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38.1 Introduction

Genetic epidemiology combines the scientific disciplines of human genetics, epi-
demiology, and biostatistics and has close relationships with the fields of medicine,
molecular genetics, and molecular epidemiology. The latter traditionally has been
concerned more with the study of molecular markers of exposure, susceptibility,
and disease (see chapter �Molecular Epidemiology of this handbook). The field is
also a specialized subdiscipline of biometry and mathematical population genetics
with major biometrical contributions to human genetics and the development
of statistical methods including segregation, linkage, and association analysis;
simulation methods; and computer algorithms. Rather than focusing on cells or
molecules (as in molecular genetics) or on individual patients (as in clinical
genetics), genetic epidemiology research is conducted using populations or large
series of systematically collected families (Khoury et al. 1993).

Genetic epidemiology aims to detect the genetic origin of phenotypic variability
in humans (Vogel 2000) and unravel genetic components that contribute to the devel-
opment or the course of a disease (or more generally a phenotype, the observed trait),
along with environmental or other risk factors that may modify the effects of genes.
Thus, the International Society of Genetic Epidemiology (IGES 2012) describes
the field as a marriage between the disciplines of genetics and epidemiology,
emphasizing the need to join the fields. Whereas genetics tends to focus on the
genotype-phenotypecorrelation neglecting the environment and epidemiology tends
to focus on environmental and demographic factors, a full understanding of the
etiology of complex traits can only be achieved by considering both explaining how
genes are expressed in the presence of different environmental contexts and how
genetic and environmental factors act together in shaping a phenotype.

In contrast to classical risk factor epidemiology, the three main complications
in genetic epidemiology are dependencies, large data sets, and the use of indirect
evidence. The structure of chromosomes and families or populations leads to major
dependencies within the data, thus requiring customized models and tests. Modern
technologies can yield millions of genotypes per subject for many thousands of
subjects at an affordable cost, and even higher density sequencing platforms are
now becoming available, along with a plethora of other data types (e.g., expression,
proteomics) and repositories of biological knowledge (ontologies). In many studies,
the disease-related functionally relevant DNA variant(s) in a gene are not directly
observed, and hence the evidence on them is only indirectly given through correlated
variant(s).

This chapter is solely devoted to methods dissecting the genotype-phenotype
correlation with a binary phenotype (affected/unaffected). It does not specifically
cover quantitative phenotypes, although many of the techniques discussed below
can be applied to such problems. Section 38.2 presents an overview of major study
designs and types of analysis. Section 38.3 introduces the most important genetic
models. Sections 38.4–38.6 cover the three major types of analysis, segregation,
linkage, and association analysis. Section 38.7 describes recent developments and
looks to the future. We offer some general conclusions in Sect. 38.8. Detailed
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information on diseases used as examples in this chapter may be found in the
standard reference of McKusick (1998) or its online version, Online Mendelian
Inheritance in Man (OMIM 2012).

38.2 Study Types

Genetic epidemiology investigations are usually triggered by epidemiological stud-
ies that demonstrate a positive family history as a risk factor for disease, suggesting
the existence of genetic or shared environmental factors. Often the goal of initial
studies is to estimate the relative risk for relatives of affected individuals compared
to the general population; such as �S in the case of siblings of affected individuals,
in order to support a genetic hypothesis.

To further investigate familial aggregation, a segregation analysis may be carried
out in pedigrees. This aims to determine whether a major gene is influencing
a given phenotype in these families and if so to estimate the parameters of the
underlying genetic model. All methods for segregation analysis are based on
probability calculations for the observed phenotypes conditional on hypothetical
genetic model parameters and on family structure, that is genealogies. Parameter
estimation is often based on likelihood-ratio tests in order to select the most
plausible model nested within a hypothetical general model. Sometimes family
studies are also used solely (twin studies) or jointly with a major gene to estimate
the heritability h2 of a trait, that is, the proportion of the variance explained by
(additional) genetic components. Hence, �S or h2 are often used to indicate the
genetic basis of a phenotype in a population (or enriched families) before marker
studies are performed.

The primary cause of a monogenic disease such as cystic fibrosis is a mutation
within a single gene that segregates according to Mendelian laws (see below). The
predisposing variants (the alleles carrying the risk) of this major gene are usually
rare in the population. For complex or multifactorial diseases, there may still be
Mendelian subforms such as breast cancer caused by the major gene BRCA1.
For rare monogenic diseases and rare Mendelian subforms of complex diseases,
segregation analysis and subsequent further analyses perform well. However,
complex diseases in general require more sophisticated methods of analysis. For
example, in Alzheimer’s disease, there are at least three major genes and several
susceptibility genes conferring moderate risk (oligogenes). Oligogenes can have
relatively common alleles carrying the risk. Polygenic effects at many loci across
the whole genome, each with a minor effect, may contribute to disease.

If there is evidence for the existence of genetic factors contributing to a disease,
the next step is to identify susceptibility genes in order to quantify the genetic
influence and to understand the underlying genetic model and pathway to the
phenotype. To this end, measures of correlation between a genetic marker and the
(unknown) disease locus are used. A genetic marker is a DNA segment for which
the chromosomal localization is known and multiple alleles can be determined. In
general, methods assume Mendelian segregation of the marker (see Sect. 38.3.2).
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Frequently used markers are multiallelic microsatellites and biallelic single nu-
cleotide polymorphisms (SNPs). A marker is termed a polymorphism if the fre-
quency of the most common variant is less than 99%.

Two types of correlation between a genetic marker and the susceptibility locus
are used:
• Linkage (cosegregation at the family level): Linkage is present if the transmis-

sions of DNA at marker and disease susceptibility loci from a parent to a child
are not independent. Relatives with a similar disease status (e.g., both affected)
are then more similar at a marker close to the disease susceptibility locus than
expected under independence.

• Linkage disequilibrium (LD, association at the population level): LD is present if
in a gamete the joint probability for a specific marker allele and a specific disease
allele differs from the product of individual probabilities. In affected individuals,
certain marker alleles will then be more or less frequent than in randomly selected
individuals from the population.

Linkageanalysis in families isbasedonlinkage;associationanalysis inpopulations
or families uses linkage disequilibrium. Some designs and corresponding statistical
methods are capable of integrating both types of information into the analysis.

For the analysis of complex diseases with genetic markers, we can distinguish
two major approaches: A candidate gene investigation focuses on genes (or genomic
regions) whose function in the pathway to the phenotype is thought to be known.
A prominent example of a candidate gene system is the HLA (human leukocyte
antigen) complex on chromosome 6. HLA is involved in immune resistance and is
thus a natural candidate gene region for all autoimmune diseases. The genotypes of
the relevant functional component of the candidate genes are not always observed.
In this case, we use the information on genetic markers that lie in or in close
proximity to the candidate gene in question. In contrast, a genome scan – a
systematic coarse grid search of the whole genome with genetic markers – aims
to localize one or more regions harboring susceptibility genes. A typical scan
might investigate approximately 350–700 microsatellites with an average distance
of 5–10 cM (centiMorgan, see Sect. 38.3.3) or 500,000 or more SNPs along the
genome, depending on the type of genetic information and design used (linkage or
association, respectively).

38.3 Genetic Models

38.3.1 Terminology

The genome is the complete collection of an individual’s genetic material present in
every cell, consisting of chromosomes (long DNA strands). A gene is a piece of a
chromosome coding for a function that can be seen as the heritable unit. The locus is
the position of a piece along the chromosome. The locus might denote the position
of, for example, a gene, a gene complex, or a marker. The different variants of a
gene are called alleles.
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The human genome is diploid, that is, chromosomes are paired (homologous
chromosomes) with the exception of the sex chromosomes in males. Each human
somatic cell contains 22 autosomal pairs and 1 pair of sex chromosomes. In a pair,
the autosomal chromosomes contain the same gene with possibly different alleles at
the same location. During meiosis, a diploid chromosome set is reduced to a haploid
chromosome set of a germ cell, the gamete.

A pair of an individual’s alleles at a locus is called a genotype. If the alleles are
identical, the individual is called homozygous at the locus, otherwise heterozygous.
Two copies of a gene are called identical by descent (IBD) if both copies are
identical and are copies of the same gene in a common ancestor. An individual is
homozygous by descent (HBD) when its gene pair is IBD. When considering several
loci simultaneously, the multilocus alleles inherited from the same parent constitute
a haplotype.

38.3.2 Mendelian Single-Locus Model

Mendelian segregation (Mendel 1865) is the simplest and most commonly used
model for the mode of inheritance for a single locus. An individual randomly
and independently inherits one allele from father and mother, respectively. All
segregation events from parents to offspring are independent. This implies that
copies of some alleles are frequently present in offspring and other alleles are lost
in subsequent generations, hence leading to random changes in population allele
frequencies over time (genetic drift).

Consider the phenotype affected/unaffected by a certain disease. Let S denote
a susceptibility gene with n alleles S1, S2; : : : ; Sn. The distribution of allele
frequencies in the population is denoted by pr D P.Sr/ (r D 1; : : :; n). Under
Hardy-Weinberg equilibrium (HWE) (Hardy 1908; Weinberg 1980), the (unordered)
genotype frequencies are given by

P .SrSs/ D prps D p2
r for r D s

P .SrSs/ D 2prps for r ¤ s
:

These frequencies follow from independence of the corresponding allele frequen-
cies, combining two ordered genotypes for heterozygotes. Its maintenance in a
population can be derived by applying Mendelian segregation to each possible
parental mating type, assuming random mating (Khoury et al. 1993).

Penetrance describes the relation between genotype and phenotype. It is the
conditional probability that an individual will be affected given its genotype:
frs D P.affected j SrSs/.

Classical monogenic diseases are those caused by a single major gene, for which
the penetrances take only the values 0 or 1. Often a locus S is assumed to be
biallelic, that is, to have only two different alleles. Let S1 denote the “susceptibility”
allele (mutation) and S2 the “normal” allele (wild type). For a classical dominant
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disease, all carriers of the susceptibility allele are affected (f11 D f12 D f21 D 1,
f22 D 0); for a classical recessive disease, only homozygous carriers are affected
(f11 D 1, f12 D f21 D f22 D 0).

Many classical hereditary diseases follow a Mendelian mode of inheritance.
Often, the prevalence is below 1 in 1,000 live births. Examples are cystic fibrosis
(autosomal recessive gene, cystic fibrosis transmembrane regulator (CFTR)) and
Huntington chorea (autosomal dominant gene, huntingtin (HTT)). Both diseases can
be caused by any of many different mutations. However, the assumption of a gene
with a normal and a susceptibility allele (group) worked well in identifying these
genes as disease causes, even though the true inheritance is much more complicated.
The aim in statistical genetics is not to specify the correct and complete model but to
address the scientific question adequately with a parsimonious mathematical model.
If this model is too simple, then more complex or new biologically motivated models
need to be considered.

The genotype-phenotype relation is complicated for many diseases. Individuals
with a susceptible genotype can stay unaffected (incomplete penetrance) and
those with a non-susceptible genotype can become affected (phenocopies). The
penetrances at a specific gene locus may be different for different alleles and may
depend on age, sex, environmental exposures, or other factors. For a general single
locus with susceptibility allele S1, we generally assume that 1 � f11 � f12 D f21 �
f22 � 0 and specifically for a recessive mode of inheritance that f12 D f21 D f22

or for a dominant one that f11 D f12 D f21. It is usually assumed that the parental
origin of an allele has no influence on a disease, that is, f12 D f21, although there
is a growing literature on imprinting and parent-of-origin effects that violate this
assumption (Zhou et al. 2010; Ainsworth et al. 2011).

38.3.3 Linkage

For the joint inheritance at two loci, independent Mendelian segregation does not
generally hold, owing to crossover events and recombinations. Gametes (comprising
one allele from each pair of chromosomes) are formed during meiosis, when
homologous chromosomes are arranged next to each other and partly overlap.
A chromosome breakage and a crossover – an exchange between homologous
chromosomal segments – can occur. A recombination between loci A and B occurs
when a gamete has a haplotype comprising a combination of alleles different from
that on the same grandparental chromosome due to crossovers between the loci.

Consider the formation of gametes during meiosis displayed in Fig. 38.1.
Between distant loci A and B (see Fig. 38.1a), a crossover is likely to result in
a recombination of the haplotypes A1B1 and A2B2 to give the new haplotypes
A1B2 and A2B1. If the two loci A and B are very close (see Fig. 38.1b), this
is very unlikely. Map distance is defined as the expected number of crossovers
between two loci (Haldane 1919). In expectation, the number of crossovers is
roughly proportional to physical distance between two loci, so this distance measure
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Haplotypes

a

b

A1B1 A1B1 A2B2 A2B2
A1B1 A1B2 A2B1 A2B2

A

B

A
B

Haplotypes

A1B1 A1B1 A2B2 A2B2 A1B1 A2B2 A1B1 A2B2

Fig. 38.1 Formation of gametes during meiosis from one parental pair of chromosomes with a
single crossover. Left: parental chromosome pair, middle: crossover event (crossover point denoted
by the circle), right: gametes for offspring formation. At the two loci A and B, the parent is double
heterozygous A1A2 and B1B2. (a) The crossover occurred between locus A and B. The two middle
gametes show recombination. (b) The crossover occurred above locus A and B so that the gametes
do not show recombination

is additive, that is, for three (ordered) loci A, B, and C, the map distance between
A and C is the sum of the distances between A and B and between B and C. The
map unit is called a Morgan (M), named after T.H. Morgan, a Nobel prize winning
geneticist (1866–1945), who discovered the importance of chromosomes for the
inheritance process. The human genome contains approximately 3.3 billion base
pairs with a total length of approximately 33 M, so as a rough guide, 1 centimorgan
(cM D 0:01 M) corresponds to one million base pairs in the physical map.

By genotyping, it is possible to observe recombinations between two loci, but
crossovers are not directly observable. Figure 38.1a shows recombination due to
a single crossover. For a double crossover (two chromosomal exchanges between
loci), no recombination would be observed. This holds true for any even number of
crossovers. Thus, a recombination is defined as an uneven number of crossovers
between a pair of loci. The recombination rate � – the ratio of the number of
recombinant gametes to the total number of gametes formed – is used as a measure
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Possible 
Offspring

Parents

Locus A
Locus B

double homozygote
haplotype A3B3

double heterozygote
haplotypes A1B1  A2B2

Maternal haplotypes (paternal haplotype A3B3)
A1B1 A2B2 A1B2 A2B1

Probability of each offspring haplotype (conditional on parents)

(1−θ)/2 (1−θ)/2 θ/2 θ/2

Fig. 38.2 Formation of recombinant and non-recombinant haplotypes by meiosis

of genetic distance between two loci. If loci are on different chromosomes or far
away on the same chromosome, they segregate independently. By definition, there
is linkage between the loci if 0 � � < 0:5, and no linkage if � D 0:5. The closer loci
are to each other, the less likely there will be crossovers and hence a recombination.
Complete linkage (complete cosegregation) implies no recombination, and thus
� D 0.

In Fig. 38.2, a double heterozygous parent with haplotypes A1B1 and A2B2

and a double homozygous parent with haplotype A3B3 are considered. For the
double heterozygous parent, a meiosis can create the non-recombinant haplotypes
A1B1 and A2B2 or the recombinant haplotypes A1B2 and A2B1. In order to
determine recombination, a parent homozygous even at one locus is not informative.
Given that recombination is present, each of the two recombinant haplotypes occurs
with probability 0.5. Given that no recombination is present, each of the two
non-recombinant haplotypes occurs with probability 0.5. For � D 0:5, there is
independent segregation so that all four possible haplotypes are equally likely.

If three ordered close loci A, B, and C are considered, �AC � �AB C �BC. In
contrast to the map distance in Morgans, recombination distances are not additive.
Mapping functions provide a translation of recombination distances into map
distance in Morgans. In the majority of chromosomal regions, recombination rates
for women are higher than for men.

The potential informativeness of a single marker chosen from an existing marker
map (without consideration of the disease locus) is determined by its genetic
variability, that is, allele distribution. A measure of marker informativitiy is the
heterozygosity H , defined as follows (Weiss 1993; Ott 1999):

H D
nX

r¤s

prps:



38 Statistical Methods in Genetic Epidemiology 1455

38.3.4 Linkage Disequilibrium

Linkage and linkage disequilibrium (LD) are different concepts. As linkage
describes the coinheritance at two loci, it can only be observed in families, and
it is independent of the specific alleles. LD describes the relation between alleles at
two loci in a population.

Let S denote a locus with n alleles S1, S2; : : : ; Sn and allele frequencies
pr D P.Sr/ and M a locus with m alleles M1, M2; : : : ; Mm and allele frequencies
qi D P.Mi/. A common measure of LD is the haplotype probability minus its
expectation under no association. For two biallelic loci, it is denoted by D or
ı. For multiallelic markers, the parameter ıir is often used to define the linkage
disequilibrium between Mi and Sr as

ıir D P.Mi ; Sr/ � P.Sr/P.Mi /; i D 1; : : : ; mI r D 1; : : : ; n:

LD is present if ıir ¤ 0 for any pair of alleles Mi and Sr. Under LD, the allele
distribution at locus M is dependent of the S allele present. Often used measures of
LD are D’ (Devlin et al. 1996), defined as ı divided by its theoretical maximum for
the observed allele frequencies, that is, a rescaling of ı to range between 0 and 1,
and R2, the square of the correlation coefficient.

LD can arise in several different ways (Suarez and Hampe 1994). At linked
loci, complete LD can be caused by a recent mutation at one locus. However,
disequilibrium is also possible without linkage between the loci (the term gametic
disequilibrium is preferable in this case). One important mechanism for the
development of disequilibrium at unlinked loci, even on different chromosomes, is
population stratification. For example, through immigration or non-random mating
(e.g., by religion or social status), populations may admix with different allele
distributions in the populations.

Under random mating, LD decays over generations g according to
ıg D .1 � �/gı0, where ı0 is the initial LD at generation 0 (Maynard Smith
1989). Thus, whatever the origin of LD, in the presence of tight linkage, it can stay
strong during many generations. Without tight linkage, LD will degrade rapidly.
Thus, LD provides indirect evidence for linkage.

38.4 Segregation Analysis

The aim of segregation analysis is to test for the existence of a major gene
influencing a phenotype and to estimate its mode of inheritance. The pattern of
inheritance may be investigated in a few large families or in many small families.

Consider a Mendelian single-locus model for a major gene with susceptibility
allele S1 and normal allele S2. In the classical Mendelian disease model, the
penetrances P (affected j genotype) are only 0 or 1, so the genotype directly
translates to a phenotype, and the families segregating the S1 display characteristic
disease patterns.
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The simplest segregation tests (see, e.g., Sham (1998)) are based on segregation
ratios, the proportion of affecteds among offspring of particular parental mating
types. For illustration, consider a rare autosomal dominant disease and matings
between an affected and an unaffected individual. These will usually be S1S2 �S2S2

matings. Let r be the observed number of affecteds among n offspring and q the
probability for a child to be affected. Then the segregation ratio is the unknown
parameter q of a binomial distribution with sample size n. If the null hypothesis
q D 0:5 is not rejected, it may be concluded that the data are compatible with an
autosomal dominant disease pattern.

For each of six possible mating types (S1S1 � S1S1; S1S1 � S1S2; S1S1 �
S2S2; S1S2 � S1S2; S1S2 � S2S2; S2S2 � S2S2), the distribution of genotypes and
phenotypes in the offspring is determined by various genetic models. However, fam-
ilies are often recruited non-randomly according to particular ascertainment criteria,
such as enrichment for disease, yielding an oversampling for particular parental
genotypes, so for a valid test, the probability distribution needs to be corrected
for this ascertainment bias. For example, if all families with at least one affected
offspring are recruited (truncate ascertainment), the distribution of the number of
affected offspring can be corrected for ascertainment by considering a truncated
binomial distribution conditioning on r � 1 per family. If instead each case has
an equal probability of being ascertained (single ascertainment), then multiple case
families are represented proportional to the number affected and simply excluding
the proband from the analysis may suffice. In practice, ascertainment schemes may
be complex or unsystematic (Elston 1995), and misspecification of ascertainment
might cause serious bias in the estimation of genetic parameters (see, e.g., Shute
and Ewens (1988)).

For an extended pedigree with N individuals, a numerical procedure is
needed. Let L denote the likelihood for the observed vector of phenotypes
Y D .Y1; : : : ; YN /; given a genetic model and the pedigree structure. L can be
calculated by summing over all possible genotype vectors G D .G1; : : : ; GN /i ;

i D 1; : : : ; N , in a given family, a particular one denoted by g D .g1; : : : ; gN/. We
assume that the phenotype Yi only depends on genotype Gi of that individual i .
Thus, we get

L .Y / D
X

g1

X

g2

� � �
X

gN

P.Y jG D g/P.G D g/:

The Elston-Stuart algorithm (Elston and Stewart 1971) provides an efficient recur-
sive formula

L.Y / D
X

g1

X

g2

� � �
X

gN

NY

j D1

P.Yj jgj /

N1Y

k D 1

P.gk/

N2Y

m D 1

� .gmjgm1gm2/

where N1 denotes the number of founders (individuals without specified parents in
the pedigree, i.e., members of the oldest generation and married-in spouses) and
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N2 the number of non-founders. The parameters of the genetic model are (1) the
genotype distribution P.gk/, k D 1; : : :; N1, for the founders in the population
for which HWE is usually assumed, (2) the transmission probabilities from parents
m1 and m2 to offspring m; £.gmjgm1; gm2/, according to Mendelian segregation
(�.S1jS1S1/ D 1; �.S1jS1S2/ D 0:5; £.S1jS2S2/ D 0), and (3) the penetrances
P.Yj jgj / relating genotypes to disease. This recursive formula works well on a
simple pedigree of arbitrary size. As several unrelated pedigrees are independent
from each other, their likelihoods can be multiplied to yield the total likelihood of a
sample of pedigrees. Computations on complex pedigrees with marriage chains and
inbreeding loops (such as consanguineous marriages) are often only possible with
approximation methods.

Segregation analysis works well for monogenic diseases. Due to the unclear
genotype-phenotype relationship, they are much more difficult in complex diseases.
Several genetic and non-genetic factors, such as age, sex, and exposure factors, may
have an influence on disease. Genetic heterogeneity may be caused by different
alleles of the same gene or different genes or modifying factors that lead to different
phenotypes segregating within a family (Evans and Harris 1992). In addition, there
are further types of genetic heterogeneity such as genomic imprinting. In the
presence of heterogeneity, considering homogeneous subgroups (defined by, say,
severity, age of onset, family history, ethnicity) can lead to a clearer genotype-
phenotype relation and thus to identify a possibly Mendelian subform of the disease.

An example of a highly successful segregation analysis for a complex disease
is breast cancer (Newman et al. 1988). The families were ascertained through a
population-based cancer registry. The ascertainment criteria for index cases were
women with breast cancer, Caucasian, diagnosed before the age of 55 during a spec-
ified period with a histologically confirmed primary tumor. There was no selection
on family history. Thousand five hundred and seventy-nine nuclear families were
recruited, along with one large extended pedigree. Complex segregation analysis
was applied using the program POINTER (Lalouel et al. 1983). It models an
underlying unobserved quantitative trait called liability as a mixture of three normal
distributions with different means for each of the genotypes, allowing for polygenes
and an environmental component, with disease corresponding to the liability
exceeding a certain threshold (Morton and MacLean 1974). For a predisposing
genotype, the mean liability is shifted compared to the mean for non-disposing
genotypes such that more individuals will exceed the threshold. Evaluation by direct
modeling of the transmission probabilities allows the identification of the major
factor as a major Mendelian gene. Population-based liability classes were taken
from cumulative incidence rates estimated from a large epidemiological study in
the region.

Segregation analysis is based on likelihood-ratio tests comparing different
models. First, one investigates the consistency of the data with a major gene model;
next, one considers which mode of inheritance fits the data best. To avoid false-
positive results, the likelihood for Mendelian transmission probabilities can be
compared against more general models corresponding to environmental or cultural
transmission. For breast cancer, an autosomal dominant major gene provided the
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best fit, although the general single-locus model with three penetrances resulted
in a comparable fit, and the non-Mendelian transmission models were strongly
rejected.

Segregation analysis for a disease without a single major gene but only a few
oligogenes may not be particularly rewarding. Many genetic marker studies are
nowadays carried out without specification of the genetic model, but it is still worth
establishing that a disease has some genetic basis by estimating the heritability h2

before embarking extensive marker studies.

38.5 Linkage Analysis

In linkage analysis, the cosegregation between marker and disease within families
is investigated to find evidence for linkage and often to estimate the recombination
rate � . The classical lod score method (Morton 1955) is a test for linkage between
a susceptibility gene and a marker (null hypothesis H0: � D 0:5 vs. alternative
H1: � < 0:5) under a parametric model for the genetic effect, allowing estimation of
� . For a detailed description, see Ott (1999). Let L.�/ denote the likelihood for the
observed phenotypes at a particular value for � conditional on the (assumed) model,
the marker allele distribution, and the given pedigrees. In the usual notation, the
underlying conditioning is sometimes left out. The lod score function (“log odds”)
is the log likelihood ratio

Z.�/ D LOD .�/ D log10

L .�/

L .0:5/

as a function of � . Z.�/ compares the likelihood under linkage with recombination
rate � with the likelihood under no linkage, that is, � D 0:5. Z.�/ will be maximized
over all possible values for � , that is, 0 � � � 0:5, to yield Zmax. Values of Zmax > 3

are taken as evidence for linkage. The recombination rate is estimated by �max, the
�-value corresponding to Zmax. If Zmax < �2, linkage can be excluded. The limits
3 and �2 are based on a sequential Wald test, such that the posterior probability
for linkage when rejecting H0 is 95% for a single alternative � . As logarithms of
base 10 are used, the limits correspond to stopping limits of 1,000 and 0.01 in the
sequential testing procedure yielded by setting the probabilities of types I and II
errors at ’ D 0:001 and “ D 0:01 (Morton 1955).

The likelihood L.�/ for linkage between two loci A and B for a sibship can
be derived easily when the genotypes at both loci are directly observable. Let
the mothers’ genotypes be A1A2, B1B2 and the fathers’ A1A1, B1B1; here, only
the double heterozygous mother is informative. Without knowing the maternal
grandparent’s genotypes, one cannot determine the phase, that is, whether the
mother’s haplotypes are A1B1 and A2B2 (phase I) or A1B2 and A2B1 (phase II).
If the phase were known, L.�/ would be given by a binomial distribution with
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Fig. 38.3 Pedigree with a
sibship of size six with
marker information and with
genotype information
concerning the susceptibility
locus, owing to the clear-cut
rare autosomal dominant
mode of inheritance
(individuals: square D male,
circle D female,
black D affected,
white D unaffected)

parameters n and � , where n is the number of informative meioses. For an unknown
phase, consider first phase I: Let nx and ny denote the number of meioses from the
mother to the n children, of which nx are non-recombinants (A1B1 or A2B2) and ny

are recombinants (A1B2 or A2B1). Under phase II, let nx and ny denote instead the
number of recombinants and non-recombinants. Assuming LD phases I and II are
both equally likely, then

L .�/ D
�

nx C ny

nx

� �
1

2
.1 � �/nx �ny C 1

2
� .1 � �/nx �ny

�
:

For the sibship in Fig. 38.3, let us now determine the likelihood L.�/, the lod score
function Z.�/, Zmax, and �max. Assume an autosomal dominant gene S with a
rare susceptibility allele S1 and a normal allele S2. Thus, the affected father and
all affected siblings have genotype S1S2. The marker M has alleles M1; M2, and
M3. The mother is homozygous and uninformative for linkage. She will not be
considered further.

As a result of the genotyped grandparents, the father’s haplotypes are known:
S1M1 and S2M2. Thus, the phase is known and the likelihood is

L .�/ D
�

6

0

�
.1 � �/6 �0 D .1 � �/6 :



1460 H. Bickeböller and D.C. Thomas

The lod score function is

Z.�/ D LOD .�/ D log10
L.�/

L.0:5/ D log10
.1��/6

.0:5/6

D 6 log10 .1 � �/ C 6 log10 2

D 6 log10 .1 � �/ C C

where C denotes a constant independent of � . The maximum of the lod score
function is Zmax D 1:8 for �max D 0. This corresponds to complete linkage as
supported by no observed recombinations.

Missing information on grandparental genotypes in Fig. 38.3 results in an
unknown phase. Then the lod score function would be

Z.�/ D LOD .�/ D log10
L.�/

L.0:5/ D log10
0:5�6C0:5.1��/6

.0:5/6

D log10

�
�6 C .1 � �/6

�
C 5 log10 2:

In this case, the maximum of the lod score function is Zmax D 1:5 for �max D 0. Due
to the uncertain phase, the maximum lod score is reduced. However, the estimate for
the recombination rate stays at � D 0.

In Fig. 38.3, assume now that the second affected child has the genotype
M2M3 (and the genotype S1S2). With the phase as indicated in the figure, one
recombination needs to be taken into account now. Thus,

Z.�/ D LOD .�/ D log10
L.�/

L.0:5/
D log10

6�.1��/5

6.0:5/6

D log10 � C 5 log10 .1 � �/ C 6 log10 2:

With one recombination, the maximum of the lod score function is Zmax D 0:63 for
�max D 1=6 D 0:17. Now linkage is estimated as incomplete, and Zmax is markedly
reduced.

If in Fig.38.3 the genotypes of the father and his parents are unknown, the father’s
genotype can be inferred as either M1M1 or M1M2. If HWE can be assumed, the
likelihood of the recombination rate L.�/ can be calculated as a function of the
marker allele frequencies in offspring. A detailed calculation will show that in this
case, a rare marker allele M1 will result in a high lod score and a more common
marker allele M1 will result in a lower lod score.

For a larger pedigree, L.�/ can be computed by the Elston-Stuart algorithm
(Elston and Stewart 1971) described earlier, where now the gj are the joint
genotypes formed by the two loci S and M and � is part of the transmission
probabilities for the formation of gametes as recombinants or non-recombinants.
Across families, the segregation process is independent, so L.�/ is simply the
product of the individual family-specific likelihoods.

The lod score method has been very successful in localizing major genes, such
as BRCA1 for breast cancer (Hall et al. 1990), which was facilitated by focusing
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on early-onset families for which the genetic relative risk (RR) is strong and by
having available a good segregation model. However, in complex diseases, the
mode of inheritance is usually unclear, leading to false-positive and false-negative
results as well as biased estimation of � (Risch 1991; Lander and Schork 1994;
Terwilliger and Ott 1994; Ott 1999). Joint segregation and linkage analysis often
leads to biased parameter estimation, particularly if families are not systematically
ascertained or the segregation model is misspecified. In MOD-score analysis (Risch
1984; Clerget-Darpoux et al. 1986), the LOD score is maximized over � and the
parameters of a biallelic single-locus model, that is, allele frequency and three
penetrances. Non-parametric methods or model-free methods have been developed
to avoid assumptions about the underlying genetic model. Their aim is to provide
evidence for linkage without specifying the parameters of the underlying mode of
inheritance and without estimating the recombination rate (Lander and Schork 1994;
Elston 1998). They are often based on the identity-by-descent (IBD) status (Penrose
1953). For example, the IBD status of a patient and one of his/her siblings can take
on the values 0, 1, or 2, according to the number of marker alleles that have been
transmitted to both siblings from exactly the same grandparental copy of a parent’s
gene and are thus identical.

Allele sharing methods test whether relatives with a similar disease status
(e.g., both affected) are more frequently similar in IBD at the marker than expected
in the absence of linkage. In the affected-sib-pair (ASP) method (Day and Simons
1976), the observed counts of n ASPs with 0, 1, or 2 marker alleles IBD are
compared with the expected ones assuming no linkage (0.25n, 0.5n, or 0.25n) using
a ¦2-goodness-of-fit-test.

The literature on IBD methods is extensive and more powerful methods have
been developed (e.g., Holmans 1993; Whittemore and Tu 1998). To determine
IBD unambiguously, the marker must be sufficiently polymorphic, and the parents
must be genotyped, or neighboring loci must be genotyped to yield sufficient
information on the grandpaternal inheritance of the alleles. Often, IBD needs to
be estimated. Sometimes, the identity-by-state (IBS) status (the number of identical
marker alleles without considering ancestry) is used instead. In the Lander-Green
algorithm for multipoint linkage analysis (Lander and Green 1987), the inheritance
vector and thus the IBD status at a particular locus can be determined much more
precisely even when some parents are not genotyped. The algorithm calculates the
inheritance vector using a hidden Markov model walking from marker to marker,
where pedigree size that a software can handle is limited by the length of this vector
determined by the number of founders and non-founders in the pedigree (Lander
and Green 1987; Kruglyak et al. 1996).

38.6 Association Analysis

The aim of association studies is to provide evidence for association or linkage
disequilibrium in a population. LD results in an association between marker alleles
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and alleles of a susceptibility gene, such that certain marker alleles will be present
more often in affected individuals than in a random sample of individuals from the
population.

In classic case-control studies, marker allele frequencies or genotype frequencies
in a group of unrelated affected individuals are compared to those in a group
of unrelated unaffected individuals. Numerous associations have been identified
with case-control studies, for example, associations of autoimmune diseases (e.g.,
diabetes, multiple sclerosis) with the HLA system or of apolipoprotein E (APOE)
allele ©4 with Alzheimer’s disease (Corder et al. 1993). The APOE ©4 allele
frequency is approximately 35% in Alzheimer’s patients, but only 15% in the
older population not suffering from dementia. If a positively associated marker
allele is frequent in a population, such as APOE ©4, then it is by itself not
a good predictor for disease status, and the proportion of homozygotes for the
allele is high. Linkage analysis methods are in general not very powerful in this
situation.

Besides the usual limitations of classical case-control studies in epidemiology
(cf. chapter �Case-Control Studies of this handbook), case-control studies to
investigate linkage disequilibrium in genetic epidemiology must take a particular
form of confounding known as population stratification into account. Population
stratification denotes the presence of different ancestry populations, that is, discrete
subpopulations or admixture of populations. If individuals are descended from
populations with different allele frequencies and this is not taken into account, then
spurious associations can be induced. To avoid this confounding, cases and controls
must originate from the same homogeneous (including ethnically homogeneous)
source population, or an appropriate design and analysis strategy needs to be
employed.

If an association is found that is not considered spurious, this may have two
causes (Lander and Schork 1994):
• The disease-associated allele is the susceptibility allele itself. If so, this associa-

tion is expected to occur in all populations harboring this allele.
• The associated allele is in linkage disequilibrium with the susceptibility allele

at the disease locus. If this is the case, then different associations can occur in
different populations due to different haplotype frequencies at the two loci.

In the first case, marker and disease loci are identical, so � D 0, and LD
is complete. In the second case, marker and disease locus are in general very
close to each other. For this reason, association studies are highly valuable for the
investigation of candidate genes.

As mentioned above, uncontrolled population stratification can result in spurious
associations. For case-control studies, there are methods for taking the existence
of subpopulations into account during statistical testing. All methods require many
markers along the genome to be genotyped. In the genomic control method (Devlin
and Roeder 1999), a variance inflation factor is used to adjust the test statistic, taking
into account correlations between individuals in subpopulations. The structured

http://dx.doi.org/10.1007/978-0-387-09834-0_7
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Fig. 38.4 Nuclear family
with one affected child.
Alleles transmitted from the
parents to the affected child
are denoted in white. Alleles
not transmitted from the
parents to the affected child
are denoted in black
(individuals: square D male,
circle D female,
black D affected,
white D unaffected, inside:
alleles)

association method (Pritchard et al. 2000) estimates the population structure and
either assigns individuals to the most likely subgroup or better, estimates the
proportion of each individuals’ genome derived from each subgroup. Association is
subsequently tested within subgroups or adjusted for ancestral source proportions.
Both methods typically use panels of hundreds of “ancestrally informative” markers.
Principal component analysis (Price et al. 2006) generally uses all the markers from
a genome-wide scan and adjusts the association of any particular marker for the first
few dozen principal components.

Family-based association studies avoid bias due to inadequate controls and
population stratification by design. The concept of internal controls was first
proposed by Falk and Rubinstein (1987). For the original design, nuclear families
with at least one affected child are recruited, and the two parental alleles not
transmitted to the affected child are used as internal controls (Fig. 38.4). With
this design, information on both linkage and association between a marker and the
susceptibility gene is used.

For a biallelic marker, the data resulting from this study design can be presented
in various ways as 2 � 2 contingency tables and analyzed with standard statistical
tests to investigate whether certain alleles are transmitted from the parents to an
affected child more often than not (Terwilliger and Ott 1992; Schaid and Sommer
1994). Although in principle, all these procedures test for association (H0: • D 0

vs. H1: • ¤ 0) and most for linkage as well, the most appropriate test respecting the
matched nature of the transmitted and non-transmitted allele data is the McNemar
test, which in this context is known as the Transmission/Disequilibrium Test (TDT)
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Table 38.1 2 � 2 contingency table for family-based association studies based on a sample of
N families with one affected child and both parents showing the matching of the two alleles
of a parent. Consider a biallelic marker with alleles M1; M2. Small letters (a; b; c; d ) denote
allele counts. 2N denotes the total number of parental genotypes (i.e., of pairs of transmitted and
non-transmitted alleles) to the affected child from the 2N parents

Non-transmitted allele of one parent

Transmitted allele of one parent M1 M2 Total

M1 a b a C b

M2 c d c C d

Total a C c b C d 2N

(Spielman et al. 1993). The TDT is a haplotype-based analysis of the matched
sample (Table 38.1). The test statistic is

TDT D .b � c/2=.b C c/:

The TDT compares whether the M1 allele is more often transmitted to an affected
child (b) than the M2 allele (c) from heterozygous parents or vice versa. The test
only considers M1M2 parents, since homozygous parents are not informative for
preferential transmission of either allele.

The literature on family-based association analysis is vast (see, e.g., Whittaker
and Morris (2001)). Important extensions of the above methods allow the appli-
cation to multi-allelic markers, to tightly linked loci, and to quantitative traits. In
addition, the design also allows for other types of nuclear families, such as sibships
with affected and unaffected individuals (Spielman and Ewens 1998; Laird and
Lange 2006). If a particular mode of inheritance is suspected, specialized versions
of the TDT or related likelihood methods may yield higher power (Schaid 1999).
If a candidate gene is to be investigated in detail, then a haplotype analysis can be
carried out considering several biallelic polymorphisms (SNPs) in the same gene.
The first step in a haplotype analysis is the estimation of the haplotype frequency in
a population or the estimation of the most probable haplotype pair in an individual.
For cohort or case-control studies, see Excoffier and Slatkin (1995), Stephens and
Donnelly (2003), and Browning and Browning (2009); for family samples, see
Rohde and Fuerst (2001) and Qian and Beckmann (2002). In the second step,
linkage disequilibrium is investigated on the basis of the estimated haplotypes or
haplotype frequencies. Some of these LD measures have already been described
above (Devlin and Risch 1995).

Besides the analysis of main effects, gene-gene and gene-environment interac-
tions can also be investigated in association analysis using standard tools. For gene-
environment interaction, the case-only design enables the analysis of multiplicative
interactions of factors, required to be independent in the population, on the basis of a
sample of diseased individuals (Albert et al. 2001). If the independence assumption
is valid, it is very efficient; if it is violated, such as for smoking-addiction genes and
smoking, results can be severely distorted.
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38.7 Current Methods and Outstanding Challenges

Genetics – and all its subdisciplines – has been an amazingly fast-moving field,
with outstanding developments in both technology and biological insights.
Methodological developments in statistical genetics and bioinformatics have had
to scramble to keep pace; not the least of these challenges has been the daunting
computational challenges posed by the massive data sets these advances have
provided. In the remainder of this chapter, we review the current state of the art in
the design of modern genetic epidemiology studies and the analysis of ultra-high-
dimensional data and attempt to anticipate some of the novel developments that will
be required in the foreseeable future.

38.7.1 Genome-Wide Association Studies

Fifteen years ago, Risch and Merikangas (1996) published a farsighted article
in Science on the failure of traditional linkage analysis to uncover the genetics
of complex diseases and made the then-radical suggestion that it would soon
be possible to explore the entire genome by direct association methods. Their
prediction came true, enabled by two developments in particular. The first was the
advent of chip-based genotyping platforms that made it possible to assay hundreds
of thousands to millions of SNP genotypes at a cost of under $1,000 per sample
with high reliability. The second was a concerted effort by the public and private
sectors to map the entire human genome (the Human Genome Project) and then
to assemble a catalogue of known variants in a sample of Caucasian, African, and
Asian populations (the International HapMap Project). In combination, these two
advances provide a feasible way to directly genotype a large proportion of common
variants and to predict many variants located next to the genotyped markers that are
not typed directly.

It was nearly a decade before the first success of this approach was published
in the form of a trio of papers on age-related macular degeneration in Science,
one using this approach (Klein et al. 2005), which implicated a gene CFH in the
complement pathway, a finding that has subsequently been confirmed numerous
times. Since then, associations of about 210 diseases or quantitative traits and
1,300 genetic loci at genome-wide levels of significance (p < 5 � 10�8) have
been published that have been independently replicated; the most recent version
of the catalogue of published GWAS is available at the website of National Humane
Genome Research Institute (NHGRI), National Institutes of Health (Hindorff et al.
2012; see also Hindorff et al. 2009). Study design and statistical analysis methods
for such genome-wide association studies (GWAS) have been discussed in greater
depth than is possible here (Hirschhorn and Daly 2005; Wang et al. 2005; Kraft and
Cox 2008; McCarthy et al. 2008; Thomas 2010a, b; Witte 2010). Instead, we briefly
review some of the recurring themes.

Multistage study designs. Early on, it was recognized that the multiple compar-
isons burden might be alleviated by some kind of staged design, in which only a
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portion of the sample would be used for screening the entire genome using one of
the expensive high-density commercial platforms offering a fixed array of SNPs,
followed by genotyping the remainder of the sample using a custom panel of only
the most promising SNPs (Satagopan and Elston 2003). The final analysis then
combined the information from both stages rather than treating it as a discovery
and independent replication design (Skol et al. 2006); furthermore, it was possible
to optimize the allocation of subjects to the two (or more) stages and the selection
of the threshold for selecting SNPs to be genotyped in the later stages (Wang
et al. 2006; Skol et al. 2007). With rapidly declining costs and increasing density
of coverage of commercial panels, the interest in multistage designs has declined
as investigators have recognized the advantage of having genome-wide data on
the entire available sample as a resource for testing a broad range of hypotheses.
However, the basic concept remains in spirit in the requirement for independent
replication, as discussed in Sect. 38.7.3, and with the need for selecting a manage-
able number of individuals for next-generation sequencing technologies (Thomas
et al. 2009).

Multiple testing and replication. With hundreds of thousands, if not millions, of
associations being tested in a single study, there is an obvious need to avoid false-
positive claims by adopting a stringent level of significance. A simple Bonferroni
correction for one million SNPs would suggest a threshold of 0:05=106 D 5 � 10�8,
which has become the conventional criterion for claiming genome-wide signifi-
cance, nominally ensuring a 5% probability of making at least one false-positive
(family-wise error rate). This calculation fails to take into account the correlation
among these tests due to linkage disequilibrium but is not a bad approximation for
even the more recent platforms that allow testing of 2.5–5 million SNPs, as 1 million
turns out to be roughly the effective number of independent tests in populations of
European descent (or roughly double that in African-descent populations) (Pe’er
et al. 2008). Fast asymptotic approximations have been developed (Conneely and
Boehnke 2007) that allow for LD within a region, or permutation tests can be used
as a gold standard for more complex dependency structures.

Despite the stringency of the genome-wide significance threshold, there are many
factors than can lead to increased false-positives, some of which are discussed
further below. But the key point is that a single study, however significant, is
not usually considered convincing evidence of a genuine association without
independent replication (Ioannidis 2007). Such replication is not simply to guard
against chance variation (which can always be avoided simply by adopting an even
more stringent significance threshold) but due to various sources of uncontrolled
bias. Hence, real scientific replication should involve some elements of validation
in different populations, by different investigators, using different methods. This is
already demanded by the standard Bradford-Hill criteria in epidemiology used to
establish validity of the association and strengthen belief in causality. This is not
always possible in practice, however, such as for rare diseases where the discovery
comes from a consortium of virtually all the available data or for studies conducted
in unique settings (suggesting a need for some flexibility in the replication demands
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of granting agencies and journal editors!). Here in particular, the support by
additional biological evidence is highly warranted.

Population substructure and study designs. One of the most pervasive sources of
bias in GWAS is population substructure, as discussed in Sect. 38.6. Most GWAS
therefore adjust instead for either an estimate of global ancestry from a finite set
of founding populations using ancestry informative markers, typically using the
STRUCTURE program (Pritchard et al. 2000) or using the top principal components
from all or a subset of the markers, typically using the EIGENSTRAT program
(Patterson et al. 2006). Either of these approaches tends to be quite effective at
controlling the overall false-positive rate at least in homogeneous populations such
as those of European descent. As a diagnostic for whether residual overdisper-
sion due to uncontrolled population substructure remains after such adjustment,
Quantile-Quantile plots of observed versus expected p-values of the single marker
test statistics are generally used, and the genomic control overdispersion factor
(Devlin and Roeder 1999) is checked to see if it is close to one. Control of population
substructure can be more difficult in admixed populations like African-Americans
and Hispanics, but these offer the advantage of being able to use within-individual
comparisons for admixture mapping (Patterson et al. 2004; Freedman et al. 2006).
For conventional GWAS scans in admixed populations, further adjustment for local
ancestry (i.e., the ancestral origins of individual’s chromosomes in the specific
region of interest) may be necessary; the LAMP (Sankararaman et al. 2008) and
HAPMIX (Price et al. 2009) programs can be used for this purpose.

Imputation. From the beginning, it has been understood that most associations
discovered in a GWAS were unlikely to be directly causal, because only a small
fraction of the genetic variation in the genome was being tested, but would
hopefully reflect indirect associations with nearby causal variants through linkage
disequilibrium between the causal and the marker loci. With the availability of the
much more extensive catalogue of variation from the HapMap project, it has now
become possible to infer the genotypes for most of the common variants in the
genome by using imputation techniques from one of these standard reference panels
(Li et al. 2010; Marchini and Howie 2010). Although programs such as MACH
provide an assessment of the most likely genotype at each untyped locus, their use
in association analysis would fail to account for the uncertainty in these imputations,
essentially a form of measurement error leading to biased tests. A more appropriate
procedure is therefore to use the estimated genotype probabilities or (under an
additive model) the expected “gene dosage” as a continuous variable in a logistic
regression analysis (Hu and Lin 2010).

Reporting. Given the potential range of problems and the approaches different
investigators might take to addressing them, there is a need for some systematic
guidance for how GWAS should be reported, if only to avoid subsequent problems
in synthesizing the literature. Several authoritative statements have been issued by
various groups to address this need, without imposing a straightjacket that would
stifle investigators’ creativity (Ehm et al. 2005; Chanock et al. 2007; Ioannidis et al.
2008; Hudson and Cooper 2009; Khoury et al. 2009; Little et al. 2009).
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GWAS Summary. Over roughly the last 5 years, a consensus has emerged that
most of the discovered novel associations of common, complex disorders with
common SNPs have been relatively weak, with odds ratios typically in the range
of about 1.2–1.6. Furthermore, even in the aggregate, these associations account for
only a small portion of the total heritability estimated from classical twin or family
studies (McCarthy and Hirschhorn 2008). While it is possible that these heritability
estimates may be somewhat biased, it is certain that there remains a large portion
of undiscovered genetic variation (“dark matter”) to be accounted for (Hindorff
et al. 2009; Manolio et al. 2009). Even for such a strongly related genetic and well-
measured quantitative trait as height, the 180 loci that have so far been discovered
based on meta-analysis of studies totaling over 183,000 individuals account for only
about 10% of the total variability. Furthermore, it has been estimated that even with
astronomical sample sizes, the number of loci of comparable effect sizes might rise
to 600 but would still account for only about 20% of the heritability, which has been
estimated at greater than 80% of the total phenotypic variation (Lango Allen et al.
2010). A variety of hypotheses have been advanced to account for this unexplained
heritability, including rare variants, copy number variants, gene-environment and
gene-gene interactions, and epigenetic effects, which will feature prominently as
we move into the “post-GWAS” era.

38.7.2 Post-GWAS

Meta-analysis. Given the small effect sizes being sought and the enormous multiple
comparisons penalty, most successful GWASs have required thousands of subjects.
Nevertheless, as the experience with height demonstrates, no one study is likely
to uncover more than a small fraction of the loci involved in a complex trait,
and even larger sample sizes will be needed. Hence, the field has moved into a
“Big Science” era, in which many investigators studying a given trait have formed
consortia to pool all the available data for analyses of tens or hundreds of thousands
of subjects (de Bakker et al. 2008; Zeggini and Ioannidis 2009). Some of these
consortia have functioned simply to meet the replication requirement for each
other’s discoveries, but the more important purpose is to try to identify additional
and weaker associations through a much larger sample size. This could in principle
be accomplished by either a reanalysis of their combined raw data (“mega-analysis”)
or by meta-analysis of their summary statistics (Lin and Zeng 2010). In practice,
the latter is usually much easier to accomplish, particularly if the different studies
have used different genotyping platforms but can effectively impute genotypes for a
larger, common set of HapMap SNPs (Zaitlen and Eskin 2010).

Fine mapping. Having identified one or more genome-wide significant and
replicated regions, one might proceed to try to localize the region where a causal
variant or variants might lie before attempting deep sequencing or functional studies.
Here, the obvious strategy is simply to retest the available samples (or better,
additional samples) with a higher density of markers in the region(s) of interest,
but there are obvious trade-offs between sample size, number of regions that can be
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fine-mapped, region sizes, and density of markers (or criteria for selecting specific
markers). These issues are amenable to methodological research, but there does not
seem to be any generally agreed guidelines as of this writing. Given the speed the
field is moving and the rapidly dropping costs of sequencing, many groups have
decided to proceed directly to sequencing, bypassing the intermediate step of fine
mapping.

Interactions and pathway analyses. Following an initial scan for main effects of
SNPs (in either a single study or meta-analysis of several), much more remains to
be explored. One possibility is that there could be larger gene-environment or gene-
gene interaction effects that do not produce significant marginal effects. The obvious
problem is that the number of possible interactions can be very much larger than
the number of main effects: For a GWAS of one million SNPs, for example, there
are half a trillion possible pairwise interactions. A simple Bonferroni correction
for multiple comparisons would thus require a significance level of 1 � 10�13,
and of course, interaction tests would require much larger sample sizes than main
effects even at the same significance level (Marchini et al. 2005). Power can be
enhanced by “case-only” analyses based on an assumption of independence of the
interacting factors in the source population. For example, a reanalysis of cleft palate
data obtained substantially narrower confidence limits on the interaction between
smoking and the TGF˛ gene (odds ratio (OR) D 5.14, 95% confidence interval
(CI) D (1.68,15.7) for the case-only analysis compared with OR D 6:57, 95%
CI D (1.72,20.0) for the case-control analysis), equivalent to a 30% reduction in
sample size required for the same precision (Umbach and Weinberg 1997). Case-
only analyses are, however, biased if this assumption is violated, as might arise due
to LD among nearby pairs of loci, population stratification, or behavioral factors
that induce an association between genes and environmental factors. To overcome
these difficulty, various staged or hybrid approaches have been introduced (Evans
et al. 2006; Kooperberg and Leblanc 2008; Mukherjee and Chatterjee 2008; Li and
Conti 2009; Murcray et al. 2011). Although power will still be much lower than for
main effects, these various methods generally yield much better power than a simple
exhaustive search (Cornelis et al. 2012; Mukherjee et al. 2012). To make systematic
study of gene-environment interactions of adequate sample sizes possible in the
future, it is essential that investigators planning new GWAS design their studies
to have appropriate environmental measurements and appropriate population-based
sampling schemes. For example, the recent US National Institutes of Health (NIH)
“post-GWAS” initiative aimed at synthesizing all the available data on five cancer
sites, replicating findings, and characterizing genetic risks and their modification
by environmental exposures has been limited by the fact that many of the available
studies have not collected any environmental exposure data, and if collected, the
choice of measurements was highly variable and ranged from very crude to very
detailed assessment.

Another possibility is that there could be many SNPs that individually fail to be
genome-wide significant but that jointly contribute to a common pathway. A variety
of methods have been developed for identifying subsets of genes in known pathways
that collectively are overrepresented among the top GWAS associations. Of these,
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the technique of Gene Set Enrichment Analysis (Wang et al. 2010), originally
developed for gene expression data, has been most widely used. Hierarchical Bayes
methods provide a more flexible regression-based approach to incorporate external
knowledge about genomic, pathway, or functional annotation into the analysis of
GWAS data (Lewinger et al. 2007). Cantor et al. (2010) provide an extensive
review of these and other approaches to prioritizing GWAS associations for further
investigation. Key to all these methods is the extent and quality of external databases
such as the Kyoto Encyclopedia of Genes and Genomes and the Gene Ontology,
which can be used for annotation in a systematic manner (Thomas et al. 2007). It is
an interesting phenomenon that, after the failure of most candidate gene studies to
yield replicable findings, the enthusiasm for the “agnostic” GWAS approach is now
drifting back toward a synthesis of pathway-based and agnostic reasoning!

Functional studies. A somewhat unexpected finding from many GWAS is how
few of the discovered associations lie in coding regions of genes (Hindorff et al.
2009). While some of the SNP associations could reflect LD with nearby coding
variants that have not yet been discovered, it seems more likely that the majority will
reflect variants in promoter regions of genes or long-range enhancers. Molecular
techniques for functional characterization of causal associations will depend on the
nature of the postulated effect, a topic which is beyond the scope of this article;
for a recent set of recommendations, see Freedman et al. (2011). Nevertheless,
there is a growing interest in “integrative genomics” approaches that can combine
information across different types of data, such as SNPs, mutations in tumor tissues,
transcriptomics, methylomics, metabolomics, and proteomics (Schadt et al. 2005;
Hawkins et al. 2010).

38.7.3 Targeted, Whole-Exome, and Whole-Genome Sequencing

GWASs are based on an underlying “common disease, common variant” hypothesis
(Reich and Lander 2001), which postulates that complex diseases are caused, at
least in part, by common variants that can be effectively tagged by other SNPs in the
region. The SNP panels used in most GWAS, based on one million or fewer SNPs,
indeed are generally effective at tagging most “common” variants (conventionally
defined as those with minor allele frequencies (MAF) of at least 5%). Newer
generations of 2.5–5 million SNP panels will enhance the coverage of “uncommon”
variants (those in the range of 1–5% MAF), but even these are not expected to
provide good coverage of “rare” variants (less than 1% MAF). To discover these,
direct sequencing will be necessary. The advent of several different massively
parallel and fast “next-generation sequencing” (NGS) technologies (Davey et al.
2011) has now made this cost-effective, at least for targeted regions such as those
around selected GWAS hits or the whole-exome. At the time of this writing, costs
are typically around $1,000 per sample for whole exome sequencing and $5,000
for the whole genome, but the “$1,000 genome” (Mardis 2006) is anticipated in
the near future. However, the data management and data analysis challenges are
formidable. In addition to the storage problems of terabytes of raw data produced
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for even a single subject (petabytes for a typical study), NGS does not directly
yield genotype calls but rather a random set of short sequence reads that must be
aligned to cover the region of interest. The number of reads at any specific location
is thus randomly distributed (with a mean given by the average depth of coverage),
so the genotype can only be inferred probabilistically, taking into account possible
errors in the reads themselves. Thus, in addition to the trade-offs mentioned earlier
about region size and sample size, a further dimension to the design challenge is the
necessary depth of sequencing, subject to a constraint on total cost (Sampson et al.
2011). The optimal design will depend upon the purpose – whether for discovery
of rare variants or for testing association. One promising option is to perform
the sequencing on pooled DNA samples (Futschik and Schlotterer 2010), which
can considerably reduce costs, but this adds complexity to the optimization of the
numbers of subjects and numbers of pools.

Multiple Rare Variant Analyses. One of the first analytical issues that arises
concerns testing of association with rare variants. For feasible sample sizes, it is
virtually impossible to test association with any single rare variant, both because
of their rarity and the massive multiple comparisons penalty – for a typical whole-
genome sequencing study, for example, one might expect to discover on the order of
20 million variants, most appearing only a few times. Interest has therefore tended to
shift to tests of the “multiple rare variants” hypothesis (Price et al. 2010). The most
commonly used technique is some form of “burden” test, which simply compares
the total number of rare variants at a particular locus carried by cases and controls,
possibly weighted in some fashion by their frequency or other characteristics (see
Basu and Pan (2011) for a comparison of the available methods), but hierarchical
Bayes methods that take account of model uncertainty offer a flexible and attractive
alternative (Quintana et al. 2011).

Study designs for assessing causality. Most GWASs have used a case-control
design with unrelated subjects for greatest statistical power. However, family-based
designs offer two important advantages for studying rare variants. First, the sample
can be enriched for rare variants by targeting cases with a strong family history.
But more important is that looking at the pattern of cosegregation of variants with
disease within families offers great potential for distinguishing causal variants from
private polymorphisms that are simply circulating in the family but have nothing
to do with the disease (Zhu et al. 2010; Shi and Rao 2011). This is essentially a
form of linkage analysis, which has long been recognized as the design of choice
for mapping rare major genes.

38.7.4 Risk Models and Translational Significance

Finally, as the number of genetic associations grows, it is natural to ask whether
they can be used for genetic risk prediction. For genetic risk prediction, the purpose
for the test must be distinguished, for example, a screening test for the general
population or a high-risk population or a confirmation or exclusion test for a
particular mutation for a particular family member of a disease-enriched family.
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For major genes, segregation models as described above, using available genetic
and non-genetic information and possibly indirect LD measures, can be used for
prediction. For screening in populations, clearly a single SNP with relative risk
less than 1.5 has very little value, but in the aggregate, one might consider a risk
index based on all the known variants. For prostate cancer, for example, there are
now more than 50 known GWAS associations, and a substantial portion of the
population will carry several of these variants. Unfortunately, attempts to do this
so far have not been particularly encouraging (Jostins and Barrett 2011; MacInnis
et al. 2011; So et al. 2011; Newcombe et al. 2012). For prostate cancer in African-
Americans, Haiman et al. (2011) reported a twofold gradient in predicted risk across
quartiles of risk using 40 GWAS SNPs and 3.5-fold using only the 27 that were
significantly associated among African-Americans, but the latter comparison may
be subject to some overfitting. A clinically useful screening test should have both
high sensitivity and high specificity (Kraft and Hunter 2009; Kraft et al. 2009;
Janssens et al. 2011). Since both depend on where one draws the line between
“normal” and “elevated” risk, a widely used measure of the overall performance of
a screening test is the Area Under the Receiver Operating Curve (AUC) (Sanderson
et al. 2005; Zou et al. 2007), obtained by plotting sensitivity against one minus
specificity across the range of possible cut-points of the index (here, the predicted
genetic risk score). For breast and prostate cancer, Machiela et al. (2011) found
AUCs of 0.53 and 0.57, respectively, compared with 0.50 for an index that was
no better than chance. Clinically useful risk indices would require an AUC of the
order of 0.80 or better. For Crohn’s disease, this appears attainable (Pharoah et al.
2002), but not at this point for most cancers (Chatterjee et al. 2011). Perhaps a
more important question is what is the additional predictive value of genetic test
results on top of established risk factors, including family history (Pencina et al.
2008; So et al. 2011). With the proliferation of direct-to-consumer genetic testing
kits, some based on rather flimsy scientific evidence or with somewhat misleading
advice about possible lifestyle changes to improve their risks, this question becomes
of immediate translational significance (Hudson et al. 2007; Kaye 2008). See
Levy et al. (2007) for a discussion of the scientific and ethical significance of
the publication of the first complete human genome sequence. (The United States
Genetic Information Non-discrimination Act (May 5, 2008) and a similar law in
Germany (Gendiagnostikgesetz vom 31. Juli 2009 (BGBl. I S. 2529, 3672)) were
enacted to protect individuals from discrimination based on genetic test results.)
Although genetic risk prediction for the general population may still be some ways
off, there is potentially greater utility in predicting genetic variation in response to
treatments because these effects are likely to be much stronger due to the lack of
time for evolution to eliminate deleterious variants, considering the recentness of
most drug exposures (Altshuler et al. 2008).

38.8 Conclusions

The field of genetic epidemiology is in the midst of a fundamental paradigm
shift. Originally based on methods for describing familial aggregation, testing
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for the existence of a genetic basis (segregation analysis), and localizing genetic
causes (linkage analysis), the mainstay has become testing association with directly
measured genotypes. A decade ago, this was feasible only for a modest number
of variants in candidate genes, an approach that is now widely viewed as not
having been particularly rewarding because of our lack of success in picking
good candidates. With the advent of high-density genotyping platforms, agnostic
scans for common variants across the entire genome have become popular and
have led to many unexpected discoveries, albeit generally with rather small effect
sizes that even in the aggregate account for only a modest proportion of the total
estimated heritability of most complex diseases. These data are now being mined
with sophisticated algorithms in the hope of identifying novel pathways across many
of the suggestive, if not genome-wide significant, associations. Future directions are
aimed at trying to identify the cause of the remaining unexplained heritability by
targeted, whole-exome, or (soon) whole-genome sequencing – technologies that will
pose formidable statistical and computational challenges – and by understanding the
biological basis of the observed associations through regulatory, epigenetic, or other
mechanisms.

Acknowledgements Dr. Bickeböller is supported by the German Research Foundation (DFG)
grants (GRK 1644/1, KFO 241). Dr. Thomas is supported by NIH research grants ES019876,
ES07048, MH084678, and HG005927.

References

Ainsworth HF, Unwin J, Jamison DL, Cordell HJ (2011) Investigation of maternal effects,
maternal-fetal interactions and parent-of-origin effects (imprinting), using mothers and their
offspring. Genet Epidemiol 35:19–45

Albert PS, Ratnasinghe D, Tangrea J, Wacholder S (2001) Limitations of the case-only design for
identifying gene-environment interactions. Am J Epidemiol 154:687–693

Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888
Basu S, Pan W (2011) Comparison of statistical tests for disease association with rare variants.

Genet Epidemiol 35:606–619
Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-

phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet
84:210–223

Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: a review of statistical
methods and recommendations for their application. Am J Hum Genet 86:6–22

Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN,
Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P,
Fraumeni JF Jr, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL,
Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP,
Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins
FS (2007) Replicating genotype-phenotype associations. Nature 447:655–660

Chatterjee N, Park J-H, Caporaso N, Gail MH (2011) Predicting the future of genetic risk
prediction. Cancer Epidemiol Biomark Prev 20:3–8

Clerget-Darpoux F, Bonaiti-Pellie C, Hochez J (1986) Effects of misspecifying genetic parameters
in lod score analysis. Biometrics 42:393–399

Conneely KN, Boehnke M (2007) So many correlated tests, so little time! Rapid adjustment of p
values for multiple correlated tests. Am J Hum Genet 81:1158–1168
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