
Chapter 4
The Role of Incretins in Insulin Secretion

Brock E. Schroeder and Orville Kolterman

Overview of Glucose Regulation and Insulin Secretion

The maintenance of the plasma glucose concentration is a critical bodily function. Hyperglycemia is associated
with long-term micro- and macrovascular complications, while hypoglycemia can lead to serious injury to the
brain, which is dependent on plasma glucose as a fuel source. At any given time the body’s plasma glucose
concentration is a balance between the relative rates of glucose appearance and disappearance. These rates are
regulated by several key organs through the actions of multiple hormonal signals. A brief introduction follows;
however, for more detailed information, see Chapter 2.

During fasting and before meals, glucose appearance is regulated largely by glucagon-induced hepatic glucose
output. Binding of glucagon to receptors in the liver leads to both glycogenolysis and gluconeogenesis. Glucose
disappearance is regulated by peripheral glucose uptake – primarily by the brain, muscle, and splanchnic organs.
Together, these processes normally keep plasma glucose regulated between approximately 70 and 100 mg/dl
during the fasting state.

During a meal and in the postprandial period, meal-derived glucose is the major determinant of glucose
appearance. Glucose absorption in the gut leads to a rise in plasma glucose. This increase in plasma glucose
stimulates insulin secretion from β-cells in the pancreas. Meal-induced increases in plasma insulin – 3 to 4-fold
within 30–60 min of a meal – stimulate glucose uptake by peripheral tissues, keeping 2-h postprandial plasma
glucose concentrations below approximately 140 mg/dl in healthy individuals.

The mechanisms underlying glucose-stimulated insulin secretion from β-cells are complex and involve the
integration of signals from multiple internal and external stimuli. Under normal circumstances, glucose ele-
vation induces a biphasic pattern of insulin release.1,2 Within a few minutes of plasma glucose increases,
first-phase insulin release occurs. This phase, which lasts for approximately 10 min, is thought to reflect a “read-
ily releasable” pool of insulin stored within β-cell secretory vesicles. A longer-lasting second-phase of insulin
release follows – reflecting release of both stored insulin as well as newly produced insulin – and lasts as long as
plasma glucose remains elevated.

These processes describe a general framework of glucose-induced insulin secretion; however, our current
understanding of the mechanisms underlying insulin secretion, as mentioned above, involves an integrated and
complex regulatory system. A key to this understanding has been the identification of the “incretin” hormones
and elucidation of the role they play in the regulation of glucose-dependent insulin release.
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Incretin Hormones: Introduction and History

In the 1960s, several groups first described what has become known as the “incretin effect,” based upon observa-
tions that glucose administered orally elicits an augmented insulin secretory response compared to an equivalent
glucose load administered intravenously (IV).3,4 Elrick and colleagues4 first described an experiment in subjects
without diabetes in which the mean increase in plasma insulin during the first hour after glucose administration
was 37% greater following oral glucose than following IV glucose. This increase occurred despite higher mean
blood glucose concentrations in the IV administration group. During the second hour following glucose admin-
istration, the elevated plasma insulin concentrations were maintained in the oral glucose group (in fact, plasma
insulin increased ∼55% compared to the first hour), while plasma insulin returned toward fasting concentrations
in the IV administration group.

Perley and Kipnis3 confirmed these findings, demonstrating that oral glucose administration elicited an
approximately 60–70% greater insulin secretory response than an equivalent IV glucose load (see Fig. 4.1a, b).
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Fig. 4.1 (a, b) Plasma insulin responses to oral or infused glucose in healthy individuals (a) and patients with type 2 diabetes
(b). Data from Perley and Kipnis3. (c) Insulinotropic effects of GLP-1, but not GIP, infusion in patients with type 2 diabetes under
hyperglycemic clamp conditions. Arrows indicate start of low, then high-dose administrations of GLP-1 or GIP, followed by end of
administration. Data from Nauck et al.41. All data points, Mean ± SE
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In addition, they noted that the timing of insulin secretion was also different between the two groups: maximal
plasma insulin concentrations were reached earlier (∼30–60 min) following oral glucose administration than
following IV administration (∼90–120 min). Perley and Kipnis also demonstrated for the first time that patients
with type 2 diabetes (T2DM) exhibit the incretin effect; however, they noted that patients with diabetes exhibited
a decreased insulin response to oral glucose, a concept which will be explored in much greater detail below.

The findings described above indicate that insulin secretion following meals is not accounted for solely by
changes in blood glucose concentration. In fact, it has been estimated that approximately 60% of insulin secreted
in response to a meal is due to the incretin effect.5 The discovery of the incretin effect led to a search for
mechanisms triggered by oral glucose administration which might play a role in mediating insulin secretion.
While a number of factors were initially proposed,3 currently the incretin effect is attributed largely to two
hormones secreted by specialized endocrine cells in the gut: glucose-dependent insulinotropic peptide (GIP, also
termed gastric inhibitory polypeptide) and glucagon-like peptide-1 (GLP-1).

Glucose-Dependent Insulinotropic Peptide (GIP)

GIP is a peptide hormone, 42-amino acids in length, processed from a 153-amino acid precursor. It is secreted by
the endocrine K-cells of the gut,6 which are located in highest density in the duodenum and upper intestinal tract.
Secretion of GIP increases by approximately 10-fold in response to meal ingestion.7,8 The insulinotropic effects
of GIP are stimulated via activation of specific G protein-coupled receptors on pancreatic β-cells.9 Following
secretion, GIP is rapidly metabolized by the ubiquitous enzyme dipeptidyl peptidase-4 (DPP-4),10,11 and has a
half-life of approximately 7 min.11

GIP Function Overview

The insulinotropic properties of GIP were identified first in 1973,12 and since have been characterized in
islet cells, isolated pancreas, and in vivo in healthy humans.13–17 The insulinotropic effect of GIP is glucose-
dependent, and is absent at glucose concentrations under 140 mg/dl.18 Physiologically, it has been estimated
that GIP-dependent insulin secretion accounts for approximately 20–50% of the incretin effect.19,20 Multiple
groups have shown that inhibiting GIP function causes reduced insulin secretion and impaired glucose regu-
lation in animals models.20,21 Furthermore, mice with genetic deletions of the GIP receptor develop glucose
intolerance.22

In addition to its incretin effects, a number of other effects of GIP have been identified. These include the
following:

(1) GIP has both proliferative and anti-apoptotic effects on β-cells.23–26 The physiological importance of these
findings and potential effects in humans are not known at present.

(2) Evidence for a role of GIP signaling in obesity has come from a variety of studies. GIP receptors are
expressed on adipocytes27 and GIP has been implicated in lipid metabolism in a variety of studies.28–30

Mice with genetic disruption of the GIP receptor are resistant to diet-induced obesity and have reduced
adiposity following high-fat feeding.22,31 Furthermore, when GIP receptors were disrupted in ob/ob mice
(a mouse model of obesity), these mice experienced less weight gain, decreased fat, and increased energy
expenditure.31 While in theory antagonism of GIP signaling may have beneficial effects on obesity, the
benefits are likely outweighed by the negative effects on glucose tolerance.

(3) GIP receptors are also expressed on bone and stimulation of this pathway elicits new bone formation.32

Conversely, young mice lacking GIP receptors have reduced bone size and mass.33 The potential for clinical
application of GIP effects on bone is unknown at present.
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Glucagon-Like Peptide-1 (GLP-1)

While early studies conclusively demonstrated that GIP elicited insulin secretion, Ebert and colleagues34 showed
that removal of GIP from the gut did not eliminate the incretin effect. This finding provided strong evidence
for the existence of additional gut-derived factors with insulinotropic properties. The second incretin hormone
identified is GLP-1, a product of the proglucagon gene (the same precursor gene which codes for glucagon
when expressed in the pancreas). GLP-1 is rapidly secreted from the L-cells of the lower gut following meal
ingestion.35 A truncated version of GLP-1 (amino acids 7–36; GLP-17–36) has been shown to be the predominant
form of bioactive GLP-1 in circulation following meals.36–38 Like GIP, GLP-1 is rapidly metabolized by the
enzyme DPP-4 following release (resulting in the inactive fragment GLP-19–36),10,11,39,40 and has a half-life of
only 2 min in circulation.11

Following a meal, the concentration of GLP-1 rises by about 3-fold.38 This increase is notably less than that of
GIP following a meal; however, GLP-1 has been shown to be the more potent insulinotropic compound.41 In fact,
GLP-1 is one of the most potent insulin-releasing substances known.42 GLP-1 exerts its activity via interaction
with specific GLP-1 receptors on β-cells (despite its name, GLP-1 does not bind to the glucagon receptor). GLP-
1 receptors are G protein-coupled receptors which belong to the same family as the GIP receptor9,43 and, as
described below, the intracellular signaling cascade, which follows incretin binding, elicits insulin release.

GLP-1 Function Overview

The insulinotropic effects of GLP-1 have been identified by several groups in both humans16,44–46 and animal
models.37,47,48 Similar to GIP, GLP-1-induced insulin release is glucose-dependent,46,49 such that increased
insulin secretion only occurs in the presence of elevated glucose concentrations. This characteristic has been
important in the development of incretin-based therapeutics, as the glucose dependence greatly reduces the risk
of treatment-induced hypoglycemia. In animal experiments, treatment with a GLP-1 receptor-specific antagonist
(exendin 9–39) increased both fasting and postprandial glucose concentrations and lowered insulin concentra-
tions following an oral glucose load.50–52 These studies also showed that GLP-1 signaling is responsible for
a considerable proportion (as much as 60%) of the insulin response to an oral glucose load. Lending further
support to the physiological role of GLP-1, mice with a genetic deletion of the GLP-1 receptor have diminished
circulating insulin and increased plasma glucose following an oral glucose challenge.53 In humans, adminis-
tration of the GLP-1-receptor antagonist exendin 9–39 caused an approximately 35% increase in postprandial
glucose,54 suggesting that GLP-1 is essential for normal glucose tolerance. Lastly, GLP-1 has been shown to
contribute to first-phase insulin secretion55 – the robust insulin secretion that occurs during the first 10 min fol-
lowing glucose administration. Because first-phase insulin secretion is characteristically absent in patients with
T2DM, the ability of GLP-1 to affect first-phase insulin release is an important therapeutic consideration.

In addition to glucose-dependent insulinotropic effects, GLP-1 is known to have several other important
functions which affect glucoregulation. These include the following:

(1) GLP-1 suppresses the secretion of glucagon by pancreatic α-cells in a glucose-dependent manner,41,56,57

which leads to a reduction in hepatic glucose production. This effect reinforces the insulin-induced sup-
pression of glucagon release that occurs during the fed state, helping to regulate postprandial glucose
control.

(2) GLP-1 delays gastric emptying.58–60 Slowing nutrient entry into the gut moderates plasma glucose increases
in the post-meal period. The delay in gastric emptying is thought to be mediated via GLP-1 receptors in
the brain, which lead to stimulation of the parasympathetic vagus nerve.61 In addition, GLP-1 reduces the
production of gastric acid, helping to regulate digestion of stomach contents.59,62

(3) A number of lines of evidence suggest that GLP-1 plays a role in the central nervous system control of food
intake. First, GLP-1 receptors are present in a number of brain regions implicated in the control of food intake
including the hypothalamus and area postrema.63,64 These regions lack a blood–brain barrier, permitting
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GLP-1 to access the brain directly from the circulation. In rodents, direct intracerebroventricular injection of
GLP-1 produced a dose-dependent reduction in food intake,53,63–66 while repeated intracerebroventricular
administration resulted in long-term reductions in food intake and body weight.67 Conversely, administration
of a GLP-1 antagonist increased food intake and resulted in weight gain.68 GLP-1 has also been shown to
reduce appetite and caloric intake in studies of healthy humans69 and in patients with T2DM.70 Moreover,
chronic GLP-1 administration is associated with weight loss,71 an effect which was attributed to reduced
appetite in this study.

(4) Lastly, GLP-1 has been shown to have trophic effects on β-cells.72 In animal studies, GLP-1 administration
resulted in islet neogenesis, β-cell proliferation, and an increase in β-cell mass.73–77 GLP-1 has also been
shown to enhance the proliferation of new β-cells from pancreatic progenitor cells.78–80 Finally, GLP-1 has
been reported to inhibit apoptosis of β-cells.81,82 These results suggest that GLP-1 may be beneficial in
patients with T2DM by protecting existing β-cells and/or influencing proliferation of new β-cells; however,
effects in humans have not been established.

Incretin-Induced Insulin Secretion: Mechanism of Action

Before considering the mechanisms of action underlying incretin-induced insulin secretion, it is important to
understand the basic cellular physiology underlying glucose-induced insulin secretion in β-cells. The details
of the regulation of insulin secretion by glucose are reviewed in Chapters 2 and 3 as well by other authors
(for example, see review by Henquin83). Briefly, glucose enters β-cells via facilitated transport (Glut2 trans-
porters84), where it is metabolized, and adenosine triphosphate (ATP) is generated. The ensuing increase in
the intracellular ATP/adenosine diphosphate (ADP) ratio causes inhibition of ATP-sensitive potassium chan-
nels (KATP). Potassium efflux through KATP channels normally keeps the β-cell membrane polarized (negative
resting voltage); thus, when KATP channels are inhibited, the cell membrane is depolarized (moves toward a
neutral or positive resting voltage) in the immediate vicinity of the KATP channels. This depolarization acti-
vates voltage-dependent calcium channels (VDCCs), allowing calcium to enter the cell. Calcium entry leads to
insulin secretory vesicle exocytosis and insulin release.85 Under normal circumstances, delayed rectifier voltage-
dependent potassium channels (Kv) then open, allowing potassium to leave the cell. This efflux repolarizes the
cell membrane and halts the insulin release.

The cellular and molecular mechanisms by which GLP-1 and GIP elicit insulin secretion overlap considerably
and include (see Fig. 4.2) the following:

(1) KATP Channel Modulation. Both GLP-1 and GIP bind to G protein-coupled receptors and activate adeny-
late cyclase, which catalyzes the conversion of ATP to the cellular second messenger 3′–5′-cyclic adenosine
monophosphate (cAMP). These initial steps begin a series of cellular actions by which GLP-1 and GIP are
thought to exert insulinotropic effects. The first downstream mechanism involves modulation of KATP chan-
nels. A number of groups have shown that both GLP-1 and GIP cause closure of KATP channels.86–90 As
described above, inhibition of KATP channels facilitates membrane depolarization which induces down-
stream insulin release. The mechanism underlying the effect on KATP channels is thought to involve
cAMP-dependent protein kinase (PKA); inhibition of PKA reverses the effects of both incretin hormones on
KATP channels86,91 (but see also Suga and colleagues88). Furthermore, in mouse models with a genetic muta-
tion causing an absence of KATP channels, GLP-1- and GIP-induced insulin secretion is diminished.92,93

These results provide further evidence that KATP channel modulation represents an important component of
incretin-induced insulin secretion.

Interestingly, GLP-1 action at the KATP channel may play an important role in the glucose-dependence of
GLP-1-dependent insulin secretion. In the absence of elevated glucose concentrations, GLP-1 cannot inhibit
KATP channels enough to affect exocytosis. However, when GLP-1 is administered with a sulfonylurea,
which directly inhibits KATP channels in a glucose-independent manner, GLP-1 dependent insulin secretion
is augmented.94,95 This effect – uncoupling the glucose dependence of GLP-1 – has consequences in GLP-
1-based therapy which are detailed later in this chapter.
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Fig. 4.2 Schematic of intracellular mechanisms of action underlying incretin-induced insulin secretion. GLP-1 receptor activa-
tion leads cAMP generation and PKA activation, leading to (1) inhibition of KATP channels, which depolarizes β-cells leading to
increased excitability and downstream insulin release; (2) increased VDCC activity, leading to an increase in intracellular calcium;
(3) inhibition of Kv channels, delaying repolarization and extending β-cell excitability. (4) Additional calcium is released from
intracellular stores via PKA, EPAC2, and calcium entry through VDCCs. (5) Intracellular calcium increases stimulate mitochon-
drial ATP production, increasing the ATP/ADP ratio, and leading to additional effects on KATP channels. (6) Multiple intracellular
steps involving PKA, EPAC2, calcium, and cAMP lead to the priming and mobilization of insulin granules for release. (7) Receptor
activation leads to new insulin synthesis as well as increases in the transcription of genes involved in insulin synthesis

(2) Calcium Efflux Through VDCCs. Gromada and colleagues89,90 have demonstrated that GLP-1 and GIP
administration also increase VDCC activity, leading to increased calcium entry into β-cells and insulin exo-
cytosis. As with KATP channel effects, PKA activation appears to underlie the effects on VDCC current
changes.89,90,96

(3) Kv Channel Modulation. As described above, Kv channels are integral in restoring cell membrane potential
following depolarization and thereby limiting calcium entry and further exocytosis of insulin-containing
granules. GLP-1 receptor activation has been shown to inhibit Kv channel currents by approximately 40%
in rat pancreatic β-cells.97 GIP has been reported to have similar effects on Kv channel currents.7 Thus,
inhibiting Kv channel currents may lead to prolonged exocytosis. The effects on Kv channels appear to be
dependent on PKA signaling as well as the phosphatidylinositol-3 kinase pathway.98 In addition to effects
on Kv channel currents, GIP has also been reported to affect cell surface expression and modulation of Kv
channels.99

(4) Intracellular Calcium Stores. In addition to the direct and indirect effects that GLP-1 and GIP have on
calcium entry into the cell through VDCCs, additional calcium is released from intracellular stores such as
the endoplasmic reticulum (ER). This process is thought to be dependent on converging intracellular signals.
For example, GLP-1-stimulated PKA100 and cAMP-regulated guanine nucleotide exchange factor-II (Epac2,
also termed cAMP-GEFII)101 sensitize calcium channels in the ER. Intracellular calcium release is then
initiated by the transient increase in calcium entering the cell through VDCCs,101–105 the net result being a
further increase in intracellular calcium as well as a wider spatial distribution of intracellular calcium. GIP
has been reported to have similar effects.7 The entire process, termed “calcium-induced calcium release,”
is thought to contribute to exocytosis of insulin granules located in subcellular regions not located in the
immediate vicinity of the VDCCs.7,106,107 Thus, calcium-induced calcium release may play a prominent
role in the postprandial state, allowing for an even greater incretin-induced insulin secretory response.
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(5) Mitochondrial ATP synthesis. In addition to stimulating exocytosis, the increase in calcium-induced intra-
cellular calcium release described above has also been shown to affect mitochondrial ATP production.108

Amplified ATP production may lead to further effects on KATP channels in a feed-forward manner.107

(6) cAMP-associated Insulin Granule Mobilization. The insulinotropic activity of GLP-1 results in part from
calcium influx through VDCCs (described above). However, only a small fraction of insulin-containing
granules (less than 1%109) belong to what is termed the “readily releasable pool,”90,110 meaning that they
are located close enough to VDCCs that they undergo exocytosis soon after VDCC opening. The remaining
insulin-containing granules must be “primed” by series of cellular steps involving cAMP, calcium, and both
PKA and Epac2.90,111,112 These steps involve granule mobilization (via PKA) and increases in the size
of granules (via Epac2), both processes which are influenced by GLP-1 and GIP signaling. The increased
availability of insulin-containing granules for exocytosis has been estimated to account for as much as 70%
of the insulinotropic activity of GLP-1 and GIP.89,113

(7) Insulin Biosynthesis. In addition to effecting acute changes in insulin release, both GLP-1 and GIP simulate
insulin synthesis and gene transcription in β-cells.114–116 This process ensures that adequate insulin remains
available for secretion. Moreover, GLP-1 has been shown to upregulate the transcription of genes involved
in insulin secretion.117

Incretins and Type 2 Diabetes Mellitus

It is generally accepted that two key pathophysiological defects contribute to the metabolic irregularities
observed in T2DM: first, progressive β-cell dysfunction with associated insulin secretory deficits; and second,
peripheral insulin resistance. Both defects play a fundamental role in the chronic progression of hyperglycemia
and both are targets of therapeutic intervention. While β-cell loss – in excess of 50% on average at the time of
T2DM diagnosis118 – certainly influences insulin secretion deficits, the discovery and continued research into
incretin hormones and the incretin effect has shed light on new pathways that may play a role in the progres-
sion of T2DM as well as new therapeutic options. Patients with T2DM have been shown to have a significantly
reduced incretin effect.119 Theoretically, this deficit could be caused by impaired secretion of GIP or GLP-1,
accelerated metabolism of the hormones, or defective responsiveness to either.

GIP in Type 2 Diabetes

In contrast to its effects in healthy humans, the role of GIP in patients with T2DM is unclear. Decreased GIP
secretion in T2DM has been reported by one group;120 however, the majority of published studies have reported
normal or even increased GIP secretion in T2DM.121,122 Importantly, a number of groups have reported that
the insulinotropic effects of GIP are lost or nearly lost in T2DM41,123–126 (see Fig. 4.1c), even when GIP is
administered at supraphysiological concentrations.41 These results indicate that patients with T2DM have a
defective responsiveness to GIP. Genetic factors may underlie this effect, as first-degree relatives of patients
with T2DM have diminished GIP-induced insulin secretion compared to normal patients.127 While a conclusive
explanation regarding the loss of the insulinotropic activity of GIP in T2DM has not been determined, some
evidence indicates that GIP receptor downregulation and desensitization may be responsible.128,129

GLP-1 in Type 2 Diabetes

Unlike GIP, GLP-1 secretion has been demonstrated to be deficient in patients with T2DM.121,130 Whether this
defect is a primary causative factor in the pathogenesis of diabetes or a secondary effect has not been conclusively
determined; however, studies of identical twins in which only one twin has T2DM have demonstrated that GLP-1
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secretion is impaired only in the sibling with diabetes.131 This result suggests that GLP-1 secretion deficits are
secondary to the development of T2DM.

While GLP-1 secretion is abnormal in patients with T2DM, cellular responsiveness to GLP-1 is not
diminished41 (see Fig. 4.1c). Thus, unlike with GIP, therapeutic replacement of GLP-1 holds promise for pharma-
cologic development. A number of proof-of-concept studies demonstrated the therapeutic potential of GLP-1 in
patients with T2DM. First, GLP-1 infusion consistently has been shown to induce insulin release.41,46 Second,
GLP-1 maintained its effects on gastric emptying and glucagon release in patients with T2DM.41,59,132 The
glucoregulatory outcomes of GLP-1 infusion have also been investigated. Acute infusion studies (leading to
pharmacological plasma concentrations of GLP-1) have demonstrated beneficial effects on both fasting and post-
prandial blood glucose concentrations.45,46,132 Longer-term experiments have shown normalized blood glucose,
improved hemoglobin A1C (A1C), and body weight loss.71,133–136

While early GLP-1 infusion studies conclusively demonstrated the potential for GLP-1-based therapy for
T2DM, the pharmacotherapeutic value of GLP-1 is significantly limited by its rapid degradation by the enzyme
DPP-4. As described earlier, the half-life of GLP-1 in circulation is approximately 2 min. As a result, the benefits
of GLP-1 therapy would only be possible with continuous infusion.

Leveraging the Glucoregulatory Effects of GLP-1

In response to this important clinical challenge, the GLP-1 signaling pathway has been leveraged by two dis-
tinct pharmacologic approaches. The first approach involves utilizing peptides that have glucoregulatory effects
similar to GLP-1 itself, but are resistant to degradation by DPP-4. These peptides have been termed “incretin
mimetics.” The second approach involves utilizing a variety of small molecules to inhibit the enzymatic activity
of DPP-4, thereby increasing endogenous concentrations of GLP-1. These small molecules have been termed
“DPP-4 inhibitors.”

Incretin Mimetics

Exenatide

At present, exenatide is the only incretin mimetic which has been approved by the US Food and Drug
Administration [FDA] and European Medicines Agency [EMEA]. Liraglutide has been approved by the EMEA,
but was under review by the FDA at the time of publication of this book. The vast majority of published clin-
ical data on incretin mimetics have focused on exenatide; consequently, the bulk of the description of incretin
mimetics presented here will focus on exenatide.

Exenatide is a synthetic version of exendin-4 (not to be confused with exendin 9-39, a GLP-1 antagonist), a
peptide first identified and isolated from the salivary secretions of the Gila Monster (Heloderma suspectum).137

Exenatide shares approximately 50% sequence identity with human GLP-1 and binds to the mammalian GLP-1
receptor;137–139 however, the unique amino acid sequence renders exenatide resistant to degradation from DPP-4,
resulting in detectable concentrations persisting for more than 10 h in the circulation after a single subcutaneous
dose.140

Exenatide shares many of the same glucoregulatory actions as GLP-1. In both human and animal studies,
exenatide enhanced glucose-dependent insulin secretion, suppressed the inappropriate glucagon secretion seen
in T2DM in a glucose-dependent manner, and slowed gastric emptying.141–145 These effects contribute to a
lowering of both fasting and postprandial glucose.140,143 Importantly, though inappropriate glucagon secretion
during hyperglycemia is suppressed by exenatide, hypoglycemia-induced glucagon secretion is unimpaired.146

Like GLP-1, intravenous infusion of exenatide also has been shown to acutely improve β-cell function, as mea-
sured by the restoration of first- and second-phase insulin secretion in patients with T2DM following intravenous
glucose administration.147 In this study, exenatide rapidly restored normal glucose-stimulated insulin secretion
in patients with T2DM. Both in vivo animal models and human clinical trials have demonstrated that exenatide
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reduces food intake and body weight, reproducing the effects of GLP-1 infusion in clinical studies.145,148–150

Lastly, exenatide has been shown to promote β-cell proliferation and neogenesis in animal models.75,80,151,152

The safety and efficacy of exenatide have been investigated in long-term pivotal clinical trials. Patients with
T2DM who were inadequately controlled with metformin and/or a sulfonylurea were treated with placebo, 5 or
10 μg exenatide twice daily (BID).153–156 After 30 weeks of exposure to exenatide, significant changes from
baseline in mean A1C and body weight were reported. Exenatide 10 μg was associated with A1C changes
from baseline of approximately –1%, with average body weight changes from baseline of –2 to –3 kg.153–156

In open-label extensions of these placebo-controlled trials, patients received 10 μg exenatide BID for up to 3
years. In the 3-year completer population, mean A1C change from baseline of –1.0% was reported,157 demon-
strating sustained glycemic control. Body weight loss was progressive, with an average change of –5.3 kg in the
completer population after 3 years (see Fig. 4.3). In these open-label extension studies, improvements in several
cardiovascular (CV) risk factors also were reported after 82 weeks of exenatide treatment. Plasma triglycerides
(–39 mg/dl), diastolic blood pressure (–2.7 mmHg), and C-reactive protein (–44%) were all decreased, while
plasma HDL cholesterol (+4.6 mg/dl) was increased.158
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Fig. 4.3 Independent clinical trials of incretin-based therapies. (a, b) In a 3-year open-label extension of placebo-controlled clinical
trials, exenatide treatment led to sustained improvements in A1C (a) and progressive weight loss (b). Data from Klonoff et al.157.
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Exenatide therapy is associated with gastrointestinal side effects. In the three large placebo-controlled trials,
nausea, mostly transient, was reported by 41–45% of patients treated with exenatide, compared to approximately
18% in patients receiving placebo.154–156,159 Most nausea were mild to moderate and declined over the duration
of the trial, while severe nausea was uncommon (occurring in less than 5% of subjects).154–156,159 Importantly,
exenatide-associated reductions in body weight have been shown to be independent of nausea.158

Because the insulinotropic effects of the GLP-1 pathway are glucose-dependent, exenatide should not have
an intrinsic risk for hypoglycemia. Indeed, the risk of hypoglycemia was not increased when exenatide was
administered on a background of metformin in patients with T2DM.155 Moreover, compared to insulin glargine
and metformin, the risks of both overall and nocturnal hypoglycemia in patients with T2DM treated with exe-
natide and metformin were reduced despite similar improvements in A1C.160 When exenatide was administered
to patients also taking a sulfonylurea, however, the risk of mild-to-moderate hypoglycemia was increased.154,156

This effect is not unexpected, given the aforementioned ability of sulfonylureas to uncouple the glucose-
dependence of GLP-1 agonism. Hypoglycemia risk can be mitigated by decreasing the dose of sulfonylurea
at the time of exenatide treatment initiation.156

A once weekly formulation of exenatide is currently in late-phase development. In a 15-week placebo-
controlled study in patients with T2DM, a 2.0 mg/week dose (n = 15) exerted a potent effect on hemoglobin A1C
(–1.7%) and a robust effect on weight (–3.8 kg).161 This study suggests that once weekly exenatide may pro-
vide 24-h glycemic control with reduction in body weight. Larger long-term Phase 3 clinical trials are currently
underway.

Liraglutide

Liraglutide is an acylated analog of GLP-1 currently in Phase 3 of clinical development. By binding to serum
albumin, the half-life of liraglutide is increased to approximately 13 h in circulation, allowing for once-daily
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injections in patients with T2DM.162 In trials published to date, liraglutide has been shown to induce glucose-
dependent insulin secretion, reduce glucagon secretion, improve fasting and postprandial plasma glucose, and
slow gastric emptying in patients with T2DM.163–168 In multi-dose studies lasting 12–14 weeks, liraglutide has
been reported to reduce A1C (–1.5% at highest dose) and lower body weight (–3 kg at highest dose) in patients
with T2DM.169 Adverse events have been reported to be primarily gastrointestinal in nature.165,167,168,170

DPP-4 Inhibitors

As described above, GLP-1 undergoes rapid degradation in the circulation by DPP-4, limiting the therapeutic
potential of exogenously administered GLP-1. However, the half-life of endogenous GLP-1 (∼2 min) can be
increased by pharmacologically inhibiting the DPP-4 enzyme.171 Several DPP-4 inhibitors have been developed
for the treatment of patients with T2DM.172,173 These small molecule agents inhibit the proteolytic cleavage of
GLP-1 as well as a number of other peptides that are natural substrates for DPP-4 cleavage. These include GIP
as well as a wide range of other peptides including chemokines, glucagon secretin family hormones, pancreatic
polypeptide proteins, and neuropeptides. A membrane-bound form of DPP-4, also known as CD26, plays a role
in cell signaling and is involved in immune function, ion transport, the regulation of extracellular matrix binding,
and cell–cell signaling.174 The functional effect of inhibiting cleavage of these other peptides in unclear at this
time. Two DPP-4 inhibitors, sitagliptin and vildagliptin, have a substantial amount of published clinical data
available, and are discussed here.

Sitagliptin

Sitagliptin is the first DPP-4 inhibitor to be approved by regulatory authorities for the treatment of T2DM.
Sitagliptin treatment results in an approximately 80% inhibition of DPP-4 activity in the circulation, leading to
a 2-fold increase in the plasma concentration of postprandial GLP-1 in healthy human subjects.175 Following
an oral glucose tolerance test in patients with T2DM, sitagliptin increased the active form of GLP-1, as well as
insulin and C-peptide, while reducing plasma glucose and glucagon concentrations.176 Sitagliptin has not been
shown to affect gastric emptying or food intake. To date, there are no published data assessing phasic insulin
secretion during treatment with DPP-4 inhibitors.

In 24-week clinical trials, patients with T2DM who were unable to achieve adequate glycemic control with
metformin, glimepiride, pioglitazone, or diet and exercise experienced significant improvements in A1C (–0.7
to –0.8%, placebo corrected) and fasting plasma glucose with sitagliptin treatment177–181 (see Fig. 4.3). Body
weight was unchanged in these trials. Unlike therapy with incretin mimetics, such as exenatide, which leads to
weight loss, administration of DPP-4 inhibitors are not associated with weight reductions. This difference may be
explained by the relatively modest increases in postprandial GLP-1 concentrations induced by DPP-4 inhibitors
compared with larger pharmacological increases in GLP-1-receptor agonism induced by incretin mimetics. Thus,
the relative effect at the GLP-1 receptor may be higher following treatment with incretin mimetics. In a long-
term comparator trial, sitagliptin demonstrated non-inferiority versus the sulfonylurea glipizide over 52 weeks
in patients with T2DM unable to achieve adequate glycemic control with metformin alone. Sitagliptin treat-
ment was associated with neutral effects on body weight and a lower incidence of hypoglycemia compared to
glipizide treatment.182 In the clinical development of sitagliptin, the most commonly reported adverse events
were nasopharyngitis, upper respiratory tract infection, and headache.178–180 As expected, when sitagliptin is
coadministered with a sulfonylurea, the incidence of hypoglycemia is increased.181

Vildagliptin

Vildagliptin is a DPP-4 inhibitor in Phase 3 of clinical development. In a 12-week clinical trial in patients
with T2DM who were not undergoing treatment with oral antidiabetic agents, patients treated with vildagliptin
experienced improvements in hemoglobin A1C, fasting plasma glucose, 4-h postprandial plasma glucose, and
insulin concentrations.173 No significant changes in patient body weight were reported. In a 52-week clinical
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trial, patients with T2DM who were not achieving glycemic control with metformin alone reported improve-
ments in glycemic control with vildagliptin treatment.183 In a similar 24-week clinical study, vildagliptin
improved hemoglobin A1C and fasting plasma glucose, in association with neutral effects on body weight.184

When examined in a monotherapy setting, 24 weeks of vildagliptin treatment was reported to improve A1C
and fasting plasma glucose, with neutral effects on body weight;185 however, vildagliptin failed to demon-
strate non-inferiority compared to metformin in this study. The most frequently reported adverse events in
vildagliptin clinical studies were headache, upper respiratory tract infection, nasopharyngitis, and symptomatic
mild hypoglycemia.173,185

Conclusion

The discovery of the incretin effect in the 1960s has led to an enhanced understanding of the importance of
gut hormones in normal glucose homeostasis. Notably, the finding that the incretin effect is diminished or
absent in T2DM has led to the development of several novel therapeutic options for patients with T2DM.
Two distinct classes of medications – incretin mimetics and DPP-4 inhibitors – leverage the incretin pathway
to improve blood glucose control. Both classes of compounds have been shown to increase insulin secretion
and reduce the paradoxically elevated glucagon concentrations in patients with diabetes. Additional effects
demonstrated with incretin mimetics such as exenatide include restoration of first-phase insulin response to
IV glucose, slowing of gastric emptying, and reduction of food intake, often resulting in weight loss (Table 4.1).
Diabetes treatments based on the multiple pharmacologic effects of incretin hormones can address the multihor-
monal and multifaceted nature of T2DM and help overcome the clinical barriers present with many traditional
therapies.

Table 4.1 Mechanisms of action and clinical results of incretin mimetics and DPP-4 inhibitors

Incretin mimetics DPP-4 inhibitors

Mechanism of action
Increase meal-stimulated insulin secretion

√ √
Restore first-phase insulin response

√
–

Suppression of inappropriate postprandial glucagon
secretion

√ √

Slow gastric emptying
√

–
Reduce food intake

√
–

Clinical results
Improved glycemic control (A1C)

√ √
Improved postprandial glucose control

√ √
Body weight reduction

√
–

References

1. Rorsman P, Renstrom E. Insulin granule dynamics in pancreatic beta cells. Diabetologia. 2003;46:1029–1045.
2. Rorsman P, Eliasson L, Renstrom E, Gromada J, Barg S, Gopel S. The cell physiology of biphasic insulin secretion. News

Physiol Sci. 2000;15:72–77.
3. Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J

Clin Invest. 1967;46:1954–1962.
4. Elrick H, Stimmler L, Hlad CJ, Arai Y. Plasma insulin responses to oral and intravenous glucose administration. J Clin

Endocrinol Metab. 1964;24:1076–1082.
5. Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, et al. Incretin effects of increasing glucose loads in man

calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63:492–498.
6. Buchan AM, Polak JM, Capella C, Solcia E, Pearse AG. Electronimmunocytochemical evidence for the K cell localization of

gastric inhibitory polypeptide (GIP) in man. Histochemistry. 1978;56:37–44.



68 B.E. Schroeder and O. Kolterman

7. Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am
J Physiol Endocrinol Metab. 2004;287:E199–E206.

8. Orskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory
polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol. 1996;31:665–670.

9. Mayo KE, Miller LJ, Bataille D, Dalle S, Goke B, Thorens B, et al. International union of pharmacology. XXXV. The glucagon
receptor family. Pharmacol Rev. 2003;55:167–194.

10. Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated
glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology. 1995;136:3585–3596.

11. Deacon CF, Nauck MA, Meier J, Hucking K, Holst JJ. Degradation of endogenous and exogenous gastric inhibitory polypep-
tide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab.
2000;85:3575–3581.

12. Dupre J, Ross SA, Watson D, Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin
Endocrinol Metab. 1973;37:826–828.

13. Siegel EG, Creutzfeldt W. Stimulation of insulin release in isolated rat islets by GIP in physiological concentrations and its
relation to islet cyclic AMP content. Diabetologia. 1985;28:857–861.

14. Pederson RA, Brown JC. Interaction of gastric inhibitory polypeptide, glucose, and arginine on insulin and glucagon secretion
from the perfused rat pancreas. Endocrinology. 1978;103:610–615.

15. Andersen DK, Elahi D, Brown JC, Tobin JD, Andres R. Oral glucose augmentation of insulin secretion. Interactions of gastric
inhibitory polypeptide with ambient glucose and insulin levels. J Clin Invest. 1978;62:152–161.

16. Nauck MA, Bartels E, Orskov C, Ebert R, Creutzfeldt W. Additive insulinotropic effects of exogenous synthetic human
gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone
and glucose concentrations. J Clin Endocrinol Metab. 1993;76:912–917.

17. Nauck M, Schmidt WE, Ebert R, Strietzel J, Cantor P, Hoffmann G, et al. Insulinotropic properties of synthetic human gastric
inhibitory polypeptide in man: interactions with glucose, phenylalanine, and cholecystokinin-8. J Clin Endocrinol Metab.
1989;69:654–662.

18. Vilsboll T, Krarup T, Madsbad S, Holst JJ. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels
and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept. 2003;114:115–121.

19. Ebert R, Creutzfeldt W. Influence of gastric inhibitory polypeptide antiserum on glucose-induced insulin secretion in rats.
Endocrinology. 1982;111:1601–1606.

20. Lewis JT, Dayanandan B, Habener JF, Kieffer TJ. Glucose-dependent insulinotropic polypeptide confers early phase insulin
release to oral glucose in rats: demonstration by a receptor antagonist. Endocrinology. 2000;141:3710–3716.

21. Tseng CC, Kieffer TJ, Jarboe LA, Usdin TB, Wolfe MM. Postprandial stimulation of insulin release by glucose-dependent
insulinotropic polypeptide (GIP) – effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the
rat. J Clin Invest. 1996;98:2440–2445.

22. Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y, et al. Glucose intolerance caused by a defect in the entero-insular
axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA. 1999;96:14843–14847.

23. Winter KD, Ehses JA, Eeson G, Kim S-J, Nian C, Warnock G, et al. Effects of glucose-dependent insulinotropic polypeptide
on the phosphorylation of protein kinase B (PKB/AKT) and its contribution to pancreatic beta-cell survival. J Invest Med.
2007;55:S124.

24. Trumper A, Trumper K, Trusheim H, Arnold R, Goke B, Horsch D. Glucose-dependent insulinotropic polypeptide is a growth
factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol. 2001;15:1559–1570.

25. Trumper A, Trumper K, Horsch D. Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic
polypeptide in beta(INS-1)-cells. J Endocrinol. 2002;174:233–246.

26. Ehses JA, Casilla VR, Doty T, Pospisilik JA, Winter KD, Demuth HU, et al. Glucose-dependent insulinotropic polypeptide
promotes beta-(INS-1) cell survival via cyclic adenosine monophosphate-mediated caspase-3 inhibition and regulation of p38
mitogen-activated protein kinase. Endocrinology. 2003;144:4433–4445.

27. Usdin TB, Mezey E, Button DC, Brownstein MJ, Bonner TI. Gastric inhibitory polypeptide receptor, a member of the
secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology.
1993;133:2861–2870.

28. Eckel RH, Fujimoto WY, Brunzell JD. Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured
preadipocytes. Diabetes. 1979;28:1141–1142.

29. Oben J, Morgan L, Fletcher J, Marks V. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-
like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue. J Endocrinol. 1991;130:267–272.

30. Beck B, Max JP. Gastric inhibitory polypeptide enhancement of the insulin effect on fatty acid incorporation into adipose
tissue in the rat. Regul Pept. 1983;7:3–8.

31. Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, et al. Inhibition of gastric inhibitory polypeptide signaling
prevents obesity. Nat Med. 2002;8:738–742.

32. Bollag RJ, Zhong Q, Phillips P, Min L, Zhong L, Cameron R, et al. Osteoblast-derived cells express functional glucose-
dependent insulinotropic peptide receptors. Endocrinology. 2000;141:1228–1235.

33. Xie D, Cheng H, Hamrick M, Zhong Q, Ding KH, Correa D, et al. Glucose-dependent insulinotropic polypeptide receptor
knockout mice have altered bone turnover. Bone. 2005;37:759–769.



4 The Role of Incretins in Insulin Secretion 69

34. Ebert R, Unger H, Creutzfeldt W. Preservation of incretin activity after removal of gastric inhibitory polypeptide (GIP) from
rat gut extracts by immunoadsorption. Diabetologia. 1983;24:449–454.

35. Holst JJ. Enteroglucagon. Annu Rev Physiol. 1997;59:257–271.
36. Orskov C, Holst JJ, Poulsen SS, Kirkegaard P. Pancreatic and intestinal processing of proglucagon in man. Diabetologia.

1987;30:874–881.
37. Holst JJ, Orskov C, Nielsen OV, Schwartz TW. Truncated glucagon-like peptide I, an insulin-releasing hormone from the

distal gut. FEBS Lett. 1987;211:169–174.
38. Kreymann B, Yiangou Y, Kanse S, Williams G, Ghatei MA, Bloom SR. Isolation and characterisation of GLP-1 7-36 amide

from rat intestine. Elevated levels in diabetic rats. FEBS Lett. 1988;242:167–170.
39. Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like

peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem.
1993;214:829–835.

40. Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ. Both subcutaneously and intravenously administered
glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects.
Diabetes. 1995;44:1126–1131.

41. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1
[7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest.
1993;91:301–307.

42. Fehmann HC, Göke R, Göke B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-
dependent insulin releasing polypeptide. Endocrine Rev. 1995;16:390–410.

43. Thorens B. Expression cloning of the pancreatic cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc
Natl Acad Sci USA. 1992;89:8641–8645.

44. Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet.
1987;2:1300–1304.

45. Gutniak M, Orskow C, Holst JJ, Ahrén B, Efendic S. Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in
normal subjects and patients with diabetes mellitus. N Engl J Med. 1992;326:1316–1322.

46. Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF. Insulinotropic action of glucagonlike peptide-I-(7-37) in diabetic
and nondiabetic subjects. Diabetes Care. 1992;15:270–276.

47. Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent
stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987;79:616–619.

48. Goke R, Wagner B, Fehmann HC, Göke B. Glucose-dependency of the insulin stimulatory effect of glucagon-like peptide-1
(7-36) amide on the rat pancreas. Res Exp Med (Berl). 1993;193:97–103.

49. Qualmann C, Nauck MA, Holst JJ, Orskov C, Creutzfeldt W. Insulinotropic actions of intravenous glucagon-like peptide-1
(GLP-1) [7-36 amide] in the fasting state in healthy subjects. Acta Diabetol. 1995;32:13–16.

50. Kolligs F, Fehmann HC, Göke R, Göke B. Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor
antagonist exendin (9-39) amide. Diabetes. 1995;44:16–19.

51. D’Alessio DA, Vogel R, Prigeon R, Laschansky E, Koerker D, Eng J, et al. Elimination of the action of glucagon-like peptide
1 causes an impairment of glucose tolerance after nutrient ingestion by healthy baboons. J Clin Invest. 1996;97:133–138.

52. Baggio L, Kieffer TJ, Drucker DJ. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, regulates fasting
glycemia and nonenteral glucose clearance in mice. Endocrinology. 2000;141:3703–3709.

53. Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL, Auerbach AB, Joyner AL, et al. Glucose intolerance but normal satiety
in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med. 1996;2:1254–1258.

54. Edwards CMB, Todd JF, Mahmoudi M, Wang ZL, Wang RM, Ghatei MA, et al. Glucagon-like peptide 1 has a physiolog-
ical role in the control of postprandial glucose in humans – studies with the antagonist exendin 9-39. Diabetes. 1999;48:
86–93.

55. Otonkoski T, Hayek A. Constitution of a biphasic insulin response to glucose in human fetal pancreatic beta-cells with
glucagon-like peptide 1. J Clin Endocrinol Metab. 1995;80:3779–3783.

56. Orskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine
secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology. 1988;123:2009–2013.

57. Kawai K, Suzuki S, Ohashi S, Mukai H, Ohmori H, Murayama Y, et al. Comparison of the effects of glucagon-like peptide-
1-(1-37) and -(7-37) and glucagon on islet hormone release from isolated perfused canine and rat pancreases. Endocrinology.
1989;124:1768–1773.

58. Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Truncated GLP-1 (proglucagon 78-107-amide)
inhibits gastric and pancreatic functions in man. Dig Dis Sci. 1993;38:665–673.

59. Willms B, Werner J, Holst JJ, Orskov C, Creutzfeldt W, Nauck MA. Gastric emptying glucose responses, and insulin secretion
after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7-36) amide in type 2 (noninsulin-dependent)
diabetic patients. J Clin Endocrinol Metab. 1996;81:327–332.

60. Young AA, Gedulin BR, Rink TJ. Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like
peptide (7-36)NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism. 1996;45:1–3.

61. Imeryuz N, Yegen BC, Bozkurt A, Coskun T, Villanueva-Penacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits
gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol. 1997;273:G920–G927.



70 B.E. Schroeder and O. Kolterman

62. Schjoldager BT, Mortensen PE, Christiansen J, Orskov C, Holst JJ. GLP-1 (glucagon-like peptide 1) and truncated GLP-1,
fragments of human proglucagon, inhibit gastric acid secretion in humans. Dig Dis Sci. 1989;34:703–708.

63. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, et al. A role for glucagon-like peptide-1 in the central
regulation of feeding. Nature. 1996;379:69–72.

64. Shughrue PJ, Lane MV, Merchenthaler I. Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus.
Endocrinology. 1996;137:5159–5162.

65. Donahey JCK, van Dijk G, Woods SC, Seeley RJ. Intraventricular GLP-1 reduces short- but not long-term food intake or body
weight in lean and obese rats. Brain Res. 1998;779:75–83.

66. Conlon JM, Samson WK, Dobbs RE, Orci L, Unger RH. Glucagon-like polypeptides in canine brain. Diabetes. 1979;28:
700–702.

67. Davis HR, Mullins DE, Pines JM, Hoos LM, France CF, Compton DS, et al. Effect of chronic central administration of
glucagon-like peptide-1 (7-36) amide on food consumption and body weight in normal and obese rats. Obes Res. 1998;6:
147–156.

68. Meeran K, O’shea D, Edwards CMB, Turton MD, Heath MM, Gunn I, et al. Repeated intracerebroventricular administration
of glucagon-like peptide-1-(7-36) amide or exendin-(9-39) alters body weight in the rat. Endocrinology. 1999;140:244–250.

69. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J
Clin Invest. 1998;101:515–520.

70. Gutzwiller JP, Drewe J, Göke B, Schmidt H, Rohrer B, Lareida J, et al. Glucagon-like peptide-1 promotes satiety and reduces
food intake in patients with diabetes mellitus type 2. Am J Physiol. 1999;45:R1541–R1544.

71. Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin
sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359:824–830.

72. Egan JM, Bulotta A, Hui H, Perfetti R. GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta
cells. Diabetes Metab Res Rev. 2003;19:115–123.

73. Edvell A, Lindstrom P. Initiation of increased pancreatic islet growth in young normoglycemic mice (Umea +/?).
Endocrinology. 1999;140:778–783.

74. Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum
homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology.
2000;141:4600–4605.

75. Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in
increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999;48:2270–2276.

76. Stoffers DA, Kieffer TJ, Hussain MA, Drucker DJ, Bonner-Weir S, Habener JF, et al. Insulinotropic glucagon-like pep-
tide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes.
2000;49:741–748.

77. Farilla L, Hui H, Bertolotto C, Kang E, Bulotta A, Di Mario U, et al. Glucagon-like peptide-1 promotes islet cell growth and
inhibits apoptosis in zucker diabetic rats. Endocrinology. 2002;143:4397–4408.

78. Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF. Insulinotropic hormone glucagon-like peptide-1 differentiation of
human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology. 2002;143:3152–3161.

79. Hardikar AA, Wang XY, Williams LJ, Kwok J, Wong R, Yao M, et al. Functional maturation of fetal porcine beta-cells by
glucagon-like peptide 1 and cholecystokinin. Endocrinology. 2002;143:3505–3514.

80. Zhou J, Wang X, Pineyro MA, Egan JM. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon-
and insulin-producing cells. Diabetes. 1999;48:2358–2366.

81. Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, et al. GLP-1 inhibits cell apoptosis and improves
glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144:5149–5158.

82. Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates beta cell
apoptosis. J Biol Chem. 2003;278:471–478.

83. Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49:1751–1760.
84. Steiner DF, James DE. Cellular and molecular biology of the beta-cell. Diabetologia. 1992;35:S41–S48.
85. Ashcroft FM, Proks P, Smith PA, Ammala C, Bokvist K, Rorsman P. Stimulus-secretion coupling in pancreatic beta cells. J

Cell Biochem. 1994;55:54–65.
86. Holz GG, Kuhtreiber WM, Habener JF. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone

glucagon-like peptide-1(7-37). Nature. 1993;361:362–365.
87. Light PE, Manning Fox JE, Riedel MJ, Wheeler MB. Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium

channels via a protein kinase A- and ADP-dependent mechanism. Mol Endocrinol. 2002;16:2135–2144.
88. Suga S, Kanno T, Ogawa Y, Takeo T, Kamimura N, Wakui M. cAMP-independent decrease of ATP-sensitive K+ channel

activity by GLP-1 in rat pancreatic beta-cells. Pflugers Arch. 2000;440:566–572.
89. Gromada J, Ding WG, Barg S, Renstrom E, Rorsman P. Multisite regulation of insulin secretion by cAMP-increasing agonists:

evidence that glucagon-like peptide 1 and glucagon act via distinct receptors. Pflugers Arch. 1997;434:515–524.
90. Gromada J, Bokvist K, Ding WG, Holst JJ, Nielsen JH, Rorsman P. Glucagon-like peptide 1(7-36) amide stimulates exocy-

tosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes.
1998;47:57–65.



4 The Role of Incretins in Insulin Secretion 71

91. Ding WG, Gromada J. Protein kinase A-dependent stimulation of exocytosis in mouse pancreatic beta-cells by glucose-
dependent insulinotropic polypeptide. Diabetes. 1997;46:615–621.

92. Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L, et al. cAMP-activated protein kinase-independent
potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes. 2002;51:3440–3449.

93. Shiota C, Larsson O, Shelton KD, Shiota M, Efanov AM, Hoy M, et al. Sulfonylurea receptor type 1 knock-out mice
have intact feeding-stimulated insulin secretion despite marked impairment in their response to glucose. J Biol Chem.
2002;277:37176–37182.

94. de Heer J, Holst JJ. Sulfonylurea compounds uncouple the glucose dependence of the insulinotropic effect of glucagon-like
peptide 1. Diabetes. 2007;56:438–443.

95. Gutniak MK, Juntti-Berggren L, Hellstrom PM, Guenifi A, Holst JJ, Efendic S. Glucagon-like peptide I enhances the
insulinotropic effect of glibenclamide in NIDDM patients and in the perfused rat pancreas. Diabetes Care. 1996;19:
857–863.

96. Ammala C, Ashcroft FM, Rorsman P. Calcium-independent potentiation of insulin release by cyclic AMP in single beta-cells.
Nature. 1993;363:356–358.

97. MacDonald PE, Salapatek AM, Wheeler MB. Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent
repolarizing K(+) currents in beta-cells: a possible glucose-dependent insulinotropic mechanism. Diabetes. 2002;51(Suppl
3):S443–S447.

98. MacDonald PE, Wang X, Xia F, El-Kholy W, Targonsky E, Tsushima RG, et al. Antagonism of rat beta-cell voltage-dependent
K+ currents by exendin-4 requires dual activation of the cAMP/PKA and PI3 kinase signalling pathways. J Biol Chem.
2003;278:52446–52453.

99. Kim SJ, Choi WS, Han JS, Warnock G, Fedida D, McIntosh CH. A novel mechanism for the suppression of a voltage-gated
potassium channel by glucose-dependent insulinotropic polypeptide: protein kinase A-dependent endocytosis. J Biol Chem.
2005;280:28692–28700.

100. Yada T, Itoh K, Kakei M, Tanaka H. Glucose metabolism by rat pancreatic beta-cells produces dual change in cytosolic Ca2+.
Jpn J Physiol. 1993;43:S115–S118.

101. Kang G, Chepurny OG, Holz GG. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced
Ca2+ release in INS-1 pancreatic beta-cells. J Physiol. 2001;536:375–385.

102. Gromada J, Dissing S, Bokvist K, Renstrom E, Frokjaer-Jensen J, Wulff BS, et al. Glucagon-like peptide I increases
cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes.
1995;44:767–774.

103. Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL, et al. Epac-selective cAMP analog 8-pCPT-2′-O-Me-
cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J Biol Chem. 2003;278:8279–
8285.

104. Islam MS, Leibiger I, Leibiger B, Rossi D, Sorrentino V, Ekstrom TJ, et al. In situ activation of the type 2 ryan-
odine receptor in pancreatic beta cells requires cAMP-dependent phosphorylation. Proc Natl Acad Sci USA. 1998;95:
6145–6150.

105. Liu YJ, Grapengiesser E, Gylfe E, Hellman B. Crosstalk between the cAMP and inositol trisphosphate-signalling pathways
in pancreatic beta-cells. Arch Biochem Biophys. 1996;334:295–302.

106. Kang G, Holz GG. Amplification of exocytosis by Ca(2+)-induced Ca(2+) release in INS-1 pancreatic beta cells. J Physiol.
2003;546:175–189.

107. Holz G. New insights concerning the glucose-dependent insulin secretagogue action of glucagon-like peptide-1 in pancreatic
beta-cells. Horm Metab Res. 2004;36:787–794.

108. Tsuboi T, da Silva Xavier G, Holz GG, Jouaville LS, Thomas AP, Rutter GA. Glucagon-like peptide-1 mobilizes intracellular
Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells. Biochem J. 2003;369:287–299.

109. Eliasson L, Renstrom E, Ding WG, Proks P, Rorsman P. Rapid ATP-dependent priming of secretory granules precedes Ca(2+)-
induced exocytosis in mouse pancreatic B-cells. J Physiol. 1997;503(Pt 2):399–412.

110. Eliasson L, Ma X, Renstrom E, Barg S, Berggren PO, Galvanovskis J, et al. SUR1 regulates PKA-independent cAMP-induced
granule priming in mouse pancreatic B-cells. J Gen Physiol. 2003;121:181–197.

111. Renstrom E, Eliasson L, Rorsman P. Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in
mouse pancreatic B-cells. J Physiol. 1997;502(Pt 1):105–118.

112. Hisatomi M, Hidaka H, Niki I. Ca2+/calmodulin and cyclic 3,5′ adenosine monophosphate control movement of secre-
tory granules through protein phosphorylation/dephosphorylation in the pancreatic beta-cell. Endocrinology. 1996;137:
4644–4649.

113. Gromada J, Holst JJ, Rorsman P. Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide
1. Pflugers Arch Eur J Physiol. 1998;435:583–594.

114. Fehmann HC, Habener JF. Insulinotropic hormone glucagon-like peptide-I(7-37) stimulation of proinsulin gene expression
and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology. 1992;130:159–166.

115. Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF. Glucagon-like peptide I stimulates insulin gene expression and
increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci USA. 1987;84:3434–3438.

116. Wang Y, Montrose-Rafizadeh C, Adams L, Raygada M, Nadiv O, Egan JM. GIP regulates glucose transporters, hexokinases,
and glucose-induced insulin secretion in RIN 1046-38 cells. Mol Cell Endocrinol. 1996;116:81–87.



72 B.E. Schroeder and O. Kolterman

117. Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol
3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta
(INS-1)-cells. Diabetologia. 1999;42:856–864.

118. U.K. Prospective Diabetes Study Group. U.K. Prospective Diabetes Study 16. Overview of 6 years’ therapy of type II diabetes:
a progressive disease. U.K. Prospective Diabetes Study Group. Diabetes. 1995;44:1249–1258.

119. Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes.
Diabetologia. 1986;29:46–52.

120. Creutzfeldt W, Ebert R, Nauck M, Stockmann F. Disturbances of the entero-insular axis. Scand J Gastroenterol Suppl.
1983;82:111–119.

121. Toft-Nielsen MB, Damholt MB, Madsbad S, Hilsted LM, Hughes TE, Michelsen BK, et al. Determinants of the impaired
secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab. 2001;86:3717–3723.

122. Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active
glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001;50:609–613.

123. Amland PF, Jorde R, Aanderud S, Burhol PG, Giercksky KE. Effects of intravenously infused porcine GIP on serum insulin,
plasma C-peptide, and pancreatic polypeptide in non-insulin-dependent diabetes in the fasting state. Scand J Gastroenterol.
1985;20:315–320.

124. Elahi D, McAloon-Dyke M, Fukagawa NK, Meneilly GS, Sclater AL, Minaker KL, et al. The insulinotropic actions of
glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7-37) in normal and diabetic subjects. Regul
Pept. 1994;51:63–74.

125. Krarup T, Saurbrey N, Moody AJ, Kuhl C, Madsbad S. Effect of porcine gastric inhibitory polypeptide on beta-cell function
in type I and type II diabetes mellitus. Metabolism. 1987;36:677–682.

126. Jones IR, Owens DR, Moody AJ, Luzio SD, Morris T, Hayes TM. The effects of glucose-dependent insulinotropic polypeptide
infused at physiological concentrations in normal subjects and type 2 (non-insulin-dependent) diabetic patients on glucose
tolerance and B-cell secretion. Diabetologia. 1987;30:707–712.

127. Meier JJ, Hucking K, Holst JJ, Deacon CF, Schmiegel WH, Nauck MA. Reduced insulinotropic effect of gastric inhibitory
polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes. 2001;50:2497–2504.

128. Lynn FC, Pamir N, Ng EH, McIntosh CH, Kieffer TJ, Pederson RA. Defective glucose-dependent insulinotropic polypeptide
receptor expression in diabetic fatty Zucker rats. Diabetes. 2001;50:1004–1011.

129. Lynn FC, Thompson SA, Pospisilik JA, Ehses JA, Hinke SA, Pamir N, et al. A novel pathway for regulation of glucose-
dependent insulinotropic polypeptide (GIP) receptor expression in beta cells. FASEB J. 2003;17:91–93.

130. Toft-Nielsen M-B, Damholt MB, Hilsted L, Hughes TE, Krarup T, Madsbad S, et al. GLP-1 secretion is decreased in NIDDM
patients compared to matched control subjects with normal glucose tolerance. Diabetologia. 1999;42:A40.

131. Vaag AA, Holst JJ, Volund A, BeckNielsen H. Gut incretin hormones in identical twins discordant for non-insulin-dependent
diabetes mellitus (NIDDM) – evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in
NIDDM twins. Eur J Endocrinol. 1996;135:425–432.

132. Nauck MA, Kleine N, Orskov C, Holst JJ, Willms B, Creutzfeldt W. Normalization of fasting hyperglycaemia by exoge-
nous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993;36:
741–744.

133. Nauck MA, Holst JJ, Willms B. Glucagon-like peptide 1 and its potential in the treatment of non-insulin-dependent diabetes
mellitus. Horm Metab Res. 1997;29:411–416.

134. Larsen J, Hylleberg B, Ng K, Damsbo P. Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain
acceptable glycemia in type 2 diabetic patients who are poorly controlled on sulphonylurea treatment. Diabetes Care.
2001;24:1416–1421.

135. Todd JF, Edwards CM, Ghatei MA, Mather HM, Bloom SR. Subcutaneous glucagon-like peptide-1 improves postprandial
glycaemic control over a 3-week period in patients with early type 2 diabetes. Clin Sci (Colch). 1998;95:325–329.

136. Nauck MA, Wollschlager D, Werner J, Holst JJ, Orskov C, Creutzfeldt W, et al. Effects of subcutaneous glucagon-like peptide
1 (GLP-1 [7-36 amide]) in patients with NIDDM. Diabetologia. 1996;39:1546–1553.

137. Eng J, Kleinman WA, Singh L, Singh G, Raufman JP. Isolation and characterization of exendin-4, an exendin-3 analogue,
from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J
Biol Chem. 1992;267:7402–7405.

138. Goke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, et al. Exendin-4 is a high potency agonist and truncated exendin-
(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem.
1993;268:19650–19655.

139. Thorens B, Porret A, Buhler L, Deng SP, Morel P, Widmann C. Cloning and functional expression of the human islet
GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes.
1993;42:1678–1682.

140. Kolterman OG, Kim DD, Shen L, Ruggles JA, Nielsen LL, Fineman MS, et al. Pharmacokinetics, pharmacodynamics, and
safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm. 2005;62:173–181.

141. Parkes DG, Pittner R, Jodka C, Smith P, Young A. Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and
in vitro. Metabolism. 2001;50:583–589.

142. Egan JM, Clocquet AR, Elahi D. The insulinotropic effect of acute exendin-4 administered to humans: comparison of
nondiabetic state to type 2 diabetes. J Clin Endocrinol Metab. 2002;87:1282–1290.



4 The Role of Incretins in Insulin Secretion 73

143. Kolterman OG, Buse JB, Fineman MS, Gaines E, Heintz S, Bicsak TA, et al. Synthetic exendin-4 (exenatide) significantly
reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab. 2003;88:3082–
3089.

144. Gedulin B, Jodka C, Hoyt J. Exendin-4 (AC2993) decreases glucagon secretion during hyperglycemic clamps in diabetic fatty
Zucker rats. Diabetes. 1999;48(Suppl 1):A199 (Abstract 0864).

145. Nielsen LL, Young AA, Parkes DG. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved
glycemic control of type 2 diabetes. Regul Pept. 2004;117:77–88.

146. Degn KB, Brock B, Juhl CB, Djurhuus CB, Grubert J, Kim D, et al. Effect of intravenous infusion of exenatide (synthetic
exendin-4) on glucose-dependent insulin secretion and counterregulation during hypoglycemia. Diabetes. 2004;53:2397–
2403.

147. Fehse F, Trautmann M, Holst JJ, Halseth AE, Nanayakkara N, Nielsen LL, et al. Exenatide augments first and second phase
insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab. 2005;90:5991–
5997.

148. Szayna M, Doyle ME, Betkey JA, Holloway HW, Spencer RG, Greig NH, et al. Exendin-4 decelerates food intake, weight
gain, and fat deposition in Zucker rats. Endocrinology. 2000;141:1936–1941.

149. Young AA, Gedulin BR, Bhavsar S, Bodkin N, Jodka C, Hansen B, et al. Glucose-lowering and insulin-sensitizing actions
of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats and diabetic rhesus monkeys (Macaca
mulatta). Diabetes. 1999;48:1026–1034.

150. Bhavsar S, Watkins J, Young A. Comparison of central and peripheral effects of exendin-4 and GLP-1 on food intake in rats.
Program and Abstracts: 80th Annual Meeting of the Endocrine Society; 1998:433 (Abstract P3–223).

151. Tourrel C, Bailbe D, Meile MJ, Kergoat M, Portha B. Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogen-
esis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes.
2001;50:1562–1570.

152. Tourrel C, Bailbe D, Lacorne M, Meile MJ, Kergoat M, Portha B. Persistent improvement of type 2 diabetes in the Goto-
Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4.
Diabetes. 2002;51:1443–1452.

153. Keating GM. Exenatide. Drugs. 2005;65:1681–1692.
154. Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30

weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care. 2004;27:2628–2635.
155. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control

and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005;28:1092–1100.
156. Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, et al. Effects of exenatide (exendin-4) on

glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care.
2005;28:1083–1091.

157. Klonoff DC, Buse JB, Nielsen LL, Guan X, Bowlus CL, Holcombe JH, et al. Exenatide effects on diabetes, obesity, cardio-
vascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin.
2007;24:275–286.

158. Blonde L, Klein EJ, Han J, Zhang B, Mac SM, Poon TH, et al. Interim analysis of the effects of exenatide treatment on A1C,
weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes. Diabetes Obes Metab.
2006;8:436–447.

159. Amylin Pharmaceuticals Inc. Byetta R© Exenatide Injection [Prescribing Information]. San Diego, CA: Amylin
Pharmaceuticals, Inc.; 2007.

160. Trautmann ME, Burger J, Johns D, Brodows R, Okerson T, Roberts A, et al. Less hypoglycemia with exenatide versus
insulin glargine, despite similar HbA1C improvement, in patients with T2DM adjunctively treated with metformin. Diabetes.
2007;56(Suppl 1):A45 (Abstract 172-OR).

161. Kim D, MacConell L, Zhuang D, Kothare PA, Trautmann M, Fineman M, et al. Effects of once-weekly dosing of a long-
acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care.
2007;30:1487–1493.

162. Agerso H, Jensen LB, Elbrond B, Rolan P, Zdravkovic M. The pharmacokinetics, pharmacodynamics, safety and tolerability
of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia. 2002;45:195–202.

163. Degn KB, Juhl CB, Sturis J, Jakobsen G, Brock B, Chandramouli V, et al. One week’s treatment with the long-acting glucagon-
like peptide 1 derivative liraglutide (NN2211) Markedly improves 24-h glycemia and alpha- and beta-cell function and reduces
endogenous glucose release in patients with type 2 diabetes. Diabetes. 2004;53:1187–1194.

164. Chang AM, Jakobsen G, Sturis J, Smith MJ, Bloem CJ, An B, et al. The GLP-1 derivative NN2211 restores beta-cell sensitivity
to glucose in type 2 diabetic patients after a single dose. Diabetes. 2003;52:1786–1791.

165. Harder H, Nielsen L, Thi TD, Astrup A. The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic
control, body composition, and 24-h energy expenditure in patients with type 2 diabetes. Diabetes Care. 2004;27:1915–1921.

166. Juhl CB, Hollingdal M, Sturis J, Jakobsen G, Agerso H, Veldhuis J, et al. Bedtime administration of NN2211, a long-acting
GLP-1 derivative, substantially reduces fasting and postprandial glycemia in type 2 diabetes. Diabetes. 2002;51:424–429.

167. Madsbad S, Schmitz O, Ranstam J, Jakobsen G, Matthews DR. Improved glycemic control with no weight increase in patients
with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a
12-week, double-blind, randomized, controlled trial. Diabetes Care. 2004;27:1335–1342.



74 B.E. Schroeder and O. Kolterman

168. Nauck MA, Hompesch M, Filipczak R, Le TD, Zdravkovic M, Gumprecht J. Five weeks of treatment with the GLP-1 analogue
liraglutide improves glycaemic control and lowers body weight in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes.
2006;114:417–423.

169. Vilsboll T, Zdravkovic M, Le-Thi T, Krarup T, Schmitz O, Courreges JP, et al. Liraglutide, a long-acting human GLP-1
analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia
in patients with type 2 diabetes mellitus. Diabetes Care. 2007;30:1608–1610.

170. Feinglos MN, Saad MF, Pi-Sunyer FX, An B, Santiago O. Effects of liraglutide (NN2211), a long-acting GLP-1 analogue, on
glycaemic control and bodyweight in subjects with Type 2 diabetes. Diabetes Med. 2005;22:1016–1023.

171. Holst JJ. Therapy of type 2 diabetes mellitus based on the actions of glucagon-like peptide-1. Diabetes Metab Res Rev.
2002;18:430–441.

172. Ahren B, Landin-Olsson M, Jansson PA, Svensson M, Holmes D, Schweizer A. Inhibition of dipeptidyl peptidase-4 reduces
glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metab. 2004;89:2078–
2084.

173. Ristic S, Byiers S, Foley J, Holmes D. Improved glycaemic control with dipeptidyl peptidase-4 inhibition in patients with type
2 diabetes: vildagliptin (LAF237) dose response. Diabetes Obes Metab. 2005;7:692–698.

174. McIntosh CH, Demuth HU, Kim SJ, Pospisilik JA, Pederson RA. Applications of dipeptidyl peptidase IV inhibitors in diabetes
mellitus. Int J Biochem Cell Biol. 2006;38:860–872.

175. Herman GA, Stevens C, Van Dyck K, Bergman A, Yi B, De Smet M, et al. Pharmacokinetics and pharmacodynamics of
sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-
controlled studies with single oral doses. Clin Pharmacol Ther. 2005;78:675–688.

176. Herman GA, Zhao P-L, Dietrich G, Color G, Schrodter A, Keymeulen B, et al. The DPP-IV inhibitor MK-0341 enhances
active GLP-1 and reduces glucose following an OGTT in type 2 diabetics. Diabetes. 2004;53(Suppl 2):A82 (Abstract 353-
OR).

177. Aschner P, Kipnes MS, Lunceford JK, Sancez M, Mickel C, Williams-Herman D, et al. Effect of the dipeptidyl peptidase-4
inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 2006;29:2632–2637.

178. Charbonnel B, Karasik A, Liu J, Wu M, Meininger G. Sitagliptin Study 020 Group. Efficacy and safety of the dipeptidyl
peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled
with metformin alone. Diabetes Care. 2006;29:2638–2643.

179. Rosenstock J, Brazg R, Andryuk PJ, Lu K, Stein P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin
added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind,
placebo-controlled, parallel-group study. Clin Ther. 2006;28:1556–1568.

180. Goldstein B, Feinglos M, Lunceford J, Johnson J, Williams-Herman DE, for the Sitagliptin 036 Study Group∗. Effect of initial
combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with
type 2 diabetes. Diabetes Care. 2007;30:1979–1987.

181. Hermansen K, Kipnes M, Luo E, Fanurik D, Khatami H, Stein P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor,
sitagliptin, in patients with type 2 diabetes mellitus inadequately controlled on glimepiride alone or on glimepiride and
metformin. Diabetes Obes Metab. 2007;9:733–745.

182. Nauck MA, Meininger G, Sheng D, Terranella L, Stein PP, Sitagliptin Study 024 Group. Efficacy and safety of the dipeptidyl
peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately
controlled on metformin alone: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab. 2007;9:194–205.

183. Ahren B, Pacini G, Foley JE, Schweizer A. Improved meal-related beta-cell function and insulin sensitivity by the dipep-
tidyl peptidase-IV inhibitor vildagliptin in metformin-treated patients with type 2 diabetes over 1 year. Diabetes Care.
2005;28:1936–1940.

184. Bosi E, Camisasca RP, Collober C, Rochotte E, Garber AJ. Effects of vildagliptin on glucose control over 24 weeks in patients
with type 2 diabetes inadequately controlled with metformin. Diabetes Care. 2007;30:890–895.

185. Pi-Sunyer FX, Schweizer A, Mills D, Dejager S. Efficacy and tolerability of vildagliptin monotherapy in drug-naive patients
with type 2 diabetes. Diabetes Res Clin Pract. 2007;76:132–138.


	4 The Role of Incretins in Insulin Secretion
	 Overview of Glucose Regulation and Insulin Secretion
	 Incretin Hormones: Introduction and History
	 Glucose-Dependent Insulinotropic Peptide (GIP)
	 GIP Function Overview

	 Glucagon-Like Peptide-1 (GLP-1)
	 GLP-1 Function Overview

	 Incretin-Induced Insulin Secretion: Mechanism of Action
	 Incretins and Type 2 Diabetes Mellitus
	 GIP in Type 2 Diabetes
	 GLP-1 in Type 2 Diabetes

	 Leveraging the Glucoregulatory Effects of GLP-1
	 Incretin Mimetics
	 Exenatide
	 Liraglutide

	 DPP-4 Inhibitors
	 Sitagliptin
	 Vildagliptin


	 Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




