratory d2σ/dE dΩ becomes infinite, in prin-
ciple, if it is finite in the projectile frame. In general, this
peak may also contain capture to the continuum. All of
these features have been heavily studied; some reviews
are [65.95, 96]. Capture to the continuum [65.96] is an
extension of normal capture into the continuum of the
projectile, and is not a weak process. Both it and ELC
produce a heavy density of events in the electron mo-
mentum space centered on the projectile velocity vector,
and thus appear strongly only at or near zero degrees in
the laboratory and at ve ) V .

The binary encounter electrons at forward angles
occur at ve ∼= 2V . For relatively slow collisions it was
found that the ELC and binary peaks are just part of
a more general and complex structure of the electron
spectra [65.98]. Additional peaks in the forward direc-
tion were found for ve ∼= nV , where n in principle can be
any integer number. These structures reflect a “bounc-
ing back and forth” (known as Fermi shuttle) between
the projectile and the target core before the electron
eventually gets ejected from the collision system.

In electron spectra for molecular targets, additional
structures were found that were not observed for atomic
targets [65.99]. These were initially interpreted as an
interference effect. The electronic wavefunction has
maxima at the atomic centers of the molecule. Since
in the experiment it cannot be distinguished from which
center the electron is ionized, both possibilities have
to be treated coherently. However, more recent studies
showed that at small electron energies the structures in
the electron spectra reflect vibrational excitation of the
molecule [65.100].

65.3.2 High Resolution Measurements

The Auger electron spectra provide detailed informa-
tion about inner shell vacancy production mechanisms.

Fig. 65.11 High resolution Auger electron spectrum from
H-like B on H2, showing resolved lines from doubly ex-
cited projectile states lying on top of a continuum due to
electron elastic scattering [65.97]. The bottom part shows
an R-matrix calculation which does not account for the ex-
perimental resolution. The smooth line in the upper figure is
the R-matrix calculation convoluted with the experimental
spectrometer resolution
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When coupled with fluorescence yields, Auger elec-
tron production probabilities and cross sections can be
converted into the corresponding quantities for vacancy
production [65.15, 95]. This is best done when suffi-
cient resolution can be obtained to isolate individual
Auger lines. The Auger spectra in ion–atom collisions
are often completely different from those obtained from
electron or photon bombardment because of the multiple
outer shell ionization which attends the inner shell va-
cancy producing event, in close analogy to X-ray spectra
(see previous section). Projectile Auger electron spectra
suffer from kinematic broadening due to the finite solid

angle of the spectrometer and velocity of the emitter, but
at 0◦ to the beam this problem vanishes, and the reso-
lution in the emitter frame is actually enhanced by the
projectile motion, such that for electrons with eV ener-
gies in the projectile frame, resolutions in the meV region
are possible [65.101,102]. The highest resolution Auger
lines from ion–atom collisions has been done on the pro-
jectiles. A sample spectrum is shown in Fig. 65.11. From
such high resolution spectra, one-electron processes in
which one electron is excited, captured or ionized can
be distinguished from the configuration of the emitting
state.

65.4 Quasi-Free Electron Processes in Ion–Atom Collisions

At sufficiently low V , those electrons not actively in-
volved in a transition play only a passive role in
screening the Coulomb potential between the nu-
clei, and thereby create a coherent effective potential
for their motion. However, at high V the colliding
electrons begin behaving as incoherent quasifree par-
ticles capable of inducing transitions directly via the
electron–electron interaction. Such processes signal
their presence through their free-particle kinematics,
as if the parent nucleus were not present. For exam-
ple, a projectile ionization process requiring energy U
has a threshold at 1

2 meV 2 )U , in collisions with light
targets where the quasifree picture is meaningful. The
threshold is not sharp, due to the momentum dis-
tribution or Compton profile of the target electrons.
Within the impulse approximation, the cross section
for any free electron process can be related to the cor-
responding cross section for the ion–atom process by
folding the free electron cross section into the Compton
profile [65.97, 103, 104].

65.4.1 Radiative Electron Capture

The first quasifree electron process to be observed was
radiative electron capture (REC), the radiative capture
of a free electron by an ion. Conservation of energy
and momentum is achieved by the emission of a photon
which carries away the binding energy. The cross sec-
tion exceeds that for bound state capture at high V .
Radiative electron capture was observed through the
X-ray spectra from fast heavy projectiles for which the
electrons of light targets appear to be ‘quasi-free’. The
corresponding free electron process was seen [65.105]
and has recently been heavily studied in EBIT [65.106],
cooler [65.107], and storage rings [65.108]. Total cross

sections for REC have also been deduced from meas-
ured total capture cross sections at large V where REC
dominates bound state capture [65.109]. At high vel-
ocities, the cross section for radiative capture to the
K-shell of a bare projectile is given approximately
by

σn =
[
n/
(
κ−2+κ−4)]× 2.1 × 10−22 cm2 , (65.6)

where [65.110] κ =√
EB/E0, EB is the binding en-

ergy of the captured electron, E0 the energy of the
initial electron in the ion frame and n the princi-
pal quantum number of the captured electron. The
theory seems to be in good agreement with experi-
ment for capture to all shells of fast bare projectiles,
although a small unexplained discrepancy between
theory and experiment exists for capture to the
K-shell [65.108].

65.4.2 Resonant Transfer and Excitation

Dielectronic recombination in electron–ion collisions
is the process whereby an incident electron excites
one target electron and, having suffered a correspond-
ing energy loss, drops into a bound state on the
projectile (Chapt. 55). If the doubly excited state so
populated decays radiatively, resonant radiative recom-
bination is achieved (DR); if it Auger decays, resonant
elastic scattering has occurred. The process has long
been known to be important as a recombination pro-
cess in hot plasmas [65.111], but was not observed
in the laboratory until 1983 [65.112–114]. The corres-
ponding ion–atom process, known as resonant transfer
and excitation (RTE) was seen a bit earlier by Tanis
et al. [65.115]. (See [65.116, 117] for reviews of both
DR and RTE.)
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65.4.3 Excitation and Ionization

Excitation and ionization of inner shells of fast
projectile ions by the quasifree electrons of light tar-
gets (usually He or H2) have been identified and
studied. This process competes with excitation and
ionization by the target nucleus [65.118–120], and
special signatures must be sought to distinguish the
processes. In the case of excitation, the e–e ex-
citation populates states through the exchange part
of the interaction which is excluded for the nu-
clear excitation, and this has been used to separate
this mechanism [65.121]. For ionization, enhance-
ments of the ionization cross section above the
Born result for nuclear ionization [65.122], coinci-
dent charge exchange measurements [65.123], and

projectile [65.124] and recoil ion momentum spec-
troscopy [65.125, 126] have been used to distinguish
the two processes. Rapid development in the produc-
tion of good sources of beams of highly charged ions
(EBIS/T, ECR; see [65.127]) have made these stud-
ies possible. Continued study of this field in heavy
ion storage rings is now achieving resolutions of
meV and opening broad new opportunities for data
of unprecedented high quality for electron-ion colli-
sions [65.128].

Recently, the first kinematically complete exper-
iment on projectile ionization by quasifree elec-
trons was reported [65.129]. The observed features
are qualitatively similar to those found for ion-
ization of neutral target atoms by free electron
impact.

65.5 Some Exotic Processes

65.5.1 Molecular Orbital X-Rays

A typical time duration for an ion–atom encounter
is ∼ 10−17 s, which is much shorter than Auger and
X-ray lifetimes, so that hard characteristic radiation
is emitted by the products long after the collision.
There remains, however, a small but finite proba-
biltiy that X-rays or Auger electrons can be emitted
during the collision, in which case the radiation
proceeds between the time-dependent molecular or-
bitals formed in the collision and reflects the time
evolution of the energies and transition strengths be-
tween the orbitals. Such molecular orbital X-radiation
(MOX) has now been observed in many collision sys-
tems [65.130] and is reviewed in [65.131–133]. MOX
spectra have been studied in total cross sections as
well as a function of impact parameter. In the lat-
ter case, oscillating structures in the MOX spectra are
seen [65.132, 134], due to the interference between
amplitudes for the emission of X-rays with the same
energy on the incoming and outgoing parts of the
trajectory.

The formation of transient molecular orbitals in
close collisions between highly charged ions pro-
vides opportunities for studying the electrodymamics
of very highly charged systems [65.135]. For exam-
ple, two uranium nuclei passing within one K-shell
radius of each other form a transient molecule
whose energy levels resemble those of an atom of
charge 184.

65.5.2 Positron Production
from Atomic Processes

Investigating the MOX interference patterns in such
exotic systems offers the interesting prospect of per-
forming spectroscopy on superheavy ions.

Reinhart et al. [65.136] predicted that, for such
highly charged species, the binding energy of the united
atom K-shell exceeds twice the rest mass energy of the
electron, and that if a K vacancy is either brought into
the collision or created during it, spontaneous electron-
positron pair production occurs (the decay of the charged
vacuum) with the electron filling the K-hole. However,
further analysis showed that the dominant mechanism
for positron production (other than those resulting from
the decay of nuclear excitations) likely results from the
dynamic time dependence of the fields during the col-
lision [65.137]. Experiments showed evidence for such
positron production in collisions at 6 MeV/u [65.138],
but reported sharp lines in the positron spectra were later
attributed to an error in the data analysis.

Present theories for the production of lepton pairs
in the close collision of two highly charged systems
predict that the cross section grows rapidly with col-
lision energy. Electrons produced in such a process
may end up in bound states on either collision partner,
and thus represent a new charge changing mechanism.
At highly relativistic velocities, the cross section for
this process exceeds that for any other charge chang-
ing process. In a heavy ion collider, such as RHIC,
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this process could limit the ultimate storage time for
the counter-propagating beams, since charge-exchanged
ions are lost. The cross section has been measured re-
cently by Vane et al. [65.139], for 6.4 TeV S on several
targets (the highest energy ion–atom collision experi-
ment performed to date), and are in good agreement

with theory [65.140]. The bound state capture has been
measured at lower energy by Belkacem et al. [65.141],
with similarly good agreement. The extension of ion–
atom collisions to such extreme velocities has opened
the field for the study of processes not even imagined
a short time ago.
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Reactive Scatt66. Reactive Scattering

This chapter presents a résumé of the methods
commonly employed in scattering experiments
involving neutral molecules at chemical energies,
i. e., less than about 10 eV. These experiments
include the study of intermolecular potentials,
the transfer of energy in molecular collisions, and
elementary chemical reaction dynamics. Closely
related material is presented in Chapts. 35, 37,
and 38 as well as in other chapters on quantum
optics.
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66.1 Experimental Methods

66.1.1 Molecular Beam Sources

The development of molecular beam methods in the
past two decades has transformed the study of chem-
ical physics [66.1]. Supersonic molecular beam sources
allow one to prepare reagents possessing a very nar-
row velocity distribution with very low internal energies,
ideal for use in detailed studies of intermolecular interac-
tions. Early experiments generally employed continuous
beam sources, but in recent years intense pulsed beam
sources have come into common usage [66.2]. The ad-
vantages of pulsed beams primarily arise from the lower
gas loads associated with their use, hence reduced de-
mands on the pumping system. If any component of
the experiment is pulsed (pulsed laser detection, for ex-
ample) then considerable advantage may be obtained
by also pulsing the beam. Although the theoretical
descriptions of pulsed and continuous expansions are
essentially equivalent, in practice some care is required
in employing pulsed beams because the temperature and

velocity distributions may change dramatically through
the course of the pulse. Free jet expansions are super-
sonic because the dramatic drop in the local temperature
in the beam is associated with a drop in the local speed
of sound. A detailed description of the supersonic ex-
pansion may be found in [66.3–5]. In practice, many of
the detailed features associated with a supersonic expan-
sion may be ignored and one may assume an isentropic
expansion into the vacuum. For an isentropic nozzle ex-
pansion of an ideal gas, the maximum terminal velocity
is given by

vmax =
√

2ĈpT0 , (66.1)

where, for an ideal gas, the heat capacity is

Ĉp =
(
γ

γ −1

)
R

m
, (66.2)

R is the gas constant, m is the molar molecular mass,
T0 the temperature in the stagnation region, and γ the
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heat capacity ratio. For ideal gas mixtures, and assuming
Cp independent of temperature for the range encountered
in the expansion, one may use

C̄p =
∑

i

XiCpi
=
∑

i

Xi

(
γi

γi −1

)
R , (66.3)

and the average molar mass

m̄ =
∑

i

Ximi , (66.4)

where Xi is the mole fraction of component i, to obtain
an estimate of the maximum velocity for a mixture:

vmax =
√

2C̄pT0/m̄ . (66.5)

By seeding heavy species in light gases one may acceler-
ate them to superthermal energies. Supersonic beams are
characterized by the speed ratio, i. e., the mean velocity
divided by the velocity spread:

S ≡ v√
2kT/m

, (66.6)

where T is the local translational temperature, or by the
Mach number

M ≡ v√
γkT/m

. (66.7)

For the purpose of order-of-magnitude calculations, the
number density on axis far from the nozzle may be
estimated as

n ≈ n0 (d/x)
2 , (66.8)

where n0 is the number density in the stagnation region,
d is the nozzle diameter, and x is the distance from the
nozzle. The number density versus speed distribution of
a nozzle beam is well described as a Gaussian charac-
terized by the speed ratio S and a parameter α= v0/S,
where v0 is the most probable velocity:

n(v)= v2 exp
[− (v/α− S)2

]
. (66.9)

Cooling efficiencies for the various internal degrees of
freedom correlate with the efficiency of coupling of these
modes with translation, hence they vary widely. Coup-
ling of modes A and B is expressed by the collision
number Z A−B:

Z A−B ≡ ZτA−B , (66.10)

where τA−B is the bulk relaxation time, and Z the colli-
sion frequency. This represents the number of collisions
between effective inelastic events. Typical values are

Table 66.1 Collision numbers for coupling between dif-
ferent modes. V, R, T refer to vibrational, rotational, and
translational energy, respectively. Each entry is the typical
range of Z A−B

V R T

V 100.5−3 103−4 105−6

R 100−1 102−3

summarized in Table 66.1. R–T coupling is relatively
efficient, while V–T coupling is quite inefficient, so that
vibrational excitation may not be effectively cooled in
the expansion.

66.1.2 Reagent Preparation

Molecular beam methods may be used in conjunc-
tion with a variety of other techniques to prepare
atoms or molecules in excited or polarized initial states
(Chapt. 46), to generate unstable molecules or radi-
cals [66.6,7] or to produce beams of refractory materials
such as transition metals or carbon [66.8,9]. Some of the
common techniques are outlined below. Optical pump-
ing of atoms to excited electronic states is a useful means
of reagent preparation, and this topic is presented in
detail in Chapt. 10. This technique further allows one,
using polarized lasers, to explore the influence of angular
momentum polarization in the reagents on the colli-
sion dynamics [66.10]. Most of these studies have been
performed using alkali and alkaline earth metals since
there exist strong electronic transitions and convenient
narrow-band visible lasers suitable for use with these
systems. Laser excitation may also be used to generate
vibrationally excited molecules in their ground elec-
tronic states. The techniques employed include direct
IR excitation using an HF chemical laser [66.11], pop-
ulation depletion methods [66.12] and various Raman
techniques [66.13].

Metastable atoms may also be prepared by laser
photolysis of a suitable precursor. O

(
1D

)
preparation is

readily prepared by photolysis of ozone or N2O, for ex-
ample [66.14]. Alternatively, rf or microwave discharges
may be used to produce metastable species or reactive
atoms or radicals [66.15]. These techniques may also
be used to prepare ground state atoms; for example, hot
H atom beams are frequently produced by photolysis
of HI or H2S [66.16]. Such atomic or molecular radical
beams may also be generated by pyrolysis in the nozzle.
In this case care must be taken to minimize recombina-
tion through careful choice of the temperature, nozzle
geometry, and transit time through the heated region.
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Beams of refractory materials are now commonly gen-
erated using laser ablation sources [66.8, 9]. Typically
these employ a rod or disk of the substrate of interest
which is simultaneously rotated and translated to pro-
vide a fresh surface for ablation at each laser pulse.
A laser beam is focused on the substrate and timed to
fire just as a carrier gas pulse passes over. Laser power
and wavelength must be optimized for a given substrate.
Lasers operating in the IR, visible, and UV have all
been employed. Aligned or oriented molecules have
been prepared using multipole focussing [66.17, 18],
and more recently using strong electric fields (“brute
force”) [66.19]. In the former case, specific quantum
states are focused by the field. In the latter case, so called
pendular states are prepared from the low rotational lev-
els of molecules possessing large dipole moments and
small rotational constants. The ability to orient these
molecules can be estimated on the basis of the Stark
parameter ω= µE/B, where µ is the dipole moment,
E the electric field strength, and B the rotational con-
stant. Orientation is feasible for low rotational levels of
molecules when the Stark parameter is on the order of
10 or higher [66.19].

66.1.3 Detection of Neutral Products

Broadly speaking, detection of neutral molecules is
accomplished either by optical (spectroscopic) or
nonoptical techniques. Nonoptical methods usually in-
volve nonspecific ionization of neutral particles, most
commonly by electron impact, followed by mass se-
lection and ion counting. Thermal detectors such as
cryogenic bolometers are also finding widespread ap-
plication in molecular beam experiments owing to their
remarkable sensitivity [66.20]. In general, optical meth-
ods may rely on resonant or nonresonant processes,
hence they may or may not enjoy quantum state selectiv-
ity. Both photoionization and laser-induced fluorescence
methods are now in common usage, usually in appli-
cations where quantum state resolved information is
desired. The advantage of nonoptical methods is pri-
marily one of generality: all neutral molecules may be
detected, and branching into different channels readily
measured. Quantum state resolution is more difficult to
achieve using nonoptical detection methods, but both
vibrationally- and rotationally-resolved measurements
have been obtained by these means [66.21, 22].

The primary advantage of spectroscopic detection
is the aforementioned possibility of quantum state
specificity. Another unique opportunity afforded by
spectroscopic probes is the measurement of product

aligment and orientation. In addition, in some cases
background interference may be reduced or eliminated
using state-specific probes, thereby affording enhanced
signal-to-noise ratios.

Nonoptical Techniques
Detectors based on nonspecific ionization remain the
most commonly used in molecular beam experiments,
owing to the ease of subsequent mass selection, and
the convenience and sensitivity of ion detection. Sur-
face ionization is a sensitive means of detecting alkali
atoms and other species exhibiting low ionization poten-
tials [66.23]. Surface ionization occurs when a neutral
atom or molecule with a low ionization potential sticks
on a surface with a high work function and is subse-
quently desorbed. Typically these detectors employ a hot
platinum or oxidized tungsten wire or ribbon for forma-
tion and subsequent desorption of the ions, which is
surrounded by an ion collector. They are very efficient
for the detection of alkali atoms and molecules whose
ionization potentials are � 6 eV.

All neutral gas molecules may be ionized by colli-
sion with energetic electrons, and electron beam ionizers
may be produced that couple conveniently to quadrupole
mass spectrometers [66.24]. Collision of a molecule with
a 100–200 eV electron leads predominantly to formation
of the positive ion and a secondary electron. Other pro-
cesses also occur and can be very significant: doubly
or triply charged ions may be formed and, importantly,
molecules can fragment yielding many daughter ions
in addition to the parent ion. These fragmentation pat-
terns vary with different molecules, and may further
show a strong dependence on molecular internal energy,
so particular care must be taken to determine the role
of these phenomena in each particular application. It is
often necessary to record data for the parent ion and
daughter ions for a given product channel and compare
them to eliminate contributions arising from cracking
of the parent molecule or other species [66.25]. Elec-
tron impact ionization probabilities for most species
exhibit a similar dependence on electron energy, ris-
ing rapidly from the ionization potential to a peak at
80–100 eV, then falling more slowly with increasing col-
lision energy. The ionization cross section for different
species scales with molecular polarizability according
to a well-established empirical relation [66.26]:

σion = 36
√
α−18 , (66.11)

where σion is in Å2 and α, the molecular polarizability,
is in Å3. This relation can be used to estimate branching
ratios in the absence of any other means of calibrating
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the relative contributions of two different channels. The
ionization rate is given by

d[M+]
dt

= Ieσ[M] , (66.12)

where Ie is the electron beam intensity, typically
10 mA/cm2 or 6 × 1016 electrons/cm2 s, and [M] is the
number density of molecules M in the ionizer. If one
assumes an ionization cross section σion of 10−16 cm2

for collision with 150 eV electrons (a typical value
for a small molecule), the ionization probability for
molecules residing in the ionizer is then

d[M+]
dt

1

[M] = Ieσ = 6 × 1016 × 10−16 = 6 s−1 .

(66.13)

However, product molecules arriving in the detector are
not stationary. Typically, product velocities are on the
order of 500 m/s. If the ionization region has a length
of 1 cm, the residence time τ of a product molecule is
on the order of 2 × 10−5 s. Consequently, the ionization
probability of product molecules passing through the
ionizer is

d[M+]
dt

τ

[M] = 2 × 10−5 × 6 = 1.2 × 10−4 . (66.14)

Although this does not appear very efficient (indeed, it
is 4 orders of magnitude less so than surface ionization),
nevetheless, if the background count rate is sufficiently
low, then good statistics may be obtained with signal lev-
els as low as 1 Hz. Thus, for detection based on electron
impact ionization, a key factor determining the sensitiv-
ity of the experiment is the background count rate at the
masses of interest.

Spectroscopic Detection
Spectroscopic detection methods usually involve either
laser-induced fluorescence (LIF) or resonant photoion-
ization (REMPI) (Chapt. 44). Alternative techniques
such as laser-induced grating methods and nonresonant
VUV photoionization are also being applied to scatter-
ing experiments. Essential to the use of spectroscopic
methods for reactive scattering studies is an understand-
ing of the spectrum of the species of interest. This may
be challenging for many reactive systems because the
products may be produced in highly excited vibrational
or electronic states that may not be well characterized.
Additional spectroscopic data may be required. Franck–
Condon factors are necessary to compare the intensities
of different product vibrational states, while a calibration
of the relative intensities of different electronic bands re-
quires a measure of the electronic transition moments.

In some cases, one must include the specific dependence
of the electronic transition moment on the internuclear
distance by integrating over the vibrational wave func-
tion. Populations corresponding to different rotational
lines may be compared after the appropriate correc-
tion, which is represented by the Hönl–London factors,
only for isotropic irradiation and detection. This is cer-
tainly not the case for most laser-based experiments.
Generally, the detailed dependence of the excitation and
detection on the relevant magnetic sublevels must be
considered [66.27–29]. Caution is required in using any
spectroscopic method involving a level that is predis-
sociated. This may lead to a dramatic decrease in the
associated fluorescence or photoionization yield if the
predissociation rate approaches or exceeds the rate of
fluorescence or subsequent photoionization. An impor-
tant question in any experiment based on spectroscopic
detection is whether product flux or number density is
probed. This question is considered in detail in several
articles [66.13,30]. It depends on the lifetime of the state
that is probed, the relative time that the molecule is ex-
posed to the probe laser field, and its residence time in
the interaction region. Saturation phenomena are also
important, yet not necessarily easily anticipated. Com-
plete saturation does not readily occur because excitation
in the wings of the laser beam profile becomes more sig-
nificant as the region in the center of the beam becomes
saturated [66.31].

LIF is currently the most widely used spectroscopic
technique in inelastic and reactive scattering experi-
ments [66.27, 32, 33]. It has been used to measure
state-resolved total cross sections [66.34] and differ-
ential cross sections in electronic [66.35], vibrational
and rotationally inelastic scattering [66.12] as well as
reactive scattering [66.36].

With the development of high-power tunablebreak
lasers and the discovery of useful photoionization
schemes, REMPI is becoming a more general tech-
nique [66.37,38]. REMPI has the advantages associated
with ion detection, namely considerable convenience in
mass selection and efficient detection, in addition to
the capability for quantum state selectivity. Disadvan-
tages associated with REMPI arise primarily from higher
laser power employed compared with LIF. Caution is re-
quired in attempting to extract quantitative information
from REMPI spectra if one or several of the steps in-
volved in the ionization process are saturated. This is
of particular concern at the high laser powers neces-
sary for multiple photon transitions. An alternative to
direct photoionization involves excitation of products to
metastable Rydberg states, followed by field ionization
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some distance from the interaction region. This tech-
nique has the advantage of very low background and is
capable of extraordinary time-of-flight resolution. Re-
markable results have recently been obtained for the
reaction D+H2 using this method [66.39]. Photoion-
ization techniques are becoming more widely used in
scattering experiments as the basis for product imaging
detection schemes discussed below.

66.1.4 A Typical Signal Calculation

For a crossed-beam system in which a beam of atoms A
collides with a beam of molecules B yielding products
C and D, the rate of formation of C is given by

dNC

dt
= nAnBσrg∆V , (66.15)

where nA and nB are the number densities of the respec-
tive reagents at the interaction region, σr is the reaction
cross section, g the magnitude of the relative velocity be-
tween the reactants, and ∆V the volume of intersection
of the beams. For a typical experiment employing con-
tinuous supersonic beams, the number densities of the
atomic and molecular reactants are ∼ 1011 –1012 cm−3

and the scattering volume 10−2 cm3. For g = 105 cm/s
and σr = 10−15 cm2, the rate of product formation
dNC/dt = 1011 molecules/s. The kinematics and en-
ergetics of the reaction then determines the range of
laboratory angles into which the products scatter, and
the magnitude of the scattered signal.

If the products scatter into 1 sr of solid angle, and
the detector aperture is 3 × 10−3 sr (roughly 1 degree
in both directions perpendicular to the detector axis),
then the detector receives 3 × 107 product molecules/s.

Given the detection probability obtained above,
3600 product ions/s are detected. This is adequate to
obtain very good statistics in a short time as long as the
background count rate is not considerably higher.

For a nonspecific detection technique, such as
electron bombardment ionization coupled with mass
filtering, it is necessary to use ultrahigh vacuum(
10−10 torr

)
in the detector region to minimize interfer-

ence from background gases. The residual gases are then
primarily H2 and CO, with number densities on the order
of 106 cm3. Differential pumping stages, each of which
may reduce the background by 2 orders of magnitude,
are generally used to lower the background from gases
whose partial pressures are lower than the ultrahigh
vacuum limit of the detector chamber. However, this
differential pumping helps only for those molecules that
do not follow a straight trajectory through the detector.
The contribution from the latter is given by

n′ = n A

4πx2
, (66.16)

where n is the number density of molecules effusing
from an orifice of area A, and n′ is their number density at
a distance x on axis downstream. For a distance of 30 cm
and a main chamber pressure of 3 × 10−7 torr, this corres-
ponds to a steady state density of 105 molecules/cm3 at
the ionizer, a reduction of 6 orders of magnitude. Three
stages of differential pumping are thus the maximum
useful under these conditions, since the primary source
of background is then molecules following a straight tra-
jectory from the main chamber. A liquid helium cooled
surface opposite the detector entrance may then be use-
ful to minimize scattering of background molecules into
the ionizer.

66.2 Experimental Configurations

66.2.1 Crossed-Beam Rotatable Detector

The configuration illustrated in Fig. 66.1 represents
a standard now widely used [66.24], usually with two
continuous beams fixed at 90 degrees. The molecular
beam sources are differentially pumped and collimated
to yield an angular divergence of about 2 degrees.
The beams cross as close as possible to the nozzles,
with a typical interaction volume of 3 mm3. Scattered
products pass through an aperture on the front of the
detector, thence through several stages of differen-
tial pumping before reaching the ionizer. Ions formed

by electron impact on the neutral products are then
extracted into a quadrupole mass spectrometer with as-
sociated ion counter. A chopper wheel is generally used
at the entrance to the detector to provide a time ori-
gin for recording time-of-flight spectra. Pseudorandom
sequence chopper disks provide optimal counting statis-
tics while maintaining a high duty cycle (50%) [66.40].
The detector may be rotated about the interaction region,
typically through a range of 120◦ or so, allowing one to
examine products scattered at a range of laboratory an-
gles. In addition to time-of-flight detection, one of the
beams may be gated on and off for background sub-
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Fig. 66.1 Experimental arrangement for F+D2 → DF+F reactive scattering. Pressure (in torr) indicated in each re-
gion. Components are (1) effusive F atom source; (2) velocity selector; (3) cold trap; (4) D2 beam source; (5) heater;
(6) liquid nitrogen feedline; (7) skimmer; (8) tuning fork chopper; (9) synchronous motor; (10) cross-correlation chopper;
(11) ultrahigh vacuum differentially pumped mass spectrometer detector

traction and the detector moved to record the integrated
signal at each laboratory angle.

Two kinds of measurements are typically made in
these experiments: time-of-flight spectra and angular
distributions. Usually one is interested in obtaining the
complete product-flux vs. velocity contour map, since
this contains full details of the scattering process. This
is obtained by measuring a full angular distribution
as well as time-of-flight data at many laboratory an-
gles. The results are then simulated using a forward
convolution fitting procedure to obtain the underlying
contour map [66.41–43]. Because scattering of isotropic
reagents exhibits cylindrical symmetry about the relative
velocity vector, it is sufficient to measure products scat-
tered in any plane containing this vector to determine
the product distribution. This is not true for structured
particles (e.g. involving atoms in P states); however, this
azimuthal anisotropy has been used to explore the impact
parameter dependence of the reaction dynamics [66.44].

In a typical reactive scattering experiment, A+
BC → AB+C, either of the two products may be de-
tected. Conservation of linear momentum requires that
the cm frame momenta of the two products must sum

to zero. It is thus only necessary to obtain the contour
map for one of the products. The choice of detected
product is usually dictated by kinematic considera-
tions, although one may choose to detect a product
that is kinematically disfavored if its partner happens
to have a mass with a large natural background in the
detector. Kinematic considerations can be critical in
assessing the suitability of a given system for study.
It is very important that one of the products be scat-
tered entirely within the viewing range of the detector
in order to obtain a complete picture of the reaction
dynamics.

The advantages of crossed-beams employed in
conjunction with an electron impact ionizer-mass spec-
trometer detector derive primarily from the universality
of the detector. No spectroscopic information is required
and there are no invisible channels, such as may occur
with spectroscopic detection methods. In addition, the
resolution of these machines may be increased almost
arbitrarily; indeed, even rotationally inelastic scattering
has been studied [66.45]. The disadvantages are comple-
mentary to the advantages: the universal detector implies
that quantum state resolution is not achieved directly, al-
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though in favorable cases the product vibrational states
may be resolved in the translational energy distribu-
tions [66.21, 46]. In addition, if the product of interest
represents a mass that receives interference from one
of the beam masses, background interference may be
problematic. Kinematic considerations mentioned above
may also preclude study of certain systems. However,
the kinematic requirements for the Doppler and imaging
approach discussed below are complementary to those
of the rotatable-detector configuration.

66.2.2 Doppler Techniques

Spectroscopic detection methods in crossed-beam ex-
periments allows the measurement of state-resolved
differential cross sections, and thus the ultimate level of
insight into the reaction dynamics. A method developed
by Kinsey and others [66.47, 48] determines differential
cross sections by measurement of product Doppler pro-
files using LIF (called ADDS for Angular Distribution
by Doppler Spectroscopy). For a laser directed parallel
to the relative velocity vector, a particle scattered with
a cm velocity of u perceives the photon as having the
Doppler shifted frequency

ν′ = ν [1− (u+Vcm) · n̂/c
]
, (66.17)

where ν is the laser frequency and Vcm is the velocity
of the center of mass, both in the laboratory frame of
refernce, and n̂ is the unit vector in the probe laser di-
rection. For the case of a single possible recoil speed,
one may obtain the full differential cross section directly
in the cm frame by reconstruction of a single Doppler
profile [66.47]. In this case, the angular resolution is
a maximum for the sideways scattered products, and
a minimum at the poles. An alternative approach is to
measure the Doppler profile with a laser perpendicular to
the relative velocity vector. This approach (PADDS for
Perpendicular ADDS) affords complementary angular
resolution, but folds the forward and backward scattered
products into a single symmetric component [66.48].
For the case in which the detected product does not
possess a known recoil speed (for example if the ther-
modynamics of the process is not known, or if one probes
the atomic fragment in an A+ BC → AB+C reaction),
a single Doppler profile is insufficient to reconstruct the
double differential cross sections. Nevertheless, Kin-
sey’s earliest experimental results were for one such
example: the reaction H+NO2 → OH+NO [66.49].

More recently Mestdagh et al. [66.50] have studied
electronically inelastic collision processes using this ap-
proach by measuring the Doppler profiles over a range

of probe laser angles, as illustrated in Fig. 66.2. A beam
of barium atoms is crossed at 90 degrees by a beam
of some molecular perturber. At the interaction region,
the barium atoms are electronically excited using a nar-
row band dye laser. Scattered barium atoms that have
undergone a specific electronic transition as a result of
the collision are probed at the interaction region using
a second dye laser, which is scanned across the Doppler
profile. The product-flux vs. velocity contour map is
then reconstructed by means of a forward convolution
simulation procedure analogous to that described in the
preceding section.

In addition to state-resolved detection, another dif-
ference between the Doppler methods and the traditional
crossed-beam configuration is that the kinematic consid-
erations favor detection of fast particles, and almost any
system that is spectroscopically suitable may be con-
sidered. The primary disadvantage of Doppler methods
is the limited angular and translational energy resolu-
tion possible. Often, however, modest angular resolution
is sufficient to achieve a global picture of the reaction
dynamics. Much current work involves the study of pho-
toinitiated reactions in cells, relying on the short excited
state lifetimes to guarantee single collision conditions,
and using iterative fitting procedures to probe product
velocity distributions and angular momentum polariza-
tion [66.14]. Angular momentum polarization can have
a profound effect on the measured distributions and can
afford a powerful additional means of exploring the col-
lision dynamics. Examples of 3- and 4-vector correlation
experiments approach a “complete description” of the
scattering process (Chapt. 46) [66.50–52].

66.2.3 Product Imaging

Another spectroscopic technique is based on direct
imaging of the scattered product distribution. The tech-
nique was first used to record state-resolved angular
distributions of methyl radicals from the photodissoci-
ation of methyl iodide [66.53]. The method has since
been widely employed to study photodissociation, and
more recently to record state-resolved inelastic scatter-
ing in a crossed-beam experiment [66.54]. Recently it
has been applied to a crossed-beam reactive scattering
system [66.55]. The crossed-beam configuration used
by Houston and coworkers is shown schematically in
Fig. 66.3. The two skimmed supersonic beams cross at
right angles, and scattered products are state-selectively
ionized on the axis of a time-of-flight mass spectrom-
eter using resonant photoionization. The ion cloud thus
formed continues to expand with its nascent recoil vel-

Part
E

6
6
.2



974 Part E Scattering Experiment

0 0.5 mScale

Mass spectrometer

Time-of-flight arm

Pilot tube

Chopper

Atomic beam

Oven for effusive beam

Collision zoneMolecular beam source

Laser beam

Single mode optical fiber

Collection optics

Fig. 66.2 Schematic view of crossed molecular beam apparatus with LIF-Doppler detection

ocity as it drifts through the flight tube. The ions then
strike a microchannel plate coupled to a phosphor screen.
The latter is viewed by a video camera gated to record
the signal at the mass of interest. The images are thus
two-dimensional projections of the nascent three dimen-
sional product distributions.

Video camera

Phosphor screen

Pulsed nozzle

NO/He beamSkimmersProbe laser

Ar beam

Flight tube

MCP
Pulsed
nozzle

Fig. 66.3 Schematic view of crossed molecular beam ap-
paratus with product imaging detection

There now exist two alternatives for regenerating
the three dimensional distribution from the projection.
The first, a tomographic reconstruction using an in-
verse Abel transform, is widely used in photodissciation
studies [66.56,57]. It is a direct inversion procedure fea-
sible for cases in which the image is the projection of
a cylindrically symmetric object, with its axis of sym-
metry parallel to the image plane. This analysis yields
a unique product contour map directly from the image,
but it is difficult to incorporate apparatus functions, and
is sensitive to noise in the data. The second alterna-
tive is a forward convolution fitting method. A Monte
Carlo based simulation has the advantage that one may
treat the averaging over experimental parameters quite
rigorously.

The advantages of the imaging method again de-
rive from its reliance on a spectroscopic probe, so that
quantum state resolution is possible and background
interference may be avoided. In addition, it possesses
a multiplexing advantage since the velocity distribution
is recorded for all angles simultaneously. Imaging re-
lies exclusively on photoionization, unlike the Doppler
methods which may use either photoionization or LIF.
This is somewhat disadvantageous since the available
photoionization schemes are limited and often high laser
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power is necessary to achieve adequate signal intensity.
As a result, background ions can be a problem. In gen-
eral, resonantly enhanced two-photon ionization, i. e.
[1+1], detection schemes are thus preferable.

66.2.4 Laboratory to Center-of-Mass
Transformation

Angular and velocity distributions measured in the
laboratory frame must be transformed to the cm frame
for theoretical interpretation. Accounts of this transfor-
mation and details concerning the material presented
below may be found in [66.58–61], among others. The
Newton diagram is useful to aid in visualizing the
transformation, and in understanding the kinematics of
a given collision system. For the scattering of F+D2 for
example, shown in Fig. 66.4, a beam of fluorine atoms
with a velocity vF is crossed by a beam of D2, velocity
vD2 , at 90 degrees. The relative velocity between the two
reactants is g = vF−vD2 , and the velocity of the cm of
the entire system is

Vcm = MFvF+MD2vD2

MF+MD2

. (66.18)

Vcm divides the g into two segments corresponding to
the cm velocities of the two reagents. The magnitude
of these vectors, uF and uD2 are inversely propor-
tional to the respective masses. If scattered DF products
are formed with a laboratory scattering angle Θ and
a laboratory velocity vDF as shown in Fig. 66.4, this
corresponds to DF backscattered with respect to the in-
cident F atom, in the cm system. It is common to refer
the scattering frame direction to the atomic reagent in an
A+ BC → AB+C reaction, for example, to make clear
the dynamics of the process. In this case the backscat-
tered DF arises as a result of a direct rebound collision.
Some useful kinematic quantities are summarized here.
For beams A and BC intersecting at 90 degrees, the an-

v = 1

v = 2

0° v = 3

vH2

vF

Fig. 66.4 Newton diagram for collision of F with H2 with
superimposed c.m. flux vs. velocity contour map

gle of the cm velocity vector with respect to A is given
by

Θcm = arctan
MBCvBC

MAvA
. (66.19)

For an arbitrary Newton diagram with angle α between
the two beams the magnitude of the relative velocity is

g2 = v2
A +v2

BC −2vAvBC cosα , (66.20)

the relative velocity vector is

g = vA −vBC , (66.21)

and the collision energy is

Ecoll = 1

2
µi g

2 , (66.22)

where µi is the reduced mass of the initial collision
system. The magnitude of the cm frame velocity of
particle A before collision is

uA = m BC

m A +m BC
g . (66.23)

The final relative velocity is

g′ = vAB −vC , (66.24)

with magnitude

g′ =√
2Eavail/µF , (66.25)

where the available energy Eavail is

Eavail = Ecoll+ Eint,reac+ Eexo− Eint,prod ,

(66.26)

in which Eint,reac is the internal energy of the reactants,
Eexo is the exoergicity of the reaction, and Eint,prod is
the internal energy of the products.

One must transform the laboratory intensity
I(Ω) ≡ d2σ/d2Ω into I(ω)

(≡ d2σ/d2ω
)
, the cor-

responding cm quantity. For the crossed-beam con-
figuration described in Sect. 66.2.1, the laboratory
distributions are distorted by a transformation Jacobian
that arises because the laboratory detector views differ-
ent cm frame solid angles depending on the scattering
angle and recoil velocity. For the spectroscopic experi-
ments described in Sects. 66.2.2 and 66.2.3, the Jacobian
is unity (the cm velocity represents a simple frequency
offset of the Doppler profiles, for example); however,
the transformation of the scattering distributions from
the recorded quantities (2-dimensional projections or
intensity vs. wavelength) to recoil velocity distributions
may be complex. Two cases must be considered for the
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configuration discussed in Sect. 66.2.1: one in which dis-
crete velocities result (such as elastic or state-resolved
scattering experiments), and one in which continuous
final velocities are measured. For the first case, the
laboratory and cm differential cross sections are inde-
pendent of the respective product velocities v and u and
these quantities are related by

d2σ

d2Ω
= J

d2σ

d2ω
, (66.27)

so that the transformation Jacobian is given by

J = d2ω

d2Ω
. (66.28)

For discrete recoil velocities, the cm solid angle is

d2ω= dA

u2
, (66.29)

where dA is a surface element of the product Newton
sphere. The laboratory solid angle corresponding to this
quantity is

d2Ω = cos(u, v)
v2

dA , (66.30)

so that the Jacobian for the first case is given by

J = v2

u2 cos(u, v)
. (66.31)

For the case of continuous final velocities, the σ are
velocity-dependent and are related by

d3σ

d2Ω dv
= J

d3σ

d2ω du
, (66.32)

so that here the Jacobian is given by

J = d2ω du

d2Ω dv
. (66.33)

In this case we consider a recoil volume element dτ
(in velocity space), which must be the same in both
coordinate frames:

dτcm = u2 du d2ω= dτlab = v2 dv d2Ω , (66.34)

so that the Jacobian is

J = v2/u2 . (66.35)

The laboratory intensity is then related to that in the cm
frame by

Ilab(v,Θ)= (v2/u2) Icm(θ, u) . (66.36)

For a mass spectrometer detector with electron bombard-
ment ionizer, one measures number density of particles
rather than flux, so that the recorded signal is given by

Nlab(v,Θ)= Ilab(v,Θ)

v
= v

u2
Icm(u, θ) . (66.37)

The usual flux vs. velocity contour map is a po-
lar plot of the quantity Icm(u, θ). The product velocity
distributions are then

I(u)=
∫ ∫

I(θ, u) sin θ dθ dφ

= 2π

π∫

0

I(u, θ) sin θ dθ , (66.38)

and the translational energy distributions are

I(ET)= I(u)

∣∣∣∣
du

dET

∣∣∣∣ . (66.39)

66.3 Elastic and Inelastic Scattering

When particles collide, they may exchange energy or
recouple it into different modes, they may change their
direction of motion, and they may even change their
identity. The study of these processes reveals a great
deal of information about the forces acting between the
particles and their internal structure. It is useful to begin
with a summary of the dominant features of elastic and
inelastic scattering.

66.3.1 The Differential Cross Section

Figure 66.5 illustrates the relation between the deflec-
tion function χ and the impact parameter b for a realistic
potential containing an attractive well and a repulsive

core. For large b there is no interaction, hence no de-
flection. At smaller values of b, the attractive part of
the potential is experienced and some positive deflec-
tion results. At a smaller value of b, br, the influence
of the attractive component of the potential reaches
a maximum, giving the greatest positive deflection:
this is the rainbow angle by analogy with the optic-
al phenomenon. There is another value of the b for
which point the attractive and repulsive parts of the
potential balance, yielding no net deflection. This is
the glory impact parameter bg. For yet smaller val-
ues of b, the interaction is dominated by the repulsive
core and rebound scattering gives a negative deflection
function.
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Fig. 66.5 Schematic diagram showing the relation between
impact parameter b and deflection function χ

The important expressions related to the differential
cross section are summarized here [66.62]. For scatter-
ing involving an isotropic potential, the deflection angle
is Θ = |χ|. The differential cross section dσ gives the
rate of all collisions leading to deflection angles in the
solid angle element dω:

dN(θ)

dt
∝ I(θ) dω= I(θ)2π sin(θ) dθ . (66.40)

The incremental cross section is dσ = I(θ) dω =
2πb db, so

I(θ)= b

sin θ (dθ /db)
. (66.41)

For classical particles, the relation between the deflec-
tion function and the potential is

χ = π−2b

∞∫

R0

dR

R2

(
1− V(R)

ET
− b2

R2

)−1/2

,

(66.42)

where V(R) is the potential as a function of interparticle
distance R, R0 is the turning point of the collision, and
ET the collision energy.

In the high energy limit, for large b ≈ R0,

χ(b, ET) ∝ V(b)/ET . (66.43)

For a long-range potential V(R) proportional to R−s ,

E2/s
T θ2(1+1/s) I(θ)= const . (66.44)

For a potential exhibiting a minimum, the rainbow an-
gle θr is proportional to the collision energy, and clearly
resolved when the collision energy is 3 to 5 times the well
depth. In addition, supernumery rainbows and quantum

mechanical “fast osillations” occur in the dσ , and these
provide a sensitive probe of the interaction. Accurate in-
teratomic potentials are routinely obtained from elastic
scattering experiments [66.60, 63].

66.3.2 Rotationally Inelastic Scattering

Classical scattering involving an anisotropic potential
results in another rainbow phenomenon, distinct from
that seen in pure elastic scattering and notable in that it
does not require an attractive component in the poten-
tial. These rotational rainbows are equivalently seen in
a plot of integral cross section against change in rota-
tional angular momentum ∆ j, or in the differential cross
section for a particular value of ∆ j. The rotational rain-
bow peaks arise from the range of possible orientation
angles γ in a collision involving an anisotropic potential.
When there is a minimum in dγ/dθ for a given ∆ j, the
differential cross section reaches a maximum [66.64].
The rotational rainbow peak occurs at the most forward
classically allowed value of the scattering angle, and dσ
drops rapidly at smaller angles. The rainbow moves to
more backward angles with increasing ∆ j because the
larger j-changing collisions require greater momentum
transfer, hence must arise from lower impact parameter
collisions. For heteronuclear molecules, two rainbow
peaks may be observed, corresponding to scattering off
either side of the molecule. One can relate the location
of the rainbow peak to the shape of the potential using
a classical hard ellipsoid model [66.65]:

A− B = j

p0

[
2 sin

(
θr,cl

2

)]−1

, (66.45)

where j is the rotational angular momentum, p0 is the
inital linear momentum, θr,cl is the classical rainbow po-
sition, and A and B are the semimajor and semiminor
axes of a hard ellipse potential. The classical rainbow
positions occur somewhat behind the quantum mechan-
ical and experimental rainbow positions, so the classical
rainbow may be estimated as the point at which the
peak has fallen to 44% of the experimental value. Real
molecular potentials may be far from ellipsoids, how-
ever, so detailed quantitative insight into the potential
requires a comparison of scattering data with trajectory
calculations.

66.3.3 Vibrationally Inelastic Scattering

There has been no direct observation of the differential
cross section of T–V or V–T energy transfer involving
neutral molecules owing to the small cross sections for
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these processes. Integral cross section data are available,
however. Above threshold, the latter has shown a lin-
ear dependence of σ on collision energy for ∆ν = 1,
quadratic for ∆ν = 2 and cubic for ∆ν = 3 [66.66].
In addition, a great deal of information on vibrational
relaxation processes has been obtained in cell experi-
ments [66.67].

66.3.4 Electronically Inelastic Scattering

A wealth of information is available on electroni-
cally inelastic scattering systems, since these in general
exhibit much larger cross sections than V–T pro-
cesses [66.68, 69]. In addition, spectroscopic methods

may be used to overcome some of the background prob-
lems that hamper the study of the latter. Often, quenching
of electronically excited states involves curve crossing
mechanisms, so that very effective coupling of electronic
to vibrational energy may occur. Spin-orbit changing
collisions of Ba

(
1P
)

with O2 or NO, for example, occur
by a near-resonant process and result in almost complete
conversion of electronic energy to vibrational excitation
of the product [66.70]. The analogous collisions with
N2 and H2, however, reveal very repulsive energy re-
lease with little concomitant vibrational excitation. Both
processes likely occur via curve crossings of the rele-
vant electronic states, but the near-resonant mechanism
occurs by way of an ionic intermediate.

66.4 Reactive Scattering

Reactive differential cross sections reveal several dis-
tinct aspects of the chemical encounter. The angular
distributions themselves may be used to infer the life-
time of the collision intermediate: long-lived complexes
exhibit forward-backward symmetry along the relative
velocity vector. In this case “long-lived” means on the
order of several rotational periods. The rotational period
of the complex may thus be used as a clock to study the
energy dependence of the intermediate’s lifetime. The
angular distributions further reveal the relation of initial
and final orbital angular momentum. Sharply peaked an-
gular distributions generally indicate strongly correlated
initial and final orbital angular momentum vectors. Fi-
nally, the product translational energy release contains
the details of the energy disposal, and reveals a wealth
of information about the thermodynamics of the pro-
cess, the existence of barriers, and sometimes even the
geometry of the transition state. Together, the angular
and tranlational energy distributions reveal many of the
details of the potential energy surface.

The dynamics of reactive collisions fall broadly
into three main categories characterized by distinct an-
gular and energy distributions. The three categories
are harpoon/stripping reactions, rebound reactions, and
long-lived complex formation. Some reactions may ex-
hibit more than one of these mechanisms at once, or
the dynamics may change from one to another as the
collision energy is varied.

66.4.1 Harpoon and Stripping Reactions

It was known in the 1930s that collisions of alkali
atoms with halogen molecules exhibit very large cross

sections and yield highly excited alkali halide prod-
ucts. These observations were accounted for by the
harpoon mechanism proposed by M. Polanyi. Because
alkali atoms have low ionization potentials and halo-
gen molecules large electron affinities, as the alkali
atom approaches the molecule, electron transfer may
occur at long range. These processes are considered
in detail in Chapt. 49 [66.71, 72]. The harpooning dis-
tance Rc at which this curve crossing takes place
may be estimated simply as the distance at which
the Coulomb attraction of the ion pair is sufficient
to compensate for the endoergicity of the electron
transfer:

Rc = e2/(IP− Ae) , (66.46)

where IP and Ae represent the ionization potential and
electron affinity of the electron donor and recipient,
respectively. For R in Å and E in eV, this relation is

Rc = 14.4/(IP− Ae) . (66.47)

Owing to the large Coulombic attraction between the
ion pair, reaction proceeds immediately following elec-
tron transfer. The crossing distance may then be used
to estimate the effective reaction cross section. The ver-
tical Ae is not necessarily the appropriate value to use
in estimating these crossing distances; stretching of the
halogen bond may occur during approach, so the ef-
fective Ae is generally somewhere between the vertical
and adiabatic values. Often there exists some repulsion
between the atoms in the resulting halogen molecular
ion, so that electron transfer is accompanied by disso-
ciation of the molecule in the strong field of the ion
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pair. The alkali ion, having sent out the electron as the
“harpoon”, then reels in the negative ion, leaving the
neutral halogen atom nearly undisturbed as a specta-
tor. Because these events occur at long range, there is
no momentum transfer to the spectator atom, and it is
a simple matter to estimate the anticipated angular and
translational energy distributions in this spectator strip-
ping limit. The product molecule is scattered forward
(relative to the direction of the incident atom) and for
the reaction A+ BC → AB+C, the final cm velocity
for the product AB is given by

u′AB =−MCuBC/MAB , (66.48)

where uBC is the initial cm velocity of the BC mol-
ecule. This spectator stripping mechanism may occur in
systems other than harpoon reactions, and is useful to
remember as a limiting case.

The likelihood of electron transfer at these cross-
ings may be estimated using a simple Landau–Zener
model [66.72] (Chapt. 49). For relative velocity g,
impact parameter b and crossing distance Rc, the prob-
ability for undergoing a transition from one adiabatic
curve to another (that is, the probability for remaining
on the diabatic curve) is given by

p = 1− e−δ , (66.49)

where

δ= 2πH2
12 R2

c

g

(
1− b2

R2
c

)− 1
2

, (66.50)

and H12 is the coupling matrix element between the two
curves. H12 may be estimated from an empirical relation
which is accurate within a factor of three over a range
of 10 orders of magnitude [66.73]. In atomic units

H12 =
√

I1 I2 R∗c e−0.86R∗c , (66.51)

where

R∗c =
(√

I1+
√

I2

)
(66.52)

is the reduced crossing distance, and I1 and I2 are the
initial and final ionization potentials of the transferred
electron. One finds electron transfer probabilities near
unity for curve crossing distances below about 5 Å,
dropping to zero for crossing at distances greater
than about 8 Å. These estimates are based on electron
transfer in atom–atom collisions, and it is important to
remember that atom–molecule collisions occur on sur-
faces rather than curves, so the crossing seam may cover
a broad range of internuclear distances.

66.4.2 Rebound Reactions

Another common direct reaction mechanism is the
rebound reaction exemplified by F+D2 → DF+
D [66.21]. The cm product flux vs. velocity contour map
obtained for this reaction is shown in Fig. 66.4. Owing to
the favorable kinematics and energetics in this case, the
FD product vibrational distribution is clearly resolved,
and peaks at v= 2. The dominant v= 2 product peaks
at a cm angle of 180 degrees (referred to the direction of
the incident F atom). This rebound scattering is charac-
teristic of reactions exhibiting a barrier in the entrance
channel. Rebound scattering implies small b collisions,
and this serves to couple the translational energy effi-
ciently into overcoming the barrier. Small b collisions
have necessarily smaller cross sections however, since
cross section scales quadratically with b.

66.4.3 Long-lived Complexes

A third important reaction mechanism involves the for-
mation of an intermediate that persists for some time
before dissociating to give products. If the collision com-
plex survives for many rotational periods

(∼ 10−11 s
)
,

then the cm angular distribution exhibits a characteris-
tic forward–backward symmetry, usually with peaking
along the poles. The latter occurs because the initial
and final orbital angular momenta tend to be parallel
(and perpendicular to the initial relative velocity vector).
When there exist dynamical constraints enforcing some
other relation, as in the case F+C2H4, then sideways
scattering may be observed, despite a lifetime of several
rotational periods [66.74–76]. For some systems exhibit-
ing this long-lived behavior, the rotational period may be
used as a molecular clock to monitor the lifetime of the
complex. By increasing the collision energy until the dis-
tribution begins to lose its forward–backward symmetry,
one can investigate the internal energy of the system just
when its lifetime is on the order of a rotational period.

Systems that have an inherent symmetry may exhibit
this forward–backward symmetry in the scattering dis-
tributions despite lifetimes that are considerably shorter
than a rotational period. This is the case for O(1D )
reacting with H2, for example [66.77]. This reaction
involves insertion of the O atom into the H2 bond result-
ing in an intermediate that accesses the deep H2O well
and contains considerable vibrational excitation. Tra-
jectory calculations show that the complex dissociates
after a few vibrational periods, but the distribution ex-
hibits forward–backward symmetry because the O atom
is equally likely to depart with either H atom.
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66.5 Recent Developments

Astonishing progress in reactive scattering methods has
continued in the past decade, and a few highlights are
summarized here. These advances have taken the form
of improvements in detection methods or, in some cases,
entirely new experimental approaches.

One of the most important of these is the H atom
Rydberg time-of-flight (HRTOF) method [66.78,79] pi-
oneered by the late Karl Welge and coworkers for the
hydrogen exchange reaction. This approach employs
a conventional scattering geometry, and is suitable only
for experiments yielding product H or D atoms. De-
spite this narrow focus, owing to the general importance
of hydrogen elimination reactions and the remarkable
resolution of the technique, this has been an important
development. The H or D atom products are excited
to long-lived high-n Rydberg states in a 1+1′ exci-
tation scheme in the interaction region. The atoms fly
through a field free region and impinge upon a rotatable
field-ionization detector. The result is very high velocity
resolution, largely because the spreads in the beam ve-
locities make a negligible contribution to the product
velocity spread since the H atoms are moving so fast.
In addition, the dimensions of the scattering volume
and ionization region may easily be made small rela-
tive to the flight length. Using this technique, Welge and
coworkers achieved fully rotationally-resolved differen-
tial cross sections for the hydrogen exchange reaction.

A second, widely-used approach is a variation of the
state-resolved Doppler probe in a bulb configuration.
This strategy, pioneered by Hall at Brookhaven [66.80]
and Brouard et al. in Oxford [66.81], has been ap-
plied most notably to study excited oxygen atom
reactions. Although not a true crossed-beam approach,
through appropriate exploitation of kinematic con-
straints, energy conservation, and careful analysis,
state-resolved doubly differential cross sections may be
obtained, sometimes with additional vector properties as
well [66.82].

Another significant new direction in detection strate-
gies is the use of near-threshold VUV product ionization.
This is a universal approach, in that little advance
spectroscopic information is required, but it is selec-
tive in that dissociative ionization is minimized and
sometimes isomer-selective detection may be achieved.
This approach has been used in synchrotron-based stud-
ies of Cl atom reactions [66.83], in transition metal
reactions [66.84], and in product imaging studies of
oxygen and chlorine atom reactions using the F2 ex-
cimer at 157 nm [66.85]. Inspired by the threshold VUV
detection methods, Casavecchia and coworkers have
recently advanced the use of near-threshold electron
impact ionization in a conventional universal crossed-
beam configuration [66.86]. Their recent results show
the great promise of this technique to deliver higher
signal-to-noise and to minimize fragmentation processes
in the detection step that may obscure the underlying
dynamics.

A final note concerns advances in imaging tech-
niques applied to reactive scattering. Mention has been
made of the successful application of the VUV ex-
cimer probe for imaging radical products of reaction
of Cl and O(3P) reactions with alkanes. Two significant
advances in imaging strategies have made it a very pow-
erful technique. The first of these is “velocity mapping”,
developed by Eppink and Parker at Nijmegen [66.87],
a simple but important strategy that eliminates spa-
tial blurring in the images. The second is “slicing”,
or 3-D, methods that allow the velocity-flux contour
map to be recorded directly [66.88–90]. This has seen
its most beautiful illustration in recent work by Liu
and coworkers at IAMS in state-resolved detection of
methyl radicals following reaction of F atoms with
methane [66.91]. Their images provide quantum state
correlated differential cross sections for this reaction
directly, allowing comparison to theory at an unprece-
dented level of detail.
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Ion–Molecule67. Ion–Molecule Reactions

The observation of ion–molecule reactions has
a history that goes back to the beginning of the
twentieth century, when J. J. Thomson discovered
that operating his positive ray parabola appara-
tus in a hydrogen atmosphere produced signals
at a mass to charge ratio of 3, which he correctly
attributed to the species H3 [67.1]. Later studies
showed that this species was produced by a re-
action between the primary ionization product
H+2 and molecular hydrogen. Most ion-molecule
reactions proceed without an activation bar-
rier and their cross sections are governed by the
long range attractive potential of the approach-
ing reactants (Sect. 64.2.4). Reaction rates based
on long range potential capture models [67.2]
predict rates in excess of 10−9 cm3molecule−1s−1,
corresponding to thermal energy cross sections
(Sect. 47.1.7) of 10−16 –10−15 cm2. The importance
of ion-molecule reactions in such widely di-
verse areas as planetary atmospheres, (Sect. 84.1),
electrical discharges and plasmas (Sect. 87.1.4),
particularly in semiconductor processing, in
the formation of molecules in interstellar
space (Chapt. 82), and in flames and combustion
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systems (Sect. 88.1), has borne out that pre-
diction. This chapter discusses applications of
single-collision scattering methods to the study
of reactive collision dynamics of ionic species with
neutral partners.

A number of different physical processes can be cate-
gorized as ion-molecule reactions, with examples such
as

A±+ BC → A+ BC± , charge transfer

A±+ BC → A+ (B+C)± , dissociative charge
transfer

A±+ BC → AB±+C . particle transfer

The± superscript indicates charge appropriate to anions
and cations. The parentheses indicate that the charge can
reside on either the B or C fragment. Particle transfer
reactions often involve the transfer of a hydrogen atom
or a proton, but heavy particle <transfer processes are
often important ones as well. An interesting example in
which new carbon-carbon bonds are formed, termed a

condensation reaction, is the following:

C++CH4 → C2H+
3 +H .

An additional process unique to anionic systems is de-
tachment, occurring when the intermediate collision
complex is internally excited above its autodetachment
threshold:

A−+ BC → [ABC−]∗ →A+ BC+ e− ,
detachment

A−+ BC → [ABC−]∗ →ABC+ e− .
associative detachment

For exothermic reactions at low collision energies where
the long range attraction dominates the interaction po-
tential, cross sections are consistent with Langevin
orbiting, generally having E−1/2 energy dependence.
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At higher energies, cross sections drop below this limit,
as surface crossings and short-range repulsive features
become important. Endothermic reactions exhibit cross
section thresholds, as illustrated in Sect. 67.3.4 on the
N++D2 system.

Scattering measurements probe the potential energy
surface, or surfaces, governing the collision dynamics
with techniques that measure the fluxes from specific
reactant quantum states into product quantum states,
scattering angles, and product translational energies.
Scattering experiments define more precisely than in
a bulb the initial and final conditions in a collision
[67.3]. A scattering experiment measures a cross section
(Sect. 91.1.1) rather than a rate constant. The measured
cross section represents an average over initial condi-
tions and a sum over final states inherent in the technique
used.

Cross sections of various forms can be defined with
respect to the rate of formation of product states un-
der single-collision conditions. The total rate of product
formation dN±/dt for a beam of ions with number den-
sity n1 intersecting a gas of number density n2 within a
scattering volume ∆V , defined by the overlap of the ion
beam with the target gas, is given by

dN±/dt = σvreln1n2∆V , (67.1)

where σ is the total reaction cross section (Sect. 47.1.7)
and vrel is the relative speed of the collision partners. Us-
ing the experimental ion beam current I±, cross section
σ , neutral number density n2, and attenuation length L ,
this expression converts to the particularly useful form

dN±/dt = 6.25 × E−7σI±n2L (67.2)

for computing signal levels, where σ is expressed in Å2,
I± in nA, n2 in cm−3, and L in cm. An ion beam of
current 1 nA, intersecting a target of length 1 cm at a
pressure of 10−3 Torr, corresponding to a number den-
sity of 3.5 × 1013 cm−3 at STP, and reacting with a cross
section of 1 Å2 yields a total rate of product formation
of 2 × 107 s−1.

The detector observes only a fraction of this total
rate. If reaction products are scattered isotropically over
4π steradians in the laboratory, and the detector entrance
slit of area dS is located a distance r from the collision
center, subtending a solid angle dS/r2, the fraction of the
total signal scattered into the slit is dS/(4πr2) [67.4].
The fraction of the collision volume, or of the product
state distribution accessible to a particular experimen-
tal method, determines the tradeoffs between resolution
and signal level, and therefore the feasibility of a given
experiment.

In an “ideal” experiment, one collides reactants, with
well specified quantum numbers collectively denoted
n, at a precisely defined relative velocity vrel, resolv-
ing products in quantum states n′ scattered through
center-of-mass scattering angle θ. The resulting detailed
differential cross section (DCS) (Sect. 47.1.1) is denoted
by σ(n′, θ| n, vrel). However, most experiments involve
at least partial averages over initial states and/or sum-
mations over final states. Figure 67.1 shows the result
of averaging σ(n′, θ| n, vrel) over θ to yield the state-to-
state cross section at fixed vrel, denoted by σ(n′|n, vrel).
Averaging this cross section over a Maxwell–Boltzmann
distribution of molecular speeds at a specified temper-
ature T yields the detailed state-to-state rate constant
k(n′|n, T ), while summation over the final states n′ and
averaging over the initial states n yields the thermal
rate constant k(T ). These latter two quantities are ther-
mally averaged, multiple collision properties and not
the subject of this chapter, although they play an im-
portant role in practical applications. Another pathway
for averaging the detailed DCS σ(n′, θ|n, vrel) arises
from averaging over n and summing over n′ to yield
cross sections differential in product velocity v′rel and
θ at fixed vrel, denoted by σ(v′rel, θ|vrel). An average
over θ and v′rel yields the velocity dependent total cross
section σ(vrel), and its Maxwell-Boltzmann average pro-
duces the thermal rate constant k(T ) once again. The
subject of this chapter is a discussion of the various
cross sections σ shown in Fig. 67.1. As one moves from

σ(n�,θ	n,V)

σ(n�	n,V)

k(n�	n;T)

k(T)

σ(V)

σ(V�,θ	V)

n�, n

n�, n

� �v

� �v

� �θ

n�, n

�� ��θ, v�

Fig. 67.1 Relationships among differential and total cross
sections, and rate constants. Brackets denote averages over
indicated variables, or averages over initial states and sum-
mations over final states
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more highly averaged quantities to the detailed cross
sections, more sophisticated reactant preparation and
product detection schemes are required to extract the
desired information, at the expense of decreased sig-
nal levels. Technological advances, particularly in laser
preparation of quantum state-selected reactants and in
state-specific product detection, have made the “ideal”

experiment a near reality in favorable circumstances,
particularly in neutral-neutral interactions, e.g., in ex-
periments on H + H2 and its isotopic variants. This
chapter discusses the cross sections σ(n′, θ| n, vrel),
σ(v′rel, θ|vrel), σ(n′| n, vrel), and σ(vrel), emphasizing
the dynamical information that can be extracted from
each kind of measurement.

67.1 Instrumentation

Instrumentation for studying ion-molecule reactions
is quite diverse, and numerous literature sources
are available for further discussion [67.5]. A typ-
ical instrument has an ionization source, a primary

mass selector, a collision region, and detector,
consisting of a mass spectrometer or employ-
ing a spectroscopic technique allowing molecular
identification.

67.2 Kinematic Analysis

The transformation of laboratory measured speeds,
angles and intensities to their center of mass (cm) coun-
terparts can be accomplished with appropriate geometric
constructions [67.6, 7]. The geometric relationships can
be understood by considering a kinematic Newton di-
agram for the collision process A+ BC, as shown
in Fig. 67.2. The diagram is constructed for the spe-
cial case in which the reactant beams intersect at 90◦.
The laboratory scattering angle and velocity are Θ
and v respectively, while the corresponding center of
mass quantities are θ and u. The beam velocity vec-
tors vA and vBC define the initial conditions, and the
relative velocity vector vrel is defined by their vec-
tor difference. The velocity c of the center of mass,
or centroid, of the collision system is determined by
conservation of linear momentum; the vector c divides
the vrel in inverse proportion to the masses of A and
BC:

c = m AvA +m BCvBC

M
, (67.3)

uA =−m BC

M
vrel , (67.4)

uBC = m A

M
vrel , (67.5)

where M is the total mass of the reactants with masses
m A and m BC . An observer moving away from the lab-
oratory origin in the direction of the center of mass
vector c would see the reactants A and BC approach
along the direction of vrel, with the products retreat-
ing along the direction of v′rel. The angle θ between
these vectors defines the center of mass scattering an-
gle. For a single Newton diagram, detection of products

at recoil speed u and scattering angle θ requires that
measurements be made at laboratory coordinates (v,
Θ). For monoenergetic incident beams, the measure-
ment of both laboratory scattering angle and speed
results in a unique lab to cm coordinate transforma-
tion. Linear momentum conservation also relates the
center of mass speeds of products AB and C to the
relative velocity of the separating products according

vA

dS

uA

c

vBC

uBC

vAB

uAB

dω

Θ

d�

θ

Fig. 67.2 Kinematic Newton diagram showing laboratory
and center of mass velocities and scattering angles
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to

u′AB = mC

M
v′rel , (67.6)

u′C =−m AB

M
v′rel . (67.7)

The final relative kinetic energy of the separating prod-
ucts is

T ′
rel =

1

2
µ′v′rel ·v′rel , (67.8)

where µ′ is the reduced mass of the prod-
ucts.

The total energy of a collision system is computed
from the energies of the incident reactants and the energy
accessible to the products:

Etot = Trel+ Eint−∆Do
0 = T ′

rel+ E′
int ; (67.9)

Trel and Eint refer to the incident kinetic and inter-
nal excitation energies of the reactants and the primed
quantities correspond to the products. ∆Do

0 is the zero
point energy difference of reactants and products. Spec-
ification of the vibrational and rotational energy of a
product determines the relative velocity v′rel with which
the products separate, according to

v′rel =
[(

2

µ′

)
(Trel+ Eint−∆Do

0− E′
int)

]1/2

.

(67.10)

The quantization of internal energy of the product AB
leads to a series of concentric circles about the cen-
troid that describe the loci of final translational speeds
for AB produced in specific internal states. An exam-
ple of the kinematic resolution of product vibrational
states in the reaction O−+HF → F−+OH is shown
in Fig. 67.3 [67.8, 9].

At a collision energy of 0.47 eV (45.0 kJ/mol), the
laboratory flux distribution shows structure that is at-
tributable to the formation of OH in v′ = 0, 1, and 2
states. The kinematic Newton diagram at the bottom of
the figure shows the concentric circles corresponding to
the formation of F− in concert with OH in specific vibra-
tional states having quantum numbers v′ = 0, 1, and 2.
For laboratory scattering angles in the range 0◦ ≤Θ ≤
11◦ and 80◦ ≤Θ ≤ 90◦ energy scans only intersect the
kinematic circles corresponding to OH in v′ = 0 and 1
states, while data in the intermediate range of angles 18◦
≤Θ ≤ 70◦ show contributions from all three states. The
laboratory speeds at which these vibrational states ap-
pear, for a given Θ, are marked in the figure, showing
clear correspondence with the structure in the experi-
mental data. Rotational excitation in the products will

broaden the contributions from individual vibrational
states in experiments lacking rotational resolution. The
best resolution achieved in electrostatic energy analyzers
is approximately 5 meV (40 cm−1); and consequently,
scattering measurements of product fluxes based on ki-
netic energy analysis generally do not have rotational
state resolution. However, photoelectron spectroscopy
measurements on H2 [67.10] have yielded spectra of
H+

2 energy levels with rotational resolution.
The transformation of intensities and cross sections

between laboratory and cm coordinate systems relies on
conservation of flux in a transformation between two
coordinate systems moving with respect to one another.
Figure 67.2 shows the nature of this conservation: in
laboratory coordinates, the flux into solid angle dΩ is
given by Ilab(Ω)dΩ, where the laboratory intensity Ilab
is the flux per unit solid angle, while the corresponding
flux in the cm frame is Icm(ω)dω, where Icm is the cm
flux per unit solid angle. The solid angles subtended by
the detector in the laboratory and cm frames expressed
in velocity space may be computed from the surface
element dS subtended by the detector:

dω= dS

u2 , dΩ = dS

v2 . (67.11)

The flux equality Ilab(Ω)dΩ = Icm(ω)dω leads to the
intensity transformation

Ilab(v,Θ)= v2

u2
Icm(u, θ) . (67.12)

The widths of the beam velocity distributions must
be accounted for in extracting accurate cm cross sections
from laboratory data. In the case where the laboratory
flux at a given Θ is comprised of contributions from
individual quantum states of the products, the laboratory
flux is recovered from the relation

Ilab(v,Θ)=v2

∞∫

0

dv2 f2(v2)

∞∫

0

dv1 f1(v1)
vrel

u2

×

[
∑

n′
σ(n′, θ|n, vrel)δ(u−un′)

]

.

(67.13)

In this expression, the velocity distributions for the pri-
mary ion beam and the secondary neutral beam are
given by f1(v1) and f2(v2) respectively. The final prod-
uct internal states are labeled by the index n′; the cm
cross section for producing collective quantum state
n′ is given by σ(n′, θ|n, vrel) and the cm speed cor-
responding to the formation of this state is given by
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Fig. 67.3 F− reactive fluxes in the O− + HF system at a collision energy of 45 kJ/mol. After [67.8, 9] by permission

un′ . The solution of this equation for σ(n′, θ|n, vrel) can
be accomplished both by forward convolution integra-
tion fitting procedures [67.11] and by iterative unfolding
[67.12]. Forward convolution methods assume paramet-
ric forms for σ(n′, θ|n, vrel) that are substituted into
(67.13). The parameters are then varied until the cal-
culated fluxes agree with the data within experimental
error. Iterative deconvolution methods generally extract

the cm cross section summed over final states,
∑

n′
σ(n′, θ|n, vrel) , (67.14)

but the finite energy of the detection scheme also deter-
mines whether quantum states are completely resolved
or if the data represent a summation over product energy
levels.

67.3 Scattering Cross Sections

Measurements of the single-collision cross sections
shown schematically in Fig. 67.1 require a variety of
sophisticated techniques. Each of these are discussed in
the context of measurement techniques and information
content, with illustrative examples.

67.3.1 State-to-State Differential Cross
Sections

Information most diagnostic of the potential energy sur-
face for chemical reaction comes from σ(n′, θ|n, vrel).
The experimental data of Fig. 67.3 on the O− +
HF system provide an example of a case in which
n′ refers to product OH vibrations in the ground
electronic state, but without resolution of product
rotations. Iterative deconvolution of the laboratory
fluxes results in a flux distribution that is a sum
of cross sections, as described in (67.14). Fig-
ure 67.4 shows this distribution in cm velocity space
as a function of u and θ. In this representation,

the relative velocity vector lies along the 0◦ - 180◦
line, and the symmetric peaks of the data near
0◦ (forward scattering) and 180◦ (backward scatter-
ing) indicate that the reaction proceeds through a
transient collision complex living for at least sev-
eral rotational periods. The symmetry of the flux
distribution with respect to 90◦ is the most impor-
tant diagnostic for the participation of a long-lived
transient complex. Whether the distribution is forward-
backward peaked, as in the present example, or
more isotropic reflects the geometry of the com-
plex (i. e., oblate or prolate symmetric top) and the
manner in which angular momentum is partitioned
in the products [67.13]. In Fig. 67.4, the forward-
backward scattering is indicative of the fact that
the orbital angular momentum L of the approach-
ing reactants is partitioned preferentially into orbital
angular momentum of the products, L′, through
a near-linear [O· · ·H· · ·F]− intermediate. The vari-
ous peaks in the flux distribution of Fig. 67.4 can
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be assigned to OH vibrations v′ = 0, 1, and 2.
Integration of the cross sections over the appro-
priate angular and velocity ranges yields the result
P(v′ = 0) : P(v′ = 1) : P(v′ = 2)= 0.38 : 0.43 : 0.18.

Crossed–beam experiments (Sect. 60.2.2) with suffi-
cient angular and kinetic energy resolution yield angular
distributions for individual vibrational states. Similarly,
laser-induced fluorescence experiments [67.15] yield ro-
tational distributions. Recent work on the Ar+ + N2
→ Ar + N+

2 (v
′ = 0, J ′) system illustrates this capabil-

ity [67.16] (Sects. 64.2.1 and 38.4.1). However, these
experiments probe N+

2 in the collision volume, thereby
averaging over all possible scattering angles, and are
more properly examples of product-state resolved cross
sections, discussed in Sect. 67.3.4. Experiments that
provide complete product vibrational-rotational state
specification and product scattering angles have yet to
be carried out.

In the above examples the neutral beam is produced
by supersonic expansion, producing reactants in their
ground vibrational states, with rotational temperatures of
only a few kelvins. Experiments with reactants prepared
in excited states, either by laser absorption [67.17] or
photoionization, and with full final state selection and
angular resolution, remain a major goal of ion-molecule
chemistry.

The production of reagent ions in selected vibra-
tional and vibrational-rotational states by resonance en-
hanced multiphoton ionization (REMPI) (Sect. 74.1.2)

90°

0° 180°

O– HF

Fig. 67.4 Axonometric plot of F− fluxes in velocity space
in the reaction O− + HF → OH + F− at 45 kJ/mol. Data
from [67.8, 9]

has been accomplished in a number of systems [67.17,
18]. The use of photoelectron spectroscopy to assess the
purity of the state-selection process is essential [67.19].

67.3.2 Velocity–Angle Differential Cross
Sections

The velocity-angle DCS σ(v′rel, θ|vrel) obtained by
measuring kinetic energy distributions as a function
of Θ can be plotted as a distribution in u and
θ. Figure 67.5 shows σ(v′rel, θ|vrel) for the reaction
C++H2O → [COH]+ +H at a collision energy of
2.14 eV (206.5 kJ/mol) [67.14]. The scattering is pre-
dominately backward, and the data indicate a reaction
taking place in part through a transient complex, but
principally through low impact parameter direct colli-
sions leading to backward scattered products. Collisions
leading to such backward scattered products are called
rebound collisions and are dominated by the repulsive
part of the potential surface. Although the reaction of C+
with H2O is exothermic, high kinetic energy release in
the rebound component suggests that a potential energy
barrier is in the exit channel, i. e., it acts as the products
separate.

At lower collision energies, the forward peak in
the flux distribution becomes more pronounced for the
C++H2O reaction, suggesting that the reaction is me-
diated by a collision complex living for a fraction of a
rotational period. Under these conditions, it is possible

H2O C+90°

0° 180°

Fig. 67.5 Axonometric plot of [COH]+ fluxes in velocity
space in the reaction C+ +H2O→ [COH]+ +H at 2.14 eV
(206.5 kJ/mol). Data from [67.14]
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to extract collision complex lifetimes from the angular
distribution asymmetry through the osculating model for
chemical reactions [67.20]. In this model, the lifetime is
a parametric function of the complex’s rotational period,
evidenced by the forward-backward asymmetry

I(180◦)/I(0◦)= 1/ cosh(τR/2τ) . (67.15)

In this expression, τ is the lifetime of the complex and τR
is the rotational period, estimated from the moment of
inertia I and the maximum orbital angular momentum
Lmax of the complex. The total reaction cross section σ
can be used to estimate this latter quantity from

σ =
(
π�2

2µTrel

)
(Lmax+1)2 . (67.16)

In the present case, the lifetime estimate for the
[CHOH]+ complex is less than 1 × 10−13 s (Chapt. 35).

At high energies, rebound collisions dominate
the dynamics of the C+ + H2O reaction. Another
limit often encountered in high energy ion-molecule
reactions is the stripping process in which the in-
coming ionic projectile removes a particle from its
molecular collision partner, and the new ionic prod-
uct travels in the same direction as the incident
ionic reactant. The spectator stripping limit [67.22]
for a reaction of the type A+ BC → AB+C cor-
responds to the case in which the cm speed of
product C is unchanged from the cm speed of
reactant BC, i. e., C “spectates” as the reaction
occurs.

67.3.3 Total Cross Sections with
State-Selected Reactants

State-selected cross sections σ(n′|n, vrel) were first
measured by Chupka and collaborators [67.23, 24] in
the endothermic reaction of H+

2 + He → HeH+ +
H, with H+

2 prepared in states v ≥ 2 by photoioniza-
tion, and HeH+ detected without product state analysis.
Thus, n′ represents a summation over all accessible prod-
uct states in state-selected reactant experiments. At a
given vuv ionization wavelength, H+

2 is prepared, sub-
ject to Franck-Condon factor limitations (Sect. 33.6.1),
in all possible vibrational states up to the maximum al-
lowed by the photon energy. Therefore, extraction of
cross sections for individual vibrational states requires
VUV wavelength dependent studies in which the num-
ber of reactant vibrational states is increased smoothly
from the ground state up to the limit allowed by in-
strumental resolution or photon sources. A number of
reactive and charge transfer systems have been studied

with photoionization techniques at the reactant state-
selected level with unresolved product states. Data are
typically in the form of P(v′) vs. v′, as a function of colli-
sion energy. A comprehensive review by Ng is available
[67.25].

67.3.4 Product–State Resolved Total Cross
Sections

The resolution of product states in cross section mea-
surements can be accomplished in a variety of ways.
We will first discuss the case in which the reactants have
not been state-selected. In principle, spectroscopic meth-
ods such as laser-induced fluorescence can be used for
complete product quantum state specification. Earlier
reference to N+

2 vibration-rotation state-resolved charge
transfer experiments [67.16] provides an excellent ex-
ample of the state of the art of such methods, and their
extension to chemical reactions represents an impor-
tant future development. A beautiful example is mass
spectrometric detection of N+

2 in the Ar+ + N2 charge
transfer system [67.21]. Guided ion-beam production
and detection methods [67.26] in conjunction with a su-
personic beam of N2 allow 4π detection of the charge
transfer products as a function of collision energy, yield-
ing accurate total cross sections. The results, plotted in
Fig. 67.6, show thresholds for the production of excited
vibrational states of N+

2 X2Sigmag, v′ = 1, 2, and 4) as
well as the formation of the excited B 2Σg state. The
detection of chemiluminescence from electronically ex-
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0
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Cross section (arb. units)

Collision energy (eV)

N2
+(X2Σg1v = 4)
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+(X2Σg1v = 2)

N2
+(B2Σu

+)

N2
+(X2Σg1v = 1)

D(N+–N)

Fig. 67.6 Energy dependent cross section for production
of N+

2 in states as indicated in the Ar+ + N2 charge
transfer system. After [67.21] by permission
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cited states of ion-molecule reactions is also a powerful
method for determining such cross sections; methods
and results are reviewed in [67.27].

67.3.5 State-to-State Total Cross Sections

The most detailed probe of an ion-molecule reaction
is the state-to-state cross section. The measurement
of angularly-resolved state-to-state cross sections has
only been achieved for reactants in their ground states,
but true state-to-state total cross sections have now
been measured in a few favorable cases. A particu-
larly novel method for product-state determination with
reactant-state selection has been developed [67.25]. In
the differential reactivity method, product vibrational
states are distinguished by their differing cross sections
for charge transfer with selected molecules. Although
the method is limited at present because state-selected
charge transfer cross sections have been measured in
only a few systems, the technique has great potential.
The charge transfer reaction H+

2 (v)+ H2 → H2 + H+
2

(v′), in which H+
2 is prepared in v= 0 and 1 by VUV

photoionization, provides a particularly good example
of its power. The H+

2 charge transfer products, formed
in states v′ = 0−3, are first mass-analyzed, accelerated
to 10 eV, and then passed through a collision cell con-
taining N2, Ar, or CO, where charge transfer occurs
once again. The N+

2 , Ar+, or CO+ products are mass
analyzed and the cross sections σm for forming these
ions by charge transfer from the H+

2 reaction products
are measured. The charge transfer cross sections for H+

2
with these gases have different dependences on v′, as

2

1

0
0 1 2 3 4 v�

Relative cross section (arb. units)

Co
Ar
N2

Fig. 67.7 Cross sections for charge transfer of H+
2 (v

′) vs.
v′ with N2, Ar, and CO at a collision energy of 10 eV. After
[67.25] by permission of John Wiley & Sons, Inc

shown in Fig. 67.7, and therefore, the gases can be used
to probe the product states of H+

2 formed in the sym-
metric charge exchange reaction. Letting Xv′ denote the
fraction of H+

2 formed in the vibrational state v′, n de-
notethe number density of the neutral collision gas, and l
denote the attenuation length, the following set of simul-
taneous equations can be solved for Xv′ , since thecross
sections σv′ are known and the σm are measured:

X0+ X1+ X2+ X3 = 1 (67.17)

and, for a particular ion (e.g., N+
2 , Ar+, CO+),

X0nlσ0+ X1nlσ1+ X2nlσ2+ X3nlσ3 = nlσm .

(67.18)

[An equation like (67.18) will exist for each collision
gas.] An extensive set of data at collision energies from
2 eV up to 16 eV has been obtained [67.29]. When the
reactant ions are in the vibrational ground state, at low
kinetic energies the charge transfer product is also in
the ground state, indicating that resonant charge transfer
is the dominant process. At increasing collision ener-
gies, X1 increases from 0.0 to 0.17. For vibrationally
excited H+

2 reactants, inelastic relaxation to form H+
2 in

v′ = 0 is important at all collision energies, increasing in
magnitude with increasing collision energy. Of particu-
lar interest is the fact that inelastic relaxation forming
v′ = 0 is substantially more important than inelastic
excitation producing v′ = 1 or 2. This trend is pre-
dicted by theory, but underestimated at lower collision
energies.
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Fig. 67.8 Total cross section for ND+ formation in the N+
+ D2 system, showing a low energy threshold at 15 meV.
After [67.28] by permission
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67.3.6 Energy Dependent Total Cross
Sections

Although non-state-selected cross sections, denoted
σ(v), lack information about product energy disposal,
important features of the potential energy surface can
be obtained from their measurement. Guided ion beam
methods have been especially important in the deter-
mination of accurate cross sections, particularly those
that employ a supersonic beam rather than a gas as a
neutral target. Energy-dependent cross sections provide
crucial information on ion and neutral thermochemistry
through accurate measurements of reaction thresholds,
and help to elucidate important potential surface fea-
tures such as thresholds, barriers, and crossings [67.30].
A particularly illustrative example of threshold forma-
tion concerns the reaction N+(3P)+H2 → NH++H
and its isotopic variants. This reaction is important at
low (< 0.1 eV) collision energies as the first step in
the chain reaction that leads to formation of ammo-

nia in dense interstellar clouds, but the bond energy of
NH+ is uncertain enough to prevent knowing whether
the above reaction is endothermic or exothermic. Re-
cent total cross section measurements on the isotopic
variant N+ (3P) + D2 → ND+ + D at very low col-
lision energies now appear to answer this question
[67.28]. Figure 67.8 shows experimental results per-
formed on two different instruments, one a guided
ion beam-crossed neutral beam machine and the other
a guided merged-beam apparatus. The data show a
very clear threshold at 15 meV, demonstrating that
the reaction is endothermic and allowing for a more
accurate estimate of the ND+ bond energy. This
experiment shows that the high energy resolution af-
forded in total cross section measurements employing
crossed and merged beams, rather than thermal col-
lision cells, can answer thermochemical questions of
importance in a wide variety of applications, includ-
ing astrophysics, combustion, electrical discharges, and
atmospheric processes.

67.4 New Directions: Complexity and Imaging

The crossed beam technique provides the precise kine-
matic definition required to extract the most intimate
details of reactive collisions. Although the highest res-
olution examples of the technique involve systems
with three or four atoms, several recent examples of
systems of greater complexity have appeared in the
literature. The multiply-charged CF2+

2 + D2 system
[67.31] is appreciably more complex experimentally
than its singly-charged analog, owing to the possibility
of forming two charged fragments with correlated prod-
uct distributions. The nine-atom C2H+

2 + CH4 system
has been studied previously with guided ion beam-
gas cell methods under conditions where the reactant
ions are produced by multiphoton ionization [67.32].
Those early experiments, which yielded total reaction
cross sections for vibrational state-selected ions, gave
significant indications of mode-selectivity in complex
reactions. A more recent study [67.33], conducted with-
out reactant state-selection or product state analysis,
maps out product angular distributions and disposal of
energy in relative translation with ion trapping tech-
niques that measure longitudinal velocity components
directly and provide upper bounds on the transverse
velocity components.

The majority of extant crossed beam experimen-
tal studies construct three-dimensional velocity space
distributions with a series of one-dimensional sections

through the full distribution such that, in any interval of
time, only a single detection element in velocity space
can be measured. Recent advances in imaging methods
[67.34–36], in which many velocity space elements can
be observed in a single time interval, promise to increase
the sensitivity of the crossed beams method by orders
of magnitude. The signal gains that can be achieved
with the implementation of such multiplex advantage
methods will allow the lower reactant and product sig-
nal levels associated with increasing state-specification
and/or system complexity to be tolerated without undue
increases in data acquisition times.

Figure 67.9 shows a schematic of an instrument that
illustrates the imaging principle.

As indicated in the diagram, the locus of points of
reaction products with a constant center of mass speed
is a sphere whose radius increases with time. Individ-
ual quantum states of a given reaction product form a
set of nested spheres in velocity space. Projecting this
set of product spheres onto a detection plane allows all
product velocity elements to be observed in a single
time window. Application of the inverse Abel trans-
form [67.37] allows the full three-dimensional velocity
distribution to be extracted from the two-dimensional
projection on the detection plane. Velocity focusing
methods [67.38] allow reaction products originating
from spatially distinct regions of the collision volume
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Fig. 67.10a,b Panel (a): image of ionic products formed by H2

ejection from Co+ C4H10 collision complex. Panel (b): image of
ionic products formed by CH4 ejection from Co+ C4H10 collision
complex

Fig. 67.9 Schematic of crossed beam imaging instrument.
Product flux extracted from the collision volume with
a single center of mass speed describes a sphere in vel-
ocity space. This flux is projected onto a multichannel
plate/phosphor screen detector and recorded with a CCD
camera

that have the same lab velocity components in the plane
of the beams to be focused to a single point. Figure 67.10
shows velocity space images of the H2 and CH4 elimina-
tion products arising from decay of the transient collision
complex formed in collisions of Co+ with iso-butane
C4H10 [67.39].

This velocity space image is equivalent to the c.m.
cross section expressed in equation (67.14), and can
be appropriately averaged over initial states or summed
over final states to yield product angular or energy distri-
butions, total cross sections, or rate constants according
to the hierarchy of Fig. 67.1. The time window that
imaging requires is ideally mated with pulsed molecu-
lar beam sources, and thus with pulsed lasers. This last
connection opens up a number of possibilities for re-
actant preparation, including electron impact ionization
via pulsed electron beams formed by laser-induced pho-
toemission from metals, pulsed IR laser excitation of
ro-vibrationally state-selected molecules, formation of
free radicals by UV laser photolysis, and multiphoton
ionization preparation of state-selected ions.

As laser-based photolysis, state-selection, and ion-
ization methods continue to advance, additional routes
for preparing atomic and molecular ions, free radi-
cals, and clusters with quantum state-specificity will
appear. These schemes will enhance all crossed beam
methodologies, but will have an especially important
impact on methods that exploit time-based snapshots
of the velocity space product distribution in coordinate
space. Point-by-point methods for reconstruction of the
three-dimensional flux distribution in velocity space will
continue to play a role in the development of the crossed
beam technique, but technological advances in lasers and
in imaging systems virtually assure that the most impres-
sive gains in crossed beam technology in the next several
years will come from multichannel product detection.
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Light–Matter68. Light–Matter Interaction

Optical physics is concerned with the dynamical
interactions of atoms and molecules with
electromagnetic to fields. Semiclassical theories,
which study the interaction of atoms with
classical fields, are often said to comprise
optical physics, while quantum optics treats the
interaction of atoms or molecules with quantized
electromagnetic fields. A significant part of
optical physics and quantum optics is the study
of near-resonant atom-field interactions, and
concentrates on nonperturbative dynamics, where
the effects of the optical fields have to be kept to
all orders. The atomic properties themselves are
assumed to be known.

The vast majority of problems in light-matter
interactions can be treated quite accurately within
semiclassical theories. However, an important
class of problems where this is not the case are
presented in Chapt. 78. While much of optical
physics and quantum optics ignores the effects of
the electromagnetic fields on the center-of-mass
motion of the atoms, important topics such as
atomic trapping and cooling (Chapt. 75) and de
Broglie optics (Chapt. 77) rely in an essential way
on such mechanical effects of light. The present
chapter deals with more “traditional” aspects of
optical physics, where these effects are ignored.
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68.1 Multipole Expansion

Consider a test charge q of mass m localized within an
atom and acted upon by an external electromagnetic field
with electric field E(r, t) and magnetic field B(r, t). In
the multipole expansion formalism [68.1,2], the electric
and magnetic interaction energies between the charge
and the electromagnetic field are

Ve = VE0(t)−q

r∫

0

ds · E(R+ s, t) , (68.1)

Vm =−q

r∫

0

ds ·v × B(R+ s, t) , (68.2)

respectively. The material of this chapter is discussed in
detail in a number of texts and review articles. We cite
such references rather than the original sources when-
ever possible. These energies correspond to the work
done by the electric and magnetic components of the
Lorentz force in first moving the charge to a stationary
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origin of coordinates at a point R and then to a location
r relative to R. Here, VE0(t) represents the energy of the
charge when located at the reference point R. It may be
expressed in terms of the electrostatic potential φ(R, t)
as VE0(t)=+qφ(R, t).

A Taylor series expansion of Ve(t) and Vm(t) about
r= 0 yields

Ve(t)= VE0(t)−q
∞∑

n=1

1

n!
(

r · ∂
∂R

)n−1

r · E(R, t) ,

(68.3)

Vm(t)=−q�

m

∞∑

n=1

n

(n+1)!
(

r · ∂
∂R

)n−1

� · B(R, t) ,

(68.4)

where �� = r × p is the angular momentum of the
test charge relative to the coordinate origin R. Here,
use of the mechanical momentum p = mṙ, instead of
the canonical momentum, neglects the electromagnetic
component of the momentum responsible for diamag-
netic effects.

In addition to the electromagnetic interaction, elec-
trons and nuclei are characterized by a spin magnetic
moment ms = (q�/2m)gss, where s is the spin of the test
charge and gs its gyromagnetic factor, equal to 2.002 . . .
for electrons. The factor q�/2m is the particle’s magne-
ton. The spin magnetic moment yields an additional term
to the magnetic energy Vm, which becomes

Vm(t)=− e�

2m

∞∑

n=1

1

n!
(

r · ∂
∂R

)n−1

×

(
2

n+1
g�+ gss

)
· B(R, t) , (68.5)

where the orbital g-factor is g = q/e (g =−1 for an
electron). For an ensemble {α} of charged particles qα
in an atom, these expressions are to be summed over all
particles. Thus, the electric energy becomes

Ve(t)=
∑

α

qαφ(R, t)−
3∑

i=1

∑

α

qαri(α)Ei(R, t)

− 1

2

3∑

i, j=1

[
∑

α

qαri(α)r j(α)

]

×
∂

∂R j
Ei(R, t)+· · ·

≡ VE0(t)+VE1(t)+VE2(t)+· · · , (68.6)

and the magnetic energy becomes

Vm(t)=
3∑

i=1

Bi(R, t)

×
∑

α

e�

2mα
[g(α)i(α)+ gs(α)si(α)]

−
3∑

i, j=1

∂Bi(R, t)
∂R j

∑

α

e�

2mα

[2

3
g(α)i(α)r j(α)

+ gs(α)si(α)
]
+· · ·

≡ VM1(t)+VM2(t)+· · · . (68.7)

68.1.1 Electric Dipole (E1) Interaction

For optical fields whose wavelength is large compared
with the interacting atom, only the first few terms in the
Taylor expansions of Ve(t) and Vm(t) need be retained.
The first term, VE0(t), of Ve(t) is the net charge of the
atom, which vanishes for neutral atoms. The second
term, VE1(t), is the electric dipole interaction energy.
Introducing the electric dipole (E1) moment,

d =
∑

α

qαr(α) , (68.8)

or

d =
∫

d3rρ(r)r , (68.9)

for a charge distribution, this contribution to the interac-
tion energy may be re-expressed as

VE1(t)=−d · E(R, t) . (68.10)

The E1 term dominates most optical phenomena.

68.1.2 Electric Quadrupole (E2) Interaction

The VE2(t) contribution to ve(t), describes electric
quadrupole (E2) interactions. In terms of the quadrupole
tensor

Q = 3
∫

d3rρ(r)rir j , (68.11)

VE2(t) becomes

VE2(t)=−1

6

3∑

i, j=1

Qij
∂

∂Ri
E j(R, t) . (68.12)
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Alternatively, E2 interactions can be expressed in terms
of the traceless quadrupole tensor Q(2)ij = ∫

d3rρ(r)
×(3rir j − δijr2). E2 interactions are typically weaker
than E1 interactions by a factor a0/λ, where a0 is the
Bohr radius and λ is the wavelength of the transition.
Since a0/λ is very small for optical transitions, E2
interactions are typically neglected in quantum optics.

68.1.3 Magnetic Dipole (M1) Interaction

The first term in the multipole expansion the mag-
netic interaction (Sect. 68.6) is the magnetic dipole M1
interaction,

VM1 =−m · B(R, t) , (68.13)

of a magnetic moment m in a magnetic field, where

m =
∑

α

(
qα�

2mα

)
[g(α)(α)+ gs(α)s(α)]

=−µB(L+2S) , (68.14)

and we have used the fact that for electrons g =−1 and
gs )−2. The Bohr magneton µB is

µB = e�

2mc
= αea0

2
, (68.15)

where α is the fine structure constant. Thus M1 interac-
tions tend to be smaller than E1 interactions by a factor
of order α/2. The connection between m and angular
momentum J is m = γ J, where γ is the gyromagnetic
ratio.

68.2 Lorentz Atom

The Lorentz atom consists of a classical electron har-
monically bound to a proton. It provides a framework
for understanding a number of elementary aspects of
the electric dipole interaction between a single atom and
light [68.3–7]. Assuming that the c.m. motion of the
atom is unaffected by the field, and neglecting magnetic
effects, the equation of motion of the electron is

(
d2

dt2
+ Γ0

2

d

dt
+ω2

0

)
r =− e

m
E(R, t) , (68.16)

where ω0 is the electron’s natural oscillation frequency,
and Γ0 represents a frictional decay rate that accounts
for the effects of radiative damping. For the classical
Lorentz atom

Γ0 = 2ω2
0r0/3c , (68.17)

where r0 = e2/4πε0mc2 is the classical electron radius.
This damping arises physically from the radiation reac-
tion of the field radiated by the atom on itself. In the
E1 approximation, the electric field is evaluated at the
location R of the atomic c.m.

68.2.1 Complex Notation

The study of light-matter interactions is simplified by
the introduction of complex variables [68.8–11]. For
example, an electric field

E(R, t)=
∑

n,µ

εµEn cos(ωnt) , (68.18)

where εµ is the polarization vector of the field Fourier
component at frequency ωn is expressed as

E(R, t)= E+(R, t)+ E−(R, t) , (68.19)

where the positive frequency part of the field is

E+(R, t)= 1

2

∑

n,µ

εµEn exp[i(kn · R−ωnt)] .

(68.20)

Due to the linearity of (68.16), it is sufficient to study the
response of the Lorentz atom to a plane monochromatic
electric field of frequency ω, complex amplitude E and
polarization ε. Introducing the complex dipole moment

d =−er = εP exp[i(k · R−ωt)]+ c.c. , (68.21)

where P is in general complex for E real, and the com-
plex polarizability α(ω) via P = α(ω)E , then

α(ω)= e2/m

ω2
0−ω2− iγω

. (68.22)

68.2.2 Index of Refraction

From the Maxwell wave equation
(
∇2− 1

c2

∂2

∂t2

)
E(R, t)= 1

ε0c2

∂2 P(R, t)
∂t2

,

(68.23)

where P(R, t) is the electric polarization, given by the
electric dipole density of the medium P = Nd, N being
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the atomic density, the plane wave dispersion relation is

k2 = ω
2

c2
n2(ω) , (68.24)

where the index of refraction n(ω) is

n(ω)=
√

1+ Nα(ω)

ε0
. (68.25)

68.2.3 Beer’s Law

Since the polarizability α(ω) is normally complex, so
is the index of refraction. Its real part leads to disper-
sive effects, while its imaginary part leads to absorption.
Specifically, Re[n(ω)]−1 has the form of a standard dis-
persion curve, positive for ω−ω0 < 0 and negative for
ω−ω0 > 0, while Im[n(ω)] is a Lorentzian curve peaked
at ω= ω0. The intensity absorption coefficient a(ω) is

a(ω)= 2 Im [n(ω)]ω/c (68.26)

= 2ω

c
Im

[

1+
(

Ne2

mε0

)
iγω+(ω2

0−ω2
)

(
ω2

0−ω2
)2+γ 2ω2

]1/2

.

For atomic vapors, the corrections to the vacuum index
of refraction are normally small, so that the square root
in (68.26) can be expanded to first order, giving

a(ω)=
(

N e2

ε0mc

)
γω2

(
ω2

0−ω2
)2+γ 2ω2

. (68.27)

The intensity of a monochromatic field propagating
along the z-direction through a gas of Lorentz atoms
is therefore attenuated according to Beer’s law given by

I(ω, z)= I(ω, 0)e−a(ω)z . (68.28)

If the index of refraction at a given frequency becomes
purely imaginary, no electromagnetic wave can prop-
agate inside the medium. This is the case for field
frequencies smaller than the plasma frequency

ωp =
√

Ne2

mε0
. (68.29)

While the Lorentz atom model gives an adequate
description of absorption and dispersion in a weakly ex-
cited absorbing medium, it fails to predict the occurence

of important phenomena such as saturation and light
amplification. This is because, in this model, the phase
of the induced atomic dipoles with respect to the inci-
dent field is always such that the polarization field adds
destructively to the incident field. The description of
light amplification requires a quantum treatment of the
medium, which gives a greater flexibility to the possi-
ble relative phases between the incident and polarization
fields.

68.2.4 Slowly-Varying Envelope
Approximation

Light–matter interactions often involve quasi-mono-
chromatic fields for which the electric field (taken to
propagate along the z-axis) can be expressed in the form

E(R, t)= 1

2
εE+(R, t)ei(kz−ωt)+ c.c. , (68.30)

such that
∣∣∣∣
∂E+

∂t

∣∣∣∣& ω
∣∣E+

∣∣ ,
∣∣∣∣
∂E+

∂z

∣∣∣∣& k
∣∣E+

∣∣ . (68.31)

It is further consistent within this approximation to
assume that the polarization takes the form

P(R, t)= 1

2
εP+(R, t)ei(kz−ωt)+ c.c. , (68.32)

with
∣∣∣∣
∂P+

∂t

∣∣∣∣& ω
∣∣P+∣∣ . (68.33)

Under these conditions, known as the slowly-varying
envelope approximation ([68.5]), Maxwell’s wave equa-
tion reduces to

(
∂

∂z
+ 1

c

∂

∂t

)
E+(z, t)=− k

2iε0
P+(z, t) . (68.34)

Hence, in the slowly-varying envelopes approximation
we ignore the backward propagation of the field [68.12].
The slowly-varying amplitude and phase approxima-
tion is essentially the same, except that it expresses the
electric field envelope in terms of a real amplitude and
phase.

68.3 Two-Level Atoms

A large number of optical phenomena can be understood
by considering the interaction between a quasi-
monochromatic field of central frequency ω and

a two-level atom, which simulates a (dipole-allowed)
atomic transition [68.5, 7, 10, 11, 13–17]. This approx-
imation is well justified for near-resonant interactions;
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Light–Matter Interaction 68.3 Two-Level Atoms 1001

i. e., ω) ω0. The next three sections discuss the model
Hamiltonian for this system in the semiclassical approx-
imation where the electromagnetic field can be described
classically. The formal results are then extended to the
case of a quantized field, where the electric field is
treated as an operator.

68.3.1 Hamiltonian

In the absence of dissipation mechanisms, the dipole in-
teraction between a quasi-monochromatic classical field
and a two-level atom is

H = �ωe|e〉〈e|+�ωg|g〉〈g|−d · E(R, t) , (68.35)

where |e〉 and |g〉 label the upper and lower atomic
levels, of frequencies ωe and ωg, respectively, with
ωe−ωg = ω0, and R is the location of the center of mass
of the atom. The electric dipole operator (68.8), couples
the excited and ground levels, and may be expressed as

d = εdd (|e〉〈g|+ |g〉〈e|) , (68.36)

where εd is a unit vector in the direction of the dipole
and d the matrix element of the electric dipole operator
between the ground and excited state, which we take to
be real for simplicity. We also neglect the vector char-
acter of d and E(R, t) in the following, assuming, for
example, that both εd and ε are parallel to x-axis. The
Hamiltonian (68.35) may then be expressed as

H = �ωe|e〉〈e|+�ωg|g〉〈g|−d (|e〉〈g|+ |g〉〈e|)
×
[
E+(R, t)+ E−(R, t)

]
, (68.37)

where we have generalized the notation of (68.20) in
an obvious way. One can introduce the pseudo-spin
operators

sz = (|e〉〈e|− |g〉〈g|)/2 ,
s+ = s†− = |e〉〈g| , (68.38)

and redefine the zero of atomic energy to introduce the
commonly used form

H = �ω0sz −d (s++ s−)
[
E+(R, t)+ E−(R, t)

]
.

(68.39)

68.3.2 Rotating Wave Approximation

Under the influence of a monochromatic electromag-
netic field of frequency ω, atoms undergo transitions
between their lower and upper states by interacting
with either the positive or the negative frequency part

of the field. The corresponding contributions to the
atomic dynamics oscillate at frequencies ω0−ω and
ω0+ω, respectively, and their contributions to the prob-
ability amplitudes involve denominators containing this
same frequency dependence. For near-resonant atom-
field interactions, the rapidly oscillating contributions
lead to small corrections, the first-order one being the
Bloch–Siegert shift, whose value near resonance, is
ω) ω0 [68.17].

δωeg =−
(
d
∣∣E+∣∣/�

)2

4ω
(68.40)

to lowest-order in dE/�ω. The neglect of these terms is
the Rotating Wave Approximation (RWA). Note that it
is normally inconsistent to regard an atom as a two-level
system and not to perform the RWA. In the RWA, the
atomic system is described by the Hamiltonian

H = �ω0sz −d
[
s+E+(R, t)+ s−E−(R, t)

]
,

(68.41)

or, in a frame rotating at the frequency ω of the field,

H = �∆sz − 1

2
d
(

s+E eik ·R+h.c.
)
, (68.42)

where∆= ω0−ω is the atom-light detuning. (Note that
the alternate definition δ= ω−ω0 is frequently used in
the literature.) In the rest of this chapter, we consider
atoms placed at R= 0.

68.3.3 Rabi Frequency

The dynamics of the two-level atom is conveniently
expressed in terms of its density operator ρ, whose
evolution is given by the Schrödinger equation

dρ

dt
=− i

�
[H, ρ] , (68.43)

where ρee = 〈e|ρ|e〉 and ρgg = 〈g|ρ|g〉 are the upper and
lower state populations Pe and Pg, respectively, while
the off-diagonal matrix elements ρeg = 〈e|ρ|g〉 = ρ%ge
are called the atomic coherences, or simply coherences,
between levels |e〉 and |g〉. These coherences play an es-
sential role in optical physics and quantum optics, since
they are proportional to the expectation value of the
electric dipole operator.

The evolution of Pg(t) and Pe(t)= 1− Pg(t), is
characterized by oscillations at the generalized Rabi
frequency

Ω =
(
Ω2

1 +∆2
)1/2

, (68.44)
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where the Rabi frequency Ω1 is Ω1 = dE/�, (or
Ω1 = dE( εd · ε)/� when the vector character of the
electric field and dipole moment are included). Specif-
ically, assuming that the atom is initially in its ground
state |g〉, the probability that it is in the excited state |e〉
at a subsequent time t is given by Rabi’s formula

Pe(t)= (Ω1/Ω)
2 sin2(Ωt/2) . (68.45)

At resonance (∆= 0), the generalized Rabi frequencyΩ
reduces to the Rabi frequency Ω1. (In addition to the
texts on quantum optics already cited, see also [68.18].)

68.3.4 Dressed States

Semiclassical Case
The atomic dynamics can alternatively be described in
terms of a dressed states basis instead of the bare states
|e〉 and |g〉 (see especially [68.17]). The dressed states |1〉
and |2〉 are eigenstates of the Hamiltonian (68.42), and,
by convention, the state |1〉 is the one with the greatest
energy. They are conveniently expressed in terms of the
bare states via the Stückelberg angle θ/2 as

|1〉 = sin θ|g〉+ cos θ|e〉 ,
|2〉 = cos θ|g〉− sin θ|e〉 , (68.46)

where sin(2θ)=−Ω1/Ω, cos(2θ)=∆/Ω. The corres-
ponding eigenenergies are

E1 =+1

2
�Ω ,

E2 =−1

2
�Ω . (68.47)

These energies are illustrated in Fig. 68.1 as a function
of the field frequency ω. The dressed levels repel each
other and form an anticrossing at resonance ω= ω0. As
the detuning ∆ varies from positive to negative values,
state |1〉 passes continuously from the excited state |e〉
to the bare ground state |g〉, with both bare states hav-
ing equal weights at resonance. The distances between
the perturbed levels and their asymptotes for |∆| %Ω1
represent the ac Stark shifts, or light shifts, of the atomic
states when coupled to the laser. From Fig. 68.1, the ac
Stark shift of |g〉 is positive for ∆< 0 and negative for
∆> 0, while the |e〉 state shift is negative for ∆< 0 and
positive for ∆> 0.

Quantized Field
The concept of dressed states can readily be general-
ized to a two-level atoms interacting with a single-mode
quantized field in the dipole and rotating wave approx-
imations. The atom and its dipole interaction with the

field are still described by the Hamiltonian (68.41), ex-
cept that the positive and negative frequency components
of the field are now operators, and the free field Hamil-
tonian must be included. The Hamiltonian of the total
atom-field system becomes

H = �ω0sz +�ω

(
a†a+ 1

2

)
+�g

(
s+a+a†s−

)
,

(68.48)

where the creation and annihilation operators a† and a
obey the boson commutation relation

[
a, a†

]= 1
(Chapt. 6), and the coupling constant

g = d

√
ω

2ε0�V
(68.49)

is the vacuum Rabi frequency, with V being a pho-
ton normalization volume. This Hamiltonian defines the
Jaynes–Cummings model, [68.7,19] which is discussed
in more detail in Chapt. 78.

The dressed states of the atom-field system are the
eigenstates of the Jaynes–Cummings model. Since, in
the RWA, the dipole interaction only couples states of
same “excitation number”, e.g., |e, n〉 and |g, n+1〉,
where |n〉 is an eigenstate of the photon number operator,
a†a|n〉 = n|n〉, with n an integer, the diagonalization
of the Jaynes–Cummings model reduces to that of the
semiclassical driven two-level atom in each of these
manifolds. Hence, the dressed states are

|1, n〉 = sin θn|g, n+1〉+ cos θn|e, n〉 ,
|2, n〉 = cos θn|g, n+1〉− sin θn|e, n〉 , (68.50)

with

tan(2θn)=−2g
√

n+1/∆ . (68.51)

E1

E2

∆

�g�

�e�

Fig. 68.1 Dressed levels of a two-level atom driven by
a classical monochromatic field as a function of the de-
tuning ∆= ω0−ω

Part
F

6
8
.3



Light–Matter Interaction 68.4 Relaxation Mechanisms 1003

(The factor of 2 difference between this and the semi-
classical case is due to the use of a running waves
quantization scheme, while the semiclassical discussion
was for standing waves.) The corresponding eigenener-
gies are

E1n = �(n+1)ω−�Rn ,

E2n = �(n+1)ω+�Rn , (68.52)

where

Rn = 1

2

√
∆2+4g2(n+1) . (68.53)

Chapter 78 shows that by including the effects of
spontaneous emission, this picture yields a straightfor-
ward interpretation of a number of effects, including
the Burshtein–Mollow resonance fluorescence spec-
trum. Dressed states also help to elucidate the interaction
between two-level atoms and quantized single-mode
fields, as occur for example in cavity QED ([68.19]
and Chapt. 79). Their generalization to the case of
moving atoms offers simple physical interpretations
of several aspects of laser cooling, see Chapt. 75
and [68.20].

68.3.5 Optical Bloch Equations

Introducing the density operator matrix elements ρab =
〈a|ρ|b〉, where a, b can be either e or g, as well as the
real quantities

U = ρeg eiωt + c.c. ,

V = iρeg eiωt + c.c. ,

W = ρee−ρgg , (68.54)

the equations of motion for the density matrix elements
ρij = 〈i|ρ| j〉 may be expressed, with (68.43), as

dU

dt
=−∆V ,

dV

dt
=∆U +Ω1W ,

dW

dt
=−Ω1V . (68.55)

These are the optical Bloch equations, as discussed
extensively in [68.5, 17]. Physically, U describes the
component of the atomic coherence in phase with the
driving field, V the component in quadrature with the
field, and W the atomic inversion. The optical Bloch
equations have a simple geometrical interpretation of-
fered by thinking of U , V and W as the three components
of a vector called the Bloch vector U , whose equation
of motion is

dU
dt

=Ω ×U , (68.56)

where Ω = (−Ω1, 0,∆). Thus U precesses about Ω,
of length Ω, while conserving its length. The evolu-
tion of a two-level atom driven by a monochromatic
field is thus mathematically equivalent to that of
a spin- 1

2 system in two magnetic fields B0 and
2B1 cosωt which are parallel to the z- and x-axis,
respectively, and whose amplitudes are such that
the Larmor spin precession frequencies around them
are ω and 2Ω1 cosωt, respectively. In optics, this
vectorial picture is often referred to as the Feynman–
Vernon–Hellwarth picture [68.21]. It is very useful in
discussing the coherent transient phenomena discussed
in Chapt. 73.

68.4 Relaxation Mechanisms

In addition to their coherent interaction with light
fields, atoms suffer incoherent relaxation mechanisms,
whose origin can be as diverse as elastic and inelas-
tic collisions and spontaneous emission. Collisional
broadening is discussed in Chapt. 59, while a QED
microscopic discussion of spontaneous emission is
described in Chapt. 78 in terms of reservoir the-
ory. One advantage of describing the atomic state in
terms of a density operator ρ is that the physical
interpretation of its elements allows us phenomeno-
logically to add various relaxation terms directly to its
elements.

68.4.1 Relaxation
Toward Unobserved Levels

If the relaxation mechanisms transfer populations or
atomic coherences toward uninteresting or unobserved
levels, their description can normally be given in terms
of a Schrödinger equation, but with a complex Hamilto-
nian. In contrast, if all levels involved in the relaxation
mechanism are observed, a more careful description, e.g.
in terms of a master equation, is required. Specifically,
in the case of relaxation to unobserved levels, the evo-
lution of the atomic density operator, restricted to the
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levels of interest, is of the general form [68.16]
dρ

dt
=− i

�

(
Heffρ−ρH†eff

)
, (68.57)

where

Heff = H+ Γ̂ , (68.58)

H being the atom-field Hamiltonian and Γ̂ the non-
Hermitian relaxation operator, defined by its matrix
elements

〈n|Γ̂ |m〉 = �

2i
γnδnm . (68.59)

Both inelastic collisions and spontaneous emission to
unobserved levels can be described by this form of
evolution. In the framework of this chapter, inelastic,
or strong, collisions are defined as collisions that can
induce atomic transitions into other energy levels.

68.4.2 Relaxation Toward Levels of Interest

A master equation description is necessary when all
involved levels are observed [68.7, 17]. This master
equation can rapidly take a complicated form if more
than two levels are involved. We give results only for
the case of a two-level atom and upper to lower-level
spontaneous decay and elastic or soft collisions; i. e.,
collisions that change the separation of energy levels
during the collision, but leave the level populations un-
changed. In that case, the atomic master equation takes
the form

dρ

dt
=− i

�
[H, ρ]− Γ

2
(s+s−ρ+ρs+s−−2s−ρs+)

− 1

2
γphρ+2γphszρsz , (68.60)

where the free-space spontaneous decay rate Γ is found
from QED to be

Γ = 1

4πε0

4d2ω3
0

3�c3
, (68.61)

and γph is the decay rate due to elastic collisions.
It is possible to express the classical decay rate

(68.17) in terms of the quantum spontaneous emission
rate (68.61) as

Γ = Γcl fge , (68.62)

where fge is the oscillator strength of the transition. The
various oscillator strengths characterizing the dipole-
allowed transitions from a ground state |e〉 to excited
levels |e〉 obey the Thomas–Reiche–Kuhn sum rule

∑

e

fge = 1 , (68.63)

where the sum is on all levels dipole-coupled to |g〉.
Assuming that d and the polarization of the field are
both parallel to the x-axis, this gives

fge = 2mω0

�
|〈g|x|e〉|2 . (68.64)

68.4.3 Optical Bloch Equations with Decay

In general, the optical Bloch equations cannot be gener-
alized to cases where relaxation mechanisms are present.
There are, however, two notable exceptions corres-
ponding to situations where

1. the upper level spontaneously decays to the lower
level only, while the atom undergoes only elastic
collisions;

2. spontaneous emission between the upper and lower
levels can be ignored in comparison with decay to
unobserved levels, which occur at equal rates γe =
γg = 1/T1.

Under these conditions, (68.55) generalizes to

dU

dt
=−U/T2−∆V ,

dV

dt
=−V/T2+∆U+Ω1W ,

dW

dt
=−(W −Weq)/T1−Ω1V , (68.65)

where we have introduced the longitudinal and trans-
verse relaxation times T1 and T2, with T1 = 1/Γ and
T2 = (1/2T1+γph)

−1 in the first case, and T2 = (1/T1+
γph)

−1 in the second case. The equilibrium inver-
sion Weq is equal to zero in the second case since the
decay is to unobserved levels.

68.4.4 Density Matrix Equations

In the general case, it is necessary to consider the density
operator equation (68.43) instead of the optical Bloch
equations. The equations of motion for the components
of ρ become, for the general case of complex Ω1,

dρee

dt
=−γeρee− 1

2

(
iΩ∗

1 ρ̃eg+ c.c.
)
,

dρgg

dt
=−γgρgg+ 1

2

(
iΩ∗

1 ρ̃eg+ c.c.
)
,

dρ̃eg

dt
=−(γ + i∆)ρ̃eg− i

Ω1

2

(
ρee−ρgg

)
, (68.66)

Part
F

6
8
.4
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where γ = (γe+γg)/2+γph, and ρ̃eg = ρeg eiωt . In the
case of spontaneous decay from the upper to the lower
level, these equations become

dρee

dt
=−Γρee− 1

2

(
iΩ∗

1 ρ̃eg+ c.c.
)
,

dρgg

dt
=+Γρee+ 1

2

(
iΩ∗

1 ρ̃eg+ c.c.
)
,

dρ̃eg

dt
=−(γ + i∆)ρ̃eg− i

Ω1

2

(
ρee−ρgg

)
, (68.67)

where γ = Γ/2+γph. Equations (68.67) are completely
equivalent to the optical Bloch equations (68.65).

68.5 Rate Equation Approximation

If the coherence decay rate γ is dominated by elastic
collisions, and hence is much larger than the population
decay rates γe and γg, ρ̃eg can be adiabatically eliminated
from the equations of motion (68.66) and (68.67) to
obtain the rate equations (Sect. 68.2)

dρee

dt
=−γeρee− R

(
ρee−ρgg

)
,

dρgg

dt
=−γgρgg+ R

(
ρee−ρgg

)
, (68.68)

and

dρee

dt
=−Γρee− R

(
ρee−ρgg

)
,

dρgg

dt
=+Γρgg+ R

(
ρee−ρgg

)
, (68.69)

respectively, where the transition rate is

R = |Ω1|2L(∆)/(2γ) , (68.70)

and we have introduced the dimensionless Lorentzian

L(∆)= γ 2/
(
γ 2+∆2) . (68.71)

The transitions between the upper and lower state are
thus described in terms of simple rate equations.

Adding phenomenological pumping ratesΛe andΛg
on the right-hand side of (68.68) provides a description
of the excitation of the upper and lower levels from
some distant levels, as would be the case in a laser. The
equations then form the basis of conventional, single-
mode laser theory. In the absence of such mechanisms,
the atomic populations eventually decay away.

68.5.1 Steady State

In the case of upper to lower-level decay, the state
populations reach a steady state with inversion [68.5,17]

Wst =− Γ

Γ +2R
=− 1

1+ s
, (68.72)

where s is the saturation parameter. In the case of pure
radiative decay, γph = 0, s is given by

s = Ω2
1/2

Γ 2/4+∆2 . (68.73)

In steady state, the other two components of the Bloch
vector U are given by

Ust =−2∆

Ω1

(
s

1+ s

)
(68.74)

and

Vst = Γ

Ω1

(
s

1+ s

)
. (68.75)

Ust varies as a dispersion curve as a function of the de-
tuning ∆, while Vst is a Lorentzian of power-broadened
half-width at half maximum

(
Γ 2/4+Ω2

1

)1/2.

68.5.2 Saturation

As the intensity of the driving field, or Ω2
1 , increases,

Ust and Vst first increase linearly withΩ1, reach a max-
imum, and finally tend to zero as Ω1 →∞. The
inversion Wst, which equals −1 for Ω1 = 0, first in-
creases quadratically, and asymptotically approaches
Wst = 0 asΩ1 →∞. At this point, where the upper and
lower state populations are equal, the transition is said to
be saturated, and the medium becomes effectively trans-
parent, or bleached. (This should not be confused with
self-induced transparency discussed in Chapt. 73.) The
inversion is always negative, which means in particular
that no steady-sate light amplification can be achieved
in this system. This is one reason why external pump
mechanisms are required in lasers.

68.5.3 Einstein A and B Coefficients

When atoms interact with broadband radiation instead
of the monochromatic fields considered so far, (68.69)
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still apply, but the rate R becomes

R → Beg�(ω) , (68.76)

where �(ω) is the spectral energy density of the in-
ducing radiation. Einstein’s A and B coefficients apply
to an atom in thermal equilibrium with the field,
which is described by Planck’s black-body radiation
law

�(ω)= �ω3

π2c3

1

e�ω/kBT −1
, (68.77)

where T is the temperature of the source and kB is
Boltzmann’s constant. Invoking the principle of detailed
balance, which states that at thermal equilibrium, the av-
erage number of transitions between arbitrary states |i〉
and |k〉 must be equal to the number of transitions
between |k〉 and |i〉, one finds

Aki

Bki
= �ω3

π2c3 , (68.78)

where Aki is the rate of spontaneous emission from |k〉
to |i〉, and Γk =∑

i Aki is the level width.

68.6 Light Scattering

Far from resonance, the approximation of a two- or few-
level atom is no longer adequate. Two limiting cases,
which are always far from resonance, are Rayleigh scat-
tering for low frequencies, and Thomson scattering for
high frequencies.

68.6.1 Rayleigh Scattering

Rayleigh scattering is the elastic scattering of a mono-
chromatic electromagnetic field of frequency ω, wave
vector k and polarization ε by an atomic system in the
limit where ω is very small compared with its excita-
tion energies [68.4,17]. To second-order in perturbation
theory, the Rayleigh scattering differential cross section
into the solid angle Ω′ about the wave vector k′ with
k′ = k, and polarization ε′ is

dσ

dΩ′ = r2
0ω

4(ε · ε′)2
(
∑

e

fge

ω2
eg

)2

, (68.79)

where r0 is the classical electron radius, the sum is over
all states |e〉, fge is the E1 oscillator strength (68.64) and
ωge is the transition frequency. The corresponding total
cross section is

σ = 8πr2
0ω

4

3

(
∑

e

fge

ω2
eg

)2

. (68.80)

68.6.2 Thomson Scattering

Thomson scattering is the corresponding elastic photon
scattering by an atom in the limit where ω is very large
compared with the atomic ionization energy, yet small
enough compared to αmc2/�, that the dipole approxi-
mation can be applied. The differential cross section for

this process is [68.4, 17]

dσ

dΩ′ = r2
0

(
ε · ε′)2

, (68.81)

and the total cross section is

σ = 8

3
πr2

0 . (68.82)

This is a completely classical result, which exhibits no
frequency dependence.

68.6.3 Resonant Scattering

We finally consider elastic scattering in the limit where
ω is close to the transition frequency ω0 between |g〉
and |e〉. Provided that no other level is near-resonant
with the ground state, the resonant scattering differential
cross section is [68.6, 17]

dσ

dΩ′ =
9

16π2 λ
2
0

(
ε · ε′)2 (Γ/2)2

∆2+ (Γ/2)2 , (68.83)

where λ0 = 2πc/ω0 is the wavelength of the transition
and Γ is the spontaneous decay rate (68.61). The total
elastic scattering cross section is

σ = 3

2π
λ2

0 . (68.84)

In contrast to the nonresonant Rayleigh and Thom-
son scattering cross sections, which scale as the square
of the classical electron radius, the resonant scattering
cross section scales as the square of the wavelength. For
optical to frequencies, λ0/r0 ) 104, giving a resonant
enhancement of about eight orders of magnitude. This
illustrates why near resonant phenomena, which form
the bulk of the following chapters, are so important in
optical physics and quantum optics.
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Absorption an69. Absorption and Gain Spectra

This chapter develops theoretical techniques to
describe absorption and emission spectra, using
concepts introduced in Chapt. 68, and density ma-
trix methods from Chapt. 7. The simplest cases are
treated, compatible with the physics involved, and
more realistic applications are referred to in other
chapters. Vector notation is not used, but it can
be inserted as required. Only steady-state spec-
troscopy is covered; for time-resolved transient
techniques see Chapt. 73.

Laser technology has greatly expanded the
potential of atomic and molecular spectroscopy,
but the same techniques for describing the
interaction of light with matter also apply to the
traditional arc lamps and flash discharges,
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and the more recent synchrotron radiation
sources.

In many cases, departures from the thin sample limit,
such as beam attenuation, light scattering and radiation
trapping (Sect. 69.2) may be important. However, the
properties of laser devices themselves depend in an es-
sential way on these effects, making a self-consistent
treatment of their properties necessary.

At the other extreme, the spectroscopy of dilute gases
is well characterized by ensemble averages over the
properties of the individual particles, interrupted by oc-
casional brief collisions. Ensemble averages, however,
may no longer apply to recent experiments probing a sin-
gle atomic particle in a trap, as discussed in Chapt. 75.

69.1 Index of Refraction

As discussed in Sect. 68.2.2, the complex index of re-
fraction for a medium containing harmonically bound
charges (electrons) [69.1] with natural frequency ω0 is

n(ω)=
√

1+ Nα(ω)

ε0
≈ 1+ Nα(ω)

2ε0

= 1+ Ne2

2mε0

(
iγω+ (

ω2
0−ω2

)

(
ω2

0−ω2
)2+γ 2ω2

)

= n′ + i n′′ . (69.1)

The expansion is valid when the density of atoms N is
low.

A plane wave can be written in the form

E ∝ eikz = eiωnz/c = eiωn′z/c e−ωn′′z/c . (69.2)

The absorption of light through the medium then shows
a resonant behavior near ω≈ ω0 determined by

n′′ = Ne2

2mε0

(
γω

(
ω2

0−ω2
)2+γ 2ω2

)

≈ πNe2

4mε0ω0

(
γ/2π

(ω−ω0)2+γ 2/4

)
. (69.3)

This is called an absorptive lineshape. When the sin-
gle electron is harmonically bound, its interaction with
radiation is found in this response. For a real atom,
the response of the electron is divided among the vari-
ous transitions to other states. The fraction assigned to
one single transition is characterized by the oscillator
strength fn as discussed in Sect. 68.4.2.

In ordinary linear spectroscopy, the laser is tuned
through the resonance ω≈ ω0, and the value of ω0 is
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determined from the lineshape (69.3). Several closely
spaced resonances can be resolved if their spacing is
larger than their widths

∣∣∣ω(1)0 −ω(2)0

∣∣∣> γ . (69.4)

This defines the spectral resolution (Chapt. 10).
The velocity of light in the medium is seen to be

given by the expression

ceff = c

n′
≈ c

[

1− Ne2

2mε0

(
ω2

0−ω2

(
ω2

0−ω2
)2+γ 2ω2

)]

.

(69.5)

This expression shows a dispersive behavior around
the position ω = ω0, where the modification of the
velocity disappears. Below resonance ω < ω0, the ve-
locity of light is lower than in vacuum. This derives
from the fact that the polarization is in phase with
the driving field. Thus, by storing the incoming en-
ergy, the driving field retards the propagation of the
radiation.

For a harmonically bound charge, the refractive in-
dex (69.1) always stays absorptive and it is independent
of the intensity of the laser radiation. This no longer
holds for discrete level atomic systems. In order to
see this, we consider the two-level atom in Sect. 69.2
(Sect. 68.3).

69.2 Density Matrix Treatment of the Two-Level Atom

The response of atoms to light is conveniently ex-
pressed in terms of the density matrix ρ. In addition
to the direct physical meaning of the density matrix
elements discussed in Sect. 68.3.3, the density matrix
formalism is advantageous because the various relax-
ation mechanisms effecting the atomic resonances can
be introduced phenomenologically into its equations
of motion (Sect. 68.4), and theoretical derivations of-
ten provide master equations for the density matrix
(Chapt. 7).

The two-level Hamiltonian (68.35) can be written as

H =
[

�ω0/2 −dE(R, t)

−dE(R, t) −�ω0/2

]

. (69.6)

The equation of motion for the density matrix (68.67) is
then

d

dt
ρee = −Γρee+ idE

�
cosωt

(
ρge−ρeg

)
,

d

dt
ρgg = Γρee− idE

�
cosωt

(
ρge−ρeg

)
,

d

dt
ρeg = − (γ + iω0)ρeg+ idE

�
cosωt

(
ρgg−ρee

)
.

(69.7)

Here Γ is the spontaneous decay rate given by (68.61)
and

γ = Γ/2+γph , (69.8)

where γph derives from all processes that tend to ran-
domize the phase between the quantum states |e〉 and
|g〉, such as collisions (Chapts. 7 and 19), noise in the
laser fields and thermal excitation of the environment

in solid state spectroscopy. The Greek letters Γ and
γ correspond to the longitudinal relaxation rate (T1-
process) and the transverse relaxation rate (T2-process),
respectively (Sect. 68.4.3).

In the rotating wave approximation (RWA), dis-
cussed in Sect. 68.3.2, the density matrix equations
(69.7) become identical to (68.67) with

ρeg = ρ̃eg e−iωt . (69.9)

Using the condition of conservation of probability

ρee+ρgg = 1 , (69.10)

the steady state solutions to (68.67) are [69.2]

ρee = Ω
2
1γ

2Γ

(
1

∆2+γ 2+Ω2
1γ/Γ

)

, (69.11)

ρ̃eg = iΩ1

2

(
ρgg−ρee

)

γ + i∆

= iΩ1

2

(
γ − i∆

∆2+γ 2+Ω2
1γ/Γ

)

, (69.12)

where Ω1 is the Rabi frequency from (68.44), and ∆=
ω0−ω is the detuning. The induced polarization is then

P = N Tr
(
d̂ρ

)= N Tr

[(
0 d

d 0

)(
ρee ρeg

ρge ρgg

)]

= Nd
(

e−iωt ρ̃eg+ eiωt ρ̃ge
)

= N
(
αE (+)+α∗E (−)

)
, (69.13)
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Absorption and Gain Spectra 69.3 Line Broadening 1011

where N is the density of active two-level atoms. Setting

E (+) = 1

2
E e−iωt , (69.14)

the complex polarization is

α(ω)= d2

�

(
iγ +∆

∆2+γ 2+Ω2
1γ/Γ

)

, (69.15)

and from (69.1), the complex index of refraction is

n(ω)= 1+ Nα(ω)

2ε0

= 1+ πNe2

4ε0mω0

(
f0

π

)
iγ +∆

∆2+γ 2+Ω2
1γ/Γ

,

(69.16)

where f0 = 2d2mω0/�e2 is the oscillator strength. Sum-
ming over all possible transitions yields the f-sum
rule (68.63) (Chapt. 21).

The imaginary part of (69.16) shows exactly the
same absorptive behavior as in the harmonic oscillator
model of Sect. 69.1 [see (69.3)]. However, the additional
factor of

(
Ω2

1γ/Γ
)

in the denominator makes the line

appear broader than in the harmonic case; the line is
power broadened. Physically, this derives from a satu-
ration of the two-level system in which the population
of the upper level becomes an appreciable fraction of
that of the lower level. In the limit Ω1 →∞, (69.16)
shows that n(ω)→ 1 and the atom-field interaction ef-
fectively vanishes. In this limit, ρee → 1

2 (69.11), and the
field induces as many upward transitions as downward
transitions.

When radiation at the frequency ω propagates in
a medium of two-level atoms, the energy density is

I(z)∝ E∗E ∝ exp

[
−
(

Nd2ω

�ε0c

)
γz

(ω−ω0)2+γ 2

]
.

(69.17)

Far from resonance (|ω−ω0| % γ ), the medium is
transparent; but near resonance, damping is observed.
The impinging radiation energy is deposited in the
medium and propagation is impeded. This is called ra-
diation trapping. In spectroscopy, the phenomenon is
seen as a prolongation of the radiative decay time; the
spontaneously emitted energy is seen to emerge from
the sample more slowly than the single atom lifetime
implies.

69.3 Line Broadening

The effective width of a spectral line from (69.16) is

γeff =
√
γ 2+Ω2

1
γ

Γ
) 1

2
Γ +γph+ Ω

2
1

2Γ
+O

(
Ω4

1

)
.

(69.18)

The various contributions are as follows [69.3]. The
term γ contains all the transverse relaxation mechan-
isms. If decay to additional levels occurs, these must be
included (Sect. 69.4). The term γph contains all perturb-
ing effects effecting each single atom. For low enough
pressures, collisional perturbations are proportional to
the density of perturbing atoms so that

γph = ηcoll p , (69.19)

where p is the pressure of the perturbing gas and ηcoll
is a constant of proportionality. This is called colli-
sion or pressure broadening (Chapt. 59), whose order
of magnitude can be estimated to be the inverse of the
average free time between collisions. For high pressure
(usually of the order of torrs), the linearity in (69.19)
breaks down. When identical atoms collide, resonant

exchange of energy may also take place. The third term
in (69.18) is the power broadening term. It derives from
the effect of the laser field on each individual atom. All
such relaxation processes that are active on each and ev-
ery individual atom separately are called homogeneous
broadening processes. For a detailed discussion of line
broadening, consult Chapt. 19.

In contrast to homogeneous broadening, Doppler
broadening is characterized by an atomic velocity par-
ameter v which varies over the observed assembly. In
a thermal assembly at temperature T (e.g., a gas cell),
the velocity distribution is

P(v)= 1√
2πu2

exp

(
− v2

2u2

)
, (69.20)

where u2 = kBT/M. A particular atom with velocity v
in the direction of the optical beam with wave vector k
then experiences the Doppler-shifted frequency ω− kv
relative to a stationary atom, and the effective detuning
becomes

∆′ =∆+ kv , (69.21)
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replacing ∆. The population in the lower level from
(69.11) is then

ρgg = 1− Ω
2
1γ

2Γ

(
1

(∆+ kv)2+γ 2+Ω2
1γ/Γ

)

.

(69.22)

The atoms in the lower level, originally distributed ac-
cording to (69.20), are now depleted from the velocity
group around

v= (ω−ω0)/k . (69.23)

The width of the depleted region is given by γeff
of (69.18). This region is called a Bennett hole. When
the laser frequency ω is tuned, the hole sweeps over the
velocity distribution of the atoms. The atomic response
is saturated at the velocity group of the hole, indicating
that spectral hole burning has occurred.

The observed spectrum is obtained by averaging the
single atom response (69.15) over the velocity distribu-
tion. From the imaginary part, the absorption response
is

α′′(ω)= d2

�

√
2πu2

+∞∫

−∞

γ e−v2/2u2

(∆+ kv)2+γ 2+Ω2
1γ/Γ

dv .

(69.24)

In the limits Ω1 → 0 (no saturation), and γ & ku (the
Doppler limit), the Lorentzian line shape sweeps over
the entire velocity profile, finding a resonant velocity
group according to (69.23) as long as v ≤ u. Thus, the
linear spectroscopy sees a Doppler broadened line of
width ku. This is called inhomogeneous broadening.

In the unsaturated regime, the atomic response func-
tion (69.24) is proportional to the imaginary part of the
function

V(z)= 1√
2πσ2

+∞∫

−∞

exp
(−x2/2σ2

)

z− x
dx , (69.25)

at z =−∆− iγ and σ = ku. This is the Hilbert trans-
form of the Gaussian, and its shape is called a Voigt
profile [69.4]. For γ & ku, it traces over the Gaussian,
but for large detunings it always goes to zero as slowly
as the Lorentzian, i. e., as ∆−1. The profile has been
widely used to interpret the data of linear spectroscopy.
The function is tabulated [69.5] and its expansion is

V(z)=
√
− π

2σ2

∞∑

n=0

(
iz/
√

2σ
)n

Γ (1+n/2)
, (69.26)

and it has the continued fraction representation,

V(z)= 1

z− σ2

z− 2σ2

z− 3σ2

z− 4σ2

z−· · ·

. (69.27)

In addition to velocity, any other parameter shifting the
individual atomic resonance frequencies ω0 by different
amounts for the different individuals leads to inhomoge-
neous broadening. The detuning ∆ is then different for
different members of the observed assembly, and a line
shape similar to (69.24) applies. The distribution func-
tion must be replaced by the one relevant for the problem.
In practice a Gaussian is almost always assumed.

An example of inhomogeneous broadening is the
influence of the lattice environment on impurity spec-
troscopy in solids. The resonant light selectively excites
atoms at those particular positions which make the atoms
resonant. Thus only these spatial locations are saturated,
and the phenomenon of spatial hole burning occurs.
This has been investigated as a method for storing
information, signal processing, and volume holography.

It is, however, possible that the effects of collisions
can counteract the inhomogeneous broadening. In order
to see this we observe that the induced atomic dipole
is proportional to the induced density matrix element,
from (69.9),

ρeg = ρ̃eg ei(kz(t)−ωt) ∝ eikvt . (69.28)

If the atoms now experience collisions characterized by
an average free time of flight τ , the phase kvt cannot
build up coherently for times longer than this duration,
the atomic velocity is quenched on the average, and the
full Doppler profile cannot be observed. To see how
this comes about, consider a time t % τ . During this
period the atom experiences on the average n̄ = t/τ col-
lisions. Assuming a Poisson distribution, the probability
of n collisions in time t is

pn = e−n̄

n! n̄n . (69.29)

Taking the average of (69.28) over the time t = nτ with
the distribution pn yields

ρ̄eg ∝
∞∑

n=0

eikvτn

(
e−n̄

n! n̄n

)

= e−n̄ exp
(

n̄ eikvτ
)

≈ eikvt exp

(
− 1

2
tk2v2τ

)
. (69.30)
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Absorption and Gain Spectra 69.4 The Rate Equation Limit 1013

This heuristic derivation suggests that for long enough
interaction times (t % τ), the large velocity com-
ponents are suppressed. This tends to prevent the
tails of the velocity distribution from contribut-
ing to the observed spectral profile. The effect is

called collisional narrowing or Dicke narrowing. It
is an observable effect, but the narrowing cannot
be very large. To overcome the Doppler broaden-
ing one has to turn to nonlinear laser methods
(Sect. 69.5).

69.4 The Rate Equation Limit

Consider now a generalized theory for the case of several
incoming electromagnetic fields of the form

E(R, t)=
∑

i

1

2
Ei(R)e

−iωi t+iϕi + c.c. . (69.31)

The index i may range over several laser sources, the
output of a multimode laser or the multitude of compon-
ents of a flashlight or a thermal source. Each component
carries its own amplitude Ei .

In steady state, the generalization of (69.12) becomes

ρeg = i

2

∑

i

dEi

�

(
ρgg−ρee

)

γ + i∆i
e−iωi t+iϕi , (69.32)

where the detuning is

∆i = ω0−ωi . (69.33)

The response of the atom now separates into individual
contributions oscillating at the various frequencies ωi
according to

ρeg =
∑

i

ρ(i)eg e−iωi t+iϕi . (69.34)

This resolution is of key importance to the theory.
With the multimode field, (68.67) for the level occu-

pation probabilities become

d

dt
ρee = − d

dt
ρgg

= −Γρee+ i

2

∑

i

×

(
dEi

�
e−iωi t+iϕiρge− c.c.

)
. (69.35)

Insertion of the steady state result (69.32) into this
equation yields a closed set of equations for the level oc-
cupation probabilities. These are called rate equations.

To justify the above steps, consider the single fre-
quency case again. The off-diagonal time derivatives
can be neglected when

∣∣∣∣
d

dt
ρeg

∣∣∣∣& |γ + i∆||ρeg| . (69.36)

This can be surmised to hold when the phase relaxation
contributions to γ are large (69.8) or the detuning |∆|
is large. Insertion of (69.32) into (69.35) for the single
mode case gives

d

dt
ρee =−Γρee−W

(
ρee−ρgg

)
, (69.37)

where the rate coefficient is given by

W = 2π

(
dE

2�

)2
γ/π

∆2+γ 2
. (69.38)

Multiplying (69.37) by the density of active atoms N
then produces the conventional rate equations for the
populations Nee = Nρee and Ngg = Nρgg.

Two physical effects can be discerned in (69.37):
induced and spontaneous emission. The term with Γ
gives the spontaneous emission which forces the entire
population to the lower level. The terms proportional
to W describe induced emission, with upward transitions
proportional to Wρgg and downward transitions propor-
tional to Wρee. In the absence of spontaneous emission,
they strive to equalize the population of the two levels.
Using (69.10), the steady-state solution is

ρee = W

Γ +2W

= 1

2

(
dE

�

)2
γ

Γ

1

∆2+γ 2+ (dE/�)2γ/Γ
.

(69.39)

This is clearly seen to agree with the solution (69.11) as
is expected in steady state.

Although the rate equations were derived in the
limit (69.36), the rate coefficient (69.38) has a special
significance in the limit γ → 0. In this limit, the factor

1

�
lim
γ→0

(
γ/π

∆2+γ 2

)
= 1

�
δ(∆)

= δ(�ω−�ω0) , (69.40)

enforces energy conservation in the transition. Using
the field in (69.14), and the interaction from (69.6), the
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off-diagonal matrix element is

|〈e|H|g〉| = 1

2
dE . (69.41)

With these results, (69.38) can be written in the form of
Fermi’s Golden Rule

W = 2π

�
|〈e|H|g〉|2δ(�ω−�ω0) , (69.42)

usually derived from time dependent perturbation
theory.

Returning to the multimode rate equations, an inco-
herent broad band light source has many components
that contribute to the sum over field frequencies. In
the case of flash pulses, thermal light sources, or free-
running multimode lasers the spectral components are
uncorrelated. Inserting (69.32) into (69.35) yields

d

dt
ρee = − d

dt
ρgg

= −Γρee+ d2

2�2

(
ρgg−ρee

)

×
∑

i, j

EiE j ei(ω j−ωi )t ei(ϕi−ϕ j )
γ

∆2
j +γ 2

.

(69.43)

The contributions from the different terms i �= j average
to zero either by beating at the frequencies |ωi −ω j | or
by incoherent effects from the random phases ϕ j . Thus,
only the coherent sum survives to give

d

dt
ρee = − d

dt
ρgg

= −Γρee ×
∑

i

W (i)(ρgg−ρee
)
, (69.44)

where the rate coefficients W (i) are given by (69.38) with
the appropriate detunings ∆ j = ω0−ω j . This is a rate
equation in the limit of many uncorrelated components
of light, i. e., for a broad band light source. In this case
the incoherence between the different components jus-
tifies the use of a rate approach, and no assumption like
(69.36) is needed. Thus, the limit γ → 0 (69.40) is legit-
imate, and the W (i) can be calculated in time dependent
perturbation theory from Fermi’s Golden Rule.

In the limit of an incoherent broad band light source,
the sum in (69.44) can be replaced by an integral. In
particular, this is allowed for incandescent light sources
as used in optical pumping experiments [69.6]. Pumping
of lasers by strong lamps or flashes are also describable
by the same rate equations.

In amplifiers and lasers, the atoms must be brought
into states far from equilibrium by incoherent optical

excitation or resonant transfer of excitation energy in
collisions (Chapt. 70). In the two-level description, the
atomic levels are constantly replenished. The normal-
ization condition (69.10) is then no longer appropriate;
often the density matrix is normalized so that Tr(ρ)
directly gives the density of active atoms.

With pumping into the levels, one must allow for de-
cay out of the two-level system in order to prevent the
atomic density from growing in an unlimited way. This
decay takes the atom to unobserved levels. In the rate
equation approximation, the pumping and decay pro-
cesses can be described by terms added to the equations
of the form (68.68)

d

dt
ρee = λe−γeρee ,

d

dt
ρgg = λg−γgρgg . (69.45)

In a laser, the level |g〉 is usually not the ground state of
the system.

From (69.45), the steady state population is

ρ(0)gg −ρ(0)ee = λg/γg−λe/γe . (69.46)

A population inversion exists when this is negative. The
population difference (69.46) is modified when the ef-
fects of spontaneous and induced processes are added,
as in (69.37). Then the transitions saturate because of
the induced processes.

Using (69.46) in (69.12), the calculated polarizabil-
ity without saturation is

α(ω)=
(

d2

�

)(
iγ +∆
γ 2+∆2

)(
ρ(0)gg −ρ(0)ee

)
. (69.47)

According to (69.1), the index of refraction is

n′(ω)= 1+ Nα′(ω)
2ε0

= 1−
(

Nd2

2ε0�

)
(ω−ω0)

(ω−ω0)2+γ 2

(
ρ(0)gg −ρ(0)ee

)
.

(69.48)

For weakly excited atoms, ρgg ≈ 1, and (69.47) agrees
with the unsaturated limit of (69.16). The dispersion of
a light signal behaving according to (69.48) is called nor-
mal, i. e., according to the harmonic model in Sect. 69.1.
Below resonance (ω < ω0), n′ is larger than unity, im-
plying a reduction of the velocity of light. As a function
of ω, the curve (69.48) starts above unity, and passes
below unity for ω > ω0. This is normal dispersion.

However, for an inverted medium
(
ρ
(0)
gg < ρ

(0)
ee
)
, n′ is

less than unity for low frequencies and goes through
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unity with a positive slope. This is called anomalous
dispersion and signifies the presence of a gain profile.
In such a medium, α′′ = Im[α(ω)] is of opposite sign, as
seen from (69.47); in the inverted medium, α′′ becomes
negative near∆= 0. From (69.2), this indicates a grow-
ing electromagnetic field, i. e., an amplifying medium.
The amplitude grows, and the assumption of a small

signal becomes invalid. Then saturation has to be in-
cluded, either at the rate equation level or by performing
a full density matrix calculation. This regime describes
a laser with saturated gain. In steady state, the two lev-
els become nearly equally populated (ρee ≈ ρgg), and the
operation is stable. The theory of the laser is discussed
in detail in Chapt. 70.

69.5 Two-Level Doppler-Free Spectroscopy

The linear absorption of a scanned laser signal
defines linear spectroscopy and gives information char-
acterizing the sample. However, Sect. 69.3 shows that
inhomogeneous broadening masks the desired informa-
tion by dominating the line shape. The availability of
laser sources has made it possible to overcome this limi-
tation, and to use the saturation properties of the medium
to perform nonlinear spectroscopy. This section dis-
cusses how Doppler broadening can be eliminated to
achieve Doppler-free spectroscopy. Similar techniques
may be used to overcome other types of inhomogeneous
line broadening; a general name is then hole-burning
spectroscopy (see the discussion in Sect. 69.3). Other
aspects of nonlinear matter-light interaction are found
in Chapt. 72.

Equation (69.24) shows that a single laser cannot re-
solve beyond the Doppler width. However, if a strong
laser is used to pump the transition, a weak probe
signal can see the hole burned into the spectral pro-
file by the pump. This technique is called pump-probe
spectroscopy. Because the probe is taken to be weak,
perturbation theory may be used to calculate the in-
duced polarization to lowest order in the probe amplitude
only.

In the field expansion (69.31), define the strong
pump amplitude to be E1 and the weak probe E2 at
frequency ω2. From the resolution (69.34), the com-
ponent ρ(2)eg carries the information about the linear
response at frequency ω2. If the field E2 propagates in
a direction opposite to that of E1, its detuning is

∆′
2 =∆2− kv (69.49)

(as compared with∆′
1 =∆1+kv for E1). Sinceω1 )ω2,

the two k-vectors are nearly equal in magnitude.
The linear response now becomes

ρ(2)eg =
(

idE2

2�

)
1

γ + i(∆2− kv)

(
ρgg−ρee

)
.

(69.50)

With only the signal E1 present, the population differ-
ence follows directly from (69.22)). The linear response
at frequency ω2 is then

ρ(2)eg =
(

dE2

2�

)
iγ + (∆2− kv)

γ 2+ (∆2− kv)2
×

[

1− Ω
2
1γ

Γ

×

(
1

(∆1+ kv)2+γ 2+Ω2
1γ/Γ

)]

. (69.51)

This is the linear response of atoms moving with vel-
ocity v. To obtain the polarization of the whole sample,
we must average over the velocity distribution using the
Gaussian weight (69.20). The first term in (69.51) gives
the linear response in the form of a Voigt profile, as
discussed in Sect. 69.3. This part of the response carries
no Doppler-free information. The second terms contain
the nonlinear response. This shows the details of the
homogeneous features under the Doppler line shape.
For simplicity we assume the Doppler limit, γ & ku,
and neglect the variation of the Gaussian over the atomic
line shape. We also neglect the power broadening due
to the field E1 and obtain, using (69.13), (69.20), and
(69.51),

α′′(ω)= −
(

d2

�

)
Ω2

1γ
2

√
2πΓu

×

+∞∫

−∞

dv
[
(∆2− kv)2+γ 2

] [
(∆1+ kv)2+γ 2

]

= −
(

d2

�

) √
2πΩ2

1

4Γku

γ

(ω−ω0)2+γ 2 .

(69.52)

This denotes the energy absorbed from the field E1, as
induced nonlinearly by the intensity E2

1 . The resonance
is still at ω= ω0, but with a homogeneous atomic line
shape. In the Doppler limit, the Doppler broadening is
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only seen in the prefactor

Ω2
1

Γku
=
(
Ω2

1

Γγ

)
γ

ku
, (69.53)

which shows that only the fraction (γ/ku) of all atoms
can contribute to the resonant response. The first factor
on the right-hand side of (69.53) is the dimensionless
saturation factor.

The Doppler-free character of this spectroscopy de-
rives from the fact that the two fields burn their two
separate Bennett holes at the velocities

kv1 =−∆1 , and kv2 =∆2 . (69.54)

When these two groups coincide, i. e., when v1 = v2,
the probe E2 sees the absorption saturated by the pump
field E1 and a decreased absorption is observed. For
ω1 = ω2, the two holes meet in the middle at zero ve-
locity. With two different frequencies, one can make
the holes meet at a nonzero velocity to one side of the
Doppler profile. The decreased absorption seen in these
experiments is called an inverted Lamb dip Chapt. 70.

The results derived here are based on a simplified
view of the pump-probe response which in turn is based
on the rate equation approach. Certain coherent effects
are neglected, which would considerably complicate the
treatment [69.2]. Section 69.6 discusses these effects in
the three-level system where they are more important.

In addition to measuring the probe absorption in-
duced by the pump field, it is also possible to observe

the dispersion of the probe signal caused by the satu-
ration induced by the pump. Assuming that the pump
introduces the velocity dependent population difference

ρee−ρgg =∆ρ(v) , (69.55)

then from (69.50), Re(n) is

n′ = 1+ Nd2

2�ε0

∫
∆2− kv

(∆2− kv)2+γ 2 ∆ρ(v)dv .

(69.56)

From (69.2), the phase of the electromagnetic signal
feels the value of n′ through the factor

E ∝ exp(iωn′z/c) . (69.57)

Thus, by modifying ∆ρ(v), a pump laser can control
the phase acquired by light traversing the sample, and
thereby control the optical length of the sample.

A real atom has magnetic sublevels, which are
coupled to light in accordance with dipole selection rules
(see the discussion in Chapt. 33). If a pump laser is used
to affect populations in the various sub-levels differ-
ently, the optical paths experienced by the differently
circularly polarized components of a linearly polarized
probe signal are different. Thus, its plane of polariza-
tion will turn, corresponding to the Faraday effect. By
tuning the pump and the probe over the spectral lines
of the sample, the turning of the probe polarization pro-
vides a signal to investigate the atomic level structure.
This method of polarization spectroscopy can be used
both with two-level and three-level systems [69.7].

69.6 Three-Level Spectroscopy

New nonlinear phenomena appear when one of the
levels in the two-state configuration, |e〉 say, is cou-
pled to a final level | f 〉 by a weak probe. This may
be above the level |e〉 (the cascade configuration de-
noted by Ξ) or below |e〉 (the lambda configuration Λ)
(if the third level were coupled to |g〉 we would talk
about the inverted lambda or V configuration) [69.8].
For simplicity, only the Ξ configuration is discussed
here.

Assume that the level pair |g〉 ↔ |e〉 is pumped by
the field E1 and its effect probed by the field E2 coupling
|e〉 ↔ | f 〉. The dipole matrix element is d2 = 〈 f |H|e〉.
The RWA is now achieved by introducing slowly varying
quantities through the definitions

ρ fe = ei(k2z−ω2t)ρ̃ fe ,

ρ fg = ei[(k1+k2)z−(ω1+ω2)t]ρ̃ fg , (69.58)

and omitting all components oscillating at multiples of
the optical frequencies. From the equation of motion for
the density matrix, the steady state equations are [69.2]

(∆2+ k2v− iγ fe)ρ̃ fe = d2E2

2�
ρee− d1E1

2�
ρ̃ fg ,

[(∆1+∆2)+ (k1+ k2)v− iγ fg]ρ̃ fg

= d2E2

2�
ρ̃eg− d1E1

2�
ρ̃ fe ,

(69.59)

where the second step detuning is now

∆2 = ω fe−ω2 . (69.60)

These equations contain the lowest order response
proportional to E2, including some coherence effects.
The coherence effects remain to lowest order, even when
the last term in (69.59) is neglected; in that case, the
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solution is

ρ̃ fe =
(

d2E2

2�

)
ρee

∆2+ k2v− iγ fe

−
(

d1E1

2�

)(
d2E2

2�

)

×
ρ̃eg

(∆2+ k2v− iγ fe)

×
1

[
(∆1+∆2)+ (k1+ k2) v− iγ fg

] . (69.61)

The result to lowest order in E2 follows by replacing
the density matrix elements for the two-level system
|e〉 ↔ |g〉 by their results calculated without this field.
This shows that the polarization induced at the fre-
quency ω2 consists of two parts: one induced by the
population excited to level |e〉 by the field E1 pro-
portional to ρee, and the other one is induced by the
coherence ρ̃eg created by the pump. Retaining only the
former produces a rate equation approximation, called
a two-step process. This misses important physical fea-
tures which are included in the second term called
a two-photon or coherent process.

In order to see the effects of the two terms
most clearly, consider the two-level matrix elements
from (69.11) and (69.12) in lowest perturbative order
with respect to the pump field E1, i. e.,

ρee =
(

d1E1

�

)2 γeg

2γee

1

(∆1+ k1v)
2+γ 2

eg

,

ρ̃eg = d1E1

2�

1

∆1+ k1v− iγeg
(69.62)

From (69.61), these matrix elements give

ρ̃ fe = −
(

A

∆1+ k1v− iγeg

)[(
2γeg

γee

)

×
1

(
∆1+ k1v+ iγeg

) (
∆2+ k2v− iγ fe

)

− 1
(
∆2+ k2v− iγ fe

)

×
1

[
(∆1+∆2)+ (k1+ k2) v− iγ fg

]

]

,

(69.63)

where

A =−
(

d2E2

2�

) (
d1E1

2�

)2

. (69.64)

The imaginary part of this yields the absorptive part
of the polarization at the frequency ω2. The first term

becomes the product of two Lorentzians, and is an
incoherent rate contribution. It dominates when the in-
duced population ρee decays much more slowly than the
induced coherence ρ̃eg, i. e., when γee & γeg.

The significance of the second term in (69.63) is
evident in the limit when no phase perturbing processes
intervene, so that

γee = Γ , γeg = 1

2
Γ ,

γ fg = 1

2
γ f f , γ fe = 1

2
(γ f f +Γ ) . (69.65)

For v= 0, ρ̃ fe becomes

ρ̃ fe =− A

∆2
1+ (Γ/2)2

(
1

∆1+∆2− i 1
2γ f f

)

.

(69.66)

Neglecting the decay of the final level | f 〉, γ f f → 0, the
absorption becomes proportional to

Im
(
ρ̃ fe

)= π|A|
∆2

1+ (Γ/2)2
δ (∆1+∆2) . (69.67)

In this limit, strict energy conservation between the
ground state and the final state must prevail; the final
state must be reached by the absorption of exactly two
quanta. The delta function in (69.67) indicates precisely
this:

∆1+∆2 = ω fe+ωeg− (ω1+ω2)

= ω fg−ω1−ω2

= 0 . (69.68)

The detuning and the width of the intermediate state
affect the total transition rate, but not the condition of
energy conservation. The presence of the second term
in (69.63) makes the resonance contributions at

∆2 = ω fg−ω2 = 0 (69.69)

cancel approximately. Only a two-photon transition re-
mains; in the Λ configuration this would be a Raman
process (Chapts 62 and 72).

If the velocity dependence in (69.63) is retained, the
nonlinear response of an atomic sample must be aver-
aged over the velocity distribution given by the Gaussian
(69.20). The computations become involved, but the re-
sults show more or less well resolved resonances around
the two positions (69.68) and (69.69), i. e., the coher-
ent two-photon process and the single step rate process
|e〉→ | f 〉 appearing due to a previous single step process
|g〉 → |e〉; this is the two-step process.
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A special situation arises when the intermediate
step is detuned so much that no velocity group is in
resonance, i. e., |∆1| ≈ |∆2| % kv for all velocities con-
tributing significantly to the spectrum. Then the second
coherent term of (69.63) can be written in the form

ρ̃ fe =− A

∆2
1

(
1

(∆1+∆2)+ (k1+ k2) v− iγ fg

)
.

(69.70)

If the two fields E1 and E2 have the same frequency but
are counterpropagating, then k1+ k2 = 0, and no vel-
ocity dependence occurs in (69.70) for the two-photon
resonance. All atoms in the sample contribute to the
strength of the resonance, and then polarization is ob-
tained directly by multiplication with the total atomic

density. Equation (69.13) then gives

α′′2 =
d2

2

�

(
d1E1

2�∆1

)2 γ fg
(
2ω−ω fg

)2+γ 2
fg

. (69.71)

This is a sharp Doppler-free resonance on the two-
photon transition ω fg. The advantage is that all atoms
contribute with the sharp line width γ fg, which is not
easily affected by phase perturbations because of the
two-photon nature of the transition. The disadvantage is
the weakness of the transition, which is caused by the
large detuning, making d1E1/|∆1| & 1 in most cases.
With tunable lasers, however, this Doppler-free spec-
troscopy method has been used successfully in many
cases.

69.7 Special Effects in Three-Level Systems

We continue our considerations of a three-level sys-
tem but this time in the V -configuration. Thus, we have
a ground state |g〉 coupled to a doublet of excited states
{|e〉, | f 〉} through the interaction

V =Ω1|g〉〈e|+Ω2|g〉〈 f |+h.c. , (69.72)

where the couplings are due to radiation fields and given
by

Ωi = diEi

2�
. (69.73)

We use the rotating wave approximation and set the
detunings to

∆ωe = ωe−ω1 and ∆ω f = ω f −ω2 , (69.74)

where the frequency ωi derives from the coupling
field Ei . The energy Eg = 0.

The time-dependent Schrödinger equation for this
system is then written as

iċg =Ω1ce+Ω2c f , (69.75)

iċe =∆ωece+Ω1cg , (69.76)

iċ f =∆ω f c f +Ω2cg . (69.77)

We now introduce the two new variables

cC = Ω̄−1 (Ω1ce+Ω2c f
)

(69.78)

cNC = Ω̄−1 (Ω2ce−Ω1c f
)
, (69.79)

where

Ω̄2 =Ω2
2 +Ω2

1 . (69.80)

The equations of motion follow:

iċNC =
(
Ω2

Ω̄
∆ωece− Ω1

Ω̄
∆ω f c f

)

= 1

Ω̄2

[
Ω1Ω2

(
∆ωe−∆ω f

)
cC .

+
(
∆ωeΩ

2
2 +∆ω fΩ

2
1

)
cNC

]
, (69.81)

iċC =
(
Ω1

Ω̄
∆ωece+ Ω2

Ω̄
∆ω f c f

)
+ Ω̄cg

= 1

Ω̄2

[ (
∆ωeΩ

2
1 +∆ω fΩ

2
2

)
cC

+Ω1Ω2
(
∆ωe−∆ω f

)
cNC

]
+ Ω̄cg .

(69.82)

We notice that cNC is not coupled to the ground state,
but, in general, its coupling to the state cC provides an
indirect coupling. This indirect coupling, however, can
be made to disappear, if we set ∆ωe =∆ω f ≡∆ω. Then
we find the equations

iċNC =∆ωcNC ,

iċC =∆ωcC+ Ω̄cg ,

iċg = Ω̄cC . (69.83)

This describes a pair of coupled quantum levels and
a single uncoupled level. Thus, if we start in the ground
state, this latter level can never be populated. It re-
mains unpopulated and is called a dark state. This state
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corresponds to the superposition

|NC〉 = 1

Ω̄
(Ω2|e〉−Ω1| f 〉) . (69.84)

Using the coupling operator (69.72), we find the matrix
element

〈g|V |NC〉 = 0 . (69.85)

We also notice that the dark state can be found if the
states |e〉 and | f 〉 are the lower ones, i. e., we have the
Λ-configuration.

Alternatively, if we start the system off in the dark
state, it will never be able to get out of this state. This
is also taken to hold true if we let the couplings depend
slowly on time. In this case, we may let Ω1 come on
later thanΩ2. Then we may have

lim
t→−∞

⎛

⎝ Ω1√
Ω2

2 +Ω2
1

⎞

⎠= 0 ,

lim
t→−∞

⎛

⎝ Ω2√
Ω2

2 +Ω2
1

⎞

⎠= 1 (69.86)

and

lim
t→∞

⎛

⎝ Ω1√
Ω2

2 +Ω2
1

⎞

⎠= 1 ,

lim
t→∞

⎛

⎝ Ω2√
Ω2

2 +Ω2
1

⎞

⎠= 0 . (69.87)

Both couplings are thus pulses, but they occur with
a slight time delay. If we now start the system in the
state |e〉, we find from (69.84) that

lim
t→−∞ |NC〉 = |e〉 , (69.88)

and

lim
t→+∞ |NC〉 = −| f 〉 . (69.89)

Thus, by keeping the system in this uncoupled state
we can adiabatically transfer its population beteen the
states without involving any population of the interme-
diate state |g〉. Especially if this is an upper state, which
may decay and dephase rapidly, the proposed popula-
tion transfer may be greatly advantageous. Because it
is usually applied in the Λ-configuration, it is termed
Stimulated Raman Adiabatic Passage (STIRAP).

The dark state has found a wide range of applications
in laser physics. As we may use the method to pass ra-
diation through a medium without any absorption, it has
led to the phenomenon of light-induced transparency. It
can also be used to affect the index of refraction with-
out having the accompanying absorption. The absorptive
part of a resonance normally manifests itself as a quan-
tum noise; utilizing the dark state idea one may reduce
the noise in quantum devices. The dressing of the lev-
els due to the special features of the interaction has also
made it possible to achieve lasing without an inversion
of the bare levels. These topics, however, will not be
treated here.

A special application of the method to affect the
refractive index deserves a more detailed consideration.
We look at the relationship between the electric field
vectors in the medium:

D(ω)= ε0 E+ Nα(ω)E(ω)= χ(ω)ε0 E(ω) ,
(69.90)

where χ(ω) is the susceptibility of the medium. From
Maxwell’s equations we find the relation (68.24)

k2 = n2(ω)
ω2

c2 = ω
2

c2 [1+χ(ω)] . (69.91)

If we take the real parts of the quantities, this describes
the propagation of waves in the medium.

Now we may use the relations (69.16) to estimate the
function α(ω) in the case when we have two weak fields
exciting the three-level system in the V -configuration.
We assume that both couplings have the same frequency,
ω1 = ω2 = ω. We write

χ(ω)≈Λ
(

(ω−ωe)

(ω−ωe)
2+γ 2

+
(
ω−ω f

)

(
ω−ω f

)2+γ 2

)

;
(69.92)

in the weak field limit we may assume the two processes
to add independently. The parameter

Λ= Nd2

2�ε0
(69.93)

has the dimension of a frequency and indicates the
strength of the interaction. It is clear that tuning the
frequency between the levels may give rise to a value
of zero for the susceptibility. For a large enough γ , we
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write, in the neighbourhood of the zero,

χ(ω)≈ 2Λ

γ 2

(
ω− ω̄) , (69.94)

where ω̄= 1
2 (ωe+ω f ).

We now have the relation (69.91) to determine
the dispersion relation, and assuming the effect of the
medium to be substantial, we may derive an expression
for the group velocity in the medium

v−1
g = ∂k

∂ω
. (69.95)

We find

2k

vg
= 2ω

c2 (1+χ)+
ω2

c2

(
2Λ

γ 2

)
. (69.96)

Even thoughχ = 0 near the point ω̄, we still haveω∼ ck,
so that

vg = c

1+ Λω
γ 2

≈ c

(
γ 2

Λω

)
& c . (69.97)

The last inequality follows from the fact that in all cases
γ & ω.

We have thus found that utilizing the interference of
two near quantum levels, the refractive index may ac-
quire a very strong dependence on frequency. This may
manifest itself in an exceedingly slow propagation of
light pulses. Such slow light has been shown to travel
at only a few kilometers per hour, which is a most re-
markable result. The drawback is, however, that this can
only occur over a very narrow frequency range, as fol-
lows from the assumption of a strong dependence on
frequency.

69.8 Summary of the Literature

Much of the material needed to formulate the basic
theory of interaction between light and matter can be
found in the text book [69.2]. A comparison between
the harmonic model and the two-level model is given by
Feld [69.1]. The density matrix formulation is presented
in detail in [69.2]. The influence of various line broad-
ening mechanisms on laser spectroscopy is discussed in
the book [69.3]. The Voigt profile is related to the er-
ror function, which is treated in the compilation [69.5].
The numerical evaluation of the Voigt profile is dis-
cussed in [69.4]. Rate equations are commonly used in
laser theory and they are derived for optical pumping
and laser-induced processes in the lectures [69.6]. The
Doppler-free spectroscopy was developed in the 1960s
and 1970s by many authors following the initial discov-
ery of the Benett hole by Bill R. Bennett Jr. and the
Lamb dip by Willis E. Lamb Jr. Much of the pioneering

work can be found in the book [69.3]. The three-level
work has been reviewed by Chebotaev [69.8]. Various
applications of lasers in spectroscopy are treated by Lev-
enson and Kano [69.7]. For references to other topics,
we refer to the specialized chapters of the present book.

Many features of the quantum dynamics of a few-
level system are found in [69.9, 10]. The theoretical
methods to treat such systems are presented in detail
in [69.11]. The ensuing physical processes are presented
in [69.12] with much additional material on quantum
optics phenomena. The basic theory of the dark state
and many of its applications in spectroscopy and laser
physics are found in [69.13]. A rather complete review
of adiabatic processes induced by delayed pulses is the
article [69.14]. The slowing down and stopping of light
is reviewed in [69.15]. A very recent article with earlier
references is [69.16].
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Laser Principl70. Laser Principles

Despite their great variety and range of power,
wavelength, and temporal characteristics, all
lasers involve certain basic concepts, such as
gain, threshold, and electromagnetic modes of
oscillation [70.1–3]. In addition to these universal
characteristics are features, such as Gaussian
beam modes, that are important to such a wide
class of devices that they must be included in
any reasonable compendium of important laser
concepts and formulas. We have therefore included
here both generally applicable results as well as
some more specific but widely applicable ones.

70.1 Gain, Threshold,
and Matter–Field Coupling ................... 1023

70.2 Continuous Wave,
Single-Mode Operation ........................ 1025

70.3 Laser Resonators ................................. 1028

70.4 Photon Statistics ................................. 1030

70.5 Multi-Mode and Pulsed Operation ........ 1031

70.6 Instabilities and Chaos ......................... 1033

70.7 Recent Developments........................... 1033

References .................................................. 1034

70.1 Gain, Threshold, and Matter–Field Coupling

All lasers involve some medium that amplifies an elec-
tromagnetic field within some band of frequencies. At
the simplest level of description, the amplifying medium
changes the intensity I of a field according to the
equation

dI

dz
= gI , (70.1)

where z is the coordinate along the direction of propaga-
tion and g is the gain coefficient, typically expressed in
cm−1. Amplification occurs as a consequence of stimu-
lated emission of radiation from the upper state (or band
of states) of a transition for which a population inversion
exists; i. e., for which an upper state has greater likeli-
hood of occupation than a lower state. Different types of
lasers may be classified by the pump mechanisms used
to achieve population inversion (Chapt. 71). In the case
that the amplifying transition involves two discrete en-
ergy levels, E1 and E2 > E1, the gain coefficient at the
frequency ν is given by

g(ν)= λ2 A

8πn2

(
N2− g2

g1
N1

)
S(ν) . (70.2)

Here λ= c/ν is the transition wavelength, A
(
s−1

)
is

the Einstein A coefficient for spontaneous emission for
the transition, and g2, g1 are the degeneracies of the up-
per and lower energy levels. These quantities in nearly

every case are fixed characteristics of the medium, inde-
pendent of the laser intensity or the pump mechanism.
N2 and N1 are the population densities

(
cm−3

)
of the

upper and lower levels, respectively, and S(ν) is the nor-
malized transition lineshape function (Chapts. 19 and
69). n is the refractive index at frequency ν of the “back-
ground” host medium and in general has contributions
from all nonlasing transitions. Equation (70.2) describes
either amplification or absorption, depending on whether
N2− (g2/g1)N1 is positive (amplification) or negative
(absorption).

By far the most common configuration is that in
which the gain medium is contained in a cavity bounded
on two sides by reflecting surfaces. The mirrors allow
feedback; i. e., the redirection of the field back into the
gain medium for multipass amplification and sustained
laser action. The two mirrors allow the field to build up
along the directions parallel to the “optical axis” and to
form a pencil-like beam of light. In order to sustain laser
action, the gain in intensity due to stimulated emission
must equal or exceed the loss due to imperfect mirror
reflectivities, scattering, absorption in the host medium,
and diffraction.

Typically the imperfect mirror reflectivities domi-
nate the other sources of loss. If the mirror reflectivities
are r1 and r2, then the intensity I is reduced by the fac-
tor r1r2 in a round trip pass through the cavity, while
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1024 Part F Quantum Optics

according to (70.1) the gain medium causes the inten-
sity to increase by a factor exp(2g) in the two passes
through the gain cell of length . Equating of the gain
and loss factors leads to the threshold condition for laser
oscillation: g ≥ gt, where the threshold gain is

gt =− 1

2
ln(r1r2)+α , (70.3)

α being an attenuation coefficient associated with any
loss mechanisms that may exist in addition to reflection
losses at the mirrors.

Suppose, for example, that a laser has a 50 cm gain
cell and mirrors with reflectivities 0.99 and 0.97, and that
absorption within the host medium of the gain cell is neg-
ligible. Then the threshold gain is gt = 4 × 10−4 cm−1.
If the lasing transition is the 6328 Å Ne transition of the
He–Ne laser, we have A ∼= 1.4 × 106 s−1, n ∼= 1.0 and,
assuming a pure Doppler lineshape,

S(ν)=
(

4 ln 2

π

)1/2 1

δνD
(70.4)

at line center, where δνD is the width (FWHM) of
the Doppler lineshape (Sect. 69.3). For T = 400 K
and the Ne atomic weight, δνD ∼= 1500 MHz and
S(ν)∼= 6.3 × 10−10 s. Then the threshold population dif-
ference required for laser oscillation is

(
N2− g2

g1
N1

)

t
= 8πn2gt

λ2 AS(ν)
∼= 2.8 × 109 cm−3 .

(70.5)

This is a typical result: the population inversion required
for laser oscillation is small compared with the total
number of active atoms.

Calculations of population inversions and other
properties of the gain medium are based on rate equa-
tions, or more generally, the density matrix ρ. In many
instances, the medium is fairly well described in terms
of two energy eigenstates, other states appearing only
indirectly through pumping and decay channels. In this
case, ρ is a 2 × 2 matrix whose elements satisfy [70.3]
(68.66) and (68.67)

ρ̇22 =−(Γ2+Γ )ρ22− 1

2
i
(
Ω∗

1ρ̃21−Ω1ρ̃12
)
,

ρ̇11 =−Γ1ρ11+Γρ22+ 1

2
i
(
Ω∗

1ρ̃21−Ω1ρ̃12
)
,

˙̃ρ21 =−(γ + i∆)ρ̃21− 1

2
iΩ1(ρ22−ρ11) , (70.6)

with ρ̃12 = ρ̃ ∗21. Here, Γ2 and Γ1 are, respectively, the
rates of decay of the upper and lower states due to

all processes other than the spontaneous decay from
state 2 to state 1 described by the rate Γ = A. γ , which
is 2π times the homogeneous linewidth (HWHM) of
the transition, is the rate of decay of off-diagonal co-
herence due to both elastic and inelastic processes; in
general, γ ≥ (Γ1+Γ2+Γ )/2. Ω1 = d21 ·E/� is the
Rabi frequency (The Rabi frequency is often defined
as 2d21 ·E/�.) (Sect. 68.3.3 and Chapt. 73), with E the
complex amplitude of the electric field; i. e., the electric
field is

E(r, t)= Re
[
E(r, t)ei(k·r−ωt)]

∼= Re
[
εE(r, t)eikz e−iωt] . (70.7)

It is assumed that E is slowly varying in time compared
with the oscillations at frequency ω (= 2πν), and that
the wave vector k is approximately kẑ = (nω/c)ẑ, where
ẑ is a unit vector pointing in the direction of propagation.
Finally, ∆= ω0−ω in (70.6) is the detuning of ω from
the central transition frequency ω0 = (E2− E1)/� of
the lasing transition. Rapidly oscillating terms involving
ω0+ω are ignored in the rotating wave approximation
that pervades nearly all of laser theory (Sect. 68.3.2).

In most lasers, γ is so large compared with the di-
agonal decay rates that the off-diagonal elements of ρ
may be assumed to relax quickly to the quasisteady
values obtained by setting ρ̇12 = 0 in (70.6). Then the
diagonal density matrix elements satisfy the rate equa-
tions (69.37)

ρ̇22 =−(Γ2+Γ )ρ22− |Ω1|2γ/2
∆2+γ 2 (ρ22−ρ11) ,

ρ̇11 =−Γ1ρ11+Γρ22+ |Ω1|2γ/2
∆2+γ 2

(ρ22−ρ11) .

(70.8)

Such rate equations, usually expressed equivalently in
terms of population densities N2, N1 rather than occupa-
tion probabilitiesρ22, ρ11, are the basis of most practical
computer models of laser oscillation. These equations,
or, more generally, the density matrix equations, must
also include terms accounting for the pump mechanism.
In the simplest model of pumping, one adds a constant
pump rate Λ2 to the right-hand side of the equation
for ρ22 to obtain (69.45)

ρ̇22 =Λ2− (Γ2+ A)ρ22− |Ω1|2γ/2
∆2+γ 2

(ρ22−ρ11) .

(70.9)

In the case of an inhomogeneously broadened laser tran-
sition (Sect. 69.3), equations of the type (70.6) and (70.8)
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Laser Principles 70.2 Continuous Wave, Single-Mode Operation 1025

apply separately to each detuning∆ arising from the dis-
tribution of atomic or molecular transition frequencies.
In writing these equations, we have assumed a nonde-
generate electric dipole transition. The generalization
to magnetic or multiphoton transitions, or to a case
where the amplification is due, for instance, to a Raman
process, is straightforward but of less general interest.

A more realistic treatment of the electromagnetic
field than that based on (70.1) proceeds from the
Maxwell equations, which, for a homogeneous and
nonmagnetic medium, lead to the equation

1

2ik
∇2

T E +
(
∂

∂z
+ 1

c

∂

∂t

)
E = 4πiω

nc
Nµ∗ρ21 .

(70.10)

Here N is the density of active atoms,µ≡ (d12 ·ε)∗, and
∇2

T ≡ ∂2/∂x2+∂2/∂y2. The result (70.10) assumes the
validity of the rotating wave approximation as well as
the assumption that E is slowly varying compared with
exp(ikz) and exp(−iωt). In the plane wave approxima-
tion, (70.10) becomes (More generally, the velocity c on

the left sides of (70.10) and (70.11) should be replaced by
the group velocity vg associated with nonresonant tran-
sitions. If there is substantial group velocity dispersion,
it is sometimes necessary to include a term involving the
second derivative of E with respect to t)

(
∂

∂z
+ 1

c

∂

∂t

)
E = 4πiω

nc
Nµ∗ρ21 . (70.11)

Equations (70.6) or (70.8) and (70.10) or (70.11) are
coupled matter–field equations whose self consistent
solutions determine the operating characteristics of the
laser. The density matrix or rate equations must be mod-
ified to include pumping, as in (70.9), and the field
equations must be supplemented by boundary conditions
and loss terms. With these modifications, the equations
are the basis of semiclassical laser theory, wherein the
particles constituting the gain medium are treated quan-
tum mechanically whereas the field is treated according
to classical electromagnetic theory [70.4]. Aside from
fundamental linewidth considerations and photon statis-
tics (see Sects.70.2 and 70.4), very few aspects of lasers
require the quantum theory of radiation.

70.2 Continuous Wave, Single-Mode Operation

In the case of steady state, continuous wave (cw) oper-
ation, the appropriate matter–field equations are those
obtained by setting all time derivatives equal to zero.
Equation (70.11), for instance, becomes

dE

dz
= 2πωN|d|2

3n�c

1

γ + i∆
(ρ22−ρ11)E , (70.12)

or, in terms of the intensity I ,

dI

dz
= 4πωN|d|2

3n�c

γ

∆2+γ 2
(ρ22−ρ11)I

= λ2 A

8πn2 (N2− N1)S(ν)I = g(ν)I (70.13)

for the nondegenerate case under consideration. Here,
|d|2 = 3|d12 · ε|2, N j = Nρ jj , S(ν)= γ/(∆2+γ 2

)
is

the Lorentzian lineshape function for homogeneous
broadening, and A = 4ω3|d|2n/3�c3 is the spontaneous
emission rate in the host medium of (real) refractive in-
dex n. Local (Lorentz–Lorenz) field corrections will in
general modify these results, but such corrections are
ignored here [70.5].

The steady state solution of the density matrix or
rate equations gives, similarly,

g(ν)= g0(ν)

1+ I/Isat
, (70.14)

where the saturation intensity Isat, like the small sig-
nal gain coefficient g0(ν), depends on decay rates and
other characteristics of the lasing species. Thus, in the
plane wave approximation, the growth of intensity in
a homogeneously broadened laser medium is typically
described by the equation

dI

dz
= g0(ν)I

1+ I/Isat
. (70.15)

This equation, supplemented by boundary conditions at
the mirrors, and possibly other terms on the right side
to account for any distributed losses within the medium,
determines the intensity in cw, single-mode operation.

The simplest model for calculating output intensity
assumes that the intensity is uniform throughout the laser
cavity. In steady state, the gain exactly compensates for
the loss; i. e., g(ν)= gt, the gain clamping condition for
cw lasing. Equation (70.14) then implies that the steady
state intracavity intensity is

I = Isat [g0(ν)/gt−1] . (70.16)

If I is assumed to be the sum of the intensities of
waves propagating in the +z and −z directions, i. e.
I = I++ I−, then the output intensity from the laser is

Iout = t2 I++ t1 I− , (70.17)
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1026 Part F Quantum Optics

where t2, t1 are the mirror transmissivities at the right
and left mirrors, respectively. The uniform intensity
approximation implies that I+ = I− = I/2 and

Iout = 1

2
(t2+ t1)Isat [g0(ν)/gt−1] . (70.18)

Suppose one of the mirrors is perfectly transmitting,
so that t1 = 0 and t2 = t> 0. Furthermore, if the re-
flectivity r of the transmitting mirror is close to unity,
then gt ∼= (1/2)(1−r)= (1/2)(t+ s), where s is the
fraction of the incident beam power that is scattered or
absorbed at the output mirror. Then

Iout ∼= 1

2
Isatt

(
2g0(ν)

t+ s
−1

)
, (70.19)

and it follows that the optimal output coupling, i. e., the
transmissivity that maximizes the output intensity, is

topt =
√

2g0(ν)s− s . (70.20)

This output coupling gives the output intensity

Imax
out = Isat

[√
g0(ν)−

√
s/2

]2
. (70.21)

g0(ν)Isat is the largest possible power per unit volume
extractable as output laser radiation at the frequency ν.

More generally, when mirror reflectivities are not
necessarily close to unity, I+ �= I− and both I+ and I−
vary with the axial coordinate z. In this more general
case, (70.14) and (70.15) are replaced by

g(ν, z)= g0(ν)

1+[I+(z)+ I−(z)]/Isat
(70.22)

and

dI+
dz

= g(ν, z)I+ ,
dI−
dz

=−g(ν, z)I− , (70.23)

where it is assumed that g0(ν) is independent of z, and
that all cavity loss processes occur at the mirrors. The
solution of these equations with the boundary condi-
tions I−(L)= r2 I+(L), I+(0)= r1 I−(0) for mirrors at
z = 0 and z = L gives, for Iout = t1 I−(0)+ t2 I+(L), the
formula [70.3, 6]

Iout = Isat

(
t2+

√
r2

r1
t1

) √
r1(√

r1+√r2
)(

1−√r1r2
)

×
[
g0(ν)+ ln

√
r1r2

]
. (70.24)

Analysis of this result gives an optimal output coup-
ling that reduces to (70.19) in the limit t+ s & 1. Curves
for optimal output coupling and Iout as a function of
g0 and s are given by Rigrod [70.6]. These results are

based on several assumptions and approximations: the
gain medium is assumed to be homogeneously broad-
ened and to saturate according to the formula (70.14);
g0 and Isat are taken to be constant throughout the
medium; the field is approximated as a plane wave;
field loss processes occur only at the mirrors; and in-
terference between the left- and right-going waves is
ignored.

Interference of the counterpropagating waves in
a standing wave, single-mode laser modifies the gain
saturation formula (70.14) as follows:

g(ν, z)= g0(ν)

1+ (2I+/Isat) sin2 kz
(70.25)

in the case of small output coupling, where I+ ∼= I− as
assumed in (70.18). (The general case of arbitrary output
coupling with spatial interference of counterpropagating
waves is somewhat complicated and is not considered
here.) The sin2 kz term is responsible for spatial hole
burning: “holes” are “burned” in the curve of g(ν, z)
versus z at points where sin2 kz is largest. This spatially
dependent saturation acts to reduce the output intensity,
typically by as much as about 30%, compared with the
case where interference of counterpropagating waves
is absent or ignored. Spatial hole burning tends to be
washed out by atomic motion in gas lasers, and is absent
entirely in pure traveling wave ring lasers. If complete
spatial hole burning based on (70.25) is assumed, the
output intensity is

Iout = t

2
Isat

(
g0(ν)

gt
− 1

4
−
√

g0(ν)

2gt
+ 1

16

)

(70.26)

in the case where one mirror is perfectly reflecting.
In inhomogeneously broadened media, the gain co-

efficient is obtained by integrating the contributions from
all possible values of ν0. The different contributions sat-
urate differently, depending on the detuning of ν0 from
the cavity mode frequency ν. If spatial hole burning and
power broadening (see Sect. 69.3) are ignored, then, to
a good approximation, the gain saturates as

g(ν)= g0(ν)√
1+ I/Isat

(70.27)

in typical inhomogeneously broadened media.
Oscillation on a single longitudinal mode (see

Sect. 70.3) may be realized simply by making the cav-
ity length L small enough that the mode spacing c/2nL
(70.28) exceeds the spectral width of the gain curve.
This is possible in many gas lasers where the spectral
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Laser Principles 70.2 Continuous Wave, Single-Mode Operation 1027

width is small, and in semiconductor lasers, where L
is very small. More generally the gain clamping condi-
tion g(ν)= gt implies that the cavity mode frequency
having the largest small-signal gain g0(ν) saturates the
gain g(ν) down to the threshold value gt, while the
gain at all other mode frequencies then lies below gt.
In other words, the gain clamping condition implies
single-mode oscillation. However, this conclusion as-
sumes homogeneous broadening and also that spatial
hole burning is unimportant, so that the gain satu-
rates uniformly throughout the cavity. High pressure
gas lasers, where the line broadening is due primar-
ily to collisions and therefore is homogeneous, tend
to oscillate on a single mode because spatial hole
burning is largely washed out by atomic motion. On
the other hand, homogeneously broadened solid state
lasers can be multi-mode as a consequence of spatial
hole burning.

Single-mode oscillation in inhomogeneously broad-
ened media is generally more difficult to achieve because
of spectral hole burning (see Sect. 69.3), which makes
the simple gain clamping argument inapplicable. How-
ever, single-mode oscillation can be enforced in any case
by introducing, in effect, an additional loss mechanism
for all mode frequencies except one. This is commonly
done with a Fabry–Perot etalon having a free spectral
range that is large compared with the spectral width
of the gain curve. By choosing the tilt angle appro-
priately, a particular resonant frequency of the etalon
can be brought close to the center of the gain curve
while all other resonance frequencies lie outside the gain
bandwidth.

Laser oscillation at a fixed polarization can likewise
be achieved by discriminating against the orthogonal
polarization, as is done when Brewster windows are
employed.

Laser oscillation, in general, does not occur precisely
at one of the allowed cavity mode frequencies. Associ-
ated with the sin kz dependence of the intracavity field
is the condition kL = Nπ, or

ν = N
c

2nL
(N an integer) , (70.28)

for the cavity mode frequencies in the plane wave ap-
proximation. If the gain medium of refractive index n
does not fill the entire length L between the mirrors,
then (70.28) must be replaced by

ν = Nc/2

n+ (L−) , (70.29)

or



L
[n(ν)−1]ν = νN−ν , (70.30)

where  (≤ L) is the length of the gain medium and
νN = Nc/2L is an empty cavity mode frequency. The
laser oscillation frequency will therefore be different,
in general, from any of the allowed empty-cavity mode
frequencies. If the refractive index n(ν) is attributable
primarily to the lasing transition, as opposed to the host
material, or other nonlasing transitions, then the follow-
ing relation between n(ν) and g(ν) may be used in the
case of homogeneous broadening [70.3]:

n(ν)−1=− λ0

4π

ν0−ν
δν0

g(ν) , (70.31)

where λ0, ν0, and δν0 are the wavelength, frequency, and
homogeneous linewidth (HWHM), respectively, of the
lasing transition. This implies that

ν = ν0δνc+νNδν0

δνc+ δν0
(70.32)

for the laser oscillation frequency ν, where

δνc ≡ cg(ν)

4πL
(70.33)

is the cavity bandwidth. Thus, the actual lasing fre-
quency is not simply one of the allowed empty-cavity
frequencies νN, but rather is “pulled” away from νN
toward the center of the gain profile. This is called
frequency pulling.

If spatial hole burning is absent or ignored, then
g(ν)= gt in steady state oscillation, and the cavity
bandwidth δνc = cgt/4πL is largest for lossy cavities.
Most lasers fall into the “good cavity” category, that is
δνc & δν0, so that (70.32) may be approximated by

ν ∼= νN+ (ν0−νN)δνc/δν0 . (70.34)

Similar results apply to inhomogeneously broadened
lasers. For a Doppler broadened medium, for instance,
the frequency pulling formula is

ν ∼= νN+ (ν0−νN)(δνc/δνD)
√

4 ln 2/π (70.35)

for good cavities. These results show that frequency
pulling is most pronounced in lasers with large peak
gain coefficients and narrow gain profiles, as observed
experimentally.

Spectral hole burning leads to especially interesting
consequences in Doppler broadened gas lasers. Since
two traveling waves propagating in opposite (±z) di-
rections will strongly saturate spectral packets of atoms
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with oppositely Doppler shifted frequencies, a stand-
ing wave field will burn two holes on opposite sides
of the peak of the Doppler profile. When the mode
frequency is exactly at the center of the Doppler pro-
file, however, the two holes merge, the field now being
able to saturate strongly only those atoms with zero vel-
ocity along the z-direction. In this case, since the field
“feeds” off a single spectral packet of more strongly
saturated atoms, there is a dip in the output power
compared with the case when the mode frequency is
detuned from line center. This dip in the output power
at line center is called the Lamb dip. It can be used
to determine whether a gas laser is Doppler broadened,
and more importantly, to stabilize the laser frequency
to the center of the dip. Lamb dip frequency sta-
bilization employs a feedback circuit to control the
bias voltage across a piezoelectric element used to
vary the cavity length, and thereby sweep the laser
frequency.

The above semiclassical laser theory suggests that
cw laser radiation should be perfectly monochromatic,
since the amplitude and phase of the field given by (70.7)
are time independent. However, when quantum electro-
dynamical considerations are built into laser theory, it
is found that spontaneous emission, which adds to the
number of photons put in the lasing mode by stimu-
lated emission, causes a phase diffusion that results in
a Lorentzian linewidth (HWHM)

∆ν = N2

N2− N1

8πhν

Pout
(δνc)

2 , (70.36)

where Pout is the output laser power. This is the
Schawlow–Townes linewidth, which implies a fun-
damentally quantum mechanical, finite linewidth that
persists no matter how small various sources of “tech-
nical noise”, such as mirror jitter, are made. Although
the Schawlow–Townes linewidth has been observed in

highly stabilized gas lasers, it is negligible compared
with technical noise in conventional lasers. But in semi-
conductor lasers, L is very small and consequently δνc is
large, and quantum noise associated with the Schawlow–
Townes formula can be the dominant contribution to the
laser linewidth.

However, the 10–100 MHz linewidths typically ob-
served in semiconductor lasers are too large to be
explained by the Schawlow–Townes formula (70.36),
and two modifications to this formula are necessary, each
of them involving a multiplication of the Schawlow–
Townes linewidth ∆ν by a certain factor:

∆ν→∆ν ′ = (
1+α2)K∆ν , (70.37)

where α is called the “Henry α parameter” and is as-
sociated with a coupling between phase and intensity
fluctuations above the laser threshold [70.7]. Values
of α between about 4 and 6 are typical in semicon-
ductor injection lasers, and consequently, the correction
to the Schawlow-Townes linewidth due to the Henry
α parameter is substantial. The K factor [70.8–10]
arises as a consequence of the deviation from the
spatially uniform intracavity intensity assumed in the
derivation of the Schawlow–Townes formula [70.11,
12]. (Intracavity intensities along the optical axis are
approximately uniform only in the case of low out-
put couplings.) The fundamental quantum mechanical
linewidth under consideration can be associated with
vacuum field fluctuations, which, according to gen-
eral fluctuation–dissipation ideas, will increase as the
cavity loss increases. This explains why the “Peter-
mann K factor” deviates increasingly from unity as
the output coupling (cavity loss) increases. Values of
K between 1 and 2 appear to be typical for lossy,
stable resonators [70.13, 14], but much larger values
are possible for unstable resonators [70.15] (see also
Siegman [70.2]).

70.3 Laser Resonators

The assumption that the complex field amplitude E(r, t)
is slowly varying in z compared with exp(ikz) leads to
the paraxial wave equation (70.10)

∇2
T E +2ik

∂E

∂z
= 0 (70.38)

for a monochromatic field in vacuum. If E(x, y, z) sat-
isfies the paraxial wave equation and is specified in the

plane (x, y, z = 0), it follows that

E(x, y, z)=− i

λz

∫∫
dx′ dy′E(x′, y′, 0)

× eik[(x−x′)2+(y−y′)2]/2z . (70.39)

Thus, in the case of a laser resonator, the field E(x, y, L)
at the mirror at z = L is related to the field E(x, y, 0) at
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the mirror at z = 0 by

E(x, y, L)=− i

λL

∫∫
dx′ dy′E(x′, y′, 0)

× eik[(x−x′)2+(y−y′)2]/2L

≡
∫∫

dx′ dy′K(x, y; x′, y′)E(x′, y′, 0) .
(70.40)

Similarly, the field at z = 0 after one round trip pass
through the resonator is

E(x, y, 0)

=
∫∫

dx′ dy′K(x, y; x′, y′)E(x′, y′, L)

=
∫∫

dx′ dy′K(x, y; x′, y′)
∫∫

dx′′ dy′′

× K(x′, y′; x′′, y′′)E(x′′, y′′, 0)

≡
∫∫

dx′′ dy′′ K̃(x, y; x′′, y′′)E(x′′, y′′, 0) .
(70.41)

By definition, a mode of the resonator is a field dis-
tribution that does not change on successive round-trip
passes through the resonator. More precisely, since an
empty cavity is assumed, a mode will be such that the
field spatial pattern remains the same except for a con-
stant decrease in amplitude per pass. A longitudinal
mode is defined by the value of k in exp(ikz), whereas
a transverse mode is defined by the corresponding (x, y)
dependence and satisfies the integral equation

γE(x, y, z)=
∫

dx′ dy′ K̃(x, y; x′, y′)E(x′, y′, z) ,
(70.42)

where z defines any plane between the mirrors and
|γ |< 1. Iterative numerical solutions of this equation
for laser resonator modes were first discussed by Fox
and Li [70.16].

Laser resonators may be classified as stable or un-
stable according to whether a paraxial ray traced back
and forth through the resonator remains confined in the
resonator or escapes. This leads to the condition

0 ≤ g1g2 ≤ 1 (70.43)

for stability, where the g parameters are defined in terms
of the (spherical) mirror curvatures Ri and the mirror
separation L by gi ≡ 1− L/Ri . Ri is defined as positive
or negative depending on whether the mirror i is concave
or convex, respectively, with respect to the interior of
the resonator. Plane–parallel mirrors (Ri →∞) can be
used, but they are difficult to keep aligned and have much
larger diffractive losses.

Among stable configurations, the symmetric confo-
cal resonator with R1 = R2 = L has the smallest mode
spot sizes at the mirrors, while the concentric resonator
with R1 = R2 slightly greater than L/2, has the smallest
beam waist (Fig. 70.1). The widely used hemispherical
resonator (R1 =∞, R2 slightly greater than L) is rela-
tively easy to keep aligned and allows the spot size at
mirror 2 to be adjusted by slight changes in L .

The fundamental Gaussian beam modes of stable
resonators may be constructed from the free space solu-
tions of the paraxial wave equation. The most important
(lowest-order) solution for this purpose is

E(x, y, z)

= A e−iφ(z) eik(x2+y2)/2R(z) e−(x2+y2)/w2(z)

√
1+ z2/z2

0

,

(70.44)

where A is a constant, φ(z)= tan−1(z/z0), and R(z),
w(z), and z0 are the radius of curvature of surfaces of
constant phase, the spot size, and the Rayleigh range,
respectively. The confocal parameter, 2z0, is also used to
characterize Gaussian beams. Here z0 ≡ πw2

0/λ, where
w0 is the spot size at the beam waist at z = 0 (Fig. 70.1),
and R(z) and w(z) vary with the distance z as follows:

R(z)= z+ z2
0/z , w(z)=w0

√
1+ z2/z2

0 .

(70.45)

The divergence angle of a Gaussian beam (Fig. 70.1) is
given by θ = λ/πw0.

The ABCD law for Gaussian beams allows the ef-
fects of various optical elements on Gaussian beam
propagation to be calculated in a relatively simple fash-
ion [70.1–3]. For instance, a Gaussian beam incident on
a lens of focal length f at its waist is focused to a new
waist at a distance d = f/

(
1+ f 2/z2

0

)
behind the lens,

(x, y) (x, y)

Intensity Intensity

Beam waist

z0

w0 w0

z = 0

w(z)θ √2

Fig. 70.1 Variation of the spot sizew(z) of a Gaussian beam
with the propagation distance z from the beam waist
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and the spot size at the new waist is

w′0 =
fλ

πw0

1
√

1+ f 2/z2
0

, (70.46)

which is approximately fλ/πw0 = fθ for tight focusing.
This shows that a Gaussian beam can be focused to a very
small spot. On the other hand, beam expanders consist-
ing of two appropriately spaced lenses may be used to
increase the spot size by the ratio of the focal lengths.

Gaussian beam modes of laser resonators have radii
of curvature that match in magnitude those of the mir-
rors. The spot sizes at the mirrors and the location of
the beam waist with respect to the mirrors may be ex-
pressed in terms of λ, L , and g1g2. The empty-cavity
mode frequencies are given by

νN = c

2L

(
N + 1

π
cos−1 √g1g2

)
, (70.47)

where N is an integer. For a host medium of refrac-
tive index n, c/2L is replaced by c/2nL , and (70.47)
then generalizes the plane wave result (70.28) to ac-
count for both longitudinal and transverse effects in the
determination of the cavity mode frequencies.

The assumption of Gaussian modes presupposes that
the resonator mirrors are large enough to intercept the en-
tire beam without any “spillover”; i. e., that a %w1, w2,
wherew1, w2 are the spot sizes at the mirrors and a is an
effective mirror cross sectional radius. This implies that
the Fresnel number NF ≡ a2/λL % 1. Diffraction losses
generally increase with decreasing Fresnel numbers.

Higher-order Gaussian modes, where the Gaussian
functions of x and y in (70.44) are replaced by higher-
order Hermite polynomials, are often more difficult to
realize than the fundamental lowest-order mode because
their larger spot sizes imply higher diffractive losses, and
beyond a certain mode order the spot sizes are too large

to satisfy the no-spillover condition for a pure Gaussian
mode.

It is not possible in general to write closed form
expressions for laser modes. There are at least two rea-
sons for this, the first being that the gain medium cannot
in general be regarded as a simple amplifying element
that preserves the basic empty-cavity mode structure. In
low power gas lasers, the spatial variations of the gain
and refractive index are sufficiently mild that the las-
ing modes can be accurately described as Gaussians,
but more generally, there can be strong gain and index
variations that themselves play an important role in de-
termining the modes of the laser, as in “index-guided”
and “gain-guided” semiconductor lasers.

Secondly, the resonator structure itself may intro-
duce complications that preclude closed form solutions
even for the empty cavity. This is generally true, for in-
stance, of unstable resonators, where iterative numerical
solutions of the integral equation (70.42) are necessary
for accurate predictions of modes. In such computer
simulations, the mode structure must be determined self
consistently with the numerical solutions of density ma-
trix or, more commonly, rate equations for the gain
medium.

Unstable resonators, though inherently lossy, offer
some important advantages for high-gain lasers. Thus,
whereas the Gaussian modes of stable resonators typic-
ally involve very small beam spot sizes, the distinctly
non-Gaussian modes of unstable resonators can have
large mode volumes and make more efficient use of
the available gain volume. Unstable resonators also tend
to yield higher output powers when they oscillate on
the lowest loss transverse mode, whereas in stable res-
onators higher output powers are generally associated
with multitransverse mode oscillation. For very high
power lasers, the fact that unstable resonators involve
all-reflective optics, as opposed to transmissive output
coupling, can be important in avoiding optical damage.

70.4 Photon Statistics

Optical fields may be characterized and distinguished
by their photon statistical properties (Chapt. 78 and
[70.17–21]). In a photon counting experiment, the num-
ber of photons registered at a photodetector during a time
interval T is measured and used to infer the probability
Pn(T ) that n photons are counted in a time interval T . If
the probability of counting a photon at the time t in the
interval dt is denoted αI(t)dt, where I(t) is the intensity

of the field and α is a factor depending on the micro-
scopic details of the photoelectric process and on the
phototube geometry, then it may be shown from largely
classical considerations that [70.3, 17–21]

Pn(T )=
〈

1

n!

⎡

⎣α

T∫

0

dt′ I(t′)

⎤

⎦

n

e−α
∫ T

0 dt′ I(t′)
〉

,

(70.48)
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where the average 〈 · · · 〉 is over the intensity variations
during the counting interval. This is Mandel’s formula.
In the simplest case of constant intensity, Pn follows the
Poisson distribution:

Pn = n n e−n/n! , (70.49)

where n = αIT . Since a single-mode laser field can
be thought of approximately as a “classical stable
wave” [70.20,21], it is not surprising that its photocount
distribution is found both theoretically and experimen-
tally to satisfy (70.49), which is characteristic of a coher-
ent state of the field (Chapt. 78). A thermal light source,
by contrast, follows the Bose–Einstein distribution,

Pn = nn/(1+n)n+1 , (70.50)

if the time interval T is short compared with the coher-
ence time of the light; i. e., if T∆ν& 1, where ∆ν is the
bandwidth. If T∆ν% 1, Pn is again Poissonian.

Thus, if a quasi-monochromatic beam of light is
made from a natural source by spatial and spectral
filtering, it has measurably different photon counting
statistics from a single-mode laser beam of exactly the
same bandwidth and average intensity. Laser radiation
approaches the ideal coherent state that, of all possible
quantum mechanical states of the field, most closely re-
sembles the “classical stable wave”. These differences
are exhibited in other experiments, such as the meas-
urement of intensity correlations of the Brown–Twiss
type [70.3, 17–21]. In such experiments, thermal pho-
tons have a statistical tendency to arrive in pairs (photon
bunching), whereas the photons from a laser arrive
independently.

70.5 Multi-Mode and Pulsed Operation

Multi-mode laser theory is generally much more compli-
cated than single-mode theory, particularly in the case
of inhomogeneous broadening with both spectral and
spatial hole burning. In certain situations, however, con-
siderable simplification is possible. For instance, when
the cavity-mode frequency spacing is small compared
with the homogeneous linewidth δν0, the gain tends
to saturate homogeneously, and the total output power
on all modes is well described by the Rigrod analysis
outlined in Sect. 70.2.

Pulsed laser operation adds the further complication
of temporal variations to the cw theory outlined in the
preceding sections. It is possible, nevertheless, to under-
stand some of the most important types of multi-mode
and pulsed operation using relatively simple models.

One method of obtaining short, high power laser
pulses is Q-switching. In a very lossy cavity, the gain
can be pumped to large values before the threshold con-
dition is met and gain saturation occurs. If the cavity
loss is suddenly decreased, there will be a rapid build-
up of intensity because the small-signal gain is far above
the (now reduced) threshold value. The switching of the
cavity loss is called Q-switching, the “quality factor” Q
being defined as ν/2δνc. This type of Q-switching pro-
duces intense pulses of duration typically in the range
10–100 ns, as dictated by the fact that a light pulse must
make several passes through the gain cell for ampli-
fication. Q-switching requires that the gain medium
be capable of retaining a population inversion over
a time much larger than the Q-switched pulse dura-

tion, and in particular that the spontaneous emission
lifetime be relatively long. The pulse duration can be re-
duced to approximately a single cavity round trip time
by Q-switching from low reflectivity mirrors to 100%
reflectivities, and then switching the reflectivity of the
outcoupling mirror from 100% to 0% at the peak of
the amplified pulse. In addition to this pulsed transmis-
sion mode is cavity dumping, where both mirrors have
nominally 100% reflectivity and the intracavity power
is “dumped” by an acousto-optic or electro-optic intra-
cavity element that deflects the light out of the cavity.
The pulse duration achieved in this way is again roughly
a round trip time. Cavity dumping can be employed with
cw lasers and does not require the long energy storage
times necessary for ordinary Q-switching.

Shorter pulses can be realized by mode-locking,
where the phases of N longitudinal cavity modes are
locked together. In the simplest model, assuming equal
amplitudes and phases of the individual modes, the net
field amplitude is proportional to

X(t)=
(N−1)/2∑

n=−(N−1)/2

X0 sin[(ω0+n∆)t+φ0]

= X0 sin(ω0t+φ0)
sin(N∆t/2)

sin(∆t/2)
. (70.51)

The temporal variation described by this function for
large N is a train of “spikes” of amplitude NX0 at times
tm = 2πm/∆, m = 0,±1,±2, · · · , the width of each
spike being 2π/(N∆). In the case of a mode-locked laser,
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∆= 2π(c/2L), and the output field consists of a train
of pulses separated in time by T = 2π/∆= 2L/c. The
peak amplitude of the spikes is proportional to N , and
the duration of each spike is approximately 2L/cN .

The maximum number Nmax of modes that can ac-
tually be phase-locked is limited by the spectral width
∆νg of the gain curve:

Nmax = ∆νg

c/2L
= 2L

c
∆νg . (70.52)

Similarly, the shortest pulse duration is

τmin = 2L

cNmax
= 1

∆νg
. (70.53)

Mode-locking thus requires a gain bandwidth large com-
pared with the cavity mode spacing, and the shortest and
most intense mode-locked pulse trains are obtained in
gain media having the largest gain bandwidths. Trains
of picosecond pulses are routinely obtained with li-
quid dye and solid gain media having gain bandwidths
∆νg ≈ 1012 s−1 or more.

Various techniques, employing acoustic or electro-
optic modulation or saturable absorbers, are used to
achieve mode-locking [70.1–3]. The different methods
all rely basically on the fact that a modulation of the gain
or loss at the mode separation frequency c/2L tends to
cause the different modes to oscillate in phase. Such
a modulation is achieved “passively” when a saturable
absorber is placed in the laser cavity: the multi-mode in-
tensity oscillates with a beat frequency that is impressed
on the saturated loss coefficient. Dye lasers, with their
large gains across a broad range of optical frequencies,
are often employed to generate mode-locked picosecond
pulses.

Ultrashort pulse generation is possible with
additional nonlinear or frequency chirping tech-
niques [70.22]. The colliding-pulse laser [70.23] is
a three-mirror ring laser in which two mode-locked
pulse trains propagate in opposite senses and overlap
in a very thin (≈ 10 µm) saturable absorber placed in
the ring in addition to the gain cell. The cavity loss is
least when the two pulses synchronize to produce the
highest intensity, and therefore the lowest loss coeffi-
cient in the saturable absorber. The short length of the
absorbing cell forces the pulses to overlap within a very
small distance and therefore to produce very short pulses
(10 µm/c ≈ 30 fs pulse duration with c/L ≈ 100 MHz
repetition rate).

Another method of ultrashort pulse generation relies
on frequency chirping; i. e., a time dependent shift of the
frequency of an optical pulse [70.24–26]. In a medium

(e.g., a glass fiber) with linear and nonlinear refractive
index coefficients n0 and n2, the refractive index is

n = n0+n2 I , (70.54)

so that there is an instantaneous phase shift φ(t) that de-
pends on the instantaneous intensity. Therefore, as I(t)
increases toward the peak intensity of the pulse, φ(t)
increases (assuming n2 > 0), whereas φ(t) decreases
as I(t) decreases from its peak value. The frequency
shift φ̇(t) is such that the instantaneous frequency of the
pulse is smaller at the leading edge and larger at the trail-
ing edge of the pulse (Fig. 70.2), resulting in a stretching
of the pulse bandwidth.

Following this spectral broadening by the nonlin-
ear medium, the pulse can be compressed in time by
means of a frequency dependent delay line such that
the smaller frequencies, say, are delayed more than the
higher frequencies. The trailing edge of the pulse can
therefore “catch up” to the leading edge, resulting in
a shorter pulse whose duration is given by the inverse
of the chirp bandwidth. The delay line can be realized
with a pair of diffraction gratings (see Fig. 70.2). Using
this pulse compression technique, 40 fs amplified pulses
from a colliding pulse laser have been compressed to
8 fs, corresponding to about four optical cycles [70.27].

In chirped-pulsed-amplification (CPA) lasers [70.28]
a laser pulse is chirped, temporally stretched, and then
passed through an amplifier. The lengthening in time
of the pulse prior to amplification allows greater en-
ergy extraction from the amplifier. After amplification,

a)

Glass fiber

Chirped pulse

b)

Chirped
input pulse

Output pulse

Grating

Blue

Grating

Red

Fig. 70.2a,b Nonlinear pulse compression by frequency
chirping. In (a), the nonlinear refractive index of a glass
fiber results in a time dependent frequency of the trans-
mitted pulse, and in (b) a pair of diffraction gratings is
used to produce frequency dependent path delays such as
to temporally compress the pulse
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Laser Principles 70.7 Recent Developments 1033

pulse compression is performed with a grating pair.
The Ti :sapphire (Ti : Al2O3) amplifier is particularly
attractive for femtosecond CPA because of its very large
spectral width and high saturation fluence.

The wavelength dependence of the linear refractive
index n0 in (70.54) results in a group velocity

vg = c[n0−λdn0/dλ]−1 (70.55)

that, if dn0/dλ< 0, is such that higher frequencies prop-
agate more rapidly than lower frequencies. Assuming

n2 > 0, on the other hand, the nonlinear part of the in-
dex causes a delay of higher frequencies with respect
to lower ones, as discussed above. This leads to soliton
solutions of the wave equation, such that the oppos-
ing effects of the linear and nonlinear dispersion are
balanced and the pulse propagates without distortion.
Soliton lasers, with pulse durations ranging from pico-
seconds down to≈ 100 fs, depending on the fiber length,
have been made with solid state lasers and intracavity
optical fibers [70.29].

70.6 Instabilities and Chaos

Mode-locked pulses and solitons exemplify an ordered
dynamics, as opposed to the erratic and seemingly ran-
dom intensity fluctuations that are sometimes observed
in the output of a laser. In fact, it is possible, under certain
circumstances, for laser oscillation to exhibit determin-
istic chaos; i. e., an effectively random behavior that
can nevertheless be described by purely deterministic
equations of motion [70.30–34].

Lasers are nonlinear and dissipative systems, and as
such exhibit essentially all the modes of behavior charac-
teristic of such systems. It was shown by Haken [70.35]
that (70.6) and (70.11), with ∆= 0 and with pumping
and field loss terms included, can be put into the form
of the Lorenz model for chaos. For a single-mode, ho-
mogeneously broadened ring laser, the Lorenz model
instability requires a “bad cavity” in the sense that
the field loss rate is larger than the sum of the ho-
mogeneous linewidth of the lasing transition and the
population decay rate. It also requires the gain medium
to be pumped at least nine times above the threshold gain
value, a condition sometimes referred to as a “second
laser threshold.”

When the single-mode laser equations correspond-
ing to the Lorenz model are generalized to the case
of inhomogeneous broadening, an instability occurs at
small–signal gain values much less than nine times

threshold. In particular, the cw output of the laser gives
way to an oscillatory intensity, even though the pump-
ing and loss terms in the equations are assumed to be
time independent. As the pumping and loss parameters
are varied, this self-pulsing instability can give way
to chaotic behavior, and numerical studies of the set
of coupled matter–field equations reveal period doub-
ling, two-frequency, and intermittency routes to chaos
in different regimes [70.30]. This unstable behavior
of single-mode inhomogeneously broadened lasers was
first discovered experimentally and analyzed by Casper-
son [70.36–38] for low pressure, 3.51 µm He−Xe lasers.
Arecchi et al. [70.39] reported the first observation and
characterization of chaotic behavior in a laser system; by
modulating the cavity loss of a CO2 laser they observed
a period doubling route to chaos as the modulation
frequency was varied.

Extensive experimental and theoretical work on un-
stable and chaotic behavior in a wide variety of other
laser systems has been reported [70.30–34, 40], in-
cluding work aimed at the control of chaotic laser
oscillation by the so-called occasional proportional
feedback technique [70.41, 42]. Instabilities of single
transverse mode dynamics have also been studied, es-
pecially in connection with spontaneous spatial pattern
formation [70.40].

70.7 Recent Developments

Recent developments in the basic physics of lasers
include the application of cavity QED techniques
to produce a single-atom laser [70.43] that emits
< 105 photons/s, and a two-photon laser [70.44] that
operates on the basis of amplification on a two-photon

transition. Recent progress in the development of ul-
trashort pulses includes the generation of attosecond
pulses by high-order harmonic generation [70.45, 46],
and the application of such pulses to a measurement of
the photoionization time of Auger electrons [70.47].
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Types of Laser71. Types of Lasers

The availability of coherent light sources (i. e.,
lasers) has revolutionized atomic, molecular,
and optical science. Since its invention in
1960, the laser has become the basic tool for
atomic and molecular spectroscopy and for
elucidating fundamental properties of optics
and optical interactions with matter. The unique
properties of laser light have spawned new
types of spectroscopy, as discussed in Chapt. 72
to Chapt. 80.

There are now literally hundreds of dif-
ferent types of lasers. However, only a few
of these are commercially available, and
lasers tailor made with operational prop-
erties optimized for specific applications
are often needed. Chapter 70 describes
the principles of laser operation leading to
specific output characteristics. This chap-
ter summarizes the current status of the
development of different types of lasers,
emphasizing those that are commercially
available. There are several ways to cat-
egorize types of lasers; for example, in
terms of spectral range, temporal char-
acteristics, pumping mechanism, or lasing
media.

71.1 Gas Lasers ........................................... 1036
71.1.1 Neutral Atom Lasers................... 1036
71.1.2 Ion Lasers................................. 1036
71.1.3 Metal Vapor Lasers .................... 1037
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71.4.1 Organic Dye Lasers ..................... 1044
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References .................................................. 1048

For this chapter, the types of lasers are categorized in
terms of the lasing media, as shown in Table 71.1.

The variety of different laser types offers a wide
range of beam parameters. The spectral output of lasers
covers the X-ray to far IR regions as shown in Fig. 71.1.
Spectral linewidths can be as narrow as 20 Hz and

Table 71.1 Categories of lasers

Gas lasers Special lasers Solid State lasers Liquid lasers Miscellaneous

Atomic Metal vapor Transition metal ion Organic dye X-ray

Ionic Chemical Rare earth ion Rare earth chelate Nuclear pumped

Molecular Color center Inorganic solvents with Free electron

rare earth ions

Excimer Semiconductor

diffraction limited beam quality with coherence lengths
up to 10 m can be obtained. Temporal pulse widths of
a few femtoseconds have been generated. Some lasers
can produce peak powers of over 1013 W and aver-
age powers of 105 W with pulse energies greater than
104 J. The important operational characteristics, such
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as frequency range and output power, are given for
each of the types of lasers described in the follow-
ing sections. Extensive tables of laser properties have
been published in several different handbooks [71.1–5]
and all of these details for every laser are not repeated
here due to space limitations. The data that are quoted

come from these reference books and from recent pro-
ceedings of conferences such as CLEO (Conference on
Lasers and Electro-Optics) and ASSL (Advanced Solid
State Laser Conference). The reader is referred to these
sources for further details of specific laser operation
parameters.

71.1 Gas Lasers

Gas lasers can be separated into subclasses based on the
lasing media: neutral atoms; ions; and molecules. In ad-
dition, molecular lasers contain the special classes of
excimer lasers and chemical lasers. Except for chemical
lasers, the pumping mechanism is generally an electri-
cal discharge in a gas filled tube. This discharge causes
the acceleration of electrons that transfer their kinetic
energy to the lasing species through collisions, leaving
them in a variety of excited states. These relax back
to the ground state with different rates, resulting in the
possibility of a population inversion for some transi-
tions. These can be electronic, vibrational, or rotational
transitions with wavelengths ranging from the near ultra-
violet (UV) through the far infrared (IR) spectral regions.
Systems lasing at short wavelengths generally operate
only in the pulsed mode because of the short radiative
lifetimes of the transitions involved. Because of their
low gain, gas lasers usually have relatively long linear
cavity designs. Gas lasers generally have narrow spec-
tral emission lines with the possibility of lasing at several
different wavelengths. They are broadened both by colli-
sions (homogeneous broadening) and the Doppler effect
of the motion of the atoms or molecules (inhomoge-
neous broadening). To date, 51 elements in the periodic
table have shown either ionic or neutral ion gas laser
emission.

71.1.1 Neutral Atom Lasers

These lasers generally emit in the visible and near IR
spectral range. The first and most common laser of this
class is the He–Ne laser. Its most prominent emission
line is at 632.8 nm. It is usually operated in the continu-
ous wave (cw) configuration with typical power outputs
between 0.5 to 50 mW, although powers of over 100 mW
have been achieved. Excitation occurs through electri-
cal discharge which pumps both the He and Ne atoms
to excited states. The more abundant He atoms trans-
fer their energy to several excited states of Ne atoms.
Several radiative transitions of Ne are available for laser
transitions. These provide emission at 543.36, 632.8,
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Fig. 71.1 Spectral range of laser emission

1152.27, and 3391.32 nm. Final relaxation back to the
ground state occurs through collisions with the walls
of the gas tube. The desired laser line can be selected
by adjusting the reflectivity of the cavity mirrors to dis-
criminate against unwanted transitions. In addition, it
is possible to adjust the discharge current, gas ratio,
and pressure to optimize a specific emission transition.
Using an external magnetic field to produce a Zeeman
effect can also be helpful in tuning the laser emission.
In addition to the normal red He–Ne lasers, green lasers
are now available. Typical He–Ne lasers operate with
a coherence length of 0.1–0.3 m, a beam divergence of
0.5–2 mrad, and a stability of 5%/h. The gain at the red
line is 0.5 dB/m. This line can be operated as a single
mode with a linewidth of 0.0019 nm and a coherence
length between 20 and 30 cm.

71.1.2 Ion Lasers

The most important ion lasers are based on noble gas
ions such as Ar, Kr, Ne, or Xe in various states of ion-
ization. These operate in either a pulsed or cw mode,
and their emission covers the wavelength range from
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the near UV through the visible part of the spectrum.
In the electrical-discharge excitation process, electrons
collide with neutral atoms in their ground states, trans-
ferring enough energy to ionize them and leave the
ions in several possible excited states. For example, low
discharge currents produce Ar+ giving rise to visible
emission lines, while high discharge currents produce
Ar2+ giving rise to UV emission lines. Radiative emis-
sion then occurs to lower excited levels of the ions,
followed by subsequent spontaneous emission to the
ground state of the ion, and then radiationless relaxation
back to the neutral atom ground state. This transition
scheme limits the wall plug efficiency to about 0.1%
for visible and 0.01% for UV operation. Heat manage-
ment is accomplished through either water cooling or
air cooling.

In the visible region of the spectrum, argon lasers
have blue and green emission lines with the strongest
ones at 488 and 515 nm, respectively. Krypton lasers
have several strong emission lines in the green and red,
with the most prominent ones at 521, 568, and 647 nm.
Mixed gas lasers can produce all of these lines. In the
near UV, argon has a strong laser line at 351 nm as well
as several other emission lines down to 275 nm. The
same methods for selecting specific laser lines on neu-
tral atom lasers, discussed in Sect. 71.1.1, are used for
ion lasers. These lasers can operate at powers of over
20 W of cw emission in the visible and at powers of sev-
eral watts cw in the UV. The Doppler-limited linewidth
of noble gas ion lasers is generally ≈ 5–10 GHz. By
using special techniques for stabilization of the cavity,
linewidths of≈ 500 MHz with drifts of 100 MHz/hr can
be obtained. By mode-locking argon or krypton lasers
with 10 GHz linewidths, it is possible to produce trains
of pulses with pulse lengths of 100 ps and peak powers
of 1 kW, at a pulse repetition frequency of 150 MHz.
Cavity-dumping produces narrow pulses at pulse repe-
tition frequencies of ≈ 1 MHz with peak powers over
100 times the cw power. Lower power cw lasers of this
type typically have beam divergences of 1.5 mrad and
a stability of 5%, while high power lasers have beam
divergences of ≈ 0.4 mrad with a stability of 0.5%.

71.1.3 Metal Vapor Lasers

These lasers can operate with either neutral atoms or
ions. Their excitation process begins with vaporizing
a solid or liquid to produce the gas for lasing, followed
by normal electrical discharge pumping. Either cw or
pulsed operation can be obtained, with laser emission
lines in the near UV and visible spectral regions.

One important ion laser of this class is the Helium–
Cadmium laser. For the excitation processes, metallic
Cd is evaporated and mixed with He. Then a d.c. elec-
tric discharge excites the He ions and ionizes the Cd.
The excited He atoms transfer their energy to the Cd
atoms and the laser transitions take place between elec-
tronic levels of the Cd atom. The main emission line of
a He–Cd laser is the blue line at 441.6 nm. This typ-
ically has a cw output from 130 mW for single-mode
operation up to 150 mW for multimode operation. The
laser linewidth can be as narrow as 0.003 nm. This sys-
tem also has an important laser emission at 325.029 nm,
which typically has cw powers between 5 and 10 mW
single-mode and 100 mW for multimode emission. The
wall plug efficiency is between 0.002% and 0.02%.

The most important neutral atom metal vapor laser
of this type is the copper vapor laser. This has impor-
tant emission lines in the green at 510.55 nm and in the
yellow at 578.21 nm. These lasers operate in the pulsed
mode with temporal pulse widths between 10 and 20 ns
at pulse repetition rates of up to 20 000 pps. Typical pulse
energies are≈ 1 mJ, yielding average powers of 20 W. It
is possible to increase the repetition rate significantly to
achieve average powers of 120 W or even higher. How-
ever, this laser is self-terminating since the lower levels
of the laser transitions are metastable. This restricts the
pulse sequencing of the laser and requires fast discharge
risetimes. Copper vapor lasers have high gain (10% to
30%/cm), and very high wall plug efficiency (≈ 1.0%).
Gold vapor lasers have similar properties but operate in
the red at 624 nm at several watts of power.

71.1.4 Molecular Lasers

There are several types of molecular lasers that can be
classified with respect to their spectral emission range,
their mode of excitation, or the energy levels involved
in the lasing transition. In the far IR, molecular lasers
operate on transitions between rotational energy levels.
These include water vapor lasers that emit between 17
and 200 µm, cyanide lasers at 337 µm, methyl fluoride
lasers emitting between 450 and 550 µm, and ammonia
lasers that operate at 81 µm. These are generally excited
through optical pumping by a CO2 laser. They are built
with a metal or dielectric wave guide cavity. The former
design results in lower thresholds but gives multimode,
mixed polarization output, while the latter design re-
sults in propagation losses, giving higher thresholds but
linearly polarized outputs.

CO2 lasers are some of the most widely used, with
a variety of medical and industrial applications. They
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emit in the mid-IR range at 10.6 and 9.6 µm. The CO2
molecules are excited by electrical discharge, and it is
common to mix CO2 with other gases, such as nitro-
gen, to enhance the efficiency of the excitation process
through energy transfer, or with helium, to keep the aver-
age electron energy high and to depopulate the lower
levels of the laser transition. Both the initial and final
states of the lasing transition are vibrational levels that
have many rotational sublevels. This allows discrete tun-
ing of the output within the 9.4 and 10.4 µm bands.
Using high pressures of the gas broadens the laser line
into a continuum so that the emission can be continu-
ously tuned over several microns near 10 µm. Without
any frequency selective element in the cavity, the system
oscillates on the transition with highest gain, which is
near 10.6 µm. Under pulsed operating conditions, CO2
lasers can also emit at bands near 4.3 µm and at several
bands between 11 and 18 µm.

These laser systems typically operate at a few milli-
watts of power to over 100 kW cw. Waveguide and slab
cavity designs have been developed for heat removal.
In the pulsed or Q-switched mode of operation, pulse
widths are between a few microseconds and a few mil-
liseconds, with energies as high as 10 000 J/pulse. This
leads to peak powers more than 100 times higher than cw
powers. It is also possible to mode-lock these systems
to get a train of nanosecond pulses. In the transverse-
excitation-atmospheric-pressure (TEA) configuration,
CO2 lasers are pumped very rapidly compared with
the lifetime of the metastable state, resulting in a large
population inversion in the gain medium when the elec-
tromagnetic field builds up in the cavity. This results in
an intense “gain-switched pulse” of between 100 and
200 ns in duration followed by a lower intensity emis-
sion due to continued pumping of the upper state. These
systems provide up to 3 J/pulse at pulse repetition fre-
quencies of up to 50 Hz. At much lower pulse repetition
frequencies, energies as high as 1000 J/pulse have been
obtained. The typical beam divergence of these lasers is
less than 3 mrad.

Carbon monoxide lasers operate on the vibrational
levels of CO. They can be excited either through
electrical discharge or chemical reaction (as discussed
in Sect. 71.1.7). CO lasers have a tunable emission be-
tween 5 and 7 µm, operating with powers as high as
1 kW cw. In the pulsed mode, the typical energy emis-
sion is 10 mJ/pulse with 1 µs pulses at a pulse repetition
frequency of 10 Hz. N2O lasers extend the molecular
laser wavelength range to beyond 10 µm.

Nitrogen lasers operate in the near UV at 337.1 nm.
These are based on transitions between electronic energy

levels of the N2 molecule excited by electrical discharge.
The typical emission from an N2 laser is a single pulse
of 10 ns in duration. The peak pulse power can be as
high as 1 MW with 10 mJ/pulse at a pulse repetition
frequency of less than 100 Hz. It is also possible to
design these systems to obtain picosecond pulses. H2
operates in a similar way in the 120 to 160 nm region
of the UV.

71.1.5 Excimer Lasers

The most important lasers in the near UV to VUV for in-
dustrial and medical applications are based on rare-gas
halide excimers such as XeF at 351 nm, XeCl at 308 nm,
KrF at 248 nm, ArF at 193 nm, and F2 at 153 nm. The
major problem with these systems is the corrosive nature
of the gases. They can be pumped by electric discharges,
electron or proton beams, or optical excitation. Using
electrical discharge excitation, the electrons ionize the
noble gas molecules, and these react by pulling an atom
off the halide molecule to create an excited state dimer
molecule (excimer) that radiates to an unstable lower
state where dissociation occurs. The short radiative life-
times of excimers result in laser pulses of 10 to 50 ns
duration. Systems can be configured to have pulse dura-
tions ranging from picoseconds to microseconds. These
lasers typically operate at high pulse repetition frequen-
cies between 200 and 1000 Hz. The energy per pulse of
discharge-pumped excimer lasers ranges from several
mJ to 0.1 J, with typical average powers up to 200 W.
Single shot, electron-beam-pumped excimer lasers can
have as high as 104 J/pulse for an average power of
almost 1 kW.

Typical emission bands for excimer lasers are ap-
proximately 100 cm−1 wide due to vibrational sublevels.
With the use of etalons and gratings, the laser line
can be narrowed to 0.3 cm−1. These frequency-selective
elements can be used to tune the emission over sev-
eral nanometers. Special configurations of excimer
lasers have been developed to obtain specific oper-
ational parameters. For example, pulses as short as
45 fs have been obtained by mode-locking or by us-
ing excimer amplifiers to amplify frequency shifted dye
laser pulses [71.3, 4]. Stimulated Brillouin scattering
has been used as a phase conjugate mirror to minimize
phase-front distortion in excimer lasers. Both master os-
cillator power amplifiers and injection locked resonator
techniques have been used to achieve low spatial di-
vergence with narrow bandwidths [71.3,4]. Input pulses
for the latter system can be from either frequency shifted
Nd:YAG or dye lasers.
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One interesting recent development has been the
demonstration of laser operation of solid state excimer
systems [71.6–8] . This is discussed in Sect. 71.2.4.

71.1.6 Nonlinear Mixing

Another way to produce tunable VUV laser transitions
is to use nonlinear four-wave sum mixing in atomic va-
pors and molecular gases. This requires optical pumping
with two sources and can be achieved with any of a var-
iety of laser combinations such as excimer lasers with
dye lasers, or Nd:YAG lasers with dye lasers. This tech-
nique has been used to obtain laser emission in the 57 to
195 nm spectral range with visible to VUV conversion
efficiencies as high as 10−3.

71.1.7 Chemical Lasers

It is possible for some chemical reactions between
molecules to leave the final molecule in an excited
state. This type of “pumping” can result in a popula-
tion inversion with respect to one of the lower states
and laser transitions can occur between vibrational or
rotational states of the molecule. Using mixtures of dif-
ferent types of molecules, pumping can be enhanced
through energy transfer. Both pulsed and cw laser oper-
ation have been obtained with chemical lasers. Typical
emission is of the order of a few hundred watts in the IR
with a tunable output wavelength. Visible emission from
chemical lasers has been demonstrated [71.9–11]. This
type of laser provides the possibility of a system with
a self contained chemical power supply for use in remote
environments. The problems associated with handling
hazardous chemicals have restricted the applications of
chemical lasers.

The HF chemical laser is associated with an exother-
mic chain reaction between H2 and F2 molecules to yield
vibrationally excited HF [71.4]. The fluoride atoms are

generated in an electrical discharge tube from the dis-
sociation of SF6. These are injected into the optical
resonator along with the H2 or D2 gas which flows per-
pendicular to the lasing direction. Controlling the gas
flow for mixing the reactants is critical to the laser de-
sign. The chemical reaction for direct excitation is F +
H2 →HF∗ + H. For this reaction, ∆H=−32 kcal/mole,
resulting in laser emission energies of between 100 and
400 kJ/kg, at wavelengths between 2.5 and 3.7 µm. This
corresponds to vibrational-rotational transitions in the
HF molecule. It is possible to select a single line for the
laser output and then tune the laser output wavelength by
selecting different lines. Single line output for cw oper-
ation can produce up to 100 W of power. If D2 replaces
H2, the emission shifts to between 3.6 and 4.2 µm, and
the single line cw output power drops to about 50 W.
The output power for a cw laser of this type, operating
in the multiple line mode, can be as high as 2.2 MW,
while in the pulsed mode of operation pulse energies of
5 kJ can be obtained with multiple line emission.

An example of energy transfer pumping of chemical
lasers is the DFCO2 system. Pumping of vibrational-
rotational transitions of DF occurs through multiple
chemical reactions of fluorine and deuterium, followed
by energy transfer to excited states of the CO2 molecules.
This exhibits laser emission with kilowatts of power at
10.6 µm, as described above. Another important laser
system using energy transfer pumping is the chemical-
oxygen-iodine laser (COIL). This is based on transitions
between electronic levels in which singlet oxygen is ex-
cited and transfers its energy to a metastable state of
iodine. Emission occurs at 1.3 µm and cw powers of up
to 25 kW have been obtained.

One example of chemical laser action in the visible
region is excited GeO transferring its energy to atomic
Tl, which lases at 535 nm. Only a few systems of this
type have been demonstrated, and none are developed
to the level of commercial availability [71.9–11].

71.2 Solid State Lasers

Solid state lasers are based on luminescence centers
randomly distributed in a crystalline or glass host ma-
terial. These can be classified in terms of the type of
their laser active centers: transition metal ion lasers;
rare earth ion lasers; and color center lasers. The use
of dye molecules in plastic host media is a new type
of solid state laser that is discussed in Sect. 71.4.1. The
active ions are substitutionally “doped” into the host dur-
ing crystal growth or glass melting, whereas the lattice

defects that produce color centers are generally pro-
duced by post-growth radiation or heat treatments. The
excitation mechanism is through optical pumping by
either another laser or lamps. The spectral range cov-
ered by solid state lasers spans the visible and near
IR. The variety of combinations of active centers and
hosts provides the ability for both pulsed and cw oper-
ation with either narrow band or broad band emission.
The latter type can provide frequency tunable output

Part
F

7
1
.2



1040 Part F Quantum Optics

with the appropriate frequency-selective element in the
cavity. Temperature tuning of narrow emission lines is
also possible over a limited range. The spectral lines are
broadened by internal strains in the host lattice (inhomo-
geneous broadening) and by radiationless relaxation and
scattering processes involving thermal vibrations of the
host (homogeneous broadening). Standard Q-switching
and mode-locking techniques can be used with most
solid state lasers.

71.2.1 Transition Metal Ion Lasers

The laser ions of this type have optically active electrons
in unfilled 3dn electron configurations. They include the
positively charged ions Cr3+, Cr4+, Co2+, V2+, Ni2+,
and Ti3+. The transitions involved in pumping and las-
ing are associated with the optically active electrons.
Because these are outer shell electrons, they are sensi-
tive to their local crystal field environment. Typical host
materials are ionic crystals formed from oxides such
as sapphire, emerald, chrysoberyl, forsterite, and gar-
nets, or fluorides such as MgF2, KMgF3, LiCaAlF6, and
LiSrAlF6. The host determines the bulk optical, mechan-
ical, and thermal properties of the laser material, and it
influences the spectroscopic properties of the active ions.

The most successful transition metal laser ion is
Cr3+. It has been made to lase in many different types
of host crystals with both strong and weak crystal field
environments. The most common strong field host is
sapphire, and Al2O3:Cr3+, commonly known as ruby,
which was the first laser invented. The typical character-
istic of a strong field laser material is a sharp laser line
associated with a spin-flip electronic transition between
states of the same crystal field configuration. In ruby this
occurs at 699.7 nm. Because of its strong, broad absorp-
tion bands, ruby can be efficiently pumped by lamps and
operates in either a pulsed or cw mode. Typical cw power
output is a few watts with an efficiency of≈ 0.1%. Ruby
can be Q-switched to produce 10 ns pulses with several
joules of energy per pulse, and mode-locked to produce
pulses that are 5 ps in duration.

The typical characteristic of a weak field laser
material is a broad gain curve associated with vi-
bronic transitions between states of different crystal
field configurations. Although chrysoberyl is a host with
intermediate crystal field, BeAl2O4:Cr3+, commonly
known as alexandrite, is sufficiently close to a weak field
case to operate as a laser in this regime. Using frequency
selective elements in the cavity, alexandrite lasers can
be tuned in the 700 to 820 nm range. The gain of alexan-
drite increases with temperature, with the cross section

at the peak of the gain curve near 10−20 cm2. Typical
laser outputs are 4.5 J/pulse at 20 Hz pulse repetition
rate and 90 W average power with 2% overall efficiency.
In the Q-switched mode, 40 ns pulses with 2 J/pulse
are obtained and the pulse width can be stretched to
much longer values. Alexandrite lasers can also be
mode-locked to obtain 28 ps pulses with 0.5 mJ/pulse.

Fluoride crystals, such as LiCaAlF6 and LiSrAlF6,
are also weak field hosts for tunable Cr3+ lasers in the
near IR. The latter is termed Cr:LiSAF and has a peak
stimulated emission cross section of 0.4 × 10−19 cm2

with a tuning range from 780 to 1020 nm. This system
can be either flashlamp pumped or diode laser pumped.
Single pulses with energies of 75 J have been generated
by these lasers. Kerr lens mode-locking has produced
pulses shorter than 100 fs.

One of the most interesting tunable solid state
laser systems is Ti-sapphire (Al2O3:Ti3+) because it
has the broadest tuning range of any ion, extending
from about 660 nm to about 1180 nm. Pumping can
be provided by either lasers or flashlamps, resulting
in either cw or pulsed operation. This results in a ver-
satile source of excitation in this spectral region and
sub-picosecond pulses can be obtained through mode-
locking. The single 3d electron of Ti3+ gives a simplified
energy level scheme which minimizes losses due to ex-
cited state absorption, which can be a problem in Cr3+
lasers. However, the metastable state lifetime of Ti3+ is
significantly shorter than that of Cr3+, and therefore
Cr3+ lasers have much greater energy storage capa-
bility. Thus, Ti-sapphire lasers are difficult to pump
by flashlamp, and are therefore generally pumped by
argon lasers or frequency-doubled Nd-YAG lasers. Ti-
sapphire has a very high peak gain cross section of about
4 × 10−19 cm2. On the other hand, it is difficult to grow
Ti-sapphire crystals with high concentrations of Ti3+
ions because of valance state stability.

71.2.2 Rare Earth Ion Lasers

All of the trivalent lanthanide ions (Ce3+, Pr3+, Nd3+,
Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+,
Tm3+, Yb3+) and the divalent ions Sm2+, Dy2+, Tm2+
have been used as active ions in solid state lasers. These
ions are characterized by unfilled 4fn electron configur-
ations and the most common source of laser emission
comes from electronic transitions among their energy
levels. Because the inner shell 4f electrons are shielded
by outer shell electrons, the energy levels are not strongly
affected by the environment of the local host material.
This leads to sharp lines in both absorption and emission.
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One exception to this is vibronic emission from Ho3+
which can produce tunable laser emission in the near
IR. In some cases, transitions between 5d and 4f levels
are involved in the laser emission. Since the 5d levels
are broadened by the environment, broadly tunable laser
emission can be obtained. Examples are Ce3+ in the UV
and Sm2+ in the near IR The only actinide ion that has
been made into a laser is U3+.

Both crystals and glasses can be used as host ma-
terials for rare earth ion lasers. Common oxide crystal
hosts include the garnets such as Y3Al5O12 (com-
monly referred to as YAG) and a typical fluoride crystal
host is YLiF3. A wide variety of glass hosts has been
used, including silicates, phosphates, heavy metal flu-
orides, and mixtures of these. The major difference
between crystal and glass hosts is that crystals pro-
vide similar crystal field sites for every dopant ion,
leading to a minimum of inhomogeneous broadening,
while the disorder associated with glass structure gives
many different types of local crystal field sites for
the dopant ions and thus significant inhomogeneous
broadening.

Because of the abundance of their energy lev-
els, many trivalent rare earth ions have more than
one metastable state, and laser emission is possible
from several transitions. This results in over 100 pos-
sible laser emission lines ranging from the near UV
through the visible and near IR. Both pulsed and
cw operation can be obtained. The standard config-
uration for a rare earth solid state laser is a rod of
laser material pumped by a lamp. Other configura-
tions are used for special situations, such as a slab of
laser material for high power glass lasers where heat
management is a problem, and microchip lasers for
photonics applications. Glass fiber lasers and ampli-
fiers are becoming important configurations for some
applications.

A major problem is the inefficiency of coupling the
excitation energy of a lamp source with a broad spectral
output into the spectrally sharp absorption bands of the
trivalent rare earth ions. This can be overcome by us-
ing a laser as a pump source. One of the major advances
in solid state laser technology has been the develop-
ment of bars of high power diode laser arrays as pump
sources. This has significantly increased the efficiency
and decreased the thermal problems in these lasers. Cur-
rently available diode laser pump sources cover a limited
range of wavelengths and thus can only be used to excite
a limited set of metastable states. Several schemes have
been adapted to excite other metastable states. One of
these is up-conversion pumping [71.12–15] in which an

ion is excited to a low-lying metastable state by a pho-
ton from the pump source and then re-excited to a higher
metastable state either by another photon from the pump
source or by energy transfer interaction with a neigh-
boring ion that has also been excited to the low-lying
metastable state. Avalanche pumping [71.16] relies on
thermal fluctuations to populate a low-lying energy level
of an ion which can then be re-excited by a pump pho-
ton to a high energy metastable state. Another method
involves the addition of a second dopant ion to the host.
This “sensitizer” ion is one with broad pump bands (such
as Cr3+) that can efficiently absorb the energy from the
pump lamp. The excited sensitizer then interacts with the
“activator” (lasing) ion through a radiationless, resonant
energy transfer process. This deactivates the sensitizer
and excites the activator ion.

Nd3+ has been made to lase in a greater num-
ber of host materials than any other active ion.
Y3Al5O12:Nd3+, commonly referred to as Nd-YAG,
is one of the most successful commercially available
lasers. Although it is possible for Nd-YAG lasers to op-
erate at several different wavelengths around 1 µm, the
standard lasers emit at 1.06 µm. Continuous wave pow-
ers of 250 W are available and pulsed performance of
several megawatts at 10 Hz and 1 J/pulse can be ob-
tained. To obtain visible (532 nm) and near UV (354
and 266 nm) emission, nonlinear optical crystals are
used to modify the near IR output through second,
third, and fourth harmonic generation. The optimum
concentration of Nd3+ in YAG is a few percent, and
above this amount, concentration quenching of the emis-
sion occurs through energy transfer and cross-relaxation
processes. Attempts to co-dope Nd-YAG with Cr3+ to
enhance pumping through energy transfer have not been
successful [71.17, 18]. However, in other garnet crys-
tal hosts such as Gd3Sc2Ga3O12 (GSGG), the Cr–Nd
energy transfer is strong enough to enhance pump-
ing efficiency. Diode laser pumping of Nd-YAG has
significantly increased pumping efficiency.

Other crystal hosts such as the pentaphosphates do
not exhibit concentration quenching, so materials with
100% Nd3+ can be used as “stoichiometric laser ma-
terials”. These can be important for some mini-laser
applications. In glass hosts, Nd3+ ions can produce
pulses with energies of ≈ 100 kJ/pulse, but these sys-
tems must operate at very low pulse repetition rates of
one pulse every few minutes to allow for heat dissi-
pation. New athermal glass compositions decrease the
problems with thermal lensing for high power laser oper-
ation. Nd:YVO lasers have been operated in a microchip
configuration pumped by diode lasers.
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A major area of recent development involves rare
earth doped crystal lasers operating at specific wave-
lengths in the near IR [71.19–21]. This includes both
the “eye safe” region between 1.35 and 2.2 µm for ap-
plications involving atmospheric transmission, and the 2
to 3 µm range to match water overtone absorption bands
for medical applications. The ions of most interest are
Er3+, Tm3+, and Ho3+. Er3+ can lase on 13 transitions
at wavelengths ranging from 0.56 to 4.8 µm. Both Tm3+
and Ho3+ exhibit laser transitions near 2 µm, but they
are difficult to pump efficiently. One successful laser
in this spectral region is triply doped Cr;Tm;Ho:YAG.
The flashlamp energy is absorbed by the Cr3+ ions and
transferred to Tm3+ ions. Cross-relaxation between two
thulium ions doubles the quantum efficiency by leav-
ing two Tm3+ ions in the excited state. Energy transfer
among the thulium ions with transfer to Ho3+ then oc-
curs and the lasing transition occurs on the holmium
ions.

Fiber lasers have been developed that consist of
trivalent rare earth ions doped in either oxide or fluo-
ride glass fibers and pumped by other lasers [71.22].
A useful application of active fibers is Er3+ and Pr3+
optical amplifiers for fiber communication systems.
The extended length of the gain media and the non-
linear dispersion effects in fiber transmission allow
precise tailoring of laser emission properties. Heavy
metal fluoride fibers give improved IR transmission
in the 2 to 3 µm spectral region. An important recent
development involves writing laser-induced gratings
in fibers to produce distributed feedback lasers with
stable, single-mode operation [71.23]. Nd-doped fiber
lasers pumped by diode lasers have produced 5 W of
power. Mode-locked fiber ring lasers have produced soli-
tons. Efficient up-conversion laser operation has been
achieved in fibers. In addition, the efficient nonlin-
ear optical properties of fibers has led to fiber Raman
lasers.

71.2.3 Color Center Lasers

In color center lasers, the optically active center is
a point defect in the lattice. For example, in alkali
halide host crystals, such as NaCl, a typical color
center consists of an electron trapped at a halide ion
vacancy. Similar color centers occur in oxide host crys-
tals such as diamond and sapphire. Color centers can
be produced by thermal treatment or exposure to ra-
diation. Many times, these centers are stable only at
low temperatures due to ion and electron mobility.
In some cases, impurity ions act to stabilize the de-

fect center. A neutral Tl atom at a cation site next
to a anion vacancy in KCl is an example of this.
A major recent advance in color center lasers involves
the development of room temperature stable pulsed
laser systems. Systems based on the vibrational tran-
sitions of molecular defects such as CN− have been
demonstrated to operate as lasers in the 5 µm spectral
region.

Color center absorption generally occurs in the visi-
ble, and they are optically pumped by Ar, Kr, or Nd:YAG
lasers. Typical color center emission occurs as a broad
band in the near IR between 0.8 and 4.0 µm. The emis-
sion is based on allowed transitions with high oscillator
strengths leading to high gain cross sections.

The homogeneously broadened emission band of
color centers allows for efficient, tunable laser emis-
sion and single mode operation. Optically pumped cw
output powers of ≈ 2 W have been obtained, and mode-
locked pulses of less than 100 fs and 1 MW peak power
at repetition rates of 100 MHz and hundreds of milliwatts
average power have been generated. Laser linewidths of
less than 4 kHz have been obtained.

One problem with a high gain medium such as
a color center crystal is a tendency for multimode laser
operation. In a linear standing wave cavity, a primary
oscillating mode reaches gain saturation and burns spa-
tially periodic holes in the population inversion of the
gain medium. The high gain allows secondary modes to
oscillate with peaks at the nodes of the primary mode.
A grating/etalon combination can be used to select and
tune the laser output frequency [71.4]. The etalon se-
lects one cavity mode and the grating selects one order
of the etalon. This results in single mode tunable output.
The single mode power output is 70% of the multimode
laser power due to energy loss in the hole burning mode.
A ring laser configuration in a traveling wave opera-
tion can be used to give uniform saturation of the gain
medium, and thus no hole burning. A ring laser cav-
ity needs additional optics such as a Faraday rotator
and an optically active plate to force oscillation in only
one direction. Active frequency stabilization circuits are
necessary to obtain linewidths of less than 4 kHz.

Synchronously pumping a color center laser with
a mode-locked Nd:YAG laser gives mode-locked output
with pulses typically between 5 and 15 ps. If passive
mode-locking is obtained through use of a saturable
absorber, pulses of ≈ 200 fs can be obtained. Additive
pulse mode-locking consists of two coupled cavities,
one with a color center gain medium and the other with
a single mode optical fiber. Self phase modulation in the
fiber gives a broader frequency spectrum to the pulses
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and thus shorter time widths. This scheme has generated
pulses of about 75 fs [71.24]. Soliton lasers are also ob-
tained by coupling a color center laser with a fiber laser.

71.2.4 New Types of Solid State
Laser Systems

One type of new solid state laser system being studied
involves the fourth and fifth row transition metal ions.
So far, stimulated emission and gain have been reported
for Rh3+ [71.25] under strong pumping conditions, but
no laser operation has been achieved.

Solid state dye lasers [71.26] consist of organic dye
molecules doped in crystal or glass host materials. The
first systems of this type used the same class of organic
dyes as in liquid lasers (such as rhodamine 6G) and
host materials such as sol-gels or polymethylmethacry-
late. These systems have traditionally had a problem
with photo-degradation of the material after a limited
number of shots. However, recent combinations of new
dyes and new host materials have produced outputs
of tens of millijoules per pulse, over 50% slope effi-
ciency, and a degradation to 60% of the initial output
after 30 000 pulses. One example of these new materials
is pyrromethene-BF2 complex dye doped in an acrylic
plastic host [71.26]. Another material system that has ex-
hibited good laser performance involves xerogel hosts
doped with perylene or pyrromethene dyes [71.27]. The
performance of some of these new systems has reached
the point that they may be useful for tunable laser
applications in the visible spectral region.

Another new type of system can be described as
a solid state excimer laser [71.6–8]. These materials

consist of noble gas solids as host crystals, such as Ar
and Ne, doped with excimer molecules, such as XeF. The
emission lines occur in the UV and visible, with major
lines at 286, 411, and 540 nm. These systems have very
high stimulated emission cross sections and large gain
coefficients.

71.2.5 Frequency Shifters

Since solid state lasers are commercially available at
only a limited number of wavelengths, it is some-
times easier to use nonlinear optical techniques to shift
the frequency of an available laser than to develop
a new primary laser system. The techniques for this
include harmonic frequency generation, frequency mix-
ing, optical parametric oscillators and amplifiers, and
Raman shifting. Significant advances have been made
recently [71.28] in developing new types of materials
for these applications. For frequency mixing, harmonic
generation and OPOs in the visible and near UV, im-
portant new crystals include KTiOPO4 (KTP), BaB2O4
(BBO), and LiB3O5 (LBO). In the 3 to 5 µm region,
new materials for frequency mixing and OPOs include
KTA (the arsinate analog of KTP) and ZnGeP2. Gas
phase Raman cells have been commercially available
for solid state laser systems for many years. Recently, it
has been demonstrated that crystals such as Ba(NO3)2
can be used as efficient solid state Raman shifters.
New waveguide configurations with periodic poling for
quasiphase matching have greatly enhanced the effi-
ciency of harmonic generation [71.29]. Optical damage
threshold is still the limiting parameter for nonlinear
optical materials.

71.3 Semiconductor Lasers

The light emission from semiconductor diode lasers is
generally associated with the radiative recombination of
electrons and holes. This occurs at the junction of an
n-type material with excess electrons and a p-type ma-
terial with excess holes. The excitation is provided by
an external electric field applied across the p-n junction
that causes the two types of charges to come together.
The most common semiconductor laser emission lines
occur in the near or mid-IR. These are generally made
of III-V compounds such as gallium arsenide in the red
and near IR, and lead salts in the mid-IR region. Wide
bandgap II-VI materials are currently being explored
for use in the green and blue spectral regions. The spec-
tral lines are generally narrow with broadening due to

lattice defects (inhomogeneous broadening) and radi-
ationless relaxation and scattering processes associated
with the thermal vibration of the host (homogeneous
broadening). Temperature tuning can be used to change
the output wavelength over a narrow spectral range. Di-
rect modulation of the laser output can be achieved by
modulating the external current. This is an important
feature of electric current pumped semiconductor lasers,
and leads to applications where high frequency modu-
lation is required. Modulation bandwidths in excess of
11 GHz have been obtained.

The ability to design and grow specialized structures
one atomic layer at a time using techniques such as mo-
lecular beam epitaxy (MBE) has led to the design of
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quantum well lasers with enhanced properties, as well
as more esoteric designs of quantum wires and quan-
tum boxes [71.30, 31]. Quantum well microlasers can
be as small as 100 µm and operate with milliamps of
current at a few volts. These are generally based on ma-
terial systems such as GaAs/GaAlAs or InP/InGaAsP.
Heterostructure lasers have layers of aluminum, indium,
and phosphorus on the sides of the junction to confine
the electronic current to the junction region to minimize
the amount of current required, and thus minimize heat
dissipation compared with homostructures of the same
materials. Special device structures can be fabricated
to produce gain-guiding and index-guiding to enhance
the operating characteristics of the lasers. Grating struc-
tures can be fabricated to give distributed feedback lasers
that narrow the laser linewidths to ≈ 1 MHz. External
cavity lasers with gratings have achieved linewidths as
low as 1 kHz. cw operating powers of up to 10 mW
have been achieved from a single p-n junction, while
phased arrays have reached combined powers of well
over 10 W.

Gallium arsenide (GaAs) was the first compound
semiconductor diode laser. It can produce laser emission
at wavelengths between 750 and 870 nm. The devel-
opment of strained-layer technology has allowed the
use of mixed compounds of gallium aluminum arsenide
(Ga1xAlxAs) to fabricate different types of laser struc-
tures, and the concentration of aluminum determines the
laser emission wavelength. Wavelengths from 620 nm
to 905 nm have been obtained. The most common diode
laser structures are simple double-heterostructure lasers,
and monolithic arrays of laser stripes can be fabricated
for higher power. In a typical GaAlAs laser, the ac-
tive layer is sandwiched between two layers having
larger bandgaps and lower refractive indices. The for-
mer characteristic produces electrical confinement and
the latter produces optical confinement. This improves
the efficiency and allows cw laser operation. In the con-
ventional horizontal-cavity structure, cleaved end facets

of the chip produce the optical feedback required for
laser oscillation. Fabricating quantum well structures in
the active layer produces improved confinement, and
thus higher efficiency operation. For low power lasers,
high beam quality is achieved through an index-guiding
structure that concentrates the optical beam in the laser
stripe. In high power lasers, the current is concentrated in
the laser stripe to achieve gain-guiding. Laser arrays can
generate cw powers of the order 20 W and in a quasicw
mode they can produce peak powers of 100 W. Stack-
ing diode bars in planar arrays can generate kilowatts
of power. Another approach to obtaining high powers is
a master oscillator power amplifier (MOPA) configur-
ation. This has the advantage of maintaining high beam
quality, and gallium arsenide MOPAs have produced
single frequency operation at 1 W of power.

Long wavelength IR diode lasers are made of IV–VI
compounds such as PbS. These lasers operate at cryo-
genic temperatures and provide tunable emission from
4 to 32 µm. The tunability is achieved by changing
temperature or current.

One of the most important areas of research in semi-
conducting lasers is the development of new device
configurations such as vertical cavity surface emitting
lasers (VCSELs) [71.32]. These have lower round trip
gain but significantly reduced divergence of the out-
put beam. This configuration allows for the fabrication
of two dimensional arrays of independently modulated
lasers.

Another major research area is generating new laser
wavelengths. Using strained layer technology, a variety
of different combinations of direct bandgap materials
can be made into semiconductor lasers [71.33]. The
range of available bandgaps can conceivably result in
lasers with emission wavelengths spanning the visible
and near IR spectral regions. There is currently spe-
cial emphasis on the development of lasers in the blue
and green spectral regions using wide bandgap II–VI
materials such as ZnSe [71.34].

71.4 Liquid Lasers

There are three classes of liquid lasers. The most widely
used are based on organic solvents with organic dye
molecules as the active laser species. The other two
types are based on rare earth ions for the lasing entity. In
one case, the lasing system involves rare earth chelates in
organic solvents, while in the other, the rare earth ions
are in inorganic solvents. These systems are optically
pumped with either flashlamps or other lasers.

71.4.1 Organic Dye Lasers

Dye lasers are generally based on fluorescent dyes
in liquid solvents, using optical pumping by either
flashlamps or other lasers as the mechanism for ex-
citation. They can operate in either a pulsed or cw
mode at wavelengths as short as 310 nm out to
about 1.5 µm. Dye lasers provide the versatility of
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varying wavelength, bandwidth, and pulse length as
desired.

The fluorescence emission of dye molecules ap-
pears as broad spectral bands due to coupling of the
electronic energy levels with molecular vibrations. This
gives a broadband gain curve for lasing, and thus with
a dispersive element such as a grating, prism, filter,
or etalon in the cavity, dye laser outputs can be tuned
over a range of several hundred angstroms (30–60 nm).
There are now over 200 organic laser dyes. One of the
most successful dyes is rhodamine 6G which covers the
spectral range 570–630 nm. Alcohol is a typical sol-
vent. The various types of cavity designs include folded
cavities and ring cavities. Flowing dye configurations
are useful for heat management. Oscillator/amplifier
configurations are used to suppress amplified sponta-
neous emission. Dispersive elements plus frequency
stabilization have been used for spectral line narrow-
ing to single mode cw operation. Frequencies as narrow
as 10 GHz or less have been obtained. For cw oper-
ation, output powers of a few watts can be obtained,
while in the pulsed mode the energy per pulse can be
up to 100 mJ in 10 ns pulses. With mode-locking, trains
of femtosecond pulses with intervals of 20 ns can be
produced.

Mode-locking takes advantage of the broad emission
spectrum of the dye molecules to get short pulses. The
standard techniques of synchronous pumping, active,
and passive mode-locking have been used. In addition,
colliding pulse mode-locking has been used in a ring
configuration. In this case, pump beams going the op-
posite direction in the cavity collide in an absorber jet
dye to produce interference fringes and saturation. The
gain dye is located half way around the ring from the
absorber dye. Fiber compression techniques have also
been used with dye laser systems. The shortest pulses
obtained so far are 6 fs [71.4]. Hybrid mode-locking uti-
lizing synchronous pumping plus a saturable absorber
and prism dispersion compensators has been employed
to achieve powers of 350 mW and greater tunability than
colliding pulse systems [71.4].

Several new technological advances have increased
the spectral coverage of dye lasers. These include bet-
ter pump sources, such as the increased power of argon
pump lasers and the availability of UV pump lines, and
the use of Ti-sapphire pump lasers. Combining these
pump sources with new dyes has provided extended
dye laser output in both the blue and near IR [71.4].
Also, improved nonlinear crystals have allowed cov-
erage of the near UV from 260 to 960 nm through
harmonic frequency generation and frequency mixing
the dye laser output with pump laser wavelengths. An-
other developing technology is solid state dye lasers. As
mentioned in Sect. 71.2.4, significant progress has been
made recently in decreasing the photodegradation prob-
lems associated with dye molecules doped in solid host
materials [71.26, 27].

71.4.2 Rare Earth Chelate Lasers

In these systems, the active lasing center is a rare earth
complex with organic molecules in an organic solvent.
The chelate ligands are organic phosphates, carboxylate
ions, or β-diketonate. The optical pump energy is ab-
sorbed by the ligand and efficiently transferred to the rare
earth ion. Energy transfer quenching from the rare earth
ion to the organic molecule vibrational levels decreases
the efficiency of these lasers. This is especially true for
Nd3+. The three ions that have been most effective in
these systems are Eu3+, Tb3+, and Nd3+.

71.4.3 Inorganic Rare Earth Liquid Lasers

In these systems, the active lasing center is a rare earth
ion inorganic complex of heavy metal halides or oxy-
halides (the optical pumping is directly into the rare earth
ion). Nd3+ lasers can produce several hundred joules of
energy per pulse in the long pulse mode and peak pow-
ers of 180 MW in a Q-switched mode. These lasers have
also been mode-locked to obtain 3 ps long pulses hav-
ing 1 GW of peak power. Self mode-locking and self
Q-switching is also observed in these systems.

71.5 Other Types of Lasers

Several more complex laser systems have been devel-
oped that have significant interest for scientific studies,
but so far have had limited applications outside the
laboratory. These include X-ray lasers, particle-beam-
pumped lasers, and free electron lasers.

71.5.1 X-Ray and Extreme UV Lasers

These systems are based on highly ionized ions pro-
duced by powerful laser sources. Examples are krypton
at 93 nm, molybdenum at 13 nm, and carbon at 18 nm.
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There is significant interest in developing X-ray lasers
for applications in lithography and medical imaging,
but so far the lack of reliable X-ray optics for the laser
cavities has limited the technology.

71.5.2 Nuclear Pumped Lasers

These are gas lasers excited by high energy charged par-
ticles or gamma rays resulting from nuclear reactions.
Either nuclear reactors or nuclear explosives are used
as pump sources. These can operate in either a pulsed
or cw mode and produce emission covering the spectral
range from the UV through the IR [71.4]. Typical gases
range from Xe∗2 at 170 nm to CO at 5.4 µm. Other gases
that have been used include argon and nitrogen. Typical
pulsed outputs produce 10 ns pulses with energies from
2 × 10−7 J to 3 J. There are significant problems with ra-
diation damage of the laser components in these systems.

71.5.3 Free Electron Lasers

These lasers are based on a high-energy beam of elec-
trons in a spatially varying magnetic field. The varying
field causes the electrons to oscillate, and thus to emit
radiation at the oscillation frequency. The stimulated
emission produced under these conditions provides the
laser output. Since the electrons are making transitions
between continuum states instead of discrete states,
these systems can give high power output over the entire
spectral range from the VUV to the far IR [71.35, 36].
Powers as high as 1 GW and efficiencies as high as 35%

have been obtained. Beam spread is controlled by the
use of tapered instead of uniform wigglers. Both cw and
picosecond pulsed emission can be obtained.

There are three types of free electron laser configu-
rations [71.35,36]. The first is a master oscillator power
amplifier (MOPA), in which an electron beam is injected
into a wiggler in synchronism with the signal to be am-
plified. The external radiation source to drive the ampli-
fier is a master oscillator such as a conventional laser sys-
tem. This is a single pass, high gain system. The second
configuration is an oscillator. This is designed with re-
flection at the ends of the wiggler so that the signal makes
multiple passes in the cavity. This can operate with low
gain. Since it amplifies spontaneous noise, no injected
signal is necessary. The third configuration is a super-
radiant amplifier. In this configuration, shot noise is am-
plified over a single pass through the wiggler. These sys-
tems require high current accelerators to drive them. Be-
cause their operation is based on broad band shot noise,
super-radiant amplifier radiation has a broader band than
radiation from a master oscillator power amplifier.

Different accelerator configurations can be used to
produce the electron beam, storage rings, induction
linacs, pulse line accelerators, etc. [71.35, 36]. These
give different beam properties such as quality, current,
and energy. They also each give a limited range of
wavelengths and temporal structure of the output.

Advances have been made recently in designing
smaller and less complex free electron lasers [71.35,36].
As this trend continues, these systems will find important
applications in medicine and industry.

71.6 Recent Developments

Over the past eight years, the designs of all types of
lasers have continued to evolve, driven by applications
requirements for lasers with specific operating param-
eters. Some of the major advances in this time period
are summarized here.

The requirements for laser outputs of several kilo-
watts with near-diffraction-limited beam quality in the
infrared wavelength region has lead to improved designs
of CO2 lasers. This includes a diffusion cooled, annular
discharge design with free-space propagation instead of
waveguiding [71.37].

The push for solid state lasers in the ultraviolet has
led to recent progress in cerium-doped fluoride crys-
tal lasers that provides direct laser emission tunable
in the 280 to 330 nm spectral region. Using host crys-
tals such as LiCaAlF6, LiSrAlF6 or LiLuF4 has helped

to overcome the problems with excited state absorp-
tion and color center formation that has been a major
problem with more common hosts such as YAG and
YLF crystals [71.38]. These lasers are pumped by ei-
ther excimer lasers or frequency-quadrupled Nd:YAG
lasers and have produced up to 60 mJ per pulse and 60%
slope efficiency. The output can be pulse compressed
to 115 fs.

Thin-disk solid state laser configurations using rare
earth doped crystals and semiconductor saturable ab-
sorber mirrors for passive mode-locking have produced
ultrashort (femtosecond) pulse trains with high average
powers [71.39]. Yb:YAG thin disks reduce the problem
of thermal lensing and have achieved output powers of
up to 100 W in cw mode locked operation with near-
diffraction-limited beam quality [71.40]. To achieve
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shorter pulses, a thin-disk Yb:KYW laser has obtained
22 W with 240 fs pulses [71.41].

Advances continue to be made in the materials for
solid state organic dye lasers. The use of polymer mater-
ials, organic-inorganic matrices, and nanoparticles has
provided advances in this type of laser [71.42–46]. Use
of semiconductor excitation and electrical excitation
may play important roles in the future of solid state
organic dye lasers.

Commercially available solid state Raman lasers
have been developed for frequency shifting to a wide
variety of wavelengths and for pulse compression to the
0.1–1 ns region [71.47–49]. Both internal and external
cavity designs have been demonstrated. New mater-
ials, such as KGd(WO4)2 and KY(WO4)2, have been
used for Raman lasers along with Ba(NO3)2, which has
excellent properties for this application. An external-
resonator Raman laser using Ba(NO3)2 has reached
1.3 W of power [71.50].

The major advancement in fiber lasers has been in
cladding geometry to allow for higher powers. Double
clad fiber lasers operating in single transverse modes
have exceeded 100 W of output for four-level systems
and over 1 W for three-level systems [71.51]. These in-
volve a variety of geometric shapes of cladding. A new
breakthrough in fiber delivery systems that will impact
the future of fiber lasers is the use of holey fibers (pho-
tonic crystal fibers) [71.52]. These are glass fibers that
have a periodic array of air holes running their en-
tire length. These fibers can be engineered to produce
a photonic bandgap and allow for dispersion control
and minimized nonlinear effects compared to standard
fibers. This is useful for short pulse delivery.

In the field of semiconductor lasers, vertical-cavity
surface-emitting lasers (VCSELs) have developed as
a competitive alternative to the conventional edge-
emitting semiconductor lasers. The most recent advance
involves designs that have a horizontal laser cavity but
emits from the surface [71.53]. This combines the ease
of packaging of VCSELs with the high power and good
stability properties of edge-emitting lasers.

Several new designs of high power semiconductor
lasers that can be frequency shifted to the blue and green
spectral regions have been developed as rugged, efficient
sources [71.54, 55]. One of these is a GaAs-based ver-
tical external cavity surface-emitting laser (VECSEL)
optically pumped with an 808 nm semiconductor laser.
This emits at 976 nm with a cavity that includes a wave-
length selector and a doubling crystal. The second
configuration uses a semiconductor material as a gain
medium in an external cavity with a wavelength selec-

tor. In this case the frequency doubling crystal is outside
the cavity. These configurations have reached 20 mW cw
operation with high beam quality. One enabling tech-
nology is the use of microelectromechanical systems
(MEMS) for mirrors to tune VCELs [71.56].

New material configurations offer some advantages.
Photonic crystals can be used to produce nanocavity
lasers [71.57] while band-structure engineering can be
used to design quantum-cascade lasers [71.58]. The
latter are multiple-quantum-well heterostructures based
on intersub-band transitions. They operate in the infrared
to terahertz spectral region.

The broad spectral band available for laser gain is
the major distinguishing feature of liquid organic dye
lasers. This provides the ability to have tunable output
over a broad range of wavelength, the ability to gen-
erate ultrashort pulses, narrow linewidth cw operation,
and high average power operation. This variety of oper-
ating parameters keeps this class of lasers competitive
in a variety of applications. They have been especially
useful for laser spectroscopy in the visible region of the
spectrum and in the area of laser cooling. They have
achieved energies of up to 800 J per pulse and average
powers greater than 1 kW. The discovery of highly sta-
ble water-soluble dyes is an important advancement in
this field [71.59].

Free-electron lasers (FELs) can produce coherent
emission at a wide range of wavelengths. Output for-
mats include ultrashort pulses and high powers [71.60].
Using a photocathode electron gun in a single pass, self-
amplified spontaneous emission mode, FELs can operate
at wavelengths where there are no mirrors with high re-
flectivity. This type of laser emission has been extended
to the vacuum ultraviolet and the hard X-ray regions.
The technique of using a subharmonic seed laser has
been developed to improve the spectral purity of FEL
emission. The use of an energy-recovering accelerator
produces FELs with high average power (over 1 MW).
In the spectral region around 1 mm, FELs have produced
over 300 W of picosecond pulses.

Laser systems using various nonlinear optics tech-
niques continue to be developed. There has been
significant research on high intensity, ultrashort pulse
lasers because of their special characteristics for atmo-
spheric propagation. Using femtosecond pulses above
a critical power level produces “light strings” that prop-
agate without dispersion for many kilometers due to
the balance between Kerr self-focusing and air ioniza-
tion [71.61]. Stimulated Brillouin scattering in water has
been shown to be effective in pulse compression and the
production of nondiffracting laser beams [71.62].
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Nonlinear Opt72. Nonlinear Optics

Nonlinear optics is concerned with the propagation
of intense beams of light through a material
system. The optical properties of the medium can
be modified by the intense light beam, leading to
new processes that would not occur in a material
that responded linearly to an applied optical field.
These processes can lead to the modification of
the spectral, spatial, or polarization properties of
the light beam, or the creation of new frequency
components. More complete accounts of nonlinear
optics including the origin of optical nonlinearities
can be found in references [72.1–4].

Both the Gaussian and MKS system of units are
commonly used in nonlinear optics. Thus, we have
chosen to express the equations in this chapter
in both the Gaussian and MKS systems. Each
equation can be interpreted in the MKS system
as written or in the Gaussian system by omitting
the prefactors (e.g., 1/4πε0) that appear in square
brackets at the beginning of the expression on the
right-hand-side of the equation.
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72.1 Nonlinear Susceptibility

In linear optics it is customary to describe the response
of a material in terms of a macroscopic polarization P̃
(i. e., dipole moment per unit volume) which is linearly
related to the applied electric field Ẽ through the linear
susceptibility χ(1). In order to extend the relationship
between P̃ and Ẽ into the nonlinear regime, the polar-
ization is expanded in a power series of the electric field
strength. We express this relationship mathematically by
first decomposing the field and the polarization into their

frequency components such that

Ẽ(r, t)=
∑

l

E(r, ωl)e
−iωl t , (72.1)

P̃(r, t)=
∑

l

P(r, ωl)e
−iωl t , (72.2)

where the summations are performed over both positive
and negative frequencies. The reality of Ẽ and P̃ is then
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assured by requiring that E(r, ωl)= E∗(r,−ωl) and
P(r, ωl)= P∗(r,−ωl). In this case the general expres-
sion for the Cartesian component i of the polarization at
frequency ωσ is given by

Pi(ωσ)= [ε0]
[∑

j

χ
(1)
ij (ωσ)E j(ωσ)

+
∑

jk

∑

(mn)

χ
(2)
ijk (ωσ ;ωm, ωn)

× E j(ωm)Ek(ωn)

+
∑

jkl

∑

(mno)

χ
(3)
ijkl(ωσ ;ωm, ωn, ωo)E j(ωm)

× Ek(ωn)El(ωo)

+· · ·
]
, (72.3)

where ijkl refer to field components, and the notation
(mn), for example, indicates that the summation over
n and m should be performed such that ωσ = ωm +ωn
is held constant. Inspection of (72.3) shows that
the χ(n) can be required to satisfy intrinsic permutation
symmetry, i. e., the Cartesian components and the cor-
responding frequency components [e.g., ( j, ω j) but not
(i, ωσ )] associated with the applied fields may be per-
muted without changing the value of the susceptibility.
For example, for the second-order susceptibility,

χ
(2)
ijk (ωσ ;ωm, ωn)= χ(2)ik j (ωσ ;ωn, ωm) . (72.4)

If the medium is lossless at all the field frequencies tak-
ing part in the nonlinear interaction, then the condition
of full permutation symmetry is necessarily valid. This
condition states that the pair of indices associated with
the Cartesian component and the frequency of the non-
linear polarization [i. e., (i, ωσ )] may be permuted along
with the pairs associated with the applied field compo-
nents. For example, for the second-order susceptibility,
this condition implies that

χ
(2)
ijk (ωσ ;ωm, ωn)= χ(2)k j i(−ωn;ωm,−ωσ) . (72.5)

If full permutation symmetry holds, and in addition all
the frequencies of interest are well below any of the
transition frequencies of the medium, the χ(n) are invari-
ant upon free permutation of all the Cartesian indices.
This condition is known as the Kleinman symmetry
condition.

72.1.1 Tensor Properties

The spatial symmetry properties of a material can be
used to predict the tensor nature of the nonlinear sus-
ceptibility. For example, for a material that possesses
inversion symmetry, all the elements of the even-
ordered susceptibilities must vanish (i. e., χ(n) = 0 for
n even). The number of independent elements of the
nonlinear susceptibility for many materials can be sub-
stantially fewer than than the total number of elements.
For example, in general χ(3) consists of 81 elements,
but for the case of isotropic media such as gases,
liquids, and glasses, only 21 elements are nonvanish-
ing and only three of these are independent. The non-
vanishing elements consist of the following types: χ(3)iijj ,
χ
(3)
ijij , and χ(3)ijj i , where i �= j. In addition, it can be shown

that

χ
(3)
iiii = χ(3)iijj +χ(3)ijij +χ(3)ijj i . (72.6)

72.1.2 Nonlinear Refractive Index

For many materials, the refractive index n is intensity-
dependent such that

n = n0+n2 I , (72.7)

where n0 is the linear refractive index, n2 is the nonlinear
refractive index coefficient , and I = [4πε0]n0c|E|2/2π
is the intensity of the optical field. For the case of
a single, linearly polarized light beam traveling in an
isotropic medium or along a crystal axis of a cubic
material, n2 is related to χ(3) by

n2 =
(

1

16π2ε0

)
12π2

n2
0c
χ
(3)
iiii (ω;ω,ω,ω,−ω) .

(72.8)

For the common situation in which n2 is measured in
units of cm2/W and χ(3) is measured in Gaussian units,
the relation becomes

n2

(
cm2

W

)
= 12π2 × 107

n2
0c

χ
(3)
iiii (ω;ω,ω,ω,−ω) .

(72.9)

There are various physical mechanisms that
can give rise to a nonlinear refractive index. For
the case of induced molecular orientation in CS2,
n2 = 3 × 10−14 cm2/W. If the contribution to the nonlin-
ear refractive index is electronic in nature (e.g., glass),
then n2 ≈ 2 × 10−16 cm2/W.
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72.1.3 Quantum Mechanical Expression
for χ(n)

The general quantum mechanical perturbation expres-
sion for the χ(n) in the nonresonant limit is (Under
conditions of resonant excitation, relaxation phenom-
ena must be included in the treatment, and the density
matrix formalism must be used [72.4]. The resulting
equation for the nonlinear susceptibility is then more
complicated)

χ
(n)
i0···in

(ωσ ;ω1, . . . , ωn)

=
[

1

ε0

]
N

�n
PF

∑

ga1···an

ρ0(g)

×
1

(ωa1g−ω1−· · ·−ωn)

×
µ

i0
ga1µ

i1
a1a2 · · ·µin-1

an-1anµ
in
an g

(ωa2g−ω2−· · ·−ωn) · · · (ωan g−ωn)
(72.10)

where ωσ = ω1+· · ·+ωn , N is the density of atoms
or molecules that compose the material, ρ0(g) is the
probability that the atomic or molecular population is
initially in the state g in thermal equilibrium, µi1

a1a2 is
the i1th Cartesian component of the (a1a2) dipole matrix
element, ωa1g is the transition frequency between the
states a1 and g, and PF is the full permutation operator
which is defined such that the expression that follows
it is to be summed over all permutations of the pairs
(i0, ωσ ), (i1, ω1) · · · (in, ωn) and divided by the number
of permutations of the input frequencies. Thus the full
expression for χ(2) consists of six terms and that for χ(3)

consists of 24 terms.
In the limit in which the frequencies of all the fields

are much smaller than any resonance frequency of the
medium, the value of χ(n) can be estimated to be

χ(n) �

[
1

ε0

](
2µ

�ω0

)n

Nµ, (72.11)

where µ is a typical value for the dipole moment and
ω0 is a typical value of the transition frequency between
the ground state and the lowest-lying excited state. For
the case of χ(3) in Gaussian units, the predicted value
is χ(3) = 3 × 10−14, which is consistent with the meas-
ured values of many materials (e.g., glass) in which
the nonresonant electronic nonlinearity is the dominant
contribution.

72.1.4 The Hyperpolarizability

The nonlinear susceptibility relates the macroscopic po-
larization P to the electric field strength E. A related

microscopic quantity is the hyperpolarizability, which
relates the dipole moment p induced in a given atom
or molecule to the electric field Eloc (the Lorentz local
field) that acts on that atom or molecule. The relationship
between p and Eloc is

pi(ωσ)

= [ε0]
[∑

j

αij(ωσ)E
loc
j (ωσ)

+
∑

jk

∑

(mn)

βijk(ωσ ;ωm, ωn)E
loc
j (ωm)E

loc
k (ωn)

+
∑

jkl

∑

(mno)

γijkl(ωσ ;ωm, ωn, ωo)

× Eloc
j (ωm)E

loc
k (ωn)E

loc
l (ωo)+· · ·

]
, (72.12)

where αij is the linear polarizability, βijk is the
first hyperpolarizability, and γijkl is the second hy-
perpolarizability. The nonlinear susceptibilities and
hyperpolarizabilities are related by the number density
of molecules N and by local-field factors, which account
for the fact that the field Eloc that acts on a typical mol-
ecule is not in general equal to the macroscopic field E.
Under many circumstances, it is adequate to relate Eloc

to E through use of the Lorentz approximation

Eloc(ω)= E(ω)+
[

1

4πε0

]
4π

3
P(ω) . (72.13)

To a good approximation, one often needs to include
only the linear contribution to P(ω), and thus the local
electric field becomes

Eloc(ω)=L(ω)E(ω) , (72.14)

where L(ω)= {[
ε−1

0

]
ε(ω)+2

}
/3 is the local field

correction factor and ε(ω) is the linear dielectric con-
stant. Since P(ω)= N p(ω), (72.3) and (72.12) through
(72.14) relate the χ(n) to the hyperpolarizabilities
through

χ
(1)
ij (ωσ)=L(ωσ)Nαij(ωσ) , (72.15)

χ
(2)
ijk (ωσ ;ωm, ωn)=L(ωσ)L(ωm)L(ωn)

× Nβijk(ωσ ;ωm, ωn) ,

(72.16)

χ
(3)
ijk (ωσ ;ωm, ωn, ωo)=L(ωσ)L(ωm)L(ωn)L(ωo)

× Nγijkl(ωσ ;ωm, ωn, ωo) .

(72.17)

For simplicity, the analysis above ignores the vector
character of the interacting fields in calculating L(ω).
A generalization that does include these effects is given
in [72.5].
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72.2 Wave Equation in Nonlinear Optics

72.2.1 Coupled-Amplitude Equations

The propagation of light waves through a nonlinear
medium is described by the wave equation

∇2Ẽ− 1

c2

∂2

∂t2
Ẽ =

[
1

4πε0

]
4π

c2

∂2

∂t2
P̃ . (72.18)

For the case in which Ẽ and P̃ are given by (72.1),
the field amplitudes associated with each frequency
component can be decomposed into their plane wave
components such that

E(r, ωl)=
∑

l

An(r, ωl)e
ikn ·r ,

P(r, ωl)=
∑

l

Pn(r, ωl)e
ikn ·r , (72.19)

where kn = n(ωl)ωl/c is the magnitude of the wavevec-
tor kn . The amplitudes An and Pn are next decomposed
into vector components whose linear optical properties
are such that the polarization associated with them does
not change as the field propagates through the material.
For example, for a uniaxial crystal these eigenpolariza-
tions could correspond to the ordinary and extraordinary
components. In order to describe the propagation and
the nonlinear coupling of these eigenpolarizations, the
vector field amplitudes are expressed as

An(r, ωl)= ûln An(r, ωl) ,

Pn(r, ωl)= ûlnPn(r, ωl) , (72.20)

where ûln is the unit vector associated with the
eigenpolarization of the spatial mode n at fre-
quency ωl . If the fields are assumed to travel along the
z-direction, and the slowly-varying amplitude approxi-
mation ∂2 An/∂z2 & 2kn∂An/∂z is made, the change in
the amplitude of the field as it propagates through the
nonlinear medium with no linear absorption is described
by the differential equation

dAn(ωl)

dz
=±

[
1

4πε0

]
i2πωl

n(ωl)c
P NL

n (ωl) , (72.21)

where P NL
n is the nonlinear contribution to the po-

larization amplitude Pn , n(ωl) is the linear refractive
index at frequency ωl , and the plus (minus) sign indi-
cates propagation in the positive (negative) z-direction.
Sections 72.3 and 72.4 give expressions for the P NL

n
for various second- and third-order nonlinear optical

processes. Equation (72.21)) is used to determine the
set of coupled-amplitude equations describing a par-
ticular nonlinear process. For example, for the case of
sum-frequency generation , the two fields of frequency
ω1 and ω2 are combined through second-order non-
linear interaction to create a third wave at frequency
ω3 =ω1+ω2. Assuming full permutation symmetry, the
amplitudes of the nonlinear polarization for each of the
waves are

P NL(z, ω1)= [ε0]2χ(2)eff A(z, ω3)A
∗(z, ω2)e

−i∆kz ,

(72.22)

P NL(z, ω2)= [ε0]2χ(2)eff A(z, ω3)A
∗(z, ω1)e

−i∆kz ,

(72.23)

P NL(z, ω3)= [ε0]2χ(2)eff A(z, ω1)A(z, ω2)e
i∆kz ,

(72.24)

where ∆k = k1+ k2− k3 is the wavevector mismatch
(see Sect. 72.2.2) and χ(2)eff is given by

χ
(2)
eff =

∑

ijk

χ
(2)
ijk (û

∗
1)i(û2) j(û3)k , (72.25)

where (ûl)i = ûl · ı̂. For simplicity, the subscripts on each
of the field amplitudes have been dropped, since only
one spatial mode at each frequency contributed. The
resulting coupled amplitude equations are

dA(ω1)

dz
=
[

1

4π

]
i4πω1χ

(2)
eff

n(ω1)c
A(ω3)A

∗(ω2)e
−i∆kz ,

(72.26)

dA(ω2)

dz
=
[

1

4π

]
i4πω2χ

(2)
eff

n(ω2)c
A(ω3)A

∗(ω1)e
−i∆kz ,

(72.27)

dA(ω3)

dz
=
[

1

4π

]
i4πω3χ

(2)
eff

n(ω3)c
A(ω1)A(ω2)e

i∆kz .

(72.28)

72.2.2 Phase Matching

For many nonlinear optical processes (e.g., harmonic
generation) it is important to minimize the wave vec-
tor mismatch in order to maximize the efficiency. For
example, if the field amplitudes A(ω1) and A(ω2) are
constant, the solution to (72.28) yields for the output
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intensity

I(L, ω3)=
[

1

64π3ε0

]

×
32π3

[
χ
(2)
eff

]2
ω2

3 I(ω1)I(ω2)L2

n(ω1)n(ω2)n(ω3)c3

× sinc2(∆kL/2) , (72.29)

in terms of sinc x = (sin x)/x, where I(L, ω3) =
(4πε0)n(ω3)c|A(L, ω3)|2/2π, and I(ω1) and I(ω2) are
the corresponding input intensities. Clearly, the effect
of the wavevector mismatch is to reduce the efficiency
of the generation of the sum frequency wave. The
maximum propagation distance over which efficient
nonlinear coupling can occur is given by the coherence
length

Lc = 2

∆k
. (72.30)

As a result of the dispersion in the linear refrac-
tive index that occurs in all materials, achieving phase
matching over typical interaction lengths (e.g., 5 mm) is
nontrivial. For the case in which the nonlinear mater-
ial is birefringent, it is sometimes possible to achieve
phase matching by insuring that the interacting waves
possess some suitable combination of ordinary and ex-
traordinary polarization. Other techniques for achieving
phase matching include quasiphase matching [72.5] and
the use of the mode dispersion in waveguides [72.6].

However, the phase matching condition is automat-
ically satisfied for certain nonlinear optical processes,
such as two-photon absorption (see Sect. 72.4.6) and
Stokes amplification in stimulated Raman scattering
(see Sect. 72.5.1). One can tell when the phase match-
ing condition is automatically satisfied by examining the
frequencies that appear in the expression for the nonlin-
ear susceptibility. For a nonlinear susceptibility of the
sort χ(3)(ω1;ω2, ω3, ω4) the wave vector mismatch is
given in general by ∆k= k2+k3+k4−k1. Thus, for
the example of Stokes amplification in stimulated Ra-
man scattering, the nonlinear susceptibility is given by
χ(3)(ω1;ω1, ω0,−ω0) where ω0(ω1) is the frequency
of the pump (Stokes) wave, and consequently the wave
vector mismatch vanishes identically.

72.2.3 Manley–Rowe Relations

Under conditions of full permutation symmetry, there
is no flow of power from the electromagnetic fields to
the medium, and thus the total power flow of the fields
is conserved. The flow of energy among the fields can

be described by the Manley–Rowe relations. For exam-
ple, for the case of sum-frequency generation, one can
deduce from (72.26, 27, 28) that

d

dz

[
I(ω1)

ω1

]
= d

dz

[
I(ω2)

ω2

]
=− d

dz

[
I(ω3)

ω3

]
.

(72.31)

The expressions in square brackets are proportional to
the flux of photons per unit area per unit time, and imply
that the creation of a photon at ω3 must be accompanied
by the annihilation of photons at bothω1 andω2. Similar
relations can be formulated for other nonlinear optical
processes that are governed by a nonlinear susceptibil-
ity that satisfies full permutation symmetry. Since this
behavior occurs at the photon level, nonlinear optical
processes can lead to the generation of light fields that
have esoteric quantum statistical properties (Chapt. 78
and Chapt. 80).

A nonlinear optical process that satisfies the
Manley–Rowe relations is called a parametric process.
Conversely, a process for which field energy is not
conserved, and thus Manley–Rowe relations cannot be
formulated, is said to be nonparametric. Thus, paramet-
ric processes are described by purely real χ(n), whereas
nonparametric proceses are described by complex χ(n).

72.2.4 Pulse Propagation

If the optical field consists of ultrashort (<100 ps)
pulses, it is more convenient to work with the temporally
varying amplitude, rather than with the individual fre-
quency components. Thus, for a linearly polarized plane
wave pulse propagating along the z-axis, the field is de-
composed into the product of a slowly varying amplitude
A(z, t) and a rapidly varying oscillatory term such that

Ẽ(r, t)= A(z, t)ei(k0z−ω0t)+ c.c. , (72.32)

where k0 = n0ω0/c. For a pulse propagating in a material
with an intensity-dependent refractive index, the prop-
agation can be described by the nonlinear Schrödinger
equation

∂A

∂z
+ iβ2

2

∂2 A

∂τ2
= iγ |A|2 A , (72.33)

where β2 =
(

d2k/dω2
)|ω=ω0 is the group velocity dis-

persion parameter, τ = t− z/vg is the local time for the
pulse, vg = [(dk/dω)|ω=ω0 ]−1 is the group velocity, and
γ = [4πε0]n2n0ω0/2π is the nonlinear refractive index
parameter.
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72.3 Second-Order Processes

Second-order nonlinear optical processes occur as
a consequence of the second term in expression
(72.3), i. e., processes whose strength is described by
χ(2)(ωσ ;ωm, ωn). These processes entail the genera-
tion of a field at frequency ωσ = ωm +ωn in response
to applied fields at (positive and/or negative) frequen-
cies ωm and ωn . Several examples of such processes are
described in this Section.

72.3.1 Sum Frequency Generation

Sum frequency generation produces an output field at
frequency ω3 = ω1+ω2 for ω1 and ω2 both positive. It
is useful, for example, for the generation of tunable radi-
ation in the uv if ω1 and/or ω2 are obtained from tunable
lasers in the visible range. Sum frequency generation is
described in detail in Sects. 72.2.1–72.2.3.

72.3.2 Second Harmonic Generation

Second harmonic generation is routinely used to convert
the output of a laser to a higher frequency. It is described
by χ(2)(2ω;ω,ω). Let η be the power conversion effi-
ciency from frequency ω to 2ω. Assuming that phase
matching is perfect, and the pump wave at frequency ω
is undepleted by the interaction, a derivation analogous
to that for (72.29) yields

η= tanh2 (z/l
)
, (72.34)

where the characteristic conversion length l is given by

l = [
4π

] c
√

n(ω)n(2ω)

4πωχ(2)|A1(0)| . (72.35)

Note that the conversion efficiency asymptotically ap-
proaches unity. In practice, conversion efficiencies
exceeding 80% can be achieved.

72.3.3 Difference Frequency Generation

Difference frequency generation can be used to create
light in the infrared and far infrared by generating the
difference frequency ω2 = ω3−ω1 (where ω3 and ω1
are positive and ω3 > ω1) of two incident lasers. Con-
sider the case in which a strong (undepleted) pump
wave at frequency ω3 and a weak (signal) wave
at ω1 are incident on a nonlinear medium described
by χ(2)(ω2;ω3,−ω1)= χ(2)(ω1;ω3,−ω2). The ampli-
tude A(ω3) of the strong wave can be taken as a constant,

and thus the interaction can be described by finding si-
multaneous solutions to (72.26) and (72.27) for A(ω1)

and A(ω2). In the limit of perfect phase matching (i. e.,
∆k = 0), the solutions are

A(z, ω1)= A(0, ω1) cosh κz , (72.36)

A(z, ω2)= i

√
n1ω2

n2ω1

A(ω3)

|A(ω3)| A∗(0, ω1) sinh κz ,

(72.37)

where

κ2 =
[

1

16π2

]
16π2

[
χ(2)

]2
ω2

1ω
2
2

k1k2c4
|A(ω3)|2 . (72.38)

Equation (72.37) describes the spatial growth of the
difference frequency signal.

72.3.4 Parametric Amplification
and Oscillation

For the foregoing case of a strong wave at frequency ω3
and a weak wave with ω1 < ω3 incident on a second-
order nonlinear optical material, the lower frequency
input wave is amplified by the nonlinear interaction; this
process is known as parametric amplification. Difference
frequency generation is a consequence of the Manley–
Rowe relations, as described above in Sect. 72.2.3. Since
ω3 = ω1+ω2, the annihilation of an ω3 photon must be
accompanied by the simultaneous creation of photons
ω1 and ω2.

An optical parametric oscillator can be constructed
by placing the nonlinear optical material inside an op-
tical resonator that provides feedback at ω1 and/or ω2.
When such a device is excited by a wave at ω3, it
can produce output frequencies ω1 and ω2 that sat-
isfy ω1+ω2 = ω3. Optical parametric oscillators are
of considerable interest as sources of broadly tunable
radiation [72.7].

72.3.5 Focused Beams

For conceptual clarity, much of the discussion so far has
assumed that the interacting beams are plane waves.
In practice, the incident laser beams are often fo-
cused into the nonlinear material to increase the field
strength within the interaction region and consequently
to increase the nonlinear response. However, it is un-
desirable to focus too tightly, because doing so leads
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to a decrease in the effective length of the interac-
tion region. In particular, if w0 is the radius of the
laser beam at the beam waist, the beam remains fo-
cused only over a distance of the order b = 2πw2

0/λ

where λ is the laser wavelength measured in the non-

linear material. For many types of nonlinear optical
processes, the optimal nonlinear response occurs if
the degree of focusing is adjusted so that b is several
times smaller than the length L of the nonlinear optical
material.

72.4 Third-Order Processes

A wide variety of nonlinear optical processes are pos-
sible as a result of the nonlinear contributions to the
polarization that are third-order in the applied field.
These processes are described by χ(3)(ωσ ;ωm, ωn, ωo)

(72.3) and can lead not only to the generation of new
field components (e.g., third-harmonic generation) but
can also result in a field affecting itself as it propa-
gates (e.g., self-phase modulation). Several examples
are described in this section.

72.4.1 Third-Harmonic Generation

Assuming full-permutation symmetry, the nonlinear
polarization amplitudes for the fundamental and third-
harmonic beams are

P NL(z, ω)=[ε0]3χ(3)eff A(z,3ω)[A∗(z, ω)]2 e−i∆kz ,

P NL(z, 3ω)=[ε0]χ(3)eff [A(z, ω)]3 ei∆kz , (72.39)

where ∆k = 3k(ω)− k(3ω) and χ(3)eff is the effective
third-order susceptibility for third-harmonic generation
and is defined in a manner analogous to the χ(2)eff
in (72.25). If the intensity of the fundamental wave is
not depleted by the nonlinear interaction, the solution
for the output intensity I(L, 3ω) of the third-harmonic
field for a crystal of length L is

I(L, 3ω)=
[

1

256π4ε2
0

]
48π2ω2

[
χ
(3)
eff

]2

n(3ω)n(ω)3c4

× I(ω)3L2sinh2[∆kL/2] , (72.40)

where I(ω) is the input intensity of the fundamental
field. As a result of the typically small value of χ(3)eff
in crystals, it is generally more efficient to generate
the third harmonic by using two χ(2) crystals in which
the first crystal produces second harmonic light and the
second crystal combines the second harmonic and the
fundamental beams via sum-frequency generation. It is
also possible to use resonant enhancement of |χ(3)|
in gases to increase the efficiency of third-harmonic
generation [72.8].

72.4.2 Self-Phase
and Cross-Phase Modulation

The nonlinear refractive index leads to an intensity-
dependent change in the phase of the beam as it
propagates through the material. If the medium is loss-
less, the amplitude of a single beam at frequency ω
propagating in the positive z-direction can be expressed
as

A(z, ω)= A(0, ω)eiφNL(z) , (72.41)

where the nonlinear phase shift φNL(z) is given by

φNL(z)= ω
c

n2 Iz , (72.42)

and I = [4πε0]n0c|A(0, ω)|2/2π is the intensity of the
laser beam. If two fields at different frequencies ω1 and
ω2 are traveling along the z-axis, the two fields can affect
each other’s phase; this effect is known as cross-phase
modulation. The nonlinear phase shift φNL

1,2(z) for each
of the waves is given by

φNL
1,2(z)=

ω1,2

c
n2(I1,2+2I2,1)z . (72.43)

For the case of a light pulse, the change in the phase
of the pulse inside the medium becomes a function of
time. In this case the solution to (72.33) for the time-
varying amplitude A(z, τ) shows that in the absence
of group-velocity dispersion (GVD) (i. e., β2 = 0) that
the solution for A(z, τ) is of the form of (72.41), ex-
cept that the temporal intensity profile I(τ) replaces the
steady-state intensity I in (72.42). As the pulse propa-
gates through the medium, its frequency becomes time
dependent, and the instantaneous frequency shift from
the central frequency ω0 is given by

δω(τ)=−∂φ
NL(τ)

∂τ
=−ωn2z

c

∂I

∂t
. (72.44)

This time-dependent self-phase modulation leads to
a broadening of the pulse spectrum and to a frequency
chirp across the pulse.
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If the group velocity dispersion parameter β2 and the
nonlinear refractive index coefficient n2 are of opposite
sign, the nonlinear frequency chirp can be compensated
by the chirp due to group velocity dispersion, and (72.33)
admits soliton solutions . For example, the fundamental
soliton solution is

A(z, t)=
√

1

LD
sech

(
τ

τp

)
eiz/2LD , (72.45)

where τp is the pulse duration and LD = τ2
p/|β2| is the

dispersion length. As a result of their ability to propagate
in dispersive media without changing shape, optical soli-
tons show a great deal of promise in applications such
as optical communications and optical switching. For
further discussion of optical solitons see [72.9].

72.4.3 Four-Wave Mixing

Various types of four-wave mixing processes can oc-
cur among different beams. One of the most common
geometries is backward four-wave mixing used in non-
linear spectroscopy and optical phase conjugation. In
this interaction, two strong counterpropagating pump
waves with amplitudes A1 and A2 and with equal fre-
quenciesω1,2 = ω are injected into a nonlinear medium.
A weak wave, termed the probe wave, (with fre-
quency ω3 and amplitude A3) is also incident on the
medium. As a result of the nonlinear interaction among
the three waves, a fourth wave with an amplitude A4
is generated which is counterpropagating with respect
to the probe wave and with frequency ω4 = 2ω−ω3.
For this case, the third-order nonlinear susceptibili-
ties for the probe and conjugate waves are given by
χ(3)(ω3,4;ω,ω,−ω4,3). For constant pump wave inten-
sities and full permutation symmetry, the amplitudes of
the nonlinear polarization for the probe and conjugate
waves are given by

P NL(z, ω3,4)=±[ε0]6χ(3)
[(|A1|2+|A2|2

)
A3,4

+ A1 A2 A∗4,3 ei∆kz] , (72.46)

where ∆k = k1+ k2− k3− k4 is the phase mismatch,
which is nonvanishing whenω3 �=ω4. For the case of op-
tical phase conjugation by degenerate four-wave mixing
(i. e., ω3 = ω4 = ω and A4(L)= 0), the phase conjugate
reflectivity RPC is

RPC = |A4(0)|2
|A3(0)|2 = tan2(κL) , (72.47)

where κ = [
1/16π2ε0

][
24π2ωχ(3)/(n0c)2

]√
I1 I2 and

I1,2 are the intensities of the pump waves. Phase-

conjugate reflectivities greater than unity can be
routinely achieved by performing four-wave mixing in
atomic vapors or photorefractive media.

72.4.4 Self-Focusing and Self-Trapping

Typically a laser beam has a transverse intensity profile
that is approximately Gaussian. In a medium with an
intensity-dependent refractive index, the index change
at the center of the beam is different from the index
change at the edges of the beam. The gradient in the
refractive index created by the beam can allow it to
self-focus for n2 > 0. For this condition to be met, the
total input power of the beam must exceed the critical
power Pcr for self-focusing which is given by

Pcr = π(0.61λ)2

8n0n2
, (72.48)

where λ is the vacuum wavelength of the beam. For
powers much greater than the critical power, the beam
can break up into various filaments, each with a power
approximately equal to the critical power. For a more
extensive discussion of self-focusing and self-trapping
see [72.10, 11].

72.4.5 Saturable Absorption

When the frequency ω of an applied laser field is suffi-
ciently close to a resonance frequencyω0 of the medium,
an appreciable fraction of the atomic population can
be placed in the excited state. This loss of population
from the ground state leads to an intensity-dependent
saturation of the absorption and the refractive index of
the medium (see Sect. 69.2 for more detailed discus-
sion) [72.4]. The third-order susceptibility as a result of
this saturation is given by

χ(3) =
[

1

ε0

] |µ|2T1T2α0c

3πω0�
2

δT2− i
[
1+ (δT2)2

]2 , (72.49)

where µ is the transition dipole moment, T1 and T2 are
the longitudinal and transverse relaxation times, respec-
tively (see Sect. 68.4.3), α0 is the line-center weak-field
intensity absorption coefficient, and δ= ω−ω0 is the
detuning. For the 3s ↔ 3p transition in atomic
sodium vapor at 300 ◦C, the nonlinear refractive index
n2 ≈ 10−7 cm2/W for a detuning δT2 = 300.

72.4.6 Two-Photon Absorption

When the frequency ω of a laser field is such that 2ω
is close to a transition frequency of the material, it is
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possible for two-photon absorption (TPA) to occur. This
process leads to a contribution to the imaginary part of
χ(3)(ω;ω,ω,−ω). In the presence of TPA, the intensity
I(z) of a single, linearly polarized beam as a function of
propagation distance is

I(z)= I(0)

1+βI(0)z
, (72.50)

where β = [
1/16π2ε0

]
24π2ω Im

[
χ(3)

]
/(n0c)2 is the

TPA coefficient. For wide-gap semiconductors such as
ZnSe at 800 nm, β ≈ 10−8 cm/W.

72.4.7 Nonlinear Ellipse Rotation

The polarization ellipse of an elliptically polarized laser
beam rotates but retains its ellipticity as the beam prop-
agates through an isotropic nonlinear medium. Ellipse

rotation occurs as a result of the difference in the
nonlinear index changes experienced by the left- and
right-circular components of the beam, and the angle θ
of rotation is

θ = 1

2
∆nωz/c

=
[

1

16π2ε0

]
12π2

n2
0c
χ(3)xyyx

× (ω;ω,ω,−ω)(I+− I−)z , (72.51)

where I± are the intensities of the circularly polarized
components of the beam with unit vectors σ̂± = (x̂±
i ŷ)/

√
2. Nonlinear ellipse rotation is a sensitive tech-

nique for determining the nonlinear susceptibility
element χ(3)xyyx for isotropic media and can be used in
applications such as optical switching.

72.5 Stimulated Light Scattering

Stimulated light scattering occurs as a result of changes
in the optical properties of the material that are induced
by the optical field. The resulting nonlinear coupling be-
tween different field components is mediated by some
excitation (e.g., acoustic phonon) of the material that
results in changes in its optical properties. The nonlin-
earity can be described by a complex susceptibility and
a nonlinear polarization that is of third order in the inter-
acting fields. Various types of stimulated scattering can
occur. Discussed below are the two processes that are
most commonly observed.

72.5.1 Stimulated Raman Scattering

In stimulated Raman scattering (SRS), the light field
interacts with a vibrational mode of a molecule. The
coupling between the two optical waves can become
strong if the frequency difference between them is
close to the frequency ωv of the molecular vibrational
mode. If the pump field at ω0 and another field com-
ponent at ω1 are propagating in the same direction
along the z-axis, the steady-state nonlinear polariza-
tion amplitudes for the two field components are given
by

P NL(z, ω0,1)= [ε0]6χR(ω0,1)

× |A(z, ω1,0)|2 A(z, ω0,1) , (72.52)

where χR(ω0,1) ≡ χ(3)(ω0,1;ω0,1, ω1,0,−ω1,0), the
Raman susceptibility, actually depends only on the fre-

quency difference Ω= ω0−ω1 and is given by

χR(ω0,1)=
[

1

ε0

]
N(∂α/∂q)20

6µM

1

ω2
v−Ω2∓2iγΩ

,

(72.53)

where the minus (plus) sign is taken for the ω0 (ω1)
susceptibility, µM is the reduced nuclear mass, and
(∂α/∂q)0 is a measure of the change of the polarizability
of the molecule with respect to a change in the inter-
molecular distance q at equilibrium. If the intensity of
the pump field is undepleted by the interaction with the
ω1 field and is assumed to be constant, the solution for
the intensity of the ω1 field at z = L is given by

I(L, ω1)= I(0, ω1)e
GR , (72.54)

where the SRS gain parameter GR is

GR =
[

1

16π2ε0

]
48π2 ω1

(n1c)2
Im[χR(ω1)]I0L

= gR I0L , (72.55)

gR is the SRS gain factor, and I0 is the input inten-
sity of the pump field. For ω1 < ω0 (ω1 > ω0), the ω1
field is termed the Stokes (anti-Stokes) field, and it ex-
periences exponential amplification (attenuation). For
sufficiently large gains (typically GR � 25), the Stokes
wave can be seeded by spontaneous Raman scatter-
ing and can grow to an appreciable fraction of the
pump field. For a complete discussion of the sponta-
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neous initiation of SRS see [72.12]. For the case of CS2,
gR = 0.024 cm/MW.

Four-wave mixing processes that couple a Stokes
wave having ω1 < ω0 and an anti-Stokes wave
having ω2 > ω0, where ω1+ω2 = 2ω0, can also oc-
cur [72.4]. In this case, additional contributions to
the nonlinear polarization are present and are char-
acterized by a Raman susceptibility of the form
χ(3)(ω1,2;ω0, ω0,−ω2,1). The technique of coherent
anti-Stokes Raman spectroscopy is based on this four-
wave mixing process [72.13].

72.5.2 Stimulated Brillouin Scattering

In stimulated Brillouin scattering (SBS), the light field
induces and interacts with an acoustic wave inside the
medium. The resulting interaction can lead to extremely
high amplification for certain field components (i. e.,
Stokes wave). For many optical media, SBS is the
dominant nonlinear optical proccess for laser pulses of
duration > 1 ns. The primary applications for SBS are
self-pumped phase conjugation and pulse compression
of high-energy laser pulses.

If an incident light wave with wave vector k0 and
frequency ω0 is scattered from an acoustic wave with
wave vector q and frequency Ω, the wave vector and
frequency of the scattered wave are determined by con-
servation of momentum and energy to be k1 = k0±q and
ω1 = ω0±Ω, where the (+) sign applies if k0 ·q > 0 and
the (−) applies if k0 ·q < 0. Here, Ω and q are related by
the dispersion relation Ω= v|q| where v is the velocity
of sound in the material. These Bragg scattering con-
ditions lead to the result that the Brillouin frequency
shift ΩB = ω1−ω0 is zero for scattering in the for-
ward direction (i. e., in the k0 direction) and reaches
its maximum for scattering in the backward direction
given by

ΩB = 2ω0vn0/c , (72.56)

where n0 is the refractive index of the material.
The interaction between the incident wave and the

scattered wave in the Brillouin-active medium can be-
come nonlinear if the interference between the two
optical fields can coherently drive an acoustic wave,
either through electrostriction or through local dens-
ity fluctuations resulting from the absorption of light
and consequent temperature changes. The following
discussion treats the more common electrostriction
mechanism.

Typically, SBS occurs in the backward direction
(i. e., k0 = k0 ẑ and k1 =−k1 ẑ), since the spatial overlap

between the Stokes beam and the laser beam is maxi-
mized under these conditions and, as mentioned above,
no SBS occurs in the forward direction. The steady-
state nonlinear polarization amplitudes for backward
SBS are

P NL(z, ω0,1)= [ε0]6χB(ω0,1)

× |A(z, ω1,0)|2 A(z, ω0,1) , (72.57)

where χB(ω0,1) ≡ χ(3)(ω0,1;ω0,1, ω1,0,−ω1,0), the
Brillouin susceptibility, depends only on Ω= ω0−ω1
and is given by

χB(ω0,1)=
[

1

ε0

]
ω2

0γ
2
e

24π2c2ρ0

1

Ω2
B−Ω2∓ iΓBΩ

,

(72.58)

where the minus (plus) sign is taken for the ω0 (ω1)
susceptibility, γe is the electrostrictive constant, ρ0 is
the mean density of the material, and ΓB is the Brillouin
linewidth given by the inverse of the phonon lifetime.
If the pump field is undepleted by the interaction with
the ω1 field and is assumed to be constant, the solution
for the output intensity of the ω1 field at z = 0 is given
by

I(0, ω1)= I(L, ω1)e
GB , (72.59)

where the Brillouin gain coefficient GB is given by

GB =
[

1

16π2ε0

]
48π2 ω1

(n0c)2
Im[χB(ω1)]I0L,

= g0
ΩΩBΓ

2
B

[
Ω2

B−Ω2
]2+ (ΩΓB)2

I0L

= gB I0L , (72.60)

gB is the SBS gain factor, I0 is the input intensity of the
pump field, and

g0 =
[

1

ε2
0

]
ω2

0γ
2
e

n0c3ρ0vΓB
(72.61)

is the line-center (i. e., Ω=±ΩB) SBS gain factor.
For Ω> 0 (Ω< 0), the ω1 field is termed the Stokes
(anti-Stokes) field, and it experiences exponential am-
plification (attenuation). For sufficiently large gains
(typically GB � 25), the Stokes wave can be seeded
by spontaneous Brillouin scattering and can grow to
an appreciable fraction of the pump field. For a com-
plete discussion of the spontaneous initiation of SBS
see [72.14]. For CS2, g0 = 0.15 cm/MW.
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72.6 Other Nonlinear Optical Processes

72.6.1 High-Order Harmonic Generation

If full permutation symmetry applies and the fundamen-
tal field ω is not depleted by nonlinear interactions, then
the intensity of the qth harmonic is given by

I(z, qω)=
[

1

4π(4πε0)(q−1)/2

]

×
2πq2ω2

n2(qω)c

[
2πI(ω)

n(ω)c

]q

×
∣∣χ(q)(qω;ω, . . . , ω)Jq(∆k, z0, z)

∣∣2 ,

(72.62)

where ∆k = [n(ω)−n(qω)]ω/c,

Jq(∆k, z0, z)=
z∫

z0

ei∆kz′ dz′

(1+2iz′/b)q−1
, (72.63)

z = z0 at the input face of the nonlinear medium, and b is
the confocal parameter Sect. 72.3.5 of the fundamental
beam. Defining L = z− z0, the integral Jq can be eas-
ily evaluated in the limits L & b and L % b. The limit
L & b corresponds to the plane-wave limit in which
case

|Jq(∆k, z0, z)|2 = L2sinc2
(

∆kL

2

)
. (72.64)

The limit L % b corresponds to the tight-focusing con-
figuration in which case

Jq(∆k, z0, z)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, ∆k ≤ 0 ,

πb

(q−2)!
(

b∆k

2

)q−2

e−b∆k/2,

∆k > 0 .
(72.65)

Note that in this limit, the qth harmonic light is
only generated for positive phase mismatch. Reintjes
et al. [72.15, 16] observed both the fifth and seventh
harmonics in helium gas which exhibited a depen-
dence on I(ω) which is consistent with the Iq(ω)

dependence predicted by (72.62). However, more re-
cent experiments in gas jets have demonstrated the
generation of extremely high-order harmonics which
do not depend on the intensity in this simple manner
(see Chapt. 74 for further discussion of this nonpertur-
bative behavior).

72.6.2 Electro-Optic Effect

The electro-optic effect corresponds to the limit in which
the frequency of one of the applied fields approaches
zero. The linear electro-optic effect (or Pockels effect)
can be described by a second-order susceptibility of
the form χ(2)(ω;ω, 0). This effect produces a change
in the refractive index for light of certain polariza-
tions which depends linearly on the strength of the
applied low-frequency field. More generally, the linear
electro-optic effect induces a change in the amount of
birefringence present in an optical material. This elec-
trically controllable change in birefringence can be used
to construct amplitude modulators, frequency shifters,
optical shutters, and other optoelectronic devices. Ma-
terials commonly used in such devices include KDP and
lithium niobate [72.17]. If the laser beam is propagat-
ing along the optic axis (i. e., z-axis) of the material
of length L and the low-frequency field Ez is also ap-
plied along the optic axis, the nonlinear index change
∆n = ny −nx between the components of the electric
field polarized along the principal axes of the crystal is
given by

∆n =
[

1

4π

]
n3

0r63 Ez (72.66)

where r63 is one of the electro-optic coefficients.
The quadratic electro-optic effect produces a change

in refractive index that scales quadratically with the ap-
plied dc electric field. This effect can be described by
a third-order susceptibility of the form χ(3)(ω;ω, 0, 0).

72.6.3 Photorefractive Effect

The photorefractive effect leads to an optically induced
change in the refractive index of a material. In certain
ways this effect mimics that of the nonlinear refractive
index described in Sect. 72.1.2, but it differs from the
nonlinear refractive index in that the change in refrac-
tive index is independent of the overall intensity of the
incident light field, and depends only on the degree of
spatial modulation of the light field within the nonlinear
material. In addition, the photorefractive effect can oc-
cur only in materials that exhibit a linear electro-optic
effect, and contain an appreciable density of trapped
electrons and/or holes that can be liberated by the appli-
cation of a light field. Typical photorefractive materials
include lithium niobate, barium titanate, and strontium
barium niobate.
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A typical photorefractive configuration might be
as follows: two beams interfere within a photorefrac-
tive crystal to produce a spatially modulated intensity
distribution. Bound charges are ionized with greater
probability at the maxima than at the minima of the dis-
tribution and, as a result of the diffusion process, carriers
tend to migrate away from regions of large light intensity.
The resulting modulation of the charge distribution leads
to the creation of a spatially modulated electric field that
produces a spatially modulated change in refractive in-
dex as a consequence of the linear electro-optic effect.
For a more extensive discussion see [72.18].

72.6.4 Ultrafast and Intense-Field
Nonlinear Optics

Additional nonlinear optical processes are enabled by
the use of ultrashort (< 1 ps) or ultra-intense laser pulses.
For reasons of basic laser physics, ultra-intense pulses
are necessarily of short duration, and thus these effects
normally occur together. Ultrashort laser pulses possess
a broad frequency spectrum, and therefore the disper-
sive properties of the optical medium play a key role in
the propagation of such pulses. The three-dimensional
nonlinear Schrödinger equation must be modified when
treating the propagation of these ultrashort pulses by
including contributions that can be ignored under other
circumstances [72.19,20]. These additional terms lead to
processes such as space-time coupling, self-steepening,
and shock wave formation [72.21, 22]. The process of
self-focusing is significantly modified under short-pulse
(pulse duration shorter than approximately 1 ps) exci-
tation. For example, temporal splitting of a pulse into
two components can occur; this pulse splitting lowers
the peak intensity, and can lead to the arrest of the usual

collapse of a pulse undergoing self-focusing [72.23].
Moreover, optical shock formation, the creation of a dis-
continuity in the intensity evolution of a propagating
pulse, leads to supercontinuum generation, the creation
of a light pulse with an extremely broad frequency
spectrum [72.24]. Shock effects and the generation of
supercontinuum light can also occur in one-dimensional
systems, such as a microstructure optical fiber. The rel-
atively high peak power of the ultrashort pulses from
a mode-locked laser oscillator and the tight confine-
ment of the optical field in the small (≈ 2 µm) core
of the fiber yield high intensities and strong self-phase
modulation, which results in a spectral bandwidth that
spans more than an octave of the central frequency
of the pulse [72.25]. Such a coherent octave-spanning
spectrum allows for the stabilization of the under-
lying frequency comb of the mode-locked oscillator,
and has led to a revolution in the field of frequency
metrology [72.26]. Multiphoton absorption [72.27] con-
stitutes an important loss process that becomes important
for intensities in excess of ≈ 1013 W/cm2. In addi-
tion to introducing loss, the electrons released by this
process can produce additional nonlinear effects as-
sociated with their relativistic motion in the resulting
plasma [72.28, 29]. For very large laser intensities
(greater than approximately 1016 W/cm2), the elec-
tric field strength of the laser pulse can exceed the
strength of the Coulomb field that binds the electron to
the atomic core, and nonperturbative effects can occur.
A dramatic example is that of high-harmonic genera-
tion [72.30–32]. Harmonic orders as large as the 341-st
have been observed, and simple conceptual models have
been developed to explain this effect [72.33]. Under
suitable conditions the harmonic orders can be suitably
phased so that attosecond pulses are generated [72.34].
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Coherent Tran73. Coherent Transients

Coherent optical transients are excited in atomic
and molecular systems when a stable phase
relation persists between an exciting light
field and the system’s electronic response. The
extreme sensitivity of phase-dependent effects is
responsible for the many applications of optical
transient techniques in atomic and molecular
physics [73.1–7].

The theory of coherent transients distinguishes
carefully between two types of relaxation: homo-
geneous and inhomogeneous. Relaxation occurs
whenever the environment of a physical system
fluctuates randomly. By random environment one
means the combination of all interactions that are
too complex to be treated fundamentally, and that
can be seen to lead to degradation of the degree of
coherence of a particular interaction of main inter-
est. The time scale of environmental fluctuations
then provides the division between the two types.

When environmental fluctuations are suf-
ficiently rapid that all dynamical systems in a
macroscopic sample experience the whole range
of fluctuations in a time short compared with the
time of an experiment, the resultant relaxation
is called homogeneous. If environmental fluctu-
ations exist randomly over a macroscopic sample,
but change relatively slowly in time, then the re-
laxation is called inhomogeneous. For example,
weak distant collisions are experienced constantly
by all atoms at thermal equilibrium in a vapor
cell, and give rise to homogeneous relaxation. If
the vapor is sufficiently dilute, the same atoms
may nevertheless retain for long times their own
individual velocities. These velocities are rela-
tively fixed in time, but they are random over the
Maxwellian distribution of velocities and so give
rise to inhomogeneous relaxation. Fundamentally,
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the distinction between homogeneous and
inhomogeneous relaxation is artificial, depending
on a separation of time scales that may not always
exist. Nevertheless, when it exists, the distinction
provides an extremely useful way to classify
coherent transients. It is one of the foundations of
the subject.

The presence of quantum entanglement leads
to nonintuitive effects in coherent transients.

73.1 Optical Bloch Equations

A very weakly excited dipole transition in an atom re-
sponds linearly to an applied time-dependent electric
field. This is the basis of classical Lorentzian dielec-

tric theory, but because any transition can be inverted,
an atom is more than a classical linear oscillator [73.8].
The three atomic variables that describe the primary co-
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1066 Part F Quantum Optics

herent optical transients in a dipole-allowed transition
include the intrinsically quantum mechanical inversion
variable, as well as the components of the expectation
value of the atomic dipole moment that are in-phase and
in-quadrature with the field.

We write the time-dependent atomic dipole moment
of a transition excited by light near exact resonance in
the form

−〈ex(t)〉 = −〈Ψ(t)|ex|Ψ(t)〉
= Re

[
d(U − iV )e−iωt] , (73.1)

where d is the transition dipole matrix element, ω is the
frequency of the impressed optical field, and U and V
are the time-dependent amplitudes of the in-phase and
in-quadrature dipole components. The impressed field
is taken in the quasi-monochromatic form

E(t)= 1

2

(
E e−iωt + c.c.

)
(73.2)

Both dipole moment and field will be taken to be real
scalars because the complications of vector notation add

little to a first discussion of the principles of coherent
transients.

Section 68.3.5 shows that U and V are dynamically
coupled to each other and to the inversion W through the
optical Bloch equations (OBE). When relaxation terms
are included, the OBEs are given by (68.55). These are

dU

dt
=−∆V −U/T2 ,

dV

dt
=∆U +Ω1W −V/T2 ,

dW

dt
=−Ω1V − (W −Weq)/T1 , (73.3)

the key equations of the theory of optical tran-
sients [73.1, 2].

As in Chapt. 68, ∆= (Ee− Eg)/�−ω is the de-
tuning and Ω1 = dE/� is the Rabi frequency. It
is the dipole interaction energy in frequency units,
but has a significance beyond this, as discussed in
Sect. 73.3.1.

73.2 Numerical Estimates of Parameters

The nature of the coherent interaction between an atom
or molecule and an optical field is controlled by the
relative size of a number of frequencies or rates. In the
case of single photon transitions they include: ∆ and
Ω1, the detuning and Rabi frequency defined above,
1/T2 the transverse, and 1/T1 the longitudinal damping
rates, 1/T∗ the inhomogenenous linewidth, and 2π/τp
the transform bandwidth of the optical pulse. All of these
frequencies with the exception of the last are defined in
Chapt. 68. In the case of multiphoton transitions and
simultaneous excitation by a number of resonant laser
fields, the appropriately generalized versions of these
same parameters apply.

A laser pulse with τp ≥ 1 ns and with an intensity
less than about 1 GW/cm2 can be tuned to an isolated
atomic resonance and the interaction can be described
in terms of a simple two-level theory. Laser pulses as
short as a few fs in duration, or with intensities as

high as 1022 W/cm2, have been produced and such
extreme pulses quasi-resonantly excite more than one
upper level. A 1 ps pulse has a bandwidth of approxi-
mately 20 cm−1, while a 1 fs pulse has a bandwidth of
about 20 000 cm−1. If a 1 ps pulse were tuned so that
it resonantly excited the n = 95 Rydberg state of an
atom, it would simultaneously and coherently excite all
the levels from n = 67 to the continuum limit, while
a 10 fs pulse could excite all the levels from n = 4 to the
continuum.

Similarly, when laser pulses are intense enough so
that the electric field amplitude approaches that of the
Coulomb field holding the atom together – in hydro-
gen this occurs at an intensity of 3.6 × 1016 W/cm2

– a Rabi frequency on the order of 200 000 cm−1

is generated, again much more than enough to ex-
cite a coherent superposition of all atomic bound
states [73.9].

73.3 Homogeneous Relaxation

Homogeneous relaxation is dominant in well-collimated
atomic and molecular beams as well as in high-pressure
vapor cells. In the absence of a laser field (Ω1 = 0) the

solutions of the OBEs are

(U− iV )= (U− iV )0 e−(1/T2+i∆)t ,
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Coherent Transients 73.3 Homogeneous Relaxation 1067

W =−1+ (W0+1)e−t/T1 , (73.4)

where the subscript denotes values at t = 0. The roles
of T1 and T2 as relaxation times are clear. They
are homogeneous because they apply to each atom
individually.

73.3.1 Rabi Oscillations

The OBEs predict coherent damped oscillations of the
inversion with the angular Rabi frequency Ω1 if Ω1 is
large enough, such thatΩ1T1 % 1 andΩ1T2 %1. These
oscillations were originally called optical nutations fol-
lowing the terminology of nuclear magnetic resonance,
however they are now usually called Rabi oscillations.
Figure 73.1 shows the behavior of the atomic vari-
ables undergoing Rabi oscillations in a representative
case.

73.3.2 Bloch Vector and Bloch Sphere

Coherent dynamical behavior is simplest for times much
shorter than the relaxation times T1 and T2. In this
case, the damping terms can be dropped from the
OBEs and the resulting equations written in the form
(Sect. 68.3.5)

dU
dt

=Ω ×U , (73.5)

where U = (U, V,W ) is the Bloch vector, and
Ω = (−Ω1, 0,∆) acts as a torque vector defining the
axis and rate of precession. By conservation of proba-
bility, U ·U = 1.

All possible quantum states of the two-level atom are
mapped onto a unit sphere in U–V–W space. Conven-
tionally, W defines the polar axis with the atomic ground
state the south pole, and the excited state the north pole.
Points on the sphere between the poles are coherent su-
perpositions of the two states. The azimuthal angle φ
represents the phase between the expectation value of
the dipole moment and the optical field. In Fig. 73.2 the
solutions to (73.5) are shown for the case of a square
pulse applied to an atom in its ground state at t = 0. The
solutions in this case are

U(t,∆)= Ω1

Ω
sinΩt ,

V(t,∆)=−∆Ω1

Ω2 (1− cosΩt) ,

W(t,∆)=−1+ Ω
2
1

Ω2 (1− cosΩt) . (73.6)

1.0

0.5

0.0

–0.5

–1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t /T2

U

W
V

Fig. 73.1 Damped Rabi oscillations of the atomic variables
after sudden turn-on of the field. In this example T1 = T2,
∆T2 = 1, andΩ1T2 = 15

For any ∆ the solution orbit is a circle on the sur-
face of the sphere with the orbit passing through the
south pole. The rate at which the system precesses about
the circle is given by the generalized Rabi frequency
Ω ≡√

∆2+Ω2
1 .

73.3.3 Pi Pulses and Pulse Area

The exactly resonant (∆= 0) undamped OBEs can be
solved analytically even for arbitrarily time dependent
laser pulse envelopes. The solutions are

U(t, 0)= 0 ,

V(t, 0)=− sin θ(t) ,

W(t, 0)=− cos θ(t) , (73.7)

W

–U

–V

1⁄4
1⁄2

1

2

Fig. 73.2 Orbits of the Bloch vector on the unit sphere for
various ratios of the detuning ∆ to the Rabi frequencyΩ1
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1068 Part F Quantum Optics

a rotation of the Bloch vector in the V–W plane. The
angle θ is called the pulse area, defined by

θ(t)≡
t∫

−∞
dt′Ω1(t

′)= d

�

t∫

−∞
dt′E(t′) . (73.8)

The area under the envelope of the Rabi frequency is
thus the same as the angle through which an exactly-
resonant Bloch vector turns due to the pulse. If θ = π,
the atom is driven from the ground state exactly to the
excited state. This is “π-pulse” inversion. A “2π-pulse”
takes the atom from the ground state through the excited
state and back to the ground state. For∆= 0, the Bloch
vector rotation angle does not depend upon the shape of
the field pulse, only on the area of the pulse.

73.3.4 Adiabatic Following

The Bloch vector picture is used for semiquantitative
predictions. These are reliable even if ∆ and Ω1 are
time-dependent, if the parameters change slowly (adia-
batically). For example, if Ω is moved slowly the Bloch
vector follows closely. It is possible to achieve complete
inversion smoothly in this way. If the field is initially
tuned far below resonance so∆&Ω1 then Ω points ap-
proximately toward the south pole of the Bloch sphere.

As shown in Fig. 73.3, the Bloch vector then precesses
in a very small circle about the torque vector. If the field
frequency is now slowly changed (chirped) so that ∆
goes from a large negative value to a large positive value
then every atomic Bloch vector will continue to precess
rapidly around the torque vector, and follow it as it pro-
ceeds from pointing straight down to pointing straight
up. In this way the population is transferred between the
two levels.

W

–V

–U
U

�

Fig. 73.3 In adiabatic inversion the Bloch vector of each
atom precesses in a small cone about the torque vector as
the torque vector goes from straight down to straight up

73.4 Inhomogeneous Relaxation

The fact that the various atoms in a sample may have dif-
ferent resonance frequencies produces a number of novel
phenomena. Given a distribution g(∆) of detunings in
a dilute gas of density N , the macroscopic polarization
can be written

P(t)=−N〈ex(t)〉
= Nd

∫
g(∆)Re

[
(U − iV )e−iωt] d∆ , (73.9)

where U − iV generally depends on both t and ∆.

73.4.1 Free Induction Decay

Free induction refers to evolution of the polariza-
tion in the absence of a laser field. For Ω1 = 0,
the Bloch vector of an atom with ∆< 0 precesses
counterclockwise in the U–V plane. In a macro-
scopic sample, there are many values of ∆ and about
as many are positive as negative. Thus an oriented
collection of Bloch vectors, all pointing in the V di-

rection at t = 0, will rapidly fan out in the U–V
plane due to differing precession rates, and after
a short time the net V value will be zero, as will the
net U value. This is free induction decay (FID) of
polarization.

More precisely, if all atoms are first exposed to a θ0
pulse, so that at t = 0

U(0,∆)= 0 ,

V(0,∆)=− sin θ0 , (73.10)

W(0,∆)=− cos θ0 ,

then if E = 0 for t> 0, an individual atom with detuning
∆ evolves according to (73.4):

U − iV = i sin θ0 e−(1/T2−i∆)t . (73.11)

The macroscopic polarization is found by summing the
individual (U− iV )values over the detuning distribution
g(∆).

For simplicity, in this subsection we will ignore
competition from homogeneous decay (take 1/T2 ≈ 0)
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Coherent Transients 73.5 Resonant Pulse Propagation 1069

and assume the most common inhomogeneous lineshape
(i.e., Doppler-Maxwellian):

g(∆)= T∗
√

2π
e−(∆−∆0)

2T∗2/2, (73.12)

where 1/T∗ is here defined as the width (standard devi-
tation) of the Doppler distribution and∆0 is the detuning
of the zero-velocity atoms. The collective result is

P(t)=Nd sin θ0 sinωt ei∆0t exp

(
− t2

2T∗2

)
. (73.13)

The detuning “inhomogeneity” in the sample leads
to dephasing of the collective dipole moment, and
the inhomogeneous relaxation time is obviously T∗.
This is illustrated by the decrease of collective align-
ment of Bloch vectors in the top row of Fig. 73.4.
For a typical room temperature gas a visible transi-
tion has a width given by 1/(2πT∗)≈ 1.5 GHz so that
T∗ ≈ 10−10 s.

73.4.2 Photon Echoes

A photon echo is generated by pulse-induced recovery
of a nonzero P(t) after P(t)→ 0 due to free induction
decay (FID). This analog of the spin echo effect is pos-
sible because each atom retains its own detuning for
a relatively long time, usually up to an average collision
time T2.

During FID, the U–V projection of every atom’s
Bloch vector precesses steadily clockwise or counter-
clockwise depending on the sign of its ∆. Thus the
Bloch vectors could be rephased if they could all be
forced at the same moment to reverse their relative sense
of precession. The prototypical echo scenario has FID
beginning at t = 0, with P(t)→ 0 for t % T∗, followed
by a π–pulse at the time t′, where t′ % T∗. The effect
of the π-pulse is to reverse the sign of V and W [re-
call (73.10)], in effect flipping the equatorial plane of
the Bloch sphere upside down. Thus for t % t′ we have
Bloch vectors fanning back together. The macroscopic

Free induction decay – dipoles dephase

After π pulse – dipoles rephase

t = 0 t = t�– ε

t = t� + ε t = 2t�

A B

B

A

A

A

B

B

Fig. 73.4 The ensemble of dipole moments spreads due to
the distribution of resonance frequencies. The distribution
of Bloch vectors in the U–V plane is shown at various times
after the initial short pulse excitation. By the time t′, the
dipoles have spread uniformly around the unit circle. A π-
pulse then flips the relative orientation of the dipoles so that
they subsequently rephase

polarization obeys

P(t)= Nd sin θ0 sinωt exp

[
− (t−2t′)2

2T∗2

]
e−t/T2 ,

(73.14)

where the last factor recovers the effect of homogeneous
dipole damping. We require T2 % t′ % T∗ for a strong
echo signal in the neighborhood of t = t′.

The result is illustrated in Fig. 73.4. An “echo” of
the initial excitation at t = 0 appears at the time t =
2t′. After this, FID occurs again, and this second decay
can also be reversed by applying another π–pulse, and
so on, until t ≈ T2, at which time the inevitable and
irreversible homogeneous relaxation cannot be avoided.
The scenario of π–pulse reversal is only the most ideal,
leading to the most complete echo, and other pulse areas
will also lead to echos; a more important factor is that
the reversing pulse must be short enough that negligible
dephasing takes place during its application.

73.5 Resonant Pulse Propagation

73.5.1 Maxwell–Bloch Equations

Time-dependent atomic dipole moments created by ap-
plied fields are themselves a source of fields, another

form of coherent transient. We limit discussion to plane-
wave propagation in the z–direction. Note that we use z
rather than Z for convenience, although in the dipole ap-
proximation the coordinate entering our equations is the
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1070 Part F Quantum Optics

coordinate of the center of mass of the atom rather than
the internal electron coordinate. The field is generalized
from (73.2) to

E(t, z)= 1

2

[
E(t, z)ei(Kz−ωt)+ c.c.

]
, (73.15)

and the macroscopic polarization is the correspondingly
generalized form of (73.9):

P(t, z)= Nd
∫

g(∆)Re
[
(U − iV )ei(Kz−ωt)

]
d∆ .

(73.16)

The difference between K and k = ω/c indicates that the
refractive index is nonzero. The traveling-pulse rotating
frame is also obtained by replacing ωt by ωt−Kz.

If the field envelope E is slowly varying, its second
derivatives can be dropped when E(t, z) is substituted
into Maxwell’s wave equation. The resulting dispersive
and absorptive reduced wave equations are

(
K2− k2

)
E = 4πk2 Nd

×
∫

g(∆)U(t, z,∆)d∆ ,

(73.17)
(

K
∂

∂z
+ k

∂

∂(ct)

)
E = 2πk2 Nd

×
∫

g(∆)V(t, z,∆)d∆ .

The Bloch equations along with these reduced wave
equations form the self-consistent Maxwell–Bloch
equations that are used to treat most resonant propaga-
tion problems in quantum optics and laser theory [73.1,
2, 5, 8].

73.5.2 Index of Refraction and Beers Law

If a weak pulse of duration τ propagates in a medium
of ground-state atoms (W ≈−1), the Bloch equations
have simple quasisteady-state solutions (τ % T2)

U = Ω1∆

∆2+1/T 2
2

,

V = −Ω1/T2

∆2+1/T 2
2

. (73.18)

When U and V are substituted back into the reduced
wave equations (73.17), the dispersive equation gives
the index of refraction n = K/k due to the ground-state
atoms:

n2−1 = 4πNd2

�

∫
∆g(∆)

∆2+1/T 2
2

d∆ , (73.19)

and the absorptive equation predicts steady state field
attenuation during propagation:

∂

∂z
E =−1

2
αBE . (73.20)

The constant αB given by

αB = 4πNd2ω

�cT2

∫
g(∆)

∆2+1/T 2
2

d∆ (73.21)

is called the extinction coefficient, or the reciprocal
Beers length.

Since field intensity I is proportional to E2, the
solution to the absorptive equation is

I(z, t)= I(0, t)e−αBz . (73.22)

This relation is called Beers Law. Both the disper-
sive and absorptive results are familiar from classical
physics [73.10], with the important distinction that
here the �-dependent oscillator strength enters naturally
rather than as an empirical parameter from Lorentzian
dielectric theory [73.8, 10].

73.5.3 The Area Theorem
and Self-Induced Transparency

A form of pulse propagation with no classical analog
arises in the short-pulse limit (τ & T2, T1, but τ % T∗

2 ).
By integration over the entire pulse, the absorptive
Maxwell equation becomes an equation for ∂θ/∂z, where
θ is the pulse area defined in (73.8). In the short-
pulse limit, the relaxation terms in the OBEs can be
ignored and when substituting from them we obtain the
McCall-Hahn Area Theorem [73.1]:

∂

∂z
θ(z)=−1

2
αB sin θ(z) . (73.23)

This predicts the same exponential attenuation as (73.20)
in the case of a small area pulse, θ(z)& π, but in the
case of larger area pulses the behavior is quite different.
In general, the area decreases during propagation for
areas in the range 0< θ(z) < π, but it increases for areas
π < θ(z) < 2π. As seen from Fig. 73.5, this change of
area with propagation causes the pulse area to evolve to
one of the stable values 0, 2π, 4π, . . . .

There is one special pulse, a soliton solution with
area exactly 2π, which propagates without shape change
in the short pulse limit, given by

E(t, z)= 2�

τd
sech

(
t− z/v

τ

)
, (73.24)

where τ is the pulse duration, which is arbitrary but must
satisfy the short-pulse inequality τ & T1, T2. The soli-
ton’s group velocity is determined by the corresponding
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Coherent Transients 73.6 Multi-Level Generalizations 1071

Fig. 73.5 McCall-Hahn area theorem for an absorbing
medium. On propagation the area of the pulse will follow
the arrows toward one of the stable values, 0, 2π, 4π, . . .

soliton solutions to the OBE’s and the dispersive

v= c

1+ 1
2αBcτ

, (73.25)

where αB is to be taken in the limit T∗
2 & T2. The group

velocity can be slower than the speed of light by orders
of magnitude if αBcτ % 1.

0 π

θ

δθ
δz

2π 3π 4π

73.6 Multi-Level Generalizations

73.6.1 Rydberg Packets
and Intrinsic Relaxation

A short laser pulse can populate a band of excited states
whose probability amplitudes will exhibit mutual co-
herence. This single-atom coherence is transient, even
without collisions or other external perturbations to dis-
rupt it, and its decay can be called intrinsic relaxation.
The decay is basically a dephasing. The dipole moments
associated with the excited band interfere due to the wide
variety of resonance frequencies of the states in the su-
perposition. Because of the discreteness of the energy
levels of any bounded quantum system, this relaxation
has its own unique characteristics, including similarities
with both homogeneous and inhomogeneous decay.

The wave function for a coherently excited atom can
be expressed in the interaction picture in the form [73.9]

Ψ(r, t)= a(t)ψg(r)+
∑

n

bn(t)e
−iωntψn(r) , (73.26)

where ψg(r) is the ground state wave function, and n
labels the states in a band with excitation frequencies
ωn ≈ ω. If |ωn −ω| & ωn , the transition frequency ωn
can be expanded about the principal quantum number n
of the resonant excited state En = �ω to obtain

ωn = ωn + (n−n)
∂ωn

∂n
+ 1

2! (n−n)2
∂2ωn

∂n2
+· · ·

= ωn + (n−n)
2π

TK
+ (n−n)2

2π

TR
+· · · . (73.27)

Thus 2π/TK is the mean frequency separating neigh-
boring levels, i. e., TK/2π = �ρ(E), where ρ(E) is the
density of excited states, and 2π/TR is the mean change
in this frequency separation. TK is the same as the Ke-
pler period a classical orbit, and TR is the revival time.

Substituting the Bohr frequencies into the definitions for
TK and TR yields TR = nTK/3.

For times t ≤ TR the expansion can be truncated
after the third term. Then the wave function is given
approximately by

Ψ(r, t)≈ a(t)ψg(r)+ e−iωnt
∑

m

bn+m(t)e
−i2πmt/TK

× e−i2πm2t/TRψn+m(r) , (73.28)

where m = n−n. For high Rydberg states, n % 1, the
time scales associated with the two exponentials inside
the sum are quite different. For times t & TK the individ-
ual levels are not resolved, thus the laser excites what is
effectively a continuum with a density of states ρ(E). In
that case the ground state population simply decays ex-
ponentially at the rate given by first-order perturbation
theory, Γ = (2π/�)d2E2ρ(E). At longer times t ≈ TK,
the first exponential contributes, but the second does not,
giving a simple Fourier series time dependence. In this
regime the evolution of the wave function is just peri-
odic motion of a wave packet around a Kepler orbit, as
is illustrated in Fig. 73.6a.

The coherent quantum wave packet behaves like
a classical particle for many Kepler periods, gradu-
ally spreading out as the second exponential in the sum
(73.28) begins to contribute. This spreading of the wave
packet produces the intrinsic relaxation of the collective
dipole moments from the various transitions. However,
because the levels are discrete, this decay is not perma-
nent, but is reversed and leads to a spontaneous “revival”
of the original wave packet [73.6], without the need for
a π-pulse to produce an “echo.”

In its evolution toward the revival, the wave packet
passes through a number of fractional revivals in which
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miniature replicas of the original wave packet are equally
spaced around the orbit, each traveling at the velocity
of a particle traveling in a corresponding classical Ke-
pler orbit. This complex time evolution arises from the
spreading of the wave packet all the way around the orbit
so that the head and tail of the packet interfere with each
other, producing interference fringes. The further evo-
lution of this fringe pattern produces the various revival
phenomena shown in Fig. 73.6.

a)

b)

c)

d)

Fig. 73.6a–d The free evolution of a Rydberg wave packet
made up of a superposition of circular-orbit states centered
about n = 360. (a) Initially the wave packet is to good
approximation a minimum uncertainty wave packet in all
three dimensions, but after 12 orbits (b) the packet has
spread all the way around the orbit so that the head and tail
of the wave packet overlap, producing interference fringes.
(c) After 40 orbits, t = TR/3, the fringes have produced
the one-third fractional revival in which three miniature
replicas of the original wave packet are equally spaced
around the orbit. (d) After 120 orbits, t = TR, the complete
wave packet revival occurs

73.6.2 Multiphoton Resonance
and Two-Photon Bloch Equations

Multiphoton transitions Fig. 73.7a introduce new coher-
ent transient phenomena. If levels |g〉 and |e〉 have the
same parity, two photons from the same laser field are
sufficient to excite level |e〉. For simplicity we regard |e〉
as a single state, but any number of intermediate levels
| j〉 of opposite parity may be present.

Substituting the state vector

|Ψ(t)〉 = ag(t)|g〉+
∑

j

b j(t)e
−iωt | j〉

+ae(t)e
−i2ωt |e〉 , (73.29)

into the Schrödinger equation yields

i
dag

dt
=−1

2

∑

j

Ωg jb j , (73.30)

i
db j

dt
=∆ jgb j − 1

2

(
Ω jgag+Ω jeae

)
, (73.31)

i
dae

dt
=∆egae− 1

2

∑

j

Ωe jb j , (73.32)

where the ∆s are the detunings and theΩs are the Rabi
frequencies for the dipole-allowed transitions. For ex-
ample,Ωg j = dg jE/�, and∆ jg = (E j − Eg)/�−ω and
∆eg = (Ee− Eg)/�−2ω.

If the states | j〉 are not too close to resonance, the
b j oscillate rapidly and to a first approximation average
to zero. A better approximation is to retain the small
nonzero solution for b j obtained by setting db j/dt = 0
in (73.31) to obtain

b j =−
[
Ω jgag+Ω jeae

]

2∆ jg
, (73.33)

a) b)

ω

ω

	e�

	j�

	g�

ωa

ωb

	e�

	g�

	j�

Fig. 73.7a,b Model two-photon resonances. Two photons
couple the ground state |g〉 with an excited state |e〉. Many
intermediate nonresonant levels | j〉 are present. In (a) we
have the cascade system, and in (b) the Λ pump–probe
system
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Coherent Transients 73.6 Multi-Level Generalizations 1073

which can be used to eliminate b j from the equations
for ag and ae. This is called adiabatic elimination of
dipole coherence. In this approximation, levels |g〉 and
|e〉 are directly coupled to each other and two-photon
coherence arises. The coupling of levels |g〉 and |e〉 is
similar to the two-level coupling described in Sect. 73.1
and two-photon Bloch equations analogous to (73.5) are
the result:

dU(2)

dt
=−∆(2)V (2) ,

dV (2)

dt
=∆(2)U(2)+Ω(2)W (2) ,

dW (2)

dt
=−Ω(2)V (2) , (73.34)

Here the superscript (2) indicates that the variables are
identified with the two-photon |g〉→ |e〉 transition.

The various coefficients are similarly general-
ized [73.11]. For example, the two-photon Rabi
frequency is given by

Ω(2) ≡ 1

2

∑

j

dg jd je

�2∆ jg
E2 . (73.35)

and the two-photon detuning∆(2) incorporates the laser-
induced level shifts

∆(2) ≡∆e j +∆ jg

+ 1

4

∑

j

|de j |2E2(t)

�2∆e j
+ 1

4

∑

j

|d jg|2E2(t)

�2∆ jg
.

(73.36)

The last two terms give the difference in the ac Stark
shifts of the upper and lower levels produced by the
laser field.

W (2) is the inversion as before, but U(2) and V (2) are
somewhat different. They cannot be directly tied to the
expectation value of a dipole moment because levels |g〉
and |e〉 have the same parity. Thus, while the quantity
U(2)− iV (2) is the two-photon analog of U − iV in the
original OBE’s, it cannot serve as a source term in the
Maxwell equation.

In the case of cw applied fields, the solutions to the
two-photon OBEs are formally identical to those for
a two-level atom. In the case of pulsed fields, how-
ever, the detuning ∆(2)(t) is automatically “chirped”
in frequency by the Stark shifts. This chirping may
significantly modify the dynamics. Multiphoton gener-
alizations of the Bloch equations can be made for other
arrangements and numbers of levels. The two-photon

version applies as well to three-level Λ and V configu-
rations as to the cascade system shown in Fig. 73.7a, for
which they were derived.

73.6.3 Pump–Probe Resonance
and Dark States

Dark states or trapping states occur whenever a field-
dependent linear combination of active levels is
dynamically disconnected from the other levels. This
occurs, e.g., in a pump-probe interaction, which fits the
scenario of Fig. 73.7 if two lasers instead of one are used
to excite level |e〉 from the ground level via two-photon
resonance. A strong steady laser a is applied for the
|g〉 → | j〉 transitions and a weak tunable “probe” laser
b for the | j〉 → |e〉 transitions. In the simplest format,
∆eg = 0, and all the | j〉 levels can be combined into
a single level labeled |2〉.

The three-level state vector can be written in terms
of field-free states

|Ψ(t)〉 = ag|g〉+b2|2〉+ae|e〉 , (73.37)

or, in terms of field-dependent dressed states

|Ψ(t)〉 = AT|T 〉+b2|2〉+ AS|S〉 , (73.38)

where Ω|T 〉 ≡Ωa|e〉−Ωb|g〉, Ω|S〉 ≡Ωa|g〉+Ωb|e〉
and

AS(t)≡Ω−1[Ωaag+Ωbae] ,
AT(t)≡Ω−1[Ωaae−Ωbag] . (73.39)

The normalizing factor isΩ ≡
√
Ωa

2+Ωb
2.

The state |T 〉 is an eigenvector of the three-level
RWA Hamiltonian, with eigenvalue zero, and the ampli-
tude AT(t) is a constant of motion. Thus |T 〉 is termed
a trapping state, and population in |T 〉 is inaccessible to
the (possibly very strong) laser fields. At two-photon res-
onance this conclusion is robust, not depending strongly
on the idealized conditions assumed here. In fact, AT,
the trapping state amplitude, is an adiabatic invariant, re-
maining constant to first order even under slow changes
inΩa andΩb. In a pump-probe experiment, this trapping
state is observed as an abrupt drop in probe absorption
as the probe frequency is tuned through two-photon res-
onance. Since only two-photon resonance is required
(both transitions can be equally detuned) this coherent
transient effect has no analog in two-level physics.

The ideal method for exciting the trapping state from
the ground state uses another coherent transient process
called counter-intuitive pulse sequencing in which pulse
b is turned on first. The trapping state |T 〉 is essentially
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1074 Part F Quantum Optics

the ground state |g〉 if Ωa = 0. Thus if Ωb is turned
on first, and then Ωa turned on later, the ground state
adiabatically becomes the trapping state and all initial
probability flows smoothly with it.

An essential point is the ease with which pump-
probe adiabaticity is maintained, particularly for strong
fields on resonance, in contrast to one-photon adiabatic-
ity, which is never achieved at strong-field resonance. In
the pump-probe case one must only satisfy the inequality

∣∣∣
∣

dΩa

dt
Ωb− dΩb

dt
Ωa

∣∣∣
∣&

(
Ω2

a +Ω2
b

)3/2
, (73.40)

which is automatically accomplished by counter-
intuitive pulse sequencing. The inequality allows one
to tolerate rapid change of Ωb while Ωa = 0. Then af-
ter Ωb has reached a high value, Ωa can also be turned
on very rapidly because the right side of (73.40) is al-
ready very large. This is “counter-intuitive” excitation
because if the population is in level |g〉 it is “natural”
to turn on pulse Ωa first, not Ωb. It can be dramatically
beneficial to use counter-intuitive excitation when it is
important to avoid relaxation associated with level |2〉.

73.6.4 Three-Level Transparency

The foregoing results for three-level excitation can be
extended to resonant pulse propagation in three-level
media. The equations governing simultaneous two-pulse
evolution in the local-time coordinates cT ≡ ct− z and
ζ ≡ z are

∂Ea

∂ζ
= i

�

da
µaa∗gb2 ,

∂Eb

∂ζ
= i

�

db
µba∗e b2 , (73.41)

where

µa = 4πd2
a Nωa

�c
, etc. (73.42)

Note that the bilinear combination 2a∗gb2 corresponds to
U − iV in (73.16).

Soliton-like pulses can propagate in three-level me-
dia. Both pulses must compete for interaction with level
|2〉. They depend only on a single variable Z ≡ ζ −uT
where u is the pulse’s constant velocity in the moving
frame. Soliton solutions are given (for µa = µb) for Λ
media by

Ea = �/da = A sech K Z ,

Eb = �/db = B tanh K Z , (73.43)

and

ag =− tanh K Z

b2 = −2iKu

A
sech K Z , (73.44)

ae = B

A
sech K Z ,

where the parameters A, B, Ku are nonlinearly related
to the pulse length τ :

Ku ≡ 1/τ and
(
2/τ

)2 = A2− B2 . (73.45)

The moving frame velocity is given by 1/u = 2µ/A2

and the expression for the lab frame velocity V is 1/V =
1/c+2µ/A2.

If B → 0, then Ea →
(
2�/τda

)
sechK Z, which is the

exact McCall–Hahn formula for the two-level one-pulse
soliton amplitude [73.1]. No adiabatic condition was in-
voked in obtaining the soliton solutions. The physical
measure of adiabaticity comes from the pulse duration
τ . If τ is short, an appreciable population appears tran-
siently in level |2〉, but if τ is long (an adiabatic pulse),
the population skips level |2〉 and goes directly from |g〉
to |e〉 and back again during the pulse.

Note that the sech and tanh functions are ideally
counter-intuitive, with pulse b starting infinitely far
ahead of pulse a. In practice, the infinite leading edge of
the tanh function plays no role and can be truncated to
several times τ without appreciable change in the char-
acter of the pulse pair.

73.7 Disentanglement and “Sudden Death” of Coherent Transients

The existence of entanglement (non-separability) of
states is the most prominent evidence that quantum me-
chanics is a truly nonlocal theory. This has consequences
for coherent transients, allowing them to exhibit non-
intuitive effects unlike any discussed up to this point.
We will choose an example that directly illustrates this

point by showing that two entangled atoms whose in-
version and coherence decay exponentially can have an
entanglement that not only does not decay exponen-
tially but which reaches its steady state long before
the atoms reach their final states. In this sense the
nonlocal transients of the pair of atoms are not at all
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intuitively related to the local transients affecting the
atoms separately.

We imagine the situation sketched in Fig. 73.8,
two two-level atoms A and B of the type discussed
at length already, prepared in a partially excited en-
tangled mixed state and located remotely from each
other, without direct or indirect interaction. They each
must eventually, because of spontaneous emission, come
to their ground states, creating the final joint state
|−A〉⊗ |−B〉, which is clearly in factored form (disen-
tangled). The question is, what is the manner of evolution
by which the quantum entanglement feature evolves
toward zero.

The standard Master Equation methods [73.12]
for investigating spontaneous emission [73.13] can be
applied to each atom separately since they are not inter-
acting with each other. For any initial state ρAB(0), the
density operator at t can be expressed as

ρAB(t)=
4∑

µ=1

Kµ(t)ρ
AB(0)K†µ(t), (73.46)

where the so-called Kraus operators [73.14] Kµ(t) are
available in closed form in this case [73.15].

For illustration we will choose a partially coherent
initial state, expressed by a two-atom density matrix with
a single free parameter a:

ρAB(0)= 1

3

⎛

⎜⎜⎜
⎝

a 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1−a

⎞

⎟⎟⎟
⎠
. (73.47)

Here the convention is to label the rows and columns
in the order ++, +−, −+, −−. The transient decay
of either atom’s excitation can be calculated separately
from their reduced density matricesρA ≡ TrB{ρAB}, etc.
For example:

ρA = 〈+B|ρAB|+B〉+〈−B|ρAB|−B〉

= 1

3

(
1+a 0

0 2−a

)

, (73.48)

and the upper level excitation of atom A can
be found to behave exactly as expected: ρA++(t)=
a+1

3 e−t/τ0 , where τ0 is the usual spontaneous emission
lifetime.

For nonlocal transients we will need a time-
dependent measure of entanglement, and there are
several options [73.16], all related to the joint entropy of
the two-atom system. We will use the concurrence C(t)

Atom A Atom B

Cavity A Cavity B

Fig. 73.8 Illustration of a set-up in which two partially
excited atoms A and B are located inside two spatially
separated cavities that are possibly very remote from each
other. The two atoms are assumed initially entangled, but
they have no interaction

of Wootters [73.17], which has the convenient normal-
ization 1≥C(t)≥ 0, where C = 1 represents completely
entangled atoms (such as in a pure Bell state, for ex-
ample) and C = 0 denotes the complete absence of
entanglement.

For the specific case a = 1 one finds for the state
(73.47) the initial concurrence C(0)= 2

3 , indicating a
state with partial two-party coherence (incomplete en-
tanglement). At time t one then finds:

C AB(t)= 2

3
max

{
0, e−t/τ0 f(t)

}
, (73.49)

where f(t)= 1−√2ω2+ω4, and ω≡ 1− e−t/τ0 . The
strikingly non-intuitive consequence of this expression
is that C(t)→ 0 abruptly after a short time (disentan-
glement suffers a “sudden death”) if 2ω2+ω4 ≥ 1. In
fact, only a minor algebraic rearrangement shows that
this strange condition must occur, and the finite sudden

1

2⁄3
1⁄3

0
0.5

1
0.5

2
2.5

3
2⁄3

1 ⁄3

0

t

ρC(   )

a

Fig. 73.9 Effect of spontaneous emission on concurrence
of two two-level atoms given the initially entangled mixed
state (73.47) depending on the single parameter 1 ≥ a ≥ 0
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death time t0 is given by

t0
τ0
≡ ln

(
2+√2

2

)

≈ 0.53 . (73.50)

The non-local coherent transient behavior of entangle-
ment for the entire range of allowed a values [73.15] is
shown in Fig. 73.9. This shows that the concurrence un-
dergoes familiar smooth and infinitely long decay only
for a values in the limited range 1

3 > a ≥ 0. Otherwise

sudden death occurs sooner or later. In our example,
non-local coherence becomes zero most abruptly after
a finite time for a = 1, the case that was calculated in
(73.49). Although not yet observed experimentally, it
appears that these results are not exceptional. Sudden
termination of entanglement has also been predicted for
two-party continuum states as well as for qubit pairs ex-
periencing only T2 decay, in contrast to the combined
T1 and T2 decay appropriate to spontaneous emission as
treated here.

References

73.1 L. Allen, J. H. Eberly: Optical Resonance and Two-
Level Atoms (Dover, New York 1987)

73.2 B. W. Shore: Theory of Coherent Atomic Excitation,
Vol. 1,2 (Wiley, New York 1990)

73.3 P. Meystre, M. Sargent III: Elements of Quantum
Optics (Springer, Berlin, Heidelberg 1990)

73.4 C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg:
Atom-Photon Interactions (Wiley, New York 1992)

73.5 M. O. Scully, M. S. Zubairy: Quantum Optics (Cam-
bridge Univ. Press, Cambridge 1997)

73.6 W. P. Schleich: Quantum Optics in Phase Space
(Wiley-VCH, New York 2001)

73.7 C. C. Gerry, P. L. Knight: Introductory Quantum Op-
tics (Cambridge Univ. Press, Cambridge 2005)

73.8 P. W. Milonni, J. H. Eberly: Lasers (Wiley, New York
1988)

73.9 M. V. Fedorov: Atomic and Free Electrons in a Strong
Light Field (World Scientific, Singapore 1997)

73.10 J. D. Jackson: Classical Electrodynamics, 2nd edn.
(Wiley, New York 1975)

73.11 F. H. M. Faisal: Theory of Multiphoton Processes
(Plenum, New York 1987)

73.12 See Sect. 78.7 in this book
73.13 See Sect. 78.12 in this book
73.14 A complete discussion of Kraus operators appropri-

ate to Bloch vector evolution is given in S. Daffer,
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Multiphoton a74. Multiphoton and Strong-Field Processes

The excitation of atoms by intense laser pulses can
be divided into two broad regimes: the first regime
involves relatively weak optical laser fields of long
duration, and the second involves strong fields
of short duration. In the first case, the intensity
is presumed to be high enough for multiphoton
transitions to occur. The resulting spectroscopy is
not limited by the single-photon selection rules
for radiative transitions. However, the intensity
is still low enough for a theoretical description
based on perturbations of field-free atomic states
to be valid, and the time dependence of the
field amplitude does not play an essential role.
In the second case, the field intensities are too
large to be treated by perturbation theory, and
the time dependence of the pulse must be taken
into account. A discussion on the generation of
sub-femtosecond pulses is included.
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The excitation of atoms by intense laser pulses can
be divided into two broad regimes determined by the
characteristics of the laser pulse relative to the atomic
response. The first regime involves relatively weak op-
tical laser fields of long duration (> 1 ns), and the second
involves strong fields of short duration (< 10 ps). These
will be referred to as the weak-long (WL) and strong-
short (SS) cases respectively.

In the case of atomic excitation by WL pulses, the
intensity is presumed to be high enough for multiphoton
transitions to occur. The resulting spectroscopy of ab-
sorption to excited states is potentially much richer
than single-photon excitation because it is not lim-
ited by the single-photon selection rules for radiative
transitions. However, the intensity is still low enough
for a theoretical description based on perturbations of
field-free atomic states to be valid, and the time depen-

dence of the field amplitude does not play an essential
role.

The SS case is fundamentally different in that the
atomic electrons are strongly driven by fields too large
to be treated by perturbation theory, and the time depen-
dence of the pulse as it switches on and off must be taken
into account. Atoms may absorb hundreds of photons,
leading to the emission of one or more electrons, as well
as photons of both lower and higher energy. Because
the flux of incident photons is high, a classical descrip-
tion of the laser field is adequate, but the time dependent
Schrödinger equation (TDSE) must be solved directly
to obtain an accurate representation of the atom–field
interaction.

For SS pulses of optical wavelength, it is sufficient
in most cases to consider only the electric dipole (E1)
interaction term defined in Chapt. 68. The atom–field
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interaction can then be expressed in either the length
gauge or the velocity gauge [74.1] (Chapt. 21). In the
length gauge, the TDSE is

i�
∂Ψ(r, t)
∂t

= [
H0+ er · E(t)

]
Ψ(r, t) , (74.1)

where H0 is the field-free atomic Hamiltonian, r the col-
lective coordinate of the electrons, and E(t) the electric
field of the laser given by

E(t)= E(t)
[
x̂ cos(ωt+ϕ)+ ε ŷ sin(ωt+ϕ)] .

(74.2)

Here ϕ is the phase and ε defines the polarization: linear
if ε = 0 and circular if |ε| = 1. In the velocity gauge, the
TDSE is

i�
∂ψ(r, t)
∂t

=
[

H0− ie�

mc
A(t) ·∇+ e2

2mc2
A2(t)

]

×ψ(r, t) . (74.3)

Here A(t)=−c
∫ t E

(
t′
)

dt′ is the vector potential of the
laser field. The solutions of (74.1) and (74.3) are related

by the phase transformation

Ψ(r, t)= exp

[
ie

�c
r · A(t)

]
ψ(r, t) . (74.4)

Since lasers usually must be focussed to reach the
strong field regime, measured electron and ion yields in-
clude contributions from a distribution of field strengths.
The photoemission spectrum, on the other hand, contains
a coherent component due to the macroscopic polar-
ization of all the atoms and therefore is sensitive also
to the laser phase variations within the focal volume.
In this chapter methods for solving (74.1) and (74.3)
are discussed along with details of the atomic emission
processes.

References [74.1–3] are three recent books which
provide excellent introductions to this subject. Further
developments are well described in the proceed-
ings of the International Conferences on Multiphoton
Physics [74.4–7] and the NATO workshop on Super-
Intense Laser-Atom Physics [74.8, 9].

74.1 Weak Field Multiphoton Processes

74.1.1 Perturbation Theory

Since atomic ionization energies are generally � 10 eV,
while optical photons have energies of only a few eV,
several photons must be absorbed to produce ioniza-
tion, or even electronic excitation in the case of the
noble gases. For WL pulses, the electronic states are
only weakly perturbed by the electromagnetic field. The
rate of an n-photon transition can then be calculated
using nth order perturbation theory for the atom–field
interaction. For an incident photon number flux φ of
frequency ω, the rate is

W (n)
i→ f = 2π

(
2παφω

e2

)n ∣∣∣T (n)i→ f

∣∣∣
2
δ(ωi +nω−ω f ) ,

(74.5)

where

T (n)i→ f =
〈
f
∣∣d G[ωi + (n−1)ω]

× d G[ωi + (n−2)ω]
· · · d G[ωi +ω] d|i〉 , (74.6)

|i〉 is the ith eigenstate of the field-free atomic Hamilto-
nian, d = eε̂ ·r, with ε̂ the polarization direction and

G(ω)=
∑

j

| j〉〈 j|
(
ω−ω j + iΓ j/2

) . (74.7)

The sum over j includes an integration over the con-
tinuum for all sequences of E1 transitions allowed by
angular momentum and parity selection rules. Methods
for calculating cross sections and rates in the weak-field
regime are described in [74.1, 10] and in Chapt. 24.

74.1.2 Resonant Enhanced
Multiphoton Ionization

For multiphoton ionization, ω can be continuously var-
ied because the final state in (74.5) lies in the continuum.
If ω is tuned so that ωi +mω) ω j for some contribut-
ing intermediate state | j〉 in (74.7), then that state lies
an integer m photons above the initial state, and the cor-
responding denominator vanishes (to within the level
widthΓ j ), producing a strongly peaked resonance. Since
it takes k = n−m additional photons for ionization, the
process is called m, k resonant enhanced multiphoton
ionization (REMPI). Measurements of the photoelec-
tron angular distribution are useful in characterizing the
resonant intermediate state.

Calculations using the semi-empirical multichannel
quantum defect theory to provide the needed matrix
elements have been very successful in describing ex-
perimental results. This technique is discussed in more
detail in Chapt. 24.
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The perturbation equation (74.5) indicates that the
rate for nonresonant multiphoton ionization scales as φn

for an n-photon process [74.11]. However, this is not the
case for REMPI since the resonant transition saturates
and (74.5) no longer applies. Then the rate can be con-
trolled either by the m-photon resonant excitation step,
or by the number of photons k needed for the ionization
step.

74.1.3 Multi-Electron Effects

Multiply excited states can play a role in multiphoton
excitation dynamics. These states are particularly im-
portant if their energies are below or not too far above
the first ionization potential. Configuration expansions
including these states have been used successfully in
studies, for example, of the alkaline earth atoms, which
have many low-lying doubly excited states. The pres-
ence of these states also can enhance the direct double
ionization of an atom [74.12].

74.1.4 Autoionization

The configuration interaction between a bound state and
an adjacent continuum leads to an absorption profile
in the single photon ionization spectrum with a Fano
lineshape. The actual lineshape reflects the interfer-
ence between the two pathways to the continuum.
Autoionizing states can also be probed via multipho-
ton excitation [74.13, 14]. Because, in the strong field
regime, coupling strengths and phases change with in-
tensity, the lineshapes can be strongly distorted by
changing the incident intensity. At particular intensities,
the phases of the excited levels can be manipulated to
prevent autoionization completely. Then a trapped pop-
ulation with energy above the ionization limit can be
created [74.15].

74.1.5 Coherence and Statistics

Real laser fields exhibit various kinds of fluctuations,
and so are never perfectly coherent. The effects of such
fluctuations on the complex electric field amplitude

E(t)= E(t) exp
[− iωt+ϕ(t)] (74.8)

can be modeled by a variety of stochastic pro-
cesses [74.16], depending on the conditions [74.10, 17–
20], as follows.

For cw lasers, a phase diffusion model (PDM) is
often used for which E(t)= E = const. and

ϕ̇(t)=√
2bF(t) , (74.9)

where F(t) describes white noise by a real Gaussian
function [74.16] characterized by the averaged val-
ues 〈F(t)〉 = 0, 〈F(t)F(t′)〉 = 2bδ(t− t′). The stochastic
electric field then has an exponential autocorrelation
function

〈
E(t)E∗(t′)

〉= E2 exp
[−b

∣∣t− t′
∣∣− iω(t− t′)

]
,

(74.10)

and a Lorentzian spectrum of width b. Far off resonance,
such a Lorentzian spectrum often gives unrealistic re-
sults, and the model (74.9) is then replaced by an
Ornstein–Uhlenbeck process,

ϕ̈(t)=−βϕ̇(t)+√
2bβF(t) , (74.11)

where the parameter β for β& b plays the role of a cut-
off of the Lorentzian spectrum.

A multimode laser with a large number M of inde-
pendent modes has a field of the form E(t)=∑M

j=1 E j
exp[−iω j t+ iϕ j(t)], and according to the central
limit theorem [74.16], can be described for large M
as a complex Gaussian process defined to be a chaotic
field,

Ė(t)=−(b+ iω)E(t)+
√

2b
〈|E(t)|2〉F(t) , (74.12)

where F(t) is now a complex white noise, and ω is the
central frequency of the field. The field, (74.12) has an
exponential autocorrelation function, and a Lorentzian
spectrum of width b.

Various other stochastic models have been dis-
cussed in the literature. These include Gaussian
fluctuations of the real amplitude of the field E(t);
Gaussian chaotic fields with non-Lorentzian spectra;
non-Gaussian, nonlinear diffusion processes (that de-
scribe for instance a laser close to threshold [74.16]);
multiplicative stochastic processes (that describe a laser
with pump fluctuations [74.18]) and jump-like Markov
processes [74.21–23]. Statistical properties of laser
fields can sometimes be controlled experimentally to
a great extent [74.19, 20].

74.1.6 Effects of Field Fluctuations

Since the response of systems undergoing multiphoton
processes is in general a nonlinear function of the field
intensity (and, in particular, of the field amplitude), it
depends in a complex manner on the statistics of the
field. The enhancement of the nonresonant multipho-
ton ionization rate illustrates the point. According to the
perturbation equation (74.5), the rate of an n-photon pro-
cess is proportional to φn ; i. e., to In , where I is the field

Part
F

7
4
.1



1080 Part F Quantum Optics

intensity. For fluctuating fields, the average response is
thus

W (n)
i→ f ∝

〈
In
〉
∝

〈∣∣E(t)
∣∣2n

〉
. (74.13)

Phase fluctuations (as described by PDM) do not affect
the average. On the other hand, for complex chaotic
fields, the average is

〈In〉 ) n!〈I〉n , (74.14)

i. e., significant enhancement of the rate for n > 1.
Field fluctuations lead to more complex effects in

resonant processes. Two well-studied examples are the
enhancement of the ac Stark shift in resonant multi-
photon ionization [74.24], and the spectrum of double
optical resonance – a process in which the ac Stark split-
ting of the resonant line is probed by a slightly detuned
fluctuating laser field [74.18]. Double optical resonance
is very sensitive not only to the bandwidth of the probing
field, but also to the shape of its frequency spectrum.

74.1.7 Excitation with Multiple Laser Fields

The simultaneous application of more than one laser
field produces interesting and novel effects. If a laser and
its second (2ω) or third (3ω) harmonic are combined and
the relative phase between the fields controlled, product
state distributions and yields can be altered dramatically.
The effects include reducing the excitation or ionization

rates in the ω−3ω case [74.25] or altering the photo-
electron angular distributions and the harmonic emission
parity selection rules using ω−2ω [74.26].

A laser field can dress or strongly mix the field-
free excited states, including the continuum, of an
atom. This can produce a number of effects depend-
ing on how the dressed system is probed. By coupling
a bound, excited state with the continuum, ionization
strengths and dynamics are altered, resulting in new
resonance-like structures where none existed before.
This effect is called laser-induced continuum structure,
or LICS [74.15,27]. This general idea has been exploited
to design schemes for lasers without inversion [74.28]
in which the dressed atom can have an inverted popula-
tion, allowing gain even though in terms of the undressed
states the lower level has the largest population. A laser
can produce dramatic changes in the index of refraction
of an atomic medium [74.29], creating, at specific fre-
quencies, laser-induced transparency for a second, probe
laser field.Multistep ionization, where each step is driven
by a laser at its resonant frequency, has resulted in two
useful applications. These are: efficient atomic isotope
separation [74.23]; and the detection of small numbers
of atoms in a sample, called single-atom detection. This
technique is extremely sensitive because the use of exact
resonance for each step yields very large cross sections
for ionization, and the efficiency of collecting ions is
high [74.30].

74.2 Strong-Field Multiphoton Processes

Recently developed laser systems can produce very short
pulses, some as short as a few to tens of femtoseconds,
while at the same time maintaining the pulse energy
so that the peak power becomes very high. Focused
intensities up to 1019 W/cm2 have been achieved. Be-
cause the pulses are short, atoms survive to much higher
intensities before ionizing, making possible studies of
laser-atom interactions in an entirely new regime. A dis-
cussion of the status of short pulse laser development is
given in Chapt. 71 and in [74.31].

With increasing intensity, higher-order corrections
to (74.6) contribute to the transition rate. The next order
correction comes from transitions involving two addi-
tional photons, one absorbed and one emitted, leading
to the same final state. One effect of these terms is to
shift the energies of the excited states in response to
the oscillating field. This is called the dynamic or ac
Stark shift. The ac Stark shift of the ground state tends
to be small because of the large detuning from the ex-

cited states for long wavelength photons. On the other
hand, in strong fields the shift of the higher states and the
continuum can become appreciable. Electrons in highly
excited states respond to the oscillating field in the same
manner as a free electron. Their energies shift with the
continuum by the amount

Up = (1+ ε)e
2E2

4mω2 , (74.15)

where Up is the cycle-averaged kinetic energy of a free
electron in the field and ε defines the polarization of the
field in (74.2). Up is called the ponderomotive or quiver
energy of the electron. For strong laser fields, Up can be
several eV or more, meaning that during a pulse, many
states shift through resonance as their energies change
by an amount larger than the incident photon energy. The
resulting intensity-induced resonances can dominate the
ionization dynamics.
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Electrons promoted into the continuum acquire the
ponderomotive energy, oscillating in phase with the
field. In a linearly polarized field, the amplitude of the
quiver motion of a free electron, given by eE/4mω2,
can become many times larger than the bound state or-
bitals. If the initial velocity of an electron is small after
ionization, it can be accelerated by the field back into
the ion core. The subsequent rescattering changes the
photoelectron energy and angular distributions, and al-
lows the emission of high energy photons [74.32, 33].
This simple dynamical picture forms the basis of the
current understanding of many strong-field multiphoton
processes.

74.2.1 Nonperturbative Multiphoton
Ionization

The breakdown of perturbation theory for nth-order
multiphoton processes occurs when the higher-order
correction terms become comparable to the nth-order
term. Assuming that the dipole strength is ∝ ea0,
where a0 is the Bohr radius, and the detuning is δ ∝ ω,
the ratio of an (n+2)-order contribution to the nth-order
term from (74.6) is [74.1]

Rn+2,n )
(

2παφω

e2

)(ea0

ω

)2 =
(

I

Iγ

)(ωa

2ω

)2
,

(74.16)

where �ωa ) 27.2114 eV is the atomic unit of energy
e2/a0, and Iγ ) 3.509 45 × 1016 W/cm2 is the inten-
sity corresponding to an atomic unit of field strength,
given by Ea = αc

(
m/a3

0

)1/2 ) 5.1422 × 109 V/cm. The
atomic unit of intensity itself is defined by

Ia = φa�ωa = αcE2
a , (74.17)

which is 6.436 414 (4)× 1015 W/cm2. Thus Iγ =
Ia/(8πα). For photon energies of 1 eV, Rn+2,n becomes
unity for I ∼ 1014 W/cm2. Because of the large number
of (n+2)-order terms, perturbation theory actually fails
for I > 1013 W/cm2. Above this critical intensity, non-
resonant n-photon ionization ceases to scale with the φn

dependence predicted by perturbation theory.

74.2.2 Tunneling Ionization

At sufficiently high intensity and low frequency,
a tunneling mechanism changes the character of the ion-
ization process. For lasers in the ir or optical range,
a strongly bound electron can respond to the instanta-
neous laser field since the oscillating electric field varies
slowly on the time scale of the electron. The Coulomb

attraction of the ion core combines with the laser elec-
tric field to form an oscillating barrier through which
the electron can escape by tunneling, if the amplitude
of the laser field is large enough. The dc rate for this
process is eE/

√
2mIP, where IP is the ionization poten-

tial of the electron. When this rate is comparable to the
laser frequency, tunneling becomes the most probable
ionization mechanism [74.34–36]. The ratio of the inci-
dent laser frequency to the tunneling rate is called the
Keldysh parameter, and is given by

γ =
√

IP/2Up , (74.18)

which is less than unity when tunneling dominates
and larger than unity when multiphoton ionization
dominates.

74.2.3 Multiple Ionization

Excitation and ionization dynamics are dominated by
single electron transitions in the strong field regime.
Although atoms can lose several electrons during a sin-
gle pulse, the electrons are released sequentially. There
is no convincing evidence of significant collective ex-
citation in atoms in strong fields, even though it has
been extensively sought. Once one electron is excited
in an atom, the remaining electrons have much higher
binding energies. As a result, the laser field is un-
able to affect them significantly until it reaches much
higher intensity. By that time the first electron has been
emitted.

Simultaneous ejection of two electrons occurs as
a minor channel (< 1%) in strong field multiple ioniza-
tion. Although it is possible that doubly excited states
of atoms could assist in the double ionization, in the he-
lium and neon cases studied, these states are unlikely to
be contributors [74.37].

74.2.4 Above Threshold Ionization

In strong optical and ir laser fields, electrons can gain
more than the minimum amount of energy required for
ionization. Rather than forming a single peak, the emit-
ted electron energy spectrum contains a series of peaks
separated by the photon energy. This is called above
threshold ionization, or ATI [74.38–40]. The peaks ap-
pear at the energies

Es = (n+ s)�ω− IP , (74.19)

where n is the minimum number of photons needed
to exceed IP, and s = 0, 1, . . . is called the number of

Part
F

7
4
.2



1082 Part F Quantum Optics

excess photons or above threshold photons carried by
the electron. Calculations in the perturbative regime for
ATI are given for hydrogen in [74.11].

Peak Shifting
As the intensity approaches the nonperturbative regime,
the ac Stark shift of the atomic states begins to play a sig-
nificant role in the structure of the ATI spectrum. The
first effect is a shift of the ionization potential, given
roughly by the ponderomotive energy Up. Additional
photons may then be required in order to free the elec-
tron from the atom; i. e., enough to exceed IP+Up. If
the emitted electron escapes from the focal volume while
the laser is still on, it is accelerated by the gradient of the
field. The quiver motion is converted into radial motion,
increasing the kinetic energy by Up and exactly cancel-
ing the shift of the continuum. The electron energies are
still given by (74.19). However, when Up exceeds the
photon energy, the lowest ATI peaks disappear from the
spectrum. In this long pulse limit, no electron is observed
with energy less than Up. This is called peak shifting in
that the dominant peak in the ATI spectrum moves to
higher order as the intensity increases.

ATI Resonance Substructure
If the laser pulse is short enough (< 1 ps for the typical
laser focus), the field turns off before the electron can
escape from the focal volume. Then the quiver energy
is returned to the field and the ATI spectrum becomes
much more complicated. The observed electron energy
corresponds to the energy

Es(shortpulse)= (n+ s)�ω− (IP+Up) . (74.20)

relative to the shifted ionization potential. Electrons
from different regions of the focal volume are thus
emitted with different ponderomotive shifts, introduc-
ing substructure in the spectrum which can be directly
associated with ac Stark-shifted resonances [74.38, 39].

ATI in Circular Polarization
The above discussion is appropriate for the case of linear
polarization where the excited states of the atom can
play a significant role in the excitation. In a circularly
polarized field, the orbital angular momentum L must
increase one unit with each photon absorbed so that
multiphoton ionization is allowed only to states which
have high L , and hence a large centrifugal barrier. The
lower energy scattering states then cannot penetrate into
the vicinity of the initial state. Thus the ATI spectrum
in circular polarization peaks at high energy and is very
small near threshold.

74.2.5 High Harmonic Generation

High-order harmonic generation (HG) in noble gases is
a rapidly developing field of laser physics [74.41, 42].
When an SS pulse interacts with an atomic gas, the
atoms respond in a nonlinear way, emitting coherent
radiation at frequencies that are integral multiples of
the laser frequency. Due to the inversion symmetry of
the atom, only odd harmonics of the fundamental are
emitted. In the high intensity

(
> 1013 W/cm2

)
, low fre-

quency regime, the harmonic strengths fall off for the
first few orders, followed by a broad plateau of nearly
constant conversion efficiency, and then a rather sharp
cut-off [74.41, 42]. The plateaux extend to well beyond
the hundredth order of the 800–1000 nm incident wave-
lengths, using the light noble gases as the active medium.
There has also been experimental evidence of HG from
ions. Harmonic generation provides a source of very
bright, short-pulse, coherent XUV radiation which can
have several advantages over the other known sources,
such as the synchrotron.

Plateau and Cut-off
A recently developed two-step model [74.32,33], which
combines quantum and classical aspects of laser-atom
physics, accounts for many strong field phenomena. In
this model, the electron first tunnels [74.43] from the
ground state of the atom through the barrier formed by
the Coulomb potential and the laser field. Its subsequent
motion can be treated classically, and primarily consists
of oscillatory motion in phase with the laser field. If the
electron returns to the vicinity of the nucleus with kinetic
energy T , it may recombine into the ground state with
the emission of a photon of energy (2n+1)�ω≤ T + IP,
where n is an integer. The maximum kinetic energy of the
returning electron turns out to be T ) 3.2 Up, resulting
in a cut-off in the harmonic spectrum at the harmonic of
order

Nmax ) (IP+3.2Up)/�ω . (74.21)

Theoretical Methods
Calculation of harmonic strengths requires the evalua-
tion of the time-dependent dipole moment of the atom,

d(t)= 〈
Ψ(t)|er|Ψ(t)〉 . (74.22)

The strength of harmonics emitted by a single atom
are then related to Fourier components of d(t), or more
precisely, its second time derivative, d̈(t).

The induced dipole moment d(t) can be directly eval-
uated from the numerical [74.44] or Floquet [74.26]
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solutions of the TDSE. Good agreement with numerical
and experimental data is also obtained using a strong
field approximation discussed below and a Landau–
Dyhne formula. This approach can be considered to be
a quantum mechanical implementation of the two-step
model [74.45].

Propagation and Phase Matching Effects
A single atom response is not sufficient to determine
the macroscopic response of the atomic medium. Be-
cause different atoms interact with different parts of the
focused laser beam, they feel different peak field in-
tensities and phases (which actually undergo a rapid
π shift close to the focus). The total harmonic sig-
nal results from coherently adding contributions from
single atoms, accounting for propagation and interfer-
ence effects. The latter effects can wipe out the signal
completely a constructive phase matching takes place.

The propagation and phase matching effects in the
strong field regime [74.46] can be studied by solving the
Maxwell’s equations for a given harmonic component
of the electric field EM(r) (68.23),

∇2EM(r)+nM(r)EM(r)=− 1

ε0

(
Mω

c

)2

PM(r) ,

(74.23)

where nM(r) is the refractive index of the medium
(which depends on atomic, electronic and ionic dipole
polarizabilities), while PM(r) is the polarization induced
by the fundamental field only. It can be expressed as

PM(r) ∝ N(r)dM M(r) exp
[− iM∆(r)

]
, (74.24)

where N(r) is the atomic density, dM(r) is the Mth
Fourier component of the induced dipole moment, and
∆(r) is a phase shift coming from the phase dependence
of the fundamental beam due to focusing. All of these
quantities may have a slow time dependence, reflecting
the temporal envelope of the laser pulse.

Phase matching is most efficient in the forward di-
rection. In general, the strength and spatial properties of
an harmonic depend in a very complex way on the focal
parameters, the medium length and the coherence length
of a given harmonic. Propagation and phase matching
effects can lead to a shift of the location of the cut-off in
the harmonic spectrum [74.47].

Harmonic Generation
by Elliptically Polarized Fields

The two-step model implies that for harmonic emission
it is necessary that the tunneling electrons return to the

nucleus and recombine into their initial state. Accord-
ing to classical mechanics, there are many trajectories in
a linearly polarized field that involve one or more returns
to the origin. However, there are practically no such tra-
jectories in elliptically polarized fields. As a result, the
two-step model predicts a strong decrease of the har-
monic strengths as a function of the laser ellipticity. This
prediction has been confirmed experimentally [74.48].

The Generation
of Sub-Femtosecond XUV Pulses

Manipulation of generated harmonics by allowing the
temporal beating of superposed high-order harmon-
ics can produce a train of very short intensity spikes,
on the order of ∼ 100 attoseconds and shorter, where
1 as = 10−18 s [74.49]. The structural characteristics of
the generated pulse-trains depend on the relative phases
of the harmonics combined. Employing driving pulses
that were themselves only a few femtoseconds long, ex-
perimental groups in Vienna [74.50] and Paris [74.51]
reported the first observations and measurements of such
sub-femtosecond UV/XUV light pulse-trains. The sci-
entific importance of breaking the femtosecond barrier
is obvious: the time-scale necessary for probing the mo-
tion of an electron in a typical bound, valence state is
measured in attoseconds (atomic unit of time ≡ 24 as).
Attosecond pulses will allow the study of the time-
dependent dynamics of correlated electron systems by
freezing the electronic motion, in essence exploring the
structure with ultra-fast snapshots. A crucial aspect for
all attosecond pulse generation is the control of spectral
phases. Measurements of the timing of the attosecond
peaks relative to the absolute phase of the ir driving field
have been accomplished [74.52]. This provides insight
into the recollision, harmonic generation process. Also,
the control of the group velocity phase relative to the
envelope of the few cycle driving pulses allows the pro-
duction of reproducible pulse-trains [74.53]. Thus, the
highly non-perturbative, nonlinear multiphoton interac-
tions of very short ir or visible light pulses with atoms
or molecules is becoming a novel, powerful, and unique
source for studies of very rapid quantum-electronic
processes.

74.2.6 Stabilization of Atoms
in Intense Laser Fields

It has been argued [74.54] that in very intense laser
fields of high frequency, atoms undergo dynamical sta-
bilization and do not ionize. The stabilization effect can
be explained by gauge transforming the TDSE (74.1)
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to the Kramers–Henneberger (K–H) frame; i. e., a non-
inertial oscillating frame which follows the motion of
the free electron in the laser field. The K–H trans-
formation consists of replacing r → r+α(t), where,
for the linearly polarized monochromatic laser field,
α(t)= x̂α0 cos(ωt−ϕ); α0 = eE/

(
mω2

)
is the excur-

sion amplitude of a free electron, and x̂ is the polarization
direction. The TDSE in the K–H frame is

i�
∂Ψ(r, t)
∂t

=
{
−�

2∇2

2m
+V

[
r+α(t)

]}
Ψ(r, t) ,

(74.25)

i. e., it describes the motion of the electron in an oscilla-
tory potential. In the high frequency limit, this potential
may be replaced by its time average

VK–H(r)= ω

2π

2π/ω∫

0

dt V
[
r+α(t)

]
, (74.26)

and the remaining Fourier components of V [r+α(t)]
treated as a perturbation. When α0 is large, the effective
potential (74.26) has two minima close to r =±x̂α0. The
corresponding wave functions of the bound states are
centered near these minima, thus exhibiting a dichotomy.
The ionization rates from the K–H bound states are in-
duced by the higher Fourier components of V(r+α(t)).
For large enough α0, the rates decrease if either the laser
intensity increases or the frequency decreases.

Numerical solutions of the TDSE [74.55, 56] show
that stabilization indeed occurs for laser field strengths
and frequencies of the order of one atomic unit. More
importantly, stabilization is possible even when the laser
excitation is not monochromatic, but rather, is pro-
duced by a short laser pulse. Physically, free electrons in
a monochromatic laser field cannot absorb photons due
to the constraints imposed by energy and momentum
conservation. Absorption is possible only in the vicinity
of a potential, such as the Coulombic attraction of the
nucleus. In the case of strong excitation, i. e., when α0
is much larger than the Bohr radius, the electron spends
most of the time very far from the nucleus, and there-
fore does not absorb energy from the laser beam. Thus
stabilization, as viewed from the K–H frame, has a clas-
sical analog. Other mechanisms of stabilization based
on the quantum mechanical effects of destructive inter-
ference between various ionization paths have also been
proposed [74.57].

Due to classical scaling (Sect. 74.2.8) stabilization is
predicted to occur for much lower laser frequencies if the
atoms are initially prepared in highly excited states. If

additionally, the initial state has a large orbital angular
momentum corresponding to classical trajectories that
do not approach the nucleus, stabilization is even more
easily accomplished. The stabilization of a 5g Rydberg
state of neon has recently been reported [74.58].

74.2.7 Molecules in Intense Laser Fields

Molecular systems are more complex than atoms be-
cause of the additional degrees of freedom resulting from
nuclear motion. Even in the presence of a laser field, the
electron and nuclear degrees of freedom can be sepa-
rated by the Born–Oppenheimer approximation, and the
dynamics of the system can be described in terms of mo-
tions on potential energy surfaces. In strong fields, the
Born–Oppenheimer states become dressed, or mixed by
the field, creating new molecular potentials. Because
of avoided crossings between the dressed molecular
states, the field induces new potential wells in which the
molecules become trapped. These states, known as laser-
induced bound states, are stable against dissociation, but
exist only while the laser field is present [74.59]. Their
existence affects the spectra of photoelectrons, photons,
and the fragmentation dynamics. If the field is strong
enough, many electrons can be ejected from a molecule
before dissociation, producing highly charged, ener-
getic fragments [74.60]. Such experiments are similar
to beam-foil Coulomb explosion studies of molecular
structure. However, because of changes from the field-
free equilibrium geometries in laser dissociation, the
energies of the fragments lie systematically below the
corresponding values from Coulomb explosion studies.

74.2.8 Microwave Ionization
of Rydberg Atoms

Similar phenomena appear in the ionization of highly
excited hydrogen-like (Rydberg) atoms by microwave
fields [74.61,62], but the dynamical range of the param-
eters involved is different from the case of tightly bound
electrons. Recent developments have greatly extended
techniques for the preparation and detection of Rydberg
states. Since, according to the equivalence principle,
highly excited Rydberg states exhibit many classical
properties, a classical perspective of ionization yields
useful insights (Sect. 74.3.5).

Classical Scaling
The classical equations of motion for an electron in both
a Coulomb field and a monochromatic laser field polar-
ized along the z-axis are invariant with respect to the
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following scaling transformations:

p ∝ n−1
0 p̃ , r ∝ n2

0r̃ ,

t ∝ n3
0 t̃ , ϕ ∝ ϕ̃ ,

ω∝ n−3
0 ω̃ , E ∝ n−4

0 Ẽ . (74.27)

In the scaled units, the Hamiltonian H̃ = n−2
0 H of the

system becomes

H̃ = p̃2

2m
− 1

r̃
+ z̃eẼ cos

(
ω̃t̃+ ϕ̃) , (74.28)

i. e., it depends only on ω̃ and Ẽ . In experiments, the
principal quantum number n0 of the prepared initial state
typically ranges from 1 to 100.

Classical scaling extends to the fields of other po-
larization and to pulsed excitation, provided that the
number of cycles in the rise, top and fall of the pulse
is kept fixed. This scaling does not hold for a quantum
Hamiltonian, unless one also rescales Planck’s constant,
�̃= �/n0. In practice, increasing n0, keeping Ẽ and ω̃
constant, corresponds to a decrease in the effective � to-
ward the classical limit. In view of this classical scaling,
experimental and theoretical results are usually analyzed
in terms of the scaled variables. Since the classical dy-
namics generated by the Hamiltonian (74.28) exhibits
chaotic behavior in some regimes, the dynamics of the
corresponding quantum system is frequently referred to
as an example of quantum chaos [74.63–65].

Regimes of Response
By varying the initial n0, several regimes of the scaled
parameters can be covered. The experimentally meas-
ured response of Rydberg atoms in microwave fields
can be divided into six categories:

The Tunneling Regime. For ω̃≤ 0.07, the response of
the system is accurately represented as tunneling through
the slowly oscillating potential barrier composed of the
Coulomb and microwave potentials.

The Low Frequency Regime. For 0.05 ≤ ω̃≤ 0.3, the
ionization probability exhibits structure (bumps, steps,
changes of slope) as a function of the field strength.
The quantum probability curves might be lower or
higher than the corresponding classical counterparts cal-
culated with the aid of the phase averaging method
(Sect. 74.3.5).

The Semiclassical Regime. For 0.1 ≤ ω̃≤ 1.2, the ion-
ization probabilities agree well for mostfrequencies

with the results obtained from the classical the-
ory. In particular, the onset of ionization and
appearance intensities (i. e., the intensities at which
a given degree of ionization is achieved) coin-
cide with the onset of chaos in the classical
dynamics. Resonances in the ionization probabilities
appear that correspond to the classical trapping reso-
nances [74.63–66].

The Transition Region. For 1 ≤ ω̃≤ 2, the differences
between the quantum and classical results are visible.
Quantum ionization probabilities are frequently lower
and appearance intensities higher than their classical
counterparts.

The High Frequency Regime. For ω̃≥ 2, quantum re-
sults for ionization probabilities are systematically lower
and appearance intensities higher than their classical
counterparts. This apparent stability of the quantum sys-
tem has been attributed to three kinds of effects: quantum
localization [74.66], quantum scars [74.67], and per-
haps to the stabilization of atoms in intense laser fields
(Sect. 74.2.6).

The Photoeffect Regime. When the scaled frequency
becomes greater than the single photon ionization
threshold, the system undergoes single photon ionization
(the photoeffect).

Quantum Localization
The classical dynamics changes as the field increases.
Chaotic trajectories start to fill phase space and, as
the KAM tori (describing periodic orbits) [74.63–65]
break down, the motion becomes stochastic, resem-
bling a random walk. This process, in which the
mean energy grows linearly in time, is termed dif-
fusive ionization. In the quantum theory, diffusion
corresponds to a random walk over a ladder of suit-
ably chosen quantum levels. However, both diagonal
and off-diagonal elements of the evolution operator,
which describe quantum mechanical amplitudes for
transitions between the levels, depend in a quasiperi-
odic manner on the quantum numbers of the levels
involved. Such quasiperiodic behavior is quite analo-
gous to a random one. Electronic wave packets that
initially spread in accordance with the classical laws
tend to remain localized for longer times due to
destructive quantum interference effects. Quantum lo-
calization is an analog of the Anderson localization
of electronic wave functions propagating in random
media [74.66].
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Quantum Scars
Even in the fully chaotic regime, classical phase space
contains periodic, though unstable, orbits. Neverthe-
less, quantum mechanical wave function amplitudes
can become localized around these unstable orbits,
resulting in what are called quantum scars. The in-
creased stability of the hydrogen atom at ω̃ ) 1.3
has been in fact attributed [74.67] to the effects of

quantum scars. These effects are very sensitive to
fluctuations in the driving laser field. Control of the
laser noise therefore provides a powerful spectro-
scopic tool to study such quantal phenomena [74.68].
Using this tool, it has recently become possible to
demonstrate the effects of quantum scars in the inter-
mediate regime of the scaled frequencies (less than but
close to 1).

74.3 Strong-Field Calculational Techniques

The SS pulse regime requires a nonperturbative solution
of the TDSE. Two approaches have been developed: the
explicit numerical solution of the TDSE and the Flo-
quet expansion technique. In addition to these, several
approximate methods have been proposed.

74.3.1 Floquet Theory

The excitation and ionization dynamics of an atom
in a strong laser field can be determined by turn-
ing the problem into a time-independent eigenvalue
problem [74.26,69]. From Floquet’s theorem, the eigen-
functions for a perfectly periodic Hamiltonian of the
form

H = H0+
∑

N �=0

HN e−iNωt (74.29)

can be expressed in the form

Ψ(t)= e−iXt/�
∑

N

e−iNωtψN . (74.30)

Putting this into the time-dependent Schrödinger equa-
tion results in an infinite set of coupled Floquet equations
for the harmonic componentsψN . In the velocity gauge,
the Floquet equations are

(X+ N�ω−H0)ψN = V+ψN−1+V−ψN+1 ,

(74.31)

where, for a vector potential of amplitude A,

V+ =− e

2mc
A · p , (74.32)

and V− = V †+. The equations (74.31) have been solved,
after truncation to a manageable number of terms, us-
ing many techniques to provide what are called the
quasi-energy states of the laser-atom system. The eigen-
values X of these equations are complex, with Im(X)
giving the decay or ionization rate for the system. The
generated rates are found to be very accurate as long

as the pulse length of the laser field is not too short,
at least hundreds of cycles. The eigenfunctions provide
the amplitudes for the photoelectron energy spectra, and
the time-dependent dipole of the state can be related
to the photo-emission spectrum of the system. Yields
for slowly varying pulses can be constructed by com-
bining the results from the individual, fixed-intensity
calculations [74.26].

The Floquet method can be applied for any periodic
Hamiltonian. In strong enough fields of high frequency,
the Floquet equations can be truncated to a very small
set in the K–H frame [74.54].

74.3.2 Direct Integration of the TDSE

Methods for the direct solution of the time-depend-
ent Schrödinger equation are described in general
in Chapt. 8 and in [74.70,71] for multiphoton processes.
The wave functions are defined on spatial grids or in
terms of an expansion in basis functions. The time evo-
lution is obtained by either explicit or implicit time
propagators. All these methods are capable of gener-
ating numerically exact results for an atom with a single
electron in a short pulsed field for a wide range of pulse
shapes, wavelengths and intensities. The solutions are
time-dependent wave functions for the electrons which
can be analyzed to obtain excitation and ionization rates,
photoelectron energies, angular distributions, and pho-
toemission yields. The ability to generate an explicit
solution of the TDSE allows the study of arbitrary pulse
shapes and provides insight into the excitation dynamics.

For multi-electron atoms, one generally has to limit
the calculations to that for a single electron in effective
potentials which represent, as well as possible, the influ-
ences of the remaining atomic electrons. This approach
is called the single active electron approximation, and
it gives generally accurate results for systems with no
low-lying doubly excited states, for example, the noble
gases [74.70]. In these cases, the excitation dynamics
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are dominated by the sequential promotion of a single
electron at a time.

74.3.3 Volkov States

A laser interacting with free a electron superimposes
an oscillatory motion on its drift motion in response to
the field. The wave function for an electron with drift
velocity v= �k/m is given by

ΨV(r, t)= exp

⎛

⎝− i

2m�

t∫ [
�k− e

c
A(t′)

]2
dt′

⎞

⎠

× ei[k−eA(t)/�c]·r , (74.33)

where A(t)=−c
∫ t E(t′)dt′ is the vector potential of

the field. ΨV is called a Volkov state. In a linearly polar-
ized field, the electron oscillates along the direction of
polarization with an amplitude α0 = e�A/(mcω). In the
strong field regime, this amplitude can greatly exceed
the size of a bound state orbital. Volkov states provide
a useful tool that can be applied in various strong field
approximations discussed in the next Section.

74.3.4 Strong Field Approximations

There have been several attempts to solve the TDSE
in the strong field limit using approximate, but analytic
methods. Such strong field approximations (SFA) typ-
ically neglect all the bound states of the atom except
for the initial state. In the tunneling regime (γ < 1),
and a quasistatic limit (ω→ 0), one can use a the-
ory [74.43] in which the ionization occurs due to the
tunneling through the Coulomb barrier distorted by the
electric field of the laser. The wave function is con-
structed as a combination of a bare initial wave function
of the electron (close to the nucleus) and a wave func-
tion describing a motion of the electron in a quasistatic
electric field (far from the nucleus). In an second ap-
proach [74.34–36], the elements of the scattering matrix
Ŝ are calculated assuming that initially the electronic
wave function corresponds to a bare bound state. On the
other hand, the final, continuum states of the electron are
described by dressed wave functions that account for the
free motion of the electron in the laser field. In the sim-
plest case, such dressed states are Volkov states (74.33).
Alternatively, the time-reversed Ŝ-Matrix is obtained by
dressing the initial state and using field-free scattering
states for the final state.

Yet another method consists of expanding the elec-
tronic continuum–continuum dipole matrix elements in

terms corresponding to matrix elements for free elec-
trons plus corrections due to the potential [74.45]. In
the latter version of SFA, the amplitude of the elec-
tronic wave function b(p) corresponding to outgoing
momentum p is given by

b(p)= i

tF∫

0

dt d
[

p− eA(t)/c
] · E(t)

× exp
[− iS(tF, t)/�

]
. (74.34)

Here d[p− eA(t)/c] denotes the dipole matrix element
for the transition from the initial bound state to the
continuum state in which the electron has the kinetic
momentum p− eA(t)/c, tF is the switch-off time of the
laser pulse, and

S(tF, t)=
tF∫

t

dt′
[[

p− eA(t′)/c
]2

2m
+ IP

]

(74.35)

is a quasiclassical action for an electron which is born in
the continuum at t and propagates freely in the laser field.
The form of the expression (74.34) is generic to the SFA.

74.3.5 Phase Space Averaging Method

The methods of classical mechanics are particularly use-
ful in describing the microwave excitation of highly
excited (Rydberg) atoms [74.61, 62] (Sect. 74.2.8), but
have also been applied to describe high harmonic gener-
ation, stabilization of atoms in super intense fields and
two electron ionization [74.72–74].

The classical phase space averaging method [74.75]
solves Newton’s equations of motion

ṙ = p/m , (74.36)

ṗ =−∇V(r)− eE(t) , (74.37)

for the electron interacting with the ion core and the
laser field. A distribution of initial conditions in phase
space is chosen to mimic the initial quantum mechanical
state of the system, and a sample of classical trajectories
generated. Quantum mechanical averages of physical
observables are then identified with ensemble averages
of those observables over the initial distribution. Since
the dynamics of multiphoton processes is very complex,
the neglected phases in this approach generally cause
negligible errors and the results can be in quite good
agreement with quantum calculations. Additionally, an
examination of the trajectories provides details of the
excitation dynamics which are often difficult to extract
from a complex time-dependent wave function.
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demic, The Netherlands 2001) pp. 425–434

74.73 P. B. Lerner, K. LaGattuta, J. S. Cohen: Super-
Intense Laser-Atom Physics, NATO ASI Series Ii,
Vol. 12, ed. by B. Piraux, K. Rza̧żewski (Kluwer Aca-
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Cooling and T75. Cooling and Trapping

Interactions of light with an atomic particle
are accompanied by exchange of momentum
between the electromagnetic field and the atom.
Narrow-band resonance radiation from tunable
lasers enhances the ensuing mechanical effects of
light to the extent that it is literally possible to
stop atoms emanating from a thermal gas, and to
trap atoms with light.

References [75.1] and [75.2] are two early
sources on laser cooling and trapping of the
traditional two-state model atom. A number of
articles on cooling and trapping of atoms with
the inclusion of angular momentum degeneracy
are contained in [75.3]. While the development
based on the atom-field dressed states is followed
sparingly in the present Chapter, an authoritative
survey of this approach is given in [75.4]. Reviews
on traps for charged particles include [75.5]
and [75.6]. These articles, as well as [75.2], also
discuss cooling of trapped particles.

Cooling and trapping of atomic particles are
now standard technologies, but development and
extension of the methods to new applications
continues. The special issues [75.7] and [75.8]
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give a current snapshot. Additional references
are occasionally listed here to accentuate specific
points. These citations are to either particularly
representative papers or to the most recent articles
on the subject, and are intended as entries to the
literature. No assignment of credit or priority is
implied.

75.1 Notation

In this Chapter, the lower and upper states of an optical
transition are denoted by the respective labels g and e, for
“ground” and “excited”. The notation Jg → Je stands for
a transition in which the lower and upper levels have the
angular momentum degeneracies 2Jg+1 and 2Je+1.
The resonance frequency of the transition is ω0.

The detuning of the driving monochromatic light of
frequency ω from the atomic resonance is ∆= ω0−ω.
Γ is the spontaneous decay rate. Spontaneous emission
is taken to be the sole mechanism of line broadening,
so that the HWHM linewidth of the transition is γ =
Γ/2. The Rabi frequency isΩ =DE/�, where D is the
reduced dipole moment matrix element that would apply
to a transition with unit Clebsch–Gordan coefficient,
and E is the electric field amplitude of the laser. The

corresponding intensity scale is the saturation intensity

Is = 4π2
�cΓ

3λ3 , (75.1)

defined in such a way that the light intensity I satisfies

Ω = Γ ⇒ I = Is . (75.2)

If multiple laser beams are explicitly mentioned, laser
intensity and Rabi frequency are quoted for each of the
equally intense beams.

The momentum of a photon with the wave vector k
is �k. The recoil velocity

vr = �k

m
(75.3)
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Table 75.1 Laser cooling parameters for the lowest S1/2–P3/2 transition of hydrogen and most alkalis (the D2 line). Also
shown are the nuclear spin I and the ground state hyperfine splitting ∆νhfs. Γ is typically known to within a few per cent,
so these values of Γ , TD and Is may not all be accurate to the full displayed precision

Parameter 1H 6Li 7Li 23Na 39K 40K 85Rb 87Rb 133Cs Units

m 1.67 9.99 11.7 38.2 64.7 66.4 141 144 221 10−27 kg

λ 121.6 670.8 670.8 589.0 766.5 766.5 780.0 780.0 852.1 nm

vr 326 9.89 8.48 2.95 1.34 1.30 0.602 0.589 0.352 cm/s

Γ 98.9 5.92 5.92 9.90 6.16 6.16 5.89 5.89 5.22 2πMHz

TD 2390 142 142 238 148 148 141 141 125 µK

εr 13 396 73.7 63.2 25.0 8.72 8.50 3.86 3.77 2.07 2πkHz

Tr 643 3.54 3.03 1.20 0.418 0.408 0.185 0.181 0.0992 µK

Is 14 509 5.13 5.13 12.7 3.58 3.58 3.24 3.24 2.21 mW/cm2

I 1/2 1 3/2 3/2 3/2 4 5/2 3/2 7/2

∆νhfs 1420 228.2 803.5 1772 461.7 1286 3036 6835 9193 2πMHz

equals the change of the velocity of an atom of mass m
when it absorbs a photon with wave number k = 2π/λ.
The kinetic energy of an atom with velocity vr and the
corresponding frequency,

R = 1

2
mv2

r , εr = R

�
(75.4)

are referred to as recoil energy and recoil frequency.
Two temperatures, the Doppler limit TD and the recoil

limit Tr are often cited in laser cooling. They are

TD = �γ

kB
, Tr = R

kB
, (75.5)

where kB is the Boltzmann constant.
Table 75.1 lists numerical values of pertinent pa-

rameters for laser cooling and trapping using the D2
line for most stable and long-lived alkali isotopes and
hydrogen.

75.2 Control of Atomic Motion by Light

75.2.1 General Theory

Hamiltonian
The mechanical effects of light may be derived from the
Hamiltonian

Ĥ = ĤA+ Ĥcm+ ĤF− d̂ · Ê(r̂) , (75.6)

where ĤA, Ĥcm and ĤF are the Hamiltonians for the in-
ternal degrees of freedom of the atom, center-of-mass
(cm) motion of the atom, and free electromagnetic field.
The quantized electric field is Ê(r̂), where r̂ is the cm
position operator. The dipole operator d̂ acts on the in-
ternal degrees of freedom of the atom. Since the d̂ · Ê(r̂)
term couples all degrees of freedom, the possibility of in-
fluencing cm motion by light immediately follows. The
inclusion of the quantized cm motion is the essential
ingredient not contained in traditional theories of light-
matter interactions. For an atom with mass m trapped in
a possibly anisotropic harmonic oscillator potential with

frequencies νi (i = x, y, z), the cm Hamiltonian is

Hcm = p̂2

2m
+

∑

i=x,y,z

mν2
i r̂2

i

2
, (75.7)

where p̂ is the cm momentum operator. For a free atom,
νi = 0.

Master Equation
With the aid of Markov and Born approximations, the
vacuum modes of the electromagnetic field may be elim-
inated as described in Sect. 78.7. This gives a master
equation for the reduced density operator ρ̂ that contains
the internal and cm degrees of freedom of the atom. Re-
laxation terms proportional to Γ and γ are all that is left
of the quantized fields.

Consider as an example a two-state atom in a travel-
ing wave of light with the electric field strength

E(r, t)= 1

2
E ei(k·r−ωt)+ c.c. . (75.8)
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Cooling and Trapping 75.2 Control of Atomic Motion by Light 1093

Master equations are conveniently written using Wigner
functions to represent the cm motion. Given the internal-
state labels i and j = g or e, and the three-dimensional
variables r, p, the Wigner functions are defined as

ρij(r, p)= 1

(2π�)3

∫
d3u eiu·p/�

×

〈
r− 1

2
u|〈i|ρ̂| j〉|r+ 1

2
u
〉
. (75.9)

The Wigner function is one of the quantum mechan-
ical quasiprobability distributions, Sect. 78.5, with the
special property that the marginal distribution of r ob-
tained by integrating over p coincides with the correct
quantum probability distribution for position, and vice
versa with r and p interchanged. In the rotating wave
approximation, Sect. 68.3.2, the master equations are

d

dt
ρee(p)= −Γρee(p)+ i

Ω

2

[
eik·r ρ̂ge

(
p− 1

2
�k
)

− e−ik·r ρ̂eg

(
p− 1

2
�k
)]

, (75.10)

d

dt
ρgg(p)= Γ

∫
d2nW(n̂)ρee(p+�kn̂)− iΩ

2

×

[
eik·r ρ̂ge

(
p+ 1

2
�k
)

− e−ik·r ρ̂eg(p+12�k)
]
, (75.11)

d

dt
ρ̂ge(p)= − (γ − i∆)ρ̂ge(p)− iΩ

2

×

[
e−ik·rρgg(p− 1

2
�k)

− eik·rρee

(
p+ 1

2
�k
)]

, (75.12)

d

dt
ρ̂eg(p)= − (γ + i∆)ρeg(p)+ iΩ

2

×

[
eik·rρgg

(
p− 1

2
�k
)

− e−ik·rρee

(
p+ 1

2
�k
)]

. (75.13)

Here the convective derivative that describes the motion
of the atom in the absence of light is

d

dt
= ∂

∂t
+ p

m
· ∂
∂r
−
∑

i

mνiri
∂

∂pi
; (75.14)

cf. Hcm in (75.7). W(n̂) is the angular distribution of
spontaneous photons, and the integral runs over the unit

sphere. Representative expressions for W(n̂) are

W(n̂)= 1

4π
,

3

8π

[
1− (ê · n̂)2

]
,

3

16π

[
1+ (ê · n̂)2

]
.

(75.15)

These apply, respectively, for isotropic spontaneous
emission, for spontaneous emission in a ∆m = 0 transi-
tion, and in ∆m =±1 transitions; ê stands for the unit
vector in the direction of the quantization axis for angu-
lar momentum. Only the p dependence has been denoted
explicitly in the Wigner functions, as the recoil effects
displayed on the right-hand sides of (75.10–75.13) take
place at a fixed position r.

Semiclassical Theory
Suppose that vcm % vr and τ& τcm, where τ and τcm are
the time scales for light-driven changes of the internal
state and cm motion of the atom. Then the internal de-
grees of freedom may be eliminated adiabatically from
the master equations in favor of the position-momentum
distribution for the cm motion,

f(r, p, t)=
∑

i

ρii(r, p, t) , (75.16)

where the sum runs over the internal states of the atom.
Technically, the recoil velocity vr is treated as an asymp-
totically small expansion parameter. The result is the
Fokker–Planck equation for the cm motion

d

dt
f =− ∂

∂ p
· (F f )+

∑

i, j

∂2

∂pi∂p j
(Dij f ) . (75.17)

In this semiclassical theory the cm motion of the atom
is regarded as classical. The atom moves under the op-
tical force F(r, p, t), which models the coarse-grained
flow of momentum between the electromagnetic field
and the atom. Dij(r, p, t), with i, j = x, y, z, is the dif-
fusion tensor. Diffusion is an attempt to model quantum
mechanics with a classical stochastic process, including
discreteness of recoil kicks, random directions of sponta-
neous photons, and random timing of optical absorption
and emission processes.

A general prescription exists for calculating the force
and the diffusion tensor for an arbitrary atomic level
scheme and light field [75.9]. However, the study of
diffusion amounts to an involved analysis of photon
statistics of the scattered light, and here only the force
is considered explicitly. Let V̂ (r) be the dipole interac-
tion operator coupling the driving field and the internal
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1094 Part F Quantum Optics

state for an atom at position r. By assumption, V̂ (r) has
been rendered slowly varying in time with the aid of
a suitable rotating wave approximation. To compute the
force, one takes an atom that travels along a hypothetical
trajectory unperturbed by light in such a way that at time
t it arrives at the phase space point (r, p), whereupon
the density operator of the internal degrees of freedom
is �̂. The force is then

Fi(r, p, t)=−Tr

(

�̂
∂V̂

∂ri

)

. (75.18)

Quantum Theory
When either vcm � vr or τ � τcm, the full quantum the-
ory of cooling and trapping is needed. Master equations
such as (75.10–75.13) must then be solved without the
assumption that vr is small. Most practical calculations
have been numerical case studies [75.10–12]. A trun-
cated basis, e.g., of plane waves, is used to expand the cm
state. Density matrix equations are solved numerically,
either directly, or by resorting to quantum trajectory
simulations, Sect. 78.11.

Qualitative Origin of Laser Cooling
Velocity dependent dissipative forces are needed for
cooling. They arise because the evolution of the internal
state of a moving atom has a finite response time τ . The
atom conveys the memory of the field it has sampled
over the length = vτ on its past trajectory. If & λ,
a nonequilibrium component proportional to  is present
in the density operator of the internal state of the atom.
Further interactions with light convert this component
into a velocity dependent force of the form

F =−mβv , β ∝ Iτ . (75.19)

If the damping constant β is positive, (75.19) de-
scribes exponential damping of the velocity on the time
scale β−1. In the contrary case % λ, when the atom
travels many wavelengths during the memory time, lin-
ear dependence of force on velocity breaks down. The
watershed is the critical velocity or velocity capture
range

vc ≈ λ
τ
. (75.20)

One-Dimensional Considerations
Most specific results cited here are one-dimensional. By
default, the propagation direction of light and the di-
rection of vector quantities other than light polarization
is êx . The relevant components of position, velocity and
momentum are denoted by x, v, and p.

The general one-dimensional Fokker–Planck equa-
tion for a particle trapped in a harmonic oscillator
potential with a cm oscillation frequency ν is

(
∂

∂t
+ p

m

∂

∂x
−mν2x

∂

∂p

)
f

= − ∂

∂p
(F f )+ ∂2

∂p2 (D f ) . (75.21)

For the force (75.19) with constant β = β0 and
D(z, p)= D0, the steady state of the Fokker–Planck
equation is a thermal distribution of the form

f(x, p)= K exp

[
−β0m

D0

(
p2

2m
+ mν2x2

2

)]
,

(75.22)

where K is a normalization coefficient.
Since Wigner functions give correct quantum mech-

anical marginal distributions for r and p, expectation
values of kinetic and potential energy may be calculated
from the distribution function (75.22) as if it were a clas-
sical phase space density. For a free atom with ν = 0,
the temperature is directly proportional to the kinetic
energy,

T = D0

β0mkB
. (75.23)

However, for a trapped particle with ν �= 0 the Fokker–
Planck equation may be valid all the way to the quantum
mechanical zero-point energy. Then temperature and en-
ergy are no longer directly proportional to one another.
For a trapped particle, the safe interpretation of (75.22)
is that the total cm energy of the particle is

E = D0

β0m
. (75.24)

75.2.2 Two-State Atoms

A two-state or two-level atom, discussed in detail in
Sect. 68.3, stands for a closed (recycling) transition with
one lower state and one excited state. In practice, a two-
state system is often realized by driving a J → J +1
transition with circularly polarized light. This leads to
optical pumping to the states with maximal (or minimal)
component of angular momentum along the quantization
axis, say, to the transition m = J → J +1.

Two types of force are generally distinguished: light
pressure, or scattering force, or spontaneous force, and
dipole, or gradient, or induced force. However, the dis-
tinction is neither exclusive, nor exhaustive. Here the
two types of force are approached by way of examples.
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Traveling Waves
Light Pressure. Consider a cycle of absorption and spon-
taneous emission. In an absorption, the atom receives
a photon recoil kick in the direction of the laser beam,
while in spontaneous emission the recoil kick has a ran-
dom direction and zero average. The atom is on the
average left with a velocity change equal to vr. The
corresponding force is along k, and is given by

F = Fm
Ω2/2

γ 2+∆2(v)+Ω2/2
. (75.25)

Here the maximum of light pressure force, a convenient
scale for optical forces, is

Fm = 1

2
MvrΓ , (75.26)

and

∆(v)=∆+ kv (75.27)

is the effective detuning, which includes the Doppler
shift experienced by the moving atom.

Diffusion. For a traveling wave, the diffusion coefficient
accompanying light pressure is

D

�2k2Γ
= (1+α)Ω2

4
[
∆2(v)+γ 2+Ω2/2

]

−
[
∆2(v)−3γ 2

]
Ω4

4
[
∆2(v)+γ 2+Ω2/2

]3
, (75.28)

where

α=
∫

d2nW(n̂)(êx · n̂)2 (75.29)

depends on W(n̂), see (75.15). Representative values are
α = 1/3 for isotropic spontaneous emission, and α =
2/5 (α= 3/10) for spontaneous emission with ∆m = 0
(∆m =±1) with respect to a quantization axis that is
perpendicular (parallel) to the direction êx .

Spontaneously emitted photons cover all of the 4π
solid angle, and so do the directions of photon recoil
kicks on the atom. Absorption from a light wave travel-
ing in a particular direction leads to transverse diffusion
also in the orthogonal directions, which is not accounted
for by the one-dimensional (75.28).

Phenomenology in Multimode Fields
Doppler Cooling in Standing Waves. Next take an atom
in two counterpropagating plane waves of light. At low
intensity,Ω& Γ , forces of the form (75.25) for the two

beams may be added when averaged over a wavelength.
For velocities well below the critical velocity

vc,D = Γ
k
, (75.30)

the wavelength-averaged force is of the form of (75.19),

F =−mβ̄v , β̄ = 4Ω2γ∆
(
∆2+γ 2

)2
εr . (75.31)

When light is tuned below the atomic resonance (“red de-
tuning” with∆> 0), exponential damping of the atomic
velocity with the time constant β̄−1 ensues. No matter
which way the atom moves, it is always Doppler tuned
toward resonance with the light wave that propagates
opposite to its velocity, and away from resonance with
the light wave that propagates along its velocity. Net
momentum transfer therefore opposes the motion of the
atom. This is known as Doppler cooling.

Optical Molasses. For three pairs of counterpropagating
waves in three orthogonal directions, (75.31) is valid in
all coordinate directions, and hence as a vector equa-
tion between the force F and velocity v. For ∆> 0 an
atom experiences an isotropic viscous damping force,
as if it were moving in a thick liquid. Such a field
configuration is dubbed optical molasses. Two coun-
terpropagating beams make a one-dimensional optical
molasses.

Limit of Doppler Cooling. Under the conditions
of (75.31), the diffusion coefficients for the two coun-
terpropagating beams averaged over a wavelength may
be added, and the v= 0 form suffices for slow atoms.
This yields

D̄(v= 0)

�2k2Γ
= (1+α)Ω2

2
(
∆2+γ 2

) . (75.32)

The random diffusive motion of the atom corresponds
to diffusive heating that competes with Doppler cooling.
In equilibrium, the temperature is

T = D̄(v= 0)

mβ̄kB
= �γ

4kB
(1+α)

(
∆

γ
+ γ
∆

)
. (75.33)

Equation (75.33) also applies to three-dimensional
Doppler cooled molasses, provided one uses α= 1 cor-
responding to added transverse diffusion. The minimum
temperature is reached at

∆= γ = Γ
2
. (75.34)
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For three-dimensional molasses, the Doppler limit TD
of (75.5) is obtained.

ForΩ>Γ , the performance of Doppler cooling de-
teriorates. Qualitatively, power broadening increases the
effective linewidth γ .

Dipole Forces. Dipole forces are the resonant analog
of ponderomotive forces discussed in Sect. 74.2. They
arise from successions of absorption and induced emis-
sion driven by photons with different momenta. Such
processes occur only if there is more than one wave
vector present in the field, i. e., if there is an intensity
gradient. For a zero-velocity two-state atom, the gradi-
ent force in a monochromatic field with the local total
intensity I(r) is

Fg(r)= 4�∆γ 2

∆2+γ 2[1+2I(r)/Is]
∇ I(r)

Is
. (75.35)

The dipole force may be derived from the potential
energy

Vg(r)=−2�∆ ln

(
1+ 2γ 2 I(r)/Is

∆2+γ 2

)
. (75.36)

The atoms are strong field seekers for ∆> 0, and weak
field seekers when ∆< 0.

Optical Trap and Optical Lattice. Dipole forces are uti-
lized in the optical trap for atoms, and even molecules.
A common configuration consists of a focused laser
beam tuned below resonance. The focus becomes the
trap. The detuning from resonance may be substantial;
lasers such as CO2 and Nd–YAG have been used.

A standing wave of light makes a periodic array of
optical traps called an optical lattice. Optical lattices
may be set up in 1D, 2D, and 3D configurations.

Induced Diffusion. Random motion of atoms in vel-
ocity space owing to absorptions and induced emissions
of photons with different momenta leads to induced
diffusion. Contrary to diffusion in a traveling wave as
in (75.28), induced diffusion does not saturate at high
intensity. Instead, the diffusion coefficient continues to
grow linearly with I . Induced diffusion is another rea-
son why the lowest Doppler cooling temperatures are
generally reached at low (I < Is) light intensities.

Sisyphus Effect. In a standing wave at high intensity
and large detuning, another kind of optical force be-
comes important that cannot be categorized either as
light pressure or gradient force.

As explained in Sect. 68.3.4, one may diagonalize
the Hamiltonian to obtain the dressed atom-field states.
Because the light field depends on position, so do the
energies of the dressed states and their decompositions
into plain atomic states. In Fig. 75.1 drawn for ∆< 0,
the dressed state with a minimum (maximum) at the
field nodes coincides with the bare ground state (ex-
cited state) at the nodes. At the antinodes the admixtures
of ground and excited states are evened out to some
extent.

The energy of a dressed state acts as potential energy
for the cm motion of an atom residing in that particu-
lar state. In fact, the gradient force is the force derived
from these potential energies, averaged over the occupa-
tion probabilities of the dressed states. The occupation
probability is larger for the dressed state with a larger
ground state admixture. From Fig. 75.1 one therefore
sees that the atom predominantly resides in the dressed
state that has a minimum of energy at the nodes. The
atom is a weak-field seeker, as it should for ∆< 0.

Spontaneous emission remains to be considered. It
gives rise to transitions between the dressed states. These
transitions may go both ways between the dressed states,
because the states are in general superpositions of the
bare ground state and the excited state. The rate of spon-
taneous transitions from one dressed state to another

Fig. 75.1 Qualitative origin of Sisyphus effect. The hatched
pattern represents a standing light wave. The energies of
the two dressed states are drawn as a function of position,
along with a few filled circles representing the admixture
of the ground state in each dressed state at selected field
positions. Larger circles correspond to larger ground state
admixtures, and hence, larger equilibrium populations of
the dressed state. This figure applies for tuning of the laser
above the atomic resonance (“blue detuning”)
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Cooling and Trapping 75.2 Control of Atomic Motion by Light 1097

increases (decreases) with the excited (ground) state
admixture of the initial state.

In reference to Fig. 75.1, suppose that the atom is
coming from the left in the upper dressed state. The
probability that the atom makes a transition to the lower
dressed state, as marked by the downward vertical ar-
row, is largest at the node. If this transition takes place,
near the next antinode the most probable transition is as
shown by the upward vertical arrow. In this manner the
atom spends most of its time at an uphill climb against
the potential, and is therefore slowed down. In reference
to Greek mythology, this is called the Sisyphus effect.
In the two-state model atom, cooling takes place when
the laser frequency is higher than the atomic resonance
frequency.

Exact Results for Standing Waves
Force. The force on a two-state atom in a one-
dimensional standing light wave may be expanded
analytically to first order in velocity. With the field phase
chosen so that the antinode is at x = 0, the force is

F(x, v)= Fg(x)−mβ(x)v , (75.37)

where the gradient force is

Fg(x)=−�k∆Ω2 sin 2kx

d
, (75.38)

and the damping coefficient is

β(x)= 8∆Ω2εrγ
−1d−3

(
1− cos2 kx

)

×
(
∆2γ 2+γ 4−2γ 2Ω2 cos2 kx

−2Ω4 cos4 kx
)
, (75.39)

with d =∆2+γ 2+2Ω2 cos2kx.

Diffusion. For a standing wave, the v = 0 form of the
diffusion coefficient is

D(v= 0)

�2k2Γ

= Ω
2
(
αγ 2 cos2 kx+γ 2 sin2 kx+2Ω2 sin2 kx cos2 kx

)

2γ 2d

− ∆
2Ω4 sin2 kx cos2 kx

(
∆2+5γ 2+4Ω2 cos2 kx

)

γ 2d3
.

(75.40)

Semiclassical versus Quantum Theory
When γ % εr, the r.m.s. velocity of a cooled two-state
atom is always % vr, and semiclassical theory is valid.

Under the same condition γ % εr, the Doppler-limit
r.m.s. velocity also is less than the critical velocity vc,D
from (75.30). Velocity expansions such as in (75.37)
and (75.40) are then justified.

In the contrary case, γ � εr, the full quantum the-
ory of trapping and cooling must be employed. The
cooled velocity distribution is not thermal, and tem-
perature is ill-defined. The lowest expectation value of
kinetic energy for a two-state atom in a linearly polar-
ized standing wave occurs at low I for∆= 4.4εr, and is
equal to 0.53 R.

75.2.3 Multistate Atoms

Energy levels of atomic systems usually have angular
momentum degeneracy. In addition, the polarization of
light in general depends on position. A combination of
these aspects leads to phenomena beyond the two-state
atomic model.

Polarization Gradient Cooling
As explained in connection with (75.19), a finite mem-
ory time of the internal atomic state may lead to damping
of the cm motion. For a two-state atom, internal equi-
libration arises from spontaneous emission. The time
scale is τD ∼ Γ−1, and Doppler cooling ensues. How-
ever, an atom whose ground state has angular momentum
degeneracy is also subject to optical pumping. If the
polarization of light varies as a function of position, op-
tical pumping is needed to reach local equilibrium. The
pumping time scale τp ∝ I−1 then becomes relevant for
a moving atom. The associated cooling is known as
polarization gradient cooling. Its hallmark is that, for
low I , the damping coefficient β ∝ Iτp is independent
of intensity.

Two detailed mechanisms of polarization gradi-
ent cooling have been described [75.13], although in
three-dimensional light fields they are intertwined. The
Sisyphus effect works like the Sisyphus effect for a two-
state atom, except that it relies on light shifts and optical
pumping within the ground state manifold. Induced
orientation cooling is analogous to Doppler cooling.
Velocity dependence of optical pumping in counterprop-
agating waves leads to pumping to a state for which the
force due to the wave propagating opposite to the atom
exceeds the force due to the wave propagating along
with the atom.

Lin⊥ Lin Molasses. One-dimensional lin⊥ lin molasses
consists of two counterpropagating waves with orth-
ogonal linear polarizations. The net polarization varies
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from linear – via elliptical – to circular over a distance
of λ/8. With the phases chosen such that light is linearly
polarized at x = 0, in the limit of nonsaturating inten-
sity, and at low velocity, the semiclassical force on an
atom with a J = 1/2 → 3/2 transition is

F =−�k∆

[
1

3
s sin 4kx− 2

3
qvγ−1(1+ cos 4kx)

]
.

(75.41)

Here the saturation parameter s is

s = Ω2/2

∆2+γ 2
. (75.42)

In this configuration, only the Sisyphus effect con-
tributes to cooling. Cooling takes place for ∆> 0, and
the resulting temperature obtained from the position-
averaged quantities is

T = 135∆2+296γ 2

1080(∆2+γ 2)

(
2IΓ

Is|∆|
)

TD . (75.43)

σ+–σ− Molasses. One-dimensional σ+–σ− molasses
consists of two counterpropagating waves with opposite
circular polarizations. The net polarization is linear ev-
erywhere, but the direction of polarization rotates as the
point of observation is displaced along the propagation
axis; hence, the alternative name corkscrew molasses.
At low intensity and low velocity, the force on an atom
with a J = 1 → 2 transition is

F =−60

17

∆γ

5γ 2+∆2
�k2v . (75.44)

In this configuration only induced orientation cooling
contributes. Cooling again takes place for ∆> 0, and
the resulting temperature is

T = 29∆2+1045γ 2

300
(
∆2+γ 2

)
(

2IΓ

Is |∆|
)

TD . (75.45)

Lin ‖ Lin Molasses. The designation lin ‖ lin denotes
a standing wave with the same linear polarization for
both counterpropagating beams. In one dimension there
is no polarization gradient, but three lin ‖ lin pairs
in orthogonal directions (often with mutually orthog-
onal polarizations) make a three-dimensional optical
molasses with potential polarization gradient cooling.

Experimental Molasses. For IΓ/Is |∆| < 1 and
|∆|> Γ , the temperatures (75.43) and (75.45) both
reduce to the form

T = C
�Ω2

kB|∆| = C
2IΓ

Is|∆|TD . (75.46)

Under these conditions the same scaling is approx-
imately observed also in three-dimensional six-beam
optical molasses operating with atoms that have a de-
generate ground state. The constant C depends on the
degeneracy of the transitions and on the polarizations of
the molasses beams. Measured values are mostly in the
range 0.25< C < 0.5 [75.14].

Limit of Cooling. While the expressions (75.43), (75.45)
and (75.46) suggest that T goes all the way to zero as
I → 0 or∆→∞, there is a lower limit of T reached in
polarization gradient cooling. T eventually starts to rise
abruptly when |∆| is increased or I is decreased. The
empirical rule of thumb is that T ∼ 10 Tr is the lowest
temperature one can expect.

Semiclassical versus Quantum Theory. According to
the semiclassical theory, T ∝ I , so the r.m.s. velocity
of cooled atoms is proportional to I1/2. Now, the crit-
ical velocity of polarization gradient cooling, estimated
roughly as

vc,p = λ

τp
≈ λγΩ2

∆2+γ 2
, (75.47)

is proportional to I . At low enough I , vc,p is therefore
smaller than the velocity width of the cooled atoms.
Expansions of force and diffusion in velocity are no
longer useful, and temperature predictions of the type
(75.46) fail. This occurs, at the latest, when the r.m.s.
velocity equals a few recoil velocities.

Semiclassical theory does not lead to predictions that
grossly violate its key premise that the ensuing velocity
distribution is much broader than vr. However, reliable
theoretical limits of temperature for polarization gradi-
ent cooling may only be obtained from the full quantum
treatment.

Magneto-Optical Trap
Since spontaneous forces may be strong already at mod-
est light intensities ∼ lmathrmS use of light pressure to
trap neutral atoms appears desirable. However, the opti-
cal Earnshaw theorem states that (in the limit of low I)
the spontaneous force on a two-state atom is sourceless.
While confinement may be possible in some directions,
escape routes for atoms remain open in others. Three-
dimensional trapping of a two-state atom with light
pressure is not possible.

A Magneto-optical trap (MOT) defeats the Earnshaw
theorem by relying on angular momentum degeneracy.
Consider an atom with a J = 0→ 1 transition in a mag-
netic field B that depends linearly on position around the
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zero at x = 0. Suppose that the gradient of B is chosen in
such a way that the m = 1 (m =−1) magnetic substate
of the excited state has the higher (lower) energy for
x > 0, and that the atom is illuminated by σ± polarized
beams propagating in the ±x-directions, tuned below
resonance. When the atom is displaced from x = 0 in ei-
ther direction, it is closer to resonance with the beam that
pushes it back toward x = 0. This makes the restoring
force responsible for trapping.

A magneto-optical trap can be set up also in three
dimensions. A quadrupole magnetic field of the form

B(r)) ∂Bz

∂z

∣∣∣∣
r=0

(
zêz − 1

2
xêx − 1

2
yêy

)
(75.48)

is produced by reversing the direction of current in one of
the two Helmholtz coils. Three orthogonal pairs of light
beams, each in the σ+–σ− configuration, complete the
trap. The magnetic field is sourceless. To compensate
for the ensuing signs of the field gradients, one of the
σ+–σ− corkscrews has the opposite handedness from
the other two.

The mechanism of the magneto-optical trap for the
J = 0 → 1 configuration is the same as the mechanism
for Doppler cooling, except that position dependent level
shifts of the excited states take the place of velocity
dependent Doppler shifts. The restoring force and the
damping coefficient of Doppler cooling are closely re-
lated. For the coordinate directions u = x, y, z the relation
is

Fu =−κuu, κu = βmgeµB

�k

∣∣∣∣
∂Bu

∂u

∣∣∣∣ , (75.49)

where ge is the Landé factor for the excited state.
A magneto-optical trap may similarly be based on

the induced orientation mechanism of polarization gra-
dient cooling. In that case, the Landé factor of the
ground state, gg, should probably be used in (75.49).
This may be the true mechanism of most magneto-
optical traps, but insufficient quantitative understanding
precludes firm conclusions.

Atoms in a well-aligned magneto-optical trap reside
near the zero of B, so that the magnetic field has little
effect on polarization gradient cooling. Trapping and
cooling are achieved simultaneously.

75.3 Magnetic Trap for Atoms

The magnitude B(r) of a magnetic field may have a min-
imum in free space, as in (75.48). A particle with
a magnetic dipole moment µ then experiences a trap-
ping potential U(r)= µB(r) if µ and B are antiparallel.
µ remains locked antiparallel to B if the field seen by
the moving dipole satisfies the adiabatic condition

1

B

∣∣∣∣
dB

dt

∣∣∣∣&
µB

�
(75.50)

(Section 73.3.4). However, if B(r)= 0 at the minimum,
the adiabatic condition is violated and the dipole may
flip (Majorana transition). The particle may end up in
a repulsive potential, and get expelled from the trap.
This becomes a problem at low temperatures, when the

particles accumulate near the minimum of the poten-
tial. Trap configurations are therefore designed in which
B(r) �= 0 at the minimum.

Evaporative Cooling.
A magnetic trap is often combined with evaporative
cooling. The most energetic atoms from the tail of the
thermal distribution escape from the trap, whereupon the
average energy of the remaining atoms decreases. Suc-
cessful operation of evaporative cooling requires a high
enough rate of elastic collisions so that the atoms ther-
malize in a time short compared with the lifetime of the
sample. In order to sustain the rate of evaporation, the
effective depth of the trap is lowered as the atoms cool.

75.4 Trapping and Cooling of Charged Particles

Since the potentialΦ(r) of a static electric field satisfies
Laplace’s equation, Φ(r) cannot have an extremum in
free space. A static electric field therefore cannot serve
as an ion trap (Earnshaw’s theorem). Paul and Penning
traps circumvent this limitation by making use of an al-
ternating electric field and a magnetic field, respectively.
Cooling is often employed to assist trapping.

75.4.1 Paul Trap

Trapping
Configuration. Consider an ideal trap whose sur-
faces are hyperboloids of revolution; see Fig. 75.2.
The two “endcaps” and the intervening “ring”
are equipotential surfaces of the quasistatic electric
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z0

U – Vcos ω̃t

ρ0
	

Fig. 75.2 Electrode configuration and voltages of an ideal
hyperboloid Paul trap

potential

Φ(x, y, z)= Φ0(t)
(
2z2− x2− y2

)

2�2
0

, (75.51)

where �0 is the distance from the center to the ring,
z0 = �0/

√
2 is the distance to the endcaps, and Φ0(t) is

a voltage applied between the endcaps and the ring,

Φ0(t)=U −V cos ω̃t . (75.52)

Motion of an Ion. In the ideal three-dimensional Paul
trap, Newton’s equations of motion for the coordinates
u = x, y or z may be recast as Mathieu’s equations,

d2u

dτ2
+ (au −2qu cos 2τ)u = 0 , (75.53)

where τ = ω̃t/2 is a dimensionless quantity proportional
to time, the parameters are

az = −2ax,y =− 8qU

mω̃2�2
0

, (75.54)

qz = −2qx,y =− 4qV

mω̃2�2
0

, (75.55)

and m and q are the mass and charge of the particle.
Stable trapping ensues when au and qu are such that the
motion of the ion is stable in all directions. A Paul trap
normally operates in the first stability region of (75.53).

Stable motion may be qualitatively divided into
forced micromotion at the frequency ω̃ of the external
drive, and into slower secular motion of the center of the
micromotion. If U = 0, the secular motion takes place
in an effective ponderomotive potential UP, Sect. 74.2,

equal to the cycle-averaged kinetic energy in the micro-
motion. Explicitly,

UP(r)= q2E2(r)
4mω̃2

= q2V 2
(
x2+ y2+4z2

)

4mω̃2�4
0

,

(75.56)

where E(r) is the ac field amplitude. This is an
anisotropic harmonic oscillator potential characterized
by the oscillation frequencies

νz = 2νx,y =
√

2qV

mω̃�2
0

. (75.57)

Quantization of C.M. Motion. The separation of micro-
motion and secular motion is excellent, and the trap
is stable, when νx,y,z & ω̃. Ignoring the micromotion,
the cm motion of the ions in the potential UP(r) may
be quantized readily. The energy of a state with nx,y,z
quanta in the coordinate directions x, y, z is

E =
∑

i=x,y,z

�νi

(
ni + 1

2

)
. (75.58)

Variations of Paul Trap. Little practical advantage usu-
ally arises from a realization of the ideal shape. Even
a single electrode with an applied ac voltage may work as
a Paul trap. A linear trap is basically a two-dimensional
Paul trap with an added static longitudinal potential to
prevent escape of the ions from the ends of the trap.
A closed race track Paul trap is obtained by bending
a linear trap into a ring.

Cooling
Laser Cooling in One Dimension. The secular motion
of an ion may be cooled using lasers. Consider the
motion of the ion in one of the principal-axis direc-
tions x, y, z, with ν denoting the corresponding cm
frequency. In the common case where γ % ν, Doppler
cooling works basically as with a free atom. In the con-
trary case, ν% γ , cooling may be achieved by tuning
the laser to ω= ω0−ν. Resonant photoabsorption start-
ing with n cm quanta decreases the quantum number
from n to n−1, and subsequent spontaneous emission
on the average leaves the cm energy nearly untouched.
The net effect is reduction of the cm energy by �ν

in such a Raman process. Since the oscillating ion
sees a frequency-modulated laser with sidebands, this
method of ion cooling is called sideband cooling.

For one-dimensional motion of a two-state ion in
a traveling light wave at low I , the velocity damping
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rate is

β = 2Ω2γ∆
[
(∆+ν)2+γ 2

] [
(∆−ν)2+γ 2

]εr , (75.59)

and the expectation value of the cm energy is

E = �

4∆

(

∆2+γ 2+ν2

+ α
[
(∆−ν)2+γ 2

] [
(∆+ν)2+γ 2

]

∆2+γ 2

)

,

(75.60)

where α characterizes the angular distribution of sponta-
neous emission, see (75.29). The result (75.60) is useful
when either εr & γ or εr & ν. The limit ν& γ is for
Doppler cooling; the temperature from (75.60) coin-
cides with (75.33) for a free atom. The case with both
ν% γ and εr & ν corresponds to sideband cooling in the
Lamb–Dicke regime, in which the cooled ion is confined
to a region much smaller than λ.

In connection with sideband cooling, it is convenient
to cite the expectation number of harmonic oscillator
quanta 〈n〉 instead of energy or temperature; the latter
are

E = �ν

(
〈n〉+ 1

2

)
, T = �ν

kB

[
ln
(

1+〈n〉−1
)]−1

.

(75.61)

For optimal sideband cooling, ν% γ and ∆= ν, the
result is

〈n〉 = 1

4
(1+4α)

(γ
ν

)2+O

[(γ
ν

)4
]
. (75.62)

In principle, by decreasing the linewidth γ , the ion may
be put arbitrarily close to the ground state of the cm har-
monic oscillator. Such a decrease is not practical in real
two-state systems, but is routinely achieved by using the
two-photon resonance in a three-state Λ configuration
as an effective two-state system; see Sect. 73.6.2.

Laser Cooling in Three Dimensions. Either by design
or chance, no two of the νi are precisely degenerate. If
the damping rate β and the trap frequencies νi satisfy

β � |νi −ν j |, i �= j , (75.63)

the motion of the ion in each principal axis direc-
tion of the trap is cooled independently of the other
directions. For γ % νx,y,z , a single laser beam propagat-
ing approximately in the direction

(
1/
√

3
)
(êx + êy + êz)

suffices to cool all components of the secular motion.

Energy in Micromotion. Possibly with the aid of com-
pensating static electric fields, one cooled ion may be
confined near the zero of the trapping ac electric fields.
Then the energy in the micromotion is comparable to
the energy in the secular motion.

75.4.2 Penning Trap

Trapping
Configuration. In the Penning trap, a dc voltage U is
applied between the endcaps and the ring, and a constant
magnetic field B in the direction of the trap axis z is
added. The magnetic field forces an ion escaping toward
the ring to turn back.

Motion of an Ion. The motion of an ion is a super-
position of three periodic components. For the same
ideal hyperboloid shape that was discussed with the Paul
trap, (75.51) and Fig. 75.2, the three components are
completely decoupled. Firstly, in the axial direction, the
ion executes oscillations at the axial frequency

νz =
(

2qU

m�2
0

)1/2

. (75.64)

Secondly, the ion undergoes cyclotron motion in the
plane perpendicular to the trap axis. As a result of the
electric field, the frequency of the cyclotron motion

ν′c =
1

2
νc+

(
1

4
ν2

c −
1

2
ν2

z

)1/2

(75.65)

is displaced from the cyclotron frequency νc = qB/m
of a free ion. Thirdly, the guiding center of cyclotron
motion rotates about the trap axis at the magnetron
frequency

νm = 1

2
νc−

(
1

4
ν2

c −
1

2
ν2

z

)1/2

. (75.66)

The frequencies typically satisfy

νm & νz & ν′c . (75.67)

Magnetron motion has unusual properties. It takes up
the majority of the electrostatic energy in the transverse
directions, which in the absence of the magnetic field
would lead to expulsion of the ion. Relative to a station-
ary ion at the trap center, the energy of the magnetron
motion is bounded from above by zero. The radius, as
well as velocity and kinetic energy of magnetron mo-
tion, decreases with increasing total energy. The energy
for a state with nc, nz and nm quanta in the cyclotron,
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axial and magnetron motions is therefore

E = �ν′c
(

nc+ 1

2

)
+�νz

(
nz + 1

2

)

−�νm

(
nm+ 1

2

)
. (75.68)

Cooling
Laser Cooling. For ions in a practical Penning trap, the
frequencies ν′c, νz and νm are < γ . If k is not orth-
ogonal to either the cyclotron motion or the axial motion,
Doppler cooling proceeds essentially as for a free atom.
However, energy should be added to the magnetron mo-
tion in order to reduce the magnetron radius and velocity.
The solution is to aim a finite-size laser beam off the
center of the trap in such a way that an ion experiences
a higher (lower) intensity over the part of its magnetron
orbit in which it travels in the direction of (opposite
to) the laser beam. With a proper choice of the param-
eters, the ensuing addition of energy overcomes Doppler
cooling of the magnetron motion.

Other Cooling Methods. Precision measurements are
carried out in Penning traps with objects that do not have
an internal level structure suitable for laser cooling; and
thus, other cooling methods are used.

For light particles such as electrons, characteristic
times of radiative damping of the cyclotron motion are
in the subsecond regime, and hence, so are the equi-
libration times with blackbody radiation. Cooling is
accomplished by enclosing the trap in a low-temperature
(e.g. liquid helium) environment. For protons and heav-
ier particles, the equilibration times of the cyclotron
motion with the environment are impracticably long,
and the same applies to the axial and magnetron motions
even for electrons.

A workable cooling scheme for the axial motion is
based on the charges that the oscillating particle induces
on the endcaps. The charges generate currents in an
external circuit connecting the endcaps. The endcaps
are thus coupled to a cooled resonant circuit tuned to
the axial frequency, and axial motion relaxes to thermal
equilibrium with the resonant circuit. A variant of this
resistive cooling , in which the ring is split into elec-
trically insulated segments, is used to cool the cyclotron
motion of protons and heavier ions.

Magnetron motion of an electron or proton is cooled
by sideband cooling. An electric field with compon-
ents in both the z-direction and xy-plane, and tuned
to ω= νz +νm, drives transitions which may either in-
crease or decrease the number of quanta in each mode.

However, the matrix elements favor transitions with
∆nz = 1 and ∆nm =−1. Pumping of the axial motion
is canceled by axial cooling, while an equilibrium with
low kinetic energy ensues for the magnetron motion.
Ideally, the ratio of kinetic energies becomes

Tkin,m

Tkin,z
= νm

νz
. (75.69)

75.4.3 Collective Effects in Ion Clouds

As soon as there is more than one ion in the trap,
Coulomb interactions between the ions profoundly
shape the physics [75.15, 16].

Ion Crystal
In the standard Paul trap radio frequency heating due
(presumably) to transfer of energy from micromotion
to secular motion limits the number of ions that can
be cooled efficiently by a laser. Nevertheless, at a low
temperature, the ions settle to equilibrium positions cor-
responding to a minimum of the joint trapping and
Coulomb potentials, and form a “crystal”. Depend-
ing on the trap parameters, the ions may also execute
quasiperiodic or chaotic collective motion, or move
nearly independently of one another. Changes between
crystalline and liquid forms of the ion cloud resembling
phase transitions are observed.

Strongly Coupled Plasma
Cooling of a large number of ions is possible in a Pen-
ning trap. However, magnetron motion becomes uniform
rotation of the entire cloud, and Coulomb interactions
set a lower limit on the attainable radius of the cloud.
This leads to a lower limit on the kinetic energy and
second-order Doppler shift.

In a co-rotating frame, the ions behave like a one-
component plasma on a neutralizing background. The
characteristic parameter for a one-component plasma
with charge per particle q and density n is

ΓP =
(

4πn

3

)1/3 q2

4πε0kBT
, (75.70)

essentially the ratio of the Coulomb energy between two
nearest-neighbor ions divided by the thermal kinetic en-
ergy. ΓP > 1 indicates a strongly coupled plasma; for
ΓP > 2 and ΓP > 170 solid and liquid phases are ex-
pected in an infinite plasma. Experiments with a Penning
trap have produced ΓP � 300. Concentric shells of ions
or various more or less crystalline arrangements are seen
depending on the experimental conditions.
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Sympathetic Cooling
In a trap that holds two or more species of charged
particles, cooling of the motion of one species is trans-

ferred by Coulomb interactions to the other species. This
sympathetic cooling broadens the scope of ion cooling
methods.

75.5 Applications of Cooling and Trapping

Trapping and cooling offer increased interaction times
between the atoms/ions and the light. This leads
to reduced transit time broadening, and indeed to
macroscopic (> 1 s) interaction times. Laser cooling in
a magneto-optical trap routinely gives temperatures so
low that the Doppler width is below the natural linewidth
of the cooling transition. A homogeneously broadened
atomic sample is thus prepared. Cooling also enables
reduction of the second-order Doppler effect.

Various frequency measurements are the prime ben-
eficiary of cooling and trapping. Potential applications
range from detection of the change of natural constants
in time Chapt. 30 to such feats of technology as the
Global Positioning System.

75.5.1 Neutral Atoms

Experimental Considerations
Originally the experiments often started with a longi-
tudinal deceleration and cooling of an atomic beam by
a counterpropagating laser beam. To compensate for the
change of the Doppler shift of the atoms while they
slowed down, the position dependent magnetic field of
a tapered solenoid shifted the transition frequency of the
atoms to keep them near resonance while they moved
down the solenoid. A magneto-optical trap then scooped
some atoms, cooled them further, and captured them.
Nowadays this Zeeman slower ist mostly supplanted
by various schemes in which a MOT directly captures
atoms from the low-velocity wing of the thermal dis-
tribution. Depths of neutral-atom traps are below 1 K.
Storage times are typically of the order of 1 s, limited at
high densities by exothermal binary collisions and at low
densities by collisions with the atoms in the background
gas.

The temperature of cooled atoms may be measured
by the time-of-flight method. All cooling and trapping
fields are turned off, whereupon the atoms fall freely
under gravity. The distribution of arrival times of atoms
at a probe laser beam underneath the initial molasses is
compared with a numerical model for the disintegration
of the molasses. A fit gives the temperature.

The focus is on Li, Rb and Cs, to a large extent
because the required laser frequencies can be generated

using inexpensive diode lasers. Hyperfine structure of
the ground state of the alkalis complicates experiments
because the atoms may end up in an inert hyperfine
level outside the active cooling/trapping transitions. To
counteract this, a second appropriately tuned repump
laser is added to return such atoms to circulation. A few
experiments use lanthanide atoms or metastable states
of rare-gas atoms, some isotopes of which do not have
hyperfine structure.

Cold Collisions
In the molecular picture of a collision involving a laser,
optical excitation takes place at the interatomic dis-
tance for which the difference between the potential
curves of the incoming and excited states equals the
energy of a laser photon [75.17]. The end products of
an inelastic collision (fine or hyperfine structure chang-
ing collision, associative ionization, radiative escape,
etc.) are normally determined at shorter interatomic dis-
tances, when the potential curve of the excited state has
an anti-crossing with the potential curve of the product
channel. The novel feature of ultracold collisions is the
long duration due to the low velocity of the collision
partners. Spontaneous emissions and other phenomena
irrelevant at room temperature may take place during
the collision.

On the scale of typical resonance widths, at very
low temperatures the collision partners are in effect
in a single continuum state with zero energy. This fa-
cilitates photoassociation spectroscopy. Laser-induced
transitions from the initial continuum state to bound
vibrational states of the molecule are observed.

Collisions are of practical importance in that they
limit the achievable atom density in a trap: an inelastic
collision may release more kinetic energy than the trap
can contain, which results in a loss of an atom (or two
atoms) from the trap. Collision rates are actually meas-
ured by monitoring the loss rate of atoms as a function
of density. Precise energies of the molecular vibrational
states from photoassociation spectroscopy are used as
input to determine [75.18] s-wave scattering lengths
for atoms and to measure molecular parameters to an
accuracy that far exceeds the capabilities of ab-initio
calculations.
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Frequency Standards
An atomic fountain starts with an optical molasses or
a magneto-optical trap. The laser beams are then manip-
ulated to give an upward push to the atoms. The atoms
fly up against gravity for a few tens of centimeters, then
turn back and, because of the initial transverse veloci-
ties, fan out to a “fountain”. In a fountain clock [75.19],
the fountain erupts through a microwave cavity that
drives a hyperfine transition in the atoms. The clock
is in effect an accurate measurement of the transition
frequency. The fountain is beneficial because the inter-
rogation times≈ 1 s are longer and the atomic velocities
≈ 1 m/s slower than in traditional beam clocks.

Bose–Einstein Condensate
At present, the most prominent basic-physics applica-
tions of cooling and trapping of atoms undoubtedly are
in studies of Bose–Einstein condensation and quantum
degenerate Fermi gases in dilute atomic vapors. This
topic is covered in Chapt. 76.

75.5.2 Trapped Particles

Experimental Considerations
Both Paul and Penning traps behave like a conserva-
tive potential, and scatter rather than confine a particle
coming from the outside. One method to load a trap is
to generate the ions in situ, e.g., by letting a beam of
atoms and electrons collide inside the trap. Time depen-
dent electric potentials are another loading method. The
trapped species is injected thorough a hole in the endcap,
and the opposing endcap is raised to an electric potential
that makes the entering particles stop. The potential is
then lowered before it ejects the particles. A single elec-
tron, positron, proton, antiproton or ion may be loaded.
Typical depths of ion traps are ≈ 1 eV or ≈ 104 K. With
the aid of cooling, the storage time may be made infinite
for all practical purposes.

Trap frequencies are measured by observing the res-
onance excited by added ac fields. For instance, an
electric field near the axial cm resonance frequency may
be coupled between the ring and one endcap. A reso-
nance circuit coupled between the ring and the other
endcap is used to detect the resonance. Alternatively,
ejection of the driven ions is monitored.

For an electron in a Penning trap, the cyclotron fre-
quency is in the extreme microwave region. Detection
of the resonance is achieved indirectly. The uniform
magnetic field is perturbed with a piece of a ferro-
magnet to make a magnetic bottle. The axial motion
and the cyclotron motion are then coupled. A resonant

microwave drive adds energy to the cyclotron motion,
which detectably alters the axial frequency.

The three trap frequencies satisfy

ν2
c = ν′2c +ν2

m+ν2
z . (75.71)

This relation remains valid even if the magnetic field
is misaligned with respect to the trap axis, and is also
insensitive to small imperfections in the cylindrical sym-
metry of the electrodes. The bare cyclotron frequency
may therefore be deduced accurately.

For an ion with a dipole-allowed resonance transi-
tion, fluorescence of a single ion is readily detected.
Even absorption of a single ion may be measurable.
Various methods of finding the temperature have been
devised. At temperatures of 1 K and higher, Doppler
broadening of a dipole-allowed optical transition is ob-
servable. The size of the single-ion cloud is a measure
of temperature. Finally, motional sidebands in the ab-
sorption of a narrow transition (γ & ν), not necessarily
the same transition as the one used for cooling, may be
measured to find 〈n〉. In the Lamb–Dicke regime only
the carrier absorption at∆= 0 and sidebands at∆=±ν
are significant, and the ratios of the peak absorptions
are

α− : α0 : α+ = 〈n〉εr

ν
: 1 : (1+〈n〉) εr

ν
. (75.72)

In an ion crystal, the ions have collective vibration modes
akin to phonons, instead of the three vibration modes
along the principal axes of the trap of a single ion.
Doppler cooling and sideband cooling work for such
collective modes much like they work for the vibration
modes of a single ion.

Quantum Jumps
Ion traps make it possible to isolate an individual atomic
scale particle for studies for a practically indefinite
time, which enables clean experiments on various fun-
damental aspects of quantum mechanics and quantum
electrodynamics. Quantum jumps are a case in point.
Suppose that, in addition to an optically driven two-
level system, a single ion has a third shelving state. The
ion infrequently makes a transition to the shelving state,
stays there for a long time compared with the time scale
of spontaneous emission of the active system, and then
returns to the two-level system. When the ion makes
a transition to the shelving state, fluorescence from the
two-level system suddenly ceases; and the fluorescence
reappears, equally abruptly, when the ion returns to the
two-level system. The jumps in light scattering are the
quantum jumps [75.20]. They are a method to detect
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a weak transition with an enormous amplification: a sin-
gle transition to or from the shelving state may mean the
difference between the presence or absence of billions
of fluorescence photons.

g−2 Measurements
For an electron, the cyclotron frequency νc and the spin-
flip frequency νs are related by

νs = 1

2
gνc . (75.73)

Due to quantum electrodynamic corrections g �= 2,
and so the anomaly frequency νa = νc−νs ∼ 10−3νc
is nonzero. A magnetic field at the anomaly fre-
quency causes a simultaneous flip of the spin and
a loss or gain of one quantum of energy in the
cyclotron motion. In a magnetic bottle, the change
in the cyclotron motion causes a change in the axial
resonance frequency, which is detected. The anomaly
frequency can thus be measured accurately. Together
with a measurement of the cyclotron frequency, this
yields a measurement of the g-factor of the electron,
or positron [75.21].

Measurements of Mass Ratios
As the cyclotron frequency is inversely proportional to
the mass of the ion (or electron, positron, proton, anti-
proton, etc.), an accurate measurement of the cyclotron
frequencies of two species in the same Penning trap
amounts to an accurate measurement of the ratio of

the masses [75.22]. A sufficient resolution to weigh
molecular bonds is conceivable.

Quantum System of Motional States
A vibrational mode in a trapped ion and an effective two-
state system for the internal degrees of freedom make
a realization of the Jaynes–Cummings model (discussed
in detail in Sect. 79.5.1). Moreover, sideband cooling
enables an experimenter to put this mode cleanly in its
lowest quantum state. These observations have inspired
quantum-state engineering with the objective of gen-
erating an arbitrary state of the vibrational motion of
the ion [75.23]. In many-ion crystals the collective vi-
bration modes may be used to couple and entangle the
internal degrees of freedom of two or more ions. As dis-
cussed in Chapt. 81, prototype quantum gates have been
demonstrated in this manner.

More generally, experiments have come to the point
when it is possible to address joint quantum states for
the internal and cm degrees of freedom almost at will.
This facilitates new cooling schemes. Time evolution
derived from a Hamiltonian can never lead to cooling;
an irreversible mechanism such as spontaneous emission
is always needed. The idea of many cooling schemes
therefore is to pump atoms optically around the quantum
states in such a way there is no pathway out of the target
state, so that the atoms eventually accumulate there.
Velocity selective coherent population trapping [75.24],
Raman sideband cooling of an ion, and Raman cooling
of an atom in an optical lattice [75.25] work in this way.
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Quantum Deg76. Quantum Degenerate Gases

The purpose of this Chapter is to summarize the
basic physics of dilute quantum degenerate gases.
Given the broad activity in the field, many choices
have to be made regarding the topics to include
and the style of the discussion. Emphasis is placed
on AMO physics, as opposed to condensed matter
physics. One related choice is that virtually nothing
is said about temperature dependence. Inside AMO
physics the approach is in the vein of quantum
optics, as opposed to atomic/molecular structure
and collisions. For the most part, the coverage is
on elementary concepts and basic material. The
exception to this is Sect. 76.5, where a few topical
issues are addressed.

The review article [76.1] has become the
standard reference on the basic properties of
a Bose–Einstein condensate (BEC), [76.2] is its
contemporary with more of a quantum optics
slant, [76.3] concentrates on conceptual is-
sues, [76.4] makes connections between the
present theories and traditional condensed mat-
ter physics, and [76.5] is particularly explicit
about the structure and excitations of a BEC. Here,
references are usually not given for topics that
are discussed in these reviews, or where a full
discussion is easily traced from them. Otherwise,
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references are meant to be entries to the literature
only. Assignment of credit or priority is never
implied.

Bose–Einstein condensation in dilute alkali metal va-
pors has realized a source of atoms with properties
analogous to the properties of laser light, and more
recently, ultralow-temperature Fermi gases have come
under study. The field of quantum degenerate gases
has become a main theme in AMO physics. Dilute-
vapor systems are weakly interacting, and subject to

a degree of experimental control not seen before in
traditional low-temperature condensed matter systems.
Ultralow-temperature gases have thereby also given
a new lease on life to investigations of superfluid sys-
tems in condensed matter physics. The result is a broad
interdisciplinary effort that is still expanding at the time
of writing.

76.1 Elements of Quantum Field Theory

A Bose–Einstein condensate and a degenerate Fermi gas
are both consequences of particle statistics, exchange
symmetries of the many-particle wave function. It is
possible, in principle, to deal directly with the wave

functions, but in practice analyses of many-body sys-
tems are usually carried out using the methods of second
quantization and field theory. In first quantization, the
particles are labeled as if each one had a unique tag

Part
F

7
6



1108 Part F Quantum Optics

on it, and the wave function for more than one indis-
tinguishable particle must be symmetrized explicitly. In
second quantization, the question is how many particles
are in a given state without a distinction between iden-
tical particles. The exchange symmetries are then taken
care of automatically. Here we briefly summarize [76.6]
elementary features of quantum field theories for both
bosons and fermions.

76.1.1 Bosons

Particles with an integer value of the angular momen-
tum obey the Bose–Einstein statistics. The characteristic
property is that a one-particle state can accommodate an
arbitrary number of bosons.

State Space for Bosons. Specifically, first consider one
particle whose states are completely specified by a set
of quantum numbers k. As a notational device for the
purposes of the present Chapter, all of the quantum num-
bers are assumedly mapped in a one-to-one fashion to
nonnegative integers, and correspondingly the quantum
numbers are written k = 0, 1, 2, . . . . The quantum num-
bers written here always incorporate a description of the
state of the c.m. motion of the particle. We therefore
have an orthonormal basis of wave functions to repre-
sent any state of a particle, {uk(x)}k, where x stands for
the c.m. coordinate.

Given the one-particle states, the postulate is that the
Fock states |n0, n1, . . . , n∞〉 with nk = 0, 1, 2, . . . par-
ticles in the states k = 0, 1, 2, . . . form an orthonormal
basis for the many-body system.

Second-Quantized Operators for Bosons. The annihi-
lation operator for the state k, ak , is defined by

ak|n0, n1, . . . , nk, . . . , n∞〉
=√

nk |n0, n1, . . . , nk −1, . . . , n∞〉 . (76.1)

Its Hermitian conjugate, the creation operator, behaves
as

a†k | . . . , nk, . . . 〉 =
√

nk +1 | . . . , nk +1, . . . 〉 .
(76.2)

It follows that

a†k ak| . . . , nk, . . . 〉 = nk | . . . , nk, . . . 〉 , (76.3)

and so n̂k = a†k ak is called the number operator for the
state k. Correspondingly,

N̂ =
∑

k

a†k ak (76.4)

is the operator for the total number of particles in the
system. The annihilation and the creation operators have
the usual boson commutators,

[ak, ak′ ] =
[
a†k , a

†
k′
]= 0,

[
ak, a

†
k′
]= δkk′ . (76.5)

The boson field operator is defined as

ψ̂(x)=
∑

k

uk(x)ak . (76.6)

The commutator for the field operator,
[
ψ̂(x),ψ̂

†
(x′)

]= δ(x− x′) , (76.7)

follows from boson commutators and the completeness
of the wave functions {uk(x)}k. The orthogonality of the
wave functions gives the expression

N̂ =
∫

d3x ψ̂
†
(x)ψ̂(x) (76.8)

for the particle number operator. The positive operator

n̂(x)= ψ̂†(x)ψ̂(x) (76.9)

evidently represents the density of the particles at the
position x.

The second-quantized operators introduced thus far
can be used to express all observables acting on indis-
tinguishable bosons. The most relevant here are the one-
and two-particle operators. One-particle operators, such
as the kinetic energy, act on one particle at a time, while
two-particle operators, such as atom–atom interactions,
refer to two particles. In first quantization, these are of
the form

O1 =
∑

n

V(xn), O2 = 1

2

∑

n,n′
u(xn, xn′) ,

(76.10)

where the sums run over the labels of the particles. The
corresponding second-quantized operators are

Ô1 =
∫

d3x ψ̂
†
(x)V(x)ψ̂(x), (76.11)

Ô2 = 1

2

∫
d3x d3x′ ψ̂†(x)ψ̂†(x′)

× u(x, x′)ψ̂(x′)ψ̂(x) . (76.12)

When the particles have internal degrees of freedom
in addition to the c.m. motion, such as hyperfine and
Zeeman states, it is convenient for the present purposes
to regard particles in each internal state as a separate
species. Thus, if the quantum number breaks up into
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k ≡ {p, α}, where p stands for quantum numbers of the
center of the mass and α for the quantum numbers of the
internal state, it is expedient to define a quantum field
for each species α as

ψ̂α(x)=
∑

p

u pα(x)apα . (76.13)

Mechanisms that cause transitions between the internal
states couple the fields ψ̂α(x) for different α.

States of Bosons. To complete the transformation from
wave function quantum mechanics to second quantiza-
tion, the state of the system must be specified in second
quantization. For instance, take the Hamiltonian Ĥ and
the particle number operator N̂ . According to statistical
mechanics a system characterized by the temperature T
and chemical potential µ is in the state with the density
operator ρ̂= e−(Ĥ−µN̂)/kBT/Z, where the grand partition
function is Z= Tr e−(Ĥ−µN̂)/kBT .

Bose–Einstein Condensate. The state of a boson sys-
tem of particular interest here is the BEC. In an ideal
gas condensation entails a macroscopic fraction of the
particles occupying the ground state of the c.m. motion.
Condensation is a phase transition that occurs when ei-
ther the density of the gas is increased or the temperature
is lowered. In a homogeneous ideal Bose gas the gov-
erning parameter is the phase space density ζ defined
as

ζ =
(

2π�2

mkBT

)3/2

n , (76.14)

where m is the mass of the condensing atoms, T is
the temperature, and n is the density of the condensing
species. For the purposes of quantum degeneracy, each
internal state of an atom behaves as a separate species.
Bose–Einstein condensation takes place when the phase
space density satisfies ζ = 2.612. Depending on whether
density or temperature is regarded as a constant, (76.14)
may be regarded as an equation for the critical tem-
perature Tc or the critical density nc for Bose–Einstein
condensation.

76.1.2 Fermions

Particles with a half-integer angular momentum obey
the Fermi–Dirac statistics. Each Fock state may then
only have the occupation numbers nk = 0, 1. The con-
ventional definition of the annihilation operator contains

a phase factor,

ak|n0, n1, . . . , nk, . . . , n∞〉
= nk (−1)

∑k−1
p=0 n p |n0, n1, . . . , nk −1, . . . , n∞〉 ,

(76.15)

and fermion operators are governed by the anticommu-
tator

[A, B]+ ≡ AB+ BA (76.16)

rather than the commutator. For instance,

[ak, ak′ ]+ = 0,
[
ak, a

†
k′
]
+ = δkk′ . (76.17)

Except for the use of anticommutators in lieu of com-
mutators, all formal expressions for field operators and
one- and two-particle operators written down for bosons
in Sect. 76.1.1 remain valid as stated.

Degenerate Fermi Gas. A degenerate Fermi gas realized
in a dilute atom vapor is the fermion counterpart of
a BEC. The basic parameter of a free noninteracting
Fermi gas is the Fermi energy, the chemical potential at
zero temperature. It is given by

εF = �
2k2

F

2m
; kF =

(
6π2n

)1/3
, (76.18)

where n once more is the density for the relevant fermion
species. In the limit of zero temperature the Fermi gas
makes a Fermi sea; the states below the Fermi energy are
filled with one particle each, the states above the Fermi
energy are empty. The gas begins to show substantial
deviations from the Maxwell-Boltzmann statistics and
may be regarded as degenerate when the temperature is
below the Fermi temperature, T ≤ TF = εF/kB. Except
for a numerical factor, in terms of density and tempera-
ture the condition T ≤ TF is the same as the condition
for Bose–Einstein condensation.

76.1.3 Bosons versus Fermions

Isotopes of alkali metals with an odd mass number
(

7Li,
23Na, 39K, 85Rb, 87Rb, 133Cs

)
make Bose–Einstein

gases, while isotopes with an even mass number
(

6Li,
40K

)
make Fermi–Dirac gases. Atoms are composite

particles consisting of fermions, and how they may act
as bosons is a legitimate question. Whether a satisfactory
formal answer to this question exists may be debat-
able, but in practice atoms seem to obey the correct
statistics in processes that do not expose their individual
constituents.
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1110 Part F Quantum Optics

When two bosonic atoms with integer angular mo-
menta combine into a molecule, the molecule has an
integer angular momentum and behaves as a boson. On
the other hand, two fermionic atoms also make a bosonic
molecule. Models for this latter type of system are basic-

ally ad hoc since, at this point in time, no microscopic
theory for such a reorganization of the statistics exists.
Nonetheless, empirically, diatomic molecules formed by
combining two fermionic atoms indeed appear to be
bosons.

76.2 Basic Properties of Degenerate Gases

Atoms Are Trapped. Quantum degenerate alkali va-
pors are typically prepared in an atom trap. Close to
the bottom almost every trap is a three-dimensional
harmonic oscillator potential completely characterized
by the principal-axis directions and the corresponding
trap frequencies ωi , the (angular) frequencies at which
a single atom would oscillate back and forth in the given
principal-axis direction. In the principal-axis coordinate
system the trapping potential reads

V(x)= 1

2

3∑

i=1

mω2
i x2

i . (76.19)

It is convenient to introduce the characteristic harmonic-
oscillator frequency scale and the corresponding
harmonic-oscillator length scale as

ω̄= (ω1ω2ω3)
1/3 , =

√
�

mω̄
. (76.20)

Atom–Atom Interactions. At low temperatures/ener-
gies only s-wave collisions are significant. In the theory
of quantum degenerate gases these are frequently repre-
sented by a pseudopotential tailored to give the correct
s-wave phase shift. For two atoms the atom–atom inter-
action is

u(x1, x2)= 4π�2a

m
δ(x1− x2) , (76.21)

where a is the s-wave scattering length. Qualitatively, the
scattering length is positive (negative) if the interaction
is repulsive (attractive).

Model Hamiltonian. Quantum field theory for a single-
component Bose gas usually starts with the Hamiltonian

Ĥ =
∫

d3x Ĥ(x) , (76.22)

where the Hamiltonian density is

Ĥ(x)= ψ̂†(x)
[
− �

2

2m
∇2+V(x)

]
ψ̂(x)

+ 2π�2a

m
ψ̂
†
(x)ψ̂

†
(x)ψ̂(x)ψ̂(x) . (76.23)

As in Sect. 76.1.1, ψ̂(r) is the boson field operator, the
kinetic energy −�2∇2/2m and trapping potential V(x)
are one-particle operators, and atom–atom interactions
are governed by the two-body operator u of (76.21).
Analogous models can be written down for multicom-
ponent boson and fermion fields, for coupling between
atoms and molecules, and so on.

76.2.1 Bosons

Gross–Pitaevskii Equation
Mean-Field approximation. Conventionally, the next
step for bosons is to go over to the corresponding clas-
sical field theory. The result is referred to as mean-field
theory or semiclassical theory.

Formally, one first writes down explicitly the Heisen-
berg equation of motion for the boson field ψ̂,

i�
∂

∂t
ψ̂(x, t)= [

ψ̂(x, t), Ĥ
]
, (76.24)

and then declares that in the equations of motionψ̂→ψ

is a classical field not a quantum field anymore. We
call ψ the macroscopic wave function of the conden-
sate. This approximation is precisely analogous to using
the classical instead of the quantum description for the
electric and magnetic fields of the light coming out of
a laser.

Time-Dependent Gross–Pitaevskii Equation. The
time-dependent Gross–Pitaevskii equation (GPE) is

i�
∂

∂t
ψ(r, t)=

[
− �

2

2m
∇2+V(r)

]
ψ(r, t)

+ 4π�2a

m
|ψ(r, t)|2ψ(r, t) . (76.25)

This equation is nonlinear, and normalization of the
macroscopic wave function ψ is important. Quantum
mechanically, the particle number operator is given
by (76.8), so that the normalization for a system with
N particles naturally reads

∫
d3x |ψ(x, t)|2 = N . (76.26)
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Time evolution under (76.25) preserves the normaliza-
tion. Obviously, and in accordance with (76.9),

n(x)= |ψ(x)|2 (76.27)

is the local density of the gas.

Time-Independent Gross–Pitaevskii Equation. So-
lutions to the time-dependent GPE of the form
ψ(x, t)= φ(x)e−iµt/� are stationary states with no time
evolution in the physics. The analog of the energy of
a stationary state is called the chemical potential µ.
The corresponding wave function φ satisfies the time-
independent GPE

µφ =
(
− �

2

2m
∇2+V

)
φ+ 4π�2a

m
|φ|2φ . (76.28)

Both GPEs are nonlinear variants of the Schrödinger
equation, and in other contexts they are often referred to
as nonlinear Schrödinger equations. The nonlinear term
approximates the interaction energy of an atom with
the other atoms in an averaged way by relying on the
local density of the atoms, hence the term mean-field
theory.

Sign of Scattering Length. The qualitative properties
of a condensate, as per the GPE, depend on the sign
of the scattering length. For repulsive atom–atom in-
teractions or no atom–atom interactions, a ≥ 0, both
the time-dependent and the time-independent forms are
mathematically well behaved. Unless otherwise noted,
the scattering length is always assumed non-negative.

In the case of a negative scattering length a BEC
may, in principle, decrease its energy without a bound
by collapsing to a point. Mechanisms such as three-body
recombination or molecule formation would eventually
set in as the density increases and the collapse would
stop, but the condensate must then be presumed lost.
In the absence of an external potential, a condensate
with a negative scattering length is unconditionally un-
stable against collapse. For a bounded condensate the
increase in the kinetic energy coming with the decreas-
ing size may hold off the collapse, provided the number
of atoms in the condensate is sufficiently small. Simple
dimensional-analysis arguments give the condition of
stability in a harmonic trap as N|a|� .

Behavior attributed to a collapse has been observed
in 7Li for trapped states with a negative scattering
length. By using a Feshbach resonance it is also possible
to adjust the (apparent) scattering length (Sect. 76.5.1)
which has led to further demonstrations of collapse-like
physics.

Healing Length. Consider the time-independent
GPE (76.28) without an external potential, and scale
the various quantities as follows:

φ =√
nφ̄, µ= µ̄ 4π�2na

m
,

x = ξ x̄; ξ = 1√
8πna

. (76.29)

Here n is the density scale for the gas, and the length
scale is ξ . In terms of these new variables the time-
independent GPE reads

µ̄ φ̄ =−∇̄2φ̄+ ∣∣φ̄
∣∣2φ̄ . (76.30)

There is a solution in all of space with µ̄= 1, φ̄ = 1. If
for some reason, such as at an edge of the sample, the
condensate wave function must vanish, the length scale
over which the wave function grows back to one (in the
scaled units) is of the order of unity. In fact, (76.30) has
the solution φ̄(x̄)= tanh

(
z̄/
√

2
)

in the half-space z̄ ≥ 0.
The quantity ξ is the minimum length scale over which
a condensate wave function can build up to the density n.
It is called the healing length.

Thomas–Fermi Approximation. Without atom–atom
interactions, the ground state of the trapping potential
V(x) would be the lowest-energy (lowest µ) solution
to (76.28). However, experience has shown that even
modest repulsive atom–atom interactions (a> 0) spread
out the macroscopic wave function of the condensate
a great deal. With increasing size comes decreasing
kinetic energy, according to the Heisenberg uncertainty
principle. This suggests the Thomas–Fermi approxima-
tion, in which the kinetic energy term in (76.28) is simply
ignored. The density of the gas is then easily solved to
be

n(x)=
⎧
⎨

⎩

m
[
µ−V(x)

]

4π�2 a
, µ > V(x)

0, otherwise,
(76.31)

an inverted image of the trapping potential. The normal-
ization (76.26) can be used to find the relation between
chemical potential and particle number, and all of the
unknown quantities may, in principle, be found.

For a harmonic potential the Thomas–Fermi approx-
imation can be worked out explicitly with the results

µ= 1

2
�ω̄

(
15Na



)2/5

, R = 
(

15Na



)1/5

,

n(0)= 1

8π3



a

(
15Na



)2/5

. (76.32)
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The quantity R represents the size of the condensate. In
particular, it equals the radius of the spherical condensate
if the trap is isotropic with ω1 = ω2 = ω3. Finally, n(0)
is the central, maximum, density of the atoms.

The relevant dimensionless parameter is Na/,
which can easily be much larger than unity in the ex-
periments. When the Thomas–Fermi approximation is
accurate, the chemical potential exceeds the typical level
spacing of the harmonic-oscillator trap, and the conden-
sate is larger than the ground-state wave function of the
harmonic oscillator would be. Ordinarily, the condensate
is also much larger than the healing length.

Small Excitations in a BEC
Linearizing the GPE. The time-dependent GPE is
nonlinear, but may be linearized around a stationary
solution. Consider the special case without a trapping
potential, V(x)≡ 0. The stationary solutions are plane
waves,

φ(x)=√
n eip·x . (76.33)

This corresponds to a flow of the gas at the velocity
v = �p/m and with a momentum �p per atom. The
chemical potential of such a mode is

µ

�
= εp+ 1

2
ε0 , (76.34)

where

εp = �p2

2m
, ε0 = mc2

�
, c = �

√
8πna

m
= �

mξ
(76.35)

are the dispersion relation of free atoms, a peculiar ana-
log of the rest energy, and the speed of sound in the
BEC.

The ansatz for small deviations from the stationary
solution is written as

ψ(x, t)=√
n ei(p·x− µ

�
t)[1+u ei(q·x−νt)

+v∗ e−i(q·x−ν∗t)] , (76.36)

where �q and �ν are the momentum and energy associ-
ated with the excitation relative to the momentum and
energy of the original flow. The GPE mixes the field ψ
and its complex conjugate ψ∗, so that two small am-
plitudes u and v are needed for the excitations. The
ansatz (76.36) is a solution to the time-dependent GPE
to the lowest nontrivial order in u and v if these am-
plitudes and the frequency of the excitation satisfy the

eigenvalue equation
(
εq + ε0+q ·v ε0

ε0 εq + ε0−q ·v

)(
u

v

)

= ν
(

u

−v

)

.

(76.37)

The remaining problem is that the eigenvalue equa-
tion has two solutions for each q, which gives twice
as many small-excitation modes as there are degrees of
freedom. The extra modes are the penalty one pays for
the linearization of the GPE. The criterion |u|2−|v|2 > 0
picks out the correct small-excitation modes. The cor-
responding dispersion relation for the excitations is

ν(q)= q ·v+
√
εq(εq +2ε0) . (76.38)

For a stationary BEC with v= 0 and in the limit q → 0,
(76.38) gives ν ) cq. This confirms the identification
of c as the speed of sound.

In the BEC experiments the condensates are trapped,
but in principle the same analysis of small-excitation
modes may be carried out both numerically and in a myr-
iad of analytical approximations. The generic result is
that the trap frequencies lend their frequency scale to
small excitations. At low enough temperatures, excita-
tion frequencies calculated in this way agree well with
the experiments.

Within the mean-field approximation small excita-
tions may be analyzed similarly in all boson systems, for
instance, in a multi-component Bose–Einstein conden-
sate or a joint atom–molecule condensate. The evolution
frequencies may be complex, which signals a dynam-
ical instability of the stationary configuration; there are
small-excitation modes that grow exponentially. The in-
stability of a free gas with a negative scattering length,
which is apparent in (76.38) for ε0 < 0, is a simple
example.

Bogoliubov Theory. Bogoliubov theory is the many-
body quantum version of the analysis of small
excitations. The idea is to treat the condensate mode ψ0,
containing n0 atoms, separately in the field operator

ψ̂ =√
n0 ψ0+ δψ̂ , (76.39)

expand the Hamiltonian in the lowest nontrivial (second)
order in the remnant quantum field δψ̂, and diagonalize.
The result is small-excitation modes with the annihi-
lation operators Ak , where k stands for the appropriate
quantum numbers. It turns out that the core mathematics
of Bogoliubov theory is the same as the mathemat-
ics of small excitations, but two features are added.
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Quantum Degenerate Gases 76.2 Basic Properties of Degenerate Gases 1113

First, Bogoliubov theory explicitly shows that the co-
efficients u and v in the analog of (76.37) need to satisfy
|u|2−|v|2 = 1 to ensure boson commutators for the
operators Ak . Second, with quantum fluctuations, atom–
atom interactions force atoms out of the condensate even
at zero temperature. In a homogeneous (untrapped) con-
densate, in the limit na3 & 1, at T = 0, the fraction of
noncondensate atoms is

N −n0

N
= 8

3

√
na3

π
. (76.40)

When the gas parameter na3 is much smaller than
unity, at low enough temperatures most of the atoms are
in the condensate. Mean-field theory and the GPE are
expected to apply, and empirically, they do.

Numerical Methods for GPE
Mathematical Properties of the GPE. Let us momen-
tarily assume that by separation of variables, or by some
fiat, the problem of solving the time-independent GPE
has been rendered one-dimensional. The Schrödinger
equation is linear and any constant multiple of a solution
is also a solution. One parameter, e.g., the logarith-
mic derivate of the wave function at a given point in
space, determines a stationary state completely. This
does not hold for the corresponding GPE, for which the
values of the wave function and its derivative can be
specified independently at (almost) every fixed point in
space. As a result of the added flexibility, and unlike
the Schrödinger equation, the GPE has bounded solu-
tions for continuous ranges of the values of the chemical
potential µ.

However, the time-independent GPE (76.28) comes
with the added normalization condition (76.26). Nor-
malization quantizes the values ofµ for the bound states.
In practice one might, for instance, find a solution that
satisfies the boundary conditions for a given µ with the
shooting method, then adjust the value of µ until nor-
malization holds. Techniques used in the first numerical
analyses of the time-independent GPE in the context of
atom vapor condensates were variations of this theme.
Such schemes are not feasible in spatial dimensions
greater than one.

In general there is one solution to the time-
independent GPE that can be chosen to be positive
everywhere, the ground state with the lowest chemical
potential. Excited steady states exist, but only a few,
such as the flowing states of (76.33) and vortices dis-
cussed in Sect. 76.4.1, have obvious physical meanings.
As the GPE is nonlinear, excited states are not the same
as small excitations.

Split-Step Fourier Method. The superposition principle
does not hold for the solutions of the time-dependent
GPE, and the excited states are usually not orthogonal
to one another in any useful sense. Methods based on
eigenstate expansions for solving the time-dependent
GPE are cumbersome at best. Instead, one often sim-
ply integrates the GPE as a partial differential equation
in time. A number of different methods are used, but
here we only discuss an elementary split-step Fourier
method [76.7]. This is an exceedingly popular algorithm
for parabolic equations, easy to implement, and with
minor modifications also solves the time-independent
GPE in any number of dimensions.

Thus, consider integration of (76.25) forward in time
over a step from t to t+∆t. For this purpose assume first
that |ψ|2 in the GPE were a constant equal to its value
at time t, then the evolution over the time step ∆t would
be given by

ψ(x, t+∆t)= exp

[
−i∆t

(
−�∇2

2m
+U(x)

)]

×ψ(x, t) , (76.41)

where U(x) is a given function of position. In the al-
gorithm the exponential is first split approximately, for
instance, as

exp

[
−i ∆t

(
−�∇2

2m
+U(x)

)]

) exp

(
i
∆t

2

�∇2

2m

)
exp

[− i ∆t U(x)
]

× exp

(
i
∆t

2

�∇2

2m

)

≡ T̃ Ũ T̃ . (76.42)

The exponential of the kinetic-energy operator is diago-
nal in the Fourier representation. Consequently, carrying
out the Fourier transform F and its inverse with the aid
of the Fast Fourier Transformation gives the split-step
algorithm

ψ(t+∆t)= F −1T̃F ŨF −1T̃F ψ(t) (76.43)

with obvious efficient implementations. The inaccurate
constant |ψ|2 may be improved upon in a corrector
step in which the average of the initial wave func-
tion ψ(t) and the ψ(t+∆t) obtained in the first pass
is used as |ψ|2, and step (76.43) is taken again. This
split-step algorithm preserves the normalization of the
macroscopic wave function, and features a high-order
approximation to the exponential operator of the kinetic
energy.
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Integration in Imaginary Time. The split-step algo-
rithm also provides a global method to find the ground
state. To this end the time-dependent GPE is integrated
in imaginary time, i. e., replacing ∆t →−i∆t, starting
from a more or less random initial wave function and
normalizing after every step. If the GPE were linear, this
procedure would emphasize the lowest-energy compon-
ent of the wave function until it is the only one that
remains to within a prescribed accuracy. It is not clear
that the same should apply to the nonlinear GPE, but
often this is the case.

In nonlinear problems, split-operator methods, in
spite of their seeming simplicity, often exhibit spurious
behavior. Successful applications of these techniques
require skill and experience in the art of numerical
methods.

Local-Density Approximation
While an experimental BEC is usually trapped, it is often
much easier to study the theory for a formally infinite ho-
mogeneous condensate. As long as the phenomena under
investigation involve length scales much smaller than the
size of the condensate and time scales much shorter than
the inverse trap frequencies, trapping cannot affect the
behavior of the gas locally. Under such conditions one
may analyze the gas at each position x as if it were ho-
mogeneous, and at the end of the calculations average
over the density distribution. The unit-normalized dis-
tribution of the density of the gas used in the averaging
is

P(�)=
∫
δ
[
�−n(x)

]
n(x)d3x

∫
n(x)d3x

. (76.44)

For instance,

P(�)= 15
√

n0−��
4n5/2

0

H(�)H(n0−�) (76.45)

holds for the Thomas–Fermi approximation with the
maximum density n0 ≡ n(0). The Heaviside step func-
tions H restrict the density to the correct range
0 ≤ �≤ n0. As an example, the average density in the
Thomas–Fermi model is∫

�P(�) d�= 4

7
n0 . (76.46)

76.2.2 Meaning of Macroscopic
Wave Function

Here the macroscopic wave function ψ has been intro-
duced by replacing a boson field theory with a classical
field theory.

The intuitive interpretation is that, for interacting
particles, the atoms condense not to the ground state
of the confining potential, but to the one-body state
whose wave function is the macroscopic wave func-
tion. This notion may be criticized on various grounds,
but in practice it makes a useful picture.

A precise formal meaning of the macroscopic wave
function, and of Bose–Einstein condensation for inter-
acting systems, is found by considering the one-particle
density matrix

ρ(x, x′)= 〈
ψ̂
†
(x)ψ̂(x′)

〉
, (76.47)

which is sufficient to determine the expectation value
of any one-particle operator. This is the position repre-
sentation of a positive Hermitian operator with the trace
equal to particle number (or its expectation value) N . In
this way, with an orthonormal set of functions {ψk(x)}k
and nonnegative eigenvalues nk , such that

∑

k

nk = N , (76.48)

an expansion of the form

ρ(x, x′)=
∑

k

nk ψk(x)ψk(x′) (76.49)

exists. The system is a BEC if at least one eigen-
value nk is of the order of the number of particles and
does not formally go to zero in the thermodynamic
limit (if the limit exists and is sensible). The usual
case is that only one eigenstate, call it k = 0, has such
a large eigenvalue. The macroscopic wave function is
the corresponding eigenfunction ψ ≡ ψ0, and n0 gives
the number of condensate atoms. If there is more than
one macroscopic eigenvalue, the condensate is called
fragmented.

Another interpretation of the macroscopic wave
function comes from statistical mechanics. In a continu-
ous (second-order) phase transition typically a symme-
try of the system is spontaneously broken. For example,
below the Curie temperature a single-domain ferro-
magnet magnetizes in some specific direction, and the
state has a lower symmetry than the rotationally in-
variant Hamiltonian of an isotropic ferromagnet. Any
quantity that appears in a continuous phase transition
and characterizes the breaking of the symmetry may
be called an order parameter. The macroscopic wave
function can be viewed as the order parameter asso-
ciated with spontaneous breaking of the global phase
or “gauge” symmetry of quantum mechanics. Specific-
ally, in quantum mechanics the state of the system is
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unchanged if the wave function is multiplied by an ar-
bitrary complex phase factor eiϕ. But to write the wave
function as ψ(x) already implies a preferred phase, and
likewise even if the wave function is adorned with ran-
dom but, for any given condensate, fixed phase, as in
eiϕψ(x).

For one condensate the random phase is inconse-
quential. Suppose, however, that two BECs with the
wave functions eiϕ1ψ1(x) and eiϕ2ψ2(x) are combined.
If the macroscopic wave functions behave as wave
functions should, the combination of two condensates
displays the density n(x)= |eiϕ1ψ1(x)+ eiϕ2ψ2(x)|2.
There should be an interference pattern between the
condensates. Two BECs indeed produce an interference
pattern when they are combined, although the random-
ness or the absence thereof of the phases ϕ1,2 is difficult
to verify experimentally.

From the quantum optics viewpoint, a condensate is
a given number of atoms in a given one-particle state,
a number state, and cannot possess any phase at all. This
seems to contradict the observations of an interference
pattern. The resolution is that the process of measure-
ment in itself produces a phase difference between the
condensates even if there initially is none.

76.2.3 Fermions

Static Fermi Gas
Thomas–Fermi Approximation. Consider an ideal
single-species Fermi gas of trapped atoms. The origi-
nal Thomas–Fermi approximation (see Chapt. 20) was
formulated for fermions, namely, electrons, and in the
present case it is modified as follows. For the atom
density n(x) at position x, at a low temperature, the
corresponding local internal chemical potential is ap-
proximated according to (76.18) as

εF(x)= �
2
[
6π2n(x)

]2/3

2m
. (76.50)

Given the trapping potential V(x), the density of the gas
adjusts in such a way that the sum of the external poten-
tial energy and the local internal chemical potential, the

Fermi energy, is a constant across the gas,

V(x)+ �
2
[
6π2n(x)

]2/3

2m
= µ, (76.51)

the global chemical potential. One may solve the density
for a given chemical potential as

n(x)=

⎧
⎪⎨

⎪⎩

√
2 m

3
2
[
µ−V(x)

] 3
2

3π2
�

3 , V(x) < µ;
0, otherwise.

(76.52)

Finally, the integral of the density over all space should
equal the atom number, which gives an equation to
determine the chemical potential µ.

For a harmonic trap this program can be carried out
in an exact, analytical manner with the result that

µ= 61/3 N1/3
�ω̄, R = 22/331/3 N1/6 ,

n(0)= 2
√

N√
3π23

. (76.53)

The quantities ω̄, , and R have the same meaning as
in the BEC case. The Thomas–Fermi approximation for
fermions should be applicable whenever N % 1.

In a one-component Fermi gas at low tempera-
ture atom–atom interactions are typically negligible for
a multitude of reasons. There is no s-wave scattering,
and the presence of the Fermi sea tends to suppress re-
pulsive interactions. However, in the case of attractive
interactions between two species, the Fermi sea may be
thermodynamically unstable; the energy may be low-
ered by pairing fermions into Cooper pairs. This is the
mechanism behind the BCS theory of superconductiv-
ity [76.8].

Excitations in a Fermi Gas
If the interactions do not render a fermion system into
a superfluid, see Sect. 76.5.1, the elementary excitations
of a degenerate Fermi gas with short-range interactions
are basically atom–hole pairs. What happens in the con-
trary case for trapped and strongly interacting atoms is
presently an active area of research.

76.3 Experimental

76.3.1 Preparing a BEC

In a trapped gas the density n(x) is self-determined from
the atom number N , and the condition for a BEC in an

ideal gas is most readily expressed in terms of the total
number of atoms as

kBTc = 0.94 �ω̄N1/3 . (76.54)

Part
F

7
6
.3



1116 Part F Quantum Optics

In practice, at the bottom of the trap the conditions on
temperature and density for a BEC are similar to the con-
ditions for a BEC in a free gas. In the thermodynamic
limit, such that ω̄→ 0, N →∞ with ω̄N1/3 held con-
stant, below the critical temperature Tc the fraction of
condensate atoms behaves as a function of temperature T
as

n0

N
= 1−

(
T

Tc

)3

. (76.55)

The experimental realizations of alkali vapor con-
densates are based on techniques of laser cooling and
trapping of atoms. The following discussion relies heav-
ily on material from Chapt. 75.

A BEC in a dilute atomic gas is usually prepared
using a two-stage process. First, a magneto-optical trap
is used to capture a sample of cold atoms and to cool it to
a temperature of the order of a few tens of microkelvin.
The atoms are then transferred to a magnetic trap for
evaporative cooling that leads to condensation.

A magnetic trap is based on a combination of two
ideas. First, if an atom that starts out with its magnetic
moment antiparallel to the magnetic field moves slowly
enough in a position dependent magnetic field, its mag-
netic moment remains adiabatically locked antiparallel
to the magnetic field. The energy of the atom is then
a minimum where the magnetic field is a minimum.
Second, the absolute value of the magnetic field may
have a minimum in free space. The minimum is then
a trap for atoms whose magnetic moments are suitably
oriented. The downside is that only atoms in the right
magnetic (Zeeman) states are trapped. While the atoms
cool down, they accumulate at the center of the trap.
The center should not be a zero of the magnetic field,
because at zero field an atom would lose the lock be-
tween the directions of the magnetic moment and the
magnetic field necessary for trapping.

A time orbiting potential (TOP) trap starts with the
same kind of magnetic field that is used in a magneto-
optical trap. A time-dependent magnetic field is then
added in such a way that the zero of the magnetic field
orbits around the center of the trap. If the frequency at
which the zero orbits is high enough so that the atoms
cannot follow, they see an effective potential with a min-
imum at the center of the trap and do not sample the
zero. Alternatively, it is possible to wind a coil in such
a way that it makes a magnetic field whose absolute
value has a minimum that is not zero. In this type of
a Ioffe–Pritchard trap the winding of the wire resembles
the seams on a US baseball.

The basic idea of evaporative cooling is that the most
energetic atoms escape from the trap, then the remaining
atoms thermalize to a lower temperature. Some atoms
are lost in the process, but with the decreasing tem-
perature the density at the trap center nonetheless tends
to increase and the phase space density increases even
more due to the cooling.

The cooling is usually forced by an rf drive. The tran-
sition frequency between the Zeeman states depends on
the magnetic field, and increases toward the edges of
the trap. Atoms are removed where the rf frequency is
on resonance and drives transitions to untrapped Zee-
man states. Thus, while the atoms cool and concentrate
at the center, the radio frequency is swept down in such
a way that the “rf knife” removing the atoms slides
in from the edge of the trap. At some radio frequency
a condensate abruptly emerges. The temperature can be
further lowered by continuing evaporative cooling, al-
beit at the expense of loss of atoms. As a rule of thumb,
an atom needs to experience a hundred collisions before
condensation occurs, and a typical time needed to pre-
pare a condensate is a few seconds. In a good vacuum
a condensate may live for tens of seconds.

It is also possible to condense atoms trapped in a far-
off resonant optical trap based on the dipole forces of
light, instead of the magnetic trap [76.9]. For tuning
below the resonance, atoms are strong-field seekers.
A focused laser beam is a three-dimensional trap for
atoms, as is an arrangement with two crossed beams
focused to the same spot. Furthermore, with extreme
off-resonant light from a CO2 or a Nd-YAG laser, ab-
sorption of photons and the associated photon recoil
kicks and heating may be negligible.

An optical trap may also be added after a BEC is
prepared in a magnetic trap. The advantage is that an op-
tical trap will hold the atoms regardless of their magnetic
state, so that multicomponent “spinor” condensates may
be studied. Moreover, while an adiabatic change of the
strength of a trap cannot change the phase space dens-
ity, the phase space density may be altered by changing
the shape of the trap by adding a tight optical trap to
the bottom of a much wider magnetic trap. Reversible
condensation inside an added optical subtrap based on
such an increase in the phase space density has been
demonstrated.

Methods to condense atoms that might be suited
for future technological applications are being pursued.
For instance, by lithographic techniques it is possible
to put conducting wires on a substrate to make an
atom chip. With currents flowing, the wires produce
magnetic fields that guide the atoms. Condensation
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Quantum Degenerate Gases 76.4 BEC Superfluid 1117

in such a configuration has been reported [76.10].
Two-dimensional condensation in what is known as
a gravito-optical surface trap has also been achieved
experimentally [76.11].

There is an analogy between a condensate and
a beam of light from a laser that we rely on extensively.
However, the analogy is only partial. By dropping a con-
densate under gravity one makes a pulsed atom laser,
and by coupling a trapped Zeeman state to an untrapped
state by rf excitation it is possible to make a conden-
sate leak slowly out of the trap. Nonetheless, at this
time a method to produce a continuous beam of conden-
sate atoms, a continuous-wave atom laser, is yet to be
demonstrated.

76.3.2 Preparing a Degenerate Fermi Gas

A single-species, very-low temperature Fermi gas is an
uninteresting system, as the Fermi–Dirac statistics for-
bids s-wave interactions between the atoms and the gas
is nearly ideal. In experiments the gas usually has two
species, different states of the same atom. The interac-
tions between the species are comparable in strength to
the interactions between bosonic atoms.

Evaporative cooling works in a two-species gas, and
can be used to prepare a degenerate Fermi gas either
in a magnetic trap [76.12] or in an optical trap [76.13].
Second, one can use a gas of bosons, and indeed a BEC,
as a refrigerator [76.14]. At this writing the lowest tem-
peratures are of the order of 0.1 TF . Reaching lower
temperatures is complicated by various factors, such as
the very low heat capacity of a BEC and collisions be-
coming inefficient at low temperature because the inert
Fermi sea reduces the available phase space. Nonethe-
less, lower temperatures seem to be mainly a matter of
advances in technology.

76.3.3 Monitoring Degenerate Gases

Orders of Magnitude. As a rule of thumb, the trapping
frequencies in a magnetic trap are ω̄≈ 2π ×10 Hz, while

the frequencies in an optical trap may reach into the kHz
regime. A typical oscillator length is ≈ 1µm. A usual
number of atoms is N ≈ 106. Scattering lengths are of
the order of a ≈ 10 nm. The size of a degenerate gas
is in the neighborhood of R ≈ 0.1 mm, the maximum
density is about n0 ≈ 1015 cm−3, and the BEC transition
temperature and the Fermi temperature are of the order
of Tc ≈ TF ≈ 1 µK. However, much lower temperatures
are readily reached in a BEC.

Phase Contrast Imaging. It is possible to monitor con-
densate features substantially larger than the wavelength
of the light used in the measurements nondestructively,
in situ, by using phase contrast imaging. In this method
the light is detuned far off resonance so that absorptions
with the accompanying photon recoil kicks on the atoms
are rare, but the phase of the light nonetheless changes
upon propagation through the sample. The phase change
may be detected by interfering the transmitted light with
the original light, with the phase of the latter suitably
shifted.

Time-of-Flight Imaging. Usually, though, the obser-
vation of a degenerate gas at the end of an experiment is
by time-of-flight imaging. The trap is suddenly removed,
whereupon the gas expands freely. After the atom cloud
has grown to a size large enough compared to the wave-
length of the resonant light used to monitor the gas, an
absorption image of the cloud is taken. This gives the
projection of the density of the gas onto a plane per-
pendicular to the direction of propagation of the light.
Except for the effects of atom–atom interactions, after
a sufficiently long time of free flight the density reflects
the initial momentum distribution of the atoms. Time-
of-flight images bear the signs of both condensation in
a Bose gas and quantum degeneracy in a Fermi gas. Non-
trivially, other features of interest such as vortex cores
are also preserved and can be detected after the free ex-
pansion. The downside is that the time-of-flight method
is destructive. After each snapshot the sample will have
to be prepared again.

76.4 BEC Superfluid

76.4.1 Vortices

Flow Velocity in a Superfluid. By manipulating the
Heisenberg equations of motion for a Bose field under
the Hamiltonian (76.22) it is easy to derive the equation

of continuity for the atoms,
∂

∂t
n̂+∇ · Ĵ = 0 , (76.56)

n̂ = ψ̂†ψ̂, Ĵ = i
�

2m

(
ψ∇ψ†−ψ†∇ψ) , (76.57)
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which identifies n̂ and Ĵ as the operators for atom density
and atom current density. The corresponding mean-field
quantities are obtained when again the boson fields are
replaced with the corresponding classical fields. Writing
the classical field in terms of the density n(x, t) and phase
ϕ(x, t) in the form

ψ =√
n eiϕ , (76.58)

the local flow velocity v= j/n becomes

v= �

m
∇ϕ . (76.59)

The velocity field is irrotational.

Quantization of Circulation. Integration of the flow
velocity around an arbitrary loop gives

∮
dl ·v= �

m
∆ϕ = p

2π�

m
,

p = 0,±1,±2, . . . , (76.60)

since the change of the phase ∆ϕ around a closed loop
must be an integer multiple of 2π. Equation (76.60)
expresses the quantization of circulation in a superfluid.
A medium described by a macroscopic wave function,
such as a BEC, cannot sustain arbitrary flow velocities.

Vortices. As an example, in bulk rotation at an angu-
lar velocity Ω the line integral around a loop at the
distance r from the axis of rotation would be 2πr2Ω,
which is not permitted for an arbitrary r. Instead, upon
an attempt to make a BEC rotate, the angular velocity
will be carried by vortex lines. These are lines through
the condensate, entering and exiting at the surface, such
that each vortex carries one quantum of circulation. At
the core of a vortex the flow velocity should be infinite
to sustain a finite circulation, which is physically impos-
sible. Nature solves this problem by making the vortex
core normal (not BEC), so that the macroscopic wave
function does not apply. The diameter of the vortex core
is of the order of the healing length ξ , given by (76.29).

When the trapping potential on the atoms is rotated,
it is convenient to study the physics in the co-rotating
frame. Given a frame rotating at the angular velocity Ω

and the angular momentum operator L = x × p per par-
ticle, transformation to the rotating frame adds the
one-particle term

Hr =−Ω · L (76.61)

to the Hamiltonian. Any particular configuration of vor-
tices is a thermodynamically stable equilibrium if it is
the minimum of energy in the co-rotating frame. For

a trapped condensate, at zero rotation velocity the state
without vortices is the energy minimum, and increas-
ing the rotation speed makes states with an increasing
number of vortices the stable configuration. However,
a vortex configuration may be metastable and live for
a long time even if it is not the minimum of energy.
Conversely, even the energy-minimum configuration of
vortices must first be nucleated. Since the circulation
can only have quantized values, it cannot change in
a continuous process. It takes a zero condensate density
somewhere to create or destroy a vortex.

These alternatives provide a large number of experi-
mental scenarios involving rotation of the trap or stirring
of the condensate, condensation of a rotating normal gas
by taking it across the transition temperature, and so
forth. For instance, when a trap containing a BEC is ro-
tated, vortices are generated at the surface where they
start their lives as dynamical instabilities. The vortices
then drift in and form a regular vortex array [76.15].
When the rotation is halted, the vortices drift out to the
surface and disappear.

76.4.2 Superfluidity

A BEC also has the remarkable property that it may sus-
tain persistent currents that are completely immune to
viscosity. The qualitative reason may be seen from the
dispersion relation of small excitations (76.38). As long
as the flow speed |v| is less than the speed of sound c, all
excitation energies are positive, so that the flowing state
is the state of lowest energy and is thermodynamically
stable. On the other hand, when the flow velocity ex-
ceeds the speed of sound, the system has excitations that
lower the energy, ν(q) < 0 for some q. The flowing state
is then not a minimum of energy. The flow is not ther-
modynamically stable, and it decays when it interacts
with an environment by sending off small excitations.
The speed of sound gives the Landau critical velocity
for superfluidity.

The critical velocity c tends to zero when the
atom–atom interactions vanish with a → 0. While the
condensate wave function may be written down whether
the atoms interact or not, superfluidity and persistent
flows rely on the interactions. The same applies to vor-
tices, as in the limit of a noninteracting gas the healing
length and the radius of the vortex core tend to infinity.

The conventional picture is that superfluid flow in
an inhomogeneous medium is unstable if the local flow
velocity exceeds the local (density dependent) speed of
sound. In practice, in liquid He experiments and nu-
merical simulations of dilute condensates the current
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often dissipates by shedding vortices when it flows too
fast past an obstacle. It is not clear if the conventional
picture is, or should be expected to be, quantitatively

accurate. In fact, at this time there are no experiments
with alkali vapor condensates in toroidal geometries that
would offer natural conduits for persistent currents.

76.5 Current Active Topics

76.5.1 Atom–Molecule Systems

Diatomic molecules and conversion between atoms and
molecules at temperatures low enough to render the sys-
tem quantum degenerate are at present probably the most
active frontier in the studies of ultracold gases. Experi-
mental achievements include a condensate of molecules,
and coherent transitions between two chemically dif-
ferent species. More broadly, unforeseen new angles
open up into long-standing issues in superfluid sys-
tems in condensed matter physics, such as strongly
interacting superfluids and BEC-BCS crossover. A snap-
shot of the field at this time is given in the present
section.

Two colliding asymptotically free atoms cannot in
general combine into a diatomic molecule, as energy
and momentum would not be conserved in the process.
However, there are two mathematically equivalent meth-
ods to adjust energy conservation, photoassociation and
Feshbach resonance [76.16], both of which may lead to
molecule formation.

The underlying idea is that two seemingly free atoms
may be regarded as a dissociated state of a corres-
ponding diatomic molecule. In photoassociation a laser
drives transitions from a dissociated two-atom state to
a bounded state of the molecule. Energy conservation
is adjusted by tuning the laser. In a Feshbach resonance
hyperfine interactions drive transitions from a two-atom
state in a particular manifold of electronic states to a mo-
lecular state in another manifold of electronic states.
The magnetic moments of the two-atom state and the
bounded molecular state are different, so that the res-
onance may be tuned by varying the magnetic field
applied on the atom–molecule gas.

Basic Atom–Molecule Model for Bosons. Consider
a minimal model for conversion of bosonic atoms

(
boson

field φ̂
)

into bosonic molecules (ψ̂). The Hamiltonian
density reads

Ĥ

�
= φ̂†

(
− �

2m
∇2

)
φ̂+ψ̂†

(
− �

4m
∇2+ δ

)
ψ̂

+ g(ψ̂
†
φ̂φ̂+ψ̂φ̂†φ̂†) . (76.62)

This model is for free atoms. Atom–molecule coupling
is described as a contact interaction characterized by the
coupling coefficient g. The detuning δmay be adjusted in
photoassociation by tuning the laser, and in a Feshbach
resonance by varying the magnetic field.

Effective Scattering Length. Heisenberg equations of
motion for the atomic and molecular fields read

i
d

dt
φ̂ =− �

2m
∇2φ̂+2gφ̂

†
ψ̂ , (76.63)

i
d

dt
ψ̂ =

(
− �

4m
∇2+ δ

)
ψ̂+ gφ̂φ̂ . (76.64)

Suppose now that the detuning from resonance, |δ|, is
the largest frequency parameter in the problem, then one
may solve the molecular field adiabatically from (76.64)
as ψ̂ =−gφ̂φ̂/δ. Inserting this into (76.63) gives

i
d

dt
φ̂ =− �

2m
∇2φ̂− 2g2

δ
φ̂
†
φ̂φ̂ , (76.65)

which is the Heisenberg equation of motion for the
atomic field that ensues from an effective Hamiltonian
density

ĤE = φ̂†
(
− �

2

2m
∇2

)
φ̂+ 2π�2aE

m
φ̂
†
φ̂
†
φ̂φ̂ (76.66)

with the effective scattering length

aE =− mg2

2π�δ
. (76.67)

Experimentally, the modification of the scattering length
is in addition to a constant “background” scattering
length a0, and the sum of the two scattering lengths

a = a0+aE. (76.68)

is usually reported.
As long as one stays sufficiently far away from an

atom–molecule resonance, tuning the resonance condi-
tion is tantamount to tuning the atom–atom scattering
length. When the detuning is negative (positive), the en-
ergy of a molecule is lower (higher) than the energy
of an on-threshold pair of atoms, the corresponding in-
duced scattering length is positive (negative), and the
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induced atom–atom interactions are in effect repulsive
(attractive). It should be noted, though, that the scattering
length does not simply become very large. Vernacu-
lar of this style, and associated attempts to study the
theory of an interacting Bose gas in the limit when
the gas parameter na3

E is not small, are occasionally
misguided and misleading. The physics rather is in res-
onant, energy-conserving conversion between atoms and
molecules.

Atom–Molecule Coupling Strength. Given the differ-
ence in magnetic moments ∆µ between a molecule
and two atoms and the position of the Feshbach res-
onance B0, the detuning is

δ= ∆µ(B− B0)

�
. (76.69)

The variation of the scattering length is conventionally
parametrized in terms of the magnetic field width of the
Feshbach resonance ∆B as

a = a0

(
1− ∆B

B− B0

)
. (76.70)

A combination of (76.67–76.70) gives the relation
between the field width and the contact interaction
parameter characterizing the Feshbach resonance,

g =
√

2π|a0 ∆µ∆B|
m

. (76.71)

Unfortunately, the difference in magnetic moments ∆µ

is not always publicized and one may be forced to
estimate, say, ∆µ≈ µB.

Two-Mode Model. Consider next, in the mean-field ap-
proximation, the case when only uniform atomic and
molecular condensates are present. The condensates are
represented by complex amplitudes α and β such that
φ̂→√

n α and ψ̂→√
n/2β, where n now is the invari-

ant density equal to atom density plus twice the density
of the molecules. It follows from (76.63) and (76.64)
that the probability amplitudes for atoms and molecules,
normalized as |α|2+|β|2 = 1, satisfy

iα̇= Ω√
2
α∗β, iβ̇ = δβ+ Ω√

2
α2 . (76.72)

These are nonlinear variations of the usual two-level
equations (see Chapt. 73) of quantum optics, with the
quantity Ω =√

n g playing the role of the Rabi fre-
quency. This system displays analogs of coherent optical
transients (see Chapt. 73), such as Rabi oscillations be-
tween atomic and molecular condensates, and adiabatic

following from an atomic condensate to a molecular
condensate when the detuning is swept through the
resonance [76.17].

The two-mode model is simplistic in that it ignores
processes in which molecules dissociate into correlated
pairs of noncondensate atoms [76.18, 19]. There are
also secondary complications. The molecules created in
a Feshbach resonance are highly vibrationally excited,
and tend to get quenched in collisions with atoms and
other molecules. Typical lifetimes are in the millisec-
ond regime. Usual one-color photoassociation from two
atoms to a molecule with the absorption of a photon,
on the other hand, creates an electronically excited mol-
ecule, which decays spontaneously on a time scale far
shorter than the typical photoassociation time scales.
To mitigate spontaneous emission, one usually resorts
to two-color photoassociation, in which a second laser
takes the photoassociated molecules to another more
stable level [76.20].

At present, the two-mode system with just an atomic
and a molecular condensate has never been realized
cleanly in an experiment. Nonetheless, experiments us-
ing a Feshbach resonance have demonstrated Ramsey
fringes in transitions between atomic and molecular
condensates [76.21], and formation of what probably is
a (short-lived) molecular condensate from the bosonic
isotope 23Na [76.22].

Fermion Systems. Combining two fermionic atoms
gives a bosonic molecule, and Feshbach resonance in
a Fermi gas is currently a popular topic. The main in-
terest is in the BEC-BCS crossover. Basically, if the
magnetic field is tuned so that the detuning is negative,
molecules have a lower energy than atoms. Thermal
equilibration then leads to molecules that will condense
if the temperature is low enough. On the other hand, if
the detuning is positive, atom–atom interactions are at-
tractive. The atoms may undergo a phase transition into
a fermion superfluid that is analogous to the BCS phase
transition in a superconductor. What happens in between
has been a question in theory for a while [76.23], and is
finally accessible to experiments.

Collisionless adiabatic transfer from atoms to
molecules by sweeping the magnetic field across a Fesh-
bach resonance works with fermions much like with
bosons [76.24]. Moreover, molecules formed in the
834 G Feshbach resonance in the fermionic isotope 6Li
may live for seconds. It is now possible to study ther-
mal equilibrium and long-lived excited states in the
neighborhood of the resonance [76.25–27]. In particu-
lar, the observation of a vortex lattice over a wide range
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of magnetic fields on both sides of the resonance [76.24]
indicates that close to the resonance the gas is a strongly
interacting superfluid.

76.5.2 Optical Lattice with a BEC

A BEC confined to a periodic potential enjoys a long-
standing popularity for reasons that have varied in time.
In the early days of BEC the Josephson effect and
phase behavior of a BEC were topical. The possibil-
ity of a quantum phase transition in an optical-lattice
system was the next broad topic to emerge, and nowa-
days speculations about using condensates in a lattice
either as supporting technology or as the active element
in quantum information processing abound. The decep-
tively simple theoretical models of these systems add to
their staying power. In this section, a brief discussion of
an optical lattice holding a BEC is presented. The quan-
tum information view is not pursued here, as so far no
specific experimental progress has appeared in print.

Optical Lattice. Dipole forces of standing-wave fields
of light generate a periodic potential, an optical lattice,
on the atoms. If the light is detuned far enough from
atomic resonances, absorption and spontaneous emis-
sion are negligible and the potential is conservative. In
one dimension, the potential energy for the motion of
the atoms is typically of the form

V(x)= V0 sin2 kx , (76.73)

where k is the wave number of the lattice light, and the
depth of the lattice V0 can be inferred from the known
parameters of the atoms and the light as explained in
Sect. 75.2.2.

Double-Well Potential. One can integrate the GPE nu-
merically for an arbitrary potential, but many more
insights have been gained from restricted models. The
simplest one is a double-well potential in the two-state
approximation, in which only the ground state of the
atoms in both wells is taken into account. The Hamilto-
nian is

Ĥ

�
=−∆

2

(
a†l ar+a†r al

)+2κ
[(

a†l al
)2+ (

a†r ar
)2]
.

(76.74)

Here ∆ is a parameter characterizing tunneling between
the “left” and the “right” potential well, al,r are the
annihilation operators for ground-state bosons in each
well, and κ is a measure of atom–atom interactions. The
one-particle states in a symmetric double-well poten-
tial with weak tunneling come in doublets, one even

state φ+ and one odd state φ−, with respect to the cen-
ter of the double-well trap. The choices of signs of the
wave functions are assumed to work out in such a way
that the left and right states are φl,r =√

1/2 (φ+±φ−).
Equation (76.74) could be the version of the Hamilto-
nian (76.22) restricted to the basis of the two states φl,r.

There are many forms of the Hamiltonian (76.74)
that differ by a polynomial of the conserved particle
number N̂ = (

a†l al+a†r ar
)
. Inasmuch as particle num-

ber is fixed, adding any function of the conserved quan-
tity N̂ to the Hamiltonian has no effect on the dynamics,
and so such forms are functionally equivalent. Here
polynomials of N̂ are added to the Hamiltonian without
further notice to produce the simplest-looking results.

Semiclassical Approximation. The usual method of go-
ing to the classical field theory gives the equations for
the semiclassical amplitudes defined by al,r/

√
N → αl,r,

iα̇l =−1

2
∆αr+χ|αl|2αl,

iα̇r =−1

2
∆αl+χ|αr|2αr , (76.75)

with χ = 4κN . Without atom–atom interactions these
are the equations of a resonant two-level system and
describe Josephson oscillations of the atoms between the
sides of the double-well potential. Interactions temper
the oscillations, or stop them completely [76.28].

Phase Diffusion in the Double Well. The model (76.74)
is unusual in that one can easily go beyond the semiclas-
sical approximation [76.29]. The entire state space for
N atoms is spanned by the vectors |nl, nr〉 = |nl, N−nl〉
with nl = 0, . . . , N . The Hamiltonian can be diag-
onalized and the time dependence of the system solved
numerically even for large N . Moreover, the common
case in which the atom number fluctuations at the sites
are at least of the order unity, but small in a relative sense,
is amenable to a simple analytical approximation.

The phase difference of the condensates between the
two traps, ϕ̂, is a case in point. One can measure it by
releasing the atoms from the trap and letting them inter-
fere. Although there are serious in-principle problems
with this interpretation, phase difference can be viewed
qualitatively as the canonical conjugate of the difference
between the number of atoms on the sides of the double
well, n̂ ≡ n̂l− n̂r, with [n̂, ϕ̂] = −i. The minimum un-
certainty product of phase difference and atom number
difference is then 1/2. On this basis, results for vari-
ous experiments can be qualitatively and quantitatively
predicted.
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For instance, suppose the system is prepared in the
ground state of the Hamiltonian (76.74). The ground
state is an even split of the atoms between the two
traps, but atom number fluctuations depend on the ra-
tio between tunneling and atom–atom interactions. For
|∆|/χ& 1, atom–atom interactions dominate, and since
moving an atom from one side of the trap to the other
costs much interaction energy, the ground state is close
to a number state with half of the atoms in each potential
well. In the contrary case, the ground state is essentially
the many-body state with all N atoms in the symmetric
state φ+, which breaks up into a Poissonian distribution
of the atoms between the states φl and φr. As long as the
standard deviation of the atom number difference is at
least of the order of unity, it is given by

∆n =√
N

(
∆

∆+4Nκ

)1/4

, (76.76)

and the phase fluctuations are

∆ϕ = 1

2 ∆n
. (76.77)

As discussed above in Sect. 76.3.2, a measurement
of the phase difference will produce a definite result. In
the interaction-dominated case the result should in effect
be random, while in the tunneling-dominated case the
phase difference should come out the same every time,
save for fluctuations of the order 1/

√
N . Similarly, if one

were to start from the ground state in the case when tun-
neling dominates, and then suddenly turn off tunneling
by adjusting the potential well, atom–atom interactions
would lead to diffusion (or rather, dispersion) of the
phase difference. The result of a phase measurement
becomes increasingly random with time according to

∆ϕ(t)= 1

2

√
1

N
+16Nκ2t2 . (76.78)

Bose–Hubbard Model. The corresponding multi-well
problem goes under the rubrics fo the Bose–Hubbard
model and tight-binding approximation. The Hamilto-
nian is

Ĥ

�
=
∑

n

[
−∆

2

(
a†n+1an +a†n−1an

)+2κ
(
a†nan

)2
]
.

(76.79)

The sum runs over the sites of the optical lattice, which
is taken to be one-dimensional in this example, and
∆ and κ again characterize tunneling and atom–atom
interactions. At the ends of the lattice there are some
boundary conditions, but for a long enough lattice they
do not influence the physics.

One-particle eigenstates in a periodic lattice are or-
ganized in energy bands, but there is a well-known
transformation in condensed matter physics that makes
orthonormal Wannier states , more or less localized in the
lattice sites, out of the states in each band. The most rig-
orous interpretation of the Hamiltonian (76.79) is that
it is the representation of the Hamiltonian (76.22) in
the Wannier states belonging to the lowest energy band
of the lattice, ignoring tunneling between non-adjacent
sites. Viewed in this way, the model is only valid in the
limit when the energy per atom for atom–atom interac-
tions is small compared to the energy spacing between
the bands.

Nonetheless, direct integrations of the GPE with
atom–atom interactions also show energy bands, and
for suitably picked parameters the Hamiltonian (76.79)
should be generic for the case when interband transitions
are negligible. Now, without atom–atom interactions the
width of the energy band from the Bose–Hubbard model
would be �∆. On the other hand, the band structure for
the potential energy (76.73) of an optical lattice comes
from the Mathieu equation [76.30]. A comparison gives
the estimate

∆= 8√
π

Er

�

(
V0

Er

)3/4

exp

(

−2

√
V0

Er

)

. (76.80)

This is an asymptotic expression for the limit when
the recoil energy Er = �

2k2/2m and the lattice depth
V0 satisfy V0 % Er. Next suppose that one ascribes to
each potential well the unit-normalized wave function
φ(x), then an estimate for the atom–atom interaction
parameter κ comes from (76.23) in the form

κ = π�a

m

∫
d3x |φ(x)|4 . (76.81)

Phase Diffusion in the Bose–Hubbard Model. The
dominant feature of the Bose–Hubbard model again is
competition between tunneling and atom–atom interac-
tions. Also, phase and atom number fluctuations may
again be studied analytically under the assumptions that
atom number fluctuations at each site are at least of the
order of unity, but small in a relative sense. For the same
numbers of atoms per site, the results are basically the
same in the two- and multi-well cases.

In fact, multi-well counterparts [76.31] of the ex-
periments on the phase relations are well ahead of the
experiments on two-well systems [76.32]. The multi-
well experiments are in satisfactory agreement with the
theory.
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Superfluid-Mott Insulator Transition. Because the size
of the state space tends to grow as L L with the number
of lattice sites L , direct numerical solutions to the multi-
well problem are computationally intractable. This is
somewhat unfortunate, as a long lattice also presents be-
haviors with no obvious analogs in the two-well case,
and for which analytical approximations have proven
hard to come by. When tunneling dominates, the system
is in what is referred to as the superfluid phase. Fluctu-
ations of atom number between the states are relatively
large. On the other hand, if atom–atom interactions dom-
inate, it becomes costly in energy to put anything but an
exact number state of atoms at each lattice site. This is
the Mott insulator phase. According to calculations car-
ried out using the so-called Gutzwiller ansatz, the ground
state of an optical lattice inserted in an atom trap con-
sists of regions with the same integer number of atoms

at the lattice sites within each region [76.33]. When the
parameters of the system are varied, in what is known as
a quantum phase transition, the system should abruptly
switch between these phases.

The superfluid-Mott insulator transition has been
observed experimentally [76.34]. Lattice parameters, es-
pecially tunneling, can be varied easily by changing the
intensity of the lattice light. The observation of the tran-
sition is by means of phase coherence. In the superfluid
state the system is characterized by a global macroscopic
wave function. When the atoms are released from the lat-
tice, atoms originating from different sites are capable
of interference, and the interference pattern reflects the
lattice structure. On the other hand, in the Mott insu-
lator phase the lattice sites are in number states with
little phase coherence between them, and there is no
interference pattern.
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De Broglie Op77. De Broglie Optics

De Broglie optics concerns the propagation
of matter waves, their reflection, refraction,
diffraction and interference. The main subfields
of de Broglie optics are electron optics [77.1],
neutron optics [77.2], and atom optics [77.3].
Well-established applications are found in
electron diffraction and microscopy [77.4], electron
holography [77.5], neutron diffraction and
interferometry [77.6]. The subject of atom optics is
relatively new, and applications are currently being
developed in precision spectroscopy, precision
measurement, atom lithography, atom microscopy,
and atom interferometry [77.7–9]. This chapter
concentrates on the principles of de Broglie optics.
Illustrations of these principles will be presented
mainly in the framework of atom optics.

A typical de Broglie optical experiment involves
a source, a beam of particles produced by that
source, an array of optical elements, possibly
a probe, other optical elements placed behind the
probe, and finally a detector. Optical elements are
collimators, apertures, lenses, mirrors, and beam-
splitters. A probe could be a crystal, a biological
sample, or just another unknown optical element
whose properties are to be investigated.

To avoid proliferation of notation, we refer to
any object placed in the beam path simply as an
“optical element”.

77.1 Overview............................................. 1125

77.2 Hamiltonian of de Broglie Optics .......... 1126
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77.1 Overview

Any collection of particles of mass M and momentum p
has a de Broglie wavelength λdB = 2π�/p. Originally
meant to explain the orbits of a single Coulomb-
bound electron, the ultimate wave character of matter
has been confirmed for all fundamental particles, and
also for composite particles such as ions, atoms and
molecules.

In terms of the Bohr radius a0, the fine-structure
constant α, and the electron mass me

λdB = 2παa0(
v/c

)(
M/me

) = 2π

(
Eh

2T

me

M

)1/2

a0 ,

(77.1)
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where v= p/M is the velocity, T = 1
2 Mv2 is

the kinetic energy, and Eh is the atomic unit
of energy (Table 1.4 of Sect. 1.2). For electrons,
λdB ≈ 1.226 426 nm/(T/eV)1/2. The thermal de Broglie
wavelength is defined in (77.80).

Regardless of the particle species, the theory of de
Broglie optics divides into two distinct parts: the theory
of dispersion and the theory of the optical phenomena. In
the theory of dispersion an effective Hamiltonian is de-
rived which describes the interaction of the particles with
the optical elements. In the theory of optical phenomena,
the ensuing Schrödinger equation is solved and put into
the context of geometrical and Fourier optics (e.g., by
relating distributions of intensity on the detector screen
to properties of a given optical element).

Dispersion of de Broglie Waves
The theory of dispersion is highly particle specific,
since it depends on any internal degrees of freedom
which may give rise to permanent magnetic mo-
ments or to induced electromagnetic moments either
in static or in optical light fields. Interaction with
the latter fields also may give rise to spontaneous
emission. Spontaneous emission has important conse-
quences for the coherence properties of atomic matter
waves because of the random recoil associated with it
(Chapt. 75).

Dispersion of matter waves differs from that of light
waves in a number of regards. First, the dispersion
relation of free particles is quadratic in the wavenum-
ber giving rise to spatial spreading of wavepackets
even in one-dimensional configurations. Second, par-
ticles may be brought to rest, which is impossible for

photons. And finally, particles in beams may show self-
interaction giving rise to nonlinear optical phenomena
even for freely traveling particle waves. Electrons and
ions, for example, experience a particle density depen-
dent Coulomb broadening in the focus of a lens (Boersch
effect [77.5]).

In atom optics, nonlinear phenomena occur due
to atom–atom interactions in the ensemble, the na-
ture of which may be significantly influenced by
laser light [77.10]. In the presence of laser light,
atom–atom interactions mainly result from photon
exchange which, in most cases, leads to a repul-
sive interaction. Details of the microscopic basis
of atom–atom interactions, in particular, those con-
cerning cold collisions, are presented in Sect. 75.5.1.
Characteristic effects of nonlinear atom optics like
four-wave mixing [77.11] and parametric amplifica-
tion [77.12] have been observed with the highly
dense samples provided by Bose–Einstein degenerate
gases (Chapt. 76).

Optics of de Broglie Waves
In contrast to the theory of dispersion, the theory of
optical phenomena of matter waves is quite universal
and bears strong resemblance to ordinary light optics.
This resemblance is closest if the particles can be de-
scribed by a scalar wave function of a structureless
point particle. However, in the presence of resonant laser
fields, electronic levels, their Zeeman sublevels and pos-
sible hyperfine structure may play an important role,
in which case a multicomponent spinor wave function
must be used to describe the atom optical phenomena
properly.

77.2 Hamiltonian of de Broglie Optics

A large class of phenomena of particle optics is well-
described by an effectively one-particle Hamiltonian
model in which the particles are not assumed to mutu-
ally interact. In such a model the ensemble of particles is
described by a wave function ψ(x, t)= 〈x|ψ(t)〉 whose
time evolution is governed by the Schrödinger equation

i�
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉 (77.2)

with a one-particle Hamiltonian of the generic form

H(t)=
[

p̂−A(x̂, t)
]2

2M
+U(x̂, t) . (77.3)

Here, p̂ and x̂ denote the canonically conjugate oper-
ators of the center of mass momentum and position,
respectively. The cartesian components of p̂ and x̂ obey
the fundamental commutation relation

[
x̂i , p̂ j

]= i�δij . (77.4)

The vector potential A(x, t) and scalar potential
U(x, t) account for the interaction of the particle
with all the optical elements, probes, and sam-
ples which are placed between the source and the
detector, including the effects of gravitation and
rotation.
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De Broglie Optics 77.2 Hamiltonian of de Broglie Optics 1127

77.2.1 Gravitation and Rotation

All particles are subject to the influence of gravitation
and rotation, which both may be viewed as being special
cases of an accelerated frame of reference. Effects of
uniform gravitation are described by

U(x)=−Mg · x , A(x)= 0 , (77.5)

where g describes the direction and magnitude of grav-
itational acceleration. Effects of uniform rotation are
described by

U(x)=−M

2
(Ω × x)2 , A(x)= M (Ω × x) ,

(77.6)

where the direction and magnitude of Ω refer to the ori-
entation of the axis of rotation and the angular velocity,
respectively. Here, U(x) is the potential of the centrifu-
gal force while A(x) is the potential of the Coriolis
force.

77.2.2 Charged Particles

The interaction of charged particles (electrons, ions)
with the electromagnetic field is described by

U(x, t)= qΦ(x, t) , A(x, t)= (q/c)A(x, t) ,
(77.7)

where q is the particle charge (q =−e for electrons),
and A and Φ denote the gauge potentials of the elec-
tromagnetic fields E and B, respectively. The fields are
given by

E(x, t)=−1

c

∂

∂t
A(x, t)−∇Φ(x, t) , (77.8)

B(x, t)=∇ × A(x, t) . (77.9)

77.2.3 Neutrons

For neutrons interacting with a spatially homogeneous
gas, liquid, or amorphous solid contained in a volume V ,
a common model is

U(x)=
{

U0 inside V ,

0 outside V ,
(77.10)

where U0 = 2π�2�b/M, � being the number density
of scatterers in the volume, and b the bound coherent
scattering length.

For neutrons interacting with perfect crystals, U(x)
is a smooth periodic function with the same periodicity

as the lattice and an average value U0 within a single
unit cell (see [77.2] for details).

77.2.4 Spins

The interaction of the spin related magnetic moment µ

with the electromagnetic field is described by

Û(x, t)= − µ̂ · B(x, t) ,

Â(x, t)= [
µ̂× E(x, t)

]
/c (77.11)

Here, the vector potential is due to the motional cor-
rection of the magnetic dipole interaction. Usually, it is
neglected. However, it does play an important role for
the Aharonov–Casher effect (Sect. 77.7).

For fundamental particles with spin 1
2 , one has

µ̂= g
�e

4Mc
σ , (77.12)

where σ is the vector of Pauli matrices, and g is the
g-factor of the particle (Sect. 75.5.2).

Here and in what follows, a hat on U and A indicates
the matrix character of the hatted quantity, the matrix
indices referring to the internal degrees of freedom, like
spin. Similarly, Ψ(x, t) denotes a spinor-valued wave
function. The wave function of a spin- 1

2 particle, for
example, is displayed in the form

Ψ(x, t)=
(
ψ↑(x, t)
ψ↓(x, t)

)

, (77.13)

where ψ↑ (ψ↓) is the scalar wave function of the σ3 =
+1(−1) component of the state |Ψ(t)〉.

77.2.5 Atoms

Many optical elements in atom optics are based on the
mechanical effects of the radiation interaction. In the
electric dipole approximation, the interaction of a single
atom with the electromagnetic field is described by

Û(x, t)= − d̂ · E(x, t) ,

Â(x, t)= B(x, t)× d̂/c , (77.14)

where d̂ is the operator of electric dipole transition. The
vector potential Â is due to the motional correction of
the electric dipole interaction. Usually it is neglected;
see however, the paragraph Electric Dipole Phase in
Sect. 77.7.

For a monochromatic field of frequency ω

E(x, t)= E(+)(x)e−iωt +h.c. , (77.15)
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where E(+)(x) defines both polarization and spatial
characteristics of the field. A standing wave laser field
with optical axis in the x-direction and linear polariza-
tion ε, for example, is described by

E(+)(x)= ε E0 f(x, y, z) cos(kx) , (77.16)

where E0 is the electric field amplitude, k = ω/c is the
wavenumber, and the slowly varying function f(x, y, z)
accounts for the transverse profile of the laser field.

The electric dipole operator d̂ acts in the Hilbert
space of electronic states of the atom. In the particular
case that the polarization of the laser field is spatially
uniform and that spontaneous emission does not play
a role, two states are generally sufficient and the atom
may be modeled by a two-level atom with electronic
levels |e〉 and |g〉 of energy Ee and Eg, respectively
(Ee > Eg). With the spinor representation

|e〉 =
(

1

0

)

, |g〉 =
(

0

1

)

, (77.17)

the electric dipole operator assumes the form

d̂ = d εd

(
0 1

1 0

)

, (77.18)

where d is the matrix element of the dipole transition
and εd denotes its polarization.

The laser field is assumed to be near resonant with
the e ↔ g transition atω0 =

(
Ee−Eg

)
/�, and we denote

by∆≡ ω0−ω the atom-laser detuning. Using the rotat-
ing wave approximation (Sect. 68.3.2) in an interaction
picture with respect to the laser frequency, the Hamilto-
nian describing the atomic dynamics – both internal and
center-of-mass – is given by

H = p̂2

2M
− �

2

(
−∆ Ω1(x̂)
Ω1
†(x̂) ∆

)

, (77.19)

where

Ω1(x)= 2d εd · E(+)(x)/� (77.20)

is the spatially dependent bare Rabi frequency. In the
field (77.16), Ω1(x) is cosinusoidal with peak value
Ω0 = 2dE0/�.

Atom Optical Stern–Gerlach Effect
The Hamiltonian (77.19) may be written in the form

H = p̂2

2M
+ �

2
σ · Beff(x̂) , (77.21)

where

Beff(x)=
(−Re[Ω1(x)], Im[Ω1(x)], ∆

)
. (77.22)

As it stands, the Hamiltonian (77.21) describes the pre-
cession and center of mass motion of a fictitious spin in
an external “magnetic field” Beff(x). Spatial variations
of this field give rise to the Stern–Gerlach effect, i. e.,
the splitting of the atomic center of mass wave function
(see also Sect. 77.5.3).

Adiabatic Approximation
In the position representation, the Hamiltonian (77.19)
acts on state vectors of the form of a bispinor

Ψ(x, t)=
(
ψe(x, t)
ψg(x, t)

)

. (77.23)

Alternatively, this state vector may be expanded in terms
of the local eigenvectors α±(x), β±(x) of the interaction
matrix, also called dressed states,

Ψ(x, t)= ψ+(x, t)
(
α+(x)
β+(x)

)

+ψ−(x, t)
(
α−(x)
β−(x)

)

,

(77.24)

where

Û(x)

(
α±(x)
β±(x)

)

=±�Ω(x)
2

(
α±(x)
β±(x)

)

, (77.25)

with eigenvalues determined by the dressed Rabi fre-
quency

Ω(x)=
√
|Ω1(x)|2+∆2 , (77.26)

and coefficients (we suppress the x-dependence for no-
tational clarity)

(
α+ α−
β+ β−

)

=
(

cos ϑ2 −e−iϕ sin ϑ2
eiϕ sin ϑ2 cos ϑ2

)

≡ Ŝ .

(77.27)

Here, the Stückelberg angle ϑ ≡ ϑ(x) and phase angle
ϕ≡ ϕ(x) are defined in terms of the polar representation
of the effective magnetic field

Beff =Ω (cosϕ sinϑ, sinϕ sinϑ, cosϑ) . (77.28)

In the dressed state basis, the transformed Hamilto-
nian assumes the form

˜̂H ≡ Ŝ† Ĥ Ŝ =
[

p̂−Â(x̂)
]2

2M
+ �

2
Ω(x̂)σ3 , (77.29)
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De Broglie Optics 77.3 Principles of de Broglie Optics 1129

with matrix-valued vector potential

Â(x)= i�S†(x) [∇S(x)] . (77.30)

This matrix is not diagonal; its off-diagonal elements
describe nonadiabatic transitions between the dressed
states. If the detuning is sufficiently large, and the atom
moves sufficiently slowly, these nonadiabatic transitions
may be neglected in a first approximation. In such an
approximation, which is akin to the Born–Oppenheimer
approximation in molecular physics, the dynamics of
the atom is described by two decoupled Hamiltonians of
the generic form (77.3), with scalar potentials U given
by

U(x)=±�

2
Ω(x) (77.31)

and vector potentials A(x) given by the diagonal elem-
ents of (77.30). The vector potential is usually neglected.
If included, it describes the Berry phase of the mechan-
ical effects of the radiation interaction of a two-level
atom.

The idea behind the adiabatic approximation is that
the internal state of the atom, which is described by
any of the locally varying dressed states, has enough
time to adjust smoothly to the motion of the atom. For
the important case of strong detuning |∆| % |Ω1(x)|,
this assumption is usually well justified. In this case, an

atom in the dressed ground state experiences a potential
which is approximately given by

U(x)=−�|Ω1(x)|2
4∆

. (77.32)

For red detuning we have ∆> 0, in which case the
atom is attracted towards regions of high intensity (high
field seeker). For blue detuning, the atom is repelled
from such regions (low field seeker). A potential sim-
ilar to (77.32) also applies for complex particles like
molecules whose transitions are far detuned from the
light frequency. The potential is proportional to the
dynamic polarizability α(ω) and the field intensity.

Atom Optical Nonlinearity
In very dense atom ensembles at low temperatures, col-
lisions between particles can be described by a contact
interaction whose strength depends, in the simplest case,
on a single parameter, the s-wave scattering length a
(Sect. 75.5.1). In the mean field approximation, these
interactions translate into a density-dependent potential

U(x)= 4π�2a(N −1)

M
|ψ(x)|2 , (77.33)

where N is the number of particles. This non-
linearity leads to the occurrence of atom soli-
tons [77.13], four-wave mixing [77.11], and parametric
amplification [77.12].

77.3 Principles of de Broglie Optics

Since the Schrödinger equation is a linear partial dif-
ferential equation, de Broglie optics shares most of
its principles with principles of other wave phenom-
ena, and in particular with the optical principles of
electromagnetic waves.

77.3.1 Light Optics Analogy

The analogy of de Broglie optics and light optics be-
comes particularly transparent for monoenergetic beams
of scalar particles. Such beams are described by a time
harmonic wave functionψ(x, t)= e−iEt/�ψE(x), where
ψE(x) obeys the stationary Schrödinger equation

HψE = EψE . (77.34)

Setting A(x)= 0 in (77.3) for simplicity, this equation
assumes the form

[
∇2+ k̃2

0

(
1− U(x)

E

)]
ψE(x)= 0 , (77.35)

where the wavenumber k̃0 is related to the energy E via
the dispersion relation

E ≡ �
2k̃2

0

2M
. (77.36)

If U= 0 at the entrance to the interaction region, E is
the kinetic energy of the freely traveling de Broglie wave
and k̃0 is the related wavenumber.

Comparing (77.35) with the scalar Helmholtz equa-
tion of electromagnetic theory, and identifying

ñE(x)≡
[
1−U(x)/E

]1/2
(77.37)

as an index of refraction for matter waves, one observes
the complete analogy of scalar optics of stationary matter
waves and monochromatic light waves. This analogy can
be generalized for spinor valued wave functions which
would correspond to vector wave optics in anisotropic
index media. However, in contrast to light, spinor-valued
wave functions do not obey a transversality condition.
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In (77.35–77.37), the parameter E describes the kin-
etic energy of the incoming beam. Thus, E is positive,
and therefore ñE < 1 for positive values of the poten-
tial, while ñE > 1 for negative values of the potential.
For neutrons, one generally has ñE < 1. This contrasts
to the index of refraction for light waves which is gener-
ally larger than one. For electrons, ions, and atoms both
ñE < 1 and ñE > 1 may be realized.

77.3.2 WKB Approximation

Waves are described by amplitude and phase. Particles
are described by position and momentum. The link be-
tween these concepts is provided by Hamilton’s ray
optics. For scalar matter waves, a ray follows a clas-
sical trajectory. The optical signature of the ray is
the phase associated with it. The quantum mechan-
ical version of Hamilton’s ray optics is obtained in
the WKB approximation of the stationary Schrödinger
equation (77.34).

Any solution of (77.34) may be written in the form

ψE(x)= A(x)eiW(x) (77.38)

with real-valued A(x) and W(x). In the WKB approxi-
mation A(x)≈ 1, and

W(x)= k̃0

P∫

Pi

ñE(s)ds+�
−1

x∫

xi

A(x′) · dx′ ,

(77.39)

which is called eikonal in Hamilton’s ray-optics. In
this expression, ñE(s)≡ ñE (x(s)), where x(s) denotes
the classical trajectory of energy E connecting the
point Pi with the point P, xi and x are the coordi-
nates of Pi and P, respectively, and ds ≡ |dx| is the
element of arc length measured along the classical tra-
jectory. Note that the second contribution in (77.39) is
generally gauge-dependent. However, for closed loops
which are frequently encountered in interferometry, the
gauge-dependence disappears by virtue of Stokes the-
orem which transforms the path integral into an area
integral over the rotor of A.

The eikonal (77.39) may also be written in the form
of a reduced action

W(x)= 1

�

x∫

xi

p(x′) · dx′ =
x∫

xi

k̃(x′) · dx′ , (77.40)

where p(x) is the local value of the canonical momen-
tum of the particle, k̃(x)≡ p(x)/� is the corresponding

wave vector, and the integral is evaluated along the clas-
sical trajectory of the particle. Note that in the presence
of a vector potential, p(x) and dx are no longer parallel
as a result of the difference between canonical momen-
tum p and kinetic momentum M(d/dt) x≡ p−A.

The WKB approximation becomes invalid in the
vicinity of caustics where neighboring rays intersect.
There, connection formulae are used to find the proper
phase factors picked up by the ray in traversing the caus-
tics. Depending on the topology of the intersecting rays,
different classes of diffraction integrals provide uniform
approximations for the wave amplitude near caustics.
For further details see [77.14] and [77.15].

77.3.3 Phase and Group Velocity

The velocity of a particle which traverses a region of
negative potential increases so that p(x) > p0, and the
phase advances: δW = ∫

[p(x)− p0] · dx> 0. In quan-
tum mechanics, the classical velocity corresponds to the
group velocity, while the evolution of the phase is de-
termined by the phase velocity. The phase and group
velocities of de Broglie waves are given by

vp(x)≡ E

p(x)
= 1

ñE(x)

√
E

2M
, (77.41)

vg(x)≡ ∂E

∂p(x)
= ñE(x)

√
2E

M
, (77.42)

respectively. Note that the product vpvg = E/M is inde-
pendent of ñE(x).

77.3.4 Paraxial Approximation

The paraxial approximation is useful in describing the
evolution of wave-like properties and/or distortion of
wavefronts in the immediate neighborhood of an optical
ray.

Let the z-axis be the central optical axis of symmetry
along which the optical elements are aligned. Using the
Ansatz ψE(x)= eik̃0zφ(x, y; z), and dropping ∂2φ

/
∂z2

in a slowly varying envelope approximation, one obtains

i�v0
∂

∂z
φ(x, y; z)

=
[
− �

2

2M
∇2⊥+U(x, y; z)

]
φ(x, y; z) , (77.43)

where ∇2⊥ = ∂2
/
∂x2+∂2

/
∂y2, and v0 = �k̃0

/
M is

the longitudinal velocity of incoming particles. This
equation has exactly the form of a time-dependent
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De Broglie Optics 77.4 Refraction and Reflection 1131

Schrödinger equation in two dimensions, with z/v0 play-
ing the role of a fictitious time t. With this interpretation,
the spatial evolution of phase fronts along z can be an-
alyzed in dynamical terms of particles moving in the
xy-plane.

77.3.5 Raman–Nath Approximation

In the Raman–Nath approximation (RNA) (also called
the short-time, thin-hologram, or thin-lens approxima-
tion), the ∇2⊥ term in (77.43) is neglected. The potential
U(x, y; z) then acts as a pure phase structure, and the

solution of (77.43) becomes

φ(x, y; z)=

exp

⎡

⎣− i

�v0

z∫

zi

dz′U(x, y; z′)

⎤

⎦φ(x, y; zi).

(77.44)

In terms of a classical particle moving under the in-
fluence of U, the approximation loses validity for
1
2 Mv2⊥ �U, which is just a quarter cycle for a harmonic
oscillator.

77.4 Refraction and Reflection

Consider a particle beam of energy E incident on
a medium with constant index of refraction ñE. The
boundary plane at z = 0 in Fig. 77.1 divides the vacuum
from the medium. At the boundary, the beam is par-
tially reflected and partially transmitted, with the angles
determined by Snell’s law of refraction

sinα= ñE sinβ , (77.45)

and the law of reflection

α= α′ . (77.46)

The coefficients of reflectivity R̃, and transmittivity
T̃ = 1− R̃ are given by the Fresnel formula

R̃ =
∣∣∣∣
cosα− ñE cosβ

cosα+ ñE cosβ

∣∣∣∣
2

. (77.47)

For ñE > 1, the interface is “attractive” and R̃ & 1,
with R̃ → 1 only for glancing incidence α→ π/2. For
ñE < 1, the interface is “repulsive” and total reflection

z

�

α

α�

U � 0

Fig. 77.1 Reflection geometry

(
R̃ = 1

)
occurs for α ≥ α̃c, where α̃c = sin−1 ñE is the

critical angle. For α > α̃c, the de Broglie wave becomes
evanescent, with ψE(z > 0)∼ e−κ̃z inside the medium
(z > 0), where

κ̃ = k̃0
(

sin2 α− sin2 α̃c
)1/2

. (77.48)

For thermal neutrons, π/2− α̃c ∼ 3 × 10−3 radians.
If E <U, then ñE is imaginary and total reflec-

tion occurs for all α. In neutron optics, this total mirror
reflection requires ultracold neutrons (T ≈ 0.5 mK). It
has important applications for storage of ultracold neu-
trons in material cavities, and neutron microscopy using
spherical mirrors. For details see [77.2].

77.4.1 Atomic Mirrors

Inelastic processes, such as diffuse scattering and ab-
sorption, inhibit coherent reflection of atoms from bare
surfaces. The surface must therefore be coated either
with material of low adsorptivity (noble gas, see [77.16])
or electromagnetic fields (evanescent light or magnetic
fields, see below).

Reflection of Atoms by Evanescent Laser Light
Evanescent light fields are produced by total inter-
nal reflection of a light beam at a dielectric–vacuum
interface [77.17]. In the vacuum, the field decays ex-
ponentially away from the interface on a characteristic
length κ−1 where

κ = k
(
n2 sin2 θi −1

)1/2
. (77.49)

Here, n is the light index of refraction of the dielectric,
k is the wave number of the light beam in vacuo, and θi
is its angle of incidence.
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If the light is blue-detuned from the atomic res-
onance, an incident beam of ground state atoms
experiences the repulsive potential

U(x)= �

2

[(
Ω0

2e−2κ|z| +∆2
)1/2−|∆|

]
.

(77.50)

For α > α̃c, the evanescent field acts as a nearly
perfect mirror, the imperfections being due to nonadi-
abatic transitions into the “wrong” dressed state, and
possible spontaneous emission. Reflection of atoms
by evanescent laser light was demonstrated by Ba-
lykin et al. [77.18] at grazing incidence and by Kasevich
et al. [77.19] at normal incidence.

Reflection of Atoms by Magnetic Near Fields
Magnetic near fields are produced above substrates with
a spatially modulated permanent magnetization or close
to arrays of stationary currents. In the vacuum above
the substrate, the field decays approximately exponen-
tially over a length comparable to the scale of the
magnetic modulation. The motion of atoms that cross
such inhomogeneous magnetic fields sufficiently slowly
is governed by the analog of the adiabatic potential
described in Sect. 77.2.5:

U(x)=−µ(ms/s
)∣∣B(x)

∣∣ , (77.51)

where µ is the magnetic moment and ms is the (con-
served) projection of the atomic spin s onto the local
magnetic field direction. A repulsive mirror potential is
achieved for spin states with µms < 0; these weak field
seekers are repelled from the strong fields close to the
substrate.

Experiments have used magnetic recording media
like magnetic tapes or hard disks [77.20], arrays of
current-carrying wires [77.21], or amorphous magnetic
substrates [77.22].

77.4.2 Atomic Cavities

Atomic reflections are used in the two kinds of cavities
proposed so far: the trampoline cavity and the Fabry–
Perot resonator.

The trampoline cavity, also called the gravito-optical
cavity, consists of a single evanescent mirror facing up-
wards, the second mirror being provided by gravitation.
A stable cavity is realized with the evanescent laser field
of a parabolically shaped dielectric–vacuum interface,
see [77.23] and the experiment by Aminoff et al. [77.24].
A cavity with transverse confinement provided by a hol-

low blue-detuned laser beam has been demonstrated by
Hammes et al. [77.25].

In the atomic Fabry–Perot resonator both mirrors are
realized by laser light [77.26].

77.4.3 Atomic Lenses

De Broglie waves may be focused by refraction from
a parabolic potential or by diffraction, e.g., by a Fres-
nel zone plate (Sect. 77.5.2). Consider focusing by the
parabolic potential

U(x, y; z)=
{(

1
2 Mω2

f (x
2+ y2) , −w≤ z ≤ 0

0 , otherwise .

)

(77.52)

For ground state atoms, such a potential is realized in
the vicinity of the node of a blue detuned standing wave
laser field of transverse width w. In this case

ω f =Ω0
(
ωrec/|∆|

)1/2
, (77.53)

where ωrec = �k2
/

2M is the recoil frequency.
Comparison with the Raman–Nath approxima-

tion (77.44) at z = 0, with the phase fronts of a spherical
wave converging towards a point x f = (0, 0, f ), shows
that U describes a lens of focal length

f = v2
0

wω2
f

. (77.54)

The Raman–Nath approximation is only valid for a thin
lensw& f , and breaks down forw>wRN = πv0/2ω f .
In the latter case, oscillations of the particles in the
harmonic potential become relevant, a phenomenon
sometimes called channeling. Channeling may be used
to realize thick lenses with focal length f = wRN cor-
responding to a quarter oscillation period.

Focusing of a metastable helium beam using the
anti-node of a large period standing wave laser field
has been demonstrated [77.27]. Such a field is produced
by reflecting a laser beam from a mirror under glancing
incidence. The standing wave forms normal to the mirror
surface. Similar interference patterns provide arrays of
thick lenses that have been exploited in atom lithography
to focus an atomic beam onto a substrate [77.28].

77.4.4 Atomic Waveguides

Atomic waveguides can be realized with potentials that
confine atoms in one or two dimensions [77.29–31].
These devices are key elements for integrated atom
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optics, a field that has seen a rapid evolution re-
cently [77.32, 33]. A planar waveguide is provided by
the one-dimensional confinement in an optical standing
wave [77.34] or an atomic mirror combined with grav-
ity [77.31]. The discrete nature of the waveguide modes
in that case could be demonstrated by lowering the am-
plitude of the confining potential. Linear waveguides can
be modeled by the parabolic transverse potential (77.52)
that now extends along the waveguide axis (the z-
axis). Physical realizations include hollow, blue-detuned
laser beams [77.30], hollow fibers whose inner wall is
coated with blue-detuned evanescent light [77.35], elon-
gated foci of red-detuned light created by cylindrical

lenses [77.36], and magnetic field minima along current-
carrying wires, possibly combined with homogeneous
bias fields [77.37]. With typical thermal atomic ensem-
bles, these waveguides operate in a multimode regime,
and coherent operation has been demonstrated only with
Bose–Einstein condensates. A strong transverse con-
finement that facilitates monomode operation, can be
achieved with miniaturized wire networks deposited on
a solid substrate [77.38, 39]. This approach may lead
to the fabrication of atom chips [77.33]. Even mul-
timode waveguides, however, can yield robust atomic
interferometers, as suggested theoretically in [77.40]
and [77.41].

77.5 Diffraction

The diffraction of matter waves is described by the so-
lution of the Schrödinger equation (77.34) subject to
the boundary conditions imposed by the diffracting ob-
ject. For a plane screen Σ made of opaque portions
and apertures, the solution in the source-free region be-
hind the screen is given by the Rayleigh–Sommerfeld
formulation of the Huygens principle

ψE(x)= k̃0

i

∫

Σ

dξ dη

2π

eik̃0 R

R

×

(
1+ i

k̃0 R

)
n · R

R
ψ(ξ) , (77.55)

where ξ = (ξ, η, ζ) denotes coordinates of points on Σ,
n is an inwardly directed normal to Σ at a point ξ , and
R= x− ξ .

A diffraction pattern only becomes manifest in the
diffraction limit r % d, where r is the distance to the
observation point, and d is the length scale of the diffract-
ing system. The two diffraction regimes are then the
Fraunhofer limit r % d2/λdB and the Fresnel regime
r ≈ d2/λdB, also called near-field optics.

77.5.1 Fraunhofer Diffraction

In the Fraunhofer limit, the field at position (x, y) on
a screen at a distance L downstream from the diffracting
object is given by

ψ(x, y; L)= k̃0
eik0 L

iL

∫
dξ dη

2π

× e−i(k̃xξ+k̃yη)ψ(ξ, η; 0) , (77.56)

where k̃x = k̃0x/L , k̃y = k̃0 y/L . The field at the obser-
vation screen is thus given by the Fourier transform of

the field in the object plane; i. e. the momentum repre-
sentation of the diffracted state. Since most diffraction
experiments in atom optics are performed in the Fraun-
hofer limit, most calculations are done in the momentum
representation.

Atomic diffractions from microfabricated transmis-
sion gratings [77.42] and double slits [77.43] have been
observed. Recent experiments have extended de Broglie
wave diffraction to heavier, complex particles like fuller-
ence molecules (C60) [77.44].

77.5.2 Fresnel Diffraction

Typical applications of Fresnel diffraction are Fresnel
zone plates and the effects of Talbot and Lau. Fresnel
zone plates are microfabricated concentric amplitude
structures which act like lenses. They are frequently
employed in optics of α-particles and neutrons. In atom
optics, focusing with a Fresnel zone plate was first
demonstrated by Carnal et al. [77.45].

The Talbot effect and the related Lau effect refer
to the self-imaging of a grating of period d, which
appears downstream at distances that are integral multi-
ples of the Talbot length L = 2d2/λdB. For a discrete
set of smaller distances than the Talbot length, im-
ages of the grating appear with smaller periods d/n,
n = 2, 3 · · · . For applications in matter wave interfer-
ometry, [77.46]; for applications in atom lithography
see [77.47].

77.5.3 Near-Resonant Kapitza–Dirac Effect

The near resonant Kapitza–Dirac effect refers to the
diffraction of two-level atoms from a standing wave laser
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field with a spatially uniform polarization. The dynam-
ics of the effect is described by the Hamiltonian (77.19)
with the mode function of the laser field given by (77.16).
Consider atoms traveling predominantly in the z-
direction, i. e., orthogonal to the axis of the laser field,
with energy 1

2 Mv2
0 % �Ω0 (Fig. 77.2). Kapitza–Dirac

diffraction is then observed in transmission, which in
the theory of diffraction is called Laue geometry. In the
paraxial approximation (Sect. 77.3.4) for motion in the
z-direction, and assuming that the laser profile is homo-
geneous in the y-direction, the description reduces to
an effectively one-dimensional model for the quantum
mechanical motion along the x-axis of the laser field.

Due to the periodicity of the standing wave light
field, the transverse momenta of the transmitted atom
waves differ by multiples of �k from the transverse
momentum of the undiffracted wave. For the important
case of strong detuning, and assuming that the incoming
atoms are in their electronic ground state moving with
transverse momentum px = 0, the px-distribution of the
outgoing wave is given in the Raman–Nath approxima-
tion (Sect. 77.3.5) by

Prob(px = 2n�k) ∝
∣∣∣∣∣
Jn

(
Ω0

2

8|∆|τ
)∣∣∣∣∣

2

, (77.57)

where Jn is a Bessel function of order n, τ = w/v0
is an effective interaction time, w being the width of
the laser field, and v0 the longitudinal velocity of the
atoms. The distribution (77.57) was observed by Gould
et al. [77.48].

For τ � τRN, where τRN = (
ωrecΩ0

2/|∆|)−1/2, the
Raman–Nath approximation becomes invalid. As a re-
sult of Doppler related phase-mismatch, the momentum
spread saturates and shows a sequence of collapse and
revival as a function of τ [77.49].

If the detuning is too small to allow for a scalar de-
scription, the two-level character of the atoms must be
taken into account. For the particular case of ∆= 0,
the ground state evolves into an equal superposition
of the two diabatic states 1

/√
2
(|e〉± |g〉) while enter-

ing the interaction region. Inside the interaction region,
these states experience potentials which differ only
by their sign. For atomic beams with a small spatial
spread δx & 2π/k, the diabatic states experience oppo-
site forces, leading to a splitting of the atomic beam
called the atom-optical Stern–Gerlach effect [77.50].

In the general case of arbitrary ∆, the Kapitza–
Dirac Hamiltonian (77.21) is most conveniently
analyzed using band theoretical methods of solid state
theory [77.51].

w

x

z

k0

Fig. 77.2 Geometry of the Kapitza–Dirac effect

77.5.4 Atom Beam Splitters

Beam splitters are optical devices which divide an in-
coming beam into two outgoing beams traveling in
different directions. For thermal neutrons, beam split-
ters may be realized by diffraction from perfect crystals
in Laue geometry. For atoms, they can be realized using
diffraction from crystalline surfaces, microfabricated
structures (see Sect. 77.5.1), or by using diffraction from
an optical standing wave.

The Kapitza–Dirac effect, for example, may be ex-
ploited to split an atomic beam coherently using Bragg
reflection at the “lattice planes” provided by the pe-
riodic intensity variations of a standing wave laser
field [77.52]. This process is resonant for an incom-
ing atomic beam traveling with transverse momentum
px = �k because it is energetically degenerate with
the diffracted beam traveling with transverse momen-
tum p̄x =−�k. This level degeneracy is lifted while
the atoms enter the interaction region. In the Bragg
regime, the lifting happens slowly enough that only
the momentum states |±�k〉 participate in the diffrac-
tion (two-beam resonance), and their populations show
Pendellösung type oscillations as a function of the tran-
sit time. The frequency of the oscillations is given
by δE/�, where δE is the energy splitting of the
two beams inside the interaction region. For a transit
time given by a quarter period of the Pendellösung,
a 50% beam splitting is observed [77.52]. In princi-
ple, Bragg resonances may also be realized for higher
diffraction order px = n�k ↔ p̄x = −n�k. However,
in this case, intermediate momentum states become
populated (multibeam resonance), which makes the
higher-order Bragg resonances less suitable for beam
splitting purposes.

Part
F

7
7
.5



De Broglie Optics 77.6 Interference 1135

More promising for the realization of an atomic
beam splitter is the magneto-optical diffraction which
refers to the diffraction of three-level atoms from a laser
field with a periodic polarization gradient (lin ⊥ lin
configuration) (Chapt. 75), and a magnetic field aligned
parallel to the optical axis of the laser field. This
configuration realizes an interaction potential in the
form of a blazed grating, i. e., a phase grating with
an approximately triangular variation of phase. In an
experiment by Pfau et al. [77.53], transverse split-

ting of a beam of metastable helium by 42�k was
observed [77.49].

Diffraction from an evanescent standing wave
involves Bragg reflection of atoms under glancing
incidence from the periodic grating of a blue de-
tuned evanescent standing wave laser field [77.54–
56]. Diffraction at normal incidence has been
demonstrated with sufficiently slow atoms and can
be described by a generalization of the RNA
(Sect. 77.3.5) [77.57, 58].

77.6 Interference

While the overall phase of a wave function ψ is not ob-
servable, interferometry makes detectable the relative
phases of two components ψ1, ψ2 in a superposition
ψ = ψ1+ψ2. Two types of interferometers are most
common: the Young double slit as a paradigm for in-
terferometers based on division of wavefront, and the
Mach–Zehnder interferometer as a paradigm for inter-
ferometers based on division of amplitude. In de Broglie
optics, the latter type is realized in the form of a three-
grating interferometer, since division of amplitude is
achieved by diffraction at gratings rather than by semi-
transparent mirrors. Experiments with this geometry
have been reported for atoms [77.59] and recently for
more massive, complex molecules (fullerenes) [77.60].

77.6.1 Interference Phase Shift

From a fundamental point of view, any interferometer
is a ring. At the entrance port of a three-grating inter-
ferometer displayed in Fig. 77.3, for example, the wave
function is split into two coherent parts which spatially
evolve along different paths and subsequently come to-
gether at the exit port where they are superimposed to
produce two outgoing waves

ψ± = 1√
2
(ψ1±ψ2) , (77.58)

where the components from path 1 and 2 are given by

ψ1 = A1 exp (iW1) ,

ψ2 = A2 exp (iW2) . (77.59)

For simplicity, assume A1 = A2 = A0
/√

2. The rel-
ative flux of the outgoing waves is then

I± = 1

2

(
1± cosχ

)
, (77.60)

whereχ = W1−W2 is the relative phase of the two com-
ponents. The sinusoidal variations of I± with varying χ
are called interference fringes, and χ/2π is called the
fringe order number.

In the WKB approximation, the phases W1 and W2
are given by

Wi = W0+
∫

i

k̃(x) · dx, i = 1, 2 , (77.61)

where the integrals extend over the classical paths 1 and
2, respectively, and dx is an element of displacement
along the paths. Using (77.61), the relative phase is

χ =
∫

C

k̃(x) · dx , (77.62)

where C is the closed interferometer loop. Note, that on
path 2, the path element dx and k̃ are antiparallel.

Usually, the absolute value of χ is not measured, but
only variations, called phase shifts, which result from
displacements of the diffraction gratings or placement
of optical elements into the beam path. Phase shifts

D D

υ

Ψ1

Ψ2

Ψ+

Ψ–

Fig. 77.3 Geometry of the three-grating interferometer
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come in two categories: dispersive and geometric. If
a phase shift χ depends on v0, it is called dispersive,
otherwise it is called geometric. Geometric phases de-
pend only on the geometry of the interferometer loop.
The Sagnac effect (see below), for example, may be
geometric. A phase which depends neither on v0 nor
on the geometry of the interferometer loop is called
topological. The Aharonov–Bohm effect (see below) is
topological.

Using (77.39), χ becomes

χ = χ0+χ{U}+χ{A} , (77.63)

where for weak potentials U and A,

χ0 = Mv0

�
(L1− L2) , (77.64)

χ{U} = − 1

�v0

∮
U[x(s)]ds , (77.65)

χ{A} = 1

�

∮
A(x) · dx , (77.66)

and Li is the geometric length of the path i. For a constant
potential U0 intersecting the interferometer on a length
w, χ{U} is given by

χ{U} = −U0w

�v0
. (77.67)

Using Stokes theorem, χ{A} may be written in the
manifestly gauge-invariant form

χ{A} = 1

�

∫
[∇ ×A(x)] · da , (77.68)

where the integral extends over the area enclosed by the
interferometer, and da is an infinitesimal area element.

Dispersive Phase Shifts. Atom interferometers have
been able to measure phase shifts of the form (77.65) due
to, for example, the atomic level shift in an electric field
(Stark effect) [77.59] or to coherent forward scattering
by background gas atoms, see (77.10) and [77.61].

Sagnac Effect. The Sagnac effect refers to χ{A} in a ro-
tating interferometer. Inserting (77.6) into (77.68), and
assuming that the axis of rotation is oriented perpendic-
ular to the plane of the interferometer, the Sagnac phase
shift is given by

χSa = 4MΩA/� , (77.69)

where A is the geometric area enclosed by the inter-
ferometer loop. χSa may be dispersive or geometric
depending on the type of interferometer. In a Young

double slit, A is independent of energy and χSa is ge-
ometric. In a three-grating interferometer, the area is
A ≈ ϑD2, where ϑ is the splitting angle; see Fig. 77.3.
In this case, χSa is dispersive because of the velocity
dependence of ϑ ≈ 2�k/Mv0. The Sagnac effect for de
Broglie waves was first observed by Werner et al. [77.62]
using a neutron interferometer.

Aharonov–Bohm Effect. The Aharonov–Bohm effect
refers to the χ{A} of charged particles encircling
a magnetic flux line [77.63]. Inserting A from (77.7)
into (77.68), and assuming particles of charge q encir-
cling a line of flux Φ once, one finds

χAB = qΦ/� . (77.70)

A characteristic feature of the Aharonov–Bohm effect is
that the particles actually never “see” the magnetic field
of the flux line which is confined to some region inac-
cessible to the particles. χAB is strictly topological, and
only depends on the linking number of the interferome-
ter loop and the flux line. Its appearance is characteristic
for all gauge theories. For further details and a summary
on its experimental verification see [77.5].

Aharonov–Casher Effect. The Aharonov–Casher ef-
fect refers to χ{A} of a magnetic spin encircling an
electric line charge [77.64]. Inserting A from (77.11)
into (77.68), one obtains for proper alignment of µ

and E

χAC = 2π
|µ|
µB

r0

ξ
, (77.71)

where r0 is the classical electron radius, µB is the
Bohr magneton, and ξ = e/ρel, ρel being the electric
line charge density. χAC is topological only if the
spin is aligned parallel to the electric line charge and
both are oriented perpendicular to the plane of the
interferometer. χAC for atoms has been observed by
Sangster et al. [77.65].

Electric Dipole Phase. Electric dipole phase refers to the
χ{A} of an electric dipole moment encircling a mag-
netic line charge [77.66]. Inserting A from (77.14)
into (77.68), one obtains for proper alignment of d and
B

χdE = 2π
|d|
ea0

a0

ξ
, (77.72)

where a0 is the Bohr radius, and ξ =Φ0/�mg, Φ0 be-
ing the magnetic flux unit, and �mg being the magnetic
line charge density. In analogy to the Aharonov–Casher
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effect, χdE is topological, provided that d is aligned par-
allel to the magnetic line charge, and both are oriented
perpendicular to the interferometer plane.

77.6.2 Internal State Interferometry

Manipulation of the internal state of atoms by means
of electromagnetic fields makes it possible to realize in-
terferometric setups which involve separation of paths
in internal space rather than in real space. Examples
of such interferometers are the Optical Ramsey inter-
ferometer [77.67], the stimulated Raman interferometer
[77.68], and the interferometers using static electric and
magnetic fields [77.69, 70].

77.6.3 Manipulation of Cavity Fields
by Atom Interferometry

The entanglement of atomic states and quantized field
states opens novel possibilities for manipulating and/or
measuring nonclassical field states in a cavity. In the
adiabatic limit, for example, and assuming sufficient
detuning between the atom and the cavity field, the in-
teraction and c.m. motion of an atom traversing a cavity

is well described by the potential (77.32)

U(x)=−�g2

∆
f(x)2a†a , (77.73)

where g is the vacuum Rabi frequency, f(x) is a cavity
mode function, and a, a† denote cavity photon annihila-
tion and creation operators, respectively.

Because of the presence of the photon-number op-
erator a†a in (77.73), the deflection and phase shift of
an atom traversing the cavity is quantized, displaying
essentially the photon number statistics in the cavity.
The quantized deflection is sometimes called the inverse
Stern–Gerlach effect.

Due to the entanglement of atom and cavity states,
and the position dependence of the interaction strength,
the phase shift induced by U(x) in a standing wave
cavity may be used to measure either the atomic position
via homodyne detection of the cavity field [77.71, 72],
or the photon statistics via atom interferometry [77.73,
74]. In a ring cavity, the entanglement of c.m. motion
and cavity field may be used to measure the atomic
momentum [77.75] via homodyne detection of the cavity
field. For further details see [77.76] and Chapt. 78.

77.7 Coherence of Scalar Matter Waves

The general solution of the free Schrödinger equa-
tion (77.2) may be written in the form

ψ(x, t)=
∫

d3k̃ a(k̃)ei(k̃·x−ω(k̃)t) , (77.74)

where ω(k̃)≡ E/�= �k̃2/2M. If the coefficients a(k̃)
are known, the state represented by ψ(x, t) is called
a pure state. Otherwise it is called a mixed state, and
physical quantities are obtained by an ensemble average
over the possible realizations of a(k̃).

The degree of coherence of matter waves is described
by the autocorrelation function of Ψ(x, t):

Γ(x, t; x′, t′)≡ Ψ(x′, t′)∗Ψ(x, t) , (77.75)

where the overline (· · · ) denotes the ensemble average
over the possible realizations of a(k̃). In light optics,
Γ(x, t; x′, t′) is called the mutual coherence function.
In particular, for equal times, Γ(x, t; x′, t) describes the
spatial coherence, and for equal positions, Γ(x, t; x, t′)
describes the temporal coherence.

For a beam of particles, coherence may be either
longitudinal (measured along the beam) or transverse
(measured across the beam). In contrast to light optics,

there is no simple relation between longitudinal coher-
ence and temporal coherence because the dispersion
relation of matter waves is quadratic in the wavenumber.

The spatial coherence function is intimately related
to the quantum mechanical density operator of the par-
ticles (Chapt. 7)

ρ(t)= |Ψ(t)〉〈Ψ(t)| . (77.76)

In the position representation, one has

〈x|ρ(t)|x′〉 ≡ ρ(x, x′; t)= Γ(x, t; x′, t) . (77.77)

Longitudinal and temporal coherence of a particle
beam is determined mainly by the source of the beam.
The thermal fission reactors used in neutron optics and
the ovens used in atom optics are analogous to black-
body sources in light optics. In contrast, the transverse
coherence is mainly determined by the way the particles
are extracted from the oven to form a beam.

77.7.1 Atomic Sources

To describe thermal sources, consider a single particle
in an oven of temperature T and volume V , assuming
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that a(k̃) and a(k̃′) are statistically independent:

a(k̃)∗a(k̃′)= ρ(k̃)δ(k̃− k̃′) , (77.78)

where

ρ(k̃)= λ
3
th

V
exp

(

− �
2k̃2

2MkBT

)

(77.79)

accounts for the thermal distribution of wavenumbers,
and

λth =
(

2π�2

MkBT

)1/2

(77.80)

denotes the thermal de Broglie wavelength.
Using (77.78)–(77.80) in (77.75), the mutual coher-

ence function becomes

Γ(x, t; x′, t′)=
1

V

1

{1+ [i(t− t′)/τth]} 3
2

× exp

{

−π
(
x− x′

)2

λ2
th (1+ [i(t− t′)/τth])

}

, (77.81)

where

τth = �

kBT
, (77.82)

is the thermal coherence time.
According to (77.81), the spatial coherence of a ther-

mal state falls off in a Gaussian manner on a scale given
by λth. The temporal coherence, in contrast, falls off al-
gebraically on a time scale given by τth. Expressed in
physical units, one has

λth = 1.74( 5)× 10−9 m√
(M/u)(T/K)

,

τth = 7.63 × 10−12 s

(T/K)
, (77.83)

where u is the atomic mass unit.

Atomic Beams
Effusive Beams. Effusive beams are produced from ther-
mal sources by a suitable set of collimators placed
in front of the opening of the oven. This produces
a Maxwell–Boltzmann distribution of atomic velocities
in the longitudinal direction. The coherence properties in
the transverse direction are described by the van Cittert–
Zernike theorem [77.77]; for details see any textbook on
classical optics.

Supersonic Beams. Supersonic beams are produced by
supersonic expansion of a high pressure gas which is
forced through an appropriately designed nozzle. The
expansion produces a velocity distribution in the longi-
tudinal direction which is approximately Gaussian with
a velocity ratio v/δv≈ 10–20.

Pulsed Beams. Pulsed beams are produced by chopping
any of the beams described above. Important applica-
tions for pulsed beams are the resolution of temporal
coherence and the mapping of the relative phases of
the a(k̃) in matter wave interferometry.

Laser-like Source of Atoms. In these sources, many
atoms with integral spin (Bosons) occupy one and the
same quantum state of motion [77.78]. Their operational
principle is rooted in the quantum statistical effects of in-
distinguishability. It may be viewed in close analogy to
the operational principle of an ordinary laser (Chapt. 70)
and the mechanism underlying Bose–Einstein Conden-
sation (Sect. 76.1.1). Laser-like sources have indeed
been achieved by letting a small current of atoms leak
out of a trapped Bose–Einstein condensate [77.79].

77.7.2 Atom Decoherence

In any interferometer, the contrast of the interference
fringes quantitatively measures the coherence of the
wave involved. Partially coherent beams show an output
flux given by

I± = 1

2

[
1±Re

(
C eiχ)] , (77.84)

instead of (77.60), with a complex number C. One has
|C| ≤ 1, with the maximum achieved for a pure state; the
phase of C is measured by scanning the interferometer
phase shift χ.

In de Broglie interferometry, coherence can be lost
when the interfering matter wave gets entangled with
other systems. This happens for atoms, for example,
due to the emission or scattering of photons, as soon
as the detection of these photons permits, in prin-
ciple, the resolution of spatially separated paths in
the interferometer. In fact, the width of Γ(x, t; x′, t)
as a function of x− x′, also called the spatial co-
herence length, is reduced to the photon wavelength
after a single scattering event, see [77.80, 81]. Inter-
ference can be restored when the emitted photons are
detected and correlated with the atom output [77.82,83].
Collisions with background gas atoms between the op-
tical elements of a three-grating interferometer also
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reduce coherence, as has been shown with fullerene
molecules [77.84]. Finally, coherence is lost when atoms
interact with random electromagnetic fields. This has
become relevant for atom reflection from evanescent
light because of the roughness of the dielectric surface

used [77.85] (see also [77.86]). The coherent operation
of integrated atom optics near metallic surfaces is lim-
ited by thermally excited electromagnetic near fields
as shown in experiments by Harber et al. [77.87] (see
also [77.88]).
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77.67 C. J. Bordé: Phys. Lett. A. 140, 10 (1989)
77.68 M. Kasevich, S. Chu: Phys. Rev. Lett. 67, 181 (1991)
77.69 Y. L. Sokolov, V. P. Yakovlov: Sov. Phys. JETP 56, 7

(1982)
77.70 J. Robert et al.: Europhys. Lett. 16, 29 (1991)
77.71 M. A. M. Marte, P. Zoller: Appl. Phys. B 54, 477 (1992)

77.72 P. Storey, M. Collett, D. Walls: Phys. Rev. Lett. 68,
472 (1992)

77.73 P. Meystre, E. Schumacher, S. Stenholm: Opt. Com-
mun. 73, 443 (1989)

77.74 A. M. Herkommer, V. M. Akulin, W. P. Schleich:
Phys. Rev. Lett. 69, 3298 (1992)

77.75 T. Sleator, M. Wilkens: Phys. Rev. A 48, 3286
(1993)

77.76 S. Haroche, J. M. Raimond: Manipulation of non
classical field states by atom interferometry. In:
Cavity Quantum Electrodynamics, Adv. At. Mol. Opt.
Phys., suppl. 2, ed. by P. R. Berman (Academic
Press, Boston 1994) pp. 123–170

77.77 B. Taylor, K. J. Schernthanner, G. Lenz, P. Meystre:
Opt. Commun. 110, 569 (1994)

77.78 R. J. C. Spreeuw, T. Pfau, U. Janicke, M. Wilkens:
Europhys. Lett. 32, 469 (1995)

77.79 M. Köhl, T. W. Hänsch, T. Esslinger: Phys. Rev. Lett.
87, 160404 (2001)

77.80 T. Pfau et al.: Phys. Rev. Lett. 73, 1223 (1994)
77.81 O. Steuernagel, H. Paul: Phys. Rev. A 52, 905

(1995)
77.82 M. S. Chapman et al.: Phys. Rev. Lett. 75, 3783 (1995)
77.83 C. Kurtsiefer et al.: Phys. Rev. A 55, R2539 (1996)
77.84 L. Hackermüller et al.: Appl. Phys. B 77, 781 (2003)
77.85 A. Landragin et al.: Opt. Lett. 21, 1581 (1996)
77.86 C. Henkel et al.: Phys. Rev. A 55, 1160 (1997)
77.87 D. M. Harber, J. M. McGuirk, J. M. Obrecht, E. A. Cor-

nell: J. Low Temp. Phys. 133, 229 (2003)
77.88 C. Henkel, M. Wilkens: Europhys. Lett. 47, 414 (1999)

Part
F

7
7



1141

Quantized Fie78. Quantized Field Effects

The electromagnetic field appears almost every-
where in physics. Following the introduction of
Maxwell’s equations in 1864, Max Planck initi-
ated quantum theory when he discovered h= 2π�
in the laws of black-body radiation. In 1905 Al-
bert Einstein explained the photoelectric effect
on the hypothesis of a corpuscular nature of
radiation and in 1917 this paradigm led to a de-
scription of the interaction between atoms and
electromagnetic radiation.

The study of quantized field effects requires
an understanding of the quantization of the
field which leads to the concept of a quantum
of radiation, the photon. Specific nonclassical
features arise when the field is prepared in
particular quantum states, such as squeezed
states. When the radiation field interacts with an
atom, there is an important difference between
a classical field and a quantized field. A classical
field can have zero amplitude, in which case it
does not interact with the atom. On the other hand
a quantized field always interacts with the atom,
even if all the field modes are in their ground
states, due to vacuum fluctuations. These lead to
various effects such as spontaneous emission and
the Lamb shift.

The interaction of an atom with the many
modes of the radiation field can conveniently be
described in an approximate manner by a master
equation where the radiation field is treated as
a reservoir. Such a treatment gives a microscopic
and quantum mechanically consistent description
of damping.
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78.1 Field Quantization

This section provides the basis for the quantized field
effects discussed in this Chapter [78.1]. We expand the
field in a complete set of normal modes which reduces
the problem of field quantization to the quantization of
a one dimensional harmonic oscillator corresponding to
each normal mode.

The classical free electromagnetic field, i. e., the field
in a region without charge and current densities, obeys
the Maxwell equations

∇ · B= 0 , (78.1)

∇ · D = 0 , (78.2)

∇ × E+ ∂B
∂t

= 0 , (78.3)

∇ × H− ∂D
∂t

= 0 , (78.4)

where B= µ0 H, D = ε0 E. The magnetic permeabil-
ity µ0 connects the magnetic induction B with the
magnetic field H and the electric permittivity ε0 of
free space connects the displacement D with the elec-
tric field E. In the case of a free field, E and B may be
obtained from

B=∇ × A , (78.5)

E =−∂A
∂t
, (78.6)

where the vector potential A obeys the Coulomb gauge
condition ∇ · A= 0 and satisfies a wave equation. In
order to solve this wave equation we expand the vector
potential

A(x, t)=
∑

k

2∑

σ=1

(
�

2ωkε0V

)1/2

×
[
αkσεkσ ei(k·x−ωkt)+ c.c.

]
(78.7)

in a set of normal modes V−1/2 exp(ik · x)εkσ which are
orthonormal in the volume V. Due to the gauge condition
∇ · A= 0, we obtain two orthogonal polarization vec-
tors εk1 and εk2 with εkσ ·k= 0 for each wave vector k.
The dispersion relation is ωk = c|k|. The Fourier ampli-
tudes αkσ are complex numbers in the classical theory.

The field is quantized by replacing the classical am-
plitude αkσ by the mode annihilation operator akσ . The
complex conjugate α∗kσ is replaced by the mode creation
operator a†kσ . They obey the commutation relation

[
akσ , a

†
k′σ ′

]
= δkk‘δσσ ′ . (78.8)

The representation of the electric field operator

E(x, t)= i
∑

k,σ

(
�ωk

2ε0V

)1/2

×
[
akσεkσ ei(k·x−ωkt)−h.c.

]

≡ E+(x, t)+ E−(x, t) (78.9)

in terms of these operators follows from (78.6) and the
operator for the vector potential. Note also the often
used decomposition of the electric field operator into
the positive and negative frequency parts E+ and E−
respectively. A similar relation holds for the operator
describing the magnetic induction B.

Using the operators for the electric and magnetic
field, one can transform the field energy

H = 1

2

∫
dV

(
ε0 E2+ B2/µ0

)
(78.10)

into the form

H =
∑

k,σ

�ωk

(
a†kσakσ +1/2

)
, (78.11)

which is a sum of independent harmonic oscillator
Hamiltonians corresponding to each mode (k, σ). The
number operator Nkσ = a†kσakσ represents the number
of photons in the mode (k, σ), while �ωk/2 is the energy
of the vacuum fluctuations.

Hence each mode of the electromagnetic field is
equivalent to a harmonic oscillator. In the next section
we discuss specific states of a single mode. The general
quantum state of the electromagnetic field consisting of
many modes is given by a superposition of product states
that are composed out of these single mode states.

78.2 Field States

This section summarizes the properties of several im-
portant states of the electromagnetic field. From the
independence of the normal modes, the discussion may
be restricted to a single normal mode. With the mode

index (k, σ) suppressed, a single mode Hamiltonian is

H = �ω
(

a†a+1/2
)
= �ω

2
p2+ �ω

2
x2 . (78.12)
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Quantized Field Effects 78.2 Field States 1143

In the second step, the quadrature operators

x = 1√
2

(
a+a†

)
, (78.13)

p = 1

i
√

2

(
a−a†

)
(78.14)

are introduced, which are equivalent to scaled position
and momentum operators of a massive particle in a har-
monic potential. The quadratures of a quantized field
are measurable with the help of homodyne detection as
discussed in Sect. 78.4.1

We shall now describe several states of this quantized
field mode: number states, coherent states, squeezed
states, Schrödinger cats, and phase states. A quantized
field in a coherent state shows the most classical be-
havior. A superposition of two coherent states, which is
a Schrödinger cat, already shows nonclassical features.
Number states and squeezed states are further typical
examples of nonclassical states.

78.2.1 Number States

The eigenstates of the Hamiltonian (78.12) are the eigen-
states of the number operator N = a†a,

N|n〉 = n|n〉 , (78.15)

where n = 0, 1, 2, . . . denotes the excitations or the
number of photons in the mode. The vacuum state of
the mode |0〉, is defined by

a|0〉 = 0 . (78.16)

The ladder of excitations can be climbed up and down
via the application of creation and annihilation operators

a†|n〉 = √
n+1|n+1〉 , (78.17)

a|n〉 = √
n|n−1〉 , (78.18)

on a Fock state |n〉. These number or Fock states form
a complete and orthonormal set of states so that

∞∑

n=0

|n〉〈n| = 1 , 〈n|k〉 = δnk . (78.19)

Their quadrature representations are

〈x|n〉 = (√
π2nn!)−1/2

Hn(x)e
−x2/2 , (78.20)

〈p|n〉 = (√
π2nn!)−1/2

(−i)n Hn(p)e
−p2/2 .

(78.21)

The states |x〉 and |p〉 are eigenstates of the quadrature
operators x and p, (78.13) and (78.14).

Number states provide a frequently used representa-
tion of a pure quantum state

|ψ〉 =
∞∑

n=0

cn|n〉 , (78.22)

or a mixed quantum state given by the density operator

ρ =
∑

n,k

ρnk|n〉〈k| (78.23)

(Chapt. 7).

78.2.2 Coherent States

The coherent state is a specific superposition of num-
ber states. In contrast to a number state, a coherent
state does not possess a definite number of photons:
the photon distribution is Poissonian. For a large aver-
age photon number, the electric and magnetic fields have
rather well defined amplitudes and phases with vanish-
ing relative quantum fluctuations. Hence the Poissonian
photon distribution frequently serves as a borderline
between classical and nonclassical field states. Non-
classical states show a sub-Poissonian behavior. An
extreme example is a field prepared in a number state.
A parameter which quantifies the deviations from Pois-
sonian behavior is the Q parameter introduced by
Mandel [78.2].

We define the coherent state |α〉 as an eigenstate of
the annihilation operator

a|α〉 = α|α〉 (78.24)

with the complex amplitude α= |α|eiθ . The coherent
state can be represented by

|α〉 = eαa†−α∗a|0〉 = D(α)|0〉 , (78.25)

that is, by the action of the displacement operator D(α)
on the vacuum.

The number state representation of |α〉 reads

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n! |n〉 . (78.26)

A coherent state |α0〉 that evolves in time according to
the free field Hamiltonian (78.12) stays coherent, i. e.,

|ψ(t)〉 = exp (−iHt/�) |α0〉 = e−iωt/2|α(t)〉 ,
(78.27)

with amplitude α(t)= α0 exp[−iωt].
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1144 Part F Quantum Optics

Another important representation of a coherent state
is the x representation

〈x|α〉 = π−1/4 exp
{
−[Re(α)]2

}

× exp
(
−x2/2+√2αx

)
, (78.28)

where |x〉 denotes again the x quadrature eigenstate.
The photon distribution in a coherent state

|〈n|α〉|2 = |α|2n e−|α|2

n! (78.29)

is a Poisson distribution with average photon number
〈N〉 = |α|2 and variance

(
∆N

)2 = 〈
N2

〉−〈N〉2 = |α|2.
Hence the relative fluctuations (∆N )/〈N〉 = 〈N〉−1/2

vanish for a large average photon number.
The Mandel Q parameter

Q ≡ (∆N )2−〈N〉
〈N〉 (78.30)

vanishes for a field in a coherent state. A nonclassical
field may show sub-Poissonian behavior with Q < 0. As
an example, the Schrödinger cat state is a macroscopic
superposition of two coherent states

|cat〉 =
[
2+2 cos

(
α2 sinφ

)
e−2α2 sin2(φ/2)

]−1/2

×
[∣∣αeiφ/2〉+ ∣∣αe−iφ/2〉

]
, (78.31)

where α is assumed to be real. The Q parameter for this
superposition state, shown in Fig. 78.1, takes on negative
values for specific angles φ. The nonclassical behavior
of such a |cat〉-state can be explained [78.3] as a re-
sult of quantum interference between the two coherent
states present in (78.31). The incoherent superposition
described by the density operator

ρ = 1

2

(∣∣αeiφ/2〉〈αeiφ/2
∣∣+ ∣∣αe−iφ/2〉〈αe−iφ/2

∣∣
)

(78.32)

does not have this nonclassical character: its Q param-
eter vanishes. Coherent states have a direct physical
significance: the quantum state of a stabilized laser op-
erating well above threshold can be approximated by
a coherent state.

78.2.3 Squeezed States

Squeezed states [78.4–6] minimize the uncertainty prod-
uct of the quadrature components of the electromagnetic
field. The quadrature components x and p of the single
mode field are defined in (78.13) and (78.14). They obey

the commutation relation [x, p] = i. Their uncertainties
(∆x)2 ≡ 〈

x2
〉−〈x〉2 and (∆p)2 ≡ 〈

p2
〉−〈p〉2 fulfill the

Heisenberg inequality

∆x∆p ≥ 1/2 . (78.33)

The coherent state is a special minimum uncertainty state
with equal uncertainties ∆x =∆p = 1/

√
2. Squeezed

states comprise a more general class of minimum uncer-
tainty states with reduced uncertainty in one quadrature
at the expense of increased uncertainty in the other.
These states |α, ε〉 are obtained by applying the displace-
ment operator D(α) and the unitary squeeze operator

S(ε)= e
1
2 ε

∗a2− 1
2 εa
†2

(78.34)

to the vacuum

|α, ε〉 = D(α)S(ε)|0〉 . (78.35)

The squeeze operator S(ε) transforms a and a† according
to

S†(ε)a S(ε)= a cosh r−a† e−2iφ sinh r , (78.36)

S†(ε)a†S(ε)= a† cosh r−a e2iφ sinh r , (78.37)

where ε = r e−2iφ. The rotated quadratures

X1 = x cosφ− p sinφ , (78.38)

X2 = p cosφ+ x sinφ , (78.39)

transform according to

S†(ε)(X1+ iX2)S(ε)= X1 e−r + iX2 er , (78.40)

which yields the uncertainties

∆X1 = e−r/
√

2 , (78.41)

∆X2 = er/
√

2 . (78.42)

2

1.5

1

0.5

–0.5

–1

0.2 0.3 0.4 φ

Q

0.1

Fig. 78.1 The Q parameter for a Schrödinger cat state
(78.31) with amplitude α= 4
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Quantized Field Effects 78.2 Field States 1145

In particular, for φ= 0 the squeezed state |α, r〉 is a min-
imum uncertainty state for the quadratures x and p with
∆x = e−r/

√
2 and ∆p= er/

√
2. The degree of squeez-

ing in the quadrature x is determined by the squeeze
factor r.

The average photon number

〈N〉 = |α|2+ sinh2 r (78.43)

of a squeezed state and its photon number variance

(∆N )2 = ∣∣α cosh r−α∗ e−2iφ sinh r
∣∣2

+2 cosh2 r sinh2 r (78.44)

contain the coherent contribution α as well as squeez-
ing contributions expressed by r and φ. In particular,
for φ= 0, the Q parameter becomes negative for a large
enough amplitude α and r > 0. The photon number dis-
tribution Wn = |〈α, r|n〉|2 becomes narrower than the
one for the corresponding coherent state with the sameα.
This sub-Poissonian behavior is one of the nonclassical
features of a squeezed state. Furthermore, Wn shows os-
cillations [78.7] for larger squeezing. The two regimes
with sub-Poissonian and oscillating photon statistics Wn
are shown in Fig. 78.2.

A second representation of squeezed states has been
introduced by Yuen [78.8]. In his notation, a squeezed
state is an eigenstate of the operator

b = µa+νa† , (78.45)

with |µ|2−|ν|2 = 1 and eigenvalue β. This eigenstate
can be written in the form

|ε, β〉 = S(ε)D(β)|0〉 , (78.46)

which connects the squeezing operator S(r e−2iφ) with
the parameters µ= cosh r and ν = e−2iφ sinh r. In con-
trast to the definition (78.35), the displacement operator
D(β) and the squeezing operator S(ε) are applied
now in reversed order. Nevertheless, the two equations
(78.35) and (78.46) define the same state if the relation
α= βµ+β∗ν is fulfilled.

Several experiments have demonstrated the gener-
ation of squeezed light. Slusher et al. [78.9] obtained
squeezing in the sidemodes of a four-wave mix-
ing process. An optical parametric oscillator below
threshold has been used by Wu et al. [78.10] in or-
der to generate squeezed light. Nonclassical features
can also be found in a down conversion process.
This second-order process creates so-called signal and
idler photons from one pump photon. Signal and
idler beam are distinguished by frequency or po-

larization. Heidmann et al. [78.11] have shown that
the difference intensity of these twin beams may ex-
hibit reduced quantum fluctuations. Pulsed twin beams
also contain reduced noise in the difference of their
intensities.

78.2.4 Phase States

The problem of a correct quantum mechanical de-
scription of phase has a long history in quantum
mechanics [78.12]. First attempts to define a quantum
phase are due to London and Dirac. The London phase
state is

|φ〉 = 1√
2π

∞∑

n=0

einφ|n〉 , (78.47)

which is an eigenstate of the exponential phase operator

êiφ =
∞∑

n=0

|n〉〈n+1| . (78.48)

Since this operator is not unitary, it does not define
a Hermitian operator φ̂ for the phase. Nevertheless
many treatments of the phase of a quantum state
|ψ〉 =∑

cn|n〉 are based on the London phase distri-
bution

Pr(φ)= ∣∣〈φ|ψ〉|2 = 1

2π

∣∣∣∣∣

∑

n

cn e−inφ

∣∣∣∣∣

2

. (78.49)

0.1

0.05

0
30

50
70

90 5

0

n

r

Wn

Fig. 78.2 The photon number distribution Wn of a squeezed
state |α, r〉with the coherent amplitude α= 7. For a squeez-
ing parameter r = 0, the Poisson distribution of a coherent
state |α = 7〉 is just visible. When r increases the pho-
ton distribution first becomes sub-Poissonian and then
oscillatory
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Later treatments [78.13] rely on the Hermitian oper-
ators

ŝinφ = 1

2i

(
êiφ− êiφ†

)
, (78.50)

�cosφ = 1

2

(
êiφ+ êiφ†

)
, (78.51)

for the sine and cosine function of the phase.

Recently [78.14] a Hermitian phase operator was
constructed starting from the phase state (78.47),
restricted to a finite Hilbert space. An operational
phase description has been proposed [78.15] in which
a classical phase measurement is translated to the
quantum realm by using an eight-port homodyne
detector.

78.3 Quantum Coherence Theory

This section introduces the correlation functions of the
electromagnetic field. Ideal photon correlation measure-
ments can bring out the phenomenon of photon bunching
and antibunching.

78.3.1 Correlation Functions

Correlation functions were originally introduced to de-
scribe an ideal photodetection process. Glauber [78.16]
has presented a treatment based on an absorption mech-
anism in the detector which is sensitive to the positive
frequency part E+ of the electric field evaluated at the
detector’s space-time position x ≡ (x, t). This leads to
an average field intensity

I(x)= Tr
[
ρE−(x)E+(x)

]
(78.52)

at point x. Here the density operator ρ describes the state
of the field. The ordering of the operators, i. e., E−E+ ∼
a†a, is known as normal ordering with all annihilation
operators to the right of all creation operators.

The expression (78.52) now immediately general-
izes to the correlation function of first order

G(1)(x1, x2)= Tr
[
ρE−(x1)E

+(x2)
]
, (78.53)

with x1 = (x1, t1) and x2 = (x2, t2). The classical in-
terference experiments, such as Young’s double slit
experiment, can be described in terms of G(1). Further-
more, the correlation function of first order is connected
to the power spectrum S(ω) of a quantized field via
the Wiener–Khintchine theorem [78.17]. Under the
assumption of a stationary process, i. e., when the au-
tocorrelation function

〈
E−(t)E+(t′)

〉
depends only on

the time difference τ = t− t′, then

S(ω)= 1

2π

∞∫

0

dτ
〈
E−(τ)E+(0)

〉
e−iωτ + c.c .

(78.54)

This relation between the spectrum and the first-order
correlation function is known as Wiener–Khintchine
theorem.

In order to analyze the Hanbury–Brown and Twiss
experiment [78.18] it is necessary to define higher order
correlation functions. The general nth order correlation
function is defined by

G(n)(x1, . . . , xn, xn+1, . . . , x2n)

= Tr
[
ρE−(x1) · · · E−(xn)

× E+(xn+1) · · · E+(x2n)
]
, (78.55)

where the field operators are again normal ordered.
These correlation functions fulfill a generalized

Schwartz inequality

G(1)(x1, x1)G
(1)(x2, x2)≥

∣∣G(1)(x1, x2)
∣∣2 ,

(78.56)

which becomes, for the nth order functions,

G(n)(x1, .., xn, xn, .., x1)

× G(n)(xn+1, .., x2n, x2n, .., xn+1)

≥ ∣∣G(n)(x1, .., xn, xn+1, .., x2n)
∣∣2 . (78.57)

A field is said to be first-order coherent when its
normalized correlation function

g(1)(x1, x2)= G(1)(x1, x2)
[
G(1)(x1, x1)G(1)(x2, x2)

]1/2

(78.58)

satisfies
∣∣g(1)(x1, x2)

∣∣= 1. In a Young type experiment,
this case gives maximum fringe visibility. A more gen-
eral definition of first order coherence is the condition
that G(1)(x1, x2) factorizes

G(1)(x1, x2)= G∗(x1)G(x2) , (78.59)

where G denotes some complex function. This definition
can be readily generalized to the nth order case. The nth
order coherence applies when the relation

G(n)(x1, . . . , x2n)

= G∗(x1) · · ·G∗(xn)G(xn+1) · · ·G(x2n) (78.60)
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Quantized Field Effects 78.4 Photodetection Theory 1147

holds. A field in a coherent state possesses nth order
coherence.

78.3.2 Photon Correlations

The Young experiment demonstrates the appearance
of first-order correlations. However, experiments that
can distinguish between the classical and quantum
domains have to be based on measurements of
second-order correlations. These experiments are of
the Hanbury–Brown and Twiss type, and determine
the arrival of a photon at detector position x and
time t and another photon at time t+ τ . Following
the theory of Glauber, the second-order correlation
function

G(2)(τ)= 〈
E−(t)E−(t+ τ)E+(t+ τ)E+(t)

〉

(78.61)

is measured. In this formula we have omitted the variable
for the position x. Usually the normalized correlation
function

g(2)(τ)= G(2)(τ)
[
G(1)(0)

]2 (78.62)

is introduced. The function g(2) is always positive, which
is true for classical as well as for quantum fields; but
there exists a purely quantum domain given by

0 ≤ g(2)(0) < 1 . (78.63)

For example, for a number state |n〉,
g(2)|n〉(0)= 1−1/n , (78.64)

with n ≥ 1. In contrast, a coherent state |α〉 yields
g(2)|α〉(0)= 1.

78.3.3 Photon Bunching and Antibunching

In a realistic theory (but not in an oversimplified
one-mode model), the correlation function G(2)(τ) al-
ways factorizes on a sufficiently long time scale, and
g(2)(τ)→ 1. The photons are then no longer correlated,
and they arrive randomly as in the case of coherent light;
see for example (78.195).

If g(2)(0) > 1, the photons show a tendency to ar-
rive in bunches, an effect known as photon bunching.
This effect has been observed for chaotic light. The op-
posite situation with 0 ≤ g(2)(0) < 1 demonstrates the
reverse effect, namely photon antibunching. As seen
from (78.63), this is a regime only accessible to non-
classical light. An example is given by the resonance
fluorescence of a two-level atom, treated in Sect. 78.13.
Note that we can rewrite g(2)(0) with the help of Man-
del’s Q parameter

g(2)(0)=
〈
a†a†a a

〉

〈a†a〉2 = 1+Q . (78.65)

Hence, a field state with Q < 0 shows the effect of
photon antibunching.

78.4 Photodetection Theory

So far we have used a very simple theory of photode-
tection: any absorbed photon leads to a photoelectric
emission which can be observed. But in any real ex-
periment, these photons are counted over some time
interval T and the observed photoelectric emissions
are dominated by two statistics: (i) the statistics of
photoelectric emission which is also present for a clas-
sical field and (ii) the specific quantum statistics of
a quantized field. A detailed discussion of the quan-
tum theory of photoelectric detection has been given
by Kelley and Kleiner [78.19]. A central result is the
formula

p(n, t, T)=
〈
: In

n! exp(−I) :
〉

(78.66)

for the probability of counting n photoelectrons in the
time interval from t to t+T . This photocounting distri-

bution contains the integrated intensity operator

I = η
t+T∫

t

dt′ E−(t′)E+(t′) (78.67)

containing the quantum efficiency η of the detector. The
notation 〈: · · · :〉 indicates a quantum average where the
operators have to be normally ordered and time or-
dered. This operator ordering reflects the process on
which a photodetector is based. It annihilates or ab-
sorbs photons, one after the other. A good treatment of
photoelectric detection can be found in [78.20].

78.4.1 Homodyne
and Heterodyne Detection

These detection methods allow the extraction of spe-
cific quantum features of a single mode quantum field,
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1148 Part F Quantum Optics

the signal field. Figure 78.3 summarizes the principle of
optical homodyning. Two quantum fields described by
the annihilation operators a and b are mixed at a 50/50
beam splitter BS. Both fields have the same frequency.
The mode a represents the signal mode whose quantum
state is given by the density operator ρ. Mode b serves
as a reference field, the local oscillator. The coherent
state |α〉 = ||α|eiθ〉 determines the quantum state of the
local oscillator. Two ideal photodetectors 1 and 2 meas-
ure the number of photons in the output modes of the
beam splitter. For a highly excited coherent state, i. e.,
a classical local oscillator, the statistics of the photocur-
rent difference ∆I can be described by the moments of
the signal mode operator

Xθ = 1√
2

(
a e−iθ +a† eiθ) . (78.68)

1

2

BS

�I

a

b

ρ

–

	α�

Fig. 78.3 The principle of optical homodyning

For example, the photocurrent difference

〈∆I〉 ∼ 〈Xθ〉 = Tr(ρXθ) (78.69)

is proportional to the expectation value of Xθ . In par-
ticular, for θ = 0 and θ = π

2 one is able to measure all
the moments of the two quadratures x and p (78.13) and
(78.14) of the signal mode. In general, the statistics of
the photocurrent ∆I reveal the probability distribution

Pr(Xθ)= 〈Xθ |ρ|Xθ〉 (78.70)

of the observable Xθ when the signal mode is in the
state ρ. The states

|Xθ〉 = π−1/4 exp
[− X2

θ/2
]

×
∞∑

n=0

1√
2nn!Hn (Xθ) einθ |n〉 (78.71)

are eigenstates of the operator Xθ , and are known as
rotated quadrature states.

The heterodyne technique [78.21,22] relies on a sim-
ilar mixing of a signal field with a local oscillator at
a beam splitter, but this time the local oscillator fre-
quency is offset by the intermediate frequency ∆ω with
respect to the frequency ω0 of the signal mode. Filters
select the beat frequency components in the photocur-
rent of the detectors. This photocurrent contains the
quantum statistics of the two quadratures of the signal
field [78.21, 22].

78.5 Quasi-Probability Distributions

Quasi-probability distributions play an important role
in quantum optics for three reasons. First, they
are a complete representation of the density oper-
ator of a quantum field. Second, they allow one
to calculate expectation values in the spirit of
classical statistical physics. Third, they offer the
possibility of converting a master equation for the
density operator into an equivalent c-number partial
differential equation. In this section, we relate a spe-
cific quasi-probability function to a specific operator
ordering.

78.5.1 s-Ordered Operators

A normally ordered product of a and a† is a product of
the form

(
a†
)m

an : the annihilation operators a stand to
the right of the creation operators a†. In an antinormally

ordered product like an
(
a†
)m , the order of a and a† has

changed. A generalized s-ordered product can be defined
as

{
am(a†

)n
}

s
≡

(
∂

∂ξ

)n (
− ∂

∂ξ∗

)m

× D(ξ, ξ∗, s)
∣∣∣
ξ=ξ∗=0

(78.72)

with the generalized displacement operator

D(ξ, ξ∗, s)≡ exp

(
ξa†− ξ∗a+ 1

2
sξξ∗

)
. (78.73)

For s = 1 we find again normal ordering. The values
s = 0 and s =−1 produce symmetric and antinormal or-
dered products. As an example we note {a†a}s = a†a−
(s−1)/2.
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Quantized Field Effects 78.5 Quasi-Probability Distributions 1149

Expectation values of those s-ordered products are
easily derived from the characteristic function

χ(ξ, ξ∗, s)= Tr
[
ρD(ξ, ξ∗, s)

]
(78.74)

via differentiation(
∂

∂ξ

)n (
− ∂

∂ξ∗

)m

χ(ξ, ξ∗, s)
∣∣
∣
ξ=ξ∗=0

= 〈{(a†)nam}s〉 . (78.75)

The Fourier transform of χ yields the quasi-probability
distribution of Cahill and Glauber [78.23]

W(α, s)= 1

π2

∫
d2ξχ(ξ, ξ∗, s) eαξ

∗−α∗ξ , (78.76)

where d2ξ = d Re(ξ)d Im(ξ). With this distribution one
is able to calculate the expectation value of any s-ordered
operator product

〈{(
a†
)n

am
}

s

〉
=
∫
(α∗)nαm W(α, s) d2α . (78.77)

We concentrate now on three important quasi-
probability distributions, namely the cases s = 1, s = 0,
and s =−1, corresponding to the Glauber–Sudarshan
distribution, the Wigner function, and the Q function re-
spectively. A detailed discussion of these three functions
can be found in [78.24].

78.5.2 The P Function

The quasi-probability function P(α) was intro-
duced [78.25, 26] as a diagonal representation of the
density operator

ρ =
∫

P(α)|α〉〈α| d2α (78.78)

in terms of coherent states |α〉, (78.26). It is related to
the Cahill–Glauber function W(α, s) via

P(α)= W(α, s = 1) . (78.79)

The expectation value of any normally ordered operator
product

〈(
a†
)m

an 〉=
∫
(α∗)mαn P(α)d2α (78.80)

has a particularly simple form in terms of P(α).
From (78.78) the P function of a coherent state |α0〉
becomes

P(α)= δ(2)(α−α0) (78.81)

= δ[Re(α)−Re(α0)
]
δ
[

Im(α)− Im(α0)
]
.

Quantized fields for which the P function is positive do
not show nonclassical effects such as squeezing and anti-
bunching. For nonclassical states, such as number states
or squeezed states, the P function only exists in terms of

generalized functions, such as delta functions and their
derivatives, which have a highly singular character.

The positive P-representation P(α, β) for a nondiag-
onal decomposition of a density operator is [78.27, 28]

ρ =
∫∫

d2α d2 β
|α〉〈β∗|
〈β∗|α〉 P(α, β) . (78.82)

The function P(α, β) is a direct generalization of the
Glauber–Sudarshan function P(α), (78.78). P(α, β) ex-
ists for any physical density operator ρ [78.27] and is
given by

P(α, β)= 1

4π2
exp

(
−1

4
|α−β∗|2

)

×

〈
1

2
(α+β∗)

∣∣∣∣ ρ
∣∣∣∣
1

2
(α+β∗)

〉
. (78.83)

Here the state |1/2(α+β∗)〉 denotes a coherent state
with the complex amplitude 1/2(α+β∗). Note that
P(α, β) is always positive.

78.5.3 The Wigner Function

This quasi-probability was first introduced by Wig-
ner [78.29] and may be defined as the distribution
function for a symmetrically ordered operator product
which is obtained in the case s = 0. The Wigner func-
tion plays an important role in other branches of physics,
such as quantum chaology, and in particular in any semi-
classical phenomenon when one considers the transition
from quantum mechanics to classical mechanics.

Consider the Wigner function of a quantum mechan-
ical particle of position

x =
√
�

2mω

(
a+a†

)
, (78.84)

and momentum

p = i

√
m�ω

2

(
a†−a

)
. (78.85)

The Wigner function may be written in terms of position
and momentum variables

W(x, p)= 1

π�

∞∫

−∞
dy e−2ipy/�〈x+ y|ρ|x− y〉 ,

(78.86)

where |x± y〉 denotes position eigenstates. The s = 0
Cahill–Glauber definition and the above definition of
the Wigner function are related by

W(x, p)= 1

2
W

(
α= mωx+ ip√

2m�ω
, s = 0

)
. (78.87)
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The position and momentum distributions of a particle,
or equivalently the quadruture distributions in the case
of a quantized field mode, are

Pr(x)=
∞∫

−∞
W(x, p) dp , (78.88)

Pr(p)=
∞∫

−∞
W(x, p) dx . (78.89)

Furthermore, the scalar product

|〈ψ1|ψ2〉|2 = 2π�
∫∫

dx dp W|ψ1〉(x, p)

× W|ψ2〉(x, p) (78.90)

of two quantum states is expressed by the phase space
overlap of the two corresponding Wigner functions.
Consequently, any Wigner function W(x, p) has to obey
the necessary condition

∫∫
dx dpW(x, p)W|ψ〉(x, p)≥ 0 (78.91)

for all W|ψ〉 representing a pure state. For a normalized
state |ψ〉,

∫∫
dx dp

[
W|ψ〉(x, p)

]2 = 1

2π�
. (78.92)

Instead of solving the Schrödinger equation for the
dynamics of a massive particle in a potential V(x), we
can try to solve the equation

∂W

∂t
=− p

m

∂W

∂x
+

∑

r=1,3,..

1

r!
(

i�

2

)r−1
∂r V

∂xr

∂r W

∂pr

(78.93)

for its Wigner function W(x, p, t). Note that here only
the odd derivatives of the potential V enter. This equation
is the quantum analogue of the classical Liouville equa-
tion, to which it reduces in the limit of �→ 0. However,
the initial distribution W(x, p, t = 0) has to be a Wigner
function in the sense of (78.86).

Furthermore the Wigner function of an energy eigen-
function in the potential V(x) may be obtained from the
equations

[
p2

2m
+V(x)− �

2

8m

∂2

∂x2 −
�2

8

∂2V

∂x2

∂2

∂p2

]
W(x, p)

+
∑

r=4,6,..

1

r!
(

i�

2

)r
∂r V

∂xr

∂r W

∂pr
= EW(x, p) ,

(78.94)

and
(
− p

m

∂

∂x
+ ∂V
∂x

∂

∂p

)
W(x, p)

+
∑

r=3,5,..

1

r!
(

i�

2

)r−1
∂r V

∂xr

∂r W

∂pr
= 0 . (78.95)

The Wigner function has negative parts for most
quantum states. For example, the Wigner function of
a Fock state |n〉,

W|n〉(x̄, p̄)= (−1)n

π
e−x̄2− p̄2

Ln
(
2x̄2+2 p̄2) ,

(78.96)

clearly becomes negative due to the oscillating Laguerre
polynomial Ln as shown in Fig. 78.4. Note that we have
introduced the dimensionless position x̄ =√

mω/� x
and momentum p̄ = 1/

√
mω� p.

On the other hand, the Wigner function

W|α,r〉(x̄, p̄)= 1

π
exp

{
− e2r[x̄−√2 Re(α)

]2

− e−2r[ p̄−√2 Im(α)
]2
}

(78.97)

of a squeezed state (78.35) is always positive as shown
in Fig. 78.5. It is a long thin ellipse in phase space
(i. e. a Gaussian cigar). Concerning the negative parts
of the Wigner function, the Hudson theorem [78.30]
states that a necessary and sufficient condition for the
Wigner function of a pure state |ψ〉 to be nonnegative
is that it can be described by a wave function of the

–2

0

2
–2

0

2

0.2
0.1

0

W(x, p)

p

x

Fig. 78.4 The Wigner function (78.96) of a Fock state
|n = 4〉. The negative parts can be seen clearly
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–2

0

2
0

1

0.2

0

W(x, p)

p

x

0.4

–1
4

Fig. 78.5 The Wigner function of a squeezed state |α, r〉
with coherent amplitude α= 1 and squeezing e2r = 0.25.
For these values the phase space ellipse is oriented along
the x-axis and squeezed in the p-direction. Note that this
function is positive everywhere

form

〈x|ψ〉 = exp

[
−1

2
(ax2+bx+ c)

]
. (78.98)

Here a, b and c denote some constants with Re(a) > 0.
Finally, the Kirkwood distribution function

K(x, p)= 1

π�

∞∫

−∞
dy e−2ipy/�〈x|ρ|x−2y〉 (78.99)

is a phase space function that resembles the Wigner
function. In the case of a pure state ρ = |ψ〉〈ψ| this
function reduces to

K(x, p)= ψ(x)ψ̃(p)e−ix p/� , (78.100)

where ψ̃(p) denotes the Fourier transform of ψ(x).

78.5.4 The Q Function

The Q function is defined by the diagonal matrix elem-
ents

Q(α)= 〈α|ρ|α〉/π (78.101)

of the density operator ρ, where |α〉 denotes a coher-
ent state. The Q(α) function is always a positive and
bounded function, which exists for any density oper-
ator ρ. The Q function is also known as Husimi’s
function. It allows one to calculate expectation values
of antinormally ordered operator products of the form

〈
an(a†

)m
〉
=
∫

d2ααn(α∗)m Q(α) . (78.102)

Moreover, since the Q function corresponds to the case
s =−1 of the Cahill–Glauber distribution,

Q(α)= W(α,−1) . (78.103)

78.5.5 Relations Between
Quasi-Probabilities

In general, the relation

W(α, s)= 2

π(s′ − s)

∫
d2β exp

(
−2|α−β|2

s′ − s

)

× W(α, s′) (78.104)

holds between two Cahill–Glauber distributions with
the parameters s′ > s. In particular, the non-negative
Q function

Q(α)= 2

π

∫
d2β exp[−2|α−β|2]W(β, s = 0)

(78.105)

turns out to be a smoothed Wigner function W(β, s = 0).
It is this smoothing process that washes out possible
negative parts in the Wigner function.

78.6 Reservoir Theory

Reservoir theory treats the interaction of one system
with a few degrees of freedom, called the system, with
another system with many degrees of freedom, called
the reservoir. A typical application of reservoir theory
is a microscopic theory of damping: the system inter-
acts with a reservoir, called the heat bath. The system

dissipates energy into the heat bath whereas the heat
bath introduces additional fluctuations to the system.
Since the present chapter focuses on quantized field
effects, the reservoir consists of the many modes of
the radiation field in free space. Such a reservoir is
modeled by a large number of independent harmonic
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oscillators

Hr =
∑

i

�ωi

(
b†i bi + 1

2

)
, (78.106)

where bi and b†i are the annihilation and creation
operators for the ith harmonic oscillator of the reser-
voir. For convenience the interaction with the system
is frequently approximated by a Hamiltonian of the
form

Hint = �
∑

i

(
gi A b†i + g∗i A†bi

)
, (78.107)

where A is an operator of the small system and
gi is the coupling strength of this system to the
ith oscillator of the reservoir. For example, A may
be an annihilation operator if the system is a har-
monic oscillator or a Pauli spin matrix in the case of
a two-level atom coupled to the free space radiation
field.

Reservoir theory has important applications, and
a detailed discussion can be found in various books,
for example [78.17, 20, 27, 28, 31–33].

78.6.1 Thermal Reservoir

The most commonly used reservoir is the thermal reser-
voir or thermal heat bath. Its characteristic properties

are

〈bi〉 =
〈
b†i
〉= 〈bib j〉 =

〈
b†i b†j

〉= 0 , (78.108)
〈
b†i b j

〉= niδij . (78.109)

Here

ni = 1

exp (�ωi/kBT )−1
(78.110)

is the average number of photons at frequency ωi , T is
the temperature of the reservoir, and kB denotes the
Boltzmann constant.

78.6.2 Squeezed Reservoir

Another example of a reservoir is a squeezed vac-
uum or squeezed reservoir. If, for example, multiwave
mixing is used to squeeze the radiation field, conju-
gate pairs of the reservoir operators b are correlated.
Therefore, the expectation values 〈bib j〉 and

〈
b†i b†j

〉

may be nonvanishing. Apart from the average num-
ber ni of photons at frequency ωi , which take into
account nonvanishing expectation values

〈
b†i bi

〉
, addi-

tional complex squeezing parameters are needed to
describe the reservoir [78.28, 33, 34]. The characteri-
zation of a squeezed reservoir based on noise operators
is discussed in Sect. 78.10.

78.7 Master Equation

In quantum mechanics, density operators are used to
describe mixed states, and are discussed in Chapt. 7.
Here we introduce the concept of the reduced density
operator

ρs = Trr (ρsr) , (78.111)

which is the density operator ρsr of the complete system
traced over the degrees of freedom of the reservoir. The
equation of motion for ρs in the Schrödinger picture
is

ρ̇s(t)=− i

�
Trr {[Hsr, ρsr(t)]} . (78.112)

In the Born–Markov approximation the trace over the
reservoir can be evaluated and leads to an equation of
motion for ρs which no longer contains reservoir opera-
tors. This equation of motion is usually called the master

equation. The Born–Markov approximation consists of
two different parts:

1. Born approximation: The coupling to the reservoir
is assumed to be sufficiently weak to allow a per-
turbative treatment of the interaction between the
reservoir and the system.

2. Markov approximation: The correlations of the
reservoir are assumed to decay very rapidly on
a typical time scale of the system, or equiva-
lently, the reservoir has a very broad spectrum.
This approximation involves the assumption that
the modes of the reservoir are spaced closely to-
gether, so that the frequency ωi is a smooth function
of i.

Since a general treatment is rather technical, we con-
sider two typical examples. A more general discussion
can be found in [78.17, 20, 27, 28, 31–33]
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78.7.1 Damped Harmonic Oscillator

The universally accepted Hamiltonian in nonrelativistic
QED for a harmonic oscillator of frequency ω coupled
to a reservoir consisting of a large number of harmonic
oscillators is given by the total Hamiltonian [78.35, 36]

Hsr = �ω
(

a†a+ 1

2

)
+
∑

i

�ωi

(
b†i bi + 1

2

)

+Hlc+Hsi , (78.113)

with the linear coupling term

Hlc = �
∑

i

gi

(
a+a†

) (
bi +b†i

)
, (78.114)

and the self-interaction term

Hsi =
∑

i

�g2
i

ωi

(
a+a†

)2
. (78.115)

The approach used in quantum optics is to drop the term
Hsi and to make the rotating-wave approximation, that
is, to drop the terms a bi and a†b†i , see also Chapt. 68.
Then the approximate total Hamiltonian reads

Hsr = �ω
(

a†a+ 1

2

)
+
∑

i

�ωi

(
b†i bi + 1

2

)

+�
∑

i

gi

(
a b†i +a†bi

)
. (78.116)

Despite the problems with this approximate Hamiltonian
(see Sect. V.D of [78.35,36] for a discussion) we adopt it
in the present context because it leads to the widely used
master equation for the damped harmonic oscillator. We
consider two reservoirs: a thermal bath and a squeezed
bath.

Harmonic Oscillator in a Thermal Bath
Within the Born–Markov approximation the master
equation is

ρ̇ = 1

2
γ (n+1)

(
2aρa†−a†aρ−ρa†a

)

+ 1

2
γn

(
2a†ρa−a a†ρ−ρa a†

)
, (78.117)

where

ρ(t)= eiωa†a(t−t0)ρs(t)e
−iωa†a(t−t0) (78.118)

is the reduced density operator in the interaction picture.
The damping constant γ is given by

γ = 2πD(ω)|g(ω)|2 , (78.119)

where g(ω) denotes the coupling strength at fre-
quencyω. The number of thermal photons at frequencyω
is

n = 1

exp (�ω/kBT )−1
. (78.120)

Thus the Born–Markov approximation replaces the dis-
crete reservoir modes by a continuum of modes with
a density D(ω).

Harmonic Oscillator in a Squeezed Bath
Within the Born–Markov approximation, the reduced
density operator (78.118) in the interaction picture sat-
isfies the master equation

ρ̇ = 1

2
γ (n+1)

(
2aρa†−a†aρ−ρa†a

)

+ 1

2
γn

(
2a†ρa−a a†ρ−ρa a†

)

− 1

2
γm

(
2a†ρa†−a†a†ρ−ρa†a†

)

− 1

2
γm ∗ (2aρa−a aρ−ρa a) . (78.121)

Here γ is again given by (78.119). The squeezed reser-
voir is characterized by a real number n and a complex
number m. Physically n is the number of photons at
frequency ω, i. e., similar to the thermal reservoir, it
measures the average energy at frequency ω. The com-
plex number m determines the amount of squeezing. In
general, the positivity of the density operator requires

|m|2 ≤ n (n+1) . (78.122)

A more quantitatively definition of n and m in terms of
noise operators is given in Sect. 78.10.

78.7.2 Damped Two-Level Atom

The interaction of a two-level atom with a classical
electromagnetic field is already discussed in Chapt. 68.
For a quantum mechanical treatment of the field we
only have to replace the classical field by its quan-
tum mechanical counterpart (78.9). We then find in the
rotating-wave approximation (Chapt. 68), that the dy-
namics of a two-level atom with a transition frequency
ω0 coupled to a reservoir consisting of a large number of
harmonic oscillators is approximately described by the
total Hamiltonian

Hsr = 1

2
�ω0σz +

∑

i

�ωi

(
b†i bi + 1

2

)

+ �
∑

i

(
giσ−b†i + g∗i σ+bi

)
, (78.123)
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where

σ+ =
(

0 1

0 0

)

, σ− =
(

0 0

1 0

)

, (78.124)

σz =
(

1 0

0 −1

)

. (78.125)

Again, two reservoirs are considered: a thermal bath and
a squeezed bath.

Two-Level Atom in a Thermal Bath
Within the Born–Markov approximation, the master
equation is

ρ̇ = 1

2
γ (n+1) (2σ−ρσ+−σ+σ−ρ−ρσ+σ−)

+ 1

2
γn (2σ+ρσ−−σ−σ+ρ−ρσ−σ+) ,

(78.126)

where

ρ(t)= eiω0σz(t−t0)/2ρs(t)e
−iω0σz(t−t0)/2 (78.127)

is the reduced density operator in the interaction picture,
and γ and n are given by (78.119) and (78.120).

Two-Level Atom in a Squeezed Bath
Within the Born–Markov approximation, the reduced
density operator in the interaction picture, (78.127),
satisfies the master equation

ρ̇ = 1

2
γ (n+1) (2σ−ρσ+−σ+σ−ρ−ρσ+σ−)

+ 1

2
γn (2σ+ρσ−−σ−σ+ρ−ρσ−σ+)

−γmσ+ρσ+−γm∗σ−ρσ− , (78.128)

where γ , n and m have the same meaning as in (78.121).

78.8 Solution of the Master Equation

78.8.1 Damped Harmonic Oscillator

We consider only a thermal reservoir and present the
solution of the master equation (78.117). For n = 0 it
can be solved in terms of coherent states, see (78.26).
For n �= 0 we give solutions in terms of quasi-probability
distributions.

Coherent States
For n = 0, which is a good approximation for optical fre-
quencies, if the system is initially in a coherent state |α0〉
with a density operator

ρ(t0)= |α0〉〈α0| , (78.129)

then there exists a simple analytical solution of the
master equation (78.117)

ρ(t)= |α0 e−γ(t−t0)/2〉〈α0 e−γ(t−t0)/2| . (78.130)

A coherent state thus remains a coherent state with
an exponentially decaying amplitude α0e−γ(t−t0)/2. Ac-
cording to (78.78) a general solution

ρ(t)=
∫

d2α0 P(α0)
∣∣α0 e−γ(t−t0)/2

〉〈
α0 e−γ(t−t0)/2

∣∣

(78.131)

can be constructed for an initial density operator

ρ(t0)=
∫

d2α0 P(α0)|α0〉〈α0| . (78.132)

If the system is initially in a superposition

|ψ(t0)〉 =
∑

i

ci |αi〉 (78.133)

of coherent states, the time evolution is given by

ρ(t)=
∑

i,k

cic
∗
k exp

[
−1

2

(
1− e−γ(t−t0)

)
|αi −αk|2

]

× exp
[
i
(

1− e−γ(t−t0)
)

Im
(
αiα

∗
k

)]

×
∣∣αi e−γ(t−t0)/2

〉〈
αk e−γ(t−t0)/2

∣∣ . (78.134)

For γ(t− t0)& 1, the interference terms |αi〉〈αk|, i �= k
decay with an effective decay constant γ |αi −
αk|2/2. Thus the damping constant is modified by
the separation of the two coherent states in phase
space.

Fokker–Planck Equation
A widely used procedure for solving the master equa-
tion for a damped harmonic oscillator, (78.117), or
for similar problems, is to derive an equation of mo-
tion for the quasi-probability distributions W(α, α∗; s)
defined in (78.76) from the master equation. The
operators a and a† are replaced by appropriate differ-
ential operators. The substitution rules can be derived
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from (78.73), (78.74) and (78.76) and are

(
a†
)k

aρ→
(
α∗ − s+1

2

∂

∂α

)k

×

(
α− s−1

2

∂

∂α∗

)
W ,

ρ
(

a†
)k

a→
(
α− s+1

2

∂

∂α∗

)

×

(
α∗ − s−1

2

∂

∂α

)k

W ,

aρa†→
(
α− s−1

2

∂

∂α∗

)

×

(
α∗ − s−1

2

∂

∂α

)
W ,

a†ρa →
(
α∗ − s+1

2

∂

∂α

)

×

(
α− s+1

2

∂

∂α∗

)
W ,

a†ρa†→
(
α∗ − s+1

2

∂

∂α

)

×

(
α∗ − s−1

2

∂

∂α

)
W ,

aρa →
(
α− s−1

2

∂

∂α∗

)

×

(
α− s+1

2

∂

∂α∗

)
W . (78.135)

In general, this procedure leads to equations of motion
which involve higher derivatives of W as exemplified
by the quantum mechanical Liouville equation (78.93)
for the Wigner function. For simple Hamiltonians, how-
ever, this equation has the form of a Fokker–Planck
equation which is well known in classical stochastic
problems [78.27, 37] (Sect. 78.10.2). In particular, for
a damped harmonic oscillator described by the master
equation (78.117), one obtains

∂W

∂t
= γ

2

[
∂

∂α
(αW)+ ∂

∂α∗
(
α∗W

)]+γns
∂2W

∂α∂α∗
,

(78.136)

where

ns = n+ 1− s

2
= 1

exp (�ω/kBT )−1
+ 1− s

2
.

(78.137)

The time-dependent solution of this Fokker–Planck
equation has the form

W(α, α∗, t; s)=
∫

G(α, α∗, t|α′, α′∗, t′; s)

× W(α′, α′∗, t′; s)d2α′ , (78.138)

where

G(α, α∗, t|α′, α′∗, t′; s)

=
exp

(

−
∣∣α−α′ e−γ (t−t′)/2∣∣2

ns
[
1− e−γ(t−t′)]

)

πns

(
1− e−γ(t−t′)

) (78.139)

is the Green’s function of the Fokker–Planck equation
(78.136). The steady-state solution is

W(α, α∗, t →∞; s)= 1

πns
e−|α|2/ns , (78.140)

which is the distribution function of a harmonic os-
cillator in thermal equilibrium with a reservoir of
temperature T .

78.8.2 Damped Two-Level Atom

The density operator

ρ =
(
ρee ρeg

ρge ρgg

)

(78.141)

for a two-level atom can be written as

ρ =
(

1
2

[
1+〈σz〉

] 〈σ−〉
〈σ+〉 1

2

[
1−〈σz〉

]

)

. (78.142)

Thus, a two-level atom is completely described by the
expectation values

〈σz〉 = ρee−ρgg ,

〈σ+〉 = ρge ,

〈σ−〉 = ρeg . (78.143)

Hence the master equation (78.128) can be cast
into the equations of motions for these expectation
values

d

dt
〈σ+〉 = −γ

(
n+ 1

2

)
〈σ+〉−γm ∗〈σ−〉 ,
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d

dt
〈σ−〉 = −γ

(
n+ 1

2

)
〈σ−〉−γm〈σ+〉 ,

d

dt
〈σz〉 = −2γ

(
n+ 1

2

)
〈σz〉−γ , (78.144)

which can easily be solved for arbitrary ini-
tial conditions. In contrast to a thermal reservoir
(m = 0), a squeezed reservoir results in two differ-
ent transverse decay constants γ

(
n+ 1

2 +|m|
)

and
γ
(
n+ 1

2 −|m|
)

[78.34].

78.9 Quantum Regression Hypothesis

In the Schrödinger picture, time-dependent expectation
values for system operators A j can be calculated from
the reduced density operator ρs(t) via

〈A j〉 = Trs
{

A jρs(t)
}
. (78.145)

The reduced density operator, however, is not suffi-
cient to calculate two-time correlation functions such
as 〈A j(t+ τ)Ak(t)〉. For a definition of two-time cor-
relation functions, the Heisenberg picture is more
appropriate. Here, expectation values follow from

〈A j〉 = Trsr

[
U†sr(t, t0)A j(t0)Usr(t, t0)ρsr(t0)

]
,

(78.146)

where Usr(t, t0) describes the unitary time evolution of
the complete system and ρsr(t0) is the density operator in
the Heisenberg picture. Similarly, two-time correlation
functions such as 〈A j(t+ τ)Ak(t)〉 can be defined as

〈A j(t+ τ)Ak(t)〉
= Trsr

[
U†sr(t+ τ, t0)A j(t0)Usr(t+ τ, t0)

× U†sr(t, t0)Ak(t0)Usr(t, t0)ρsr(t0)
]
. (78.147)

The quantum regression hypothesis avoids the calcula-
tion of Usr(t, t0). Two equivalent formulations exist, one
based on the master equation for ρs and another based on
the equation of motion for the expectation values 〈A j〉,
see for example [78.20, 27, 28, 31, 33].

78.9.1 Two-Time Correlation Functions
and Master Equation

It follows from their definition (78.147) in the
Heisenberg picture that two-time correlation functions
〈A j(t+ τ)Ak(t)〉 for system operators A j and Ak can be
calculated with the help of the operator

Rs(t+ τ, t)= Trr

[
Usr(t+ τ, t)

× Akρsr(t)U
†
sr(t+ τ, t)

]
, (78.148)

where Usr(t+ τ, t) describes the unitary time evolution
of the complete system between t and t+ τ . We find

〈A j(t+ τ)Ak(t)〉 = Trs
[
A j Rs(t+ τ, t)

]
. (78.149)

Note, that in (78.148) and (78.149) we interpret A j and
Ak as operators in the Schrödinger picture and have
omitted the argument t0. Because the reduced density
operator

ρs(t)= Trr

[
Usr(t, t0)ρsr(t0)U

†
sr(t, t0)

]
(78.150)

satisfies the master equation, it is plausible to assume,
that when the time derivative is taken with respect to τ ,
the operator Rs(t+τ, t) also satisfies the master equation
for ρs, subject to the initial condition Rs(t, t)= Akρs(t).
However, this requires the additional assumption that
the approximations made in the derivation of the master
equation for ρs(t) are also valid for Rs(t+ τ, t).
78.9.2 Two-Time Correlation Functions

and Expectation Values

A second formulation of the quantum regression hy-
pothesis asserts that two-time correlation functions
〈A j(t+ τ)Ak(t)〉 obey

∂

∂τ
〈A j(t+ τ)Ak(t)〉

=
∑



G j(τ)〈A(t+ τ)Ak(t)〉 , (78.151)

provided that the expectation values of a set of system
operators A j satisfy

∂

∂t
〈A j(t)〉 =

∑



G j(t)〈A(t)〉 . (78.152)

This is the form of the quantum regression hypothesis
that was first formulated by Lax [78.38].

The equivalence of the two formulations fol-
lows from the interpretation of Rs(t+ τ, t) on the
right side of (78.149) as a “density operator”. Then
Trs

{
A j Rs(t+ τ, t)

}
is an “expectation value” for which

we assume that (78.152) is valid; i. e.,
∂

∂τ
Trs

{
A j Rs(t+ τ, t)

}

=
∑



G j(τ)Trs
{

ARs(t+ τ, t)
}
. (78.153)

According to (78.149), this is identical to (78.151).
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78.10 Quantum Noise Operators

The master equation is based on the Schrödinger picture
in quantum mechanics: the state of the system described
by a density operator is time-dependent, whereas opera-
tors corresponding to observables are time independent.
If we use the Heisenberg picture instead and make
similar approximations as in the derivation of the mas-
ter equation, we arrive at equations of motion for the
Heisenberg operators, see for example [78.17,28,31,32].
Due to the interaction with a reservoir these equations
have additional noise terms and damping terms.

78.10.1 Quantum Langevin Equations

Again consider a damped harmonic oscillator. The equa-
tion of motion for the annihilation operator

ã(t)= eiω(t−t0)a(t) (78.154)

in the interaction picture follows from the Heisenberg
equations for the operators a, a†, bi and b†i and reads

dã

dt
=−

∑

i

|gi |2
t∫

t0

e−i(ωi−ω)(t−t′)ã(t′) dt′

− i
∑

i

g∗i e−i(ωi−ω)(t−t0)bi(t0) . (78.155)

In general, the noise operator

F(t)=−i
∑

i

g∗i e−i(ωi−ω)(t−t0)bi(t0) (78.156)

is not delta-correlated, and there are also memory ef-
fects in (78.155). The noise operator F(t) can be used to
classify the reservoir: if it is delta-correlated, that is, if
the reservoir has a very broad spectrum, one speaks of
white noise, see below. If the correlation time is finite
so that there are memory effects, one speaks of colored
noise.

If the spectrum of the noise is very broad (as in
the derivation of the master equation for the reduced
density operator), the operator ã(t) satisfies the quantum
Langevin equation

dã

dt
=−γ

2
ã(t)+ F(t) , (78.157)

with a damping term −γ ã(t)/2 and a noise term F(t).
Note that a simple damping equation such as

˙̃a(t)=−γ
2

ã(t) (78.158)

is unphysical since it does not preserve the commutation
relation

[
ã, ã†

]= 1. It is the noise term which saves the
commutation relation.

For a thermal reservoir with a sufficiently small
correlation time, the standard derivations [78.32] give

〈F(t)〉 = 〈
F†(t)

〉= 〈
F(t)F(t′)

〉= 〈
F†(t)F†(t′)

〉= 0 ,
〈
F†(t)F(t′)

〉= γnδ(t− t′) ,
〈F(t)F†(t′)〉 = γ(n+1)δ(t− t′) , (78.159)

where the averages are taken over the reservoir. The
damping constant γ and the number of thermal pho-
tons n are given in (78.119) and (78.120). For more
general relations, see [78.35, 36], where it is shown
explicitly that correlation functions involving the fluc-
tuation force do not in fact depend on the oscillator
frequency. The condition of a sufficiently small reser-
voir correlation time requires that τc ≈ �/(kBT ) is small
compared with the time scales of the systems. The
only time scale in (78.157) is γ−1. The relevant con-
dition is therefore τc & γ−1. For typical applications
in quantum optics, a is the annihilation operator and
a† is the creation operator of a single-mode cavity
field. Here one can have quality factors of the cavity
on the order of Q = ω/γ ≈ 106. In terms of the qual-
ity factor, the condition of sufficiently small reservoir
correlation times requires �ω/(kBT )& Q. For optic-
al frequencies

(
ω≈ 3 × 1015 Hz) and T ≈ 300 K one has

�ω/(kBT )≈ 75. In the microwave regime (ω≈ 30 GHz)
one can have temperatures as low as T ≈ 3 mK and
still have �ω/(kBT )≈ 75. Therefore the assumption
of delta-correlated noise is a good approximation for
typical applications in quantum optics.

Similarly, for a squeezed reservoir one has

〈F(t)〉 = 〈
F†(t)

〉= 0 ,

〈F(t)F(t′)〉 = γmδ(t− t′) ,
〈
F†(t)F†(t′)

〉= γm ∗δ(t− t′) ,
〈
F†(t)F(t′)

〉= γnδ(t− t′) ,
〈
F(t)F†(t′)

〉= γ(n+1)δ(t− t′) , (78.160)

which gives a quantitative definition of the parameters
n and m in the master equations (78.121) and (78.128).
Again, a detailed discussion in [78.35, 36] shows that
correlation functions involving the fluctuation forces do
not depend on the oscillator frequency.

The Langevin equation (78.157) is based on the
use of the approximate Hamiltonian given in (78.116),
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i. e., it is based on the rotating-wave approximation and
the neglect of self-interaction terms. The correspond-
ing Langevin equation for x =√

�/(2mω)
(
a+a†

)
may

be calculated and, not unexpectedly, it disagrees with
the Abraham–Lorentz equation which Ford and O’Con-
nell [78.39] showed could be derived systematically
using the exact Hamiltonian (78.113). In fact, Ford
and O’Connell showed that an improved equation for
the radiating electron (improved in the sense that it
is second-order and is not subject to the analyticity
problems and the problems with runaway solutions
associated with the Abraham–Lorentz equation) may
be obtained by generalizing the Hamiltonian (78.113)
to include electron structure. The implications follow-
ing from these different equations are presently under
study.

78.10.2 Stochastic Differential Equations

In Sect. 78.10.1 we discussed one of the simplest quan-
tum systems with dissipation, the damped harmonic
oscillator. For more complicated systems the noise term
can also contain system operators. In such cases there are
two different ways to interpret the Langevin equation.
In order to give a feeling for the two possible interpreta-
tions, we discuss the one dimensional classical Langevin
equation

dx

dt
= g(x, t)+h(x, t)F(t) (78.161)

for the stochastic variable x(t) with delta-correlated
noise 〈F(t)F(t′)〉 = δ(t− t′). Due to the singular na-
ture of delta-correlated noise, such a Langevin equation
does not exist from a strictly mathematical point of
view. A mathematically more rigorous treatment is based
on stochastic differential equations [78.27, 28, 37]. The
variable x(t) is said to obey a stochastic differential
equation

dx(t)= g(x, t)dt+h(x, t)F(t)dt

= g(x, t)dt+h(x, t)dW(t) , (78.162)

if, for all times t and t0, x(t) is given by

x(t)= x(t0)+
t∫

t0

g(x(t′), t′)dt′

+
t∫

t0

h[x(t′), t′]dW(t′) . (78.163)

Here the last term is a Riemann–Stieltjes integral defined
by

t∫

t0

h
[
x(t′), t′

]
dW(t′)

= lim
n→∞

n−1∑

i=0

h[x(τi), τi ]
[
W(ti+1)−W(ti)

]
,

(78.164)

where τi is in the interval (ti , ti+1).
There are two different approaches to such problems:

the Ito approach and the Stratonovich approach. They
differ in the definition of stochastic integrals.

In the Stratonovich approach, one evaluates
h
[
x(τi), τi

]
at τi = (ti + ti+1)/2, whereas in the Ito

approach one evaluates h
[
(x(τi), τi)

]
at τi = ti . This

slightly different definition of τi leads to different results
because, as a consequence of the delta-correlated noise
term, x(t) is not a continuous path. However, there is a re-
lation between the solution of a Stratonovich stochastic
differential equation and an Ito stochastic differential
equation. Suppose x(t) is a solution of the Stratonovich
stochastic differential equation

dx(t)= g(x, t)dt+h(x, t)dW(t) . (78.165)

Then x(t) satisfies the Ito stochastic differential equa-
tion

dx(t)=
[

g(x, t)+ 1

2
h(x, t)

∂h(x, t)

∂x

]
dt

+h(x, t) dW(t) . (78.166)

Instead of dealing with stochastic differential
equations, one can derive a Fokker–Planck equation
for the conditional probability P(x, t|x0, t0). For the
Stratonovich stochastic differential equation (78.165),
the Fokker–Planck equation is

∂P

∂t
=− ∂

∂x

[
g(x, t)+ 1

2
h(x, t)

∂h(x, t)

∂x

]
P

+ 1

2

∂2

∂x2
h2(x, t)P , (78.167)

which takes the form

∂P

∂t
=− ∂

∂x
g(x, t)P+ 1

2

∂2

∂x2 h2(x, t)P , (78.168)

if (78.165) is interpreted as a stochastic differential
equation in the Ito sense.

The two approaches have the following properties:
(i) in most of the models used in physics the Stratonovich
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Quantized Field Effects 78.12 Spontaneous Emission in Free Space 1159

definition of a stochastic integral is needed to give
correct results, (ii) rules from ordinary calculus are ap-
plicable only in the Stratonovich approach, and (iii) for

Langevin equations with h(x, t)= const, as in (78.157),
the Stratonovich interpretation and the Ito interpretation
of stochastic integrals are equivalent.

78.11 Quantum Monte Carlo Formalism

The quantum Monte Carlo formalism was developed
to solve numerically master equations of the Lindblad
type [78.20, 40–44]

ρ̇s = − i

�
[Hs, ρs]

+ 1

2

∑

j

(
2C jρsC†j −C†j C jρs −ρsC†j C j

)
.

(78.169)

Here C j are arbitrary system operators.
As an illustrative example, consider

ρ̇s =− i

�
[Hs,ρs]+ 1

2

(
2CρsC

†−C†Cρs−ρsC
†C

)
,

(78.170)

where C is an arbitrary system operator. Instead of solv-
ing the master equation, one defines quantum trajectories
or stochastic wave functions as follows. Starting from
|ψ(t)〉, there are two possibilities for the time evolution
during the interval dt:

1. The system evolves according to the non-Hermitian
Hamiltonian Hs− i�

2 C†C; i. e.

|ψ(t+dt)〉=
[
1−idt

(
Hs− i�

2 C†C
)
/�
] |ψ(t)〉

√
1−〈ψ(t)|C†C|ψ(t)〉 dt

.

(78.171)

2. The system makes a jump; i. e.

|ψ(t+ dt)〉 = C|ψ(t)〉
√〈ψ(t)|C†C|ψ(t)〉 . (78.172)

Since both possibilities describe a nonunitary time evo-
lution, |ψ〉 must be normalized after each step. For each
time interval dt one of these two possibilities is randomly
chosen according to the probability

P(t)dt = 〈ψ(t)|C†C|ψ(t)〉dt (78.173)

to make a jump between t and t+ dt. We can now define
a density operator

ρs(t)= |ψ(t)〉〈ψ(t)| (78.174)

for a specific quantum trajectory |ψ(t)〉. The density
operator

ρs(t)= |ψ(t)〉〈ψ(t)| (78.175)

averaged over all trajectories (indicated by the bar) is
then a solution of the master equation (78.170).

This method can easily be generalized to master
equations of the form (78.169).

78.12 Spontaneous Emission in Free Space

Consider an atom which is initially in one of its excited
states and which interacts with the quantized electro-
magnetic field of free space. Even if none of the modes
of the electromagnetic field is excited, there are still the
vacuum fluctuations which “interact” with the atom and
give rise to important effects:

1. Spontaneous emission: the atom spontaneously
emits a photon and decays from the excited state.

2. Natural linewidth: due to the finite lifetime of the
atomic levels, the radiation from an atomic transition
has a finite linewidth, called the natural linewidth.

3. Lamb shift: the energy levels of the atom are shifted.

The standard theory of spontaneous emission is the
Wigner–Weisskopf theory [78.17, 32]. Here an initially

excited atomic state |〉 decays exponentially according
to

|c(t)|2 = e−Γt , (78.176)

where the decay constant Γ is given by

Γ =
∑

i

ω3
i |di |2

3πε0�c3 , (78.177)

and the sum is over all atomic states with an en-
ergy Ei lower than the energy E of the state |〉.
ωi = (E− Ei)/� is the transition frequency for the
transition |〉→ |i〉, and di = e〈|r|i〉 is the correspond-
ing dipole moment.

The same decay constant Γ is also observed as
a linewidth in the spectrum of the radiation scattered
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1160 Part F Quantum Optics

by an atom when the incoming photon excites the atom
to the level |〉.

The energy level shift is more troublesome and needs
the concept of mass renormalization, a standard problem
in quantum electrodynamics. The theory and results are
discussed in Chapt. 27 and Chapt. 28.

Recent calculations of Pachucki [78.45] based on
fully relativistic quantum electrodynamics and includ-

ing two-loop corrections predict 1 057 838(6) kHz
for the energy difference between the 2s1/2-
state and the 2p1/2-state which is in excel-
lent agreement with the experimental result of
1 057 839(12) kHz [78.46].

For a discussion of energy levels and transition fre-
quencies in hydrogen and deuterium atoms see also
Sect. 28.3.

78.13 Resonance Fluorescence

Consider a two-level atom driven by a continuous
monochromatic wave which is treated classically. The
excited state of the atom can decay by spontaneous emis-
sion into vacuum modes of the electromagnetic field.
This emission is called resonance fluorescence. Of par-
ticular interest are the properties of the emitted light. For
a detailed discussion of resonance fluorescence, see for
example [78.20, 31–33].

The far field at position R emitted by an atom at the
origin is proportional to its dipole moment and can be
expressed in terms of the dipole operators σ+ and σ−
according to the relation [78.20]

E+(R, t)= − ω
2
0 (d × R)× R

4πε0c2 R3 σ−(t−r/c) ,

E−(R, t)= − ω
2
0 (d

∗ × R)× R

4πε0c2 R3
σ+(t−r/c) ,

(78.178)

where

d = e〈g|r|e〉 (78.179)

is the atomic dipole matrix element and the field op-
erators E+(R, t) and E−(R, t) as well as the dipole
operators σ+(t) and σ−(t) are in the Heisenberg picture.
Knowledge of the operators σ+(t) and σ−(t) is therefore
sufficient to study the properties of the emitted light in
the far field.

78.13.1 Equations of Motion

The total Hamiltonian for the system reads

Hsr = 1

2
�ω0σz +

∑

i

�ωi

(
b†i bi + 1

2

)

+�
∑

i

(
giσ−b†i + g∗i σ+bi

)

− 1

2

(
d E∗σ− eiω0t +d∗ E σ+ e−iω0t

)
,

(78.180)

where a resonant driving term has been added to the
Hamiltonian (78.123). Here d is the projection of the
dipole matrix element e〈g|r|e〉 onto the polarization
vector of the driving field with an amplitude E . The cor-
responding master equation in the interaction picture is

ρ̇ = − i
1

2
Ω1

[
σ++σ−, ρ

]

+ 1

2
γ (2σ−ρσ+−σ+σ−ρ−ρσ+σ−) , (78.181)

where Ω1 =−E d∗/� is the Rabi frequency associated
with the driving field. The vacuum modes of the field
are described by a thermal reservoir at zero temperature.

The equations of motion for the expectation val-
ues 〈σ+〉, 〈σ−〉, and 〈σz〉 are the optical Bloch equations
with radiative damping (Chapt. 68) and are

d

dt
〈σ+〉 = −γ

2
〈σ+〉− i

Ω1

2
〈σz〉 ,

d

dt
〈σ−〉 = −γ

2
〈σ−〉+ i

Ω1

2
〈σz〉 ,

d

dt
〈σz〉 = −γ (〈σz〉+1)− iΩ1 (〈σ+〉−〈σ−〉) .

(78.182)

These expectation values determine the density opera-
tor (78.142) of the two-level atom. Because (78.182)
are a system of linear differential equations for 〈σ+〉,
〈σ−〉, and 〈σz〉, they can be solved analytically. Further-
more, the quantum regression hypothesis allows one
to calculate two-time correlation functions as shown
in Sect. 78.9.

78.13.2 Intensity of Emitted Light

According to (78.52)) and (78.178), the intensity of the
fluorescence light at position R is given by

I = 〈E−(R, t)E+(R, t)〉 ∝ 〈σ+σ−〉 , (78.183)

and can be decomposed into two parts: the coherent
intensity

Icoh ∝ 〈σ+〉〈σ−〉 (78.184)
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Quantized Field Effects 78.13 Resonance Fluorescence 1161

originating from the mean motion of the dipole, and the
incoherent intensity

Iinc ∝ 〈σ+σ−〉−〈σ+〉〈σ−〉 , (78.185)

which is due to fluctuations of the dipole motion around
its average value. The steady state intensities are

Icoh ∝ Ω2
1γ

2

(
γ 2+2Ω2

1

)2
, (78.186)

and

Iinc ∝ 2Ω4
1

(
γ 2+2Ω2

1

)2 . (78.187)

For weak laser intensities (Ω1 small) the intensity of
the fluorescence light is dominated by the coherent part
whereas for high intensities (Ω1 large) it is dominated
by the incoherent part.

78.13.3 Spectrum of the Fluorescence Light

The Wiener–Khintchine theorem (78.54) allows one to
express the steady state spectrum of the fluorescence
light as the Fourier transform of the correlation function
〈σ+(τ)σ−(0)〉ss in the form

S(ω)= 1

2π

∞∫

0

e−iωτ 〈E−(τ)E+(0)〉ss dτ+ c.c.

∝ 1

2π

∞∫

0

e−i(ω−ω0)τ 〈σ+(τ)σ−(0)〉ss dτ+ c.c.

(78.188)

Again it consists of two contributions: a coherent part
Scoh(ω), and an incoherent part Sinc(ω). The coherent
part is

Scoh(ω) ∝ Ω2
1γ

2

(
γ 2+2Ω2

1

)2 δ(ω−ω0) . (78.189)

The incoherent part of the fluorescence light has two
qualitatively different spectra. ForΩ1 < γ/4, it has a sin-
gle peak at ω0, whereas it consists of three peaks for
Ω1 > γ/4. For Ω1 % γ/4 it is given by

Sinc(ω) ∝ 1

2πγ

(
(γ/2)2

(ω−ω0)2+ (γ/2)2

+ 1

3

(3γ/4)2

(ω−ω0+Ω1)2+ (3γ/4)2

+ 1

3

(3γ/4)2

(ω−ω0−Ω1)2+ (3γ/4)2
)
.

(78.190)

The central peak at ω= ω0 has a width of γ/2 whereas
the width of the two side peaks at ω= ω0±Ω1 is 3γ/4.
Their heights are one third of the height of the central
peak. This spectrum was predicted by Burshtein [78.47]
and Mollow [78.48] and experimentally confirmed by
Schuda et al. [78.49], Wu et al. [78.50], and Hartig
et al. [78.51].

This triplet can be explained in terms of the dressed
states |1, n〉 and |2, n〉 introduced in Chapt. 68 (78.50).
If the driving field is resonant with the atomic transition,
these states have the energies

E1,n = �
(

n+ 1

2

)
ω0−�Rn ,

E2,n = �
(

n+ 1

2

)
ω0−�Rn , (78.191)

(78.52). The energy differences between the allowed
transitions are

E2,n−E2,n−1= �ω0+�Rn −�Rn−1≈ �ω0 ,

E2,n−E1,n−1= �ω0+�Rn +�Rn−1≈ �ω0+�Ω1 ,

E1,n−E2,n−1= �ω0−�Rn −�Rn−1≈ �ω0−�Ω1 ,

E1,n−E1,n−1= �ω0+�Rn −�Rn−1≈ �ω0 ,

(78.192)

where we have made the approximations

Rn − Rn−1 ≈ 0 ,

Rn + Rn+1 ≈ 2g
√

n̄+1 ≈Ω1 . (78.193)

This is a good approximation for an intense driv-
ing field which can approximated by a highly
excited coherent state with an average photon num-
ber n̄.

Figure 78.6 shows these energy levels and the al-
lowed transition. Obviously, the transitions correspond
to frequencies ω0, ω0−Ω1 and ω0+Ω1. The dressed

	2, n�

	1, n�

	2, n–1�

	1, n–1�

ω0 ω0

� 1

ω0 +� 1

� 1

ω0 –� 1

Fig. 78.6 Energy level diagram of dressed states. The tran-
sition frequencies are ω0, ω0−Ω1 and ω0+Ω1
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1162 Part F Quantum Optics

state picture also explains the 2:1 ratio for the inte-
grated intensities of the central peak and the side peak
in (78.190).

78.13.4 Photon Correlations

In addition to the spectrum which is based on the cor-
relation function 〈E−(τ)E+(0)〉ss in Sect. 78.13.3, the
second-order correlation function

G(2)ss (τ)= 〈E−(0)E−(τ)E+(τ)E+(0)〉ss

∝ 〈σ+(0)σ+(τ)σ−(τ)σ−(0)〉ss (78.194)

can be measured to gain more insight into the flu-
orescence light, see also Sect. 78.3.2. Experimentally
this is done by measuring the joint probability for
detecting a photon at time t = 0 and a subsequent
photon at time t = τ . Again the result can be ob-
tained from the quantum regression hypothesis and

reads

g(2)(τ)= G(2)ss (τ)

|G(1)ss (0)|2
= 1− e−3γτ/4

(
cos δτ+ 3γ

4δ
sin δτ

)
,

(78.195)

where δ is given by

δ=
√
Ω2

1 −γ 2/4 . (78.196)

For τ = 0, g(2)(0)= 0, indicating a tendency of photons
to be separated. This tendency is known as photon an-
tibunching and was first predicted by Carmichael and
Walls [78.52, 53] and experimentally verified by Kim-
ble et al. [78.54, 55]. Photon antibunching of radiation
emitted from a two-level atom has a simple explanation:
After the atom has emitted a photon it is in the ground
state and must first be excited again before it can emit
another photon.

78.14 Recent Developments

This chapter has discussed the fundamentals of the quan-
tized electromagnetic field and applications to the broad
area of quantum optics. However, in the last eight years,
quantum optics has blossomed in several new direc-
tions particularly in the key role it is playing in recent
investigations of the fundamentals of quantum theory
and related applications. In particular, the superposition
principle (the bedrock of quantum mechanics), entan-
glement, the quantum-classical interface, and precision
measurements have become very topical research ar-
eas, especially in respect to their relevance to quantum
information processing.

78.14.1 Literature

During the last eight years, several books on quantum
optics [78.56–62] have been published. These books
cover the topics of this chapter to some extent and take
into account recent developments. For an introduction
to the rapidly evolving fields of quantum information
processing, we refer the reader to Chapt. 81 and [78.63–
65].

78.14.2 Field States

Recently, number states of the radiation field were ob-
served in a cavity-QED experiment [78.66].

78.14.3 Reservoir Theory

New research topics, such as quantum information
processing, rely on the superposition principle and en-
tangled quantum states. Since these states are very
sensitive to decoherence, reservoir theory has attracted
a lot of interest in recent years. Furthermore, as discussed
in [78.67–72], decoherence is the physical process by
which the classical world emerges from its quantum
underpinning.

Many investigations in this area involve the presence
of a reservoir (heat-bath/environment) and master equa-
tions are a ubiquitous tool. The familiar master equations
of quantum optics are in Lindblad form [78.73], which
guarantees that the density matrix is always positive
definite during time evolution. In the derivation of this
equation [78.74, 75], rapidly oscillating terms are omit-
ted by the method of coarse-graining in time; the high
frequencies correspond to the oscillator frequency ω0
and, in the usual weak coupling limit, ω0 % γ , where
γ is a typical decay constant. This is the rotating wave
approximation (Sect. 66.3.2).

We have referred to the equations obtained prior to
coarse-graining in time as pre-master (or pre-Lindblad)
equations [78.74,76], and such equations have been used
extensively in other areas of physics [78.77, 78]; other
authors have simply referred to them as master equations
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but, to avoid confusion, we reserve the latter term for
equations in Lindblad form. Pre-master equations, like
the master equations, describe an approach to the equi-
librium state. This equilibrium state is the same in either
case [78.76], but with pre-master (non-Lindblad) equa-
tions the approach can be through non-physical states of
negative probability. However, as recently demonstrated,
pre-master equations have other advantages vis à vis
master equations:
(a) they lead to the exact expression for the mean value
of x(t) (as obtained from the exact Langevin equation
for the problem);
(b) they lead, in the classical limit (�→ 0), to the famil-
iar Fokker–Planck equation of classical probability; and
(c) the exact master equation [78.79–83] is for long
times of pre-master form. However, the general expec-
tation (based on the time dependence of the coefficients)
that the exact master equation preserves positivity for
all times has not been realized since Ford and O’Con-
nell have recently shown that, even in high temperature
regime, the density matrix is not necessarily posi-
tive [78.84].

In traditional quantum optics, the emphasis has been
on long-time

(
t % γ−1

)
phenomena, for which the use of

either master or pre-master equations is justified. How-
ever, they are both inadequate for dealing with short-time(
t & γ−1

)
phenomena (as can be shown most simply by

calculating the mean-square displacement, a key ingre-
dient in decoherence calculations), which are of much
recent interest. Thus, it is desirable to use exact mas-
ter equations. In that respect, the exact master equation
of Hu et al. [78.79, 80] for an oscillator is an arbitrary
dissipative environment has proved to be a popular and
useful tool for which an exact solution has now been
obtained [78.83]. However, it should also be mentioned
that the solution of the initial value quantum Langevin
equation gives all the same information as the exact mas-
ter equation, and in fact, the solutions of the former were
used to obtain the solutions of the latter [78.83].

The familiar two-level atom master equation is, of
course, similar in form to the usual Lindblad-type mas-
ter equation for the oscillator. However, motivated in

particular by the desire to study decoherence and other
short time phenomena, an exact master equation was de-
rived [78.85] to study the non-Markovian dynamics of
a two-level atom interacting with the electromagnetic
field.

In addition, motivated by the desire to study a driven
oscillator, the usual two-level atom master equation was
generalized to include the case of an external force
field [78.86, 87]. This generalized equation was then
used not only to obtain the familiar zero-temperature
Burshtein–Mollow spectrum, but also the corresponding
high temperature results. For strong resonant driving at
high temperature, the same three-peaked structure was
observed in the zero temperature case, but a much larger
width was found. The analysis, following other investi-
gations, used the Lax formula for calculating two-time
correlation functions. This formula is not a “quan-
tum regression theorem” as it is often designated (see
also Sect. 78.9), but simply an approximation (which
more resembles an Onsager classical regression theo-
rem [78.88]) which works very well in the case of weak
coupling and for frequencies near a resonant frequency,
but not otherwise [78.86, 87].

In Sect. 78.6, we stressed the usefulness of quasi-
probability distributions instead of the density matrix,
with particular attention to the Wigner distribution. In
particular, for simple Hamiltonians, we pointed out that
the equation for the corresponding Wigner function has
the form of a Fokker–Planck equation and we con-
sidered the explicit form describing the usual master
equation. The more general equations associated with
an exact master equation and their solution was the sub-
ject of [78.83] and interesting limits of that equation,
including the pre-master equation for both momentum
coupling and coordinate coupling were discussed at
length in [78.89, 90]. In the case of two-level systems,
it is not convenient to use quasi-probability distribu-
tions; instead, it is found that the preferred tool is the
polarization vector [78.91]. Surprisingly, it has not been
generally adopted by the quantum optics community
although its usefulness in that context has been demon-
strated recently in [78.86, 87].
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Entangled Ato79. Entangled Atoms and Fields: Cavity QED

Although the concept of a “free atom” is of use as
a first approximation, a full quantum description
of the interaction of atoms with an omnipresent
electromagnetic radiation field is necessary for
a proper account of spontaneous emission and
radiative level shifts such as the Lamb shift
(Chapt. 27). This chapter is concerned with the
changes in the atom-field interaction that take
place when the radiation field is modified by the
presence of a cavity. An atom in the vicinity of
a plane perfect mirror serves as an example of
cavity quantum electrodynamics [79.1–5].

The primary focus in this chapter is the
two extreme cases of weak coupling and strong
coupling, as exemplified by spontaneous emission.
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In the weak coupling regime, the coupling of an ex-
cited atom to a broad continuum of radiation modes
leads to exponential decay (Fig. 79.1a), as first described
by Weisskopf and Wigner [79.6]. Spontaneous emis-
sion may be enhanced or suppressed in structures such
as waveguides or “bad” cavities. Cavities also intro-
duce van der Waals forces and the subtle Casimir level
shifts [79.7].

In the strong coupling regime, the excited atom is
strongly coupled to an isolated resonant cavity mode. In
the absence of damping, an oscillatory exchange of en-
ergy between the atom and the field replaces exponential
decay (Fig. 79.1b) with a coherent evolution in time. Ex-
perimental investigations of these effects began [79.8]
with the development of suitable resonators and tech-
niques for producing atoms with long lived excited states
and strong dipole transition moments.

79.1 Atoms and Fields

79.1.1 Atoms

The essential features of cavity QED are elucidated
by the two-level model atom discussed in Chapts. 68,

69, 70, and 77 (see also [79.9]). A ground state |g〉
and an excited state |e〉 are coupled to the radiation
field by a dipole interaction. Using the formal equiv-
alence to a spin-1/2 system, the Pauli spin operators
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are

σx = σ†+σ ,
σy =−i

(
σ†−σ

)
, (79.1)

σz = σ†σ −σσ† =
[
σ†, σ

]
,

with σ† = |e〉〈g| and σ = |g〉〈e|. The quadratures (out
of phase components) of the atomic polarization
are given by σx and σy, while σz is the occupa-
tion number difference. The free atom Hamiltonian
is

Hatom = 1

2
�ω0σz , (79.2)

where �ω0 = Ee− Eg is the transition energy.

79.1.2 Electromagnetic Fields

Classical Fields
Classical electromagnetic fields have longitudinal and
transverse components:

E(r, t)= El(r, t)+ Et(r, t) . (79.3)

In the Coulomb gauge, the longitudinal part is the instan-
taneous electric field. The transverse part is the radiation

1

0.5

0
0 1 2 3 0 1 2 3

1

0.5

0

a) b)Pe

t/τ

Pe

/t�
c) d)

ω0 (ω–ω0) ω0 (ω–ω0)

�

Fig. 79.1a–d Upper row: Excitation probability of an ex-
cited atom. (a) Exponential decay in free space or bad
cavities in the weak coupling limit. (b) Oscillatory evo-
lution in good cavities or in the strong coupling case.
Lower row: The spectral signature of exponential decay
is a Lorentzian line shape (c) while the so-called vacuum
Rabi splitting (d) is observed in the strong coupling case

field which obeys the wave equation
(
∇2− 1

c2

∂2

∂t2

)
Et(r, t)= 1

ε0c2

∂

∂t
j(r, t) . (79.4)

In empty space, the driving current density j(r, t) van-
ishes, and the field may be expanded in a set of
orthogonal modes as

Et(r, t)=
∑

µ

Eµ(t)e
−iωµruµ(r)+ c.c. , (79.5)

with slowly varying amplitudes Eµ(t). The spatial dis-
tributions uµ(r) obey the vector Helmholtz equation

[
∇2+

(ωµ
c

)2
]

uµ(r, t)= 0 , (79.6)

depending on geometric boundary conditions as im-
posed by conductive or dielectric mirrors, waveguides,
and resonators. In free space, plane wave solutions
uµ(r, t)= uε eik·r have a continuous index µ= (k, ε)
with wave vector k and an index ε for the two indepen-
dent polarizations. The orthogonality relation

1

V

∫

V

uµ ·u∗ν d3r = δµν (79.7)

applies. For a closed cavity, V is the resonator volume.
In waveguides and free space, an artificial boundary is
introduced and then increased to infinity at the end of
a calculation, such that the final results do not depend
on V .

Quantum Fields
The quantum analog of the classical transverse field
in (79.4) is obtained through a quantization of its har-
monic modes leading to a number state expansion.
Field operators obey standard commutation relations
[aµ, a†ν] = δµ,ν, and for a single mode with index µ, the
amplitude Eµ in (79.5) is replaced by the corresponding
operator

Eµ(t)= Eµaµ e−iωt , E†µ(t)= Eµ
∗a†µ eiωt .

(79.8)

The normalization factor Eµ is chosen such that the en-
ergy difference between number states |n〉µ and |n+1〉µ
in the volume V is �ωµ, giving

EµEµ
† = �ωµ

2ε0V
. (79.9)

The Hamiltonian of the free field is

HField =
∑

µ

�ωµ

(
a†µaµ+ 1

2

)
. (79.10)
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In the Coulomb gauge, the vector potential A(r) is
related to the electric field E =−∂A/∂t by

Aµ(r, t)=− Eµ
ωµ

(
aµ e−iωt +a†µ eiωt

)
uµ(r) .

(79.11)

The ground state |0〉µ is called the vacuum state. While
the expectation value 〈n|E|n〉 = 0 for a number state, the
variance is not zero, since 〈n|EE∗|n〉> 0, giving rise to
nonvanishing “fluctuations” of the free electromagnetic
field.

Dipole Coupling of Fields and Atoms
The combined system of atoms and fields can be de-
scribed by the product quantum states |a, n〉 of atom
states |a〉 and field states |n〉. The interaction Hamilto-
nian HI of the atom and the radiation field is given by
(The A2-term plays an important role in energy shifts
and can only be neglected when radiative processes
involving energy exchange are considered.)

HI =− q

m
p · A(r)+ q2

2m
A2(r) . (79.12)

This interaction causes the atom to exchange energy
with the radiation field. In the dipole approximation, the
coupling strength is proportional to the component of
the atomic dipole moment deg = q〈e|reg|g〉 along the
electric field, with coupling constant

gµ(r)= |deg ·uµ(r)Eµ|/� . (79.13)

In the rotating wave approximation (RWA) (Chapts. 68,
69, and 70),

HRWA =
∑

µ

�

(
gµσ

†aµ+ g∗µa†µσ
)
, (79.14)

where we have used the atomic operators of (79.1).
In a continuous electromagnetic spectrum, the atom

interacts with a large number of modes having quantum
numbers µ, yielding exponential decay of an excited

atomic level at the rate [79.6]

Γeg = 2π

�2

∑

µ̃

∑

k

∣
∣gµ

∣
∣2 δ

(
ωµ−ω0

)
. (79.15)

Here we have separated the discrete (µ̃) and the contin-
uous part (wave vector k) of the mode index µ. If gµ
(79.13) does not vary much across a narrow resonance,
then

Γeg ) 2π
∣∣gµ(ω0)

∣∣2
∑

µ̃

ρµ̃(ω0) . (79.16)

The density of states corresponding to the continuous
mode index k of dimension ν can be evaluated on a ν-
dimensional fictitious volume V (ν) as

ρµ̃ =
∑

k

δ(ωµ̃,k−ω)→ V (ν)

(2π)ν

∞∫

0

dνkδ(ωµ̃,k−ω) ,

(79.17)

provided ω(k) is known, and by converting the sum
(This is formally accomplished by taking the limit of
∆k = 2π/l for large l, where l is a linear dimension
of an artificial resonator, and the resonator volume is
V = l3. If the relation between mode spacing ∆k and
geometric dimension is nonlinear in a more complex
geometry, this analysis can be very complicated.) over
plane wave vectors k into an integral.

The Rate of Spontaneous Emission
In free space [ω(k)2 = (ck)2], the sum in (79.16) con-
tributes a factor of two, due to polarization, to the total
density of states in free space, ρfree(ω)= Vω2/π2c3.
When the vector coupling of atom and field (79.13) is
replaced by its average in isotropic free space, that is,
by 1/3, the result

Γeg = Aeg =
e2r2

egω
3

3πε0�c3 (79.18)

is obtained for the decay rate Aeg as measured by the
natural linewidth Γeg.

79.2 Weak Coupling in Cavity QED

The regime of weak cavity QED generally applies when
an atom is coupled to a continuum of radiation modes.
This is always the case with mirrors, waveguides, or bad
cavities. The signatures of weak cavity QED are modifi-
cations of the rate of spontaneous emission, as well as the
existence of van der Waals and Casimir forces. Formally,
this regime is well described by perturbation theory.

79.2.1 Radiating Atoms in Waveguides

Within the continuous spectrum of a waveguide, ra-
diative decay of an excited atomic level remains
exponential, and Γeg may be determined as in the pre-
ceding section. We now consider the modifications of
spontaneous decay in a parallel plate waveguide. Ac-
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cording to (79.16), the theoretical problem is reduced to
a geometric evaluation of mode densities. Between a pair
of mirrors it is convenient to distinguish TEnk and TMnk
modes, where n is the number of half waves across the
gap of width d. The dispersion relation ω(k) reflects the
discrete standing wave part (nπ/d) and a running wave
part as in free space,

ω2
n,k = c2(|k|2+nπ/d

)2 n = 0, 1, 2, . . . TM

n = 1, 2, . . . TE .
(79.19)

The average mode density [du= 1, (79.13)] is evaluated
[(79.17), ν= 2] with an appropriate quantization volume
containing the area of the plates, V = Ad, giving

ρTE(ω)= ωc[ω]
2ω2

c
ρfree(ωc) ,

ρTM(ω)= ωc[ω+1]
2ω2

c
ρfree(ωc) , (79.20)

where [x] is the largest integer in x, and ωc = πc/d
gives the waveguide cutoff frequency. Below ωc, the
TE-mode density clearly vanishes and, with the pic-
torial notion of turning off the vacuum introduced by
Kleppner [79.10], inhibition of radiative decay is obvi-
ous. Figure 79.2 shows the calculated mode density for
a parallel plate waveguide. The decay rate can be cal-
culated from (79.16), with the spatial variation of gµ
included. This configuration was used for the first ex-
periments which showed the suppression of spontaneous
emission in both the microwave and the near optical
frequency domain [79.11, 12] with atomic beams.

15

10

5

0
0 1 2 3 4

(ω–ω0)

free(ω0)ρ ρ/

ρcav

ρfree

Fig. 79.2 Modification of the average vacuum spectral
density (ρTE+ρTM) in a parallel plate cavity (thick line)
compared with free space (thin line)

79.2.2 Trapped Radiating Atoms
and Their Mirror Images

Boundary conditions imposed by conductive surfaces
may also be simulated by appropriately positioned image
charges. Inspired by classical electrodynamics, this im-
age charge model can be successfully used to determine
the modifications of radiative properties in confined
spaces. In the simplest case, an atom is interacting with
its image produced by a plane mirror. Trapped atoms
and ions allow one to control their relative position with
respect to a mirror to distances below the wavelength of
light. Hence they are ideal objects for studying the spa-
tial dependence of the mirror induced modifications of
their radiative properties. In an experiment with a sin-
gle trapped ion (see Fig. 79.3), its radiation field was
superposed onto its mirror image [79.13, 14], yielding
a sinusoidal variation of both the spontaneous decay rate
and the mirror induced level shift with excellent contrast.

79.2.3 Radiating Atoms in Resonators

Resonators
In a resonator, the electromagnetic spectrum is no longer
continuous and the discrete mode structure can also
be resolved experimentally. While a resonator is only
weakly coupled to external electromagnetic fields, it still
interacts with a large thermal reservoir through currents
induced in its walls. The total damping rate is due to
resistive losses in the walls (κwall) and also due to trans-
mission at the radiation ports, 1/τµ = κµ = κwall+κout.
An empty resonator stores energy for times

τµ = Q/ωµ , (79.21)

and the power transmission spectrum is a Lorentzian
with width ∆ωµ = ωµ/Qµ. The index µ, for instance,
represents the TElm and TMlm modes of a “pillbox”
microwave cavity, or the TEMklm modes of a Fabry–
Perot interferometer (Fig. 79.4).

When cavity damping remains strong, Γµ% Γeg,
the atomic radiation field is “immediately” absorbed and
Weisskopf–Wigner perturbation theory remains valid. In
this so-called bad cavity limit, resonator damping can be
accounted for by an effective mode density of Lorentzian
width ∆ωµ for a single isolated mode,

ρµ(ω)= 1

π

ωµ/2Qµ
(ω−ωµ)2+ (ωµ/2Qµ)2

. (79.22)

Bad and Good Cavities
The modification of spontaneous decay is again cal-
culated from (79.16). For an atomic dipole aligned
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parallel to the mode polarization, and right at resonance,
ωµ = ω0, the enhancement of spontaneous emission is
found to be proportional to the Q-value of a selected
resonator mode:

Γ cav
eg

Γ free
eg

= ρµ|u(r)|
ρfree

= 3Qλ3

4π2V
|u(r)|2 = 3Qλ3

4π2Veff
,

(79.23)

where the effective mode volume is Veff = V/|u(r)|2.
The lowest possible value Veff ) λ3 is obtained for
ground modes of a closed resonator. For an atom
located at the waist of an open Fabry–Perot cav-
ity with length L , it is much larger. Special limiting
cases for concentric and confocal cavities are V conc

eff= λ2L(R/D) and V conf
eff = λL2/2π, respectively, where

(R/D) gives the ratio of mirror radius to cavity
diameter.

At resonance, the atomic decay rate Γµ grows with
Qµ, whereas the resonator damping time constant κµ
is reduced. Eventually, the energy of the atomic radia-
tion field is stored for such a long time that reabsorption
becomes possible. Perturbative Weisskopf–Wigner the-

1800

1600

1400

1200

1000

800
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400

200

0

Mirror shift (nm)
–200 –100 0 100 200

493-nm photon counts in 0.2 s

Movable mirror Ion trap Detector

Fig. 79.3 Sinusoidal variation of the λ= 493 nm sponta-
neous emission rate of a single trapped Ba ion caused by
self-interference from a retroreflecting mirror. The experi-
mental arrangement is sketched at the bottom [79.13]

ory is no longer valid in this good cavity limit, which is
separated from the regime of bad cavities by the more
formal condition

Γ cav
eg > κµ . (79.24)

The strong coupling case is considered explicitly
in Sect. 79.3.

Antenna Patterns
Since the reflected radiation field of an atomic radiator
is perfectly coherent with the source field, the combined
radiation pattern modifies the usual dipole distribution
of a radiating atom. The new radiation pattern can be un-
derstood in terms of antenna arrays [79.15]. For a single
atomic dipole in front of a reflecting mirror for example,
one finds a quadrupole type pattern due to the super-
position of a second, coherent image antenna. In some
of the earliest experimental investigations on radiat-
ing molecules in cavities, modifications of the radiation
pattern were observed [79.16].

79.2.4 Radiative Shifts and Forces

When the radiation field of an atom is reflected back
onto its source, an energy or radiative shift is caused by
the corresponding self polarization energy. An atom in

a)

b)

Open resonator

Closed resonator

Fig. 79.4a,b Two frequently used resonator types for cav-
ity QED: (a) Open Fabry–Perot optical cavity. (b) Closed
“pillbox” microwave cavity
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Fig. 79.5 (a) Normalized rate of modified spontaneous
emission in the vicinity of a perfectly reflecting wall for
σ and π orientation of the radiating dipole. (b) Cor-
responding energy shift of the resonance frequency.
Shaded area indicates contribution of static van der Waals
interaction

the vicinity of a plane mirror (Fig. 79.5) again makes
a simple model system. Since the energy shift de-
pends on the atom wall separation z, it is equivalent
to a dipole force Fdip whose details depend on the
role of retardation. Here we distinguish between the
two cases where no radiation energy is exchanged be-
tween the atom and the field (van der Waals, Casimir
forces) and where the atomic radiation causes forces by
self-interference.

The Unretarded Limit: van der Waals Forces
When the radiative round trip time tr = 2z/c is short
compared with the characteristic atomic revolution
period 2π/ωeg, retardation is not important. In this qua-
sistatic limit, van der Waals energy shifts for decaying
atomic dipoles vary as z−3 with the atom–wall separa-
tion. Such a shift is also present for a nonradiating atom
in its ground state. In perturbation theory, the van der
Waals energy shift of an atomic level |a〉 is

∆vdW =−〈a|q
2
[
(d2 · x̂t)

2+2(d2 · ẑ )2
] |a〉

64πε0z3 .

(79.25)

Since the van der Waals force is anisotropic for elec-
tronic components parallel ( ẑ ) and perpendicular ( x̂t)
to the mirror normal, the degeneracy of magnetic sub-
levels in an atom is lifted near a surface. The total energy
shift is ≈ 1 kHz for a ground state atom at 1 µm sepa-
ration, and very difficult to detect. However, the energy
shifts grow as n4 since the transition dipole moment
scales as n2. With Rydberg atoms, van der Waals energy
shifts have been successfully observed in spectroscopic
experiments [79.17].

The Retarded Limit: Casimir Forces
At large separation, retardation becomes relevant, since
the contributions of individual atomic oscilllation fre-
quencies in (79.25) cancel by dephasing, thus reducing
the ∆vdW. A residual Casimir–Polder [79.18] shift may
be interpreted as the polarization energy of a slowly fluc-
tuating field with squared amplitude

〈
E2
〉= 3�c/64ε0z4

originating from the vacuum field noise

∆CP =− 1

4πε0

3�cαst

8πz4 , (79.26)

where αst is the static electric polarizability. The vacuum
field noise ∆CP replaces ∆vdW at distances larger than
characteristic wavelengths, and is even smaller. Only
indirect observations have been possible to date, relying
on a deflection of polarizable atoms by this force [79.19,
20]. The Casimir–Polder force can also be regarded as an
ultimate, cavity induced consequence of the mechanical
action of light on atoms [79.21]. It is an example of the
conservative and dispersive dipole force which is even
capable of binding a polarizable atom to a cavity [79.22].

Radiative Self-Interference Forces
Spontaneous emission of atoms in the vicinity of a re-
flecting wall also provides an example of cavity induced
modification of the dissipative type of light forces, or
radiation pressure. If the returning field is reabsorbed,
the spontaneous emission rate is reduced and a re-
coil force directed away from the mirror is exerted.
If the returning radiation field causes enhanced decay,
a recoil towards the mirror occurs due to stimulated
emission.

If the photon is detected at some angle with respect to
the normal vector connecting the atom with the mirror
surface, two paths for the photon are possible: It can
reach a detector directly, or following a reflection off the
wall. At small atom–mirror separation these paths are
indistinguishable, the atom is thus left in a superposition
of two recoil momentum states.

79.2.5 Experiments on Weak Coupling

Perhaps the most dramatic experiment in weak coupling
cavity QED is the total suppression of spontaneous emis-
sion. For the experiments which have been carried out
with Rydberg atoms and for a low-lying near infrared
atomic transition [79.11, 12], it is essential to prepare
atoms in a single decay channel. In addition, the atoms
must be oriented in such a way that they are only cou-
pled to a single decay mode (see the model waveguide
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in Fig. 79.4). This may be interpreted as an anisotropy
of the electromagnetic vacuum, or as a specific antenna
pattern.

An important problem in detecting the modifi-
cation of radiative properties – changes in emission
rates as well as radiative shifts – arises from their
inhomogeneity due to the dependence on atom–wall
separation. This difficulty has been overcome by control-
ling the atom–wall separation at microscopic distances
through light forces [79.17], or by using well localized
trapped ions [79.13, 14]. Furthermore, spectroscopic
techniques that are only sensitive to a thin layer of sur-
face atoms [79.23] have been used to clearly detect van
der Waals shifts.

An atom emitting a radiation field in the vicinity
of a reflecting wall will experience an additional dipole
optical force caused by its radiation field. This force has
been observed as a modification of the trapping force
holding an ion at a fixed position with respect to the
reflector [79.24].

Conceptually most attractive and experimentally
most difficult to detect is the elusive Casimir interaction.
Only for atomic ground states is this effect observ-
able, free from other much larger shifts. The influence
of the corresponding Casimir force on atomic motion
has been observed in a variant of a scattering experi-
ment, confirming the existence of this force in neutral
atoms [79.19, 20].

The success of this experiment shows that spectro-
scopic techniques involving the exchange of photons
are not suitable for the Casimir problem. A notable ex-
ception could be Raman spectroscopy of the magnetic
substructure in the vicinity of a surface. In general,
scattering or atomic interferometry experiments are
more promising methods. The experiment by Brune
et al. [79.25] may be interpreted in this way.

79.2.6 Cavity QED and Dielectrics

There are two variants of dielectric materials employed
to study light-matter interaction in confined space:
Conventional materials such as glass or sapphire, and
artificial materials called photonic materials or meta-
materials.

While dielectric materials are theoretically more dif-
ficult to treat than perfect mirrors, since the radiation at
least partially enters the medium, they have a similar in-
fluence on radiative decay processes. One new aspect is,
however, the coupling of atomic excitations to excita-
tions of the medium, which was observed for the case of
a surface-polariton in [79.26].

Cavities with dimensions comparable to the wave-
length promise the most dramatic modification of
radiative atomic properties, but micrometer sized cav-
ities for optical frequencies with highly reflecting
walls are difficult to manufacture. So-called whisper-
ing gallery modes of spherical microcavities [79.27]
have been intensely studied, but no simple way of cou-
pling atoms to these resonator modes has been found
yet.

On the other hand, dielectric materials with a peri-
odic modulation of the index of refraction may exhibit
photonic bandgaps in analogy with electronic bandgaps
in periodic crystals [79.28,29]. Electronic phenomena of
solid state physics can then be transferred to photons. For
example, excited states of a crystal dopant or a quantum
dot cannot radiate into a photonic bandgap, the radia-
tion field cannot propagate, and the excitation energy
remains localized. The bandgap behaves like an empty
resonator, and if a resonator structure is integrated into
the device, the regime of strong coupling [79.30,31] can
be achieved with such photonic structures. An overview
of suitable systems can be found in [79.32].

79.3 Strong Coupling in Cavity QED

Strong coupling of atoms and fields is realized in a good
cavity when Γµ < Γeg (79.24). The Hilbert space of the
combined system is then the product space of a single
two-level atom and the countable set of Fock-states of
the field,

H =Hatom⊗Hfield , (79.27)

which is spanned by the states

|n; a〉 = |n〉|a〉 . (79.28)

The interaction of a single cavity mode with an iso-
lated atomic resonance is now characterized by the Rabi
nutation frequency, which gives the exchange frequency
of the energy between atom and field. For an amplitude
E corresponding to n photons,

Ω(n)= gµ
√

n+1 . (79.29)

This is the simplest possible situation of a strongly
coupled atom–field system. The new energy eigenvec-
tors are conveniently expressed in the dressed atom
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model [79.33]:

|+, n〉 = cos θ|g, n+1〉+ sin θ|e, n〉 ,
|−, n〉 = − sin θ|g, n+1〉+ cos θ|e, n〉 , (79.30)

with tan 2θ = 2gµ
√

n+1/(ω0−ωµ). The separate en-
ergy structures of free atom and empty resonator are
now replaced by the combined system of Fig. 79.6. At
resonance, the new eigenstates are separated by 2�ΩR,
whereΩR = gµ is the vacuum Rabi frequency.

79.4 Strong Coupling in Experiments

In order to achieve strong coupling experimentally, it
is necessary to use a high-Q resonator in combination
with a small effective mode volume. This condition was
first realized for ground modes of a closed microwave
cavity [79.8], and later also for open cavity optical res-
onators (Fig. 79.6) [79.34]. It is interesting to control
the interaction time of the atoms with the cavity field. In
earlier experiments, this was typically achieved by se-
lecting the passage time for an atom transiting the cavity.
The advancement of atom trapping methods has also led
to the observation of a truly one-atom laser at optical
frequencies [79.35].

More recently, this situation has also been re-
alized for artificial atoms including superconducting
systems [79.36, 37] and quantum dots [79.30, 31].

79.4.1 Rydberg Atoms
and Microwave Cavities

At microwave frequencies, very low loss supercon-
ducting niobium cavities are available with Q ≈ 1010.
Resonator frequencies are typically several tens of GHz
and can be matched by atomic dipole transitions be-
tween two highly excited Rydberg states. By selective
field ionization, the excitation level of Rydberg atoms
can be detected, and hence it is possible to measure
whether a transition between the levels involved has oc-
curred. The efficiency of this method approaches unity,
so that experiments can be performed at the single
atom level. The interaction or transit time T is usu-
ally much shorter than the lifetime τRy of the Rydberg
states involved. For this reason, circular Rydberg states
with quantum numbers l = m = n−1 are particularly
suitable.

Rydberg atoms [79.38] are prepared in an atomic
beam, selectively excited to an upper level, and then
sent through a microwave cavity where the upper and
lower levels are coupled by the electromagnetic field. If
the atom is detected in the lower of the coupled levels
as it leaves the resonator, the excitation energy has been
stored in the resonator field. Thus the evolution of the

resonator field is recorded as a function of the atomic
interaction.

A microwave cavity in interaction with a single or
a few Rydberg atoms is called a micromaser (formerly
a one atom maser) [79.8]. The experimental conditions
may be summarized as

gµ > 1/T> 1/τRy > κµ . (79.31)

79.4.2 Strong Coupling
in Open Optical Cavities

At optical wavelengths, a cavity with small Veff in
(79.23) is clearly more difficult to construct than at
centimeter wavelengths. However, dielectric coatings
are now available which allow very low damping
rates ωµ/Qµ for optical cavities. Very high finesse
F ) 107 (which is a more convenient measure for
the damping rate of an optical Fabry–Perot interfer-
ometer) has been achieved. By reducing the volume
of such a high-Q cavity mode, strong coupling of

le, 1>, lg, 2>
l+, 1>

l–, 1>

le, 0>, lg, 1>
l–, 0>

l+, 0>

Fig. 79.6a,b Level diagram for the combined states of non-
interacting atoms and fields (a) which are degenerate at
resonance. Degeneracy is lifted by strong coupling of atoms
and fields (b) yielding new “dressed” eigenstates
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atoms and fields at optical frequencies has been demon-
strated [79.34].

In open structures, the atoms can still decay into the
continuum states with a rate γ . Therefore the condition

for strong coupling in such systems is usually given as

g2
µ

κµγ
> 1 . (79.32)

79.5 Microscopic Masers and Lasers

In a microscopic laser, simple atoms are strongly
coupled to a single mode of a resonant or near resonant
radiation field. Collecting atomic and field operators
from (79.2), (79.10), and (79.14), this situation is
described by the Jaynes–Cummings model Hamilto-
nian [79.39, 40]

HJC =Hatom+Hfield+HRWA

= 1

2
�ω0σz +�ωµ

(
a†µaµ+ 1

2

)

+�gµ(σ
†aµ+a†µσ) . (79.33)

79.5.1 The Jaynes–Cummings Model

The Jaynes–Cummings model (79.33) represents the
most basic and, at the same time, the most informative
model of strong coupling in quantum optics. It consists
of a single two-level atom interacting with a single mode
of the quantized cavity field. The time evolution of the
system is determined by

i�
∂ψ

∂t
= Hψ . (79.34)

This model can be solved exactly due to the existence
of the additional constant of motion

N = a†a+σz +1 , (79.35)

i. e., conservation of the “number of excitations”. Its
eigenvalues are the integers N which are twofold degen-
erate except for N = 0. The simultaneous eigenstates
of H and N are the pairs of dressed states defined in
(79.30) which are not degenerate with respect to the
energy H . The initial state problem corresponding to
(79.34) is solved by elementary methods in terms of the
expansion

|Ψ(t)〉 =
∞∑

n=0

2∑

j=1

C j
n(t)|n, j〉 , (79.36)

where the expansion coefficients are

C1
n(t)=

(
C1

n(0)

{
cos[Ω(n)t]− i

δ

2Ω(n)
sin[Ω(n)t]

}

− i

√
ngµ
Ω(n)

C2
n−1(0) sin[Ω(n)t]

)

× exp

[
−iωµ

(
n− 1

2

)
t

]
(79.37)

and

C2
n(t)=

(
C2

n(0)

{
cos[Ω(n+1)t]

+ i
δ

2Ω(n+1)
sin[Ω(n+1)t]

}

− i
gµ
√

n+1

Ω(n+1)
C1

n+1(0) sin[Ω(n+1)t]
)

× exp

[
−iωµ

(
n+ 1

2

)
t

]
, (79.38)

with δ = ωµ−ω0 the detuning between the atom and
cavity and Ω(n)= 1

2 (δ
2+4g2

µn)1/2 is the generalized
Rabi frequency. The coefficients C j

n(0) are determined
by the initial preparation of atom and cavity mode. The
result simplifies considerably for δ= 0 to

|Ψ(t)〉 =
∞∑

m=0

{
C1

m(0)e
−iωµ(m−1/2)t

×
[

cos
(
gµ
√

mt
)|m; 1〉

− i sin
(
gµ
√

m t
)|m−1; 2〉]

+C2
m(0)e

−iωmu(m+1/2)t

×
[

cos
(
gµ
√

m+1 t
)|m; 2〉

− i sin
(
gµ
√

m+1t
)|m+1; 1〉]

}
. (79.39)

The coefficients C j
n(0) represent any initial state of the

system, from uncorrelated product states to entangled
states of atom and field. There exist numerous general-
izations of this model which include more atomic levels
and several coherent fields.
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79.5.2 Fock States, Coherent States
and Thermal States

We now illustrate the properties of the Jaynes–
Cummings model by specifying the initial state. Assume
that the atom and field are brought into contact at time
t = 0 and that all correlations that might exist due to
previous interactions are suppressed.

Rabi Oscillations
If the atom is initially in the excited state and the field
contains precisely m quanta, then

C j
n(t = 0)= δn,mδ j,2 . (79.40)

The solution of (79.34) assumes the form

|Ψ(t)〉 = e−iωµ(m+1/2)t[ cos
(
gµ
√

m+1 t
)|m; 2〉

− i sin
(
gµ
√

m+1 t
)|m+1; 1〉] . (79.41)

The occupation probabilities of the atomic states evolve
in time according to

n2(t)= 〈Ψ(t)|2〉〈2|Ψ(t)〉 = cos2 (gµ
√

m+1 t
)
,

(79.42)

n1(t)= 〈Ψ(t)|1〉〈1|Ψ(t)〉 = sin2 (gµ
√

m+1 t
)
.

(79.43)

The photon number and its variance are

〈n(t)〉 = 〈
Ψ(t)a†aΨ(t)

〉= m+ sin2 (gµ
√

m+1 t
)
,

(79.44)

〈∆2n〉 = 〈
Ψ(t)

(
a†a− 〈

a†a
〉)2
Ψ(t)

〉

= sin2
(
2gµ

√
m+1 t

)

4
. (79.45)

In the limit of large m, gµ
√

m+1 is proportional to
the field amplitude and the classical Rabi oscillations in
a resonant field are recovered. The nonclassical features
of the states are characterized by Mandel’s parameter

QM =
〈
∆2n

〉−〈n〉
〈n〉 ≥ −1 . (79.46)

For the present example,

QM =−1+ 1

4

sin2
(
2gµ

√
m+1 t

)

m+ sin2
(
gµ
√

m+1 t
) . (79.47)

QM ≥ 0 indicates the classical regime, while Q ≤ 0 can
only be reached by a quantum process.

The Coherent State
Consider the case where the field is initially prepared in
a coherent state

|α〉 = exp
(
αa†−α∗a

)|0〉 = e−|α|2/2
∞∑

n=0

αn

√
n! |n〉 ,

(79.48)

while the atom starts from the excited state

C j
n(0)= e−|α|2/2 |α|

n

√
n!δ j,2 . (79.49)

In this case, the general solution specializes to

|Ψ(t)〉 =
∞∑

n=0

αn

√
n! e−iω(n+1/2)t e−|α|2/2

×
[

cos
(
gµ
√

n+1 t
)|n; 2〉

− i sin
(
gµ
√

n+1 t
)|n+1; 1〉] , (79.50)

and the occupation probability of the excited state is

n2(t)= 1

2

[

1+
∞∑

n=0

|α|2n

n! e−|α|2 cos
(
2gµ

√
n+1 t

)
]

.

(79.51)

From here, detailed quantitative results can only be
obtained by numerical methods [79.41]. However, if
the coherent state contains a large number of photons
|α|2 % 1, the essential dynamics can be determined by
elementary methods. Initially, the population oscillates
with the Rabi frequency Ω1 ≈ gµ|α|, which is propor-
tional to the average amplitude of the field, as expected
from its classical counterpart. With increasing time, the
coherent oscillations tend to cancel due to the destruc-
tive interference of the different Rabi frequencies in the
sum:

n2(t)= 1

2

[
1+ cos(2gµ |α| t)e−(gt)2/2

]
. (79.52)

However, strictly aperiodic relaxation of n2(t) is impos-
sible since the exact expressions, (79.36) and (79.37),
represent a quasiperiodic function which, given enough
time, approaches its initial value with arbitrary accuracy.

For short times, the oscillating terms in the sum
cancel each other due to the slow evolution of their
frequency with n. However, consecutive terms interfere
constructively for larger times tr, such that the phases
satisfy

φn+1(tr)−φn(tr)= 2π . (79.53)

For |α|2 % 1, the increment of the arguments is

φn+1−φn = gµtr/|α| , (79.54)
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and therefore the first revival of the Rabi oscillations
occurs approximately at tr = π|α|/gµ. A clear distinc-
tion of Rabi oscillation, collapses, and revivals requires
a clear separation of the three time scales

t1 & t2 & t3 , (79.55)

where t1 ≈ (gµ|α|)−1 for Rabi oscillation, t2 ≈ g−1
µ for

collapse, and t3 ≈ |α|/gµ for revival.
The typical features of the transient evolution start-

ing from a coherent state are shown in Fig. 79.7. With
time increasing even further, revivals of higher order oc-
cur which spread in time, and finally can no longer be
separated order by order.

The Thermal State
Consider a microwave resonator brought into thermal
contact with a reservoir, inducing loss on a time scale
κ−1 and thermal excitation. The dissipative time evolu-
tion is described by the master equation

ρ̇ = (L0+ L)ρ

≡ i[H, ρ]/�+κ(nth+1)
{[

a, ρa†
]+ [

aρ, a†
]}

+κnth
{[

a†, ρa
]+ [

a†ρ, a
]}
, (79.56)

where nth = [exp(β�ω)−1]−1, at T = kBβ
−1, is the

equilibrium population of the cavity mode, L0 sym-
bolizes the unitary evolution according to the Jaynes–
Cummings dynamics and L is a dissipation term.

The solution of this model can be expressed in terms
of an eigenoperator expansion of the equation

Lρ =−λρ . (79.57)

The eigenvalues λ that determine the relaxation rates, as
well as the eigenoperators, are known in closed form for

1

1.75

0.5

0.25

0
0 20 40 60

gt

Population n2(t), α = 4

Fig. 79.7 Rabi oscillations, dephasing, and quantum revival

the case of vanishing temperature [79.42]. Since energy
is exchanged between the nondecaying atom and the
decaying cavity mode, cavity damping is modified in
a characteristic way due to the presence of the atom.
The technical details can be found in [79.43].

79.5.3 Vacuum Splitting

In the classical case, the eigenvalues of the interac-
tion free Hamiltonian are degenerate at resonance. The
atom–field interaction splits the eigenvalues and deter-
mines the Rabi frequency of oscillation between the two
states. One consequence is the existence of side bands
in the resonance fluorescence spectrum [79.44]. In the
quantum case, the field itself is treated as a quantized
dynamical variable determined from a self-consistent
solution for the complete system of atom plus field. The
vacuum Rabi frequency Ωvac = gµ remains finite, and
accounts for the spontaneous emission of radiation from
an excited atom placed in a vacuum. In the limiting case
of a single atom interacting with the quantized field,
the photon number n can only change by ±1, and the
population oscillates with the frequency Ω(n) given by
(79.29). For an ensemble of N atoms, n can in principle
change by up to±N . However, if the field and atoms are
only weakly excited, the collective frequency of the en-
semble is determined by the linearized Maxwell–Bloch
equations. The eigenfrequencies are given by

λ± = 1

2

[
i(γ⊥+κ)±

√
4g2
µN − (γ⊥−κ)2

]
,

(79.58)

where γ−1
⊥ is the phase relaxation time of the atom and

κ−1 the decay time of the resonator. This is the polariton
dispersion relation in the neighborhood of the polariton
gap. The spectral transmission

T(ω)= T0

∣∣∣∣
κ[γ + i(ω0−ω)]
(ω−λ+)(ω−λ−)

∣∣∣∣

2

(79.59)

of an optical cavity containing a resonant atomic en-
semble of N atoms reveals the internal dynamics of the
coupled system and a splitting of the resonance line
occurs. T0 is the peak transmission of the empty cav-
ity. The splitting increases either with the number of
photons, approaching

√
n+1 in the presence of a sin-

gle atom, or with the number of atoms, approaching√
N in the resonator when the field is weak. The latter

case is demonstrated in Fig. 79.8 [79.34] for an optical
resonator with 1–10 atoms interacting with a field that
contains, on average, much less than a single photon.

Part
F

7
9
.5



1178 Part F Quantum Optics

79.6 Micromasers

Sustained oscillations of a cavity mode in a microwave
resonator can be achieved by a weak beam of Rydberg
atoms excited to the upper level of a resonant transi-
tion. For a cavity with a Q ≈ 1010, much less than
a single atom at a time, on average, suffices to bal-
ance the cavity losses. Operation of a single atom maser
has been demonstrated [79.8]. The atoms enter the cav-
ity at random times, according to the Poisson statistics
of a thermal beam, and interact with the field only for
a limited time. In order to restrict the fluctuations of the
atomic transit time, the velocity spread is reduced. This
is achieved either by Fizeau chopping techniques, or by
making use of Doppler velocity selection in the initial
laser excitation process. Since most of the time no atom
is present, it is natural to separate the dynamics into two

0.05

0

0.10

0.05

0

–20 –10 0 10 20

–20 –10 0 10 20

n�

Frequency     (MHz)�

N� = 10.7 atoms

n�

Frequency     (MHz)�

N� = 1.0 atoms

(i)
(ii)

(ii)

(i)

Fig. 79.8 Intracavity photon number (measured from
a transmission experiment, [79.34]) as a function of probe
frequency detuning, and for two values of N , the average
number of atoms in the mode. Thin lines give theoretical fits
to the data, including atomic number and position fluctua-
tions. Curve (ii) in the lower graph is for a single intracavity
atom with optimal coupling gµ

parts [79.45]:

1. For the short time while an atom is present, the
state evolves according to the Jaynes–Cummings
dynamics, where H is defined in (79.33),

ρ̇(t)= i[H, ρ]/� , (79.60)

and damping can safely be neglected. The formal
solution is abbreviated by ρ(t)= F(t− t0)ρ(t0).

2. During the time interval between successive atoms,
the cavity field relaxes freely toward the thermal
equilibrium according to (79.56) with L0 = 0:

ρ̇(t)= Lρ , (79.61)

with the formal solution ρ(t)= exp[L(t− t0)]ρ(t0).
The time development of the micromaser therefore

consists of an alternating sequence of unitary F(t) and
dissipative e(Lt) evolutions. Atoms enter the cavity one
by one at random times ti . Until the next atom enters at
time ti+1, the evolution ti is given by

ρ(ti+1)= exp(Ltp)F(τ)ρ(ti) , (79.62)

where tp = ti+1− ti − τ , and τ is the transit time.
If τ & ti+1− ti on average, then tp ≈ ti+1− ti . Af-
ter averaging (79.62) over the Poisson distribution
P(t)= R exp(−Rtp) for tp, where R is the injection
rate, the mean propagator from atom to atom is

〈ρ(ti+1)〉 = R

R− L
F(τ)〈ρ(ti)〉 . (79.63)

After excitation, the reduced density matrix of the
field alone becomes diagonal after several relaxation
times κ−1:

〈n|Tratom(ρ)|m〉 = Pnδn,m . (79.64)

Due to the continuous injection of atoms, the field
never becomes time independent, but may relax toward
a stroboscopic state defined by

〈ρ(ti+1)〉 = 〈ρ(ti)〉 . (79.65)

The state of the cavity field can be determined in closed
form by iteration:

Pn = N
n∏

k=1

nthκ+ Ak

(nth+1)κ
, (79.66)

where N guarantees normalization of the trace and
Ak = (R/n) sin2(gµτ

√
n), and exact resonance between
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cavity mode and atom is assumed. Since all off-diagonal
elements vanish in steady state, (79.66) provides a com-
plete description for the photon statistics of the field.

79.6.1 Maser Threshold

The steady state distribution determines the mean photon
number of the resonator as a function of the operating
conditions:

〈n〉 =
∞∑

n=0

n Pn . (79.67)

A suitable dimensionless control parameter is

Θ = 1

2
gµτ

√
R/κ . (79.68)

For Θ& 1, the energy input is insufficient to coun-
terbalance the loss of the cavity, effectively resulting
in a negligible photon number. With increasing pump
rate R, a threshold is reached at Θ ) 1, where 〈n〉 in-
creases rapidly with R. In contrast to the behavior of
the usual laser, the single atom maser displays multi-
ple thresholds with a sequence of minima and maxima
of 〈n〉 as a function of Θ [79.46]. This can be related
to the rotation of the atomic Bloch vector. When the
atom undergoes a rotation of about π during the transit
time τ , a maximum of energy is transferred to the cavity
and 〈n〉 is maximized. The converse applies if the aver-
age rotation is a multiple of 2π. This behavior is shown
in Fig. 79.9. The minima in 〈n〉 are at Θ ) 2nπ.

79.6.2 Nonclassical Features of the Field

Fluctuations can be of classical or of quantum origin.
The variance of the photon number

σ2 = (〈n2〉−〈n〉2) (79.69)

is a measure of the randomness of the field intensity.
Classical Poisson statistics require thatσ2 ≥ 〈n〉. A value
below unity indicates quantum behavior, which has no
classical analog. In Fig. 79.10, the variance is plotted
as a function of Θ. Regions of enhanced fluctuations
σ2 > 〈n〉 alternate with regions with sub-Poissonian
character σ2 < 〈n〉 [79.47]. When 〈n〉 approaches a lo-
cal maximum it is accompanied by large fluctuations,
while at points of minimum field strength the fluctua-
tions are reduced below the classical limit. This feature
is repeated with a period of Θ ) 2π, but finally washes
out at large values of Θ.

The large variance of n is caused by a splitting of
the photon distribution Pn into two peaks, which gives
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Fig. 79.9 Average photon number as a function of the
normalized transit time defined by (79.68)
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Fig. 79.10 Variance normalized on the average photon
number σ2<n>/〈σ〉. Values below unity indicate regions
of nonclassical behavior

rise to bistability in the transient response [79.48]. The
sub-Poissonian behavior of the field is reflected in an
increased regularity of the atoms leaving the cavity in
the ground state.

79.6.3 Trapping States

If cavity losses are neglected, operating conditions exist
which lead directly to nonclassical, i. e., Fock states. If
the cavity contains precisely nq photons, an atom that
enters the resonator in the excited state leaves it again in
the same state provided the condition [79.49]

gµτ
√

nq +1 = 2qπ (79.70)
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is satisfied, i. e., the Bloch vector of the atom under-
goes q complete rotations. If the maser happens to reach
such a trapping state |nq〉, the photon number nq can no
longer increase irrespective of the flux of pump atoms.
With the inclusion of cavity damping at zero tempera-
ture, nq still represents an upper barrier that cannot be
overcome, since damping only causes downward tran-
sitions. Even in the presence of dissipation, generalized
trapping states exist with a photon distribution that van-
ishes for n > nq and has a tail towards smaller photon
numbers n ≤ nq . However, thermal fluctuations at fi-
nite temperatures destabilize the trapping states since
they can momentarily increase the photon number and
allow the distribution to jump over the barrier n = nq .
Nevertheless, even for nth < 10−7, remnants of the trap-
ping behavior persist, and can be seen in the transient
response of the micromaser (Sect. 79.6.4).

79.6.4 Atom Counting Statistics

Direct measurements of the field in a single atom maser
resonator are not possible because detector absorption
would drastically degrade its quality. However, the field
can be deduced from the statistical signature of the atoms
leaving the resonator.

The probability P(n) of finding n atoms in a beam
during an observation interval t is given by the classical
Poisson distribution

P(n)= (Rt)n e−Rt/n! . (79.71)

Information on the field inside is then revealed by the
conditional probability W(n, |g〉,m, |e〉, T ) of finding
n atoms in the ground state and m atoms in the excited
state during a time t. Since there are only two states, it
is sufficient to determine the probability

W(n, |g〉, t)=
∞∑

m=0

W(n, |g〉,m, |e〉, t) (79.72)

for being in the ground state [79.50]. For n = 0, the
probability of observing no atom in the ground state
during the period t is

W(0, |g〉, t)= Tr(ρstst) exp{L+ R[O|g〉
+(1−η)O|e〉 −1]t} , (79.73)

where O| j〉 = 〈 j|F(τ)| j〉 (79.60) and ρstst is the steady
state of the maser field. This probability is closely re-
lated to the waiting time statistic P2(0, |g〉, t) between
two successive ground state atoms, a property which
is easily determined in a start-stop experiment. For an
atom detector with finite quantum efficiency η for state
selective detection, the waiting time probability is

P2(0, |g〉, t)
= {

Tr(ρstst)O|g〉
× exp[L+ R[O|g〉 + (1−η)O|e〉 −1]T ]O|g〉

}

/[
Tr(ρstst)O|g〉

]2
(79.74)

How a specific field state is reflected in the atom
counting statistics will be illustrated for two situations:
the region of sub-Poisson statistics and the region where
the trapping condition is satisfied. Increased regularity
of the cavity field QM ≤ 0 manifests itself in increased
regularity of ground state atoms in the beam. The statisti-
cal behavior exhibits “anti-bunching”, i. e., P2(0, |g〉, t)
has a maximum at finite t, indicating “repulsion” be-
tween successive atoms in comparison with a Poissonian
beam. If the transit time τ is chosen in such a way that
gτ ) 2π, the chance of observing an initially excited
atom in the ground state is negligible. At some point,
however, an unlikely thermal fluctuation occurs, adding
a photon. The rotation angle of the Bloch vector sud-
denly increases to 2π

√
2 ) 3π, and the atoms tend to

leave the cavity in the ground state. After a typical cav-
ity lifetime, the field decays and the trapping condition
is restored again. Under this operation condition, the
statistics of ground state atoms is governed by two time
constants:

1. a short interval, in which successive atoms leave the
cavity in the ground state after a thermal fluctuation;

2. a long time interval, in which the trapping condition
is maintained and all atoms leave the resonator in
their excited state until the next fluctuation occurs.

The probability P2(0, |g〉, t) is plotted in Fig. 79.11.
The plot clearly shows the two time regimes that govern
the imperfect trapping situation.

79.7 Quantum Theory of Measurement

When the object of interest consists of only a few atoms
and a few photons, the puzzling consequences of quan-
tum mechanical measurement become visible. In the
case of the micromaser, the information on the state of

the field is imprinted in a subtle way on the atomic beam.
While photon counting is normally a destructive opera-
tion, the dispersive part of the photon-atom interaction
may be used to determine the photon number inside
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a resonator without altering it, on average. Dispersive
effects shift the phase of an oscillating atomic dipole
without changing its state.

The phase shift due to the field in the resonator
can be measured in a Ramsey-type experiment [79.51].
Consider an atom with two transitions |g〉 → |e〉 and
|e〉→ |i〉. The first is far from resonance with the cavity
and the second is close to resonance, but with a detuning
δie = ω−ωie large enough so as not to change the cavity
photon number as the atom passes through. The dynamic
Stark effect of the |g〉→ |e〉 transition frequency due to
state |i〉 is then

∆ωeg =
[
gie
√

n+1
]2
/δie . (79.75)

If the resonator is now placed between the two Ram-
sey cavities, which are tuned to ωR ≈ ωeg, such that
the polarization of the |e〉→ |g〉 transition is rotated by
≈ π/2, then the additional phase shift ∆ωegτ , where
τ is the transit time through the optical resonator,
can be measured, and hence the photon number n.
Since Rydberg states have a large coupling con-
stant gµ, the phase shift due to a single atom is
detectable [79.51].

A complete measurement of n requires a sequence
of N atoms because a single Ramsey measurement only
determines whether the atom is in state |e〉 or |g〉, and
hence ∆ωegτ to within ±π/2. Since each measurement
provides one binary bit of information, a sequence of
N measurements can in principle distinguish 2N pos-
sible Fock states for the photon field. However, with
a monoenergetic beam, integral multiples of 2π remain
undetermined. A distribution of velocities, and hence
transit times, is therefore desirable. An entropy reduction
strategy for selecting an optimal velocity distribution,
based on the outcome of previous measurements, is
described in [79.52].

As a consequence of the uncertainty principle,
a measurement of the photon number destroys all in-
formation about the phase of the field. In the present
case, the noise in the conjugate variable (the phase)
is prevented from coupling back on the measured one,
and hence the measurement is called a quantum non-
demolition experiment. Many other aspects of phase
diffusion, entangled states, and quantum measurements
in the micromaser are discussed in [79.53].

79.8 Applications of Cavity QED

79.8.1 Detecting and Trapping Atoms
through Strong Coupling

From Fig. 79.8 it is obvious that an atom travelling
through the cavity will modify the transmission prop-
erties of this cavity. Strong coupling thus enables the
experimenter to detect the presence of a single atom
dispersively by monitoring cavity transmission or reflec-
tion. Laser cooled atoms have low velocities and spend
sufficient time in the cavity even in free flight to gen-
erate the transmission signal shown in Fig. 79.12. The
signals correspond to individual atom transits, and the
shape depends on the detuning of the probe laser from
the resonantly interacting cavity-atom system.

If an atom absorbs a photon inside the cavity, a strong
dipole force can be exerted due to the inhomogeneous

field distribution of the cavity mode. Trapping of atoms
with a single photon was achieved [79.54], and from the
time variation of the cavity transmission a reconstruction
of atomic trajectories became possible.

79.8.2 Generation of Entanglement

In the middle of the 1990s, it was realized that fully
controlled quantum systems could be used to imple-
ment a revolutionary type of information processing now
called quantum computing [79.55]. From the beginning,
cavity QED has conceptually played an important role
for experimental realizations, since it offers a route to
manipulate, in principle, all physical parameters of a co-
herently interacting system. With the well established
microwave-cavity–Rydberg-atom system, it was proven
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that the generation of correlated and nonlocal, so-called
‘entangled’ quantum states, is possible [79.56].

The first ‘application’ of cavity QED was the transfer
of the strong coupling idea to the combined internal and
motional quantum states of trapped ions [79.58]. Here
the harmonic oscillation of the ion replaces the electric
field of the conventional cavity-QED system. This quan-
tum gate was realized with a system of two trapped ions
coupled to each other by Coulomb forces [79.59].

Ideas about how to use the strong coupling of atoms
and photons [79.60–62] for the generation of atom–
photon, or atom–atom (by insertion of more than one
atom) entanglement abound, but entanglement genera-
tion by means of cavity-QED with a controlled source
of atoms or ions remains a challenge for the future.

79.8.3 Single Photon Sources

Coherent laser fields are considered the ultimate source
of classical radiation fields, and they are characterized
by the random arrival time of photons. Nonclassical
light sources with, for instance, a regularized stream
of photons offer interesting properties for low-noise
measurement applications.

Cavity-QED systems offer an attractive light-matter
process for the generation of such ‘photon-bit-streams’,
or single photon sources [79.63]. In such devices, a sin-
gle photon state can, for instance, be created by Raman
processes involving a classical field, which serves as
the control parameter for the process, and the vacuum
field of the optical resonator. The Raman process leaves
a single photon in the cavity, which only weakly interacts
with the atom. If the resonator has suitable transmission
properties, this photon will then escape with prede-
termined frequency, shape, and propagation direction.
Deterministic single photon sources have been realized
with quantum dots [79.64,65], single molecules [79.66],
and also with slow [79.67] or trapped [79.68] cold atoms
and ions [79.69] inside optical cavities.
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Quantum Opt80. Quantum Optical Tests of the Foundations
of Physics

Quantum mechanics began with the solution of
the problem of blackbody radiation by Planck’s
quantum hypothesis: in the interaction of light
with matter, energy can only be exchanged
between the light in a cavity and the atoms in the
walls of the cavity by the discrete amount E = hν,
where h is Planck’s constant and ν is the frequency
of the light. Einstein, in his treatment of the
photoelectric effect, reinterpreted this equation
to mean that a beam of light consists of particles
(“light quanta”) with energy hν. The Compton
effect supported this particle viewpoint of light by
demonstrating that photons carried momentum,
as well as energy. In this way, the wave–particle
duality of quanta made its first appearance in
connection with the properties of light.

It might seem that the introduction of the
concept of the photon as a particle would
necessarily also introduce the concept of locality
into the quantum world. However, in view of
observed violations of Bell’s inequalities, exactly
the opposite seems to be true. Here we review
some recent results in quantum optics which
elucidate nonlocality and other fundamental
issues in physics.

In spite of the successes of quantum electro-
dynamics, and of the standard model in particle
physics, there is still considerable resistance to
the concept of the photon as a particle. Many pa-
pers have been written trying to explain all optical
phenomena semiclassically, i. e., with the light
viewed as a classical wave, and the atoms treated
quantum mechanically [80.1–4]. We first present
some quantum optics phenomena which exclude
this semiclassical viewpoint.

80.1 The Photon Hypothesis ........................ 1186

80.2 Quantum Properties of Light................. 1186
80.2.1 Vacuum Fluctuations:

Cavity QED ................................ 1186
80.2.2 The Down-Conversion

Two-Photon Light Source ........... 1187
80.2.3 Squeezed States of Light ............ 1187

80.3 Nonclassical Interference ..................... 1188
80.3.1 Single-Photon

and Matter–Wave Interference ... 1188
80.3.2 “Nonlocal” Interference Effects

and Energy–Time Uncertainty ..... 1189
80.3.3 Two-Photon Interference ........... 1190

80.4 Complementarity and Coherence........... 1191
80.4.1 Wave–Particle Duality ................ 1191
80.4.2 Quantum Eraser ........................ 1191
80.4.3 Vacuum-Induced Coherence ....... 1192
80.4.4 Suppression of Spontaneous

Down-Conversion ..................... 1192

80.5 Measurements in Quantum Mechanics ... 1193
80.5.1 Quantum (Anti-)Zeno Effect ........ 1193
80.5.2 Quantum Nondemolition ........... 1193
80.5.3 Quantum Interrogation .............. 1194
80.5.4 Weak and “Protected”

Measurements .......................... 1195

80.6 The EPR Paradox and Bell’s Inequalities 1195
80.6.1 Generalities .............................. 1195
80.6.2 Polarization-Based Tests ............ 1196
80.6.3 Nonpolarization Tests ................ 1196
80.6.4 Bell Inequality Loopholes ........... 1198
80.6.5 Nonlocality Without Inequalities . 1199

80.7 Quantum Information .......................... 1200
80.7.1 Information Content

of a Quantum: (No) Cloning ........ 1200
80.7.2 Super-Dense Coding .................. 1200
80.7.3 Teleportation ............................ 1200
80.7.4 Quantum Cryptography .............. 1201
80.7.5 Issues in Causality ..................... 1202

80.8 The Single-Photon Tunneling Time ....... 1202
80.8.1 An Application of EPR Correlations

to Time Measurements ............... 1202
80.8.2 Superluminal Tunneling Times .... 1203
80.8.3 Tunneling Delay

in a Multilayer Dielectric Mirror ... 1203
80.8.4 Interpretation

of the Tunneling Time ................ 1204
80.8.5 Other Fast

and Slow Light Schemes ............. 1205

80.9 Gravity and Quantum Optics ................. 1206

References .................................................. 1207

Part
F

8
0



1186 Part F Quantum Optics

80.1 The Photon Hypothesis

In an early experiment, Taylor reduced the intensity of
a thermal light source in Young’s two-slit experiment,
until, on the average, there was only a single photon
passing through the two slits at a time. He then ob-
served a two-slit interference pattern which was identical
to that for a more intense classical beam of light. In
Dirac’s words, the apparent conclusion is that “each
photon then interferes only with itself” [80.6]. How-
ever, a coherent state, no matter how strongly attenuated,
always remains a coherent state (Sect. 78.2.2); since
a thermal light source can be modeled as a statistical
ensemble of coherent states, a stochastic classical wave
model yields complete agreement with Taylor’s observa-
tions. The one-by-one darkening of grains of film can be
explained by treating the matter alone quantum mechan-
ically [80.2]; consequently, the concept of the photon
need not be invoked, and the claim that this experi-
ment demonstrates quantum interference of individual
photons is unwarranted [80.7].

This weakness in Taylor’s experiment can be re-
moved by the use of nonclassical light sources; as
discussed by Glauber [80.8], classical predictions di-
verge from quantum ones only when one considers
counting statistics, or photon correlations. In particular,
two-photon light sources, combined with coincidence
detection, allow the production of single-photon (n = 1
Fock) states with near certainty. In the first such experi-
ment [80.9], two photons, produced in an atomic cascade
within nanoseconds of each other, impinged on two
beam splitters, and were then detected in coincidence by
means of four photomultipliers placed at all possible exit
ports. In a simplified version of this experiment [80.5],
one of the beam splitters and its two detectors are re-
placed with a single detector D1 (Fig. 80.1). We define

1 3

2

Fig. 80.1 Triple-coincidence setup of Grangier et al. [80.5]

the anticorrelation parameter

α≡ N123 N1/N12 N13 , (80.1)

where N123 is the rate of triple-coincidences between
detectors D1, D2 and D3; N1 is the singles rate
at D1; and N12 and N13 are double-coincidence
rates. Then from Schwarz’s inequality [80.5, 7, 10],
α ≥ 1 for any classical wave. In essence, since the
wave divides smoothly, the coincidence rate between
D2 and D3 is never smaller than the “accidental” coin-
cidence rate, even when measurements are conditioned
on an event at D1. (The Hanbury–Brown and Twiss
experiment [80.11] can be explained classically, be-
cause the thermal fluctuations lead to “bunching,” or
a mean coincidence rate which is greater than the
mean accidental rate; Sect. 78.3.3.) By contrast, the
indivisibility of the photon leads to strong anticorre-
lations between D2 and D3, making α arbitrarily small.
In agreement with this quantum mechanical picture,
Grangier et al. observed a 13-standard-deviation vio-
lation of the inequality [80.5], corroborating the notion
of the “collapse of the wave packet” as proposed by
Heisenberg [80.12].

80.2 Quantum Properties of Light

80.2.1 Vacuum Fluctuations: Cavity QED

The above considerations necessitate the quantization
of the electromagnetic field, which in turn leads to
the concept of vacuum fluctuations [80.4] (Sect. 78.1).
Difficulties with this idea, such as the implied infi-
nite zero-point energy of the universe, have led some
reseachers to attempt to dispense with this concept
altogether, along with that of the photon, in every ex-
planation of electromagnetic interactions with matter. Of
course, it is impossible to explain all phenomena, such as

spontaneous emission and the Lamb shift, without some
kind of fluctuating electromagnetic fields (Chapt. 78
and Sect. 79.2.4), but one can go a long way with an
ad hoc ambient classical electromagnetic noise-field
filling all of space, in conjunction with the radiation
reaction [80.1, 4].

In particular, even the Casimir attraction be-
tween two conducting plates (Sect. 79.2.4), which has
now been verified with high precision [80.13–19]
can be explained semiclassically in terms of dipole
forces between electrons in each plate as they un-
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Quantum Optical Tests of the Foundations of Physics 80.2 Quantum Properties of Light 1187

dergo zero-point motion that induce image charges
in the other plate. Nevertheless, the effects of cavity
QED (Chapt. 79) [80.20–22], including the influence
of cavity-induced boundary conditions on energy
levels and spontaneous emission rates, are most eas-
ily unified via quantization of the electromagnetic
field.

By coupling highly excited Rydberg atoms to
photons in a high-finesse superconducting microwave
cavity, Haroche et al. have observed single-photon
driven Rabi oscillations [80.23], and have used these
to study decoherence effects [80.24], atom–photon en-
tanglement [80.25], and quantum nondemolition meas-
urements [80.26] (Sect. 80.5.2). Kimble et al. [80.27]
and Rempe et al. [80.28] have performed similar ex-
periments, coupling atoms to small optical cavities, and
even trapping the atoms with light fields at the single-
photon level [80.29,30]. By monitoring the amplitude of
the light transmitted through the cavity (which depends
on the precise location of the atom inside the cavity
volume), the trajectory of the atom can be determined
with ultrahigh resolution, much smaller than an optical
wavelength [80.31, 32].

80.2.2 The Down-Conversion
Two-Photon Light Source

The quantum aspects of electromagnetism are made
more striking with a two-photon light source, in which
two highly correlated photons are produced in spon-
taneous parametric down-conversion, or parametric
fluorescence [80.33–36]. In this process, an ultravio-
let “pump” photon produced in a laser spontaneously
decays inside a crystal with a χ(2) nonlinearity into
two highly correlated red photons, conventionally called
the “signal” and the “idler” (Sect. 72.3.4). (The quan-
tum state of the light is more correctly written as
|ψ〉 ∝ |vacuum〉+ε|1〉s|1〉i +ε2|2〉s|2〉i + . . . , but since
the amplitude of the down-conversion process itself is
very weak

(
ε is of order 10−6

)
, one often neglects

the terms containing 2 or more pairs. However, recent
experiments have begun to exploit these higher-order
terms, e.g., to investigate 3-, 4-, 5-photon quantum
effects [80.37–40]. Very recently, a stimulated down-
conversion process [80.41] has indicated the presence of
12-photon entanglement [80.42].) As shown in Fig. 80.2,
a rainbow of colored cones is produced around an axis
defined by the direction of the uv beam (for the case
of type-I phase-matching), with the correlated down-
conversion photons always emitted on opposite sides
of the UV beam (Sect. 72.2.2). Their emission times

UV
pump

KDP crystal

Deep red Red

Orange

Fig. 80.2 Conical emissions of down-conversion from
a nonlinear crystal (for type-I phase-matching). Photon en-
ergy depends on the cone opening angle, and conjugate
photons lie on opposite sides of the axis, e.g., the inner
“circle” orange photon is conjugate to the outer “circle”
deep-red photon, etc.

are within femtoseconds of each other, so that detec-
tion of one photon implies with near certainty that
there is exactly one quantum present in the conjugate
mode [80.43]. In type-I phase-matching the correlated
photons share the same polarization, while in type-II
phase-matching they have orthogonal polarizations . We
will see below (Sect. 80.6.2) how both of these can en-
able the production of photons that are entangled in
polarization, as well as in other degrees of freedom.

This production technique allowed for the first re-
construction of the Wigner distribution for a single
photon [80.44], which is manifestly non-classical in that
the quasiprobability for both quadratures of the field
to vanish is negative. In contrast to an earlier demon-
stration of a negative Wigner function [80.45] (using
atoms, not photons), this measurement was possible us-
ing essentially classical measurement techniques with
no quantum assumptions, and is in this sense a direct
demonstration of the non-classical nature of the electro-
magnetic field. Later work [80.46] used these techniques
to demonstrate that a single photon forced to choose
between two output ports of a beam splitter exhibits
quantum correlations.

80.2.3 Squeezed States of Light

The creation of correlated photon pairs is closely
related to the process of quadrature-squeezed light
production (Sect. 78.2.2, and the review in [80.47]).
For example, when the gain arising from parametric
amplification in a down-conversion crystal becomes
large, there is a transition from spontaneous to stim-
ulated emission of pairs. This gain is dependent on
the phase of amplified light relative to the phase of
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the pump light. As a result, the vacuum fluctuations
are reduced (“squeezed”) below the standard quan-
tum limit (SQL) in one quadrature, but increased in
the other, in such a way as to preserve the minimum
uncertainty-principle product [80.48]. This periodicity
of the fluctuations at 2ω is a direct consequence of the
fact that the light is a superposition of states differing
in energy by 2�ω – the quadrature-squeezed vacuum
state

|ξ〉 = exp

(
1

2
ξ∗aa− 1

2
ξa†a†

)
|0〉 (80.2)

represents a vacuum state transformed by the creation
(a†a†) and destruction (aa) of photons two at a time. Es-
sentially any optical processes operating on photon pairs
(e.g., four-wave mixing [80.49, 50]) can also produce
such squeezing.

Amplitude squeezing involves preparation of states
with well-defined photon number, i. e., states lacking the
Poisson fluctuations of the coherent state. The possibility
of producing such states (e.g., via a constant-current-
driven semiconductor laser [80.51]) demonstrates that
“shot noise” in photodetectionshould not be thought of
as merely the result of the probabilistic (à la Fermi’s

Golden Rule, Sect. 69.4) excitation of quantum mech-
anical atoms in a classical field, but as representing
real properties of the electromagnetic field, accessible
to experimental control.

The highest level of number-squeezing reported
(−5.7±0.1) dB, corresponding to a noise reduc-
tion 73% below the SQL) employed an asymmetric
fiber loop to squeeze solitons [80.52]. The high-
est level of quadrature-squeezing reported has been
(−7.0±0.2) dB (80% below the SQL), using a χ(2)-
crystal optical parametric oscillator [80.53]. This was
a continuous-wave vacuum-squeezed beam – the same
technique was used to produce −5.0 dB of bright
continuous-wave squeezing locked for several hours.

Squeezed light has begun to have impact in
metrology. A few examples suffice: the generation of
audio-band squeezed light [80.54] and the demonstra-
tion of a squeezing-enhanced power-recycled Michelson
interferometer [80.55], both suitable for gravity-wave
interferometry (Sect. 80.9); the use of squeezing to
measure displacement of a light beam below the
standard quantum limit [80.56], suitable for atomic
force microscopy; and demonstrations of squeezed light
spectroscopy [80.57–59].

80.3 Nonclassical Interference

80.3.1 Single-Photon
and Matter–Wave Interference

The first truly one-photon interference experiment [80.5]
used the cascade source discussed in Sect. 80.1. One of
the photons was directed to a “trigger” detector, while
the other, thus prepared in an n = 1 Fock state, was
sent through a Mach–Zehnder interferometer. The out-
put photon, detected in coincidence with the trigger
photon, showed fringes with a visibility> 98%. Dirac’s
statement that a single photon interferes with itself is
thus verified.

Of course, matter can also display interference,
determined by the deBroglie wavelength (Chapt. 77).
There have been significant recent advances in atomic
matter–wave interferometry and its applications [80.60],
ever since the early experiments of Pritchard, which used
standing-light gratings and nanofabricated diffraction
gratings to construct Mach–Zehnder-type interferom-
eters for sodium atoms [80.61] and molecules [80.62]
from a supersonic source. Chu and Kasevich introduced
the use of STIRAP (Stimulated Raman Adiabatic fast

Passage; Sect. 69.7) to produce coherent beam splitters
for cold atomic beams, also in a Mach–Zehnder-type
interferometer, but whose source were cesium atoms
cooled in and launched from a magneto-optical trap
(MOT) [80.63]. Matter–wave interferometry has now
been applied to precision measurements of the ac-
celeration g due to Earth’s gravity [80.64], gravity
gradiometry [80.65], and Sagnac matter–wave gyro-
scopes [80.66, 67].

To date some of the largest systems to display quan-
tum interference are large molecules like carbon 60
(“Buckyballs”) and carbon 70 [80.68]. These are sig-
nificant in that the average deBroglie wavelength of
the molecules, emitted from an oven, was 2.8 pm, ac-
tually about 350 times smaller than the molecule itself.
Arndt et al. have also demonstrated multislit diffraction
with the biological molecule porphyrin, and with fluoro-
fullerenes (C60F48) [80.69]. With a mass of 1632 amu,
the latter are currently the largest single objects to dis-
play interference. Looking ahead, others have suggested
that it may be possible to put a micron-scale mirror

(
with

≈ 1014 atoms
)

into a superposition of resolvable spatial
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locations [80.70] – the mirror, part of a high-finesse
optical cavity forming one arm of a Michelson interfer-
ometer, could be mounted on a high-quality mechanical
oscillator, whereby the interaction with a single photon
would change the frequency of the oscillator.

Two other systems, demonstrating Bose–Einstein
condensation (BEC) (see Chapt. 76), have also pro-
duced evidence of macroscopic quantum coherence.
In the experiments of Ketterle et al., atoms from
two different atomic vapor BEC clouds were al-
lowed to fall onto the same detection region, and
display interference fringes [80.71] (more recently in-
terference from an array of 30 independent BECs
has been observed [80.72]). In some ways this is
the matter–wave equivalent of the famous Pfleegor–
Mandel experiment [80.73], in which light from two
separate lasers displays interference, even when at-
tenuated to the single-photon level. The explanation
in terms of the indistinguishability of the underly-
ing processes is that one cannot ascertain from which
laser source a given photon originated. However, this
explanation must be applied carefully to the situa-
tion of the two atomic BECs: Unlike the lasers, the
BEC clouds can – at least in principle – be prepared
with a definite number of atoms, and it would there-
fore seem that one could in principle determine which
cloud emitted a given detected atom. However, this
determinacy is rapidly lost after a few atoms are de-
tected [80.74]. Once the number becomes uncertain,
a well-defined relative phase of the two BECs is es-
tablished, according to the number-phase uncertainty
relation ∆(N2− N1)∆(φ2−φ1)� 1/2. In fact, discus-
sions have recently arisen over whether or not lasers
should not also be viewed as incoherent number-state
combinations, instead of the usual coherent state |α〉
(the issue is that in principle there is nothing in
a laser to break the symmetry and select a particular
phase) [80.75–77].

Finally, quantum coherence (though not explicitly
spatial interference as in the previous examples), has
been detected in the operation of a Josephson-junction
linked superconducting loop – the group of Mooij was
able to prepare a superposition of clockwise and counter-
clockwise circulating electrical currents [80.78]. Since
the ≈ 0.5 µA currents corresponded to the motion of
millions of Cooper pairs, this is arguably the largest
system thus far to have displayed quantum coher-
ence. This superconducting system also holds promise
for quantum computing (see Chapt. 81), as Rabi os-
cillations between the different flux states have been
observed [80.79, 80].

80.3.2 “Nonlocal” Interference Effects
and Energy–Time Uncertainty

The energy–time uncertainty principle, ∆E∆t ≥ �/2
has been tested in a down-conversion interference
experiment [80.81]. The down-conversion process con-
serves energy and momentum:

�ω0 = �ω1+�ω2 , (80.3)

�k0 ≈ �k1+�k2 , (80.4)

where �ω0 (�k0) is the energy (momentum) of the parent
photon, and �ω1 (�k1) and �ω2 (�k2) are the energies
(momenta) of the daughter photons; k1 and k2 sum
to k0 to within an uncertainty given by the recipro-
cal of the crystal length [80.82]. Since there are many
ways of partitioning the parent photon’s energy, each
daughter photon may have a broad spectrum, and hence
a wave packet narrow in time. However, ω1+ω2 = ω0
is extremely well-defined, so that the difference in the
daughter photons’ arrival times, and the sum of their
energies can be simultaneously known to high preci-
sion. Thus, the daughter photons of a parent photon
of sharp energy E0 are in an energy-“entangled” state,
a nonfactorizable sum of product states [80.83]:

|Ψ 〉 =
E0∫

0

dE A(E) |E〉 |E0− E〉 , (80.5)

where A(E) is the probability amplitude for the pro-
duction of two photons of energies E and E0− E.
A measurement of the energy of one of the photons
to be E1 can be interpreted as causing an instantaneous
“collapse” of the system to the state |E1〉|E0− E1〉, im-
plying an instantaneous increase of the width of the other
photon’s wave packet. (Of course, the notion of col-
lapse need not be invoked to explain such results. One
can view the detection of the trigger photon as condi-
tionally selecting a particular subensemble of the pairs.
However, as discussed in Sect. 80.6.3, it is not correct
to interpret the down-conversion photons as possessing
a well-defined energy prior to measurement.) In the ex-
periment, one photon was used as a trigger, while the
other was sent into an adjustable Michelson interferom-
eter (Fig. 80.3), used to measure its coherence length.
(The same apparatus was also used to demonstrate that
Berry’s phase in optics has a quantum origin [80.84].)
If the trigger photon passed through an interference fil-
ter F1 of narrow width ∆E and was detected, then the
conjugate photon occupied a broad wavepacket of du-
ration ∆t ≈ �/∆E, and displayed interference. When
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UV
laser KDP

Idler

F1
D1

Signal

Beam dump

F2

D2

F3

D3

Fixed QWP

Rotatable QWP

Fig. 80.3 The energy–time uncertainty relation and wave
function collapse were studied by investigating the effect
of various filters before the detectors in a single-photon
interference experiment [80.5, 81]

there was no trigger, no fringes were observed, imply-
ing a much shorter wave packet. This is a nonlocal effect
in that the photons could in principle be arbitrarily far
away from each other when the collapse occurs.

80.3.3 Two-Photon Interference

In the above experiments, interference occurs between
two paths taken by a single photon. An early experi-
ment to demonstrate two-photon interference using the
down-conversion light source was performed by Ghosh
and Mandel [80.85]. They looked at the counting rate
of a detector illuminated by both of the twin beams.
No interference was observed at the detector, because
although the sum of the phases of the two beams emit-
ted in parametric fluorescence is well defined (by the
phase of the pump), their difference is not, due to the
number-phase uncertainty principle. However, the rate
of coincidence detections between two such detectors
whose separation was varied did display high-visibility
interference fringes. Whereas in the standard two-slit
experiment, interference occurs between the two paths
a single photon could have taken to reach a given point
on a screen, in this case it occurs between the possibility
that the signal photon reached detector 1 and the idler
photon detector 2, and the possibility that the reverse
happened. This experiment provides a manifestation of
quantum nonlocality; interference occurs between al-
ternate global histories of a system, not between local

fields. At a null of the coincidence fringes, the detection
of one photon at detector 1 excludes the possibility of
finding the conjugate photon at detector 2.

Such interference becomes clearer in the related
interferometer of Hong et al. [80.86] (Fig. 80.4). The
identically polarized conjugate photons from a down-
conversion crystal are directed to opposite sides of
a 50–50 beam splitter, such that the transmitted and
reflected modes overlap. If the difference in the path
lengths ∆L prior to the beam splitter is larger than
the two-photon correlation length (of the order of the
coherence length of the down-converted light), the pho-
tons behave independently at the beam splitter, and
coincidence counts between detectors in the two out-
put ports are observed half of the time – the other
half of the time both photons travel to the same de-
tector. However, when ∆L ≈ 0, such that the photon
wave packets overlap at the beam splitter, the probabil-
ity of coincidences is reduced, in principle to zero if
∆L = 0. One can explain the coincidence null at zero
path-length difference using the Feynman rules for cal-
culating probabilities: add the probability amplitudes of
indistinguishable processes which lead to the same fi-
nal outcome, and then take the absolute square. The two
indistinguishable processes here are both photons being
reflected at the beam splitter (with Feynman amplitude
r · r) and both photons being transmitted (with Feyn-
man amplitude t · t). The probability of a coincidence
detection is then

Pc = |r · r+ t · t|2 =
∣∣∣∣

i√
2
· i√

2
+ 1√

2
· 1√

2

∣∣∣∣
2

= 0 ,

(80.6)

assuming a real transmission amplitude, and where the
factors of i come from the phase shift upon reflection at
a beam splitter [80.87, 88].

The possibility of a perfect null at the center
of the dip is indicative of a nonclassical effect. In-
deed, classical field predictions allow a maximum
coincidence-fringe visibility of only 50% [80.89].
The tendency of the photons to travel off together
at the beam splitter can be thought of as a man-
ifestation of the Bose–Einstein statistics for the
photons [80.90]. In practice, the bandwidth of the pho-
tons, and hence the width of the null, is determined
by filters and/or irises before the detectors [80.82].
Widths as small as 5 µm have been observed, cor-
responding to time delays of only 15 fs [80.91].
Consequently, one application is the determination of
single-photon propagation times with extremely high
time resolution (Sect. 80.8).
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80.4 Complementarity and Coherence

80.4.1 Wave–Particle Duality

The complementary nature of wave-like and particle-
like behavior is frequently interpreted as follows: due
to the uncertainty principle, any attempt to measure the
position (particle aspect) of a quantum leads to an un-
controllable, irreversible disturbance in its momentum,
thereby washing out any interference pattern (wave as-
pect) [80.93, 94]. This picture is incomplete though; no
“state reduction,” or “collapse,” is necessary to destroy
interference, and measurements which do not involve
reduction can be reversible. One must view the loss
of coherence as arising from an entanglement of the
system wave function with that of the measuring ap-
paratus (MA) [80.95]. Previously interfering paths can
thereby become distinguishable, such that no interfer-
ence is observed. Consider the simplest experiment,
a Mach–Zehnder interferometer with a 90◦ polariza-
tion rotator in arm 1. If horizontally polarized light is
input, the state before the recombining beam splitter is(|1〉|V 〉+ |2〉|H〉)/√2

)
, where |1〉 and |2〉 indicate the

path of the photon. Because the polarization – playing
the role of the MA – labels the path, no interference is
observed at the output. Englert [80.96] has introduced
a generalized relation quantifying the interplay between
the wave-like attributes of a system (as measured by the
fringe visibility V) and the particle-like character (as
measured by the distinguishability D of the underlying
quantum processes):

V 2+D2 ≤ 1 . (80.7)

The equality holds for pure input states. This rela-
tion has now been well verified in optical systems
like that described above [80.97, 98], as well as in
atom interferometry (Sect. 77.6) [80.99]. In the latter,
the role of the polarization was played by internal en-
ergy states of an atom diffracted off a standing light
wave.

80.4.2 Quantum Eraser

The interference lost to entanglement may be re-
gained if one manages to “erase” the distinguishing
information. This is the physical content of quantum
erasure [80.100, 101]. The primary lesson is that one
must consider the total physical state, including any
MA with which the interfering quantum has become
entangled, even if that MA does not allow access-
ible which-path information [80.102]. If the coherence

of the MA is maintained, then interference may be
recovered.

The first demonstration of a quantum eraser was
based on the interferometer in Fig. 80.4 [80.92]. A half
waveplate inserted into one of the paths before the
beam splitter serves to rotate the polarization of light
in that path. In the extreme case, the polarization is
made orthogonal to that in the other arm, and the r·r
and t·t processes become distinguishable; hence, the de-
structive interference which led to a coincidence null
does not occur. The distinguishability can be erased,
however, by using polarizers just before the detectors.
In particular, if the initial polarization of the pho-
tons is horizontal, and the waveplate rotates one of
the photon polarizations to vertical, then polarizers at
45◦ before both detectors restore the original interfer-
ence dip. If one polarizer is at 45◦ and the other at
−45◦, interference is once again seen, but now in the
form of a peak instead of a dip (Fig. 80.5). There are
four basic measurements possible on the MA (here the
polarization) – two of which yield which-path infor-
mation, one of which recovers the initial interference
fringes (here the coincidence dip), and one of which
yields interference anti-fringes (the peak instead of the
dip). In some implementations, the decision to mea-
sure wave-like or particle-like behavior may even be
delayed until after detection of the original quantum,
an irreversible process [80.103–105]. (This is an ex-
tension of the original delayed-choice discussion by

UV

Nonlinear
crystal

A
D1

D2

Fig. 80.4 Simplified setup for a Hong–Ou–Mandel (HOM)
interferometer [80.86]. Coincidences may result from both
photons being reflected, or both being transmitted. When
the path lengths to the beam splitter are equal, these
processes destructively interfere, causing a null in the co-
incidence rate. In a modified scheme, a half waveplate in
one arm of the interferometer (at “A”) serves to distin-
guish these otherwise interfering processes, so that no null
in coincidences is observed. Using polarizers before the
detectors, one can “erase” the distinguishability, thereby
restoring interference [80.92] (Sects. 80.4.2 and 80.6.2)
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Fig. 80.5 Experimental data and scaled theoretical curves (adjusted
to fit observed visibility of 91%) with polarizer 1 at 45◦ and polar-
izer 2 at various angles. Far from the dip, there is no interference
and the angle is irrelevant [80.92]

Wheeler [80.106], and the experiments by Hellmuth
et al. and Alley et al. [80.107,108], in which the decision
to display wave-like or particle-like aspects in a light
beam may be delayed until after the beam has been split
by the appropriate optics.) But in all cases, one must
correlate the results of measurements on the MA with
the detection of the originally interfering system. This
requirement precludes any possibility for superluminal
signaling.

In a related atom-optics experiment, researchers ob-
served contrast loss in an atom interferometer when
single photons were scattered off the atoms (yielding
which-path information) [80.110]. They further demon-
strated that the lost coherence could be recovered by
observing only atoms that were correlated with photons
emitted into a limited angular range, in essence realizing
a quantum eraser.

80.4.3 Vacuum-Induced Coherence

A somewhat different demonstration [80.109, 111] of
complementarity involves two down-conversion crys-
tals, NL1 and NL2, aligned such that the trajectories of
the idler photons from each crystal overlap (Fig. 80.6).
A beam splitter acts to mix the signal modes. If the
path lengths are adjusted correctly, and the idler beams
overlap precisely, there is no way to tell, even in prin-
ciple, from which crystal a photon detected at Ds
originated. Interference appears in the signal singles
rate at Ds, as any of the path lengths is varied. If the

UV

NL1

NL2

s1

s2

i1, i2

BS

A

B

Ds

Di

i1

Fig. 80.6 Schematic of setup used in [80.109]. The idler
photons from the two crystals are indistinguishable; conse-
quently, interference fringes may be observed in the signal
singles rate at detector Ds. Additional elements at A and B
can be used to make a quantum eraser

idler beam from crystal NL1 is prevented from enter-
ing crystal NL2, then the interference vanishes, because
the presence or absence of an idler photon at Di then
“labels” the parent crystal. One explanation for the
effect of blocking this path is that coherence is es-
tablished by the idler-mode vacuum field seen by both
crystals.

Experiments have also been performed in which
a time-dependent gate is introduced in the idler arm
between the two crystals [80.112]. As one expects, the
presence or absence of interference depends on the ear-
lier state of the gate, at the time when the idler photon
amplitude was passing through it.

80.4.4 Suppression
of Spontaneous Down-Conversion

A modification [80.113] of this two-crystal experiment
uses only a single nonlinear crystal (Fig. 80.7). A given
pump photon may down-convert in its initial right-ward
passage through the crystal, or in its left-going return
trip (or not at all, the most likely outcome). As in the
previous experiment, the idler modes from these two
processes are made to overlap; moreover, the signal
modes are also aligned to overlap. Thus, the left-going
and right-going production processes are indistinguish-
able and interfere. The result is that fringes are observed
in all of the counting rates (i. e., the coincidence rate
and both singles rates) as any of the mirrors is trans-
lated. A different interpretation is as a change in the
spontaneous emission of the down-converted photons,
akin to the suppression of spontaneous emission in cav-
ity QED demonstrations, discussed in Sects 80.2.1 and
79.2. Subsequent theoretical and experimental work has
shown that, in a sense, there are always photons be-
tween the down-conversion crystal and the mirrors, even
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in the case of complete suppression of the spontaneous
emission process [80.114, 115]. This same conclusion
should also apply in the atom case [80.116], though
in contrast to that system, for the down-conversion ex-
periment the distances to the mirrors are much longer
than the coherence lengths of the spontaneously emitted
photons.

One recent application of this phenomenon is to
study effective nonlinearities at the single-photon level,
which has enabled the construction of a 2-photon
switch [80.117]. Finally, with the inclusion of wave-
plates to label the photons’ paths, and polarizers to
erase this information, an improved quantum eraser ex-
periment was also completed, in which the which-path
information for one photon was carried by the other
photon [80.104].

Pump

Signal

Idler

LiIO3

Fig. 80.7 Schematic of the experiment to demonstrate
enhancement and suppression of spontaneous down-
conversion [80.113]

80.5 Measurements in Quantum Mechanics

80.5.1 Quantum (Anti-)Zeno Effect

A strong measurement of a quantum system will project
it into one of its eigenstates [80.95]. If the system evolves
slowly out of its initial state: |Ψ(t = 0)〉 = |Ψ0〉 →
(1− t2/τ2)1/2|Ψ0〉 + t/τ |Ψ1〉, then repeated measure-
ments with an interval much less than τ can inhibit this
evolution. If there are N total measurements within τ ,
then the probability for the system to still be in the ini-
tial state is P(τ)= (

1− (τ/N )2/τ2
)

N → 1 as N →∞.
This phenomenon, known as the quantum Zeno ef-
fect [80.118], has been experimentally observed using
3 levels in 9Be+ ions [80.119]. The ions were prepared
in state |i〉, and weakly coupled to state | f 〉 via RF ra-
diation that induced a slow Rabi oscillation between
the two states. Thus, in the absence of any interven-
ing measurements, the ions evolved sinusoidally into
state | f 〉. When rapid measurements were made (by
a laser strongly coupling state | f 〉 to readout state |r〉,
hence leading to strong fluorescence only if the atom was
in state | f 〉), the effect was to inhibit the |i〉→ | f 〉 tran-
sition. Note that here it was the absence of fluorescent
photons which projected the state at each measurement
back into the state |i〉 (Sect. 80.5.3). Also, although we
have explained the effect in terms of a repeated “col-
lapse” of the wave function back into its initial state,
equally valid explanations without such reductions are
also possible [80.120, 121].

Koffman and Kurizki have pointed out that the
above inhibition phenomenon depends on there being
a bounded number of final states (the ion example had

only one). If instead the measurement process actu-
ally increases the number of accessible final states | f 〉,
then one obtains the “anti-Zeno” effect, in which the
|i〉→ | f 〉 rate is enhanced rather than suppressed by fre-
quent measurements [80.122]. For example, this would
be the case in the ion example if the |i〉→ | f 〉 transition
were spontaneous (allowing all frequencies) instead of
driven (proceeding only at the driving Rabi frequency).
The anti-Zeno effect has been observed by monitoring
the survival time (against tunneling escape) of atoms
trapped in an accelerating far-detuned standing wave of
light [80.123].

80.5.2 Quantum Nondemolition

The uncertainty principle between the number of
quanta N and phase φ of a beam of light,

∆N∆φ ≥ 1/2 , (80.8)

implies that to know the number of photons exactly,
one must give up all knowledge of the phase of the
wave. In theory, a quantum nondemolition (QND) pro-
cess is possible [80.124]: without annihilating any of
the light quanta, one can count them. It might seem
that this would make possible successive measurements
on noncommuting observables of a single photon, in
violation of the uncertainty principle; it is the unavoid-
able introduction of phase uncertainty by any number
measurement which prevents this.

QND schemes [80.125] often employ the intensity-
dependent index of refraction arising from the optical
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Kerr effect (Sect. 72.4.2) – the change in the index due
to the intensity of the “signal” beam changes the opti-
cal phase shift on a “probe” beam [80.126–128]. Other
proposals include using the Aharonov–Bohm effect to
sense photons via the phase shift their fields induce in
passing electrons [80.129, 130]. To date the closest ex-
perimental realization [80.26] of a QND measurement
– of the photon number in a microwave cavity – was
performed by passing Rydberg atoms [80.131, 132] in
a superposition of the ground and excited states through
the cavity. The interaction with the cavity photon is ad-
justed to be equivalent to a 2 π-pulse (Sect. 79.5). The
result is that in the absence of any photon, the quantum
state of the atoms after the cavity was unchanged; with
a photon in the cavity, the ground state acquired an extra
relative phase of π, which was then detected by measur-
ing the atom’s quantum state. An efficiency approaching
50% was achieved. Recently, it was suggested that opti-
cal QND measurements could enable scalable quantum
computing [80.133].

80.5.3 Quantum Interrogation

The previous section described techniques to measure
the presence of a photon without absorbing it. Now we
discuss a method – quantum interrogation – to optically
detect the presence of an object without absorbing or
scattering a photon. The possibility that the absence of
a detection event – a “negative-result” measurement –
can lead to wavepacket reduction was first discussed by
Renninger [80.134] and later by Dicke [80.135]. Here we
consider the Gedankenexperiment proposed by Elitzur
and Vaidman (EV), a simple single-particle interferom-
eter, with particles injected one at a time [80.136]. The
path lengths are adjusted so that all the particles leave
a given output port (A), and never the other (B). Now
suppose that a nontransmitting object is inserted into one
of the interferometer’s two arms – to emphasize the re-
sult, EV considered an infinitely sensitive “bomb”, such
that interaction with even a single photon would cause it
to explode. By classical intuition, any attempt to check
for the presence of the bomb involves interacting with
it in some way, and, by hypothesis, inevitably setting it
off.

Quantum mechanics, however, allows one to be cer-
tain some fraction of the time that the bomb is in place,
without setting it off. After the first beam splitter of
the interferometer, a photon has a 50% chance of head-
ing towards the bomb, and thus exploding it. On the
other hand, if the photon takes the path without the
bomb, there is no more interference, since the nonex-

plosion of the bomb provides welcher Weg (“which
way”) information (see Sect. 80.4.1). Thus the photon
reaches the final beam splitter and chooses randomly
between the two exit ports. Some of the time (25%), it
leaves by output port B, something which never hap-
pened in the absence of the bomb. This immediately
implies that the bomb (or some nontransmitting object)
is in place – even though (since the bomb is unexploded)
it has not interacted with any photon; EV termed this
an “interaction-free measurement”. (We prefer the more
general description “quantum interrogation”, which then
includes cases – e.g., detecting a semi-transparent or
quantum object – where it may not be possible to logi-
cally exclude the possibility of an interaction.) It is the
mere possibility that the bomb could have interacted
with a photon which destroys interference. An initial
experimental implementation of these ideas [80.137]
used down-conversion to prepare the single photon states
(Sect. 80.1), and a single-photon detector as the “bomb”.
Subsequently the technique was implemented incorpo-
rating focusing lenses, which would enable the image
(more correctly, the silhouette) of an object to be de-
termined with less than one photon per “pixel” being
absorbed [80.138].

By adjusting the beamsplitter reflectivities in the
above example, one can achieve at most a 50% frac-
tion of measurements that are interaction-free. An
improved method, relying on the quantum Zeno ef-
fect [80.118] (Sect. 80.5.1), was discovered with which
one can in principle make this fraction arbitrarily close
to 1 [80.137]. For example, consider a photon initially
in cavity #1 of two identical cavities coupled by a loss-
less beam splitter whose reflectivity R = cos2(π/2N ).
If the photon’s coherence length is shorter than the cav-
ity length, after N cycles the photon will with certainty
be located in cavity #2, due to an interference effect (the
equivalent of a π-pulse interaction). However, if cav-
ity #2 instead contains an absorbing object (e.g., the
ultra-sensitive bomb), at each cycle there is only a small
chance (= 1− R) that the photon will be absorbed; oth-
erwise, the non absorption projects the photon wave
packet entirely back onto cavity #1. After all N cycles,
the total probability for the photon to be absorbed by the
object is 1− RN , which goes to 0 as N becomes large.
(In practice, unavoidable losses in the system limit the
maximum number of cycles and hence the achievable
performance [80.139].) The photon effectively becomes
trapped in cavity #1, thus indicating umambiguously the
presence of the object in cavity #2.

This quantum-Zeno version of interrogation was
first implemented using the inhibited rotation of a pho-
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ton’s polarization (the object to be detected blocked
one arm of a polarizing interferometer through which
the photon was repeatedly cycled), achieving an effi-
ciency of 75% [80.139]. A cavity-based implementation,
in which the presence of the absorbing object inside
a high-finesse cavity vastly increased the reflection off
the cavity [80.140], detected the presence of the object
with only 0.15 photons on average being absorbed or
scattered [80.141].

80.5.4 Weak and “Protected”
Measurements

Aharonov, Albert, and Vaidman extended quantum mea-
surement theory by introducing “weak” measurement,
a procedure that determines a physical property of
a quantum system belonging to an ensemble that is
both preselected and postselected [80.142, 143]. In the
standard theory, a quantum system is measured by
entangling its eigenstates with distinguishable pointer
states of a measurement device, completely resolving
the observable eigenvalue spectrum. The measure-
ment can be weakened by increasing the overlap of
the pointer states, consequently reducing the resolu-
tion of the eigenstates. When performed between two
measurements this can give surprising results – in
contrast to ordinary expectation values, the pointer
can lie outside the range of the eigenvalue spec-
trum of the measured observable O. The “weak
value” Ow ≡ 〈Ψini|O|Ψfin〉/〈Ψfin|Ψini〉 between prese-
lected (|Ψini〉) and postselected (|Ψfin〉) states completely
characterizes the outcome of the weak measurement.
Weak measurements do not disturb each other, so that
the weak values of non-commuting observables can
be measured simultaneously [80.144, 145]. Further-
more, they have proved to yield meaningful results in
many different circumstances, e.g., Hardy’s paradox of
Sect. 80.6.5 [80.146], measurement of negative kinetic
energies [80.147], and the “observation” of a single

particle in two locations [80.148]. One other poten-
tially powerful application of weak measurements is the
amplification of weak signals, which was first demon-
strated by amplifying the birefringence-induced small
displacement of optical fields [80.149, 150]. It was re-
cently shown that weak measurements of this kind in
fact arise naturally in fiber optics telecom networks,
due to polarization-mode dispersion and polarization-
dependent losses [80.151]. One recent proposal [80.152]
suggests that the controversy over whether or not
“welcher Weg” information may be obtained (and in-
terference consequently destroyed) without disturbing
a particle’s momentum (Sect. 80.4.2) may be resolved
by making weak measurements of momentum inside an
interferometer.

The above results push us to reexamine our interpre-
tation of wave functions. We customarily use the wave
function only as a calculational tool, but we have also
learned that it is in some sense physical, and should not
be regarded merely as some distribution from classical
statistics. One proposal [80.153, 154] suggests that the
wave function of a single particle should be regarded as
a real entity. When a state is “protected” from change,
e.g., by an energy gap, and measurements are performed
sufficiently “gently”, one should be able to determine not
just the expectation value of position, but the wave func-
tion at many different positions, without altering the state
of the particle. (This idea of measuring the entire wave
function of a single particle should not be conflated with
Raymer et al.’s fascinating work on the reconstruction of
the quantum state of a light field by repeated sampling
of a large ensemble; see [80.155] and Sect. 78.4.) No
violation of the uncertainty principle or the no-cloning
theorem (Sect. 80.7.1) arises from this, as the ability
to “protect” a state relies on some preexisting knowl-
edge about the state; but it assigns a deeper significance
to the wave function, one Aharonov terms “ontolog-
ical,” as opposed to merely epistemological (but see
also [80.156]).

80.6 The EPR Paradox and Bell’s Inequalities

80.6.1 Generalities

Nowhere is the nonlocal character of the quantum
mechanical entangled state as evident as in the “para-
dox” of Einstein, Podolsky, and Rosen (EPR) [80.157],
the version of Bohm [80.158], and the related in-
equalities by Bell [80.159, 160]. Consider two photons
traveling off back-to-back, described by the entangled

state

|ψ−〉 = (|H1,V2〉− |V1,H2〉) /
√

2 , (80.9)

where the letters denote horizontal (H) or vertical (V)
polarization, and the subscripts denote photon propaga-
tion direction. This state, analogous to the singlet state
of a pair of spin-1/2 particles, is isotropic – it has the
same form regardless of what basis is used to describe
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it. Measurement of any polarization component for one
of the particles will yield a count with 50% probability;
individually, each particle is unpolarized. Nevertheless,
if one measures the polarization component of particle 1
in any basis, one can predict with certainty the po-
larization of particle 2 in the same basis, seemingly
without disturbing it, since it may be arbitrarily remote.
Therefore, according to EPR, to avoid any nonlocal in-
fluences one should ascribe an “element of reality” to
every component of polarization. A quantum mechan-
ical state cannot specify that much information, and is
consequently an incomplete description, according to
the EPR argument. The intuitive explanation implied
by EPR is that the particles leave the source with def-
inite, correlated properties, determined by some local
“hidden variables” not present in quantum mechanics
(QM).

For two entangled particles, a local hidden variable
(LHV) theory can be made which correctly describes
perfect correlations or anti-correlations (i. e., measure-
ments made in the same polarization basis). The choice
of an LHV theory versus QM is then a philosophical
decision, not a physical one. However, in 1964 John
Bell [80.159] discovered that QM gives different statis-
tical predictions than does any LHV theory, for situations
of nonperfect correlations (i. e., analyzers at intermedi-
ate angles). Bell’s inequality (BI) constrains various joint
probabilities given by any local realistic theory, and was
later generalized to include any model incorporating lo-
cality [80.161, 162], and also extended to apply to real
experimental situations [80.163, 164]. With the caveat
of supplementary assumptions (Sect. 80.6.4), Bell’s in-
equalities have now been tested many times, and the vast
majority of experiments have violated them, in support
of QM. One general interpretation is that the predictions
of QM cannot be reproduced by any completely local
theory. It must be that the results of measurements on
one of the particles depend on the results for the other,
and these correlations are not merely due to a common
cause at their creation [80.165, 166].

80.6.2 Polarization-Based Tests

The first BI tests were performed with pairs of pho-
tons produced via an atomic cascade, and a later version
incorporated rapid (albeit periodic) switching of the
analyzers [80.167, 168]. Unfortunately, the angular cor-
relation of the cascade photons is not very strong. In
contrast, the strong correlations of the down-converted
photons make them ideal for such tests, the first of which
were performed using setups essentially identical to that

already discussed in connection with quantum erasure
(Fig. 80.4). Orthogonally polarized (e.g., horizontal and
vertical) but otherwise identical photons are combined
on a nonpolarizing 50–50 beam splitter. If one consid-
ers only the events with a single photon in each output
(i. e., ignoring the cases for which both photons use the
same beam splitter output port), one obtains the (post-
selected) entangled state (80.9) [80.169, 170]. (In fact,
this technique is now used as a method for characteriz-
ing the indistinguishability of photons from independent
sources, e.g., quantum dots [80.171] or independent
down-conversion crystals [80.172, 173].)

Down-conversion schemes have also been developed
to produce entangled states without the need to post-
select out half of the photons. For example, consider
a type-I phase-matched crystal (Sect. 72.2.2) that down-
converts H-polarized pump photons into V-polarized
pairs; and an adjacent, identical crystal that is rotated
by 90◦, thus down-converting V-polarized pump pho-
tons into H-polarized pairs. By coherently pumping
the two crystals with light polarized at |45〉 ≡ (|V 〉+
|H〉)/√2, one obtains the entangled state (|HH〉+
|VV 〉/√2. (More generally, pumping α|V 〉+ eiϕβ|H〉
produces arbitrary nonmaximally entangled states of
the form α|HH〉+ eiϕβ|VV 〉[80.174].) Such a source
has produced the largest and fastest violations of Bell
inequalities to date (over 200-σ violation in less than
1 second) [80.175, 176].

Using type-II phase-matching one also can pro-
duce polarization entanglement from a single crys-
tal [80.177]. One member of each down-conversion
pair is emitted along an ordinary polarized cone while
the other is emitted along an extraordinary polarized
cone. If the photons happen to be emitted along the
intersection of the two cones, neither photon will have
a definite polarization – they will be in the state (|HV 〉+
|VH〉/√2. This entanglement source has now been
used in a variety of quantum investigations, including
Bell inequality tests [80.177, 178], quantum cryptog-
raphy [80.179, 180] (Sect. 80.7.4 and Chapt. 81) and
teleportation [80.181, 182], and as a resource for study-
ing entanglement of more than 2 photons [80.37–42].

80.6.3 Nonpolarization Tests

The advent of parametric down-conversion has also led
to the appearance of several nonpolarization-based BI
tests, using, for example, an entanglement of the pho-
ton momenta (Fig. 80.8) [80.183]. By use of small irises
(labeled ‘A’ in the figure), Rarity and Tapster examined
four down-conversion modes: 1s, 1i, 2s, and 2i. Beams

Part
F

8
0
.6



Quantum Optical Tests of the Foundations of Physics 80.6 The EPR Paradox and Bell’s Inequalities 1197

UV

KD*P

1s

2i

A

A

1i

2s

Ps

Pi

Ds

Di

Di�

Ds�

Fig. 80.8 Outline of Rarity and Tapster apparatus used
to demonstrate a violation of a Bell’s inequality based on
momentum entanglement [80.183]

1s and 1i correspond to one pair of conjugate photons;
beams 2s and 2i correspond to a different pair. Photons
in beams 1s and 2s have the same wavelength, as do
photons in beams 1i and 2i. With proper alignment, af-
ter the beam splitters there is no way to tell whether
a pair of photons came from the 1s–1i or the 2s–2i
paths. Consequently, the coincidence rates display inter-
ference, although the singles rates at the four detectors
indicated in Fig. 80.8 remain constant. This interference
depends on the difference of phase shifts induced by
rotatable glass plates Pi and Ps in paths 1i and 2s, re-
spectively, and is formally equivalent to the polarization
case considered above, in which it is the difference of
polarization-analyzer angles that is relevant. By measur-
ing the coincidence rates for two values for each of the
phase shifters – a total of four combinations – the ex-
perimenters were able to violate an appropriate BI. One
interpretation is that the emission directions of a given
pair of photons are not elements of reality.

Momentum conservation in the down-conversion
process (80.4) also leads to entanglement directly in the
spatial modes in the correlated photons. For example,
Zeilinger et al. [80.184, 185] and White et al. [80.186]
have demonstrated entanglement between the orbital an-
gular momentum of the photons, of the form (|+1,
−1〉+ε|0, 0〉+ |−1,+1〉, where 0 and ±1 respectively
denote modes with no orbital angular momentum (gaus-
sian spatial profiles) and ±� (Laguerre–Gauss-Vortex
modes). Note that this enables one to investigate cor-
relations for degrees of freedom that reside in larger
Hilbert spaces than do the 2-level systems (e.g., polariza-
tion) discussed above. The nonlocal spatial correlations
of the down-conversion photons have also given rise to
many interesting experiments in the area of quantum
imaging [80.187–190], where one is able to obtain spa-
tial resolution beyond that predicted by the usual

√
N

shot-noise limitations.

Several groups [80.191, 192] have violated a BI
based on energy–time entanglement of the pho-
tons [80.193]. In the method due to Franson, one
member of each down-converted pair is directed into an
unbalanced Mach–Zehnder-like interferometer, allow-
ing both a short and long path to the final beam splitter;
the other photon is directed into a separate but simi-
lar interferometer. There arises interference between the
indistinguishable processes (“short–short” and “long–
long”) which could lead to coincidence detection. Using
fast detectors to select out only these processes, the
reduced state (80.9) is

|ψ〉 = 1

2

(
|S1, S2〉− eiφ|L1, L2〉

)
, (80.10)

where the letters indicate the short or long path, and
the phase is the sum of the relative phases in each
interferometer. Although no fringes are seen in any of
the singles count rates, the high-visibility coincidence
fringes (Fig. 80.9) lead to a violation of an appropriate
BI. One conclusion is that it is incorrect to ascribe to
the photons a definite time of emission from the crystal,
or even a definite energy, unless these observables are
explicitly measured.

This same sort of arrangement, modified to work
with a pulsed pump, has been used to demonstrate the
longest violation of local realism, in which Gisin’s group
has observed a 16-σ BI violation (modulo the detec-
tion and timing loopholes discussed in Sect. 80.6.4) with
photons separated by 10.9 km [80.194]. In a related ex-
periment, they have used a similar system to place limits
on the “speed of collapse” of the 2-photon wave func-
tion, i. e., how fast a nonlocal “signal” would need to
propagate from one side of the experiment to the other
to account for the measured nonclassical correlations.
Depending on some assumptions about the detection
process and which inertial frame of reference is consid-
ered, the nonlocal-influence speed was constrained to be
at least 104 c to 107 c [80.195]. In one interesting vari-
ant, the researchers arranged to have moving detectors,
such that in the local reference frame of each detector, it
was the other detector which initiated the collapse. (Due
to the experimental difficulty of accelerating actual de-
tectors to high velocities, a rapidly rotating absorbing
disk was placed close to one output port of a polarizing
beamsplitter; following ideas discussed in Sect. 80.5.3,
the non-absorbance of the photon by the absorber was
deemed sufficient to cause a reduction of the wave func-
tion.) As expected, the measured correlations were in no
way reduced, but this experiment did rule out one alter-
native theory of nonlocal collapse [80.196,197]. Finally,
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Fig. 80.9 High-visibility coincidence fringes in a Franson
dual-interferometer experiment [80.192] for two values of
the phase in interferometer 2 as the phase in interferometer 1
is slowly varied. The curves are sinusoidal fits

by using more than two possible creation times, e.g.,
with a mode-locked pulsed laser, Gisin’s group demon-
strated entanglement for a two-photon state in a Hilbert
space of at least dimension 11 [80.198].

EPR-like correlations have also been observed di-
rectly between two correlated field modes via homodyne
tomography [80.199], though the joint Wigner function
is positive-definite here. In contrast, a homodyne meas-
urement on the state of a single photon split between two
paths (Sect. 80.4.4) took advantage of the nonclassical
nature of the initial state to violate a Bell inequality
[80.46]. Like all existing Bell-inequality experiments,
this work suffered from several loopholes (Sect. 80.6.4),
but a new proposal suggests that the high efficiency of
homodyne detection may provide a unique opportunity
for a loophole-free test of Bell’s inequalities [80.200].

80.6.4 Bell Inequality Loopholes

In fact, to date no single experiment has unambigu-
ously violated a Bell inequality, due to the existence
of two experimental challenges, the detection and local-
ity “loopholes”. All of the experiments discussed thus
far have required supplementary assumptions, e.g., the
“fair-sampling” assumption that the fraction of pairs de-
tected is representative of the entire ensemble emitted by
the source. [In fact, for the entangled photons emitted in
the atomic cascade experiments, this assumption is man-
ifestly false, because the strong polarization correlations
only exist for those photons emitted nearly in opposite
directions. If one were to collect all of the emitted pho-
ton pairs, they would not lead to a violation (see [80.201]

for a fuller discussion).] To close the locality (or “tim-
ing”) loophole requires that the analyzer settings be
switched rapidly and randomly, in order to guaran-
tee that no (sub)luminal information transfer could
account for the observed correlations. The necessary
conditions have been met only in the down-conversion
experiment by Zeilinger et al., which separated the
photons by 400 m and used ultrafast random number
generation and electronic polarization-analysis choice
to ensure space-like separated observers [80.178]. How-
ever, in that experiment the detection efficiency was less
than 5%.

In order to understand the detection loophole,
consider the Clauser–Horne (CH) form of the Bell in-
equality [80.164], which relates the directly observable
singles rates S1 and S2 and the coincidence rate C12,
rather than “inferred” probabilities, by

C12(a, b)+C12(a, b
′)+C12(a

′, b)−C12(a
′, b′)

≤ S1(a)+ S2(b) , (80.11)

where a and a′ (b and b′) are any pair of analyzer (e.g.,
polarizer) settings at detector 1 (2). For certain choices
of a, a′, b, and b′, quantum mechanics predicts the left
hand side of the CH inequality can exceed the right
hand side. However, in practice this is very difficult to
observe, since the coincidence rates fall as η2 (η is the
detection efficiency), compared to the singles rates on
the right hand side, which fall only as η. In order to close
the detection loophole, one requires η≥ 83% [80.201]
(for maximally entangled photons. (Eberhard has shown
that the required detection efficiency may be reduced to
67% by using nonmaximally entangled quantum sys-
tems [80.202, 203]. The idea is that one can choose the
analysis settings a and b to reduce the value of the RHS
of the CH inequality.) In essence, one requires high de-
tection efficiencies to ensure that the contributions from
undetected events are not sufficient to cause the total
ensemble to satisfy the Bell inequality even while the
detected events violate it.

To date, only the entangled-ion experiment of
Wineland et al. [80.204] has had sufficiently high
efficiencies to close the detection loophole. In this ex-
periment the entangled variables were the hyperfine
energy levels of 9Be+ ions. By employing a cy-
cling transition that leads to the emission of many
photons if the atom is in one of the states, a de-
tection efficiency in excess of 98% was achieved,
allowing an 8-σ Bell inequality violation. However,
because the ions were separated by only 3 µm in
the same linear Paul trap, and in fact were measured
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using the same laser pulse, there was no possibil-
ity of closing the locality loophole. More recently,
Monroe et al. have demonstrated the entanglement
of a trapped ion and a photon [80.205], and have
used this to violate a Bell inequality [80.206]. Sim-
ilar experiments have also enabled the production of
up to four entangled ions [80.207]. Though neither
of the experimental loopholes was closed in these
experiments, they are noteworthy as the first con-
trolled demonstrations of entanglement in massive
particles. Efforts are now underway to attempt a di-
rect violation of (80.11) with no auxiliary assumptions
using down-conversion photons and high-efficiency
(> 85%) single-photon detectors [80.208, 209], in ad-
dition to atomic schemes [80.210] and homodyne
schemes [80.200] (Sect. 80.6.3), which enjoy even
higher intrinsic efficiency.

80.6.5 Nonlocality Without Inequalities

In the above experiments for testing nonlocality, the
disagreement between quantum predictions and Bell’s
constraints on local realistic theories are only statistical.
Greenberger, Horne, and Zeilinger (GHZ) pointed out
that in some systems involving three or more entangled
particles, a contradiction could arise even at the level of
perfect correlations [80.211, 212]. A schematic of one
version of the GHZ Gedankenexperiment is shown in
Fig. 80.10. The source at the center is posited to emit

a a�

Φa

c

c�

Φc
Φb b

b�

α� α

γ

γ� �

��

Fig. 80.10 A three-particle Gedankenexperiment to demon-
strate the inconsistency of quantum mechanics and any local
realistic theory. All beam splitters are 50–50 [80.111]

trios of correlated particles. Just as the Rarity–Tapster
experiment selected two pairs of photons (Fig. 80.8),
the GHZ source selects two trios of photons; these are
denoted by abc and a′b′c′. Hence, the state coming from
the source may be written

|ψ〉 = (|abc〉+ |a′b′c′〉) /√2 . (80.12)

After passing through a variable phase shifter (e.g., φa),
each primed beam is recombined with the correspond-
ing unprimed beam at a 50–50 beam splitter. Detectors
(denoted by Greek letters) at the output ports signal
the occurrence of triple coincidences. The following
simplified argument conveys the spirit of the GHZ result.

Given the state (80.12), one can calculate from
standard QM the probability of a triple coincidence as
a function of the three phase shifts:

P(φ1, φ2, φ3)= 1

8
[1± sin(φa+φb+φc)] ,

(80.13)

where the plus sign applies for coincidences between
all unprimed detectors, and the minus sign for coin-
cidences between all primed detectors. For the case in
which all phases are 0, it will occasionally happen (1/8th
of the time) that there will be a triple coincidence of all
primed detectors. Using a “contrafactual” approach, we
ask what would have happened if φa had been π/2 in-
stead. By the locality assumption, this would not change
the state from the source, nor the fact that detectors
β′ and γ ′ went off. But from (80.13) the probability
of a triple coincidence for primed detectors is zero in
this case; therefore, we can conclude that detector α
would have “clicked” if φa had been π/2. Similarly, if
φb or φc had been π/2, then detectors β or γ would
have clicked. Consequently, if all the phases had been
equal to π/2, we would have seen a triple coincidence
between unprimed detectors. But according to (80.13)
this is impossible: the probability of triple coincidences
between unprimed detectors when all three phases are
equal to π/2 is strictly zero! Hence, if one believes the
quantum mechanical predictions for these cases of per-
fect correlations, it is not possible to have a consistent
local realistic model.

Down-conversion experiments have enabled the pro-
duction of 3- and 4-photon GHZ states, with results
in good agreement with theory (the all-or-nothing ar-
guments given above become inequalities in any real
experiment) [80.37–39].

By similar arguments, Hardy has shown the incon-
sistency of quantum mechanics and local realism in
a Gedankenexperiment with just two particles [80.213,
214]. When the arguments are suitably modified to
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deal with real experiments, inequalities once again
result; these have also been experimentally vio-
lated, using non-maximally entangled states from

down-conversion [80.215, 216], further underscor-
ing the inconsistency between quantum theory and
locality.

80.7 Quantum Information

80.7.1 Information Content
of a Quantum: (No) Cloning

The inherent nonlocality of particles in an entangled
state cannot be used to transmit superluminal messages.
For example, if A and B receive a polarization-entangled
pair of photons, which A then collapses in a certain ba-
sis by performing a polarization measurement, B can
only extract one bit of information from a measurement
on his photon – this bit corresponds not to A’s choice
of basis, but to the (random) outcome of A’s measure-
ment. However, instantaneous communication would be
possible if one could make copies (“clones”) of a single
photon in an unknown polarization state: by performing
measurements on n copies of his photon, B could de-
termine its polarization to a resolution of n bits, thereby
accurately determining A’s choice of basis. Taking into
account quantum fluctuations [80.217], one finds that
no physically allowed amplifier can make a sufficiently
faithful copy for such a scheme to work – it is impossible
to clone an unknown quantum state [80.218]. A simple
proof is as follows. Consider an ideal cloner, initially in
the state |i〉c, which would take |0〉|i〉c → |0〉|0〉c and
|1〉|i〉c → |1〉|1〉c. For an accurate copier, one would
expect (|0〉+ |1〉)|i〉c → (|0〉+ |1〉)(|0〉c+|1〉c), but the
linearity of quantum transformations instead yields
|0〉|0〉c+|1〉|1〉c, i. e., an entangled state.

Although perfect cloning is impossible, it is never-
theless possible to create copies which are “pretty good”.
Specifically, using an optimal cloning strategy, one can
in principle create a copy with a fidelity of 5/6 with the
original state [80.219, 220]. Such a cloning procedure
has been experimentally realized by several groups, e.g.,
relying on stimulated emission, or sending the photon to
be cloned through a low noise optical amplifier, with re-
sults matching the theoretical predictions [80.221–223].

80.7.2 Super-Dense Coding

The previous considerations make the work by Ben-
nett et al. on “quantum teleportation” and related effects
all the more remarkable. In the quantum dense-coding
protocol, a single photon can be used to transfer
two bits of information, when it is part of an en-

tangled EPR pair [80.224]. Again consider A and B,
each possessing one photon of such a pair. By ma-
nipulating only her photon (via a polarization rotator
and a phase shifter), A can convert the initial joint
state |ψ−〉 (80.9) into any of the four two-particle
“Bell states” [|ψ±AB〉 = (|HA,VB〉± |VA,HB〉) /

√
2,

|φ±AB〉 = (|HA,HB〉± |VA,VB〉) /
√

2], and then send
her photon to B. By making a suitable measurement on
both photons, B can then in principle determine which of
the four states A produced [80.225]: A’s single photon
carried two bits. This protocol has been experimen-
tally realized using down-conversion photons [80.226],
though only two of the four Bell states could be reliably
distinguished. (Standard polarization Bell state analysis
is implemented by combining the two photons on a non-
polarizing 50–50 beam splitter. For any of the triplet
states |ψ+〉, |φ±〉, the photons will both travel to the
same output port due to the Hong–Ou–Mandel interfer-
ence discussed in Sect. 80.3.3; only for the state |ψ−〉
will the photons travel to different outputs, resulting in
a coincidence detection.)

80.7.3 Teleportation

In the even more striking quantum teleportation ef-
fect [80.227], an unknown polarization state f (with
its in-principle infinite amount of information) can be
“teleported” from A to B, if each already possesses one
photon of an EPR pair (e.g., in the singlet state |ψ−AB〉).
First, A jointly measures her EPR photon and the pho-
ton F (whose state f is to be teleported) in the basis
defined by the Bell states of these two photons. Via
a mere two bits of classical information, A then in-
forms B which of the four (equally probable) Bell states
she actually measured. With this information, B can
transform the state of his EPR particle into f . For ex-
ample, if A found the singlet state |ψ−BF〉, then the
polarization of her EPR photon must have been orthog-
onal to that of F (because the polarizations of particles
in a singlet state are always perfectly anticorrelated, re-
gardless of the quantization basis). But because the two
EPR photons were initially also in a singlet state, their
polarizations must also be orthogonal, so B’s EPR pho-
ton is already in state f . If instead A found |φ−BF〉,
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for example, then B simply makes the same transfor-
mation (with a polarization rotator) that would have
changed |ψ−AB〉 into |φ−AB〉, again leaving his photon
in the state f . Thus, although one may only extract one
bit of (normally useless) information from an EPR par-
ticle, the perfect correlations may be used to transfer
an infinite amount of information, i. e., precise specifi-
cation of a point in the state space of the particle (the
Poincaré sphere for a photon or the Bloch sphere for
an electron). The “no-cloning” theorem (Sect. 80.7.1) is
not violated, since A irrevocably alters the state of F by
the measurement she performs, leaving only one particle
in f .

A number of experiments have now experi-
mentally realized quantum teleportation. The first
of these used polarization-entangled down-conversion
photons [80.181], but was limited by the impossibil-
ity to resolve all four Bell states using only linear
optics. Teleportation of continous-variable states has
also been observed [80.228], using twin-beam squeezed
states (Sect. 80.2.3). Recently, the first teleportation in
a matter system has been achieved: the groups of Blatt
et al. [80.229] and Wineland et al. [80.230] have suc-
cessfully teleported the (energy) quantum state of an ion
to a separate ion. Although the overall distance was less
than 1 mm, these challenging experiments are signifi-
cant because they incorporate most of the techniques
necessary for scalable quantum information processing
in an ion-trap system (see Sect. 81.7.2).

In an interesting extension of the original teleporta-
tion protocol, one can ask what happens if the photon
to be teleported is itself entangled to a 4th photon G.
In this case, known as “entanglement swapping”, a suc-
cessful teleportation will lead to the entanglement of
photons G and B, even though these have never di-
rectly interacted. Entangled down-conversion photons
have been used to demonstrate such “entanglement
swapping” achieving a violation of Bell’s inequalities
between the two noninteracting photons [80.231]; simi-
lar results have been achieved with continous variables
as well [80.232]. Such procedures may one day enable
construction of a quantum “repeater” which could en-
able the transmission of quantum information over long
distances [80.233, 234].

A fundamental connection between quantum infor-
mation and black holes has recently been suggested
by Lloyd and Ng [80.235] and others. The basic idea
is that every physical object, including a black hole,
can be thought of as a quantum computer that uni-
tarily transforms input states to output states; i. e.,
“in” quantum bits (“qubits”) can always be reversibly

interconverted into “out” qubits, thus obeying time-
reversal symmetry. To resolve the paradox of the
apparent loss of information of matter falling into
a black hole, Lloyd and Ng propose that pairs of
entangled photons can materialize at the event hori-
zon of a black hole. One member of the photon pair
flies outward to become the Hawking blackbody radi-
ation; the other falls into the black hole and hits the
singularity together with the matter that formed the
hole. The annihilation of the infalling photon acts as
a measurement on the infalling matter in a quantum
teleportation-like process, transporting the informa-
tion contained in the infalling matter to the outgoing
Hawking radiation, using the Horowitz–Maldacena
mechanism [80.236].

80.7.4 Quantum Cryptography

Although EPR schemes cannot send signals super-
luminally, they have other potential applications in
cryptography. In the “one-time pad” of classical cryptog-
raphy [80.237], two collaborators share a secret “key”
(a random string of binary digits) in order to encode and
decode a message. Such a key may provide an abso-
lutely unbreakable code, provided that it is unknown to
an eavesdropper. The problem arises in key distribution:
any classical distribution scheme is subject to noninva-
sive eavesdropping, e.g., using a fiber-coupler to tap the
line, without disturbing the transmitted classical signal.
In quantum cryptography proposals, security is guaran-
teed by using single-photon states [80.238, 239], some
of the schemes employing particles prepared in an EPR-
entangled state. Each collaborator receives one member
of each correlated pair, and measures the polarization
(or whatever degree of freedom is carrying the informa-
tion) in a random basis. After repeating the process many
times, the two then discuss publicly which bases were
used for each measurement, but not the actual meas-
urement results. The cases where different bases were
chosen are not used for conveying the key, and may
be discarded, along with instances where one party de-
tected no photon. In cases where the same bases were
used, however, the participants will now have corre-
lated information, from which a random, shared key can
be generated. As long as single photons are used, any
attempt at eavesdropping, even one relying on QND,
will necessarily introduce errors due to the uncertainty
principle. If the eavesdropper uses the wrong basis to
study a photon before sending it on to the real recipi-
ent, the very act of measuring will disturb the original
state.
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Although one can perform quantum cryptography
with single-photon states or even weak coherent states
(Sect. 81.2.1), there are a number of advantages to us-
ing entanglement: there is inherent randomness; photons
from different pairs show no correlations (unlike mul-
tiple photons in an attenuated coherent state, which
may be used by an eavesdropper to gain informa-
tion), and any information leaked to other degrees of
freedom automatically shows up as increased error
rate [80.240]. This last feature means that the sources
are “self-checking” in a sense, and one could even let
an adversary have control over the source, secure in
the knowledge that any tampering would become evi-
dent in the nonlocal correlations. A number of quantum
cryptography implementations using down-conversion
photon pairs have been realized, either using polarization
entanglement [80.179, 180, 241, 242], or energy–time
entanglement [80.243, 244]. One main experimental
challenge will be to increase the rates of entangled
pair production (the typical source emission rate for
these cryptography experiments is only 10 000 /s), to

make them competitive with current weak coherent pulse
schemes (which can easily operate at over 10 MHz).

80.7.5 Issues in Causality

Outstanding causal paradoxes in optics include the para-
dox of Barton and Scharnhorst [80.245], closely related
to the Casimir effect (Sect. 79.2.4). In this case, the am-
plitude for light-by-light scattering is modified by the
presence of closely-spaced parallel conducting plates. It
appears that this can lead to propagation of light in vac-
uum (albeit a vacuum “colored” by the presence of the
Casimir plates) faster than c. Hegerfeldt has pointed out
similar paradoxes in connection with localization of any
particle in a quantum field theory [80.246] and with the
Glauber theory of photodetection (Sect. 78.4) [80.247].
However, at least for the simplest example – the inter-
action between two widely separated atoms – as long
as one considers only probabilities that depend on the
separation r, the second atom cannot be excited by light
from the first until after a time r/c [80.248].

80.8 The Single-Photon Tunneling Time

80.8.1 An Application of EPR Correlations
to Time Measurements

In this section we discuss experiments involving the
quantum propagation of light in matter. Due to the
sharp time correlations of the paired photons from
spontaneous down-conversion, one can use the HOM
interferometer (Sect. 80.3.3, and Fig. 80.4) to measure
very short relative propagation delay times for the
signal and idler photons. One early application was
therefore to confirm that single photons in glass travel
at the group velocity [80.91]. At least until recently,
the only quantum theory of light in dispersive me-
dia was an ad hoc one [80.249–256]. The shift of the
interference dip resulting from a medium introduced
into one of the interferometer arms can be accurately
measured by determining how much the path lengths
must be changed to compensate the shift and recover
the dip. This result suggests that when looking for
a microscopic description of dielectrics, it is unnec-
essary to consider the medium as being polarized by
an essentially classical electric field due to the col-
lective action of all photons present, and reradiating
accordingly. Linear dielectric response is not a col-
lective effect in this sense – each photon interferes
only with itself (as per Dirac’s dictum) as it is par-

tially scattered from the atoms in the medium. The
single-photon group velocity thus demonstrates “wave–
particle unity.”

The standard limitation for measurements of short-
time phenomena is that to have high time-resolution,
one needs short pulses (or at least short coherence
lengths), but these in turn require broad bandwidths
and are therefore very susceptible to dispersive broad-
ening. It is a remarkable consequence of the EPR
energy correlations of the down-conversion photons
(Sect. 80.6.3) that time measurements made with the
HOM interferometer are essentially immune to such
broadening [80.91, 257, 258]. In effect, the measure-
ment is sensitive to the difference in emission times
while the broadening is sensitive to the sum of the
frequencies. While frequency and time cannot both be
specified for a given pulse, the crucial feature of EPR
correlations such as those exhibited by down-converted
photons is that this difference and this sum correspond
to commuting observables, and both may be arbitrar-
ily well defined. The photon which reaches detector
1 could either have traversed the dispersive medium
and been transmitted, or traversed the empty path and
been reflected, leaving its twin to traverse the medium.
The medium thus samples both of the (anticorrelated)
frequencies, leading to an automatic cancellation of
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any first-order (and in fact, all odd-order) dispersive
broadening. Measurements can be more than 5 orders
of magnitude more precise than would be possible
via electronic timing of direct detection events, and
in principle better than those performed with nonlin-
ear autocorrelators (which rely on the same nonlinear
physics as down-conversion, but do not benefit from
a cancellation of dispersive broadening).

80.8.2 Superluminal Tunneling Times

Another well-known problem in the theory of quantum
propagation is the delay experienced by a particle as it
tunnels. There are difficulties associated with calculating
the “duration” of the tunneling process, since evanescent
waves do not accumulate any phase [80.259–261]. First,
the kinetic energy in the barrier region is negative, so
the momentum is imaginary. Second, the transit time of
a wavepacket peak through the barrier, defined in the
stationary phase approximation by

τ(φ) ≡ ∂
[
arg t(ω)eikd

]
/∂ω , (80.14)

tends to a constant as the barrier thickness diverges, in
seeming violation of relativistic causality. (Actually, it
is shown in [80.88] that such saturation of the delay
time is a natural consequence of time-reversal sym-
metry, and in [80.262] that one can deduce from the
principle of causality itself that every system possesses
a superluminal group delay, at least at the frequency
where its transmission is a minimum.) For example, the
transmission function for a rectangular barrier,

t(k, κ)= e−ikd

cosh κd+ i κ
2−k2

2kκ sinh κd
, (80.15)

leads in the opaque limit (κd % 1) to a traversal time of
2m/�kκ, independent of the barrier width d. The same
result applies to photons undergoing frustrated total in-
ternal reflection [80.88], when the mass m is replaced
by n2

�ω/c2, and similar results apply to other forms of
tunneling.

Some researchers have therefore searched for some
more meaningful “interaction time” for tunneling, which
might accord better with relativistic intuitions and per-
haps have implications for the ultimate speed of devices
relying on tunneling [80.263]. The “semiclassical time”
corresponds to treating the magnitude of the (imagi-
nary) momentum as a real momentum. This time is of
interest mainly because it also arises in Büttiker and
Landauer’s calculation of the critical timescale in prob-
lems involving oscillating barriers, which they take to

imply that it is a better measure of the duration of the
interaction than is the group delay [80.259]. The Lar-
mor time [80.264] is one of the early efforts to attach
a “clock” to a tunneling particle, in the form of a spin
aligned perpendicular to a small magnetic field confined
to the barrier region. The basic idea is that the amount
of Larmor precession experienced by a transmitted par-
ticle is a measure of the time spent by that particle in
the barrier. This clock turns out to contain components
corresponding both to the distance-independent “dwell
time” and the linear-in-distance semiclassical time. Cu-
riously, the most common theories for tunneling times
become superluminal in certain cases anyway, whether
or not they deal with the motion of wave packets.

Here, we will restrict ourselves to discussing the
time of appearance of a peak of a single-photon wave
packet. While other tunneling-time experiments have
been performed in the past [80.265], optical tests offer
certain unique advantages [80.266], including the ease
of construction of a barrier with no dissipation, very lit-
tle energy-dependence, and a superluminal group delay.
The transmitted wave packets suffer little distortion, and
are essentially indistinguishable from the incident wave
packets. At a theoretical level, the fact that photons are
described by Maxwell’s (fully relativistic) equations is
an important argument against interpreting superluminal
tunneling predictions as a mere artifact of the nonrela-
tivistic Schrödinger equation. Also, one is denied the
recourse suggested by some workers [80.267] of in-
terpreting the superluminal appearance of transmitted
peaks to mean that only the high-energy components
(which, for matter waves, traveled faster even before
reaching the barrier [80.268]) were transmitted.

80.8.3 Tunneling Delay
in a Multilayer Dielectric Mirror

A suitable optical tunnel barrier can be a standard mul-
tilayer dielectic mirror. The alternating layers of low
and high index material, each one quarter-wave thick at
the design frequency of the mirror, lead to a photonic
bandgap [80.269] analogous to that in the Kronig–
Penney model of solid state physics (Sect. 79.2.6). The
gap represents a forbidden range of energies, in which
the multiple reflections will interfere constructively so
as to exponentially damp any incident wave. The anal-
ogy with tunneling in nonrelativistic quantum mechanics
arises because of the exponential decay of the field en-
velope within the periodic structure, i. e., the imaginary
value of the quasimomentum. The same qualitative fea-
tures arise for the transmission time: for thick barriers,
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it should saturate at a constant value, as was veri-
fied in a recent experiment employing short classical
pulses [80.270]. (A more direct analogy, that of waveg-
uides beyond cutoff, yielded similar results in a classical
microwave experiment [80.271], while another paper
has reported superluminal effects related to the penetra-
tion of diffracted or “leaky” microwaves into a shadow
region [80.272]. All these experiments involve very
small detection probabilities, just as in Chu and Wong’s
pioneering experiment on propagation within an ab-
sorption line [80.273]. However, it has been predicted
that superluminal propagation could occur without high
loss or reflection [80.274–276], by operating outside
the resonance line of an inverted medium (Sect. 70.1).
One can understand the effect as off-resonance “virtual
amplification” of the leading edge of a pulse.)

The phenomenon was investigated at the single-
photon level by using the high time-resolution
techniques discussed in Sect. 80.8.1 to measure the
relative delay experienced by down-conversion pho-
tons [80.277] when such a tunnel barrier (consisting
of 11 layers) was introduced into one arm of a HOM
interferometer. The transmissivity of the barrier was
relatively flat throughout the bandgap (extending from
600 nm to 800 nm; Fig. 80.11), with a value of 1% at
the gap center (700 nm), where the experiment was per-
formed. The HOM coincidence dip was measured both
with the barrier (and its substrate) and with the substrate
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Fig. 80.11 Transmission probability for the tunnel barrier used
in [80.277] (heavy dotted curve); heavy black, dashed brown, and
solid grey curves show group delay, Larmor time, and semiclassical
time. Also shown for comparison is the “causality limit” d/c= 3.6 fs
(horizontal line)
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Fig. 80.12 Coincidence profiles with and without the tunnel
barrier map out the single-photon wave packets. The lower
profile shows the coincidences with the barrier; this profile
is shifted by≈ 2 fs to negative times relative to the one with
no barrier (upper curve): the average particle which tunnels
arrives earlier than the one which travels the same distance
in air

alone (Fig. 80.12). Each dip was subsequently fitted to
a Gaussian, and the difference between their centers was
calculated. When several such runs were combined, it
was found that the tunneling peak arrived 1.47±0.21 fs
earlier than the one traveling through air, in reasonable
agreement with the theoretical prediction of approxi-
mately 1.9 fs. Taking into account the 1.1 µm thickness
of the barrier, this implies an effective photon tunneling
velocity of 1.7 c. The results exclude the “semiclassical”
time but are consistent with the group delay. An inves-
tigation of the energy-dependence of the tunneling time
was also performed, by angling the dielectric mirror,
thus shifting its bandgap [80.278]. The data confirm the
group delay in this limit as well, and rule out identifica-
tion of Büttiker’s Larmor time with a peak propagation
time, at least in this optical system.

80.8.4 Interpretation
of the Tunneling Time

Even though a wave packet peak may appear on the far
side of a barrier sooner than it would under allowed prop-
agation, it is important to stress that no information is
transmitted faster than c, nor on average is any energy.
These effects occur in the limit of low transmission,
where the transmitted wavepacket can be considered as
a “reshaped” version of the leading edge of the inci-
dent pulse [80.273, 279, 280]. At a physical level, the

Part
F

8
0
.8



Quantum Optical Tests of the Foundations of Physics 80.8 The Single-Photon Tunneling Time 1205

reflection from a multilayer dielectric is due to destruc-
tive interference among coherent multiple reflections
between the different layers. At times before the field
inside the structure reaches its steady-state value, there
is little interference, and a non-negligible fraction of the
wave is transmitted. This preferential treatment of the
leading ramp-up engenders a sort of “optical illusion,”
shifting the transmitted peak earlier in time. A signal,
such as a front with a sharp onset, relies on arbitrarily
high-frequency components, which would not benefit
from this illusion, but instead travel arbitrarily close to
the vacuum speed of light c. Even for a smooth wave
packet, no energy travels faster than light; most is sim-
ply reflected by the barrier. Only if one considers the
Copenhagen interpretation of quantum mechanics, with
its instantaneous collapse, does one find superluminal
propagation of those particles which happen to be trans-
mitted. This leads to the question of whether it is possible
to ask which part of a wave packet a given particle comes
from.

One paper argued that transmitted particles do in
fact stem only from the leading ramp-up of the wave
packet [80.281]. While it is true that the transmission
only depends on causally connected portions of the
incident wave packet, further analysis revealed that si-
multaneous discussion of such particle-like questions
and the wave nature of tunneling ran afoul of the com-
plementarity principle [80.282]. In essence, labeling the
initial positions of a tunneling particle destroys the care-
ful interference by which the reshaping occurs (as in
the quantum eraser, Sect. 80.4.1). However, one picture
in which the transmitted particles really do originate
earlier is the Bohm–de Broglie model of quantum mech-
anics [80.283, 284]. This theory considers Ψ to be
a real field (residing however in configuration space,
thus incorporating nonlocality) which guides pointlike
particles in a deterministic manner. It reproduces all the
predictions of quantum mechanics without incorporat-
ing any randomness; the probabilistic predictions of QM
arise from a range of initial conditions. Bohm’s equa-
tion of motion has the form of a fluid-flow equation,
v(x)= �∇ argΨ(x)/m, implying that particle trajecto-
ries may never cross, as velocity is a single-valued
function of position. Consequently, all transmitted par-
ticles originate earlier in the ensemble than all reflected
particles [80.282, 285]. This approach yields trajecto-
ries with well-defined (and generally subluminal) dwell
times in the barrier region. However, the fact that the
mean tunneling delay of Bohm particles diverges as the
incident bandwidth becomes small, along with other
interpretational issues [80.286, 287], leaves open the

question of whether time scales as defined by the Bohm
model have any physical meaning.

The “weak measurement” approach of Aharonov
et al. [80.142, 143] or equivalently, complex condi-
tional probabilitiy amplitudes obeying Bayes’s theo-
rem [80.288, 289], can be used to address the question
of tunneling interaction times in an experimentally
unambiguous way. The real part of the resulting com-
plex times determine the effect a tunneling particle
would have on a “clock” to which it coupled, while
the imaginary part indicates the clock’s back-action on
the particle. They unify various approaches such as
the Larmor and Büttiker–Landauer times, as well as
Feynman-path methods. In addition, they allow one to
discuss separately the histories of particles which have
been transmitted or reflected by a barrier, rather than
discussing only the wave function as a whole. Interest-
ingly, these calculations do not support the assertion that
transmitted particles originate in the leading ramp-up of
a wave packet.

80.8.5 Other Fast
and Slow Light Schemes

In addition to the case of tunneling described already,
apparently superluminal propagation was observed in
a Bessel-beam geometry [80.290], and in the case of
an inverted medium [80.291], as described in [80.274–
276]. While the former case may be explained geo-
metrically, the latter – in which superluminal group
velocities occur without significant gain, loss, or dis-
tortion – raises difficult questions about the speeds
of propagation of both energy and information. For
two contrasting perspectives, see [80.292] and [80.293].
Much more work has followed, including theoretical
treatments of the role of quantum noise in prevent-
ing superluminal information transfer [80.294], and
attempts to experimentally compare the velocity of in-
formation transfer with the group velocity [80.295].
The latter work seemed to verify the claim, previously
tested only in an electronic analog [80.296], that even
in the regime of superluminal propagation, new in-
formation was limited to causal speeds. Some dispute
has persisted [80.297], and it seems clear that a more
rigorous definition of information velocity is required;
somewhere between the idealized extremes of infinitely
sharp signal fronts and strictly finite signal bandwidths
lies the real world, and neither the front velocity nor
the group velocity should be expected to completely
describe the behavior of actual information-carrying
pulses. At the same time, the definition of the energy
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velocity in active media cannot be resolved without re-
viving long-standing conundra about how to apportion
energy between the propagating field and energy stored
in the medium [80.298].

Since 1999, there has actually been much more
excitement over so-called “slow light” than over
“fast light” [80.299]. Building on the concepts
of electromagnetically-induced transparency [80.300]
(Sect. 69.7), two groups succeeded in that year in
utilizing the steep dispersion curves which can be
generated by extremely narrow holes in absorption
lines to slow light by a remarkable factor, with
group velocities as low as 17 m/s [80.301, 302]. Two
years later, two experiments succeeded in bringing
light to a standstill [80.303, 304]. This can be un-

derstood in terms of a “dark-state polariton” model,
in which the propagating photon is adiabatically con-
verted into a (stationary) metastable atomic excitation.
In addition to the obvious possibilities for storage of
optical pulses, particularly tantalizing at the quantum
level [80.305], there have been several proposals for
generating extremely strong optical nonlinearities in
this system, perhaps directly applicable to quantum
information processing [80.306, 307]. Both slow light
and fast light have now been observed in solid-state
systems [80.308, 309], as well. In both cases, the exten-
sion to the single-photon level remains a major goal,
for both practical and theoretical reasons. For a re-
cent review on anomalous optical propagation velocities,
see [80.310].

80.9 Gravity and Quantum Optics

According to general relativity, gravitational radiation
can be produced and detected by moving mass distri-
butions [80.311–313]. However, gravitational radiation
is coupled only to time-varying mass quadrupole mo-
ments in lowest order, since the mass dipole moment is∑

j m jr j = M Rcm and Rcm for a closed system can only
exhibit uniform rectilinear motion. Current efforts focus
on detecting gravitational waves (typically at 100 Hz to
1 kHz) from astrophysical sources, such as supernovae
or collapsing binary stellar systems. For example, it is
expected that in the nearby Virgo cluster of galaxies,
several such events should occur per year, each yielding
a fractional strain (∆L/L) of 10−21 on Earth. However,
there are large uncertainties in this estimate.

Two main efforts have been pursued toward gravi-
tational wave detection. The first type of detector, the
resonant-mass detector (sometimes known as a “We-
ber bar,” after its inventor), utilizes a large cylindrical
mass whose fundamental mode of acoustical oscilla-
tion is resonantly excited by time-varying tidal forces
produced by the passage of a gravitational wave. The
induced motions are typically detected by piezoelec-
tric crystals, or by SQUIDs (superconducting quantum
interference devices) [80.314], yielding strain sensitivi-
ties better than 10−18/

√
Hz. Such detectors were first

constructed in the 1960’s [80.313], and are still in
use (e.g., such as the 2.3-ton bar at Louisiana State
University, ALLEGRO [80.315]), but to date no in-
controvertible detections have been reported. (Attempts
to improve the signal-to-noise ratio in resonant-mass
GW detectors led to the consideration of back-action-
evading sensors (a special case of QND measurements,

Sect. 80.5.2) to circumvent the standard quantum noise
limit [80.316].)

More recently, a large amount of research has been
devoted to using optical interferometry to detect grav-
itational radiation. A passing gravitational wave alters
the relative path length in the arms of a Michelson inter-
ferometer, thereby slightly shifting the output fringes.
Although the effective gravitational mass of the light
is much smaller than that of the Weber bar, very long
interferometer arms (2–4 km, with a Fabry–Perot cav-
ity in each arm to increase the effective length) more
than make up for this disadvantage. The signal-to-
noise ratio for the detection of a fringe shift depends
on the power of the light. The US initiative, called
LIGO (Laser Interferometer Gravitational-Wave Obser-
vatory [80.317]) uses 10 W from a Nd:YAG laser, and
an additional external mirror to recirculate the unmeas-
ured light, thus increasing the stored light power up
to 10 kW.

There are three LIGO interferometers, located re-
spectively in Hanford, Washington (with both a 2 km
and a 4 km version) and Livingston, Louisiana (4 km
version). The registration of coincident events at the sep-
arated interferometers allows one to rule out terrestial
artifacts, but many problems involving seismic and ther-
mal isolation, absorption and heating, intrinsic thermal
noise and optical quality had to be addressed. The LIGO
interferometers have had several preliminary science
runs since Fall 2002; the first true “search run” is sched-
uled for 2005 [80.318]. The present sensitivities, which
range from 10−21 to 10−22/

√
Hz (at≈ 200–300 Hz) are

approaching the initial design goal of 3 × 10−23/
√

Hz.
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Other similar detectors nearing, or currently in, op-
eration are VIRGO (in Pisa, Italy), GEO 600 (near
Hannover, Germany), and TAMA (in Tokyo, Japan);
planning for an instrument (ACIGA) in Australia is un-
derway, as is planning for the NASA/ESA collaborative
Laser Interferometer Space Antenna (LISA), currently
aiming for launch in 2012 [80.319]); this space-based
interferometer, with arms up to 5 × 106 km long, would
probe frequencies from 10−4 to 10−1 Hz, inaccessible
to terrestial experiments due to seismic and atmospheric
disturbances.

Because the standard quantum noise limit of
these detectors is ultimately determined by the
vacuum fluctuations incident on the unused input
ports of the interferometers, it is in principle pos-
sible to achieve reduced noise levels by using
squeezed vacuum instead [80.313, 320] (Sect. 80.2.3).

This has been demonstrated experimentally in table-
top experiments [80.55, 321], though there are no
plans to incorporate it into the current version
of LIGO.

It has also been suggested that matter waves which
interact with gravity waves inside a matter–wave in-
terferometer (Sect. 80.3.1) could lead to a sensitive
method to detect gravitation radiation [80.322, 323].
Such a “Matter–wave Interferometric Gravitational-
wave Observatory” (MIGO) may allow the detection
of primordial gigahertz gravity waves arising from
the Big Bang [80.324]. Moreover, quantum mechan-
ical detectors based on the use of macroscopically
coherent entangled states may enable quantum trans-
ducers which can interconvert between electromagnetic
and gravitational radiations, based on time-reversal
symmetry [80.325, 326].
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Quantum Info81. Quantum Information

For many years atomic physicists had used
quantum mechanics very successfully to cal-
culate energy levels, cross sections and other
practical quantities, and for the most part, left
the philosophical issues of interpretation to oth-
ers. But after the work of Bell in the 1960’s
showed that the peculiarly nonlocal nature of
quantum correlations could be tested in the
lab, a number of atomic physicists turned to
the experimental study of entanglement and
quantum measurement. A second phase be-
gan at the start of the 1990’s when it was
realized that correlations and quantum su-
perpositions could be exploited in quantum
information processing and secure communi-
cation. This has led to an explosive growth of
the subject over the past 10 years, fuelled by
the long-term prospects of quantum computing
and the nearer goal of quantum cryptography.
We review some of these developments in this
chapter.
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Quantum information theory is regarded as a mainly
mathematics-based subject area which straddles the
fields of theoretical physics (quantum mechanics and
statistics), mathematics, and theoretical computer sci-
ence. Its success stems from the introduction of novel
methods into both physics and mathematics.

The fundamental quantity and resource in many
applications in quantum information processing is
quantum-mechanical entanglement between spatially
separated subsystems. Entanglement is a purely
quantum-mechanical effect and has led to numerous
speculations about the validity of quantum mechan-
ics itself for its apparent paradoxical implications.
Most, if not all, of these difficulties have been re-
solved and can be mostly attributed to the simple

fact that paradoxical behaviour is incompatible with
common sense or everyday experience. This initial up-
setting seems to be common to all revolutionary theories
and has occurred most notably in Einstein’s theory of
relativity [81.1].

These quantum-mechanical correlations have nu-
merous applications in quantum cryptography [or rather
quantum key distribution (QKD)], quantum communi-
cation, dense coding, and act as the main resource in
quantum computing. We will briefly touch upon some
mathematical issues concerning separability, quantifi-
cation of entanglement and channel capacities before
describing how quantum key distribution, teleportation
and dense coding work. After that, a brief discus-
sion of single-qubit and two-qubit quantum gates
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follows before we describe the simplest quantum al-
gorithms. The issues of error correction and fault
tolerant computation as well as DiVincenzo’s check-
list (which any realization should satisfy) provide the
background for the discussion of some physical imple-
mentations.

We are acutely aware of the fact that we can give
only a brief introduction into what has become a major
field of investigation over the last decade. There are al-

ready a number of review articles and textbooks on the
market that cover the vast literature on this emerging
subject. Amongst those are the first quantum comput-
ing compendium by Gruska [81.2] and the quantum
information textbooks by Nielsen and Chuang [81.3]
and Stolze and Suter [81.4]. A regularly updated anno-
tated bibliography on this subject, compiled by Cabello,
forms an invaluable resource for those interested in the
subject of this chapter [81.5, 6].

81.1 Quantifying Information

As already noted, entanglement comes about if
a quantum-mechanical system can be divided into
several parts. As an example, consider a two-photon
emission process from a spin-zero particle by which
two photons escape in opposite directions. Given that
the photons are spin-one particles, their spin projections
onto some axis must be mutually opposite. As there is
no prior information about the actual orientation of the
spin, the part of the photon wave function associated
with the spin degree is therefore

|ψ〉 = 1√
2
(| ↑↓〉− | ↓↑〉) . (81.1)

The striking feature of this type of quantum state is
that it describes correlations of two spatially separated
particles. If the polarization state of one photon is meas-
ured, the state of the other particle, which can be far
away, is then instantly predetermined. These (nonlo-
cal) correlations that exist between the particles are
of purely quantum origin and are called entanglement.
Note, however, that no information can be transmitted
faster than the speed of light with this type of set up
because the (classical) information concerning the meas-
urement result on one particle needs to be transmitted
via a necessarily causal classical channel.

The issue of nonlocality has been seen as a vital part
in understanding the foundations of quantum mechan-
ics itself (Chapt. 80). In 1935, Einstein, Podolsky, and
Rosen argued on the basis of entangled states that quan-
tum mechanics is incomplete [81.7]. They were most
concerned about the existence of elements of reality
within strongly correlated quantum systems and initiated
the debate on quantum nonlocality. The non-existence
of so-called local hidden variable theories for the de-
scription of states like (81.1) was finally demonstrated
by Bell [81.8, 9]. He showed that maximally entangled
states violate certain inequalities (now called Bell’s in-

equalities) which local hidden variable models would
have obeyed. Later experiments showed the correctness
of Bell’s demonstration [81.10–14].

In classical information theory, the unit of informa-
tion is called a bit, which can be defined as the amount of
information contained in a yes–no question. As a mat-
ter of fact, ‘bit’ is the abbreviation for ‘binary digit’ and
refers to Boolean algebra in which the allowed states of
a system are the logical 0 and the logical 1. Therefore, by
abuse of language, one bit (as a unit) is the information
carried by one bit (as a binary digit) [81.15].

In quantum mechanics, however, due to its inherent
linearity, two ‘quantum bits’ (qubits for short) can be
in superpositions of the logical states |01〉 and |10〉, or
| ↑↓〉 and | ↓↑〉, as in the example above. This typical
example of an entangled state shows that quantifying
the amount of information contained in a quantum state
is different from what is known in classical information
theory because of the superposition property. The very
same linearity prohibits us from copying an arbitrary
quantum state. This effect is known as the no-cloning
theorem [81.16]. However, universal copying machines
can be constructed within the constraints of quantum
mechanics [81.17].

81.1.1 Separability Criterion

From the above it is clear that entangled states play
a major role in defining the differences between clas-
sical and quantum information. Let us begin by asking
under which circumstances a particular given quantum
state is entangled or not. For this, we need to give a cri-
terion which allows one to decide this crucial question.
Consider a bipartite quantum state, i. e., a state which is
decomposed into two distinct, albeit possibly correlated,
subsystems A and B. Note that these subsystems them-
selves might consist of ensembles of particles, in which
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case we are looking at a bipartite cut through the whole
system. Then we say that a bipartite state is not entan-
gled and hence separable if its density operator can be
written as a convex combination of tensor product states,
viz.

�̂=
∑

i

pi �̂
i
A ⊗ �̂i

B ,
∑

i

pi = 1 . (81.2)

The range of summation in (81.2) is limited by a theo-
rem due to Caratheodory which states that every point
in a convex set can be reached by suitable convex
combinations of its extreme points. All states that can-
not be written in the form of (81.2) are said to be
entangled. Note that the set of separable states form
a convex subset of the convex set of all possible
states.

We will now give a simple criterion which de-
cides whether a given state is actually separable or
not. For this, one notes that by transposing the part
of the density operator associated with the subsystem
B, an operation which is called partial transposition,
the resulting operator will not necessarily stay pos-
itive. However, if the density operator is separable,
then its partial transpose is again a positive operator,
and hence is a valid density operator. This condi-
tion of a state possessing a positive partial transpose
is a necessary separability criterion [81.18] but suf-
ficient only in the case of density matrices having
Hilbert space dimensions 2 × 2 or 2 × 3 [81.19]. In
higher-dimensional Hilbert spaces there exist states with
positive partial transposes (PPT) which are neverthe-
less inseparable. This phenomenon is called bound
entanglement [81.20, 21].

Set of all
density
matrices

Separable
states

Ŵ

AB�

�AB
ˆ

(E )ˆ

Fig. 81.1 Convex set of bipartite density matrices; the inner
convex set represents the separable states. The witness op-
erator Ŵ forms a hyperplane that separates �̂AB from the
set of separable states

Because of the convexity of the set of separable
states, one can construct an operator (a hyperplane) Ŵ
that separates an entangled state from the disentangled
states,

tr
(
Ŵ �̂AB

)
< 0 ⇔ �̂AB inseparable ,

tr
(
Ŵ �̂AB

)≥ 0 ⇔ �̂AB separable . (81.3)

Such an operator is called an entanglement wit-
ness [81.22, 23], and its existence is ensured by
a consequence of the Hahn–Banach theorem [81.24].

A similar separability criterion can be found for
a particularly interesting class of quantum states
in infinite-dimensional Hilbert spaces, the Gaussian
states. Gaussian states are most frequently encoun-
tered in quantum optics. They comprise all coherent,
squeezed and thermal states, and combinations of them.
Although being infinite-dimensional, these states per-
mit a complete description in terms of their first
and second moments. The characteristic function of
a single-mode Gaussian state with λT = (x, p) is given
by [81.25]

χ(λ)= exp

{
imTλ− 1

4
λTV λ

}
, (81.4)

where m is a vector containing the first moments
and V is the covariance matrix containing the
second moments. A necessary and sufficient crite-
rion for separability of a bipartite Gaussian state
is that the partially transposed covariance matrix
still possesses positive symplectic eigenvalues [81.26,
27].

81.1.2 Entanglement Measures

Once one has checked for inseparability, the obvious
question to ask concerns the amount of entanglement,
hence the amount of nonclassical correlations in the
given state. For bipartite pure states the answer is unique
and given by the von Neumann entropy of one subsys-
tem, viz.,

E(|ψAB〉)= SA(�̂B)= SB(�̂A) , (81.5)

with SA(�̂B)=− tr �̂B ln �̂B where

�̂A(B) = tr
B(A)

|ψAB〉〈ψAB| .

The second equality in (81.5) follows from the left-hand
side of the Araki–Lieb inequality [81.28]

|SA − SB| ≤ SAB ≤ SA + SB (81.6)
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when noting that the entropy of a pure state vanishes. Ob-
viously, since SAB = 0, no information can be extracted
from the total state, all information is contained in the
correlations between the subsystems A and B which are
revealed by performing a measurement on one of the
subsystems.

For bipartite quantum systems prepared in mixed
states the answer is not so obvious. However, some in-
sight can already be gained by looking at the Schmidt
decomposition of the state (which, for bipartite states,
always exists) [81.29, 30], in particular, the number
of elements in the decomposition, named the Schmidt
number [81.31].

For a more precise definition of mixed bipartite
entanglement, something more is needed. Recall that
the set of separable density matrices forms a con-
vex subset of all feasible density matrices. It therefore
makes sense to look for a distance-type measure be-
tween the given state and the convex hull of product
states. Note that the possibility of defining such a meas-
ure is provided by the convexity of the separable
states and a consequence of the Hahn–Banach theo-
rem [81.24]. Generally, agreement has been reached on
what properties any feasible entanglement measure must
fulfil [81.32–34]. Let E(�̂AB) be a real-valued functional
over the tensor-product Hilbert space of bipartite dens-
ity matrices. If in addition E(�̂AB) has the following
properties:

1. E(�̂AB)= 0 for all separable states;
2. E(�̂AB) is invariant under local unitary trans-

formations, viz., E
[(

ÛA ⊗ ÛB
)
�̂AB

(
Û†A ⊗ Û†B

)] =
E(�̂AB);

3. E(�̂AB) is non-increasing under general local op-
erations assisted by classical communication, viz.,
E
(∑

i V̂ i
A ⊗ Ŵi

B�̂ABV̂ i†
A Ŵi†

B

) ≤ E(�̂AB);
4. E(�̂AB) reduces to the reduced von Neumann en-

tropy for pure states,

then E(�̂AB) is called an entanglement measure.
Important examples of widely used entanglement

measures are the entanglement of formation [81.35]

EF(�AB)= min
�̂AB=∑i pi |ψi 〉〈ψi |

∑

i

pi E(|ψi〉) , (81.7)

and the relative entropy of entanglement [81.32, 33]

ER(�̂AB)= min
σ̂=∑i pi σ̂

A
i ⊗σ̂ B

i

tr
[
�̂AB(ln �̂AB − ln σ̂ )

]
.

(81.8)

In general, both of these measures are hard to eval-
uate. Analytical formulas are known only in special
cases. For qubits, the entanglement of formation is also
a monotonic function of the concurrence [81.36,37]. The
definition of the entanglement of formation, (81.7), can
also be extended to cover Gaussian states [81.38].

The number of singlets, i. e., states of the form (81.1),
that can be distilled from an ensemble of non-maximally
entangled states is called the entanglement of distilla-
tion [81.39]. The entanglement of formation and the
entanglement of distillation differ by the amount of
bound entanglement (Sect. 81.1.1).

In some instances, when it is not necessary to com-
ply with all of the above properties of entanglement
measures, other quantities can be used to assess the
entanglement content of a bipartite state. Particularly
useful is the logarithmic negativity [81.40, 41]

EN (�̂AB)= log2

∥∥�̂P.T.
AB

∥∥
1 , (81.9)

where ‖ · ‖1 denotes the trace norm and �̂P.T.
AB the par-

tial transpose of �̂AB . This measure is often used in
connection with Gaussian states.

In close analogy to classical information theory, the
amount of nonclassical correlations is measured in ebits
when one computes entropies with the dual logarithm
(log2). For example, a pure state with state vector

|ψ〉 = 1√
2
(|01〉+ |10〉) (81.10)

in an abstract two-particle Hilbert space spanned by
the basis states {|00〉, |01〉, |10〉, |11〉} contains 1 ebit of
entanglement. It is also a maximally entangled state as-
sociated with this Hilbert space since the von Neumann
entropy of any state in a Hilbert space of dimension N
is bounded from above by log2 dim N .

We have concentrated here on bipartite entangle-
ment. The extension to multipartite systems is by no
means trivial and much remains to be done on this
subject [81.42–44].

81.2 Simple Quantum Protocols

In this section we describe the historically first and
simplest quantum protocols – quantum key distribu-
tion, quantum teleportation, and super-dense coding –

that make use of inherently ‘quantum’ properties of
quantum-mechanical systems. These are either entangle-
ment or, in the case of the simplest version of quantum
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key distribution, properties of the quantum-mechanical
measurement process. We should mention here the pion-
eering work of Holevo [81.45] who showed that there
are fundamental limits on the amount of information that
can be extracted by measurements. The application of his
ideas to channel capacity and communication [81.46,47]
are well described in [81.3] and space limitations prevent
us from elaborating on it in this chapter.

81.2.1 Quantum Key Distribution

Historically, the earliest protocol that used quantum-
mechanical features in order to realize some specific task
that could not have been performed classically was a pro-
tocol for secure distribution of a key in cryptography,
known as the BB84-protocol after its inventors Bennett
and Brassard and the year of its invention [81.48]. Al-
though it is commonly referred to as the first example of
quantum information processing, it does not make use
of entanglement which was only done some years later,
by Ekert [81.49].

The BB84 protocol works in the following way. The
sender A prepares a random sequence (or string) of sin-
gle photons in a polarization state which is chosen out
of a set of four basis states, horizontally and vertically
(H and V ) polarized, and 45◦ and 135◦ (L and R) po-
larized. In each of the two basis sets {H, V }, {L, R}
one of the states is used to encode the logical value 0
(say in H and L) and the other states encode the lo-
gical value 1 (V and R). The random sequence is sent
to the receiver B who performs measurements on the
sequence of signals by randomly choosing analogous
basis states. The result will be another string of 0’s
and 1’s that generically does not coincide completely
with the original string. To rectify this problem, sender
and receiver communicate over a classical public chan-
nel where the sender announces the sequence of basis
sets in which the photon states were prepared. The re-
ceiver compares its sequence of randomly chosen basis
states with the announced string and keeps all measure-

Table 81.1 BB84 protocol for secret key distribution. The
sender A sends information encoded in either of two basis
sets. The receiver B randomly chooses a measurement basis
which is publicly communicated. For those cases when
sender and receiver chose the same basis, the receiver’s
measurement yields a secure bit

Sender A ↗ ↑ ↘ → ↗ ↑ →
Receiver B →↑ ↗↘ ↗↘ →↑ ↗↘ ↗↘ →↑
Key 1 1 0 1

ment results for which the choice of basis had been the
same. In that way a common secret key is established
(Table 81.1).

The security against eavesdropping of this simple
protocol comes from the fact that even by knowing the
measurement basis (say {H, V }) no information has been
revealed about the choice of the actual bit value (H or
V ). Hence, it is the quantum-mechanical measurement
process itself that provides security of the protocol. The
first quantum key distribution experiments were reported
in [81.50–52]. However, imperfections in the generation
and detection of photons, transmission losses and polar-
ization drift causes an actual experimental realization
to be far from ideal. In practise, encodings other than
polarization may be used (for example a time-binned in-
terferometric basis [81.53]). Despite these error sources,
unconditionally secure quantum key distribution can
be [81.54–57] and has been achieved [81.58]. Some
fiber-based systems have reached distances of more than
100 km [81.59, 60], but discussions of their security
continue. For a review of theoretical and experimental
aspects of quantum cryptography, see [81.61].

81.2.2 Quantum Teleportation

An important utilization of entanglement as a necessary
resource can be found in what is commonly known as
quantum teleportation. The task of teleportation is to
transmit the complete information of an arbitrary un-
known quantum state to a spatially different location
with the aim of re-creating it. The simplest and obvious
way to perform this task would be to take the quantum
object which is prepared in the original state and physi-
cally transport it to a different location. But sometimes
this is not possible because for example an ion needs
to be stored in a trap and cannot be moved. The next
obvious thing to do would be to measure the quantum
state and to re-create it at a different position using the
classical information obtained during the measurement.
However, single measurements on a quantum system
yield only partial information and multiple measure-
ments on many identically prepared copies would have
to be performed.

The protocol, which was originally proposed
in [81.62] for qubits and later generalized to states in
infinite-dimensional Hilbert spaces in [81.63], makes
use of the existence of maximally entangled states. Let
the unknown quantum state which is to be teleported be
a qubit superposition state of the form

|ψ〉 = α|0〉+β|1〉 , |α|2+|β|2 = 1 . (81.11)
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2 bit classical information

Output state

Pauli
rotation

Bell
measurement

Entangled
resourceInput state

Fig. 81.2 Schematic outline of an ideal teleportation
protocol

Then one prepares a maximally entangled state of the
form (81.10) which is one of the four so-called Bell
states defined by

|Ψ±〉 = 1√
2
(|01〉± |10〉) ,

|Φ±〉 = 1√
2
(|00〉± |11〉) . (81.12)

We then form the tensor product state |ψ〉|Ψ+〉 as

|ψA〉|Ψ+
BC〉 =

α√
2
(|0A0B1C〉+ |0A1B0C〉)

+ β√
2
(|1A0B1C〉+ |1A1B0C〉)

= 1

2

[
(α|0C〉+β|1C〉)

∣∣Ψ+
AB

〉

+ (α|0C〉−β|1C〉)
∣∣Ψ−

AB

〉

+ (α|1C〉+β|0C〉)
∣∣Φ+

AB

〉

+ (α|1C〉−β|1C〉)
∣∣Φ−

AB

〉]
, (81.13)

where we have explicitly indexed the relevant sub-
systems. After performing a joint measurement on
subsystems A and B in the Bell basis (this is called
a Bell-state measurement [81.64, 65]) one obtains one
of four possible results. If the measurement result was
|Ψ+〉, then the subsystem C is indeed prepared in the
original unknown quantum state |ψ〉, hence the state
has been ‘teleported’ from subsystem A to C. For all
other measurement results the outcome is not exactly
the same quantum state as intended, but the difference
is just a unitary transformation which is uniquely de-
termined by the outcome of the Bell measurement. For
example, measuring |Ψ−〉 means one has to perform a
σ̂z-operation that flips the sign of the state |1〉, whereas
on obtaining |Φ+〉 or |Φ−〉 the operations to be applied
have to be σ̂x or σ̂z σ̂x , respectively.

Note that this quantum teleportation protocol works
with perfect fidelity only if a maximally entangled state
has been used, i. e., a state containing 1 ebit of quan-
tum information. In the course of the Bell measurement,
the quantum information is used up, and two classi-
cal bits of information (the measurement result) have
to be communicated to C in order to restore the orig-
inal quantum state. In this sense, entanglement can
be regarded as a resource or ‘fuel’ for certain tasks
in quantum information processing. The first experi-
mental demonstrations of teleportation of qubits were
performed in [81.66–68] and of continuous variables
in [81.69–71]. Recently, a teleportation experiment over
2 km standard telecommunication fibre has been re-
ported [81.72]. A generalization of teleportation is
entanglement swapping, in which EPR correlations are
established between previously uncorrelated particles by
Bell-state measurements [81.73, 74].

81.2.3 Dense Coding

The complementary protocol to teleportation is charac-
terized by the name of (super) dense coding [81.75].
The idea here is to transmit two classical bits of
information at the expense of consuming 1 ebit of
quantum information. The similarity to teleportation
is best seen by noting that if the experimental appa-
ratus of sender and receiver are interchanged and the
protocol reversed (Fig. 81.3), then one reduces to the
other. The mathematical equivalence of the teleporta-
tion and dense coding schemes has been beautifully
shown in [81.76]. As in teleportation, sender and re-
ceiver initially share a two-particle maximally entangled
state, i. e., one of the Bell states defined in (81.12).
By acting with one of the four operations Î , σ̂x , σ̂z ,
or σ̂z σ̂x on the qubit on the sender’s side, the total

2 bit classical output

1 qubit transmission

Pauli
rotation

Bell
measurement

Entangled
resource

2 bit classical input

Fig. 81.3 Schematic outline of an ideal superdense coding
protocol
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two-qubit state is again in one of the four Bell states
(81.12). Since they are mutually orthogonal to each
other, the receiver can tell them apart by measuring
in the Bell basis. In that way, two classical bits of
information (the information about the single-qubit uni-

taries) can be transmitted using only a single qubit at
a time.

An experiment using entangled photon pairs was
reported in [81.77], which demonstrated dense coding
in practise.

81.3 Unitary Transformations

As in classical information theory, one has to define
a certain set of allowed operations or maps between
states of an information-carrying system. Classical in-
formation processing allows operations such as the
NAND (Not-AND), which is defined by the Boolean
operation X1∧ X2∧· · ·∧ Xn on the Boolean variables
X1, X2, . . . , Xn . This operation is not reversible in the
sense that, given the outcome of the operation, there is no
unique way of determining what the input was. Hence,
such types of classical gates destroy information during
the course of their operation.

Loss of information or irreversibility of an opera-
tion is accompanied by an increase in entropy of the
state that has been operated on. For an initially pure
quantum state having zero entropy, this means mix-
ing the state and destroying its superposition nature and
hence its quantum-mechanical entanglement. Therefore,
the advantages of parallelism inherent in the superpo-
sition is lost. Thus, valid quantum operations in this
sense can only be those that preserve the purity of
states, hence unitary operations and partial projective
measurements. Of course, in order to reset a quan-
tum register, information has to be erased [81.78, 79].
This erasure procedure is described by a completely
positive map (see, e.g. [81.3]). Note that any allowed
quantum operation is completely positive; unitary op-
erations are a special class of these. An example
of how this constrains operations in quantum rather
than classical information theory is the absence of
a NOT operation in the former, as a NOT operation
cannot be described in terms of completely positive
maps [81.80].

81.3.1 Single-Qubit Operations

It is instructive to give an example of how to classify
all possible unitary operations that can act on a single
qubit. A unitary operation acting upon the basis states
{|0〉, |1〉} can be represented by a unitary (2 × 2)-matrix,
hence a matrix that represents an element of the unitary
group U(2). This group has four generators, the identity

matrix and the three Pauli matrices. Hence, all unitary
(2 × 2)-matrices are linear combinations of those four
matrices. Given the way they act upon basis states, they
can be written as

Î = |0〉〈0|+ |1〉〈1| , (81.14)

σ̂x = |0〉〈1|+ |1〉〈0| , (81.15)

σ̂z = |0〉〈0|− |1〉〈1| , (81.16)

and, by virtue of the commutation rules for U(2)-
generators, σ̂y = iσ̂x σ̂z . Sometimes, the short-hand
notation X ≡ σ̂x , etc., is used.

A particularly useful single-qubit gate which is not
just one of the Pauli operators is the Hadamard gate H .
In terms of Pauli operators it is defined as H = (X+ Z)/√

2. Its purpose is to transform each basis state into equal
superpositions of basis states, i. e., |0〉 �→ (|0〉+|1〉)/√2
and |1〉 �→ (|0〉−|1〉)/√2. The Hadamard gate is used to
initialize an equal superposition of all possible N-qubit
basis states from the state |0〉⊗N . Hence,

N⊗

i=1

Hi |0〉⊗N = 1√
N !

∑

k

|xk〉 , (81.17)

where the |xk〉 are all N ! possible words of length N
containing 0’s and 1’s.

81.3.2 Two-Qubit Operations

Similarly to the single-qubit case, one can write down
all possible unitary operations on two qubits by noting
that they constitute a representation of U(4). We will
not give an exhaustive list of all 16 generators of this
group since they can be found in the literature. Instead,
we give examples of particularly useful two-qubit gates.
Trivially, the group U(4) contains an 8-parameter sub-
group U(2)×U(2) which consists of operations such as
X1⊗ X2, etc.

Particular examples of nontrivial two-qubit gates
are the controlled-NOT and the controlled-phase gate,
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Control

Target

00�
01�
11�
10�11�

10�
01�
00�

Fig. 81.4 Symbol and truth table of the controlled-NOT
gate. The target qubit is flipped depending on the state of
the control qubit

defined in terms of Pauli operators as

C12 = |01〉〈01|⊗ I2+|11〉〈11|⊗ X2 , (81.18)

Π12 = |01〉〈01|⊗ I2+|11〉〈11|⊗ Z2 , (81.19)

where in both cases qubit 1 acts as the ‘control’ and
qubit 2 acts as the ‘target’ (Fig. 81.4). The net ef-
fect of the controlled-NOT gate is to interchange the
states |10〉 ↔ |11〉, whereas the controlled-phase gate
changes the phase of the basis state |11〉 by π and
leaves all other states unchanged. The controlled-NOT
gate has an interpretation as a sum gate in that it
performs a mapping |x, y〉 �→ |x, x⊕ y〉 where the ad-
dition has to be taken modulo 2. Moreover, it acts as
an entangling gate when acting on tensor products of
superpositions.

81.3.3 Multi-Qubit Gates and Networks

To realize a unitary operation on many qubits for
a particular algorithm one would need a network of
single-particle and multi-particle quantum gates. Quan-
tum networks enable a prepared input state to be
transformed by the appropriate unitary operator to a final
state which is then measured. Deutsch’s model of quan-
tum networks enables us to decompose the network into
component gates in diagrammatic form [81.81]. The task
is then to optimize the sequence of gates. One can treat
quantum gates acting on N qubits as being elements of
the group U

(
N2

)
which has N4 generators. This, how-

ever, is not a particularly transparent or useful way of
looking at these gates. Much more useful, and of im-
mense practical importance, is a result essentially from
linear algebra which states that every N-qubit gate can
be decomposed into a network of single-qubit and two-
qubit operations [81.82]. As a matter of fact, there is an
even deeper result which says that every N-qubit gate
can be generated by a network that consists only of very
few elementary building blocks, the so-called universal
set of quantum gates [81.83–85]. This set contains all
possible single-qubit rotations and one nontrivial two-
qubit gate, such as the above-mentioned controlled-NOT
or controlled-phase gate.

81.4 Quantum Algorithms

The search for algorithms that would run faster on
a quantum computer than on any classical computer
is a formidable task. When we say faster, we actu-
ally mean that the temporal complexity in performing
a given task should be drastically reduced. The hope is
that eventually one will find algorithms that provably run
exponentially faster on a quantum computer compared
to a classical computer.

81.4.1 Deutsch–Jozsa Algorithm

Let us give a particularly instructive example known
as the Deutsch–Jozsa algorithm [81.86]. Let us sup-
pose one is given a string of N bits and a Boolean
N-bit function f(x) such that |x〉|y〉 �→ |x〉|y⊕ f(x)〉
for x ∈ {

0, . . . , 2N −1
}
. From f(x) is known that it

either returns always 0 or 1 (in which case one calls
it ‘constant’) or returns 0 and 1 with equal probabil-
ity (in which case it is ‘balanced’). The task is to find
out whether f(x) is constant or balanced. Classically,
one needs at least 2N−1+1 strings to find the answer.

Quantum-mechanically, one prepares the trial input in
a superposition of all possible computational basis states
using the Hadamard gate from (81.17) and uses one
function evaluation on all basis states simultaneously
(Fig. 81.5). A measurement outcome other than 0 on any
of the N query qubits then tells that the function f(x) is
balanced. If it were constant, the measurement outcome
would be 0 in all query qubits. This quantum paral-
lelism is at the heart of the increase in speed that occurs
in quantum computation. Versions of the Deutsch–Jozsa

0� N N
H

NH

H1�

x x

y y

Uf

f (x)

Fig. 81.5 Gate network for implementing the Deutsch–
Jozsa algorithm
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algorithm involving a few qubits have been implemented
in nuclear magnetic resonance systems [81.87, 88] as
well as ion traps [81.89].

81.4.2 Grover’s Search Algorithm

In contrast to the preceding example, which always gives
the desired answer after exactly one trial, the quantum
search algorithm by Grover [81.90] uses a procedure
that amplifies the sought after result by a method called
‘inversion about average’. The goal of Grover’s algo-
rithm is to search an unsorted database with 2N entries
out of which only one fulfils a given criterion. As in the
Deutsch–Jozsa algorithm described above, the query is
simultaneously run on all 2N possible N-qubit basis
states, being prepared in an equal superposition. It is
assumed that the state that satisfies the search criterion
will acquire a phase shift of π. After this step, the in-
version about average is carried out. It is represented by
a diffusion operator

D̂ = 2P̂− Î , (81.20)

where Î is the identity operator and P̂ a projection op-
erator that averages each input vector with respect to its
components. Compared to the previous average value
of probability amplitudes, after each of these steps the
magnitude of the desired state increases by O

(
2−N/2

)
.

This procedure is repeated, and after only O
(
2N/2

)
steps

a projective measurement yields the desired result with

probability of O(1), or more precisely, of more than
a half. This is a quadratic increase in speed compared to
classical search algorithms, which need O

(
2N

)
steps.

We have seen in these two examples that the use of
quantum-mechanical superpositions can lead to a speed
increase compared to the best classical algorithms. The
most prominent example of such increases in speed
is found in Shor’s algorithm for factoring large num-
bers [81.91,92]. Its core element is essentially a quantum
Fourier transform to find the period of a Boolean
string. This algorithm provides an exponential speed in-
crease over any known classical algorithm. It should
be noted, however, that the fastest known classical
algorithm has not yet been proven to be optimal. Im-
plementations in nuclear magnetic resonance systems
with a few qubits have been reported for the quantum
Fourier transform [81.93] as well as Shor’s factoring
algorithm [81.94].

It turns out that there exists a whole class of algorith-
mic problems, the hidden subgroup problems [81.95–
97], whose quantum-mechanical analogues can lead
to exponential increases in speed over their classical
counterparts, a particular example of which is Shor’s
factoring algorithm. Another instance of quantum-
mechanically exponentially faster processes is found in
quantum random walks on hypercubes where hitting
times, i. e., the traversal time of an excitation across the
cube’s diagonal, can be exponentially faster than for
classical random walks [81.98].

81.5 Error Correction

As we have discussed, the essence of quantum infor-
mation processing is the use of quantum superpositions,
interference, and entanglement. But quantum interfer-
ence is fragile. It appears in practice that it is very
difficult to maintain a superposition of states of many
particles in which each particle is physically separated
from all the others. Entanglement turns out to be in-
credibly delicate. The reason for this is that all systems,
quantum or classical, are not isolated; they interact with
everything around them: local fluctuating electromag-
netic fields, the presence of impurity ions, coupling to
unobserved degrees of freedom of the system contain-
ing the qubit, etc. These fluctuations destroy quantum
interference. A simple analogy is the interference of op-
tical waves in Young’s double slit experiment. In that
apparatus waves from two spatially separated portions
of a beam are brought together. If the two parts of the
beam have the same phase, then the fringe pattern re-

mains stable. But if the phase of one part of the beam
is drifting with respect to the other, then the fringe pat-
tern will be washed out. And the more slits there are in
the screen, the lower the visibility for the same amount
of phase randomization per pair of slits. The sensitiv-
ity of an N-qubit register to decoherence is even worse,
as a maximally entangled N-particle state decoheres at
a rate N times faster than a single particle [81.99], one
of the reasons why the world around us appears so clas-
sical. A single bit of information lost to an unobserved
degree of freedom will result in the reduction of the
quantum superposition to a mixed state. Yet correcting
errors due to environmental interactions is essential if
a quantum computer is to be constructed: to do ‘fault
tolerant’ computing we need to be able to execute many
gate operations coherently within the decoherence time
if we are to have a chance of building a scalable quantum
register [81.100].
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It might appear that the problem of stabilizing a reg-
ister of qubits is hopeless, like trying to balance several
pencils on their tips while on the deck of a ship in
a storm. But, amazingly, quantum mechanics provides
a way to solve this problem, through the use of even
higher levels of entanglement. Shor and coworkers,
and independently Steane showed in the mid-1990’s
that encoding information in entangled sets of qubits
offered the opportunity to execute quantum error correc-
tion [81.101, 102]. That one can do this is a remarkable
consequence of entanglement. In classical information
processing, inevitable environmental noise is dealt with
by error correction. In its simplest form, this involves
repeating the message transmission or calculation until
a majority result is obtained.

But there are more efficient ways, for example, use
of a parity check on a block of bits. It turns out that
a similar notion can be applied to a quantum register.
However, the application is not straight forward be-
cause the contents of a register cannot be measured
without destroying the superposition state encoded in
it. The problem then is to determine what errors might
be present in a quantum register without looking at the
qubits. The elegant solution is to entangle the qubits in
question with those in an ancillary register and meas-
ure the ancillary register. Because the two registers are
correlated, the results of the measurement of the an-
cilla reveal any errors present in the processing register

without destroying any coherent superpositions in the
processing register itself.

The first experimental demonstration of quantum
error correction used NMR techniques [81.103–105],
but given the inherently mixed nature of NMR quan-
tum computing [81.106], this has had limited impact
on quantum information processing (QIP). However,
very recently, Wineland’s group in Boulder has suc-
ceeded in implementing quantum error correction using
laser-cooled trapped ions [81.107].

Another way to prevent the register coherence from
falling apart is to know a little about the sort of noise
that is acting on it. If the noise has some very slow com-
ponents (or those with very long wavelengths), then it
is sometimes possible to find certain combinations of
qubit states for which the noise on one qubit exactly
cancels the noise on another. These qubit states live
in a ‘decoherence-free subspace’ (DFS) [81.108–111].
A computer will then be immune to environmental per-
turbations if all the computational states lie in this DFS.
The connection between DFS and quantum error correc-
tion codes has been shown in [81.112]. Kwiat [81.113],
using photonic qubits, and Wineland’s group [81.114],
using trapped ions, have demonstrated the use of DFS
experimentally.

Although these results are encouraging, we are still
a long way from the figure of merit for gate time to
decoherence time needed for fault tolerance.

81.6 The DiVincenzo Checklist

DiVincenzo gave a list of requirements that a phys-
ical implementation must fulfil in order to qualify as
a sensible candidate for an implementation of quantum
information processing [81.115].

81.6.1 Qubit Characterization, Scalability

Each physical implementation must be tested upon how
qubits should be encoded. For a qubit being essentially
a two-level system, this task is generally not too diffi-
cult. Several candidates, such as electronic or nuclear
spin, photon polarization, choice of path in an inter-
ferometer, degenerate ground states of an atom or ion,
charge or flux states in superconducting quantum inter-
ference devices (SQUIDs) or exciton population, have
all been recently explored. Much more challenging will
be the question as to whether there are fundamental
or technological limitations of having many of those
qubits being operated upon seperately, hence whether

the system can be scaled up to contain potentially many
qubits.

81.6.2 Initialization

Once the qubits have been specified, each quantum infor-
mation processing or quantum computation task needs
to be able to start from a well-defined state. This can be
basically any quantum state of the many-qubit system
as long as it is a product state and can be prepared error-
free. Commonly, this state is then called the ground state
and denoted by |0〉⊗N .

81.6.3 Long Decoherence Times

In order to ensure error-free computation without loss of
purity of quantum superpositions, the decoherence times
that are relevant for the quantum operation should be
much longer than the gate operation time itself. In most
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situations, decoherence limits the number of qubits that
can be worked on simultaneously, thus affecting the scal-
ability of the system. Typical examples of decoherence
processes are heating mechanisms in ultracold systems,
such as ion trap or atom chip experiments, spin relax-
ation in NMR-type experiments, or absorption in linear
optical elements.

Generally, decoherence is unavoidable due to the
basic principles upon which quantum information pro-
cessing is supposed to work. Avoiding decoherence
means isolating the system from the outside world, the
environment. But controlling the interaction between
subsystems always has the negative effect of bringing
the system in contact with the environment and there-
fore necessarily introduces decoherence. Once one has
accepted that decoherence is unavoidable, ways have
to be found to guard against it. Several error-correction
schemes have been proposed that can correct for certain
small amounts of decoherence as described in Sect. 81.5.

81.6.4 Universal Set of Quantum Gates

A necessary prerequisite for quantum information pro-
cessing and quantum computing is the ability to generate

a set of quantum gates that can be considered universal.
With such a set it will then be possible to generate all
other quantum gates by concatenating them to form suit-
ably arranged networks. The choice of which set out of
the many possible is taken, depending on the physic-
al implementation itself. Basically, it is determined by
the operations that are intrinsically simple for the given
interaction Hamiltonian. In some applications, such as
the ion trap experiments, the controlled-NOT gate is pre-
ferred as the nontrivial two-qubit gate, whereas in linear
optical networks one rather works with the controlled-
phase gate.

81.6.5 Qubit-Specific Measurement

The last requirement is to be able to read out the
result of the computation. That is, there has to be
a way of providing a selective projective measure-
ment. This proves to be a major challenge in most
proposals for implementing quantum computing. Ex-
amples of the challenges involved are the necessity
to provide photon-number resolving photodetectors,
single-electron charge measurement devices, or single-
spin measurements.

81.7 Physical Implementations

Quantum information theory regards relevant objects
as abstract quantities in a Hilbert space of a certain
dimension. The different strands in its development
can be roughly divided into generalized spin sys-
tems (qubits, qudits, the d-dimensional generalization
of qubits) living in finite-dimensional Hilbert spaces,
and harmonic oscillator systems which naturally live in
infinite-dimensional Hilbert space. The latter are hence
called continuous-variable (cv) systems. Examples for
generalized spin systems are polarization states of a pho-
ton, magnetic sublevels of atomic hyperfine states or,
to a good approximation, electronic levels of atoms
and ions. Harmonic oscillator systems can be found in
atomic populations in optical lattices, electromagnetic-
field modes or indeed any excitation of a bosonic
quantized field.

Both strands have their own virtues and disad-
vantages. Harmonic oscillator systems are naturally
abundant and, in their materialization as photons, rather
easily accessible and manipulable. However, due to their
Hilbert space dimensionality, the nonlinear operations
that are required for quantum gates are generally hard
to achieve. In contrast, spin-like systems (apart from

photon polarization) require more experimental effort in
preparing them but, unlike harmonic oscillator systems,
they can show effective nonlinearities due to the finite
dimensionality of their Hilbert space (the nonlinearities
appear when coupled to another physical system which
can then be traced out).

81.7.1 Linear Optics

The use of photons as carriers of quantum informa-
tion seems to be a straightforward matter for several
reasons. First, they are easy to produce and to manip-
ulate, and second, they both show spin-like behaviour
(polarization) and can be treated as continuous-variable
systems (Gaussian states). There exists, however, yet
another possibility to store and manipulate quantum
information in photons, namely when encoding in-
formation in number states or Fock states. But as
noted before, for photons being bosonic systems, there
are no natural nonlinearities (at least none which is
strong enough) on the level of single or few photons.
The trick here is to use conditional measurements or
measurement-induced nonlinearities. The idea was first
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Ancilla photon

Control qubit

Target qubit

PBS

PBS 45

Fig. 81.6 Schematic setup of an all-optical controlled-NOT
gate. Control and target qubits are encoded in the polariza-
tion of single photons. These are fed into polarizing beam
splitters (PBS), one of which is rotated by 45 degrees

put forward in [81.116, 117] and realized experimen-
tally in [81.118,119], where a polarization-encoding was
used. Figure 81.6 shows the schematic setup of a sim-
plified version of a controlled-NOT gate with one single
ancilla photon (after [81.120]).

Measurement-induced nonlinearities make use of
the fact that unitary transformations in a larger
Hilbert space, e.g., with added auxiliary photon modes
combined with photodetection, can yield effective non-
linearities [81.121]. The drawback is, however, that the
wanted nonlinearity is conditioned on the appearance
of a certain measurement pattern which means that
these schemes work only with a certain probability.
Bounds for certain classes of gates have been reported
in [81.122–125].

The set of quantum gates that can be considered
fundamental differs slightly from most other physical
implementations. Within the qubit encoding in photon-
number states the gates that can actually be implemented
efficiently are those that act within Fock layers (sub-
spaces of fixed total photon number), such as Z, the
controlled-phase gate, or the swap gate. Other gates that
do not fall into this class require excessively more re-
sources unless other types of qubit encodings are used
simultaneously.

Gate operation times can be very fast and are only
limited by the gating times of the photodetectors. How-
ever, a major experimental challenge is mode-matching
in larger networks and interferometric set-ups.

A complementary approach to the gate model is
based on so-called cluster states which were originally

introduced to describe the properties in 3D optical lat-
tices [81.126] (Sect. 81.7.4). In the cluster-state model
the computational process is not described by a succes-
sion of elementary gates that act upon an (in principal
arbitrary) input state, but by a well-defined sequence of
single-qubit measurements performed on a maximally
entangled ‘cluster’ of qubits. It has been realized that
the cluster-state model represents an alternative model
for quantum computing, the so-called ‘one-way quan-
tum computer’ [81.127]. It was later found that there
also exists a linear optical realization of the cluster-based
approach [81.128, 129] which has been experimentally
verified [81.130].

81.7.2 Trapped Ions

So far, the most advanced method in terms of the
number of qubits and the number of gates that have
been generated is by using ultracold ions stored in
linear Paul traps (Chapt. 75) in which radio-frequency
fields are used to generate confining potentials. The
ions are trapped in the radial direction by electric
quadrupole fields and in the axial direction by a static
repulsive Coulomb force [81.131, 132]. The ions are
cooled into their motional ground states by Doppler
cooling [81.133, 134] and further cooled by resolved
sideband cooling [81.135]. The qubits are encoded into
two metastable electronic states. Various groups have
used either transitions to metastable states or Raman
coupling to avoid the decoherence that an upper-state
lifetime would generate. The coupling between qubits is
provided by the common vibrational motion in the Paul
trap [81.136,137]. For reviews of the dynamics of laser-
cooled ions [81.138–141]. To date, a few qubits have
been entangled and coherently manipulated. Simple
quantum algorithms have been demonstrated [81.142]
and teleportation achieved [81.143, 144].

81.7.3 Cavity QED

Cavity QED provided the very first examples of atom-
field entanglement. Single atoms interacting with single
cavity-field modes are well described by the Jaynes–
Cummings model [81.145]. In this model, excitation
is transferred periodically between atoms and field
provided the Q-factor of the cavity is high enough
(Chapt. 79). The Rabi flopping can be used to gener-
ate controlled superpositions, and the cavity field used
as a catalyst to entangle atoms [81.146]. Although it is
possible to coherently manipulate single or few qubits
in cavity QED, scaling to large numbers of qubits would
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Fig. 81.7 Counter-propagating laser beams induce a peri-
odic spatially varying trapping potential through the AC
Stark shift

seem very difficult. Nevertheless, trapped atoms within
cavity QED environments offer great potential as local
processors linked by quantum communication chan-
nels [81.147]. Progress towards this has been reported
by several groups [81.148–151].

81.7.4 Optical Lattices, Mott Insulator

Another possible way of implementing quantum com-
putation is with cold atom technology. This includes the
application of optical lattices in a sufficiently cold cloud
of atoms showing Bose–Einstein condensation (BEC).

In recent years it has been realized that Bose–
Einstein condensates can undergo a phase transition
if loaded into a three-dimensional periodic potential
which, for example, can be realized by standing-wave
optical fields [81.152, 153]. That is, one starts off
with a BEC in its superfluid phase, in which the
relative phases (or rather correlations) between the
atoms are well-defined such that the whole ensemble
of atoms can be described by a single macroscopic
wave function (in first approximation). By loading this
condensate into the optical lattice (Fig. 81.7) the num-
ber of atoms per lattice site is undetermined and can
vary widely. However, when increasing the strength
of the potential by increasing the power of the laser
beams that create the standing-wave potential, even-
tually there will be a phase-transition to a state of
the condensate in which each lattice site is occu-
pied by a fixed and well-defined number of atoms
(ideally we would like to have exactly one atom
per site). In this so-called Mott-insulator phase, the
relative phases (or correlations) between neighboring
lattice sites are undetermined. Experimental evidence

of this phase-transition has been obtained in the beau-
tiful experiments described in [81.154–156]. Although
a Bose–Einstein condensate really exists only in three
dimensions (since only there one finds a phase transition
from a thermal cloud to a condensate), there are anal-
ogous systems, such as the quasi-condensate [81.157]
and the Tonks–Girardeau gas [81.158] (for recent exper-
iments, see [81.159, 160]), in one dimension that have
similar properties.

Such a system is well described by the Bose–
Hubbard Hamiltonian [81.152, 153], in which the
collisional interaction between atoms at the same lattice
site provides the necessary nonlinearity. Atoms trapped
in a one-dimensional optical lattice could serve as an
atomic register that promises well controlled single-
qubit and two-qubit manipulability. A universal set of
quantum gates can be realised by manipulations of the
lattice potential with additional laser fields [81.161]. The
different types of quantum gates could, for example,
be realized if the atoms possess two degenerate ground
states that are used for the qubit encoding (as sketched in
Fig. 81.7). A Raman transition between the ground states
would result in single-qubit operations, whereas con-
trolled collisions between atoms in neighboring lattice
sites would produce two-qubit gates. Recently, three-
qubit gates [81.162] and global adressing of strings of
qubits have been proposed [81.163].

The estimated gate evolution times in the adiabatic
regime are roughly O(100 ms), which is just one to
two orders of magnitude below the trapping lifetime
measured in recent experiments [81.164–166]. The dom-
inant loss effect is thereby a thermally induced spin flip
mechanism that causes the atoms to leave the trapping
region [81.167–169]. The gate evolution times could be
reduced by several orders of magnitude in non-adiabatic
regimes. The price to pay is that the temporal evolu-
tion of the laser pulse envelope has to be controlled
much more precisely. Although quantum information
processing using cold atom technology is still in its in-
fancy, it promises to provide relatively long decoherence
times. Moreover, scalability seems possible as rather
long one-dimensional strings of atoms could be formed.
Experimental evidence for this has of course yet to be
shown.

81.8 Outlook

We have discussed the very basic ideas behind quantum
information and described a few possible applications.
However, the immense wealth of ideas and possible

routes have barely been touched upon. Quantum key
distribution is already at a stage where private compa-
nies are selling component parts to set up commercial
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QKD systems. Only a few qubits have been maxi-
mally entangled and manipulated experimentally, so far.
But a great number of qubits has been partially en-
tangled within optical lattices [81.170] or in atomic
vapours [81.171]. The dynamics of qubit interactions
in such systems is closely related to systems studied in
phase-transition theory, pointing to yet another appli-
cation of the subject. The simulation of many-particle
quantum systems is of course intrinsically difficult and
could well require a quantum computer for its anal-
ysis [81.172–175]. If and when a quantum computer

can be built remains shrouded in mist. However, the
ideas and methods that have already come out of quan-
tum information theory provide useful tools for tackling
other, seemingly unrelated, problems. One direction of
current research regards many-body problems in con-
densed matter systems and quantum field theory (see,
for example, [81.176]).

We have touched upon only a small part of a rapidly
developing subject – one in which quantum effects are
the enablers of new technology [81.177]. We are confi-
dent that much more remains to be discovered.
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Applications o82. Applications of Atomic and Molecular Physics
to Astrophysics

The range of physical conditions of density,
temperature, and radiation fields encountered in
astrophysical environments is extreme and can
rarely be reproduced in a laboratory setting. It is
not only reliable data on known processes that
are needed but also a deep understanding so that
the relevant processes can be identified and the
influence of the conditions in which they occur
fully taken into account.

We present here a summary of the processes
that take place in photoionized gas, collisionally
ionized gas, the diffuse interstellar medium,
molecular clouds, circumstellar shells, supernova
ejecta, shocked regions and the early Universe.

82.1 Photoionized Gas ................................ 1235

82.2 Collisionally Ionized Gas ....................... 1237

82.3 Diffuse Molecular Clouds ...................... 1238

82.4 Dark Molecular Clouds .......................... 1239

82.5 Circumstellar Shells
and Stellar Atmospheres ...................... 1241

82.6 Supernova Ejecta ................................. 1242

82.7 Shocked Gas ........................................ 1243

82.8 The Early Universe ............................... 1244

82.9 Recent Developments........................... 1244

82.10 Other Reading ..................................... 1245

References .................................................. 1245

Almost all our information about the Universe reaches
us in the form of photons. Observational astronomy is
based on measurements of the distribution in frequency
and intensity of the photons that are emitted by as-
tronomical objects and detected by instrumentation on
ground-based and space-borne telescopes. Information
about the earliest stages in the evolution of the Uni-
verse before galaxies and stars had formed is carried
to us by blackbody background photons that attended
the beginning of the Universe. The photons that are the
signatures of astronomical phenomena are the result of
many processes of nuclear physics, plasma physics and
atomic, molecular and optical physics. The processes
that modify the photons on their journey from distant
origins through intergalactic and interstellar space to
the Earth belong mostly to the domain of atomic, mo-
lecular, and optical physics, as do the instruments that
detect and measure the arriving photons and their spec-
tral distribution. The spectra are used to classify galaxies
and stars and to identify the astronomical entities and
phenomena such as quasars, active galactic nuclei, grav-

itational lensing, jets and outflows, pulsars, supernovae,
novae, supernova remnants, nebulae, masers, protostars,
shocks, molecular clouds, circumstellar shells, accretion
disks and black holes.

Quantitative analyses of the spectra of astronom-
ical sources of photons and of the atomic, molecular,
and optical processes that populate the atomic and mo-
lecular energy levels and give rise to the observed
absorption and emission require accurate data on transi-
tion frequencies and wavelengths, oscillator strengths,
cross sections for electron impact, rate coefficients
for radiative, dielectronic and dissociative recombina-
tion, and cross sections for heavy particle collisions
involving charge transfer, excitation, ionization, dissoci-
ation, fine structure, and hyperfine structure transitions,
collision-induced absorption and line broadening. Data
on radiative association and ion–molecule and neutral
particle reaction rate coefficients are central to the in-
terpretation of measurements of chemical composition
in molecular clouds, circumstellar shells and supernova
ejecta.

82.1 Photoionized Gas

The Universe contains copious sources of energetic pho-
tons most often in the form of hot stars, and much of
the material of the Universe exists as photoionized gas.

Photoionized gas produces the visible emission from
emission nebulae, planetary nebulae, nova shells, star-
burst galaxies and probably active galactic nuclei [82.1].

Part
G

8
2



1236 Part G Applications

Emission nebulae are extended regions of luminosity
in the sky. They arise from the absorption of stellar radi-
ation by the gas surrounding one or more hot stars.The
gas is ionized by the photons and excited and heated by
the electrons released in the photoionizing events. A suc-
cession of ionization zones is created in which highly
ionized regions give way to less ionized gas with in-
creasing distance from the central star as the photon flux
is diminished by geometrical dilution and by absorp-
tion. The outer edge of a nebula is a front of ionization
pushing out into the neutral interstellar gas. The dens-
ities are typically between 100 and 10 000 cm−3 and the
temperatures between 5000 and 15 000 K. Nebulae are
also called Hii regions. At low densities, the luminosity
is low, but the ionized regions can still be detected by
radio observations.

Planetary nebulae are smaller in extent and more
dense. They have a passing similarity in appearance to
planets. Planetary nebulae are produced by the photoion-
ization of shells of gas that have been ejected from the
parent star as it evolved to its final white dwarf stage.
Because the core of the parent star is very hot the ir-
radiated gas is more highly ionized than are emisssion
nebulae and has a distinctive spectrum.

Photoionized gas is also found around novae. No-
vae are stars that have undergone spasmodic outbursts
and they are surrounded by faint shells of ejected
gas, photoionized and excited by the stellar radiation.
Some supernova remnants, which are what remains after
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Fig. 82.1 X-ray spectrum of the supernova remnant Puppis A as observed by the Einstein satellite. Note the high level of
ionization with hydrogen-like ions of oxygen and neon, suggesting a high temperature. After [82.2]

a massive star has exploded, have spectra that also ap-
pear to be emanating from photoionized gas. The source
of ionization may be synchrotron radiation. Figure 82.1
shows the X-ray emission spectrum of a supernova
remnant.

The nuclei of starburst galaxies have spectra like
those of emission nebulae. They result from gas pho-
toionized by radiation from hot stars created in a period
of rapid star formation. Active galactic nuclei, such
as quasars, have a different spectrum characterized
by broad lines indicating a large range of velocities.
Photoionized gas is the most likely interpretation.The
ionizing source may be an accretion disk around a com-
pact object such as a black hole.

The ionization structure in a photoionized gas is
determined by a balance of photoionization

X(m−1)++hν→ Xm++ e− (82.1)

and radiative

Xm++ e− → X(m−1)++hν (82.2)

and dielectronic

Xm++ e− → (
X(m−1)+)∗ → X(m−1)++hν (82.3)

recombination, and in plasmas with a significant popula-
tion of neutral hydrogen and helium, by charge transfer
recombination

Xm++H → X(m−1)++H+ (82.4)

Xm++He → X(m−1)++He+ . (82.5)
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Many detailed calculations of the ionization structure of
photoionized regions have been carried out [82.1].

The ionizing source spectra of hot stars can
be obtained from calculations of stellar atmospheres
Sect. 82.5. Approximate values of cross sections for
photoionization for a wide range of atomic and ionic sys-
tems in many stages of ionization are available [82.3–6].
Calculations of higher precision and reliability that
incorporate the contributions from autoionizing reso-
nance structures exist for specific systems [82.7]. They
are undergoing continual improvements as increasingly
powerful computational techniques are brought to bear
on the calculations.

The cross sections for radiative recombination are
obtained by summing the cross sections for capture into
the ground and excited states of the recombining sys-
tem. Because of the contribution from highly excited
states which are nearly hydrogenic, the rate coefficients
are similar for different ions of the same excess nu-
clear charge. They vary slowly with temperature. In
contrast, dielectronic recombination is a specific process
whose efficiency depends on the energy level positions
of the resonant states. For nebular temperatures, the rate
coefficients vary exponentially with temperature. Ex-
plicit calculations have been carried out for many ionic
systems [82.8–10]. Because the photoionization cross
sections of the major cosmic gases hydrogen and helium
diminish rapidly at high frequencies, multiply charged
ions and neutral gas coexist in cosmic plasmas produced
by energetic photons and charge transfer recombina-
tion may control the ionization structure. For multiply
charged ions with excess charge greater than two, charge
transfer is rapid. For doubly charged and singly charged
ions, the cross sections are sensitive to the details of the
potential energy curves of the quasimolecule formed in
the approach of the ion and the neutral particle. Few re-
liable data exist. Some recent calculations may be found
in the papers [82.11–13].

Photoionized gas is heated by collisions of the en-
ergetic photoelectrons and cooled by electron impact
excitation of metastable levels, principally of O+ and
O++, N+ and N++, and S+ and S++, followed by
emission of photons which escape from the nebula. Con-
siderable attention has been given to the determination

of the rate coefficients [82.14]. The resulting cooling
rates increase exponentially with temperature and keep
the temperature of the gas between narrow limits. Some
contribution to cooling occurs from recombination and
from free-free emission by electrons moving in the field
of the positive ions.

The luminosity of the photoionized gas comes from
the photons emitted in the cooling processes and from
radiative and dielectronic recombination. The radiative
recombination spectrum of hydrogen extends from the
Lyα line at 121.6 nm to radio lines at meter wavelengths.

The recombination spectrum can be predicted to
high accuracy, and calculations for a wide range of
temperature, density, and radiation environments have
been carried out for diagnostic purposes [82.15–18].
Electron impact and proton impact induced transitions
are important in determining the energy level popula-
tions and the resulting spectrum. Stimulated emission
often affects the intensities of the radio lines, espe-
cially those from extragalactic sources. Comparisons of
the predicted intensities in the visible and infrared with
theoretical predictions yield information on interstellar
extinction in the nebula and along the line of sight.

The relative intensities of the lines emitted by dif-
ferent metastable levels depend exponentially on the
temperature. The relative intensities of the lines at
500.7 nm and 436.3 nm originating in the 1D2 and 1S0
levels of O++ vary as exp(33170/T ), and are commonly
used to derive the temperature T .

The electron density can be inferred from the lines
emitted from neighboring levels with different radiative
lifetimes for which there occurs a competition between
spontaneous emission and quenching by electron im-
pact. There are many possible combinations of lines.
The lines at 372.89 nm and 372.62 nm emitted by the
2D3/2 and 2D5/2 levels of N+ are readily observable
and their relative intensity yields the electron density.

Radiative and dielectronic recombination lines are
often seen in the spectra, as are a few lines due to charge
transfer recombination. Fluorescence of starlight and
resonance fluorescence of lines emitted in the nebula
(called Bowen fluorescence by astronomers) also con-
tribute to the spectra of photoionized gases. Many data
are needed to adequately interpret the observations.

82.2 Collisionally Ionized Gas

Hot gas is found in the coronae of stars and particu-
larly the Sun, and in young supernova remnants, in
the hot phase of the interstellar medium, and in inter-

galactic space. In a hot gas the ionization is produced
by the impact ionization of the fast thermal electrons
and recombination is radiative and dielectronic [82.19].
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The rate coefficients for electron impact ionization and
for recombination for any given ionization stage are
functions only of temperature, and hence so is the
resulting ionization distribution. When ionization and
recombination balance, coronal equilibrium is attained
in which the ionization structure is specified by the
temperature.

Recombination at high temperatures is dominated
by dielectronic recombination. At high temperatures,
dielectronic recombination is stabilized by transitions
in which the core electrons are the active electrons.
The associated emission lines lie close in frequency to
that of the resonant transition of the parent ion. They
are called satellite lines. Together with lines generated
by electron impact excitation, they provide a powerful
diagnostic probe of density and temperature. In many
circumstances such as in supernova remnants, coronal
equilibrium does not hold, and the ionization and re-
combination must be followed as functions of time. The
temperature also evolves as the hot plasma is cooled by
electron impact excitation and ionization.

The recombining gas produces X-rays and extreme
UV radiation which modify the ionization structure.
There is a particular need for more reliable data on
high energy photoionization cross sections, on collision
cross sections for electrons and positive ions, and on
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Fig. 82.2 Total emissivity and emissivity by element as
a function of temperature in coronal equilibrium. The heavy
solid curve is total emissivity and the lighter lines are
contributions from individual elements. After [82.20]

the energy levels and transition probabilities of highly
stripped complex ions. Figure 82.2 shows the emissivity
of coronal gas.

82.3 Diffuse Molecular Clouds

Diffuse molecular clouds are intermediate between the
hot phase of the galaxy and the giant molecular clouds
where much of the gas resides. They are called diffuse
because they have optical depths of order unity, so pho-
tons can penetrate from outside the cloud and affect
the chemical composition. The atoms and molecules
are observed in absorption against background stars.
Translucent clouds with optical depths between about
2 and 5 are intermediate between diffuse and dark clouds
where photons from the outside still affect the chem-
istry. They can be observed both in absorption against
a background source or in emission in the radio.

The temperature is 100–200 K at the edges of
a diffuse cloud with a density of about 100 cm−3. In
a typical diffuse cloud the temperature decreases to
about 30 K at the center while the density increases to
about 300–800 cm−3. The chemistry is driven by ion-
ization from interstellar UV photons and from cosmic
rays.

Interstellar UV photons ionize species which have
ionization potentials less then that of atomic hydrogen.

Atomic hydrogen is so pervasive in the galaxy that UV
photons with energies higher than 13.6 eV are absorbed
near the source. The UV flux is a very important param-
eter in determining the composition of a diffuse cloud.
Photodissociation provides destruction which limits the
buildup of more complex species and so diffuse clouds
are dominated by simpler diatomic species.

Species with ionization potentials greater then hy-
drogen are mainly ionized by cosmic rays. Cosmic rays
are high energy nuclei which stream through the galaxy.
The cosmic ray ionization rate, the number of cosmic
ray ionizations per second per particle, is an important
parameter in interstellar chemistry. A lower limit to the
cosmic ray ionization rate may be set by measured high
energy cosmic rays reaching earth, giving an ionization
rate of ≈ 10−17 s−1. More realistic estimates of the cos-
mic ray ionization rate from looking at recombination
lines suggest values of a few ×10−17 s−1.

The hydroxyl radical OH is produced in a man-
ner similar to that discussed below in Sect. 82.5, and
removed by photodissociation. Thus in diffuse clouds,
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OH may be used to measure the cosmic ray ionization
rate, subject to uncertainties in the OH photodissociation
rate and the H+

3 recombination rate. The OH abun-
dances give rates of several ×10−17 s−1 for many diffuse
clouds.

The carbon chemistry begins with the ionization of C
by UV photons:

C+hν→ C++ e− . (82.6)

The carbon ion cannot react directly with H2 by

C++H2 → CH++H , (82.7)

as this reaction is exothermic by 0.4 eV. Instead, the
chemistry proceeds by the slow radiative association
process

C++H2 → CH+
2 +hν . (82.8)

The CH+
2 ion may either dissociatively recombine

CH+
2 + e− → CH+H , (82.9)

or react with molecular hydrogen

CH+
2 +H2 → CH+

3 +H . (82.10)

The CH+
3 then undergoes dissociative recombination

CH+
3 + e → C+H2+H (82.11)

→ CH+H+H (82.12)

→ CH2+H (82.13)

→ CH+H2 , (82.14)

where the products are listed in order of decreasing
likelihood. The CH is removed by photodissociation

CH+hν→ C+H (82.15)

and by photoionization

CH+hν→ CH++ e− . (82.16)

CH may also be removed by reactions with oxygen or
nitrogen atoms to form CO and CN respectively.

One of the outstanding problems in diffuse clouds
is to understand the large abundance of CH+ relative to
CH. The problem is producing the CH+ without pro-
ducing additional CH. Since most reaction paths go
through reaction (82.7), this is the most likely candi-
date. What is needed is some extra energy to overcome
the endothermicity. This energy must come from ei-
ther hot C+ or from hot or vibrationally excited H2.
The most popular model is gas heated by a shock,
possibly a magnetic shock in which ions stream rela-
tive to the neutrals, giving a high effective energy.
Unfortunately, though these shock models can repro-
duce the CH+ abundances, they also predict relative
velocities between the CH+ and CH which are not
often observed. Recently there have been suggestions
that turbulence in the cloud could account for the CH+
abundance.

The most comprehensive models of diffuse clouds
are by van Dishoeck and Black [82.21]. A collection
of photodissociation rates and photoionization rates is
given in Roberge et al. [82.22].

The UV flux is predominantly from stars and may be
as much as 105 times larger near an Hii region Sect. 82.1
than it is in the general interstellar medium. Regions
in which the chemistry is dominated by photons are
referred to as photon dominated regions or photodis-
sociation regions (PDR’s). In the presence of high UV
flux the cloud is much warmer than in a typical diffuse
cloud. Temperatures may reach 1000 K near the edge
of the cloud and 100 K far into the cloud. The chem-
istry differs from traditional diffuse cloud chemistry
in that the high temperatures allow endothermic reac-
tions to proceed. Sternberg and Dalgarno [82.23] have
published a comprehensive model of photodominated
regions.

82.4 Dark Molecular Clouds

Much of the mass of the galaxy is in the form of dark mo-
lecular clouds. The molecular clouds are sites of forming
new stars. They are composed primarily of hydrogen,
with about 10% helium and trace amounts of heavier
elements. They have densities of approximately 103 or
104 cm−3 and temperatures between 10 and 20 K, and
often contain denser clumps. The clouds are optically
thick and so photons from the outside are absorbed on the
surface of the clouds. The interiors are heated and ion-
ized by cosmic rays which penetrate deep into the cloud.

The temperatures are too low to sustain much neutral
chemical activity in the clouds, and cosmic ray ion-
ization is important in driving the chemistry. In dense
clouds, the cosmic rays both initiate the chemistry and
limit it through the production of He+ and through
cosmic ray induced photons.

Table 82.1 is a list of molecules that have been ob-
served in the interstellar medium, many of which have
also been found in other galaxies. It is likely that all
but H2 are formed in the gas phase by ion–molecule re-

Part
G

8
2
.4



1240 Part G Applications

Table 82.1 Molecules observed in interstellar clouds

H2 Hydrogen CH Methylidyne

CH+ Methylidyne ion OH Hydroxyl

C2 Carbon CN Cyanogen

CO Carbon monoxide CO+ Carbon monoxide ion

NH Amidogen NO Nitric oxide

CS Carbon monosulphide SiO Silicon monoxide

SO Sulphur monoxide SO+ Sulphur monoxide ion

NS Nitrogen sulphide SiS Silicon sulphide

PN Phosphorus nitride HCl Hydrogen chloride

SiN Silicon nitride NH2 Amino radical

H2O Water C2H Ethynyl

HCN Hydrogen cyanide HNC Hydrogen isocyanide

HCO Formyl HCO+ Formyl ion

N2H+ Protonated nitrogen H2S Hydrogen sulphide

HNO Nitroxyl OCS Carbonyl sulphide

SO2 Sulphur dioxide HCS+ Thioformyl ion

C2O Carbon suboxide C2S Dicarbon sulphide

N2O Nitrous oxide H2CN Methylene amidogen

H2CO Formaldehyde H2CS Thioformaldehyde

NH3 Ammonia HCNS Isothiocyanic acid

HNCO Isocyanic acid HOCO+ Protonated carbon dioxide

C3H Propynylidyne C3N Cyanoethynyl

C3S Tricarbon sulphide C3O Tricarbon monoxide

C2H2 Acetylene H3O+ Hydronium ion

HCNH+ Protonated hydrogen cyanide C3H2 Cyclopropenylidene

CH4 Methane H2CCC Propadienylidene

HCOOH Formic acid CH2CO Ketene

HC3N Cyanoacetylene HNCCC Cyanoacetylene isomer

HCCNC Ethynyl isocyanide C4H Butadinyl

NH2CH Cyanamide CH2CN Cyanomethyl radical

CH2NH Methanimine CH3CH Methyl cyanide

H2CCCC Butatrienylidene CH3SH Methyl mercaptan

C5H Pentynylidyne HCC2HO Propynal

CH3OH Methyl alcohol HC3NH+ Protonated cyanoacetylene

NH2CHO Formamide CH3C2H Methyl acetylene

CH2CHCN Vinyl cyanide HC5N Cyanodiacetylene

C6H Hexatrinyl CH3NH2 Methylamine

CH3CHO Acetaldehyde HCOOCH3 Methyl formate

CH3C3N Methyl cyanoacetylene CH3C4H Methyl diacetylene

CH32O Dimethyl ether CH3CH2CN Ethyl cyanide

HC7N Cyanohexatriyne CH3CH2OH Ethyl alcohol

HC9N Cyano-octatetra-yne HC11N Cyano-decapenta-yne

action sequences initiated by cosmic ray ionization. The
fact that isomers such as HCN and HNC are seen in
approximately equal abundances suggests a low dens-
ity gas phase environment. Reactions on surfaces and

the formation of grains are not well understood, but are
surely important.

The chemistry of molecular clouds is dominated by
ion–molecule reactions driven by cosmic ray ionization.
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The cosmic rays primarily ionize H2:

H2 → H+
2 + e− , (82.17)

producing both H+
2 and fast electrons. The fast electrons

produce additional ionizations. The H+
2 quickly reacts

with H2 to form H+
3

H+
2 +H2 → H+

3 +H . (82.18)

The H+
3 reacts with other species by proton transfer,

which then drives much of the interstellar chemistry.
As an example of the production of more complex

molecules in interstellar chemistry, we examine the re-
action networks leading to the production of water H2O
and the hydroxl radical OH. The H+

3 ions formed by
cosmic ray ionization react with atomic oxygen to form
OH+

O+H+
3 →OH++H2 , (82.19)

which quickly reacts with H2 to form H3O+ in an
abstraction sequence

OH++H2 → H2O++H , (82.20)

H2O++H2 → H3O++H . (82.21)

The H3O+ then undergoes dissociative recombination
to form water and OH

H3O++ e− → H2O+H , (82.22)

→ OH+H2 . (82.23)

The water is removed by reactions with neutral or
ionized carbon, which eventually lead to the produc-
tion of CO. OH is primarily removed by reactions with

atomic oxygen leading to O2. The CO and O2 are re-
moved by reactions with He+. The He+, generated by
cosmic ray ionization of helium, does not react with H2
and so is available to remove species by reactions such
as

CO+He+ → C++O+He . (82.24)

Water and OH are also removed by UV photons gen-
erated within the cloud. The clouds are too thick for
external UV photons to penetrate, but cosmic rays ex-
cite H2 into electronically excited states which decay
through emission of UV photons. These internally gen-
erated photons play an important role in determining the
composition of the cloud. Gredel et al. [82.24] have com-
piled a list of the photodissociation and photoionization
rates for cosmic ray induced photons.

Modern chemical networks for molecular clouds
include several hundred species and several thousand
reactions. A standard set of reaction rates is provided by
the UMIST (University of Manchester Institute of Sci-
ence and Technology) dataset [82.25, 26]. The dataset
may be obtained from the UMIST Astrophysics Group
homepage (http://saturn.ma.umist.ac.uk:8000/).

The clouds also contain dust particles as evidenced
by the extinction curves for clouds and the observed de-
pletions of heavier elements. The importance of surface
chemistry on these dust particles to interstellar clouds
is still uncertain. Dust particles are the best candidate
to be the site of formation of molecular hydrogen, be-
cause known gas phase reactions fail to produce H2 in
the quantities observed.

82.5 Circumstellar Shells and Stellar Atmospheres

The continuum emission from a star is very nearly that
of a blackbody. This emission is then absorbed and re-
distributed by the atmosphere of the star. The spectrum
of the star is thus determined by its atmosphere. In the
hottest stars, most of the material is ionized and the ab-
sorption lines are predominantly those of ions, while in
the coldest stars, molecular lines are prominent. Kurucz
has calculated models with continuum spectra and the
inclusion of a large number of absorption lines [82.27].
There are two major projects for calculating the required
atomic data. In 1984 an international collaboration
named the Opacity Project was set up to calcu-
late accurate atomic data needed for opacity calcula-
tions [82.28, 29]. The other earlier project is called

OPAL. The two sources of data are compared
in [82.30, 31].

Low and intermediate mass stars eject circumstellar
envelopes in their red giant phase near the end of their
evolution. Circumstellar envelopes are an important part
of astronomy and they are a likely location for dust
formation. They provide an interesting environment for
studying molecules because they represent a transition
between very high density stellar atmosphere environ-
ments to low density interstellar environments. These
objects evolve to become planetary nebulae Sect. 82.1.

We are fortunate in having one example, IRC 10216,
which is very close to the Sun. The brightest 10 µm
source beyond the solar system, IRC 10216 is a carbon-
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rich star surrounded by dust and gas it ejected in a strong
stellar wind. The central star is so shielded that it is
almost undetectable at optical wavelengths, and was not
discovered until the 2 µm survey. IRC 10216 is where
most of the circumstellar molecules are detected, and
has greatly increased our understanding of circumstellar
envelopes.

The envelopes are ejected by the red giant in its
final phase of evolution. The mass loss rates increase
to ∼ 10−4 solar masses per year and temperatures in
the envelope are of order 1000 K. Close to the star, the
density is high and the chemistry is characteristic of
thermal equilibrium. The situation is quite unlike any
interstellar environments. For example in IRC 10216,
the HNC is over one hundred times less abundant than
HCN, whereas in molecular clouds, they have about the
same abundance.

If the star is oxygen-rich, large amounts of H2O are
formed and if it is carbon-rich, C2H2. This high tem-
perature environment forms both molecules and grains.

The high obscuration of the central source indicates that
grains are formed in these envelopes. Polycyclic aro-
matic hydrocarbons (PAH’s) or some similar species are
observed in carbon rich planetary nebulae. These large
molecules must have been produced when the object
was a carbon rich circumstellar envelope.

As the material flows out from the star the den-
sity and temperature decrease. As the density becomes
lower, three body reactions become less important and at
some point the products of these reactions are frozen out
in a similar manner to the evolution of molecules in the
early universe (Sect. 82.10). In the outermost portions of
the circumstellar envelope, molecules are dissociated by
interstellar UV photons. The penetrating UV radiation
is shielded by dust, H2, and CO. The relative abun-
dances can vary rapidly with radius, and observations
provide abundance and radial distribution, a wealth of
data for modelers. Circumstellar chemistry is reviewed
by Omont [82.32] and recent chemical models are given
in [82.33–35].

82.6 Supernova Ejecta
A supernova, the explosion of a massive star following
core collapse, is one of the most spectacular displays in
the Universe. The explosion occurs when the iron core
of a massive star collapses to form a neutron star and the
rebound shock and neutrino flux eject the outer portion
of the star. The ejected portions of the star are rich in
heavy elements produced in the interior of the progenitor
star.

We are fortunate to have had in our lifetime a super-
nova which was close and in an unobscured line of
sight. Supernova 1987A, the first supernova observed in
1987, went off in the Large Magellanic Cloud, a small
satellite galaxy to our own. It was the first supernova
visible to the naked eye in nearly 400 years (since
the Kepler supernova in 1604). Using the full range of
modern astronomical instruments has allowed us to get
detailed spectra of the evolving ejecta which has greatly
increased our knowledge of supernovae. We will use
SN1987A as an example of supernova ejecta.

Initially the temperature of the ejecta of SN1987A
was high, ≈ 106 K, but it quickly cooled through adi-
abatic expansion and radiation from the photosphere.
The temperature leveled off at several thousand degrees
because of heating by radioactive nuclei, first 56Ni and
then 56Co, formed in the explosion. The dynamics is
homologous free expansion: the velocity scales linearly

with the radius r(t)= vt where v the velocity and t the
time since the explosion.

The ejecta at first were optically thick and the
spectrum resembled that of a hot star continuum with
absorption lines from the surface. After a few days, the
temperature dropped, but the ejecta remained optically
thick and continued to show strong continuum emission.
As the ejecta expand, the temperature drops, the ejecta
become optically thin, and the spectrum is dominated by
strong emission lines, superficially resembling an emis-
sion nebula Sect. 82.2. The emission is dominated by
neutral atoms and singly ionized species.

The gas is heated and ionized by the gamma rays
from radioactive decay. The gamma rays Compton scat-
ter, producing X-rays and fast electrons. The X-rays
further ionize the gas and produce multiply charged ions
through the Auger process. These multiply charged ions
recombine through charge transfer with neutral atoms.
Further charge transfer determines the relative ionization
of different species, with the lowest ionization poten-
tial species more ionized than the higher ionization
potential species. The development of the infrared and
optical spectrum of Supernova 1987A has been recently
reviewed by McCray [82.36].

One of the great surprises in the spectrum of Super-
nova 1987A was the discovery of molecules in the
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infrared region. CO, SiO and possibly H+
3 have been

identified. In the absence of grains, molecules must
be formed through either three-body or radiative pro-
cesses. In the supernova ejecta, the densities are too low
for three-body processes to be effective and molecules

are formed through radiative association reactions. The
molecules are removed by reactions with He+ and the
molecular abundances put a constraint on how much he-
lium can be mixed back into the region with carbon and
oxygen [82.37].

82.7 Shocked Gas

Shock waves occur in compressible fluids when the pres-
sure gradients are large enough to generate supersonic
motion, or when a disturbance is propagating through
the fluid at supersonic velocities. Because information
about the disturbance cannot propagate upstream in the
fluid faster than the speed of sound, the fluid cannot re-
spond dynamically until the shock arrives. The shock
then compresses, heats, and accelerates the fluid. The
boundary separating the hot compressed gas and the up-
stream gas is the shock front in which the energy of
directed motion of the shock is converted to random
thermal energy.

Shocks are ubiquitous in the interstellar medium
where they are driven by the ionization fronts of ex-
panding Hii regions or nebulae, by outflowing gas
accompanying stellar birth and evolution, and by super-
nova explosions. If the shock velocity is above 50 km/s,
the shock gas is excited, dissociated, and ionized. The
subsequent recombination and cooling radiation pro-
duces photons that may ionize and dissociate the gas
components ahead of and behind the shock. This pre-
cursor radiation modifies the effects of the shock and
influences its dynamical and thermal evolution. Fast
shocks destroy all molecules by dissociating H2 by col-
lisions with H, H2 and He and with electrons. Exchange
reactions with H atoms destroy the other molecular
species. At low densities, radiative stabilization occurs
and dissociation is less efficient. Molecules reform in
the cooling postshock gas. Slower shocks do not cause
ionization or dissociation, but the chemical composition
and the ion composition are modified by reactions taking
place in the warm gas. The response of the interstellar
gas to slow shocks is significantly affected by the pres-
ence of a magnetic field. In some ionization conditions,
a magnetic precursor may occur in which a magne-
tosonic wave carries information about the shock, and
the ionized and neutral components of the gas react dif-
ferenly to the shock. Many different kinds of shock have
been identified [82.38].

A very fast shock with a velocity of hundreds of
km/s such as are driven by supernova explosions, cre-

ates a hot dilute cavity in the interstellar medium with
a temperature of millions of degrees. The density is low
and the gas cools and recombines slowly. Overlapping
supernova-induced cavities may be responsible for the
hot gas that occupies a considerable volume of the in-
terstellar medium in the Galaxy and in some external
galaxies. The conditions are far from coronal equilib-
rium as the gas cools more rapidly than it recombines.
The cooling radiation appears as soft X-rays and UV
emission lines with a characteristic spectrum.

As the gas cools below 10 000 K, molecular for-
mation occurs. Molecular hydrogen is formed on the
surfaces of grains as in molecular clouds and by the neg-
ative ion sequence that is effective in the early Universe
Sect. 82.8. With the formation of H2 in a still warm gas,
the chemistry is driven by exothermic and endothermic
reactions with H2. Thus OH is produced by the reac-
tion of O atoms, and H2O by the further reaction of
OH with H2. Enhanced abundances of other neutral and
ionic molecules are the products of subsequent reactions
with OH. The reactions of S+ and S with OH lead to
SO+ and SO, and their simultaneous presence may be
an indicator of a dissociative shock. There are in addi-
tion physical indicators of shocks, such as asymmetric
line profiles indicating high velocities.

In a nondissociative shock in a molecular gas, reac-
tions with warm H2 dominate the chemistry as it does in
the cooling zone of a dissociative shock. The composi-
tion is controlled by the post shock temperature and the
H/H2 ratio. The warm H2 changes the ionic composition
by converting C+ into CH+. Evidence for a nondissocia-
tive shock is the infrared emission from H2. The thermal
emission from collisionally excited vibrational levels in
shock-heated gas is readily distinguished from that dis-
cussed in Sect. 82.3 arising from UV pumping in a PDR.
Emission from H2 has been detected in numerous ob-
jects in the Galaxy and in many distant external galaxies.
In external galaxies, X-rays may contribute to the H2 in-
frared sprectrum through heating the gas and through
excitation by photoelectron pumping to excited states
followed by a downward cascade [82.39, 40].
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82.8 The Early Universe

Molecules appeared first in the Universe after the adi-
abatic expansion had reduced the matter and radiation
temperature to a few thousand degrees and recombi-
nation occurred, creating a nearly neutral Universe. The
small fractional ionization that remained was essential to
the formation of molecules. Molecular hydrogen formed
through the sequences

H++H →H+
2 +hν (82.25)

H+
2 +H →H2+H+ (82.26)

and

H+ e− →H−+hν (82.27)

H−+H →H2+ e− , (82.28)

the protons and electrons acting as catalysts. Many other
atomic and molecularprocesses occurred Fig. 82.3, some
involving excited hydrogen atoms. Thus

H∗ +H2 → H+
3 + e− (82.29)

was a source of H+
3 .
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Fig. 82.3 Diagram showing the important reactions in the
production of hydrogen molecules in the early Universe

The Universe contained trace amounts of deuterium
and 7Li nuclei with which heteronuclear molecules
could be made. Molecules with dipole moments may
leave an imprint on the cosmic blackbody background
radiation that occupies the Universe. The deuterated
molecules HD form from

D++H2 → HD+H+ , (82.30)

and H2D+ from

D+H+
3 → H2D++H , (82.31)

HD++H2 → H2D++H , (82.32)

and

HD+H+
2 → H2D++H . (82.33)

Lithium hydride is formed through

Li+H→ LiH+hν (82.34)

Li+H− → LiH+ e− (82.35)

Li−+H→ LiH+ e− . (82.36)

There are many destruction processes, of which

LiH+H→ Li+H2 (82.37)

may be the most severe, though its rate coefficient
is uncertain. The chemistry of the early Universe is
summarized in [82.41].

The formation of molecules was a crucial step in
the fragmentation of the first gravitationally collapsing
objects which separated out of the cosmic flow. Three-
body recombination

H+H+H → H2+H (82.38)

Li+H+H → LiH+H (82.39)

may be a major source of molecules as the density
increases.

82.9 Recent Developments

While the core atomic and molecular process outlined
are still unchanged, our understanding of the astro-
physical environment has been greatly enhanced by
a number of recent satellites. The Wilkinson Microwave
Anisotropy Probe (WMAP) has given us the best map
of the universe at the time of recombination and given
us general confirmation of the Big Bang model. Per-
haps the most surprising result is that stars seem to have

formed much sooner than would have been expected,
about 180 million years after the big bang [82.42]. This
makes it even more difficult to understand how the uni-
verse goes from the relative uniformity at the time of
recombination to the collapse and formation of the first
objects so quickly, a problem which is certainly con-
trolled by atomic and molecular processes. The relevant
atomic and molecular processes have been recently re-
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viewed by Lepp, Stancil and Dalgarno [82.43]. Two
recent X-ray satellites, Chandra and XMM-Newton,
both launched in 1999, have greatly increased our ability
to detect hot ionized gas in stars, supernova remnants,
active galaxies and other regions [82.44]. In particular,
Chandra has allowed us for the first time to directly ob-
serve the hot gas between galaxies [82.45]. The Infrared
Space Observatory (ISO) has provided a tremendous
amount of data on cold regions in our own galaxy and
allowed us to directly observe the icy mantles of dust
grains [82.46].

Since the detection of molecules in SN 1987A, there
have been many more observations of CO molecules in
Type II supernova and they may even occur in every Type
II [82.47]. CO has also been observed in a Type Ic super-
nova [82.48]. It remains a puzzle as to why the molecules
are not rapidly removed by helium ions. A recent calcu-
lation of the O+He+ system [82.49] finds that radiative
charge transfer is much faster then direct charge transfer

for temperatures below 106 K, but still too slow to sig-
nificantly reduce the helium ion abundance in supernova
ejecta. The most likely explanation remains that mixing
is not complete in supernova ejecta, and the molecules
survive in regions of relatively low helium abundance.

The state of modeling photoionized clouds has been
recently reviewed by Ferland [82.50]. He also highlights
the great need for atomic and molecular data for analyz-
ing these clouds. New satellite data along with continued
ground observations continually raise new astrophysi-
cal puzzles, puzzles which are controlled and probed by
atomic and molecular processes. The astrophysical com-
munity owes a great debt to both atomic and molecular
laboratory measurements and theoretical models of en-
ergy levels, reaction rates, and transition probabilities.
In order to continue to progress in our understanding of
the universe we will need to continue to fund the under-
standing of the atomic and molecular processes which
control it.

82.10 Other Reading

Astronomy is one of the oldest sciences and one
of the fastest evolving. Advances in technology are
rapidly increasing the sensitivity and resolution of
our instruments and so new observations and more
sophisticated models lead to an ever greater under-
standing of the Universe. This means that books
will often be somewhat dated when they appear.
However, the series Annual Review of Astronomy

and Astrophysics is a good source of recent review
articles.

In addition, good introductions or overviews of
a particular field are given in [82.1, 51–56]. Many
sources of atomic and molecular data are listed and dis-
cussed in [82.7]. For details on atomic spectroscopy,
see [82.57, 58]. For details on molecular spectroscopy,
see [82.59, 60].
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Comets 83. Comets

With the exception of the in situ measurements
made by the Giotto and Vega spacecraft at
comet 1P/Halley (the P/ signifies a periodic comet)
during March 1986, all determinations of the
volatile composition of the coma are derived
from spectroscopic analyses. Detailed modeling
is then used to infer the volatile composition
of the cometary nucleus. This chapter focuses
on the principal atomic and molecular processes
that lead to the observed spectrum as well as
the needs for basic atomic and molecular data in
the interpretation of these spectra. The largely
collisionless and low density coma, with no
gravity or magnetic field, is a unique spectroscopic
laboratory, as evidenced by the discovery
of C3 before its identification in terrestrial
laboratories [83.1]. Many key discrepancies remain
to be resolved concerning the basic molecular
composition and the elemental abundances of
both the volatile and refractory components of the
cometary nucleus, as well as the comet-to-comet
variation (particularly between “new” and evolved
periodic comets) of these quantities. These issues
(and many others) are discussed in the recent
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analytical review of Festou et al. [83.2, 3] or in
the compendia of Halley results [83.4]. The former
also contains a comprehensive bibliography. Other
sources concentrating largely on the physics and
chemistry of comets include the volumes edited
by Wilkening [83.5] and Huebner [83.6] and the
pre-Halley review of Mendis et al. [83.7].

Comets are small bodies of the solar system believed
to be remnants of the primordial solar disk. Formed
near the orbits of Uranus and Neptune and subsequently
ejected into an “Oort cloud” of some 40 000 AU in ex-
tent, these objects likely preserve a record of the volatile
composition of the early outer solar system, and so are
of great interest for the physical and chemical mod-
eling of solar system formation. The comets arrive in
the inner solar system as a result of galactic pertur-
bations. The cometary volatiles are vaporized as their

orbits bring them closer to the sun and it is solar ra-
diation that initiates all of the processes that lead to
the extended coma. Gas vaporization also leads to the
release of dust into the coma, and the scattering of sun-
light by dust is the major source of the visible coma
and dust tail of comets. Somewhat fainter, and much
more extended, is the plasma tail, resulting from pho-
toionization by solar extreme UV radiation of the neutral
volatiles and their subsequent interaction with the solar
wind.

83.1 Observations

In a review in 1965, Arpigny [83.8] summa-
rized the known molecular and atomic emis-
sions detected in the visible region of the spec-
trum (here defined as 3000 to 11 000 Å) as

follows:
radicals: OH, NH, CN, CH, C3, C2, and NH2
ions: OH+, CH+, CO+

2 , CO+, and N+
2 ;

metals: Na, Fe .
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The only known atomic feature was the O i forbid-
den red doublet at 6300 and 6364 Å. From the radicals
and ions one could infer the presence of their progen-
itor “parent” molecules such as H2O, NH3, HCN, CO
and CO2, directly vaporizing from the comet’s nucleus.
The metals, seen only in comets passing close to the
sun, were assumed to come from the vaporization of
refractory grains. The inventory of metals was soon
expanded to include K, Ca+, Ca, V, Cr, Mn, Ni and
Cu, from observations of the sun-grazing comet Ikeya-
Seki (C/1965 S1) [83.9,10] and H2O+ was identified in
comet Kohoutek (C/1973 E1). This latter comet was also
the first to be extensively studied at wavelengths both
shortward and longward of the visible spectral range.

The first parent molecule to be directly identified
was CO, which fluoresces in the Fourth Positive system(
A 1Πu− X 1Σ+) in the VUV [83.11], although the in

situ neutral mass spectrometer measurements made of
Halley disclosed the presence of an extended, domi-
nant source of CO [83.12] whose origin is still being
debated [83.13]. Ideally, the molecular species should
be detectable through their radio and sub-mm rotational
transitions or through the detection of vibrational bands
or individual ro-vibrational lines in the near IR. Water
was first directly detected through ro-vibrational lines
near 2.7 µm in comet Halley and again in comet Wilson
(C/1986 P1) [83.14, 15]. However, due to the low col-
umn densities of the other expected species, typically≈1
or less than that of H2O, the direct detection of species
such as H2CO, H2S and CH3OH has only recently been
made possible by the development of more sensitive
instrumental techniques together with the fortuitous ap-
paritions of two bright comets, C/1996 B2 (Hyakutake)
and C/1995 O1 (Hale-Bopp) in 1996 and 1997. To date,
more than two dozen parent molecules have been iden-
tified [83.16]. Isotope ratios, particularly the D/H ratio,
in molecules such as HDO have been determined from
sub-millimeter observations [83.17].

The ultimate result of solar photolysis (and to a lesser
degree, the interaction with the solar wind) is the re-
duction of all of the cometary volatiles to their atomic
constituents. The atomic inventory is somewhat easier
to derive as the resonance transitions of the cosmically
abundant elements H, O, C, N and S all lie in the VUV
and, in principle, the total content of these species in the
coma can be determined by an instrument with a suitably
large field of view. Of course, a fraction of the atomic
species of each element will be produced directly in ionic
form, and will not be counted using this approach. In ad-
dition, another fraction exists in the coma in the solid
grains, and this component will also not be included,

except for a small amount volatilized by evaporation
or sputtering by energetic particles. The composition of
the grains, though not the absolute abundance, has been
determined from in situ measurements made by the Hal-
ley encounter spacecraft [83.18], and can be inferred,
though not unambiguously, from reflection spectroscopy
of cometary dust in the 3–5 µm range.

The advent of space-borne platforms for obser-
vations in the VUV has produced a wealth of new
information about the volatile constituents of the coma.
The A 2Σ+− X 2Π (0, 0) band of the OH radical at
≈ 3085 Å was well known from ground-based spectro-
scopic observations, but as this wavelength lies very
close to the edge of the atmospheric transparency win-
dow, the strength of this feature (relative to that of
other species) was not appreciated until 1970 when
comet Bennett (C/1969 Y1) was observed from space by
the Orbiting Astronomical Observatory (OAO-2). The
OAO-2 spectrum also showed a very strong, broadened
H i Ly-α emission from H, the other principal dissocia-
tion product of H2O. The broad shape of Ly-α seen in
the OAO-2 spectrum is due to the large spatial extent
of the atomic H envelope, the result of a high velocity
acquired in the photodissociation process and a long life-
time against ionization. Later, at the apparition of comet
Kohoutek (C/1973 E1), atomic O and C were identified
in the spectra and direct UV images of the H coma, as
well as of the O i and C i emissions, were obtained from
sounding rocket experiments. These experiments were
repeated for comet West (C/1975 V1) and led to the first
detection of CO [83.11].

Between 1978 and 1996, over 50 comets were
observed spectroscopically over the wavelength range
1200–3400 Å by the International Ultraviolet Explorer
(IUE) satellite observatory [83.19, 20]. Most of the
spectra were obtained at moderate resolution (∆λ =
6–10 Å), although high dispersion echelle spectra (∆λ
= 0.2–0.3 Å) are useful for some studies, particu-
larly those of fluorescence equilibrium (Sect. 83.2.2).
For Halley alone, over 200 UV spectra were obtained
from September 1985 to July 1986. The launch of the
Hubble Space Telescope (HST) in 1990, together with
subsequent enhancements to the spectroscopic instru-
mentation that were made on-orbit, marked another
advance in sensitivity as well as the ability to observe
in a small field-of-view very close to the nucleus. This
yielded the first detection of CO Cameron band emis-
sion, a direct measure of CO2 being vaporized from
the nucleus [83.21]. For an overview of a cometary
spectrum, a composite spectrum of 103P/Hartley 2 span-
ning the region from H i Ly-α to 7000 Å taken with
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the Faint Object Spectrograph of HST, using five sep-
arate gratings, is shown in Fig. 83.1. The launch of the
Far Ultraviolet Spectroscopic Explorer (FUSE) in 1999
provides access to the spectral region between 900 and
1200 Å at very high spectral resolution, and has led to
the detection of H2 (Sect. 83.2.4), upper limits on Ar
and N2, and some three dozen unidentified emission
lines [83.22, 23].

Several other satellite observatories have contributed
unique cometary observations in the UV and sub-mm
spectral windows. The Solar and Heliospheric Ob-
servatory (SOHO) has two valuable instruments: The
SWAN (Solar Wind Anisotropies) instrument provides
sky maps in H i Ly-α at 1◦ resolution and has ob-
served over 20 comets since 1996 [83.25]. The UVCS
(Ultraviolet Coronograph Spectrometer) provides far-
uv spectra and images of comets close to the Sun,
where HST and FUSE are prohibited from observing,
and has recently detected C++ in the tail of comet
C/2002 X5 (Kudo-Fujikawa) [83.26]. The direct de-
tection of H2O in the fundamental rotational line at
557 GHz in several comets was made by the Submil-
limeter Wave Astronomy Satellite (SWAS) [83.27] and
the Odin satellite [83.28]. This line cannot be ob-
served from ground-based telescopes because of the
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Fig. 83.1 Composite FOS spectrum of comet 103P/Hartley 2. After [83.24]

strong absorption by water vapor in the terrestrial
atmosphere.

Prior to 1996, X-rays had not been detected in comets
and the conventional wisdom was that they were unlikely
to be produced in the cold, rather thin cometary atmo-
sphere. The discovery of soft X-ray emission (E<2 keV)
from comet Hyakutake (C/1996 B2) by the Röntgen
Satellite (ROSAT) thus came as a surprise [83.29].
Since then, X-ray emission has been detected from over
a dozen comets using ROSAT and four other space
observatories, the Extreme Ultraviolet Explorer, Bep-
poSAX, the Chandra X-ray Observatory (CXO), and
Newton-XMM [83.30]. The earliest observations were
at very low spectral resolution, making it difficult to se-
lect amongst the possible excitation mechanisms: charge
exchange, scattering of solar photons by attogram dust
particles, energetic electron impact and bremsstrahlung,
collisions between cometary and interplanetary dust, and
solar X-ray scattering and fluorescence. The more re-
cent CXO observations, at higher spectral resolution,
favor the charge exchange of energetic minor solar wind
ions such as O6+, O7+, C5+, C6+, and others, with
cometary gas, principally H2O, CO, and CO2, as the pri-
mary mechanism. This mechanism would explain why
the X-ray intensity appears to be independent of the gas
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production rate of the comet, and that the peak emis-
sion is offset from the location of the comet’s nucleus.
This conclusion is also supported by recent laboratory
work on the charge transfer of highly ionized species

with cometary molecules [83.31] and by theoretical cal-
culations of state specific cascades [83.32]. The X-ray
emission thus tells us more about the solar wind than
about the gaseous composition of comets.

83.2 Excitation Mechanisms

83.2.1 Basic Phenomenology

Coma abundances may be derived from spectropho-
tometric measurements of either the total flux or the
surface brightness in a given spectral feature. The un-
certainty in the derived abundances includes not only
the measurement uncertainty, but also uncertainties in
the atomic and molecular parameters and, in the case
of surface brightness measurements, uncertainties in the
model parameters used. Thus relative abundances, de-
rived from observations of different comets with the
same instrument and under similar geometrical condi-
tions, are often more reliable.

Atoms and ions in the cometary coma emit radiation
primarily by means of resonance re-radiation of solar
photons. For the cosmically abundant elements H, C, N,
O, and S, their strongest resonance transitions are in the
VUV. The few exceptions are noted below. Assume that
the coma is optically thin in these transitions. The total
number of species i in the coma is

Mi = Qiτi(r) , (83.1)

where Qi is the production rate (atoms or molecules s−1)
of species i and τi(r) is its lifetime at heliocentric dis-
tance r, τi(r)= τi(1 AU)r2. The r dependence arises
from photolytic destruction processes induced by solar
UV radiation, and to a lesser degree by the solar wind,
as described in Sect. 83.3.1.

The luminosity, in photons s−1, in a given transition
at wavelength λ, is then

Liλ = Mi giλ(r) , (83.2)

where the fluorescence efficiency, or “g-factor”, giλ(r)=
giλ(1 AU)r−2, is

giλ(1 AU)= πe2

mc2 λ
2 fλπF6ω̃

photons s−1atom−1 , (83.3)

where fλ is the absorption oscillator strength, πF6 is
the solar flux per unit wavelength interval at 1 AU and ω̃
is the albedo for single scattering, defined for a line in
an atomic multiplet as

ω̃= A j∑
j A j

, (83.4)

where A j is the decay rate. If a given multiplet is not
resolved, then ω̃= 1. For diatomic molecules, fluores-
cence to other vibrational levels becomes important and
the evaluation of ω̃ depends on the physical conditions in
the coma, as discussed in Sect. 83.2.2. Thus, for a comet
at a geocentric distance ∆, the total flux from the coma
for the transition is

Fiλ = Liλ

4π∆2 =
Qi giλ(r)τi(r)

4π∆2 , (83.5)

and the product giλ(r)τi(r) is independent of r.
Unfortunately, the scale lengths (the product of life-

time and outflow velocity) of almost all of the species of
interest in the UV are≈105 –106 km at 1 AU. Thus, total
flux measurements require fields of view ranging from
several arc-minutes to a few degrees. This has been done
only in the case of a few isolated sounding rocket exper-
iments. Most information about the UV spectra comes
from observations made by orbiting satellite observa-
tories whose spectrographs have small apertures (e.g.,
10′′ × 20′′ for IUE) and thus sample only a very small
part of the total coma. In this case, again assuming an
optically thin coma, the measured flux F′

iλ in the aper-
ture can be converted to an average surface brightness
Biλ (in units of Rayleighs):

Biλ = 4π10−6 F′
iλΩ

−1 , (83.6)

where Ω is the solid angle subtended by the aperture.
The brightness, in turn, is related to Ni , the average
column density of species i within the field of view by

Biλ = 10−6giλ(r)Ni . (83.7)

The evaluation of Qi from Ni requires the use of a model
of the density distribution of the species i (Sect. 83.3.2).

A similar treatment can be applied to the excitation
of the near infrared vibrational transitions of cometary
parent molecules since the direct pumping by solar IR ra-
diation far exceeds the indirect pumping of ground state
vibrational levels through electronic transitions excited
by the solar UV flux [83.16]. However, this does not ap-
ply to the rotational transitions which are controlled by
collisional excitation, primarily collisions with H2O. In
this case, the observed rotational temperature may be re-
garded as a reliable measure of the kinetic temperature
of the coma gas.
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83.2.2 Fluorescence Equilibrium

In the case of low resolution spectroscopy, where an
atomic multiplet or molecular band is unresolved, the
evaluation of the g-factor (83.3) does not require knowl-
edge of the population of either atomic fine structure
levels or molecular rotational levels in the ground state
of the transition. Furthermore, the assumption that the
solar flux does not vary over the multiplet or band allows
us to use the total transition oscillator strength. This as-
sumption is more often than not invalid because of the
Fraunhofer structure of the solar spectrum in the near
uv and visible region and the emission line nature of
the spectrum below 2000 Å. For high resolution spectra,
the g-factors for each individual line must be calculated
separately and the relative populations of the ground
state levels must be included. There are three cases to be
considered:

1. The g-factor, or probability of absorption of a solar
photon, is less than the probability that the species
will be dissociated or ionized, i. e., giλ < (τi)

−1.
In this case, the ground state population is not af-
fected by fluorescence and a Boltzmann distribution
at a suitable temperature (typically≈200 K at 1 AU)
corresponding to the production of the species may
be used. This is often the case in the far UV, where
the solar flux is low, such as for the Fourth Posi-
tive band system of CO. For atomic transitions from
triplet ground states, such as is found with O, C
and S, downward fine structure transitions are fast
enough to effectively depopulate all but the lowest
fine structure level.

2. The species undergoes many photon absorption and
emission cycles in its lifetime, and the ground state
population is determined (usually after 5 or 6 cycles)
by the fluorescence branching ratios. This is the con-
dition of fluorescence equilibrium, which applies for
almost all radicals observed in the visible and near
UV regions. The general procedure is to solve a set
of coupled equations of the form

dna

dt
=−na

N∑

b=1

pab+
N∑

b=1

nb pba , (83.8)

where na is the relative population of level a and pab
and pba are transition rates out of and into this level,
respectively. The na are normalized to unity. The
steady state, obtained after many cycles, is given
by dna/dt = 0. Since the downward transition rates
are determined only by quantum mechanics, while
the absorption rates depend on the magnitude of the

solar flux, the steady state population varies with
distance from the sun with higher rotational levels
(as for the case of CN [83.8]) populated closer to the
sun. In some cases, where only a few cycles occur,
the equations are integrated numerically. As the g-
factor varies with time, it also effectively varies with
the position of a species in the coma. Care must also
be taken when spectra taken with small apertures are
analyzed as the transit time for an atom or molecule
to cross the aperture may be� giλ(r)−1. In practice,
these considerations are often not important.

3. The same as 2. except that the density is sufficiently
high that collisional transitions must be included in
addition to the radiative transitions between lev-
els. However, as the collisional rates are poorly
known, in practice a “collision sphere” is defined
such that a molecule traveling radially outward from
this sphere suffers only one collision with other
molecules or atoms. Outside this sphere, fluores-
cence equilibrium is assumed to hold, while inside
a thermal distribution of ground state levels is used.
A rough estimate of the radius Rc of the colli-
sion sphere, based on the radial outflow model of
Sect. 83.3.2 is given by [83.2, 3]

Rc = 103 Q

1029 km , (83.9)

where Q is the total production rate in molecules s−1.

83.2.3 Swings and Greenstein Effects

Swings [83.33] first pointed out that because of the
Fraunhofer absorption lines in the visible region of the
solar spectrum, the absorption of solar photons in a mo-
lecular band would vary with the comet’s heliocentric
velocity ṙ, leading to differences in the structure of
a band at different values of ṙ when observed at high
resolution. In (83.8), this corresponds to evaluating the
pba = pba(ṙ). For typical comets observed near 1 AU,
ṙ can range from –30 to +30 km/s, while in certain
cases of comets with small perihelia the range can be
twice as large. This effect of the Doppler shift between
the sun and the comet is commonly referred to as the
Swings effect. Even for observations at low resolution,
the Swings effect must be taken into account in the cal-
culation of the total band g-factor, and this has been
done for a number of important species such as OH, CN
and NH. A particularly important case, that of the OH
A 2Σ+− X 2Π (0,0) band at ≈ 3085 Å, which is often
used to derive the water production rate of a comet,
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is illustrated in Fig. 83.2, which also shows the de-
pendence of fluorescence equilibrium on heliocentric
distance [83.34].

While this effect was first recognized in the spectra
of radicals in the visible range, a similar phenomenon
occurs in the excitation of atomic multiplets below
2000 Å, where the solar spectrum makes a transition to

1.00 AU; unquenched
1.00 AU; quenched
0.25 AU; unquenched
0.25 AU; quenched
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Fig. 83.2 OH (0,0) band g-factor as a function of heliocen-
tric velocity. After [83.34]
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Fig. 83.3 Solar flux and fluorescence efficiency for O i λ1302 as
a function of heliocentric velocity. After [83.35]

an emission line spectrum. For example, the three lines
of O i λ1302 have widths of ≈ 0.1 Å, corresponding to
a velocity of ≈25 km/s, so that knowledge of exact so-
lar line shapes is essential for a reliable evaluation of
the g-factor for this transition [83.35], as illustrated in
Fig. 83.3.

A differential Swings effect occurs in the coma since
atoms and molecules on the sunward side of the coma,
flowing outward towards the sun, have a net velocity that
is different from those on the tailward side, and so, if
the absorption of solar photons takes place on the edge
of a line, the g-factors will be different in the two direc-
tions. Differences of this type appear in long-slit spectra
in which the slit is placed along the sun-comet line (the
Greenstein effect [83.36]). Again, an analogue in the far
UV has been observed in the case of O i λ1302 [83.37],
as can be seen in Fig. 83.3. Although it is also possible
to explain the observation by nonuniform outgassing,
this was considered unlikely as all of the other observed
emissions had symmetric spatial distributions. The mea-
surement of the Greenstein effect leads immediately to
a determination of the mean outflow velocity of the given
species.

83.2.4 Bowen Fluorescence

Figure 83.3 also demonstrates that for heliocentric ve-
locities > 30 km/s, the Doppler shift reduces the solar
flux at the center of the absorption line to a very small
value, so that the O i λ1302 line is expected to appear
weakly, if at all, in the observed spectrum. Thus, it was
a surprise that this line appeared fairly strongly in two
comets, Kohoutek (C/1973 E1) and West (C/1975 V1),
whose values of ṙ were both > 45 km/s at the times of
observation. The explanation invoked the accidental co-
incidence of the solar H i Ly-β line at 1025.72 Å with the
O i 3D − 3P transition at 1025.76 Å, cascading through
the intermediate 3P state as shown in the simplified en-
ergy level diagram of Fig. 83.4 [83.35]. This mechanism,
well known in the study of planetary nebulae, is referred
to as Bowen fluorescence [83.38]. The g-factor due to
Ly-β pumping is an order of magnitude smaller than
that for resonance scattering, as shown in Fig. 83.3, but
sufficient to explain the observations and to confirm that
H2O is the dominant source of the observed oxygen in
the coma.

Ly-β is also coincident with the P1 line of the (6,0)
band of the H2 Lyman system

(
B 1Σ+

u − X 1Σ+
g

)
lead-

ing to fluorescence in the same line of several (6,v′′)
bands, the strongest being that of the (6,13) band at
1608 Å [83.39]. This line is, however, difficult to ob-
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Fig. 83.4 Simplified O i energy level diagram showing
transitions of interest in cometary spectra

serve because of the nearby strong CO Fourth Positive
bands. Recently, the shorter wavelength (6,1), (6,2),
and (6,3) bands have been detected in three comets
using FUSE and the derived H2 column abundance
was found to be consistent with a water photodisso-
ciation source [83.22, 23]. Another interesting example
occurs for Ne i, where the second resonance transition
at 629.74 Å coincides with the strong solar O v line at
629.73 Å. This line was used to set a sensitive upper limit
on the Ne abundance in the coma of comet Hale-Bopp
(C/1995 O1) [83.40].

83.2.5 Electron Impact Excitation

The photoionization of the parent molecules and
their dissociation products leads to the formation of
a cometary ionosphere whose characteristics are only
poorly known. Planetary ionospheres serve only as
a poor model since the cometary atmosphere is gravita-
tionally unbound and there is no constraining magnetic
field. The in situ measurements of Halley provided order
of magnitude confirmation of the theoretical modeling.
In principle, electron impact excitation, which is often

the dominant source of airglow in the atmospheres of
the terrestrial planets Chapt. 84, also contributes to the
observed emissions, particularly in the UV, and so must
be accounted for in deriving column densities from the
observed emission brightnesses. However, one can use
a very simple argument, based on the known energy
distribution of solar UV photons, to demonstrate that
electron impact excitation is only a minor source for
the principal emissions. Since the photoionization rate
of water (and of the important minor species such as
CO and CO2) is ≈ 10−6 s−1 at 1 AU, and the efficiency
for converting the excess electron energy into excitation
of a single emission is of the order of a few percent,
the effective excitation rate for any emission will be
≈ 10−8 s−1 or less at 1 AU [83.41]. Since the efficien-
cies for resonance scattering or fluorescence for almost
all the known cometary emissions are much larger, elec-
tron impact may be safely neglected except in a few
specific cases.

The cases of interest are those of forbidden transi-
tions, where the oscillator strength, and consequently
the g-factor, is very small. Examples include the O i
5S2− 3P2,1 doublet at 1356 Å, which was observed in
comets West and Halley by rocket-borne spectrographs
and more recently in comets Hyakutake and Hale-Bopp,
the O i 1D − 3P red lines at 6300 and 6364 Å, observed
in many comets, and the CO Cameron bands [83.21].
However, the excitation of these latter two is dominated
by prompt emission in the inner coma, the same region
of the coma where electron excitation is important, as
described in the next section.

83.2.6 Prompt Emission

In cases where the dissociation or ionization of a mol-
ecule leaves the product atom or molecule in an excited
state, the decay of this state with the prompt emission
of a photon provides a useful means for tracing the
spatial distribution of the parent molecule in the inner
coma. The products of interest for the water molecule
are described in Sect. 83.3.1. Prompt emission includes
both allowed radiative decays (such as from the A 2Σ+
state of OH) as well as those from metastable states
such as O(1D ), since the latter will move ∼150 km
(for a comet at a geocentric distance of 1 AU, 1 arc-
second corresponds to a projected distance of 725 km)
in its lifetime. The O i 1D – 3P transition at 6300 and
6364 Å Fig. 83.4 has been used extensively as a ground-
based monitor of the water production rate with the
caveat that other species such as OH, CO and CO2
may also contribute to the observed red line emission.
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In addition, when the density of H2O is sufficient to
produce observable red line emission, it is also suffi-
cient to produce collisional quenching of the 1D state,
and this must also be considered in the interpretation
of the observations. The analogous 1D − 3P transitions
in carbon occur at 9823 and 9849 Å and provide simi-
lar information about the production rate of CO. Carbon
atoms in the 1D state, whose lifetime is ≈4000 s, are
known to be present from the observation of the reso-
nantly scattered 1Po− 1D transition at 1931 Å [83.42],
and the 9849 Å line has been detected in comet Hale-
Bopp [83.43].

The OH A 2Σ+− X 2Π prompt emission competes
with that produced by the resonance fluorescence of
OH and is difficult to detect, except close to the nucleus
(inside 100 km) where the density of water molecules ex-
ceeds that of OH by a few orders of magnitude [83.44].
Again, the reason is that at the wavelengths below the
threshold for simultaneous dissociation and excitation,
the sun has much less flux than at the resonance wave-
length. On the other hand, only a few rotational lines are
excited in fluorescence equilibrium [83.34], while the
prompt emission is characterized by a very “hot” rota-
tional distribution, so in principle the two components

may be separated although observations at very high
spatial and spectral resolution are required. OH prompt
emission has also recently been detected in the infrared
at 3.28 µm [83.45].

83.2.7 OH Level Inversion

An important consequence of fluorescence equilibrium
in the OH radical is the UV pumping of the hyperfine and
Λ-doublet levels of the X 2Π3/2(J = 3/2) ground state,
which results in a deviation of the population from statis-
tical equilibrium [83.34]. Depending on the heliocentric
velocity, this departure may be either “inverted” or “anti-
inverted” giving rise to either stimulated emission or
absorption against the galactic background at 18 cm
wavelength. This technique has been used extensively
since 1974 to monitor the OH production rate in comets,
even of those that appear close to the sun [83.46]. The
resulting radio emissions are easily quenched by colli-
sions with molecules and ions, the latter giving rise to
a fairly large Rc that must be accounted for in interpret-
ing the derived OH column density. Nevertheless, the
radio and UV measurements give reasonably consistent
results [83.46].

83.3 Cometary Models

83.3.1 Photolytic Processes

As an example of the photolytic destruction processes
occurring in the coma, consider the dominant molecu-
lar species, water. Water vapor is assumed to leave
the surface of the nucleus with some initial veloc-
ity v0 and flow radially outward, expanding into the
vacuum, and increasing its velocity according to thermo-
dynamics [83.7]. Even though collisions are important at
distances typically up to 104 km (depending on the den-
sity and consequently, on the total gas production rate),
the net flow of H2O molecules is radially outward, such
that the density varies as R−2 near the nucleus, where
R is the cometocentric distance. This is the basis for
spherically symmetric coma models (the number of par-
ticles flowing through a spherical surface is conserved),
which assume isotropic gas production, but appears to
hold equally well for the case of Halley, which clearly
was not outgassing uniformly over its surface [83.4].

The photolysis of H2O can proceed by:

a H2O+hν→OH+H 2424.6 Å
a′ →OH(A 2Σ+)+H 1357.1 Å

b H2O+hν→H2+O(1D ) 1770 Å
b′ →H2+O(1S ) 1450 Å
b′′ →H+H+O(3P ) 1304 Å
c →H2O++ e− 984 Å
d →H+OH++ e− 684.4 Å
e →H2+O++ e− 664.4 Å
f →OH+H++ e− 662.3 Å

The right-hand column gives the energy threshold
for each reaction, in wavelength units. The products are
subsequently removed by:

g OH+hν→O+H 2823.0 Å
h →OH++ e− 928 Å
i H2+hν→H+H 844.79 Å
j →H+

2 + e− 803.67 Å
k →H+H++ e− 685.8 Å
l O+hν→O++ e− 910.44 Å
m H+hν→H++ e− 911.75 Å

Reactions l and m can also occur by resonant charge
exchange with solar wind protons. Reactions a′, b and
b′ correspond to the production of prompt emission, as
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discussed in Sect. 83.2.6. The determination of column
densities of H, O and OH simultaneously was con-
vincing evidence that the dominant volatile species in
the cometary nucleus was H2O, long before the direct
infrared detection of this species in the coma.

Detailed cross sections for the absorption of UV
photons by each of the reactants, including proper iden-
tification of the final product states, is necessary for the
evaluation of the photodestruction rate in the solar ra-
diation field of each of the above reactions. These rates
are evaluated at 1 AU using whole disk measurements
of the solar flux by integrating the cross section

Jd =
λth∫

0

πF6σd dλ . (83.10)

Another quantity of interest in coma modeling is the ex-
cess velocity (or energy) of the dissociation or ionization
products, and this requires knowledge of the partition-
ing of energy between internal and translational modes
for each reaction [83.47].

Qualitatively, the photodissociation and photoion-
ization rates can be estimated from the threshold
energies given in the table above, since the solar flux
is decreasing very rapidly to shorter wavelengths, as can
be seen in Fig. 83.1. It is customary to specify the life-
time against photodestruction τi , of species i, which is
just

(τi)
−1 =

∑

j

(Jd) j , (83.11)

where the sum is over all possible reaction channels,
as well as the lifetimes into specific channels. Processes
with thresholds near 3000 Å have lifetimes≈104 s, those
with thresholds near 2000 Å an order of magnitude
longer, while those with thresholds below Ly-α, such as
most photoionization channels, have lifetimes ≈106 s,
all at 1 AU. In addition to uncertainties in the details
of the absorption cross sections, further uncertainty is
introduced into the calculation of Jd by the lack of
knowledge of the solar flux at the time of a given ob-
servation due to the variability of the solar radiation
below 2000 Å, and most importantly, below Ly-α, where
there have not been continuous space observations for
more than a decade. The solar UV flux is known to vary
considerably both with the 27-day solar rotation period
and with the 11-year solar activity cycle. Also, at any
given point in its orbit, a comet sees a different hemi-
sphere of the sun than what is seen from Earth. Huebner
et al. [83.48] have compiled an extensive list of useful

photodestruction rates using mean solar fluxes to repre-
sent the extreme conditions of solar minimum and solar
maximum. They also include the excess energies of the
dissociation products. A detailed analysis of the rates for
H2O and OH, using surrogate solar indices such as the
10.7 cm solar radio flux, or the equivalent width of the
He i line at 1.083 µm, is in good agreement with observa-
tions [83.49]. Similar analyses still remain to be carried
out for other important species, such as CO and NH3.

83.3.2 Density Models

For parent molecules produced directly by sublimation
from the surface of the comet, a spherically symmet-
ric radial outflow model is often adopted. Such a model
assumes a steady-state gas production rate Qi and a con-
stant outflow velocity v, and gives rise to a density
distribution as a function of cometocentric distance R
given by

ni(R)= Qi

4πvR2
e−R/βi , (83.12)

where βi = vτi is the scale length of species i. The basic
validity of this model was demonstrated by the Giotto
neutral mass spectrometer measurements of H2O and
CO2 [83.4], although detailed analysis revealed that the
velocity of the water molecules increased from 0.8 km/s
at about 1000 km from the nucleus to 1.1 km/s at a radial
distance of 10 000 km. The dependence of outflow veloc-
ity on heliocentric distance remains uncertain, although
Delsemme [83.50] has suggested an r−1/2 dependence
based on thermodynamic arguments. Sub-millimeter ob-
servations of H2O have sufficient spectral resolution to
permit the mapping of outflow velocities along various
lines-of-sight to the comet [83.28].

For the dissociation products, the modeling is more
complex. The simplest model assumes continued ra-
dial outflow, although at a different velocity, such
as to maintain a constant flux of the initial particle
across an arbitrary spherical surface surrounding the
nucleus [83.51]. This model, which is valid only at
distances equal to a few βi , is widely used as the
densities can be easily expressed in analytical form.
However, as surface brightness measurements are of-
ten made with small fields of view close to the nucleus,
this model can lead to a factor of two error from the
neglect of the dissociation kinematics. Since the so-
lar photodissociation often leaves the product fragments
with 1–2 eV of kinetic energy [83.47, 48], the resultant
motion (which is assumed to be isotropic in the parent
molecule’s rest frame), will contain a large nonradial

Part
G

8
3
.3



1256 Part G Applications

component. Several approaches have been developed to
account properly for the kinematics; notably, the vecto-
rial model of Festou [83.52], and the average random
walk model (a Monte Carlo method) of Combi and
Delsemme [83.53]. The latter model has been extended
to include time-dependent gas kinetics so as to properly
account for regions of the coma where the gas is not in
local thermodynamic equilibrium [83.54].

In addition to the photodestruction chains, chemical
reactions, particularly ion-molecule reactions, can al-
ter the composition within the collision zone defined in
Sect. 83.2.2. While such reactions may produce numer-
ous minor species, they do not erase the signatures of
the original parent molecules. In fact, detailed chemical
models have clearly demonstrated the need for complex
molecules to serve as the parents of the observed C2 and
C3 radicals in the coma, strengthening the connection
between comet formation and molecular cloud abun-
dances. Thus, the photochemical chains provide a valid
means of relating the coma composition to that of the
nucleus.

83.3.3 Radiative Transfer Effects

The results of a model calculation for the density of
a species must be integrated over the line of sight to
obtain the column density at a given projected distance
from the nucleus, and then integrated over the instru-
mental field of view for comparison with the observed
average surface brightness or derived average column
density Ni . This assumes that the coma is optically thin,
and that all atoms or molecules have an equal proba-
bility of absorbing a solar photon. In practice, this is
true for all molecular emissions except perhaps within
1000 km of the nucleus (i. e., for observations made at
better than 1′′ resolution). Since the cross sections at

line center can be very large for an atomic resonance
transition, the optical depth for the abundant species
can exceed unity and radiative transfer along both the
line of sight to the sun and that to the Earth must be
considered. This is not a trivial problem as the veloc-
ity distribution of the atoms, particularly the component
due to the excess energy of the photodestruction pro-
cess, must be well known, as must be the shape of
the exciting solar line. The most thoroughly studied
case to date is that of H i Ly-α, whose angular ex-
tent, in direct images, can exceed several degrees on
the sky [83.55].

An interesting case arises for resonance transitions
between an excited 3S1 state and the ground 3P2,1,0 state,
as for O and S, particularly the latter, as its concentration
near the nucleus can be quite large due to the rapid decay
of one of its parents, CS2. For S i the three lines at 1807,
1820 and 1826 Å are not observed to have their statistical
intensity ratio of 5:3:1, except at large distances from the
nucleus. This is explained by noting that fine structure
transitions will lead to all of the S atoms reaching the
J = 2 ground state in a time short compared with that for
absorbing a solar photon, and that the emitted 1807 Å
photons will be re-absorbed and can then branch into
the other two lines. The detailed solution to this prob-
lem has led to the conclusion that H2S was the primary
source of sulfur rather than CS2, whose other product,
CS, was simultaneously observed in the UV [83.56].
Millimeter and sub-millimeter observations of comet
Hale-Bopp (C/1995 O1) subsequently showed that SO,
SO2, and OCS were also minor sources of atomic sul-
fur, comparable in abundance to CS2 [83.57]. Another
minor source is S2, initially observed in only one comet,
IRAS-Araki-Alcock (C/1983 H1) [83.58], but recently
seen in three additional comets by HST. The origin of
S2 in the cometary nucleus remains a puzzle.

83.4 Summary

This brief chapter can only hint at the wealth of ob-
servational data spanning the entire electromagnetic
spectrum now routinely acquired at almost every comet
apparition allowing for a statistically significant as-
sessment of comet diversity and formation scenarios.
Reference [83.59] will bring the interested reader up
to date on all aspects of comet science. The next
few years will see several spacecraft missions to
comets, Stardust, Deep Impact and Rosetta, whose pri-
mary objective is the study of the cometary nucleus
whose properties can only be inferred from remote

observations. Nevertheless, Earth-based observations
of comets will continue to play an important role
in understanding the physical and chemical environ-
ments of these objects left over from the formation
of the Solar System. There are still significant chal-
lenges in understanding the atomic and molecular
physics of the cometary atmosphere, an example being
the identification of the large number of unidenti-
fied lines seen in high resolution spectra in both the
far UV [83.22, 23] and visible [83.60] regions of the
spectrum.
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Aeronomy84. Aeronomy

We describe here the neutral and ionic structures
of atmospheres, including the processes that
determine the atmospheric layers, the distribution
of the species, and the temperature profiles. We
focus on the upper atmosphere, which comprises
the thermosphere and the ionosphere, two
regions which overlay and interact with each
other. We describe the interaction of near and
extreme ultraviolet solar photons and energetic
electrons with the atmosphere and their role
in ionization and dissociation of atmospheric
species. We also review the production and loss
processes that are important in the formation of
the different layers of the dayside and nightside
ionospheres, including ion and neutral diffusion.
The processes that determine the neutral, ion
and electron temperatures are discussed. We
review the processes that are important in
production of the luminosity of the upper
atmospheres, including dayglow, nightglow and
auroras. Finally, we describe atmospheric escape
processes, including thermal and non-thermal
mechanisms.
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84.1 Basic Structure of Atmospheres

84.1.1 Introduction

In a stationary atmosphere, the force of gravity is bal-
anced by the plasma pressure gradient force in the
vertical direction, and the variation of pressure P(z)
with altitude above the surface z is governed by the
hydrostatic relation

dP(z)

dz
=−ρ(z)g(z) , (84.1)

where ρ(z)= n(z)m(z) is the mass density, n(z) is the
number density, and m(z) is the average mass of the at-
mospheric constituents. In general, variables such as P,
ρ, g, n and even m are functions of altitude, although it
will often not be shown explicitly in the equations that
follow for the sake of compactness. The acceleration of
gravity g is usually taken to be the vector sum of the
gravitational attraction per unit mass and the centrifugal

acceleration due to the rotation of the planet:

g(r)= G M/r2−ω2r cos2 φ , (84.2)

where r = r0+ z is the distance from the center of the
planet, r0 is the planetary radius, M is the planetary
mass, G = 6.670 × 10−8 dyn cm2 g−2 is the gravitational
constant, φ is the latitude, and ω is the angular velocity
of the planet.

When the hydrostatic relation (84.1) is combined
with the ideal gas law in the form

P = nkBT , (84.3)

where kB is Boltzmann’s constant and T is the tempera-
ture, and integrated, the the barometric formula

P(z)= P0 exp

⎛

⎝−
z∫

z0

1

H(z′)
dz′

⎞

⎠ , (84.4)
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for the pressure P(z) above a reference level (denoted
by the subscript 0) as a function of altitude results. The
pressure scale height H(z) is defined as

H(z)= kBT

mg
. (84.5)

In the lower and middle atmosphere, the mass m in
(84.5) is the weighted average mass of the atmospheric
constituents.

When the ideal gas law (84.3) is substituted into the
barometric formula (84.4), the altitude distribution

n(z)= n0
T0

T(z)
exp

⎛

⎝−
z∫

z0

1

H(z′)
dz′

⎞

⎠ , (84.6)

for the number density n(z) above a reference altitude
is obtained. Integration of (84.1) or (84.6) from z to
infinity shows that the column density above that alti-
tude is approximately N(z)= n(z)H(z). Thus the scale
height can be thought of as the effective thickness of the
atmosphere.

In its lower and middle regions, the homosphere,
the atmosphere is well-mixed by convection and/or tur-
bulence. The upper boundary of this region is called

Table 84.1 Homopause characteristics of planets and satellites

Planet Altitude K T nt P Composition
(km) (cm2/s) (K) (cm−3) (µbar) (Fraction by number)

Venusb 135 4(7)a 199 1.4(11) 4.7(-3) CO2(76 ), N2(7.6 ), O(9.3 ), CO(6.7 ), N(0.16 ), C(0.01 )

Earthc 100 1(6) 185 1.3(13) 0.3 N2(77%), O2(18%), O(3–4%), Ar(0.7%), He(9.5 ppm),

H(1.3 ppm)

Marsd 120–125 5(7) 154 1.3(11) 2.8(-3) CO2(95%), N2(2.5%), Ar(1.5%), O(0.9%), CO(0.42%)

O2(0.12%), NO(0.007%)

Jupitere 500f 2(6) 600 1.4(13) 0.4 H2(95%), He(4.1%), H(0.055%), CH4(200 ppb),

C2H2(1.2 ppb),C2H4(2.5 ppb), C2H6(0.12 ppb)

Saturng 1100f 1.3(8) 200 1.2(11) 3(-3) H2(94%), He(6%), CH4(178 ppm)

Uranush 300f 1(4) 130 1(15) 20 H2(85%), He(15%), CH4(20 ppm), C2H2(10 ppb),

C2H6(0.1 ppb), C4H2(0.05 ppt)

Neptunei 750f 2(7) 280 1.2(12) 3.9(-2) H2(83%), He(16%), CH4(3 ppm)

Titanj 1100 1(9) 155 3(9) 6.4(-5) N2(96%), CH4(2.4%), C2H2(0.07%), C2H4(0.7%),

C2H6(404 ppm), C4H2(105 ppm)

Tritonk 30 3(3) 40 3.3(14) 1.8 N2(99.9%), H2(190 ppm), CH4(37 ppm), H(3.1 ppm),

N(4.1 ppb)
a Read as 4 × 107 f Altitude above the 1 bar level.
b K from von Zahn et al. [84.1] and model atmosphere from Hedin g From [84.2]

et al. [84.3], for 1500 h, 15◦ N latitude, F10.7 = 150 h From [84.4, 5]
c From The US Standard Atmosphere [84.6] i From [84.7]
d Viking model from [84.8] j From [84.9–12]
e From [84.13] and photochemical model of Kim [84.14]. k From [84.15, 16]

the homopause (or turbopause), and above this level,
the major transport process is diffusion. The homopause
is defined as the level at which the time constants for
mixing and diffusion are equal, and usually occurs at
n(z)∼ 1011 –1013 cm−3, depending on the strength of
vertical mixing for a given planet. Since molecular dif-
fusion coefficients vary from one species to another, the
exact altitude of the homopause is species-dependent,
with smaller species having lower homopause altitudes.
In the terrestrial atmosphere, the homopause is near
100 km at n(z)∼ 1013 cm−3. Below the homopause, the
mixing ratios (or fractions by number) of the constituent
gases, apart from those minor or trace species whose
density profiles are determined by photochemistry or
physical loss processes, are fairly constant with altitude.

Throughout the atmosphere, gravity exerts a force
on each particle that is proportional to its mass. Below
the homopause, however, the tendency of the species
to separate out under the force of gravity is overpow-
ered by large scale mixing processes, such as convection
and turbulence. Above the homopause, each species is
distributed according to its own scale height. Character-
istics of the homopauses of the planets are presented in
Table 84.1.
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84.1.2 Atmospheric Regions

The division of atmospheres into regions is based on
the temperature structure of the terrestrial atmosphere,
which is shown in Fig. 84.1. In the troposphere of
a planet, above the boundary layer, T decreases at close
to the adiabatic lapse rate (Γ ) for the constituent gases
from the surface to the tropopause. For an atmosphere
that is a mixture of ideal gases, Γ = g/cp, where cp is
the specific heat of the gas mixture at constant pres-
sure. The presence of a condensible constituent, such as
water vapor in the terrestrial troposphere, and ammo-
nia or methane in the atmospheres of the outer planets
and satellites, decreasesΓ because upward motion leads
to cooling and condensation, which releases latent heat.
On Earth, the dry adiabatic lapse rate is about 10 K/km
and the moist adiabatic lapse rate is about 4–6 K/km in
the lower to middle troposphere. The average lapse rate
is about 6.5 K/km, and the altitude of the tropopause
varies from about 9 to 16 km from the poles to the equa-
tor. The composition of the lower atmosphere of the
Earth is given in Table 84.2.

Above the terrestrial tropopause lies the strato-
sphere, a region of increasing T that is terminated at
the stratopause, near 50 km. This increase in T is caused
by absorption of solar near UV radiation by ozone in
the Hartley bands and continuum (200–310 nm). In
the terrestrial mesosphere, which lies above the strato-
sphere, T decreases again to an absolute minimum at
the mesopause, where t ≈ 180 K and n(z)≈ 1014 cm−3.
Above the mesopause, in the thermosphere, T increases

Table 84.2 Molecular weights and fractional composition
of dry air in the terrestrial atmospherea

Species Molecular Weight Fraction by volume
(g/mole)

N2 28.0134 0.780 84

O2 31.9988 0.209 476

Ar 39.948 0.009 34

CO2 44.009 95 0.000 3756b

Ne 20.183 0.000 018 18

He 4.0026 0.000 005 24

Kr 83.80 0.000 001 14

Xe 131.30 0.000 000 087

CH4 16.043 03 0.000 002

H2 2.015 94 0.000 0005
a Taken from The US Standard Atmosphere [84.6], except as

noted
b 2003 annual average value. The CO2 mixing ratio is increas-

ing at an annual rate of about 0.45%. Value is from [84.18]
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Fig. 84.1 Vertical distribution of temperature in the ter-
restrial atmosphere. The altitudes of the tropopause,
stratopause and mesopause are indicated. The thermo-
spheric temperatures depend on solar activity and profiles
are shown for four values of the F10.7 index, from 75 (low
solar activity) to 250 (high solar activity). The solid and
dashed curves are for noon and midnight, respectively.
After the MSIS model of Hedin [84.17]

rapidly to a constant value, the exospheric tempera-
ture, T∞. The value of T∞ in the terrestrial atmosphere
depends on solar activity and is usually between about
700 and 1500 K. Fig. 84.1 also shows altitude profiles of
the noon and midnight thermospheric temperature for
four values of the F10.7 index, (the 2800 MHz flux in
units of 10−22 Wm−2Hz−1 at 1 AU), which represent
different levels of solar activity.

The exosphere is a nearly collisionless region of
the thermosphere that is bounded from below by the
exobase. A particle traveling upward at or above the
exobase will, with high probability, escape from the
gravitational field of the planet. The exobase on Earth is
located at about 450–500 km, depending upon solar ac-
tivity. The surface P and T on Mars are about 6 mbar
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and 230 K, respectively. Due to the effect of dust storms,
the extent of the Martian troposphere is highly variable,
with a lapse rate that is 2–3 K/km compared with the
adiabatic lapse rate of 4.5 K/km and a variable thick-
ness of 20–50 km [84.19]. The atmosphere of Mars,
like many planetary atmospheres, does not have a strato-
sphere. A roughly isothermal mesosphere extends from
the tropopause to the base of the thermosphere at about
90 km. The thermospheric T is sensitive to solar activity
and, since Mars has a very eccentric orbit, to heliocentric
distance; T∞ varies from about 180 to 350 K.

Near the surface of Venus, T � 700 K and
P ∼ 95 bar. T decreases with a mean lapse rate of
7.7 K/km, compared with the adiabatic lapse rate of
8.9 K/km, from the surface to about 50 km. The region
from 50 to 60 km contains the major cloud layer, and the
tropopause is usually considered to be at about 60 km.
In the mesosphere, between about 60 and 85 km, T de-
creases slowly from about 250 K to 180 K, and is nearly
constant from 85 km to the mesopause at 100 km. The
daytime exospheric temperature is only weakly depen-
dent on solar activity, varying from about 230 to 300 K
from low to high solar activity. The slow retrograde ro-
tation of the planet, which results in a period of darkness
that lasts 58 days, leads to the relative isolation of the
nightside thermosphere, where T is found to decrease
above the mesopause to an exospheric T ≈ 100 K. Be-
cause of this, the nightside Venus thermosphere has been
called the “cryosphere”. The compositions of the lower
atmospheres of Mars and Venus are given in Table 84.3.

The giant planets, Jupiter, Saturn, Uranus and Nep-
tune do not have solid surfaces, so their atmospheric
regions are defined either in terms of pressure, alti-
tude above the 1 bar level, or altitude above the cloud
tops. The temperature structures of all but Uranus are
influenced by internal heat sources that the terrestrial
planets do not possess. The temperature structures near
the tropopause can be determined from IR observa-
tions and radio occultation data, and at thermospheric
altitudes from ultraviolet solar and stellar occultations
performed by the Voyager spacecraft. In between these
regions, there is a substantial gap in which only aver-
age temperatures can be inferred. Thus the location and
temperature of the mesopauses are largely unknown.

Below 300 mbar on Jupiter, the lapse rate is close
to adiabatic (1.9 K/km). T at 1 bar is about 165 K, and
the tropopause occurs near 140 mbar, where T ≈ 110 K.
At 1 mbar, T again reaches 160–170 K. Temperature
inversions have been reported in the stratosphere, and
are probably due to absorption of solar radiation by dust
or aerosols. Temperatures derived from the Voyager UV

stellar and solar occultations show that T increases from
about 200 K near 1 µbar to an exospheric value of about
1100 K [84.2].

For P> 500 mbar on Saturn, the lapse rate ap-
proaches the adiabatic value of 0.9 K/km, and the
tropopause, near the 100 mbar level, is characterized
by T ≈ 80 K. Above the tropopause the temperature in-
creases to about 140 K near a P ≈ 1 mbar, and above that
altitude there are no measurements of T up to a pressure
of about 10−8 bar, about 1000 km above the 1 bar level,
where T is again about 140 K. Application of the hydro-
static equation to the altitude range 300–1000 km yields
an average temperature near 140 K for the region. Above
1000 km, T increases to a T∞ ≈ 800 K [84.2]. The mix-
ing ratios of the species in the lower atmospheres of
Jupiter and Saturn are given in Table 84.4.

The tropopauses on both Uranus and Neptune oc-
cur near 100 mbar, where T ≈ 50 K. The lapse rates in
the troposphere are 0.7 and 0.85 K/km for Uranus and
Neptune, respectively. The temperatures in the Uranus
thermosphere range from 500 K near 10−7 bar (about
1000 km above the 1 bar level) to an exospheric value of
about 800 K. At 300 km on Neptune, T attains a nearly
constant value in the range 150 to 180 K. At 600 km
where P ≈ 1 µbar, T increases again to a value that is

Table 84.3 Composition of the lower atmospheres of Mars
and Venusa

Species Mixing Ratio
Mars Venus

CO2 0.953 0.96

N2 0.027 0.04
40Ar 0.016 50–120 ppmb

O2 0.0013 20–40 ppm

CO 0.0008 20–30 ppm

H2O 0.0003c 30 ppmd

He 4 ppme 10 ppm

Ne 2.5 ppm 5–13 ppm

Kr 0.3 ppm 0.02–0.4 ppm

Xe 0.08 ppm –

SO2 – 150 ppm

H2S – 1–3 ppm

H2 15 ppmf 0.1 ppmg

a From [84.20], except as noted.
b Includes all isotopes of Ar.
c Variable
d From [84.21].
e From Krasnopolsky and Gladstone. [84.22]
f Krasnopolsky and Feldman [84.23]
g Yung and DeMore [84.24]
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Table 84.4 Composition of the lower atmospheres of
Jupiter and Saturn

Species Mixing Ratio
Jupiter Saturn

H2 0.864b 0.94a

He 0.136b 0.06a

CH4 0.001 81b 0.0045a

NH3 < 0.002b (0.5–0.2 ppmc)

H2O 520 ppmb

C2H6 5 ppma 7.0 ppmc

PH3 0.6 ppma 1.4 ppmc

C2H2 0.02 ppma 0.3 ppmc

20Ne ≤ 26 ppmb

36Ar ≤ 9 ppmb

84Kr ≤ 3.2 ppbb

132Xe ≤ 0.38 ppbb

a After Strobel [84.25]
b After Niemann et al. [84.26]
c After Lodders and Fegley [84.27]

probably about 600 K. Because the Voyager data have
not been fully analyzed, the value of T∞ is uncer-
tain [84.12]. The compositions of the lower atmospheres
of Uranus and Neptune are given in Table 84.5.

Titan, which is a satellite of Saturn, has an N2/CH4
atmosphere of intermediate oxidation state. The mix-
ing ratios of components of the lower atmosphere are
given in Table 84.6. The surface P and T are 1.496 bar
and 94 K, respectively. T decreases above the surface
to about 71 K at the tropopause, which occurs at an
altitude of 42 km and a pressure of 128 mbar. A re-

Table 84.5 Composition of the lower atmospheres of
Uranus and Neptunea

Species Mixing Ratio
Uranus Neptune

H2 ≈ 0.825 ≈ 0.80

He ≈ 0.152 ≈ 0.19

CH4 ≈ 0.023 ≈ 0.01–0.02

HD ≈ 148 ppm ≈ 192 ppm

CH3D ≈ 8.3 ppm ≈ 12 ppm

C2H6 ≈ 1–20 ppb ≈ 1.5 ppm

C2H2 ≈ 10 ppb ≈ 60 ppb

CO < 40 ppb 2.7±1.8 ppmb

NH3 < 100 ppb < 600 ppb

H2O 5–12 ppb 1.5–3.5 ppb
a After Lodders and Fegley [84.27], except as noted
b Courtin et al. [84.28]

Table 84.6 Composition of the lower atmosphere of Titana

Species Mixing Ratio

N2 0.90–0.98

CH4 0.01–0.03b

H2 2.0 × 10−3

CO 60–150 ppm

C2H6 20 ppm

C3H8 4 ppm

C2H2 2 ppm

C2H4 0.4 ppm

HCN 0.2 ppm

Titan’s atmosphere may also contain up to 14% Ar [84.10]
a From [84.29], except as noted
b From [84.9]

analysis of the Voyager 1 solar occultation experiment
showed that, above the tropopause, the temperature in-
creases to a peak value of about 176 K at an altitude of
about 300 km. The temperature then decreases to a T∞
of 153–158 K [84.9]

Triton is a satellite of Neptune. It also has an N2 at-
mosphere with small amounts of methane, CO, H2, and
other species. The mixing ratios at 10 km are given in Ta-
ble 84.7. The surface P is about 14–19 µbar. Methane in
the troposphere is in equilibrium with a surface methane
frost at about 38–50 K. The tropopause temperature is
about 36 K, and occurs in the 8 to 12 km region. The
middle atmosphere is isothermal with a temperture of
about 52 K from 25 to 50 km, increasing to 78 K near
150 km [84.30]. T rises to an T∞ of about 100 K.

Io and Europa are satellites of Jupiter. Both have
transient atmospheres, with mean lifetimes of 2–3 days.
The radius of Io is about 1821 km, and its atmosphere is

Table 84.7 Composition of the atmosphere of Tritona

Species Mixing Ratio Comments

N2 0.99 ± 0.01 Below ≈ 200 km

CO 0.0001–0.01 Uncertain

CH4 113 ppm

H2 75 ppm

N 3.8 × 10−5 ppm

N 290 ppm 100 km (near peak)

H 0.092 ppm

H 1 ppm 30 km (near peak)

C2H4 3.9 × 10−4 ppm

C2H4 2.9 × 10−2 ppm 26 km (near peak)
a From [84.15]. Values are at 10 km, except as noted
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mostly SO2, which is produced by volcanic plumes. One
model predicts that the average column density of SO2 is
about 1016 cm−3, and is larger at the equator than at the
poles [84.31]. The atmospheric temperatures range from
100 to 2000 K, and the exospheric temperature is about
1800 K. The altitude of the exobase is about 1400 km.
A plot of the number density and temperature as a func-
tion of altitude is shown in Figure 80–9 k. Europa is
characterized by a radius of 1596 km. The atmosphere
is mostly O2 with column density of 5 × 1014 cm−2 and
a scale height of 145 km. The O2 is produced by sput-
tering of the ice-covered surface, and is removed in
sputtering by torus thermal ions [84.32]. The ionosphere
is produced by impact of electrons in Jupiter’s magneto-
sphere, and the maximum density of electrons is about
4 × 104 cm−3 [84.33].

Mercury does not have a troposphere, mesosphere,
or stratosphere; The pressure at the surface is on the
order of a picobar; thus the surface of the planet is the
exobase. Nevertheless, several atomic species have been
identified in fluorescence. They are listed in Table 84.8.
Among the possible sources of atmospheric species are
evaporation, ion sputtering, meteoroid bombardment,
and photon-stimulated desorption. Ions produced by
photoionization of neutrals may be picked up by the
solar wind and lost from the atmosphere.

Pluto and its satellite Charon form what is sometimes
referred to as a double planet system. The radius of

Table 84.8 Number densities of species at the surface of
Mercurya

Species Number density (cm−3)

H 230

hot H 23

He 6 × 103

O < 4.4 × 104

Nab (1.7–3.8) × 104

Kb 5 × 102

a from Hunten et al. [84.34]
b Variable spatially and temporally

Pluto is 1150–1200 km, and that of Charon is about
600 km. The atmosphere of Pluto is mostly N2, with
small amounts of methane, CO, H2, and H. Only upper
limits are available for the mixing ratio of CO. The
surface pressure and temperature are in the ranges 1
to 10 µbar and 35 to 57 K, respectively. Although the
pressure at the surface is approximately the same as
that of the base of the thermosphere on most planets,
the thermal structure of the atmosphere is influenced
by the large thermal escape flux at the top of the at-
mosphere and by adiabatic cooling. T maximizes near
1200–1260 km radius at about 100 K due to absorption
of solar UV radiation. Above that radius, T decreases
asymptotically to a value of about 80 K [84.35, 36].

84.2 Density Distributions of Neutral Species

84.2.1 The Continuity Equation

The density distribution of a minor neutral species j in
an atmosphere is determined by the continuity equation:

∂n j

∂t
+∇ ·Φ j = Pj − L j , (84.7)

where Φ j is the flux of species j, and Pj and L j are
the chemical production and loss rates, respectively. If
only the vertical direction is considered, the divergence
of the flux becomes ∂Φ j/∂z, and Φ j = n jw j , where
w j is the vertical velocity of the species and n j is its
number density. In one-dimensional models, transport
due to turbulence and other macroscopic motions of air
masses is often parametrized like molecular diffusion,
using an eddy diffusion coefficient K in place of the
molecular diffusion coefficient D j . The total transport
velocity w j is then the sum of the diffusion velocity wD

j

and the eddy diffusion velocity wK
j :

w j = wD
j +wK

j . (84.8)

If there are no net flows of major constituents, wD
j and

wK
j satisfy the equations

wD
j = −D j

(
1

n j

dn j

dz
+ 1

Hj
+ (1+α

T
j )

T

dT

dz

)

,

(84.9)

wK
j = −K

(
1

n j

dn j

dz
+ 1

Havg
+ 1

T

dT

dz

)
. (84.10)

In these expressions, αT
j is the thermal diffusion fac-

tor (the ratio of the thermal diffusion coefficient to the
molecular diffusion coefficient), and the pressure scale
height Havg for a mixed atmosphere is given by (84.5)
with m = mavg, the average molecular mass.
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For a stationary atmosphere, if molecular diffusion
greatly exceeds eddy diffusion and if photochemistry
can be neglected, then wD

j = 0. The resulting number
density distribution is called diffusive equilibrium, and
is given by

n j(z)= n j(z0)

(
T0

T

)(
1+αT

j

)

exp

⎛

⎝−
z∫

z0

dz′

Hi

⎞

⎠ .

(84.11)

When mixing processes dominate and wK
j = 0, the dis-

tribution is given by (84.6), with H = Havg.

84.2.2 Diffusion Coefficients

In the thermosphere of a planet, above the homopause,
the major transport mechanism is diffusion, or trans-
port by random molecular motions. The characteristic
time τD for molecular diffusion is approximately
H2

j /D j . The diffusion coefficient for a species j in
a multicomponent mixture is usually taken as a weighted
mean of binary diffusion coefficients D jk

1

D j
=
∑

k �= j

fk

D jk
, (84.12)

where fk is the mixing ratio of species k. The binary
diffusion coefficient can be expressed as

D jk = 3kBT

16ntµ jkΩ jk
, (84.13)

where µ jk is the reduced mass

µ jk = m jmk

m j +mk
(84.14)

and nt = n j +nk is the total number density. The colli-
sion integralΩ jk is given by

Ω jk = 1

2π1/2

(
µ

2kBT

)5/2

×

∞∫

0

QD(v)v5 exp
(
−µv2/2kBT

)
dv

(84.15)

where v is the relative velocity of the particles, QD(v)

is the diffusion or momentum transfer cross section

QD(v)= 2π

π∫

0

σel
jk(θ, v)(1− cos θ) sin θ dθ ,

(84.16)

and σel
jk(θ, v) is the differential cross section for elas-

tic scattering of species j and k through angle θ. In
practice, D jk is often expressed as b jk/nt where nt is
the total number density and b jk is the binary colli-
sion parameter, which is usually given in tabulations
in the semi-empirical form b = AT s . Here A and s
(0.5 ≤ s ≤ 1.0) are parameters that are fit to the data.
The binary collision parameter appears, for example, in
the expression for the diffusion limited flux of a light
species to the exobase of a planet (Sect. 84.7).

84.3 Interaction of Solar Radiation with the Atmosphere

84.3.1 Introduction

The source for all atmospheric processes is ultimately
the interaction of solar radiation, either photons or par-
ticles, with atmospheric gases. Since visible photons
arise from the photosphere of the sun, which is character-
ized by T ≈ 6000 K, the solar spectrum in the visible and
IR is similar to that of a black body at 6000 K. At longer
(radio) and shorter (UV and X-ray) wavelengths, the
photons arise from parts of the chromosphere and corona
where the temperatures are higher (104 to 106 K). Thus
the photon fluxes differ substantially from those which
would be predicted for a 6000 K black body. Photons
in the extreme and far UV regions of the spectrum are
absorbed in the terrestrial thermosphere and X-rays in

the lower thermosphere and mesosphere. The solar Ly-
man α line at 1216 Å penetrates through a window in
the O2 absorption cross sections to about 75 km. Near
UV photons are absorbed by ozone in the stratosphere,
and visible radiation is not appreciably attenuated by the
atmosphere.

The wavelength ranges that are most important for
aeronomy are the UV and X-ray regions. A solar spec-
trum in the UV and soft X-ray regions at low solar
activity is presented in Fig. 84.2a, and the ratio of a high
solar activity photon fluxes to those at low solar ac-
tivity is shown in Fig. 84.2b. The ratio is near unity
at wavelengths longward of 2000 Å, but increases to
factors that range between 2 and 3 over much of the
extreme UV. At wavelengths between about 100 and
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550 Å, the ratio of high to low solar activity fluxes
reaches values as high as 100. The fluxes at X-ray
wavelengths arise principally from solar flares and can
increase by orders of magnitude from low to high solar
activity.

The sun also emits a stream of charged particles,
the solar wind, which flows radially outward in all
directions, and consists mostly of protons, electrons,
and alpha particles. The average number density of
solar wind protons is about 5 cm−3, and the average
speed is about 400–450 km/s at Earth orbit (1 AU). The
interaction of these particles with the magnetic field (ei-
ther induced or intrinsic) of a planet, and ultimately
with the atmosphere, is the source of auroral activity.
Terrestrial auroras arise mostly from precipitation of
electrons with energies in the kilovolt range, although
measured spectra vary widely. An example of a pri-
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log photon flux (106 cm –2Å–1)a)

log Fhi/Flowb)

Fig. 84.2 (a) Solar spectrum at 1 AU for 18–2000 Å.
(b) Ratio of the flux at high solar activity to low solar
activity. Plotted with data from Tobiska [84.37]

mary electron auroral spectrum is shown in Fig. 84.3.
Terrestrial auroral emissions maximize in the midnight
sector, but dayside cusp auroras are produced by lower
energy electrons, and diffuse proton auroras are also
observed.

Since charged particles are constrained to move
along magnetic field lines, for planets with intrinsic
magnetic fields, auroras usually occur in an oval near
the magnetic poles, where the dipole field lines en-
ter the atmosphere. For Venus, which has no intrinsic
magnetic field, auroras are seen as diffuse and vari-
able emissions on the nightside of the planet. On
Earth, low latitude auroras, which arise from heavy
particle precipitation, have also been observed. The
primary particles that are responsible for Jovian au-
rora may be heavy ions originating from its satellite
Io, protons, or electrons. Due to charge transfer, heavy
particles spend part of their lifetime as neutral species,
and their paths may then diverge from magnetic field
lines. In any case, a large fraction of the effects of
auroral precipitation is due to secondary electrons, re-
gardless of the identity of the primary particles. In
addition to producing emissions of atmospheric species
in the visible, UV and IR portions of the spectrum,
auroral particles ionize and dissociate atmospheric
species and contribute to heating the neutrals, ions and
electrons.

107

106

105

104

103

Flux (eV –1cm–2 s–1) Downward flux

Energy (eV)
101 102 103 104 105

Fig. 84.3 Downward electron flux as a function of en-
ergy measured by electron spectrometers on board a rocket
traversing an auroral arc near Poker Flat, Alaska. Af-
ter [84.38] with kind permission from Elsevier Science Ltd.,
UK
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84.3.2 The Interaction of Solar Photons
with Atmospheric Gases

The number flux of solar photons in a small wavelength
interval around λ at an altitude z can, for the most part,
be computed from the Beer–Lambert absorption law

Fλ(z)= F∞
λ exp[−τ(λ, z)] , (84.17)

where F∞
λ is the solar photon flux outside the atmos-

phere, and τ(λ, z) is the optical depth which, in the plane
parallel approximation, is given by

τ(λ, z)=
∑

j

∞∫

z

n j(z
′)σa

j (λ) secχ dz′ . (84.18)

Here, σa
j (λ) is the absorption cross section of species j

at wavelength λ, and the solar zenith angle χ is the angle
of the sun with respect to the local vertical.

For χ greater than about 75◦, the variation of the so-
lar zenith angle along the path of the radiation cannot be
neglected; the optical depth must be computed by nu-
merical integration along this path in spherical geometry.
For χ ≤ 90◦ the optical depth is

τ(λ, z)=
∑

j

∞∫

z

n j(z
′)σa

j (λ)

×

[

1−
(

ro+ z

ro+ z′

)2

sin2 χ

]−0.5

dz′ .

(84.19)

For χ larger than 90◦, the optical depth is given by

τ(λ, z)=
∑

j

{
2

∞∫

zs

n j(z
′)σa

j (λ)

×

[

1−
(

ro+ zs

ro+ z′

)2

sin2 90◦
]−0.5

dz′

−
∞∫

z

n j(z
′)σa

j (λ)

×

[

1−
(

ro+ z

ro+ z′

)2

sin2 χ

]−0.5

dz′
}
,

(84.20)

where zs is the tangent altitude, the point at which the
solar zenith angle is 90◦ for the path of solar radiation
through the atmosphere.

In a one-species atmosphere, the rate of absorption
of solar photons of wavelength λ is

qa(λ)= Fλσ
a(λ)n . (84.21)

For an isothermal atmosphere in which H(z)≈ const.,
the absorption maximizes where τ(λ, z)= 1. This is
a fairly good approximation even for regions of the
atmosphere where the H(z) is not constant. The alti-
tude of unit optical depth is shown for wavelengths
from X-rays to the near UV for overhead sun in
the terrestrial atmosphere in Fig. 84.4a. Similar plots
for Venus, Mars and Jupiter are shown in Fig. 84.4b,
Fig. 84.4c, and Fig. 84.4d, respectively. N2 does not ab-
sorb longward of about 100 nm, so in the terrestrial
atmosphere, O2 and O3 are the primary absorbers be-
tween 100 and 220 nm, while ozone dominates the
absorption for wavelengths in the range 220–320 nm.
On Venus and Mars, CO2 is the main absorber of FUV
and EUV radiation, although at wavelengths less than
about 100 nm, N2, CO, and O also contribute. On Titan,
methane is the primary absorber of UV radiation be-
tween 1400 Å and the absorption threshold of N2, near
1000 Å.

The interaction of UV photons with atmospheric
gases produces ions and photoelectrons through pho-
toionization, which may be represented as

X+hν→ X++ e− , (84.22)

and photodissociative ionization

AB+hν→ A++ B+ e− . (84.23)

In these equations, X represents any atmospheric
species; A is either an atom or a molecular fragment
and AB a molecule. The energy of the photoelectron in
reaction (84.22) is given by

Epe = hν− IX − Eex (84.24)

and in reaction (84.23) is

Epe = hν− Ed− IA − Eex , (84.25)

where I j is the ionization potential of species j, Ed is
the dissociation energy of molecule AB, and Eex is the
internal excitation energy of the products. Neutral frag-
ments, which may be reactive radicals, are also produced
in photodissociation

AB+hν→ A+ B . (84.26)
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Fig. 84.4a–d The altitude where τ = 1 versus wavelength (a) Earth [84.39] (b) Venus (c) Mars [84.40] (d) Jupiter (Y. H.
Kim, unpublished)

The rate of ionization of a species j by a photon of
wavelength λ at an altitude z is given by

qi
j(λ, z)= Fλ(z)σ

i
j(λ)n j(z) , (84.27)

where σ i
j(λ) is the photoionization cross section. The

rate for photodissociation is given by a similar expres-
sion, with the photoionization cross section replaced
by the photodissociation cross section. The expression
above must be integrated over the solar spectrum to give
the total rate. In addition, it is often necessary to take
into account ionization and/or dissociation to different
final internal states of the products, so the partial cross
sections or yields are needed.

In the atmospheres of magnetic planets, photoelec-
trons may travel upward along the magnetic field lines
to the conjugate point, where the field line re-enters the
atmosphere. In order to model this effect, the differential
(with respect to angle) cross sections for photoionization

σ i
j(λ, θ) are necessary. The differential cross section is

sometimes expressed as

σ i
j(λ, θ)=

σ i
j(λ)

4π
[1− 1

2
β(λ)P2(cos θ)] , (84.28)

where θ is the angle between the incident photon beam
and the ejected electron, P2 is a Legendre polynomial,
and β is an asymmetry parameter.

84.3.3 Interaction of Energetic Electrons
with Atmospheric Gases

Suprathermal electrons, which are denoted here e∗−, and
include both photoelectrons and auroral primary elec-
trons, can also ionize species through electron-impact
ionization

X+ e∗− → X++ e−+ e′− (84.29)
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and electron-impact dissociative ionization

AB+ e∗− → A++ B+ e−+ e′− . (84.30)

In these reactions, e− represents the energy degraded
photoelectron or primary electron, and e′− the secondary
electron. The energy of the secondary electron E e′ in an
electron-impact ionization process (84.29) is given by

E e′ = Ee*− IX − Eex− Ee , (84.31)

where Ee* is the energy of the primary or photoelectron,
Ee is the energy of the degraded primary or photoelec-
tron, and Eex is the internal excitation energy of the
product ions and/or neutral fragments. For the dissocia-
tive ionization process (84.30) the dissociation energy
of the molecule must also be subtracted as well.

Energetic electrons can also dissociate atmospheric
species. In this process

AB+ e∗− → A+ B+ e− (84.32)

the energy of the degraded electron is

Ee = Ee*−DAB − Eex , (84.33)

where DAB is the dissociation energy of molecule AB.
Collisions with suprathermal electrons can also promote
species to excited electronic, vibrational or rotational
states:

AB+ e∗− → AB†+ e− , (84.34)

where the dagger denotes internal excitation. The energy
lost by the electron is thus the excitation energy of the
species.

In determining the rate of ionization, dissociation
and excitation by photoelectrons, the local energy loss
approximation, that is, the assumption that the electrons
lose their energy at the same altitude where they are
produced, is fairly good near the altitude of peak photo-
electron production. The mean free path of an electron
near 150 km is about 30 m. Substantially above the alti-
tude of peak production of photoelectrons, transport of
electrons from below is important, and use of the local
energy loss assumption causes the excitation, ionization,
and dissociation rates to be underestimated. For keV au-
roral electrons, the computation of the energy deposition
of the electrons must consider their transport through the
atmosphere. Thus the elastic total and differential cross
sections for electrons colliding with neutral species must
be employed, as well as the inelastic cross sections, and
the angles through which the electrons scatter must be
taken into account.

In general, the excitation rate qk
j (z) of a species j

to an excited level k with a threshold energy Ek at an
altitude z by electron impact is given by:

qk
j (z)= n j(z)

∞∫

Ek

σk
j (E)

dF(z, E)

dE
dE , (84.35)

where σk
j (E) is the excitation cross section at elec-

tron energy E, and dF(z, E)/dE is the differential flux
of electrons (between energies E and E+ dE ). The ion-
ization rate qi

j(z) of a species with ionization potential I j
due to electron impact is given by

qi
j(z)

= n j(z)

∞∫

I j

(E−I j )/2∫

0

dσ i
j(E)

dWs

dF(z, E)

dE
dWs dE ,

(84.36)

where dσ i
j(E)/dWs is the differential cross section for

production of a secondary electron with energy Ws by
a primary electron with energy E. The integral over
secondary energies Ws terminates at (E− I j)/2 because
the secondary electron is by convention considered to
be the one with the smaller energy. Since the average
energy of photoelectrons is less than 20 eV, the error
incurred in cutting off the integrals in equations (84.35)
and (84.36) at 200 eV or so, rather than (E− I j)/2 is
not serious, although for high energy auroral electrons
a larger upper limit may be required.

An estimate of the number of ionizations in a gas pro-
duced by a primary electron with energy Ep is Ep/Wip,
where Wip is the energy loss per ion pair produced,
which approaches a constant value as the energy of
the electron increases. Empirical values are available
for Wip for many gases, and usually fall in the range
30–40 eV [84.41].

The total loss function or stopping cross section for
an electron with incident energy E in a gas j is given by
the expression

L j(E)=
∑

k

σk
j (E)W

k
j

+
(E−I j )/2∫

0

(I j +Ws)
dσ i j (E )

dWs
dWs ,

(84.37)

where Wk
j is the energy loss associated with excitation

of species j to excited state k. The differential cross
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section is usually adopted from an empirical formula
that is normalized so that

σ i
j(E)=

(E−I j )/2∫

0

dσ i
j(E)

dWs
dWs , (84.38)

where σ i
j(E) is the total ionization cross section at pri-

mary electron energy E. One formula in common use is
that employed by Opal et al. [84.42] to fit to their data:

dσ i
j(E)

dWs
= A(E)

1+ (
Ws/W

)2.1
, (84.39)

where A(E) is a normalization factor and W is an em-
pirically determined constant, which has been found to
be equal to within a factor of about 50% to the ionization
potential for a number of species.

For energy loss due to elastic scattering by thermal
electrons, an analytic form of the loss function such as
that proposed by Swartz et al. [84.43] may be used:

Le(E)= 3.37 × 10−12

E0.94n0.03
e

(
E− kBTe

E−0.53kBTe

)2.36

,

(84.40)

where Te is the electron temperature and ne is the number
density of ambient thermal electrons.

For high energy auroral electrons, the rate of energy
loss per electron per unit distance over the path s of the
electrons in the atmosphere can be estimated using the
continuous slowing down approximation (CSDA) as

− dE

ds
=
∑

j

n j(z)L j(E) sec θ+ne(z)Le(E) sec θ ,

(84.41)

where θ is the angle between the path of the primary
electron s and the local vertical. In the CSDA, all the
electrons of a given energy are assumed to lose their
energy continuously and at the same rate. The rate of
energy loss (−dE/ds) is integrated numerically over
the path of the electron, which degrades in energy un-
til it is thermalized. In this approximation, inelastic
processes are assumed always to scatter the electrons
forward, so cross sections that are differential in angle
are not required. Because electrons actually lose energy
at different rates, however, and because elastic and in-
elastic scattering processes do change the direction of
the electrons, the CSDA gives an estimate for the rates
of electron energy loss processes that is increasingly
inaccurate as the energy of the electron decreases.

In practice, discrete energy loss of electrons can
be easily treated numerically if the local energy loss

approximation is valid. The spectrum of electrons is di-
vided into energy bins that are smaller than the energy
losses for the processes, and the integrals in (84.35, 36)
are replaced by sums over energy bins. Since elastic
scattering of electrons by neutrals changes mostly the
direction of the incident electron, and not its energy,
only inelastic processes need be considered. In order to
compute excitation and dissociation rates, only integral
cross sections are required; the scattering angle is unim-
portant. For ionization, of course, the energy distribution
of the secondary electrons must be considered, but not
the scattering angles of either the primary or secondary
electrons. Below the lowest thresholds for excitations,
energetic electrons lose their energy in elastic collisions
with thermal electrons. The process of energy loss to
thermal electrons is often approximated as continuous,
rather than discrete.

The collision frequency νk
j for a discrete electron-

impact excitation process k of a species j is given by

νk
j(E)= n j(z)ve(E)σ

k
j (E) . (84.42)

For energy loss due to elastic scattering from ther-
mal electrons, a pseudo-collision frequency νe may be
defined as

νe(E)= 1

∆E

(
− dE

dt

)
, (84.43)

where ∆E is the grid spacing in the calculation, and the
energy loss rate is

− dE

dt
= ve(E)neLe(E) , (84.44)

where Le is taken from (84.40).
Since the energy bins should be smaller than the

typical energy loss in order to obtain accurate rates for
the excitation processes, it is often convenient to treat
rotational excitation also as a continuous process, with
a pseudo-collision frequency similar to that for elastic
scattering from ambient electrons (84.43) with

− dE

dt
= ve(E)n j Lrot

j (E) , (84.45)

where the loss function for rotational excitation is given
by

Lrot
j (E)=

∑

J

ηJ
j

∑

J ′
σ

J,J ′
j (E)W J,J ′

j . (84.46)

In this expression, ηJ
j is the fraction of molecules

jmeasured or computed cross section for electron-
impact excitation of species j from rotational state J
to rotational state J ′, and W J,J ′

j is the associated energy
loss.
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The slowing down of high energy auroral primary
electrons or photoelectrons arises from both elastic and
inelastic scattering processes, and cannot be treated us-
ing the local energy loss approximation. In solving the
equations for electron transport, theangle through which
the primary electron is scattered, as well as the change in
energy of the primary electron and the production of any
secondaries, must be taken into account. Thus differen-
tial cross sections for the elastic and inelastic scattering
of electrons by neutral species are required. The detailed
equations for electron transport have been presented by,
for example, Rees [84.44].

Several methods for approximating the energy de-
position of auroral electrons are currently in use. The

CSDA has already been discussed, but it provides
only a rough approximation to the depth of penetra-
tion of the electrons, and the rates of excitation, ion
production, and other energy loss processes. In the
two-stream approximation, the electrons are assumed
to be scattered in either the forward or backward di-
rection [84.45]. Implementation of this method requires
only the backscattering probabilities, rather than com-
plete differential cross sections. The method has been
generalized to multi-stream models, in which the solid
angle range of the electrons is divided into 20 or more
intervals, so more or less complete differential cross sec-
tions are required [84.46,47]. Monte Carlo methods have
also been used to model auroral precipitation [84.48].

84.4 Ionospheres

84.4.1 Ionospheric Regions

The division of the ionosphere into regions is based
on the structure of the terrestrial ionosphere, which
consists of overlapping layers of ions. These layers
are the result of changes both in the composition of
the thermosphere and in the sources of the ioniza-
tion, and are shown schematically in Fig. 84.5. The
major molecular ion layer is the F1 layer, which is
produced by absorption of EUV (100–1000 Å) pho-
tons by the major thermospheric species, and occurs
where the ion production maximizes. The E layer is
below the F1 layer and is produced by shorter and
longer wavelength photons that are absorbed deeper
in the atmosphere: soft X-rays and Lyman β, which
can ionize O2 and NO (Fig. 84.4a). In the D region,
the densities of negative ions ecome appreciable and
large densities of positive cluster ions appear. These
ions are produced by harder X-rays, with λ� 10 Å, and
Lyman α, which penetrates to about 75 km, where it
ionizes NO. The highest altitude peak in the terres-
trial ionosphere is the F2 peak, which occurs near or
slightly below 300 km, where the major ion is O+. The
peak density occurs where the chemical lifetime of the
ion is equal to the characteristic time for transport by
diffusion (∼ H2/D).

84.4.2 Sources of Ionization

As discussed in Sect. 84.3, ionization can be pro-
duced either by solar photons and photoelectrons during
the daytime or by energetic particles and secondary
electrons during auroral events. Photoelectrons have suf-
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Fig. 84.5 Ionospheric regions and primary ionization
sources. After Bauer [84.49]

ficient energy to carry out further ionization if they are
produced by photons with λ� 500 Å. These photons
penetrate further and exhibit larger solar activity vari-
ations than longer-wavelength ionizing photons. Thus
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the ionization rate due to photoelectrons peaks below
the main photoionization peak. Primary flux spectra of
photoelectrons produced near the F1 peak (172 km) and
below the ion peak (100 km) are shown in Fig. 84.6. The
primary spectrum at the ion peak consists mostly of low
energy electrons, whereas at 100 km, the low energy pri-
maries are depleted, and there are relatively larger fluxes
of electrons with E � 50 eV. Figure 84.7 shows the pri-
mary and steady-state photoelectron spectra near the ion
peaks on Venus and Titan.

The major ions produced in the ionospheres of the
earth and planets are usually those from the major
thermospheric species: N+

2 , O+
2 , and O+ on Earth; CO+

2 ,
O+, N+

2 , and CO+ on Venus and Mars; and H+
2 , H+, and

He+ on the outer planets; N+
2 , N+, and CH+

4 in the iono-
sphere of Titan, and N+

2 , N+, and C+ in the ionosphere
of Triton. In the presence of sufficient neutral densities,
however, ion–molecule reactions transform ions whose
parent neutrals have high ionization potentials to ions
whose parent neutrals have low ionization potentials.
This is a rigorous rule only for charge transfer reactions,
but it applies more often than not in other ion–molecule
reactions as well.

Because of transformations by ion–molecule reac-
tions, the major ions in the F1 regions of the ionospheres
of Earth, Venus and Mars are O+

2 and NO+, in spite of
the large differences in composition between the thermo-
sphere of the earth and the thermospheres of Venus
and Mars. A diagram illustrating the ion chemistry in
the ionospheres of the terrestrial planets is shown in
Fig. 84.8. The vertical positions of the ions in this figure
represent the relative ionization potentials of the par-
ent neutrals. In regions where there are sufficient neutral
densities the ionization flows downward.

Table 84.9 shows ionization potentials (IP) for sev-
eral major and minor species present in planetary
thermospheres. Major atmospheric species generally
have IP � 12–13 eV (λ < 900–1000 Å). Only a few
species can be ionized by the strong solar Lyman al-
pha line (1216 Å, 10.2 eV), including NO, and a few
small hydrocarbons and radicals, such as CH3 and C2H5.
Metal atoms, which are produced in the lower thermo-
spheres and mesospheres of planets from ablation of
meteors, have very low ionization potentials, and some
can be ionized by photons with wavelengths longer than
2000 Å.

Fig. 84.7 Computed primary and steady-state spectra for
photoelectrons near the F1 peak on Venus at 1 eV resolution
(top), and Titan at 0.5 eV resolution (bottom). The steady-
state spectra are averaged over three intervals in both plots
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Fig. 84.6 Primary photoelectron spectrum for the terres-
trial atmosphere at 172 km (near the F1 peak) and at 100 km.
The spectrum at 100 km is significantly harder than that at
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Fig. 84.8 Diagram illustrating the ion chemistry in the ionospheres of the terrestrial planets. The numbers under the
names of the ions indicate the ionization potentials of the parent neutral. In the presence of sufficient neutral densities,
the ionization flows downward, the importance of dissociative recombination for the molecular ions increases as the
ionization potentials of the parent neutrals decrease

Table 84.9 Ionization potentials (IP) of common atmospheric speciesa

High IP Medium IP Ionized by Ly α

Species IP (eV) Species IP (eV) Species IP (eV)

He 24.59 CH4 12.61 C4H2 10.18

Ne 21.56 CH4 12.51 CH3 9.84

Ar 15.76 O2 12.32 C3H6 9.73

N2 15.58 O2 12.07 NO 9.264

H2 15.43 C2H6 11.52 C2H5 8.13

N 14.53 C2H2 11.40 HCO 8.10

CO 14.01 C 11.26 C3H7 8.09

CO2 13.77 C3H8 10.95 Mg 7.65

O 13.62 CH 10.64 trans-HCNH 7.0b

H 13.60 C2H4 10.51 cis-HCNH 6.8b

HCN 13.60 CH2 10.40 Ca 6.11

OH 13.00 S 10.35 Na 5.14

a Computed with data taken from [84.50], except as noted; b From [84.51]
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In ionospheres where hydrogen is abundant and suf-
ficient neutral densities are present, ionization flows to
species formed by protonation of neutrals that have large
proton affinities. There are no in situ measurements of
the ion composition of the outer planets, but models pre-
dict that H+

3 and hydrocarbon ions dominate the lower
ionospheres. In regions where meteor ablation occurs,
metal ions may also be found.

Many ion–molecule reactions proceed at or near gas
kinetic (or collision) rates. The interaction of an ion with
a nonpolar molecule is dominated by the ion-induced-
dipole interaction, for which the interaction potential
is − 1

2αdq2/r4, where αd is the polarizability of the neu-
tral, q is the charge on the ion, and r is the distance
between the particles. The Langevin rate coefficient is
then given by

kL = 2πq(αd/µ)
1/2 , (84.47)

where µ is the reduced mass of the two species. For
a singly charged ion, with αd in Å3 andµ in atomic mass
units, this formula reduces to 2.34 × 10−9(αd/µ)

1/2. The
rate coefficient for an ion with a polar molecule is

kd = 2πq

µ1/2

[

α
1/2
d + cµd

(
2

πkBT

)1/2
]

, (84.48)

where µd is the dipole moment and c is a constant
that is unity in the locked dipole approximation and is
about 0.1 in the average dipole orientation (ADO) the-
ory. Theories for ion–quadrupole interactions have also
been developed, and the resulting formulas can be found
in, for example, the review by Su and Bowers [84.59].
Measured rate coefficients for ion–molecule reactions
have been compiled by Anicich et al. [84.60] and Ikezoe
et al. [84.61].

Loss of ionization in planetary atmospheres pro-
ceeds mainly by dissociative recombination of molecu-
lar ions, which may be represented by

AB++ e− → A+ B . (84.49)

Fig. 84.9a–k Model thermospheres for the Earth and planets. The curves are number density profiles and are labeled
by the species they represent. (a) Earth, based on the MSIS model of [84.17] for a latitude of 45◦, a local time of noon
for low (top) and high (bottom) solar activities; (b) High solar activity model of Venus, based on the model of [84.3]
for 15◦ N latitude 15 h local time; (c) Low solar activity model of Mars, based on Viking 1 measurements [84.8].
Adapted after [84.52]; (d) Jupiter, After [84.53]. (e) Saturn, After [84.54]. (f) Uranus, after [84.55]; (g) Neptune [84.56];
(h) Pluto [84.57]. The abscissa is given in units of Pluto radii, and the ordinate in the top plot is number density in
cm−3; the bottom is temperature in K. (i) Titan, After [84.10, 12]; and (j) Triton model, after [84.15]; (k) Io model,
temperature (upper scale), and number density (lower scale). The major constituent is SO2, and transient with a lifetime
of 2–3 days. From Strobel and Wolven [84.58]. The short dashed curves are for solar ionization only, and the solid
and long-dashed curves are for different assumptions about the interaction of Triton’s thermosphere with electrons from
Neptune’s magnetosphere. The solid curves are the recommended model (j) �

Dissociative recombination coefficients are charac-
teristically large, about 10−7 cm3/s, at the electron
temperatures Te typical of planetary ionospheres, which
are usually within a factor of two or so of the neu-
tral T ≈ 200–2000 K near the molecular ion density
peak. Daytime peak electron densities are usually in
the range 104 –106 cm−3, and fractional ionizations are
small, about 10−5, near the F1 peak.

The relative importance of ion–molecule reactions
and dissociative recombination in the destruction of
a particular ion is determined by the relative densities
of electrons and neutrals with which the ions can react.
In general, molecular ions whose parent neutrals have
high IP are transformed by ion–molecule reactions pref-
erentially to loss by dissociative recombination, and their
peak densities occur higher in the atmosphere. Ions for
which dissociative recombination is an important loss
mechanism near the ion peaks of the terrestrial plan-
ets include NO+ and O+

2 , and in the atmospheres of the
outer planets, H+

3 and hydrocarbon ions. For ions with
very high IP, such as N+

2 and H+
2 , dissociative recombi-

nation is rarely important as a loss process, except at very
high altitudes. It may, however, be important as a source
of vibrationally or electronically excited fragments or
hot atoms.

Atomic ions may be destroyed by radiative recom-
bination:

X++ e− → X+hν , (84.50)

but the rate coefficients are small, about 10−12 cm3/s at
the typical Te of planetary ionospheres [84.62]. Atomic
ions may dominate at high altitudes, where neutral dens-
ities are low, but in such regions, loss by downward
diffusion is more important than chemical recombina-
tion. The ions diffuse downward to altitudes where the
neutral densities are higher and are then destroyed in
ion–molecule reactions. The major ions in the topside
ionospheres of the planets tend to be atomic ions: O+ in
the ionospheres of Earth and Venus, and H+ in the iono-
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spheres of the outer planets. On Mars, however, the O+
peak density does not exceed that of O+

2 even at high
altitudes.

Model thermospheres for Earth and selected planets
and satellites are shown in Fig. 84.9a–k. Measured or
computed ion density profiles for the Earth and selected
planets and satellites are shown in Fig. 84.10a–h.

84.4.3 Nightside Ionospheres

Nightside ionospheres can result from several sources
including remnant ionization from dayside, like O+
in the terrestrial ionosphere. While the lower molecu-
lar ion layers recombine, the F2 peak persists through
the night, although it rises and the peak density is re-
duced by a factor of 10. Electron density profiles for
day and night at high and low solar activities are shown
in Fig. 84.11. In the auroral regions of the Earth, the
precipitating electrons may also produce significant ion-
ization, which maximizes in the midnight sector of the
auroral oval.

The nightside ionosphere of Venus is highly vari-
able, but has been shown to contain the same ions as the
dayside ionosphere. The densities are, however, lower
by factors of 10 or more than those of the dayside iono-
sphere, and the average peak in the electron density
profile is about (1 to 2)× 104 cm−3. It is produced by
a combination of precipitation of suprathermal elec-
trons that have been observed at high altitudes in the
umbra, and transport of atomic ions (mostly O+) at high
altitudes from the dayside. For Mars, only a narrow
range of solar zenith angles near the terminator at low
solar activity has been measured by the radio occulta-
tion experiments on the Viking spacecraft [84.63], the
Mariner 9 spacecraft, and more recently by the Mars
Global Surveyor (MGS) spacecraft radio sciences (RS)
experiment [84.64]. The electron densities are appar-
ently low, and no composition information is available.
At this time, there is no information available about the
nightside ionospheres of the other planets.

84.4.4 Ionospheric Density Profiles

Density profiles of molecular ions can often be approxi-
mated as idealized Chapman layers. A Chapman layer of
ions is one in which the ions are produced by photoion-
ization and lost locally by dissociative recombination.
The ionization rate qi in a one-species Chapman layer
for monochromatic radiation is given by

qi = Fσ in , (84.51)

where σ i is the ionization cross section, and
F = F∞ exp[−τ(z)] is the local solar flux. For an
isothermal atmosphere, the scale height is approximately
constant and therefore n = n0 exp(−z/H). Sometimes
an ionization efficiency ηi is defined such that

σ i = ηiσa . (84.52)

Near threshold, the ionization efficiency for molecules
is usually about 0.3–0.7 but it increases rapidly to 1.0
at shorter wavelengths.

Since the maximum ionization rate in an isother-
mal atmosphere occurs where the optical depth (τ =
nHσa secχ) is unity and therefore n = 1/(σa H secχ),
the maximum ionization rate in a Chapman layer is

qi
max,χ =

F∞

e

σ i

σa H secχ
= qi

max,0

secχ
. (84.53)

If the altitude of maximum ionization for overhead sun
is defined as z = 0, then n0 = (σa H)−1, and, expressing
F∞ in terms of qi

max,0, the ionization rate is

qi(z)= qi
max,0 exp

(
1− z

H
− secχ e−z/H

)
.

(84.54)

It is apparent that at high altitudes (z →∞) the ion-
ization profile follows that of the neutral density, and
below the peak (z →−∞), the ionization rate rapidly
approaches zero. As the solar zenith angle increases, the
peak rises and the magnitude of the density maximum
decreases. Figure 84.12 shows a production profile for
an idealized Chapman layer on both linear and semilog
plots. The asymmetry with respect to the maximum is
more obvious for the semilog plot.

If photochemical equilibrium prevails, the produc-
tion rate of the major ion is equal to the loss rate due to
dissociative recombination

qi(z)= αdrnine = αdrn
2
i , (84.55)

where αdr is the dissociative recombination coefficient,
ni is the ion density, and ne is the electron density. There-
fore the density of an ion in a Chapman layer (in the
photochemical equilibrium region) is given by

ni(z)=
(

qi(z)

αdr

)1/2

=
(

qi
max,0

αdr

)1/2

exp

(
1

2
− z

2H
−1

2
secχ e−z/H

)
.

(84.56)

Actual ionization profiles differ from the idealized Chap-
man profile for several reasons. First, ionization is
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produced by photons over a range of wavelengths, which
do not all reach unit optical depth at the same alti-
tude. Second, thermospheres are often not isothermal
near the altitude of peak ion production. Third, pho-
toionization is supplemented by photoelectron-impact
ionization, which peaks lower in the atmosphere; and fi-
nally, the major ion produced is often transformed by
ion–molecule reactions before it can recombine dis-
sociatively. Nonetheless, the idealized concept of the
Chapman profile is useful in understanding the gen-
eral shape of ion profiles and their behavior as the
solar zenith angle changes. In addition, ion layers pro-
duced by auroral precipitation may take on a similar
appearance to a Chapman-type layer, although energetic
electrons are not always extinguished, as are photons, in
ion production.

84.4.5 Ion Diffusion

Above the photochemical equilibrium layer of the iono-
sphere, upward and downward transport of ions must
be considered. The motions of ions, neutrals, and elec-
trons are coupled, and the momentum equation, which
determines the fluxes or velocities of the ions must take
into account these interactions. The interaction of an
ion, denoted by a subscript i, with a neutral species de-
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noted by a subscript n, is through the ion-induced-dipole
attraction or, for the diffusion of an ion through its par-
ent neutral, by resonant charge transfer. For the former
process, the ion–neutral diffusion coefficient is given
by

Din = kBT

miνin
, (84.57)

where mi is the mass of the ion, and the ion–neutral
momentum transfer collision frequency

νin = 2.21π
nnmn

mi+mn

(
αne2

µin

)1/2

, (84.58)

where αn is the polarizability of the neutral species (Dal-
garno et al. [84.70]; Schunk and Nagy [84.71]). For
the resonant charge transfer interaction, the diffusion

coefficient is

Dct
in =

3(π/2)1/2

8nn Qct
in

(
kBTi

mi

)1/2 1

(1+Tn/Ti)
1/2
,

(84.59)

where Qct
in is the average charge transfer cross sec-

tion [84.72].
The momentum transfer collision frequency for

Coulomb interactions between an ion i and another ion
or electron denoted by the subscript s is

νis = 16π1/2

3

nsms

mi+ms

(
µis

2kBTis

)3/2 e2
i e2

s

µ2
is

lnΛ ,

(84.60)

where es is the charge on species s, ln Λ is re-
lated to the Debye shielding length, and Tis = (msTi+
miTs)/(mi+ms) is a reduced temperature. Numeric-
ally, lnΛ is about 15, and the collision frequency is
approximately [84.71]

νis = 1.27
Z2

i Z2
sµ

1/2
is ns

miT
3/2
is

s−1 , (84.61)

where Z is the species charge number, µ and m are in
amu, and the number density is in units of cm−3.

The ion densities can be computed by solving the
ion continuity equation, which is similar to (84.7) for
neutral species, and in one dimension is

∂ni

∂t
+ ∂Φi

∂z
= Pi− L i , (84.62)

where the ion flux is given by Φi = niwi. In general it
is impossible to solve the momentum equation for the
ion diffusion velocity wi in closed form, except for the
special cases of a single major ion and of a minor ion
moving through a dominant ion species. If motion of
the ions only parallel to magnetic field lines is consid-
ered, the vertical velocity of a dominant ion (for which
ni ≈ ne) moving through a stationary neutral atmosphere
is

wi =−Da sin2 I

×

(
1

ni

dni

dz
+ mig

k(Te+Ti)
+ 1

Te+Ti

d(Te+Ti)

dz

)
,

(84.63)

where I is the magnetic dip angle and the ambipolar
diffusion coefficient defined as

Da = kB(Te+Ti)

miνin
. (84.64)
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For a minor ion i diffusing through a major ion species j,
its velocity is given by

wi = − kBTi/mi

νi j +νin

(
1

ni

dni

ds
+ Te/Ti

ne

dne

ds
(84.65)

+ mig

kBTi
+ 1

Ti

d(Te+Ti)

ds

)
− νi jw j

νi j +νin
.

For regions in which there are large gradients in the ion
or electron temperatures, thermal diffusion may also be
important in determining the ion density profiles, espe-
cially those of light ions such as H+ and He+. Equations
for ion distributions in which thermal diffusion is in-
cluded have been presented by, for example, Schunk and
Nagy [84.71] and references therein.

84.5 Neutral, Ion and Electron Temperatures

The temperature distribution in planetary thermo-
spheres/ionospheres can be modeled by solving the
equation for conservation of energy, which, in simplified
form in the vertical direction is

nm
N

2
kB
∂Tm

∂t
− ∂

∂z

(
κm
∂Tm

∂z

)
=Qm − Lm (84.66)

where N is the number of degrees of freedom (3 for
an atom, and 5 for a diatomic molecule), the subscript
m refers to the neutrals, ions or electrons, κm is the
thermal conductivity, Qm is the volume heating rate, and
Lm is the volume cooling rate. If horizontal variations
are considered, the model becomes multidimensional
and advective terms must be added to the equations.
The Tn are also affected by compression or expansion
due to subsidence or upwelling, respectively. Viscous
heating may be a factor where there are local regions
of intense energy input, such as in auroral arcs. These
terms are not shown in the energy equation above, but
may be found in standard aeronomy texts, such as Banks
and Kockarts [84.72] or Rees [84.44] and Schunk and
Nagy [84.73]. For planets with intrinsic magnetic fields,
the electrons and ions are constrained to move along
magnetic field lines, and the second term on the left-hand
side of (84.66) must be multiplied by a factor sin2 I .

The neutral thermospheres of planets are mostly
heated by absorption of solar radiation in the 10 to
2000 Å range, although on planets with powerful au-
roras, electron precipitation may be an important source
of heat. Absorption of EUV radiation

(
100–1000 Å

)

largely results in ionization of the major thermospheric
species, in which most of the excess energy is carried
away by the photoelectron. The photoelectron, however,
may produce further dissociation or excitation of neu-
tral species along the path to thermalization, and these
processes may result in neutral heating. Photons near
and longward of ionization thresholds in the FUV may
lose their energy in photodissociation, in which the ex-
cess energy of the photon appears as kinetic or internal
energy of the fragments.

Chemical reactions that follow ionization or dissoci-
ation release much of the absorbed solar energy as heat.
Although the partitioning of kinetic energy released be-
tween the product species can be determined easily by
conservation of energy and momentum, the fraction of
energy that appears as internal or kinetic energy must
be determined by measurements or theoretical calcula-
tions. If vibrationally or electronically excited states are
produced in these interactions, however, the energy may
be radiated to space, thus producing cooling. This may
occur promptly if the radiative lifetime is short, or sub-
sequent to an energy transfer process from a long-lived
metastable species to a species for which radiation to
a lower state is allowed. If the metastable species is
quenched, however, its energy can also appear as heat.
Thus the energy partitioning in chemical reactions and
in the interactions of photons and photoelectrons with
atmospheric species is important in understanding the
temperature structure of thermospheres.

A heating efficiency ε is often defined as the frac-
tion of energy absorbed at a given altitude that appears
locally as heat. The heating efficiencies are in the range
30–40% in the terrestrial lower thermosphere. Above
200 km, the heating efficiency decreases because the
energy of the important metastable species O(1D) is
lost as radiation rather than by quenching [84.74]. The
heating efficiencies in the thermospheres of Venus and
Mars are about 20% from 100 to 200 km [84.75, 76],
and on Titan, they range from 20 to 30% from 800
to 2000 km. A column averaged heating efficiency
for the Jovian thermosphere has been computed as
53% [84.77].

On Venus and Mars, CO2 is the major absorber of far
UV radiation, whereas on the Earth, O2 plays that role.
In the F1 regions of the ionospheres of the terrestrial
planets, dissociative recombination of molecular ions
tends to be the major source of heating. Below the F1
peak, photodissociation and neutral-neutral reactions,
including quenching of metastable species, dominate.
Since CH4 is a very strong absorber, the major heating
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mechanisms in the thermosphere of Titan are photodis-
sociation and neutral-neutral reactions, both above and
below the F1 peak. The few data that exist suggest that
electron-impact dissociation is unimportant as a source
of neutral heating, although further measurements would
certainly be of benefit.

Profiles of the heat sources in the terrestrial thermo-
sphere and that of Mars are also shown in Fig. 84.13.

Important cooling processes in planetary thermo-
spheres include downward transport of heat by
molecular and eddy conduction and infrared cooling
from rotational and vibrational excitation of IR active
species such as NO, CO and CO2. Excitation of the
fine structure levels of atomic oxygen and subsequent
emission at 63 and 147 µm also plays a role in cool-
ing the neutral species in the thermospheres of the
terrestrial planets. In the outer planets and their satel-
lites, hydrocarbon molecules such as CH4 and C2H2
are the primary thermospheric IR radiators. The global
circulation may play a role in redistributing the heat
that is deposited in the dayside or auroral thermo-
sphere [84.78, 79].
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Fig. 84.13a,b Heating rates for the thermospheres of (a) Mars and (b) Earth. In (b), the curve labeled Qn is the total
heating rate; e–i is the heating rate due to collisions between the neutrals and electron and ions, iC and nc are the heating
rates due to exothermic ion–neutral and neutral–neutral chemical reactions, respectively; J is that due to Joule heating
for a superimposed electric field of 3.6 mV m−1; A is that from auroral particle precipitation; O

(
1D

)
is the heating due

to quenching of O
(

1D
)
; SRC and SRB are the heating rates due to absorption in the Schumann Runge continuum and

bands, respectively; O is the heating from recombination of atomic oxygen; O3 is the heating rate due to absorption
of photons by O3 in the Hartley bands. After [84.74]. In (a) the curve labeled “O+

2 DR” is the heating rate due to
dissociative recombination of O+

2 ; that labeled “photodissociation” is heating due to the production of energetic neutrals
in photodissociation; the curve labeled “quenching” is that due to quenching of metastable species, such as O

(
1D

)
; and

“chemical reactions” denotes heating due to exothermic chemical reactions other than quenching of metastable species.
After [84.76]

In order to model heating rates, cross sections for
processes in which solar photons or photoelectrons inter-
act with neutral species, and rate coefficients and product
yields for chemical reactions of ions and neutral atmos-
pheric species are necessary. In addition, it is necessary
to know, for example, how much of the energy released
appears as internal energy of the products in chemical
reactions and how much appears as kinetic energy of
the products. Knowledge of energy transfer processes,
including vibration–vibration (V–V ) and translation–
vibration (T–V ) transfer between atmospheric species
is also important. For example, a particularly important
cooling process for the thermospheres of the terrestrial
planets is excitation of the CO2 15 µm bending mode
in collisions with energetic O, and subsequent radia-
tion [84.80]. The de-excitation rate is several percent
of gas kinetic, which is anomalously large for a V–T
process [84.81].

In the lower ionosphere, the electrons and ions are
in thermal equilibrium with the neutral species, but at
higher altitudes the plasma temperatures deviate from
the neutral temperatures. Near the F1 peak, Te is usu-
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ally larger than Ti, but Ti begin to diverge from Te at
slightly higher altitudes. The energy source for the elec-
trons on the dayside is largely photoionization, which,
as discussed above, produces electrons with average
energies in the 15 to 20 eV range. In slowing down,
these energetic electrons lose their energy in inelas-
tic processes with neutrals until E ≈ 1–2 eV. At this
point, elastic scattering by the thermal electron popu-
lation becomes the dominant energy loss process for
the suprathermal electrons and the major source of
heat for the thermal electrons. Other electron heat-
ing mechanisms include deactivation of electronically
or vibrationally excited species, and, for the terres-
trial planets, quenching of the fine structure levels
of O.

As for the neutrals, heat in the electron gas is re-
distributed by conduction at a rate that depends on the
electron thermal conductivity. This quantity is inversely
proportional to the sum of the momentum transfer colli-
sion frequencies of electrons with ions, neutrals, and
ambient electrons. Cooling mechanisms for thermal
electrons include Coulomb collisions with ions, rota-
tional excitation of molecules, and, for the terrestrial
planets, excitation of the fine structure levels of O. Be-
cause of the large mass difference, elastic collisions
between neutrals and electrons are not effective in trans-
ferring kinetic energy.
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Fig. 84.14a–c Ion and electron temperature profiles. (a) Neutral (dot-dashedcurve), ion (dashed curve) and electron
(solid curve) temperatures for the terrestrial ionosphere from the International Reference Ionosphere for equinox, noon
and low and high solar activities. The electron temperature is found not to vary substantially with solar activity. After
Bilitza and Hoegy [84.82] with kind permission from Elsevier Science Ltd., Kidlington UK. (b) Smoothed median ion
(dashed curve) and electron (solid curve) temperatures in the Venus ionosphere as measured by the PV retarding potential
analyzer and the Langmuir probe, respectively. The electron temperature profile is essentially constant with solar zenith
angle. The ion temperature profile applies to solar zenith angles between 0 and 90◦. After [84.83]. (c) Computed electron
and ion temperatures for the ionosphere of Titan, including only solar photoionization as the source of electron heating.
After [84.84]

Ti in the ionosphere is elevated above Tn at high
altitudes principally because of Coulomb collisions
with energetic electrons. Another potentially important
source of heat input to the ions near the ion peak is
exothermic ion–neutral reactions, including quenching
of metastable ions, such as O+(2D

)
, by neutrals. In

the presence of electric fields, joule heating may be
important and can cause Ti to exceed Te.

The ions cool in elastic collisions and resonant
charge transfer with neutral species, which are charac-
terized by lower temperatures than the ions. The cooling
rate for elastic collisions is

L in =−2ni
mi

mi+mn
νin

3

2
kB(Ti−Tn) . (84.67)

Collisions between ions and neutrals (other than their
parents) are dominated by the ion-induced-dipole inter-
action. The momentum transfer collision frequency is
thus given by (84.58). Resonant charge transfer between
an ion and its parent neutral, such as

O+∗ +O →O∗ +O+ , (84.68)

leads to very effective ion cooling, which dominates at
sufficiently high temperatures.

Examples of Ti and Te profiles are shown in
Fig. 84.14a–c for Earth, Venus and Titan. The Interna-
tional Reference Ionosphere (IRI) temperatures profiles
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for the terrestrial thermosphere show the close coupling
between the electrons, ions and neutrals at low altitudes
and the ions and electrons at high altitudes. Ti increases
with increasing solar activity at low altitudes and ap-
proaches Te at high altitudes. The values of Te and Ti are
about 3000 K at 1000 km [84.82]. Electron and ion tem-
peratures in the terrestrial ionosphere are discussed in
Rees [84.44], Banks and Kockarts [84.72], and Whitten
and Popoff [84.85].

Te and Ti in the Venus atmosphere were measured by
instruments on the Pioneer Venus spacecraft. Ti, which
approaches values of 2000–2500 K at high altitudes, has
been found to be insensitive to solar zenith angle, except
near the antisolar point, where it increases to values of
5000–6000 K [84.83]. Te also does not vary appreciably
with solar zenith angle; the high altitude values are in
the range 4000–6000 K [84.86].

The retarding potential analyzer (RPA) on the Viking
spacecraft found that Ti on Mars decouples from the Tn
near 180 km, and approach values of about 3000 K at
high altitudes [84.66]. Te is predicted to diverge from
the Tn in the lower ionosphere, and to approach values
of 3000–4000 K at high altitudes [84.87].

There are no measurements of plasma tempera-
tures in the ionospheres of the outer planets. The
plasma temperatures on Titan have been predicted by
a model [84.84]. The computed Ti are grater than Tn near
the ne maximum near 1000 km, but approach values of
about 300 K at high altitude. For the solar source only,
Te increases rapidly to a constant value of about 800 K
near 1200 km. Electrons from Saturn’s magnetosphere
may interact with the Titan ionosphere during the part
of its orbit that is within the magnetosphere, and in this
case Te up to about 5000 K near 2000 km are predicted.

84.6 Luminosity

The luminosity that originates in the atmospheres of the
planets is generally classified as dayglow, nightglow, or
aurora. Dayglow is the luminosity of the dayside atmos-
phere that occurs as a more or less direct result of the
interaction of solar radiation with atmospheric gases.
Among the sources of dayglow are photodissociative
excitation and simultaneous photoionization and exci-
tation. Dayglow may also include scattering of solar
radiation by processes that are selective, such as reso-
nance scattering by atoms and fluorescent scattering by
molecules, but the term generally excludes nonselective
scattering processes, such as Rayleigh scattering.

In resonance scattering, the absorption of a photon
by an atom in the ground state, causes a (usually dipole
allowed) transition to a higher electronic state:

A+hν→ A∗ , (84.69)

followed by the emission of a photon as the state decays
back to the ground state:

A∗ → A+hν . (84.70)

The wavelength of the emitted radiation is very nearly
the same as the wavelength of the radiation absorbed.
The cross section for absorption of a line in the solar
spectrum is

σa
12(ν)=

*2

*1

c2

8πν2
A21φ(ν) , (84.71)

where the subscript 1 indicates the lower state and 2 the
upper state, * is the statistical weight of the state and

ν = c/λ is the frequency of the transition. A21 is the
Einstein A coefficient for the transition, and φ(ν) is the
lineshape function, which in this equation is normalized
so that the integral over all frequencies is unity.

If the linewidth is determined by the spread of ve-
locities of the species, the lineshape φ(ν) is a Doppler
(Gaussian) profile

φD(ν)= c

uν0
√
π

exp

[

−
(
ν−ν0

ν0

)2 c2

u2

]

, (84.72)

where ν0 is the frequency at line center. The variable u =
(2kBT/m)1/2 is the modal velocity of a gas in thermal
equilibrium at temperature T . The width of the line at
half maximum, ∆νD is

∆νD = 2ν0u

c
(ln 2)1/2 . (84.73)

If the linewidth is determined by the natural lifetime, the
profile is a Lorentzian

φL(ν)= ∆νL/2π
(
ν−ν0

)2+ (
∆νL/2

)2 , (84.74)

where ∆νL = ΓR/2π is the line width at half maximum,
and

ΓR = Γ2+Γ1 , (84.75)

where Γ2 and Γ1 are the inverse radiative lifetimes of
the levels 2 and 1, respectively. Collisional broadening
also results in a Lorentzian lineshape. If both Doppler
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and natural broadening mechanisms are important, the
lineshape is a convolution of the two profiles, called
a Voigt profile:

∞∫

−∞
φD(ν

′)φL(ν−ν′)dν′ . (84.76)

The absorption cross section σa
12 integrated over all

frequencies is proportional to the absorption oscillator
strength f12:

∞∫

0

σa
12(ν)dν =

πe2

mec
f12 , (84.77)

where me is the mass of the electron. A21 is related to
the oscillator strength through

A21 = *1

*2

8π2e2ν2

mec3 f12 = *1

*2

8π2e2

mecλ2 f12 . (84.78)

The excitation rate q2 of an upper level 2 by reso-
nance scattering is given by

q2 = F(ν)
πe2

mec
f12 = F(λ)

*2

*1

λ4

8πc
A21 , (84.79)

where F(ν) is the solar flux in units of pho-
tons cm−2 s−1 Hz−1 and F(λ) is the flux in units
of photons cm−2 s−1 per unit wavelength interval. It
should be noted that for radiative transfer purposes the
photon flux that we have called F(ν) is sometimes de-
noted πF(ν). It is customary in aeronomy to define a
“g-factor,” which is the probability per atom that a pho-
ton will be resonantly scattered in a particular transition:

g21 = q2 A21/
∑

i

A2i , (84.80)

where the sum in the denominator is over all the lower
states i that are accessible from the upper state 2. The
g-factor for unattenuated solar radiation is often quoted
at the mean sun-earth distance or at a particular planet.
The volume emission rate ε21(z) for resonance scattering
of a solar photon is then given by

ε21(z)= g21n1(z) , (84.81)

where n1(z) is the number density of atoms in level 1.
In fluorescent scattering, a photon is absorbed by

a molecule in a vibrational state v producing an excited
electronic state with a vibrational quantum number v′

AB(v)+hν→ AB∗(v′) . (84.82)

This is followed by emission, at wavelengths that are
usually the same as or longer than that of the absorbed
photon, to a range of vibrational levels v′′ of a lower
state

AB∗(v′)→ AB(v′′)+hν′ . (84.83)

The volume emission rate of a transition from a level v′
of the upper electronic state to a vibrational level v′′ of
a lower electronic state at an altitude z is given by

εv′v′′(z)= n(z)gv′v′′ = n(z)qv′
Av′v′′∑
v′′ Av′v′′

, (84.84)

where Av′v′′ is the transition probability, n(z) is the num-
ber density of the molecular species at altitude z, and qv′
is the excitation rate of vibrational level v′ of the upper
electronic state from a range of lower states v. The latter
quantity is

qv′ =
∑

v

ηvF(λ)
πe2

mec2 λ
2 fvv′ , (84.85)

where ηv is the fraction of molecules in the v vibrational
level.

Dayglow also includes emissions that are the result
of the interaction of atmospheric species with the photo-
electrons produced in solar photoionization, either by
direct excitation

A+ e∗− → A∗ + e− , (84.86)

or by simultaneous dissociation and excitation

AB+ e∗− → A∗ + B+ e− , (84.87)

or ionization and excitation

X+ e∗− → X+∗ + e− . (84.88)

Electron impact processes are particularly important in
producing excited states that are connected to the ground
state by dipole forbidden transitions, whereas resonance
and fluorescent scattering are largely limited to transi-
tions that are dipole allowed. Dayglow emissions may
also result from prompt chemiluminescent reactions,
which occur when fragments or ions produced by dis-
sociation or ionization recombine with the emission of
a photon.

As an example, the dayglow spectrum of the earth
from 1200 to 9000 Å is shown in Fig. 84.15. An ultra-
violet spectrum of Mars as measured by the Mariner 9
spectrometer is shown in Fig. 84.16a, and the UV day-
glow of Saturn and Uranus, which were measured by the
Voyager spacecraft, are compared in Fig. 84.16b.

Nightglow arises from chemiluminescent reactions
of species whose origin can be traced to species pro-
duced during the daytime or which have been transported
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Fig. 84.15 Terrestrial dayglow spectrum measured in a single 32-second exposure by the Arizona Imager/Spectrograph on board
the Space Shuttle [84.88]

from the dayside. For example, on Venus, O and N pro-
duced on the dayside are transported by the subsolar to
antisolar circulation to the nightside, where they subside
and radiatively associate:

N+O → NO+hν , (84.89)

producing emission in the δ and γ bands of NO (e.g.,
Stewart et al. [84.89]). The Venus UV nightglow spec-
trum is shown in Fig. 84.17. Similar phenomena have
recently been observed by the ultraviolet spectrometer
on the Mars Express spacecraft [84.90].

Auroral emissions are defined here as those produced
by impact of particles other than photoelectrons. Al-
though aurorae are usually thought of as confined to the

polar regions of the Earth and the outer planets, Venus,
which does not have an intrinsic magnetic field, exhibits
UV emissions on the nightside that are highly variable
and cannot be explained as nightglow. It has been pro-
posed that the emissions are produced by precipitation
of soft electrons into the nightside thermosphere. Mars
has recently been observed to exhibit auroral emissions,
which are concentrated over magnetic field anomalies
in the martian crust [84.91].

The intensities of airglow and aurora are usually
measured in units of brightness called Rayleighs. One
Rayleigh is an apparent column emission rate at the
source of 106 photons cm−2 s−1 integrated over all an-
gles, or 106/4π photons cm−2 s−1 sr−1. A comparison
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Fig. 84.16a,b Dayglow spectra of selected planets.
(a) Martian airglow spectrum recorded by Mariner 9 at 15 Å
resolution. After [84.92]. (b) Comparison of dayglow spec-
tra from Uranus (heavy line) and Saturn (thin line) recorded
by Voyager 2 [84.4]�
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Fig. 84.17 Far ultraviolet nightglow spectrum of Venus
obtained with the Pioneer Venus orbiter ultraviolet spec-
trometer. The predicted responses for three different band
systems are also shown. After [84.93]

of auroral and dayglow emissions as measured by the
Cassini UVIS as the spacecraft flew by Jupiter is shown
in Fig. 84.18. (A. I. F. Stewart, private communication,
2004).

A discussion of terrestrial airglow and auroral emis-
sions can be found in Rees [84.44]. Meier [84.94]
has reviewed spectroscopy and remote sensing of the
terrestrial ultraviolet emissions. The airglows of Mars
and Venus have been discussed by Barth [84.19], by
Fox [84.95] and by Paxton and Anderson [84.40]. Air-
glow and auroral emissions on the outer planets have
been reviewed by Atreya et al. [84.96], Atreya [84.2], and

30

24

18

12

6

0
2000 2500 3000

450

300

150

0

20 40 60 80 100 120

600 800 1000 1200 1400 1600

a)

b)

Intensity k Rayleigh/15 Å

Wavelength (Å)

Channel

Wavelength (Å)

2.0 1.0 0.0 0.1 0.2 0.3 1.5 1.6

1.0 0.0 0.1 0.2 1.4 1.5

CO+ B2 Σ+–X2Σ+

CO σ3Π –X1Σ+ CO2
+ B

~ 2Σ+ –X
~ 2Π

OI 2972 Å

CO2
+ A

~ 2Π –X
~ 2Π

4.0 3.0 2.0 1.0

Raman Lyα
Solar Reflection

CI

H2Ly

H2Wr

H2 a–b

HI Rydberg

Counts/3840S

Strobel [84.4]. Airglow in the atmospheres of the planets
has been reviewed by by Slanger and Wolven [84.97].

84.7 Planetary Escape

Escape of species from atmospheres can occur by ther-
mal and nonthermal mechanisms. Thermal processes
include Jeans escape and hydrodynamic escape. Jeans
escape is essentially evaporation of the energetic tail
of the Maxwell–Boltzmann distribution, while hydro-
dynamic escape is a large-scale “blow-off” of the

atmosphere that occurs when the average molecular
velocity is near or above the escape velocity. Al-
though Jeans escape still occurs for light species in the
thermospheres of small planets, hydrodynamic escape
is thought to have occurred only in the early history of
the terrestrial planets when the solar flux in the UV was
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higher. Nonthermal escape mechanisms, which domi-
nate for heavy species on smaller bodies such as Mars
and Titan, and for all species on Venus and Earth, include
both photochemical and mechanical processes. A peda-
gogical discussion of escape processes can be found in
Chamberlain and Hunten [84.98]

Because of the exponential rate of change of den-
sity with altitude in atmospheres, escape is sometimes
assumed to occur only at and above the exobase. The
exobase is mathematically defined as the altitude where
the mean free path l = (nσc)−1 (where σc is the collision
cross section), is equal to the atmospheric scale height.
The probability that a particle, moving upward from
the exobase with sufficient velocity will actually escape
without suffering another collision is 1/e. The condition
l = H therefore reduces to nHσ = 1 or, equivalently,
to N = (σc)−1, where N is the column density. Since
a typical collision cross section is about 3 × 10−15 cm2,

the exobase is located near the altitude above which
the column density is about 3.3 × 1014 cm−3, although
the collision cross section and thus the location of the
exobase is different for different escaping species.

Whether the trajectory of a particle moving upward
at the exobase is ballistic (bound) or escaping (free) is
determined by its total energy E, which is the sum of its
kinetic and potential energies:

E = 1

2
mv2

c +
rc∫

∞

mG M

r2 dr , (84.90)

where the symbols have the same meaning as in equation
(84.2), and the subscript c refers to the critical level
or exobase. If E < 0, the particle is bound. Expression
(84.90) reduces to

E = 1

2
mv2

c −mgcrc (84.91)
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where gc is the gravitational acceleration at the exobase.
The escape velocity at the exobase, vesc, is then defined
by the condition vesc = (2gcrc)

1/2. Particles with vel-
ocities greater than the escape velocity are assumed to
escape if their velocity vector is oriented in the upward
hemisphere and if they undergo no further collisions.
The radius, gravitational acceleration, escape velocities
and scale height at the equatorial exobases of the planets
are given in Table 84.10.

In the Jeans process, escape occurs when particles in
the high energy tail of the Maxwellian distribution attain
the escape velocity. The escape flux, ΦJ is given by

ΦJ = ncu

2
√
π
(1+λc) exp(−λc) , (84.92)

where u = (2kBT/m)1/2 is the modal velocity and λ is
the gravitational potential energy in units of kBT

λ= G Mm

rkBT
= mgr

kBT
= r

H
. (84.93)

Table 84.10 Exobase properties of the planets

Planet rc ga
c va

esc,c Ha,b
avg

(km) (cm s–2) (km s–1) (km)

Mercuryc 2439 378 4.29 –

Venusd 6250 831 10.2 17

Earthe 6878 842 10.8 71

Marsf 3593 333 4.89 17

Jupiterg 73 000 2236 57.2 250

Saturnh 67 000 731 31.3 910

Uranusi 31 800 561 18.9 66

Neptunej 27 300 919 22.4 250

Titank 4175 51.4 2.07 116

Tritonl 2222 28.9 1.13 140
a Values given are those at the equatorial exobase, and assume

that the thermosphere co-rotates with the planet.
b Average value computed from Havg = kBT/mavgg, but does

not represent the local pressure scale height, except for cases
where there is one major constituent.

c Exobase is at the surface.
d Model from Hedin et al. [84.3] for F10.7=150, 45◦ solar

zenith angle.
e MSIS model for F10.7=150, equator, 45◦ Solar Zenith

Angle [84.17].
f Model from Nier and McElroy [84.8], and pertains to low

solar activity conditions.
g Model from [84.2, 14].
h Model from Atreya [84.2].
i Model from [84.55].
j Model from [84.56].
k Model from Strobel et al. [84.10].
l Model from Krasnopolsky et al. [84.15]

Sometimes a correction factor is applied to the expres-
sion for the escape flux to account for the suppression
of the tail of the distribution due to the escape of the
energetic particles [84.100, 101].

Photochemical processes that produce energetic
fragments include photodissociation and photodissocia-
tive ionization, photoelectron impact dissociation and
dissociative ionization, as well as exothermic chem-
ical reactions. The most important example of the latter
are dissociative recombination reactions, which are very
exothermic and tend to produce neutral fragments with
large kinetic energies. Charge transfer processes such as

H+∗ +O →O++H∗ (84.94)

can produce fast neutrals if the ion temperature is larger
than the neutral temperature, as is usually the case near
the exobase of a planet. In modeling these processes,
the kinetic energy distribution of the product species is
important, as well as the cross sections or reaction rates.

Physical or collisional escape mechanisms include
sputtering and “knock-on.” Sputtering can occur when
a heavy ion picked up by the solar wind collides with an
atmospheric species near or above the exobase, and in
the process produces a “back-splash” in which the ac-
celerated neutral may be ejected from the atmosphere.
In knock-on, hot atmospheric neutral species, such as
O atoms produced in exothermic chemical reactions
near the exobase can collide with a lighter species,
such as H, imparting sufficient kinetic energy to allow
it to escape. Modeling these processes requires knowl-
edge of the ion–neutral or neutral–neutral collision cross
sections.

The escape rate of a light species from a planetary at-
mosphere may be controlled by diffusion of the species
from the lower atmosphere to the exobase, rather than
by the escape process itself [84.102]. The limiting up-
ward flux, φl of a species i with mixing ratio fi can be
estimated as

φl ≈ bi fi/Ha , (84.95)

where Ha is the average scale height of the atmosphere
and bi is the binary collision parameter introduced in
Sect. 84.2.2. Equation (84.95) above is usually eval-
uated at the homopause, with the mixing ratio taken
from a suitable altitude in the middle atmosphere, but
above the cold trap (where the species condenses), if
one exists. The limiting flux obtains if and only if the
mixing ratio is constant with altitude. The effect of
photochemistry can be accounted for if all chemical
forms of the species are considered in the calculation
of fi.
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Fig. 84.19 Spectrum of the oxygen green line taken on
the nightside of Venus taken by the Keck/HIRES on 20
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shifted Venusian components are shown by the dashed lines
(from Slanger et al. 84.103)

Even if energetic particles released at the exobase
of a planet do not have enough energy to escape, they
may travel to great heights along ballistic orbits be-
fore falling back to the atmosphere. These particles are
said to form a hot atom “corona”. Hot H and O coronas
have been found to surround the Earth and Venus, and
have been predicted for Mars (Fig. 84.19). Reviews of
the H and O coronas of Venus have been presented by
Fox and Bougher [84.79] and by Nagy et al. [84.104].
See Chamberlain and Hunten [84.98] for a detailed
discussion of planetary coronal population processes.
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Applications o85. Applications of Atomic and Molecular Physics
to Global Change

While there has been a general understanding
and appreciation of the science involved in both
global warming and stratospheric ozone depletion
by atmospheric scientists for some time, detailed
understanding and rigorous proof has often been
lacking. Over the last ten years, there have been
many advances made in filling in the details
and there will continue to be rapid advances in
the future. This means that any article or book
discussing this topic becomes out of date as soon as
it is written. Nevertheless several recent references
on these topics are recommended [85.1–3].

Atomic and molecular structure and spec-
troscopy, as well as collision processes involving
atoms, molecules, ions and electrons, are impor-
tant to the study of all planetary atmospheres. For
additional information on this topic, see Chapt. 84
in this volume.
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85.1 Overview

85.1.1 Global Change Issues

Over the last several decades there has been increasing
concern about the global environment and the effect of
human perturbations on it. This whole area, which in-
volves a wide range of scientific disciplines, has become
known as Global Change. Knowledge of processes tak-
ing place in the atmosphere, oceans, land masses, and
plant and animal populations, as well as the interactions
between these various earth-system components is es-
sential to an overall understanding of global change –
both natural and human-induced.

The processes of atomic and molecular physics find
greatest application in the area of atmospheric global
change. The two major issues which have received sig-
nificant attention in both the media and the scientific
literature are: (1) global warming, due to the buildup
of infrared-active gases; and (2) stratospheric ozone de-

pletion due to an enhancement of destructive catalytic
cycles. Although both of these problems are thought to
be caused by atmospheric pollutants due to industrial-
ized human society, the general problem of air pollution
and its direct effects on plant and animal populations
will not be addressed here.

85.1.2 Structure of the Earth’s Atmosphere

The vertical temperature structure of the earth’s at-
mosphere shown in Fig. 85.1 provides an important
nomenclature that is widely used [85.4]. The atmosphere
is divided into regions called “-spheres”, in which the
sign of the temperature gradient with respect to altitude,
dT/dz, is constant. The regions in which the temper-
ature gradient changes sign are called “-pauses”. The
precise altitude pertaining to each of these regions can
vary depending upon latitude and the time of year.
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Fig. 85.1 Vertical temperature profile of the atmosphere

In the troposphere, covering the range from 0 to
≈ 15 km above the earth, the temperature steadily de-
creases with altitude. This is the most complex region
of the atmosphere, as it interacts directly with plant and
animal life, land masses and the oceans. It is the region
in which weather occurs.

The change in sign of the temperature gradient at
the tropopause to a positive dT/dz in the stratosphere
is due to heating by absorption of solar ultraviolet
radiation which photodissociates O2 and O3. The strato-
sphere, extending from ≈ 15 to 50 km above the earth,
contains the ozone layer which shields the earth’s sur-
face from harmful ultraviolet radiation in the range
of 280–320 nm.

At the stratopause, the heating processes have
become too weak to compete with the cooling pro-

cesses, and throughout the mesosphere, approximately
50–85 km, the temperature again decreases with in-
creasing altitude. Cooling processes, which will be
discussed in Sect. 85.2.2, involve collisional excitation
of molecular vibrational modes which decay by radiat-
ing to space. The coldest temperatures in the atmosphere
are found at the mesopause, where the temperature
gradient once again becomes positive. From approxi-
mately 70 km upward, a very diffuse plasma called the
ionosphere exists due to photoionization of atoms and
molecules by short wavelength (UV and EUV) solar
radiation.

Throughout the thermosphere, which extends from
approximately 90 km upward, heating occurs because
the atmosphere has become so thin that there are very
few collisions and thus inefficient equilibration of the
highly translationally excited atoms and ions with the
molecular species which can radiate in the infrared.
This “bottleneck” for energy loss causes increased heat-
ing. In the thermosphere and ionosphere, the thermal
inertia is very small and there are huge temperature
variations, both diurnally, and with respect to solar
activity.

The densities are low enough in the thermosphere,
ionosphere, and mesosphere, that the primary processes
determining the chemical and physical characteristics
of these regions are two-body processes and “half-
collision events” discussed elsewhere in this volume:
dissociative recombination, photoionization, photodis-
sociation, charge transfer, and collisional excitation
of molecular rotation and vibration. As the altitude
decreases, the density increases. Then three-body in-
teractions, interactions on surfaces (of aerosols and
ices), and complex chemical cycles together with dy-
namical effects such as winds determine the chemical
and physical characteristics of the stratosphere and
troposphere.

85.2 Atmospheric Models and Data Needs

While models are absolutely essential to the study of
any system as complex as the earth’s atmosphere, they
play a particularly fundamental role in exploring global
change issues. Models not only provide predictions of
future changes, but also allow exploration of sensitivi-
ties to particular parameters. Comparing the results of
a model with observations ultimately tests and chal-
lenges scientific understanding. Of critical importance
is the atomic and molecular data which goes into the
models.

Generally, atmospheric models become increas-
ingly complex as altitude decreases. General Circulation
Models (GCMs), incorporating thousands of chemical
reactions, global wind patterns, and abundances of large
numbers of trace species, require supercomputers in
order to model aspects of the troposphere and strato-
sphere. Tropospheric chemistry and transport models,
such as GEOS-CHEM [85.5], model the sources, evo-
lution, transport, and sinks of pollution, as well as the
oxidative capacity of the troposphere.
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85.2.1 Modeling the Thermosphere
and Ionosphere

The data necessary for modeling of the thermosphere
and ionosphere are described here. The primary compo-
nents of such a model include: a solar spectrum of photon
fluxes as a function of wavelength, concentrations
of neutral species, photoabsorption, photodissociation
and photoionization cross sections as a function of
wavelength. The computer code brings all these ele-
ments together, calculating opacity as the solar radiation
propagates downward through the atmosphere, keep-
ing track of ion production and electron production.
Additional steps are required to calculate the abun-
dances of trace species such as NO+, necessitating
the inclusion of all relevant ion-neutral reactions. Elec-
tron energy degradation can be tracked by including
inelastic collisions of electrons with ions, atoms, and
molecules.

The primary neutral species are N2, O2, O, and He.
Below about 100 km, the atmosphere is fully mixed by
turbulence in the ratio 78% N2, 21% O2 and 1% trace
species such as O3 and CO2. Above 100 km, turbulence
dies out and the atmospheric species are in diffusive
equilibrium, distributed by their molecular weight, with
atomic oxygen dominating above ≈ 150 km and He
dominating much higher. The major ions are N+

2 , O+
2 ,

O+ and NO+.

85.2.2 Heating and Cooling Processes

In the upper atmosphere, heating occurs through ab-
sorption of short wavelength solar radiation to produce
ionization and dissociation, and is mediated by colli-
sions between electrons, ions, and neutrals. Ions and
electrons are created during the daytime and to a great
extent disappear during the night with the absence of
solar radiation. Processes such as dissociative recombi-
nation, the primary electron loss mechanism, heat the
gas:

e+O+
2 → O(3P)+O(3P)+7 eV , (85.1)

e+N+
2 → N(4S)+N(4S)+6 eV . (85.2)

Cooling takes place when the kinetic energy of the
gas is transformed through collisions into internal en-
ergy which can then be radiated away. The primary
coolant above ≈ 200 km is the fine structure transition
of atomic oxygen, O(3P1)

hν→ O(3P2), which is excited
by thermal collisions and radiates at 63 µm. From ap-
proximately 120 km to 200 km, the fundamental band of
NO, v= 1 → v= 0, which is excited by collisions with
atomic oxygen and radiates at 5.3 µm, dominates the
cooling. Below 120 km and throughout the mesosphere
and stratosphere, the primary coolant is the ν2 band of
CO2 radiating at 15 µm. This transition is excited by col-
lisions of CO2 and atomic oxygen. Cooling throughout
most of the atmosphere is accomplished through trace
species because the major molecular species, N2 and O2,
are not infrared active.

85.2.3 Atomic and Molecular Data Needs

Knowledge of rate coefficients for ion-neutral and
neutral-neutral reactions as a function of vibrational and
rotational excitation of the reactants is becoming in-
creasingly important, as there is recent evidence of more
internal excitation of molecular species than had previ-
ously been thought [85.6]. Accurate photoabsorption,
photodissociation and photoionization cross sections as
a function of wavelength for all the relevant species
are important parameters determining the reliability and
ultimate accuracy of an atmospheric model. Compi-
lations of data, such as that by Conway [85.7] and
Kirby et al. [85.8] are very useful, but can become rapidly
outdated. The Smithsonian Astrophysical Observatory
maintains the world standard database, HITRAN, for
molecular line parameters and absorption cross sections
from the microwave through the ultraviolet for analysis
of atmospheric spectra [85.9]. Discussions of the needs
for atomic and molecular data in the context of space
astronomy, but including applications to atmospheric
physics, can be found in a book edited by Smith and
Wiese [85.10].

85.3 Tropospheric Warming/Upper Atmosphere Cooling

85.3.1 Incoming and Outgoing
Energy Fluxes

The overall temperature of a planet is determined by
a balance between incoming and outgoing energy fluxes.

In a steady state, the planet must radiate as much en-
ergy as it absorbs from the sun. The Earth, radiating as
a black-body at an effective temperature TE, obeys the
Stefan–Boltzmann law in which the energy emitted is
expressed as σT 4

E 4πR2
E, with σ the Stefan–Boltzmann
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constant, and RE the radius of the earth. An equation
expressing the equality of energy absorbed and energy
emitted can be written [85.11] as

FsπR2
E(1− A)= σT 4

E 4πR2
E , (85.3)

where A is the albedo of the earth (the fraction of solar
radiation reflected from, rather than absorbed by, the
Earth), Fs is the solar flux at the edge of the earth’s
atmosphere, and πR2

E is the Earth’s area normal to the
solar flux. Solving this equation for TE, one obtains
TE � 255 K (−18 ◦C).

The sun, which has a surface temperature of ap-
proximately 6000 K, emits most of its radiation in the
0.2–4.0 µm region of the spectrum (200–4000 nm). The
upper atmosphere of the Earth (thermosphere, iono-
sphere, mesosphere, and stratosphere) absorbs all the
solar radiation shortward of 320 nm. The atmosphere of
the earth absorbs only weakly in the visible region of
the spectrum where the solar flux peaks.

The Earth, with an effective radiating temperature
of 255 K, emits mainly long-wavelength radiation in the
4–100 µm region. Molecules naturally present in the
atmosphere in trace amounts, such as carbon dioxide,
water and methane, absorb strongly in this wavelength
region [85.12]. Radiation coming from the Earth is
thus absorbed, reradiated back to the surface, and ther-
malized through collisions with the ambient gas. This
trapping of the radiation produces an additional warm-
ing of 33 K. Thus the mean surface temperature of
the Earth is 288 K, not 255 K as found for TE above.
This effect of the Earth’s atmosphere is known as the
greenhouse effect. The greenhouse effect is what makes
Earth habitable for life as we know it. Gases, both
natural and man-made, which absorb strongly in the
4–100 µm region, are known collectively as greenhouse
gases.

85.3.2 Tropospheric “Global” Warming

According to a 2000 National Research Council Report,
“the global-mean temperature at the earth’s surface is es-
timated to have risen by 0.25 to 0.4 ◦C during the past 20
years” [85.13]. The Intergovernmental Panel on Climate
Change (IPCC) has also concluded that global surface
temperatures have increased and that “there is new and
stronger evidence that most of the warming over the last
50 years is attributable to human activities” [85.14]. The
Arctic region has warmed by an estimated 1 ◦C in the
past two decades, leading to substantial changes in the
cryosphere [85.15]. Antarctic sea ice was stable from

1840 to 1950, but has since declined sharply. Sea ice
extent shows a 20% decline since about 1950 [85.16,17].

From air bubbles trapped at different depths in po-
lar ice, it is possible to determine carbon dioxide and
methane concentrations several thousand years ago.
Over the last two hundred years, CO2 levels have
increased by 20%, from 280 to 330 ppm. Over the
next century the total amount of CO2 in the atmo-
sphere since 1900 is expected to double to as much
as 600 ppm [85.18]. This increase is due primarily to the
burning of fossil fuels.

Although methane is present at levels several orders
of magnitude less than CO2, it is increasing much more
rapidly. Methane concentrations have more than dou-
bled over the last two hundred years due to industrial
processes, fuels, and agriculture [85.18].

The man-made chlorofluorocarbons (CFCs), which
have been widely used as refrigerants and in indus-
try, have been increasing in the atmosphere at a rate
of over 5% per year since the 1970s. Only recently
has there been an indication that this trend is slowing
down [85.19].

Ozone, which is a primary component of chemical
smog, is a pollutant when it occurs in the troposphere
and an effective greenhouse gas. It has been increasing
worldwide also.

This buildup of CO2, CH4, CFCs and tropospheric
O3 causes a problem. In much of the spectral region from
5–100 µm, there is 100% absorption of radiation by the
atmosphere – due mainly to naturally occurring water
vapor. There is, however, a region of rather weak ab-
sorption, from ≈ 7–15 µm, known as the “atmospheric
window”. Increased concentrations of the greenhouse
gases strengthen the absorption in this region, tending to
“close” this window, thus increasing the infrared opac-
ity of the atmosphere. The increased opacity causes an
immediate decrease in the thermal radiation from the
planet-atmosphere system, forcing the temperature to
rise until the energy balance is restored [85.20].

It is difficult to prove that the buildup of greenhouse
gases is the cause of the observed temperature rise. Other
possible causes include slight changes in solar activity
and irradiance, and changes in ocean currents, which
may have a profound effect on global temperature and
climate. These are areas of active research.

Given the increase in concentrations of greenhouse
gases that has occurred and is predicted to continue,
the change in radiative heating of the troposphere can
be calculated. Models generally predict an increase in
tropospheric temperatures ranging from 1.5 to 4.5 ◦C,
upon doubling the CO2 concentrations over the next cen-
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tury. The 3 ◦C range in temperature is due to the ways
that different models incorporate climate feedbacks. Cli-
mate feedbacks include water vapor, snow and sea ice,
and clouds. Rising temperatures increase the concentra-
tion of water vapor, which is itself a greenhouse gas,
producing further warming. Rising temperatures reduce
the extent of reflective snow and ice, thus reducing the
Earth’s albedo. This leads to increased absorption of
solar radiation, further increasing temperatures. Clouds
both contribute to the albedo, thereby reducing the so-
lar flux reaching the Earth, and absorb infrared radiation
causing temperatures to rise. The modeling of clouds
and their radiative properties is very difficult, and is one
of the largest sources of uncertainty in the climate mod-
els. Understanding the role that the ocean, with its giant
heat capacity, plays in global warming, and identifying
and quantifying the various interactions occurring at the
ocean-atmosphere interface, are vital areas of research
which will affect the size of the predicted temperature
increase. At present, there are few obvious opportuni-
ties for traditional atomic and molecular physics to play
a significant part in global-warming research.

85.3.3 Upper Atmosphere Cooling

The buildup of CO2 has an even greater effect on the
temperature in the upper atmosphere than on that in the
troposphere [85.21]. As discussed in the Sect. 85.2.2,
CO2 is a coolant in the stratosphere, mesosphere and
thermosphere, but as a greenhouse gas is involved in
heating the troposphere. The explanation for this re-
volves around the collision physics issue of quenching
versus radiating.

In the troposphere, CO2 absorbs infrared radiation
coming from the Earth, exciting the ν2 vibrational bend-
ing mode at 15 µm. The excited molecule can either
reradiate or collisionally de-excite. In the lower atmo-
sphere where densities are large, the lifetime against
collisions is very short and the excited molecule is
rapidly quenched. This transfer of energy from radia-
tion through collisions into the kinetic energies of the
colliding partners results in a net heating.

In the stratosphere and above, atomic oxygen colli-
sions with CO2 excite this same bending mode. But at
these higher altitudes, densities are lower and quench-
ing is greatly reduced. The excited molecule radiates
and the radiation escapes to space. A net cooling results
because the opacity is low at these altitudes.

Roble and co-workers [85.22, 23] have investigated
the doubling of CO2 and CH4 concentrations (as pre-
dicted for the next century) in the mesosphere and at

the lower boundary of the thermosphere. Using sophis-
ticated atmospheric general circulation models, they
predict that the stratosphere, mesosphere and thermo-
sphere will show significant cooling — the largest
cooling of 40–50 ◦C occurring in the thermosphere.

The extent of this cooling very much depends
on the rate coefficient for the O + CO2 ex-
citation of the ν2 bending mode. Rishbeth and
Roble [85.22] assumed a value for this rate coeffi-
cient of 1 × 10−12 cm3/s, intermediate between the value
of Sharma and Wintersteiner [85.24] (6 × 10−12 cm3/s)
and an earlier value of 2 × 10−13 cm3/s used by Dick-
enson [85.25]. The Sharma and Wintersteiner value,
based on observations of 15 µm emission in the atmo-
sphere around 100–150 km, was recently confirmed by
Rodgers et al. [85.26], but Pollock et al. [85.27] obtain
a value of 1.2 × 10−12 cm3/s in laboratory experiments.
Using the larger rate coefficient would result in even
greater cooling [85.28].

The overall consequences of such a large tem-
perature decrease in the upper atmosphere have not
been fully explored — particularly the question as to
how the dynamics of the atmosphere will be affected.
Since many chemical reactions depend on temperature,
there may be considerable readjustments in the ver-
tical distribution of minor species in the atmosphere.
Cooler temperatures cause the atmosphere to contract,
reducing densities and, consequently, satellite drag.
Cooler temperatures may also increase the occurrence
of polar stratospheric clouds, thereby affecting ozone
depletion (Sect. 85.4).

Most significantly, tropospheric warming and upper
atmosphere cooling both result from a buildup of CO2.
The size of the predicted cooling is greater by an order
of magnitude than the amount of the predicted heating.
Thus it may be possible to monitor the global warming
trend by observing the predicted cooling in the upper
atmosphere.

There is evidence in the mesosphere that this cool-
ing has already begun. Temperatures appear to have
decreased by 3–4 ◦C over the last decade [85.29, 30].
Gadsden [85.31] has also found that the frequency of oc-
currence of noctilucent clouds, the highest-lying clouds
in the atmosphere, has more than doubled over the last
twenty-five years. He has calculated that this change
could result from a decrease in the mean temperature
at the mesopause of 6.4 ◦C during this time period.
However, increased concentrations of water produced
by oxidation of increased amounts of methane may be
responsible for the more frequent appearance of the
clouds. This is an ongoing area of research.
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85.4 Stratospheric Ozone

85.4.1 Production and Destruction

Ozone production takes place continually in the strato-
sphere during daylight hours, as molecular oxygen is
photodissociated and the resulting oxygen atoms un-
dergo three-body recombination with O2:

O2+hν→ 2O , (85.4)

O+O2+M → O3+M . (85.5)

Ozone can be destroyed through photodissociation:

O3+hν→ O2+O , (85.6)

but because an oxygen atom is produced which imme-
diately recombines with another O2 to form O3, no net
loss of O3 results. The photodissociation of O2 and O3
are important heating processes in the stratosphere.

The amount of ozone in the stratosphere is quite
variable, changing significantly with the seasons and
with latitude. In the lower stratosphere, much of the
ozone is created over the equatorial regions and then
transported toward the poles.

Besides being photodissociated, O3 is destroyed by
reactions with radicals that are involved in catalytic cy-
cles. The short-hand notation for the major cycles, NOx,
HOx, ClOx (BrOx) refers to the catalytically active forms
involved in the cycles. Our knowledge about the relative
importance of these catalytic cycles in ozone destruc-
tion has increased dramatically over the last decade.
A number of these cycles are given below, with the
ozone-destroying step listed first, and the rate-limiting
step closing the catalytic cycle and regenerating the
ozone-destroying radical, listed last. The net effect in
each of these cases is to convert ozone and atomic oxy-
gen (otherwise known as odd-oxygen) into molecular
oxygen:

NO+O3 →NO2+O2

NO2+O →NO+O2

NET: O3+O → 2O2 , (85.7)

and

NO+O3 → NO2+O2

NO2+O3 → NO3+O2

NO3+hν→ NO+O2

NET: 2O3 → 3O2 . (85.8)

OH+O3 → HO2+O2

HO2+O3 → OH+2O2

NET: 2O3 → 3O2 , (85.9)

and the halogen cycle, in which Z = Cl or Br:

Z+O3 → ZO+O2

ZO+O → Z+O2

NET: O3+O → 2O2 . (85.10)

The following series of reactions couples the HOx and
halogen cycles:

HO2+ ZO → HOZ+O2

HOZ+hν→ OH+ Z

Z+O3 → ZO+O2

OH+O3 → HO2+O2

NET: 2O3 → 3O2 . (85.11)

Finally the reaction set

BrO+ClO → Br+Cl+O2

Br+O3 → BrO+O2

Cl+O3 → ClO+O2

NET: 2O3 → 3O2 (85.12)

is also important in the halogen destruction cycle. The
coupling between these different cycles by reactions
such as

HO2+NO → OH+NO2 (85.13)

turns out to be very important in understanding the
details of ozone destruction, such as how much each
mechanism contributes to the destruction as a func-
tion of altitude and in the presence of aerosols.
Wennberg et al. [85.32] have recently shown that cat-
alytic destruction by NO2, which for two decades
was considered to be the predominant loss process,
accounted for less than 20% of the O3 removal in
the lower stratosphere during May 1993. They further
show that the cycle involving the hydroxyl radical ac-
counted for nearly 50% of the total O3 removal and
the halogen-radical chemistry was responsible for the
remaining 33%.

The NOx and HOx cycles are naturally occurring,
whereas the ClOx and BrOx cycles are due mainly to
man-made chemicals – the CFCs and halons. The am-
plification that takes place through a catalytic cycle is the
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reason that these chemicals, which are only present at
the level of parts per trillion, can have such a destructive
effect.

It is useful to think in terms of a total chemical bud-
get for a radical such as Cl which enters into a cycle.
Chlorine is put into the stratosphere when chemicals
such as CF2Cl2 are released into the atmosphere. Such
compounds are chemically inert and insoluble in water,
and therefore are not easily cleansed out of the lower
atmosphere. In the stratosphere, however, the CF2Cl2
is subjected to solar UV radiation and is photodisso-
ciated, producing the Cl radical. Chlorine exists in the
upper atmosphere in catalytically active forms, Cl and
ClO, as well as in stable, reservoir species, HCl and
ClONO2. The total chlorine budget consists of both
the catalytically active plus reservoir species. Reac-
tions which reduce the formation of reservoir species,
or convert reservoir species to catalytically active forms,
contribute to the ozone destruction. Photolysis of stable
reservoir species, such as ClONO2, can produce cat-
alytically active forms. Bromine has an identical cycle
to that of chlorine, but is 50 to 100 times more de-
structive than Cl because it does not react readily to go
into its reservoir form, HBr. A knowledge of the pho-
todestruction rates of all such species is important to
an understanding of the overall ozone photochemical
depletion problem.

Studies of the Antarctic ozone hole show that gas
phase photochemical cycles, as given above, are not
the whole story with respect to ozone depletion. Het-
erogeneous chemistries taking place on the surfaces
of ice crystals and sulfate aerosols play an important
role also. These are discussed briefly in Sect. 85.4.2
and Sect. 85.4.4.

85.4.2 The Antarctic Ozone Hole

The ozone depletion problem was largely theoret-
ical until the discovery of the ozone hole over
Antarctica. Following the 1985 announcement by Far-
man et al. [85.33] of ground-based observations of
significant decline in O3 concentrations during spring-
time in the Southern Hemisphere, it was possible to map
this event using archived satellite data beginning in 1979.
The data depict a worsening event throughout the early
1980s. In 1987, 70% of the total O3 column over Antarc-
tica was lost during the month of September and early
October, and the areal extent of the hole was ≈ 10% of
the Southern Hemisphere. The ozone hole has continued
to grow in depth and width [85.34]. Recent data shows
that this phenomenon continues, with the 2003 ozone

hole the second largest observed to date (the largest yet
observed was on September 10, 2000) [85.35].

The causal link between the release and buildup of
man-made CFCs and the ozone hole over Antarctica
has been quite convincingly established by Ander-
son et al. [85.36] through in situ observations from high
altitude aircraft flights into the polar vortex during the
end of polar night and the beginning of Antarctic spring
in 1987.

The polar vortex is a stream of air circling Antarctica
in the winter, creating an isolated region which becomes
very cold during the polar night. Flights into the vortex
were able to document a heightened, increasing level of
ClO and a monotonically decreasing O3 concentration
over a 3–4 week time period during late September and
early October.

The mechanism which appears to be repartitioning
the chlorine from its reservoir form into its catalyti-
cally active form is a heterogeneous process occurring
on the surfaces of polar stratospheric clouds. At the cold
temperatures during the polar night, polar stratospheric
clouds form, consisting of ice and nitric acid trihydrate.
Gaseous ClONO2 collides with HCl that has been ad-
sorbed onto the surface of the cloud crystals. Chlorine
gas is liberated and the nitric acid formed in the reaction
remains in the ice [85.36]:

HCl+ClONO2 → Cl2(g)+HNO3 . (85.14)

As solar radiation starts to penetrate the region at
the beginning of spring, the Cl2 molecules are rapidly
photodissociated, producing Cl atoms which initiate the
catalytic destruction of O3.

As there are no oxygen atoms around to complete
the catalytic cycles, several mechanisms for regenerating
the Cl and Br radicals have been proposed which involve
only the ClO and BrO molecules themselves.

Mechanism I [85.37]

ClO+ClO+M → (ClO)2+M

(ClO)2+hν→ Cl+ClOO

ClOO+M → Cl+O2+M

2 × (Cl+O3 → ClO+O2)

NET: 2O3 → 3O2 ; (85.15)

Mechanism II [85.38]

ClO+BrO → Cl+Br+O2

Cl+O3 → ClO+O2

Br+O3 → BrO+O2

NET: 2O3 → 3O2 . (85.16)
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While Mechanism I accounts for 75% of the ob-
served ozone loss, the sum of I and II yields a destruction
rate in harmony with the observed O3 loss rates [85.36].

85.4.3 Arctic Ozone Loss

The region around the North Pole does not appear
to exhibit an ozone hole as severe as that found in
the Antarctic. Several factors lessen the probability of
a significant ozone hole developing in the Arctic. First,
a stable polar vortex does not get well established due to
increased atmospheric turbulence from the greater land
surface area in the Northern Hemisphere. Second, tem-
peratures during the Arctic winter do not get as cold as
during the Antarctic winter, so that polar stratospheric
clouds (PSCs) do not form as easily. As seen in the pre-
ceding section, the surfaces of PSCs play an essential
role in the O3 destruction mechanisms in the Antarctic.

However, ozone levels are showing 20–25% reduc-
tions during February and March [85.39] over a much
larger area around the North Pole than in the South.
Thus ozone destruction is taking place during the tran-
sition from polar winter to spring in the Arctic but the
phenomenon is more widespread, diffuse, and not as
well-contained as in the Antarctic.

85.4.4 Global Ozone Depletion

Over the last twenty-five years, satellite instruments
have measured the total ozone column in the atmosphere.
During this time ozone levels have been steadily decreas-
ing globally, especially at mid- to high-latitudes. Recent
analysis indicates the first evidence of recovery of strato-
spheric ozone levels, with diminished rates of ozone loss
at altitudes of 35–45 km, coupled with a slowdown in
the increase in stratospheric loading of chlorine [85.40].

Heterogeneous reactions on aerosol surfaces, as well
as the homogeneous gas phase chemical cycles men-
tioned earlier, must be invoked to explain the global
decline in ozone levels. A particularly important reac-
tion appears to be the hydrolysis of N2O5 on sulfate
aerosols. This occurs very rapidly, converting reactive
nitrogen, NO2, into its reservoir species HNO3:

N2O5+H2O
sulfate aerosol−−−−−−−−−→ 2HNO3 . (85.17)

The N2O5 is formed at night by reaction of NO2
and NO3. Following the hydrolysis of N2O5, there
is less reactive NO2 around to convert ClO into its
reservoir species, ClONO2, and less NO2 around to
convert OH into the reservoir species, HNO3. A height-
ened sensitivity of the ozone to increasing levels of
CFCs develops [85.41]. It has been shown that cer-
tain regions of significantly depleted ozone also show
high concentrations of sulfate aerosols. In addition,
measurements of the ratio of catalytically active ni-
trogen to total nitrogen can be reproduced using the
above heterogeneous reaction, and not by using gas
phase processes alone. Study of further mechanisms
at varying altitudes and latitudes is an active area of
research.

Record low global ozone measurements, 2% to 3%
lower than any previous year, were reported beginning
in 1992 [85.42] and continuing well into 1993. The in-
crease in naturally occurring aerosols due to the eruption
of Mount Pinatubo in June 1991 appears to explain this
decline. During the winter of 1993–1994, total ozone
levels returned to levels slightly above normal [85.43],
presumably because the excess aerosols had been re-
moved from the stratosphere by natural sedimentation
processes.

The continuing buildup of CO2 is predicted to
contribute to increased cooling of the stratosphere. De-
clining temperatures in the stratosphere may increase
the frequency of formation of polar stratospheric clouds
which drive the destructive heterogeneous chemistry
creating the Antarctic ozone hole. An increased occur-
rence of these clouds outside of the polar regions could
affect ozone levels globally. There are also indications
that certain ozone depletion chemistries taking place on
the surface of sulfate aerosols may also be enhanced by
lower temperatures [85.41].

Ozone itself is the dominant heat source in the lower
stratosphere. Decreasing the amount of ozone drives
temperatures still lower [85.44]. It is unfortunate that the
two most significant atmospheric global change effects
— the buildup of CO2 and the enhanced ozone destruc-
tion due to man-made CFCs — both cause decreasing
temperatures in the stratosphere which may further en-
hance the destructiveness of the ozone photochemical
cycles.

85.5 Atmospheric Measurements

Ground-based observations, as well as measurements
made by instruments carried aloft in satellites, bal-

loons, and high-flying aircraft, allow one to explore the
atmosphere.
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Measurements may be made either in situ or by
remote-sensing techniques. The region of the atmo-
sphere from ≈ 60 km to 120 km, encompassing the
mesosphere and lower thermosphere and ionosphere,
cannot be studied in situ as it is too high for balloons
and aircraft, and too low (i. e., too much drag) for satel-
lites. For this region, remote sensing experiments are
essential and a comprehensive book on the subject is
recommended [85.45].

Most of the instruments used to make atmo-
spheric measurements have been developed in molecular
physics and spectroscopy laboratories. Even experi-
ments utilizing sophisticated techniques, such as laser
induced fluorescence, and instruments, such as Fourier
transform spectrometers, are being flown on payloads.
An excellent compendium of ozone-measuring instru-
ments for stratospheric research has been assembled by
Grant [85.46].

A combination of good laboratory experiments, the-
oretical calculations, and ingenuity are necessary to
extract accurate information from measurements made
in the atmosphere. For instance, in order to understand
the complicated interactions of the different photochem-
ical cycles involved in ozone chemistry, spectroscopic
emissions and absorptions of the many trace species
are used to measure concentration profiles. An accu-

rate knowledge of the emission spectroscopy of species
such as OH, HO2, H2O2, H2O, O3, HNO3, NO2, N2O,
N2O5, HNO3, ClNO3, BrO, HCl, HOCl, and ClO is
essential. Such measurements provide a rigorous test of
atmospheric models. The recently-launched NASA EOS
Aura satellite carries instruments that will make global
measurements of a number of these species [85.47].

In order to analyze the data and deconvolve some
of the line profiles to give information on concentra-
tions as a function of altitude, molecular data such as
line strengths and pressure broadening coefficients are
needed [85.9].

Until recently, it has been impossible for remote-
sensing experiments to distinguish between ozone
occurring in the stratosphere (where it is formed nat-
urally) and ozone occurring in the troposphere (where it
is a pollutant). Satellite instruments such as the ESA
Global Ozone Monitoring Experiment (GOME), the
Scanning Imaging Absorption Spectrometer for Atmo-
spheric Chartography (SCIAMACHY) and the Ozone
Monitoring Instrument (OMI) have broad enough spec-
tral coverage and high enough resolution that the
temperature dependence of the ozone absorption fea-
tures from 300–340 nm, known as the Huggins bands,
can be used to separate out the ozone concentrations in
the middle and lower atmospheres [85.48, 49].
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Atoms in Den86. Atoms in Dense Plasmas

When plasma densities are high enough that inter-
particle separations are comparable to atomic
dimensions, there are important “environmental”
consequences for atomic structure and atomic
processes. Such conditions are found not only
within stars and giant planets but, nowadays,
also in the laboratory – especially in experiments
related to the quest for inertial confinement
fusion. After introducing important plasma
concepts, we examine these consequences in
regard to several issues: modification of atomic
bound states, ionization balance, equation of
state, and radiative and collisional processes
that regulate transport coefficients and the
spectral emission of non-equilibrium plasmas.
Finally, we describe modern simulation methods
that are being used to tackle various many-
body problems in this subject. For nearly
every issue we raise there is a need for better
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understanding and for more, and more precise,
data.

Ionized gases, or plasmas, are the predominant form of
matter throughout the universe, and physical conditions
in laboratory and cosmic plasmas vary greatly. No sin-
gle experimental methodology or theoretical construct
suffices to explore all aspects of the plasma state.

Systematic study of plasmas began early in the 20th

century, but until recently the physics of atoms in plas-
mas has been largely synonymous with the physics of
isolated ions. This perspective is valid as long as the in-
terparticle spacing is very much larger than the relevant
atomic dimensions, typically a few to a few tens of Bohr
radii. For example, ions are isolated in this sense in inter-
stellar space where the electron density ne ≈ 1 cm−3, or
even in a tokamak, where ne ≈ 1014 cm−3. For neutral
and moderately charged atoms, data such as energy lev-
els, oscillator strengths, and collision cross sections have
long been obtained from traditional kinds of experiments
and quantal calculations, as discussed elsewhere in this
book. Progress in these areas continues to be made, with
the X-ray spectrum of highly-charged Fe [86.1] and the
Lamb shift in U+91 [86.2] being noteworthy examples
of the kinds of accurate measurements that can now be
made using electron beam ion traps and storage rings.

The focus of the present chapter is partially ionized
matter in which important atomic phenomena are in-
fluenced by a dense plasma environment. As Fig. 86.1
(which is discussed in detail below) reveals, the densi-
ties in many laboratory and astrophysical plasmas are
high enough to invalidate the presumption of isolated
systems. The interaction of intense laser or particle
beams with solid matter produces rapidly evolving, hot,
and dense plasmas [86.3] that mimic some of the most
extreme conditions in nature, including the thermonu-
clear environment of stellar interiors; these plasmas, as
well as some produced in z-pinch implosions [86.4],
are the basis of world-wide inertial confinement fu-
sion (ICF) efforts. Dense plasmas also can be transient
gain media for amplified spontaneous emission at X-ray
wavelengths [86.5]. Additional impetus for the study
of atoms in dense plasmas now comes from exper-
iments involving irradiation of solids by ultra-short
(sub-picosecond) laser pulses [86.6]. The moderate tem-
peratures (tens of eV) but high (near-solid) densities
typical of this so-called warm dense matter (WDM)
regime [86.7] produce severely perturbed bound ionic
states.
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Fig. 86.1 Plasma conditions discussed in the text are identified on this temperature-density plane. Plasmas below the line
Γee = 1 are strongly coupled, and those below the line Υ = 1 contain degenerate electrons. The HEDP regime, which
lies above and to the right of the line marked P = 1 Mbar, includes some conditions characteristic of warm dense matter.
Also plotted are tracks representing conditions (as a function of radius) within the Sun, Jupiter and a typical white dwarf
star; time-dependent conditions are also shown – from early compression through ignition – within the main (DT) fuel of
a prototype target capsule for the National Ignition Facility

Dense cosmic plasmas – specifically, the interiors of
stars and giant planets – are very large and have very long
lifetimes. Their thermodynamic variables change only
slowly with position or time and, hence, macroscopic
regions can be considered as statistical systems evolving
through a succession of states in local thermodynamic
equilibrium (LTE). The equation of state (EOS), and the
radiation and heat transport coefficients, viz. the opacity
and thermal conductivity, are key to understanding the
behavior of LTE plasmas. A recent monograph [86.8],
plus comprehensive articles by More et al. [86.9], by
Rogers and Iglesias [86.10], and by Saumon et al. [86.11]
discuss many of the high density consequences for the
opacity and for EOS.

In contrast, the short lifetimes of dense plasmas cre-
ated by intense beam irradiation or by explosive pinch
devices often preclude the establishment of a thermal
distribution of atomic level populations; in extreme
cases, there is not even enough time to establish
a Maxwellian distribution of particle velocities. Pop-
ulations in highly nonequilibrium (non-LTE) laboratory
plasmas, which must be found by solving rate equa-
tions [86.12, 13], are essential information for using
X-ray line emission to diagnose conditions in ICF tar-
gets, or for identifying likely gain media for X-ray
lasing. And, as we discuss in Sect. 86.3, the dense

plasma environment modifies transition rates them-
selves, further complicating the interplay of numerous
collisional and radiative processes in such atomic kinet-
ics calculations.

The topics addressed here are needed for under-
standing non-LTE situations, as well as LTE ones. After
characterizing the perturbing plasma environment in
Sect. 86.1, we summarize well-known prescriptions for
atomic structure and ionization balance in Sect. 86.2, and
then discuss modified transition rates in Sect. 86.3 for
ions in dense plasmas. Finally, we review in Sect. 86.4
how simulations are now being used to address a wide
array of issues needed to accurately describe atoms in
dense plasmas.

There are several periodic meetings devoted to vari-
ous aspects of this subject, and especially relevant ones
include: Atomic Processes in Plasmas; Radiative Prop-
erties of Hot, Dense Matter; Spectral Line Shapes; and
Strongly Coupled Coulomb Systems. Printed proceed-
ings of these conferences are an excellent guide to recent
developments in the topics discussed here, as well as
numerous other, related ones. Additionally, three re-
cent textbooks [86.14–16] provide detailed treatments
of many of the subjects surveyed here.

The present topic is an important part of what
is now being termed “high energy-density physics”
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(HEDP). Conventionally this interdisciplinary subject,
which involves collective and/or non-linear phenomena
in many-body systems, is defined as the study of matter
in regimes where the total (matter plus electromagnetic

field) pressure exceeds one megabar; this boundary is
also marked in Fig. 86.1. Reference [86.17] is a re-
cent National Research Council report on key issues
and opportunities in HEDP.

86.1 The Dense Plasma Environment

Most plasmas are charge neutral, so the mean number
densities ni and ne of constituent ions (charge Zie, mass
mi) and electrons (charge −e, mass me) satisfy

∑

a

Zana = 0 , (86.1)

where the sum ranges over all particle species. Moreover,
plasma conditions usually change slowly enough that
each of the species is able to establish a thermal distri-
bution of velocities, fixed by its temperatureΘa = kBTa
(in energy units). Here, we assume these conditions hold.

86.1.1 Plasma Parameters

A few key quantities characterize the plasmas under
consideration. Derivations, and discussions of the roles
of these and other auxiliary quantities can be found in
standard plasma physics texts [86.18, 19], as well as
a recent tutorial article [86.20].

1. The plasma frequency

ωp =
[
∑

a

4πna(Zae)2/ma

]1/2

=
(
∑

a

ω2
a

)1/2

(86.2)

defines a timescale
(∼ ω−1

e

)
for the particle oscilla-

tions in response to a non-equilibrium charge density
in the plasma.

2. The Debye length

λD =
[
∑

a

4πna(Zae)2/Θa

]−1/2

=
(
∑

a

D−2
a

)−1/2

(86.3)

is the distance beyond which plasma particles effec-
tively screen any localized charge imbalance.

3. The ion-sphere (or electron-sphere) radius

Ra =
(

3

4πna

)1/3

(86.4)

defines a spherical volume associated with a single
particle and is a measure of interparticle spacing
(among particles of species “a”).

4. The Fermi energy

ΘF = �
2
(
3π2ne

)2/3

2me
(86.5)

characterizes the highest occupied energy level in
a zero temperature system of electrons. A dimen-
sionless measure of degeneracy is Υ = ΘF/Θe.
Velocity distributions are either Maxwellian or
Fermi–Dirac in the limits Υ & 1 or Υ % 1,
respectively.

5. The Coulomb coupling parameters

Γab = Za Zbe2

RabΘab
(86.6)

give the average ratio of potential to kinetic en-
ergies between species a and b. The reduced
ion-sphere radius and temperature are Rab = 1

2 (Ra+
Rb) andΘab = (maΘb+mbΘa)/(ma+mb), respec-
tively. When Γab is greater (less) than 1, that species
is said to be strongly (weakly) coupled. And, when
the number of particles a in a sphere of radius Da
(a Debye sphere),

[
4πna D3

a/3
] = 1/(3Γaa)

3/2, is
small, discreteness of the charge density can be
important in describing certain plasma phenomena.

Figure 86.1 shows that dense plasmas can be strongly
or weakly coupled; further, some of these plasma condi-
tions involve degenerate electrons while others do not.
And, in WDM, one encounters the situation whereΥ ∼ 1
and Γee ∼ 1, which is particularly difficult to treat theo-
retically because several effects are competing amongst
each other. In this figure, we plot the run of (ne, Θe)
values for the sun, for Jupiter, and for a typical white
dwarf star (0.6 solar mass, pure C/O core, H/He outer
layers). Also plotted is the track of DT fuel conditions
in an imploding ICF capsule designed for the National
Ignition Facility. Note that all of these systems sample
wide portions of parameter space, and therefore an ac-
curate description of each requires some very different
plasma models.
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86.1.2 Quasi-Static Fields in Plasmas

A simple, yet useful description of the plasma en-
vironment is given by the one-component plasma
(OCP) model [86.22], in which particles of a single
kind (Za,ma) move against a smooth background of
matter having on average the opposite charge den-
sity, ρ(r)=−Zaena. Most plasma phenomena can be
described within the context of either this or the two-
component model (electrons and their parent ions, with
ni = ne/Zi ). In the more realistic, two-component pic-
ture, electron screening of the (slower moving) ions is
established on a timescaleω−1

e &ω−1
i , so it makes sense

to speak of screened, quasi-static ionic fields.
When there are many electrons in each Debye

sphere, the electrostatic potentialΦ(r) near a test charge
Ze placed in an otherwise uniform, neutral plasma is
exponentially reduced from the Coulomb expression,
viz.,

ΦD(r)= Ze

r
exp (−r/De) . (86.7)

(A more elaborate version of this formula, for partially
ionized atoms, has recently been proposed [86.23].) This
“Debye screening” obtains only in weakly coupled plas-
mas and applies only to a test charge at rest. The faster
the charge Ze moves, the less effective is the plasma
at screening it, since only plasma particles with higher
velocities can form the shielding cloud [86.18, 24].

In the opposite limit of large Γ -values, quasi-static
screening is better described by the ion-sphere (IS) pic-
ture [86.19], in which each stationary ion of charge
Zie is surrounded by Zi electrons, uniformly distributed
throughout a sphere of radius Ri, to produce the potential

ΦIS(r)= Zie
[
1/r− (1/2Ri)

(
3−r2/R2

i

)]
(86.8)

inside the sphere, and zero potential outside.
Consideration of a plasma’s electric microfield illus-

trates these concepts. Moreover, microfields are a key
ingredient in calculations of spectral line broadening in
plasmas – an important subject discussed in Chapts. 59,
19 and in [86.14–16].

Local fluctuations in the density of any species about
its mean value na create a microscopic electric field
Ẽa(r, t). There is a probability distribution P(Ẽa) that
characterizes the strengths of these microfields, which
are quasi-static within time intervals short compared
with the fluctuation timescale, 1/ωi. Holtsmark first cal-
culated this distribution at an arbitrary position in an
infinite, isotropic gas of noninteracting particles, and
Chandrasekhar [86.25] gives a thorough account of this

famous stochastic problem. Holtsmark’s formula is

PH(ε)= (2ε/π)
∞∫

0

x sin(εx) exp
[
−x3/2

]
dx , (86.9)

where ε= Ẽa/
[
(8π/25)1/3 Ea

]
is the scaled field, and

Ea = |Za|e/R2
a. The mean Holtsmark field is 〈ε〉 ) 2.99,

and for ε% 1, PH(ε) is well approximated by the distri-
bution of fields due to a single nearest-neighbor in the
gas,

Pnn(ε)) 3/
(

2ε5/2
)
. (86.10)

Both of these distributions ignore the interactions among
charged particles that become increasingly important
as Γii grows, because particle positions then tend to
be correlated. Quasi-static ion microfields – at the
position of an ion – therefore become weaker, on av-
erage, as the coupling increases. Figure 86.2 illustrates
this point and shows distributions computed with the

2.0

1.5

1.0

0.5

0.0
0 1 2 3 4

ε

P(  )ε

Γ = 2.0

Γ = 0.2

H

Fig. 86.2 The probability distribution P(ε) of scaled mi-
crofield strengths ε for different plasma conditions. The
curve marked H represents the Holtsmark distribution,
which applies to an idealized case of non-interacting par-
ticles (i. e., Γ = 0). The other two curves, with Γ = 0.2
and Γ = 2.0, represent distributions determined by the
APEX model for interacting ions (charge Z = 1) that
are Debye-screened by plasma electrons. In these latter
two cases, the ion density and temperature are, respec-
tively, 1.0 × 1018 cm−3 and 1.15 eV, and 2.6 × 1024 cm−3

and 16 eV. After [86.21]
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APEX method [86.26, 27], which uses a parameterized,
two-particle distribution function “tuned” to yield the
exact second moment

〈
ε2
〉

for the distribution func-
tion of field strengths experienced by any one ion in
a plasma whose ions are all Debye-screened by electrons
only.

The potentials and microfields discussed above are
based on classical statistical mechanics, even though
dense plasmas are inherently quantum many-body sys-
tems. Reference [86.28] provides a careful discussion of
the merits and limitations of this approach.

86.1.3 Coulomb Logarithms
and Collision Frequencies

It is well known that the total cross section for
elastic scattering of two charged particles, Zae and
Zbe, diverges at any collision energy E , as a conse-
quence of the infinite range of the Coulomb interaction.
Plasma transport coefficients (e.g., electrical con-
ductivity and thermal conductivity), however, which
depend ultimately upon momentum transfer in this
elementary process, are finite. This comes about be-
cause scattering at small center-of-mass angles φ,
or, correspondingly, at large impact parameters b, is
diminished by plasma screening, as in (86.7) and
(86.8).

Following Spitzer [86.29], we argue that there is
some minimum effective scattering angle φmin. And,
since the analysis will be based on classical formulae,
there is some maximum scattering angle φmax beyond
which quantum effects are important. Between these
limits the Coulomb interaction is taken to be unscreened
and Rutherford’s differential cross section σR(φ) is ap-
plicable. By assuming that φmax also is small, it follows
that the momentum transfer cross section can be approx-
imated as

σm(E)= 2π

φmax∫

φmin

dφ [sinφ (1− cosφ) σR(φ)]

≈ πa2 ln

(
φmax

φmin

)
, (86.11)

where a = ∣∣Za Zbe2
∣∣ /E is a characteristic length. The

familiar result (a/2b)= tan(φ/2)≈ (φ/2) gives σm in
terms of minimum and maximum impact parameters,
bmin = a (from φmax = 1) and bmax = λD.

Finally, if the actual collision energy in the argument
of the logarithm, (λD/a), is replaced by its mean value,
E = 3

2Θ, the momentum transfer cross section takes the

simple form

σm(E)= π
(

Za Zbe2

E

)2

lnΛ ; (86.12)

for a two-component, electron-ion plasma, the argument
of this Coulomb logarithm is

Λ≈ 1/2Γ 3/2
eZ ≈ (# particles in Debye sphere) .

(86.13)

Spitzer’s result for σm yields the simplest expression for
the frequency νeZ of electron-ion collisions in a two-
component plasma, defined [86.18] as the mean value
of the reciprocal of the time between collisions,

νeZ = nZ Z2e4

√
me

( π
2Θ

)3/2
lnΛ . (86.14)

Equation (86.12) is commonly used to determine trans-
port coefficients in weakly coupled plasmas, where
lnΛ% 1. In the dense plasma regime, however, the
Coulomb logarithm can be small or even negative at
high enough density, which yields meaningless results
for the cross section. Physically, a small lnΛ arises
from a small λD (high density and/or low tempera-
ture), which means that collisions can only occur at
very small separations where the Coulomb potential is
largest. Strong collisions can be included in the above
analysis simply by not making a small-angle approxi-
mation in the evaluation of the cross section; the result
is [86.30]

σm(E)= π
2

(
Za Zbe2

E

)2

ln
[
1+Λ2

]
. (86.15)

In obtaining this result – which no longer yields a neg-
ative cross section – no assumption need be made
about the value of φmax. One must still choose, how-
ever, bmax, which will not generally be given by λD,
since Debye screening is invalid in the dense plasma
regime. Strong collisions at small separations also bring
in the effects of quantal scattering. These issues are
best circumvented by obtaining the cross section di-
rectly from a quantal calculation involving the chosen
screened potential [86.30, 31]. (Note that the formulae
in [86.31] actually describe the scattering of one un-
screened charge by another charge that is screened, so
they are most relevant to the scattering of fast electrons
by slow ions.)

Eventually, even this formulation will fail when
plasma kinetic processes affect the collision. For
example, hard collisions can alter the velocity dis-
tribution function and collective modes can modify
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the static screened interaction potential. Furthermore,
strong coupling introduces ionic structure that corre-
lates the collisions. Accurate calculations must consider
the collision process in the context of an appro-
priate kinetic equation [86.30, 32–34]. When such
a process is carried out, the result can be inverted
to yield “effective” or “generalized” Coulomb loga-
rithms that typically are process dependent [86.18].
Li and Petrasso [86.32] obtained high-order cor-
rection terms for the Fokker–Planck equation, for
example, and Boercker et al. [86.33] generalized the
collision term in the Lenard–Balescu quantum ki-

netic equation to include strong coupling effects.
Additionally, Berkovsky and Kurilenkov [86.34] ex-
tended the strong coupling description to also include
“strong” collisions (those poorly treated within the Born
approximation).

The physics of collisions is directly measured by
resistivity experiments, which employ some method to
heat a solid and attempt to tamp the high-pressure plasma
that is formed. The resistivity is then measured either by
the reflectivity or directly through current and voltage
probes. A review of these methods has recently been
given by Benage [86.35].

86.2 Atomic Models and Ionization Balance

A pervasive issue in the study of both laboratory and
astrophysical plasmas is ionization balance: What is
the distribution of charge states Zi of atomic ions in
a particular plasma? Answers impact subjects as di-
verse as cosmic abundances deduced from astrophysical
spectra, and the temporal behavior of laser-heated foils.
Table 86.1 lists the charge-state dependence of several
plasma quantities [86.36]. Here, 〈Z〉 and

〈
Z2
〉
denote the

mean and mean square ionic charge, respectively, viz.,
〈
Zn 〉=

∑

ions

Zn
i ni/

∑

ions

ni (86.16)

For a dense plasma, experimental determination
of actual charge-state distributions, or even 〈Z〉, has
proven difficult. Traditional spectroscopic methods (as
described in the next section) require large atomic data
bases and sophisticated kinetics models, which typically
are run several times to find the best match to measured
line shapes and intensities. Recently, however, an X-ray
scattering method (based on the Compton effect) has
been developed to determine 〈Z〉 in rapidly evolving
plasmas [86.37]. Instead of detailed atomic data, this
method requires accurate knowledge of the plasma’s
dynamic structure factor [86.18], which in general must

Table 86.1 Some plasma quantities that depend on its ion-
ization balance

Quantity Z-scaling (fixed nucleon density)

(Ideal) gas pressure ∼ (〈Z〉+1)

Electrical resistivity ∼ 〈
Z2
〉
/ 〈Z〉

Thermal conductivity ∼ 〈Z〉 / 〈Z2
〉

Ionic viscosity ∼ 1/
〈
Z2
〉2

Bremsstrahlung ∼ 〈Z〉 〈Z2
〉

be obtained from a molecular dynamics simulation (as
discussed in Sect. 86.4).

86.2.1 Dilute Plasma Models

Consider a nondegenerate plasma in thermal equilib-
rium at a temperature Θ (for instance, some region of
a star’s interior). The time independent ionization bal-
ance for each element is given by the Saha–Boltzmann
formula [86.38]

nZ+1

nZ
= 1

ne

(
2G Z+1

G Z

)(
meΘ

2π�2

)3/2

exp(−IZ/Θ) ,

(86.17)

for the density ratio of successive charge states, where
G Z and IZ are, respectively, the partition function and
ionization potential for the Z-times ionized atom.

The solution of (86.17) is shown in Fig. 86.3 (top
panel) for the case of solid density aluminum over
a wide range of temperatures. The partition functions
were determined from atomic states of the ground con-
figuration only. The aluminum plasma is predominantly
neutral at temperatures in the few electron volt range
and ionizes stage by stage until it is nearly fully ion-
ized just above one kilovolt. Of course, real aluminum
is not an insulator at solid density and low temperatures,
as Fig. 86.3 would suggest. Major corrections to (86.17)
are evidently needed to incorporate the physics of WDM
(Γ ∼ 1, Υ ∼ 1), especially corrections for partial elec-
tron degeneracy. We will return to this problem in later
subsections.

When conditions change too rapidly for LTE to be es-
tablished, the plasma may evolve through a succession of
“steady states” in which the relative abundances of dif-
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ferent ion stages are determined by a balance of certain
ionization and recombination rates. Then, in order to an-
swer the straightforward question of what are the relative
abundances of atomic ionization stages, one needs a vast
data base of atomic energy levels, plus collisional and
radiative rates. A set of rate equations must be solved to
determine the populations nZ(α) for each quantum state
α of each ion stage Z. Each equation involves transitions
to and from all other states [86.12, 13].

The balance of photoionizations and dielectronic
plus radiative recombinations in low-density, steady-
state plasmas is termed nebular equilibrium, because
these are the conditions appropriate to astrophys-
ical nebulae – regions of ionized gas surrounding
hot stars [86.39]. The balance of collisional ioniza-
tions and dielectronic plus radiative recombinations
in low-density, steady-state plasmas is termed coronal
equilibrium, because these are the conditions appropri-
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Fig. 86.3 The top panel shows fractional abundances of
different charge states of aluminum in thermal equilibrium
at solid density over a range of temperatures, as computed
with the ideal Saha–Boltzmann equation (86.17). The cor-
responding mean charge 〈Z〉 is shown in the lower panel, in
addition to the result from Thomas–Fermi theory, as given
by (86.18). Also shown is a modified Saha formulation that
includes continuum lowering shifts

ate to the solar corona. Most tokamak plasmas also are
in coronal equilibrium. Under coronal conditions, essen-
tially all ions are in their respective ground states and
the ionization balance is a function only of the plasma
temperature [86.40]. As the plasma density increases,
three-body collisions become important, and the result-
ing steady-state ionization balance, which depends on
density as well as temperature, is termed collisional-
radiative equilibrium [86.12]. This situation exists in
most ICF experiments.

Finally, conditions in sub-picosecond laser-plasma
experiments can change so rapidly that none of the
above simplifications apply. Ionization is strongly time-
dependent, and may involve multiphoton processes.

As we describe below, a dense plasma environ-
ment vastly complicates the determination of ionization
balance. In LTE cases, energy levels are changed and
partition functions are truncated by the phenomenon of
continuum lowering. In non-LTE cases these effects still
occur, but, in addition, radiative and collisional rates
themselves are altered.

86.2.2 Dense Plasma “Chemical” Models

There are two distinct strategies taken to extend the re-
sults of the previous section. One strategy, known as
the “chemical picture”, formulates the Saha–Boltzmann
equation in terms of a free energy F(T, V, {na}), where
the species populations {na} are to be determined, and
various corrections due to couplings and degeneracy
can be added to yield a thermodynamically consistent
equation of state that includes atomic physics [86.41].

Because plasma screening attenuates the Coulomb
interaction at long range, atoms and ions no longer have
an infinite number of bound (Rydberg) states, and atomic
partition functions are truncated in a natural way. The
simplest chemical picture is that the onset of continuum
energies has been “lowered” by some amount ∆I (rel-
ative to the atom’s ground state). When ∆I is a fixed
quantity, continuum lowering eliminates bound states
whose (unscreened) ionization potentials were less than
∆I , and moves all remaining states closer to the con-
tinuum by this same amount. Thus, levels get shifted
but spectral lines do not. Schemes that use an effec-
tive, single-particle potential to determine a spectrum of
modified eigenstates produce distinct plasma shifts for
different levels and, hence, spectral line shifts. Experi-
ments show, however, that almost all such predictions
have been inaccurate: actual plasma-induced shifts are
very small and, for most applications, ignorable ([86.14,
Sect. 4.10], [86.15, Sect. 3.5]).

Part
G

8
6
.2



1310 Part G Applications

A variety of arguments has been put forth to quantify
continuum lowering, including in particular:

1. determine ∆I from the last distinct spectral line near
a series limit (the Inglis–Teller formula [86.42]);

2. determine ∆I from the atom’s dipolar interaction
with the plasma’s microfield [86.41];

3. determine ∆I from the binding energy of the ground
state in some specified, screened Coulomb poten-
tial [86.43, 44];

4. determine ∆I from a rigorous, statistical mechanical
treatment of the atomic partition functions [86.45].

Figure 86.3 (lower panel) illustrates the effect of
continuum lowering on the average ionization state
〈Z〉; here, we solve (86.17) for solid density aluminum
with the ionization potentials shifted by an amount
determined by electron screening in the Debye approx-
imation, ∆I = 〈Z〉 e2/De. Although we do not plot 〈Z〉
for this case when the number of particles in a Debye
sphere is less than ten, it is obvious that a somewhat
higher degree of ionization exists when continuum low-
ering is accounted for.

A recent experiment [86.46] suggests that the Inglis–
Teller prescription for line merging accurately describes
the disappearance of the uppermost members of a spec-
tral series. But simply truncating the number of bound
states and, hence, the internal partition function, does
not yield a self-consistent thermodynamic description
of the plasma [86.41, 47]. In this regard, the true situa-
tion in dense plasmas is far more complicated for two
reasons, and both give rise to a gradual disappearance
of high-lying bound states.

First, excited ionic states can be strongly per-
turbed by one or more nearby ions, which means
that (as the density increases) bound, quasi-molecular
states form and eventually evolve to a conduction
band. Models with names such as “incipient Ryd-
berg states” [86.48], “quasi-localized states” [86.45],
“cluster states” [86.49], “negative-energy continuum
states” [86.50], and “collectivized states” [86.51] have
been developed to capture the complicated physics of
this intermediate regime. Second, space- and time-
dependent density fluctuations give rise to different
perturbing configurations, which means that the plasma
is more accurately described by the average of an en-
semble of perturbed ionic states than by the individual
states of an ion experiencing the mean (usually spher-
ical) perturbation. In the chemical picture, the most
common approach [86.41, 51, 52] reduces the effec-
tive statistical weight of each (unperturbed) ionic state
by a factor representing the probability that the plas-

ma’s microfield is sufficiently strong to Stark ionize
it.

The actual inclusion of dynamical plasma screen-
ing effects on ionic bound states requires a much
more elaborate model [86.53] that, as yet, has not
been incorporated into computer codes simulating high
energy-density plasma experiments. Other computa-
tional studies, involving simple continuum lowering
prescriptions [86.54,55], indicate that an accurate treat-
ment of this phenomenon is essential for understanding
non-LTE, as well as LTE, situations.

86.2.3 Dense Plasma “Physical” Models

An alternative strategy abandons the distinction be-
tween atomic and plasma electrons; this is known as
the “physical picture” [86.47]. The simplest model
that accomplishes this is that of a nucleus centered in
a charge-neutral, spherical cell of radius Rs. An elec-
tronic structure calculation for the total electron density
ne(r) at temperature Θ, subject to the boundary condi-
tion dne(Rs)/dr = 0, is carried out and, once the density
is known, various physical quantities can be obtained.
The advantage of this approach is that effects such as
continuum lowering and degeneracy are naturally and
self-consistently incorporated. Models of this kind are
referred to as either “statistical” models or as “average
atom” (AA) models depending on the manner in which
the electronic structure is determined. The accuracy of
the approach depends on both the sophistication with
which the density is computed and the validity of the
spherical cell boundary condition.

The simplest way to obtain the electronic density
is with a statistical model, such as the finite-
temperature Thomas–Fermi approximation and its
various extensions to include exchange (“Thomas–
Fermi–Dirac”) and gradient corrections (“Thomas–
Fermi–Dirac–Weizsacker”); these models are covered
in detail in Chapt. 20 for free atoms at Θ = 0. Briefly,
the Thomas–Fermi (TF) model describes atomic charge
densities by treating all electrons as a partially degen-
erate Fermi gas subject to a spherical, self-consistent
electrostatic potentialΦTF(r) resulting from the nuclear
charge Zne and the electrons themselves. Given the sim-
plicity of the TF model, agreement with experiment
(for binding energies) is surprisingly good, usually well
within a factor of two for the thousands of ions in the
periodic table.

Feynman and coworkers [86.56] were the first to
use such models to describe hot, compressed atoms and
their thermodynamic properties. Quantities such as the
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internal energy, free energy, and pressure are readily
computable. Extended Thomas–Fermi models are use-
ful for describing properties of matter in dense, cold
stars [86.57], for example. As we have emphasized,
a quantity of particular interest is the average ioniza-
tion state 〈Z〉 of the plasma, which can be determined
from the electronic density that extends from cell to cell,
viz.,

〈Z〉 = 4π

3
R3

s ne(Rs) . (86.18)

The definition (86.18) is not unique, however, and some
authors prefer to define bound electrons as all those in
negative energy states [86.58, 59].

It is interesting to note that this intuitive defini-
tion of 〈Z〉, (86.18), is considerably different from that
used in the Saha formulation. This 〈Z〉 generally will
have a nonzero value even at Θ = 0, a phenomenon
known as “pressure ionization,” because the ionization
occurs solely due to the finite value of Rs. More [86.59]
published a convenient prescription for finding ion-
ization potentials and total energies, as predicted by
the TF model, of ions with net charge Zie between
0.1 Zne and 0.9 Zne. In the lower panel of Fig. 86.3 we
show 〈Z〉 based on the More/TF result. There is gen-
eral agreement with Saha at high temperatures, where
ionic bound states are much smaller than the interpar-
ticle spacing, but important differences occur at low
temperatures.

Average atom models extend the statistical mod-
els by directly employing the Schrödinger equation

for the electron structure. Typically, a self-consistent
electronic structure calculation is carried out such that
the single-particle levels are thermally populated ac-
cording to a Fermi–Dirac distribution. These models
describe atomic shell structure, which is absent in
the statistical models. Modern versions of AA are
detailed quantum mechanical calculations based on, usu-
ally, finite-temperature density functional theory (DFT),
with some approximation for the exchange-correlation
potential. A good review of the finite-temperature
DFT approach has been given by Gupta and Ra-
jagopol [86.60], and [86.61] contains several numerical
comparisons. This approach was pioneered by Rozs-
nyai [86.62,63], who employed a TF approximation for
the free electrons, and by Liberman [86.64] who con-
structed an AA based on a self-consistent field model
with a thermal population of Dirac orbitals for all
states.

There are two major weaknesses of the AA method.
First, the spherical cell neglects asymmetrical ionic con-
figurations in the plasma and assumes that no ion can
penetrate within the radius Rs. And, the AA does not
straightfowardly yield the distribution of ionic stages,
which is important for opacity and transport calcula-
tions. Ying and Kalman [86.65] have introduced a model
that addresses the 〈Z〉 issue while also incorporat-
ing strong ionic correlations from neighboring ions.
A DFT-based model that describes both strong coup-
ling and the distribution of ionic stages also has been
published [86.66].

86.3 Elementary Processes

In a truly equilibrium plasma, atomic transitions do not
modify the plasma’s physical state. However, the evolu-
tion of LTE and nonequilibrium plasmas is regulated by
the time rate of change of quantities such as Θ and ne,
and these in turn depend on transport coefficients such
as the radiative opacity and the thermal conductivity.

The processes controlling these coefficients are in-
duced by various radiative and collisional interactions.
Indeed, so many processes can occur that a major
task is the identification of those which are most
important in a particular situation. The plasma envi-
ronment may also alter rates applicable to isolated
atoms, through the perturbation of the atomic states
involved and/or the screening of long-range Coulomb
forces. Further complicating the usual two-body colli-
sion picture is the close proximity of many scattering

centers in a dense plasma. Presently, analysis of any
of these many-body problems requires considerable
simplification.

86.3.1 Radiative Transitions and Opacity

For a radiative transition between atomic states α and
β, the absorption and emission rates are proportional to
quantities of the form (∆E)n|〈α|d|β〉|2 summed over
degenerate substates, where d is the electric dipole op-
erator Chapt. 10, and n = 1 or 3 for the Einstein B and A
coefficients, respectively. In a dense plasma, changes in
these radiative quantities are due primarily to changes in
the atomic wave functions. Theory predicts that plasma
screening reduces line strengths, and that the reduc-
tion factor increases toward the series limit [86.67, 68].
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Also, the cross section for photoejection of an electron
bound by any screened Coulomb potential must vanish
at threshold – in marked contrast to the nonzero pho-
toionization cross sections of isolated atoms and ions.
Since the oscillator strength sum rule still holds, any
diminution of the total bound-bound oscillator strength
must be offset by an increase in the bound-free contribu-
tion; continuum lowering partly accounts for this latter
increase.

Spectroscopic observations of the reduction of decay
rates by plasma screening have been reported [86.69].
But, the plasma densities evidently were too low for this
effect to clearly manifest itself, and alternative expla-
nations have since been given [86.70, 71]. In addition,
there is the more fundamental question of whether static
screening models are even appropriate for the descrip-
tion of radiative processes. As discussed below, this
issue also arises in connection with inelastic collision
processes in dense plasmas.

Several large-scale computer codes are in wide
use to calculate the opacity of hot, dense matter (in
LTE). Among these, we note the code HOPE [86.62],
which is based on the average atom model; the code
LEDCOP [86.72], which uses accurate (Hartree–Fock)
atomic term data; and the code OPAL [86.73], which
uses detailed configuration accounting and parametric,
(static) screened potentials to compute wave functions
and energy levels. Also, there are some published
results from the new code IDEFIX [86.74], which
is based on a non-spherical (di-center) screened po-
tential arising from the radiating ion and its nearest
neighbor. When making comparisons among these
models, it should be realized that the codes use
quite different line-broadening and continuum lowering
prescriptions.

86.3.2 Collisional Transitions

Various screened Coulomb interactions also can be
used to study plasma effects on inelastic scattering.
References [86.31, 75] and citations therein use either
Debye or ion-sphere potentials, and Born, distorted-
wave, or close coupling approximations, to investigate
excitation processes in plasmas; however, bound states
were left unperturbed. More elaborate static potentials
and perturbed bound states were treated by Davis and
Blaha [86.76, 77], but they did not self-consistently
screen the interaction between projectile and target. For
excitations involving a small transition energy ∆E, Ki-
tamura [86.78] has recently published a self-consistent
treatment of both (1) the quasi-static perturbations of

the target ion by the microfield, and (2) the dynamically
screened electron-target interaction.

The use of static screening models is invalid when
∆E % �ωe because the collision duration is too short
for any average description of the plasma’s screening
to apply. In such cases, ionization being a particular
example, one must consider the response of the target to
electrodynamic disturbances [86.79]. Reference [86.80]
gives a thorough discussion of this issue, and presents
numerical examples of the effects of projectile and target
screening in ionizing collisions.

Bremsstrahlung is another important plasma colli-
sion process for which static screening models have
been extensively used [86.81–83]. Unfortunately, most
bremsstrahlung radiation emanating from hot plasmas
represents free–free transitions in which ∆E % �ωe
(lower frequency emission being attenuated), and in
these situations static screening models are suspect. In
contrast, the formation of laser plasmas occurs mainly
through inverse bremsstrahlung (free–free absorption)
under conditions such that ∆E = �ωlaser � �ωe, making
static screening models relevant here.

More sophisticated treatments of bremsstrahlung in
dense plasmas [86.84–86] include one or more of the fol-
lowing: strong coupling effects among the plasma ions
(introduced via radial distribution functions [86.22]),
dynamic screening effects involving the electrons (in-
troduced via frequency-dependent dielectric response
functions [86.18]), possible degeneracy effects (in-
troduced via Fermi–Dirac distribution functions for
occupation probabilities of initial and final states), and
only partial screening of the nuclear charge by the tar-
get ion’s bound electrons (introduced via a form factor
for the target (Chapt. 56)). Calculations for plasmas with
moderate coupling parameters (Γ ≤ few) reveal that the
first three of these effects tend to reduce free-free emis-
sion and absorption rates, while the last effect tends to
enhance the rates. At larger Γ -values, strong ion-ion
coupling tends to drive these rates back up [86.87].

Advances in simulation capability (which we discuss
next) are yielding ever more realistic descriptions of the
dense plasma environment, but what is proving difficult
to improve upon is the ubiquitous use of the Born ap-
proximation to treat all electron-ion scattering events
(see, however, Berkovsky and Kurilenkov [86.34]).
Strong collisions, i. e., those in which the photon en-
ergy �ω is comparable with the relative kinetic energy
of the collision, are particulary important for radiative
losses from plasmas, but these also are just the colli-
sions most likely to be poorly described by the Born
approximation.
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86.4 Simulations

Most of the challenges pertaining to atomic phenomena
in dense plasmas arise from the many-body nature of the
atom-plasma interaction. Simple models are therefore
subject to inaccuracies that may arise from inconsisten-
cies or severe approximations which, in turn, degrade
our understanding of experimental data. Because of
this complexity, simulations are playing an increasingly
important role in this field.

Historically, simulations of dense plasmas have
used simplified plasma models to address issues rang-
ing from equations of state [86.88, 89] to plasma
microfields [86.27, 28, 90]. Atomic physics is typic-
ally ignored within the simulation by assuming that
an average charge 〈Z〉, somehow known, can be as-
signed to each ion. For these simulation methods,
there are many excellent textbooks that introduce the
basic ideas [86.91–93]. Here, we focus instead on
simulations that attempt to describe both the dense
plasma and the atomic physics self-consistently. These
simulation methods are categorized in terms of the un-
derlying algorithm used and fall either into Monte Carlo
or molecular dynamics methods; we discuss each in
turn.

86.4.1 Monte Carlo

Monte Carlo is a method to evaluate average quantities
in thermodynamic equilibrium using random numbers.
For example, to obtain a property of a classical system
we might write

〈O〉 =
∫

d3Nr d3N pO
(
r3N , p3N

)
exp (−βH)

∫
d3Nr d3N p exp (−βH) ,

(86.19)

and, in principle, we could sample the multidimensional
integral randomly to obtain a good estimate of the av-
erage value of O given a many-body Hamiltonian H .
In practice, however, there are large portions of phase
space that give very little contribution to the average and
some method of “importance sampling” must be carried
out. This problem was originally solved by Metropolis
and coworkers [86.94] who introduced the Metropo-
lis method, which uses a Markov chain of states in
phase space that preferentially migrates towards states
of higher probability [86.92].

The computation of properties of atomic systems in
dense plasmas requires a quantum Monte Carlo (QMC)
method because atomic systems are inherently quantum
systems and the plasma itself can be degenerate. Al-

though there are a variety of QMC methods [86.93,95],
the most important for our purposes is the path-integral
Monte Carlo (PIMC) method, which is formulated at fi-
nite temperatures and, in fact, exploits this condition by
constructing an equivalent system of many more par-
ticles at a higher effective temperature. This is achieved
by writing spatial matrix elements of the quantal version
of the Boltzmann factor of (86.19) as

〈r| exp
(
−βĤ

) ∣∣r ′
〉

=
∫

d3r ′′ 〈r| exp
(
−βĤ/2

) ∣∣r ′′
〉

×
〈
r ′′
∣∣ exp

(
−βĤ/2

) ∣∣r ′
〉
. (86.20)

This expression can be used recursively to obtain matrix
elements evaluated at higher and higher temperatures;
this allows a high-temperature approximation to be
made, albeit at the expense of having many more ma-
trix elements to evaluate. It can be shown that in the
simplest approximation each quantum particle can be
replaced by a polymer of M classical particles linked by
springs; this picture is referred to as the “classical iso-
morphism” [86.96]. All electrons in the system (bound
and free) are treated on an equal footing.

Although the PIMC method is, in principle, simple to
implement and can be quite accurate, there are several
issues that arise when it is applied to dense plasmas.
There are difficulties with the deep attractive Coulomb
well that is crucial for describing atomic physics; this
leads to the need for enormous numbers of fictitious
classical particles. A partially analytical or numerical
solution can greatly mitigate this problem [86.93, 97].
PIMC also suffers from difficulty when treating fermion
systems because of the so-called fermion sign problem
in which many terms of opposite sign arise from the
antisymmetric form of the N-electron wave function.
Progress has been made in this direction as well [86.95].
Finally, the long-ranged nature of the Coulomb potential
causes additional difficulties for describing bulk systems
with periodic boundary conditions [86.98]. When these
additional considerations are taken into account, good
agreement with other methods is found, and results have
led to important conclusions about experiments [86.99],
which are detailed below.

86.4.2 Molecular Dynamics

Molecular dynamics is a simulation method based on
the time evolution of a many-body system [86.91–93].
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The vast majority of MD simulations are based on the
solution of Newton’s equations for N classical particles
in a main cell with periodic boundary conditions. Sim-
ulations can be carried out in various ensembles and
one assumes that long simulations in the canonical en-
semble will correctly sample canonical averages in the
same manner as (86.19). Atomic properties in dense
plasmas are usually obtained in the Born–Oppenheimer
approximation, which freezes the ionic dynamics be-
tween time-steps and performs an electronic structure
calculation to obtain the electronic density for that par-
ticular ionic configuration. The ions are then advanced
using the forces from the resulting electronic density, and
the procedure is repeated. Many methods are available,
including basic TF [86.100], Hartree–Fock [86.101], and
tight-binding [86.102] to compute the electronic struc-
ture. A commonly-used DFT code for warm matter is the
Vienna Ab-Initio Simulation Package (VASP), which is
widely distributed [86.103]. In contrast to most PIMC
implementations, the deep Coulomb potential is often
treated in VASP by softening the electron-ion interaction
with some form of pseudopotential [86.103,104]. These
methods trade between accuracy and range of validity;
for example, TF theory is less accurate than DFT-MD,
but is useful at higher temperatures (Θ> 50 eV) and for
very dense plasmas.

There are three advantages to the MD method. First,
the MD approach greatly extends the AA model by
including many nuclear centers in the main simula-
tion cell, and these centers may arise from different
elements. (This can also be done with PIMC.) Futher-
more, DFT-MD, which can be very accurate for cold
systems ([86.105], p. 117), has the additional advan-
tage that single-particle (Kohn–Sham) orbitals can be
used in formulae for linear, frequency-dependent re-
sponse properties, such as the electrical conductivity.
(It may seem paradoxical that electron dynamical in-
formation can be obtained from a static calculation.
Strictly speaking this is not possible, although reason-
able results can be obtained for some quantities [86.105,
p. 49]). And finally, MD has the additional advan-
tage that dynamical ionic properties can be obtained
from the time evolution that is simulated. For exam-
ple, DFT-MD simulations for the computation of the
self-diffusion coefficient of dense hydrogen [86.106]
have recently been performed; in principle, a wide
range of other dynamical ionic properties are available,
such as viscosity, thermal conductivity, and collective
behavior.

Quantum simulations beyond the Born–Oppen-
heimer approximation that treat electrons and ions on

an equal, dynamical footing are much more difficult
since they involve a numerical solution of the N-body
Schrödinger equation. Such simulations are necessary,
however, for obtaining dynamical electron properties,
especially under nonequilibrium conditions – those with
time-dependent temperatures or nonthermal momen-
tum distributions. Furthermore, these simulations can
describe electronic properties, such as atomic physics,
strong scattering, and degeneracy.

Very simple models have been developed by Deutsch
and coworkers, who constructed effective interactions
between the electrons that yield some known property,
such as the high-temperature pair correlation func-
tion [86.107]. These interactions can then be used
directly in a simulation, but with modified equations
of motion – an approach pioneered for dense plas-
mas by Hansen and coworkers [86.108]. Diffractive
and symmetry effects can be accounted for in the
high-temperature limit. For example, one model of
the diffractive potential for the electron-ion interaction
is

vei(r)=− Ze2

r

[
1− exp (−r/λ)

]
, (86.21)

where λ is on the order of the electron deBroglie wave-
length. This potential is finite at the origin, which
prevents the classical collapse of a neutral system dur-
ing the simulation. Unfortunately, such a method suffers
from several weaknesses, including being limited to
high temperatures, only describing Pauli exclusion by
pair-interactions, and having incorrect atomic binding
energies.

There have been several attempts to improve upon
simple potentials of the form (86.21). Since one of the
main features of quantum mechanics is that conjugate
space- and momentum-dependent quantities do not com-
mute, it is natural to construct potentials v(r, p) that
depend on both r and p. Such momentum-dependent
potentials have been formulated in the context of nu-
clear physics and have recently been applied to dense
plasmas by Ebeling and coworkers [86.109]. Although
quite good atomic properties can be obtained, these po-
tentials suffer from the fact that they are ad hoc, and one
does not know how to choose adjustable parameters for
unexplored conditions.

A direct approach is to solve the time-dependent,
many-particle Schrödinger equation, albeit approxi-
mately. This can be done by reducing the (infinite)
degrees of freedom to a smaller, more manageable
set. For example, Heller [86.110] first suggested using
a Gaussian wavepacket to describe electron semiclas-
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sical dynamics. This has been applied to ionization
in a dense plasma by Ebeling [86.111]. In general,
a many-body, antisymmetric wave function can be
parametrized in terms of a few parameters for each
particle and a time-dependent variational principle can
be used to obtain the equations of motion of the
parameters. For example, each particle in a Slater de-
terminant can be chosen to be a Gaussian with a width
w(t) with its conjugate momentum pw(t). This method
is referred to as “Fermion molecular dynamics” or
“wavepacket molecular dynamics” (WPMD). A review
of this approach has recently been given by Feld-
meir and Schnank [86.112]. Wavepacket shapes other
than Gaussians, which can better reproduce atomic
properties, have been proposed by Murillo and Timmer-
mans [86.113].

86.4.3 The Deuterium EOS Problem

Experiments can be notoriously difficult to perform in
the dense plasma regime because of the enormous pres-
sures produced. Recently, experiments on compressed
deuterium have been performed that pass from the mo-
lecular fluid phase into the dense plasma phase and
therefore probe the physics of atomic and molecular
states in a dense environment. The first of these was
conducted at Livermore [86.114] using the Nova laser
to shock compress liquid deuterium to 2 Mbar. The ex-
periments indicated a higher compressibility compared
with commonly used equation of state properties. These
interesting results led to new experiments, again at Liver-
more [86.115], with pressures exceeding 3.0 Mbar, and
at Sandia using a magnetically driven flyer plate on the
Z machine [86.116] to achieve 0.7 Mbar. The Sandia
results did not show the unexpected higher compress-
ibility. Later, additional laser-based experiments were
carried out at the Naval Research Laboratory [86.117]
to 6 Mbar, which agreed with the orignial laser-based ex-
periments but had significant error bars. The Livermore
and Sandia results are shown in Fig. 86.4. (Error bars are
not shown.) Interpreting these experiments has, in turn,
led to increased activity in the use and development of
various simulation methods.

Also shown in Fig. 86.4 are results from PIMC and
WPMD simulations. Early PIMC results, which treated
the Fermion sign problem using properties of free par-
ticles, did not agree well with either experiment. A later
calculation [86.99] improved upon that treatment and

10

1

0.1
0.5 0.6 0.7 0.8 0.9 1.0 1.1

Pressure (Mbar)

Density (g/cm3)
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Fig. 86.4 The equation of state of shocked deuterium; here
pressure (in Mbars) versus density (in g/cm3) is plotted
along the Hugoniot. Results from two experiments are
shown: Sandia (triangles) and Livermore (circles). Also
shown are the results from two simulations: path inte-
gral monte carlo (diamonds) and wavepacket molecular
dynamics (squares)

showed that details of antisymmetric wave functions be-
come important below 2 Mbar. These results are shown
in the figure, and better agreement with the Sandia re-
sult is found. Also shown in the figure are results from
a WPMD calculation [86.118], which tend to agree with
the Livermore data. The WPMD calculations, however,
did not include full antisymmetrization of the electron-
electron interaction. The temperatures predicted by the
simulations tend to be in the fraction of an eV range at
the lower part of the figure and up to tens of eV toward
the top of the figure; thus the experiments and the sim-
ulations are probing the very interesting WDM regime
in which molecular and atomic species are heated into
a cool plasma state.

Together with experiments on resistivity and 〈Z〉,
a more complete picture of the physics of atoms in dense
plasmas is emerging. But, more theoretical and exper-
imental developments are needed before we can tackle
with confidence the wide range of dense plasmas that
occur in the HEDP regime.
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Conduction of87. Conduction of Electricity in Gases

The conduction of electricity through gases has
played ubiquitous roles in science and technology.
It was responsible for many of the fundamental
discoveries in atomic and molecular physics;
gas discharge lighting is essential to every
night operations; gas discharge lasers are still
important in research and manufacturing; and
all of advanced microelectronics depends on
plasma enhanced processing. To a large extent,
the efficiencies of the above cited applications of
gaseous electronics depend on the maintenance
of the distinct non-equilibrium between the
electrons and the gas or vapor. This non-
equilibrium can be achieved by operating at low
pressures or under pulsed excitation, where the
duration of the energy input is less than the
energy equilibration time between the electrons
and the heavy particles. The term gas discharge
originally described a transient or spark condition,
but has been extended to mean the continuous
conduction of electricity through gases.

Section 87.1 treats the electron-velocity dis-
tribution and its effect on various measurements
involving a swarm or distribution of electron
velocities. In this section, low fractional ioniza-
tion (< 10−6) is assumed; electron–ion collisions
are negligible relative to electron–atom (and
electron–molecule) collisions in so far as they
affect electron mobility, diffusion or energy loss.

Section 87.2 introduces the glow discharge
and considers the cold cathode and hot cathode
discharge phenomena. Section 87.3 discusses
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ionization by electron collision, electron attach-
ment, ion mobility, ion–ion and electron–ion
recombination, and other important processes
that affect the conduction of electricity in gases.
Section 87.4 illustrates the importance of gaseous
electronics with several important phenomena
and technical applications.

The physics and chemistry of the conduction of elec-
tricity in ionized gases involves the interactions of the
electrons and ions in the gas among themselves, with
ground-state and excited-state gas atoms or molecules,
with any surfaces that may be present, and with any
electric or magnetic fields that are externally applied or
generated by movement of the charged species. The elec-
tron collision-induced excitation and dissociation can
result in new compounds being formed at rates which are

orders of magnitude larger than those without a plasma
present. For a gas pressure of 1 torr, the electron mean
free path λmfp between collisions is∼1 mm (∼ 109 colli-
sions/second). The assumption that λmfp is small relative
to the plasma physical dimensions is usually valid, how-
ever it is often comparable to, or larger than the space
charge sheaths that form near electrodes and surfaces.

Since the electron–atom interactions, in most cases
of interest, have ranges shorter than the average gas-atom
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separation, they may be treated as binary collisions and
the effects of neighboring gas atoms on a given electron–
atom encounter can be neglected. Quantities involving
such interactions in a partially ionized gas, where the
electrons are distributed both in velocity and position,
can be directly related to the corresponding quantities in

beam experiments, where the collisions are binary and
the electrons have a defined velocity. The measurements
and calculations of the electron velocity distributions, or
of the electron energy distribution functions (EEDF), are
therefore of fundamental importance in the description
of partially ionized gases.

87.1 Electron Scattering and Transport Phenomena

87.1.1 Electron Scattering Experiments

In 1903, Lenard [87.1] determined the attenuation of
a beam of mono-energetic electrons by several gases.
He measured the fraction of an electron beam that was
transmitted without scattering through a field-free region
containing the gas. Let an electron beam of density ne
electrons/cm3, traveling with velocity v, pass a distance
dx through the gas. Let N be the number of atoms/cm3.
The loss of electrons by scattering per unit time due to
collisions with atoms is then given by

dne

dt
=−Nvσne , (87.1)

where σ is the collision cross section for electrons of
velocity v. Writing vdt = dx, we obtain

ne = ne0 e−Nσx . (87.2)

In relation to the conduction of electricity in gases,
a more useful concept than σ is the momentum transfer

100
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Krypton
Xenon

Fig. 87.1 Momentum transfer cross section for noble gases

cross section σm. In general, σm is not equal to σ . Exper-
imental determinations of σm, generally from electron
swarm experiments, are summarized in [87.2]. Results
for the noble gases are presented in Fig. 87.1 and for
representative diatomic gases in Fig. 87.2. Above en-
ergies of about 10 eV, σm decreases as the electron
energy increases. Towards higher electron energies in
the monatomic gases, σm is inversely proportional to
the ionization potential and directly proportional to the
gas polarizability. The fact that σm has extremely low
values in certain gases at low energies is known as the
Ramsauer–Townsend (RT) effect. This can be explained
by partial wave scattering theory as the point where
the radial wave function has exactly one more oscilla-
tion inside the interaction potential well than does the
corresponding free function. Outside the well the two
functions are indistinguishable and there is no = 0
(s-wave) scattering [87.3] (Sect. 45.2.7). For the scatter-
ing potentials of the heavier noble gases, this occurs at
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Fig. 87.2 Momentum transfer cross section for some di-
atomic gases
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low energies where the partial cross sections for the
higher angular momenta (= 1, 2, . . . ) are still neg-
ligible. Methane and silane (Fig. 87.3, [87.4, 5]) and
possibly other nonpolar polyatomic gases, also display
Ramsauer–Townsend (RT) minima. There is great sim-
ilarity between the σm curves for atoms and molecules
with similar external electron arrangements. The σm
curves for H2, O2, N2 and CO (Fig. 87.2) show that
these cross sections are large over the range 0.1 to 10 eV.
Around 1.5 eV, N2 and CO display resonances which
are associated with the formation of temporary negative
ions followed by efficient vibrational excitation of these
molecules [87.6].

87.1.2 Electron Transport Phenomena

Electron transport phenomena in an ionized gas, such
as diffusion under the influence of a density gradient
and drift under the influence of an electric field, are
directly related to the electron current density Γe which
is caused by these influences. In order to calculate Γe,
it is necessary to know the electron spatial and velocity
density distribution f(v, r, t). The electron density ne
and current density Γe are given by

ne(r, t)=
∫

f(v, r, t)d3v , (87.3)

Γe(r, t)=
∫
v f(v, r, t)d3v . (87.4)
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Fig. 87.3 Momentum transfer cross section for CH4 and
SiH4

The electron drift velocity wd is related to Γe and ne by

wd = Γe/ne . (87.5)

The electron drift velocity is usually small compared
with the electron random velocity. The other limiting
case is important in connection with ionic mobilities.
It can also occur in electron transport in Ramsauer
gases or gas mixtures that are used in fast particle coun-
ters [87.7]. The theoretical analysis of electron motion
in gases uses primarily the Boltzmann transport equa-
tion approach [87.8]. Mean free path methods [87.9] and
Monte-Carlo methods [87.10] have also been applied.

87.1.3 The Boltzmann Equation

The electron density distribution f(v, r, t) of a given
kind of particle in phase space (configuration and veloc-
ity space) is determined by the combined effect of all the
interactions to which the particle is subjected. If there
are no sources or sinks, the number of particles in a vol-
ume element of the six-dimensional space which moves
with the particles does not change with time. In con-
figuration space, the continuity equation for f(v, r, t)
is

∂ f

∂t
+∇r ·v f = 0 ; (87.6)

in phase space, it has the form

∂ f

∂t
+∇r ·v f +∇v ·a f = 0 , (87.7)

where the subscripts on the divergence operators denote
the independent variable, v is the particle flow velocity
in configuration space, and a is the particle acceleration
(i. e., the flow velocity velocity space). This may be
written as q(E+v× B)/m for a particle of charge q and
mass m in the presence of electric and magnetic fields,
E and B respectively. If there are sources or sinks of
particles, then terms representing these appear on the
right-hand side of (87.7).

In principle, the effect of elastic and inelastic colli-
sions may be included in the expressions for E and B, but
they are usually treated as source terms which transport
the colliding particles instantaneously from one volume
element of velocity space to another. This is a good
approximation, for example, in the case of electron–
atom collisions, but it is not valid for the longer range
electron–ion and electron–electron interactions in the
presence of high-frequency electric fields. Other colli-
sions, such as ionizing collisions, act to change the total
ne as well as transporting electrons from one element of
velocity space to another.
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The electron–electron collisions will produce
a Maxwellian velocity distribution when the fractional
ionization is sufficiently large. For molecular gases, this
generally requires ne/N0 > 10−5. Since the electron–
electron Coulomb collision frequency varies as v−3,
these collisions are especially effective in the low energy
elastic regime where there are no inelastic energy loss
processes, and they may have an influence for ne/N0 as
low as 10−7 for the noble gases [87.11]. Spitzer [87.12],
Dreicer [87.13], and Butler and Buckingham [87.14]
treat cases where the electron–electron term is included
explicitly. A full treatment of this subject is given by
Shkarofsky [87.15].

Using∇v ·a= 0, and including collisions as a source
term, (87.7) becomes

∂ f

∂t
+v ·∇r f +a ·∇v f =

(
∂ f

∂t

)

collisions
, (87.8)

where the subscript ‘collisions’ identifies the source term
due to all types of collisions.

87.1.4 Electron-Atom Elastic Collisions

For electrons in a weakly ionized gas, where only
electron–atom elastic collisions need be explicitly con-
sidered, the collision term is given by the Boltzmann
collision integral [87.16]. This integral describes the rate
at which electrons are brought into and removed from
an element of volume in velocity space in terms of the
differential elastic scattering cross section .

The Boltzmann equation may be solved by a per-
turbation method [87.8] in which E, B, and the density
gradients are the perturbations, starting from

f(v, r, t)≈ f0(v, r, t)+ v

v
· f1(v, r, t) , (87.9)

where f0 is the unperturbed isotropic term and f1 is the
anisotropy due to E and B. Substituting into (87.8) and
equating terms of the same angular type then yields

∂ f0

∂t
+ v

3
∇r · f1− e

3mv2

∂

∂v

(
v2 E · f1

)

= g

2v2

∂

∂v

[
v3νm

(
f0+ kBTg

mv

∂ f0

∂v

)]
(87.10)

and

∂ f1

∂t
+v∇r f0− eE

m

∂ f0

∂v
+ωB × f1 =−νm f1 ,

(87.11)

where νm = eE/(wdm) is the momentum transfer colli-
sion frequency from the Boltzmann collisions integral,

ωB = eB/m is a vector whose magnitude is the cyclotron
frequency, and g = 2m/(M+m) controls the partition
of kinetic energy in an elastic collision between particles
with masses M and m.

The right-hand term of (87.10) is the first-order cor-
rection due to elastic kinetic energy exchange between
electrons and atoms. The E · f1 term arises from work
done by E on the electrons, and the∇r · f1 term accounts
for particle loss from the volume element in phase space
due to electric field drift and density gradients. Simi-
larly, in (87.11), the E term accounts for loss due to
electric field acceleration, and the v∇r f0 term accounts
for changes due to electron drift across a density gradi-
ent. The −νm f1 term results from randomization of the
electron velocity direction in electron–atom collisions.

The neglect of higher order terms in (87.9) is justified
if δTe/Te & 1, where Te is the gain in electron kinetic
energy between collisions, and δ f0/ f0 & 1, where δ f0
is the change in f0 over λmfp. For the case of static
E and B with E ⊥ B, the orbital time 1/ωB replaces
the time between collisions if it is shorter, making the
above conditions less stringent. However, for an ac field
with the resonant frequency ωB, the original conditions
apply. The off-resonant case in between. See [87.8, 17]
for a further discussion of validity.

87.1.5 The Electron Drift Current

Transport properties of a partially ionized gas are
calculated from the moments of f(v, r, t). To obtain
Γe, (87.11) must be solved for f1. Assume that ωB = 0
and that E is constant in time. Then, since f0 usu-
ally changes slowly compared with νm, ∂ f1/∂t may be
neglected to a first approximation, and

f1 )− 1

νm

(
v∇r

(
ne f 0

v

)− eE
m

ne
∂ f 0
v

∂v

)
, (87.12)

where ne(r, t) f 0
v (v, r, t) = f0(v, r, t). Use of (87.3)

gives

Γe =−∇r(Dene)−neµe E , (87.13)

which defines the electron free diffusion coefficient

De =
∫

v2

3νm
f 0
v 4πv2 dv=

〈
v2
〉

3νm
, (87.14)

and the static electron mobility

µe =− e

m

∫
v

3νm

∂ f 0
v

∂v
4πv2 dv . (87.15)

In (87.13),∇r should be interpreted as acting only on that
part of De whose spatial dependence enters through an
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energy change, such as a variation of Te with position (as
in the theory of striations [87.18], but not on variations
due to pressure gradients which would affect νm [87.8]).

Electron Free Diffusion
When the ionization density is low enough, the electrons
diffuse freely to the walls, being unaffected by the space
charge field caused by the heavier ions, which diffuse
more slowly than the electrons. Setting E= 0 in (87.13),
the electron current due to diffusion is

Γe =−∇r(Dene) . (87.16)

Since the electron heating and elastic recoil terms in
(87.10) do not contribute to a net gain or loss of electrons,
integration of (87.10) over v gives

∂ne

∂t
+∇r ·Γe = ∂ne

∂t
−∇2

r (Dene)= 0 , (87.17)

for a decaying electron density. This equation is identical
in form to the thermal conductivity equation, which can
be solved analytically for certain simple geometries. For
the case of a long cylindrical container of radius R, the
equation becomes

∂ne

∂t
= De

1

r

∂

∂r

(
r
∂ne

∂r

)
, (87.18)

if D0 is constant and ne depends only on r. The general
solution for ne satisfying ne(R, t)= 0 is

ne =
∑

m=0

bm exp

(
− t

tm

)
J0

(amr

R

)
, (87.19)

where tm = [De(am/R)2]−1, and J0 is the zeroth-order
Bessel function with roots J0(am)= 0, am+1 > am . The
bm are determined by the radial dependence of ne at
t = 0. (If the coaxial wall of radius r0 < R confines the
plasma to an annular region r0 < r< R, the general solu-
tion must also include the zeroth-order Bessel function
of the second kind, Y0, to satisfy the boundary con-
ditions). The time constants tm decrease rapidly with
increasing m so that for sufficiently long t, the density
distribution relaxes (e.g., after the microwave or static
excitation is switched off) to

ne ≈ b0 exp

(
− t

t0

)
J0

(a0r

R

)
. (87.20)

This is called the fundamental diffusion mode. The
above treatment gives a good approximation to ne(r)
provided that λmfp & R.

When νm is velocity-independent and f0 is the
Maxwellian of temperature Te, (87.14) becomes

De = kBTe

mνm
. (87.21)

For the case where a magnetic field is applied to the
ionized gas, parallel to the cylinder axis so as to impede
the electron diffusion to the walls, the free-diffusion
coefficient in equation (87.18) is replaced by

DeB =
∫

νmv
2 f 0
v

3
(
ν2

m+w2
B

)4πv2 dv=
〈

νmv
2

3
(
ν2

m+w2
B

)

〉

.

(87.22)

In this case, the electrons cannot diffuse to the walls
unless they make collisions that interrupt their spiraling
motion.

Electron DC Mobility in Static Fields
From (87.13), the electron particle current induced by an
electric field E is Γe =−neµe E, and the electron drift
velocity is

wd = Γe

ne
=−µe E . (87.23)

Measurement of wd by a time-of-flight measurement
can in principle, through the use of (87.14), provide
some information about νm, provided that f 0

v is known.
Since a static electric field may perturb considerably
the distribution function, and since ne is low in such
measurements, f 0

v should be determined using (87.10)
after having eliminated f1 using (87.11). In the case
where νm is independent of v, (87.15) after integration
by parts, reduces to

µe = e

mνm

∫
f 0
v 4πv2 dv= e

mνm
, (87.24)

which is independent of f 0
v .

In general, wd exhibits a complex depen-
dence on E/N , as shown for some example gases
in Fig. 87.4 [87.19]. The high mobility of electrons in
methane is of technical interest because of potential
applications in plasma switches used for current inter-
ruption [87.20]. The local maximum of wd in methane
for E/N = 3 Td (1 Townsend = 10−17 Vcm2) and its
decrease with further increase of E/N arise because
of the onset of inelastic collisions due to vibrational
excitation at an energy close to the energy of the RT min-
imum [87.21]. As shown in Fig. 87.4, the drift velocities
are generally in the range of 106 –107 cm/s.

A detailed summary of electron drift velocities meas-
ured in many pure gases and gas mixtures of technical
interest is given in [87.22, 23], and the techniques are
elaborated in [87.24, 25].

The classic article on the drift velocity of ions in
electric fields measured by a transit time technique is that
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Fig. 87.4 Electron drift velocities in polyatomic gases

of Hornbeck [87.26]. He showed that in some instances
earlier workers had identified molecular ions as atomic
ions. Contemporary measurements often use the guided
ion beam (GIB) technique to measure such quantities
as the symmetric charge transfer cross sections [87.27].
A review of measurement data has been given [87.28].

The Ratio of De/µe for Electrons
From (87.14) and (87.15),

De

µe
= − m

e

∫∞
0

(
v4/νm

)
f 0
v dv

∫∞
0

(
v3/νm

)
∂ f 0
v /∂vdv

. (87.25)

The above ratio of the free-diffusion coefficient to the
mobility is termed the characteristic energy and it is
a measure of the average electron energy in certain cases.
When f 0

v is Maxwellian, then

De/µe = kBTe/e (87.26)

becomes a direct measure of the electron energy, in-
dependent of νm. Since the average electron energy
uav = 3

2 kBTe, (87.26) becomes

De/µe = 2

3
uav/e . (87.27)

In this form it is known as the Einstein relation. Further-
more, if νm is independent of velocity, (87.27) applies
regardless of the velocity distribution.

Values of De/µe can be determined from exper-
iments where a static electric field Ez is applied to
electrons drifting under steady state conditions of diffu-
sion. If De is taken to be independent of position, then
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Fig. 87.5 Calculated uav and De/µe coefficients in H2

the generalization of (87.17) is

∇2ne =−µe

De
Ez
∂ne

∂z
. (87.28)

Solutions to this equation for ne were for many years
used to deduce De/µe from the measurements [87.29].
However, Wagner et al. [87.30] showed that there are two
effective diffusion coefficients DL and DT in the lon-
gitudinal and transverse directions with DL & DT . For
H2, N2 and He, DL ≈ DT /2, while for Ar, DL ≈ DT/8.
See [87.31,32] for a quantitative discussion. The differ-
ent coefficients arise because ne andwd are functions of
∂ne/∂z.

For H2, f 0
v is fairly well approximated by

a Maxwellian distribution. A comparison of the average
and characteristic energies uav and De/µe calculated
from the Boltzmann transport equation for H2 is shown
in Fig. 87.5.

Ambipolar Diffusion
In the case of electron free diffusion discussed above,
diffusion of the electrons (and ions) is unaffected by
space-charge fields caused by an imbalance of positive
and negative charges. When the charge density is high,
this no longer holds. The resulting electric field caused
by space-charge separation retards the electron diffusion
and enhances the positive ion motion. In the steady state
the flows of positive ions and of electrons are equal, i. e.,
Γe = Γ+. For electrons in the absence of temperature
gradients,

Γe =−De∇ne−neµe E , (87.29)
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where De and µe are given by (87.14) and (87.15) re-
spectively. The analogous equation for the positive ions
is

Γ+ =−D+∇n+−n+µ+E . (87.30)

Eliminating E between the two equations and setting
ne ≈ n+ = n, and Γe ≈ Γ+ = Γ gives

Γ =−
(

D+µe+Deµ+
µe+µ+

)
∇n . (87.31)

The quantity in parentheses is a diffusion coefficient that
is applicable both to the electrons and to the ions. Since
they are interacting, they diffuse together. This quantity
is termed the ambipolar diffusion coefficient:

Da = D+µe+Deµ+
µe+µ+ . (87.32)

Franklin, however, has proposed that the term ambipolar
flow is a more correct physical description [87.33]. In
the case where the electrons have a temperature Te and
the ions a temperature T+,

D+
µ+

= kBT+
e

,
De

µe
= kBTe

e
, (87.33)

and since µe % µ+,

Da ≈ D+
(

1+ Te

T+

)
. (87.34)

If Te % T+, then Da ≈ µ− kBTe/e, i. e., the ambipo-
lar diffusion is determined by the ion mobility and the
electron energy. Allis and Rose [87.34] have studied
the transition from free to ambipolar diffusion as the
electron density is increased.

For the case in which the electrons and ions are dif-
fusing together in the radial direction across a static Bz ,
and the electron–atom and ion collision rates may be as-
sumed to be independent of Te, the magneto-ambipolar
diffusion coefficient is given by

DaB = Da

1+µ+µe B2
. (87.35)

References [87.35, 36] review theoretical and experi-
mental work on diffusion in a magnetic field.

Debye Shielding
Consider an ensemble of positive ions and electrons in
thermal equilibrium. Each ion repels other ions in its

neighborhood, but attracts electrons. The space charge
around each ion (assumed stationary) is e(n+−ne),
which by Poisson’s equation creates a potential φ satis-
fying

∇2φ =− e

ε0
(n+−ne) , (87.36)

where n+ is the average ion density. For time indepen-
dent fields in the absence of collisions, (87.8) becomes

v ·∇r f + eE ·∇v f = v ·∇r f − e∇rφ ·∇v f = 0 .
(87.37)

Assuming a solution of the form

f = f0 exp

(
− eφ

kBTe

)
, (87.38)

where f0 is Maxwellian, and using
∫

f0 d3v= ne gives

(
− e

kBTe
v ·∇rφ+ e∇rφ · v

kBT

)
f ≡ 0 . (87.39)

Hence,

∫
f d3v= ne exp

(
− eφ

kBTe

)
. (87.40)

Since the assembly is macroscopically neutral, ne = n+,
and

∇2φ =− e

ε0
n+

[
1− exp

(
− eφ

kBTe

)]
. (87.41)

If eφ& kBTe, then

∇2φ ≈ e2

ε0
n+

φ

kBTe
. (87.42)

If spherical symmetry is assumed,

φ = e

4πε0r
exp

(
− r

λD

)
, (87.43)

where

λD =
(
ε0kBTe

n+e2

)1/2

(87.44)

is the Debye shielding length for the Coulomb potential.
λD arises from the screening effect of the electron cloud
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about each ion. The dimensions of a plasma must be
much larger than λD for the electrons to act collectively,
i. e., to undergo plasma oscillations.

87.1.6 Cross Sections
Derived from Swarm Data

The use of transport theory to unfold low energy electron
collision cross sections from experimentally measured
electron transport data was originally introduced by
Townsend [87.29]. Beginning with trial input values
for the cross sections as a function of energy, the elec-
tron transport coefficients are calculated and compared
with experiments (such as wd, De, εk, and ioniza-
tion/attachment coefficients, measured as a function of
E/N). The input cross sections are then adjusted in the
appropriate energy range, and the comparison procedure
is iterated until theory and experiment come into agree-
ment. The above trial and error procedure was greatly
advanced by the use of computers to solve the Boltzmann
equation [87.37,38]. A large body of fairly complete sets
of low energy cross sections has been obtained in this
way [87.23].

Assuming that the electron kinetics are accurately
described by the solution of the Boltzmann equation,
the above unfolding procedure is severely limited by
the lack of uniqueness in the derived cross sections (es-
pecially in the molecular gases where many inelastic
processes dominate in determining the electron energy
distribution). For the noble gases, the method works well
for He and Ne at low energies, where only elastic scat-
tering occurs [87.24]. For Ar, Kr, and Xe, the method
becomes questionable again for electron energies near
the RT minimum. The slow redistribution of electron
energies leads to lack of sensitivity of the calculated
transport coefficients to the σm.

It has been shown that the swarm analyses of He-
Ramsauer noble gas mixtures lead to unique σm of
the Ramsauer noble gases (Ar, Kr, Xe) [87.39]. The
measured electron drift velocity data in He-Xe mixtures
shown in Fig. 87.6 satisfy the two important require-
ments (1) high sensitivity of the drift velocity data in
gas mixtures over that in either pure He and Xe, and (2)
the σm of He is very accurately known, to warrant the
uniqueness of the derived σm of Xe.

Once the cross sections of the Ramsauer noble gases
have been more accurately defined by the above ap-
proach, the RT minimum can be used to advantage
in addressing the uniqueness problem for molecular
gases. The electron transport data in molecular-gas–
rare-mixtures exhibit large sensitivity due to the low
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wd(cm/s)

E/N (Vcm2)

Pure Xe
5% He-Xe
10% He-Xe
20% He-Xe
Pure He

Fig. 87.6 Measured electron drift velocities in He–Xe mix-
tures

energy inelastic collisions in the molecular gas (which
increase the f1 component of the electron energy distri-
bution) [87.21,40]. Since the cross sections of the buffer
noble gas are now accurately defined, the demanding
fits to the mixture transport data can be conveniently ex-
ploited to enhance the accuracy of the cross sections of
the molecular gases.

The application of the two-term approximation in
many papers treating molecular gases has been criti-
cized [87.41]. Fortunately, methods are now available
for the use of multi-term and Monte Carlo approaches
to solve the collisional Boltzmann equation. These ap-
proaches do require differential cross sections. Schmidt
et al. [87.42] report that their experiments using both
electric fields and crossed electric and magnetic fields
allow the extraction of the drift velocity, the Lorentz
deflection angle, the longitudinal and transverse diffu-
sion coefficients, and the ionization coefficient. This
approach has lead to a fully automated procedure for
extraction of cross sections from accurate experimental
transport data.

When approximate answers (20% or so) are
needed for comparisons with measurements on complex
discharges, rather than measurements on transport prop-
erties, the program Bolsig and its database provided by
Morgan [87.43] and the Paul Sabatier University plasma
group [87.44] are justifiably popular.

Under very high E/n conditions, approximate an-
swers can be obtained quickly using the completely
anisotropic beam assumption.
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87.2 Glow Discharge Phenomena

87.2.1 Cold Cathode Discharges

The cold cathode discharge operates because of feed-
back by the electrons that are generated by ion
bombardment of the cathode (secondary electron emis-
sion) in turn generating sufficient ions that flow to the
cathode to keep the process going. There can be contri-
butions to secondary electron emission from photons
and metastable atoms which are created by electron
collisions with the gas. Since the secondary emission
coefficients are functions of the cathode material, ion
species, and ion energy, the magnitude of the needed
accelerating potential between the plasma and the cath-
ode varies. This potential creates a space charge sheath,
and various excitation features occur near the cold cath-
ode. The potential required is typically 200–600 V.
The electrons from the cathode (called primaries) are
accelerated through the sheath and acquire sufficient en-
ergy to excite the gas efficiently, resulting in a region
termed the negative glow. As one moves further from
the cathode, the light from the negative glow tapers
off due to the degradation of the primaries in creat-
ing slow electrons (termed secondaries and ultimates).
A sufficiently high density of electrons is usually cre-
ated to satisfy the external circuit continuity at very
low fields (or even slight field reversal). Since the low
energy electrons do not create visible excitation, the
region to the anode side of the negative glow forms
the Faraday dark space. At even greater distance from
the cathode, where the slow electron density has de-
cayed by drift, diffusion, recombination, and in some
gases by attachment, the electric field increases and the
discharge develops long diffuse bright regions which oc-
cupy the remainder of the inter-electrode space. This is
termed the positive column. If one increases the inter-
electrode spacing, the cathode regions remain essentially
constant and the positive column extends with average
uniform properties. Temporal variations called moving
striations are common in all gases, and spatial varia-
tions called standing striations, or ionization waves are
frequently observed in molecular gases. The different
cathodic regions occur because the abrupt boundary
conditions create local discharge conditions of excita-
tion and ionization which are not in equilibrium with
the local electric field. Even in the so-called uniform
positive column, the ionization waves correspond to
nonlocal equilibrium solutions of the discharge equa-
tions that permit more efficient discharge ionization and
conductivity than would be given by local equilibrium

ε

εE1 Eb E2

E1 Eb E2

Atomic spectrum

Ion spectrum

1 2 3 4

1. Cathode sheath

2.

3. Meniscus

4.

f (e)

f (e)

Fig. 87.7 Illustration of the appearance of a hot cathode
discharge

with the electric field. The ionization waves can be
absolutely or convectively stable, and have dispersion
properties of forward or backward waves (the latter cor-
responding to opposite directions of phase and group
velocities).

At any plasma boundary a positive space charge
sheath is usually formed in order to equalize the fluxes
of ions and electrons to the boundary. Bohm [87.45], and
much earlier Langmuir [87.46], showed that in a colli-
sionless sheath, to avoid oscillatory solutions, the ions
must enter the sheath with velocities at least equal to the
ion sound speed (

√
kTe/mi ). The Bohm criterion con-

tinues to attract research activity. The review paper by
Riemann [87.47] treats the issues addressed up to that
time. There are important recent studies on satisfying
the neutrality boundary conditions in electro-negative
gases and in gas discharges with multiple positively-
and negatively-charged species [87.48].
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87.2.2 Hot Cathode Discharges

Low pressure, high current discharges are important
in thyratrons and other high current switches. The hot
cathode permits much higher current densities than are
usually obtained from a cold cathode. The voltage drop
of the cathode sheath is much less, and a discharge will
operate if the applied potential exceeds IP for the gas.
Hot cathode discharges with low P and Γe show three
groups of electrons: the primaries, which are beam elec-
trons that essentially have retained the energy acquired
in the cathode sheath; secondaries which are random-
ized electrons with Te approximately proportional to the
energy of the primaries (≈ 5 eV for 30 eV primaries) and
approximately independent of the gas; and the ultimates
which are the bulk of the electrons with T − E <1 eV.
The primaries degrade slowly with distance from the
cathode, provided that Γe ≤ 40 mA for argon at 10 µm
(or more generally when the density of the beam elec-

trons is still less than ne). Above this critical current
(a function of the gas and its pressure), the discharge
adopts a definite new structure. The beam is no longer
quasi-homogeneous but displays a meniscus about 7 mm
from the cathode (Fig. 87.7). Langmuir probe measure-
ments show that the primary electrons are abruptly
scattered in energy at the meniscus. The energy scat-
tering of the fast electrons by the electrostatic waves far
exceeds the electron–atom collisional scattering. Spec-
troscopic measurements in argon, for example, with
a cathode fall of 26 V, show the Ar spectrum throughout
the discharge, whereas the Ar+ lines appear only to the
anode side of the meniscus. The Ar+ lines appear even
though the minimum energy required to excite them is
34.8 to 39.9 eV and the total voltage across the discharge
can be 5 to 10 V lower. Coincident with onset of the
meniscus, distinct GHz and MHz frequency oscillations
are detected. These frequencies have been interpreted as
electron- and ion-plasma oscillations, respectively.

87.3 Atomic and Molecular Processes

If the cross section for a given process is σ j , then the
rate of excitation per electron for that process is

Z j = N

∞∫

0

σ j(v)v fv(v, r, t)4πv2 dv . (87.45)

For inelastic processes, σi(v) = 0 for velocities be-
low the threshold energy. The ionization threshold is
the ionization potential IP. The ionization cross sec-
tions typically increase monotonically with energy from
threshold to about 100 eV. An exception to this is the al-
kali metal group for which the ionization cross section
maximum occurs below 15 eV.

Assuming that the discharge excitation conditions
are spatially uniform, the electron conservation equation
is

dn e

dt
= (Zi− Za− Zd)ne− Zrn2

e , (87.46)

where Zine is the total rate of ionization, Zane is the
rate of attachment, Zdne is the net diffusion rate out of
the region considered, and Zrn2

e is the rate of recombi-
nation, all per unit volume. The coefficients are usually
functions of both P and E, either directly or indirectly.
We consider these processes separately in Sect. 87.3.1
to Sect. 87.3.3.

87.3.1 Ionization

The ionization frequency (in s−1) for a Maxwellian
distribution of electron velocities is given by [87.49]

Zi ≈ 9 × 107a P exp

(
− IP

Θ

)
Θ1/2 IP , (87.47)

where Θ = (kBTe/e) and a is the initial slope of
the ionization efficiency curve in electron energy (ion
pairs/Torr/V/electron). (The ionization efficiency is de-
fined as the number of ion pairs produced per electron
per cm of path at 1 Torr and 0◦C. The ionization effi-
ciency is proportional to the ionization cross section.)
For a Maxwellian distribution, the quantity

dZi

dΘ
= Zi

(Vi+Θ/2)
Θ2

, (87.48)

together with Zi, is useful in estimating the electron
density and electric field for steady state discharges, or
the onset of ionization instabilities [87.18].

If more accuracy is desired in estimating the ioniza-
tion rate, a numerical solution of the Boltzmann equation
is needed to calculate f 0

v . An energy balance calculation
can then be performed by integrating the electron ki-
netic equation over all electron energies. The electron
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energy balance and the average electron energy are in-
dependent of ne in a weakly ionized gas. Therefore the
energy transfer into different excitations can be treated
on a single electron basis. The total power density in the
discharge as a function of E/N is then given by

J · E = ewd
E

N
Nne . (87.49)

The relative contributions of the various electron loss
processes are then obtained. Figure 87.8 shows the
fractional input power deposition into the principal elec-
tron loss channels of hydrogen [87.50] as a function
of the normalized electric field. Over a wide range of
E/N , a large fraction of the discharge energy goes
into vibrational excitation. Significant energy deposition
into dissociation occurs only above 40 Townsends. This
explains why it is necessary to use a capillary tube dis-
charge (or Wood’s tube) to obtain the atomic spectrum,
or to provide a source of atomic hydrogen. The higher
diffusion losses of the narrow bore cause the discharge
to run at high E/N in order to maintain the electron
density. The high E/N also provides large dissociation
rates.

To obtain the total rate of excitation at high Γe, it
is necessary that an assessment of the excited state den-
sities also be made. This is most important for excited
states that are known to be metastable so that the effec-
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Fig. 87.8 Fractional power deposited into the different in-
elastic modes of hydrogen as a function of E/N . The labels
V, D, E, R, and I correspond to vibrational, dissociation,
electronic, rotational, and ionization processes respectively.
The remainder is transferred into elastic collisions

tive lifetimes are determined by collisional quenching
or diffusion. The metastables can be very important in
the excitation of higher states and in ionization. First,
the threshold to ionize a metastable is usually much
less than the IP of the ground state. Second, the cross
section for ionization of an excited state is often much
larger than that of the ground state. Evaluations [87.51]
of the low pressure helium discharge above 1 torr show
that at current densities above a few mA cm−2 the two-
step ionization through metastable states (proportional
to n2

e) exceeds the single step ionization (proportional
to ne) from the ground state. A multi-temperature ap-
proximation introduced by Vriens [87.52] has proven to
be very useful in analyzing noble gas-alkali discharges
and also noble gas discharges. The decreasing elec-
tric field required at higher discharge currents (higher
ne) is thus due to a combination of more efficient
ionization through the metastables and increased gas
heating.

Also, molecular dissociation changes the ioniza-
tion rate through a combination of changes in f 0

v . At
high energy density depositions (≈ 0.1 eV/molecule),
the ionization rate and the dissociation rate are influ-
enced by the degree of vibrational excitation, and by
the changed Franck-Condon probabilities. However, the
dissociation rate is changed primarily by two processes:
collisions of the second kind [87.49]

e(slow)+N2(v)→ e(fast)+N2(v= 0) , (87.50)

which increase the number of fast electrons, and by in-
creased anharmonic pumping of vibrational states to the
dissociation limit [87.53]. Anharmonic pumping [87.54]
occurs when large populations of vibrationally excited
states are created in a molecular gas (usually diatomic)
with a small amount of anharmonicity between adjacent
levels, and the translational energy of the molecules is
low. Because of the anharmonicity, the vibrational en-
ergy exchange favors the transfer from low vibrational
levels to higher vibrational levels. This process is the ba-
sis of infrared laser action in carbon monoxide [87.54].

For discharges in gas mixtures, the compo-
nent with the larger inelastic cross section and
lower threshold tends to control the mean energy
of the electron energy distribution. This situation
is of common occurrence in discharge lasers. Nu-
merical solutions of the Boltzmann equation have
been obtained for a large number of gas mixtures
of technical interest [87.55, 56]. Usually the two-
term approximation in (87.9) is adequate, although
there are circumstances where higher order terms are
needed [87.57].
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87.3.2 Electron Attachment

The phenomenon of electron attachment to a neutral
atom or molecule to form a negative ion is a common
occurrence for gases whose outer electronic shells are
nearly filled. The energy of formation of a negative ion
is called the electron affinity (EA). This varies from
about 3.5 eV (for the halogens) to nearly zero among
the gases that exhibit electron attachment. Atoms having
closed electronic shells do not form negative ions. These
atoms, which have 1S0 ground states, include the noble
gases. Molecules in the 1Σ ground state also do not form
permanent negative ions.

A general experimental technique for measurement
of attachment coefficients involves passing electrons
through a gas target and measuring the attenuation of
the electrons due to attachment, and usually also the
negative ions produced [87.6]. Mass spectrometers are
often included to identify the ions. A comprehensive sur-
vey of negative ions is available in the revised edition of
Massey’s text [87.58], and an update with emphasis on
discharge lasers has been given by Chantry [87.55, 59].
There is not as yet any experiment [87.41] that can
measure separately the flux and reactive components
of swarm transport when nonconservative interactions
are present. The problem becomes more complex in in-
homogeneous fields when the negative ions are weakly
bound and experience collisional detachment in higher
field regions. Plasma etching almost always involves
electro-negative gases. The effects of negative ions in
positive column discharges have been described by
Franklin [87.48]. The discharge radial profile is sen-
sitive to the relative values of ionization, attachment,
detachment, and recombination. Additional discharge
instability modes are possible, including an ionization-
attachment-detachment mode that gives rise to distinct
high and low field regions that have been observed
in oxygen discharges and in other electro-negative gas
discharges.

87.3.3 Recombination

One of the most common loss mechanisms for ions is
the recombination of negative ions and electrons with
positive ions. The loss of ions due to recombination is

proportional to the product of their concentrations:

dn+
dt

= dn−
dt

=−αn−n+ . (87.51)

Here α is called the recombination coefficient and n−
is the negative ion or electron density. The value of α is
quite different for negative ions and electrons. If there
is only one negative ion species, and the positive and
negative ion species have equal concentrations, then

dn

dt
=−αn2 , (87.52)

which on integration gives

n−1 = n−1
0 +αt , (87.53)

where n0 is the initial ion concentration at t = 0. Re-
combination phenomena therefore often exhibit a linear
relation between 1/n and t after switch-off of a dis-
charge.

The three primary processes for positive ion–
negative ion recombination are: three body recombina-
tion

A++ B−+M → AB+M ; (87.54)

radiative recombination

A++ B− → AB+ photon ; (87.55)

mutual neutralization

A++ B− → A∗ + B∗ . (87.56)

There are two additional processes for positive ion–
electron recombination: dissociative recombination

e+ AB+ → [AB]∗ → A+ B ; (87.57)

dielectronic recombination

e+ A+ → A∗∗ → A+photon . (87.58)

87.4 Electrical Discharge in Gases: Applications

Some of the many different plasma sources have been
reviewed by Conrads and Schmidt [87.60]. The various

discharge types are well described by Raizer [87.61].
In the examples of rf discharges, many of the appli-
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cations employ control of power input to the plasma
by means of automatic impedance matching networks.
We present some notes on the more important technical
plasma sources.

87.4.1 High Frequency Breakdown

In the theory of high frequency breakdown, the electron
energy distribution function is calculated as a function of
the applied ac electric field E, using (87.12) and (87.13).
From this the ionization frequency is derived, so that the
rate of ion production can be expressed in terms of E.
At breakdown, the ionization rate equals the sum of
the losses due to diffusion, attachment and recombina-
tion. The µe, νe and attachment coefficients, as well as
the various rate constants producing new species, de-
pend on E. The electron continuity equation is solved to
obtain the breakdown field. (In the absence of apprecia-
ble pre-ionization, the electron loss is governed by free
diffusion. When the electron loss is controlled by am-
bipolar diffusion, the operating field of the discharge is
obtained. This effect, in addition to cumulative ioniza-
tion and gas heating, gives an operating field lower than
the breakdown field)

Rewriting (87.13) for a constant νm, and assuming
a Maxwellian velocity distribution, the electron current
density becomes

J =−eΓe = nee2 E0 e−iωt

m(νm− iω)
, (87.59)

where the time dependence of E is written explicitly.
The power P gained per unit volume is the time average

P = 〈J · E〉 = nee2νm

m
(
ν2

m+ω2
)

E2
0

2
. (87.60)

For a given E, P has a maximum at νm = ω. Equation
(87.60) can also be written as

P = ne
e2 E2

eff

mνm
, (87.61)

where the effective electric field is defined by

E2
eff =

E2
0

2

(
ν2

m

ν2
m+ω2

)
. (87.62)

Eeff is useful for comparing the relative heating effect
of alternating and static fields. These considerations are
carried further by MacDonald [87.62], and are important
in determining microwave antenna breakdown fields at
high altitudes.

87.4.2 Parallel Plate Reactors
and RF Discharges

A situation of interest for plasma deposition and etch-
ing is the discharge between two parallel plates driven
by a rf power supply. The industrial standard excita-
tion frequency is 13.56 MHz. There have been several
quite different approaches. One of the first models due
to Bell [87.63] treats the discharge as a circuit element,
and applies the boundary condition that the sum of the
conduction and displacement currents remain constant:

J = σE+ ε0 ∂E
∂t
. (87.63)

Substituting for σ , E and ∂E/t in (87.63) for the case
where electrons are the major current carriers, and as-
suming a velocity-independent νm, the amplitude of the
electric field as a function of position becomes

E = J

ε0ω

(
(1+q2)

(δ−1)2+q2

) 1
2

, (87.64)

where δ= ω2
p(x)/ω

2 (86.2) and q = νm/ω. At high elec-
tron densities or low frequency fields, δ% 1 and

E = E0

(
(δ0−1)2+q2

(δ−1)2+q2

) 1
2

, (87.65)

where E0, δ0 denote values at the centre of the dis-
charge. At low densities or high frequency fields, δ& 1
and E = J/(ε0ω), i. e. the system acts like a capaci-
tor. It is also necessary to consider the self-bias that
the electrodes acquire under the influence of an applied
electric field. The bias arises because of the require-
ment that, averaged over time, no net charge can collect
at the electrode. Since the anode current-voltage char-
acteristic is very nonlinear, application of a sinusoidal
voltage to the electrode creates at each electrode a neg-
ative dc bias approximately equal to the peak amplitude
of the rf voltage. The system therefore acts like a hol-
low cathode discharge with modulated sheath voltages.
The ions from the plasma are accelerated across these
sheaths and, over most of the rf cycle, acquire suffi-
cient energy to cause secondary electron emission at the
electrodes.

The ion flux and energy distribution hitting the sub-
strate depend on the plasma conditions: the values of
the dc and rf bias voltages, and the ratio of the tran-
sit time of the ions across the sheath to the period of
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the rf excitation frequency. The anisotropy and selec-
tivity of the etching processes are determined by the
ion energy and its directionality, the etching radical,
and the substrate materials. Above energies of several
hundred volts, ion bombardment of the substrate causes
sputtering, which is relatively unselective. Pure chem-
ical etching by radicals alone may be selective, but it
is relatively isotropic. The aim in discharge enhanced
processing is to obtain plasma conditions that generate
selected radicals with high efficiency, concurrent with
bias voltages that provide highly directional ions to pre-
pare the substrate for etching. The combination of these
processes gives etch rates that are typically an order of
magnitude higher than the sum of the individual pro-
cesses. The microstructures that can be fabricated using
processing are critical to all of high density integrated
circuit manufacturing. The achievements are illustrated
by 0.2 µm wide trenches in silicon that are 4 microns
deep with vertical sides [87.64].

On the other hand, the electrons form an energy-
modulated fast electron beam that is injected into the
plasma region. These fast electrons maintain much of
the ionization in a symmetrically excited, equal elec-
trode area reactor. In principle, it is possible to develop
a complete self-consistent model of the rf discharge,
consisting of the Boltzmann equation for the energy dis-
tribution function of the electrons, positive ions, and
negative ions coupled to the Poisson’s equation for
the electric field. Simpler models based on moments
of the Boltzmann equation have been developed for
higher pressures [87.65] (where a fluid approximation
is more appropriate) and particle-in-cell Monte-Carlo
simulations for low pressures [87.64, 66]. The above
studies have led to the identification of four prin-
cipal mechanisms affecting energy deposition. These
involve:

1. the impedance of the bulk plasma;
2. the energy deposition by fast electrons created by

secondary emission due to ion bombardment of the
electrodes;

3. collisionless absorption due to the asymmetrical
sheath boundary-plasma electron interaction; and

4. wave-riding, or collisional sheath interactions caus-
ing electron heating in the sheath modulated electric
field. The electron is regarded as surfing on the
expanding sheath field.

Processes (3) and (4) are related, with the difference
being that in (4) electron collisions occur during the
sheath expansion. There is also an additional interaction
due to the changes in the complex impedance (capacitive

sheaths and resistive bulk plasma) of the discharge and
the consequent changes in the power transferred from
the rf generator. The mechanism of collisionless heating
is an active research area [87.67]. It is proposed that
low pressure rf plasmas can be maintained mainly by
collisionless heating in the rf modulated sheaths, and
that electron inertia plays a dominant role.

Other less general plasma modes occur due to res-
onance when the electric field and period are such that
one electron transit requires one half period of the rf
cycle. Under these conditions at very low pressures,
when λmfp is larger than the gap spacing, and secondary
electron emission can occur, one has the multipactor
discharge mode. Otherwise, when λmfp corresponds
approximately to small integral fractions of the gap
spacing, plasmoid modes are excited.

Dielectric Barrier Discharge
In many applications, such as ozone generation (for wa-
ter treatment), distributed uv sources, and the creation
of radicals for surface treatments, there are economic
incentives to operate at high pressures, especially at
atmospheric pressure. The dielectric barrier discharge
(DBD, also called the silent discharge in earlier liter-
ature) is a high voltage of very short pulse duration
(1–10 ns) or an ac discharge between two electrodes
where at least one of the electrodes is covered with a di-
electric [87.68]. The dielectric acts like a high value
impedance which prevents discharge current runaway
and tends to distribute the average current fairly uni-
formly across the surface area. The charge transferred
by the streamer to the dielectric essentially compensates
for the external electric field and limits the discharge
duration. Close examination shows that the current
terminations on the cathode dielectric are many mi-
crodischarges; the termination at the dielectric anode
is usually diffuse. The cathode spot diameters are typi-
cally only 200 µm so that with a peak current of 0.1 A,
the current density is hundreds of A/cm2. However, be-
cause of the usually very low duty cycle, the neutral gas
temperature is close to ambient. The electron temper-
atures during the discharge pulse are estimated in the
range of 1–10 eV, so the DBD is a very non-equilibrium
plasma. The charge transferred to the dielectric on the
previous pulse strongly affects the next pulse. The high
field discharge is efficient at producing excitation, dis-
sociation, and ionization. Miniature DBDs are used in
plasma display panels; these are discharges between
electrode arrays coated with dielectric and separated
by typically 100 µm in a Penning gas mixture at about
500 Torr [87.69].
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87.5 Conclusions

The study of the conduction of electricity in gases
has had several renaissances because of application
incentives. Discharge lighting technology science and
development are described by Waymouth [87.70]. At-
mospheric plasma physics and cosmic plasma physics
are covered by Rees [87.71] and Alfvén [87.72], respec-
tively. The role of plasma physics in gas discharge laser
development was recently reviewed [87.73], and the fun-
damental interactions in laser generated plasmas are
detailed by Hughes [87.74]. The scaling of discharge
volumes to many liters is again of interest because of
applications to large area surface treatments and thin
films. The discharge enhanced chemistry of complex

gas mixtures is of particular relevance to etch process-
ing used for most microelectronics fabrication. Work on
discharge-generated and -trapped particulates in micro-
electronics processing plasmas has re-established links
with cluster physics and space plasmas [87.75]. The
physics of many of the effects was formulated earlier
by Emeleus and Breslin [87.76]. Future prospects for
further exploitation of non-equilibrium gas discharge
physics include waste/toxic hazard decontamination,
fabrication of defined complex molecules, some with
strain energy, selected cluster morphologies, and the
further development of large area plasma flat panel
displays.
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However, there have been two major advances
in combustion research which contain new ideas
and directions in detailed chemistry and physics.
The first is the use of powerful computers for
the numerical solutions to combustion problems,
so that a predictive description can be built
beginning with fundamental physical principles.
The second is the use of laser diagnostic techniques
for the determination of the detailed properties of
the combustion system, especially temperature,
velocity, and composition, including both major
components and trace chemical intermediates.
These have not only provided tests of the
computational models, but have also furnished
new insights and approaches to an understanding
of combustion. This has occurred by measuring
properties of the system not previously available,
or via improved scales of spatial and temporal
resolution.
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This chapter concentrates on these two areas
of physical models and laser diagnostics, and
the outstanding physical questions that remain.
Each is greatly influencing the development of
the two important combustion science issues:
describing turbulent flows and incorporating
realistic chemistry.

Combustion processes are vital to the operation of
present-day society. Although there exist alternative
energy sources, combustion of a variety of fuels is
worldwide a major mode of energy production, and
will remain so for many years to come. Despite a well-
established technology, combustion is not without need
of improvement. The pollutant emissions associated
with burning pose major barriers to more widespread
use. Increasingly stringent environmental regulations
make this a current focus of combustion research and
development.

Both scientific inquiry and empirical solutions will
be important in advancing combustion in the future.
Most of the progress in combustion technology has been
made without benefit of an understanding of the science
involved; rather, it has been accomplished through an
approach of trial and error, which has led to many in-
genious, innovative solutions to problems. In fact, as
witnessed by the early development of thermodynam-
ics, the technology has often driven the science rather
than the other way around. Nonetheless, future advances
in combustion are expected to rely more and more on

a planned implementation of fundamental knowledge of
physics and chemistry.

Combustion may be thought of as self-sustaining
reactive flow, in which chemical energy is converted
into extractable, useful heat. This is usually accompa-
nied by an abrupt change in properties of the system in
space and/or time, particularly the chemical composi-
tion and the temperature. The description of combustion
processes involves the subdisciplines of thermochem-
istry, chemical kinetics, fluid mechanics, and transport.
The major challenge is to apply the known principles
from these to a description and understanding of the en-
tire combustion process. This endeavor involves three
approaches: experiment, computation, and theory, the
latter two differentiated via the characteristic of numer-
ical versus analytical solutions. Each part now plays an
important role in combustion science.

The efficiency of combustion processes, be they
steady state such as a burner flame or rocket mo-
tor, or transitory such as an explosion or internal
combustion engine, is generally governed by the over-
all thermochemistry, fluid dynamics, and heat transfer
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characteristics of the system. Details of the chemical
reactions and the role of trace intermediates are usu-
ally unimportant for this question. The latter do play
a key part, however, when considering problems of pol-
lutant formation (emission of NOx , SOx , soot, toxic
organic compounds), and flame ignition and inhibition.
The current challenges in combustion science are so-
lutions to these problems of efficiency and pollution,
with advancement likely to occur through two major
thrusts: a better understanding of turbulent reactive
flow, and the incorporation of detailed chemical kinet-
ics into combustion models (as contrasted to simplified
versions such as one- or two-step reaction schemes).
Additionally, new areas of science involve combustion
under unusual conditions (e.g., microgravity combus-

tion aboard the space shuttle) and new applications (e.g.,
flame synthesis of exotic materials such as diamond
films).

From the viewpoint of the basic science, most of
the general, qualitative understanding of behavior at
the molecular scale needed to describe combustion is
at hand. In many engineering applications, an empirical
approach is taken in which a quantitative description
of that behavior is condensed and parametrized, using
previously acquired experimental data acquired directly
on the system of interest. As models become more de-
tailed (often through computational advances), there is
a need for further quantitative supporting molecular
data, such as improved values of transport properties
of molecules.

88.1 Combustion Chemistry

The addition of detailed chemical kinetics to flame
models will greatly advance our understanding of
combustion, at least for nonturbulent flows. Detailed
chemistry is becoming a part of codes describing sys-
tems of greater and greater complexity. Numerical
integration packages, including full chemistry for a one-
dimensional flow, are routinely available [88.1], and
progress is being made for the two-dimensional case.
A sensitivity analysis enables the modeler to examine
the value predicted for some variable (e.g., concentra-
tion of a transient species) at a given point in the flame
as a function of the rate coefficients and other input vari-
ables. This facilitates interpreting the output in terms of
physically meaningful variables, and extrapolating the
model predictions to other applications.

The quality of the predictions of a combustion model
is a strong function of the quality of the reaction rate co-
efficients for important elementary reaction steps, and
the thermochemical properties of reactive species, espe-
cially free radicals. A flame chemical mechanism can be
quite complex: a current methane/air model [88.2] con-
taining reactions involving only hydrogen, oxygen and
carbon (i. e., no nitrogen chemistry) contains 30 species
and 177 reactions (plus their reverses). Although it is
necessary to include most of these steps in the reaction
scheme, a much smaller number play dominant roles in
determining any given parameter such as flame speed.
The determination of sufficiently accurate rate coeffi-
cients for those important reactions is made difficult by
the complexity of the reactions, and the difficult con-
ditions (high temperature) and reactants (usually free
radicals) that are involved.

There are many unimolecular reactions and their re-
verses that play important roles in combustion chemistry,
including the recombination of fuel-derived radicals
such as CH3 + H + M→CH4 + M, and low temperature
decomposition/recombination reactions important in ig-
nition, e.g., H + O2 + M → HO2 + M, compared with
chain-branching steps. Under most combustion condi-
tions, the important reactions in this class are either in
the low pressure limit, where the rate constant is pro-
portional to total pressure P of collider M, or in the
fall-off region between that limit and the P-independent
high pressure limit. Knowledge of the collisional energy
transfer characteristics for highly excited vibrational lev-
els of polyatomic molecules is apropos to a fundamental
understanding of these reactions. For purposes of com-
bustion models, these rate constants can be formulated
in a modified Arrhenius mode, requiring as many as nine
parameters to describe correctly the combined P, T de-
pendence needed for a realistic range of combustion
conditions.

A further complication is posed by the multiple po-
tential energy surfaces that can be accessed by many
reactions. For example, two methyl radicals can combine
to form not only C2H6, but also C2H5 + H. Measure-
ments are often made of the overall rate coefficient (in
this case, disappearance of CH3) but seldom are deter-
minations made of branching ratios into these multiple
paths. Especially, the temperature dependence of that
branching is rarely known accurately enough. Since
reaction rate coefficients can change orders of mag-
nitude over the range of temperatures encountered in
combustion, simple extrapolations are seldom sufficient.
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Theoretical chemistry has begun addressing these
problems. Electronic structure calculations provide ther-
mochemical properties of transient, reactive species.
Using theories which include semi-empirical adjust-
ments, enthalpies of formation of free radicals and
potential barriers on reactive surfaces can be calcu-
lated with accuracies of about 2 kcal/mole, sufficient
for modeling purposes. Multidimensional potential sur-
faces provide starting points for conventional transition
state theory calculation of rate coefficients, as well as
variational transition state approaches. Theoretical cal-
culations may be useful for understanding the energy
transfer questions of unimolecular and recombination
rate theory. Also useful are recent laser experiments
which examine the foundations of rate theory. These
include laser photolysis investigations of the reaction
rate coefficient as a function of energy just above
threshold [88.3], and the formation of molecules from
dissociating complexes on subpicosecond scales [88.4],
as well as stimulated emission pumping experiments
which probe the density of states and energy transfer
in high vibrational levels of diatomic and polyatomic
molecules [88.5].

We conclude this section with brief comments on
some individual combustion systems. Flames of H2 and
CO burning in (moist) O2 are relatively simple, and
their mechanisms are important subsets of reaction net-
works for more complex systems. The chemistry of
these flames is relatively well understood on a funda-
mental basis. So, generally, is that of methane, although
there remain crucial questions, for example, the rates
for CH3 + OH, a multisurface reaction producing sin-
glet and triplet CH2 + H2O, as well as CH2OH. For
hydrocarbon fuels more complex than methane, the
complexity of the mechanism rapidly escalates, due
to the many possible ways to combine radicals con-
taining multiple carbon-carbon bonds. For a fuel such
as isooctane (where few rate coefficients are known)

it is necessary to use a computer algorithm simply to
write down the mechanism without making mistakes or
omissions [88.6].

Many pollutant emissions are produced by reactions
of trace intermediate species. Nitric oxide has received
much recent attention due to increasingly stringent en-
vironmental standards. NO is formed in combustion
processes in three ways: (i) so-called thermal (or Zel-
dovich) NO, formed by reaction of O + N2, N + O2, and
OH + N2, where the atoms and OH are usually present
at nonequilibrium, kinetically controlled concentrations;
(ii) prompt NO, which begins with the CH + N2 reac-
tion breaking the strong N-N bond to form N atoms
which react with O2 and HCN, which is oxidized to NO
in a series of steps; (iii) and fuel-nitrogen NO, which
is formed from the nitrogen present in coal and coal-
derived fuels, usually entering the combustion process
as HCN. NO can be dealt with through catalytic reduc-
tion, staged combustion (burning at a series of mixing
ratios), reburning at a later stage with additional fuel,
and injection of compounds such as NH3 or cyanuric
acid, (HOCN)3. Progress has been made in the de-
termination of the rate coefficients of many pertinent
elementary reactions for each of these processes, but
significant gaps remain. Examples are the full T, P de-
pendence of the complex-forming reaction CH + N2,
and the complicated reaction pathways in the NH2 +
NO reaction important in de-NOx through ammonia
injection.

The mechanism of soot formation is a matter of
dispute; unsaturated chains containing 4 or 5 carbons,
aromatic rings, ions, and C3H3 radicals have all been
suggested as precursors. Ignition (and engine knock)
chemistry occurs at low temperatures and probably
involves hydroperoxy (HO2) and alkylperoxy (RO2)
radicals. The mechanism of production of toxic organic
compounds such as aldehydes is poorly known, and few
relevant rate coefficients are at hand.

88.2 Laser Combustion Diagnostics

The advent of the laser has altered much of experimental
combustion science. Laser Doppler velocimetry, which
employs particle scattering to measure directed flow
velocity, is available in the form of commercial sys-
tems. Coherent anti-Stokes Raman scattering (CARS)
is widely used in engineering laboratories to study
practical combustors, including jet engines, industrial
furnaces, internal combustion engines, and burning pro-
pellants. Laser-induced fluorescence (LIF) has come

into prominence for the study of combustion systems
and related chemical kinetics.

The spectroscopically based techniques of most in-
terest in atomic, molecular, and optical physics are
CARS, LIF, and the related recently emerging method
of degenerate four wave mixing (DFWM). Each may
be used to determine individual molecular species or
temperature. Each is highly selective, due to its spectro-
scopic nature; they provide good spatial resolution, often
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on the order of a mm3 or less; the use of pulsed lasers
yields excellent time resolution, ≈ 10 ns. When used
properly, they are nonintrusive, perturbing neither the
flow dynamics nor flame chemistry. They can be used in
very hostile environments (corrosive atmospheres, high
temperatures) where physical probes would not survive.

LIF and CARS also have separate, complementary
features. CARS is suitable for the determination of major
species (fuel, O2, CO2, H2O, and, in air-breathing com-
bustion, N2). It may be used for accurate temperature
measurements, including measurements on a single laser
shot when operated in a broadband mode. This makes
CARS especially useful for problems in which fluid dy-
namics and flow patterns are most important. Because
CARS produces a coherent, laser-like beam, spatial fil-
tering can be used to discriminate against background
radiation such as the intense thermal emission from hot
combustor walls. LIF is highly sensitive and is useful for
measurements on reaction intermediates present at low
concentrations. It may be used in an imaging mode to
obtain instantaneous two-dimensional patterns of radical
species in rapidly time-varying flows.

Despite their utility, LIF and CARS are not user-
friendly technologies. At present, considerable nurturing
of the equipment, knowledge of the theory, and care
in the data analysis are needed for accurate measure-
ments, and nearly all such measurements are made
by scientists trained in physics, chemistry, or physics-
oriented engineering departments. Both methods (and
DFWM) are examined here with an emphasis on the
physics questions in their continued development and
application.

88.2.1 Coherent Anti-Stokes Raman
Scattering

CARS depends on the nonlinear polarization induced in
molecules by the intense electric fields of lasers, ex-
ploiting resonant effects in the third order nonlinear
susceptibility χ(3). χ(3) mixes the fields from a pump
laser at frequencyω1 and a Stokes beam at frequencyω2
to form a third beam at ω3 = 2ω1−ω2. χ(3) is strongly
enhanced when the difference ω1−ω2 is tuned to a vi-
brationally or rotationally resonant frequency in the
ground state of a molecule. This is usually accomplished
using the intense green beam of a frequency doubled
Nd:YAG laser for ω1, and a dye laser Stokes shifted by
the vibrational frequency of the molecule of interest for
ω2. In general, the signal in the visible region of the spec-
trum contains a combination of a nonresonant χ(3) due
to the electronic polarizability of the medium (mostly

N2 for air-breathing combustion) and the resonant part.
For high concentrations cA (e.g., ∼ 70% N2 in air based
flames), the signal is a Lorentzian-shaped resonance on
top of the flat nonresonant term, proportional to c2

A

/
Γ

where Γ is the linewidth. For lower concentrations (e.g.,
a few percent CO2 in exhaust gases) the resonant and
nonresonant amplitudes interfere, so that the signal is
dispersion shaped with a magnitude ∝ cA

/
Γ .

A very useful and popular application of CARS oper-
ates the Stokes laser in a broadband mode. This generates
the entire coherent anti-Stokes spectrum at once, which
is then dispersed through a spectrometer and detected
with an array. T may be determined from the rota-
tional structure and the appearance of vibrational hot
bands. These measurements are generally performed on
the N2, almost always present in large quantity in any
combustion system of practical interest. This is the most
reliable, accurate method for determination of pointwise
temperatures with a single laser shot.

The nonlinear, coherent nature of CARS, in which
interfering amplitudes are added, means that spectral
details can have a significant influence on the observed
spectrum. These include the concentration of all con-
tributing species (including nonresonant background)
and the widths of individual Raman lines. The linewidths
must be dealt with correctly in order to deduce tempera-
tures accurately from the spectral shapes. It has only
been in the past five years that linewidths as a func-
tion of rotational level have been available for N2,
at the accuracy needed for application of the spectral
fitting codes used for T determination. As P is in-
creased, the lines broaden enough to begin to overlap;
at high enough P (several atm for N2) collisions oc-
cur so rapidly that the spectrum collapses to a single
broad line. To make T measurements at high pressure,
one must deal with both these P broadening and colli-
sional narrowing effects; this requires an understanding
of the underlying collision dynamics and energy trans-
fer, generally on a rotational level state specific basis.
Both energy transfer and dephasing collisions contribute
to the linewidths. For molecules other than N2, there
is scant information on Raman linewidths even at at-
mospheric pressure, at accuracies needed for modeling
CARS spectra. Molecules of particular interest are O2,
CO2, H2O, CO, and, in the future, hydrocarbon fuels. In
some cases, especially H2O, further spectral information
for high rotational lines (populated at high temperature)
is also needed.

Most of the treatments of CARS spectra assume
a monochromatic laser. Finite bandwidth effects of real
lasers must be taken into account for accurate theoret-
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ical treatments (and thus accurate T and concentration
determinations). There are several nonequivalent theo-
retical treatments to convolute the frequency dependence
of χ(3) with the bandwidths of the pump and Stokes
lasers.

88.2.2 Laser-Induced Fluorescence

LIF is much more sensitive than CARS, relying on reso-
nant excitation to a real, emitting electronically excited
state. The use of a tunable laser to scan the molecu-
lar excitation spectrum makes LIF also highly selective
for small species that have characteristic, identifiable
line spectra. Thus LIF is suitable for measurement
of reactive intermediates of importance in understand-
ing flame chemistry. Concentrations determined by LIF
range from parts per billion to parts per thousand. De-
tectable species are diatomics such as OH and CH,
triatomics including HCO, NCO, and NH2, and a few
larger molecules including CH3O. Most of the pertinent
molecular electronic transitions are in the UV or blue
region of the spectrum. Because VUV radiation cannot
penetrate flame gases, atoms (such as H and O) must be
detected via two-photon absorption to a high-lying elec-
tronic state of the same symmetry as the ground state,
which then radiates in the visible or near IR to another
excited state.

A list of all molecules through teratomics composed
of the five main atoms naturally occurring in com-
bustion (H, C, O, N, and S), and detected to date by
LIF, is given in Table 88.1. This forms a large frac-
tion of the small reactive intermediates important in
combustion chemistry, so that LIF has the ability to
characterize fairly completely a combustion reaction
mechanism. It would be particularly desirable to add
certain other species; noteworthy are HO2, C2H, CH3,
and triplet CH2, although suitable fluorescing electronic
transitions for these molecules are not currently known.
In addition to the species listed in Table 88.1, there
are many other combustion-related compounds that can
be seen with LIF. These include metal atoms and their
compounds, species present in specialized combustion
situations such as boron or chlorine containing radicals,
and some polyatomic, partially oxidized hydrocarbon
molecules.

LIF may be employed in several ways to study
flames. With a pulsed laser, very rapid time resolu-
tion is achievable. Pointwise, single shot measurements
(usually of OH) in turbulent flames may be interpreted
on a statistical basis for comparison with flame mod-
els incorporating simplified chemistry. Two dimensional

planar imaging (usually of OH, CH, or NO) is accom-
plished by focusing the laser into a sheet of radiation
which passes through the flame. Imaging the illuminated
region at right angles onto a two-dimensional array pro-
duces an instantaneous snapshot of the distribution of
the radical throughout the flame. This may be used to
understand flow patterns under conditions of rapid time
variation, such as turbulence or flame spread following
ignition.

On the other hand, turbulent flows are far too com-
plex for an investigation of fine details of the combustion
chemistry. This is best accomplished via experiments
in laminar flames, where LIF is used to obtain spatial
profiles (one- or two- dimensional) of reactive species,
made as a function of height above a burner surface.
Absolute or relative profiles provide highly constraining
tests of detailed models of flame chemistry. Operation at
reduced P spreads out the active flame front region, fur-
nishing excellent spatial resolution for these profiles.
The T profile, used as input to the model, is meas-
ured using rotational excitation scans. The OH radical,
present throughout much of any given flame contain-

Table 88.1 Combustion chemistry intermediates detect-
able by laser-induced fluorescence

Excitation Excitation
wavelength wavelength

Molecule (nm) Molecule (nm)

H∗ 205 NCO∗ 440

C∗ 280 HCO∗ 245

O∗ 226 HCN 189

N∗ 211 HNO 640

S 311 NH∗
2 598

OH∗ 309 C3 405

CH∗ 413 C2O 665

NH∗ 336 S2O 340

SH∗ 324 SO∗
2 320

CN∗ 388 NO∗
2 590

CO∗ 280 HSO 585

CS 258 CS2 320

NO∗ 226 N3 272

NS∗ 231 NCN 329

SO∗ 267 CCN 470

O∗
2 217 NH∗

3 305

S∗2 308 NO3 570

C∗
2 516 C2H∗

2 220
1CH ∗

2 537 CH2O∗ 320

An asterisk denotes that LIF detection has been performed in

a flame
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ing hydrogen and oxygen, is an ideal LIF thermometer.
LIF may also be used in a semiquantitative way, so
that simply the detection of some species at an approxi-
mate concentration can reveal new information about the
chemical mechanism [88.7]. An example is LIF detec-
tion of NS in flames containing minor amounts of N and
S compounds, indicating the importance of this radical
in linking the chemistry of NOx and SOx formation.

LIF measurements involve quantitative knowledge
of molecular spectroscopic characteristics and colli-
sional behavior. Identification of the absorbing molecule
requires assignment of the vibrational and rotational
structure of the electronic transition in question. For
weak signals, particularly in the presence of a strong
absorber/fluorescor (e.g., CH3O in the presence of OH
near 310 nm), it may be necessary to scan many lines
to ensure identification. The fluorescence spectrum is
also valuable since selective detection of fluorescence
may be used to discriminate between two molecules
absorbing at the same wavelength. In many cases, the
detailed spectroscopy of molecules of interest is well
established in the literature; in other cases, it may be
necessary to make studies via flow cells. A recent ex-
ample is an LIF study of the B–X ultraviolet system
of the HCO molecule [88.8], a radical whose reactions
are important in controlling the hydrogen atom con-
centration in hydrocarbon flames. In some cases (e.g.,
NCO) LIF spectroscopic studies in flames themselves
have been useful, in that high rotational and vibrational
levels are populated and thus readily accessed. In addi-
tion to spectral line and band identification, rotational
line strengths and vibrational band transition probabili-
ties (including possible effects of an electronic transition
moment that varies with internuclear distance) provide
the Einstein A and B coefficients needed for the data
analysis. Accurate values are especially important in the
determination of T via excitation scans, since system-
atic errors in oscillator strengths can lead to errors of
hundreds of degrees, but are not discernible through sta-
tistical goodness-of-fit criteria. Such large errors in T
render meaningless any attempts to compare measure-
ments with predictions that include detailed chemical
kinetics.

Of considerable consequence for LIF measurements
is an understanding of the collisional effects govern-
ing the fluorescence quantum yield. For example, in
a flame at atmospheric pressure, approximately three of
each thousand OH molecules excited by the laser will
fluoresce; the remainder is removed nonradiatively by
collisions with the ambient flame gases. Furthermore, to
reduce interference or background, fluorescence detec-

tion is often accomplished using a filter or spectrometer
with a bandpass encompassing only a portion of the total
fluorescence. Vibrational and rotational energy transfer
collisions of the excited radical with the surrounding
gases may determine the fraction of emission into that
particular bandpass.

Because of the extreme importance of the OH radical
to combustion chemistry (and also in the atmosphere), its
collisional behavior has been investigated extensively,
although not yet completely. The results show definite
quantum state and translational energy dependence of
energy transfer and quenching cross sections. These are
not only crucial to quantitative measurements of this
radical, but they are also important in understanding
molecular collision dynamics. OH is small enough that
its interactions are amenable to quality ab initio calcu-
lations, at least with simple colliders like noble gases
and H2. Quantum scattering calculations may then be
compared with experimental results; the state-to-state
detail provided by this open shell radical furnishes valu-
able tests of those calculations. Furthermore, they may
be compared with spectroscopic characteristics and half-
collision dynamics of van der Waals complexes of OH
with noble gases (and, in the future, molecular partners).

Quenching of the A 2Σ+ excited state of OH is
the major factor determining the fluorescence quantum
yield. Measurements have been made over a wide range
of temperatures, from 200–2500 K, using cooled and
room temperature flow cells, laser flash heated cells,
flames, and shock tubes [88.9]. For nearly all colli-
sion partners the quenching cross section decreases with
increasing T , i. e., increasing collision velocity. This
shows that attractive forces are involved in the colli-
sion, and the form of the variation for most colliders can
be explained in terms of a collision complex formation
mechanism. The A 2Σ+ state of NO behaves similarly,
but quenching of the A 2∆ state of CH increases with T ,
showing that a barrier exists on the potential surfaces;
the A 3Π state of NH exhibits more varied behavior.

Quenching also varies with rotational level for OH
and NH, as does vibrational transfer (v= 1 → v′ = 0)
for OH. This appears to be a dynamic, not energetic,
effect, and has been ascribed to a rotational averaging
of the effects of the highly anisotropic surface on which
these polar hydrides interact with colliders. Vibrational
transfer in OH has been studied in both the excited and
ground electronic states. It is found to be much faster
in the upper A 2Σ+ state for all colliders, by factors
of 100–1000. This is perhaps related to the fact that,
according to ab initio calculations on OH–Ar, there is
a much deeper well for interaction of the excited radical
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than in the ground state. Rotational transfer in OH has
been shown to have some definite propensities, including
parity conservation for some collisions with He that is
reproduced in quantum scattering calculations.

Such a wealth of detail is not yet available for other
free radical combustion intermediates, although they are
beginning to be investigated. Of particular current inter-
est is NO and the major precursor to its formation, CH.
The details of quenching by a variety of colliders are
probably known well enough that quantum yields for
OH, NO, and CH may be calculated reasonably accu-
rately, given the local temperature and major species
flame composition at the point of measurement. There
are enough data to compute quenching rates to within
about 30–50% for many flames; this is partly because
H2O, when present, accounts for the majority of the
quenching for all three radicals. When the local environ-
ment (especially T) is not known, the situation is worse.
This would arise for an instantaneous two-dimensional
image of a radical in a flame. Even so, the net quenching
rate for OH rarely varies more than threefold through
the entire flame, so useful semiquantitative information
can still be obtained.

If absolute LIF measurements are desired, some
means of calibration is necessary. Stable compounds
(NO, CO) can simply be introduced into the flames or
corresponding cold flows. Free radicals pose a greater
problem. OH is often present in sufficient quantity
that absorption measurements in a stable, laminar one-
dimensional flame can be performed, but this is generally
not possible for other species. The recently introduced
technique of cavity ring down spectroscopy may alter
this situation [88.10]. Burnt gases, in thermal equilib-
rium at a measured T , furnish a reliable source of known
concentrations of OH, H, and O but generally not other
radicals (which are consumed earlier in the flame).

Two-photon excitation is used for detection of
atomic species and the CO molecule. The high laser flux
needed for two-photon absorption, together with the uv
wavelengths required for the pertinent transitions, of-
ten leads to problems with photochemical interferences.
Sometimes these produce the same species that is be-
ing measured, e.g., dissociation of vibrationally excited
O2 at the wavelength of atomic oxygen detection, with
subsequent excitation of the spurious O atom. In other
cases, especially in complex hydrocarbon fuels, a par-
ent compound or partially oxidized fragment may be
excited directly or photolyzed to yield an emitting prod-
uct. Excitation scans and measurements as a function
of laser power are needed to discern and avoid these
interferences.

88.2.3 Degenerate Four-Wave Mixing

DFWM is a nonlinear process like CARS; but like LIF,
it operates on real transitions. It combines some of the
attributes of both methods: production of a coherent
signal beam that can be spatially filtered to discrim-
inate against background, and high sensitivity so that
trace radical species may be detected [88.11]. It depends
on χ(3), as does CARS, and can be used in a broadband
mode. Like LIF, it can produce two-dimensional im-
ages, with the proper laser sheet arrangement. DFWM
adds some of its own advantages, especially a Doppler-
free nature enhancing the spectral resolution and thus
the molecular selectivity. Three laser beams are used
to generate the DFWM signal, all the same frequency,
and tuned to an absorption transition of the species of
interest. Two pump beams create an interference pat-
tern in the medium, and a probe beam scatters off the
resulting grating to form the signal. The interference pat-
tern may be in the ground/excited state populations or
may exploit polarization phenomena. Rapid quenching
of the excited state may produce a thermal grating in
the medium; the probe beam can then scatter from the
resulting variation in the index of refraction. DFWM de-
pends only on absorption and may be used for sensitive
detection in a nonfluorescing or poorly fluorescing case
(e.g., a predissociative state or ir vibrational transition).

The interpretation of DFWM signals to obtain
molecular concentrations or temperatures requires
knowledge of the underlying physical phenomena. Be-
cause they are governed by χ(3), the DFWM amplitudes
interfere, and an understanding of molecular collisions,
motion, and the effects of the laser power are needed
for accurate modeling of DFWM spectra. Collisional
effects are of particular interest due to the Doppler-
free character of the technique. Signal intensities can
be dramatically influenced by line broadening due to
quenching, energy transfer, and dephasing collisions.
The magnitude of the influence depends sensitively on
the degree of optical saturation. A cohesive picture of
these effects is currently being sought through a combi-
nation of measurement and theory. Furthermore, nearly
all current theoretical treatments assume single-mode
lasers; however, real lasers contain intensity and fre-
quency fluctuations within each laser pulse. The effects
of these fluctuations on the nonlinear wave-mixing pro-
cess must be accounted for in a proper description
of DFWM. Furthermore, because collisions affect the
signal only during the laser pulse, rapid (ps) measure-
ments may provide excellent sensitivity under very high
P conditions.
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The articles and books [88.7,9,11–18] are of a review
or overview nature. In addition, archival articles illus-
trating the state of the combustion field can be found in

the biennial International Symposia volumes published
by the Combustion Institute, Pittsburgh, now referred to
as the Proceedings of the Combustion Institute.

88.3 Recent Developments

In the last eight years, there have been but two important
advances in fundamental combustion laser diagnostics.
The first of these is the publication of a book [88.19]
containing an in-depth discussion of state of the art laser
diagnostics. It includes eight chapters on basic experi-
mental methods, nine chapters on applications, which is
presently the largest growing area, and nine chapters on
perspectives, future needs, and emerging applications.
The interested reader is referred to this comprehensive
treatise on the topic.

In recent years, there has indeed been a num-
ber of new applications of LIF and CARS to
practical combustors (see the Applications chapters
of [88.19]). LIF has been extended to only a few
new molecules but has been refined for several

(see Chapt. 2 of [88.19] for a listing of all pertinent
LIF molecules). DFWM has not found significant new
applications, and efforts for nonfluorescing molecules
have diverted to cavity ringdown spectroscopy. New
laser sources are important, especially those in the
infrared.

The major experimental advance has been the ad-
vent of cavity ring-down spectroscopy (see Sect. 43.2).
This topic is covered in [88.20], and its particular ap-
plications to flame diagnostics are discussed in Chap. 4
of [88.19]. This method can be used on nonfluorescing
molecules which do absorb available laser wavelengths.
A recent article on CH in flames [88.21] discusses ex-
perimental methodology, references earlier papers, and
compares this technique with LIF.
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Surface Physic89. Surface Physics

This chapter describes various applications of
atomic and molecular physics to phenomena that
occur at surfaces. Particular attention is placed
on the application of electron- and photon-atom
scattering processes to obtain surface specific
structural and spectroscopic information.

The study of surfaces and interfaces touches
on many fields of pure and applied science.
In particular there are applications in the
fields of semiconductor processing, thin film
growth, catalysis, corrosion and fundamen-
tal physics in two-dimensions. A number of
recent texts cover surface physics in gen-
eral [89.1–4] as well as specific areas such as
experimental techniques [89.5], surface electron
spectroscopies [89.6, 7], and the application of
synchrotron radiation to surface science [89.8].
Also a number of book series that deal with ar-
eas of particular interest are published at regular
intervals, such as surface chemistry [89.9], sur-
face vibrations [89.10] and stimulated desorption
processes [89.11].

89.1 Low Energy Electrons and Surface Science1343
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89.1 Low Energy Electrons and Surface Science

To obtain information specific to the first few layers of
atoms at the surface of a solid, techniques must be de-
vised that discriminate between signals from the surface
and from the bulk of the material. If a solid has dimen-
sions of ≈ 1 cm3, then only approximately one atom in
107 is located at the surface. This makes the application
of bulk techniques to the study of surfaces (e.g. X-ray
diffraction [89.12]) problematic.

There are several experimental approaches to achiev-
ing surface sensitivity. If the probe used is an atom or
molecule that can be scattered from or desorbed from
the surface, then these species can be analyzed by tech-
niques such as mass spectrometry or resonant ionization.
A more recent innovation has been the use of scanning
probe microscopies [89.13] (e.g., the scanning tunnel-
ing microscope and its variants) which exploit a surface
sensitivity such as the surface valence electron density.
However the most common surface analytical tech-

niques use the intrinsic surface sensitivity of low energy
(10–2000 eV) electrons.

The surface specificity of low energy electrons arises
from the very short inelastic mean free path (MFP) for
these electrons in a solid. This property can be seen in
Fig. 89.1 which plots measured values of the inelastic
MFP for a number of materials and electron energies
between 1 and 2000 eV. The curve is called “univer-
sal” because the same general trend of short inelastic
MFP is observed for nearly all materials [89.14]. The
dominant energy loss mechanisms are valence band
excitations (plasmons and electronic excitations), and
since most materials have similar valence electron den-
sities, the resultant inelastic scattering MFP is to a good
approximation, material independent.

The very short inelastic MFPs for low energy elec-
trons has the result that any that escape from the solid
without having undergone inelastic scattering can only
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Fig. 89.1 The variation of the inelastic mean free path
with electron kinetic energy (“universal curve”). Based on
Briggs and Seah [89.14]

have originated very close to the surface, usually
within a few atomic layer spacings. Many of the sur-
face analysis techniques described in this chapter use
this surface sensitivity to obtain surface structural and
spectroscopic information. The same techniques are
easily applicable to conducting and semiconducting
materials, and can also be applied to insulating ma-
terials, if the charging effects are dealt with in some
manner.

89.2 Electron–Atom Interactions

89.2.1 Elastic Scattering:
Low Energy Electron Diffraction
(LEED)

The elastic scattering of low energy (20–500 eV) elec-
trons at surfaces is historically important in physics as
the experiments of Davisson and Germer provided early
experimental evidence of the wave nature of electrons.
After these initial experiments, the technique was largely
unused until the advent of cleaner ultra-high vacuum sys-
tems and surface preparation techniques in the 1960’s.
LEED is one of the most important and widely used
surface characterization techniques due to its surface
sensitivity and wide utility [89.5].

Diffraction from a two-dimensional net of scatterers
results in a two-dimensional array of reciprocal lattice
“rods” oriented normal to the surface. All kinematically
allowed rods intersect the Ewald sphere at all energies
— unlike the case in bulk X-ray diffraction. The short
inelastic MFP for scattering low energy electrons yields
the surface sensitivity of LEED for a crystal surface. The
kinematic theory used in X-ray diffraction is not directly
applicable to LEED since the low energy electrons can
undergo several elastic collisions in the surface region.
The elastic MFPs for low energy electrons are compara-
ble in magnitude to the inelastic mean free paths shown
in Fig. 89.1. This “multiple scattering” does not affect
the positions of the diffraction beams, but does alter their
intensities due to interference effects.

Kinematic analysis is sufficient to determine the
diffraction beam positions for a proposed structure, and
this is the most common use for LEED. A diffraction
pattern is often sufficient to determine the surface pe-
riodicity and unit mesh size. However determining the

surface crystal basis from the intensities of the diffracted
LEED beams requires moderately sophisticated calcu-
lations to be performed for proposed structures.

Quantitative LEED generally compares measured
“I(V) curves” (the intensity I of a particular diffrac-
tion beam as a function of electron energy measured
in volts) with a calculated I(V) profile for a proposed
surface crystal structure. These calculations determine
the propagating electron wave functions ΨLEED that
take into account electron-ion core scattering cross
sections and phase shifts, available multiple scatter-
ing pathways, inelastic scattering cross sections and
Debye-Waller effects. The structural parameters are var-
ied systematically until agreement can be reached with
the experimental I(V) curves [89.15, 16]. These calcu-
lations can yield surface atom positions to better than
0.1 Å vertically and 0.2 Å horizontally. Over 1000 sur-
face structures have been determined using LEED and
associated techniques [89.17].

Clean surfaces often have a different crystallography
than simple termination of the bulk crystal structure. Due
to the absence of neighbors above the surface, the surface
atoms can undergo both relaxation (change in interlayer
spacing) and reconstruction (changes in periodicity and
bonding) [89.2]. While relaxation and reconstruction do
occur on all types of surfaces, the reconstructions found
on semiconductors are most striking. The strong co-
valent bonds that are broken when a semiconductor is
cleaved give rise to high energy “dangling bonds”. The
surface energy is minimized by having the surface re-
construct to reduce the total number of these bonds. The
resultant structure is formed through a balance between
eliminating as many dangling bonds as possible and the
resultant stress caused in other bonds due to the dis-
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placements of the surface atoms. One example of this
is the clean Si(111) surface, in which 49 surface atoms
form a new periodic arrangement to make up the recon-
structed Si(111)–(7×7) unit cell [89.2]. The number of
dangling bonds is thereby reduced from 49 to 19.

89.2.2 Inelastic Scattering:
Electron Energy Loss Spectroscopy

Low energy surface excitations such as phonons, plas-
mons and electron-hole pair excitations can be studied
using inelastic electron scattering. High resolution elec-
tron energy loss spectroscopy (HREELS) [89.18] uses
incident electron beam energies of 1–300 eV with
energy resolutions of 1–10 meV. Inelastic scattering
phenomenon are divided into three types: dipole, impact
and resonant scattering. Surface vibrations are also stud-
ied using infra-red absorption spectroscopy and inelastic
atomic beam scattering techniques [89.19].

Dipole Scattering
In dipole scattering HREELS, the incident electron
(1< Ei < 20 eV) undergoes a long range Coulomb in-
teraction with dipole fields associated with a dynamic
dipole moment. The main characteristic of dipole scat-
tering is that the inelastically scattered electrons have
an angular distribution that is strongly peaked (width
∆θ ≈ �ω/Ei) close to the specular direction (θi = θf ).
In this limit there is no momentum exchange with the
surface vibrational mode (i. e., k‖ = 0 in the bandstruc-
ture), so dipole scattering HREELS is similar to infrared
spectroscopy in that only ir active vibrational modes at
the zone center can be studied. At the surface of a con-
ductor, dielectric screening guarantees that only ir active
modes having a component perpendicular to the surface
are visible — modes having dipole moments parallel to
the surface are screened by the surface and so cannot
be excited by dipole scattering. This “quasi-selection
rule” allows the site symmetry for some systems to be
decided [89.18]. Dipole scattering is most commonly
used in the study of vibrations of molecules on sur-
faces, which often have dipole-active vibrational modes
that are both intrinsic and caused by adsorption (i. e.,
frustrated translations and rotations).

Impact Scattering
In impact scattering, the incident electron samples the
short-range interatomic potential, and is not restricted
to dipole-active vibrational modes [89.18]. Higher elec-
tron energies are used (30< Ei < 300 eV) since the cross
section for impact scattering generally increases with en-

ergy. The inelastically scattered electrons are distributed
at all angles, and so there can be exchange of parallel mo-
mentum (k‖) with the surface, allowing the mapping of
surface excitation bandstructure �ω(k‖). The cross sec-
tions for impact scattering HREELS can be calculated
using an approach similar to LEED, but now consider-
ing the normal displacements of atoms from equilibrium
positions. The scattering potential V(r, [R]) (where [R]
is the set of position vectors of the N atoms in the sur-
face region) can be expanded in terms of the normal
displacements µi from equilibrium according to

V
(
r, [R])= V

(
r, [R0]

)

+
N∑

i=1

(
∇µi V

(
r, [R])

)∣∣∣[R0]
·µi +· · · .

(89.1)

The first term is responsible for elastic scattering
(LEED) and the second term is the dominant term for
impact scattering. The inelastic cross section for mode i
is then [89.20]

dσ

dΩ
= |〈Ψ ∗

LEED(k f )| ∂V
∂µi

|ΨLEED(ki)〉|2 (89.2)

using electron wave functions calculated using the same
formalism as LEED. The symmetry properties of this
matrix element can be used to determine the polariza-
tion direction of surface vibrational modes by searching
for systematic absences in the inelastic intensity in par-
ticular high symmetry direction of the surface [89.20].
Impact scattering studies are most commonly made in
the study of surface phonon bandstructure and the vi-
brational modes of adsorbed molecules that are not
dipole-active.

Resonant Scattering
Resonant electron scattering at surfaces [89.21, 22] is
usually applied to the study of adsorbed molecules, and
has much in common with resonant scattering from gas-
phase atoms and molecules (see Chapt. 47). In resonant
scattering, the incident electron combines with a target
molecule to form a short-lived molecular ion, which
subsequently decays and can leave the molecule vi-
brationally or electronically excited. The cross sections
for this process have a typical profile. For example, in
a shape resonance the formation of the temporary nega-
tive ion intermediate corresponds to adding the incident
electron to a particular unoccupied orbital of the tar-
get molecule. The study of the angular dependence of
resonance scattering cross sections [89.22] can yield in-
formation on the orientation of molecules on surfaces,

Part
G

8
9
.2



1346 Part G Aplications

since the electron capture and emission cross sections
are fixed by the molecular orientation and the resonance
symmetry.

89.2.3 Auger Electron Spectroscopy

Auger electron spectroscopy (AES) is one of the most
widely used surface science techniques due to its chem-
ical and surface sensitivity [89.5,14,23]. Core holes are
created in near surface atoms using a high energy elec-
tron beam (2–5 keV, 1–100 µA) or less commonly, an
X-ray source. For these low binding energy core holes,
the Auger decay mode is highly probable (Sect. 61.2).
Although the Auger energy and lineshape can give spec-
troscopic information, in surface science this is seldom
used – rather it is the chemical fingerprint of the atoms
which is of interest.

Auger electron spectroscopy is a surface sensi-
tive technique by virtue of the low kinetic energy
(50–1000 eV) of the emitted Auger electrons. Auger
electrons from atoms more than a few Ångstroms below
the surface are inelastically scattered and so not detected
by the energy selective detector. The kinetic energy of
the Auger electrons is

Te = E A − EB − EC −U (89.3)

where E A is the binding energy of the initial core elec-
tron and EB , EC are the binding energies of the other
electrons (one or both are valence levels) involved in

the Auger process. Energy shifts and relaxation are
accounted in the term U which includes hole-hole inter-
actions and atomic and solid state (dielectric) screening
of the holes, and hence can be sensitive to the local
chemical environment.

Auger spectra are typically obtained in derivative
mode [i. e., N ′ dN(E)/dE] to separate the Auger tran-
sitions from the secondary electron background, and
comparison is made to reference spectra [89.24]. The
raw chemical sensitivity of AES is very high, and sur-
face concentrations of ≈1% of many common chemical
species can be detected. Semiquantitative measurements
may be made by comparison to these reference spectra,
but such comparisons only give atomic concentrations
within a factor of 2 (or worse) since the measured AES
signal can be modified by a number of factors. More
precise quantitative measurements can be made by cali-
bration of the AES intensity for the atomic constituents
at a surface [89.5]. The AES sensitivity to atoms A on
a clean substrate (atoms B) can be determined if the ab-
solute quantity of A can be established by some other
means.

The chemical sensitivity of AES can also be ex-
ploited as a form of chemical microscopy (scanning
Auger microscopy) since the exciting electron beam that
is used may be focused to a very small size. The Auger
signal from the small target volume can be analyzed for
specific chemical components. By rastering the incident
electron beam, a chemical map of the surface can be
made.

89.3 Photon–Atom Interactions

89.3.1 Ultraviolet Photoelectron
Spectroscopy (UPS)

Photoelectron spectroscopy (PES) (Sect. 61.1) has been
historically divided into UV photoelectron spectroscopy
for low photon energies (generally the study of valence
electron states) and X-ray photoelectron spectroscopy
(study of core electron levels). The use of low en-
ergy photons (5< hν < 50 eV) for PES of solids has
the advantage that the photons have a negligible mo-
mentum (k ≈ 0). This allows straightforward band
mapping since the transitions are vertical in momentum
space:

hν = Ef(k+G)− Ei(k) (89.4)

where k is the electron state wavevector and G is a re-
ciprocal lattice vector.

Most UPS studies are done using angle-resolved
photoelectron detection (also called angle resolved pho-
toelectron spectroscopy or ARPES). The kinetic energy
Te and emission angle θ of the photoelectrons are
measured, allowing the initial state binding energy and
momentum parallel to the surface

(
k‖
)

to be determined
from

k‖ =
√

2mTe

�2
sin θ . (89.5)

The mean free path of the photoelectrons from va-
lence levels allows both surface and bulk electron states
to be studied. Separation of the surface from bulk bands
can be accomplished in several ways [89.5]. Since a crys-
tal surface has two-dimensional symmetry, only the k‖
component of momentum is a good quantum number
for the surface states. Also, in transporting the surface or
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bulk state photoelectron of momentum k through the sur-
face to the detector, only the k‖ component is conserved.
A bulk state disperses in three-dimensions, requiring
knowledge of k= k‖ +k⊥. The magnitude of k⊥ cannot
be determined unless the inner potential (change in po-
tential normal to the surface) is known by some other
means. This property allows bulk and surface states to
be distinguished since surface states remain fixed in en-
ergy for a constant k‖, while bulk states disperse if k⊥ is
changed while k‖ is kept constant. This is done by mea-
suring the photoelectron spectrum for a range of UV
photon energies at a fixed value of k‖ (often at θ = 0 so
k‖ = 0). Bulk states disperse since k⊥ varies as the pho-
ton energy is changed, but the surface states remain at
a fixed binding energy in the photoelectron spectrum.

The photoelectron transition matrix element be-
tween initial and final states |i〉 and | f 〉 due to the
incident photon vector potential A is

I ∝ ∣∣〈 f
∣∣A· p+ p · A

∣∣i
〉∣∣2 ≈ ∣∣〈 f

∣∣2A· p
∣∣i
〉∣∣2 . (89.6)

The spatial variation of A near the surface (the surface
photoeffect) can be neglected, although this is not strictly
valid at these low photon energies [89.26].

Due to the low photoelectron kinetic energies in
most UPS work, precise calculation of photoelectron
spectrum intensities is rather difficult due to multiple
scattering and phase shifts sensitive to valence electrons.
However, the initial electron state symmetries can be de-
termined using the symmetry properties of the matrix
element (89.6). Selection rules allow the state symme-
tries to be determined by measuring the photoemission
spectrum along high symmetry directions of the surface
using polarized UV radiation [89.5].

The valence electron states of adsorbed molecules
can also be studied using UPS. Peaks in the photo-
electron spectrum due to valence levels of adsorbed
molecules tend to have larger linewidths (≈ 1 eV typ-
ically) than in the gas phase due to solid state and
instrumental effects, so vibrational structure is seldom
resolved. The positions of the molecular valence states
are shifted in energy due to the surface work function
and solid state relaxation (dielectric screening) effects.
In addition to these rigid shifts, chemical shifts are also
observed due to bonding (chemisorption) interactions
between the molecule and surface. The molecular char-
acter of the valence orbitals is often retained from the
gas phase, so the shifted levels can be identified by using
the symmetry properties of the photoemission matrix el-
ement. For example, photoemission from gas phase CO
shows three valence states: 5σ , 1π and 4σ in order of
increasing binding energy. A series of photoemission

spectra [89.25] for gas phase CO, solid CO and CO
chemisorbed on several transition metal surfaces (in or-
der of increasing CO–surface binding energy) is shown
in Fig. 89.2. For solid CO and weakly chemisorbed
CO/Ag(111) all three valence orbitals of molecular CO
are well resolved, though the adsorbed CO spectrum is
shifted rigidly in energy by relaxation effects. Since CO
is chemisorbed more strongly on Cu(111) and Pd(111),
the 1π and 5σ valence states shift relative to one another.
The strongly overlapping 1π and 5σ states observed for
chemisorbed CO can be individually resolved by using
the photoemission selection rules and linearly polarized
UV radiation [89.25]. The origin of the chemical shift
between the 5σ and 1π levels has been ascribed to bond
formation involving the CO 5σ level and σ-symmetry
d-electron states on the transition metal surfaces [89.2].

89.3.2 Inverse Photoemission
Spectroscopy (IPES)

Inverse photoemission spectroscopy is properly classi-
fied as an incident electron technique but is included here

(eV)
20 15 10 5 0 =

Evac

CO/Pd(111)
EAD = 142 kJ/mol

CO/Cu(111)
EAD = 47 kJ/mol

EF
Pd

EF
Cu

CO/Ag(111)
EAD = 19 kJ/mol

EF
Ag

COSOLID
ECOND = 7 kJ/mol

COGAS

4σ 5σ1π

s.u.

Fig. 89.2 A set of UPS spectra for CO adsorbed on various
surfaces, as well as gas phase and solid CO. The peak
labeled “su” is a shake-up satellite peak. After [89.25]
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as a natural companion to UPS. IPES utilizes low energy
electrons (5–50 eV) incident on a surface. Transitions
from a high-lying initial electron state in the contin-
uum to a lower unoccupied state cause a UV photon
to be emitted. By detecting the emitted photon inten-
sity as a function of energy, the joint density of states is
measured [89.7]. IPES is used to study the unoccupied
portion of surface and bulk bandstructure, particularly
the region between the Fermi level and the vacuum level,
which is difficult to access by other means. This allows
the study of unoccupied states of adsorbed molecules
(e.g., antibonding molecular levels) as well as intrinsic
surface states such as the Rydberg-like states of electrons
trapped in the image potential at the surface [89.7].

89.3.3 X-Ray Photoelectron
Spectroscopy (XPS)

X-ray photoelectron spectroscopy allows the study of
the energy of atomic core levels via the Einstein photo-
electric equation Te = hν− Eb, where Te is the kinetic
energy of the photoemitted electron and Eb is the
binding energy of the core level. Atoms bound in dif-
ferent chemical environments (e.g., at particular sites
on a surface) experience different chemical shifts, and
so are measured at slightly different binding energies.
This sensitivity to chemical environment allows XPS to
characterize the different types of binding sites for sim-
ilar atoms, and measure their abundance by measuring
the relative intensities of XPS emission from different
species.

Shifts in Te arise from two sources: intra-atomic
and inter-atomic relaxation shifts. The intra-atomic re-
laxation Ea is due to screening of the core hole by other
electrons in the emitter atom. The inter-atomic relax-
ation Er is important in solids (particularly for metals)
and is due to screening of the core hole by the dielectric
response of the surrounding medium. These relaxation
shifts (on the order of a few eV) tend to increase the ki-
netic energy of the emitted photoelectron, so the kinetic
energy in the adiabatic limit is

Te = hν− Eb+ Ea+ Er . (89.7)

Since photoemission is a rapid process, nonadiabatic
processes lead to shakeup and shakeoff features in which
other electrons are excited to higher energy levels, caus-
ing the photoelectron to have lower kinetic energy [89.5]
(see Sect. 62.4.4). It is also possible to excite discrete
excitations of the solid, such as plasmons and a contin-
uum of low energy electron-hole excitations, causing the
XPS peak to have an asymmetric lineshape. The over-

all XPS distributions of Te thus contain contributions
from the adiabatic channel, and lower energy photoelec-
trons in a series of discrete peaks or a continuum from
nonadiabatic processes.

The chemical abundance of a species can be deter-
mined from the sum rule that the total XPS cross section
is proportional to the sum of the adiabatic peak and
all the shake-up and shake-off components. However it
is usually only convenient to measure the intensity of
the adiabatic peak. If comparisons are made between
chemical species in different chemical environments,
the shake-up and shake-off intensities may differ. Hence
the adiabatic channel intensities might not reflect the
true abundance. Very often this problem can be mini-
mized by careful calibration, and chemical analyses can
be made to an accuracy of a few percent.

The surface sensitivity of XPS is due to the short in-
elastic MFP for the photoelectrons, which can be made
to have energies in the range 10–1000 eV by appropriate
choice of the X-ray wavelength. The XPS signal is pro-
portional to exp[−z/(λ cos θ)], where z is the depth of
the emitter, λ is the inelastic mean free path of the pho-
toelectron and θ is the angle measured from the surface
normal.

The popularity of XPS as a surface analysis tech-
nique is due to the availability of convenient and
sufficiently intense monochromatic X-rays from lab
sources (usually Al and Mg Kα X-ray lines at 1486.6
and 1253.6 eV). The increasing availability of con-
tinuously tunable X-rays from synchrotron radiation
sources allows improved measurements due to the abil-
ity to tune the X-rays to slightly above threshold,
where the XPS cross-sections are maximized, the in-
elastic MFP is shorter (hence more surface specific)
and electron monochromators can operate with higher
resolution [89.5].

As an example of the chemical sensitivity of XPS,
photoelectron spectra of the 4f7/2 core levels of W(111)
and Ta(111) are shown in Fig. 89.3. The spectra show
discrete peaks from both bulk and surface atoms. The
binding energies of the surface atoms are affected by the
adsorption of hydrogen.

XPS can also be used to give local structural in-
formation due to elastic scattering of the photoemitted
electron in the region near the emitter [89.5]. One form
of this is the use of forward scattering from a buried
emitter. A high energy XPS photoelectron is focused in
the direction of nearby atoms due to a lower effective
potential close to the atomic core. Angular scanning of
the XPS detector will then detect a more intense signal
along the bond axis. This method has proved useful in
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Fig. 89.3 XPS spectra of the 4f7/2 states of W(111) and Ta(111). Contributions from the bulk (b) and surface (S1,S2)
atoms can be distinguished, and the surface atom peaks are shifted by the adsorption of hydrogen. After [89.28]

studying the orientation of adsorbed molecules and the
structure of hetero-epitaxial thin films [89.27].

89.3.4 X-Ray Absorption Methods

X-ray absorption methods [89.8] measure the decay of
the core hole rather than the intensity of emitted pho-
toelectrons, since that XPS process is complicated by
a number of possible final state processes, as discussed
above. To obtain surface sensitivity, the X-ray absorp-
tion is measured using a low energy electron emitting
channel such as an Auger electron emission or the to-
tal electron yield, which are proportional to the overall
X-ray absorption. These methods require an intense and
tunable source of monochromatic x-radiation near the
excitation edge for the core level of a particular atom,
and so are usually performed using synchrotron radia-
tion. Synchrotron sources have the additional benefit of
linearly polarized light, which is crucial for NEXAFS
and useful for SEXAFS discussed next.

SEXAFS: Measurement of Bond Lengths
The surface extended X-ray absorption fine structure
(SEXAFS) technique is most commonly used to mea-
sure the bond lengths for atoms adsorbed on a surface.

SEXAFS utilizes the elastic backscattering of the emit-
ted XPS photoelectron from nearby atoms that surround
the emitter. Elastically scattered waves arrive back at the
emitter and add coherently (constructively and destruc-
tively) to the outgoing wave, thus modifying the matrix
element for the transition to the final state [89.29]. Exper-
imentally, the cross section σ(hν) for X-ray absorption
above the threshold photon energy is modified by an
oscillatory structure. The ‘atomic’ contribution to the
absorption cross section can be removed using

χ = σ −σ0

σ0
, (89.8)

where σ and σ0 are the measured surface and free atom
X-ray absorption cross sections. If only single scattering
events are involved in backscattering to the emitter then
the fine structure function χ is

χ(k)=
N∑

i=1

Ai(k) sin
[
2kRi +φi(k)

]
, (89.9)

where k is the magnitude of the photoelectron wavevec-
tor and the sum is done for N ‘shells’ of atoms
surrounding the emitter. The distance Ri is the radius
of the ith shell and 2kRi is the associated phase factor
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for the backscattered photoelectron, with an amplitude
Ai(k). The phase shift φi(k) is required due to the
backscattering path through the potential surrounding
the emitter and scattering from the atom at Ri . If the
φi could be ignored, then a simple Fourier transform of
χ(k) would reveal the radial distribution function and
the bond lengths Ri [89.29]. In practice, the phase shifts
cannot be neglected, but very often these can be found by
studying chemically similar systems in which the bond
lengths are known. The phase shifts for photoelectrons
well above the absorption edge (having kinetic ener-
gies greater than ≈50 eV) are dominated by the atomic
ion cores, and so are not sensitive to the valence elec-
tronic structure. The phase shifts can also be calculated
in a straightforward way since this problem is essen-
tially the same as done in LEED multiple scattering
calculations.

The amplitudes Ai(k) due to scattering from shell i
at distance Ri from a point source emitter are [89.29]

Ai(k)= N∗
i

kR2
i

| fi(π, k)| exp
(−2

〈
u2〉

i k
2)

× exp
(−2Ri/λ

)
, (89.10)
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Fig. 89.4 (a) X-ray absorption data taken near the iodine edge for bulk CuI and Cu(111)–I. (b) The extracted fine structure
function χ(k), shown multiplied by k2 to enhance the high k structure. (c) The Fourier transform of χ(k) showing the
location of the first shell of Cu atoms from the I emitters. (d) Back-transformed k2χ(k) after applying a filter to extract
the nearest neighbor data. After [89.30]

where N∗
i is an effective number of atoms and

〈
u2
〉
i is the

mean-square displacement of the atoms in shell i. The
backscattering amplitude | fi(π, k)| has been separated
from its phase factor φi(k) in (89.9). The inelastic mean
free path for the photoelectrons reduces the contribution
from successive shells by a factor exp(−2Ri/λ), and it
is this term that allows the kinematic single-scattering
approach to be used. Multiple scattering paths involve
longer trajectories and so are more strongly attenuated
by this exponential factor. If the near-edge energy region
of the absorption cross section is not included in the
analysis, then the scheme outlined in (89.9) and (89.10)
is reasonable. The near-edge region (within ≈ 50 eV of
the absorption edge) is troublesome, not only because
of multiple scattering, but also because the phase shifts
φi(k) for low energy photoelectrons are more sensitive to
valence electron distributions, and so are more sensitive
to the details of the local chemical environment.

The SEXAFS method is illustrated with the data
of Fig. 89.4 for iodine adsorbed on Cu(111). Panel (a)
shows the measured X-ray absorption σ(hν) for both
the surface system Cu(111)–I and bulk CuI. The ex-
tractedχ(k) and their Fourier transforms are shown in (b)
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and (c). The Cu–I nearest neighbor bondlength is clearly
shown by the peak in (c), and is found to be 0.07 Å longer
than in bulk CuI. SEXAFS is most commonly applied to
atomic adsorption systems since molecular systems are
difficult to analyze, as they can contain several similar
bond lengths, and the shells containing different atoms
are difficult to model.

NEXAFS: Molecular Orientation at Surfaces
In SEXAFS, the X-ray absorption close to the excita-
tion edge is avoided due to the problems of multiple
scattering, and phase shifts that are chemically sensi-
tive to valence electrons. The study of near-edge X-ray
absorption fine structure (NEXAFS) can avoid these
difficulties by using only the symmetry properties of
the transition matrix element without concern for the
absolute amplitudes [89.32]. For isolated molecules,
unoccupied molecular states having σ or π symme-
try are very commonly found close to or just below
the threshold for photoemission. These ‘molecular res-
onances’ often remain for adsorbed molecules, and
the symmetry properties of the absorption intensity
I ∝ |〈 f |A·p|i〉|2 can be used to determine the molecular
orientation.

For the overall matrix element to be nonzero, it
must be totally symmetric. Using linearly polarized syn-
chrotron radiation, the direction of polarization A can
be varied by rotating the crystal. For example, the K-
edge X-ray absorption of CO on the Ni(100) surface in
Fig. 89.5 shows final state resonances A (π-symmetry)
and B (σ-symmetry). The intensity of these features de-
pends of the direction of polarization of the incident
X-rays. X-rays with a polarization vector parallel to
the surface (θ = 90◦) strongly excite the π-symmetry
absorption while the σ-symmetry absorption is absent.
For grazing incidence X-rays polarized normal to the
surface, the σ-resonance is prominent. From dipole se-
lection rules, this polarization dependence of the X-ray
absorption is evidence that the CO molecule is adsorbed

280 290 300 310
Photon energy (eV)

Carbon Auger yield (arb. units)

A B

45°

10°

 θ
= 90°

CO on Ni(100)
C K-edge

X-rays

θ

Fig. 89.5 Near-edge X-ray absorption data from the C K-
edge from CO adsorbed on Ni(100) as function of incident
photon angle θ. The molecular π (peak A) and σ (peak B)
resonances are observed. The polarization dependence of
the absorption allows the CO orientation to be determined.
After [89.31]

with its bond perpendicular to the plane of the Ni(100)
surface.

The σ-resonance final state in NEXAFS corresponds
to multiple scattering of the photoelectron along the
bond axis. The overall phase shift for this final state
is approximately

∫ √
E−V(r) dr ≈√

E−V(r) R = const. (89.11)

where R is the bond length. This sensitivity of the final
state phase shift to bond lengths allows the σ-resonance
energy to be used as a measure the molecular bond
length [89.33]. A plot of the σ-resonance energy vs.
1/R2 shows a linear relationship, as is found in the case
of simple hydrocarbons in the gas phase and adsorbed
on a Cu(100) surface [89.32].

89.4 Atom–Surface Interactions

89.4.1 Physisorption

The binding interactions between atoms and surfaces
can be classified as physisorption (long range attrac-
tive dispersion forces) and chemisorption, in which
chemical bonds are formed. The long-range dispersion
force between a polarizable atom and a conducting
surface give rise to the leading term of the van der

Waals potential V(z)∝ −1/z3. At smaller atom-surface
separations, the location of the reference image plane
needs to be included, resulting in an attractive potential
V(z)=−Cv/|z− zi |3 where zi is the distance from the
last atomic plane to the image plane, typically 2–3 Å.
In principle, the constant Cv is calculable from the
dielectric properties of the substrate and the atomic po-
larizability, but experiments have found values of Cv
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40% less than expected [89.34]. The cause of this dis-
crepancy has not been clarified, although contributions
from surface roughness have been suggested.

At larger atom-surface separations, retardation ef-
fects must be taken into account in the dispersion
interaction (the Casimir–Polder force, Sect. 79.2.4), and
here theory predicts a 1/z4 interaction potential. This
form for the potential has been confirmed experimen-
tally [89.35].

As the atom approaches the surface, wave function
overlap eventually causes repulsion. In the absence of
chemical bond formation, the repulsive potential is sim-
ply proportional to the surface electron density n(z),
resulting in the overall physisorption potential

V(z)= Kn(z)− Cv
|z− zi |3 . (89.12)

The surface charge density n(z) decreases exponentially
above the surface [89.2], and the constant K can be de-
termined to reasonable accuracy by an effective medium
theoretical approach [89.36]. This shallow physisorption
potential well has been studied experimentally in atomic
beam (often He) scattering experiments. Under certain
scattering conditions, it is possible for an incident atom
to be ‘selectively adsorbed’ on the surface by making
transitions into and out of bound states of the potential
well of (89.12). The incident atom with wavevector k
is diffracted by a surface reciprocal lattice vector Ghk
into a bound state En of the potential well [89.2]. The
diffracted atomic beam intensities due to scattering via
selective adsorption show strong variations which can be
related to the quantum numbers (n, h, k), and give infor-
mation on the shape of the physisorption potential well.

89.4.2 Chemisorption

Many atoms and molecules will chemisorb when
brought sufficiently close to a surface, forming chem-
ical bonds (covalent or ionic) that are much stronger than

the physisorption bond [89.3]. In chemisorption, there
is charge transfer between the adsorbate and the sur-
face, modifying the electronic structure of both. Valence
electronic levels of the adsorbate are shifted in energy
and also broadened by resonant interactions with the
delocalized valence electrons at the surface (e.g., free
electron-like s–p states). For many transition metal sur-
faces, interactions with the more localized d–states are
also important.

The adsorbate-surface bond energies are most com-
monly studied by thermal desorption spectroscopy
(TDS) [89.37, 38]. In this method, the adsorbate cov-
ered surface is heated using a linear temperature ramp,
and the desorption rate of a particular species is meas-
ured using a mass spectrometer. By using a range of
heating rates β, not only can the desorption energy be
measured, but the kinetics governing the desorption pro-
cess can be uncovered. For example, in the simplest
case of a coverage-independent adsorption energy and
first order kinetics, if the peak desorption rate occurs at
a temperature T0 then [89.39]

ν

β
= E d

kBT 2
0

exp

(
E d

kBT0

)
(89.13)

where E d is the desorption energy and ν is the ‘attempt
frequency’ for desorption. Since both ν and E d are un-
known, values for both can be found by measuring TDS
spectra using two different heating rates β or by estimat-
ing ν (often ν ≈ 1013 s−1). More complex desorption
kinetics are studied by utilizing the full desorption pro-
file, and a range of heating rates and initial adsorbate
coverages. These kinetic data are also applicable to ad-
sorption if the adsorption and desorption are reversible
processes. For irreversible adsorption systems, it is pos-
sible to measure the adsorption energies directly [89.40]
by monitoring the ir radiation emitted from a surface
as a submonolayer quantity of atoms or molecules is
adsorbed.

89.5 Recent Developments

Surface Physics has both rapidly matured and ex-
panded its connections with other disciplines in the
last eight years. A number of notable review works
have been published recently [89.41–45]. The appli-
cation of surface science techniques has expanded
rapidly in a number of technological areas, such as
semiconductor devices, catalysis, and magnetic ma-
terials. The emerging field of nanotechnology has

drawn heavily from the techniques of surface sci-
ence. Important advances have been made in a large
number of areas, including biosurfaces [89.46,47], clus-
ter science [89.48], carbon fullerene materials [89.49,
50], electrochemistry [89.51], and surface photochem-
istry [89.52].

Continuing advances have been made in the appli-
cation of light from synchrotron radiation sources — so
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much so that a complete catalog of applicable techniques
would be difficult to compile. Many new facilities have
been constructed, with higher brightness sources allow-

ing the development of a large number of new techniques
using synchrotron radiation from the ir through the soft
and hard X-ray regimes [89.53, 54].
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Interface with90. Interface with Nuclear Physics

For an atom with a small to moderately large
atomic number Z, the typical length scale a0/Z of
the innermost core orbitals is so much larger than
typical nuclear length scales that the corrections to
the energy levels and wave functions arising from
the non-zero electric charge radius of the nucleus
can accurately be computed using first-order
perturbation theory, as is described in Sect. 90.1.
Nonetheless, these relatively small shifts can
sometimes have a profound effect on processes in
atomic and/or nuclear physics, particularly if two
or more energy levels are very close. For example,
as is discussed in Sect. 90.2, the presence of the
electron cloud makes energetically possible the
β-decay of 187Re to 187Os, and significantly modifies
the energy distribution of products in the β-decay
of tritium in various chemical environments.
Also, electronic screening can greatly enhance the
cross-sections of low-energy nuclear reactions
relative to what they would be for bare nuclei.

In isotopes of hydrogen, the replacement of an
electron by a muon, with mµ ≈ 207me, results in
a tiny neutral ‘atom’ which can closely approach
another nucleus, thereby catalyzing nuclear fusion.
For example, the rate of deuterium–tritium fusion
is enhanced by 77 orders of magnitude if a single
electron is replaced by a muon. A rich variety of
bound-state properties and scattering processes
for these exotic atoms and molecules has been ex-
tensively investigated, as is reviewed in Sect. 90.3.

A reader interested in the interface between
atomic and nuclear physics should also consult
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Chapt. 27 (Quantum Electrodynamics), Chapt. 28
(Tests of Fundamental Physics), and Chapt. 29
(Parity Nonconserving Effects in Atoms) in this
Handbook.

That nuclei are not infinitesimally small, structure-
less particles causes small but perceptible shifts in
the electronic structure of atoms and molecules. Even
for nuclei with small nuclear charge Z, the effects
are readily detectable through modern high precision
spectroscopy, and their magnitude grows as Z14/3.
Conversely, the presence of electrons tightly bound
to atomic nuclei can alter the ordering of nuclear
energy levels or make them unstable to β decay.

Atomic effects can also influence nuclear branch-
ing ratios into the product channels. Nominally small
atomic effects have been shown to affect the compli-
cated chain of nuclear reactions responsible for the
generation of energy in the sun. Setting bounds to
the rest mass of the neutrino from the endpoint of
the β-decay spectrum of tritium requires a precise
understanding of atomic and molecular structure and
scattering processes.
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The great disparity between nuclear scales of energy
(several MeV) and distance (10−5 to 10−4 Å) and the
corresponding atomic scales (several eV and 1 Å, respec-
tively) usually allows the separate treatment of nuclear
and atomic effects. However, since not absolute ener-
gies but energy differences determine the magnitudes
of perturbative effects, near coincidences in energy dif-
ferences can greatly enhance the interplay between the
two regimes. Such comparable differences of energies
account for the important role of nuclear structure in
the Lamb shift splitting between the 2s1/2 and 2p1/2
states of hydrogen (see Chapt. 27), and the influence of
atomic structure on nuclear processes (see Sects. 90.1
and 90.2).

For the case of muonic atoms and molecules, the
interplay is enhanced by the much larger mass of a muon
relative to an electron. This decreases the distance scale
by a factor of me/mµ and increases the energy scale by
a factor of mµ/me. Small corrections such as the vacuum
polarization part of the Lamb shift are amplified even
more (≈ (mµ/me)

3 for low Z).

Besides the areas where atomic physics effects play
an important role in nuclear physics, or vice versa, it
is worth remembering that atomic and molecular physi-
cists and nuclear physicists can benefit from knowing
the theoretical techniques which have been developed in
each others’ fields. For example, it is well-known that
group theoretical methods are widely employed in for-
mulating and solving many-body problems in nuclear,
atomic, and molecular physics. To take another case,
the coupled-cluster method, which was first proposed in
the late 1950s by Coester and Kummel in the context of
nuclear theory [90.1–3], was applied a decade later to
electronic structure problems in atomic and molecular
physics and quantum chemistry by Cizek, Paldus, and
Shavitt [90.4–6], and in the 1970s and 1980s was widely
developed by Bartlett and coworkers at the University of
Florida. Quite recently, ‘quantum halos’, which are very
loosely bound states for which most of the probability
density is spread diffusely over the classically forbidden
region, have been treated in a unified manner for both
nuclear and molecular systems [90.7].

90.1 Nuclear Size Effects in Atoms

90.1.1 Nuclear Size Effects on
Nonrelativistic Energies

Interest in the influence of a finite nuclear charge distri-
bution on the energy levels of the hydrogen atom goes
back to the measurement of the Lamb shift [90.8–11],
and even earlier indications that the fine structure of
hydrogen did not quite agree with the predictions of the
Dirac equation for a point nucleus [90.12–15]. The finite
proton size does in fact raise the energy of the 2s1/2 state
relative to 2p1/2, but the shift is only ≈ 0.012% of the
dominant electron self-energy contribution (Chapt. 27).
It must nevertheless be taken into account in high preci-
sion tests of QED.

Early derivations were given by several au-
thors [90.16–19] and generalized by Zemach [90.20]
(see also [90.21]) to a form involving integrals over the
nuclear electric and magnetic form factors. The basic re-
sult is illuminated by the following argument. Let ρ(r)
be the electron density, which may have no spatial sym-
metry properties in the particular case of a polyatomic
molecule, and ρn(rn) be the charge density of a nucleus,
which obeys

∫
d3rn ρn(rn) = Z . (90.1)

Assume that ρn(rn) has no permanent electric dipole
moment, so that

∫
d3rn rn ρn(rn) = 0 . (90.2)

By writing the Coulomb potential for a pointlike nucleus
as

− Z

r
=−

∫
d3rn

Zδ(3)(rn)

|r−rn| , (90.3)

the first-order shift of the electronic energy due to the
replacement of the pointlike nucleus by an extended
nucleus is

∆Enuc =
∫

d3r
∫

d3rn
Zδ(3)(rn)−ρn(rn)

|r−rn| ρ(r) .

(90.4)

Since the Fourier transform, defined by

ρ̂n(k)=
∫

d3rn e−ik·rn ρn(rn) , (90.5)

preserves inner products within a factor of (2π)3 and
maps convolutions to simple products, the integral
in (90.4) reduces to

(2π)3
∫

d3k [Z− ρ̂ n(k)] 4π

k2 ρ̂ (k) , (90.6)
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where the hats denote the Fourier transforms of the dens-
ities and 4π/k2 is the Fourier transform of the Coulomb
potential 1/r. Since Z = ∫

d3rn ρn(rn), the energy shift
can be reexpressed as

(2π)3
∫

d3k
∫

d3rn (1− e−ik·rn ) ρn(rn)
4π

k2 ρ̂ (k) ,

(90.7)

which is still an exact first-order perturbation expression.
Since typical nuclear length scales are much smaller
than typical nonrelativistic atomic length scales, it is
legitimate to expand the exponential in a Taylor series.
The zeroth-order term, −1, is canceled by the +1. The
linear term, ik·rn , contributes nothing by the hypothesis
that the nuclear charge distribution has no permanent
electric dipole moment. The first nonvanishing term is

(2π)3
∫

d3k
∫

d3rn
1

2
(k ·rn)

2 ρn(rn)
4π

k2
ρ̂ (k) .

(90.8)

If ρ(r) is nonzero at the nucleus, then for large k the lead-
ing behavior of ρ̂ (k) is that of a spherically symmetric
s-wave with a radial dependence proportional to k−4.
The angular integration in the variable k leads to the re-
placement of (k·rn)

2 by its average value 1
3 k2r2

n , so that
expression (90.8) reduces to

2π

3
(2π)3

∫
d3k ρ̂ (k)

∫
d3rn r2

n ρn(rn) , (90.9)

which can be further simplified by observing that

(2π)3
∫

d3k ρ̂ (k) = (2π)3
∫

d3k ei0·kρ̂ (k)= ρ(0) ,
(90.10)

and by definition
∫

d3rn r2
n ρn(rn) = Z

〈
r2

n

〉
, (90.11)

thus yielding the final expression

∆Enuc = 2π

3
Ze2ρ(0)

〈
r2

n

〉
, (90.12)

with

ρ(0)=
(

µ

m e

)3 Z3

πn3 a−3
0 (90.13)

for a hydrogenic ion with reduced mass µ. This deriva-
tion is independent of the specific nuclear model or
the assumption of spherical symmetry of the electron
density. Since

〈
r2

n

〉
scales as Z2/3, ∆Enuc then scales

as Z14/3. For a molecule with several nuclei, the contri-
butions (90.12) from each nucleus should be summed.

For the helium atom, ρ(0) = 〈δ(r1)+ δ(r2)〉
can be accurately calculated from high preci-
sion variational wave functions (Chapt. 11). For the
1s2 1S0 ground state, ρ(0) ) (µ/me)

3[3.620 8586−
0.182 37(µ/M)]a−3

0 where M is the nuclear mass. Re-
sults for other states up to n = 10 are tabulated in [90.22].
Combined with high precision isotope shift measure-
ments, the results can be used to extract differences in
nuclear radii for pairs such as 3He

/
4He, 6Li

/
7Li, and

H
/

D [90.23–26]. The method has recently been ap-
plied to the short-lived, neutron-rich nuclei 6He, 8Li,
and 9Li [90.27, 28].

Expression (90.12) works well for atoms with
small Z, since relativistic corrections to the electron
density are small. However, it breaks down for heavier
nuclei, for which relativistic wave functions are needed.

90.1.2 Nuclear Size Effects
on Relativistic Energies

The preceding analysis breaks down for relativistic wave
functions because they are singular at a point nucleus,
making ρ(0) infinite. In this case, the Dirac equations
with Hamiltonians H0 and H for the point nucleus and
distributed nucleus cases, respectively, can be combined
to obtain

(E− E0)Ψ
†Ψ0 = Ψ †HΨ0−Ψ †H0Ψ0 . (90.14)

If a finite radius rs is now chosen such that H = H0
outside the sphere r = rs, then this equation can be
integrated from rs outward to yield [90.29]

∆Enuc = �c (g f0− fg0)r=rs∫∞
rs
(gg0+ f f0)dr

(90.15)

where f and g are the large and small radial components
of Ψ (Chapt. 9), and the numerator is the surface term
that remains after integrating by parts the cα · p term
in H . The units are �c/a0 = αmec2. The solutions can
be further expanded in terms of Bessel functions, or the
Dirac equation can simply be integrated numerically.

For hydrogenic ions up to moderately large Z, the
results are reasonably well represented by [90.30, 31]

∆Enuc = 2

3n3
(Zα)2mec2

×
[
δ,0+C2(Zα)

2
] (

Z2〈r2
n

〉
/a2

0

)γ

(90.16)
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with γ = [
1− (Zα)2]1/2, and C2 ) 0.50, 1.38, and

0.1875 for the 1S1/2, 2S1/2, and 2P1/2 states, respec-
tively. Extensions to higher-order terms are discussed
in [90.32]. The above formula was used in the tabula-
tions of Mohr [90.31] for 10 ≤ Z ≤ 40, while Johnson
and Soff [90.33] used the numerical integration method
for Z up to 110. The nuclear electric and magnetization
density distributions are tabulated in [90.34], nuclear
moments in [90.35], and nuclear masses in [90.36]. In
the absence of better data, the rms nuclear radius can be
estimated from

〈
r2

n

〉
1/2 ≈ 0.777A1/3+0.778±0.06 fm,

where A is the atomic mass number.

90.1.3 Nuclear Size Effects
on QED Corrections

Recent progress in the experimental study of tran-
sition energies in heavy ions stripped of most of
their electrons [90.37–39] has inspired theoretical
work on modifications of QED corrections due to
an extended nuclear charge distribution. Calculations
based on propagators expanded in terms of basis
splines [90.40–42] (Sect. 8.1.1) have led to rela-
tively rapid convergence with the number of angular
functions.

90.2 Electronic Structure Effects in Nuclear Physics

90.2.1 Electronic Effects on Closely Spaced
Nuclear Energy Levels

The presence of a nearby cloud of electrons can signifi-
cantly affect nuclear processes involving closely spaced
nuclear energy levels. One of the most dramatic cases
involves the β-decay process 187Re → 187Os+ e−+
ν̄e, which is energetically forbidden by about 12 keV
for bare nuclei, but becomes allowed for the neutral
atoms when the difference in electronic binding ener-
gies is included. The nuclear charges are Z = 75 for
187Re and Z = 76 for 187Os. There is also the pos-
sibility of the electron being captured into a bound
state of 187Os, as opposed to the continuum β-decay
process.

The electronic binding energies of heavy atoms
can be estimated from the Thomas–Fermi result
ETF )−20.93 Z7/3 eV for a neutral atom of charge Z.
The difference between the energies of two atoms with
nuclear charges Z+1 and Z, respectively, is then

ETF(Z+1)− ETF(Z))−48.83Z4/3 eV, (90.17)

which amounts to −15.4 keV at Z = 75. This is more
than sufficient to overcome the 12 keV energy deficit in
the otherwise energetically forbidden β-decay of 187Re.

The general theory of bound state β-decay is dis-
cussed by Bahcall [90.43], who also calculated the
ratio ρ of bound state β-decay to continuum β-decay for
bare nuclei. In the case of 187Re → 187Os, ρ is of impor-
tance in estimating changes in the half-life for β-decay
of 187Re under various conditions of ionization, since the
measured isotope ratios 187Re

/
188Re and 187Os

/
188Os

from terrestrial rocks and meteorites can be used to de-
termine not only the age of the solar system, but also

the age of our galaxy [90.44, 45]. Estimates based on
a modified TF model [90.46] indicate that ρ ) 0.01,
and further multiconfiguration Dirac–Fock calculations
give ρ = 0.005 to 0.007 [90.47–49]. See [90.47–49] for
further details and references.

90.2.2 Electronic Effects
on Tritium Beta Decay

The mass of the neutrino, normally taken to be zero in
the Standard Model, can be determined in principle from
analysis of the β-decay process 3T → 3He++ e−+ ν̄e.
An early measurement based on this method [90.50–52]
yielded a neutrino mass of≈ 25 eV. Several independent
tests of this result were initiated soon thereafter. Since
the experiments are performed not on bare tritons but
on tritium gases and solids under various conditions, it
is essential to understand quantitatively the atomic and
molecular processes that affect the distribution of the
highest-energy electrons produced from various initial
states [90.53, 54].

Martin and Cohen [90.55] used a Stieltjes imaging
technique to calculate shake-up and shake-off probabil-
ities for the β-decay of T2 into 3HeT+. Simultaneously,
extensive calculations were carried out [90.56] us-
ing potential energy curves for the reactant T2 and
TH molecules and the product 3HeT+ and 3HeH+
molecules and accounting for the production of elec-
tronically and rovibrationally ground and excited final
states, as well as resonant states. Nuclear motion was
found to have a small but detectable effect on the re-
sults, and solid-state effects for frozen T2 were also
investigated and found to be small. These calculations
played a crucial role in the interpretation of the ex-
periments [90.57–61], which indicated that the neutrino
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mass is less than ≈ 10 eV. In 1998 there was pub-
lished evidence from the super-Kamiokande experiment
that the three flavors of neutrinos oscillate, as further
confirmed by the Sudbury Neutrino Observatory. This
implies that neutrinos have a nonzero rest mass [90.62].
Subsequently, upper bounds of the order of a few eV to
the neutrino mass have been derived from measurements
of tritium beta decay [90.63,64] and from cosmological
considerations [90.65].

90.2.3 Electronic Screening
of Low Energy Nuclear Reactions

The cross section σ(E) for a nuclear reaction involving
charged reactants drops very rapidly for collision ener-
gies E below the Coulomb barrier. A WKB treatment
shows that for low collision energies, the dependence of
σ(E) can be conveniently expressed as

σ(E) = S(E) E−1 e−2πη , (90.18)

where S(E) is the astrophysical factor, and

η= Z1 Z2αc (µ/2E)1/2 (90.19)

is the Sommerfeld parameter, which depends on the
charge numbers Z1 and Z2 of the projectile and target
nuclides, their reduced mass µ, and the cm energy E.
For nuclear reactions involving light nuclei, it is found
that S(E) typically varies slowly with E except close
to resonances. Thus the accurate determination of S(E)
at moderately low E can be used to extrapolate σ(E)
to much lower energies, which are beyond the reach of
laboratory experiments but are of great relevance to the
nuclear reactions that occur in stars.

However, electron screening effects can greatly en-
hance cross sections for nuclear reactions as measured in
the laboratory at low energy [90.66], because at least the
target nucleus is almost always surrounded by a cloud of
electrons which screen the Coulomb repulsion between
nuclei. The effect has been observed in various low-
energy reactions such as 3He(d, p)4He, 6Li(p, α)3He,
6Li(d, α)4He, and 6Li(p, α)4He [90.67–70]. Since re-
actions in stars involve bare nuclei, the laboratory data
must be carefully corrected for screening effects.

Analysis of the data for the 3He(d,p)4He reaction in-
dicates that the effect of screening is always greater than
that predicted in the adiabatic limit [90.71–73]. A more
general theoretical treatment of the d+2H and d+3He
reactions [90.74], using a time-dependent Hartree–Fock
method for the electrons screening and classical mo-
tion for the nuclei found less enhancement than that
observed. An improved treatment taking account of elec-
tron correlation and quantum-mechanical effects on the
nuclear motion will likely be needed. This remains an
important area of development for the future.

For some recent work on the subject of elec-
tronic screening of low-energy nuclear reactions,
see [90.75–80].

90.2.4 Atomic and Molecular Effects
in Relativistic Ion–Atom Collisions

High-energy accelerators can now produce beams of
atomic ions partly or completely stripped of their elec-
trons, even for Z as high as 92. The collisions of such
beams of highly charged ions with fixed targets involve
a broad array of atomic and molecular processes, such
as excitation, ionization, charge transfer, and, in the
extreme relativistic case, pair production. A similarly
broad array of theoretical techniques is required to study
these topics. A thorough review of them, including com-
parisons with experimental data where available, is given
in [90.81, 82].

A topic of particular recent interest is the first ex-
perimental observation of the capture of electrons from
electron-positron pair production in the extreme rel-
ativistic collision of a 0.96 GeV / nucleon U92+ beam
with gold, silver, copper, and Mylar targets [90.83]. The
energy and angular distributions of the positrons were
also measured. For the gold target, the cross section for
capture was nearly as large as that for pair production
without capture, and it was found to vary with the nuclear
charge Zt of the target nucleus roughly as Z2.8(±0.25)

t .
Neither the dependence on Zt nor the relatively great
probability for capture is in agreement with perturbation
theory, which highlights the need for further exploration
of this exotic system.

90.3 Muon-Catalyzed Fusion

Exotic muonic atoms and molecules are more suit-
able subjects than electronic atoms and molecules for
probing some physical effects. The muon µ− is a lep-
tonic elementary particle like the electron except that

it is 206.768 times more massive and has a finite
lifetime (τ0 = 1/λ0, where λ0 is the rate of decay)
of 2.197 µs. This lifetime is amply long for most ex-
periments. In normal atoms, the fine-structure splitting
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(due to L · S coupling) is much larger than the hyper-
fine splitting (due to snuc·se coupling); this relation is
reversed in muonic atoms. Likewise, vacuum polariza-
tion, relativistic, finite-nuclear-size, and nonadiabatic
effects are enhanced. (Note: the muonic Bohr radius
�

2/mµe2 ≈ 1/207 a0 is similar in size to the Compton
wavelength �/mec ≈ 1/137 a0.) Remarkably, muonic
molecules make nuclear fusion possible at room tem-
perature. In the phenomenon of muon-catalyzed fusion
(µCF), there are both indirect and direct interactions be-
tween the atomic and molecular physics and the nuclear
physics. Indirectly, the atomic and molecular densities
and transition rates control the nuclear fusion rates, and,
in turn, the kinetic energies of the fusion products af-
fect the atomic and molecular kinetics. Directly, the
nuclear structure affects some molecular energy levels
that determine important resonant rates and the bound-
ary condition on the muonic wave functions used to
calculate the muon “sticking” loss.

In comparison with µCF, hot fusion schemes are
made difficult by the electrostatic (Coulomb) repulsion
between nuclei. In the two conventional approaches to
controlled fusion, magnetic and inertial confinement,
this barrier is partially surmounted by energetic colli-
sions. (Note: the particle densities N and confinement
times τ in the hot plasmas (T � 108 K) are typically
more than ten orders of magnitude different for these
two schemes, but the product of the two required for
d-t fusion is Nτ � 1014 s/cm3 in either case. For muon-
catalyzed fusion, effectively Nτ ≈ 1025 s/cm3, but this
criterion doesn’t tell the real story.) On the other hand,
in µCF the objective is to tunnel through the barrier
without the benefit of kinetic energy. This feat is en-
abled by binding two hydrogenic nuclei (p, d, or t) in an
exotic molecule like H+

2 with the electron replaced by
a negative muon.

Since the molecular size is inversely proportional to
the mass of the binding particle, the average distance be-
tween nuclei in ppµ is ≈ 1/200 Å (500 fm) instead of
1 Å as in ppe

(
i. e., H+

2

)
. This distance, which would be

reached in a d+ d collision at ≈ 3 keV (≈ 3 × 107 K),
is still large compared with the separation of a few
fm where the nuclear strong forces cause fusion, but
fusion occurs rapidly because of the increased vibra-
tional frequency and, more important, the increased
probability of tunneling per vibration. The vibrational
frequency is (mµ/me)

3/2 ≈ 3 × 103 times faster than for
the corresponding electronic molecule. (Note: for com-
parison, the muonic/electronic energy scales as mµ/me
and the rotational energy scales as (mµ/me)

2. These
relations [90.84] are based on the Born–Oppenheimer

approximation, which is not very accurate for muonic
molecules.) The effect on the tunneling probability de-
pends on the nuclear masses; for dtµ, which has the
largest nuclear matrix element (astrophysical S fac-
tor, Sect. 90.2.3), the increase is by a factor of ≈ 1077

compared with DT, and the consequential fusion rate
is λf

dtµ ≈ 1012 s−1.
Just on the basis of the fusion rate, one would expect

a yield of λf
dtµ/λ0 ≈ 106 muon-catalyzed d-t fusions for

the average muon. While this number indeed provides
an upper limit, the actual average number of fusions,
≈ 150 for dtµ, is much smaller and is determined by
the atomic and molecular physics of the catalysis cycle
(though the energy released in the nuclear fusion does
play an important role here). Some of the atomic and
molecular processes in the µCF cycle are quite ordinary,
but others, like atomic capture and resonant molecular
formation, have no counterpart with “normal” atoms.

Muon-catalyzed fusions of all pairs of hydrogen iso-
topes, except two protons, have been observed. Based
on the experiments and theory, the reaction products are:

pdµ→
⎧
⎨

⎩

3He(0.005)+µ+γ(5.49) (92%−89%)
3He(0.20)+µ(5.29) ( 8%−11%)

(90.20)

ddµ→
⎧
⎨

⎩
t(1.01)+p(3.02)+µ (41%−53%)
3He(0.82)+µ+n(2.45) (59%−47%)

(90.21)

ptµ→

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4He(0.05)+µ+γ(19.76) (60%−76%)
4He(0.59)+µ(19.22) (23%−14%)
4He+µ+ e++ e−(19.81total)

(17%−10%)
(90.22)

(Note: the last reaction of (90.22) has been theoretically
predicted [90.85], but has not yet been observed.)

dtµ→ 4He(3.54)+µ+n(14.05) (90.23)

ttµ→ 4He+µ+2n(11.33total) . (90.24)

Here the product particle kinetic energies (in MeV) are
given in parentheses. A µ without an energy designated
is a spectator, i. e. serves to bring the nuclei together but
plays no significant role in the kinematics of the reac-
tion – such a µ may actually be bound (stuck) to one of
the product nuclei. As indicated, the branching fractions
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Fig. 90.1 Rovibrational energy levels for D+
2 and ddµ. The

J = 0 levels are shown as solid lines and the J> 0 levels
are shown dashed. For D+

2 , all 28 vibrational levels are
displayed, but the associated rotational levels are displayed
only up to the next higher vibrational level. All levels of ddµ

are displayed; the (J = 1, v= 1) level is barely discernible
below the V = 0 axis

depend somewhat on the target parameters (isotopic
composition, density, and temperature) [90.86–88].

Each reaction is of special interest in its own right:
pdµ and ptµ for the contribution of µ conversion, and
ttµ for the correlation of the two final state neutrons.
Only the ddµ and dtµ molecular formations are res-
onant; i. e., their formation can occur in a one-body
state because they, and only they, possess a loosely
bound state such that the muonic binding energy can
go into rovibrational energy of the electronic molecule.
That the existence of such a state really is fortuitous
can be seen in Fig. 90.1 where the bound rovibra-
tional states of ddµ(1 m.a.u.= 5626.5 eV) are compared
with the rovibrational states of D2 (1 a.u.= 27.2 eV).
Though both ddµ and dtµ can be formed resonantly,
dtµ is unique in having a rapid (as compared with
muon decay) formation rate and also in having a small
sticking loss. The sticking loss is due to the pos-
sibility that the negatively charged muon may form
a bound state with the positively charged fusion prod-
uct. The relatively low branching fraction (< 1%) for
dtµ→ 4Heµ+n is due simply to the high speed of the
outgoing 4He (α particle).

90.3.1 The Catalysis Cycle

A diagram of the µCF cycle for a d-t mixture is shown
in Fig. 90.2. The basic steps in the cycle are

Fig. 90.2 The simplified d-t muon-catalyzed fusion cycle.
The times are for density φ = 1 (liquid hydrogen density)
and tritium fraction ct = 0.4. τc is the cycle time, and τ0 is
the muon-decay time

1. Atomic capture to form dµor tµ (initially in a highly
excited state, n � 14).

2. Transfer of the µ from d to t, if necessary.
3. Resonant molecular formation, shown schematic-

ally. Here the dtµ is so small (in reality) that is can be
considered to be a pseudo-nucleus in the electronic
molecule.

4. Nuclear fusion.
5. Sticking (αµ formation) or recycling.

The reaction times shown are at liquid hydrogen
density (φ = 1 in the conventional LHD units) and a tri-
tium fraction ct = 0.4, which is close to the value that
maximizes the number of cycles. The times for muonic
atom formation and deexcitation, ≈ ps, are short com-
pared with the times for muon transfer and molecular
formation, ≈ ns, which in turn are short compared with
the muon decay time ≈ µs.

Thus the time for a cycle is mainly given by the
average time the µ spends as dµ waiting to transfer to t
plus the average time it then spends as tµwaiting to form
dtµ,

τc ≈ τdµ+ τtµ , (90.25)

or, in terms of rates,
1

λc
≈ q1scd

λdtct
+ 1

λdtµcd
, (90.26)
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where cd and ct are the fractions of deuterium and tritium
(cd+ct = 1), λdt is the d-to-t transfer rate in the 1s state,
q1s is the fraction of dµ atoms reaching the 1s state
(before transfer), and λdtµ is the molecular formation
rate. The factor q1s takes into account the fact that any
transfer in excited states is rapid (of necessity, since it
must compete with the rapid deexcitation).

The cycle rate λc along with the sticking fraction
ωs constitute the two basic parameters of the catalysis
cycle. The average number of fusions per muon Y is
given by

1

Y
≈ λ0

λc
+ωs (90.27)

where λ0(≡ 1/τ0) is the muon-decay rate. (Note: more
precisely, W should appear in (90.27) in place of ωs. W
may include other losses, e.g., muon capture by impu-
rities, but we will restrict the present discussion to ωs,
which is fundamental and normally dominant.) Coinci-
dentally, the limits imposed on the yield by the cycling
rate and by sticking are similar; forφ≈ 1 and T ≈ 300 K,
λc/λ0 ≈ 300 and 1/ωs ≈ 200 for dtµ. More than 100
muon-catalyzed d-t fusions per muon have been ob-
served. Similar considerations apply to the ddµ cycle,
and, by further coincidence, the two limits are similar
there as well, λddµ

c /λ0 ≈ 7 and 1/ωeff(ddµ)
s ≈ 14. (Note:

the effective sticking probability (per cycle) in the ddµ

cycle takes into account that in only 58% of the fusion
reactions is a 3He produced that can remove the µ by
sticking. Sticking to t or p is possible but would facilitate
rather than terminate the cycling.) The four experimen-
tal “knobs” are the temperature (T ), density (φ), isotopic
fractions (ct, cd, and cp), as well as the molecular frac-
tions (cD2 , cDT, cT2 , · · · ) in the case of a target not in
chemical equilibrium.

Each stage of the cycle is discussed in the following
sections. The reader is referred to reviews [90.84,89–92]
for details of the theoretical and experimental methods
and extensive values of the relevant parameters.

90.3.2 Muon Atomic Capture

The µCF process starts with a free muon, injected
into a mixture of hydrogen isotopes, being stopped to
form a muonic atom (stopping power is discussed in
Sect. 91.1.1). The slowing and capture occur primarily
by ionization, e.g.,

µ+D →
{

µ+ d+ e

dµ(n)+ e .
(90.28)

The muon is captured into an orbital with n �√
mµ/me ≈ 14, which has about the same size and

energy as that of the displaced electron.
Methods for hydrogen and helium atoms have

been reviewed in [90.93]; the brief discussion here
emphasizes the correct intuitive understanding. Until
1977 most calculations were done using the Born or
Coulomb–Born approximation [90.94]. These methods
are not very accurate for µ− at velocities below 1 a.u.,
but, more importantly, their implementation treated
slowing down and capture inconsistently. The upshot
was prediction of capture of muons typically with ki-
netic energies of hundreds of eV, whereas it turns out that
most captures actually occur at energies below 100 eV.

The perturbative methods fail because of the great
electron charge redistribution that occurs during the cap-
ture process. Six other approaches have led to accurate
treatment:

1. Adiabatic ionization with straight-line trajectories
(AI-slt) [90.95],

2. Adiabatic ionization with curved trajectories (AI-
ct) [90.93, 96],

3. Diabatic states (DS) [90.97, 98],
4. Classical-trajectory Monte Carlo (CTMC) [90.96],
5. Time-dependent Hartree–Fock (TDHF) [90.99],
6. Classical-quantal coupling (CQC) [90.100].

The first three are models tailored for the muon cap-
ture problem (the first two of these specialized for the
hydrogen-atom target). The results for all six methods
are shown in Fig. 90.3.

The early study by Wightman [90.95] shed a great
deal of light on the capture process. His method, known
as adiabatic ionization (AI), followed on the observation
of Fermi and Teller [90.101] that there exists a critical
strength of the dipole eRc, formed by the negative muon
and positive proton at distance Rc = 0.639 a0, for bind-
ing the electron. In collisions where the µ− approaches
closer than this distance, the electron is assumed to es-
cape adiabatically, and, if the electron carries off more
energy than the muon’s initial kinetic energy, the pµ

atom is formed. This cross section is thus

σAI-slt = πR2
c , (90.29)

and µ− capture results if and only if E < 0.5 a.u., the
target ionization energy.

The AI-slt model has three major shortcomings: (1) it
does not take into account trajectory curvature, which
is caused by the Coulomb attraction of µ− toward the
nucleus and can be large at the low trajectory veloci-
ties where capture usually occurs, (2) the adiabatically
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escaping electron takes off no kinetic energy, and (3) ion-
ization occurs with unit probability if the approach is
closer then Rc. The first failing is easy to remedy. The
cross section with curved adiabatic trajectories (AI-ct)
is just [90.96]

σAI-ct = πR2
c

E

(
E+ 1

Rc
−0.5 a.u.

)
(90.30)

as long as the collision energy E in the center-of-mass
system is greater than 0.03 a.u. (0.8 eV). Hence trajec-
tory curvature increases the capture cross section by
a factor 1+ 1.06

E (for E in a.u.), which is over a factor
of three even at the highest collision energy (0.5 a.u.)
where adiabatic capture can occur. For E < 0.03 a.u.,
the centrifugal barrier in the effective potential,

Va(eff)(R, b)= Va(R)+ b2

R2 E , (90.31)

restricts penetration and reduces the cross section below
the value given by (90.30) [90.93].

Cures for the second and third failings are less
trivial. These two assumptions can be avoided by us-
ing the diabatic-states (DS) model [90.97, 98]. The
adiabatic electronic energy no longer increases once
it reaches the continuum ceiling; however, in view of
the µ− acceleration by the Coulomb attraction, the
electron cloud actually does not have enough time

15

10

5

0
0.0 0.2 0.4 0.6 0.8

σcapt(πa0
2)

Relative energy Ecm (a.u.)

Al-slt
Al-ct
DS

CTMC
TDHF
CQC

Fig. 90.3 Comparison of different capture cross sections
for µ−+H collisions: adiabatic ionization with straight-
line trajectories(AI-slt), adiabatic ionization with curved
trajectories (AI-ct), diabatic states with polarized orbital
(DS), classical-trajectory Monte Carlo (CTMC), time-
dependent Hartree-Fock (TDHF), and classical-quantal
coupling (CQC)

to adjust adiabatically. In recognition of this situation
the diabatic electronic energy crosses into the contin-
uum at a distance larger than Rc and continues to rise
smoothly. The concomitant probability of ionization is
given by the ionization width, obtained by a Fermi-
golden-rule-like formula. The first three approaches are
somewhat specialized models, while the next three are
general methods. The most economical in terms of
computer time is the classical-trajectory Monte Carlo
(CTMC) method [90.96] discussed in Chapt. 58. This
method treats the dynamics of all particles completely
classically. The time-dependent Hartree–Fock (TDHF)
method discussed in Sect. 50.2 is purely quantum mech-
anical [90.99], but neglects correlation, which turns out
to be important in the present problem. This deficiency
is remedied by the classical-quantal coupling (CQC)
method, which makes only the seemingly well-justified
approximation of treating the muon classically while
retaining the quantum treatment of the electron [90.100].

Real µ− capture experiments are done with
molecules (H2, DT, etc.). The naive notion that the
H2 cross section is simply twice that of H is quite
unrealistic for slow (v& 1 a.u.) collisions. In the past
decade there has been a major advance in the under-
standing of µ− capture by hydrogen, which is the first
step in µCF. The captures by the H atom and the H2
molecule, previously thought to differ by less than a fac-
tor of two, have been shown theoretically to be quite
different [90.102]. For a comprehensive review of all
methods used to threat capture of negative particles see
the review article [90.103]. This difference is primarily
due to the vibrational degree of freedom, which enables
the molecule to capture µ− at collision energies up to
≈ 40 eV with n � 9, whereas atomic capture cuts off
above≈ 14 eV with n � 14. There is a corresponding iso-
tope effect in the molecule, which is absent in the atom.
Experiments may be conducted in the near future on the
analogous capture of antiprotons by H and H2 [90.104].

90.3.3 Muonic Atom Deexcitation
and Transfer

The muon is captured in a highly excited state but nor-
mally must reach the 1s configuration of the heavier
isotope (in case of mixtures like D/T ) before the muonic
molecule is formed. In the 1s configuration there are two
hyperfine levels – the ground state with the nuclear and
µ− spins antiparallel and an excited state with spins
parallel. Resonant molecular formation rates in the two
states can be quite different and also depend strongly
on the atom’s kinetic energy. Thus there are several
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types of muonic atom collisions that must be taken into
account: (1) elastic scattering in the ground and excited
states, (2) isotopic transfer in excited states, (3) deex-
citing transitions (which may also occur radiatively),
(4) isotopic transfer in the 1s state, and (5) hyperfine
transitions. Cross sections for most of these processes
have been calculated. The bulk of the calculations
have been done by expanding in adiabatic (or modi-
fied adiabatic) eigenfunctions, but there also exist some
calculations using the coupled-rearrangement-channel,
Faddeev, and hyperspherical approaches (see [90.84] for
references).

The cascade of the initially formed muonic atom,
especially in mixtures, is a complicated process not yet
completely characterized. It constitutes a crucial part
of the d− t µCF cycle in that it determines the par-
ameter q1s in (90.26). This parameter is essential to
experimental analysis, but it was evident that early cal-
culations yielded values of q1s too small to be consistent
with experiments. Recent calculations [90.105] suggest
the explanation is that the excited muonic atoms are
not thermalized. Epithermal atoms have three effects
here: (1) the normal transfer rates are smaller, (2) the
transfer is reversible down to lower principal quantum
numbers n where E still exceeds the threshold for excita-
tion of the next-higher level, and (3) excited-state [from
(tµ)∗] resonant formation of (dtµ)∗ molecules that can
predissociate back to dµ is enhanced [90.106]. (Note:
the isotopic energy splittings are 134.7/n2 for dµ-pµ,
182.8/n2 for tµ-pµ, and 48.0/n2 for tµ-dµ.) The q1s is
determined by competition between transfer and deex-
citation, which depend on the kinetic energies that result
from further competition between superelastic deexci-
tation and thermalizing elastic collisions. It appears that
the stage of the cascade most crucial to q1s is n ≈ 4
for normal muon transfer and n = 2 for the resonant
sidepath.

For muons, the elastic cross sections are more dif-
ficult to calculate than the inelastic ones. The inelastic
transitions occur at short range (a few aµ) where the
effects of electronic structure are negligible. However,
electronic effects are not negligible for low energy
(< 1 eV) elastic scattering where λdB ≈ 1 a0. They have
been taken into account for ground state but not yet
excited state scattering. In doing so, it is not neces-
sary to solve the general problem directly because of
the following simplifications: (1) this energy is below
the vibrational threshold so the molecular target can
be taken as a rigid rotor and (2) the relative smallness
of the muonic atoms makes the sudden approximation
adequate.

If the 1s state is reached without muon transfer to
the heavier isotope already having occurred, the trans-
fer takes significant time and plays an important role in
determining the tritium fraction ct that optimizes the fu-
sion yield. All of the 1s isotopic-exchange cross sections
display the characteristic ≈ 1/v velocity dependence at
thermal energies so that the corresponding rate vσ is
independent of temperature.

In muon-catalyzed d–d and d–t fusions, the reso-
nant molecular formation rates in different hyperfine
structure (hfs) states can differ by two or more orders
of magnitude at low T due to their different energy
levels. The hfs also has important effects on thermaliza-
tion and diffusion via the different elastic cross sections.
Under usual µCF experimental conditions, the hyper-
fine quenching (or “spin flip”) is irreversible; the hfs
splittings are 0.1820, 0.0485, and 0.2373 eV for pµ,
dµ, and tµ, respectively. Theoretically, it is expected
that transitions between hfs levels mainly occur in sym-
metric collisions since muon exchange suffices in such
collisions [90.107]; e.g.,

tµ(↑↑)+ t(↓)→ t(↑)+ tµ(↓↑) (90.32)

(the usual terminology here is “muon exchange” al-
though it might seem more logical to refer to the reaction
as “triton exchange” since it is the identity of the tritons
that enables the reaction). As in the case of the iso-
topic exchange cross sections, the behavior is ≈ 1/v at
thermal energies, so the rates are nearly independent of
temperature.

90.3.4 Muonic Molecule Formation

Until the prediction by Vesman [90.108] of a reso-
nant formation for ddµ, it was thought that all muonic
molecules were formed by an Auger process of the type

dµ+D2 →[(ddµ)de]+ + e− . (90.33)

Unlike the resonant process for ddµ and dtµ, the
nonresonant process generally depends weakly on the
temperature of the target, the hyperfine state of the
muonic atom, and the “spectator” atom X in the mol-
ecule DX, where X can be H, D, or T. The nonresonant
rate at low (liquid hydrogen) temperature for ddµ forma-
tion is about 3 × 104 s−1 and for dtµ is about 6 × 105 s−1.
These rates are competitive with the resonant rates at
low T for dµ(↑↓)+D2 and tµ(↑↑)+D2, but are 2 to
3 orders of magnitude smaller than the resonant rates for
dµ(↑↑)+D2 and tµ(↑↓)+D2, respectively. The (↑↓)
state is the ground state; thus hfs quenching plays an
important role in low-temperature experiments, espe-
cially for ddµ. At room temperature, resonant formation
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is dominant for both the ground and excited hyperfine
states of dµ and tµ.

In the Vesman mechanism the binding energy of the
muonic molecule goes into rovibrational excitation of
the electronic host molecule instead of into ionization
of a molecular electron. The process is resonant since
the collision energy must be tuned to match the energy
of the final discrete state. For the compound molecule
formed, two sets of rovibrational quantum numbers are
needed, e.g.,

(tµ)F +[D2]Kiνi →
[
(dtµ)FS

Jv dee
]

Kf ν f
, (90.34)

where (Ki , νi), and (K f , ν f ) are the initial and final
quantum numbers of the electronic molecule, (J, v) are
the quantum numbers of the muonic molecule, F is
the spin of the muonic atom, and S is the total spin
of the muonic molecule. The energetics of this process
is shown in Fig. 90.4.

The resonant condition is achieved at the collision
energy

εres (tµ+D2)= εFS
11 [dtµ]
+ EKf ν f [(dtµ)dee]− EKi 0[D2] ,

(90.35)

where it is explicitly recognized that (J, v)= (1, 1) is the
only muonic level that can satisfy the resonant energy
condition and that only νi = 0 is populated at ordinary
temperatures. Accurate calculations require values of
εres to within about 0.1 meV. The rovibrational ener-
gies EKν of the electronic molecule, as well as the
Coulomb contributions to the binding energy of the
muonic molecule, εFS

11 , are now known to this high ac-
curacy. However, εFS

11 is subject to corrections due to
relativity, vacuum polarization, nuclear charge distribu-
tions and polarizabilities, the hyperfine interaction, and

Table 90.1 Resonant (quasiresonant if negative) collision energies εres (in meV) calculated using (90.35)a

dµ+D2 tµ+D2 tµ+DT
[(ddµ)11dee]νf = 7 [(dtµ)11dee]νf = 2 [(dtµ)11dee]νf = 3 [(dtµ)11tee]νf = 3

F, S, Ki, K f εres F, S, Ki, K f εres F, S, Ki, K f εres F, S, Ki, K f εres
1
2 ,

1
2 , 0, 1 52.7 0, 1, 0, 1 −14.0 0, 1, 0, 1 277.1 0, 1, 0, 1 163.8

1
2 ,

3
2 , 0, 1 76.9 0, 1, 0, 2 −4.3 1, 0, 0, 1 223.5 1, 0, 0, 1 110.2

3
2 ,

1
2 , 0, 1 4.2 0, 1, 0, 3 10.3 1, 1, 0, 1 226.9 1, 1, 0, 1 113.6

3
2 ,

3
2 , 0, 1 28.4 0, 1, 1, 2 −11.7 1, 2, 0, 1 233.3 1, 2, 0, 1 120.0

1
2 ,

1
2 , 1, 0 40.9 0, 1, 1, 3 2.9

1
2 ,

3
2 , 1, 0 65.1

1
2 ,

1
2 , 1, 2 54.1

1
2 ,

3
2 , 1, 2 78.3

a Note: kT = 1 meV for T = 11.6 K

tµ+ D2

εres

ε11
01

J = 1,
v = 1

νf = 3

νf = 2

3
2

1
0

νf = 1

νf = 0

νi = 0 Ki =0

(dtµ) dee

Kf

E32

[(dtµ)dee]

dtµ

E00 [D2]

Fig. 90.4 Diagram of energy levels for the resonant reac-
tion tµ+[D2]Ki=0,νi=0 → [(dtµ)F=0,S=1

J=1,v=1 dee]K f ν f . The rovibra-
tional quantum numbers are designated by (J, v) for the muonic
molecule and (K, ν) for the electronic molecules

the finite size and shape of the muonic molecule in the
complex. The present overall accuracy is≈ 1 meV. Some
of the resulting values of εres are given in Table 90.1. The
calculated cross section for reaction (90.34) is sharply
peaked at Eres, but must be averaged over a kinetic
energy distribution (e.g. Maxwellian) to obtain the ob-
servable rate. Still, the rate will display a characteristic
resonant dependence on T .

Because the Eres are different for each target
molecule (D2, DT, T2, · · · ), the effective molecular
formation rate in a mixture depends on the molecu-
lar composition in addition to the isotopic fractions
(cd, ct, · · · ) if the target is not in chemical equilibrium.
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The rate of ddµ and dtµ resonant molecular forma-
tion is calculated from

λm f (T )= N
∑

f

∫ {
dε 2π |〈i|H ′| f 〉|2

× f(ε, T ) I(ε− εi f , T )
}
, (90.36)

where N is the target density, 〈i|H ′| f 〉 is a transition
matrix element, f(ε, T ) is the collisional energy distri-
bution, εi f is the energy of the unperturbed resonance,
and I(∆ε, T ) is the intensity at energy ∆ε relative to the
unperturbed energy. H ′ has usually been taken to be the
dipole interaction (“post” form of the rearrangement-
collision Hamiltonian using the dtµ bound state as the
zeroth-order Hamiltonian [90.109]),

H ′ = e2d · E , (90.37)

where d is the dipole operator of the dtµ (or ddµ)
system and E is the electric field at the dtµ (or ddµ)
center of mass due to the “spectator” nucleus and elec-
trons [90.110]. Conservation of angular momentum thus
requires [90.111]

L+Ki = J+K f (90.38)

where L is the orbital angular momentum of relative
motion for tµ+D2 in reaction (90.34). At low T , L = 0
is predominant so that K f = Ki ±1. This is simply the
case for dµ+D2 → (ddµ)dee where the most proba-
ble transition is (K, ν)= (0, 0)→ (1, 7). For dtµ the
vibrational state of the electronic molecule changes by
only ∆νi = 2 or 3 instead of 7, so the matrix element
of (90.37) and the resulting rate are considerably larger
than for ddµ. However, it can be seen in Fig. 90.4 that
if D2 is in its ground state (Ki = 0), the first level en-
ergetically accessible for (dtµ)dee has K f = 3. If, as
proves to be adequate in the case of ddµ, the intensity
distribution I is taken to be a δ function, the lower lev-
els are eliminated from (90.36). There are two possible
solutions to this problem, whose importances have not
been fully resolved: (1) the less likely L > 0 collisions
contribute or (2) the levels with smaller K f play a role
even though they lie “below threshold”.

The latter case is termed “quasiresonant”. The-
oretically the levels below threshold can contribute
(1) directly if they are broadened so that they extend
to positive energy [90.112–114] or (2) indirectly if
configurations with different K f are mixed [90.115].
Broadening can occur either inhomogeneously due to
the finite lifetime (mainly with respect to Auger emission
of an electron in the complex) or homogeneously due
to collisions with neighboring molecules. Interactions

with neighboring molecules also can mix the different
K f states, so the K f = 3 state may “borrow” some in-
tensity from the lower K f states. Three-body molecular
formation facilitated by neighboring molecules leads to
a density dependence of the formation rate (normalized
to LHD) that has been observed in experiments.

Experimentally, the resonant dtµ formation has now
been observed directly [90.116]. Previously the experi-
mental evidence for this mechanism derived from the
magnitude and the temperature dependence of the µCF
cycling rate. The new experiment, at TRIUMF, ob-
tained the energy-dependent molecular-formation rate
by measuring the time of flight between a cryogenic
layer where the tµ atom was formed and a second cryo-
genic layer where the dtµ molecule was formed and
fusion occurred.

90.3.5 Fusion

Usually the nuclear fusion rate in muonic molecules
is calculated by a separable method; i. e., the united-
atom limit of the molecular wave function is determined
ignoring nuclear forces and then simply multiplied
by a single number extracted from nuclear scattering
experiments [90.117]. Fusion of d− t is strongly dom-
inated by the Iπ = 3

2
+

resonance of 5He. For dtµ we
have

λf
dtµ= A lim

rdt→0

∫
|ψdtµ|2 d3rµ , (90.39)

where A is simply related to the low-energy limit of the
astrophysical S factor by

A = �

πe2 Mr
lim
E→0

S(E) , (90.40)

where Mr is the reduced mass of the nuclei. S(E) is
usually obtained by fitting the d+ t fusion cross section
observed in beam experiments to the form of (90.18).

The above formulation has yielded fusion rates in
good agreement with another formulation – more ac-
curate in principle – where a complex molecular wave
function and energy are obtained directly incorporating
the nuclear forces. In the latter approach,

λf
dtµ=−2 Im(E dtµ)/� , (90.41)

where E dtµ is the complex eigenvalue (the imaginary
part is −Γ/2, where Γ is the width). The nuclear
effect in this formulation is taken into account by
two different techniques: (1) using a complex opti-
cal potential [90.118, 119] (Sect. 48.2), and (2) using
the nuclear R-matrix as an interior boundary condi-
tion [90.120–122] (Sect. 47.1.5). In the optical potential
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method, a short-range complex potential, determined
by fitting experimental nuclear scattering data, is added
to the three-body Coulomb potential; the real part de-
scribes elastic scattering and the imaginary (absorptive)
part describes the fusion reaction. Then the eigenvalue
problem is solved over all space with a regular bound-
ary condition at the origin. In the R-matrix method,
the same nuclear scattering data are used to determine
a complex boundary condition at a distance characteris-
tic of the nuclear forces, say rdt = adt where adt ≈ 5 fm.
The muonic eigenvalue problem is then formulated with
the boundary condition at rdt = adt and solved over
the space excluding rdt < adt. The two methods can be
used with similar basis sets to expand the wave func-
tion, which can also be used to calculate the sticking
probability (Sect. 90.3.6).

The relation of other µCF cross sections to normal
beam experiments is somewhat more complicated. In
the cases of ddµ and ttµ, the fusion may occur in J=1
states, since the J=1 to J=0 transition is forbidden in
molecules with identical nuclei. In this case the rele-
vant information from beam experiments resides in the
p-wave anisotropy, which is relatively small at low en-
ergies where σ is dominated by the s wave. It is then
necessary to carry out the analysis in terms of the partial-
wave transition amplitudes rather than the fit of the
integrated σ via the S factor [90.123].

Fusions in pdµ and ptµ present a different compli-
cation [90.117]. There is a significant E0 contribution
from muon conversion in addition to the M1 γ -ray
contribution seen in p+ d and p+ t beam experiments
(see Sect. 12.1 for discussion of multipole moments).
The E0 contribution cannot be expressed through cross
sections observed in the beam experiments, but has been
determined using the bound-state nuclear wave func-
tions of 3He (or 4He) and scattering wave functions of
p+ d (or p+ t). For pdµ there is the additional com-
plication that two different p− d spin states contribute
significantly. For ptµ, theory [90.117] predicts that the
probability of the fusion energy going into a e+ e− pair
is competitive with that of muon conversion, though the
former has not yet been observed.

90.3.6 Sticking and Stripping

The fundamental mechanism of muon loss from the
catalysis cycle, other than by particle decay, is via stick-
ing to a helium nucleus, 4He(≡ α) or 3He, produced in
the fusion reaction. Especially in the case of dtµ, where
the charged particle is fast and the sticking probabil-
ity is already small, subsequent collisions may strip the

muon.Thus the sticking probability is determined by two
steps

dtµ ���

���

α+µ+n

αµ(3.5 MeV) +n

1−ω0
s

ω0
s

���

���

α+µ

αµ(thermal) .

R

1− R

(90.42)

The initial sticking probability ω0
s depends only on

intramolecular dynamics, but the stripping conditional
probability depends on collisions. (Note that ω0

s is not
the sticking in the zero-density limit since R is still finite
in this limit.) The net sticking is then

ωs = ω0
s (1− R) . (90.43)

Since the nuclear reaction is very rapid compared
with the atomic and molecular dynamics, the probability
of sticking in a given state ν is given adequately by the
sudden approximation,

Pν =
∣∣∣
〈
ψ( f )
ν |ψ(i)

〉∣∣∣
2
, (90.44)

where the initial wave function ψ(i) is the normalized
molecular wave function in the limit rdt → 0 and the
final wave function ψ( f )

ν is given by

ψ( f )
ν = φnm(r)eiq·r (90.45)

in which φnm is an atomic wave function of
(

4Heµ
)+

and the plane wave with momentum q represents its
motion with respect to the initial molecule (recoil deter-
mined by conservation of energy and momentum). The
total sticking is then

ω0
s =

∑

ν

Pν . (90.46)

The
(

4Heµ
)+ wave function is known analytically

since it is hydrogenic. Most of the labor goes into
determination of the muonic molecule wave function.
In the Born–Oppenheimer approximation this is sim-
ply “

(
5Heµ

)+” and results in
(
ω0

s

)
BO = 1.20% for

dtµ [90.124]. More accurate nonadiabatic calculations
show that the muonic motion lags behind that of the
nuclei and reduces ω0

s to 0.886% [90.125, 126]. After
inclusion of nuclear effects, the best current theoretical
value of ω0

s is 0.912% [90.122, 127].
Since the ground state (Heµ)+ ion is bound by

11 keV, it takes a quite energetic collision to strip off
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the muon. The reactivation fraction R is determined
basically by competition between collisional processes
that slow down the muonic ion and those that lead
to stripping. Calculation of R requires a full kinetic
treatment of the fast (Heµ)+ ion, starting with its dis-
tribution among various states (1s, 2s, 2p, · · · , n ≈ 10).
The most important processes are stopping power (due
mainly to ionization of the medium) and muon ioniza-
tion or transfer in collisions of the (Heµ)+ ion with
an isotope of H, but inelastic (excitation and deexci-
tation), Auger deexcitation, and -changing collisions
as well as radiative deexcitation are also involved. The
initial sticking occurs mostly in the 1s state (77% of
the αµ’s from dtµ fusion), but the excited states have
larger ionization cross sections. Most of the muons
stripped from αµ originally stuck in the 1s state, but
a significant number are promoted to excited states be-
fore being ionized (so-called “ladder ionization”). The
metastable 2s state is significant for its role in pro-
longing the excited state populations. The resulting
values of R and ωs are shown as a function of density
in Fig. 90.5.

Most experiments on d-t µCF have been done with
neutron detection [90.137–139], where λc and the muon
loss probability per cycle W can be deduced from the
time structure of the neutron emissions. The analysis
is indirect and requires a theoretical model. What is
actually measured is the product Wφλc; the extraction
of ωs requires corrections for other loss mechanisms
and separate determination of λc. Thus it is desirable
to have other experimental diagnostics. Two types of

Table 90.2 Comparison of sticking values a

Source φ ωs(%) ω0
s (%)

Theory

[90.122, 127] 1.2 0.59 0.91

Neutron Experiments

LANL [90.128] ≈ 1 0.43±0.05±0.06 0.66

PSI [90.129] ≈ 1 0.48±0.02±0.04 0.74

KEK [90.130] 1.2 0.51±0.004 0.78

KEK [90.131] solid 0.421±0.008±0.029 0.65

X-ray Experiments

PSI [90.132] 1.2 0.39±0.10 0.60

KEK [90.130] 1.2 0.34±0.13 0.52

α/αµ Experiments

LANL [90.133] 0.001 – 0.80±0.15±0.12

PSI [90.134] 0.17 0.56±0.04 0.80
a Experimental values of ω0

s without error bars were obtained assuming the theoretical stripping [90.135, 136]
In cases of two error estimates, the first is statistical and the second is systematic
The extraction of ωs from the X-ray experiments requires theoretical scaling

Fig. 90.5 Theoretical sticking fraction (solid curve) and
reactivation probability (dashed curve) for d-t µCF

corroborating experiments detect either X-rays from the
αµ formed by sticking or detect the species (α)2+ and
(αµ)+ by the different effects of their double and single
electrical charges.

The theoretical sticking is compared in Table 90.2
with that from all three types of experiments. For a more
meaningful comparison of measurements at different
densities φ, the theoretical R has been used to convert
all values to ω0

s . The theoretical values are slightly, but
significantly, higher than the observations. This discrep-
ancy has not yet been resolved.

One intriguing explanation for the lower-than-
predicted value of ωs may be that a significant fraction
of the fusions might occur in muonically excited bound
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or resonant states for which the initial sticking is lower
than in the ground state [90.140].

A recent experiment has systematically studied
muon-catalyzed fusion in solid deuterium and tritium
mixtures as a function of temperature and tritium con-
centration [90.141]. An unexpected decrease in the
muon cycling rate (λc) and an increase in the muon
loss (W) were observed. The former is likely due to the
freezing out of phonons contributing to the resonance
energy. The latter is especially intriguing. It is incon-
ceivable that ω0

s for fusion in a given state of dtµ could
depend on temperature, but this observation could im-
ply either an unexpected effect of temperature on the
muonic state in which fusion occurs or an unpredicted
temperature dependence of the thermalization kinetics
(e.g., due to ion channeling). It should be noted that
the experimental analysis does not reject the possibil-
ity of some correlation between the extracted values
of λc and W [90.140].

90.3.7 Prospectus

There is still a great deal to be learned from the
less-studied µCF cycles, like those of p-d, p-t, and
t-t, but more quantitative work is also needed on some
key processes in the d-t µCF cycle: in particular, three-
body effects on molecular formation at high densities,
the excited-state cross sections and kinetics that go into

the determination of the cascade factor q1s, and the re-
maining discrepancy in the sticking factor ωs which
might have a theoretical or experimental resolution.
Experimentally it is of interest to push on to higher
temperatures and densities to see if more surprises lurk
there. There have been a few schemes proposed to en-
hance stripping of stuck muons artificially, but none has
been subjected to experiments yet.

The currently observed yield of about 150 d-t fu-
sions (releasing 17.6 MeV each) per muon produces
an energy return 25 times the rest-mass energy of the
muon, but is only about one-third of that required for
breakeven in a pure-fusion reactor. This conclusion is
based on the estimated energy cost of producing a muon,
≈ 8 GeV [90.142,143]. Other possible practical uses in-
clude a hybrid (fusion-fission) reactor [90.142, 143] or
an intense 14 MeV neutron source [90.144].

Apart from such technological applications, the
study of µCF is fruitful for a number of reasons including
(1) bridging the gap between atomic and nuclear physics,
(2) enabling nuclear reactions (including p-waves) at
room temperature, (3) allowing precise studies under
unusual physical conditions, (4) observing a compound
electronic-muonic molecular environment, and (5) ex-
hibiting phenomena spanning nine orders of magnitude
in distance and energy. The experimental possibilities
are far from exhausted even though the holy grail of
pure fusion energy now appears just beyond reach.
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Charged-Part91. Charged-Particle–Matter Interactions

In the description of the interaction of fast
charged particles with matter, two aspects can be
distinguished: the effects on the particle, usually
energy losses and deflections, and the spatial
distribution of the energy lost by the particle in
the absorber.

This Chapter discusses concepts needed in
the operation of charged particle detectors
and in describing radiation effects (Chapt. 92).
Specifically, the radiation effects used for the
instantaneous observation (i. e., within fractions
of a millisecond) of the passage of a charged
particle are described. Delayed effects, such
as chemical reactions (e.g., biological effects,
chemical dosimeters, photographic emulsions),
metastable states, etc. are not discussed. It
is assumed that particle speeds have been
determined with, e.g., magnetic analyzers or by
measurement of the time of flight. A measurement
of particle ranges can also be used to determine the
initial speed. The description is restricted to fast
charged particles, defined by speeds v > 6vB (vB is
the Bohr speed), or β= v/c > 0.04. Interactions
and cross sections at smaller speeds are discussed,
e.g., by Rudd et al.[91.1] and in [91.2].

The present Chapter primarily considers energy
loss straggling, rather than the stopping powers
discussed by Fano [91.3].

91.1 Experimental Aspects ........................... 1374
91.1.1 Energy Loss Experiments

and Radiation Detectors............. 1374
91.1.2 Inelastic Scattering Events .......... 1375

91.2 Theory of Cross Sections ....................... 1376
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91.7 Detector Conversion Factors .................. 1385
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It is important to understand that the mean energy-loss
is not a suitable concept to use in the description of
energy-loss spectra for thin absorbers. The most prob-
able energy-loss should be used instead. The methods
described here can be used to calculate reliable data
for detector applications. No attempt is made to present
a complete review. Anecdotal, qualitative examples of
various effects are described. The following definitions
are used:

1. The number of atoms or molecules per unit vol-
ume N = NA�/A, with A the molecular weight
(in g/mole) of the absorber (with Z2 electrons per

molecule), � its density, and NA is Avogadro’s
number;

2. The relativistic factors β and γ for particles with rest
mass M0, speed v= βc and kinetic energy T :

β2 =
(
T /M0c2

)(
2+T /M0c2

)/

(
1+T /M0c2

)2
,

γ = M/M0 = 1+T /M0c2 ,

γ 2 = 1/
(

1−β2
)
,

β2γ 2 = γ 2−1 ;
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3. The coefficient of the Rutherford equation:

kR = 2πZ2
1e4

mec2 = 2πr2
0mec2 Z2

1

= 2.549 55 × 10−19 Z2
1 eV cm2 , (91.1)

where me is the rest mass of an electron, −e its
charge, Z1e the charge of the incident particle, and
r0 = α2a0 is the classical electron radius; and

4. The maximum energy loss of a heavy particle to an
electron: Emax ∼ 2mec2β2γ 2 [91.4].

91.1 Experimental Aspects

91.1.1 Energy Loss Experiments
and Radiation Detectors

After passing through a thickness x of material, an
initially monoenergetic beam of particles acquires a dis-
tribution of energies described by a probability density
function

F(∆)= dN (∆)

d∆
, (91.2)

where ∆ is the energy loss per particle, and dN (∆)
is the number of particles in the range ∆ to ∆+ d∆.
The straggling function F(∆) represents the spectrum
of energy losses∆, such that

∫
F(∆) d∆=N , the total

number of particles observed. It can be characterized by
the quantities

1. the most probable energy loss ∆mp,
2. the full width at half maximum Γ ,
3. the moments [91.8]

µν = 1

N

∫
F(∆)∆ν d∆ , (91.3)

and the central moments

Cν = 1

N

∫
F(∆)(∆−µ1)

ν d∆ . (91.4)

Then µ1 = 〈∆〉 is the mean energy loss, C2 = σ2 is
the variance and γ1 = C3/C

3/2
2 is the skewness. The

fluence spectrum φ(T ) is the complementary function
describing the distribution of residual energies T of the
particles.

As an example, Fig. 91.1 shows F(∆) d∆ for
1.27 GeV protons passing through a 32 µm thick silicon
wafer [91.5]. The measured quantity is the ionization J
resulting from the creation of electron–hole pairs in the
silicon, so that ∆= JW is the energy deposited, where
W is the energy required to create an electron–hole pair.
For ∆< 15 keV, the energy deposited differs little from
the energy lost by the protons. For larger∆, some of the
secondary electrons may escape from the silicon, mak-
ing the apparent energy deposited less than the energy

lost [91.9]. The spectrum has a long tail extending up to
a maximum energy loss of 4.6 MeV. This accounts for
the large value of 〈∆〉 = 12.8 keV, and the even larger
value C1/2

2 = 43 keV for the standard deviation, relative
to ∆mp = 7.4 keV and Γ = 5.2 keV.

In losing energy, the beam particles also suffer an-
gular deflections, but for heavy particles, the deflections
are usually small. For electrons, angular deflections are
quite important, and are discussed in Chapts. 47, 64,
and 65. Nuclear reactions cause large effects but are
quite infrequent. Further examples of straggling spec-
tra are given in [91.5, 10–12] for thin, extremely thin,
moderately thick, and thick absorbers respectively.

Only for thick absorbers, the stopping power
S(T )=−dT /dx (i. e., the mean energy lost per unit
thickness) provides a convenient measure of the energy
loss process. For a beam with incident energy T0 and

250

200

150

100

50

0

∆(keV)
0 5 10 15

dN(∆) = F(∆)d∆

<∆>

1.27 GeV p
32 µm Si
N = 6000

Fig. 91.1 Energy loss straggling functions F(∆)d∆ for
1.27 GeV protons traversing a 32 µm silicon detector, with
d∆= 0.21 keV. The experimental data are shown by cir-
cles. Three calculated functions normalized to the same
peak height are shown for comparison [91.5]. The solid line
was calculated with the Bethe cross section Fig. 91.3 with
∆mp = 7.4 keV,Γ = 5.2 keV, and 〈∆〉 = 12.8 keV. The bro-
ken line is the Landau function [91.6] and the dotted line is
the Blunck–Leisegang modification [91.7]
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Charged-Particle–Matter Interactions 91.1 Experimental Aspects 1375

〈∆〉< 0.1T0, S(T ) is often approximated by

S(T0−〈∆〉/2)) 〈∆〉/x , (91.5)

provided that x % a0 (Sect. 91.4). The stopping power
S(T ) depends on the absorber properties, especially
the electron density NZ2. The radiation dose D(x) at
a distance x into the material is given by

D(x)=
∫
φ(T , x)S(T )dT , (91.6)

where φ(T , x) is the fluence spectrum. D(x) is used in
radiation dosimetry and protection [91.15, 16].

S(T ) ceases to be useful for very thin absorbers,
such as microscopic biological specimens, micro- or
nano-devices, or thin ionization chambers. Instead ∆mp
and Γ should be used. No simple equations can provide
∆mp and Γ . They must be found from calculated or
experimental F(∆). Calculations of F(∆) are described
in 91.4.2 and 91.6.

A detailed theoretical description of the energy de-
position process requires cross sections for the various
scattering events in the target, the most important being
collisions with electrons. The Rutherford cross section
for the collision of a particle with a free electron is only
useful for ∆� 30 UZ , where UZ is the binding energy
of a target electron (∼ 500 eV for outer shell electrons).
Various modifications to the Rutherford cross section
for smaller ∆ are discussed in Sect. 91.2.

91.1.2 Inelastic Scattering Events

If a beam of N monoenergetic particles with speed v
passes through an absorber of infinitesimal thickness dx,
the average number of particles experiencing a collision
with energy loss between E and E+ dE is given by

dN (E)=N Nσ(E) dE dx , (91.7)

where σ(E) is the collision cross section per molecule
differential in E; it depends on β. Using this equation,
σ(E) can be obtained from measurements [91.17, 18]
with extremely thin absorbers where particles on the
average suffer less than one collision. If particles pass
through a thicker absorber, they make several collisions
with energy losses Ei ; and the total energy loss is ∆=∑

Ei (Sect. 91.4.2).
Large differences exist between a gas and a solid

of the same composition due to changes in the va-
lence shell electrons. In isolated atoms [91.14], the
smallest energy losses are to discrete excited electronic
states. Ionizations occur for energy losses exceed-
ing the binding energies Ul for each atomic shell l

and the released electrons are given a kinetic energy
δ = E−Ul . For ionization, energy losses are contin-
uous (Fig. 91.2). If atoms are brought closer together
to form a liquid or a solid, their valence electrons
come under the influence of the cores of surround-
ing atoms. A core is defined to consist of the nucleus
and all the electrons inside the valence shell. For C,
O, or H2O, the core consists of two electrons in the
K-shell, for Al or Si it contains two electrons in the
K-shell and eight electrons in the L-shell. For metals,
the valence electrons form a conduction band where
they are nearly free. If a charged particle moves through
the solid, the transfer of very small energies to the
electron by Rutherford scattering is not observed. In-
stead, many thousands of them are excited at a time.
For metals, this process is called plasmon excitation,
for insulators, collective excitation (Fig. 91.2). For most
substances, the plasmon excitation energy Ep is much
larger than the energy of the lowest excited state of
the atom E1. For example, for Be, E1 = 3.6 eV [91.13],
while Ep = 19 eV [91.17]. Similarly, for silicon,
E1 = 3.6 eV [91.13] and Ep = 16.7 eV [91.5].

For molecules, measurements of electron energy
losses [91.18] provide information about the difference
in the structure of σ(E) between gas and solid. For ex-
ample, for benzene (C6H6) the vapor shows distinct
structures for excitations to several discrete states, and

100

10–1

10–2

10–3

10–4

2 5 10 20 50 100 200

f (E O)(eV–1)

E (eV)

solid, I = 174 eVgas,
I = 131 eV

ln I = � f (  ) ln   d� � �

Fig. 91.2 Comparison of the dipole oscillator strength spec-
tra for atomic and solid silicon. Discrete atomic excitations
are shown by vertical lines, continuum excitations by
the dotted line. Data for the atom are based on calcula-
tions [91.13]. Data for the solid are from [91.5]. The broad
peak at ≈ 17 eV represents the plasmon excitations. Uncer-
tainties may exceed 10%. The discrete atomic excitations
disappear in the solid. The photoionization cross section is
σ(E)= 109.8 f(E)Mb [91.14]
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1376 Part G Applications

a broad peak at about 16 eV which appears to be equiva-
lent to a collective excitation. For the solid, the structures
are broadened, and the major peak for the collective ex-
citations shifts to 21 eV. Data for water can be found
in [91.19].

For energy losses well above Ep, σ(E) decreases
smoothly until the ionization energy of the next electron
shell is reached, as shown in Fig. 91.2. In a molecular
substance such as CaCO3, several broad peaks appear
between 7 and 40 eV, followed by narrow peaks at 280 eV
(carbon K-shell), 345 eV (Ca L-shells), 530 eV (oxygen
K-shell) and 4 keV (Ca K-shell) [91.17].

While there are large changes in the structure of
the excitation of the valence electrons as the atoms
are coalesced into a solid (Fig. 91.2), changes are less
important for the inner shells because the binding en-
ergies of these shells are much larger than chemical
energies. As an example, for an amorphous thin car-

bon film, the K-edge is at 284 eV [91.17], and K-shell
excitation shows essentially just one peak at ≈ 296 eV.
For the three biologically important molecules adenine,
uracil and thymine, several peaks appear [91.20], all
located between 284 and 300 eV. Thus there is at most
a small change in the energy of the K-shell excitation, but
the number of peaks as well as their locations changes
considerably. For Al above the K-edge (1.56 keV),
a structure with several peaks appears [91.21], with
separations of about 40 eV. This structure, called ex-
tended X-ray absorption fine structure (EXAFS) [91.22],
is caused by the presence of nearby atomic cores
which backscatter the photoelectrons and thus change
their wave functions. The discrete excitations of the
atom below the K-edge disappear completely. Thus
solid state and chemical effects are very important
for valence shell electrons, and less so for inner-shell
electrons.

91.2 Theory of Cross Sections

The cross section for the collision of two free
charged particles is given by the Rutherford ex-
pression. If charged particles collide with electrons
bound in atoms, molecules or solids, the cross sec-
tion can be written as a modified Rutherford cross
section. A plausible way of describing these interac-
tions is to consider the emission of virtual photons
by the fast particle, which then are absorbed by
the material in the Fermi virtual photon method
(FVP) [91.23]. The collision cross section then is pro-
portional to the photo absorption cross section of the
molecules. Bohr [91.24] described this as a “resonance”
effect.

A variety of models has been used to obtain theoret-
ical σ(E) for bound electrons. Here, three of them will
be described and compared with each other. Examples
are shown in Fig. 91.3. Few analytic functions and meth-
ods are available to calculate cross sections (Chapt. 47).
Usually, numerical calculations must be made to obtain
reliable data for real absorbers.

91.2.1 Rutherford Cross Section

The cross section for close collisions of fast charged
particles with loosely bound electrons is well approxi-
mated by the cross section for the collision of a charged
particle with a free electron at rest. The nonrelativistic
Rutherford cross section σR(E) for an energy loss E in
the collision of a charged particle with speed v in the

laboratory frame is given by [91.25–28]

σR(E)= 2πZ2
1e4

mv2

1

E2
= kR

β2

1

E2
. (91.8)

Since the secondary electron receives all the energy E
lost by the incident particle, the momentum transfer is
q =√

2mE. The cross sectionσR(E) does not depend on
particle mass M. The leading relativistic correction (For
γ > M/m, further terms must be included [91.29–31])
is

σ ′R(E)= σR(E)

(
1−β2 E

Emax
x

)
. (91.9)

91.2.2 Binary Encounter Approximation

A simple correction to σR(E) can be achieved by tak-
ing into account the velocity of the bound electrons.
With binding energy Ub, average kinetic energy Te, and
average speed u of the electrons, the expression is

σL(E)= σR(E)

(
1+ 4

3

Te

E

)
, E >Ub , (91.10)

which is valid for v% u. The total cross section
for a molecule includes contributions from each elec-
tron shell. Variants of this approach are described
in [91.32, 33]. Figure 91.3 shows an example.
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Fig. 91.3 Inelastic cross sections σ(E) for single colli-
sions in solid silicon, for incident protons with an energy
T = 100 MeV, calculated using different theories. The hor-
izontal line at 1.0 represents the Rutherford cross section
from (91.8). The other curves are Bethe theory (solid line);
FVP approximation (dashed line); binary encounter ap-
proximation from (91.10) [91.32] (dotted line). The curves
extend to Emax = 230 keV

91.2.3 Bethe Model of Cross Section

The Bethe model [91.34] derives from the first Born ap-
proximation for inelastic scattering, which becomes es-
sentially exact at high energies. In terms of the inelastic
form factor |F (E, K)|2, the energy loss cross section is

dσ(E, Q)= σR(Q)|F (E, K)|2 dQ , (91.11)

where Q = q2/2me, and �K is the momentum trans-
fer vector. The generalized oscillator strength (GOS) is
defined by

f(E, K)= E|F (E, K)|2/Q , (91.12)

such that f(E, K) reduces to the optical dipole oscillator
strength f(E, 0)≡ f(E) in the limit K → 0. Then

dσ(E, Q)= σR(E)E f(E, K) d ln Q . (91.13)

For hydrogenic atoms, f(E, K) is well known
[91.34–38], and a model spectrum is shown in Fig. 10
of [91.27, 28]. For more complicated atoms, many-
electron effects introduce small corrections, as shown
in Fig. 91.4 for Si using a Hartree–Fock approxima-
tion. Adding the contributions from all shells yields

the Bethe result in Fig. 91.3 [91.5]. Similar results are
given in [91.39] for Al. For the outermost electrons in
metals, the electron gas model can be used to generate
cross sections [91.40–42]. For semiconductors and insu-
lators a model has been derived using the tight binding
approximation for the ground state wave function and
orthogonalized plane waves for excited states [91.41].
The dipole oscillator strength is derived from the data
for optical absorption coefficients; for solids [91.43] and
gases [91.44–46] see Chapt. 61.

91.2.4 Fermi Virtual Photon Method

In the Fermi virtual photon (FVP) method, f(E, K) is
approximated by f(E, 0) for Q < E, with a delta func-
tion at Q = E [91.23, 47–50] (Fig. 91.4). Then σ(E) is
given by [91.48]

σ(E)= σR(E)

[
E f(E, 0) ln

(
2mv2

E

)

+
E∫

0

f(E′, 0) dE′
]
, (91.14)

and so only f(E) need be known, or equivalently
Im(−1/ε), where ε is the complex dielectric constant
of the absorber. Data can be extracted from a variety of
optical measurements [91.43,44,51], and from electron

0.12

0.10

0.08

0.06

0.04

0.02

0.00

K(a.u.)
0 2 4 6 8 10 12 14

f (E, K)(Ry–1)

E  = 48 Ry

Fig. 91.4 Generalized oscillator strength (GOS) f(E, K)
(solid line) for longitudinal excitations of the 2p-shell of Si
atoms (with a binding energy UL = 8 Ry), calculated with
the Hartree–Fock–Slater potential. The energy transfer is
E = 650 eV. The hydrogenic approximation is given by the
broken line; f(E, K) peaks at (Ka0)

2 ≈ E−UL. In the
FVP model, (91.14), the GOS is replaced by a δ-function at
Ka0 = E1/2 and by f(E, 0) for 0< Ka0 < E1/2 (straight
lines)
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energy loss measurements [91.52]. A cross section cal-
culated with this model is given in Fig. 91.3. The σ(E)
differ by as much as 50% from the Bethe result, but the

Table 91.1 The coefficient τ(β)= M0β
2/(NZkR) for pions with Mπ = 139.567 MeV/c2, calculated in the FVP approxi-

mation. For comparison, the Si (GOS) results were calculated from the complete F(E, K) generalized oscillator strengths.
The estimated accuracies are ≈ 1% for Si (GOS) and ∼ 30% for the others. The values are the same for all heavy par-
ticles with the same β; they differ slightly for electrons. For Si

(
�= 2.329 g/cm3

)
, NZkR = 17.82 eV/µm, for the gases

(at STP), NZkR = 6.3828 Z eV/cm. Units of τ(β) are eV−1

T (MeV) β Si(GOS) Si He Ar Ethane Butane

UT 1. 0.11907 0.1208 0.1333 0.1937 0.1081 0.2961 0.2855

3. 0.20406 0.1408 0.1528 0.2229 0.1242 0.3379 0.3259

10. 0.35950 0.1612 0.1738 0.2538 0.1412 0.3821 0.3686

30. 0.56791 0.1792 0.1917 0.2802 0.1557 0.4198 0.4050

100. 0.81276 0.1957 0.2082 0.3093 0.1717 0.4614 0.4451

300. 0.94825 0.2061 0.2186 0.3441 0.1908 0.5111 0.4931

1000. 0.99247 0.2127 0.2252 0.3958 0.2189 0.5843 0.5637

3000. 0.99901 0.2150 0.2275 0.4499 0.2468 0.6580 0.6333

10000. 0.99991 0.2155 0.2280 0.5057 0.2671 0.7034 0.6646

30000. 0.99999 0.2156 0.2281 0.5332 0.2737 0.7111 0.6697

100000. 1.00000 0.2156 0.2281 0.5407 0.2765 0.7128 0.6709

moments differ by at most 10% (Table 91.1). It is ev-
idently a better approximation than that given by the
binary encounter approximation of (91.10).

91.3 Moments of the Cross Section

Various moments of σ(E) are defined by [91.5, 53]

Mν ≡ N
∫

Eνσ(E) dE . (91.15)

where the range of integration covers all non vanish-
ing σ(E), including a summation over discrete excited
states. Then M0 = Nσtot = 1/λmfp, where σtot is the to-
tal collision cross section and λmfp the mean free path
between collisions, and M1 = S, the stopping power.
M2 and M3 give the width and skewness of F(∆).

Higher moments are not very useful [91.53] except
for special applications [91.54–56]. For incident elec-
trons, a further averaging of energy loss over different
paths must be performed because of multiple angular
scattering.

91.3.1 Total Collision Cross Section M0

A simple result for M0 is obtained with the Rutherford
cross section

R M0 = NZ2

∫
σR(E) dE

= NZ2
kR

β2

(
1

Emin
− 1

Emax

)
. (91.16)

Clearly, R M0 is very sensitive to the choice of Emin,
and there is no simple prescription for choosing it, as
is evident from Fig. 91.3. The same applies to the bi-
nary encounter approximation [91.32]. From the Bethe
model, a good relativistic approximation to M0 is given
by [91.27, 28, 57]

M0 = NZ2
kR

β2
g0

×
[
lnβ2γ 2−β2+h0+11.227

]

= NZ2
kR

β2
τ(β) . (91.17)

Values for g0 and h0 may be found in [91.57]. For
Si, He, Ar, ethane, and butane, values of τβ , cal-
culated by numerical integration of σ(E) obtained
with the FVP method, are given in Table 91.1.
For Si, comparison values calculated with the Bethe
model are also given. The quantity τ(β) is more
suitable for interpolation than M0. An extensive de-
scription of cross sections are given for liquid water
in [91.58].
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91.3.2 Stopping Power M1

The stopping power is usually written in the form

M1 = S = NZ2
kR

β2
2B , (91.18)

where B is called the stopping number. M1 calculated
with the Rutherford cross section is

R M1 = NZ2

Emax∫

E1

EσR(E) dE = NZ2
kR

β2
ln

Emax

E1
.

(91.19)

To obtain realistic values, it is evident from Fig. 91.3 that
a small value must be chosen for E1 to compensate for
the peaks in σ(E). Note that for most applications in high
energy physics (e.g. Time Projection Chambers [91.59,
60]) M1 is not useful [91.4].

The Bethe Model
In the Bethe model of stopping powers, dσ(E, K)
from (91.13) must be integrated over both E and
Q = �

2 K2/2m [91.37,38]. Since f(E, K) is nearly con-
stant near K = 0 [91.61] (Fig. 91.4), the integral may be
broken into four parts according to

S = N kR

β2

∫
dE

{ Q1∫

Qm

f(E, 0)
dQ

Q
+

∞∫

Q1

f(E, K)
dQ

Q

+
Q1∫

0

[ f(E, K)− f(E, 0)] dQ

Q

−
Qm∫

0

[ f(E, K)− f(E, 0)] dQ

Q

}
, (91.20)

where Qm ≈ E2/2mv2 [91.27, 28], and Q1 is cho-
sen such that f(E, K) differs little from f(E, 0) in
the interval 0 ≤ K ≤√

2mQ1/� [91.36, 62]. Collisions
with Q < Q1 are “distant” and those with Q > Q1 are
“close”. The integrals simplify by interchanging the or-
der of integration in the second and third terms, and by
using the sum rule [91.27, 28, 34]

∞∫

0

f(E, K) dE = Z2 , (91.21)

for all K. The last term of (91.20) is then small and the
second last vanishes exactly. The remaining two terms

give

S = NZ2kR

β2

(
ln

2mv2 Q1

*2 + ln
Qmax

Q1

)
, (91.22)

where * is the logarithmic mean excitation energy de-
fined by

Z2 ln* =
∫

f(E) ln E dE , (91.23)

and Qmax = 2mec2β2γ 2 is the maximum energy loss(
for electrons, Qmax = 1

4 mec2β2γ 2 [91.3]
)
. Including

relativistic and other correction terms, the final result
for M1 % me is

S = N Z2kR

β2 2

{
B0− C(β)

Z2
+ Z1L1(β)+ Z2

1 L2(β)

+ 1

2
[G(M1, β)− δ(β)]

}
, (91.24)

where

B0 = ln
2mc2β2γ 2

* −β2 (91.25)

is the uncorrected stopping number. In the limit β→ 0,
2B0 reduces to the terms in brackets in (91.22). The
other correction terms are as follows [91.31].

The Shell Correction. C(β) accounts for the last term in
(91.20), together with modifications of dσ(E, Q) near
Q = Emax [91.3]. It can be estimated on a shell-by-
shell basis [91.63–66] using nonrelativistic hydrogenic
calculations for the K- and L-shells [91.35, 37, 38],
and rescaling methods for the outer shells which have
not been calculated directly [91.63, 64, 67]. The ef-
fects are important for small β, but simple formulas
are not known. A calculation for Al and Si based on
a model more realistic than the hydrogenic one is given
in [91.68].

The Barkas Term. L1(β) arises from polarization of the
target electrons by the incident particle [91.69,70]. Var-
ious approximating functions and fits to experimental
data are described in [91.71].

The Bloch Term. L2(β) arises from corrections to the
approximation that for close collisions, the electrons
can be represented by plane waves [91.72]. Confine-
ment of the electrons to the interior of a cylinder of
atomic dimensions introduces transverse momentum
components, resulting in the widely used correction

Z2
1 L2(β)=−q2

∞∑

j=1

1/
[

j
(

j2+ y2
)]

(91.26)
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with y = Z1α/β. For y = 0, the sum is ζ(3)) 1.202 057.
A new approach can be found in [91.73, 74]. The need
for the L1 and L2 terms was established experimen-
tally in [91.75], and discussed in a more general context
in [91.76].

The Mott Term. G(M1, β) is a kinematic recoil correc-
tion which becomes important for relativistic projectiles.
In the limit of a point-like spinless nucleus, the correc-
tion is

G(M1, β)=− ln(1+2t)− tβ2/γ 2 , (91.27)

where t = mγ/M1 [91.29]. The correction is negligible
for γ < 100 and M1 > m p.

The Density Correction. δ(β) arises from the dielectric
response of a solid absorber as a whole to the electric
field of the projectile, and the work done by the inter-
action [91.3, 29]. Sternheimer’s algorithm [91.77, 78] is
usually used, as summarized in [91.29].

The remaining parameter to be discussed in (91.24)
is*. If the oscillator strength distribution f(E) is known,
then * can be calculated directly from (91.23). Results
for many gases are given in [91.45]. The values give good
agreement with experimental stopping powers [91.79].
For solids, the definition [91.3]

ln* = 2

π(�ωp)2

∞∫

0

E Im

[ −1

ε(E)

]
ln E dE (91.28)

may be used, where �ωp is the plasma energy for all
the electrons, defined by (�ωp)

2 = 830.4�Z/A with
�ωp in eV. For metals, this is substantially larger than
the plasmon energy associated with the conduction
electrons. Only for Al [91.80] and for water [91.81]
have sufficiently good measurements of Im[−1/ε(E)]
been available to permit the use of this method. For
other materials, * can be deduced from measurements
of S, provided that the other corrections in (91.24) are
known sufficiently well. A list of values for all elem-
ents and many compounds is given in [91.66]. See
also [91.25, 63–65, 79, 82–87].

For rough estimates of *, the approximation [91.88]

* ≈
⎧
⎨

⎩
11.7+11.2/Z2eV , Z2 ≤ 13

9.5±1eV , Z2 > 13
(91.29)

is useful, together with the Bragg rule

ne ln* =
∑

i

ni ln*i (91.30)

for compounds and composite materials, where ni is the
electron density associated with element i. However,
chemical shifts may be as large as 10% [91.89].

The Fermi Virtual Photon Method
From (91.14), the nonrelativistic FVP approximation to
the stopping number B(β) is

B(β)= 1

2
ln

(
2mev

2

*
)

+ 1

2Z2

Emax∫

Emin

dE

E

E∫

0

f(E′) dE′ . (91.31)

Although the integrals must now be calculated numer-
ically, the full f(E, K) is not required, and in the case
of silicon, the results are in close agreement with the
corresponding Bethe model.

Stopping Power at Small Speeds
For small speeds, the various correction terms in the
stopping number B, (91.24), become large compared
with B0 [91.63, 64, 68]. In particular, for 2mv2 = *, B0
becomes zero. For example, for α-particles in U (* =
840 eV), B0 = 0 at T = 1.5 MeV, and B then consists
only of correction terms. For smaller energies, empirical
approaches are used to describe S. Many of the tables
referenced above give such data.

Mean Energy Loss per Collision
The quantity 〈E〉 = M1/M0 is the mean energy
loss per collision. For substances with Z < 20,
〈E〉 ∼ 50–100 eV. It changes at most by a factor of 1.5
for βγ > 0.1. In order to choose a suitable method for
calculating straggling functions, it is useful to estimate
the number of collisions in a thickness x of absorber.
For less than 2000 collisions, the convolution method of
Sect. 91.4.2 should be used (Fig. 15 in [91.5]).

91.3.3 Second Moment M2

The relativistic result calculated with the Rutherford
cross section is

R M2 = NZ2
kR

β2

(
1−β2/2

)
Emax (91.32)

= 2NZ2kRmc2 1−β2/2

1−β2

= 0.156 915
Z2

1 Z2

A

1−β2/2

1−β2 MeV2 cm2/g .

For small β, R M2 is practically independent of β.
A better approximation can be achieved with the binary
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encounter method:

b M2 = NZ2
kR

β2 Emax

[
1− β

2

2

+
∑

l

4ZlUl

3Z2 Emax

(
ln

Emax

l Emin
−β2

)]
,

(91.33)

where the summation extends over atomic shells l. For
l Emin the ionization energy Jl for shell l can be used,
while Ul represents the kinetic energy of the electrons
in shell l. This approximation is only useful for rela-
tively large x [91.5]. By using sum rules, Fano [91.3,
(72)] achieved a better approximation, which corres-
ponds to the Bethe approximation for the stopping power
[91.5, 90]. Hydrogenic values of Mn are calculated
in [91.53].

91.4 Energy Loss Straggling

91.4.1 Straggling Parameters

Parameters for Thick Absorbers
Straggling is due to the stochastic nature of the en-
ergy losses of the charged particles. Because the single
collision spectrum is highly skewed (the most proba-
ble energy loss is ≈ 20 eV, the mean value ≈ 100 eV),
straggling functions will also be skewed. Four param-
eters are useful in a preliminary study of straggling
problems [91.47]. The parameter

ξ = NZ2
kR

β2
x = 153.537

Z2
1

β2

Z2

A
x keV cm2 (91.34)

gives the energy loss [calculated with σR(E)] which,
on the average, is exceeded once for each particle in
its passage through an absorber of thickness x, i. e., for
*& ξ & Emax,

xNZ2

Emax∫

ξ

σR(E) dE = 1 . (91.35)

The parameter κ = ξ/Emax is related to the skewness
of the straggling function: γ 2

1 = 1/4κ. The mean energy
loss is

〈∆〉 = xM1 = 2ξ2B = 2κEmax B , (91.36)

and the standard deviation of F(∆) is

ω2 = xM2 ∼ xNZ2
kR

β2 Emax = ξEmax = κE2
max .

(91.37)

For thick absorbers, the straggling function becomes
approximately Gaussian [91.5,24]. The requirement for
this to occur is γ1 → 0, thus κ→∞, also 〈∆〉 →∞,
and x →∞.

Parameters for Thin Absorbers
The parameters described above are not suitable for de-
scribing F(∆) for very thin absorbers. Instead,∆mp and
Γ are used. Values for pions traversing Ar are given as
a function of thickness x in Tables 91.2, 91.3. However,
before comparing with experimental data, values of ∆
must be converted into ionization values, and the detec-
tor and amplifier noise must be added [91.5] (Sect. 91.7).
Landau [91.6] gave an expression for the most proba-
ble energy loss as a function of particle speed. It was
modified in [91.5] to

∆L = ξ
(

ln
2mc2β2γ 2

I
+ ln

ξ

I
+0.200−β2− δ

)
.

(91.38)

Table 91.2 Calculated most probable energy loss ∆mp

of pions with Z1 =±1 and kinetic energy T passing
through a distance x of argon gas

(
at 760 Torr, 293 K,

�= 1.66 g/dm3
)
. For heavy ions (α, C+), the values scale

as Z1.3
1 (for a better approximation, see Table V in [91.5]).

Units of∆mp are keV. The quotient∆mp/x increases with x

x(cm)

T (MeV) 0.5 1 2 4 8

1 29.373 63.341 130.662 265.062 533.811

3 9.820 21.598 47.000 101.329 216.013

10 3.104 6.842 14.950 32.558 69.966

30 1.153 2.687 5.927 12.883 28.023

100 0.376 1.274 2.928 6.412 13.884

300 0.288 0.973 2.313 5.099 10.993

1 × 103 0.303 1.042 2.445 5.356 11.494

3 × 103 0.344 1.217 2.783 6.044 12.926

1 × 104 0.384 1.390 3.145 6.784 14.495

3 × 104 0.653 1.515 3.405 7.322 15.663

1 × 105 0.667 1.605 3.595 7.725 16.575
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Table 91.3 Calculated values ofΓ (fwhm) of the straggling
function F(∆) (see Table 91.2). As a rough approximation,
Γ ∼ x0.8 (Table VI in [91.5])

x(cm)

T (MeV) 0.5 1 2 4 8

1 16.014 24.961 35.503 51.327 69.120

3 6.283 12.012 22.928 43.393 68.589

10 2.507 4.563 8.659 16.153 30.026

30 1.360 2.279 3.922 7.441 13.881

100 0.781 1.434 2.350 4.178 7.705

300 0.574 1.239 2.030 3.410 6.232

1 × 103 0.621 1.286 2.085 3.397 6.340

3 × 103 0.752 1.391 2.244 3.687 6.844

1 × 104 0.905 1.510 2.432 3.999 7.502

3 × 104 0.983 1.615 2.548 4.314 7.956

1 × 105 1.040 1.701 2.689 4.666 8.399

1.8

1.6

1.4

1.2

1.0

1 5 10 50 100 500 1000

scaled ∆p/x

80 cm
30 cm
4 cm
2 cm
1 cm

�γ

BBx = 1, 2, 4, 30, 80 cm Ar

Fig. 91.5 The dependence of most probable energy-loss
values ∆mp(βγ ; x)/x > for segments of length x. Solid
line BB: the Bethe–Bloch function dE/dx(βγ) [91.4].
Other lines are for the segment lengths x marked at right.
The functions are scaled with a factor g(x) such that they
concide at minimum ionization

More accurate functions ∆mp are obtained with the
collision spectra of Fig. 91.3, and are called Bich-
sel functions [91.59]. For sufficiently large ξ , ∆mp,
and ∆L agree within a few %. Examples are shown in
Fig. 91.5, and for comparison the Bethe-Bloch function
dE/dx [91.4] is given.

Parameters for Extremely Thin Absorbers
If the number nc of collisions in the absorber is less than
about 16, F(∆) still shows the details ofσ(E) (Fig. 91.6).

0.04

0.02

0
10 100 1000

0.03

0.02

0.01

0
10 100 1000

0.01

0.005

0
10 100 1000

0.002

0.001

0
10 100 1000

F (∆)d∆

∆(eV)F (∆)d∆

∆(eV)F (∆)d∆

∆(eV)
F (∆)d∆

∆(eV)

∆L <∆>

nc = 1
x = 0.26 µm
n0 = 37%

∆L <∆>
nc = 2
x = 0.52 µm
n0 = 14%

∆L

<∆>

nc = 4
x = 1.04 µm
n0 = 1.8%

<∆>

∆L
nc = 8
x = 2.1 µm

Fig. 91.6 Calculated straggling functions F(∆) for 1 GeV
pions traversing four thicknesses x of silicon. The aver-
age number of collisions is nc, with 〈E〉 = 106 eV, the
mean energy loss is 〈∆〉 = nc〈E〉, shown by an arrow.
The number of particles traversing the absorber without
a collision is n0. The peak heights do not follow a Poisson
distribution because successive convolutions give a broader
distribution. The Landau function [91.6] for nc = 4 is
shown by the broken line. For all, the most probable en-
ergy loss calculated according to Landau, ∆L (91.38), is
shown

The most probable energy losses are much less than 〈∆〉.
Functions of this type have been observed with electron
microscopes [91.10]. For comparison, the Landau strag-
gling function [91.6] is also shown. This result, derived
from σR(E), does not show the structure of a realistic
spectrum.

Detector noise and energy loss to ionization conver-
sions introduce important changes [91.91–94] to the
energy loss spectrum. In particular, if nc < 4, a large
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fraction of the particles do not lose any energy in the
absorber.

91.4.2 Analytic Methods for Calculating
Energy Loss Straggling Function

Three principal methods are convolutions, Laplace
transforms and the use of moments [91.5]. They are prac-
tical for different thicknesses of absorbers, as indicated.

Convolutions
For this method, a complete collision cross section
must be available [91.47,50], and numerical calculations
are required. The probability density function for par-
ticles having suffered n collisions is given by the n-fold
convolution of the single collision spectrum [91.5, 95]:

σ∗n(∆)=
∆∫

0

σ(E)σ∗(n−1)(∆− E) dE , (91.39)

with

σ∗0(∆)= δ(∆) , σ∗1(∆)= σ(∆) . (91.40)

Assuming that successive collisions are statistically in-
dependent, the number of collisions is described by the
Poisson distribution

Pnc
n = nn

c

n! e−nc , (91.41)

where Pnc
n gives the fraction of particles suffering n

collisions, and nc = xM0 is the average number of colli-
sions for all particles. The complete straggling function
is then

F(x,∆)=
∞∑

n=0

Pnc
n σ

∗n(∆) . (91.42)

Usually, this method is only used for absorbers thin
enough that the single collision cross section changes
negligibly during the passage through the absorber.

This approach would become quite complex for
large nc. The doubling method [91.96] uses the follow-
ing procedure: the function for an absorber of thickness
2x is calculated by convoluting F(x,∆) with itself, viz.

F(2x,∆)=
∆∫

0

F(x,∆− g)F(x, g) dg . (91.43)

An initial distribution is calculated for an extremely
thin absorber of thickness dx from

F(dx,∆)= δ(∆)(1−M0 dx)+σ(∆)dx , (91.44)

where δ(∆)= F(0,∆) and M0 dx ≈ 0.001.

For Si, the convolution method has been tested and
compared with experiments for as many as 104 colli-
sions [91.5]. The limitations of the algorithm are ≈ 105

collisions. Since Pnc
0 = e−nc , there will be particles that

pass through an absorber without making a collision.

Laplace Transforms
The Laplace transform method is mathematically
equivalent to the convolution method. The method, as
implemented by Landau [91.6], is based on σR(E).
The implicit number of collisions is therefore too large,
and the Landau function is too narrow, as shown in
Figs. 91.1 and 91.6. A refinement proposed in [91.7]
gives straggling functions which are too wide (Fig. 91.1).

Use of Moments
If the skewness γ1 is not small, a Gaussian function is
not a good approximation to a straggling function. This
can be remedied by using a modified Gaussian of the
form [91.55, 56]

f(y)= δ̃√
2π

1
√

y2+1

× exp

{

−1

2

[
γ̃ + δ̃ ln

(
y+

√
y2+1

)]2
}

,

(91.45)

where y = (∆−〈∆〉)/σ and γ̃ and δ̃ are related to
M2 and M3 [91.55, 56] such that the second and third
moments are reproduced exactly.

The moments can be calculated as a function of
particle speed, and thus the method is useful for mean
energy losses up to about 0.7T0. At these losses, some
particles reach their full range and thus disappear from
the beam. The moments are then distorted and other
procedures are needed [91.11, 97].

Thick Absorbers, Ranges and Range Straggling
In radiation therapy with charged particles, a parallel
beam is directed at the body. Usually, the energy T0 of
the particles is adjusted to penetrate a given distance into
the body. A primary measure of this distance is the mean
range R calculated with the continuous slowing down
approximation (CSDA)

R(T0)=
T0∫

0

dT

S(T )
. (91.46)

Because of energy-loss straggling, there also is strag-
gling in range amounting to a few percent of R [91.84].
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In the practical application, a depth-dose curve is
needed. At a given depth, the dose D is given
by (91.6). For the first 50% of the range, the
spread in energy of the beam is relatively small,
and the dose is approximated closely by the stop-
ping power S(T ) for the mean energy of the beam.
For larger thicknesses, a detailed transport calcula-
tion must be made in order to find φ(T , x) [91.11].
Range straggling functions can then also be ob-
tained. Close agreement between measurement and
calculation has been achieved [91.97].Similarly, the
mean energy loss T1 in a thick absorber is given
implicitly by

x =
T0∫

T1

dT

S(T )
. (91.47)

Usually, values are obtained from a range energy table.
Such tables may be found in [91.25, 63–65, 79, 82–87].

91.4.3 Particle identification (PID)

In particle physics the determination of particle
types produced in the collisions of fast particles is
needed [91.59]. Since the cross sections in Sect. 91.2
only depend on particle speed β and charge Z1e, energy
deposition measurements combined with the measure-
ment of particle momentum p can be used to determine
particle masses. This process is called particle identifi-
cation. A large amount of empirical information about
PID has been accumulated, but little effort has been
made to correlate this information with the theory de-
scribed here. A major problem is the dependence of
∆mp/x, Table 91.2, on x. In addition,∆mp/x is less than
dE/x and its dependence on particle speed, Fig. 91.5,
differs from that of dE/dx, Fig. 91.5. Comparisons of
calculated and measured functions F(∆) can be used to
diagnose problems of the performance of the particle
detector.

91.5 Multiple Scattering and Nuclear Reactions

Coulomb scattering of particles heavier than electrons
by nuclei and electrons usually produces many, but very
small angular deflections [91.4, 98].

The Molière theory [91.99] giving the distribu-
tion f(θ) of angular deflections θ agrees well with
experimental data [91.100]. As a first approximation,
a Gaussian distribution f(θ)= e−y2

, where y = θ/θ0,
can be used. The value θ0 is given by θ2

0 = θ2
1 BM , where

θ2
1= 0.157

Z2(Z2+1)

A
Z2

1
xγ 2

(
Mc2β2

)2
radians (91.48)

and BM has values of the order of 10. A more detailed
description plus several tables is given in [91.84].

For a broad beam of particles, multiple scatter-
ing produces only a minor correction in the range.
In a narrow “pencil” beam, it causes a broaden-
ing, e.g., a 320 MeV proton beam spreads to a width
of about 2 cm after traveling through 40 cm of
water [91.101].

It may be necessary to take into account the influence
of nuclear interactions. As a first approximation, the total
cross section is roughly [91.25]

σtot = π
(

1.3 × 10−13 A1/3+λ
)2

cm2 , (91.49)

where λ= λdB/2π.

91.6 Monte Carlo Calculations

In Monte Carlo calculations, the interactions occurring
during the passage of the particles through matter can
be simulated one at a time, collision by collision, and
including those for the δ-rays [91.102, 103]. Particles
travel random distances xi between successive colli-
sions, calculated by selecting a random number ri and
determining the distance to the next collision from

xi =−λmfp ln ri . (91.50)

The energy loss Ei is selected with a second random
number from the integrated collision spectrum

Q(E)=
E∫

0

σ(E)

M0
dE . (91.51)

This process is repeated until
∑

xi exceeds the absorber
thickness. The total energy loss ∆ of the particle is
∆=∑

i Ei .
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91.7 Detector Conversion Factors

For all detectors, a study must be made of the pro-
cess in which energy lost by the particles is converted
into the observable signal, see Chapt. 92. The primary
products of collisions are excited states, electron–
ion and electron–hole pairs, and secondary electrons
also called δ-rays. Secondary products are chemical
species, fluorescent photons and Auger electrons. An
important problem is the export of energy from the vol-
ume under observation by secondary radiations (δ-rays,
mesons, X-rays, neutrons). Prominent among the ef-
fects [91.104] are ionization currents measured under
applied electrical fields (in gaseous and solid state ion-
ization chambers), photo effects by fluorescent radiation
(scintillators), measurements of chemical yields (fer-
rous sulphate dosimeters, photographic emulsions, etc.),
and the release of light by stored crystalline defects in
thermoluminescent measurements.

The effect J can be related to the energy deposited
D by a conversion factor W as J = D/W , where W rep-

resents the amount of energy needed to produce a unit of
observable effect (e.g., an electron–ion pair). W depends
on the absorber, particle type, and speed. For ioniza-
tion, typical values are W ≈ 25 eV gases, W ≈ 3.5 eV
semiconductors [91.84, 105].

For chemical effects [91.106], J is sometimes writ-
ten as J = YD. Usually Y is given as the “yield per
100 eV”. A typical value for a Fricke dosimeter is that,
for fast electrons, 15 ferrous ions are converted into
ferric ions per 100 eV of deposited energy. Usually, Y
depends on time after the passage of the particles, and
the full values are only reached after say 1 µs. For slow
ions, Y is much smaller. Light emission (scintillations)
has been observed from gases (typically, W ≈ 20 eV),
liquids and solids (typically, W ≈ 1000 eV) [91.104].

The subsequent measurements of these radiation
effects are done with current or charge amplifiers, pro-
portional avalanche amplification, photo multipliers,
channel plates, etc. [91.104].
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Radiation Phy92. Radiation Physics

Radiation physics entails studies of the in-
teractions of ionizing radiation with matter.
The term ionizing radiation refers to any en-
ergetic particles, either charged or uncharged,
that can ionize atoms or molecules in matter.
These particles include photons in the ultra-
violet, X-ray, or γ-ray spectral region; electrons
and positrons; mesons; protons and deuterons;
α-particles; heavier ions including molecular
ions; and neutrons. The matter under con-
sideration includes substances in every phase
of atomic aggregation (i. e., gas, liquid, solid,
or plasma). Strictly speaking, the term “ion-
ization” signifies an event in which at least
one electron leaves an atom or molecule and
eventually becomes free. This notion applies
to a dilute gas, but not to condensed mat-
ter, for which it would be more precise to
use the term “electronic activation” encom-
passing all modes of excitation, as sketched
in Sect. 92.3.5.

92.1 General Overview ................................ 1389
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92.1 General Overview

The motivation for studying the interactions of radiation
with matter and their consequences is manifold. First,
nuclear and particle physics experiments often require
radiation detectors – devices that detect, score, or ana-
lyze energetic particles. The working principles of these
detectors rest on knowledge of elementary processes of
radiation interactions with matter [92.1]. Second, mea-
surements of radiation fields, called dosimetry [92.2],
are important to many purposes, including the protec-
tion of workers in industry and medicine, as well as of
the general public; risk estimates for exposures to ra-
diation from natural sources (such as cosmic rays and
terrestrial radioactivity) or from artificial sources (such
as accelerators, man-made radioisotopes, and nuclear-
power facilities); and good performance of radiation
diagnosis and therapy. The principles of dosimetry are
largely based on radiation physics. Finally, ionizing ra-
diation is useful for processing materials such as plastics

and semiconductors, to endow desirable properties. To
optimize methods of radiation processing, knowledge of
radiation physics is highly valuable.

Atomic, molecular, and optical physics provides
important underpinnings for radiation physics in two
general contexts: instrumentation for the measurement
of radiation and its effects on matter on the one hand,
and elucidation of the atomic and molecular mechanisms
leading to the effects on the other. The term instrumen-
tation here means all devices that enable one to detect,
identify, and quantify consequences of radiation inter-
actions, such as particle kinetic energies and ionization,
luminescence, and spectral analyses of atomic and mo-
lecular species produced. Conversely, needs in radiation
physics have led to new atomic and molecular tech-
niques such as resonance ionization spectroscopy [92.3],
which was originally developed to determine the yield
of excited atoms in gases exposed to radiation, but is
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now regarded as a branch of multiphoton spectroscopy
valuable for studies of excited states of atoms and
molecules (Chapt. 74). Thus, the instrumentation de-
velopment constitutes a mutually beneficial interface
between atomic, molecular, and optical physics and
radiation physics.

The elucidation of microscopic mechanisms of radi-
ation effects requires a grand synthesis of knowledge
from various areas ranging from atomic, molecu-
lar, and optical physics to condensed matter physics,
statistical physics, chemical kinetics, and molecular bi-
ology [92.4, 5]. Yet, the role of atomic, molecular, and
optical physics is most fundamental [92.6, 7]. Interac-
tions of radiation with matter lead to numerous collisions
of energetic particles with atoms and molecules, and re-
sult in the production of various excited and ionized
states, as well as electrons and other secondary par-
ticles. These have a wide range of kinetic energies, and

in turn collide with atoms and molecules to generate fur-
ther products. A detailed analysis of the chain of these
early events demands knowledge in three topical areas:
first, spectroscopic data (i. e., energy values and quantum
numbers) of excited and ionized states; second, modes
of decay and relaxation of these states, such as lumines-
cence, molecular dissociation, and internal conversion
and the branching ratios of each mode; and finally, the
cross sections for all of the processes involved. All such
knowledge is, in a broad sense, the fruit of work in
atomic, molecular, and optical physics.

The following sections will concern key topics in
basic radiation physics selected from a vast range of
possibilities. The treatment will concentrate on basics
and principles, and examples are meant to be illustrative
rather than exhaustive; yet, the author hopes that the dis-
cussion will convey the charm and challenges of current
research.

92.2 Radiation Absorption and its Consequences

92.2.1 Two Classes of Problems
of Radiation Physics

It is useful to distinguish between two classes of
problems in radiation physics [92.6], as illustrated in
Fig. 92.1. Problems of Class I concern the fate of radia-
tion after interactions with matter. Problems of Class
II concern the fate of matter after interactions with
radiation.

Problems of Class I are exemplified by the deter-
mination of the energy losses of particles penetrating
matter, and the attenuation of a beam of photons in
matter. Experimental studies on these problems are
straightforward in principle; one only needs to analyze
the kinetic energies of transmitted particles in the first
problem and to count the number of transmitted photons
in the second problem. Problems of Class I are also often
simple to treat theoretically; for instance, in the Bethe
theory of stopping power, discussed in Chapt. 91, the
use of sum rules enables one to bypass detailed knowl-
edge about excited and ionized states. As a consequence,
many of the problems of Class I have been solved. Fur-
thermore, many of the applications of radiation physics
are based on the established knowledge of solutions of
problems of Class I. For instance, diagnostic uses of
X-ray photons in medicine and industry rest on the firm
knowledge of the attenuation of photons in matter (more
precisely, on its dependence on the atomic number).

In sharp contrast, problems of Class II are funda-
mentally difficult; indeed, none of them has been solved
completely. Reasons for the difficulty are manifold.
First, any piece of irradiated matter is a new material that
needs to be fully characterized. Second, irradiated mat-
ter is in general in a nonequilibrium state that changes
physically and chemically with time. Finally, existing
tools and techniques, both experimental and theoretical,
for material characterization are limited.

To illustrate the nature of Class II problems, it is
useful to consider a prototype problem that has been
treated reasonably well, but certainly not completely.
Suppose a single electron with energy 10 keV enters
a dilute hydrogen gas of a sufficiently large volume.
The incident electron will collide with a hydrogen mol-
ecule. Possible outcomes include excitation of molecular
states, ionization leading to H+

2 in various vibrational
and rotational states, and ionization leading to dissoci-
ation into H++H (in various excited states or in the
ground state). An electron resulting from an ionizing
event may have enough kinetic energy to cause further
excitation and ionization. Eventually, all the liberated
electrons will lose enough energy to become subexcita-
tion electrons unable to excite even the lowest electronic
level of H2 at 9.5 eV. Table 92.1 summarizes the vari-
ous atomic and molecular species produced. To produce
this answer, it was necessary to survey all the spec-
troscopic and electron collision data on H2, and to
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Class-I Problems:
Fate of radiation

Class-II Problems:
Fate of matter

Matter

Incident
radiation

Fig. 92.1 Schematic diagram showing the definition of
Class I and Class II problems. Incident radiation comes
from the lower left, interacts with matter, and trav-
els toward the upper right, having been scattered. The
crosses symbolize interaction events taking place within
matter

carry out an analysis of electron transport. Problems
of this kind will be further discussed in Sect. 92.3.2 and
Sect. 92.3.3.

92.2.2 Photons

High-energy photons (i. e. X-rays, γ -rays, or a major
part of synchrotron radiation), are important as the ion-
izing radiation most frequently used in applications.
Their initial interactions with matter result in a spec-
trum of energetic electrons. Detailed discussion is given
in Chapts. 61 and 62.

92.2.3 Charged Particles

Energetic charged particles penetrating matter cause
ionization and electronic excitation of atoms and
molecules as they lose kinetic energy (Chapt. 65). The
most fundamental index to characterize the energy
loss process is the total cross section for inelastic
collisions, which is the mean number of inelastic col-
lisions per unit path length in a material of unit
molecular density. The next fundamental index is the
stopping power, which is the mean energy loss per
unit path length. For many purposes, a more de-

tailed description of particle penetration is necessary.
An example is energy loss straggling, fully discussed
in Chapt. 91.

Ionization is generally accompanied by the pro-
duction of secondary electrons, which in general have
a broad energy spectrum. This topic is reviewed by Rudd
and coworkers [92.9–11].

92.2.4 Neutrons

Neutrons with kinetic energies in the MeV domain
cause nuclear reactions, generally leading to the pro-
duction of a number of charged particles. Neutrons
of any kinetic energies collide with nuclei in mat-
ter elastically (viz., without causing nuclear reactions)
and transfer substantial kinetic energy to nuclei. Con-
sequently, neutrons may be regarded as a source of
charged particles of various kinds, most importantly
protons and light nuclei, all having broad energy spec-
tra [92.12, 13].

Table 92.1 The mean number N j of initial species pro-
duced in molecular hydrogen upon complete degradation
of an incident electron at 10 keV, and the energy absorbed
Eabs (in percent).a The left column of this table indicates
kinds of species tersely. For instance, “Lyman” here means
the B1Σ+

u state, which emits the Lyman band. The term
“Werner” means the C1Πu state, which emits the Werner
band. The designation “H(2p)” means the production of hy-
drogen atoms in the 2p state. The designation “Slow H(2s)”
means the production of hydrogen atoms in the 2s state with
no appreciable kinetic energy. The designation “Fast H(2s)”
means the production of hydrogen atoms with kinetic en-
ergies of several eV. The designation “Triplet” means all
the triplet states combined. The designation “Subexcitation
electrons” means all the electrons that are not energetic
enough to cause further electronic excitation

Initial species j Nj Eabs

H2(B1Σ+
u ) (Lyman) 96.8 11.7

H2(C1Π u) (Werner) 112.1 14.0

H(2p) 5.6 0.8

Slow H(2s) 29.6 4.4

Fast H(2s) 5.3 1.7

H (n = 3) 3.2 0.5

Higher excited states 12.2 1.7

Ions 295.6 45.9

Triplets 102.6 10.0

Subexcitation electrons 295.6 9.4
aAdapted from Douthat [92.8]
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92.3 Electron Transport and Degradation

92.3.1 The Dominant Role of Electrons

In many Class II problems (i. e., radiation actions on
molecular substances such as gases, molecular liquids
or solids, and biological cells), energetic electrons gen-
erated by ionizing radiation play a central role because
they are numerous, and deliver to atoms and molecules
a large fraction of the total energy of radiation. What
follows is a resume of our current understanding.

92.3.2 Degradation Spectra
and Yields of Products

The prototype H2 problem discussed in Sect. 92.2.1 may
be generalized as follows. Consider the total number N j
of a particular molecular species j produced as a result
of complete slowing down of electrons in a chemically
pure medium consisting of n molecules per unit volume.
The product species j could be ions or excited states
specified by a set of quantum numbers. Let σ j(T ) be
the cross section for the production of j in a collision
of an electron of kinetic energy T with a molecule.
During its passage over an infinitesimal path length dx,
an electron of kinetic energy T contributes the amount
dN j = nσ j(T )dx to N j . Therefore, one may write

N j = n
∫
σ j(T )dx . (92.1)

To carry out this integration, one must have a relation
between T and x. To the extent that one regards x and T
as related through an analytic function, one may write

dx = (dT /dx)−1 dT , (92.2)

where dT /dx is the mean energy loss per unit path
length traversed, or the stopping power as defined
in Chapt. 91. This treatment, called the continuous-
slowing-down approximation (CSDA), is justified if T
greatly exceeds the majority of energy losses upon
individual collisions.

However, the CSDA is inadequate for electrons in
general because the energy loss of an electron upon an in-
dividual collision is not always small compared with the
current kinetic energy, and because the CSDA does not
account for secondary electrons, which are abundantly
produced. An appropriate formulation, introduced by
Spencer and Fano [92.14], is obtained by writing

dx = y(T )dT (92.3)

in place of (92.2) and determining the function y(T )
through full analysis of electron transport, production,

and slowing down. This function, called the degradation
spectrum, has been an object of extensive studies [92.6,
15]. Once y(T ) is determined, the yield N j of product
species j is evaluated as

N j = n

Tmax∫

E1, j

σ j(T )y(T )dT , (92.4)

where E1, j is the threshold energy for the production
of j, and Tmax is the highest kinetic energy of electrons
in the medium.

Three basic properties of y(T ) are as fol-
lows [92.15]. First, y(T ) is proportional to the electron
energy distribution (as treated by the Boltzmann equa-
tion) multiplied by electron speed v, or (2T /m)1/2 in
the nonrelativistic case.

Second, y(T ) obeys an integral equation called the
Spencer–Fano equation. This equation expresses the
balance of the number of electrons arriving at kinetic
energy T with the number of electrons departing from
it. One may write the cross section for a collision pro-
cess in which an electron of kinetic energy T collides
with an atom or molecule and an electron of kinetic
energy T ′ emerges as σ(T → T ′). Then, the expres-
sion

∫
σ(T ′ → T )y(T ′)dT ′ − ∫

σ(T → T ′)dT ′y(T )
represents the change in the number of electrons at
kinetic energy T due to all collisions in a medium
of unit density. For convenience, one may write the
above expression as KT y(T ) using a linear operator KT

called the collision operator. In the simple case where
a source steadily generates u(T )dT electrons having
kinetic energies between T and T + dT in a medium
consisting of n atoms or molecules of a single species,
the Spencer–Fano equation takes the form

nKT y(T )+u(T )= 0 . (92.5)

Third, in the domain E1 < T < Tmax, where E1 is
the lowest electronic-excitation threshold energy of the
medium, y(T ) is invariably bimodal, as exemplified
by Fig. 92.2. The behavior at high T is largely under-
standable from the CSDA (92.2), which approximately
holds at T % E1; then, y(T ) is the reciprocal of the
stopping power, which is given by the Bethe theory
and corrections as explained in Chapt. 91. For exam-
ple, for electrons with T between 1 keV and 10 keV,
the stopping power of molecular hydrogen is a mono-
tonically decreasing function of T , and therefore y(T )
is a monotonically increasing function of T , as seen
in Fig. 92.2. In contrast, the steep rise of y(T ) at low
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T occurs because most of the secondary electrons pro-
duced in an ionizing collision of any energetic charged
particle (including an energetic electron) have low ki-
netic energies, corresponding to a few multiples of the
ionization threshold energy, as fully documented by
Rudd et al. [92.9–11].

As T varies, the principal contribution to the yield
expression (92.4) comes from ranges where both σ j(T )
and y(T ) are large. A large y(T ) means a long path
length of electrons at that T , and hence a modest energy
loss per unit path length. From (92.2), the time interval
dt during which electrons stay in the energy interval dT
is

dt = (dt/dx)−1 dx = v−1 y(T )dT . (92.6)

The quantity v−1 y(T )dT represents the sojourn time
of electrons at energy T . Equation (92.4) expresses
how N j is determined by the competition between
electron degradation, and the cross section σ j(T ) for
production of j upon individual collisions. The product
σ j(T )y(T ), called the yield spectrum for production
of j, plays a central role in the theory.

Since T ranges from a few eV up to keV or MeV, it is
convenient to rescale the yield spectrum to ln T . In fact,
ln T is more meaningful as a variable because it rep-
resents, in effect, the mean number of elastic collisions
required to reduce T by a given amount. (In the neutron
slowing down theory [92.16], ln T is called lethargy by
Fermi.) Equation (92.4) then becomes

N j = n
∫

T σ j(T )y(T )d(ln T ) , (92.7)
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Fig. 92.2 Electron degradation spectrum in molecular hy-
drogen. Source electrons of kinetic energy Tmax = 10 keV
steadily enter the hydrogen gas at 0 ◦C and 1 atmosphere
at the rate of 1 electron−1cm−3. Data are taken from
Douthat [92.8]

with T σ j(T )y(T ) regarded as a function of ln T .
The product T σ j(T ) is proportional to the collision
strength in the theory of atomic collisions, as treated
in Chapt. 47. It is also a key quantity in the Bethe
theory [92.17].

Figure 92.3 is an example of a yield spectrum for ion-
ization in molecular hydrogen. The area under the curve
over any given interval of ln T represents the number
of ions produced in collisions of electrons in that inter-
val. One sees a sizable contribution from high energies
(between 1 keV and 10 keV). Below 1 keV, where the
spectrum is roughly constant, each decade of T con-
tributes roughly the same amount to the total ionization
yield. This observation applies to any product j that
results from dipole-allowed transitions.

In contrast, the yield spectrum for a product j
resulting from forbidden transitions is dominated by
values at low T , where σ j(T ) is appreciable, as
Fig. 92.4 illustrates. An example is the production of two
ground-state hydrogen atoms from a hydrogen molecule,
which occurs solely from the lowest triplet repulsive
state.

Finally, once electrons fall below E1, they moder-
ate much less rapidly than they do above E1. These
subexcitation electrons [92.18], lose energy through mo-
mentum transfer upon elastic collisions with molecules,
rotational excitation, and vibrational excitation, as dis-
cussed in Chapt. 47. The behavior of the subexcitation
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ln T(eV)
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ny(T0T)Tσi(T)/T0 (eV–1) T (eV)

Fig. 92.3 The yield spectrum for ionization in molecular
hydrogen. Source electrons are the same as for Fig. 92.2.
The vertical axis represents ny(Tmax,T )T σi(T )/Tmax,
where n is the number density of molecules, Tmax = 10 keV
is the source-electron energy, and σi(T ) is the ionization
cross section of H2 for electrons of energy T . Data are
taken from Douthat [92.8]
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electrons is treated by an extension of the Spencer–
Fano equation [92.15], until they reach kinetic energies
comparable with the thermal energy of the medium
molecules. Then, the transport, moderation, and eventual
energy gain from medium molecules become important,
as well as the energy loss to them. The three main en-
ergy domains of electronic excitation, subexcitation, and
thermal [92.19] are illustrated in Fig. 92.5. Because of
the great disparity in the modes of interactions with the
medium, electrons in each of the domains need different
treatments.

Together with ions, molecular fragments, and other
products of electron degradation, electrons in the ther-
mal domain are important as precursors to subsequent
chemical reactions, and therefore have been the subject
of extensive study [92.4, 20, 21].

92.3.3 Quantities Expressing the Yields
of Products

The total ionization yield is often expressed in terms of
the quantity W , defined to be the mean energy required
to produce an ion pair, or equivalently,

W = Tabs/Ni , (92.8)

1.0

0.5

10 100 1000
T(eV)

Ty(T) Q(T)10–18 (cm3)

Triplet

Ion

Singlet

Fig. 92.4 The yield spectra for three product species in
molecular hydrogen. Source electrons of kinetic energy
Tmax = 1000 eV steadily enter the hydrogen gas at 0◦C and 1
atmosphere at the rate of 1 electron−1cm−3. The solid curve
labeled “ION” represents ionization, the long-broken curve
labeled “SINGLET” represents the production of the B1Σ+

u
state, and the short-broken curve labeled “TRIPLET” rep-
resents the production of the a 3Σ+

g state, which dissociates
into two hydrogen atoms in the ground state (Courtesy:
Mineo Kimura)

where Tabs is the mean enery absorbed and Ni is the
mean number of ions observed over many events. Tabs is
simply the initial injection energy if all the resulting
electrons are degraded to kinetic energies below the ion-
ization threshold. Since each event is stochastic, Tabs
and Ni in general fluctuate from one event to the next.

A simple index for the statistical fluctuations in NI is
the variance V of NI from its mean. The ratio F = V/Ni ,
called the Fano factor [92.22].

Both measurements and theory indicate that W
and F are approximately the same for different
kinds of ionizing radiations of sufficiently high en-
ergy, and that they depend primarily on the material
of the medium [92.15, 23, 24]. This fact is im-
portant as a basis for radiation dosimetry through
ionization measurements. The ratio W/I ranges from
1.7 to 3.2 depending on the nature of materials,
where I is the ionization threshold energy. The
ratio always exceeds unity because a fraction of
radiation energy absorbed is expended to generate prod-
ucts other than ionization, such as discrete excited
states, neutral molecular fragments, and subexcitation
electrons.

104
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10

10–1
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10–2 10–1 102 103 104101
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T(eV)

Thermal
Domain

Subexcitation
domain

Electronic excitation
domain

Fig. 92.5 A schematic diagram for showing three distinct
domains of electron transport in a molecular substance. The
horizontal axis represents the kinetic energy T of an elec-
tron. The vertical axis represents the energy loss E upon
a single collision with a molecule. The vertical broken line
indicates the first electronic excitation threshold E1. The
shade and fade schematically represent the magnitudes of
cross sections
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The Fano factor F is restricted to 0< F< 1 on gen-
eral theoretical grounds. The maximum value F = 1
would occur if the ionization process were character-
ized by the Poisson statistics. In reality, the ionization
process is subject to the constraints that it must compete
with nonionizing events, and that the available total en-
ergy is fixed; therefore the fluctuations in the ionization
yield must be smaller than those given by the Poisson
statistics, viz., F< 1. Both theory and experimental data
indicate that F and W tend to vary together from one ma-
terial to another; more precisely, Krajcar–Bronić [92.24]
found an approximate empirical relation

F = a(W/I)+b , (92.9)

where a and b are constant. This relation is valid for
electrons of sufficiently high energies.

For molecular products other than ions, it is custom-
ary to use G j defined by

G j = N j/Tabs , (92.10)

where N j is the mean number of molecular products
of type j (see pp. 241–242 of Kimura et al. [92.15]
for fuller discussion). Like W , G j is often approxi-
mately the same for different kinds of ionizing radiations
of sufficiently high energy, provided that the material,
either liquid or solid, is homogeneous and that the ab-
sorbed energy is not extremely great. A counter example
is the ferrous sulphate equeous solution, which is of-
ten used for dosimetry and in which the G value for
the ferrous-ferric conversion depends appriciably on the
kind of radiation (Chapt. 91). In the more general case
of a heterogeneous material having complex molecu-
lar structure and aggregation, such as a biological cell,
the yield of a product is not even approximately pro-
portional to the absorbed energy, and the idea of a G
value is useful only at the limit of vanishing absorbed
energy.

In SI units, the G value has units of molJ−1. This is
related to the older unit, molecules (100 eV−1), by

1 mol J−1 = 9.6485 × 10−6molecules(100 eV)−1 .

(92.11)

The meaning of the yield of a product depends on
the process. The molecular species produced as a result
of electron degradation (e.g., those given in Table 92.1)
may be called initial products. Subsequently, they re-
act with neighboring molecules or among themselves
to form other species, which may be called sec-
ondary products, such as H+

3 , through the ion-molecule
reaction

H+
2 +H2 → H+

3 +H . (92.12)

The yield of an initial product is seldom measured and
is accessible by theory only. Most yield measurements

concern a secondary product. To keep the distinction
in mind, Platzman recommended [92.25] use of the
symbol g for an initial product and the symbol G for
a secondary product.

For data on G values, see Tabata et al. [92.4] and
references cited therein.

92.3.4 Track Structures

The spatial distributions of initial products such as ions
and excited states influence the kinetics of their subse-
quent chemical reactions, which lead to radiation effects.
Spatial distribution is generally expected to have a role
in a heterogeneous material; this role should be espe-
cially prominent when the scale characteristic of the
distribution is comparable to the scale of the material
inhomogeneity.

The simplest index of the distribution is the stop-
ping power, which gives the linear density of energy
lost from a particle along its path. From the point of
view of radiation effects, or Class II problems, the lin-
ear density of energy imparted locally to matter is of
greater interest. The distinction between the energy lost
from a particle and the energy imparted locally to mat-
ter arises when one considers a volume having a linear
scale less than the ranges of the majority of secondary
electrons produced in the volume; sufficiently energetic
secondary electrons will escape the volume and impart
much of their kinetic energies elsewhere. This recogni-
tion led to the idea of the linear energy transfer (often
abbreviated as LET), which is defined as the mean en-
ergy loss, excluding contributions from the production
of secondary electrons having kinetic energies above
a fixed value, such as 100 eV [92.26]. The LET, like
the stopping power, depends on the particle charge and
speed, as well as on the material, and is often used in ra-
diation chemistry and biology to consider the role of the
spatial distribution of initial products.

However, a given value of LET from particles of
different charges and speeds does not necessarily lead
to the same radiation effect. The aim of microdosime-
try [92.27] is to provide a more detailed description of
the energy imparted locally to a small volume of matter.
For a fuller discussion see Chapt. 91.

The full representation of the spatial pattern of
the initial products resulting from individual incident
and secondary particles is called the track structure,
because the pattern was first recognized in particle
tracks visualized in cloud chambers, photographic emul-
sions, and other radiation detectors. Treatments of track
structures and their consequences for the subsequent
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chemical reactions by Monte Carlo simulations are cer-
tainly informative and flexible for application to a wider
range of problems, as exemplified by [92.28–33]. Such
treatments are in principle sound, because they are in-
dependent of an assumption that the yield of a product
is proportional or otherwise simply related to the energy
lost or imparted.

The spatial distribution of the initial products and
other consequences of radiation interactions with matter
can be also studied by analytic methods using trans-
port equations. An excellent exposition of the recent
status of this approach is given in the NCRP Report
No. 108 [92.34]. By solving relatively simple prob-
lems, the analytic methods are effective in elucidating
principles and providing insights into the physics in-
volved, while the Monte Carlo simulations are powerful
in providing answers to complicated problems. In sum-
mary, the two approaches are complementary, rather
than competitive.

Meaningful results from these treatments require
a large volume of accurate cross section and other data
as input. Various surveys of atomic and molecular cross
section data are available to present recommended val-
ues and to identify needs for further studies, such as the
report [92.35] sponsored by the International Atomic
Energy Agency. A broader review of the current sta-
tus of cross section determination, dissemination, and
related topics is in [92.36].

92.3.5 Condensed Matter Effects

Beyond the interactions of ionizing particles with indi-
vidual atoms and molecules in a gas or beam, the atomic
or molecular aggregation in condensed matter has fur-

Table 92.2 Condensed matter effects

Classification Example Remarks on characteristics

Shift of oscillator strength toward higher
energies

Water, hydrocarbons, and organics Occurs over wide ranges of exitation energies.

Excitation of special modes of motion Plasmons in metals Occurs at specific energies and carries
considerable strength.

Excitons in molecular crystals and
ionic crystals

Occurs at specific energies and at minor strengths.

Interaction of fast ejected electrons with
other atoms and molecules

EXAFS (extended X-ray absorption
fine structure)

Occurs at energies above 100 eV, slightly above
the pertinent threshold, and at weak strengths,
chiefly due to interference of electrons emerging
from different atoms.

Resonances in electron interactions N2, C2H4, C2H2, and other
unsaturated hydrocarbons

Occurs at energies slightly above the excitation
threshold or even lower; leads to inelasticity.

Diffraction of the electron de Broglie
wave

Materials with periodic structure Leads to band structure effects, such as
transmission without energy loss at certain
electron kinetic energies.

ther important influences. A prelude to condensed matter
effects is seen in studies of high-pressure gases [92.37]
and in Chapt. 39.

Many phenomena are related to the complex
dipole-response function ε(E), which is the elec-
tric displacement generated in matter by a spatially
uniform electric field of unit strength oscillating at
angular frequency ω = E/� (see, e.g., Landau and
Lifshitz [92.38]). For light at this frequency, the
real part ε1(E) describes the dispersion, and the
imaginary part ε2(E) describes the absorption. The
probability that a glancing collision of a fast charged
particle transfers energy E to matter is proportional
to

Π(E)= Im[−1/ε(E)] = ε2

ε2
1(E)+ ε2

2(E)
. (92.13)

In a low-density material, such as a dilute gas, ε1(E) is
close to unity, and ε2(E) is much smaller than unity for
all E. Then, Π(E) is practically the same as ε2(E);
in other words, the spectrum of energy transfer in
a glancing collision of a fast charged particle is ef-
fectively the same as the spectrum of photoabsortion.
In a high-density material, Π(E) differs appreciably
from ε2(E) at some E. An extreme case occurs at
E at which ε1(E) changes its sign; there Π(E) has
a peak. This is the well-known plasma excitation in
metals.

A general criterion for determining the effect of
atomic or molecular aggregation on the dipole oscil-
lator strength spectrum, and hence on Π(E), was given
by Fano [92.39]. One may qualitatively summarize his
criterion as follows: If the density of the dipole oscilla-
tor strength of an atom or molecule in both space and
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energy (or frequency) is sufficiently high, the effects of
atomic or molecular aggregation will be appreciable. In
other words, the effect will be seen in a sufficiently dense
material and in a generally limited spectral region where
the oscillator strength spectrum of an isolated atom or
molecule is especially intense. With the use of the Fano
criterion, one understands the occurrence of collective
excitation (electronic excitation involving more than one

atom or molecule), such as excitons, plasmons, and other
elementary modes of excitation in condensed matter.
For a fuller and more recent discussion of this topic,
see Fano [92.40].

Many manifestations of condensed matter effects
on the absorption of radiation energy have been iden-
tified, as discussed, for instance, in [92.7] and [92.41].
Table 92.2 presents a summary of these effects.

92.4 Connections with Related Fields of Research

92.4.1 Astrophysics and Space Physics

Some of the ideas and methods sketched in Sect. 92.3.1
and Sect. 92.3.2 are readily applicable to studies
on terrestrial and planetary auroras [92.42–46] and
on effects of cosmic rays or X-rays on interstel-
lar clouds and other astronomical objects [92.47–
53]. These studies treat consequences of the inter-
actions of energetic charged particles or high-energy
photons on voluminous gases, at low densities and
often partially ionized. Often the presence of elec-
tric and magnetic fields influence radiation degradation
phenomena.

92.4.2 Material Science

As fully discussed earlier, radiation effects on gases, liq-
uids, and molecular substances, including the biological
cell, result mainly from electronic excitation. Radiation
effects on insulators, including crystalline solids, are
also initiated by electronic excitation [92.54, 55] and
are therefore closely related to atomic, molecular, and
optical physics.

In metals, electronic excitation per se is of little
consequence, because most of the electronic excita-
tion energy is rapidly converted into phonons (thermal
energy). Generally, a small fraction of electronic exci-
tation energy causes appreciable atomic displacement.
Radiation effects on these materials occur predomi-
nantly via direct energy transfer to atoms from neutrons,
protons, and heavier charged particles, causing atomic
displacement from a regular crystalline site [92.56–58].

More generally, the role of atoms and ions having
kinetic energies far exceeding the thermal energy is im-
portant in chemistry. This topic, known as hot-atom
chemistry [92.59, 60], represents another application of
the knowledge of atomic, molecular, and optical physics
as discussed in Chapts. 64 and 65, 66 and 67.

Radiation effects on the surface of a solid are a sub-
ject of extensive study, because of their importance as
means for material-structure probing and also for ma-
terial processing (for example, the ion implantation in
the manufacture of semiconductors and other devices).
A major phenomenon of interest is sputtering, which is
the ejection of atoms and molecules from the surface by
the action of ionizing radiation [92.61–64].

92.5 Supplement

A supplement to the foregoing sketch is provided by
an essay [92.65] on the role of physics written in
commemoration of the fiftieth anniversary of the Ra-
diation Research Society, an organ devoted to physical,
chemical, biological, and medical studies on the action
of radiation. According to the essay, contributions by
physicists have been steady, and show no sign of de-
cline in the total volume only changing emphasis over
years. Topics of the contributions concern radiation
sources, dosimetry, instrumentation for measurements

of radiation effects, fundamentals of radiation physics,
mechanisms of radiation actions, and applications. The
role of physics is most certain and decisive in the de-
velopment of instrumentation in a broad sense, ranging
from radiation sources to probes of radiation effects.

Finally, Ugo Fano was a giant in atomic, mo-
lecular, and optical physics and also a pioneer of
radiation physics. After his death in 2001 many ar-
ticles about his work and life naturally appeared
in print. A special issue of Physics Essays in his

Part
G

9
2
.5



1398 Part G Applications

honor [92.66] contains biographic materials, forty pa-
pers by his associates and friends, as well as his
own memoir. A recent article [92.67] summarizes

Fano’s contributions to atomic, molecular, and opti-
cal physics, and includes the most accurate list of his
publications.
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Texas A&M faculty in 1973. After receiving his B.A. degree from Rice
University, he completed his Ph.D. at the University of Texas at Austin
in 1972 and did post-doctoral work at Harvard. Professor Ford is
a member of the American Physical Society, Division of Electron,
Atomic,and Optical Physics.
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Jane L. Fox Chapter G.84

Wright State University
Department of Physics
Dayton, OH, USA
jane.fox@wright.edu

Jane Fox received her Ph.D. from Harvard University in Chemical
Physics and has held positions at the State University of New York at
Stony Brook, and the Harvard/Smithsonian Astrophysical Observatory.
She has been elected a Fellow of the American Geophysical Union.
Her research has focused on the chemistry, luminosity, heating of the
thermospheres/ionospheres of the planets, and their evolution.

Matthias Freyberger Chapter F.78

Universität Ulm
Abteilung für Quantenphysik
Ulm, Germany
matthias.freyberger@uni-ulm.de

Dr. Matthias Freyberger is extraordinary Professor at the Department of Quantum
Physics at the University of Ulm, Germany. His research interests are in quantum
optics, atom optics, quantum estimation theory, and the foundations of quantum
mechanics.

Thomas F. Gallagher Chapter B.14

University of Virginia
Department of Physics
Charlottesville, VA, USA
tfg@virginia.edu

Thomas F. Gallagher received his Ph.D. in physics in 1971 from Harvard University
and is now the Jesse W. Beams Professor of Physics at the University of Virginia.
His research is focused on the use of Rydberg atoms to realize novel physical systems.

Muriel Gargaud Chapter D.51

Observatoire Aquitain des Sciences de
l’Univers
Floirac, France
gargaud@obs.u-bordeaux1.fr

Muriel Gargaud is an astrophysicist at the “Observatoire Aquitain des Sciences de
l’Univers” in Bordeaux, France. She studied for 2O years the physico-chemistry of the
interstellar medium, her current research is now astrobiology. Astrobiolgy is an
interdisciplinary research field (astronomy, geology, chemistry, biology) looking for
the origins of life, its evolution and its development on Earth but also in and beyond
the Solar System. She is the main scientific editor of “Lectures in Astrobiology” by
Springer, Heidelberg 2005.

Alan Garscadden Chapter G.87

Airforce Research Laboratory
Area B
Wright Patterson Air Force Base, OH,
USA
alan.garscadden@wpafb.af.mil

Alan Garscadden received his B.Sc. and Ph.D. from Queen’s University,
Belfast, Northern Ireland. He is the chief Scientist, Propulsion
Directorate, Air Force Research Laboratory. Wright-Patterson AFB,
Ohio and Edwards AFB, California. Alan also performs basic and
applied research in non-equilibrium plasmas and energized gas flows,
lasers, mass spectroscopy measurements, and electron collision cross
sections. He is a Fellow of the APS, IEEE, AIAA and of the UK
Institute of Physics.

John Glass Chapter D.52

British Telecommunications
Solution Design
Belfast, Northern Ireland, UK
john.glass@bt.com

John Glass earned his Ph.D. on Relativistic Ion-Atom Collisions from
The Queen’s University of Belfast in 1995. His Ph.D. focussed on
distorted wave approximations in electron capture, in particular, the first
fully symmetrical CDW solution via the Sommerfeld-Maue
approximation. Dr. Glass now works in large-scale Business Support
Systems, Solutions Design for British Telecommunications plc.
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S. Pedro Goldman Chapter B.13

The University of Western Ontario
Department of Physics & Astronomy
London, ON, Canada
goldman@uwo.ca

Professor Pedro Goldman completed a Ph.D. in Relativistic Atomic Physics at the
University of Windsor. His work in atomic physics includes pioneering work
on relativistic variational basis sets, relativistic calculations for many-electron atoms
and diatomic molecules, accurate calculations for atoms in strong magnetic fields
and accurate calculations of QED energy corrections and of the energy levels of
Helium. Presently his research is directed to the optimization of the radiation therapy
of tumours. He has as well received numerous teaching awards.

Ian P. Grant Chapter B.22

University of Oxford
Mathematical Institute
Oxford, UK
ipg@maths.ox.ac.uk

Ian Grant is Emeritus Professor of Mathematical Physics, University of Oxford and
a Fellow of the Royal Society. He graduated from Oxford with a degree in
Mathematics and obtained his D. Phil. in Theoretical Physics in 1954. His interest in
relativistic electronic structure of atoms arose whilst he was working for the UK
Atomic Energy Authority at Aldermaston from 1957 to 1964 and the field has been
a major component of his research ever since. He returned to Oxford to a research post
in 1964 and was a full-time member of academic staff from 1969 until his retirement
in 1998. He is the author of more than 220 research papers, many of them on
relativistic quantum theory applied to atomic and molecular structure and processes.

William G. Harter Chapter C.32

University of Arkansas
Department of Physics
Fayetteville, AR, USA
wharter@uark.edu

Professor Harter’s research centers on theory of spectroscopy and what
it reveals about quantum phenomena and symmetry principles of
structure and dynamics. Current study focuses on how wave mechanics
of light relates to matter waves and their relativistic symmetry ranging
from intrinsic frames of floppy molecules to manifold dynamics of
astrophysical objects. A strong educational effort is being developed to
make modern theory more accessible. He is a Fellow of American
Physical Society (DAMOP).

Carsten Henkel Chapter F.77

Universität Potsdam
Institut für Physik
Potsdam, Germany
carsten.henkel
@quantum.physik.uni-potsdam.de

Carsten Henkel is Docteur en Sciences from the Université Paris-Sud Orsay.
He habilitated in 2004 at Potsdam University where he is currently a Privatdozent.
His research interests are in atom optics and nano optics. He is involved in several
European projects on physical implementations of quantum information processing.

Eric Herbst Chapter C.37

The Ohio State University
Departments of Physics
Columbus, OH, USA
herbst@mps.ohio-state.edu

Dr. Eric Herbst is Distinguished University Professor of Physics, Astronomy, and
Chemistry at The Ohio State University. Herbst is a Fellow of both the American
Physical Society and the Royal Society of Chemistry (UK). His specialty is the
chemistry of molecules in interstellar clouds, which are large accumulations of gas and
dust particles in our Galaxy and others in which star and planetary formation occur.

Robert N. Hill Chapter A.9

Saint Paul, MN, USA
rnhill@fishnet.com

Professor Robert Nyden Hill received his Ph.D. from Yale University in
1962. In 1964, after postdoctoral fellowships at Princeton and Yale, he
joined the faculty of the University of Delaware Physics Department.
He retired in 1997, and moved to Saint Paul, Minnesota. He has
published papers in relativistic dynamics, statistical mechanics,
mathematical physics, and atomic and molecular physics.
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David L. Huestis Chapter C.33

SRI International
Molecular Physics Laboratory
Menlo Park, CA, USA
david.huestis@sri.com

David L. Huestis received his Ph.D. in Chemistry from the California
Institute of Technology in 1973. He is a Fellow of the American
Physical Society. His research activities include a wide range of
experimental and theoretical investigations of fundamental kinetic and
optical processes involving atoms, small molecules, liquids, and solids.
Two major application areas have been chemical kinetics and optical
physics of high-power visible and ultraviolet gas lasers and the optical
emissions of terrestrial and planetary atmospheres.

Mitio Inokuti Chapter G.92

Argonne National Laboratory
Physics Division
Argonne, IL, USA
inokuti@anl.gov

Dr. Mitio Inokuti earned his Ph.D. in Applied Physics from the University of Tokyo in
1962. From 1973–1995 he was Senior Physicist at Argonne National Laboratory. He
is a Fellow of the American Physical Society and a member of the Radiation Research
Society. Since 1985 he is a member of the International Commission on Radiation
Units and Measurements, and since 1988 a member of the Editorial Board for
Advances in Atomic, Molecular, and Optical Physics. He also is Associate Editor of
the Journal of Applied Physics. His research interests focus on theoretical research in
radiation physics and chemistry, and in atomic and molecular physics.

Juha Javanainen Chapters F.75, F.76

University of Connecticut
Department of Physics Unit 3046
Storrs, CT, USA
jj@phys.uconn.edu

Juha Javanainen is Professor of Physics at the University of Connecticut.
He has worked on a number of topics in theoretical quantum optics, and
currently concentrates on quantum degenerate gases.

Erik T. Jensen Chapter G.89

University of Northern British Columbia
Department of Physics
Prince George, BC, Canada
ejensen@unbc.ca

Erik Jensen is an Associate Professor of Physics at the University of
Northern British Columbia (Canada). He obtained his Ph.D. in the
Surface Physics Group at Cambridge University in 1990 and did
post-Doctoral work with Prof. John Polanyi at the University of
Toronto. His research interests are in low-energy electron and photon
initiated dynamics for molecules at surfaces.

Brian R. Judd Chapters A.3, A.6

The Johns Hopkins University
Department of Physics and Astronomy
Baltimore, MD, USA
juddbr@pha.jhu.edu

Brian Judd has had a life-long interest in applying group theory to the spectroscopic
properties of the rare earths. He held appointments at Oxford, Chicago, Paris and
Berkeley before joining the Physics Department of the Johns Hopkins University in
1966. He received the Spedding Award for Rare-Earth Research in 1988 and is an
Honorary Fellow of Brasenose College, Oxford.

Alexander A. Kachanov Chapter C.43

Research and Development
Picarro, Inc.
Sunnyvale, CA, USA
akachanov@picarro.com

Alexander Kachanov received the M.Sc. degree in physics from Moscow Institute of
Physics and Technology in 1976, and the Ph.D. degree in physics from the Institute of
Spectroscopy of the Russian Academy of Sciences in 1987. In 2001 he joined Picarro,
Inc., where his research interests focus on ultra-sensitive gas detection and
development of novel laser sources.
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Savely G. Karshenboim Chapter B.30

D.I.Mendeleev Institute for Metrology
(VNIIM)
Quantum Metrology Department
St. Petersburg, Russia
sek@mpq.mpg.de

Dr. Savely G.Karshenboim was graduated in 1983 from St. Petersburg
(then Leningrad) State University, Russia where he also received
his Ph.D. in 1992 and habilitatatetd in 1999. He has been a member
of D.I. Mendeleev Institute for Metrology since 1983 and is at present
a head of Laboratory for Precision Physics and Metrology of simple
atomic systems. Since 1994 until now he has enjoyed numerous visiting
opportunities at Max-Planck-Institut für Quantenoptik. He is a member
of the CODATA task group on fundamental constants and SUNAMCO
commission of IUPAP. SUNAMCO is a commission on Symbols, Units,
Nomenclature, Atomic Masses and Fundamental Constants.
Dr. Karshenboim’s scientific interests include precision physics of
simple atoms, quantum electrodynamics (QED), determination of
fundamental constants and search for their variations.

Kate P. Kirby Chapter G.85

Harvard-Smithsonian Center for
Astrophysics
Cambridge, MA, USA
kkirby@cfa.havard.edu

Kate Kirby has a Ph.D. in Chemical Physics from the University of Chicago, and is
currently director of the Institute for Theoretical Atomic, Molecular, and Optical
Physics. Her research interests center on theoretical studies of ultracold molecule
formation and atomic and molecular structure and processes which are of interest to
astronomy and atmospheric physics. Such processes include: photoionization,
photodissociation, radiative association, charge transfer, and line-broadening.

Sir Peter L. Knight Chapter F.81

Imperial College London
Department of Physics Blackett Laboratory
London, UK
p.knight@imperial.ac.uk

Sir Peter Knight is Head of Physics at Imperial College. He is Chief Scientific Advisor
to the National Physical Laboratory and past President of the Optical Society of
America. He is a Fellow of the Royal Society and was knighted in 2005. He researches
in strong field physics and quantum information and edits the Journal of Modern
optics and contemporary physics.

Manfred O. Krause Chapter E.61

Oak Ridge National Laboratory
Oak Ridge, TN, USA
mok@ornl.gov

Dr. Krause was a Senior Scientist at the Oak Ridge National Laboratory
working primarily in the field of photoelectron spectrometry of atoms
with the use of synchrotron radiation. He received his Dr. rer. nat. in
physics at the Technische Universität and the Max Planck Institut für
Metallforschung in Stuttgart in 1954. He joined the Oak Ridge National
Laboratory in 1963 and retired in 1995. He is a Fellow of the American
Physical Society, and was a Professeur d’Echange at the University of
Paris in 1975 and an Alexander von Humboldt awardee at the
University of Freiburg in 1976.

Paul G. Kwiat Chapter F.80

University of Illinois at
Urbana-Champaign
Department of Physics
Urbana, IL, USA
kwiat@uiuc.edu

Paul G. Kwiat is the Bardeen Chair in Physics, at the University of Illinois, in
Urbana-Champaign. A Fellow of the American Physical Society and the Optical
Society of America, he studies the phenomena of entanglement, quantum
interrogation, quantum erasure, and optical implementations of quantum information
protocols. He can’t resist a good swing dance.
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Maciej Lewenstein Chapter F.74

ICFO–Institut de Ciéncies Fotóniques
Barcelona, Spain
maciej.lewenstein@icfo.es

Born in Warsaw Poland, Dr. Maciej Lewenstein worked for many years
in the Center for Theoretical Physics in Warsaw. He graduated from the
University of Essen, worked for several years at CEA, and the
University of Hannover. Currently he leads the theoretical quantum
optics group at ICFO, Barcelona, Spain. His interests include physics
of ultracold gases, quantum information, and the physics of matter
in strong fields. He is a Fellow of APS.

James D. Louck Chapter A.2

Los Alamos National Laboratory
Retired Laboratory Fellow
Los Alamos, NM, USA
jimlouck@aol.com

James Louck is a Los Alamos National Laboratory Retired Fellow. He earned his
Ph.D. in molecular physics from The Ohio State University in 1958, and is the
co-author of three books. Except for the years 1960 - 1963 at Auburn University, his
career was in the Theoretical Division at Los Alamos developing symmetry methods
for physical systems. His current research is in the inter-relations between symmetry
and combinatorics.

Joseph H. Macek Chapter D.53

University of Tennessee and Oak Ridge
National Laboratory
Department of Physics and Astronomy
Knoxville, TN, USA
jmacek@utk.edu

Dr. Joseph Macek is a Distinguished Professor at the University of Tennessee and
a Distinguished Scientist at Oak Ridge National Laboratory. His currrent research
concentrates on thetheory of atomic collisions. He has been assigned Co-Chair of the
local committee for the annual meeting of the Division of Atomic and Molecular
Physics of the American Physical Society, Knoxville, TN 2006.

Mary L. Mandich Chapter C.39

Lucent Technologies Inc.
Bell Laboratories
Murray Hill, NJ, USA
mandich@lucent.com

Mary Mandich is a Technical Manager and Distinguished Member
of Technical Staff at Bell Laboratories and currently leads research in
high speed backplanes and optical remoting for next generation
telecommunication networks. She obtained her Ph.D. degree in Physical
Chemistry at Columbia University. She holds 6 U.S. Patents and has
authored 2 book chapters and more than 55 scientific publications in
chemistry, physics, and materials science.

Steven T. Manson Chapter D.53

Georgia State University
Department of Physics and Astronomy
Atlanta, GA, USA
smanson@gsu.edu

Professor Manson is on the faculty at Georgia State University. He received the Ph.D.
from Columbia University in 1966, and did a two-year post-doc at the NBS (now
NIST) working with Ugo Fano and John Cooper. He started as a faculty member at
Georgia State University in 1968 and has been Regents Professor since 1984. His
research has been primarily in the area of theoretical studies of ionization of atoms
and ions by charged particles and photons. He is a Fellow of the American Physical
Society.

William C. Martin Chapter B.10

National Institute of Standards and
Technology
Atomic Physics Division
Gaithersburg, MD, USA
wmartin@nist.gov

Dr. Martin’s research has included the measurement and energy-level analysis of
atomic spectra. He has also published a number of critical compilations of atomic
spectroscopic data, including a large volume for the rare-earth elements. In his current
position as Scientist Emeritus at NIST, Dr. Martin is continuing work on
internet-accessible atomic spectra databases.
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Jim F. McCann Chapter D.52

Queen’s University Belfast
Dept. of Applied Mathematics and
Theoretical Physics
Belfast, Northern Ireland, UK
j.f.mccann@qub.ac.uk

Jim McCann was a Ph.D. student of Prof. Derrick Crothers at Queen’s
University, Belfast. He is currently a Reader in Theoretical Physics at
Queen’s and works in the field of Quantum Optics and Quantum
Information Processing.

Ronald McCarroll Chapter D.51

Université Pierre et Marie Curie
Laboratoire de Chimie Physique
Paris Cedex 05, France
mccarrol@ccr.jussieu.fr

Ronald McCarroll is a Professor of Physics at the Université Pierre et
Marie Curie in Paris. He obtained his Ph.D. degree in Theoretical
Physics at Queen’s University, Belfast. After a post-doctoral fellowship
at the National Physics Laboratory, Teddington and a Lectureship at
Queen’s University, Belfast he was appointed as a Directeur de
Recherche au CNRS at the Observatoire de Pari, Meudon. Later, he
moved to the Université de Bordeaux I as Professor in Astrophysics and
finally to Paris as Professor in Physics at the Univerité Pierre et Marie
Curie. He has worked in the field atomic and molecular photodynamics,
particularly in view of their application to astrophysics and the physics
of fusion plasmas. He is the author of more then 130 papers in refereed
journals and contributed more than 20 specialised reviews to books and
other specialised publications.

Fiona McCausland Chapter D.52

Northern Ireland Civil Service
Department of Enterprise Trade and
Investment
Belfast, Northern Ireland, UK
fiona.mccausland@detini.gov.uk

Dr. Fiona McCausland gained her Ph.D. in Theoretical Physics in 1995 from the
Queen’s University of Belfast. Following a year spent as a Post Doctoral Research
Assistant at the University, she joined the Northern Ireland Civil Service in September
1996. She currently holds the position of Project Manager in the Department of
Enterprise, Trade and Investment.

William J. McConkey Chapter E.63

University of Windsor
Department of Physics
Windsor, ON, Canada
mcconk@uwindsor.ca

Dr. Bill McConkey is a physicist with an extensive background in the measurement
of absolute cross section data for the atomic, molecular, and optical physics
community. His laboratory is recognised as a world leader in electron collisions
research. He has been awarded the Gold Medal of the Canadian Association of
Physicists (1999) and the Allis Prize of the American Physical Society (2004) for
his work.

Robert P. McEachran Chapter D.48

Australian National University
Atomic and Molecular Physics
Laboratories Research School of Physical
Sciences and Engineering
Canberra, Australia
robert.mceachran@anu.edu.au

Professor McEachran received his Ph.D. from the University of Western
Ontario, Canada and then spent two years at the University College
London (England) before joining York University in Toronto in 1964.
In 1997 he accepted an Adjunct Professorship at the Australian National
University. His current research interests are the theoretical treatment
of electron/positron scattering from heavy atoms within a relativistic
framework.

James H. McGuire Chapter D.57

Tulane University
Department of Physics
New Orleans, LA, USA
mcguire@tulane.edu

Dr. McGuire is Murchison Mallory Chair and department chair at
Tulane University. He is a past Chair of the Division of Atomic,
Molecular and Optical Physics (DAMOP) of the American Physical
Society. His research interests are in electron correlation dynamics.
entanglement, complexity and correlation, and quantum time.
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Dieter Meschede Chapter F.79

Rheinische
Friedrich-Wilhelms-Universität Bonn
Institut für Angewandte Physik
Bonn, Germany
meschede@iap.uni-bonn.de

Professor Dieter Meschede teaches at the Institute for Applied Physics in Bonn. After
his studies in Hanover and Cologne and having been awarded his Dr. rer. nat in Munich
in 1984, he first worked at Yale University. Then he became senior scientist at the MPI
for Quantum Optics, Garching. He has been Professor of Physics since 1990, first in
Hanover, since 1994 in Bonn. Professor Meschede is author of “Optics, Light, and
Laser”, some 90 refereed articles, and, since 2001, editor of the “Gerthsen”textbook.

Pierre Meystre Chapter F.68

University of Arizona
Department of Physics
Tucson, AZ, USA
meystre@physics.arizona

Pierre Meystre’s research ranges from laser theory to cavity QED and to the physics of
quantum-degenerate atomic and molecular systems. With Murray Sargent, he
coauthored the textbook “Elements of Quantum Optics,”and he recently published the
monograph “Atom Optics”, both with Springer-erlag. He has been awarded the Senior
Scientist Research Prize of the Humboldt Foundation and the R.W. Wood Prize of the
Optical Society of America. He is currently a Regents Professor and the Head of the
Physics Department at The University of Arizona.

Peter W. Milonni Chapter F.70

Los Alamos, NM, USA
pwm@lanl.gov

Peter Milonni is a Laboratory Fellow (retired) at Los Alamos National
Laboratory. His main interests are in theoretical physics, especially
quantum optics and electrodynamics. He is an author of several books
including Lasers (with J. H. Eberly), The Quantum Vacuum, and Fast
Light, Slow Light, and Left-Handed Light. Previously he held positions
with the U. S. Air Force, the Perkin-Elmer Corporation, and the
University of Arkansas.

Peter J. Mohr Chapter B.28

National Institute of Standards and
Technology
Atomic Physics Division
Gaithersburg, MD, USA
mohr@nist.gov

Dr. Peter Mohr received his Ph.D. from the University of California at
Berkeley in 1973 and spent some years at the Lawrence Berkeley
Laboratory (1973–1978), at Yale University (1978–1985), at the
National Science Foundation (1985–1987), and at the National Bureau
of Standards/ National Institute of Standards and Technology from 1987
until now. He is a Fellow of the American Physical Society, and
received the Alexander von Humboldt Senior Research Award in 1995.
He held the Chair of the CODATA Task Group on Fundamental
Constants from 1999 to 2006 and was Chair of the Precision
Measurement and Fundamental Constants Topical Group of the
American Physical Society from 2000–2001.

John D. Morgan III Chapters B.20, G.90

University of Delaware
Department of Physics and Astronomy
Newark, DE, USA
jdmorgan@udel.edu

Dr. Morgan is Associate Professor and obtained his B.S. from The George Washington
University, his M.Sc. in Theoretical Chemistry from Oxford University, and his Ph.D.
in Chemistry from Berkeley. He has served on the editorial boards of the Journal of
Mathematical Physics and the International Journal of Quantum Chemistry. His
wide-ranging interests include the application of sophisticated mathematical
techniques to assist the accurate calculation of properties of atoms and molecules.
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Michael S. Murillo Chapter G.86

Los Alamos National Laboratory
Theoretical Division
Los Alamos, NM, USA
murillo@lanl.gov

Dr. Murillo received his Ph.D. in theoretical atomic and plasma physics
from Rice University. He then received a Director’s Postdoctoral
Felloship at Los Alamos, where he has remained since. His current
research interests lie in the areas of dense and strongly coupled plasmas,
including laser-produced plasmas, dusty plasmas, astrophysical
plasmas, and ultracold plasmas. He applies both analytical and
molecular dynamics methods to these systems.

Evgueni E. Nikitin Chapter D.49

Technion-Israel Institute of Technology
Department of Chemistry
Haifa, Israel
nikitin@techunix.technion.ac.il

Professor, Nikitin Evgueni is a researcher, head of the research group,
and Professor of Chemical Physics at the Institute of Chemical Physics,
Moscow, since 1958. He is also Professor of Physical Chemistry,
Technion, Haifa, since 1991. He is a member of the Deutsche Akademie
der Naturforscher Leopoldina, the European Academy of Arts, Sciences
and Humanities, and the International Academy of Quantum Molecular
Sciences. His research concentrates on the theory of inelastic and
reactive scattering, theory of nonadiabatic processes, statistical theory
of chemical reactions, and atom-molecule processes at low energies. He
authored 15 books and about 300 papers. Research awards: Alexander
von Humboldt Award, Gauss Professorship, and Barecha Fellowship

Robert F. O’Connell Chapter F.78

Louisiana State University
Department of Physics and Astronomy
Baton Rouge, LA, USA
oconnell@phys.lsu.edu

Professor O’Connell earned his Ph.D. in 1962 from the University of Notre Dame,
Indiana. For many years , in collaboration with G. W. Ford , he has been studying
dissipative and fluctuation phenomena in quantum mechanics and related applications.
In addition, he is using the generalized quantum Langevin equation to explore recent
topical questions in non-equilibrium statistical mechanics (particularly claims that the
fundamental laws of thermodynamics may be violated in the quantum regime).

Francesca O’Rourke Chapter D.52

Queen’s University Belfast
Department of Applied Mathematics and
Theoretical Physics
Belfast, UK
s.orourke@qub.ac.uk

Dr. O’Rourke obtained her Ph.D. in Ion-Atom Collisions from Queens University,
Belfast, in 1991. She now lectures in Applied Mathematics and Theoretical Physics at
Queens University, Belfast. Her current research interests include heavy particle
collisions in atomic and molecular physics and more recently mathematical modelling
in Biomedicine.

Ronald E. Olson Chapter D.58

University of Missouri-Rolla
Physics Department
Rolla, MO, USA
olson@umr.edu

Ronald E. Olson, Curators’ Professor of Physics earned his Ph.D. from
Purdue University in 1967. He is a Fellow of the American Physics
Society and a Fulbright Fellow to France. He was received the
Humboldt Senior Prize Award, the University of Missouri system-wide
Presidential Award for Research and Creativity. His research interests
concentrate on theory of elastic and inelastic total and differential
scattering cross sections: atom–atom, ion–atom, and ion–ion. Studies of
multiply charged ion–atom collisions, Rydberg atom collisions, negative
ion detachment mechanisms, and Penning and associative ionization.
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Barbara A. Paldus Chapter C.43

Skymoon Ventures
Palo Alto, CA, USA
bpaldus@skymoonventures.com

Dr. Barbara Paldus received her Ph.D. in electrical engineering from
Stanford University. She is a partner at Skymoon Ventures, where she
works with early stage photonics companies. Previously, she was CTO
at Picarro, which she founded in 1998. She has received numerous
research awards, most recently the Adolph Lomb Prize (2001) by the
OSA for her work in cavity ring-down spectroscopy.

Josef Paldus Chapters A.4, A.5

University of Waterloo
Department of Applied Mathematics
Waterloo, ON, Canada
paldus@scienide.uwaterloo.ca

Josef Paldus, FRSC, is a Distinguished Professor Emeritus in the Department of
Applied Mathematics, Department of Chemistry, and Guelph-Waterloo Center for
Graduate Work in Chemistry – Waterloo Campus, at the University of Waterloo,
Waterloo, ON Canada. He is also an Adjunct Professor in the Department of
Chemistry of the University of Florida in Gainesville, FL, USA. He received his Ph.D.
degree from the Czechoslovak Academy of Sciences and his RNDr. and Dr.Sc.
degrees from the Faculty of Mathematics and Physics of the Charles University in
Prague, Czech Republic. His research interests are in the methodology of quantum
chemistry, the many-electron correlation problem, and the electronic structure of
molecular systems in general. On these topics he published about 300 papers, reviews,
and monograph chapters. He is a member of several professional societies and
editorial boards, and received various awards and international fellowships, notably
a Killam Fellowship, Institute for Advanced Study in Berlin Fellowship, Alexander
von Humboldt Senior Scientist Award, and most recently a Gold Medal of the Charles
University. He is also a Fellow of the Royal Society of Canada and of the Fields
Institute for Research in Mathematical Sciences.

Ruth T. Pedlow Chapter D.52

Queen’s University Belfast
Department of Applied Mathematics
and Theoretical Physics
Belfast, UK
r.pedlow@qub.ac.uk

Ruth Pedlow is working towards completion of her Ph.D. in heavy
particle collisions in atomic and molecular physics at Queens University
of Belfast.

David J. Pegg Chapter E.60

University of Tennessee
Department of Physics
Knoxville, TN, USA
djpegg@utk.edu

Currently I am investigating the structure and dynamics of atomic and
molecular negative ions by studying how they interact with photons and
electrons. The threshold behaviour and resonance structure in
detachment cross sections are used to measure correlation-sensitive
parameters. Experiments on photo detachment involve the use of lasers
or synchrotron radiation. Such measurements, for example, lead to
information on the process of multiple electron detachment induced by
the absorption of a single photon. Electron-impact detachment and
dissociation processes are studied using a magnetic storage ring. These
studies, for example, yield information on the production and decay of
doubly negative charged molecular and cluster negative ions.

Ekkehard Peik Chapter B.30

Physikalisch-Technische Bundesanstalt
Braunschweig, Germany
ekkehard.peik@ptb.de

Dr. Ekkehard Peik received his doctorate and the habilitation in physics at the
University of Munich. His research interests are in the fields of laser-cooling and
trapping of atoms and ions, precision laser spectroscopy and the application to optical
time and frequency metrology and tests of fundamental physics. He is now head of the
group ‘Optical Clocks’ at PTB and also a lecturer at the University of Hannover.
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Ronald Phaneuf Chapter E.64

University of Nevada
Department of Physics
Reno, NV, USA
phaneuf@unr.edu

Professor Phaneuf received a Ph.D. in atomic physics from the University of Windsor
in 1973 and has since been engaged in experimental research on interactions of ions
with electrons, atoms, molecules and photons using merged-beams and crossed-beams
techniques. He was formerly at JILA and Oak Ridge National Laboratory. His current
research emphasis is photon–ion interactions using synchrotron radiation.

Eric H. Pinnington Chapter B.18

University of Alberta
Department of Physics
Edmonton, AB, Canada
pinning@phys.ualberta.ca

Eric Pinnington obtained his Ph.D. in Physics at Imperial College in
1962. Prior to joining the University of Alberta in 1965, he held an
NRC postdoctoral fellowship at McMaster University in Hamilton,
Ontario, and an Alexander von Humboldt Fellowship at the Max Planck
Institute for Astrophysics in Munich. He was elected Fellow of the
American Physical Society in 1995. He became Professor Emeritus of
Physics in 1997.

Richard C. Powell Chapter F.71

University of Arizona
Optical Sciences Center
Tuscon, AZ, USA
rcpowell@email.arizona.edu

Powell was educated in physics at the United States Naval Academy and Arizona State
University. He has been a research scientist and professor at Air Force Cambridge
Research Laboratories, Sandia National Laboratory, and Lawrence Livermore
National Laboratory, Oklahoma State University and the University of Arizona. He
has authored two textbooks and over 260 scientific papers in laser spectroscopy and
solid-state laser development. Powell is an elected Fellow of both the American
Physical Society and the Optical Society of America and has served a President of
OSA. He has been elected to the Russian Academy of Engineering Science.

John F. Reading Chapter D.50

Texas A&M University
Department of Physics
College Station, TX, USA
reading@physics.tamu.edu

Professor Reading earned his Ph.D. from the University of Birmingham, UK, in 1964.
His current research interests are in theoretical calculations of cross sections for
excitation and ionization following fast ion–atom collisions, the role of Pauli
correlation in inner-shell vacancy production, and the role of dynamic electronic
correlation. The latter especially in comparision of proton and anti-proton-induced
single and double ionization of helium. He was named The Distinguished Texas
Scientist of 1995 by the Texas Academy of Sciences and is Editor of the proceedings
of several conferences on ion–atom collisions.

Jonathan R. Sapirstein Chapters B.27, B.29

University of Notre Dame
Department of Physics
Notre Dame, IN, USA
jsapirst@nd.edu

Dr. Sapirstein earned his Ph.D. from Stanford University in 1979. He
did postdoctoral work at UCLA and Cornell, and is at the University of
Notre Dame, Indiana, since 1984. Current research interest in parity
non-conservation in atoms, QED effects in highly charged
many-electron ions, QED calculations in hydrogen, positronium,
muonium, and helium. Dr. Sapirstein is a Fellow of the American
Physical Society.

Stefan Scheel Chapter F.81

Imperial College London
Blackett Laboratory
London, UK
s.scheel@imperial.ac.uk

Stefan Scheel received his Ph.D. (Dr. rer. nat.) from the
Friedrich-Schiller-University Jena in 2001. He is an EPSRC Advanced
Research Fellow in the Quantum Optics and Laser Science group in the
Department of Physics at Imperial College London. His main research
areas include QED in dielectric materials, quantum information
processing using linear optics, and decoherence processes in atom chip
experiments.

Au
th

ors



1420 About the Authors

Axel Schenzle Chapter F.79

Ludwig-Maximilians-Universität
Department für Physik
München, Germany
axel.schenzle@physik.uni-muenchen.de

Professor Schenzle has been working on various aspects of Theoretical Quantum
Optics, the description of classical and quantummechanical noise in microscopic and
mesoscopic systems, Bose–Einstein-Condensation, Quantum Information Theory,
qunatum computing and decoherence. He has been Deputy Rector of the University of
Munich and Dean for many years.

Reinhard Schinke Chapter C.34

Max-Planck-Institut für Dynamik &
Selbstorganisation
Göttingen, Germany
rschink@gwdg.de

Dr. Reinhard Schinke received his Ph.D. from the Physics department of the
University of Kaiserslautern in 1976. His main area of research is molecular
dynamics, in particular energy transfer in atomic collisions, chemical reactions, and
photodissociation. He is author of the book Photodissociation Dynamics. In recent
years his interest shifted to dynamical investigations of recombination processes with
particular emphasis on the ozone isotope effect.

Wolfgang P. Schleich Chapter F.78

Universität Ulm
Abteilung für Quantenphysik
Ulm, Germany
wolfgang.schleich@uni-ulm.de

Prof. Schleich studied physics and mathematics at the
Ludwig-Maximilians-Universität München where he obtained his
Diplom, Doktor, and Habilitation. He worked at the University of New
Mexico (Albuquerque) and University of Texas (Austin) and the
Max-Planck Institut für Quantenoptik in Garching. Since 1991 he has
held a chair of theoretical physics at the Universität Ulm. He has more
than 200 publications, is a Fellow of APS, IOP and OSA and an elected
member of the Heidelberger Akademie der Wissenschaften and the
Leopoldina, and has received numerous awards including the Leibniz
Prize and the Max-Planck Prize.

Michael Schulz Chapter E.65

University of Missouri-Rolla
Physics Department
Rolla, MO, USA
schulz@umr.edu

Professor Dr. Michael Schulz received his Ph.D. in Physics from the University of
Heidelberg in 1987 to become a Teaching Assistant from 1981–1987. After positions
at Oak Ridge National Laboratory and Kansas State University he joined the
University of Missouri-Rolla as Assistant Professor in 1990. Since 2002 he is
Professor of Physics and since 2003 Director of the Laboratory for Atomic,
Molecular, and Optical Research. His scientific concentrate on experimental atomic
physics, dynamics of many-body problem, correlation effects, and three-dimensional
imaging of atomic break-up processes. He is a Fellow of the American Physical
Society and was Mercator Scholar 2004–2005.

Peter L. Smith Chapter C.44

Harvard University
Harvard-Smithsonian Center for
Astrophysics
Cambridge, MA, USA
plsmith@cfa.havard.edu

Peter L. Smith received his Ph.D. degree in Physics from Caltech in 1972 and, after
a year of teaching, came to and stayed at the Harvard-Smithsonian Center for
Astrophysics. He is involved in measurements of fundamental atomic and molecular
parameters at ultraviolet wavelengths for analysis of astronomical spectra, and design
and calibration of instruments for ultraviolet spectroscopic and/or radiometric
measurements, especially of the Sun, from earth-orbiting satellites.

Au
th

ors



About the Authors 1421

Anthony F. Starace Chapter B.24

The University of Nebraska
Department of Physics and Astronomy
Lincoln, NE, USA
astarace1@unl.edu

Dr. Starace earned his Ph.D. from the University of Chicago in 1971
and is George Holmes University Professor of Physics at the University
of Nebraska since 2001. His primary research interests concern the
interaction of intense laser light with atoms, especially single and
multiphoton detachment and ionization processes. He is a Fellow of the
American Physical Society and the American Association for the
Advancement of Science, and is currently an Associate Editor of
Reviews of Modern Physics.

Glenn Stark Chapter C.44

Wellesley College
Department of Physics
Wellesley, MA, USA
gstark@wellesley.edu

Professor Stark’s research interest is in the field of experimental
molecular spectroscopy. His laboratory programs emphasize molecular
transitions of interest to the astrophysics and aeronomy communities,
primarily involving the measurement and interpretation
of high-resolution absorption spectra of vacuum ultraviolet and extreme
ultraviolet transitions. Related activities include Fourier transform
spectroscopy of diatomic molecules, and laser spectroscopies
of diatomics.

Allan Stauffer Chapter D.48

Department of Physics and Astronomy
York University
Toronto, ON, Canada
stauffer@yorku.ca

Allan Stauffer has published numerous papers in the field of electron and positron
scattering from atoms and simple molecules. In collaboration with numerous
colleagues, he has been involved with extensive scattering calculations and developed
methods to carry out these investigations and has worked closely with groups involved
in measuring these processes.

Aephraim M. Steinberg Chapter F.80

University of Toronto
Department of Physics
Toronto, ON, Canada
steinberg@physics.utoronto.ca

Aephraim Steinberg works on experimental quantum optics and laser cooling, with
specific emphasis on foundational questions in quantum mechanics (esp. quantum
measurement) and on quantum information. His obssession is with tunneling times;
in 1994, he demonstrated (with Kwiat and Chiao) the superluminal tunneling of
photons, and in 2005, he is starting an experiment to probe tunneling times for
Bose-condensed atoms through optical barriers.

Stig Stenholm Chapter F.69

Royal Institute of Technology
Physics Department
Stockholm, Sweden
stenholm@atom.kth.se

Stig Stenholm was Pprofessor of Laser Physics and Quantum Optics at
the Royal Institute of Technology, Stockholm. He studied Technical
Physics at the Helsinki Institute of Technology and Mathematics at the
University of Helsinki. He worked at the Research Institute for
Theoretical Physics in Helsinki until 1997, when moving to Stockholm.
Theoretical research fields include spectroscopy, quantum optics, and
informatics

Jack C. Straton Chapter D.57

Portland State University
University Studies
Portland, OR, USA

Jack Straton earned a doctorate in quantum theory from the University
of Oregon and served as both a volunteer and professional diversity
trainer over the past 18 years. He is an Assistant Professor in Portland
State University’s interdisciplinary University Studies program, where
his teaching blends science, art, diversity, and social responsibility.
His research ranges from Quantum Scattering Theory to Anti-racist
Pedagogy.

Au
th

ors



1422 About the Authors

Carlos R. Stroud Jr. Chapter F.73

University of Rochester
Institute of Optics
Rochester, NY, USA
stroud@optics.rochester.edu

Professor Stroud is Professor of Optics, Professor of Physics and Director of the
Center for Quantum Information at the University of Rochester where he works in
a variety of areas of experimental and theoretical quantum optics and atomic physics.
His group pioneered the area of Rydberg electron wave packet physics observing
localization, decays, revivals and interferometry with a single electron.

Barry N. Taylor Chapter B.28

National Institute of Standards and
Technology
Atom Physics Division
Gaithersburg, MD, USA
barry.taylor@nist.gov

Barry N. Taylor received his Ph.D. in Physics from the University of
Pennsylvania in 1963. He remained at Penn as a faculty member until
he joined RCA Laboratories in Princeton, NJ in 1966. He joined the
National Bureau of Standards (now NIST) in 1970 as a Section Chief in
the Electricity Division, becoming its Chief in 1974. In 1988 he became
manager of the NIST Fundamental Constants Data Center, retiring from
NIST and that position in 2001. Since then he has been a NIST Scientist
Emeritus in the Data Center. Dr. Taylor has authored or co-authored
over 100 publications, is a fellow of the APS and IEEE, and has
received a number of awards. His current research focuses on the
evaluation of data related to the fundamental constants and improving
the International System of Units (SI).

Aaron Temkin Chapter B.25

NASA Goddard Space Flight Center
Laboratory for Solar and Space Physics
Greenbelt, MD, USA
aaron.temkin-1@nasa.gov

Dr. Temkin is a research physicist (emeritus) at NASA/GSFC. He has specialized
(primarily) in scattering problems of electrons from atoms and molecules, and
associated processes (autoionization, in particular). He received his Ph.D. degree from
the Massachusetts Institute of Technology in 1956, and has been at his present
institution since 1960.

Sandor Trajmar Chapter E.63

California Institute of Technology
Jet Propulsion Laboratory
Redwood City, USA
strajmar@comcast.net

Dr. Sandor Trajmar received his Ph.D. in physical chemistry from the University of
California at Berkeley, California,. He was Head of the Electron collision Physics
Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena,
California. He retired in January 1997.

Elmar Träbert Chapter B.18

Ruhr-Universität Bochum
Experimentalphysik III/NB3
Bochum, Germany
traebert@ep3.rub.de

Professor Elmar Träbert obtained his doctorate and professorial title at
Ruhr-Universität Bochum. He has extensive experience in time-resolved
spectroscopy and atomic lifetime measurements mainly from working
with beam-foil spectroscopic techniques, a heavy-ion storage ring, as
well as radio-frequency and electron beam ion traps in more than
a dozen laboratories.

Turgay Uzer Chapter B.15

Georgia Institute of Technology
School of Physics
Atlanta, GA, USA
turgay.uzer@physics.gatech.edu

Professor Turgay Uzer obtained his doctorate at Harvard and was
a postdoctoral fellow at Caltech. Currently he is Regents’ Professor in
the School of Physics, Georgia Institute of Technology. His research
interests include: Rydberg atoms and molecules, semiclassical theories,
nonlinear dynamics/chaos, intramolecular energy transfer, and chemical
reactivity.

Au
th

ors



About the Authors 1423

Karl Vogel Chapter F.78

Universität Ulm
Abteilung für Quantenphysik
Ulm, Germany
karl.vogel@uni-ulm.de

Dr. Vogel received his PhD from the Universität Ulm in 1989. His research area is
theoretical quantum optics. In particular, he investigated how quantum states of the
radiation field can be prepared and how they can be measured.

Jon C. Weisheit Chapter G.86

Washington State University
Institute for Shock Physics
Pullman, WA, USA
weisheit@wsu.edu

Jon Weisheit recently joined Washington State Universtity’s Intstitute for Shock
Physics, where he holds appointments as Research Professor and Associate Director,
and conducts research focused on understanding quantum phenomena in high energy
density matter. He is a Fellow of the American Physical Society, and is a frequent
advisor in government agencies on issues pertaining both to basic science and to
national defense programs. Her received his graduate degrees in space science and in
physics from Rice University.

Wolfgang L. Wiese Chapter B.10

National Institute of Standards and
Technology
Gaithersburg, MD, USA
wiese@nist.gov

Dr. Wolfgang Wiese is a physicist with extensive research background
in atomic spectroscopy and in the critical tabulation of atomic reference
data. He has worked at the National Institute of Standards and
Technology for more than 40 years and has led the Atomic Physics
Division from 1978 to 2004. He has authored 6 data volumes on Atomic
Transition Probabilities, 15 book chapters and about 225 shorter
research papers.

Martin Wilkens Chapter F.77

Universität Potsdam
Institut für Physik
Potsdam, Germany
martin.wilkens@physik.uni-potsdam.de

Dr. Martin Wilkens received a Ph.D. In Physics from Essen University.
He spent his post-doctoral years in Warsaw, Tucson, and Konstanz and
has been appointed Professor for Theoretical Physics / Quantum Optics
at Potsdam University in 1997. His current research areas are
Bose-Einstein condensation, degenerate quantum gases, and quantum
information processing and communication.

Au
th

ors



1425

Detailed Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XLVII
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LV

1 Units and Constants
William E. Baylis, Gordon W. F. Drake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Electromagnetic Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Atomic Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Mathematical Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Series Summation Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Part A Mathematical Methods

2 Angular Momentum Theory
James D. Louck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Orbital Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Cartesian Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Spherical Polar Coordinate Representation . . . . . . . . . . . . . . . . . . . . . 15

2.2 Abstract Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Representation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Parametrizations of the Groups SU(2) and SO(3,R) . . . . . . . . . . . . . 18
2.3.2 Explicit Forms of Representation Functions . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Relations to Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Orthogonality Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.5 Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.6 Symmetry Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Group and Lie Algebra Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Matrix Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Lie Algebra Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.4 Relation to Angular Momentum Theory . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Differential Operator Realizations of Angular Momentum . . . . . . . . . . . . 28
2.6 The Symmetric Rotor and Representation Functions . . . . . . . . . . . . . . . . . . 29
2.7 Wigner–Clebsch–Gordan and 3-j Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7.1 Kronecker Product Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.2 Tensor Product Space Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.3 Explicit Forms of WCG-Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.4 Symmetries of WCG-Coefficients in 3-j Symbol Form . . . . . . . . . . 35
2.7.5 Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.6 Limiting Properties and Asymptotic Forms . . . . . . . . . . . . . . . . . . . . . 36
2.7.7 WCG-Coefficients as Discretized Representation Functions . . . 37

D
etailed

Con
t.



1426 Detailed Contents

2.8 Tensor Operator Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8.1 Conceptual Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8.2 Universal Enveloping Algebra of J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8.3 Algebra of Irreducible Tensor Operators . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8.4 Wigner–Eckart Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8.5 Unit Tensor Operators or Wigner Operators . . . . . . . . . . . . . . . . . . . . . 40

2.9 Racah Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.9.1 Basic Relations Between WCG and Racah Coefficients . . . . . . . . . 43
2.9.2 Orthogonality and Explicit Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.9.3 The Fundamental Identities Between Racah Coefficients . . . . . 44
2.9.4 Schwinger–Bargmann Generating Function

and its Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.9.5 Symmetries of 6–j Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9.6 Further Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.10 The 9–j Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.10.1 Hilbert Space and Tensor Operator Actions . . . . . . . . . . . . . . . . . . . . 47
2.10.2 9–j Invariant Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.10.3 Basic Relations Between 9–j Coefficients and 6–j

Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.10.4 Symmetry Relations for 9–j Coefficients and Reduction

to 6–j Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.10.5 Explicit Algebraic Form of 9–j Coefficients . . . . . . . . . . . . . . . . . . . . 49
2.10.6 Racah Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.10.7 Schwinger–Wu Generating Function and its Combinatorics . 51

2.11 Tensor Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.11.1 Spinor Spherical Harmonics as Matrix Functions . . . . . . . . . . . . . 53
2.11.2 Vector Spherical Harmonics as Matrix Functions . . . . . . . . . . . . . 53
2.11.3 Vector Solid Harmonics as Vector Functions . . . . . . . . . . . . . . . . . . . 53

2.12 Coupling and Recoupling Theory and 3n–j Coefficients . . . . . . . . . . . . . . . 54
2.12.1 Composite Angular Momentum Systems . . . . . . . . . . . . . . . . . . . . . . 54
2.12.2 Binary Coupling Theory: Combinatorics . . . . . . . . . . . . . . . . . . . . . . . 56
2.12.3 Implementation of Binary Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.12.4 Construction of all Transformation Coefficients in Binary

Coupling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.12.5 Unsolved Problems in Recoupling Theory . . . . . . . . . . . . . . . . . . . . . 59

2.13 Supplement on Combinatorial Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.13.1 SU(2) Solid Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.13.2 Combinatorial Definition of Wigner–Clebsch–Gordan

Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.13.3 Magic Square Realization of the Addition of Two Angular

Momenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.13.4 MacMahon’s and Schwinger’s Master Theorems . . . . . . . . . . . . . . 64
2.13.5 The Pfaffian and Double Pfaffian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.13.6 Generating Functions for Coupled Wave Functions

and Recoupling Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.14 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

D
etailed

Con
t.



Detailed Contents 1427

3 Group Theory for Atomic Shells
Brian R. Judd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.1 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1.1 Group Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.1.2 Conditions on the Structure Constants . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1.3 Cartan–Weyl Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1.4 Atomic Operators as Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Classification of Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.2 The Semisimple Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Irreducible Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.1 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.3 Casimir’s Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Branching Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.2 U(n)⊃ SU(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.3 Canonical Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.4.4 Other Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Kronecker Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5.1 Outer Products of Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5.2 Other Outer Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5.3 Plethysms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Atomic States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6.1 Shell Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6.2 Automorphisms of SO(8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6.3 Hydrogen and Hydrogen-Like Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 The Generalized Wigner–Eckart Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.7.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.7.2 The Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.7.3 Calculation of the Isoscalar Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.7.4 Generalizations of Angular Momentum Theory . . . . . . . . . . . . . . . . 83

3.8 Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Dynamical Groups
Josef Paldus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1 Noncompact Dynamical Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 Realizations of so(2,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.2 Hydrogenic Realization of so(4,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Hamiltonian Transformation and Simple Applications . . . . . . . . . . . . . . . . 90
4.2.1 N-Dimensional Isotropic Harmonic Oscillator . . . . . . . . . . . . . . . . . . 90
4.2.2 N-Dimensional Hydrogenic Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2.3 Perturbed Hydrogenic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Compact Dynamical Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.1 Unitary Group and Its Representations . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Orthogonal Group O(n) and Its Representations . . . . . . . . . . . . . . . 93

D
etailed

Con
t.



1428 Detailed Contents

4.3.3 Clifford Algebras and Spinor Representations . . . . . . . . . . . . . . . . . . 94
4.3.4 Bosonic and Fermionic Realizations of U(n) . . . . . . . . . . . . . . . . . . . . 94
4.3.5 Vibron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.6 Many-Electron Correlation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.7 Clifford Algebra Unitary Group Approach . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.8 Spin-Dependent Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Perturbation Theory
Josef Paldus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1 Matrix Perturbation Theory (PT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.2 Level-Shift Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.3 General Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.4 Nondegenerate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Time-Independent Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.2 Brillouin–Wigner and Rayleigh–Schrödinger PT (RSPT) . . . . . . . . 104
5.2.3 Bracketing Theorem and RSPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Fermionic Many-Body Perturbation Theory (MBPT) . . . . . . . . . . . . . . . . . . . . 105
5.3.1 Time Independent Wick’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 Normal Product Form of PT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.3 Møller–Plesset and Epstein–Nesbet PT . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.4 Diagrammatic MBPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.5 Vacuum and Wave Function Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.6 Hartree–Fock Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.7 Linked and Connected Cluster Theorems . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.8 Coupled Cluster Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Time-Dependent Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.1 Evolution Operator PT Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.2 Gell–Mann and Low Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.3 Potential Scattering and Quantum Dynamics . . . . . . . . . . . . . . . . . . 111
5.4.4 Born Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.5 Variation of Constants Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Second Quantization
Brian R. Judd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1.2 Representation of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1.3 Representation of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.2 Coupled Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.3 Coefficients of Fractional Parentage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

D
etailed

Con
t.



Detailed Contents 1429

6.3 Quasispin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.1 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.2 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.3 Triple Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.4 Conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.5 Dependence on Electron Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.6 The Half-filled Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4.1 Spin–Quasispin Interchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4.2 Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Density Matrices
Klaus Bartschat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.1 Basic Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1.1 Pure States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.1.2 Mixed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.1.3 Expectation Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.1.4 The Liouville Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.1.5 Systems in Thermal Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1.6 Relaxation Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Spin and Light Polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.1 Spin-Polarized Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.2 Light Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Atomic Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.3.1 Scattering Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.3.2 Reduced Density Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4 Irreducible Tensor Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4.2 Transformation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4.3 Symmetry Properties of State Multipoles . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.4 Orientation and Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.5 Coupled Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5 Time Evolution of State Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.5.1 Perturbation Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.5.2 Quantum Beats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.5.3 Time Integration over Quantum Beats . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.6.1 Generalized STU-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.6.2 Radiation from Excited States: Stokes Parameters . . . . . . . . . . . . . 131

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 Computational Techniques
David R. Schultz, Michael R. Strayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.1 Representation of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

D
etailed

Con
t.



1430 Detailed Contents

8.1.1 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.1.2 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.1.3 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.1.4 Approximating Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.1.5 Approximating Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.2 Differential and Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2.1 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2.2 Differencing Algorithms for Partial Differential Equations . . . . 143
8.2.3 Variational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2.4 Finite Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2.5 Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.3 Computational Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.4 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.4.1 Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.4.2 Distributions of Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.4.3 Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9 Hydrogenic Wave Functions
Robert N. Hill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.1 Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.1.1 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.1.2 Parabolic Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.1.3 Momentum Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.2 Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.3 The Coulomb Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.3.1 The Green’s Function for the Schrödinger Equation . . . . . . . . . . . 159
9.3.2 The Green’s Function for the Dirac Equation . . . . . . . . . . . . . . . . . . . 161

9.4 Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.4.1 Confluent Hypergeometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.4.2 Laguerre Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.4.3 Gegenbauer Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.4.4 Legendre Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Part B Atoms

10 Atomic Spectroscopy
William C. Martin, Wolfgang L. Wiese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.1 Frequency, Wavenumber, Wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.2 Atomic States, Shells, and Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.3 Hydrogen and Hydrogen-Like Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.4 Alkalis and Alkali-Like Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.5 Helium and Helium-Like Ions; LS Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.6 Hierarchy of Atomic Structure in LS Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.7 Allowed Terms or Levels for Equivalent Electrons . . . . . . . . . . . . . . . . . . . . . . 178

D
etailed

Con
t.



Detailed Contents 1431

10.7.1 LS Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.7.2 jj Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10.8 Notations for Different Coupling Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.8.1 LS Coupling (Russell–Saunders Coupling) . . . . . . . . . . . . . . . . . . . . . 179
10.8.2 jj Coupling of Equivalent Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.8.3 J1j or J1J2 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.8.4 J1l or J1L2 Coupling (J1K Coupling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.8.5 LS1 Coupling (LK Coupling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.8.6 Coupling Schemes and Term Symbols . . . . . . . . . . . . . . . . . . . . . . . . . 181

10.9 Eigenvector Composition of Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.10 Ground Levels and Ionization Energies for the Neutral Atoms . . . . . . . 182
10.11 Zeeman Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.12 Term Series, Quantum Defects, and Spectral-Line Series . . . . . . . . . . . . . 184
10.13 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

10.13.1 Isoelectronic Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.13.2 Isoionic, Isonuclear, and Homologous Sequences . . . . . . . . . . 185

10.14 Spectral Wavelength Ranges, Dispersion of Air . . . . . . . . . . . . . . . . . . . . . . . . 185
10.15 Wavelength (Frequency) Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.16 Spectral Lines: Selection Rules, Intensities, Transition Probabilities,

f Values, and Line Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.16.1 Emission Intensities (Transition Probabilities) . . . . . . . . . . . . . . 186
10.16.2 Absorption f Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.16.3 Line Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.16.4 Relationships Between A, f, and S . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.16.5 Relationships Between Line and Multiplet Values . . . . . . . . . . 192
10.16.6 Relative Strengths for Lines of Multiplets in LS Coupling . . . 193

10.17 Atomic Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
10.18 Regularities and Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

10.18.1 Transitions in Hydrogenic (One-Electron) Species . . . . . . . . . . 194
10.18.2 Systematic Trends and Regularities in Atoms and Ions

with Two or More Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
10.19 Spectral Line Shapes, Widths, and Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.19.1 Doppler Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
10.19.2 Pressure Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.20 Spectral Continuum Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.20.1 Hydrogenic Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.20.2 Many-Electron Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

10.21 Sources of Spectroscopic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

11 High Precision Calculations for Helium
Gordon W. F. Drake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.1 The Three-Body Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

11.1.1 Formal Mathematical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
11.2 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

11.2.1 Variational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
11.2.2 Construction of Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

D
etailed

Con
t.



1432 Detailed Contents

11.2.3 Calculation of Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
11.2.4 Other Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

11.3 Variational Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.3.1 Expectation Values of Operators and Sum Rules . . . . . . . . . . . . . 205

11.4 Total Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
11.4.1 Quantum Defect Extrapolations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
11.4.2 Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

11.5 Radiative Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
11.5.1 Basic Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
11.5.2 Oscillator Strength Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

11.6 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

12 Atomic Multipoles
William E. Baylis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
12.1 Polarization and Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
12.2 The Density Matrix in Liouville Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
12.3 Diagonal Representation: State Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.4 Interaction with Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

13 Atoms in Strong Fields
S. Pedro Goldman, Mark M. Cassar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
13.1 Electron in a Uniform Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

13.1.1 Nonrelativistic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
13.1.2 Relativistic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

13.2 Atoms in Uniform Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
13.2.1 Anomalous Zeeman Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
13.2.2 Normal Zeeman Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
13.2.3 Paschen–Back Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

13.3 Atoms in Very Strong Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
13.4 Atoms in Electric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

13.4.1 Stark Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
13.4.2 Linear Stark Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
13.4.3 Quadratic Stark Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
13.4.4 Other Stark Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

13.5 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

14 Rydberg Atoms
Thomas F. Gallagher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
14.1 Wave Functions and Quantum Defect Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 235
14.2 Optical Excitation and Radiative Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
14.3 Electric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
14.4 Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
14.5 Microwave Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

D
etailed

Con
t.



Detailed Contents 1433

14.6 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
14.7 Autoionizing Rydberg States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

15 Rydberg Atoms in Strong Static Fields
Thomas Bartsch, Turgay Uzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
15.1 Scaled-Energy Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
15.2 Closed-Orbit Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
15.3 Classical and Quantum Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

15.3.1 Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
15.3.2 Parallel Electric and Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 250
15.3.3 Crossed Electric and Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 250

15.4 Nuclear-Mass Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

16 Hyperfine Structure
Guy T. Emery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
16.1 Splittings and Intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

16.1.1 Angular Momentum Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
16.1.2 Energy Splittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
16.1.3 Intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

16.2 Isotope Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
16.2.1 Normal Mass Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
16.2.2 Specific Mass Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
16.2.3 Field Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
16.2.4 Separation of Mass Shift and Field Shift . . . . . . . . . . . . . . . . . . . . . . 257

16.3 Hyperfine Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
16.3.1 Electric Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
16.3.2 Magnetic Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
16.3.3 Hyperfine Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

17 Precision Oscillator Strength and Lifetime Measurements
Lorenzo J. Curtis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
17.1 Oscillator Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

17.1.1 Absorption and Dispersion Measurements . . . . . . . . . . . . . . . . . . . . 262
17.1.2 Emission Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
17.1.3 Combined Absorption, Emission and Lifetime

Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
17.1.4 Branching Ratios in Highly Ionized Atoms . . . . . . . . . . . . . . . . . . . . 264

17.2 Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
17.2.1 The Hanle Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
17.2.2 Time-Resolved Decay Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 265
17.2.3 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
17.2.4 Multiplexed Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

D
etailed

Con
t.



1434 Detailed Contents

18 Spectroscopy of Ions Using Fast Beams and Ion Traps
Eric H. Pinnington, Elmar Träbert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
18.1 Spectroscopy Using Fast Ion Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

18.1.1 Beam–Foil Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
18.1.2 Beam-Gas Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
18.1.3 Beam-Laser Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
18.1.4 Other Techniques of Ion-Beam Spectroscopy . . . . . . . . . . . . . . . . . 272

18.2 Spectroscopy Using Ion Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
18.2.1 Electron Beam Ion Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
18.2.2 Heavy-Ion Storage Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

19 Line Shapes and Radiation Transfer
Alan Gallagher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
19.1 Collisional Line Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

19.1.1 Voigt Line Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
19.1.2 Interaction Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
19.1.3 Classical Oscillator Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
19.1.4 Impact Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
19.1.5 Examples: Line Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
19.1.6 ∆ and γc Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
19.1.7 Quasistatic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
19.1.8 Satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
19.1.9 Bound States and Other Quantum Effects . . . . . . . . . . . . . . . . . . . . . 286
19.1.10 Einstein A and B Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

19.2 Radiation Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
19.2.1 Holstein–Biberman Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
19.2.2 Additional Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
19.2.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

20 Thomas–Fermi and Other Density-Functional Theories
John D. Morgan III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
20.1 Thomas–Fermi Theoryand Its Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

20.1.1 Thomas–Fermi Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
20.1.2 Thomas–Fermi–von Weizsäcker Theory . . . . . . . . . . . . . . . . . . . . . . . 298
20.1.3 Thomas–Fermi–Dirac Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
20.1.4 Thomas–Fermi–von Weizsäcker–Dirac Theory . . . . . . . . . . . . . . . . 299
20.1.5 Thomas–Fermi Theory with Different Spin Densities . . . . . . . . . 300

20.2 Nonrelativistic Energies of Heavy Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
20.3 General Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

20.3.1 The Hohenberg–Kohn Theorem for the One-Electron
Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

20.3.2 The Kohn–Sham Method for Including Exchange
and Correlation Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

20.3.3 Density Functional Theory for Excited States . . . . . . . . . . . . . . . . . . 303

D
etailed

Con
t.



Detailed Contents 1435

20.3.4 Relativistic and Quantum Field Theoretic Density Functional
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

20.4 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

21 Atomic Structure: Multiconfiguration Hartree–Fock Theories
Charlotte F. Fischer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
21.1 Hamiltonians: Schrödinger and Breit–Pauli . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
21.2 Wave Functions: LS and LSJ Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
21.3 Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
21.4 Hartree–Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

21.4.1 Diagonal Energy Parameters and Koopmans’ Theorem . . . . . . 311
21.4.2 The Fixed-Core Hartree–Fock Approximation . . . . . . . . . . . . . . . . . 311
21.4.3 Brillouin’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
21.4.4 Properties of Hartree–Fock Functions . . . . . . . . . . . . . . . . . . . . . . . . . 312

21.5 Multiconfiguration Hartree–Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
21.5.1 Z-Dependent Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
21.5.2 The MCHF Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
21.5.3 Systematic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
21.5.4 Excited States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
21.5.5 Autoionizing States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

21.6 Configuration Interaction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
21.7 Atomic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

21.7.1 Isotope Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
21.7.2 Hyperfine Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
21.7.3 Metastable States and Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
21.7.4 Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
21.7.5 Electron Affinities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

21.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

22 Relativistic Atomic Structure
Ian P. Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
22.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

22.1.1 Relativistic Notation: Minkowski Space-Time . . . . . . . . . . . . . . . . . 326
22.1.2 Lorentz Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
22.1.3 Classification of Lorentz Transformations . . . . . . . . . . . . . . . . . . . . . 326
22.1.4 Contravariant and Covariant Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 327
22.1.5 Poincaré Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

22.2 Dirac’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
22.2.1 Characterization of Dirac States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
22.2.2 The Charge-Current 4-Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

22.3 QED: Relativistic Atomic and Molecular Structure . . . . . . . . . . . . . . . . . . . . . . 329
22.3.1 The QED Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
22.3.2 The Quantized Electron–Positron Field . . . . . . . . . . . . . . . . . . . . . . . . 329
22.3.3 Quantized Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
22.3.4 QED Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

D
etailed

Con
t.



1436 Detailed Contents

22.3.5 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
22.3.6 Effective Interaction of Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

22.4 Many-Body Theory For Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
22.4.1 Effective Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
22.4.2 Nonrelativistic Limit: Breit–Pauli Hamiltonian . . . . . . . . . . . . . . . 335
22.4.3 Perturbation Theory: Nondegenerate Case . . . . . . . . . . . . . . . . . . . . 335
22.4.4 Perturbation Theory: Open-Shell Case . . . . . . . . . . . . . . . . . . . . . . . . . 336
22.4.5 Perturbation Theory: Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

22.5 Spherical Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
22.5.1 Eigenstates of Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
22.5.2 Eigenstates of Dirac Hamiltonian in Spherical Coordinates . . 338
22.5.3 Radial Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
22.5.4 Square Integrable Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
22.5.5 Hydrogenic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
22.5.6 The Free Electron Problem in Spherical Coordinates . . . . . . . . . 343

22.6 Numerical Approximation of Central Field Dirac Equations . . . . . . . . . . . 344
22.6.1 Finite Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
22.6.2 Expansion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
22.6.3 Catalogue of Basis Sets for Atomic Calculations . . . . . . . . . . . . . . . 347

22.7 Many-Body Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
22.7.1 Atomic States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
22.7.2 Slater Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
22.7.3 Configurational States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
22.7.4 CSF Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
22.7.5 Matrix Element Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
22.7.6 Dirac–Hartree–Fock and Other Theories . . . . . . . . . . . . . . . . . . . . . . 351
22.7.7 Radiative Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
22.7.8 Radiative Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

22.8 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
22.8.1 Technical Advances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
22.8.2 Software for Relativistic Atomic Structure and Properties . . . 354

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

23 Many-Body Theory of Atomic Structure and Processes
Miron Ya. Amusia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
23.1 Diagrammatic Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

23.1.1 Basic Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
23.1.2 Construction Principles for Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 360
23.1.3 Correspondence Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
23.1.4 Higher-Order Corrections and Summation of Sequences . . . . 363

23.2 Calculation of Atomic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
23.2.1 Electron Correlations in Ground State Properties . . . . . . . . . . . . . 365
23.2.2 Characteristics of One-Particle States . . . . . . . . . . . . . . . . . . . . . . . . . 366
23.2.3 Electron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
23.2.4 Two-Electron and Two-Vacancy States . . . . . . . . . . . . . . . . . . . . . . . . 369
23.2.5 Electron–Vacancy States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

D
etailed

Con
t.



Detailed Contents 1437

23.2.6 Photoionization in RPAE and Beyond . . . . . . . . . . . . . . . . . . . . . . . . . 371
23.2.7 Photon Emission and Bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . . 374

23.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

24 Photoionization of Atoms
Anthony F. Starace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
24.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

24.1.1 The Interaction Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
24.1.2 Alternative Forms for the Transition Matrix Element . . . . . . . . . 380
24.1.3 Selection Rules for Electric Dipole Transitions . . . . . . . . . . . . . . . . 381
24.1.4 Boundary Conditions on the Final State Wave Function . . . . . 381
24.1.5 Photoionization Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

24.2 An Independent Electron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
24.2.1 Central Potential Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
24.2.2 High Energy Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
24.2.3 Near Threshold Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

24.3 Particle–Hole Interaction Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
24.3.1 Intrachannel Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
24.3.2 Virtual Double Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
24.3.3 Interchannel Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
24.3.4 Photoionization of Ar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

24.4 Theoretical Methods for Photoionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
24.4.1 Calculational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
24.4.2 Other Interaction Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

24.5 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
24.6 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

25 Autoionization
Aaron Temkin, Anand K. Bhatia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

25.1.1 Auger Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
25.1.2 Autoionization, Autodetachment, and Radiative Decay . . . . . 391
25.1.3 Formation, Scattering, and Resonances . . . . . . . . . . . . . . . . . . . . . . . 391

25.2 The Projection Operator Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
25.2.1 The Optical Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
25.2.2 Expansion of Vop: The QHQ Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

25.3 Forms of P and Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
25.3.1 The Feshbach Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
25.3.2 Reduction for the N= 1 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
25.3.3 Alternative Projection and Projection-Like Operators . . . . . . . . 394

25.4 Width, Shift, and Shape Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
25.4.1 Width and Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
25.4.2 Shape Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
25.4.3 Relation to Breit–Wigner Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 396

D
etailed

Con
t.



1438 Detailed Contents

25.5 Other Calculational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
25.5.1 Complex Rotation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
25.5.2 Pseudopotential Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

25.6 Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

26 Green’s Functions of Field Theory
Gordon Feldman, Thomas Fulton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
26.1 The Two-Point Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
26.2 The Four-Point Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
26.3 Radiative Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
26.4 Radiative Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

27 Quantum Electrodynamics
Jonathan R. Sapirstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
27.1 Covariant Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
27.2 Renormalization Theory and Gauge Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
27.3 Tests of QED in Lepton Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
27.4 Electron and Muon g Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
27.5 Recoil Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
27.6 Fine Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
27.7 Hyperfine Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

27.7.1 Muonium Hyperfine Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
27.7.2 Hydrogen Hyperfine Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

27.8 Orthopositronium Decay Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
27.9 Precision Tests of QED in Neutral Helium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
27.10 QED in Highly Charged One-Electron Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
27.11 QED in Highly Charged Many-Electron Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

28 Tests of Fundamental Physics
Peter J. Mohr, Barry N. Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
28.1 Electron g-Factor Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
28.2 Electron g-Factor in 12C5+ and 16O7+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
28.3 Hydrogen and Deuterium Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

28.3.1 Dirac Eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
28.3.2 Relativistic Recoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
28.3.3 Nuclear Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
28.3.4 Self Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
28.3.5 Vacuum Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
28.3.6 Two-Photon Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
28.3.7 Three-Photon Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
28.3.8 Finite Nuclear Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
28.3.9 Nuclear-Size Correction to Self Energy

and Vacuum Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

D
etailed

Con
t.



Detailed Contents 1439

28.3.10 Radiative-Recoil Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
28.3.11 Nucleus Self Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
28.3.12 Total Energy and Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
28.3.13 Transition Frequencies Between Levels with n= 2 . . . . . . . . . 445

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

29 Parity Nonconserving Effects in Atoms
Jonathan R. Sapirstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
29.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
29.2 PNC in Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
29.3 Many-Body Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
29.4 PNC Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
29.5 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
29.6 Comparison with Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

30 Atomic Clocks and Constraints
on Variations of Fundamental Constants
Savely G. Karshenboim, Victor Flambaum, Ekkehard Peik . . . . . . . . . . . . . . . . . . . . 455
30.1 Atomic Clocks and Frequency Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

30.1.1 Caesium Atomic Fountain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
30.1.2 Single-Ion Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
30.1.3 Laser-Cooled Neutral Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
30.1.4 Two-Photon Transitionsand Doppler-Free Spectroscopy . . . . 458
30.1.5 Optical Frequency Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
30.1.6 Limitations on Frequency Variations . . . . . . . . . . . . . . . . . . . . . . . . . . 458

30.2 Atomic Spectra and their Dependence on the Fundamental
Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
30.2.1 The Spectrum of Hydrogenand Nonrelativistic Atoms . . . . . . . . 459
30.2.2 Hyperfine Structureand the Schmidt Model . . . . . . . . . . . . . . . . . . . 459
30.2.3 Atomic Spectra: Relativistic Corrections . . . . . . . . . . . . . . . . . . . . . . . 460

30.3 Laboratory Constraints on Time the Variations
of the Fundamental Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
30.3.1 Constraints from Absolute Optical Measurements . . . . . . . . . . . . 460
30.3.2 Constraints from Microwave Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
30.3.3 Model-Dependent Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

30.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

Part C Molecules

31 Molecular Structure
David R. Yarkony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
31.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

31.1.1 Nonadiabatic Ansatz: Born–Oppenheimer Approximation . . 468

D
etailed

Con
t.



1440 Detailed Contents

31.1.2 Born–Oppenheimer Potential Energy Surfaces
and Their Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

31.1.3 Classification of Interstate Couplings:
Adiabatic and Diabatic Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

31.1.4 Surfaces of Intersection of Potential Energy Surfaces . . . . . . . . 470
31.2 Characterization of Potential Energy Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 470

31.2.1 The Self-Consistent Field (SCF) Method . . . . . . . . . . . . . . . . . . . . . . . . 471
31.2.2 Electron Correlation: Wave Function Based Methods . . . . . . . . 472
31.2.3 Electron Correlation: Density Functional Theory . . . . . . . . . . . . . . 475
31.2.4 Weakly Interacting Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

31.3 Intersurface Interactions: Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
31.3.1 Derivative Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
31.3.2 Breit–Pauli Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
31.3.3 Surfaces of Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

31.4 Nuclear Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
31.4.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
31.4.2 Rotational-Vibrational Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
31.4.3 Coupling of Electronic and Rotational Angular Momentum

in Weakly Interacting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
31.4.4 Reaction Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

31.5 Reaction Mechanisms: A Spin-Forbidden Chemical Reaction . . . . . . . . . 484
31.6 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

32 Molecular Symmetry and Dynamics
William G. Harter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
32.1 Dynamics and Spectra of Molecular Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

32.1.1 Rigid Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
32.1.2 Molecular States Inside and Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
32.1.3 Rigid Asymmetric Rotor Eigensolutions and Dynamics . . . . . . . 493

32.2 Rotational Energy Surfaces and Semiclassical
Rotational Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

32.3 Symmetry of Molecular Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
32.3.1 Asymmetric Rotor Symmetry Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 498

32.4 Tetrahedral-Octahedral Rotational Dynamics and Spectra . . . . . . . . . . . 499
32.4.1 Semirigid Octahedral Rotors and Centrifugal Tensor

Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
32.4.2 Octahedral and Tetrahedral Rotational Energy Surfaces . . . . . 500
32.4.3 Octahedral and Tetrahedral Rotational Fine Structure . . . . . . . 500
32.4.4 Octahedral Superfine Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

32.5 High Resolution Rovibrational Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
32.5.1 Tetrahedral Nuclear Hyperfine Structure . . . . . . . . . . . . . . . . . . . . . . 505
32.5.2 Superhyperfine Structure and Spontaneous Symmetry

Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
32.5.3 Extreme Molecular Symmetry Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 506

32.6 Composite Rotors and Multiple RES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
32.6.1 3D-Rotor and 2D-Oscillator Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

D
etailed

Con
t.



Detailed Contents 1441

32.6.2 Gyro-Rotors and 2D-Local Mode Analogy . . . . . . . . . . . . . . . . . . . . . 510
32.6.3 Multiple Gyro-Rotor RES and Eigensurfaces . . . . . . . . . . . . . . . . . . . 511

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

33 Radiative Transition Probabilities
David L. Huestis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
33.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

33.1.1 Intensity versus Line-Position Spectroscopy . . . . . . . . . . . . . . . . . . 515
33.2 Molecular Wave Functions in the Rotating Frame . . . . . . . . . . . . . . . . . . . . . 516

33.2.1 Symmetries of the Exact Wave Function . . . . . . . . . . . . . . . . . . . . . . 516
33.2.2 Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
33.2.3 Transformation of Ordinary Objects into the Rotating Frame 517

33.3 The Energy–Intensity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
33.3.1 States, Levels, and Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
33.3.2 The Basis Set and Matrix Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 518
33.3.3 Fitting Experimental Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
33.3.4 The Transition Moment Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
33.3.5 Fitting Experimental Intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

33.4 Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
33.4.1 Symmetry Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
33.4.2 Rotational Branches and Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
33.4.3 Nuclear Spin, Spatial Symmetry, and Statistics . . . . . . . . . . . . . . . 522
33.4.4 Electron Orbital and Spin Angular Momenta . . . . . . . . . . . . . . . . . . 523

33.5 Absorption Cross Sections and Radiative Lifetimes . . . . . . . . . . . . . . . . . . . . 524
33.5.1 Radiation Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
33.5.2 Transition Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

33.6 Vibrational Band Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
33.6.1 Franck–Condon Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
33.6.2 Vibrational Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

33.7 Rotational Branch Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
33.7.1 Branch Structure and Transition Type . . . . . . . . . . . . . . . . . . . . . . . . . 526
33.7.2 Hönl–London Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
33.7.3 Sum Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
33.7.4 Hund’s Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
33.7.5 Symmetric Tops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
33.7.6 Asymmetric Tops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

33.8 Forbidden Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
33.8.1 Spin-Changing Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
33.8.2 Orbitally-Forbidden Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

33.9 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

34 Molecular Photodissociation
Abigail J. Dobbyn, David H. Mordaunt, Reinhard Schinke . . . . . . . . . . . . . . . . . . . . 535
34.1 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

34.1.1 Scalar Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
34.1.2 Vector Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

D
etailed

Con
t.



1442 Detailed Contents

34.2 Experimental Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
34.3 Theoretical Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
34.4 Concepts in Dissociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

34.4.1 Direct Dissociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
34.4.2 Vibrational Predissociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
34.4.3 Electronic Predissociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

34.5 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
34.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

35 Time-Resolved Molecular Dynamics
Volker Engel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
35.1 Pump–Probe Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
35.2 Theoretical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
35.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

35.3.1 Internal Vibrational Dynamics of Diatomic Molecules
in the Gas Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

35.3.2 Elementary Gas-Phase Chemical Reactions . . . . . . . . . . . . . . . . . . . 550
35.3.3 Molecular Dynamics in Liquid and Solid Surroundings . . . . . . 551

35.4 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
35.4.1 Faster Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
35.4.2 X-Ray Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
35.4.3 Time-Resolved Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
35.4.4 Dynamics and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

36 Nonreactive Scattering
David R. Flower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
36.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
36.2 Semiclassical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
36.3 Quantal Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
36.4 Symmetries and Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
36.5 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
36.6 Scattering Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
36.7 Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

36.7.1 Centrifugal Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
36.7.2 Interaction Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

37 Gas Phase Reactions
Eric Herbst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
37.1 Normal Bimolecular Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

37.1.1 Capture Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
37.1.2 Phase Space Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
37.1.3 Short-Range Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
37.1.4 Complexes Followed by Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
37.1.5 The Role of Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

D
etailed

Con
t.



Detailed Contents 1443

37.2 Association Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
37.2.1 Radiative Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
37.2.2 Complex Formation and Dissociation . . . . . . . . . . . . . . . . . . . . . . . . . . 571
37.2.3 Competition with Exoergic Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 572

37.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

38 Gas Phase Ionic Reactions
Nigel G. Adams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
38.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
38.2 Reaction Energetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
38.3 Chemical Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
38.4 Reaction Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

38.4.1 Binary Ion–Neutral Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
38.4.2 Ternary Ion–Molecule Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

38.5 Electron Attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
38.6 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

38.6.1 Electron–Ion Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
38.6.2 Ion–Ion Recombination (Mutual Neutralization) . . . . . . . . . . . . . 584

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

39 Clusters
Mary L. Mandich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
39.1 Metal Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

39.1.1 Geometric Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
39.1.2 Electronic and Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
39.1.3 Chemical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
39.1.4 Stable Metal Cluster Molecules and Metallocarbohedrenes . . 593

39.2 Carbon Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
39.2.1 Small Carbon Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
39.2.2 Fullerenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
39.2.3 Giant Carbon Clusters: Tubes, Capsules, Onions, Russian

Dolls, Papier Mâché... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
39.3 Ionic Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

39.3.1 Geometric Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
39.3.2 Electronic and Chemical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

39.4 Semiconductor Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
39.4.1 Silicon and Germanium Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
39.4.2 Group III–V and Group II–VI Semiconductor Clusters . . . . . . . . . 598

39.5 Noble Gas Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
39.5.1 Geometric Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
39.5.2 Electronic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
39.5.3 Doped Noble Gas Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
39.5.4 Helium Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

39.6 Molecular Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
39.6.1 Geometric Structures and Phase Dynamics . . . . . . . . . . . . . . . . . . . 602

D
etailed

Con
t.



1444 Detailed Contents

39.6.2 Electronic Properties: Charge Solvation . . . . . . . . . . . . . . . . . . . . . . . 602
39.7 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

40 Infrared Spectroscopy
Henry Buijs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
40.1 Intensities of Infrared Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
40.2 Sources for IR Absorption Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
40.3 Source, Spectrometer, Sample and Detector Relationship . . . . . . . . . . . . 608
40.4 Simplified Principle of FTIR Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

40.4.1 Interferogram Generation:The Michelson Interferometer . . . 609
40.4.2 Description of Wavefront Interference with Time Delay . . . . . 609
40.4.3 The Operation of Spectrum Determination . . . . . . . . . . . . . . . . . . . . 610

40.5 Optical Aspects of FTIR Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
40.6 The Scanning Michelson Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
40.7 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
40.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

41 Laser Spectroscopy in the Submillimeter
and Far-Infrared Regions
Kenneth M. Evenson†, John M. Brown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
41.1 Experimental Techniques using Coherent SM-FIR Radiation . . . . . . . . . . 616

41.1.1 Tunable FIR Spectroscopy with CO2 Laser Difference
Generation in a MIM Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

41.1.2 Laser Magnetic Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
41.1.3 TuFIR and LMR Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

41.2 Submillimeter and FIR Astronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
41.3 Upper Atmospheric Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

42 Spectroscopic Techniques: Lasers
Paul Engelking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
42.1 Laser Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

42.1.1 Stimulated Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
42.1.2 Laser Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
42.1.3 Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
42.1.4 Laser Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

42.2 Laser Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
42.2.1 Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
42.2.2 Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

42.3 Interaction of Laser Light with Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
42.3.1 Linear Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
42.3.2 Multiphoton Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
42.3.3 Level Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
42.3.4 Hole Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
42.3.5 Nonlinear Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

D
etailed

Con
t.



Detailed Contents 1445

42.3.6 Raman Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
42.4 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

43 Spectroscopic Techniques: Cavity-Enhanced Methods
Barbara A. Paldus, Alexander A. Kachanov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
43.1 Limitations of Traditional Absorption Spectrometers . . . . . . . . . . . . . . . . . . 633
43.2 Cavity Ring-Down Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

43.2.1 Pulsed Cavity Ring-Down Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 634
43.2.2 Continuous-Wave Cavity Ring-Down Spectroscopy

(CW-CRDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
43.3 Cavity Enhanced Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

43.3.1 Cavity Enhanced Transmission Spectroscopy (CETS) . . . . . . . . . . . 637
43.3.2 Locked Cavity Enhanced Transmission Spectroscopy (L-CETS) 638

43.4 Extensions to Solids and Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

44 Spectroscopic Techniques: Ultraviolet
Glenn Stark, Peter L. Smith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
44.1 Light Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642

44.1.1 Synchrotron Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
44.1.2 Laser-Produced Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
44.1.3 Arcs, Sparks, and Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
44.1.4 Supercontinuum Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

44.2 VUV Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
44.3 Spectrometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

44.3.1 Grating Spectrometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
44.3.2 Fourier Transform Spectrometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

44.4 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
44.5 Optical Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

Part D Scattering Theory

45 Elastic Scattering: Classical, Quantal, and Semiclassical
M. Raymond Flannery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
45.1 Classical Scattering Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

45.1.1 Deflection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
45.1.2 Elastic Scattering Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
45.1.3 Center-of-Mass to Laboratory Coordinate Conversion . . . . . . . 662
45.1.4 Glory and Rainbow Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
45.1.5 Orbiting and Spiraling Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
45.1.6 Quantities Derived from Classical Scattering . . . . . . . . . . . . . . . . . . 663
45.1.7 Collision Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

45.2 Quantal Scattering Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
45.2.1 Basic Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

D
etailed

Con
t.



1446 Detailed Contents

45.2.2 Identical Particles: Symmetry Oscillations . . . . . . . . . . . . . . . . . . . . . 666
45.2.3 Partial Wave Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
45.2.4 Scattering Length and Effective Range . . . . . . . . . . . . . . . . . . . . . . . . 668
45.2.5 Logarithmic Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
45.2.6 Coulomb Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
45.2.7 Resonance Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
45.2.8 Integral Equation for Phase Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
45.2.9 Variable Phase Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
45.2.10 General Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

45.3 Semiclassical Scattering Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
45.3.1 Scattering Amplitude: Exact Poisson Sum Representation . . . 675
45.3.2 Semiclassical Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
45.3.3 Semiclassical Amplitudes: Integral Representation . . . . . . . . . . 676
45.3.4 Semiclassical Amplitudes and Cross Sections . . . . . . . . . . . . . . . . . 677
45.3.5 Diffraction and Glory Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
45.3.6 Small-Angle (Diffraction) Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
45.3.7 Small-Angle (Glory) Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
45.3.8 Oscillations in Elastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

45.4 Elastic Scattering in Reactive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
45.4.1 Quantal Elastic, Absorption and Total Cross Sections . . . . . . . . . 683

45.5 Results for Model Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
45.5.1 Born Amplitudes and Cross Sections for Model Potentials . . . 689

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

46 Orientation and Alignment in Atomic
and Molecular Collisions
Nils Andersen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
46.1 Collisions Involving Unpolarized Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

46.1.1 The Fully Coherent Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
46.1.2 The Incoherent Case with Conservation of Atomic Reflection

Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
46.1.3 The Incoherent Case without Conservation of Atomic

Reflection Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
46.2 Collisions Involving Spin-Polarized Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

46.2.1 The Fully Coherent Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
46.2.2 The Incoherent Case with Conservation of Atomic Reflection

Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
46.2.3 The Incoherent Case without Conservation of Atomic

Reflection Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
46.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

46.3.1 The First Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
46.4 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

46.4.1 S → D Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
46.4.2 P → P Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
46.4.3 Relativistic Effects in S → P Excitation . . . . . . . . . . . . . . . . . . . . . . . . 703

46.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

D
etailed

Con
t.



Detailed Contents 1447

47 Electron–Atom, Electron–Ion, and Electron–Molecule Collisions
Philip Burke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
47.1 Electron–Atom and Electron–Ion Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

47.1.1 Low-Energy Elastic Scattering and Excitation . . . . . . . . . . . . . . . . . 705
47.1.2 Relativistic Effects for Heavy Atoms and Ions . . . . . . . . . . . . . . . . . 708
47.1.3 Multichannel Resonance Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
47.1.4 Multichannel Quantum Defect Theory . . . . . . . . . . . . . . . . . . . . . . . . . 711
47.1.5 Solution of the Coupled Integrodifferential Equations . . . . . . . 712
47.1.6 Intermediate and High Energy Elastic Scattering

and Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
47.1.7 Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

47.2 Electron–Molecule Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
47.2.1 Laboratory Frame Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
47.2.2 Molecular Frame Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
47.2.3 Inclusion of the Nuclear Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
47.2.4 Electron Collisions with Polyatomic Molecules . . . . . . . . . . . . . . . . 723

47.3 Electron–Atom Collisions in a Laser Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
47.3.1 Potential Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724
47.3.2 Scattering by Complex Atoms and Ions . . . . . . . . . . . . . . . . . . . . . . . . 725

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727

48 Positron Collisions
Robert P. McEachran, Allan Stauffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
48.1 Scattering Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

48.1.1 Postronium Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
48.1.2 Annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732

48.2 Theoretical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
48.3 Particular Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

48.3.1 Atomic Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
48.3.2 Noble Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
48.3.3 Other Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
48.3.4 Molecular Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
48.3.5 Other Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737

48.4 Binding of Positrons to Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
48.5 Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738

49 Adiabatic and Diabatic Collision Processes at Low Energies
Evgueni E. Nikitin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
49.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

49.1.1 Slow Quasiclassical Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
49.1.2 Adiabatic and Diabatic Electronic States . . . . . . . . . . . . . . . . . . . . . . 742
49.1.3 Nonadiabatic Transitions: The Massey Parameter . . . . . . . . . . . . 742

49.2 Two-State Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743
49.2.1 Relation Between Adiabatic and Diabatic Basis Functions . . 743
49.2.2 Coupled Equations and Transition Probabilities

in the Common Trajectory Approximation . . . . . . . . . . . . . . . . . . . . 744

D
etailed

Con
t.



1448 Detailed Contents

49.2.3 Selection Rules for Nonadiabatic Coupling . . . . . . . . . . . . . . . . . . . . 745
49.3 Single-Passage Transition Probabilities: Analytical Models . . . . . . . . . . . 746

49.3.1 Crossing and Narrow Avoided Crossing of Potential Energy
Curves: The Landau–Zener Model in the Common Trajectory
Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746

49.3.2 Arbitrary Avoided Crossing and Diverging Potential Energy
Curves: The Nikitin Model in the Common Trajectory
Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

49.3.3 Beyond the Common Trajectory Approximation . . . . . . . . . . . . . . 748
49.4 Double-Passage Transition Probabilities and Cross Sections . . . . . . . . . 749

49.4.1 Mean Transition Probability and the Stückelberg Phase . . . . . 749
49.4.2 Approximate Formulae for the Transition Probabilities . . . . . . 750
49.4.3 Integral Cross Sections for a Double-Passage Transition

Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
49.5 Multiple-Passage Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751

49.5.1 Multiple Passage in Atomic Collisions . . . . . . . . . . . . . . . . . . . . . . . . . 751
49.5.2 Multiple Passage in Molecular Collisions . . . . . . . . . . . . . . . . . . . . . . 751

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752

50 Ion–Atom and Atom–Atom Collisions
A. Lewis Ford, John F. Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
50.1 Treatment of Heavy Particle Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
50.2 Independent-Particle Models

Versus Many-Electron Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
50.3 Analytical Approximations Versus Numerical Calculations . . . . . . . . . . . . 756

50.3.1 Single-Centered Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
50.3.2 Two-Centered Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
50.3.3 One-and-a-Half Centered Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 758

50.4 Description of the Ionization Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759

51 Ion–Atom Charge Transfer Reactions at Low Energies
Muriel Gargaud, Ronald McCarroll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
51.1 Molecular Structure Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

51.1.1 Ab Initio Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
51.1.2 Model Potential Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
51.1.3 Empirical Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

51.2 Dynamics of the Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
51.3 Radial and Rotational Coupling Matrix Elements . . . . . . . . . . . . . . . . . . . . . . 766
51.4 Total Electron Capture Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
51.5 Landau–Zener Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
51.6 Differential Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
51.7 Orientation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
51.8 New Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

D
etailed

Con
t.



Detailed Contents 1449

52 Continuum Distorted Wave and Wannier Methods
Derrick Crothers, Fiona McCausland, John Glass, Jim F. McCann,
Francesca O’Rourke, Ruth T. Pedlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
52.1 Continuum Distorted Wave Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775

52.1.1 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
52.1.2 Relativistic Continuum-Distorted Waves . . . . . . . . . . . . . . . . . . . . . . 778
52.1.3 Variational CDW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778
52.1.4 Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779

52.2 Wannier Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
52.2.1 The Wannier Threshold Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
52.2.2 Peterkop’s Semiclassical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
52.2.3 The Quantal Semiclassical Approximation . . . . . . . . . . . . . . . . . . . . 783

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786

53 Ionization in High Energy Ion–Atom Collisions
Joseph H. Macek, Steven T. Manson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
53.1 Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
53.2 Prominent Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792

53.2.1 Target Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
53.2.2 Projectile Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796

53.3 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796

54 Electron–Ion and Ion–Ion Recombination
M. Raymond Flannery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
54.1 Recombination Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

54.1.1 Electron–Ion Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
54.1.2 Positive–Ion Negative–Ion Recombination . . . . . . . . . . . . . . . . . . . 800
54.1.3 Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

54.2 Collisional-Radiative Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801
54.2.1 Saha and Boltzmann Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801
54.2.2 Quasi-Steady State Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
54.2.3 Ionization and Recombination Coefficients . . . . . . . . . . . . . . . . . . . 802
54.2.4 Working Rate Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802

54.3 Macroscopic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
54.3.1 Resonant Capture-Stabilization Model:

Dissociative and Dielectronic Recombination . . . . . . . . . . . . . . . . . 803
54.3.2 Reactive Sphere Model: Three-Body Electron–Ion

and Ion–Ion Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804
54.3.3 Working Formulae for Three-Body Collisional

Recombination at Low Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
54.3.4 Recombination Influenced by Diffusional Drift at High Gas

Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
54.4 Dissociative Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807

54.4.1 Curve-Crossing Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
54.4.2 Quantal Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
54.4.3 Noncrossing Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

D
etailed

Con
t.



1450 Detailed Contents

54.5 Mutual Neutralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
54.5.1 Landau–Zener Probability for Single Crossing at RX . . . . . . . . . . 811
54.5.2 Cross Section and Rate Coefficient for Mutual Neutralization 811

54.6 One-Way Microscopic Equilibrium Current, Flux,
and Pair-Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811

54.7 Microscopic Methods for Termolecular
Ion–Ion Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
54.7.1 Time Dependent Method: Low Gas Density . . . . . . . . . . . . . . . . . . . 813
54.7.2 Time Independent Methods: Low Gas Density . . . . . . . . . . . . . . . . 814
54.7.3 Recombination at Higher Gas Densities . . . . . . . . . . . . . . . . . . . . . . . 815
54.7.4 Master Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
54.7.5 Recombination Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816

54.8 Radiative Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
54.8.1 Detailed Balance and Recombination-Ionization Cross

Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
54.8.2 Kramers Cross Sections, Rates, Electron Energy-Loss Rates

and Radiated Power for Hydrogenic Systems . . . . . . . . . . . . . . . . . 818
54.8.3 Basic Formulae for Quantal Cross Sections . . . . . . . . . . . . . . . . . . . . 819
54.8.4 Bound-Free Oscillator Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
54.8.5 Radiative Recombination Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
54.8.6 Gaunt Factor, Cross Sections and Rates for Hydrogenic

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
54.8.7 Exact Universal Rate Scaling Law and Results for Hydrogenic

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
54.9 Useful Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824

55 Dielectronic Recombination
Michael S. Pindzola, Donald C. Griffin, Nigel R. Badnell . . . . . . . . . . . . . . . . . . . . . . 829
55.1 Theoretical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830
55.2 Comparisons with Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

55.2.1 Low-Z Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
55.2.2 High-Z Ions and Relativistic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

55.3 Radiative-Dielectronic Recombination Interference . . . . . . . . . . . . . . . . . . 832
55.4 Dielectronic Recombinationin Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

56 Rydberg Collisions: Binary Encounter,
Born and Impulse Approximations
Edmund J. Mansky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
56.1 Rydberg Collision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836
56.2 General Properties of Rydberg States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836

56.2.1 Dipole Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836
56.2.2 Radial Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836
56.2.3 Line Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
56.2.4 Form Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838
56.2.5 Impact Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838

D
etailed

Con
t.



Detailed Contents 1451

56.3 Correspondence Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839
56.3.1 Bohr–Sommerfeld Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839
56.3.2 Bohr Correspondence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839
56.3.3 Heisenberg Correspondence Principle . . . . . . . . . . . . . . . . . . . . . . . . . 839
56.3.4 Strong Coupling Correspondence Principle . . . . . . . . . . . . . . . . . . . . 840
56.3.5 Equivalent Oscillator Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

56.4 Distribution Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840
56.4.1 Spatial Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840
56.4.2 Momentum Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

56.5 Classical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
56.6 Working Formulae for Rydberg Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842

56.6.1 Inelastic n,�-Changing Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842
56.6.2 Inelastic n → n′ Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843
56.6.3 Quasi-Elastic �-Mixing Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844
56.6.4 Elastic n � → n �′ Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844
56.6.5 Fine Structure n � J → n � J′ Transitions . . . . . . . . . . . . . . . . . . . . . . 844

56.7 Impulse Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
56.7.1 Quantal Impulse Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
56.7.2 Classical Impulse Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
56.7.3 Semiquantal Impulse Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 851

56.8 Binary Encounter Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852
56.8.1 Differential Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852
56.8.2 Integral Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853
56.8.3 Classical Ionization Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855
56.8.4 Classical Charge Transfer Cross Section . . . . . . . . . . . . . . . . . . . . . . . . 855

56.9 Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856
56.9.1 Form Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856
56.9.2 Hydrogenic Form Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856
56.9.3 Excitation Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858
56.9.4 Ionization Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859
56.9.5 Capture Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860

57 Mass Transfer at High Energies: Thomas Peak
James H. McGuire, Jack C. Straton, Takeshi Ishihara . . . . . . . . . . . . . . . . . . . . . . . . . . 863
57.1 The Classical Thomas Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
57.2 Quantum Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864

57.2.1 Uncertainty Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
57.2.2 Conservation of Overall Energy and Momentum . . . . . . . . . . . . . . 864
57.2.3 Conservation of Intermediate Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 865
57.2.4 Example: Proton–Helium Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 865

57.3 Off-Energy-Shell Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866
57.4 Dispersion Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866
57.5 Destructive Interference of Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867
57.6 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868

D
etailed

Con
t.



1452 Detailed Contents

58 Classical Trajectory and Monte Carlo Techniques
Ronald E. Olson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869
58.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869

58.1.1 Hydrogenic Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869
58.1.2 Nonhydrogenic One-Electron Models . . . . . . . . . . . . . . . . . . . . . . . . . 870
58.1.3 Multiply-Charged Projectiles and Many-Electron Targets . . . 870

58.2 Region of Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871
58.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871

58.3.1 Hydrogenic Atom Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871
58.3.2 Pseudo One-Electron Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
58.3.3 State-Selective Electron Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
58.3.4 Exotic Projectiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873
58.3.5 Heavy Particle Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873

58.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874

59 Collisional Broadening of Spectral Lines
Gillian Peach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
59.1 Impact Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
59.2 Isolated Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876

59.2.1 Semiclassical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876
59.2.2 Simple Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
59.2.3 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878
59.2.4 Broadening by Charged Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879
59.2.5 Empirical Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879

59.3 Overlapping Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880
59.3.1 Transitions in Hydrogen and Hydrogenic Ions . . . . . . . . . . . . . . . . 880
59.3.2 Infrared and Radio Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882

59.4 Quantum-Mechanical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882
59.4.1 Impact Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882
59.4.2 Broadening by Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
59.4.3 Broadening by Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

59.5 One-Perturber Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
59.5.1 General Approach and Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
59.5.2 Broadening by Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
59.5.3 Broadening by Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886

59.6 Unified Theories and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888

Part E Scattering Experiments

60 Photodetachment
David J. Pegg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891
60.1 Negative Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891
60.2 Photodetachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892

60.2.1 Threshold Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892

D
etailed

Con
t.



Detailed Contents 1453

60.2.2 Resonance Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892
60.2.3 Higher Order Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893

60.3 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893
60.3.1 Production of Negative Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893
60.3.2 Interacting Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893
60.3.3 Light Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894
60.3.4 Detection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895

60.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
60.4.1 Threshold Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
60.4.2 Resonance Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
60.4.3 Lifetimes of Metastable Negative Ions . . . . . . . . . . . . . . . . . . . . . . . . . 897
60.4.4 Multielectron Detachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898

61 Photon–Atom Interactions: Low Energy
Denise Caldwell, Manfred O. Krause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
61.1 Theoretical Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901

61.1.1 Differential Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
61.1.2 Electron Correlation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904

61.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907
61.2.1 Synchrotron Radiation Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907
61.2.2 Photoelectron Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908
61.2.3 Resolution and Natural Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910

61.3 Additional Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912

62 Photon–Atom Interactions: Intermediate Energies
Bernd Crasemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915
62.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915

62.1.1 Photon-Atom Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915
62.2 Elastic Photon-Atom Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916

62.2.1 Rayleigh Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916
62.2.2 Nuclear Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917

62.3 Inelastic Photon-Atom Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918
62.3.1 Photoionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918
62.3.2 Compton Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919

62.4 Atomic Response to Inelastic Photon-Atom Interactions . . . . . . . . . . . . . 919
62.4.1 Auger Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919
62.4.2 X-Ray Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921
62.4.3 Widths and Fluorescence Yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921
62.4.4 Multi-Electron Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921
62.4.5 Momentum Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922
62.4.6 Ultrashort Light Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922
62.4.7 Nondipolar Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923

62.5 Threshold Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923
62.5.1 Raman Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924
62.5.2 Post-Collision Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925

D
etailed

Con
t.



1454 Detailed Contents

63 Electron–Atom and Electron–Molecule Collisions
Sandor Trajmar, William J. McConkey, Isik Kanik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929
63.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929

63.1.1 Electron Impact Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929
63.1.2 Definition of Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929
63.1.3 Scattering Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930

63.2 Collision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
63.2.1 Total Scattering Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
63.2.2 Elastic Scattering Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
63.2.3 Momentum Transfer Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
63.2.4 Excitation Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
63.2.5 Dissociation Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935
63.2.6 Ionization Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935

63.3 Coincidence and Superelastic Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 936
63.4 Experiments with Polarized Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938
63.5 Electron Collisions with Excited Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939
63.6 Electron Collisions in Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939
63.7 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940

64 Ion–Atom Scattering Experiments: Low Energy
Ronald Phaneuf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
64.1 Low Energy Ion–Atom Collision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
64.2 Experimental Methods

for Total Cross Section Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945
64.2.1 Gas Target Beam Attenuation Method . . . . . . . . . . . . . . . . . . . . . . . . . 945
64.2.2 Gas Target Product Growth Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945
64.2.3 Crossed Ion and Thermal Beams Method . . . . . . . . . . . . . . . . . . . . . . 945
64.2.4 Fast Merged Beams Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946
64.2.5 Trapped Ion Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946
64.2.6 Swarm Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947

64.3 Methods for State and Angular Selective Measurements . . . . . . . . . . . . . . 947
64.3.1 Photon Emission Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947
64.3.2 Translational Energy Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947
64.3.3 Electron Emission Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948
64.3.4 Angular Differential Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948
64.3.5 Recoil Ion Momentum Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 948

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948

65 Ion–Atom Collisions – High Energy
Lew Cocke, Michael Schulz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951
65.1 Basic One-Electron Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951

65.1.1 Perturbative Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951
65.1.2 Nonperturbative Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955

65.2 Multi-Electron Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957
65.3 Electron Spectra in Ion–Atom Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959

65.3.1 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959
65.3.2 High Resolution Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960

D
etailed

Con
t.



Detailed Contents 1455

65.4 Quasi-Free Electron Processes in Ion–Atom Collisions . . . . . . . . . . . . . . . . 961
65.4.1 Radiative Electron Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961
65.4.2 Resonant Transfer and Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961
65.4.3 Excitation and Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961

65.5 Some Exotic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962
65.5.1 Molecular Orbital X-Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962
65.5.2 Positron Production from Atomic Processes . . . . . . . . . . . . . . . . . . . 962

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963

66 Reactive Scattering
Arthur G. Suits, Yuan T. Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
66.1 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967

66.1.1 Molecular Beam Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
66.1.2 Reagent Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968
66.1.3 Detection of Neutral Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969
66.1.4 A Typical Signal Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971

66.2 Experimental Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971
66.2.1 Crossed-Beam Rotatable Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971
66.2.2 Doppler Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
66.2.3 Product Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
66.2.4 Laboratory to Center-of-Mass Transformation . . . . . . . . . . . . . . . 975

66.3 Elastic and Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976
66.3.1 The Differential Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976
66.3.2 Rotationally Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977
66.3.3 Vibrationally Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977
66.3.4 Electronically Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978

66.4 Reactive Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978
66.4.1 Harpoon and Stripping Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978
66.4.2 Rebound Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979
66.4.3 Long-lived Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979

66.5 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980

67 Ion–Molecule Reactions
James M. Farrar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983
67.1 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985
67.2 Kinematic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985
67.3 Scattering Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987

67.3.1 State-to-State Differential Cross Sections . . . . . . . . . . . . . . . . . . . . . 987
67.3.2 Velocity–Angle Differential Cross Sections . . . . . . . . . . . . . . . . . . . . . 988
67.3.3 Total Cross Sections with State-Selected Reactants . . . . . . . . . . 989
67.3.4 Product–State Resolved Total Cross Sections . . . . . . . . . . . . . . . . . . 989
67.3.5 State-to-State Total Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 990
67.3.6 Energy Dependent Total Cross Sections . . . . . . . . . . . . . . . . . . . . . . . 990

67.4 New Directions: Complexity and Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992

D
etailed

Con
t.



1456 Detailed Contents

Part F Quantum Optics

68 Light–Matter Interaction
Pierre Meystre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
68.1 Multipole Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997

68.1.1 Electric Dipole (E1) Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998
68.1.2 Electric Quadrupole (E2) Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 998
68.1.3 Magnetic Dipole (M1) Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999

68.2 Lorentz Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
68.2.1 Complex Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
68.2.2 Index of Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
68.2.3 Beer’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000
68.2.4 Slowly-Varying Envelope Approximation . . . . . . . . . . . . . . . . . . . . . 1000

68.3 Two-Level Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000
68.3.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001
68.3.2 Rotating Wave Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001
68.3.3 Rabi Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001
68.3.4 Dressed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002
68.3.5 Optical Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003

68.4 Relaxation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003
68.4.1 Relaxation Toward Unobserved Levels . . . . . . . . . . . . . . . . . . . . . . . . 1003
68.4.2 Relaxation Toward Levels of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . 1004
68.4.3 Optical Bloch Equations with Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004
68.4.4 Density Matrix Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004

68.5 Rate Equation Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005
68.5.1 Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005
68.5.2 Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005
68.5.3 Einstein A and B Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005

68.6 Light Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006
68.6.1 Rayleigh Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006
68.6.2 Thomson Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006
68.6.3 Resonant Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007

69 Absorption and Gain Spectra
Stig Stenholm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009
69.1 Index of Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009
69.2 Density Matrix Treatment of the Two-Level Atom . . . . . . . . . . . . . . . . . . . . . 1010
69.3 Line Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011
69.4 The Rate Equation Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013
69.5 Two-Level Doppler-Free Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
69.6 Three-Level Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016
69.7 Special Effects in Three-Level Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1018
69.8 Summary of the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020

D
etailed

Con
t.



Detailed Contents 1457

70 Laser Principles
Peter W. Milonni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
70.1 Gain, Threshold, and Matter–Field Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
70.2 Continuous Wave, Single-Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025
70.3 Laser Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028
70.4 Photon Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030
70.5 Multi-Mode and Pulsed Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
70.6 Instabilities and Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
70.7 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034

71 Types of Lasers
Richard C. Powell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035
71.1 Gas Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036

71.1.1 Neutral Atom Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036
71.1.2 Ion Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036
71.1.3 Metal Vapor Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037
71.1.4 Molecular Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037
71.1.5 Excimer Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038
71.1.6 Nonlinear Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038
71.1.7 Chemical Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039

71.2 Solid State Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039
71.2.1 Transition Metal Ion Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040
71.2.2 Rare Earth Ion Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040
71.2.3 Color Center Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042
71.2.4 New Types of Solid State Laser Systems . . . . . . . . . . . . . . . . . . . . . . . 1043
71.2.5 Frequency Shifters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043

71.3 Semiconductor Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043
71.4 Liquid Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044

71.4.1 Organic Dye Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044
71.4.2 Rare Earth Chelate Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
71.4.3 Inorganic Rare Earth Liquid Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045

71.5 Other Types of Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
71.5.1 X-Ray and Extreme UV Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
71.5.2 Nuclear Pumped Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046
71.5.3 Free Electron Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046

71.6 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048

72 Nonlinear Optics
Alexander L. Gaeta, Robert W. Boyd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051
72.1 Nonlinear Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051

72.1.1 Tensor Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052
72.1.2 Nonlinear Refractive Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052
72.1.3 Quantum Mechanical Expression for χ(n) . . . . . . . . . . . . . . . . . . . . . 1052
72.1.4 The Hyperpolarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1053

D
etailed

Con
t.



1458 Detailed Contents

72.2 Wave Equation in Nonlinear Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054
72.2.1 Coupled-Amplitude Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054
72.2.2 Phase Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054
72.2.3 Manley–Rowe Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055
72.2.4 Pulse Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055

72.3 Second-Order Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056
72.3.1 Sum Frequency Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056
72.3.2 Second Harmonic Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056
72.3.3 Difference Frequency Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056
72.3.4 Parametric Amplification and Oscillation . . . . . . . . . . . . . . . . . . . . . 1056
72.3.5 Focused Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056

72.4 Third-Order Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057
72.4.1 Third-Harmonic Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057
72.4.2 Self-Phase and Cross-Phase Modulation . . . . . . . . . . . . . . . . . . . . . 1057
72.4.3 Four-Wave Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058
72.4.4 Self-Focusing and Self-Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058
72.4.5 Saturable Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058
72.4.6 Two-Photon Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058
72.4.7 Nonlinear Ellipse Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059

72.5 Stimulated Light Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059
72.5.1 Stimulated Raman Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059
72.5.2 Stimulated Brillouin Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1060

72.6 Other Nonlinear Optical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061
72.6.1 High-Order Harmonic Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061
72.6.2 Electro-Optic Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061
72.6.3 Photorefractive Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061
72.6.4 Ultrafast and Intense-Field Nonlinear Optics . . . . . . . . . . . . . . . . . 1062

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062

73 Coherent Transients
Joseph H. Eberly, Carlos R. Stroud Jr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
73.1 Optical Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
73.2 Numerical Estimates of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066
73.3 Homogeneous Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066

73.3.1 Rabi Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067
73.3.2 Bloch Vector and Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067
73.3.3 Pi Pulses and Pulse Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067
73.3.4 Adiabatic Following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068

73.4 Inhomogeneous Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068
73.4.1 Free Induction Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068
73.4.2 Photon Echoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069

73.5 Resonant Pulse Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
73.5.1 Maxwell–Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
73.5.2 Index of Refraction and Beers Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
73.5.3 The Area Theorem and Self-Induced Transparency . . . . . . . . . . 1070

73.6 Multi-Level Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071
73.6.1 Rydberg Packets and Intrinsic Relaxation . . . . . . . . . . . . . . . . . . . . . 1071

D
etailed

Con
t.



Detailed Contents 1459

73.6.2 Multiphoton Resonance and Two-Photon
Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072

73.6.3 Pump–Probe Resonance and Dark States . . . . . . . . . . . . . . . . . . . . . 1073
73.6.4 Three-Level Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074

73.7 Disentanglement and “Sudden Death” of Coherent Transients . . . . . . 1074
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076

74 Multiphoton and Strong-Field Processes
Kenneth C. Kulander, Maciej Lewenstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077
74.1 Weak Field Multiphoton Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078

74.1.1 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078
74.1.2 Resonant Enhanced Multiphoton Ionization . . . . . . . . . . . . . . . . . 1078
74.1.3 Multi-Electron Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
74.1.4 Autoionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
74.1.5 Coherence and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
74.1.6 Effects of Field Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
74.1.7 Excitation with Multiple Laser Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 1080

74.2 Strong-Field Multiphoton Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080
74.2.1 Nonperturbative Multiphoton Ionization . . . . . . . . . . . . . . . . . . . . . 1081
74.2.2 Tunneling Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081
74.2.3 Multiple Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081
74.2.4 Above Threshold Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081
74.2.5 High Harmonic Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082
74.2.6 Stabilization of Atoms in Intense Laser Fields . . . . . . . . . . . . . . . . 1083
74.2.7 Molecules in Intense Laser Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084
74.2.8 Microwave Ionization of Rydberg Atoms . . . . . . . . . . . . . . . . . . . . . . 1084

74.3 Strong-Field Calculational Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086
74.3.1 Floquet Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086
74.3.2 Direct Integration of the TDSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086
74.3.3 Volkov States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086
74.3.4 Strong Field Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087
74.3.5 Phase Space Averaging Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088

75 Cooling and Trapping
Juha Javanainen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091
75.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091
75.2 Control of Atomic Motion by Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092

75.2.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092
75.2.2 Two-State Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094
75.2.3 Multistate Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097

75.3 Magnetic Trap for Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099
75.4 Trapping and Cooling of Charged Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099

75.4.1 Paul Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099
75.4.2 Penning Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101
75.4.3 Collective Effects in Ion Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102

D
etailed

Con
t.



1460 Detailed Contents

75.5 Applications of Cooling and Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
75.5.1 Neutral Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
75.5.2 Trapped Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105

76 Quantum Degenerate Gases
Juha Javanainen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
76.1 Elements of Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107

76.1.1 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108
76.1.2 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109
76.1.3 Bosons versus Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109

76.2 Basic Properties of Degenerate Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110
76.2.1 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110
76.2.2 Meaning of Macroscopic Wave Function . . . . . . . . . . . . . . . . . . . . . . 1114
76.2.3 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115

76.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115
76.3.1 Preparing a BEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115
76.3.2 Preparing a Degenerate Fermi Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117
76.3.3 Monitoring Degenerate Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117

76.4 BEC Superfluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117
76.4.1 Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117
76.4.2 Superfluidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118

76.5 Current Active Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119
76.5.1 Atom–Molecule Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119
76.5.2 Optical Lattice with a BEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123

77 De Broglie Optics
Carsten Henkel, Martin Wilkens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125
77.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125
77.2 Hamiltonian of de Broglie Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126

77.2.1 Gravitation and Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
77.2.2 Charged Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
77.2.3 Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
77.2.4 Spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
77.2.5 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127

77.3 Principles of de Broglie Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129
77.3.1 Light Optics Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129
77.3.2 WKB Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130
77.3.3 Phase and Group Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130
77.3.4 Paraxial Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130
77.3.5 Raman–Nath Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131

77.4 Refraction and Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
77.4.1 Atomic Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
77.4.2 Atomic Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132
77.4.3 Atomic Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132
77.4.4 Atomic Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132

D
etailed

Con
t.



Detailed Contents 1461

77.5 Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133
77.5.1 Fraunhofer Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133
77.5.2 Fresnel Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133
77.5.3 Near-Resonant Kapitza–Dirac Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 1133
77.5.4 Atom Beam Splitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134

77.6 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135
77.6.1 Interference Phase Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135
77.6.2 Internal State Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136
77.6.3 Manipulation of Cavity Fields by Atom Interferometry . . . . . . . 1137

77.7 Coherence of Scalar Matter Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137
77.7.1 Atomic Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137
77.7.2 Atom Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139

78 Quantized Field Effects
Matthias Freyberger, Karl Vogel, Wolfgang P. Schleich, Robert F. O’Connell 1141
78.1 Field Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142
78.2 Field States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142

78.2.1 Number States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143
78.2.2 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143
78.2.3 Squeezed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144
78.2.4 Phase States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145

78.3 Quantum Coherence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146
78.3.1 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146
78.3.2 Photon Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146
78.3.3 Photon Bunching and Antibunching . . . . . . . . . . . . . . . . . . . . . . . . . . 1147

78.4 Photodetection Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
78.4.1 Homodyne and Heterodyne Detection . . . . . . . . . . . . . . . . . . . . . . . . 1147

78.5 Quasi-Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148
78.5.1 s-Ordered Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148
78.5.2 The P Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149
78.5.3 The Wigner Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149
78.5.4 The Q Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151
78.5.5 Relations Between Quasi-Probabilities . . . . . . . . . . . . . . . . . . . . . . . 1151

78.6 Reservoir Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151
78.6.1 Thermal Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152
78.6.2 Squeezed Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152

78.7 Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152
78.7.1 Damped Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153
78.7.2 Damped Two-Level Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153

78.8 Solution of the Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154
78.8.1 Damped Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154
78.8.2 Damped Two-Level Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155

78.9 Quantum Regression Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156
78.9.1 Two-Time Correlation Functions and Master Equation . . . . . . 1156
78.9.2 Two-Time Correlation Functions and Expectation Values . . . . 1156

D
etailed

Con
t.



1462 Detailed Contents

78.10 Quantum Noise Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157
78.10.1 Quantum Langevin Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157
78.10.2 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158

78.11 Quantum Monte Carlo Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159
78.12 Spontaneous Emission in Free Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159
78.13 Resonance Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160

78.13.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
78.13.2 Intensity of Emitted Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
78.13.3 Spectrum of the Fluorescence Light . . . . . . . . . . . . . . . . . . . . . . . . . . 1161
78.13.4 Photon Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1161

78.14 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162
78.14.1 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162
78.14.2 Field States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162
78.14.3 Reservoir Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163

79 Entangled Atoms and Fields: Cavity QED
Dieter Meschede, Axel Schenzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167
79.1 Atoms and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167

79.1.1 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167
79.1.2 Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168

79.2 Weak Coupling in Cavity QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169
79.2.1 Radiating Atoms in Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169
79.2.2 Trapped Radiating Atoms and Their Mirror Images . . . . . . . . . . . 1170
79.2.3 Radiating Atoms in Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1170
79.2.4 Radiative Shifts and Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171
79.2.5 Experiments on Weak Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172
79.2.6 Cavity QED and Dielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173

79.3 Strong Coupling in Cavity QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173
79.4 Strong Coupling in Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1174

79.4.1 Rydberg Atoms and Microwave Cavities . . . . . . . . . . . . . . . . . . . . . . . 1174
79.4.2 Strong Coupling in Open Optical Cavities . . . . . . . . . . . . . . . . . . . . . . 1174

79.5 Microscopic Masers and Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
79.5.1 The Jaynes–Cummings Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
79.5.2 Fock States, Coherent States and Thermal States . . . . . . . . . . . . . 1175
79.5.3 Vacuum Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177

79.6 Micromasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178
79.6.1 Maser Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178
79.6.2 Nonclassical Features of the Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179
79.6.3 Trapping States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179
79.6.4 Atom Counting Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180

79.7 Quantum Theory of Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180
79.8 Applications of Cavity QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181

79.8.1 Detecting and Trapping Atoms through Strong Coupling . . . . 1181
79.8.2 Generation of Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181
79.8.3 Single Photon Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1182

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1182

D
etailed

Con
t.



Detailed Contents 1463

80 Quantum Optical Tests of the Foundations of Physics
Aephraim M. Steinberg, Paul G. Kwiat, Raymond Y. Chiao . . . . . . . . . . . . . . . . . . . 1185
80.1 The Photon Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
80.2 Quantum Properties of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186

80.2.1 Vacuum Fluctuations: Cavity QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
80.2.2 The Down-Conversion Two-Photon Light Source . . . . . . . . . . . . . 1187
80.2.3 Squeezed States of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187

80.3 Nonclassical Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188
80.3.1 Single-Photon and Matter–Wave Interference . . . . . . . . . . . . . . . 1188
80.3.2 “Nonlocal” Interference Effects and Energy–Time

Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189
80.3.3 Two-Photon Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1190

80.4 Complementarity and Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
80.4.1 Wave–Particle Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
80.4.2 Quantum Eraser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
80.4.3 Vacuum-Induced Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192
80.4.4 Suppression of Spontaneous Down-Conversion . . . . . . . . . . . . . . 1192

80.5 Measurements in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193
80.5.1 Quantum (Anti-)Zeno Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193
80.5.2 Quantum Nondemolition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193
80.5.3 Quantum Interrogation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194
80.5.4 Weak and “Protected” Measurements . . . . . . . . . . . . . . . . . . . . . . . . 1195

80.6 The EPR Paradox and Bell’s Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195
80.6.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195
80.6.2 Polarization-Based Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196
80.6.3 Nonpolarization Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196
80.6.4 Bell Inequality Loopholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1198
80.6.5 Nonlocality Without Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199

80.7 Quantum Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200
80.7.1 Information Content of a Quantum: (No) Cloning . . . . . . . . . . . . 1200
80.7.2 Super-Dense Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200
80.7.3 Teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200
80.7.4 Quantum Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
80.7.5 Issues in Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202

80.8 The Single-Photon Tunneling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202
80.8.1 An Application of EPR Correlations to Time Measurements . . 1202
80.8.2 Superluminal Tunneling Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203
80.8.3 Tunneling Delay in a Multilayer Dielectric Mirror . . . . . . . . . . . . . 1203
80.8.4 Interpretation of the Tunneling Time . . . . . . . . . . . . . . . . . . . . . . . . . 1204
80.8.5 Other Fast and Slow Light Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205

80.9 Gravity and Quantum Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207

81 Quantum Information
Peter L. Knight, Stefan Scheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215
81.1 Quantifying Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216

81.1.1 Separability Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216
81.1.2 Entanglement Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217

D
etailed

Con
t.



1464 Detailed Contents

81.2 Simple Quantum Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1218
81.2.1 Quantum Key Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219
81.2.2 Quantum Teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219
81.2.3 Dense Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220

81.3 Unitary Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221
81.3.1 Single-Qubit Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221
81.3.2 Two-Qubit Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221
81.3.3 Multi-Qubit Gates and Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222

81.4 Quantum Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222
81.4.1 Deutsch–Jozsa Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222
81.4.2 Grover’s Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223

81.5 Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223
81.6 The DiVincenzo Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224

81.6.1 Qubit Characterization, Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224
81.6.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224
81.6.3 Long Decoherence Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224
81.6.4 Universal Set of Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225
81.6.5 Qubit-Specific Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225

81.7 Physical Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225
81.7.1 Linear Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225
81.7.2 Trapped Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226
81.7.3 Cavity QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226
81.7.4 Optical Lattices, Mott Insulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227

81.8 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1228

Part G Applications

82 Applications of Atomic and Molecular Physics to Astrophysics
Alexander Dalgarno, Stephen Lepp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235
82.1 Photoionized Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235
82.2 Collisionally Ionized Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237
82.3 Diffuse Molecular Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238
82.4 Dark Molecular Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239
82.5 Circumstellar Shells and Stellar Atmospheres . . . . . . . . . . . . . . . . . . . . . . . . . . 1241
82.6 Supernova Ejecta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242
82.7 Shocked Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243
82.8 The Early Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1244
82.9 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1244
82.10 Other Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245

83 Comets
Paul D. Feldman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1247
83.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1247
83.2 Excitation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250

D
etailed

Con
t.



Detailed Contents 1465

83.2.1 Basic Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250
83.2.2 Fluorescence Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250
83.2.3 Swings and Greenstein Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251
83.2.4 Bowen Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252
83.2.5 Electron Impact Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253
83.2.6 Prompt Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253
83.2.7 OH Level Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254

83.3 Cometary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254
83.3.1 Photolytic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254
83.3.2 Density Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1255
83.3.3 Radiative Transfer Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256

83.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257

84 Aeronomy
Jane L. Fox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259
84.1 Basic Structure of Atmospheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259

84.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259
84.1.2 Atmospheric Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260

84.2 Density Distributions of Neutral Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264
84.2.1 The Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264
84.2.2 Diffusion Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265

84.3 Interaction of Solar Radiation with the Atmosphere . . . . . . . . . . . . . . . . . . 1265
84.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
84.3.2 The Interaction of Solar Photons with Atmospheric Gases . . . 1266
84.3.3 Interaction of Energetic Electrons with Atmospheric Gases . 1268

84.4 Ionospheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271
84.4.1 Ionospheric Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271
84.4.2 Sources of Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271
84.4.3 Nightside Ionospheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277
84.4.4 Ionospheric Density Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277
84.4.5 Ion Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279

84.5 Neutral, Ion and Electron Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1281
84.6 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284
84.7 Planetary Escape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290

85 Applications of Atomic and Molecular Physics
to Global Change
Kate P. Kirby, Kelly Chance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293
85.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293

85.1.1 Global Change Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293
85.1.2 Structure of the Earth’s Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 1293

85.2 Atmospheric Models and Data Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294
85.2.1 Modeling the Thermosphere and Ionosphere . . . . . . . . . . . . . . . . 1294
85.2.2 Heating and Cooling Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295
85.2.3 Atomic and Molecular Data Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295

D
etailed

Con
t.



1466 Detailed Contents

85.3 Tropospheric Warming/Upper Atmosphere Cooling . . . . . . . . . . . . . . . . . . . . 1295
85.3.1 Incoming and Outgoing Energy Fluxes . . . . . . . . . . . . . . . . . . . . . . . . 1295
85.3.2 Tropospheric “Global” Warming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296
85.3.3 Upper Atmosphere Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297

85.4 Stratospheric Ozone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298
85.4.1 Production and Destruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298
85.4.2 The Antarctic Ozone Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299
85.4.3 Arctic Ozone Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300
85.4.4 Global Ozone Depletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300

85.5 Atmospheric Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301

86 Atoms in Dense Plasmas
Jon C. Weisheit, Michael S. Murillo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303
86.1 The Dense Plasma Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1305

86.1.1 Plasma Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1305
86.1.2 Quasi-Static Fields in Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1305
86.1.3 Coulomb Logarithms and Collision Frequencies . . . . . . . . . . . . . . 1307

86.2 Atomic Models and Ionization Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308
86.2.1 Dilute Plasma Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308
86.2.2 Dense Plasma “Chemical” Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309
86.2.3 Dense Plasma “Physical” Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1310

86.3 Elementary Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1311
86.3.1 Radiative Transitions and Opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1311
86.3.2 Collisional Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312

86.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1313
86.4.1 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1313
86.4.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1313
86.4.3 The Deuterium EOS Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316

87 Conduction of Electricity in Gases
Alan Garscadden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
87.1 Electron Scattering and Transport Phenomena . . . . . . . . . . . . . . . . . . . . . . . . 1320

87.1.1 Electron Scattering Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1320
87.1.2 Electron Transport Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1321
87.1.3 The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1321
87.1.4 Electron-Atom Elastic Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322
87.1.5 The Electron Drift Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322
87.1.6 Cross Sections Derived from Swarm Data . . . . . . . . . . . . . . . . . . . . . . 1326

87.2 Glow Discharge Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327
87.2.1 Cold Cathode Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327
87.2.2 Hot Cathode Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327

87.3 Atomic and Molecular Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328
87.3.1 Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328
87.3.2 Electron Attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1329
87.3.3 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1330

D
etailed

Con
t.



Detailed Contents 1467

87.4 Electrical Discharge in Gases: Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1330
87.4.1 High Frequency Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331
87.4.2 Parallel Plate Reactors and RF Discharges . . . . . . . . . . . . . . . . . . . . . 1331

87.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333

88 Applications to Combustion
David R. Crosley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335
88.1 Combustion Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1336
88.2 Laser Combustion Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337

88.2.1 Coherent Anti-Stokes Raman Scattering . . . . . . . . . . . . . . . . . . . . . . 1338
88.2.2 Laser-Induced Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1339
88.2.3 Degenerate Four-Wave Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1341

88.3 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342

89 Surface Physics
Erik T. Jensen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343
89.1 Low Energy Electrons and Surface Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343
89.2 Electron–Atom Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1344

89.2.1 Elastic Scattering: Low Energy Electron Diffraction (LEED) . . . . 1344
89.2.2 Inelastic Scattering: Electron Energy Loss Spectroscopy . . . . . . 1345
89.2.3 Auger Electron Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1345

89.3 Photon–Atom Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1346
89.3.1 Ultraviolet Photoelectron Spectroscopy (UPS) . . . . . . . . . . . . . . . . . 1346
89.3.2 Inverse Photoemission Spectroscopy (IPES) . . . . . . . . . . . . . . . . . . . 1347
89.3.3 X-Ray Photoelectron Spectroscopy (XPS) . . . . . . . . . . . . . . . . . . . . . . 1348
89.3.4 X-Ray Absorption Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1348

89.4 Atom–Surface Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1351
89.4.1 Physisorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1351
89.4.2 Chemisorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1352

89.5 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1352
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1353

90 Interface with Nuclear Physics
John D. Morgan III, James S. Cohen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1355
90.1 Nuclear Size Effects in Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1356

90.1.1 Nuclear Size Effects on Nonrelativistic Energies . . . . . . . . . . . . . . 1356
90.1.2 Nuclear Size Effects on Relativistic Energies . . . . . . . . . . . . . . . . . . 1357
90.1.3 Nuclear Size Effects on QED Corrections . . . . . . . . . . . . . . . . . . . . . . . . 1358

90.2 Electronic Structure Effects in Nuclear Physics . . . . . . . . . . . . . . . . . . . . . . . . . 1358
90.2.1 Electronic Effects on Closely Spaced Nuclear Energy Levels . . 1358
90.2.2 Electronic Effects on Tritium Beta Decay . . . . . . . . . . . . . . . . . . . . . . 1358
90.2.3 Electronic Screening of Low Energy Nuclear Reactions . . . . . . . 1359
90.2.4 Atomic and Molecular Effects in Relativistic Ion–Atom

Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1359

D
etailed

Con
t.



1468 Detailed Contents

90.3 Muon-Catalyzed Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1359
90.3.1 The Catalysis Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1361
90.3.2 Muon Atomic Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1362
90.3.3 Muonic Atom Deexcitation and Transfer . . . . . . . . . . . . . . . . . . . . . . 1363
90.3.4 Muonic Molecule Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1364
90.3.5 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1366
90.3.6 Sticking and Stripping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367
90.3.7 Prospectus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1369

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1369

91 Charged-Particle–Matter Interactions
Hans Bichsel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1373
91.1 Experimental Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1374

91.1.1 Energy Loss Experiments and Radiation Detectors . . . . . . . . . . . 1374
91.1.2 Inelastic Scattering Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1375

91.2 Theory of Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376
91.2.1 Rutherford Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376
91.2.2 Binary Encounter Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376
91.2.3 Bethe Model of Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377
91.2.4 Fermi Virtual Photon Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377

91.3 Moments of the Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1378
91.3.1 Total Collision Cross Section M0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1378
91.3.2 Stopping Power M1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1379
91.3.3 Second Moment M2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1380

91.4 Energy Loss Straggling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1381
91.4.1 Straggling Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1381
91.4.2 Analytic Methods for Calculating Energy Loss Straggling

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1382
91.4.3 Particle identification (PID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1384

91.5 Multiple Scattering and Nuclear Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1384
91.6 Monte Carlo Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1384
91.7 Detector Conversion Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385

92 Radiation Physics
Mitio Inokuti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1389
92.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1389
92.2 Radiation Absorption and its Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 1390

92.2.1 Two Classes of Problems of Radiation Physics . . . . . . . . . . . . . . . . 1390
92.2.2 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1391
92.2.3 Charged Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1391
92.2.4 Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1391

92.3 Electron Transport and Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1392
92.3.1 The Dominant Role of Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1392
92.3.2 Degradation Spectra and Yields of Products . . . . . . . . . . . . . . . . . . 1392
92.3.3 Quantities Expressing the Yields of Products . . . . . . . . . . . . . . . . . 1394

D
etailed

Con
t.



Detailed Contents 1469

92.3.4 Track Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395
92.3.5 Condensed Matter Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1396

92.4 Connections with Related Fields of Research . . . . . . . . . . . . . . . . . . . . . . . . . . 1397
92.4.1 Astrophysics and Space Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397
92.4.2 Material Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397

92.5 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1398

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1401
About the Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405
Detailed Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1425
Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1471 D

etailed
Con

t.



1471

Subject Index

AlH3+ potential energy 763
Al3++H → Al2++H+ 762
Ar++N2 →Ar+N+

2 988, 989
BHe3+ potential energy 764
B3++He → B2++He+ 762
CCH+H2 −→ C2H2+H 569
CF4 spectrum 504
– rovibrational 503
CH(X2Π)+N2(X1Σ+

g ) reaction
484

CO2 spectrum, rovibrational 505
C+ +H2O → [COH]+ +H 988
C2 symmetry, character table 498
C3 1247
C6H6 spectrum, rotational 499
C2H+

2 +H2 −→ C2H+
3 +H 569

C60 spectrum, rotational 499
D2 symmetry
– character table 498
– correlation with C2 499
F+D2 scattering 975, 979
H+H2 reaction 569
H+NO2 → OH+NO 973
H2 559, 560
– Monte Carlo method for 870
H2CO 560
H2O 560
H+

2 charge transfer 990
H+

2 +H2 → H2+H+
2 990

H+
2 +He → HeH++H 989

He2 diatomic molecule 601
NH3 559
NH+

3 +H2 −→ NH+
4 +H 569

NO in combustion 1337
N+(3P )+D2 → ND++D 990
N+(3P )+H2 → NH++H 991
O(1D )+H2 scattering 979
OH (hydroxyl) radical
– in combustion 1337
OH level inversion 1254
OH2+ potential energy 762, 763
O−+HF → F− +OH 986
O2++H → O++H+ 762
O5+ dielectronic recombination

830
SF6 spectrum, rotational 499
SO(3, R) and SU(2) solid harmonics

61
STU-parameter
– definition 130
– generalized 130, 132

SiF4 spectrum
– spin- 1

2 basis states for 506
U(n) solid harmonics 64
Z+1 rule 920
π and 2π pulse 1067, 1068
O symmetry
– character table 500
– correlations with Cn 503
O(4) symmetry, of hydrogen 156
O(1D ) 968
O(n) representation theory 93
β-decay
– 187Re → 187Os 1358
– general theory 1358
– tritium 1358
jj coupling 180
– allowed J values for 178
3– j coefficients 31
– explicit forms 33
– limiting properties and asymptotic

forms 37
– recurrence relations 36
– special cases 69
– symmetries 35
– tabulation of 70
6– j coefficients, tabulation of 71
9– j coefficients 47
– algebraic form 49
– definition 48
– Hilbert space

tensor operator actions 47
– reduction to 6– j coefficients 49
– relations to 3– j coefficients 48
– relations to 6– j coefficients 48
– symmetry relations 49
9– j, invariant operators 47

A

ABCD law 1029
Abel transform 974
ablation, laser 969
above threshold ionization (ATI)

1081
– in circular polarization 1082
– peak shifting 1082
– resonance substructure 1082
absorption see also multiphoton

transitions 1000
– coefficient 262, 286, 524, 1000
– discrete 186

– optical 262
– oscillator strength 261, 628
absorptive lineshape 1009
abstraction, atom 580
accidental resonance 750
ACT theory 566
active set of orbitals 315
Adams–Bashforth formula 142
Adams–Moulton formula 142
addition of angular momentum
– magic squares 63
ADDS 973
adiabatic
– approximation 742, 1128

energy-modified 723
in atom optics 1129

– capture theory 563, 1363
– correction 469
– elimination 1005, 1073, 1093
– following 1068, 1099
– Hamiltonian 742
– ionization 1362
– lapse rate 1261
– nuclei approximation 722, 723
– passage, of Rydberg atoms 240
– PES 742
– potential 564

charge transfer 943
two-state system 810
vibrational 535

– representation 761
– state 280, 469, 762

electronic 742
vibronic 752

– switching 111
– transition 979
adjoint action 101
adsorption 1352
Aharonov–Bohm effect 1136
Aharonov–Casher effect 1127,

1136
alignment 222, 693
– angle 126
– atomic 936
– density matrix formalism 128
– in molecular beams 969
– in photoionization 903
alkali atom
– electron scattering by 368
– laser cooling parameters 1092
– molecular beams 968

Su
b
ject

In
d
ex



1472 Subject Index

– Rydberg states of 240
– scattering by 872, 978
alkali metal clusters 590
alkali-like spectra 177
ambipolar diffusion 1325
amplifying medium 1014
Anderson localization 1085
Anger function 837
angular correlation 937
– density matrix formalism 128
angular distribution 935, 976
– by Doppler spectroscopy 973
angular momentum
– abstract 16
– cone (diagram) 502
– coupling scheme 177, 309, 920
– coupling schemes 313
– differential operator realizations of

28
– orbital 12

cartesian representation 12
spherical polar coordinates 15

– transfer 126
– transfer formalism 903
anharmonic pumping 1329
anisotropy parameter 903
annihilation operator 76, 94, 105,

115, 118, 1108, 1109, 1142
anomalous dispersion 262, 1014
anomalous magnetic moment 227
– effects in helium 208
– measurement of 1105
antenna patterns 1171
anticommutator 1109
antiproton scattering 756, 873
anti-Zeno effect 1193
apparent excitation cross section

934
Appell function 166
Araki–Lieb inequality 1217
arbitrarily normalized decay curve

(ANDC) method 267
arc 644
– Ar mini-arc 644
argon
– photoionization of 385
aromaticity rule 594
Arrhenius rate law 563
association rate 813
associative detachment 576, 580,

983
associative ionization 836
astronomy 1397
– comets 1248
– submillimeter and far-infrared

620

astrophysical factor 1359, 1366
astrophysical plasma 1303
astrophysics 1235, 1397
asymmetric hybrid model 777
asymmetric top 493, 519, 560
– Hamiltonian 507
– transition moments for 530
asymmetry parameter 382, 387
asymptotic expansion 168
– method, for atomic energies 213
atmosphere
– effective thickness of 1260
– far-infrared and submillimeter

spectroscopy of 620
– heating efficiency 1281
– heating rates of 1282
– ion and electron temperature

profiles 1283
– luminosity of 1284
– planetary escape mechanisms

1287
– pressure and density variations in

1259
– temperature distribution model

1281
– temperature structure 1293
atom
– abstraction 580
– chip 1116
– counting statistics 1180
– decoherence 1138
– diffraction 1133
– optics 1125
– optics, nonlinear 1126
atomic beam 1132
– beam splitters 1134
atomic cascade
– source of nonclassical light 1186
atomic clocks 456
atomic fountain 456
atomic frame 694
atomic lens 1132, 1133
– thick 1132
– thin 1132
atomic mirror 1131
– evanescent wave mirror 1131
– magnetic mirror 1132
atomic state function 350
atomic structure
– eigenvector composition 181
– eigenvector purity 181
– ground level tabulation 182
– ground state 182
– Hartree–Fock theory 308
– helium 199
– hierarchy of 177, 178

– hydrogenic 153
– many-body perturbation theory

105, 359
– notation and nomenclature 176,

177, 179
– relativistic 329
– Thomas–Fermi theory 295
atomic units 3
– physical quantities in (table) 5
atomic waveguide 1132
atom–surface interactions 1351,

1352
attachment
– dissociative 576, 836

theory 722
– electron 576
– electronic 1330
attosecond pulses 551, 1033
Auger emission 936
Auger process 391, 904, 959
– calculation of width 367
– decay of deep vacancies 374
– post collision interactions 374
– resonant 905
Auger satellites
– near-threshold 924
Auger transition 919, 920
– classification 920
– diagram lines 921
– energy 920
– satellites 921
auroral activity 1266
autocorrelation function 541
autodetachment 391, 583
autoionization 320, 391, 579, 904,

936
– electron capture 943
– formation of states 391
– H−(1S ) resonance calculation 395
– He−(1s2s2 2S ) autodetachment

state 393
– in multiphoton processes 1079
– MCHF variational method for

316
– minimax method for 316
– of Rydberg atoms 244
– of two-electron systems 398
– other applications of 399
– saddle-point method for 316
– scattering resonances 391
– sum rule 393
automorphism 81
avalanche pumping 1041
avoided crossing 233, 743, 762
– narrow 746
Axonometric plot 988

Su
b
ject

In
d
ex



Subject Index 1473

B

Baker–Campell–Hausdorff identity
38

balance, microscopic
– coronal 800
– improper 800
– proper 800
– radiative 800
Barkas term, stopping power 1379
basis functions
– adiabatic and diabatic 743
– Hylleraas 204
– molecular orbital 476, 518
– radial scattering 712
– Slater 317
– spline 317
– Sturmian 154, 759
BB84-protocol 1219
BBK theory 781
beam
– attenuation method 945
– effusive 1138
– splitters 1134
– supersonic 1138
beam–foil spectroscopy 266, 269
– lifetime measurement 266
BEC 1107
– atom–molecule conversion 1119
– Bogoliubov theory 1112
– critical density 1109
– critical temperature 1109, 1115
– dynamical instability 1112
– excitations 1112
– fragmented 1114
– free gas 1109
– gas parameter 1113
– interference 1115
– Josephson effect 1121
– mean-field theory 1110
– noncondensate fraction 1113
– optical lattice 1121
– orders of magnitude 1117
– persistent current 1118
– phase diffusion 1122
– phase dispersion 1122
– quantization of circulation 1118
– speed of sound 1112
– superfluid 1118
– superfluidity 1117
– trapped gas 1115
– vortex 1117
BEC interference 1189
BEC-BCS crossover 1120
Beer’s law 1000, 1070
– atmospheric application of 1267

Beer’s length 1070
Bell inequality 1195
– detection loophole 1198
– effect of local reference frame

1198
– energy–time entanglement

1197
– locality/timing loophole 1198
– loopholes 1198
– momentum entanglement 1196
– nonpolarization-based tests of

1196
– tested with ions 1198
Bell states 1220
Bell-state measurement 1220
Bennett hole 1012, 1016
Bernoulli number 102
Berry phase 480, 1129
– quantum nature 1189
Bethe integral 790
Bethe logarithm 409
– asymptotic expansion for 209
– electric field effect 233
– two-electron 208
Bethe model
– cross section 1377
– mean excitation energy 1380
– stopping power 1379
Bethe ridge 792
Bethe theory for energy loss 1377
Bethe–Born approximation 794
– normalization to 934
Bethe–Salpeter equation 405
betweenness condition 93
Bhabha scattering 416
Biedenharn–Elliott identity 44, 50
Big Bang model 1244
binary coupling theory
– combinatorics 56
– intermediate angular momenta

57
– types of coupling 57
binary encounter approximation

(BEA) 757, 852, 1376
– double ionization 855
binary encounter peak 794
binary peak 953
binary reactions 578
– ion–molecule 580
– ion–neutral 579
– temperature dependence 581
bipartite quantum state 1216
blackbody decay rate 238
blackbody radiation 238, 524, 1006
Blatt–Jackson formula 668
bleaching 1005

Bloch equations
– optical 1066
– two-photon 1073
Bloch operator 712
Bloch sphere 1067
Bloch term, stopping power 1379
Bloch vector 1003, 1067
– adiabatic inversion 1068
– orbits of (diagram) 1067
– spreading of (diagram) 1069
Bloch–Siegert level shift 1001
blocking temperature 592
body-fixed
– coordinates 30, 517, 519, 538,

557, 771
– frame 742
Boersch effect 1126
Bogoliubov theory 1112
Bohm–de Broglie deterministic

quantum mechanics 1205
Bohr correspondence principle 839
Bohr formula 236
Bohr magneton 999
Bohr–Sommerfeld quantization 839
bolometer 969
Boltzmann average momentum 824
Boltzmann distribution
– definition 802
Boltzmann equation 1321
bond rupture 550
Born approximation 716, 789, 856,

1362
– capture cross section 859
– dispersion relation 866
– elastic cross section 674
– excitation cross section 858
– for alignment in scattering 702
– for charge transfer 777
– for heavy particle scattering 756,

757
– for ion–atom collisions 789
– for line strength Sn 838
– ionization cross section 859
– plane wave (PWBA) 757
– test of 873
– Thomas process 863
Born sequence 112
Born series 112, 147, 716
Born–Huang ansatz 468
Born–Markov approximation 1152
Born–Oppenheimer approximation

468, 525, 536, 556, 721, 1129,
1367

– Born–Huang ansatz 468
– breakdown of 469
– in scattering theory 721

Su
b
ject

In
d
ex



1474 Subject Index

Bose exclusion principle 507
Bose–Einstein condensate 1107
Bose–Einstein condensation 1104,

1227
Bose–Einstein statistics 1108
– two-photon interference 1190
Bose–Hubbard Hamiltonian 1227
Bose–Hubbard model 1122
Bose-symmetric molecule 507
boson 76, 94, 115, 1108
– commutation relations 115
– commutators 1108
– field operator 1108
– operator 20
bosonic realization of U(4) 95
bottleneck method
– for ion–dipole reactions 565
– for recombination processes

815
bow ties 263
Bowen fluorescence 1237
– in comets 1252
bracketing theorem 104
Bragg reflection 1134
Bragg regime 1134
Bragg rule, for Bethe logarithms

1380
Bragg scattering conditions, optical

1060
branching fraction 194, 261
branching ratio
– in highly ionized atoms 264
– radiative 264
branching rule, group 78, 79
Breit interaction, relativistic 334,

352
Breit–Pauli interaction 307, 335,

478, 709
– in MCHF calculations 316
Breit–Wigner line shape 396
Bremsstrahlung 374
– in dense plasmas 1312
Brewster window 1027
Brillouin frequency shift 1060
Brillouin gain coefficient 1060
Brillouin linewidth 1060
Brillouin scattering
– stimulated 1060

anti-Stokes field 1060
Stokes field 1060

Brillouin susceptibility 1060
Brillouin’s theorem 311, 351
– generalized 316
broadband light source 1014
Brueckner approximation 408
Brueckner equation 404

B-spline 411
buckminsterfullerene 593
bunching, photon 1186
Burshtein–Mollow spectrum 1003

C

cage effect 551
caloric curve 600
canonical reduction 79
capture cusp, continuum electron

794
capture theory 565
– Born approximation for 859
carbon chemistry, in molecular clouds

1239
carbon clusters 593
Cartan–Weyl form 76
cascade 934
Casimir effect 1186
Casimir forces 209
– retarded limit 1172
Casimir operator 76, 78, 79, 83
– of SO(3) and SO(2) 88
catalysis, muon 1360
causality
– superluminal group delays 1203
– Wigner condition for scattering

668
caustics, in WKB approximation

1130
cavitiy QED
– applications of 1181
cavity bandwidth 1027
cavity dumping 1030
cavity effects 238
– excitation probability diagram

1168
cavity fields
– manipulation of 1137
cavity limit, bad and good 1170,

1171
cavity QED 1167, 1186, 1226
– dielectrics 1173
– resonator types for 1171
– strong coupling 1173
– weak coupling 1169
cavity ring-down spectroscopy

1342
cavity, atomic 1132
– Fabry–Perot resonator 1132
– gravito-optical 1132
– trampoline 1132
center of mass motion
– quasiseparation in magnetic field

251

central potential model 88, 335
– SO(4) symmetry of 82
– for photoionization 383
centrifugal barrier 563, 682, 1363
– effect on adiabatic capture 1363
– effect on multiphoton ionization

1082
– effect on Rydberg states 236
centrifugal coupling tensor 500
centrifugal potential 558
channel
– capture 762
– Coster–Kronig 921
– coupled channels method 757
– decay 261, 320, 921
– exoergic 570, 580
– inelastic, projection operator

393
– photoionization 381, 902
– reaction 484, 572, 580
– scattering 706
channel function 706
channeling
– in de Broglie optics 1132
chaos 1033
– classical 249
– in Rydberg atoms 1085
– intermanifold 249
– intermittency route 1033
– intramanifold 250
– Lorenz model for 1033
– period doubling route 1033
– quantum 249
chaotic laser 1033
– spatial pattern formation 1033
Chapman layer 1277
Chapman production profile 1280
Chapman–Enskog formula 666
characteristic conversion length

1056
characteristic energy
– electron 1324
charge exchange 579, 943
– excitation 939
– reaction 761
charge solvation 602
charge transfer 579, 580, 753, 775,

943, 1294
– double 753
– measurement of 989, 990
– recombination 1236
– resonant 667, 1280
– symmetrical 581
– with core rearrangement 761
charge-coupled device 650
charge–current 4-vector 329

Su
b
ject

In
d
ex



Subject Index 1475

charged-particle–matter interactions
1373

charmonium 92
Chebyshev interpolation 137
chemical kinetics 578, 1336
chemical potential 1111
chemical reaction
– gas phase 561, 576
– ionic 576
chemiluminescent reactions 1285
chemisorption 592, 597, 1352
chemistry
– of clusters 592, 596
– of combustion 1336
chirped pulse amplification 1031
chirping 1031
chi-square curve fitting 138
chlorine, in upper atmosphere

1299
Christoffel–Darboux formula 167
chronological operator 111
classical electron radius 999, 1006
classical oscillator approximation

280
classical over-barrier model
– charge transfer 943
classical scaling 1085
classical scattering theory 659, 841,

976
– charge transfer 856
– electron removal cross section

842
– impulse approximation 849
– ionization 855
– Thomas process 863
classical trajectory Monte Carlo

(CTMC) method 869, 1362
– nCTMC 870
classical trapping resonance 1085
classical-quantal coupling 1362
Clebsch–Gordan coefficient 82, 558
Clebsch–Gordan series 31
Clifford algebra 94, 97
Clifford numbers 94
cloning photons 1200
close-coupling method 706
– for heavy particle scattering 757
closed shell 393, 401, 403, 407,

408, 411
closed-orbit theory 248
cluster 589
– adsorbate binding energy 593
– alkali metal 590
– binding energy of 591
– carbon 593
– chemistry of 592, 596, 598

– classical models 592
– copper 591
– doped 600, 601
– electronic properties of 590, 596,

600, 602
– electronic spectra of 591, 592
– elliptical distortions 591
– expansion 109
– geometric structures 590, 592,

596, 599, 602
– giant 595
– helium 601
– ionic 596
– ionization potentials 600
– magnetic moment of 592
– magnetic properties of 590
– mercury 592
– metal 590
– molecular 602
– noble gas 599
– noble metal 590
– operator 109
– phase change in 600, 602
– phase dynamics 602
– quantum calculations for 590
– reaction rates in 592
– semiconductor 597
– silicon and germanium 597
– spectroscopy of 590, 598, 600,

601
– states 1226
– transition to bulk 590
– wetting 601
CODATA 1
coherence
– and statistics 1079
– atomic 1001
– first-order field 1146
– in three-level processes 1017
– induced by the vacuum 1192
– nth order 1146
– of matter waves 1137
– off-diagonal 1024
– parameter 937
– quantum 1146
– two-photon 1073
coherence length 1055
– spatial 1138
– wave function collapse 1189
coherence time
– thermal 1138
coherent anti-Stokes Raman

scattering 630, 1338
coherent excitation 129, 694, 699
coherent state 1030, 1143, 1154,

1176

coherent transients 1065
– multilevel generalizations 1071
coincidence
– electron–photon 127, 131
coincidence fringes
– in a Franson interferometer 1197,

1198
coincidence measurements 936
cold atom collisions 1103
cold-target recoil-ion momentum

spectroscopy (COLTRIMS) 922
collective effects, in ion traps 1102
collective excitation 592, 1375
colliding pulse laser 1031
collision
– action 664
– complex 979, 988
– delay time 664
– density matrix representation 696
– dynamics

and antimatter 873
– frame 694
– frequency 1270

in dense plasmas 1307
– in laser field 940
– integral 1322
– number 968
– orientation and alignment in 693
– processes 933
– strength 707

Gailitis average 712
– strong and weak 1004
– theory see also scattering theory

705
collisional association 576
collisional broadening
– of Raman linewidths 1338
collisional narrowing 1013
collisionally ionized gas 1237
collisional-radiative equilibrium

1309
combustion 1335
– models of 1336
– nonturbulent flow 1336
– pollutant emissions 1337
– turbulent flow 1336
combustion chemistry 1336
– intermediates 1339
combustion diagnostics, laser 1337
comets 576, 1247
– atomic and molecular processes in

1250
– composite FOS spectrum of

103P/Hartley 2 1249
– density models 1255
– dust tail 1247

Su
b
ject

In
d
ex



1476 Subject Index

– excitation mechanisms 1250
– g-factor as a function of

heliocentric velocity 1252
– models 1254
– O i energy level diagram 1253
– observational data 1247
– phenomenology 1250
– photodissociation in 1254
– photoionization in 1254
– photolytic processes in 1254
– plasma tail 1247
– radiative transfer effects 1256
– solar flux and fluorescence

efficiency 1252
common trajectory approximation

743
complementarity 119
complementarity principle 1191
– quantum eraser 1191
complete active space 315
– perturbation theory 475
– reduced form 316
– wave function 474
complete scattering experiment

938
completely positive map 1221
complex
– collisional stabilization of 562
– of atomic states 315
– probabilities in quantum theory

1205
– radiative stabilization of 570
– rotation 396, 397
– rotation method 396
– scattering 979
complexity
– ion–molecule reactions 991
composite rotor 507
Compton scattering 919
concurrence 1075
condensation reaction 983
conditional probabilities in quantum

theory 1205
Condon oscillations 286
conducting sphere 591
configuration interaction 107, 308
– expansion 473
– in photoionization 922
– limited 96
– method

contracted 475
configuration state function 308,

350, 471
confluent hypergeometric function

162
confocal parameter 1029

conical intersection 480, 486
– points of 486
conjugation operator 118
connected cluster theorem 108
connected diagram 108, 109
constant ionic state mode 910
constant kinetic energy mode 910
continuity equation 329
– and recombination 806
– atmospheric 1264
continuous slowing down

approximation (CSDA) 1270,
1383, 1392

continuum distorted wave (CDW)
757, 775

– amplitude 777
– and Monte Carlo techniques

871
– ionization theory 779
– perturbation series 777
– projectile 777
– second-order 777
– target 777
– variational 778
– wave function 777
continuum lowering
– plasma-induced 1309
continuum radiation, atomic 196,

608, 642, 904, 1080
continuum radiation, stellar 1241
continuum wave function 155, 320,

706
– Dirac equation 161, 330
– normalization of 668, 790, 821
– variational 713, 778
continuum-distorted wave (CDW)
– relativistic 778
– theory

magnetically quantized 780
contraction of operators 105
contravariant 4-vectors 327
controlled-NOT gate 1221
controlled-phase gate 1221
convergence acceleration 169
convergent close coupling (CCC)

method 715
conversion factors 4
cooling
– axial motion 1102
– cold collisions 1103
– critical velocity 1094, 1095, 1098
– cyclotron motion 1102
– damping coefficient 1094, 1095,

1097, 1099, 1101
– diffusion 1093, 1095–1097
– diffusive heating 1095

– dissipative force 1094
– Doppler 1095, 1100
– Doppler limit 1092
– evaporative 1099, 1116
– frequency standards 1104
– induced diffusion 1096
– induced orientation 1097–1099
– ion chaos 1102
– ion crystal 1102
– ion phase transitions 1102
– magnetron motion 1102
– many ions 1102
– optical molasses 1095
– parameters, laser 1092
– polarization gradient 1097
– quantum theory 1094, 1097, 1098
– Raman 1105
– recoil limit 1092
– resistive 1102
– semiclassical theory 1093, 1097,

1098
– sideband 1100, 1102
– Sisyphus 1097

effect 1097, 1098
– sympathetic 1103
– temperature of trapped particle

1094, 1095, 1098, 1101, 1103
– transverse diffusion 1095
– velocity capture range 1094,

1095, 1098
cooling, of stratosphere 1297
Cooper minimum 384
coordinate systems, scattering 694
copper
– clusters 591
– photoeffect 916
core
– excited states 392
– penetration 177
– scattering 249
Coriolis coupling 491, 559, 745,

1127
coronal equilibrium 1309
correlation
– angular 128, 937

analysis of 696
– CODATA 1
– dynamic 474, 763

decay curve analysis 267
– internal or static 474
– of symmetry types 499
– Pauli 755
– photon 1031, 1146, 1186
– polarization 937
– valence 316
– vector, in photodissociation 538

Su
b
ject

In
d
ex



Subject Index 1477

correlation energy 106, 313
– definition of 313
– diagrammatic expression for 365
– Thomas–Fermi Z−1/3 expansion for

300
correlation function
– master equation 1156
– photon 1146
– quantum regression hypothesis

1156
– scattering 706
– two-time 1156
correlation potential 706
– exchange 476
– Lee, Yang, Parr expression for

302
correspondence principles
– Bohr 839
– Bohr–Sommerfeld quantization

839
– equivalent oscillator theorem 840
– Heisenberg 839
– in Rydberg collisions 839
– strong-coupling 840
cosmic rays 1238
Coster–Kronig transition 920
– super 920
Coulomb
– boundary conditions 776, 779
– coupling parameter 1305
– explosion 1084
– function 155
– gauge 379
– law 1
– logarithms 1307
– phase shift 821
– repulsion 1360
– scattering 671, 819

modified, effective range formula
669

– trajectory 754
– wave, asymptotic form 790
Coulomb–Born approximation

1362
Coulomb–Stark potential 239, 240
counter-intuitive pulse sequencing

1073
counting statistics 1186
coupled cluster (CC) 109
– approximation 401
– calculations 353
– expansion 109, 337
– method 109, 472
coupled-channels method 757
coupled-channels optical (CCO)

method 716

coupling
– electronic and rotational 482
coupling schemes
– term symbols 179
coupling strength
– atom–molecule 1120
coupling, atomic
– J1 j or J1 J2 180
– J1l or J1 L2 (J1 K ) 180
– LS (Russell–Saunders) 177
– LS1 (L K ) 181
– jj 178
covariance matrix 1217
covariant 4-vectors 327
covariant perturbation theory 413
CPT invariance 429, 430
creation operator 76, 94, 105, 115,

118, 1108, 1142
critical angle
– for total reflection 1131
critical density 1109
critical laser intensity 1081
critical temperature 1109
critical velocity 1118
cross section 659, 706, 882
– Bethe model of 1377
– classical 659, 841, 977
– collision strength 930
– density matrix formalism for 131,

695
– differential 661, 664, 665, 706,

716, 717, 770, 930, 976, 984
binary encounter approximation
852
for Coulomb scattering 819

– double differential 717, 791
– elastic scattering 661
– for multipolar relaxation 223
– frame transformation 517, 792,

975, 985
– Galilean invariant 790
– integral 661, 718, 751, 930
– moment transfer 661
– moments of 661, 708, 814, 1378,

1380
– momentum transfer 930, 1320,

1326
– Rutherford 155, 671, 794, 819,

1376
– selection rules 932
– total scattering 707, 839, 933
– transport 665
– triple differential 717, 783
crossed beam 971
– for ion–molecule reactions 988
– ion-laser 265

crossed beam imaging apparatus
992

crossed beam imaging technique
991

crossing distance 979
Crothers semiclassical approximation

785
Cu26+ dielectronic recombination

832
cubic graphs, classes of 60
cubic splines 136
cuboid crystal 596
curve crossing 535, 807, 810, 978
– matrix elements of AlH3+ 768
curve fitting 137
– chi-square 138
– least squares 137
cusp conditions, Kato 200
cylindrical mirror analyzer 910

D

damped harmonic oscillator 1153,
1154, 1157

damped two-level atom 1154, 1155
– in squeezed bath 1154
damping rate
– longitudinal 1066
– transverse 1066
dark state 1018, 1073
Darwin term 308, 709
dayglow 1284
– spectra of selected planets 1287
– terrestial spectrum 1286
De Broglie optics 1125
– gravitation 1127
– Hamiltonian 1126
– rotation 1127
De Broglie wavelength 824
– thermal 1138
Debye length 1305
Debye shielding 1325
decay
– free induction 1068
– purely radiative 1005
decay rate
– inelastic collisions 1004
– spontaneous 215, 1004
decoherence 1162, 1223
decoherence times 1224
decoherence-free subspace 1224
deflection function 976
– formulae 660
deflection parameter 643
degeneracy groups (algebras) 87
degenerate Fermi gas 1109
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degenerate four-wave mixing 1341
delay time, collisional 664
delayed choice, in quantum

measurement 1191
Delbrück scattering 917
delta function
– electric field effect on matrix

elements 233
delta rays 959
Demeur’s formula, electron energy

shift 416
dense coding 1220
density functional theory 97, 98,

302, 475
– locality 303
density matrix 123, 221
– diagonal representation 222
– equation of motion 1010
– for polarized beams 699
– for relaxation processes 125
– for thermal equilibrium 125
– from Stokes vector 696
– full 126
– reduced 126
– reduced spin 131
– two-level atom 1004, 1010, 1023,

1025
density of states
– classical 841
– photon 215
density operator 123
– irreducible components 127
– reduced 1152, 1159
– time evolution 124
depolarization 130
– in Rydberg atom collisions 836
– postcollisional 697
depth-dose curve 1383
derivative coupling 476
derivative, numerical approximation

of 140
desorption 1352
detachment 983
detailed balance 623, 817, 822,

1006
detailed balancing 939
detector 648
– charge-coupled device 650
– far-infrared 619
– ionization chamber 650
– microchannel plate 649
– neutral particles 969
– nonoptical 969
– photographic plate 649
– photomultiplier tube 649
– silicon photodiode 650

– spectroscopic 969, 970
– surface ionization 969
– vacuum photodiode 649
detector conversion factors 1385
detuning 1001, 1010, 1024, 1058,

1066, 1081, 1091, 1128, 1175
– two-photon 1073
deuterium 437
– equation of state 1315
deuteron charge radius 443
Deutsch–Jozsa algorithm 1222
diabatic
– electronic state 742
– Hamiltonian 742
– matrix elements 767
– passage, of Rydberg atoms 240
– PES 742
– potential

for mutual neutralization 810
– state 469, 1134, 1362
diagrammatic technique 109, 359
diatomic molecules
– binding with noble gases 482
– dissociative electron–ion

recombination 583
– electron scattering by 721
– noncrossing rule 470
– nonrigid 95
– one-electron 92
– radiative transitions in 520
– rigid 95
– symmetric top structure 492
– Thomas–Fermi ‘no binding’ result

295
– vibrational structure 480
Dicke narrowing 1013
dielectric
– cavity QED in 1173
– constant 3
dielectronic recombination 800,

829, 961, 1236, 1330
– Au76+ 832
– cross section 821
– Cu26+ 832
– data generation 829
– in plasmas 833
– O5+ 830
difference frequency generation

1056
differencing algorithms 143
differential cross section 908, 930
differential equations
– numerical methods 141

ordinary 141
– power series solution 146
differential reactivity method 990

different-orbitals-for-different-spins
(DODS) 110

diffraction 1133
– atom 1133
– electron 1133
– Fraunhofer limit 1133
– Fresnel regime 1133
– Laue geometry 1134
– limit 1133
– neutron 1133
– small-angle 679
– superluminal group delays 1203
diffusion
– coefficient 806, 1265, 1323
– cross section see momentum

transfer cross section 708
– free 1323
– induced 1096
diffusion method
– for recombination processes 814
diffusional-drift
– in recombination processes 806
dipole
– approximation 999
– coupling, of atoms and fields

1169
– critical strength 1362
– force 1096
– moment 110, 998
– potential 575
– response function 1396
– scattering 686, 1345
dipole approximation 902
dipole force 1094
Dirac energy levels 438
Dirac equation 328
– angular distributions 339
– behavior near the origin 340
– continuity equation 329
– Coulomb Green’s function 161
– eigenvectors 338
– finite nuclear models 341
– free electron 343
– hydrogenic 91, 157

dynamical effects 342
– hydrogenic solutions

radial moments 342
– in scattering theory 709
– magnetic field 228
– nonrelativistic limit 341
– point nucleus 341
– radial density distributions 339
– spherical symmetry 337

jj-coupling subshells 339
eigenstates 338

– square integrable solutions 341
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Dirac gamma matrices 328
Dirac–Hartree–Fock method 351,

1358
Dirac–Pauli matrices 94
direct dynamics 544
direct excitation cross section 934
direction cosine matrix elements 22
discharge
– cold cathode 1327
– flash 644
– H2, D2 644
– hot cathode 1328
– noble gas 644
– positive column 1327
– rf 1331
discretization of the continuum 758
disentanglement 1074
dispersion
– anomalous 1014
– normal 1014
– optical 262
– quantum mechanical cancellation

1202
dispersion relation 1129
– for Thomas scattering 866
dispersive behaviour 1010
dispersive phase 1136
displacement operator 1143
dissociation 562, 576
– electron impact 935
– probabilities 804
– spontaneous 562
dissociative attachment 576, 722
– in Rydberg atom collisions 836
dissociative ionization 1269
dissociative recombination 576,

800, 807, 1239, 1274, 1277, 1294,
1330

– in the atmosphere 1295
– of diatomic ions 807
– polyatomic 566
distinct row table 96
distorted wave approximation 716
– for dielectronic recombination

833
– for elastic scattering 674
distorted wave Born approximation
– strong potential 793, 795
distribution functions
– use of in Rydberg collisions 840
Doppler broadening 1012, 1103
Doppler cooling 1095, 1100
Doppler spectroscopy 973
Doppler-free resonance 1018
Doppler-free spectroscopy 458,

1015

dosimetry 1389
double excitation 906
double ionization 780, 904, 906,

922
– binary encounter approximation for

855
– by antiprotons 756
– in heavy particle scattering 755
double Pfaffians
– skew symmetric matrices 65
double-well potential 1121
doubly excited states 392
down conversion
– energy–time correlations 1189
– nonclassical features 1145
– polarization entanglement 1196
– spontaneous 1187
– suppression of spontaneous 1192
dressed atom
– two-level 1002
dressed state 1002, 1161
– in electron scattering 724
drift velocity 1323
– definition 1321
dynamical algebras 87
dynamical group
– noncompact 87
dynamical symmetry 492, 523
dynamical tunneling 494
Dyson equation 112, 401, 403, 406,

408
Dyson orbital 368

E

e–2e measurement 936
Eagle mount 647
Earnshaw theorem 1099
Eckart coordinates 761, 765
ECPSSR 757
effective Hamiltonian 110
effective range, in elastic scattering

668
effective thickness of the atmosphere

1260
effusive beam 1138
eigenpolarization 1054
eikonal
– Born series 716, 726
– criterion 776
– distorted state 779
– in de Broglie optics 1130
– phase 673
eikonal method
– for forward reactive scattering

684

– for heavy particle scattering 755,
778

Einstein A and B coefficients 237,
261, 286, 1005, 1023

– molecular 524
Einstein–Podolsky–Rosen (EPR)

paradox 1195
elastic scattering 661, 705, 933, 976
– Born approximation 674
– cross section 368, 661
– distorted wave approximation 674
– effective range formulae 668
– in reactive systems 683
– intermediate and high energy 714
– low energy 705
– of electrons 705

thermal energy loss function
1270

– oscillatory structure effects 683
– small-angle 680, 681
electric dipole interaction 216, 380,

998
– finite nuclear mass effect 216
– length, velocity and acceleration

forms 380
– molecular 520
– motional correction 1127
– two-level atom 1001
electric dipole moment 216, 836,

998
– molecular 526
electric dipole phase 1136
electric dipole transition 187, 321,

380
– finite nuclear mass effect 216
– helium results 216, 217
– hydrogenic matrix elements 836
– molecular 520, 526
– selection rules 381
– Stokes parameters for 131
electric field
– atoms in 231, 247
– hydrogenic wave functions in

232
– operator 1142
electric multipole 258, 997
electric polarization 999
electric quadrupole transition 187,

192
electromagnetic field 1168
– quantized 331
electromagnetic interaction 413
electromagnetic units 1
electron
– magnetic moment 429
– relative atomic mass 437
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electron affinity 321, 1330
– of clusters 591, 598
electron attachment 578, 582
electron beam ion traps 273
electron capture 932, 955
– Born approximation for 859
– cross section 764, 767, 770
– from hydrogen 944
– impact parameter dependence 768
– in the Al3+/H system 767
– influence of rotational coupling

768
– Monte Carlo method for 869, 870
– orientation effects 770
– state-selective 872
– Thomas double-scattering 777
electron collisions
– with trapped atoms 939
electron configuration 176
electron correlation 96, 106
– density functional theory 475
– Green’s function techniques for

401
– in heavy particle scattering 756
– many-body perturbation theory of

353, 365
– photoionization effects 379, 902,

922
– relativistic 353
– wave function methods for 472
electron diffraction 1133, 1344
electron energy loss 1270, 1343,

1375, 1378, 1379, 1391
– degradation spectra and yields

1392
– electron transport 1392
– spectroscopy 1345
– spectrum in molecular hydrogen

1393
electron impact processes 929, 1328
electron optics 1125
electron scattering
– by complex atoms 725
– by ions 725
electron self-energy 353
electron shell 176
electron shelving 1104
electron transfer 943
electron transition moment,

molecular 526
electron translation factor 776
electron transport
– and degradation 1392
– in a molecular substance 1394
electron–atom collisions 705, 929
– benchmark measurements 934

– collisions with excited species
939

– diagrammatic perturbation theory
361

– excitation cross sections 934
– in a laser field 723, 726
electron–electron interaction

operators
– Breit 334
– Coulomb 334
– Feynman 334
– Gaunt 334
electron–ion collisions 705
electron–ion recombination 575,

583
– working formulae 802
electron–molecule collisions
– inelastic 978
– theory 720
electron–photon coincidence
– geometry of 132
– measurement 936
electron–photon excitation,

simultaneous 724
electron–positron field 329
electro-optic effect 1061
– linear 1061, 1062
– quadratic 1061
emission intensity 186
endohedral complexes 595
energy conversion factors 4
energy disposal in elementary

reactions 975
energy loss 931, 1374
– cross section 1375, 1376
– electron 1270
– spectrum 931, 954
– straggling 1381
– total cross section 1378
energy transfer
– cross section 841
– in combustion reactions 1336
energy–intensity model, of molecular

transition strengths 518
entangled atoms and photons

1181
entangled states 1137, 1189, 1195
entanglement 1216
– apparatus to demonstrate 1197
– energy–time 1197
– for quantum cryptography 1201
– generation of 1181
– momentum 1197
– of formation 1218
– orbital angular momentum 1197
– polarization 1196

– swapping 1201, 1220
– witness 1217
enthalpy change 576
entropy
– change 576, 577
– entanglement 1218
– reduction 1181
– Shannon’s information 233
Epstein–Nesbet perturbation theory

106
equation of continuity 1117
equation of state
– deuterium 1315
– plasmas 1304
equation-of-motion method 110
equilibrium constant 577
equitorial airglow, spectrum of

Jupiter 1289
equivalent electrons 176
equivalent oscillator theorem 840
Euler angles 559
Euler’s method 142
Euler’s theorem 594
evanescent light 1131
evanescent matter wave 1131
evaporative cooling 1099, 1116
evolution operator 111
exchange asymmetry 938
exchange potential 706, 707
– gradient corrected 302
– local 722
exchange reaction
– Monte Carlo method for 869, 870
exchange-correlation potential 302
– validity tests 302
excitation in Fermi gas 1115
exclusive process 755
exohedral complexes 595
exosphere, terrestial 1261
extended X-ray absorption fine

structure (EXAFS) 1376
extinction coefficient 1070

F

f value 186, 187, 194
Fabry–Perot etalon 1027
Fabry–Perot resonator 625, 1132
factoring algorithm 1223
factorization lemma 109
Fano factor 1394
Fano profile 904
Fano, Ugo 1397
Fano–Lichten model 955
Faraday dark space 1327
Faraday effect 1016
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far-infrared (FIR) spectroscopy 615
– detectors 619
– instrumental resolution 618
– spectrometer (diagram) 616
– tunable sources 617
fault tolerant computing 1223
feedback 1023
feedback control 552
Felgett advantage, in Fourier

transform spectroscopy 610
femtosecond laser pulses 644,

1031, 1035, 1045, 1080
Fermi
– contact term 319
– energy 1109
– gas 1109

degenerate 1109
excitations 1115
Thomas–Fermi approximation
1115

– sea 1109
– temperature 1109
– vacuum 107
– virtual photon method 1377, 1380
Fermi’s golden rule 215, 320, 919,

1014
Fermi–Dirac statistics 1109
fermion 76, 94, 115
– anticommutator 1109
– commutation relations 115
Fermi-symmetric molecule 507
Feshbach projection operator 393,

710, 715, 722
Feshbach resonance 392, 395, 396,

542, 710, 1111
– vibrational predissociation and

radiative stabilization mechanism
570

Feynman causal propagator 330,
333

Feynman diagram 107, 359
Feynman–Vernon–Hellwarth picture

1003
field
– atoms in 227
– classical 1168
– dipole coupling 1169
– electromagnetic 1168
– nonclassical features 1179
– operator 1108
– quantization 1142
– quantum 1168
– shift 256, 257
– states 1162
– theory, classical 1110
filter, optical 651

fine structure
– atomic 177
– depolarization effects of 697
– Hamiltonian 307
– hydrogen 444
– of helium 218
– rotational 497, 500, 504
– transition rates, in Rydberg

collisions 844
fine structure constant, from g−2

measurement 432
fine structure effect 939
– on electron scattering 939
– on low temperature reactions 565
fine structure transitions
– cross sections for

in Rydberg collisions 844
– measurement of 615
fine-structure constant 3
finite basis set method 230, 714
finite element method 144
finite group action 24, 25
finite matrix method
– for atoms and molecules 351
Floquet theory 726, 1086
– for atoms in a laser field 726
fluctuation potential 332
fluence spectrum 1374
fluorescence efficiency 1250
fluorescence process 904
– in comets 1251
fluorescence yield 921
fluorescent scattering 1285
flux–velocity contour map 976
Fock expansion 200
Fock matrix for

Dirac–Hartree–Fock–Breit method
– Breit interaction 352
– Coulomb interaction 352
– density matrix 352
– one-electron Hamiltonian 351
Fock state 1108, 1176
Fokker–Planck equation 1093,

1154, 1158
– damped harmonic oscillator

1154
forbidden bands 286
forbidden transition 187, 192
– molecular 530
form factor 791, 838, 916
– connection with generalized

oscillator strength 838
– expressions for discrete transitions

858
– general trends 858
– inelastic 1377

– power series expansion for 856
– representation as microcanonical

distribution 838
– semiclassical limit 838
fountain, atomic 1104
Fourier analysis 139
Fourier transform (FT)
– discrete 139
– fast 139
– mass spectrometry 935
– spectroscopy (FTS) 263, 608, 615

alignment techniques 612
spectrum generation 610

four-wave mixing 1058
– optical phase conjugation 1058
– sidemode squeezing 1145
fractional parentage 117–119
– coefficients of 117
fractional revival 1072
fragmented condensate 1114
frame transformation 517, 792, 975,

985
Franck–Condon
– factor 525

effective, for dissociative
recombination 809
sum rule 525

– mapping 542
– overlap 579
– principle 285, 525, 540, 887, 935
– region 540
Franson interferometer 1197
Fraunhofer
– diffraction 1133

black sphere 684
– limit 1133
free electron gas 302
free induction decay 1068
free radicals 1336
frequency
– comb 458
– pulling 1027
– shifter, laser 1043
– stabilization 1042
– standard 186, 456, 1104
frequency comb, optical 631
– application to spectroscopy 631
Fresnel
– diffraction 1133
– formula 1131
– number 1029, 1030
– regime 1133
– zone plate 1133
fullerene 593, 594
– buckled 598
– endohedral complexes 595
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– formation 595
– rotational spectrum of 506
functions, representation of 135
fundamental constants 455, 460
furnace method 262
furry bound interaction picture

329
fusion plasma 1303
fusion, nuclear 1360

G

gain clamping 1025, 1026
gain coefficient 1023
gain media 1023
– homogeneously broadened

1025–1027, 1033
– inhomogeneously broadened

1026, 1027, 1033
gain saturation 1025, 1026
Galerkin method 144
Galilean invariant cross section 790
gas phase collisions and chemistry

561, 576
– astrophysical applications 1235,

1247, 1265
– clusters 590
gauge
– choices 414
– invariance 401
– length and velocity 215, 380, 724
– symmetry 1114
– transformation 227
Gaunt factor 823
– semicalssical representation 838
Gaussian
– beam 1029
– chaotic field 1079
– quadrature 140
– state 1217
– units 1
Gegenbauer polynomial 16, 169,

841
Gel’fand tableaux 93
Gel’fand–Paldus tableau 96
Gel’fand–Tsetlin canonical chain

93
Gell–Mann and Low formula 111
generalized gradient approximation

(GGA) 302
generalized oscillator strength 790,

931, 954, 1377
– connection with form factor 838
generator
– atomic operators as 76
– commuting 77

– lowering 92
– raising 92
– weight 92
geometric phase 1136
germanium clusters 597
g-factor
– electron 429
– hydrogenic carbon 432, 437
– hydrogenic oxygen 432, 437
GHZ test of nonlocality 1199
giant clusters 595
Gibbs free energy 576
Glauber approximation 716, 757
Glauber–Sudarshan distribution

1149
global warming 1293
glory and rainbow scattering 662,

679, 681, 887, 976
– glory diffraction oscillations 681
– rotational rainbow 977
godparent 117
Goldstone diagram 107
gradient force 1094, 1096
Grassman algebra 97
gravitational wave detection 1206
– LIGO 1206
– LISA 1207
– quantum nondemolition 1206
– resonant mass-detector 1206
Green’s function 111, 395, 401, 710
– continuum distorted wave 776,

777
– Coulomb 159
– Coulomb Dirac 161
– four-point 405
– Hartree–Fock propagator 366
– in formal scattering theory 146
– potential scattering 112
– propagator 333
– radiative corrections 408
– radiative transitions 406
– Thomas process 865
– two-point 402
greenhouse gases 1296
Greenstein effect, in comets 1252
Gross–Pitaevskii equation (GPE)

1110
– numerical methods 1113
group
– SO(3)

Euler–Rodrigues parameters of
representation functions 18, 21
representation, orthogonality
properties 21
representation, symmetry
relations 23

– SU(2)
parametrization of representation
functions 18
representation functions 21
representation, orthogonality
properties 21
representation, symmetry
relations 23
solid harmonics 60

– U(2) spin 96
– U(2n) spin orbital 96
– Abelian 76
– dynamical 87

noncompact 87
– Euclidean 89
– Lie 327
– Lorentz 89, 327, 328
– molecular symmetry 493
– octahedral 498
– orthogonal 493
– parametrized SO(3, R)

representations 20
– parametrized SU(2) representations

20
– Poincaré 327, 328
– representation theory 92
– rotation 77, 88, 493
– semisimple 76
– simple 76
– symplectic 77
– tetrahedral 498
– U(n) orbital 96
– unitary 76
group action
– Hilbert spaces 26
– matrix group actions 26
– relation to angular momentum

theory 26
group and Lie algebra realizations

27
group delay 1203
group generators 75, 77
group reduction 79
group velocity 1025, 1071, 1130
– dispersion

cancellation of 1202
pulse propagation 1055

– in dispersive medium
1020

– single photon 1202
– superluminal 1203
gyromagnetic ratio 999
gyro-rotor
– perturbed, diagram 510
– spherical, diagram 510
– symmetric, diagram 510
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H

Hadamard gate 1221
Hahn–Banach theorem 1217
halfway house VCDW 779
halogen molecule scattering 979
Hamilton optics 1130
Hamilton–Jacobi equation 782
Hanbury–Brown and Twiss effect

1031, 1146, 1147, 1186
Hanle effect 130, 265
harmonic generation 1056, 1082
– by elliptically polarized fields

1083
– conversion efficiency 1056
– higher-order 1061, 1062
– third 1057
harmonic oscillator
– damped 1153, 1154, 1157
– length scale 1110
harmonic plateau 1082
harmonium 92
harpoon mechanism 978
harpooning distance 978
Hartree energy 5
Hartree term 404
Hartree–Fock approximation 106,

308, 309, 401
– diagrams 364
– multiconfiguration 313, 315
– time dependent 756, 1359, 1362
Hartree–Fock diagrams 108
Hausdorff formula 110
healing length 1111
heat bath 1152
heat capacity, ideal gas 968
heats of formation 577
Heaviside–Lorentz units 1
– natural 4
heavy particle scattering 754, 775
– analytical approximations 757
– dynamics of 873
– forced impulse method 756
– independent event model 756
– independent particle model 756
– many-electron treatments 756
– numerical calculations 757
heavy-ion storage ring 275
Hegerfeldt’s paradox 1202
height parameter 698
Heisenberg correspondence principle

839
helicity, photon 695
helium
– 2s2p 1P 0 autoionization states

394

– electron capture resonance 932
– electron scattering processes 933
– energy structure and notation 177
– ground-state expectation values

(table) 208
– ionization energy (table) 211
– ionization of 791
– isotope shift (table) 207
– nonrelativistic eigenvalue (table)

205, 206
– nonrelativistic energies for He-like

ions 207
– oscillator strength (table) 216,

217
– quantum defect extrapolation

(table) 212
– singlet-triplet mixing (table) 217
– threshold ionization of 784, 785
– total energies for 208
helium clusters 601
helium-like ions 302
– energy structure and notation 177
Hellmann–Feynman theorem 303,

766
Helmholtz equation 1129
hemispherical analyzer 910
Henry α parameter 1028
Hessian matrix 469
heterodyne detection 1148
hidden variables 1196
high energy-density physics (HEDP)

1305
high field seeker 1129
highly stripped ions 264, 269, 1359
– in astrophysics 1238
Hilbert transform 1012
Hohenberg–Kohn theorem 475
Hohenberg–Kohn variational

principle 301
hole burning 629
– spatial 1012, 1026, 1027, 1030
– spectral 1012, 1027, 1030
hollow cathode 644
– lamp 263
Holstein–Biberman theory 287
Holtsmark formula 1306
homodyne detection 1147
homogeneous broadening 1011,

1025, 1026, 1103
homologous sequence 185
homomorphism
– SU(2)→ SO(3, R) 11
homopause 1260
– characteristics of planets and

satellites 1260
homosphere 1260

Hong–Ou–Mandel interferometer
1190, 1191

– ultrafast measurements 1202
Hönl–London factors 527
– sum rules 528
Hook method 262
hot atom chemistry 1397
HRTOF 980
Hubble Space Telescope 1248
Hugenholtz diagram 107
Hund’s coupling cases 528
Husimi’s function 1151
Huygens principle 1133
hydrodynamic escape mechanism

1287
hydrogen 437
– atom 459
– atomic beam 968
– electron capture 944
– electron impact excitation of 699
– fine structure 444
– group theory of 81, 88
– infrared lines of 882
– ionization by proton impact 793
– Lamb shift 444
– O(4) symmetry 156
– radio lines of 882
– SO(4) symmetry 89
– SO(4,2) symmetry 90
hydrogenic atoms 184, 437
– algebraic approach to 91
– electric dipole transition integrals

837
– excited state energies in magnetic

fields (table) 231
– expectation values (table) 214
– ground state energies in magnetic

fields (table) 230
– Monte Carlo calculations for 871
– N-dimensional 91
– nuclear size correction (table) 230
– perturbations of 91
– structure and notation 176
hydrogenic ions 184, 194
Hylleraas functions 201, 393
– Hamiltonian matrix elements 204
– integral recursion relations 204
– integrals involving 202
Hylleraas–Undheim–MacDonald

theorem 201, 309, 759
hyperfine splitting
– hydrogeen 422
– muonium 421
hyperfine structure 253, 319, 506,

1364
– anomalies 259
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– depolarization effects of 697
– energy splittings 254
– intensities 255
– normal 258
– tetrahedral nuclear 505
hypergeometric function 34, 162
hypergeometric series form of

WCG-coefficients 35
hyperpolarizability 1053
hyperradius 782
hyperspherical coordinates 398, 781
– in ion–atom collisions 772

I

imaginary time 1114
imaging
– ion–molecule reactions 991
impact parameter approximation

751, 776
impulse approximation 795, 845
– quantal

weak binding condition 849
– semiquantal 851
inclusive process 755
independent
– event model 756
– particle model (IPM) 755
– processes approximation 831
index of refraction 999, 1009, 1070
– complex 1011, 1014
infinitesimal generators 12
information content
– single photon 1200
Infrared Space Observatory 1245
infrared spectral region, definition

181, 607
infrared spectroscopy 607
inhomogeneous broadening 1012,

1025, 1026
inner shell processes 951
inner shell vacancy rearrangement

387
instability, thermodynamical 1115
integral approximation 139
– adaptive quadrature 140
– compsite quadrature 140
– Gaussian quadrature 140
– polynomial quadrature 139
integral cross section 930
integral equations 146
– numerical methods 141
integral transforms 146
integral, atomic and molecular 105
integration in imaginary time

1114

intensity quantities see also
oscillator strengths etc. 193

– atomic
multiplet values 193
regularities, scaling 194
systematic trends, sequences
194

– molecular 518
fits to experiment 520

interaction picture 111, 124
interaction-free measurement 1194
interference
– between atomic BECs 1189
– Buckyball 1188
– Feynman rules 1190
– filter 651
– Franson interferometer 1197
– fringes 1135
– in de Broglie optics 1135
– low-intensity 1186
– matter–wave 1188
– porphyrine 1188
– single-photon 1188
– two-photon, or fourth-order

1190
interferometer
– division of amplitude 1135
– division of wavefront 1135
– Hong–Ou–Mandel 1190
– loop 1135
– Mach–Zehnder 1135
– optical Ramsey 1137
– scanning Michelson 609
– stimulated Raman 1137
– three-grating 1135
– young double slit 1135
intermediate coupling 181
internal conversion
– in predissociation 536
International Ultraviolet Explorer

1248
interpolated functions, derivatives of

141
interpolation 135
– Chebyshev 137
– cubic spline 136
– iterated 136
– Lagrange 136
– orthogonal function 137
– rational function 136
intersection, conical 486
interstellar gas clouds 576
– molecules observed in 1240
intersystem transition, atomic 177
intrinsic relaxation 1071
invariance groups (algebras) 87

inversion symmetry 493
– of wave functions 516
inverted medium optical pumping

1014
Ioffe–Pritchard trap 1116
ion beam spectroscopy 269
ion crystal 1102
ion–atom collisions 789
– differential 948
– dynamics of 765
– electron spectroscopy 948
– electron spectrum 959, 960
– high energy cross section 790
– low energy 943
– multi-electron 957
– nonperturbative processes 955
– pertubative processes 951
– photon spectroscopy 947
– quasifree electron 961
– reactions 761
– recoil momentum spectroscopy

948
– relativistic 1359
– state selective 947
– translational energy spectroscopy

947
ion–atom interchange 580
ion–dipole reactions 564
ionic clusters 596
ionic reactions, table of 576
ionization 779, 951, 962
– adiabatic 1362
– balance

in plasmas 1308
– by high energy particles (cross

section table) 1378
– chamber 650
– classical 240

scaling 1085
– cross section

Born series method 719
distorted wave method 719
exterior complex scaling (ECS)
method 718
pseudostate method 718
time-dependent close coupling
method 718

– diffusive 1085
– double 780

binary encounter approximation
for 855

– electron impact 790, 935, 969,
970, 1268, 1328

empirical formula for 969
– electron scattering theory of 717
– field 240, 242
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– free-free transition picture 795
– in heavy particle scattering 753,

755, 758
– in ion–atom collisions 789
– mechanism 935
– Monte Carlo method for 869, 870
– multiphoton (REMPI) 970, 1078
– multiple 1081
– multistep 1080
– nonperturbative 1081
– of light target atoms 952
– potential

in Hartree–Fock approximation
313
of clusters 591, 596, 598
of ground state atoms (table)
182

– projectile electrons 796
– stabilization in intense laser fields

1083
– Stark 240
– state-selective field 240
– strong field approximations

1087
– surface 969
– tunneling 240, 1081
– yield spectrum for molecular

hydrogen 1393
– yield, definition 1394
ionizing radiation 915, 1389
– charged particles 951, 1391
– condensed matter effects 1396
– neutrons 1391
– photons 915, 1391
– track structures 1395
ion–molecule reaction 563, 564,

581, 983, 1274
– atmospheric 1272
– cross section 987
– ideal experiment 984
– imaging 991
– in interstellar clouds 1241
– instrumentation 985
– kinematic analysis 985
– product formation rate 984
ion–neutral reaction 575, 579
ionosphere, electron density profile

1279
ionospheric
– density profiles 1277
– regions 1271
ion-pair formation, in Rydberg

collisions 836
ion–quadrupole interactions 1274
irreducible representation 78
– of SO(2,1) 88

irreducible tensor operator 38, 127
– algebra of 39
– examples 40
– unit tensor operators 40
– Wigner–Eckart theorem 39
irreducible tensor operators 224
irreversible process 125
isentropic expansion 967
isobaric nuclei 1358
isoelectronic sequence 185
isoionic sequence 185
isolated pentagon rule 595
isolated resonance approximation

831
isomer shift 257
isomers 594, 595, 597
isonuclear sequence 185
isoscalar factor 82
isotope separation 1080
isotope shift 200, 256, 318
– residual 257
isotopic labeling 580, 581
isotropic harmonic oscillator 90

J

Jackson–Schiff correction factor, in
electron capture 859

Jacobi coordinates 540
Jacobi polynomials 15
– relation to SU(2) group

representations 21
Jacobian, frame transformation 975
Jacquinot advantage, in Fourier

transform spectroscopy 611
Jacquinot stop 612
Jahn–Teller effect 536
Jaynes–Cummings model 1002,

1175, 1226
Jeans escape mechanism 1287
Jeffrey–Born phase function 663,

673
Jeffreys connection formula 783
Jellium model 590
Josephson effect 1121

K

KAM torus 1085
Kapitza–Dirac effect 1134
– geometry of 1134
– near-resonant 1133
Kato cusp condition 200
– in Thomas–Fermi theory 299
Keldysh parameter 1081
Kepler orbits 869

Kepler realization of SO(4) 89
kernel function 147
kinematic analysis, scattering 985
Kirkwood function 1151
Klein–Gordon equation 91
Kleinman symmetry 1052
Klein–Nishina cross section 919
Klots unimolecular decay theory

568
K -matrix 707
Kohn variational method 713, 783
Kohn–Sham method 302, 475
Koopman’s theorem 311, 351
Kramers cross section, for

photoionization 818
Kramers–Henneberger frame

transformation 726, 1083
Kramers–Kronig relation 866
Kroll–Watson formula 725
Kronecker product 79
– reduction 31
krypton, one-electron 264

L

ladder operator 88
Lagrange interpolation 136
Lagrange multiplier
– in Hartree–Fock theory 310
Laguerre polynomial 166
Lamb dip 629, 1027
– inverted 1016
– stabilization 1027
Lamb shift 1159
– helium 208
– hydrogen 444
Lamb–Dicke regime 1101
Landau critical velocity 1118
Landau level 227
– relativistic 228
Landau–Dyhne formula 1083
Landau–Lifshitz cross section 663,

680
Landau–Zener model 764, 769, 979
– charge transfer 943
– transition probability 242, 811
Landé g-value 184, 229
Langevin equation
– damped harmonic oscillator 1157
– quantum mechanical 1157
Langevin orbiting 946
Langevin rate coefficient 564, 806,

1274
Laplace–Runge–Lenz vector 89
Larmor precession
– used as a clock 1203
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laser
– atmosperic transmission 1041
– beam quality 624
– categories (table) 1035
– coherent states 1030
– combustion diagnostics 1337
– configuration 623
– designs 625
– diagnostics 1335, 1341
– Doppler velocimetry 1337
– emission

spectral range of 1036
– excitation 939
– eye safe 1041
– field

collisions in 723
– fluctuations 1079
– frequency conversion techniques

645
difference-frequency mixing
645
stimulated anti-Stokes Raman
scattering 645
sum-frequency mixing 645
third harmonic generation 646

– gain 623
– gain media (tables) 627
– interaction with matter 628
– linewidth 1028
– magnetic resonance (LMR)

spectrometer 618
– medical applications of 1041
– microscopic 1175
– mode

Fox–Li computations 1028
frequencies 1027
Gaussian 1029
longitudinal 1026, 1028
transverse 1028, 1033

– multimode 1030
– nonlinear mixing 1039
– oscillator and beam parameters

623
– oscillator geometries 624
– output intensity 1025
– photolysis

in molecular beams 968
– population inversion 623
– principles of operation 623
– pumping method 626, 1041
– resonator 625, 1028

concentric 1029
hemispherical 1029
stable 1028, 1030
symmetric confocal 1028
unstable 1028, 1030

– ring 626
– selective excitation 265
– short-pulsed 1038
– single-mode 1025
– spectroscopy

far-infrared 616
ultraviolet 641
visible region 623

– stability parameters 625
– sub-picosecond 626, 1040
– theory

semiclassical 1025, 1027
– tunable (table) 628
– vacuum ultraviolet 645
– without inversion 1080
laser types
– He−Ne 1023
– alexandrite 1040
– ammonia 1037
– ArF 1038
– chemical 1039
– chemical-oxygen-iodine (COIL)

1039
– CN− 1042
– CO 1038
– CO2 1037
– colliding-pulse 1045
– color center 1042
– copper vapor 1037
– Cr–LiCaAlF6 1040
– Cr–LiSaAlF6 1040
– cyanide 1037
– deuterium fluoride-CO2 1039
– dye 1038
– erbium 1041
– excimer 1036, 1038
– extreme UV 1046
– fiber 1041
– fluorine 1038
– free electron 1046, 1047
– GaAlAs 1043
– GaAs 1044
– gas 1036
– germanium oxide 1039
– gold vapor 1037
– H2 1038
– He–Cd 1037
– He–Ne 1036
– heterostructure 1043
– holmium 1041
– hydrogen fluoride 1039
– inorganic rare earth liquid 1045
– ion 1036
– KrF 1038
– lead salt 1044
– liquid 1044

– metal vapor 1037
– methyl fluoride 1037
– mixed gas 1037
– molecular 1037
– N2O 1038
– N2 1038
– Nd-doped fiber 1042
– Nd–YAG 1038
– Ne, Ar, Kr, Xe 1036
– neutral atom 1036
– nuclear pumped 1046
– organic dye 1044
– particle beam-pumped 1046
– quantum well 1043, 1044
– Raman fiber 1042
– rare earth chelate 1045
– rare earth ion 1040
– rhodamine 6G 1043
– ring 1042
– ruby 1040
– semiconductor 1043

high power 1047
– solid state 1039

dye 1043, 1045
excimer 1039, 1043
thin-disk 1046

– soliton 1043
– stoichiometric 1041
– strained layer 1044
– TEA 1038
– thulium 1041
– Ti-sapphire 1040
– transition metal ion 1040
– vertical cavity surface emitting

1044
– water vapor 1037
– XeCl 1038
– XeF 1038
– X-ray 1046
– ZnSe 1044
laser, fixed frequency (table)

627
laser-cooled ions 1226
laser-induced bound states 1084
laser-induced continuum structure

1080
laser-induced fluorescence (LIF)

970, 1339
– detector 970
– in ion–molecule reactions 989
– wavelength table 1339
laser-induced transparency 1080
laser-produced plasma 643
lattice permutation 79
Lau effect 1133
Laue geometry 1134
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lead
– photon scattering by 917
– photon–atom scattering by

(1 keV–1 MeV) 916
leap-frogging 263
least dissipation, principle of

814
least squares, method of 137
Legendre function 169
Legendre polynomial 903
Lennard–Jones potential 564
– scattering by 681, 683
lens, atomic 1132, 1133
lepton charge 402, 403
lepton scattering
– tests of quantum electrodynamics

416
level shift
– ac Stark 1002
– and width 629
– Bloch–Siegert 1001
– light 1002
– operator 102
– transformation 102
level width 759, 921
level-crossing method

265
Levinson’s theorem 668
Lie algebra 75
– classification of 76
– realizations 87
– semisimple 76
Lie algebra action 25, 26
– Hilbert spaces 26
– matrix group actions 26
– relation to angular momentum

theory 26
Lie group 77, 327
Lieber diagram 864
ligand shell 593
light
– pressure 1094
– scattering

Rayleigh 915, 1006
resonant 1006
stimulated 1059

– shift 1002
– source

infrared 608
ultraviolet 642

– speed of 1
– strings 1047
– velocity of 1010
light–matter interaction 723, 997
– quantized fields 997
– semiclassical 997

LIGO gravitational wave observatory
1206

limit theorem, for generalized
oscillator strength 931

Lindemann mechanism 562
line broadening 103, 279, 875
– adiabatic approximation 885, 886
– asymmetric line shapes 282
– bound states and other quantum

effects 286
– bound–free and free–bound

transitions 887
– by atom–atom collisions 884, 886
– by charged particles 879
– by electrons 881, 883, 886
– by field of static ions 881
– classical oscillator approximation

280
– coefficient 284
– collisional 875, 1011
– collisional narrowing 1013
– cross section 878
– Doppler 195, 282, 1011, 1012
– effective Gaunt factor 880
– empirical formulae 879
– impact approximation 281, 875,

882
and line strength sn 839

– in hydrogen and hydrogenic ions
880

– inhomogeneous 1012
– interaction potentials 280
– ion impact 880
– neutral atom 875
– one-perturber 885
– overlapping lines 875
– perturbation theory for 878
– power 1011
– pressure 195, 279, 875

unified theories of 888
– quadratic Stark 878
– quasistatic approximation 284
– quasistatic theory 282
– resonance 195, 878
– satellite features 285
– semiclassical theory 876
– shift and width operator for 876
– simple formulae 877
– Stark 196, 875, 877

widths, hydrogen 196
– van der Waals 195, 877
– Voigt profile 1015
– width and shift 884

matrices 876
– WKB approximation 887
line intensity 186

line profile, Voigt function 910
line radiation source 644
line shape
– Breit–Wigner 396, 672
– Doppler 279, 973, 1011, 1023,

1284
– Fano 395, 911, 1079
– Gaussian 195, 911
– Lorentzian 195, 279, 624, 876,

911, 921, 1000, 1012, 1025, 1170,
1284

– Shore 905
– Voigt 279, 911

profile 1012
line strength 187, 321, 837
– connection with oscillator strength

838
– hyperfine structure 255
– molecular 515
– relative (table) 193
– semiclassical representation 838
line width
– Doppler 1023
– homogeneous 1023
– inhomogeneous 1066
– Lorentzian 1027
line, atomic spectral 177
linear algebra, computational 148
linear algebraic equations method

714
linear energy transfer 1395
linear optics 1225
linear spectroscopy 1009
linear-response method 110
linkage, of transition rates 263
linked cluster theorem 108, 337
linked diagram 108, 109
Liouville equation 124
– quantum 1150
Liouville operator 223
Liouville space 223
Lippmann–Schwinger equation

112, 713
– distorted wave 777
LISA gravitational wave observatory

1207
lithium-like ions
– dielectronic recombination 831
local density approximation (LDA)

302
local oscillator 1148
local realism
– disproof of, without inequalities

1199
– three-particle gedanken experiment

1199
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local thermodynamic equilibrium
(LTE) 263, 1304

local-density approximation 1114
locked dipole approximation 564,

578, 687, 1274
locking, of magnetic moment 592
locking-radius model 693
log derivative method 765
logarithmic negativity 1218
London phase distribution 1145
long range interactions 365
– capture theories 563
Lorentz
– approximation 1053
– atom 999
– group 327, 328

homogeneous 89
proper 327

– local field 1053
– transformation 326

boosts 326
discrete 326
infinitesimal 327
rotations 326

– triplet 229
Lorentzian line shape 876, 1012
Lorentz–Lorenz corrections 1025
LoSurdo–Stark effect 92
low field seeker 1129
luminosity, atmosphere 1284

M

Møller operator (matrix) 779
Møller–Plesset perturbation theory

106, 472
Mach number 968
Mach–Zehnder interferometer 1135
Mackay icosahedra 599
macroscopic wave function 1110,

1114
magic angle 225, 934
– pseudomagic 902
magic numbers 590, 601
magic squares
– addition of angular momentum

63
magnetic
– dipole interaction 997, 999

motional correction 1127
– dipole transition 187, 192
– field

atoms in 227, 247
in neutron stars 230

– mirror 1132
– moment

electron 429
of clusters 592

– multipole 258, 997
– trap 1099, 1116
– white dwarf

presence of helium in 233
magneton 998
magneto-optical
– diffraction 1135
– trap 457, 1098, 1103
magnetron cooling 1102
magnetron motion 1101
Majorana transition 1099, 1116
Mandel Q parameter 1144
Mandel’s formula, for photon

counting 1030
Manley–Rowe relations 1055
many-body calculations, relativistic

350
many-body perturbation theory

(MBPT) 105, 353, 359, 401
– configuration mixing 367
– correspondence rules 362
– diagrams 360
– effective interelectron interaction

369
– electron and vacancy states 362
– electron scattering 367
– electron–vacancy states 370
– Hartree–Fock approximation 364
– one-particle states 366
– photoionization diagrams 385
– photon emission 374
– role of the Pauli principle 362,

367
– summation of sequences 363
many-body theory 105
– relativistic 334
Markov approximation 125
maser
– microscopic 1175
– threshold 1179
mass polarization 199
mass ratios
– measurement of 1105
mass shift 199, 256
– normal 199, 256, 318
– reduced 257
– specific 199, 256, 318
mass transfer cross section 863
Massey parameter 742
Massey–Mohr cross section 663,

680
master equation 125, 1004, 1010,

1092, 1152, 1159, 1162
– correlation functions 1156

– damped harmonic oscillator 1153,
1154

– damped two-level atom 1154,
1155

in squeezed bath 1154
– recombination theory 816
master oscillator power amplifier

(MOPA) 1044, 1046
master theorems
– MacMahon form 64
– Schwinger form 64
material science 1397
mathematical constants (table) 6
mathematical functions
– digital library of 153
Maxwell equations 3, 1142
– absorptive 1070
– dispersive 1070
Maxwell–Bloch equations 1069,

1070
McCall-Hahn area theorem 1070,

1071
mean energy loss per collision 1380
mean field approximation 1129
mean free path 1319
mean speed, thermal 824
mean-field theory 1110, 1113
measurement
– quantum theory of 1189
– weak 1195
measurement-induced nonlinearities

1225
mechanical effects of radiation

1127
mercury clusters 592
merged beam method 830, 946, 991
– form factor 946
mesosphere
– terrestial 1261
metal cluster 590
– molecules 593
metal-fullerene clusters 595
metal–insulator–metal (MIM) diode

617
metallocarbohedrenes 593
metallofullerenes 595
metastable atoms 320
– electron scattering by 939
– in atomic beams 932, 935, 939,

968, 1132
– in comets 1253
– in discharges 1329
– in planetary atmospheres 1281
Metropolis algorithm 150
Michelson interferometer
– (diagram) 609
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– distribution of modulation
frequencies 611

microcanonical ensemble 871
microchannel plate 649
microelectromechanical systems

(MEMS) 1047
micromaser 1174, 1178
– quantum nondemolition experiment

1194
microstructure fabrication 1332
microwave cavities 1174
Milky Way galaxy, age 1358
Milne detailed balance 822
minimax method
– for autoionizing states 316
minimum uncertainty state 1144
Minkowski space 326
mirror images
– radiating atoms and 1170
mirror, atomic 1131
mixed states 123
mobility
– coefficient 806, 1323
– of ions in a gas 666
mode locking 1031, 1045
mode pulling 1027
model potentials
– scattering results for 684
– table of 685
modulation
– cross-phase 1057
– self-phase 1057
molecular beam 933, 967
– angular momentum polarization

studies 968
– beam splitters 1134
– epitaxy 1044
– reagent preparation 968
– sources 967
molecular clock 979
molecular clouds
– carbon chemistry of 1239
– dark 1239
– diffuse 1238
molecular clusters 602
molecular dynamics 491, 537
– simulation

dense plasmas 1313
molecular formation, resonant 1361
molecular fragmentation 537, 803,

969, 1084
– pattern 969
molecular orbital X-rays 962
molecular spectra 491
– measurement of 615
molecular structure 467

– ab initio methods 762
– adiabatic states 762
– approximation methods 467
– empirical estimates 764
– fitting experimental energies 520
– nuclear motion 480
– rotation 467
– rotational-vibrational 481
– vibration 467
– wave function 107, 468, 516
– weakly interacting systems 476,

482
molecular symmetry 491, 516
molecule, compound 1365
molecules in intense laser fields

1084
Mollow spectrum 1161
momentum space wave function
– quantum defect representation

841
momentum spectroscopy 922
momentum transfer
– collision frequency 1280
– cross section 661, 708, 930, 933,

1265, 1307
Monte Carlo integration 151
– relation to random number

distributions 151
Monte Carlo method 149
– classical trajectory 869

exotic projectiles 873
heavy particle dynamics 873
hydrogenic targets 869, 871
many-electron targets 870
multiply-charged projectiles
870
nonhydrogenic one-electron
models 870
pseudo-one-electron targets
872
state-selective electron capture
872

– dense plasmas 1313
– for line broadening 888
Morse potential, scattering by 688
most probable energy loss 1373,

1374, 1381, 1382
MOT 1098, 1103
motional correction
– magnetic dipole interaction 1127
Mott insulator 1123, 1227
Mott scattering 938
Mott term, stopping power 1380
MR CC
– state selective 110
– state universal 110

– valence universal 110
multibeam resonance 1134
multichannel quantum defect theory

711
– multiphoton processes 1078
multiconfiguration Hartree–Fock

approximation 313, 315
– Breit–Pauli interaction 316
multiconfigurational self-consistent

field theory 474
multi-electron
– excitation 922
– transitions 957
multilayer coating 651
multipactor discharge mode 1332
multiphoton process 628, 1072,

1077
– multi-electron effects 1079
– rate enhancement 1080
– strong field 1080
– weak field 1078
multiple fragmentation 550
multiple lasers, excitation by 1080
multiple path occupation 498
multiplet 177
multiplex advantage, in Fourier

transform spectroscopy 610
multiplexed detection 267, 610
multiplicity 176, 177
multipole
– effects 912
– expansion 997
– moments 221
multireference (MR) CC theory 110
multireference configuration

interaction theory 474
muon 1359
– atomic capture 1361, 1362
– lifetime 1359
– scattering 754
muon-catalyzed fusion 1359
– cycle 1361
– experimental methods 1368
– muon loss 1367
– reactions and energy release 1360
muonic atom
– cascade 1364
– elastic scattering 1364
– formation 1362
– helium 1367
– hydrogen 1362
– hyperfine transitions 1364
– isotopic transfer 1364
– sticking 1367
– stripping 1368
muonic molecule
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– Auger formation 1364
– energy corrections 1365
– nuclear fusion rate 1366
– resonant formation 1365
– rovibrational energy levels 1361
– scaling 1360
– three-body formation 1366
mutual neutralization 575, 576,

584, 800, 810, 1330
– cross section 811
– Landau–Zener probability 811
– rate coefficient 811

N

nanocapsules 596
nanocavity laser 1047
natural
– coordinate system 127
– frame 694
– orbital expansion 316
– width 911
near-edge X-ray absorption fine

structure (NEXAFS) 1351
nebular equilibrium 1309
negative
– energy states 330
– glow 1327
– ions 369, 578, 1330

autodetachment from 320, 391
cluster 603
harpoon mechanism 979
photodetachment from 387, 946

neutral–molecule reactions 563
neutral–neutral reactions 564
neutrino mass 1358
neutron diffraction 1133
neutron optics 1125
neutron stars, magnetic fields 230
neutrons, ultracold 1131
Neville’s algorithm 136
Newton diagram 975, 985
nightglow 1284
– spectrum of Venus 1287
nightside ionospheres 1277
noble gas
– clusters 599
– compounds with diatoms 482
– discharge 644
– electron scattering by 368, 1320
– harmonic generation in 1082
– lasers 1036
– photoionization 384, 912
– scattering lengths for 669
noble metal clusters 590
no-cloning theorem 1200, 1216

noise
– colored 1157
– operator 1157
– white 1157
nonadiabatic
– coupling 742, 744
– scattering theory 723
– transition 535, 551, 761, 1129

relativistically induced 478
nonclassical fields 1143
nonclassical light
– atomic cascade source 1186
noncrossing rule 470, 743, 810
nonlinear
– atom optics 1126
– mixing 1039
– optics 629, 1051

enabled by ultra-intense laser
pulses 1062
enabled by ultrashort laser pulses
1062
focused beam effects 1056
wave equation 1053

– polarization 1051
– refractive index 1052

coefficient 1052
in an atomic vapor 1058
intensity-dependent 1052
mechanisms 1052

– Schrödinger equation 1111
pulse propagation 1055

– susceptibility 629, 1051
quantum mechanical expression
1053
relation to hyperpolarizability
1053
tensor properties 1052

nonlocal transients 1074
nonlocality 1216
– GHZ test 1199
– Hardy test 1199
– in quantum measurement 1195
nonreactive scattering 555
normal modes 1142
normal ordering operator 105
normal product of operators 105
normal product with contractions

105
normalization
– incoming wave 381
– of continuum wave functions 668,

790, 821
northern aurae, spectrum of Jupiter

1289
novae 1236
nuclear charge distribution 340

nuclear electric quadrupole moment
255, 258, 320

nuclear magnetic dipole moment
255, 259, 319

nuclear motion
– in molecular scattering 722
– in molecules 480
nuclear polarization 439
nuclear reactions
– astrophysical factor 1359, 1366
– Coulomb barrier 1359
– cross sections 1359
– electronic screening of 1359
nuclear scattering 917
nuclear size effect 318, 443
– for hydrogenic atoms (table) 230
– in atoms 1356
– quantum electrodynamic 1358
– relativistic 1357
nuclear spin 560
nuclear spin and statistics
– in molecules 522
nuclei
– isobaric 1358
number
– of photons 1142
– operator 1108, 1142
– states 1143, 1162
numerical differentiation 140
numerical integration 147
Numerov method 141, 236
Nyquist frequency 139

O

occasional proportional feedback
technique 1033

Ochkur approximation 716
octahedral rotor, semirigid 500
octahedral symmetry, molecular

499
one-and-a-half centered expansion

(OHCE) 758
one-particle density operator 1114
one-particle operator 1108
one-way quantum computer 1226
onions 595
Oort cloud 1247
opacity project 1241
open shell 393
operator
– annihilation/creation 76, 94, 115,

118, 330
– commutation relations 330, 331
– conjugation 118
– non-commuting 330, 354
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– normal ordering 330
– ordering

antinormal 1148
normal 105, 330, 1146, 1148
s-ordered 1148
symmetric 1148

– quasiparticle 120
– representation of 116
– time evolution 124
Oppenheimer–Brinkman–Kramers

(OBK) approximation 777, 859,
955

optical
– Bloch equations 1003, 1066

with decay 1004
– cavities

strong cavities 1174
– depth 1267
– Earnshaw theorem 1098
– emission cross section 934
– excitation 237
– force 1093
– frequency comb 631
– lattice 1096, 1121, 1226
– material 651

coating 651
interference filter 651
multichannel plates 651
multilayer coating 651
polarizer 652
thin film 651
window 651

– molasses 1095, 1098
σ+– σ− 1098, 1099
corkscrew 1098
lin ‖ lin 1098
lin ⊥ lin 1097

– nutation 1067
– parametric oscillator 630, 1056
– potential 392, 683, 710, 715

second order 716
– pumping 221, 224

diode laser 1041
in molecular beams 968

– theorem 665
in quantal impulse approximation
848

– trap 1096, 1116
optics, near-field 1133
orbital collapse 312
orbitally forbidden transitions 531
orbiting and spiraling collisions 662
Orbiting Astronomical Observatory

1248
orbit–orbit interaction 308
order parameter 1114

orientation 222, 693
– atomic 936
– density matrix formalism 128
– from spin-orbit interaction 129
– in electron capture 770
– in molecular beams 969
Ornstein–Uhlenbeck process 1079
orthopositronium decay rate 422
oscillator strength 186, 187, 261,

321, 1004, 1011
– absorption 186, 878
– bound–free 822
– connection with line strength 838
– definition 215
– finite nuclear mass effects 215
– generalized 790, 838, 931, 1377
– helium (table) 216, 217
– length and velocity forms 215
– measurement of 262, 264
– molecular 524
– silicon

comparison of atomic and solid
1375

– sum rule 205, 524
– time-resolved measurement 265
Ostwald’s step rule 602
output coupling 1026
overtone bands 526
oxygen
– green

spectrum of Venus 1289
– quenching reactions 484
ozone
– hole 1299
– stratospheric

depletion 1293, 1300
destruction 1298
formation 1298

P

PADDS (Perpendicular ADDS) 973
Padé approximation 137
pair production
– electron–positron 1359
Paldus tableau 96
papier mâché 595
parabolic coordinates 155, 232
parabolic quantum number 238
paramagnetic clusters 592
parametric
– amplification 1056
– oscillation 1056

squeezed light generation 1145
– process 1055
paraxial approximation

– in de Broglie optics 1130
paraxial wave equation 1028
parent term, atomic structure 179
parity 176, 557, 560
– combined with rotations 493
– molecular structure and selection

rules 521
– selection rule 901
partial
– cross section 908
– transposition 1217
– wave expansion 667, 706
particle identification
– PID 1384
particle–hole interaction
– in photoionization 384
– interchannel interactions 385
– intrachannel interactions 384
– virtual double excitations 385
partition sum 125
Paschen–Back effect 229
– relativistic 229
path integral Monte Carlo method
– dense plasmas 1313
Paul trap 1099
– electrode configuration and

voltages 1100
Pauli
– correlations (blocking) 755
– matrices 10, 94
– principle 498
– pseudo-spin operator 1001
peaking approximation
– in quantal impulse approximation

848
Pearson-7 function 910
pendellösung oscillations 1134
pendular states 969
Penning ionization 836
Penning trap 1101
perfect crystal
– neutron interaction with 1127
perfect scattering experiment 133,

693, 696
periodic orbit 542
permeability of vacuum 1
permittivity of vacuum 1
permutation symmetry
– full 1052
– intrinsic 1052
– of wave functions 516
persistent current 1118
perturbation theory 101, 359
– central field 92
– continuum distorted wave

third-order 777
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– degenerate 336
– diagrammatic 107, 359
– Epstein–Nesbet 106
– expansions 102, 104, 109
– for state multipoles 129
– large order 91
– Møller–Plesset 106
– many-body 105, 359
– matrix 101
– multiphoton processes 1078
– principal term 104
– Rayleigh–Schrödinger 104, 335
– renormalization term 104
– time-independent 101
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