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10.1 Introduction

10.1.1 Basics

A cluster randomized trial is one in which groups of subjects are randomized
rather than individuals. They are sometimes known as group randomized trials. This
chapter will describe the design and analysis of such trials. Examples of cluster trials
in health are given in Box 10.1.

Cluster trials are used widely in the evaluation of interventions in health services
research. They can be divided into two types. The first type is exemplified by
the first three rows in Box 10.1: community randomized trials where the clusters
are complete communities (some authors call these “large field trials”). These are
generally characterized by a relatively small number of clusters each enrolling a
large number of subjects. The aim of the trial by Grosskurth et al. (1995) cited in
Hayes and Moulton (2009) was to reduce the prevalence of HIV infection by treating
other sexually transmitted diseases. It involved six intervention communities and
six matched control communities. In each, a random sample of 1,000 adults was
selected in each community and followed up for 2 years to measure the incidence
of HIV infection. The trial COMMIT (Gail et al. 1992) was to test an intervention
aimed at communities to encourage citizens to stop smoking. It had 11 matched
pair clusters. The sex-education trial by Wight et al. (2002) randomized 25 schools,
13 into intervention and 12 control, and interviewed all 13- to 14-year-olds at the
schools and the same children after 2 years.

The second type of cluster trial is closer in design to an individually randomized
trial. It typically uses more clusters and relatively smaller cluster sizes. Examples of
“small cluster size” trials are given in the second half of Box 10.1. As an example of
the second type, consider in more detail the DESMOND trial described by Davies
et al. (2008) (DESMOND – Diabetes Education and Self Management Ongoing and
Newly Diagnosed), which involved 105 general practices in the intervention and
102 in the control. The purpose of the trial was to investigate whether an intensive
education package can be used to reduce glycosylated haemoglobin (HbA1c%) in
patients who have type II diabetes. In the UK diabetes is usually treated in primary

Box 10.1. Examples of cluster trials

Unit Intervention Example

Rural communities Treatment of coexisting disease Grosskurth et al. (1995)
Communities Education Gail et al. (1992)
Schools Education packages Wight et al. (2002)
Groups Diabetes education Davies et al. (2008)
Doctors Patient-centered care Kinmonth et al. (1998)
Patients Teeth fillings Soncini et al. (2007)



10 Cluster Randomized Trials 391

care, and it was deemed impossible to randomize people in the same practice to
different treatments. Thus practices were chosen (at random) as either “intervention”
practices or “control” practices. DESMOND is usually taught as a course to groups
of eight people at the same time, so the course was the cluster in this case. Kinmonth
et al. (1998) randomized general practitioners into those who would receive training
in “patient-centered care” and those who did not. A total of 21 practitioners were
trained and 20 acted as controls. It would be difficult or impossible for a doctor to
change from “patient-centered care” to “paternalistic” care with successive patients.
The outcome was measured by HbA1c% in their diabetic patients. Soncini et al.
(2007) looked at the survival of amalgam versus composite fillings in teeth and
randomized 267 children into each group. It was deemed simpler to ensure each
child either had amalgam or composite fillings and so survival times of the fillings
will be clustered by mouth.

The main reason for using a cluster trial is fear of contamination. This occurs
when subjects in the control group are exposed to the intervention. Thus people
living in the same community could not fail to notice a mass education program
delivered on the television or local newspaper. In the DESMOND trial, patients
may wonder why people with the same doctor were getting different treatment and
demand the same for themselves. Doctors trained in a new technique will find it
difficult to revert to an old technique at the toss of a coin and so may not deliver
the standard treatment as they used to do before being trained to deliver the new
treatment. Another reason is that it may be more effective or cheaper to deliver an
intervention to a group. For example, patients in the same education program will
interact with each other and may learn more than if learning on their own. This
was particularly true with DESMOND, where patients learned from each other as
well as the trainer. A third reason for adopting a cluster design is administrative
convenience or necessity; it is often easier to deliver an intervention to a group
of people when it may involve an expensive piece of equipment or training health
professionals or it may be impossible to randomize individuals. Again, this was true
of DESMOND, where it was much cheaper to deliver the intervention in groups.
Sometimes it appears easier to get ethical consent when all of a group are getting
the intervention.

The most important point, with regard to the analysis, is that observations are not
independent. Observations within a particular cluster are correlated, and although
this correlation may be weak, it can have a major effect on the analysis as we
shall see.

It is worth defining a few terms. The intraclass correlation (ICC) is the ratio
of the between cluster variance to the total variance of an outcome variable and is
often denoted by �. Different designs can lead to different formulas for estimating �.
A simple method is described in the next section. The design effect (DE) is the ratio
of the variance of an outcome measure when clustering is accounted for to the
variance of the outcome measure when clustering is not accounted for. It is often
referred to as the variance inflation factor (VIF) since it measures the amount
that one should increase a variance estimate obtained by ignoring clustering to
allow for the clustering effect. For clusters of equal size m, it can be shown that
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DE D 1 C .m � 1/�. This is also called the sample size inflation factor (SSIF) in
chapter �Generalized Estimating Equations of this handbook, since the same factor
that inflates the variance will also inflate the required sample size. Extensions of
this formula to the case of variable cluster sizes are given in Sect. 10.2.2.3.

10.1.2 Looking at Data

Figure 10.1 shows the HbA1c% in diabetic patients after 1 year from randomization
by practice and by intervention/control from the DESMOND trial (Davies et al.
2008).

We are interested in the difference in the mean HbA1c% for intervention and
control. However, one can see that there is a good deal of variation within practices
but that some practices have in general high values and some practices have low
values. This illustrates the key point: that we cannot think of the outcomes for
individuals as being independent, we need to allow for the fact that two people in the
same practice are more similar than two people selected at random from different
practices. The intraclass correlation � is a measure of how much subjects within a
cluster are correlated. It is the ratio of the between cluster component of variance
�2

B to the total variance �2
B C �2

W where �2
W is the variance within clusters. We can

estimate these using a simple analysis of variance. This is shown in Table 10.1 as the
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Fig. 10.1 HbA1c (%) at 1 year by control/intervention from DESMOND (Davies et al. 2008)

http://dx.doi.org/10.1007/978-0-387-09834-0_45
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Table 10.1 Output showing ANOVA to estimate the ICC for data from DESMOND using
Stata v11

Loneway hba1c12 practice

Source SS df MS F Prob > F

Between practice        77.357747    46    1.6816902      1.84   0.0009

Within practice        539.41716    589     .91581861

Total                  616.77491    635     .97129907

Intra-class      Asy.        
correlation      S.E.       [95% Conf. Interval]

0.05914     0.02832       0.00364     0.11464

output from the Stata command “loneway” (Statacorp 2009). We have 636 subjects
in 47 practices. Here, �2

W , the within practice mean square (MS), is 0.9158. For a
fixed cluster size, m, we can estimate the between cluster component of variance
from the fact that the between practice MS D �2

B C m�2
W D 1:6817. Since here m

is about 13.5, we find that �2
B D 0:0567 and so � is 0:0567=.0:0567 C 0:9158/ D

0:0583. The program gives � D 0:0591, which is slightly different since it takes into
account variable cluster size. It is important to appreciate that this procedure gives
reasonable values for � even for binary outcomes, since it is a moment estimator
and does not require distributional assumptions.

10.1.3 Overview of Chapter

Section 10.2 is concerned with the design of cluster randomized trials and how to
estimate the number of patients and the number of clusters required. Section 10.3
discusses the analysis and presentation of such trials. Section 10.4 discusses
other considerations for cluster trials and software for their analysis. Section 10.5
concludes the chapter and suggests further reading.

10.2 Design of Cluster Randomized Trials

10.2.1 Cohort Versus Cross-Sectional Designs

Many community intervention trials are longitudinal in nature, allowing a choice
between a cohort design and a cross-sectional design. For a cohort design, clusters
are randomly assigned to intervention groups, with or without stratification. Cohorts
sampled from each cluster are then measured over two or more time points, with
at least the first measurement occurring before randomization. They are useful
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in looking at how the intervention changes the health or behavior of individual
subjects. The baseline and follow-up subjects are the same people. People who drop
out will often be different from those that stay and so the follow-up group may not
be typical of the whole population from which the cohort was chosen. Thus it is
important to report drop-out rates and do sensitivity analyses to consider whether
the nature of the drop-outs may affect the conclusions.

In contrast a cross-sectional design involves randomizing large groups of sub-
jects, such as towns. A random sample is taken before and a random sample taken
after the intervention with similar samples taken in the control population. Thus the
subjects before and after the intervention are not necessarily the same. On the one
hand, a cross-sectional study should be a representative sample of the population,
since it is based on a random sample. On the other hand, some of the sample may
have recently arrived in the population and so not received the intervention. This
will reduce the size of the contrast between the intervention clusters and the control
clusters. Cross-sectional designs are useful when the main focus is on change in
behavior or health in a community. It can be helpful in some situations to ask those
after the intervention whether they were aware of it. For example, in an evaluation
of a government advertising campaign, we asked subjects after the campaign if in
fact they had seen it (Mills et al. 1986). Only 31% of the sample were, in fact, aware
of the campaign, which may partly explain its lack of effectiveness.

Because responses within the same subject often have a strong positive corre-
lation, one can use the baseline measurement as a covariate and usually this will
reduce the standard error of the treatment effect. Thus in theory a cohort design
may be more efficient than a cross-sectional one. However, Feldman and McKinlay
(1994) presented a unified statistical model that embraces both designs as special
cases, thus allowing an assessment of how the values of different design parameters
affect their relative precision. A principal conclusion from their investigation was
that cohort designs have unique disadvantages that may outweigh any advantage in
theoretical efficiency. The first of these is related to possible instability in cohorts of
large size, with the resulting likelihood of subject loss to follow-up. Although this
disadvantage can be compensated for by oversampling at baseline, this might well
negate the original reasons for adopting a cohort design. Differential loss to follow-
up by intervention group also creates the risk of bias. The second disadvantage is
related to the issue of representativeness of the target population, which is invariably
hampered by the aging of the cohort over time. Assuming that changes related to
the aging process are independent of the intervention assignment, this effect will
not invalidate the principal comparison of interest. However, it does imply that
a difference observed in a cohort trial with respect to a given outcome variable
cannot be directly compared to the corresponding difference between observed
cross-sectional samples. Thus if the primary questions of interest focus on change
at the community level rather than at the level of the individual, cohort samples
are the less natural choice. This point was discussed by Ukoumunne and Thomp-
son (2001) and by Nixon and Thompson (2003), who described and compared
several approaches that might be taken to the analysis of repeated cross-sectional
samples.
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10.2.2 Power and Sample Size

10.2.2.1 Number of Clusters and Number of Subjects per Cluster
In cluster randomized trials, there are two sample size choices to be made: the
number of clusters and the number of subjects per cluster. The usual situation is
where the cluster size is fixed, and to increase the power we need to increase the
number of clusters.

Suppose we needed n0 subjects in an individually randomized trial to detect an
effect size ı with two-sided significance ˛ and power 1 � ˇ (e.g., using the tables
in Machin et al. 2008). Then to allow for clustering where we have equal clusters
of size m, we should increase the sample size (using VIF/SSIF) to n where n is
given by

n D n0.1 C .m � 1/�/ (10.1)

to achieve the same power and significance level (Hsieh 1988). The number of
clusters is determined by k D n=m.

An alternative situation is where the number of clusters is fixed, and one wishes
to determine the number of subjects per cluster. Since the design effect requires
knowledge of the number of subjects per cluster, m, one has to guess m first, to find
n and then recalculate m from m D n=k and then reiterate. A simpler solution is to
use the fact that (Campbell 2000)

m D m0.1 � �/

1 � m0�
; (10.2)

where m0 D n0=k is the number of subjects per cluster required before adjusting
for clustering. Suppose that for a given effect size, significance level, and power,
we require m0 subjects per cluster in an individually randomized trial. If � is greater
than 1=m0, then m becomes negative, which is impossible and so one can never
achieve the required power simply by increasing the number of subjects per cluster,
and one will have to increase the number of clusters. Even if � is only slightly less
than 1=m0, the numbers per cluster become very large. Thus a useful rule of thumb
for continuous outcomes is that the power does not increase appreciably once the
number of subjects per cluster exceeds 1=�. For example, if it is believed that the
ICC is about 0.05, then it is not worth enrolling more than about 20 subjects per
cluster for a continuous outcome. However, if the ICC of a continuous outcome is
near 0.001, which is often typical of community intervention trials, then a sample
of 1,000 subjects per cluster may be worthwhile, particularly if recruiting new
clusters is difficult. Of course, with binary outcomes, when the incidence is low,
large numbers of patients per cluster are required unless the effect of the intervention
is very large.

Flynn et al. (2002) addressed the issue of whether it is worth recruiting an extra
cluster, or to recruit more individuals to existing clusters. They showed how the use
of contour graphs of power by number of clusters per treatment arm and cluster
size can be usefully exploited. For example, consider a hypothetical trial in which
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18 clusters have already been recruited in each of two treatment arms and in which
at least 30 individuals can be recruited from each cluster. Suppose the ICC is 0.05
and the target standardized difference is 0.25. We then currently expect about 75%
power. To achieve at least 80% power, we can show there are two options: (1)
recruiting 20 extra individuals in each existing cluster; (2) recruiting two extra
clusters in each arm. The question may then be which of these options is the least
costly, and this would be the option to choose.

Although values of � in cluster randomized trials tend to be small (typically
around 0.05 for primary care trials (Campbell 2000)) and in community randomized
trials even smaller (usually less than 0.01 and often near 0.001, Donner and Klar
2000), the resulting inflation of the sample size may be very substantial when
combined with clusters of large size. For example, in the trial of HIV reduction
(Grosskurth et al. 1995), communities were on average 1,000 adults and so even an
ICC as low as 0.0001 would have the effect of doubling the required sample size.
Results from earlier studies in a specific setting of design effects likely to arise in
cluster randomized trials implemented are also helpful to investigators. Gulliford
et al. (2005) gave examples of variance components for some common outcomes
which can be helpful for future planning.

The sample size formulas we give here assume that data for sample size
estimation are obtained from a single sample of clusters from the population of
interest, that is, that the intervention itself is not associated with the cluster size.
The problem here is that variable cluster sizes will affect the power, and this will
be discussed in Sect. 10.2.2.3. Examples where this is not true have been given
by Campbell (2000). A particular example is Kinmonth et al. (1998) where the
intervention was to train doctors in treating newly diagnosed diabetics, and these
same doctors were the ones who diagnosed the diabetes and recruited the patients.
They found the intervention clusters were larger than the control because the doctors
who had received the intervention seemed more likely to find people with diabetes.
This is known as recruitment bias and is a particular problem with cluster trial.

In summary, ignoring clustering effects in the design stage of a trial can lead to
an elevated type 2 error, while ignoring it at the analysis stage inevitably leads to
an elevated type 1 error. In other words, if an investigator ignores clustering when
planning a study, the study is likely to be too small and so underpowered. If the
investigator ignores clustering in the analysis, then the standard error of the estimate
is likely to be underestimated, and so the observed p-value will be too low, and
results declared significant at a given level, when in fact the null hypothesis should
not have been rejected at that level.

10.2.2.2 Allowing for Imprecision in the ICC
Much of the sample size literature deals with the difficulty of obtaining accurate
estimates of between community variation, and hence of �, that are needed for
sample size planning.

In practice estimates of � for a given outcome variable are usually derived
from previously reported studies using similar randomization units. However these
estimates are frequently based on studies which themselves are of small size, and
thus their inherent inaccuracy may lend the investigators a false sense of confidence.
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Turner et al. (2004) have shown how to incorporate uncertainty in the ICC in a
Bayesian framework to obtain an “average” power (cf. chapter �Bayesian Methods
in Epidemiology of this handbook). They discussed the use of prior distributions for
the ICC and showed how the uncertainty about this parameter can be expressed
in the form of a parametric distribution which naturally leads to a distribution
of projected power for any particular design. This Bayesian approach toward the
determination of sample size could then be followed by a statistical analysis within
the traditional frequentist framework. If the total sample size were fixed, and
n D m � k, it is better to increase the number of clusters k and have smaller cluster
sizes. Increasing the number of clusters also considerably reduces the lower limit
of the posterior distribution of power. In other words, uncertainty in the ICC will
produce uncertainty in the actual power of a study, but a design based on a greater
number of clusters has less chance of having a very low power. In general, one
should try and recruit as many clusters as possible.

An alternative approach to dealing with uncertainty in observed values of � is
described by Feng and Grizzle (1992), who proposed the use of a method similar in
principle to the bootstrap procedure. For a simple discussion of the bootstrap in this
context, see Carpenter and Bithell (2002). Their approach requires the simulation
of results of studies of the same size to that which yielded the observed estimate.
One then can substitute the values of � obtained from each simulation into the
appropriate sample size formula to generate a distribution of projected powers,
followed by the selection of a point on this distribution, for example, the 90th
percentile, that reflects the degree of conservativeness desired.

10.2.2.3 Allowing for Varying Cluster Sizes
Variation in cluster size is another source of imprecision, and Kerry and Bland
(2001) following Donner et al. (1981) suggested using

DE D 1 C .ma � 1/�; where ma D
X

m2
i =

X
mi : (10.3)

The problem of using this formula is that the individual cluster sizes must be known
prior to conducting the trial.

Eldridge et al. (2006) modified (10.3) to give

DE D 1 C ..cv2 .k � 1/

k
C 1/ Nm � 1/�; (10.4)

where Nm is the mean cluster size, sm is the standard deviation (s:d:/ of the cluster
size given by sm D pP

.mi � Nm/2=.k � 1/, and the coefficient of variation
cv D sm= Nm. They suggested that formula (10.4) is more practical than (10.3)
since the value of cv may often be known in advance. Eldridge et al. (2006)
also provided some examples of the coefficient of variation for sample sizes
typically seen in cluster randomized trials. Data from similar trials would be the
first source of values for cv. Alternatively one could ask what is likely to be the
maximum and minimum size cluster and estimate sm as the range is divided by 4
(although strictly speaking this would require the data to be normally distributed).

http://dx.doi.org/10.1007/978-0-387-09834-0_57
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Eldridge et al. (2006) showed empirically that as the average cluster size increases,
the coefficient of variation tends toward 0.65. Primary care trials in the UK tend to
have values of cv between 0.42 and 0.75. In the trial of Davies et al. (2008), the
mean cluster size was about 14, and the s:d: of cluster size was 12, suggesting a
cv of about 0.86 which is somewhat more variable than many. The range of cluster
sizes was 1 to 48, so the rule of thumb of estimating sm as .48 � 1/=4 D 11:75 is
quite accurate. We give an example of a sample size calculation in the next section.

10.2.2.4 Example of Effect of Variable Cluster Size
Suppose an investigator stated that the expected number of patients per cluster was
10 and the estimated intra-cluster correlation coefficient was 0.05. A preliminary
sample size calculation showed that the estimated sample size required for a given
power, significance level, and effect size without taking account of clustering was
200 patients and so 20 clusters. Then the estimated sample size required taking
account of clustering but ignoring variation in cluster size is

n D .1 C .m � 1/�/x 200 D 1:45 � 200 D 290 patients D 29 clusters:

We can argue that a conservative estimate of the expected minimum size of a cluster
is 1 patient (no cluster can have less than 1) and the expected maximum is 30 (since
we would stop recruiting above this level). The cv is then estimated .29=4/=10 D
0:725. From Eq. 10.4, the design effect

DE D 1C..1Ccv2�28=29/m�1/� D 1C..1C0:7252�0:966/10�1/0:05 D 1:70:

Thus we would need 1:70 � 200 D 340 patients D 34 clusters, an increase of 5
clusters to allow for cluster size variable.

10.2.2.5 Sample Size Re-Estimation
When we do not know the value of the variance components required to ascertain
a sample size, one suggestion is to conduct a pilot study to provide these estimates
(Friede and Kieser 2006). We can then obtain an estimate of how many more patients
we will need to recruit and use the patients from the pilot in the final analysis
(an internal pilot). This procedure has been extended to cluster randomized trials
by Lake et al. (2002). With this approach, we conduct a pilot cluster trial, and at
an interim point in the study, several nuisance parameters, including �, the mean
cluster size and measures of cluster size, variation, are estimated, followed by re-
estimation of the final required trial size. Although this procedure is most suited
to trials that randomize a relatively large number of clusters, such as families or
households, over an extended period of time, Lake et al. (2002) pointed out that
it could also be applied to at least some community intervention trials provided
the participating clusters are recruited prospectively. However, Turner et al. (2004)
showed that imprecision in the estimate of � is not accounted for in this application
and suggested their Bayesian method could easily be extended to do so. More
experience on the application of internal pilot studies to such trials is clearly needed.
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10.2.2.6 Adjusting for Covariates
Sometimes the reason for a positive ICC is that subjects within a cluster have
similar covariates. Several authors have shown that adjusting for covariates either
at the community or individual level can improve the power of a trial by reducing
the magnitude of the between cluster variation (Campbell 2000; Feng et al. 1999).
Additional gains in power may be realized by modeling individual level covariates
(e.g., age) and also cluster level covariates (e.g., mean cluster age) as described
by Klar and Darlington (2004). Moerbeek (2006) suggested that often a cheaper
strategy than recruiting another cluster would be to measure additional covariates
related to the outcome in order to reduce the variance. This, of course, requires
the cost of measuring the covariate to be relatively small and the correlation of the
covariate and the outcome to be reasonably high.

10.2.3 Matched Pair Trials

10.2.3.1 Design of Matched Pair Studies
Because cluster trials involve randomizing relatively low numbers of groups, we
cannot rely on randomization to ensure balance between treatment arms in important
prognostic variables. A common technique to try and ensure balance is to match
clusters into pairs and then randomly allocate one member of each pair to the
intervention and one to the control.

Matched pair studies are not frequently seen in clinical trials randomizing
individual subjects to different intervention groups. However, they have proven to be
the design of choice for many investigators embarking on a community intervention
trial largely because of the perceived ability of this design to create intervention
groups that are comparable at baseline with respect to important prognostic factors,
including, for example, community size and geographical area. The relatively small
number of communities that can be enrolled in such studies further enhances
the attractiveness of pair matching as a method of reducing the probability of
substantively important imbalances that may detract from the credibility of the
reported results.

Freedman et al. (1990) investigated the gain in efficiency obtained from matching
in a community intervention trial. This was done in the context of the COMMIT
trial (Gail et al. 1992). Eleven pairs of communities were matched on the basis of
several factors expected to be related to the smoking quit rates, such as community
size, geographical proximity, and demographic profile. Within each matched pair,
one community was allocated at random to the intervention group, with the other
acting as the control. It is also interesting to note that this trial was one of the first
large-scale community intervention studies to use formal power considerations at
the planning stage and, perhaps not coincidentally, to be substantially larger in size
than its predecessors.

The gain in efficiency (measured by the sample size required for a given power
and effect size) due to matching may be quantified by the factor G D 1=.1 � �m/,
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where �m is the correlation between members of a pair with respect to the outcome
variable. This latter quantity is simply the Pearson correlation between outcomes
for the intervention and control. Thus if the correlation was 0, there would be no
gain in efficiency, whereas a value of 0.5 would reduce the required sample size by
50% if matching were employed. Freedman et al. (1990) showed that matching can
lead to considerable gains in statistical precision when it is based on an effective
surrogate for outcome. However, since G is simply the ratio of population variances
ignoring or accounting for pair-matching, it does not take into account the difference
in degrees of freedom for estimating these variances, a factor which is particularly
relevant in trials enrolling a small number of communities. For example, in the
COMMIT study, there were 11 matched pairs. The degrees of freedom associated
with the error from the paired differences in event rates would be only ten, as
compared to the 20 degrees of freedom available for an unmatched analysis. This
issue was subsequently addressed in detail by Martin et al. (1993), who concluded
that for studies having no more than 20 pairs, matching should be used for the
purpose of increasing power only if the investigators are confident that �m exceeds
0.20. By considering the practical difficulties that often arise in securing “good”
matches, they also concluded more generally that “matching may be overused as a
design tool” in community intervention trials.

These considerations suggest that a tempting strategy in practice may be to
perform an unmatched analysis of data arising from a matched pair design,
particularly when matching is adopted mainly for the purpose of avoiding a “bad”
randomization. The effectiveness of such a strategy was investigated by Diehr et al.
(1995), who concluded on the basis of an extensive simulation study that breaking
the matches can actually result in an increase in power when the number of pairs
is less than ten. Thus the loss in precision identified by Martin et al. (1993) in the
presence of weak matching correlations can be at least partially regained.

A secondary objective of many community intervention trials is to investigate the
effect of individual level risk factors on one or more outcome variables. Focusing
on the case of a continuous outcome variable, Donner et al. (2007) showed that the
practice of performing an unmatched analysis on data arising from a pair-matched
design can lead to bias in the estimated regression coefficient and a corresponding
test of significance which is overly liberal. However, for large-scale community
intervention trials, which typically recruit a relatively small number of large clusters,
such an analysis will generally be both valid and efficient.

10.2.3.2 Limitations of Matched Pairs Designs
Klar and Donner (1997) explored some further limitations of the matched pair
design that are more general in nature. These limitations arise largely from the total
confounding of the intervention effect with the natural variation that exists between
two members of a matched pair. One consequence of such confounding is that it pre-
cludes the use of standard methods for estimating the underlying ICC, which in turn
reduces analytical flexibility. For example, a secondary objective of many studies is
to estimate the effect of selected individual level risk factors on one or more out-
come variables using regression modeling. However, the calculation of appropriate
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standard errors for the regression coefficients obtained from such a model requires
a valid estimator of �. Thus, although it is possible to perform adjustments for the
effect of such risk factors, the task of testing for their independent relationship with
outcome is more difficult (Donner et al. 2007). It is difficult to directly model the
joint effects of cluster level and individual level risk factors, and the matched pair
design frequently does not bring large gains in precision. Klar and Donner (1997)
recommended that greater attention should be paid to the possibility of adopting a
stratified design, in which two or more clusters are randomized to each intervention
group within strata. This design may be particularly attractive when investigators
find it challenging to create matched pairs that correspond to unique estimates of risk
for each pair. Most importantly, the cluster level replication inherent in this less rigid
allocation scheme removes many of the analytical limitations associated with pair-
matching, while increasing the degrees of freedom available for estimating error.

Perhaps the most commonly adopted matching factors in large-scale community
randomized trials have been cluster size and geographical area (e.g., urban vs.
rural). Matching by cluster size is attractive not only because it protects against
large imbalances in the number of subjects per intervention group, an efficiency
consideration, but also because cluster size may be associated with other important
but unaccounted for baseline variables, such as socioeconomic status and access to
health-care resources (Lewsey 2004). Matching by categorized levels of baseline
versions of the trial outcome rate would also seem attractive. However, results
reported by Feng et al. (1999) suggest that if the primary interest is in change from
baseline, such matching is not likely to add benefits in power beyond that yielded
by an analysis of change scores. This is because including the baseline in the model
analysis is as effective as matching for baseline.

10.2.4 Problems with Identifying and Recruiting Patients to Cluster
Trials

In the trial conducted by Kinmonth et al. (1998), the subjects were newly diagnosed
people with type II diabetes. The doctors who recruited them were the same doctors
who were given training in patient-centered care. After the trial, it was discovered
that there were more patients diagnosed in the intervention arm than in the control
possibly because the doctors were unblind to treatment. However, concealment of
allocation is usually regarded as crucial for individually randomized trials, and
one of the advantages of randomization is that it ensures that it is impossible to
predict which treatment the next potential recruit will get (see also chapter �Clinical
Epidemiology and Evidence-Based Health Care of this handbook). This advantage
is lost for cluster trials where randomization of clusters is usually accomplished
at the start of the trial and so concealment is more difficult. In most cases, it is
impossible to conceal the identity of the treatment from the patients when they
receive it but it is useful to conceal what treatment patients will get until after
they are recruited to the trial. In a new trial, currently in the planning stage, an
insulin pump is being tested in patients with type II diabetes. The patients are

http://dx.doi.org/10.1007/978-0-387-09834-0_30
http://dx.doi.org/10.1007/978-0-387-09834-0_30
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educated in the use of the pump in groups of size six. The patients are recruited
to the trial and asked to give consent to either treatment. When six have been
recruited, they are randomized to either the pump therapy or control. In this way
the recruiters are ignorant of the treatment the patients will receive. Eldridge et al.
(2010) also discussed various options for trying to ensure concealment. These
include recruiting clusters and patients before randomization, masking recruiters,
or using a standardized recruitment procedure across clusters to try and ensure the
procedure was not affected by subsequent treatment.

10.3 Analysis of Cluster Randomized Trials

10.3.1 Cluster Specific Versus Marginal Models

Assume that the clusters are sampled from a larger population and the effect of any
particular cluster i is to add a random effect Zi to the outcome Y. We assume the Zi s
have the same distribution for all i . We add a covariate X for the treatment effect,
where X D 1 for the intervention and X D 0 for the control. Suppose the effect of
an intervention is to add an amount ˇ1. We assume that the actual cluster effect is
a separate and independent effect to that of the treatment effect. A cluster specific
(CS) model measures the effect on Y of changing X , while Z is held constant. This
is a common model for longitudinal data, where it is possible to imagine, say in a
cross-over trial, a treatment value changing over time. A suitable model might be

E.Yi jZi / D ˇ0 C ˇ1X C Zi ; (10.5)

where E.Yi jZi / is the expected value of the outcome conditional on Zi . We further
assume that E.Zi / D 0 and var.Zi/ D �2

Z and the Zi s are independent of the
fixed effect X for all i . The distribution of Zi is generally assumed to be normal,
but for binary data, a gamma distribution can be used. In a Bayesian context, other
distributions such as a t-distribution can be also used (see Sect. 10.3.4).

Equation 10.5 can be generalized to any outcome variable Yi (continuous or
binary), with expected value �i and a generalized link of the form

g.�i / D ˇ0 C ˇ1X C Zi ; (10.6)

where the function g is assumed strictly monotone and differentiable.
However, in a cluster randomized trial, everyone in a cluster receives the same

treatment, and although a CS model can be fitted, the result can be interpreted
only theoretically. There is an analogy here with the “counterfactual” argument for
causality in epidemiology (see also chapter �Basic Concepts of this handbook),
where we interpret casual effects as being the difference in outcome from either
exposure to a hazard or non-exposure in the same person, even though in practice
this is not observed.

http://dx.doi.org/10.1007/978-0-387-09834-0_44
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An alternative method is to fit a model which looks at the average effect of X

over the range of Z. This is the so-called population averaged (PA) or marginal
model. Consider a model where we fit only X and ignore Zi , so that

g.�i / D ˇ�
0 C ˇ�

1 X: (10.7)

Model (10.7) is a PA model, that is, we estimate the effect of X on Y as averaged
over all the clusters i .

Neuhaus and Jewell (1993) contrasted the approach between cluster specific
models and population averaged models by observing that Model (10.7) is simply
Model (10.6) with the variable Z omitted. If we assume that the coefficients for
X in the two models are related by ˇ�

1 � Bˇ, where B is the bias factor, then
they show that for a linear model and a log-linear model B D 1, and so the
interpretation of cluster specific and marginal models is the same. However for a
logistic link, � D logit .P.Y D 1jX; Z//, they showed that B � 1 � � where �

is the correlation of the Y s within clusters assuming ˇ1 D 0. Since 0 < � < 1, so
0 < B < 1, and so the general effect of using a population averaged model is to
attenuate the regression coefficient toward zero. One can also see that for a logistic
link, the greater the variability of the random variable Zi , and so the greater the
intracluster correlation, the greater the attenuation. However, as discussed earlier,
the value of � in community randomized trials is usually less than 0.01, and this
suggests that the bias in assuming a marginal model should not be great.

Since B D 1 for a log link, this would suggest that in prospective studies such as
clinical trials, it would be advantageous to use a log-linear model which estimates
the relative risk rather than a logistic model which yields odds ratios (Campbell
2008). However, experience has shown that in general logistic models are easier to
fit and have fewer convergence problems. These can arise with a log-linear model
when the fitted values for the risk become greater than 1 or less than 0. This is more
likely to happen when the number of events is relatively high.

10.3.2 Standard Methods of Analysis

10.3.2.1 Inflating the Standard Error
For a linear model, we assume the observed outcome yij is the outcome of
the random variable Yij for the j th subject (j D 1; : : :; mi ) in the i th cluster
(i D 1; : : :; k), and it differs from the expected value by a random error. We write

Yij D ˇ0 C ˇ1Xi C Zi C "ij (10.8)

and we assume E."ij / D E.Zi / D 0, "ij and Zi are independent, var("ij / D �2,
and var.Zi/ D �2

Z . In a trial with no other covariates, Xi is an intervention indicator
variable (0, 1) which depends only on whether the cluster i is in the intervention
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group or not. An exchangeable correlation structure is assumed, which effectively
means that one can exchange subjects j and j 0 within a cluster without changing
the covariance. This breaks down if subjects are measured more than once (e.g., at
baseline and at follow-up) since the correlation of the same subject measured twice
will not be the same as the correlation of two different subjects within a cluster. It
also means that the ICC must be assumed to be the same within each arm of the trial,
an assumption which is guaranteed in a randomized trial under the null hypothesis
of no intervention effect, but may not be true under the alternative hypothesis that
the intervention affects the outcome.

Let Nd be the estimate of the difference in means between the intervention and
control group and suppose there are k=2 clusters in each group (k assumed even).
Then we can show that

var. Nd/ D 4�2

mk
C 4�2

Z

k
: (10.9)

The first term in (10.9) is simply the variance that would have been obtained if the
data were not clustered. Equation 10.9 can be rewritten as

var. Nd/ D 4.�2
Z C �2/VIF=mk;

and we can estimate �2
Z C �2 by the pooled variance of the outcome variable over

groups. Thus a technique originating in sample survey is to simply multiply the
variance obtained from ignoring the clustering by the variance inflation factor VIF.
The design effect given in Sect. 10.1 may be estimated by replacing the ICC with
its sample estimate (Donner and Klar 2000). A simple test of whether a parameter
is zero, known as a modified Wald test, is to divide an estimate of the parameter by
its modified standard error which is then compared to the quantile of a standard
normal distribution. The authors give a number of methods for continuous and
binary outcomes which modify the standard error associated with either the t-test
or the chi-squared test respectively. It is important to note that the estimate of the
treatment effect is unchanged, only the standard error is inflated. An alternative
method is to use the so-called “sandwich,” “robust” or Huber-White estimator
(Huber and Ronchetti 2009) which has a long history in econometrics for estimators
with continuous data and with heterogeneous variances. The advantage of the robust
standard error is that one does not need to estimate the ICC separately before
conducting the analysis.

10.3.2.2 Summary Measures
A simple method, which is applicable to both binary and continuous data, is the
method of summary measures, as popularized by Matthews et al. (1990). For
continuous data, one uses the mean of each cluster, and for binary data, one would
use the proportion of events (or a transformation such as the logit). This works best
when the clusters are all approximately the same size. It gives equal weight to each
cluster, irrespective of size, and is a cluster specific method. It has a great deal to
recommend since it simply uses the summary statistics for each cluster and is easy



10 Cluster Randomized Trials 405

to apply without specialist software. However, one cannot adjust for individual level
covariates directly using this approach.

10.3.2.3 Generalized Estimating Equations
The generalized estimating equations (GEE) method, developed by Liang and Zeger
(1986) in the context of longitudinal studies, has proved to be very popular for
the analysis of data arising from cluster randomized trials. It fits the PA model
and uses an iteratively reweighting algorithm to estimate the parameters and a
robust method (the “sandwich” estimator) for the standard error. It is described in
more detail in chapter �Generalized Estimating Equations of this handbook. Use
of the GEE yields a “shrinkage” estimator which is a compromise between no
weighting and weighting by the sample size. It deals with the correlation within
clusters by assuming a “working” correlation and then adjusting it according to
the data. In cluster trials the choice is between an independent error structure and
an exchangeable error structure. An independent error structure is plausible if in
fact the intracluster correlation coefficient of the outcome variable is close to zero.
An exchangeable error structure means that one can exchange subjects within a
cluster and not change the correlation matrix. An exchangeable correlation structure
effectively weights each mean by mi =.mi�

2
z C �2/. This weights the means by the

sample size mi when �2
Z D 0 and gives equal weight when �2 D 0 or when the

cluster sizes are all the same. In practice, estimates of the variance components, s2
Z

and s2, are used and so s2 will always be greater than zero which implies the weight
will vary unless the outcome were constant.

The use of robust standard errors means that even if a model has an incorrect
variance-covariance structure, valid inferences can still be made. For example,
one could have a model with an independent error structure and use robust
standard errors. This is the same as using the variance inflated method described
in Sect. 10.3.2.

GEE is used widely for hypothesis testing and confidence interval construction
because it can control for the influence of potential confounders on outcome without
the need to specify an underlying distribution for the sample observations. The
robust variance estimation relies on between cluster information to assure the
validity of the resulting inferences. It is therefore important to be wary of this
approach to community intervention trials where the amount of such information
tends to be relatively small.

Feng et al. (1996) recommended for continuous data that GEE should not
be applied to trials having 20 or fewer clusters. It has been found that using a
t-distribution (with a Satterthwaite type correction for the degrees of freedom to
allow for unequal variances) and a technique known as the jackknife (Efron and
Tibshirani 1998) improves the estimate of the standard error (Mancl and DeRouen
2001). Pan and Wall (2002) proposed replacing the GEE Wald test by approximate
t- or F -tests. Although the proposed procedures showed type 1 errors closer to
nominal than the usual Wald test, they were shown to be strictly applicable only
in clusters of small size. It is therefore clear that more research is needed on the
development of adjusted GEE procedures that can be applied to clusters of the size
that typically arise in community intervention trials.

http://dx.doi.org/10.1007/978-0-387-09834-0_45
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10.3.2.4 Random Effect Models
The alternative method of analyzing data from cluster trials is to use a cluster
specific model (10.5 and 10.8). We now have to assume distributions for the two
error terms. For continuous data the subject level error is assumed normal and for
binary data it is assumed binomial. For continuous data the cluster level error is
usually assumed normal, and also for binary data, although sometimes a gamma
distribution is used. Although this model does not directly reflect the design of a
cluster trial since treatment is contrasted to control within the same cluster, as stated
earlier it does provide a valid estimate of the treatment effect. These models are
also known as “mixed” models (since they contain a mixture of random and fixed
effects) or “hierarchical” models since one can think of a hierarchy of clusters and
then subjects nested within clusters.

The probability density of an observation from Eq. 10.8 conditional on Zi is
normal with mean ˇ1Xi . Thus P.yij jZi / D f .yij jZi ; ˇ; �2/ where f .:/ is the
normal density function. Within a cluster and conditional on Zi , we assume the
observations are independent and so, given observations yi1; yi2; : : : ; yimi

P.yi1; yi2; : : : ; yimi jZi / D
miY

j D1

f .yij jZi ; ˇ; �2/:

This depends on the random variable Zi , and to find the expected value, we integrate
over possible values of Zi to get

P.yi1; yi2; : : : ; yimi / D
C1Z

�1
f .Zi ; �2

Z/

miY

j D1

f .yij jZi ; ˇ; �2/dZi :

The full likelihood is the product of the above integrals over k clusters

L.ˇ; �2
Z; �2/ D

kY

iD1

C1Z

�1
f .Zi ; �2

Z/

miY

j D1

f .yij jZi ; ˇ; �2/dZi : (10.10)

As discussed in Sect. 10.3.1, binary models using different link functions can
estimate different population parameters and so deserve special consideration.

Let Yij (0 or 1) be the j th observation (j D 1; : : :; mi/ in the i th cluster (i D
1; 2; : : :; k). The cluster specific logistic model, following Eq. 10.6, is

logit .�ij / D ˇ0 C ˇ1Xi C Zi ; (10.11)

where Zi is the effect of being in cluster i and where �ij D E.Yij jXi; Zi /. This
model can be extended to include individual specific covariates Xij. The random
variable Zi is assumed to be independent of Xi and may be usually assumed to be
normally distributed with mean 0 and variance �2

Z although sometimes a gamma
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distribution fits the data better. Given the Zi , the Yij s are assumed independently
distributed with binomial parameter �ij .

The full likelihood L is given by

L.ˇ; �2
z / D

kY

iD1

Z miY

j D1

�ij .ˇ; Zi /
yij f1 � �ij .ˇ; Zi /g1�yij f .Zi ; �2

Z/dZi : (10.12)

Equation 10.10 can be solved directly to maximize the likelihood with respect to the
parameters ˇ, �2

Z , and �2 but not so Eq.10.12. An early method for binary outcomes
and which avoided the integration is a penalized quasi-likelihood approach, using
a Laplace method for approximating the integral (Breslow and Clayton 1993).
However, this has been replaced by methods which conduct the integration directly
using Gaussian quadrature or other numerical methods to obtain estimates of the
regression coefficients. Other methods, using iteratively generalized least squares
(IGLS), are commonly used for hierarchical models (Goldstein 2002) and are
implemented in the package MlWin.

10.3.3 Examples

10.3.3.1 The Analysis of Continuous Data
Table 10.2 gives the results from the DESMOND study (Davies et al. 2008) of the
analysis of the outcome HbA1c%, which is treated as a continuous variable. The
first row is the result of using a simple t-test on the means of the clusters. This
ignores the size of each cluster. The second row uses a robust correction factor for
the standard error. The estimate 0.0792 is what one would get from an analysis
ignoring clustering, but the standard error is inflated using a “sandwich” estimator
(cf. chapter �Generalized Estimating Equations of this handbook). The third row
uses an exchangeable error structure and shows the effect of “shrinking” the smaller
clusters toward the center. The random effects model using maximum likelihood
gives nearly the same outcome as the GEE with exchangeable errors, a common
finding. One can see that the GEE (independent errors) gives a smaller p-value than
the other methods possibly because the independence assumption is implausible.

It is sensible to plot the residuals from the random effect to check for approximate
normality. Figure 10.2 shows a plot known as a QQ plot, which plots the residuals
against the value that would have been expected from a normal distribution with

Table 10.2 Results of analysis of continuous outcome HbA1c% from DESMOND

Treatment effect Std. Err. z P > z

t-test using means 0.0615 0.1321 0.47 0.64

GEE (independent errors) 0.0792 0.1118 0.71 0.48

GEE (exchangeable errors) 0.0531 0.1098 0.48 0.63

Random effects (max.lik.) 0.0518 0.1100 0.47 0.64

http://dx.doi.org/10.1007/978-0-387-09834-0_45
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Fig. 10.2 A QQplot of the cluster level residuals from a random effect model from the
DESMOND study

the same mean and standard deviation. If the residuals are normally distributed, one
would expect this plot to be a straight line. The model fitting procedure means that
the residuals are closer to a normal distribution than if we had not estimated the
parameters from the data, but the plot is useful for gross departures from expected.
The figure suggests that the residuals are plausibly normal. If the plot had been
grossly away from normal, one would look for outliers, include potential covariates,
and try transformations of the outcome to search for a better fitting model.

10.3.3.2 The Analysis of Binary Data
Table 10.3 shows the outcomes of three analyses from the DESMOND study
(Davies et al. 2008) where the outcome is a binary indicator variable (HbA1c%
> 7.5%). One can see that the GEE (population averaged) model with exchangeable
errors gives a smaller odds ratio (OR) than that for independent errors. As with the
continuous data analysis of Sect. 10.3.3.1, this is because smaller clusters are shrunk
closer to the overall mean in a model with exchangeable errors and it is more likely
that small clusters will have larger effects, the effect of which is diminished with
exchangeable errors. The OR estimated using a random effects model is similar to
that for the GEE population averaged model with exchangeable errors since the
ICC is relatively small (0.061 in this case), but the GEE estimate is very slightly
smaller as might be expected. Further discussion of these points has been given by
Ukoumunne et al. (2007, 2008).
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Table 10.3 Results of analysis of binary outcome for DESMOND using a logistic link

Odds ratio
for treatment Std. Err. z P > z

GEE (independent errors) 1.8318 0.4689 2.36 0.018
GEE (exchangeable errors) 1.8056 0.4568 2.34 0.20
Random effects (adap. quad.) 1.8190 0.5012 2.17 0.30

Tests for the assumptions concerning the residuals with binary data are more
difficult to achieve than for continuous data. They are most easily accomplished
using Bayesian methods described in the next section. In view of the close
agreement between the GEE (exchangeable) and random effects models, we will
not pursue this further.

10.3.4 Bayesian Methods

An alternative method to solve Eqs. 10.10 and 10.12 is to use simulation via
Markov Chain Monte Carlo (MCMC) algorithms. These are usually associated with
a Bayesian analysis, but choice of suitable non-informative priors will yield results
similar to the conventional likelihood methods. Spiegelhalter (2001) described
methods for the Bayesian analysis of cluster randomized trials with a continuous
response. This was extended to a binary outcome by Turner et al. (2001). They used
Eq. 10.11 and looked at different prior distributions for �2

Z . Since �2
Z is closely

related to the ICC, they argued that often it is more appropriate to use a prior
distribution on the ICC, and information for prior distributions for the ICC is now
becoming available (Gulliford et al. 2005). Turner et al. (2001) experimented with
different prior distributions and showed that the estimate of the treatment effect is
not entirely robust to the distributional assumptions of the model and suggested
caution in using the conventional normality assumption. They showed that the
variance components tend to be underestimated when using the non-Bayesian
approach. Thompson et al. (2004) and Clark and Bachmann (2009) used Bayesian
methods to analyze binary outcomes. They looked at two aspects. Firstly, they
looked at rate ratios and rate differences. The latter are particularly important for
economic analyses. They showed that use of Bayesian methods facilitated looking at
differences in rates. Secondly they looked at the effect of different prior distributions
on the outcome. Both sets of authors found that the choice of a prior distribution
could have a significant effect on the treatment estimate.

10.3.5 Modeling in Matched Pair Designs

Thompson et al. (1997) replaced standard modeling approaches by techniques
borrowed from meta-analysis. Thus an intervention/control pair replaces an indi-
vidual clinical trial of a meta-analysis. This is essentially equivalent to relying on
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between-stratum information to estimate � under the assumption of no intervention
by stratum interaction. An attractive feature of this is that the forest plot can show
which pairs appear to be outliers. However, this approach requires a large number of
strata (pairs) to ensure its validity and is therefore not applicable to many community
intervention studies. The meta-analysis method as applied to the matched pairs
design was extended to binary data by Alexander and Emerson (2005) using a
Bayesian approach.

The strict lack of applicability of the t-test to binary outcomes in a matched
pair design has led some investigators to alternatively recommend non-parametric
approaches, such as Fisher’s one sample randomization (permutation) test. Simula-
tions performed by Gail et al. (1996) showed that inferences for matched pair binary
data using permutation procedures will have significance levels near nominal under
conditions likely to arise in community intervention trials. Essentially the same
conclusions were reached by Brookmeyer and Chen (1998) for person-time data
arising from matched pair trials. It is useful to note, however, that the one sample
permutation test requires a minimum of six pairs to yield a two-sided p-value of less
than 0.05, reflecting its relatively weak power. Donner and Donald (1987) showed
that a weighted paired t-test based on a logistic transformation of the crude event
rates tends to be more powerful than both the permutation test and the standard
paired t-test in trials having a small number of strata.

10.3.6 Advice on Methods of Analysis

A method of analysis we have not discussed here is the so-called “fixed” effect
method. This involves fitting dummy variables for each of the clusters. This would
be relevant if we were particularly interested in the results for particular clusters.
However, in general, the clusters are just a source of variation; if the trial were run
again, different clusters would be used. Thus treating clusters as fixed incorrectly
removes a source of variability, and so the standard errors from this approach will
be incorrect.

Heo and Leon (2005) compared different methods of analysis using Eq.10.12: (1)
full likelihood, (2) penalized quasi-likelihood, (3) generalized estimating equations
and (4) fixed effects logistic regression. The third method is a marginal method
which, following the discussion in Sect. 10.3.1, estimates a different population
parameter than the regression coefficient in Eq. 10.10. However, it does not require
one to assume a normal distribution for the Zi . The last method does not take
the ICC into account and is an invalid method in general for cluster randomized
trials. However, if �2

Z D 0, it may be expected to yield valid tests and efficient
estimates.

Heo and Leon (2005) found the full likelihood method and the penalized
likelihood methods to be similar and no worse than the fixed effects method
even when the within-cluster correlations are zero. As expected, the GEE method
gave biased estimates of ˇ1, the cluster specific parameter for the treatment effect
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from Eq. 10.6. They did not investigate the effects of estimating ˇ�
1 , the population

averaged parameter from Eq. 10.7. Preisser et al. (2003) showed how to apply a
PA model to a pretest posttest cross-sectional design, where the assumption of an
exchangeable correlation matrix breaks down. They stated that the GEE approach is
asymptotically equivalent to the summary measure approach and quoted Mancl and
DeRouen (2001) to the effect that using bias-corrected variances can yield valid test
sizes even with unequal cluster sizes and with as few as ten clusters.

Ukoumunne et al. (2008) carried out a number of simulations contrasting a
cluster level t-test with GEE methods, when the outcome is either the difference
in proportions, the risk ratio, or the odds ratio. They found that GEE had little bias
in any scale, when the number of clusters per arm was at least ten. In contrast the
cluster level t-test only performed reasonably for the difference in proportions.

There are other methods for the analysis of cluster trials such as the use of the
bootstrap (Carpenter and Bithell 2002) and methods which fit models in stages. Feng
et al. (1996) conducted a comparison of maximum likelihood assuming a normal
mixed model, GEE, a bootstrap, and a “4-stage method.” The bootstrap used by the
authors draws a random sample of size k from the original k clusters. Then one can
use ordinary least squares to estimate the ˇs and repeat a large number of times.
The four-stage method is non-iterative, where the first step is to estimate the ˇs by
ordinary least squares and obtain the residuals ei D Yi � Xi

Ǒ. Then the eis are
regressed against the Zi s, leading to estimates of �2 and �2

Z . One can then use these
estimates in a weighted least squares regression of Yi versus Xi . For small numbers
of clusters (<10 per arm) and for nearly balanced data, the bootstrap has been shown
to do well, especially if one does not wish to assume normality. For larger numbers
of clusters, the maximum likelihood method performed better than GEE.

In practice there is a choice of four main types of analysis: use of summary
statistics, generalized estimating equations (GEE), random effects models, and
Bayesian random effects models. These are summarized in Fig. 10.3.

As stated earlier, within the GEE method, there is a choice of independent error
structure or exchangeable error structure. Within the random effects method, there
are a number of ways of fitting models which usually give similar results. For
community intervention trials with few large clusters, there is much to recommend
a summary measure approach: easy to implement and to understand. If the design
includes matched pairs of clusters, then if the number of pairs is less than 10,
an analysis ignoring matching is likely to be worthwhile. For “small cluster size”
trials with more than 20 clusters per intervention group, the GEE methods using
an exchangeable correlation structure are simple and robust. With fewer clusters,
one could adopt a random effects model or use a cluster level method. As with
any statistical analysis, with few data there is a compromise to be made between
the number of assumptions about the data and the power to test hypotheses.
With random effects models, it is important to test the assumptions regarding
the distribution of the random effects. As stated earlier, this is most easily done
using a Bayesian approach, but this requires a degree of expertise and is less
commonly done.
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Type of model

Population averaged Cluster specific 

Summary measures Generalized
Estimating
Equations 

Random effects 
Bayesian
methods 

Independent
errors 

Exchangeable
errors 

Penalized
likelihood 

Adaptive
quadrature

Iterative
Generalized
Least Squares

Fig. 10.3 Choices of model and fitting methods

10.4 Other Considerations

10.4.1 CONSORT Statement for Presenting Results from Cluster
Randomized Trials

Cluster randomized trials are often poorly reported (Eldridge et al. 2004). The
original CONSORT statement was an attempt to improve reporting of individually
randomized trials. This statement was subsequently adapted for cluster randomized
trials and revised by Campbell et al. (2004). The most important distinctions
from the original CONSORT statement are (1) to give a rationale for adopting
a cluster design, (2) to describe how the effects of clustering were incorporated
into the sample size calculations, (3) to describe how the effects of clustering were
incorporated into the analysis, and (4) to describe the flow of both clusters and
participants through the trial, from assignment to analysis. Thus, in a primary care
trial, for example, one would like to know how any primary care groups were
approached, how many agreed to participate, how many were randomized, and how
many dropped out during the trial, as well as the characteristics of the patients in the
study. The most up-to-date statement is available at www.consort-statement.org.

10.4.2 Clustering by Therapist

Investigators may need to contend with clustering of subjects’ responses even for
trials using individual randomization. For example, patients may be randomized
as they enter a trial by whether or not they will receive a new intervention (say

www.consort-statement.org
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acupuncture). However, there may be a limited number of acupuncturists and so
a single acupuncturist may treat a number of patients. The outcomes will thus
be affected not only by whether the patient received acupuncture but by which
acupuncturist treats them. The model is

Yijk D ˇ0 C ˇ1Xi C �Zk C "ij ;

where the subscript k indicates the effect of different acupuncturists and Zk D 0

for the control group. However, it is important to note that the subjects in the control
group are not naturally clustered. Issues in the analysis of these trials have been
covered by Roberts and Roberts (2002). Lee and Thompson (2005) discussed a
Bayesian approach to the analysis of such trials and pointed out how taking account
clustering in the analysis can affect the results.

10.4.3 Compliance and Recruitment

We now discuss some potential sources of bias that are peculiar to cluster random-
ization trials. As we discussed in Sect. 10.2.2.1, if the subjects in a trial are newly
diagnosed patients and the intervention is some new approach to treating a disease,
then it is possible that practitioners in the intervention arm, being newly educated
about this disease, may be more likely to diagnose the disease (Campbell 2000).
This may lead to serious problems of selection bias if patients in the intervention
arm have less serious disease than patients in the control arm. Trials should be
analyzed by what is known as the “intention to treat” (ITT) principle. This means
that patients randomized to a particular treatment will be analyzed as if they received
that treatment, irrespective of their actual treatment. This is a so-called “pragmatic”
approach which attempts to reflect what will happen in practice, when patients
will not necessarily comply with treatment. An ITT approach is appropriate when
compliance varies over clusters but varying compliance has major implications
for any attempt at casual modeling. Loeys et al. (2001) demonstrated how to use
standard GEE and random effects models to allow for variable compliance among
clusters.

From experience, factors that improve compliance include building a “team
spirit” within a cluster, regularly communicating to the patients about the trial, and
providing the control group access to the intervention after the trial. For example, in
the Hampshire Depression Trial (Thompson et al. 2000), general practitioners (GPs)
in the intervention were trained to recognize depression in their patients. GPs in the
control group were offered training when the trial was over, and this increased their
willingness to stay in the trial.

10.4.4 Software

The selection of the general packages which can fit these models discussed in
this chapter is given in Table 10.4. Stata (Statacorp 2009) has simple commands
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Table 10.4 Web addresses
for software packages

Name URL

MLwiN http://www.bristol.ac.uk/cmm/software/mlwin/
R http://www.r-project.org/
SAS http://www.sas.com/technologies/analytics/statistics/
Stata http://www.stata.com/
WinBUGS http://www.mrc-bsu.cam.ac.uk/bugs/

for applying a cluster robust standard error and for checking the distribution of
the residuals. These can also be accomplished in R, but it is not as easy to use.
MLwiN enables more than two-level clustering (e.g., by pupil by class by school)
or therapist by patient by time within patient. It also can fit models using Markov
Chain Monte Carlo methods which enable a Bayesian approach. WinBUGS can be
used to analyze trials using Bayesian methodology with prior distributions for the
parameters. SAS is particularly flexible for mixed models.

10.5 Conclusions

10.5.1 Review

Cluster randomized trials are an order of magnitude more complicated than ordinary
randomized controlled trials. If the risk of contamination is low, then an investigator
would be well advised to consider whether an individually randomized trial might
be more efficient. However, the last 10 years have seen a flourishing of research into
cluster randomized trials and they are now better understood and can be analyzed
relatively easily using common software. There is still a need for information about
likely values of the intracluster correlation coefficient for common outcomes and
clusters so that trials can be planned with more precision. Trial design is still
comparatively simple, and research is needed on issues such as group sequential
trials where interim analysis can inform the future design of the trial.

10.5.2 Further Reading

The standard text books on cluster (or group) randomized trials are those by Murray
(1998); Donner and Klar (2000) and Eldridge and Kerry (2012). A recent book by
Hayes and Moulton (2009) emphasizes the use of cluster trials in infectious diseases,
particularly in developing countries. There have been a number of reviews of cluster
randomized trials. Klar and Donner (2001) and Donner and Klar (2004), following
on from their book (Donner and Klar 2000), reviewed developments up until that
time and suggested areas of further research. Murray et al. (2004) reviewed methods
in public health. Methodological developments for cluster randomized trials have
also been reviewed more recently by Campbell et al. (2007).

http://www.bristol.ac.uk/cmm/software/mlwin/
http://www.r-project.org/
http://www.sas.com/technologies/analytics/statistics/
http://www.stata.com/
http://www.mrc-bsu.cam.ac.uk/bugs/
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