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15.1. INTRODUCTION

15.1.1. Challenges with Chemotherapy

Although the clinical arsenal in treating cancer has been greatly extended in recent years
with the application of new drugs and therapeutic modalities, the three basic approaches
continue to be (in order of success) surgical resection, radiation, and chemotherapy. The
latter treatment modality is primarily directed at metastatic cancer, which generally has a
poor prognosis. A significant proportion of research investment is focused on improving
the efficacy of chemotherapy, which is often the only hope in treating a cancer patient. Yet
the challenges with chemotherapy are many. They include drug resistance by tumor cells,
toxic effects on healthy tissue, inadequate targeting, and impaired transport to the tumor.
Determination of proper drug dosage and scheduling, and optimal drug concentration can
also be difficult. Finally, drug release kinetics at the tumor site is an important aspect of
chemotherapy.

In this chapter we consider each of these hurdles and examine how nanotechnology
can help to address them. The role of biocomputation will be explored as a means to specify
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cancer drug therapy, with the goal of applying the results in the clinical setting, especially the
modeling of drug delivery via nanoparticles. Biocomputation could save lives and enhance
the quality of cancer treatment by making it possible to tailor therapy to the individual
patient and reduce the time and costs involved. With these goals in mind, we will look in
more detail at the system-level biocomputation of tumor growth and cancer therapy, and
raise considerations for future research. We begin by briefly reviewing the advantages of
nanotechnology, its application to cancer chemotherapy, and its challenges in a biological
setting.

15.1.2. Possibilities of Nanotechnology

Nanotechnology applied to cancer treatment may offer several promising advantages
over conventional drugs. Nanoscale devices are two orders of magnitude smaller than tumor
cells, making it possible for them to interact directly with intracellular organelles and
proteins. Because of their molecule-like size, nanoscale “tools” may be capable of early
disease detection using minimal amounts of tissue, even down to a single malignant cell
[60]. These “tools” may not only prevent disease by monitoring genetic damage, but also
treat cells in vivo while minimizing interference with healthy tissue. By combining different
kinds of nanoscale “tools” on a single device, it may be possible to run multiple diagnostic
tests simultaneously [56]. In particular, it is hoped that cancer drug therapy involving
nanotechnology will be more effective in targeting malignant cells and sparing healthy
tissue. In this regard, the role of nanoparticles loaded with chemotherapeutic drugs has been
receiving much attention. Research and development in this area is expected to dramatically
increase in importance in the coming years.

15.1.3. Chemotherapy via Nanoparticles

In general, nanoscale drug delivery systems for chemotherapy can be divided into
two categories: polymer- and lipid-based [46]. Polymers, which are usually larger than
lipid molecules, form a solid phase, such as polymeric nanoparticles, films, and pellets,
while lipids form a liquid (or liquid crystalline phase), such as liposomes, cubersomes,
micelles and other emulsions [22]. While polymer-based systems are considered biolog-
ically more stable than lipid-based systems, the latter are generally more biocompatible.
Polymer-based systems might possess good drug targeting ability because their uptake may
be different for cells in different tissues [53]. In fact, Feng and Chien [22] have suggested
that a combination of polymer- and lipid-based systems could integrate their advantages
while avoiding their respective disadvantages. An example of such a nanoparticle would be
a liposomes-in-microspheres (LIM) system, where drugs are first loaded into liposomes,
and then encapsulated into polymeric microspheres. This way both hydrophobic and hy-
drophilic drugs can be delivered in one nanoparticle. The bioactivity of peptides and pro-
teins would be preserved in the liposomes, whose stability is protected by the polymeric
matrix [22].

Chemotherapy using nanoparticles has been studied in clinical trials for several years
and numerous studies have been published in this regard ([43], pp. 283–290). Two lipo-
somally delivered drugs are currently on the market: daunorubicin and doxorubicin [51].
These encapsulated drugs can be formulated to maximize their half-life in the circulation.
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For example, a “stealth” version of liposomal doxorubicin, coated with polyethylene glycol
to reduce its uptake by the reticuloendothelial system, can extend its half-life in blood for
up to 50–60 hours [10].

15.1.4. Challenges of Nanotechnology

The difficulties facing nanotechnology in the service of clinical medicine are numerous.
These difficulties should be kept in mind when considering chemotherapeutic treatment
involving nanotechnology and the potential role of biocomputation. First, there are basic
physical issues with matter at such a small scale. Since matter behaves differently on the
nano than it does at micro and macro levels, most of the science at the nanoscale has been
devoted to basic research, designed to expand understanding of how matter behaves on
this scale [56]. Because nanomaterials have large surface areas relative to their volumes,
phenomena such as friction are more critical than they are in larger systems. The small size of
nanoparticles may result in significant delay or speed-up in their intended actions. They may
accumulate at unintended sites in the body. They may provoke unexpected immune system
reactions. Cells may adapt to the nanoparticles, modifying the body’s behavior in unforeseen
ways [56]. The efficacy of nanoparticles may be adversely affected by their interaction
with the cellular environment. For instance, the reticuloendothelial system (RES) may clear
nanoscale devices, even “stealth” versions, too rapidly for them to be effective because of the
tendency of the RES to phagocytose nanoparticles ([43], p. 259). Nanoparticles can be taken
up by dendritic cells [18] and by macrophages [16]. RES accumulation of nanoparticles
could potentially lead to a compromise of the immune system. On the other hand, larger
nanoparticles may accumulate in larger organs, leading to toxicity [56]. Perhaps the biggest
issue of all is that the physically compromised tumor vasculature may prevent most of the
nanodevices from reaching the target cells by vascular transport or diffusion. Alterations in
the tumor vasculature may adversely affect the convection of the nanodevices in the blood
stream [9]. Local cell density and other stromal features may hamper drug or nanodevice
diffusion through tumoral tissue. This topic will be examined in more detail when we
consider the issue of chemotherapeutic drug transport and the system-level biocomputation
of cancer therapy.

15.1.5. Biocomputation in Cancer Treatment

The challenges of nanotechnology may be better evaluated through the use of biocom-
putational methods that examine the fundamental physical principles that affect delivery
and degradation of nanoparticles in cancer treatment. Biocomputation, in general, provides
a means of mathematically modeling these physical principles so that basic truths about the
interaction of nanotechnology and living tissue may be better understood. This knowledge
could save time and resources by providing guidance to the experimentalist and the clini-
cian, support a coherent framework for further research, and offer the potential to predict
experimental outcomes. The main challenge of biocomputation is to be able to incorporate
these physical principles into a biologically relevant model while retaining the capability to
numerically solve for concrete results. It is difficult to model from the nanoparticle (10−9 m)
to the tumor (10−3 m) scale, not only because matter behaves very differently in each, but
because of the enormous computational cost associated with having to span six orders of
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magnitude of length scales over a significant period of biological time. In fact, simulation
may require integration of multiple hierarchies of models, each differing in several orders
of magnitude in terms of scale and qualitative properties [40].

Modeling of drug delivery encompasses the formulation of quantitative descriptions for
drug transport in biological systems to evaluate feasibility of new drug delivery methods,
to estimate dose response and toxicity, and to speed experimental and clinical evaluation
[61]. Modeling principles apply to both procedures and technologies. For example, local
drug administration, targeted drug delivery, and controlled drug release polymers should
all be considered [61]. In the treatment of cancer, it is hoped that biocomputation will
facilitate formulation of optimal treatment models that enable administration strategies for
chemotherapy that maximize benefit while minimizing side effects [22]. Biocomputation-
based generation of theoretical results could potentially be validated by correlation of
numerical predictions with in vitro and in vivo data of a particular patient’s cancer response
to chemotherapy. In turn, these experimentally and clinically validated biocomputation
results may be used to design personalized therapy protocols in silico using computer
simulations.

Biocomputation of targeted and controlled drug delivery via nanoparticles is not only
expected to offer insight into in vivo drug delivery, but also simulate the therapeutic effects
of the delivery device and stipulate its preparation specifications in order to better address
the challenges of nanotechnology. This approach may offer a means to optimize exist-
ing products and enhance new product development for cancer chemotherapy and disease
treatment. The types of drug, excipient, and composition of the device could be essential
components of a model [22]. Since there are no encompassing mathematical models that
can apply to all conceivable physical and chemical processes in product development, it is
important to develop an adequate theory grounded in physical considerations for specific
systems. For instance, physical considerations that apply to polymer devices include drug
delivery and diffusion, polymer swelling and degradation/erosion. It may also be necessary
to consider osmotic, steric, magnetic, and charge effects [22].

15.2. ISSUES WITH CHEMOTHERAPY: HOW NANOTECHNOLOGY CAN HELP
AND THE ROLE OF BIOCOMPUTATION

15.2.1. Drug Resistance

One of the major challenges that prevents most patients from benefiting from
chemotherapy is the presence of tumor cell mechanisms that cause drug resistance. A tumor
may evolve mechanisms to avoid damage by chemotherapeutic agents via the acquisition
of mutations that confer a drug-resistant status. Nanoparticles with an appropriate surface
coating could possibly overcome some mechanisms of cellular drug resistance, thereby
improving the value of chemotherapy [22]. In fact, multidrug resistance (MDR) might be
treatable with liposomes that enhance molecular MDR modulating strategies in addition to
improving therapeutic activity through pharmacological optimization [54]. However, con-
stant release of drug by nanoparticles at a tumor site could potentially exacerbate cellular
resistance by exposing cells to a predictable (steady) level of stimulation. In fact, there is
evidence that a single drug exposure can induce cellular resistance [80]. Biocomputation
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could help to quantify a nanoparticle drug release regimen that minimizes drug resistance.
For example, Jackson and Byrne [33] proposed a mathematical model that described the
chemotherapeutic response of a spherical vascular tumor containing two cell species. They
contrasted the tumor response to continuous intravenous drug infusion versus intravenous
bolus injection, and found that bolus injection decreased the time to cure when the drug
resistant cell population was present. Biocomputation might also help to identify drug-
resistant tumors via nanotechnology. Dordal et al. [17] analyzed fluorescent drug uptake by
tumor cells using a three-compartment model in which rapid diffusion from extracellular
fluid into a cell was followed by uptake into a non-exchangeable pool (where the drug bound
with its intra-cellular target). By using a flow cytometric assay of drug uptake, the kinetic
parameters of drug transport may be specified. The model could thus identify the presence
of drug-resistant cells in a tumor by the reduced cellular uptake or increased cellular efflux
of drug. This model could be a starting point to study the effects on drug resistance of drugs
delivered with nanoparticles.

15.2.2. Drug Toxicity

Another challenge in chemotherapy is the use of potentially toxic side-groups that
enhance the hydrophilicity of typically hydrophobic drugs. The addition of such side-
groups may not be necessary with nanoparticles of biodegradable polymers that are small
enough to allow intracapillary or transcapillary passage, and that possess a surface coating
that evades macrophage uptake [22]. Thus, nanoparticles could be used to deliver traditional
chemotherapy without toxic adjuvants to cancerous cells, and to treat conditions that may
arise over time with anticancer therapy.

Toxicity could be considered in a biocomputational model as a constraint to preserve
the white blood cell (leukocyte) number at a certain level while maximizing the reduction of
the tumor cell population [4]. The goal would be to optimize the nanoparticle drug regimen
under this constraint. On the other hand, Parker and Doyle [68] point out that through
modeling of leukopenia, optimal delivery profiles could be constructed to minimize toxic
effects. The method of delivery (e.g. bolus or continuous infusion) should also be considered,
as it can lead to differences in toxicity.

15.2.3. Drug Targeting

Another issue with chemotherapy is that the drug may be delivered to tissues other than
the tumor, affecting organs such as the heart and liver. Nanoparticles could provide a con-
trolled and targeted means to deliver encapsulated drugs, resulting in lower side effects and
higher efficacy [47]. A purely “chemical” strategy that relies on the molecular recognition
of unique surface signatures of tumor tissue by chemical ligands (such as antibody-drug
conjugates and immunoliposomes) may not work well with tumors because other tissue
could also bear these signatures [71]. Controlled delivery may be achievable instead via a
“physical” strategy because macromolecular transport across tumor microvessels can occur
via fenestrations, vesicular vacuolar organelles, and transendothelial channels and inter-
endothelial junctions [22]. The pore cutoff size of many tumor vessel models is between
380 and 780 nm, so nanoparticles in this size range should preferentially extravasate from
tumor vessels [29, 89]. Since nanoparticles could also exit the circulation through the liver
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and bone marrow, the amount of particles needs to account for extravasation at these areas.
A more unique signature of cancer cells is their abnormal DNA. Nanoparticles capable of
screening DNA sequences of individual cells could recognize and kill cancerous ones.

Biocomputation could quantify the various means to target nanoparticles to specific
sites within the body under various treatment scenarios. In fact, a combination of “chemical”
and “physical” strategies may work best. One way of targeting is to conjugate cell-targeting
agents on the nanoparticle surface [23, 25, 41]. Research is underway on ligand-targeted
“stealth” liposomes that utilize moieties attached to the liposome surface to selectively bind
the liposome to specific cancer cells [72]. A targeting ligand is chosen based on the ability
of the target cell to internalize the liposome. Another way of targeting is through a magnetic
field by using magnetite nanoparticles [32].

15.2.4. Drug Transport

A principal barrier to chemotherapy delivery can occur at the level of the compromised
tumor vasculature. This barrier may prevent the delivery of adequate doses of drug to
tumor cells [35]. Blood flow in tumor vessels is abnormal, since the flow is intermittent,
periodically abating and reversing. These effects are caused by a chaotic arterial organization
and impaired venous and lymphatic drainage [27]. The full consequences of an abnormal
tumor vasculature on drug transport are not well understood. In the past some researchers
(e.g. [37]) believed that it might take from days to months for a macromolecule to diffuse into
the center of a tumor, mainly due to the high tumoral interstitial pressure and the collapsed
tumor vessels. The high hydrostatic pressure in the tumor interstitium-see also Jain and
Baxter [36] and the mathematical model by Sarntinoranont et al. [73]—would create an
outward convective interstitial flow and cause drug resistance [38]. Recently researchers of
this same group [67] have found evidence that proliferating cancer cells can cause intratumor
vessels to compress and collapse, especially vessels without supportive stromal structures.
Interstitial fluid pressure, on the other hand, is about the same as the microvascular pressure
in the tumor, which makes it unlikely that the collapse of intratumor vessels is due to fluid
pressure. It’s important to note that this vessel collapse and transport limitation occurs
on a timescale of hours and days, based on the rate of cell proliferation. However, the
pharmacokinetics of a drug can be effected on a timescale of seconds, especially in highly
perfused tissues such as the central nervous system, and as evidenced by radiographic scans
showing drug delivery throughout brain tumors [7, 90]. Perhaps the drug is cleared from a
tumor site on a timescale that precludes a full effect on all tumor cells, especially quiescent
cells, and this effect, rather than a compromised tumor vasculature, is the main reason for
the inadequate dosing. The tumor extracellular matrix assembly and composition could also
be factors limiting drug transport [59].

The extent that a compromised tumor vasculature affects the bioavailability of larger
molecular agents into the interstitium may depend on tumor type [81, 82]. By using contrast
agents of different molecular weights in dynamic contrast enhanced MRI, it was shown
that interstitial availability of macromolecular agents in different animal tumor models
may be a function of tumor growth rate. (Fig. 15.1, top). In a fast growing tumor (top
left), there was sufficient amount of macromolecular contrast agents in the interstitium
within the measurement window of 16 minutes. In fact, the larger molecular weight agent
started reaching equilibrium at the end of this period and resided in the interstitium for a
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FIGURE 15.1. Top: contrast enhancement curves for different contrast agents (labeled) with hydrodynamic diam-
eters 1-2.3 nm from a fast (left) and a slow (right) growing tumor. Bottom: Albumin-Gd-DTPA enhanced image
at 10 minutes (left), and Gd-DTPA enhanced image at 30 sec (right). The former has higher molecular weight and
3 nm hydrodynamic diameter. Adapted from Su et al., [81, 82], Magnetic Resonance in Medicine Vol. 34 and Vol.
39. Copyright c© 1995 and 1998. Reprinted with permission of Wiley-Liss, Inc., & subsidiary of John Wiley &
Sons, Inc.

considerable duration. Su et al. [81] showed that an even larger molecular weight contrast
agent could have considerable interstitial uptake after 10 minutes (Fig. 15.1, bottom). The
slower growing tumor demonstrated a very different behavior. In particular, the larger
molecular weight agent did not leak into the extravascular space (Fig. 15.1, top right).
In the faster growing tumor, vascular permeability was determined to be larger, resulting
in higher accumulation of larger molecular weight agents in the extravascular space. It is
conceivable that the behavior observed with macromolecular weight MR contrast agents
also applies to similar size therapeutic drugs or nanoparticles.

Regardless of the potential mechanics that may affect drug delivery, very recently com-
puter simulations in two spatial dimensions have demonstrated that nanoscale drug delivery
systems could in principle be affected by similar limitations as traditional chemotherapy
[79]. Nanoparticles first have to be transported in the blood stream to the vicinity of the
tumor and extravasate from the blood vessels into the interstitial space; then the drug needs
to be released and diffuse through or around the tumor cells [34]. In addition, nanoparticles
must avoid protein binding in serum and in the extravascular space, metabolism in the blood,
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and phagocytosis by the reticuloendothelial system. Finally, the irregularity of the tumor
vasculature with its abnormal blood flow and the timescale of the pharmacokinetics as a
function of tumor type may present major obstacles. These limitations will be considered
further when we address system-level modeling of cancer therapy.

Modeling of tumor vasculogenesis could be used as a possible angiogenesis assay to
study the impact of an altered tumor vasculature on chemotherapy delivery via nanodevices.
Chaplain and Anderson [11] recently reviewed a number of mathematical models that have
been used to describe the formation of tumor capillary networks through angiogenic stimuli.
They concentrated on a specific model that employed mathematical techniques to generate
both two- and three-dimensional vascular structures. The model focused on the main events
in angiogenesis, i.e., the migratory response of endothelial cells to cytokines secreted by a
tumor, endothelial cell proliferation, endothelial cell interactions with extracellular matrix
macromolecules, and capillary sprout branching and anastomosis. They presented numerical
simulations of the model, using parameter values based on experimental data, and the
theoretical structures thus generated were compared with the morphology of actual in vivo
capillary networks.

The heterogeneity that may exist within the tumor (e.g. blood flow and pressure vari-
ation) complicates the modeling of chemotherapeutic agent delivery as a free drug or en-
capsulated in nanoparticles. The mathematical representation of vessel trees that do not
adhere to normal diameter and branching patterns can become very complex. As a result,
flows and pressures inside an abnormal vasculature become more difficult to calculate. Mc-
Dougall et al. [52] used a discrete mathematical model to specifically study tumor-induced
angiogenesis that described how the endothelial cell proliferative and migratory chemotac-
tic responses led to the formation of a capillary sprout network of abnormal structure. They
analyzed fluid flow through this network by considering the effects of fluid viscosity, blood
vessel size and network structure on the rate of fluid flow, the amount of fluid present in the
complete network at any given time, and the amount of fluid reaching the tumor. The incor-
poration of fluid flow through the generated vascular networks identified transport issues
that may have implications for both nutrient supply and drug delivery to a tumor, echoing
the earlier results of Jain [37]. In fact, under some conditions, the model showed that an
injected chemotherapy drug could bypass the tumor altogether (Figure 15.2). Whether this
effect would occur in vivo is unclear, since, as we have seen, there is evidence that drugs can
be delivered throughout certain tumors. In general, though, as these and other researchers
have noted, the normalization of the tumor vasculature could enhance the flow to a tumor
mass, and thus aid the delivery of nanodevices as well.

15.2.5. Drug Dosage and Scheduling

Another determinant of drug efficacy is delivery of the optimal drug dosage. Consid-
erations in this regard include tumor type and size, and the patient’s physical parameters
(e.g. body surface area, m2). Chemotherapy drug dosages are selected in part based on
the competing goals of maximizing death of malignant cells while minimizing damage to
healthy cells. Because of more precise targeting by nanoparticles, drugs in nanocrystalline
form may require smaller doses for equal effect. Since they could be delivered directly
to the desired tissue while minimizing uptake by other tissues, the harm to healthy tissue
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FIGURE 15.2. Effects of bolus injection through a computer simulated vasculature showing how most of the drug
does not reach the tumor. Snapshots of drug concentration as it flows from parent vessel (situated at top edge of
each picture) through the vascular network towards a tumor (situated at middle of bottom edge of each picture)
over a physiological time duration (a)–(i). Colors: red = highest concentration; dark blue = lowest. Reprinted
from Bulletin of Mathematical Biology, Vol 64, McDougall et al., page 697, Copyright (2002), with permission
from Elsevier.

would be reduced, although uptake by the liver and bone marrow might remain an issue.
Better targeting also allows for more precise doses because the drug delivery will fluctuate
less. For instance, future nanoparticles could achieve precise control over drug release via
nanopores that act as particle membrane channels [3].

The fact is that the determination of drug doses and delivery schedules for a particular
patient is a difficult process that relies on a series of trial-and-error procedures to deter-
mine the maximum tolerable dose and effective treatment regimen [68]. The variation of
tumors in individual patients compounds the difficulty in determining an effective treatment
based on the partial knowledge about the pharmacodynamics of the drug. The frequency
of chemotherapeutic treatment has generally been based on the interval of time required
for the myelopoietic cells to regenerate adequate numbers of lymphocytes, platelets, and
erythrocytes, rather than being based on the effects on tumor cells, which may continue
to proliferate faster than the recovery time of healthy tissue. A better understanding of the
issues affecting chemotherapy dosage determination is needed to formulate dosages and
schedules for drugs delivered by nanodevices.
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From a biocomputational viewpoint, cancer growth has traditionally been defined as
exponential (based on work by Skipper and Schabel in the 1970s). This tradition led to
the log-kill hypothesis as the underpinning of current drug dosage and scheduling prin-
ciples [66]. These principles include simultaneous combination chemotherapy, maximum
tolerated dose within the combination, and equally spaced cycles of equal intensity. For
example, chemotherapy has been routinely administered in 3-week intervals for metastatic
breast cancer patients. Biocomputation could enable a more systematic approach to defin-
ing the drug treatment regimen [68]. A biocomputational model based on a patient’s cancer
characteristics could be defined, leading to treatment acceleration and less damage through
ineffective dosages.

The Gompertzian growth curve [24] applied to a tumor shows that cell gain is greater
than cell loss in the early part of the curve but slows down as the tumor gains mass [44, 88].
The curve is applicable to normal and malignant growth and has its origin in the molecular
regulation of mitosis, tissue geometry, and apoptosis [66]. The Norton-Simon hypothesis
[63], which is based on the application of Skipper and Schabel’s therapy to Gompertzian
computation, is that the rate of tumor volume regression is proportional to the rate of growth.
The log-kill is greater when the tumor is treated at a smaller size, and its growth rate is
higher if the cells are not destroyed. Since two drugs at single-agent dose could be toxic to
a patient, Norton and Simon [63] determined that the alternatives were full dose, reduced
dose, sequential dosing, and alternating dosing. The mathematical model thus allowed the
development of dose density and sequential therapy, based on the theory of combination
chemotherapy [65].

Dose density refers to administration of drugs with a shortened inter-treatment interval.
It is based on the observation that in experimental models, a given dose always kills a certain
fraction, rather than a certain number, of exponentially growing tumor cells [12]. Regrowth
of cancer cells between cycles of chemotherapy is quicker in volume-reduced Gompertzian
cancer models than in exponential models. The Norton-Simon model predicted that dose
density would improve therapeutic results, and that sequential chemotherapy that maintains
dose density would preserve efficacy while reducing toxicity [65]. The model explained
how cancers that follow Gompertzian kinetics (e.g. breast cancer) respond to treatment,
and how they differed from the exponentially growing models often used in the laboratory
[64]. These considerations indicated that therapeutic results should be the same, even if the
sequential pattern was less toxic [66].

Indeed, Citron et al. [12] recently reported that dose density can considerably im-
prove clinical outcomes, and that sequential chemotherapy can be as effective as concurrent
chemotherapy. As predicted by the model, sequential chemotherapy was better compared
to a strictly alternating pattern [8, 62]. Various dose-dense drug regimens have been under
investigation in recent years [56]. Clinical trials have further confirmed the model’s predic-
tion, leading to early breast cancer treatment that is shorter, less toxic, and more effective
[66]. Future research into the biologic etiology of Gompertzian growth and the molecular
mechanisms of its perturbation could generate new hypotheses for dose-schedule regimens
that are empirically verifiably [12], and that could take into account drugs delivered by
nanodevices.

Quantification of optimal chemotherapy profiles, usually assuming continuous drug
delivery, can motivate the development of tumor growth models. An understanding of
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these models may be useful when considering cancer therapy via nanoparticles. Parker
and Doyle [68] classified and described modeling approaches to cancer growth into two
major groups: lumped parameter models and cell-cycle models. Lumped parameter models
define tumor growth macroscopically in terms of cell count and selected tumor- or patient-
dependent parameters, whereas cell-cycle models describe tumor behavior based on the
number of cells in a given cell-cycle stage. Examples of lumped parameter modeling include
logistic, Malthusian, Bertalanffy, and Gompertz equations. Each model is based on a growth
function that is a continuous, monotonically rising function, describing increase per unit
time in tumor cell count or tumor size. One major benefit of lumped parameter models is their
advantage for controller design purposes due to their low order and monotonic cell growth
behavior. However, the assumption of a homogeneously growing tumor cell population
may not match real life, and the inability to account for cells in different growth stages
prevents the use of lumped parameter models to study the effects of certain chemotherapeutic
agents.

Although cell-cycle models may provide superior insight into the behavior of the
tumor at the cellular level, they are very complex because each cell-cycle stage needs to
have its own mathematical specification. In order to specify the exact number of cells in
the various cell-cycle stages, direct measurements of the tumor cells would be necessary.
Parker and Doyle [68] suggested that in the case when model parameters cannot be identified,
approximate models of cell-cycle behavior can be constructed, and these models may be
useful for analysis purposes. For instance, models of this type can handle the effects of cell-
cycle specific drugs. Thus, if good estimates of model parameters are available, this model
structure, with its additional detail, can provide a substantial advantage. Intermediate levels
of model complexity and more detailed tumor growth models are also possible. In general,
however, both lumped parameter and cell-cycle models share a number of shortcomings
when it comes to their application to chemotherapy either as free drug or encapsulated in
nanoparticles. For example, the assumption of continuous drug delivery may not be valid,
since a metronomic regimen may not be appropriate. Moreover, the models are usually one-
dimensional in space, disregarding the physical effects that the tumor three-dimensional
heterogeneity can have on drug dosage and scheduling.

15.2.6. Drug Concentration

The therapeutic efficiency of a pharmaceutical product is determined by the proper
concentration of drug at the lesion site, and biocomputation can describe the relevant phar-
macokinetics, especially when considering devices on the nanoscale. Efforts in this area,
for instance, have included the development of a mathematical model describing the micro-
scopic profiles and biodistribution of drugs using enzyme-conjugated antibodies as part of
a two-step method for cancer treatment [6]. The monoclonal antibodies by themselves may
lead to heterogeneous uptake within the tumor, while the use of a low molecular weight
agent may allow deeper penetration into the tumor. This mathematical model was used
to describe concentration profiles surrounding individual blood vessels within a tumor,
which allowed determination of the area under the curve and specificity ratios. Average
tissue concentrations were determined by spatial integration and compared with experi-
mental results. The model showed that the effective clearance of antibody inside the tumor
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is less efficient than outside the tumor, which may be due to the antibody accumulation at
the tumor. The conclusion was that enzyme-conjugated antibodies could help to achieve a
more uniform distribution and higher concentrations of the active agent, as well as greater
specificity.

In another study of drug concentration at the tumor site, Quian et al. [71] developed
a mathematical model that could specify the physical dimensions of polymer millirods,
composed of PLGA (poly(lactic-co-glycolic acid)) microspheres, inserted directly at the
ablation boundary of thermally ablated solid tumors. Based on the rod dimensions, the
model showed how an initial loading dose of chemotherapeutic drug followed by a sustained
release can provide optimal drug concentrations at the tumor site. Without a loading dose,
it would take several days to attain a desired therapeutic concentration via a zero-order
(constant) release device. This model may have relevance when establishing the optimal
drug concentration via constant-release nanodevices.

Recently, Eliaz et al. [19] developed a cell kinetic model showing that the potency of
a chemotherapeutic drug (doxorubicin) encapsulated in liposomes was 5 to 6 times higher
than free drug. Targeted liposomes delivered more drug into the cell than the free form. In
fact, drug delivery via targeted liposomes was more efficient in killing the cells per amount
of intracellular drug. This efficiency may be due to the vascular trapping of liposomes in the
peritumoral space generating a constant release of drug and creating a more uniform drug
concentration. Clinical testing has confirmed that the plasma distribution and elimination
half life of liposomal doxorubicin can be much longer than that of free drug, and response
rates can be significantly higher [51].

In vivo, tumor response to therapy is governed by the pharmacodynamics and pharma-
cokinetics of the chemotherapy drug. The effective drug concentration in the tumor model
is generally assumed to be equal to that in blood plasma because it is difficult to measure
drug concentration within a tumor. However, given the possibility that transport limitations
through the abnormally constituted tumor vasculature may cause the drug concentration to
be lower within the tumor [37, 48, 67, 79], this assumption may not hold. Thus, the spec-
ification of optimal drug therapy is very complex, principally due to a poor understanding
of the response of the tumor system to drug therapy [68], which can include variability in
drug concentration. The concentration of drug delivered by nanoparticles would depend on
the concentration of nanoparticles, which would also be subject to this complexity.

It is important to note that the clinical effect of a drug ultimately depends on the drug
concentration inside individual tumor cells, not just the extracellular concentration in the
tumor interstitium. For instance, to aid introduction of highly charged or macromolecular
drugs into the cytoplasm, pH-sensitive liposomes have been developed that deliver their
contents through penetration of the endosomal membrane [78]. Inner and outer cell space
can be represented with a two-compartment model of drug concentration. Lankelma [48]
described two bounds on the intracellular (inner compartment) concentration: low cellular
drug influx with rapid efflux in a sparse cell cluster, and high cellular drug influx with
low drug efflux in a tightly packed cluster. The former will lead to homogeneous drug
distribution without a gradient, while drug gradients will last longer in the latter. Gradients
thus depend on cellular influx and efflux, and on blood concentration as influenced by the
tumor vasculature. Gradients of nanoparticles would depend on similar factors. Local drug
or nanoparticle concentration could vary considerably due to intercapillary distances and
heterogeneity in the tumor cell population.
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15.2.7. Drug Release

In this section we review some fundamental concepts regarding drug release from
nano- and micro-particles, and examine the role of biocomputational modeling in this area.
Drugs can be designed for programmed release in vivo by encapsulating them in particles
from a few nanometers to microns in size. Particles are usually ingested or implanted, and
designed to deliver a controlled release of drug that may last for an extended period of
time (weeks or months). In general, drug kinetics can be studied as material fluxes between
conceptual units, called compartments [5]. Holz and Fahr [30] reviewed two main groups
of biological compartment models, namely, physiological and mechanistic models. On
the other hand, Veng-Pedersen [85] reviewed non-compartmentally based models. These
utilize systems analysis, such as linear systems analysis (LSA). The wide array of available
LSA-based kinetic analysis tools may offer an alternative to traditional kinetic modeling.
Both compartmental and non-compartmental models, however, do not usually describe the
complexity of multiple spatial dimensions that exist in the tumor environment.

Mathematical modeling can help to optimize the design of a therapeutic device to yield
information on the efficacy of various release methods [22]. For example, Wang et al. [86]
compared two types of drug formulations, namely, controlled release from polymers and
systemic administration, to predict spatial and temporal variations of drug distribution at
the tumor level in two dimensions. In contrast with bolus injection, polymer-based delivery
imparted a longer exposure time, a higher mean concentration, and a reduced systemic
toxicity. Drug release from a polymer nano- or microparticle has been traditionally classified
based on the material erosion mechanism: surface or bulk erosion [45]. For either type
of erosion, models developed to characterize the kinetics of drug release from spherical
microparticles were described by Zhang et al. [91]. They pointed out three mechanisms
that combine to control the overall drug release process: dissolution of drug from the solid
phase, diffusion of dissolved drug, and erosion of the polymer matrix. These models can
be solved under either a finite or infinite mass transfer condition. For bulk erosion of
both hydrophobic and hydrophilic polymers, the models showed a reasonable match with
experimental results reported in the literature. Results also indicated that the surrounding
environment had a profound effect on the drug release pattern under a finite mass transfer
condition. For various surface-eroding polymers, it was observed that the radius of the
microsphere followed an approximately linear profile of reduction with respect to time.
In some cases, erosion and dissolution appeared to be dominant factors for drug release
patterns. For better application of these models, the proportion of amorphous and crystalline
polymer, and free chain and rigid chain could be investigated to justify the corresponding
parameter values. Furthermore, physical property data (such as diffusivity and porosity) for
drugs and microspheres should be determined experimentally to improve simulation results.
In particular, quantitative analysis on the experimental diffusivity coefficient, dissolution
constant, and erosion constant might help in this regard.

Feng and Chien [22] provided a comprehensive list of mathematical models that have
been developed to study drug release at the nanoparticle level. As Siepmann and Goepferich
[74] pointed out, the modeling of bioerodible delivery systems is more complex than the
modeling of diffusion or swelling-controlled devices. Chemical reactions (e.g. polymer
chain cleavage) in bioerodible systems have to be taken into account in addition to physical
mass transport phenomena. These reactions continuously change the conditions for mass
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transfer processes, complicating the modeling of erosion-controlled drug release. Siepmann
and Goepferich [74] classified erosion-controlled drug release models into two categories:
empirical models that commonly assume a single zero-order (constant) process to control
rates of drug release, and models that consider physicochemical phenomena (such as chem-
ical reaction processes or diffusional mass transfer). The latter category includes simulation
of polymer degradation as a random event using direct Monte Carlo techniques (i.e., using
computer-generated random numbers). The actual physics of the polymer dissolution pro-
cess and the consequences for drug release have been modeled. For example, Narasimhan
[55] described the main modeling contributions in this area using two broad approaches;
phenomenological models and Fickian equations, and anomalous transport models and
scaling law-based approaches.

Despite the phenomena complexity involved in drug release from nano- and micro-
particles, the two mathematical models commonly used to describe drug release kinetics
from a large variety of devices are the Higuchi model [28] and the power model [69]. The
Higuchi model is:

Mt/A = (D (2co − cs)cs t)1/2

where Mt is cumulative amount of drug released at time t, A is surface area of the controlled
release device exposed to the release medium, D is drug diffusivity, and co and cs are
initial drug concentration and drug solubility, respectively [76]. In general, the Higuchi
model is valid for systems where drug concentration is much higher than drug solubility,
whereas with the power model, the geometry of the system can be related to the drug release
mechanism [42]. The power model is:

Mt/Moo = ktn

where Mt and Moo are absolute cumulative amounts of drug released at times t and infinity,
respetively, k is constant incorporating structural and geometrical device characteristics, and
n is the release exponent, indicative of the mechanism of drug release [76]. For comparison
to these two models, we note that drug release from a traditional matrix, as a result of a
diffusion process that assumes excluded volume interactions between drug molecules, can
be described by the Weibull function [87]:

Mt/Moo = 1 − exp(−a tb)

where a and b are empirical constants respectively defining the scale and shape of the
response.

Various drug release/dissolution models were compared by Costa and Lobo [13].
They pointed out that models that in general describe drug release phenomena best are
the Higuchi model, zero order model (as a special case of the power model), Weibull model
and Korsmeyer-Peppas model. The Higuchi and zero order models represent two limit cases
in the transport and drug release phenomena, while the Korsmeyer-Peppas model can be
a decision parameter between these two models. Whereas the Higuchi model has a large
application in polymeric matrix systems, the zero order model can be useful in describ-
ing membrane controlled dosage forms or coated dosage forms. Costa and Lobo [13] also
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suggested using the adjusted coefficient of determination (R2
adjusted) to compare models

with different numbers of parameters:

R2
adjusted = 1 − (n − 1)

(n − p)
(1 − R2)

where n is number of dissolution data points, p is number of parameters in the model, and
R2 is the (unadjusted) coefficient of determination.

As Siepmann and Peppas [76] pointed out, there are several important assumptions
when applying the Higuchi model to controlled drug delivery systems. We will briefly
mention them and consider how they apply in the case of drug release at a tumor. The first
assumption is that initial drug concentration is much higher than drug solubility, which
justifies a pseudo-steady state modeling approach. This assumption may not hold for a tu-
mor undergoing intermittent exposure to chemotherapy, which means that a pseudo-steady
state approach may not be sufficient. The second assumption is that the mathematical
analysis is based on one-dimensional diffusion. Although the simplification afforded by
one-dimensionality can lead to valid insights, it seems that the physical heterogeneity of the
tumor environment would be better represented by a multi-dimensional analysis [79]. The
third assumption is that the diameter of the suspended drug particles is much smaller than the
thickness of the system, which would be true for chemotherapy via nanoparticles. The fourth
assumption is that dissolution or swelling of the carrier system is negligible. This assump-
tion may or may not hold in the tumor stroma. The fifth assumption is that drug diffusivity
is constant, which may not necessarily hold in the case of chemotherapy. The final assump-
tion is that perfect sink conditions are maintained. This assumption probably applies to the
tumor environment because the flow of extracellular fluid carries the drug away.

Having discussed some of the fundamentals of nano- and micro-particle drug release
and its associated modeling, we will now consider modeling efforts in system drug release
kinetics. The pharmacokinetics and distribution of a drug can change substantially by en-
capsulation into nanoparticles. The drug will assume the pharmacokinetics of the carrier
until its release [72]. Thus, from a system viewpoint, the use of nanoparticles changes the
drug release so that it primarily consists of two phases. First phase involves delivery of
nanoparticles to the tumor site, and the second phase involves drug release by the collection
of nanoparticles. In fact, analysis of nanoparticle release profiles will usually display such
a biphasic release pattern ([43], pp. 258–259). This behavior can be quantified in terms of
drug release parameter values that become an input to the biocomputational modeling at
the much larger millimeter-scale of the tumor.

Important work has been done on modeling system drug release kinetics of micropar-
ticles, whereas the modeling of nanoparticles has not been as extensive. A small selection
of studies and review papers will be noted in this section to illustrate some of the main
modeling aspects in this area. The hope is that most of this work could, with some further
research, be extended to the nanoscale. In fact, this effort would aid in bridging the gap
from the nano- to the macroscale, by providing a quantitative link that could serve as an
input parameter for the modeling at the tumor scale.

In the area of drug release kinetics from microparticles, Siepmann et al. [77] de-
scribed an applied mathematical model, considering drug diffusion with non-constant dif-
fusivities (to account for polymer degradation), which was able to quantitatively describe
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FIGURE 15.3. Fit of a mathematical model taking into account drug diffusion and polymer degradation (solid
curves) to experimentally determined drug release from PLGA–based microparticles (symbols) in phosphate buffer
pH 7.4. Particle size is given in the legend. Reprinted from Journal of Controlled Release, Vol 96, Siepmann et al.,
page 32, Copyright (2004), with permission from Elsevier.

experimentally observed drug release patterns. An exponential relationship was established
between the diffusion coefficient and the initial loading of drug, allowing resulting drug
release kinetics for arbitrary microparticle sizes to be predicted in a quantitative way. Drug
release was found to be independent of particle size (in the range of<36 µm to 125 µm), and
drug transport was primarily controlled by diffusion (Figure 15.3). Hombreiro-Perez et al.
[31] modeled drug release by non-degradable microparticles, proposing a means to predict
the effect of different formulation parameters on resulting drug release patterns (such as
the effect of microparticle size). Siepmann et al. [75] proposed a model quantifying drug
release from bioerodible microparticles using Monte Carlo simulations. The model was
able to describe observed drug release kinetics accurately over the entire period of time, in-
cluding initial “burst” effects, subsequent zero-order drug release phases, and second rapid
drug release phases (Figure 15.4). The evolution of drug concentration profiles within the
microparticles could then be calculated. Finally, Faisant et al. [21] described a mathematical
model that enabled a quantitative description of drug release patterns of PLGA micropar-
ticles. The release was biphasic (initial burst, followed by a zero-order phase) and mainly
driven by drug diffusion. Coefficients for drug diffusion increased as the polymer absorbed
water and the average molecular weight of molecules decreased. The polymeric network
breakdown did not affect the release process because it occurred after the drug was depleted.

15.3. BIOCOMPUTATION AT THE SYSTEM LEVEL

15.3.1. Modeling at the Nanoscale

We will now examine the system-level biocomputation of cancer therapy and its re-
lationship with nanotechnology by first evaluating system modeling at the nanoscale. In
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FIGURE 15.4. Triphasic drug release kinetics from PLGA-based microparticles in phosphate buffer pH 7.4:
experimental data (symbols) and fitted theory (curve). Adapted from Pharmaceutical Research, Vol 19, 2002,
p. 1887, Siepmann et al., Figure 1, c© 2002 Plenum Publishing Corporation. With kind permission of Springer
Science and Business Media.

general, modeling requires a solid theoretical framework in order to produce results that
can deliver insights into the phenomena under study (NINT, 2004). Materials modeling
underscores most of nanoscience research so that the performance and characteristics of
novel materials (such as polymers) may be predicted. General areas of research in funda-
mental nanoscience include the development of new theories (such as many-body quantum
theories and mesoscopic theories) and modeling strategies such as multiscale modeling and
multiphysics, data processing and analysis, and comparing theory with experimental results
(EPSRC, 2004). These approaches may provide solid tools for modeling materials at the
nanoscale. For example, Sumpter et al. [83] describe recent developments in the formation,
characterization and simulation of nano- and micro-scale particles of amorphous polymer
blends and semi-crystalline polymers, including the modeling of structural characteristics,
thermal and mechanical properties, particle-surface interactions, and particle-particle inter-
actions.

Nanoparticle technology is based on the physics of materials at the molecular level. In
fact, mathematical and computational modeling of systems at the nanoscale requires a blend
of quantum with classical mechanics. Since quantum mechanical models computed from
first principles (i.e., without any empirical input) require a large amount of computational
power, the size of a system that can be described by accurate quantum mechanical models
is limited to about 50 atoms (using current computer technology) [84]. Classical models,
on the other hand, can neglect important quantum effects that give nanoscale devices their
unique properties [84]. These constraints make the modeling of systems at the nanoscale
very challenging.

Although fundamental nanoscience biocomputation is not easy, it could be argued that
modeling at the tumor scale should not be burdened by this complexity when considering
nanotechnology in cancer treatment. The reason is that the bulk behavior of nanodevices
is what matters the most at the tumor level—not the behavior of individual particles of
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sizes on the order of 10−9 m. It takes millions of nanoparticles and their combined effect to
influence a tumor of size order 10−3 m. Thus, modeling of cancer drug treatment via nan-
otechnology could stay focused at the tumor scale by considering the collective behavior of
nanodevices.

15.3.2. Modeling at the Tumor Scale

The foundation for models of nanoparticle delivery of cancer therapy depends on
an accurate physico-chemical description of the tumor microenvironment, the parame-
ters of which are derived from the study of cancer biology. Fundamental facts regard-
ing tumor behavior have been well described ([1], pp. 1313–62). At a cellular level, tu-
mor cells are transformed cells that have evaded natural cell senescence. All cells re-
quire a supply of energy to live and they produce metabolic waste. Cancer cells can
survive where normal cells would die, such as under hypoxic, hypoglycemic and acidic
conditions. They can adapt to changing micro-environmental conditions to develop resis-
tance to therapy. They can sometimes thrive outside their natural environment, leading to
metastases.

At a tumor (system) level, aggregates of cells will affect each other through mechanical
forces in three-dimensional space in such a manner that some cells will have more access
to nutrients than others. At first glance, the cell aggregate would be expected to expand
as a perfect sphere if all cells on the periphery experienced the same mechanical forces.
Experimental and clinical observation has shown that such perfect symmetry is usually not
the case. The reason is that from a molecular perspective, the extracellular environment
that each cell experiences (e.g. nutrient concentration) can vary quite dramatically, leading
to favored cells entering the cell cycle more often than cells whose extracellular cues
are more adverse ([1], pp. 985–6). Nutrient competition leads to the selection of cells
favored for maximal proliferation in certain regions. Cells on the periphery of a tumor are
favored and tend to proliferate faster than cells that are surrounded by other tumor cells.
The morphology of a tumor can be seen as a function of response to various environmental
fluctuations, including this nutrient diffusional instability [14, 15, 79, 92]. The goal of cancer
modeling is to describe the actual detailed behavior of a cell aggregate as predicted by the
proper physical formulation. The underlying hypothesis is that if the main components of
this physical formulation are identified and abstracted to a mathematical level, then this
formulation can be represented as an in silico system capable of predicting and shedding
insight into the behavior of real tumors.

The history of the study of tumor biology via physical formulations has been long
and insightful. For an excellent review, refer to Araujo and McElwain (2005). Cancer
growth, angiogenesis, metastasis, etc. have all been abstracted to a mathematical level.
A recent biocomputational implementation by Zheng et al. [92] encompassed some of
the main physical characteristics of cancer growth and created an in silico system that
exhibited combined two-dimensional tumor growth and angiogenesis. This system captured
the complicated morphology and connectedness at the tumor/tissue interface, including
invasive fingering, tumor fragmentation, and healthy tissue degradation. Implementation
allowed for simulation of tumoral lesions through the stages of diffusion-limited dormancy,
localized necrosis, vascularization and rapid growth, and tissue invasion in multiple spatial
dimensions. Angiogenesis was included as a continuous feedback process involving tissue
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growth and nutrient demand. An application of this simulator to chemotherapy is described
in the following section.

15.3.3. Modeling of Cancer Therapy

There are currently few biocomputational models that specifically consider nanotech-
nology as part of cancer treatment, especially taking into account the physical multidimen-
sionality of the tumor mass. Recently, Sinek et al. [79] have studied nanoparticle mediated
drug delivery and tumor response using the tumor simulator of Zheng et al. [92]. Their
multi-scale and multi-dimensional simulations demonstrated the potential increased effi-
cacy of nanoparticle-based therapy as well as its potential weaknesses, due principally to
transport limitations. They assumed a best-case scenario involving an homogenous tumor
with one cell type that was also assumed to be drug-sensitive, low host tissue toxicity due to
targeted drug delivery, and a constant nanoparticle drug carrier delivery at levels calibrated
to be lethal to in vitro cell culture on a time scale of hours. Two ends of a spectrum were
considered: therapy involving very small (1–10 nm) nanoparticles that extravasate from
tumor vasculature, diffuse within the interstitium, and target cells, and therapy involving
large (100 nm) nondiffusing nanoparticles that are assumed to remain at their point of
extravasation from the vasculature and to function as a constant source of drug. In both
cases nanoparticles were assumed to be delivered only to the tumor due to large vasculature
openings. Because of lower toxicity, larger and more uniform drug concentrations were
delivered to tumor cells over longer time periods in comparison to traditional free-drug
administration protocols.

However, their simulations also showed that nanoparticle-based chemotherapy could
suffer from the same fundamental transport limitations as free-drug administration. Com-
petition between vasculature density, which favors nutrient and nanoparticle extravasation,
and intratumoral pressure, which may oppose it, could result in non-uniform delivery.
Diffusion of nutrient molecules and drug carrier within the tumor interstitium may further
contribute to this inhomogeneity. Figure 15.5 shows non-uniform intratumoral distributions
in simulated chemotherapy involving a continuous blood-serum concentration of 1–10 nm
nanoparticles.

Sinek et al. [79] also simulated the effects of antiangiogenic therapy on tumor vascula-
ture. It had been previously proposed that this therapy could “normalize” tumor vasculature
through more efficient and uniform delivery of molecules and particles [38]. In this simula-
tion, larger 100 nm particles were assumed to extravasate uniformly along the normalized
vasculature and to release drug at a constant rate. Although Figure 15.6 shows that tumor
regression was significantly higher than in the previous simulation, Figure 15.7 indicates
that there was drug concentration inhomogeneity. As a result of non-uniform delivery of
chemotherapy, tumor regression was likewise non-uniform, being highest around areas of
maximum drug extravasation. Average in vivo cell death rates as simulated in silico were
several orders of magnitude lower than those calibrated in vitro. Perhaps more importantly,
non-uniformity of tumor regression consistently led to fragmentation (Figure 15.7) and new
stable tumor mass at significant levels (Figure 15.6).

In order to be more complete, modeling of chemotherapy using nanoparticles should
include other factors that affect tumor growth. These include hypoxic cycling cells and a
heterogeneous population of genotypes, some of which are resistant to the drug. Also, the
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FIGURE 15.5. Top left: Stable highly perfused tumoral lesion proliferating around blood vessels. Solid thick
perimeter: tumor boundary; solid thin perimeter: necrotic areas; solid: blood vessels. Top right: Tumor pressure
distribution. Bottom left: Nutrient concentration. Bottom right: Nanoparticle distribution. All variables are dimen-
sionless. Adapted from Biomedical Microdevices, Vol 6, 2004, p. 306, Sinek et al., Figure 4b, c© 2004 Kluwer
Academic Publishers. With kind permission of Springer Science and Business Media.

contribution to pressure within the tumor by the mass of necrotic cells may not be negligible
[79]. The nanoparticles themselves could be better modeled by augmenting the knowledge
of how they work in vivo, considering issues of vessel extravasation, clustering, interstitial
diffusion, interaction with tissue, and erosion at the tumor site.

For instance, the pH of the microenvironment is a significant aspect controlling the
degradation kinetics of many pharmaceutically relevant polymers, since hydrolysis rates can
vary by orders of magnitude at different pH values [49]. The tumor extracellular environment
is more acidic than normal tissue because of lactic acidosis from glycolysis [26]. The poorly
perfused tumor vasculature maintains the acidic environment as well. Polymer nanoparticle
degradation will thus be affected. Furthermore, as these polymers degrade into acids, the pH



NANOTECHNOLOGY IN CANCER DRUG THERAPY: A BIOCOMPUTATIONAL APPROACH 455

FIGURE 15.6. Simulation of tumor mass growth and regression as a function of time. The non-dimensionalized
time unit is ≈3.3 days. (A) Without chemotherapy; (B) With chemotherapy via small, diffusing nanoparticles (Fig.
15.5); (C) With chemotherapy via large, non-diffusing nanoparticles and adjuvant anti-antiangiogenic therapy (Fig.
15.7); (D), (E) Simulations corresponding to cases (B) and (C) but assuming higher blood vessel mobility. Adapted
from Biomedical Microdevices, Vol. 6, 2004, p. 303, Sinek et al., Figure 3, c© 2004 Kluwer Academic Publishers.
With kind permission of Springer Science and Business Media.

FIGURE 15.7. Left: Tumor regression with undesirable mass fragmentation after application of chemotherapy
plus antiangiogenic therapy via nanoparticles. Right: Drug distribution. Adapted from Biomedical Microdevices,
Vol 6, 2004, p. 307, Sinek et al., Figure 5, c© 2004 Kluwer Academic Publishers. With kind permission of Springer
Science and Business Media.
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of the device microenvironment will be lowered as drug is released, inducing an autocatalytic
effect that could lead to accelerated polymer degradation.

The specific nanoparticle device characteristics, such as material type, shape and size,
as well as encapsulated drug, determine the mass transfer processes and chemical reactions
controlling drug release. A biocomputational model should not only take these factors into
account, but also drug release characteristics in vivo, such as cellular tissue reactions and
osmotic pressure, which may bear significantly on particle degradation and resulting drug
release kinetics [74]. The characteristics of drug release for collections of nanoparticles
may then yield input parameters that can be used in continuum models at the tumor scale.

15.4. OUTLOOK ON MODELING

Biocomputation at the service of cancer treatment via nanotechnology may be of value
in dealing both with the issues of chemotherapy delivery and in the design and manufacture
of nanodevices that could be effective in cancer prevention, early detection and diagnosis.
At a system level, modeling at the tumor scale could be enhanced by taking into account
cell genetic characteristics, such as mutations of oncogenes and apoptosis-suppressor genes.
Models of angiogenesis could incorporate the co-option of existing vessels, and perhaps
even the morphology, flow, and pressure of vessels at specific sites in the body affected by
tumor growth. Drug release characteristics of nanoparticles could be quantified in terms
of drug release parameter values that become part of the model at the tumor scale. The
ultimate goal, and “holy grail” in this field, would be to enable the clinical application
of biocomputation to design cancer treatment via nanotechnology based on a particular
patient’s physiological conditions. The results of the in silico model could then provide
valuable diagnostic, prognostic, and therapeutic information.

We conclude by noting that biocomputation predicts that the transport of nanoparticles,
aimed at therapy at the individual cell level, should be expected to be ruled by the same type
of physical phenomena as similarly sized molecules in the human body. For example, the
laws of diffusion along a concentration gradient and convection along a pressure gradient
still apply. It thus seems that delivery of nanoparticles through the circulation to a tumor
would encounter similar issues as traditional chemotherapy, and that these issues may
challenge nanodevices of the future. It may be noteworthy to mention how the body may
react against cancer: some tumors can be heavily infiltrated by macrophages [50, 70], in a
natural endogenous response to a wound that is growing faster than it can heal. Macrophages
not only reach the tumor by passive transport, but can also diapadese into it. Perhaps
nanodevices and nanoparticles that are engineered to behave like macrophages will be able
to reach and stay at the tumor site in significant numbers to completely dispose of malignant
cells. Future work in biocomputation can be expected to help formulate the details of such
an active transport homing, as well as other mechanisms, in order to achieve a clinically
successful response in the treatment of cancer.
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