
37Geographical Epidemiology

John F. Bithell

Contents

37.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1415
37.1.1 The Nature of Geographical Epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1415
37.1.2 Scope of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1415
37.1.3 Chapter Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1416

37.2 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1417
37.2.1 A Statistical Framework for Epidemiological Observations . . . . . . . . . . . . . . . . . . . 1417
37.2.2 Statistical Models for Geographical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1419

37.3 Modeling Disease Risk in Relation to Geographically Referenced Factors. . . . . . . . . . . . . 1420
37.3.1 Areal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1420
37.3.2 An Example of the Log-Linear Model for Areal Data. . . . . . . . . . . . . . . . . . . . . . . . . . 1422
37.3.3 Calculating the Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1423
37.3.4 Continuous Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1423
37.3.5 Spatial Structure in the Residual Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1424

37.4 Mapping Disease Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1425
37.5 The Detection of Generalized Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1428

37.5.1 The Assessment of Heterogeneity in Areal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1428
37.5.2 Detecting Heterogeneity in Poisson Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1429
37.5.3 Spatial and Non-Spatial Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431
37.5.4 Heterogeneity Tests Based on the Risk Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432

37.6 Clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1433
37.6.1 Methods Based on the RRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1434
37.6.2 Knox’s Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1435
37.6.3 Other Space-Time Clustering Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1436
37.6.4 Space-Only Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1436
37.6.5 Population Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1437
37.6.6 Choosing Scale Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1437

J.F. Bithell
St Peter’s College, University of Oxford, Oxford, UK

W. Ahrens, I. Pigeot (eds.) Handbook of Epidemiology, 2nd edition,
DOI 10.1007/978-0-387-09834-0 22,
© Springer Science+Business Media New York 2014

1413



1414 J.F. Bithell

37.7 Predefined Sources of Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1438
37.7.1 Tests for Concentration of Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1439
37.7.2 Example: Childhood Leukemia Around UK Nuclear Installations . . . . . . . . . . . . 1441
37.7.3 Summary of Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1442

37.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1443
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1444



37 Geographical Epidemiology 1415

37.1 Introduction

37.1.1 The Nature of Geographical Epidemiology

Although, at first sight, geographical epidemiology may appear to differ substan-
tially from other areas of epidemiology, it has many features in common. In
particular, a major objective of epidemiology – to infer etiological relationships
from observed associations – applies also in geographical studies. The distinctive
characteristic is of course that geographical location is an important explanatory
variable, either because it reflects an environmentally determined element of risk
or because people with similar risk attributes live together, so that risk varies from
place to place. The two-dimensional nature of geographical location means that the
standard statistical techniques for handling sets of essentially univariate variables
need to be augmented by more sophisticated methods.

There are practical limitations to the scientific value of geographical studies.
The data quality tends to be low – not least because population censuses are
relatively infrequent – and any real effects may be attenuated by factors such as
mobility, often to the point where they are not detectable. Consideration of these
difficulties may lead to the conclusion that a lot of geographical epidemiology is,
in scientific terms, of very limited value. Historically, however, there have been
some spectacular successes: to the famous observation of Snow (1855) on the source
of cholera infection may be added a number of more recent and equally dramatic
observations, for example, the identification of the cause of an outbreak of asthma in
Spain (Antó and Sunyer 1992) and the implication of erionite fibres in the etiology
of mesothelioma from the very high localized rates in the Cappadocian region of
Turkey (Baris et al. 1992).

37.1.2 Scope of the Chapter

This chapter attempts to sketch the statistical principles of the subject, with an
indication of the kinds of analyses to which these principles lead quite naturally.
There is a large literature on the methodology of geographical epidemiology,
much of it employing a Bayesian standpoint and exploring hierarchical models
analyzed by Markov chain Monte Carlo methods. It would be impossible to give
a comprehensive review of the latter field, and we adopt the less ambitious objective
of outlining the fundamentals of the subject, in the hope that this will in any case
provide insight into more sophisticated analyses. Nevertheless we have attempted
to provide some examples of the techniques discussed and, where possible, to make
recommendations for practitioners, though this latter goal is difficult in view of the
large number of different analyses that have been proposed but whose properties are
relatively unknown.

Our presentation will in fact be almost exclusively frequentist. To some extent,
the choice between Bayesian and frequentist methods in statistics is a matter of
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philosophical standpoint. Frequentist arguments are undeniably limited in their
scope and power and are frequently subject to misinterpretation. The limitations
may, however, be argued to be intrinsic to the problem of inductive inference under
uncertainty and such inference does not seem to this author to be more consistently
clear-cut when derived from a Bayesian analysis. The modeling approach is
admittedly more attractive than the mere detection of statistical significance, but
it is not without its difficulties. For one thing, the amount of data in geographical
studies may often not permit the estimation of numerous parameters, and to the
extent that a model makes specific assumptions about underlying phenomena, there
is a risk that it may inject spurious information into the analysis, leading to the
overinterpretation of the data. The limitations of the hypothesis testing approach
have not prevented its widespread use in practice, and an important part of the
epidemiologist’s role is to ensure that the tests that are carried out are chosen
with due regard to maximizing their power against sensible alternatives. This
at least is the standpoint from which we approach this topic here; in any case,
the statistical framework underpins the more sophisticated analyses and forms
a natural prerequisite for their understanding. See chapter �Statistical Inference of
this handbook for a discussion of the fundamental distinctions between Bayesian
and frequentist inference, and chapter �Bayesian Methods in Epidemiology of this
handbook for an account of Bayesian modeling.

37.1.3 Chapter Contents

We start by considering (Sect. 37.2) the models that underlie statistical methods
in geographical epidemiology in order to give insight into the justification for the
methods that are discussed. A key feature is the duality that exists between the
two approaches to epidemiological investigations generally. To be specific, we can
elect to study either the occurrence of disease conditionally on case locations or
vice versa, i.e., to regard case location as a random variable to be compared in
fixed groups of affected and unaffected individuals. This duality precisely mirrors
the distinction between the cohort and case-control approaches to epidemiological
surveys. The case-control approach in geographical work has only recently been
recognized and is particularly relevant for the analysis of data at the individual, as
opposed to the areal, level. This important approach, though not yet fully exploited,
has led recently to a number of new and interesting methodological developments.

In Sect. 37.3, we develop the way in which risk may be modeled in relation to
geographically referenced data, distinguishing between the analysis of areal data
and data at the individual level, for which it is assumed that individual locations
are known. As with any statistical modeling exercise, the objective is to explain
as much of the variation as possible, up to the point where heterogeneity can be
attributed to chance. There are numerous ways of approaching this subject, even
within the compass of frequentist analyses, and some of the issues as to the best
analysis are unresolved.

http://dx.doi.org/10.1007/978-0-387-09834-0_54
http://dx.doi.org/10.1007/978-0-387-09834-0_57
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Section 37.4 is concerned with mapping. From one point of view, mapping is
an end in itself, and there are numerous methods available for producing maps.
However, there is much scope for misinterpretation of data represented in this way,
and we would argue that a map should be seen as the end product of some kind
of modeling process, though possibly a very primitive one: no disease map can be
constructed without assumptions about the underlying distribution of the disease it
purports to represent.

Section 37.5 addresses the question of heterogeneity in the distribution of risk.
To some extent, this involves issues bound up with the problems of modeling. But
the simple question of whether there is any non-uniformity of risk is a valid one
that can be at least partially answered without reference to underlying models or
alternatives.

In Sect. 37.6, we address the problem of clustering. This may be seen as
a violation of the twin assumptions of uniformity and independence discussed in
Sect. 37.2. However, we may well be more interested in detecting small clusters of
cases that are related to one another, and to this extent it may be appropriate to use
different methods from those in Sect. 37.5.

Finally, Sect. 37.7 considers the rather more specific problem of detecting an
increase in risk near a putative point source of risk, and it is argued that analyses
of this kind are essentially one dimensional, and perhaps for this reason, it is
somewhat easier to determine good methods for doing so. This is in fact a problem
of considerable interest, and many investigations of “clustering” are really of this
kind. The issue is illustrated by the incidence of childhood leukaemia around nuclear
installations in the UK using data introduced in Sect. 37.3.2.

The concluding section summarizes the chapter and makes suggestions for
further reading.

37.2 Statistical Models

In this section, we describe a statistical framework for the methods to be discussed.
We start by explaining the elements that underlie the analysis of classical surveys
and then show how the same starting point may be applied to geographical data.

37.2.1 A Statistical Framework for Epidemiological Observations

To describe a modeling framework for epidemiology, we start by supposing that the
disease D in which we are interested is an essentially dichotomous entity, i.e., it is
the binary outcome – affected=not affected – of some biological process applied to
a finite set of individuals. Such a starting point will serve irrespective of the temporal
nature of the events we are studying, be they deaths or incident cases of a disease D
in a given time period or the prevalence of D at a given epoch. We will be primarily
interested in the association between D and various covariates C. Some of these may
represent risk factors suspected of playing a causal role: we will describe these as
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exposure variables and denote them by E . Others may be of interest in their own
right or because they are potential confounding variables for E . We will treat E as
a subset of C when this is convenient.

To take a specific geographical example, we cite the famous study of cardiovascu-
lar disease D by Cook and Pocock (1983). The covariates C included water hardness
E , whose etiological relationship to cardiovascular disease was of primary interest,
and also various indicators of socioeconomic status, which played the role of
a confounding factor: the gradients of mortality, water hardness, and socioeconomic
status are highly correlated with latitude in the UK. The data were analyzed for
males and females together, but they could equally well have been stratified by sex,
which would be a covariate of interest in its own right, since one might be interested
in the mortality of males and females separately.

Next, we assume that occurrences of D are independent. This does not preclude
the possibility that individuals have probabilities p of D that are related through
their proximity, for example. Rather the condition stipulates that, conditional on the
values of C and E , the occurrence of D in one individual is independent of that in
another, i.e., that the probability that individualA suffers fromD is unaffected by the
fact (as opposed to the probability) that some other individual B also suffers from
it. In practice, this is a reasonable mechanistic assumption for nearly all chronic
disease epidemiology. It clearly breaks down for infectious diseases, for which
more sophisticated models would be appropriate. In fact, little theoretical foundation
for modeling the epidemiology of infectious diseases at the individual level exists.
This is partly because the theory is intractable, partly because it is not necessary
in setting up the null hypothesis of no contagion for the purposes of testing. It is
only for formulating alternative hypotheses in this situation that statistical models
for a contagious mechanism are necessary. Important though this is, we will not
consider the problem in this chapter.

Under this independence assumption, the individual outcomes of D are described
by the very simple Bernoulli distribution. If all the probabilities pi for the
individuals in a group of n are the same, the number of occurrences out of the n
will clearly follow the binomial distribution, while if all the pi are different and
supposed to depend on C, we can model them through a (binary) logistic regression
(Cox and Snell 1984).

Such analyses are becoming more common, but they require detailed information
on individuals and are not without their technical difficulties. Much of epidemiology
is in practice still conducted by the more traditional approach of grouping data
according to disease status and to grouped values of C. In this approach, the
assumption is that the probabilities pi within a particular group are indeed all the
same, though in practice we know that this is unlikely to be true. However, this
assumption is far less troublesome than appears at first sight. For one thing, as long
as the pi are small, the difference between a binomial distribution and that of a sum
of slightly different Bernoulli variables will be negligible.

A typical analysis of epidemiological data proceeds by forming a cross-
tabulation into a contingency table, whose rows, columns, and layers are labeled
by components of D, E , and C. The standard way of analyzing such a table is
through a log-linear model, which implicitly assumes that the counts in the table are
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values of Poisson distributed variables, conditioned by the requirements that certain
subtotals in the table are deemed to be fixed. For details on log-linear regressions
please refer to chapter �Regression Methods for Epidemiological Analysis of this
handbook.

The logistic regression and log-linear modeling approaches thus described have
been constructed on the assumption that D is a random response and the covariates C
are fixed, but we can also obtain useful analyses by conditioning on the numbers of
“cases” affected by D and unaffected or disease-free “controls” in a suitable control
group and regarding one or more of the covariates as a random response. This
leads to the so-called “case-control” study (formerly termed a retrospective study),
in distinction to a “cohort” (or prospective) study. Thus, for example, it might be
appropriate to use a normal linear regression to model the exposure E of individuals
to some risk factor – considered to be a continuous variable – as a function of the
other variables, one of which would be an indicator for D, the membership of the
case or control group. We would then regard E as the factor of primary interest and
the other covariates would be fitted in order to control for their possible confounding
effects.

37.2.2 Statistical Models for Geographical Data

Most of the ideas outlined above carry over quite naturally to data in which
geographical location plays a role. We will preserve the assumptions that D is
a binary variable and that disease occurrences are independent conditionally on C.
We need to extend our conceptual notation to include geographical location, which
we will denote by G. There is a distinction between situations where we think of
it as representing a pair of coordinates and those where it is an essentially two-
dimensional location in the space representing a geographical region studied.

If G is thought of as representing coordinates, such as Easting and Northing,
it may be meaningful to treat them like other quantitative variables, perhaps to
detect a trend with latitude, for example. Alternatively, it might be meaningful to
consider polar coordinates from a specified point S considered as a fixed origin,
analyzing distance and direction from it. Typically, S would be a point of some
etiological significance, such as a putative source of pollution. We return to this
topic in Sect. 37.7 below.

However, this approach implicitly reduces our analyses to consideration of
essentially one-dimensional variables, and it is useful to distinguish this from the
intrinsically spatial case in which we regard two-dimensional space as a single
entity. In this situation, a principal objective will be to depict the way in which
risk varies over a region R, usually by means of a map. It is unlikely that any
kind of analytically determined trend surface, such as a polynomial, will be useful,
though non-parametrically estimated surfaces might be. We return to the problems
of mapping in Sect. 37.4 below.

The distinctions we made in Sect. 37.2.1 above apply for geographical data. For
example, the majority of geographical analyses are effectively analyses of grouped
data, in which observations have been grouped into k subregionsA1;A2; : : : ; Ak of

http://dx.doi.org/10.1007/978-0-387-09834-0_17
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R (which we shall refer to as “areas”). Within each area, we would hope to know
the population to serve as a denominator and the number of occurrences Yi of the
disease D would then follow a binomial or approximately a Poisson distribution, by
the arguments outlined above. The areas may be regarded as analogous to the bins
of a histogram, though they will nearly always be based on administrative areas
with highly irregular boundaries, so that they do not share the attractive regularity
properties of the more familiar histograms formed from quantitative variables. The
identities of the areas themselves typically enter the analysis through the coordinates
of their population centroids, and these may then be analyzed by incorporating them
into the model as described above, though the analysis might well take account of
spatial autocorrelation.

If instead of binning or grouping the observed cases into areas we record the exact
locations of the occurrences of D, we need a rather different modeling approach.
The case-independence assumption implies that the cases are located according to
a non-homogenous Poisson process (Diggle 2000), which is the standard probability
model for events happening at random in a continuum, though not necessarily with
a uniform pattern of risk. This model supposes that the probability of an event in
a small area ıA at the point .x; y/ is �.x; y/ıA, where �.x; y/ is the “intensity
function” of the process giving the rate per unit area at .x; y/; it also incorporates the
crucial assumption that the occurrence of such a point is independent of occurrences
outside ıA.

It is well known, however, that when points occur according to a Poisson
process in such a way that the total number is fixed at a value n, say, the
pattern of points obtained is typically exactly the same as if we had sampled
from a probability distribution with density function proportional to �.x; y/. This
enables us to describe the behavior in geographical space of a fixed sample of
cases, with a view to estimating the risk at each point .x; y/ or to compare the
resulting risk function with that for a sample of controls. Thus we have moved to
the “dual” or case-control approach, for we are effectively regarding the locations
as realizations of a continuous bivariate random variable defined for our samples of
cases and controls. Methods of analyzing data within this framework are discussed
in Sect. 37.3.4 below.

37.3 Modeling Disease Risk in Relation to Geographically
Referenced Factors

37.3.1 Areal Data

One of the commonest and most straightforward analyses of geographical data
consists of modeling the counts Yi of cases in areas Ai using a Poisson regression
or, equivalently, a generalized linear model (GLM) with Poisson error and log link
function; see McCullagh and Nelder (1989) and chapter �Regression Methods for
Epidemiological Analysis of this handbook. We start by assuming that we can

http://dx.doi.org/10.1007/978-0-387-09834-0_17
http://dx.doi.org/10.1007/978-0-387-09834-0_17


37 Geographical Epidemiology 1421

calculate “null expectations” ei for the Yi . In the simplest form, these could be
obtained by multiplying some global reference estimate of risk p by the population
sizes in the Ai . In practice, we will almost certainly wish to standardize for the age
distribution and other known demographic factors such as socioeconomic status.
Part of our objective is of course to modify the assumption that the risk is the same
in every area, so we will incorporate a relative risk (RR) �i , to give the model for
the counts as

Yi � PoissonŒ�i ei � :

We then model the �i in the usual manner for a GLM through

log �i D
pX

jD1
xij ˇj ;

where the ˇj are coefficients in the log-linear model and xij is the value of the j th
covariate for the i th areal unit Ai .

Typical covariates in such an analysis might include intrinsically geographical
features, such as altitude, geological composition, or levels of background radiation,
or essentially demographic features, such as the age or socioeconomic composition
of the population of each area. It should be emphasized that the units in such
analyses are not the individuals with a disease D but the areas within which they
reside, and the covariates are also necessarily attributes of these areas. The object
of such an analysis, however, will generally be to make inferences concerning
individuals, and to ignore the distinction is sometimes described as perpetrating
the “ecological fallacy.” Covariate values for the area as a whole are implicitly
imputed to each individual member of the population, and this has the potential
for introducing a number of different kinds of bias known variously as “ecological”
or “aggregation bias.”

A genuinely “ecological” or geographical imputation would arise if a
geographical feature (such as latitude) were averaged spatially without regard to
population density (Diggle and Elliott 1995), and any such averaging should as far
as possible be density-weighted, perhaps by using the relevant measurement at the
centroid of the population. Demographic variables, such as age or socioeconomic
deprivation will usually be averaged over the population anyway, and in this case
grouping into areas has much the same effect as grouping by other factors; the
problem may then be seen in the wider context of aggregation bias. Such a bias
can result from concealed within-group confounding, and it is difficult to take
account of this without individual-level data. An intrinsic bias may also arise from
the non-linearity of the model used, though this is likely to be small when the
disease risk is itself small and relatively uniform, since the logistic (or any similar)
transformation used in the model will be nearly linear.

Many papers have addressed the issue of ecological bias. An early contribution
by Greenland and Morgenstern (1989) was influential but may have painted too
pessimistic a view of ecological studies, which can be very valuable for providing
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pointers and which are often based on more objective data than case-control studies.
Wakefield (2008) provides a useful overview and a review of the literature. Further
discussion of the issues will also be found in chapter �Descriptive Studies of this
handbook.

37.3.2 An Example of the Log-Linear Model for Areal Data

An example of this use of the log-linear model is provided by the application to
childhood leukaemia data described by Bithell et al. (1995). The dataset analyzed
was from the UK National Registry of Childhood Tumours (NRCT) maintained
by the Childhood Cancer Research Group in Oxford and related to 5,359 children
diagnosed with leukaemia or non-Hodgkin lymphoma under the age of 15 years
between 1966 and 1987. Each of the cases was located in one of 9,831 electoral
wards, which are administrative areas with an average population of around 5,000.

The explanatory variables fitted were “Standard Region,” a classification of
Britain into ten regions, and the Townsend Index, an areal index of social deprivation
which is a function of unemployment, housing ownership, and other socioeconomic
indicators. As shown in Table 37.1, there was a significant reduction in the deviance
associated with each of these factors: the p-values shown in the first two lines are
based on the chi-square approximation to the deviance reductions. It is interesting,
incidentally, to note that the direction of the association is negative for the Townsend
Index, i.e., the disease is slightly commoner in less deprived families. This is
a feature of childhood leukaemia that differentiates it from most other diseases.

The goodness of fit of the model can in principle be tested by the residual
deviance, but because the expected numbers of cases per ward in this analysis
were small (less than half on average), the chi-square approximation is unreliable.
However, the theoretical mean and variance of the deviance for Poisson observations
with a specified set of expectations can be calculated straightforwardly. We can
therefore obtain an approximate test of the residual deviance as follows:
1. Compute the values for the expectations predicted by the model for each ward.
2. Compute the mean � and variance �2 of the deviance statistic D as defined by

D D 2
X

i

ŒYi log.Yi=ei / � .Yi � ei /� (37.1)

as if the contributions to D were independent.
3. Refer the statistic .D � �/=� to the standard normal distribution.

Table 37.1 Analysis of deviance of childhood leukaemia data

Variation due to d.f. Deviance p-value

Standard region 9 23.1 0.0060
Townsend index 1 23.6 10�6

Residual 9,820 8610.6 0.025

http://dx.doi.org/10.1007/978-0-387-09834-0_4
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The assumption of independence should be approximately true in view of the
large number of degrees of freedom. Bithell et al. check the two-sided p-value
by simulation of data from the fitted model and found a very good degree of
approximation to the calculated value of 0.025. These results may be interpreted
as meaning that the model fits much better than if the explanatory factors had not
been taken into account (for which the equivalent p-value was 0.00042); though
there is some evidence of residual heterogeneity, it must be remembered that this
is a large data set and the level of significance observed is not indicative of a large
degree of variation. We return to the issue of testing residual variation in Sect. 37.5.

37.3.3 Calculating the Expectations

The model described above involves the expectations ei , which appear as an “offset”
term in the model, i.e., log.ei / is added to the linear function of the covariates
defining log �i . These may be calculated from externally calculated rates, for
example, from national statistics. If such rates are not easily available, the data
can be internally standardized by supplying the sizes of the populations at risk;
any factor representing the overall risk will appear in the intercept term of the
model. The expectations predicted by the model can then be used as expectations
for subsequent analyses, and this is a useful by-product of the modeling process.
The method can be seen as an elegant and more consistent alternative to classical
standardization, permitting the flexible inclusion of covariates according to their
importance, as indicated by the modeling process.

Indeed, the analysis described by Bithell et al. is part of a larger one designed
to produce expected numbers of childhood leukaemias for the areal analysis of
incidence near nuclear installations; this is briefly described in Sect. 37.7.2.

37.3.4 Continuous Data

Following the discussion in Sect. 37.2.2 above, we suppose that we have a sample of
exact locations of cases of disease D and that we denote their density function over
R by .x; y/. We need an analogue of the denominators in an areal analysis to serve
as a measure of how many individuals there are at risk at each point .x; y/ of R.
This is provided in principle by knowledge of the population density, which we will
consider to be continuous and which we will denote by �.x; y/. Then our problem
becomes one of comparing the density function for the incident cases with that of
the population. For a rare disease, the population density (which strictly speaking
includes diseased as well as healthy individuals) will be very similar to that for all
non-diseased individuals, which can in turn be estimated by a suitable sample of
controls. The natural way to make this comparison is through the ratio, and it is
easily seen that this ratio

�.x; y/ D  .x; y/=�.x; y/
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defines a relative risk function (RRF) that gives the risk of being affected by D at
each point .x; y/ of R relative to the mean for the whole of R (see Bithell 1990).

A natural estimate b�.x; y/ of �.x; y/ is provided by the ratio of estimates of
 .x; y/ and �.x; y/. These may be obtained using one of the modern methods
available for estimating a density function (see the books by Silverman (1986) and
Scott (1992), e.g.). The process is not without difficulties but it can be used to
provide meaningful estimates of the RRF over R, in effect providing a map of it.
We return to the problem of mapping in Sect. 37.4 below.

A more ambitious objective than merely mapping the RRF is to model it as
a function of covariates x, say. These may be geographically defined at every
point of R, or they may be attributes of the cases and controls in the samples. An
elegant modeling approach is due to Diggle and Rowlingson (1994) and proceeds by
analogy with classical case-control studies. We condition on the coordinates of the
n cases and m controls and consider the probability that, under random allocation
of the cases and controls to the m C n locations, an individual sampled at a given
location .x; y/ is a case rather than a control. This probability can then be modeled
logistically as a function of x. If there appears to be unexplained variation in the
RRF, it can in principle be modeled by adding a non-parametric function of .x; y/
to the linear predictor. The numerical problems of the latter approach appear not to
be trivial.

The inclusion of attributes of the individuals in the analysis is particularly
attractive, since it provides the possibility of controlling for them within the
geographical analysis. In practice, it is not always straightforward to obtain suitable
controls for analyses of this kind, partly because the current emphasis on data
protection makes it difficult to access individual records and partly because of
the number of combinations of categories with respect to which we may wish to
match. Nevertheless, this methodology, though still in its infancy, would seem to
have considerable potential.

37.3.5 Spatial Structure in the Residual Variation

The object of fitting a model of the kind discussed is to obtain a satisfactory
explanation of the data, i.e., a residual deviance that is not statistically significant.
This is not always very easy, since the risk of disease may depend on factors
that we have been unable to measure. Large data sets – for example, of national
mortality rates – may also demonstrate a statistically significant deviance resulting
from unobserved factors that are scientifically unimportant simply because of the
large numbers of cases involved.

Unfortunately, conclusions about the importance of individual explanatory vari-
ables in a model are strictly valid only if the model fitted is correct. In practice,
we will believe a model to be correct if it appears to fit reasonably well, i.e., if the
residual deviance is not statistically significant. This raises the question of how to
proceed if there is a degree of residual variation that we cannot explain.
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In geographical studies, it is quite likely that such variation will be due to
unobserved variables that are spatially autocorrelated, and in this case we can
include terms in the model designed to reflect this autocorrelation. Typically, this
is done for data in areal form using a conditional autoregression (CAR) model
(Wakefield et al. 2000) while, for continuous data, Kelsall and Diggle (1998) use
a generalized additive model (GAM) which effectively gives an extra term in the
model estimating residual variation non-parametrically. These ideas are important
but are somewhat beyond the scope of this chapter; see Pfeiffer et al. (2008) for an
introductory account of spatial models and Diggle (2000) for a good overview of
the field. We only remark that the issue may not always be as significant as some
authors maintain. The deviances of the terms that are fitted in a model will still
be a reliable indication of their importance unless they are confounded with the
unobserved variables that are inflating the deviance; in this case, fitting a spatial
model merely tells us that this confounding has a spatial structure – it does not help
us to identify the variable or determine its scientific importance.

37.4 Mapping Disease Risk

The mapping of disease risk is a central endeavor of geographical epidemiology:
a map is as convenient for portraying such location-specific information as it is for
indicating the geography of the land to which it relates. It is therefore no surprise to
discover that mapping has a long history predating any systematic development of
the statistical principles that underlie it.

As with other areas of geographical epidemiology, many methods have been
proposed. Broadly speaking, these can be divided into two classes, model-based
and non-parametric. Methods in each of these classes can be applied to data in
either areal or continuous form. It is important to appreciate, however, that, whatever
method is applied, there is inevitably a degree of smoothing involved that is to some
extent arbitrary and under the control of the investigator.

For example, the simplest form of map is the so-called choropleth map, which
uses a gray or color scale to depict the risk of D in each of a number of areas, usually
administratively defined so that denominators are easily available. Here, the degree
of smoothing is determined by the size of the areas Ai , since the process represents
the risk as being the same throughout each given area. An example of a choropleth
map is given in chapter �Descriptive Studies of this handbook.

Similarly, data in continuous point form can be mapped using the methods
described in Sect. 37.3.4 by plotting the RRF b�.x; y/. Here, the smoothing is
determined by the degree of smoothing used in the estimation of the densities: it
is a commonplace of this methodology that some smoothing parameter always has
to be used, though there are data-driven methods for estimating the most appropriate
value. See Bithell (1990) for an early example of this method applied to small
numbers of cases and controls, and Davies and Hazelton (2010) for a more recent
development of the methodology.

http://dx.doi.org/10.1007/978-0-387-09834-0_4
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Fig. 37.1 Relative risk
function for childhood cancer
in a region of Oxfordshire,
estimated from areal data.
The three town centers are
shown only approximately.
The ASH smoothing
parameter used was 8 (See
Bithell 1999 for details)

It may be noted that the RRF method can easily be adapted to areal data
by suitably modifying the customary density estimation methods (Bithell 1999).
Figure 37.1 depicts the incidence of childhood cancer in a 50-km square region
of Oxfordshire using data from the UK National Registry of Childhood Tumors
maintained by the Childhood Cancer Research Group in Oxford. They consist of
279 cases of childhood cancer (other than leukaemia and non-Hodgkin lymphoma)
registered under the age of 15 years between 1966 and 1987. Each case was located
in one of 150 electoral wards for which expected numbers of cases were calculated
using similar methods to those for the leukaemia data described in Sect. 37.3.2. The
point observations for the cases were used to construct a density estimate b .x; y/
using the average shifted histogram (ASH) method due to Scott (1992). For the
controls, the density estimate b�.x; y/ was constructed by treating the centroids of
the wards as point locations weighted by the expectations and using a version of
ASH modified accordingly.

The basis of the ASH method is to count the numbers of cases in the cells of
a square grid; these are then smoothed by slightly shifting the grid a number of times
and averaging the resulting counts; this process effectively smoothes the surface by
spreading out the contributions of the points through neighboring grid squares.

The RRF was then obtained by dividing the density estimates for the cases
and controls to give b�.x; y/ D b .x; y/=b�.x; y/. This is depicted in Fig. 37.1 as
a contour plot with a scale in km and an origin located in South West Oxfordshire.

The methods sketched above may be regarded as empirical or non-parametric,
in that there is nothing underlying them that is more sophisticated than the division
of one number by another (specifically a count by a denominator or one density
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estimate by another). It is generally difficult to see how to determine the appropriate
degree of smoothing by any objective process, as distinct from using intuitively
plausible and aesthetically pleasing values.

The necessity for a degree of smoothing can easily be seen by considering
a choropleth map, for which we have areas Ai with small numbers of cases, either
because we have chosen small areas or because D has low incidence. In this case,
the estimates of the risk in each Ai will be subject to large sampling errors; our
belief about the true risk in Ai will be determined in part by the observed rate, but
it will also rely on information from the region as a whole, to the extent that we
believe there will be some comparability between the areas.

This idea has led to the development of model-based approaches using Bayesian
arguments to integrate area-specific information with information from the whole
region, using a statistical model for the underlying variation of the true risk. In
a classical treatment of this problem, Clayton and Kaldor (1987) suppose that the
true risk �i in Ai is distributed over the areas as a whole according to a gamma
distribution with mean � and variance �2. It can then be shown that the posterior
distribution of �i has mean

Q�i D yi C �2=�2

ei C �=�2
;

where yi is the observed value of the count Yi in Ai . This formula can be seen to
be a form of average of the maximum likelihood estimate b�i D yi=ei of each �i
and the overall mean �, which can be estimated by

P
yi=

P
ei . The value of �2

can also be estimated from the data as a whole, though this requires an iterative
method.

This method and variants of it provide empirical Bayes estimates, in that the prior
distribution of the �i can be estimated from the data. The method is essentially non-
spatial, in the sense that the true �i is supposed to vary independently. In practice,
it is likely that rates in neighboring areas will be consistently more similar to one
another than those in more separated areas. If this were not so, it would be essentially
fruitless to attempt to produce a smoothly varying map. The Bayesian methodology
has been extended to permit the prior distribution of the �s to depend on the
values in neighboring areas. These more complicated models involve a greater
number of arbitrary assumptions, however. They are gaining ground in popularity
and appear to be used quite successfully. The reader is referred for more details and
references to Clayton and Bernardinelli (1992) and to chapter �Bayesian Methods
in Epidemiology of this handbook.

Attractive though these ideas are, the maps they produce need careful interpreta-
tion, since they have imposed a degree of spatial autocorrelation, and this process is
capable of making adjacent areas look more similar than they really are. In a sense,
this is true of all mapping methods and is a feature as intrinsic as the implicit
smoothing itself.

In a challenging paper, Gelman and Price (1999) discuss the issue and illustrate
the phenomenon of induced spatial pattern by means of simple modeling paradigms.

http://dx.doi.org/10.1007/978-0-387-09834-0_57
http://dx.doi.org/10.1007/978-0-387-09834-0_57


1428 J.F. Bithell

They point out that the probability that a particular area rate b�i exceeds a given
value increases with decreasing population size, ni , say. The effect of this is
that high observed rates of disease tend to be observed predominantly in low
population areas; since these tend to be spatially aggregated – i.e., low population
areas are more likely to occur next to other such areas – observed rates also
appear to be spatially related even when in fact no such relationship exists for the
underlying risk.

They further demonstrate that plotting the posterior means from a Bayesian
analysis produces observed rates that are likely to exceed a particular value with
probabilities that are decreasing functions of ni , so that such plots overcorrect in
some sense. Although scores exist – at least for continuous observations – that are
not subject to these artifacts, they have no direct interpretation as estimates of the �i .

One is driven to the conclusion that disease maps are potentially misleading
when used as anything except what Gelman and Price call “look-up tables,”
i.e., as a convenient way of depicting the rate in a given area without reference
to neighboring areas. It is the temptation to use the map to generalize about the
spatial pattern of rates that can be misleading, and it is probably better to formulate
such questions within the context of a statistical model rather than to attempt
to portray spatial relationship graphically. However, one suspects that this timely
caution is unlikely to diminish the enthusiasm for constructing and overinterpreting
disease maps.

37.5 The Detection of Generalized Heterogeneity

37.5.1 The Assessment of Heterogeneity in Areal Data

Heterogeneity is the key to epidemiology, in the sense that a uniform risk in
observed data gives no possibility for associating differences with factors that may
have etiological significance. We have already touched on the issue of modeling in
Sect. 37.3.1, and our objective there is to find a model that appears to fit well in the
sense that the residual deviance is not statistically significant – i.e., it is consistent
with chance deviations from the predictions of the model.

As long as we have Poisson data with reasonably large means, we can assess the
residual deviance as if it had a chi-square distribution with a number of degrees of
freedom (d.f.) determined by the model – specifically the number of units minus
the number of parameters fitted. It is important to remember, however, that this is
based on asymptotic theory which, roughly speaking, supposes that the total number
of cases is large compared with the number of units – areal or otherwise – in the
analysis. A rule of thumb suggests that the expectations of the counts in a Poisson
regression should mostly be in excess of 5. When the average expectation falls
below this, we should expect the distribution of the deviance in a correct model
to depart progressively from a chi-square distribution, which of course means that
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a corresponding statistical test of goodness of fit of the model based on the chi-
square distribution would not be valid.

In this situation, we can obtain an approximate assessment of the value of the
deviance – and hence the goodness of fit of the model – by simulation. Typically,
we would generate, say, s new samples of data from Poisson distributions with
means obtained from the model Mfitted fitted to the actual data. For each simulated
sample, we would refit the same model and compute the residual deviance. The s
values of the deviance thus obtained provide an estimate of the distribution of the
deviance. This in turn provides a means of calibrating the deviance observed for
our actual data. A formal test of goodness of fit would only be approximate since
we are simulating from Mfitted rather than the true model with the true (unknown)
parameter values. This situation is typical of “bootstrapping,” and the theory of
this subject could in principle lead to better approximations. For an account of
bootstrapping see, for example, Efron and Tibshirani (1993).

37.5.2 Detecting Heterogeneity in Poisson Data

A special case arises when we have expectations, provided, for example, by some
prior analysis or by simple calculation from population data and we merely wish
to detect whether the Poisson distribution fits well with the assumed ei , without
reference to any model fitting. This is sometimes seen as a problem of detecting
“clustering,” though there are qualifications to this interpretation that we discuss
below: for the moment, we prefer to regard this as the problem of assessing
heterogeneity, i.e., variations in risk between areas without reference to a possible
geographical origin for the phenomenon.

Relating this to the deviance of a Poisson model suggests that the deviance of
the observations, defined in Eq. 37.1, Sect. 37.3.2, would be a sensible test statistic.
The fact that this test is a likelihood ratio test means that it is asymptotically fully
efficient – i.e., its power approaches that of the best possible test against a Poisson
alternative in which the relative risks are different from unity.

Popular alternative contenders include Pearson’s chi-square statistic

X2 D
X

.Yi � ei /
2=ei ;

and the Potthoff–Whittinghill statistic (Potthoff and Whittinghill 1966)

PW D
X

Yi .Yi � 1/=ei ;

which is regarded by some authors as a test of clustering. The former is, at least
in simple cases, asymptotically equivalent to the deviance but is easier to compute
and to study analytically. The asymptotic requirement, however, implies that the
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Table 37.2 Expected significance levels (ESL) % and their standard errors for Pearson’s X2, the
deviance, and the Potthoff–Whittinghill tests: k wards each with expectation e under H0 and an
alternative expectation dispersion with variance �2

e �2 k Pearson Deviance Potthoff

5.0 0.05 200 ESL 6:6 3:5 44:5

s.e. 0:22 0:18 0:50

1.0 0.2 500 ESL 3:5 2:7 6:3

s.e. 0:18 0:16 0:24

0.2 1.0 1,000 ESL 14:2 23:8 3:3

s.e. 0:35 0:43 0:20

expectations should be large and the theoretical properties give rather little guidance
on which test is best for small expectations.

Table 37.2 shows the results of a simulation study, designed to provide such
guidance, in which the expected significance level (ESL) of each test has been
estimated in each of three conditions. (The ESL is a convenient alternative criterion
to power (Dempster and Schatzoff 1965): a smaller ESL corresponds to a more
powerful test.) In each case, the ESLs were estimated from 10,000 simulations
performed under varying conditions. These were chosen to produce values in
a critical range corresponding to situations where the test would be quite likely
to lead to different conclusions at conventional significance levels. In each case,
a specific number k of wards were supposed to have the same expectations e under
the null hypothesis, while under the alternative hypothesis, these expectations were
multiplied by a set of RR factors �i sampled from a gamma distribution with mean
one and variance �2.

In interpreting this table, we suppose that the key parameter is the size of the
expectation e. Because the test statistic will be roughly proportional to the number of
wards k, this latter parameter represents the amount of information and was chosen
to bring the ESLs into an interesting range; it would not be expected to change the
relative ordering of the three tests. The variance �2 represents the distance between
the null and alternative hypotheses, and the values were chosen to be typical of the
sort of discrepancy that one could reasonably expect to detect in practical situations.
It could conceivably affect the relative properties of the different tests but is less
likely to do so than e.

It will be seen that, with an expectation of e D 5, the deviance is indeed the best
test, while the Potthoff–Whittinghill test trails behind Pearson’s chi-square test. The
difference between X2 and D becomes marginal around e D 1 while, for smaller
expectations, the ordering is reversed and the Potthoff–Whittinghill test appears to
be superior. These results suggest that it would be wise to carry out simulations
in particular marginal cases to determine the best test to use. It should also be
emphasized that one should evaluate the significance of the chosen statistic using
simulation when the ei are small, since the Pearson and deviance statistics are then
likely to have distributions markedly different from the chi-square.
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37.5.3 Spatial and Non-Spatial Analyses

A test of heterogeneity in areal data of the kind described above provides only a non-
spatial test of the heterogeneity of our observations. Whether this is appropriate
depends on whether or not the areal units are defined by essentially geographical
criteria. If, for example, they are defined by simply dividing our region R into urban
and rural areas, then a factor associated with the degree of urbanization could be
expected to induce heterogeneity into the areas irrespective of their spatial positions.

More frequently, however, areas are merely convenient administrative sub-
divisions of R. In this case, we might expect a factor that raises the incidence in
one area to do so in adjoining areas also. Then, a test that takes no account of the
spatial relationship of the areas will be less powerful than one that does.

To take a simple hypothetical example, suppose that R consists of two subre-
gions: R1 with n areas each having expectation ei D 9 and R2 with n areas each
having expectation ei D 11. A dispersion test based on Pearson’s chi-square statistic
would use the variance of the observations to test the null hypothesisH0 that all the
expectations are the same:

X2
2n�1 D

2nX

iD1
.Yi � e/2=e ;

where e D P2n
1 Yi=n is the (estimated) expected count based on all 2n observations.

To a good approximation, this statistic would have a chi-square distribution with
2n � 1 degrees of freedom under H0. If, however, we knew which areas belonged
to R1 and which to R2, we would base the test on the equivalent statistic for testing
the difference between the totals for the two subregions:

X2
1 D

� Pn
1 Yi � ne

�2 C
�P2n

nC1 Yi � ne
�2

ne
;

and it is fairly obvious that this would be a much more powerful test of H0. This
idealized situation is analogous to isolating sources of variation in an analysis of
variance.

In practice, of course, we will almost certainly not be in a position to divide
R into high- and low-risk areas a priori, but this example does suggest that the
detection of non-uniformity of risk should take account of the spatial structure of the
data. A classical account of tests of spatial autocorrelation is given by Cliff and Ord
(1981), who establish some theoretical properties of their sampling distributions,
particularly in the case of normally distributed observations. In one of the few
comparative studies published, Walter (1993) examines the power empirically
for three of the most popular tests against a variety of geographically plausible
alternatives. The three considered were as follows:
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• The I statistic of Moran (1948), which is analogous to a correlation coefficient
and is defined by

I D n
P

ij wij .xi � Nx/.xj � Nx/
P

ij wij
P

i .xi � Nx/2
• The c statistic of Geary (1954), which is similar to I
• A non-parametric test statistic which uses only the ranks of the observations

The first two statistics used as observations xi D yi=ei , the standardized
incidence ratios for the different areas, and spatial weights wij chosen to be one
if Ai and Aj are adjacent and zero otherwise. Walter’s Table II shows that, in
each of the situations he considered, Moran’s I had the highest power of the three,
and it would seem that this should be the method of choice, at least for detecting
generalized spatial relationship as opposed to isolated peaks in the risk. The question
of whether higher power could be achieved by using more sophisticated weighting
than a simple adjacency matrix, or by weighting the pairs of observations according
to the amount of information they contain (in terms of sample size, for example),
has not been much considered. Walter concludes that “the precise type of spatial
pattern involved may have a major impact on the spatial power of the analysis” and
that “more experience is needed to better understand the potential of these methods,
and their limitations.” Nevertheless this study was a useful contribution, and the use
of Moran’s I to detect spatial autocorrelation is probably a good choice.

37.5.4 Heterogeneity Tests Based on the Risk Surface

If we have continuous data – i.e., observations at the individual level – we can base
a test of uniformity on the RRF b�.x; y/ as estimated by the methods described
in Sect. 37.3.4. We may regard a test statistic as being defined by a functional of
b�.x; y/, and there are various possibilities.

A natural choice is the weighted variance of b�.x; y/:

Tvar D
“

R
�.x; y/fb�.x; y/ � 1g2dxdy :

In the absence of any reliable theory, it is necessary to resort to Monte Carlo methods
to test the statistic. For case-control data, we use a permutation method that is
straightforward though laborious:
1. Construct a map of the risk function �.x; y/ by a suitable method, using a degree

of smoothing which is determined as a function of the data.
2. Evaluate the chosen test statistic for the observed data tobs.
3. Choose a new sample of “cases” by choosing at random n points from the set of
mC n cases and controls combined.

4. Compute the value of the statistic t1, say, for the simulated data, using the same
procedure as in step 1.
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5. Repeat steps 3 and 4 s – 1 more time so that there are s simulated values
altogether.

6. Reject at level ˛ D m=.s C 1/ the null hypothesis of uniformity of cases if tobs

is greater than all but m � 1 of the simulated observations.
7. Alternatively estimate the p-value of the test as the number of fti � tobsg=s.

This general Monte Carlo procedure is applicable in very general circumstances,
and it is especially useful in the analysis of spatial data, where construction of
suitable models is difficult. We must remember, however, that a hypothesis test is, by
itself, of very little inferential value without some idea of how probable the observed
results would be under a plausible alternative.

The method can easily be adapted to a test based on a risk surface constructed
from areal data as described in Sect. 37.4. The simulation would take the form
of sampling areal counts from Poisson distributions with expectations ei and
computing the variance over a square grid as before. In either the continuous or areal
data case, the degree of smoothing used in the density estimation process determines
the scale of aggregation for which the test is most sensitive and is analogous to the
choice of weights wij in Moran’s statistics.

The use of tests of this sort is still in its infancy, but the underlying philosophy
is attractive and increasing computing power is making them more practicable even
for large data sets.

37.6 Clustering

Closely related to the idea of heterogeneity is the concept of clustering, with which
much of geographical epidemiology is preoccupied. There is a large literature on
the subject, not all of which is very clear on the issue of what we actually mean
by the words “cluster” and “clustering.” We may conveniently define a cluster
as a localized aggregation of disease cases greater than can easily be explained
by chance. Clustering may be regarded as the tendency to form clusters or, more
generally, as any departure from the assumptions of uniform risk and independence
of case occurrences as discussed in Sect. 37.2.1. We will continue to use the
word heterogeneity to refer to a departure from uniformity and reserve the word
clustering as far as possible to refer to mechanisms in which case occurrences are
not independent. This kind of clustering may be supposed to act locally, whereas
heterogeneity is more likely to be observed throughout R and is sometimes referred
to as “generalized clustering.” For further discussion of the issues the reader is
referred to a useful paper by Diggle (2000).

We can give here only the briefest of accounts. We will distinguish between
methods based on increased levels of risk and methods based on the proximity of
neighbors. First, however, we make two general points about clustering.

In the first place, it is a well-accepted fact of spatial statistics that it is not possible
to distinguish on the basis of a single realization of observed data from a spatial
process whether any non-uniformity of the distribution of points (relative to an
expected population distribution) is due to a variation of underlying risk, with cases
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occurring independently (i.e., points generated by a non-homogeneous Poisson
process or its equivalent), or to a mechanism in which existing cases induce others
nearby, such as would happen in a contagious process. Secondly, we remark that,
from an abstract point of view, clustering may take place in any continuum and, in
the geographical context, we may observe clustering in space, time, or the “product-
space” of time and geographical space. This mathematical commonality means that
tests can be adapted from one problem to another, with very fruitful consequences.

37.6.1 Methods Based on the RRF

Clustering is likely to be observed as an increase in risk in some locality and it
follows that we can use the estimated risk surface b�.x; y/ to provide an appropriate
test. What functional of b�.x; y/ we use will depend on the alternative we have in
mind or, equivalently, the pattern we would most like to detect. If, for example, we
are content to demonstrate a single cluster or aggregation of cases we could choose
as our test statistic, the maximum of the b�.x; y/ over the whole region R:

Tmax D max
x;y2Rfb�.x; y/g :

This does not, of course, preclude the possibility that we would detect multiple
clusters, but it is likely that our test would be most powerful in the situation where
there are in fact very few. We could of course extend the statistic to consider, for
example, the mean of the r largest peaks in b�.x; y/, but it is unlikely that we would
have good a priori grounds for fixing r . Tests based on peaks of incidence must also
be expected to be quite sensitive to the scale of the clustering phenomenon and to
the degree of smoothing we employ in constructing b�.x; y/.

A statistic likely to have similar properties to Tmax is based on a scanning
window, typically a square that moves over R. At each point of a fine grid the
observed number of cases is compared with its expectation; the test statistic is
defined as the maximum discrepancy using a suitable criterion such as the incidence
ratio. Here, the size of the window plays the role of a smoothing parameter; the
main difference from Tmax is that a peak incidence is weighted according to its radial
extent; it seems likely that it behaves in a similar manner to Tmax for suitably chosen
smoothing parameters. Anderson and Titterington (1995) describe a version of this
method that varies the window size to keep constant the expected number of cases
under the null hypothesis. Much subsequent work describing similar tests has been
published; see Tango (2010) for a recent summary. Some of these have considered
windows of different shapes, notably elliptical, but the usefulness of these is limited,
not least because we are unlikely to know a priori what shape a cluster might have.

In fact, the scanning window is a two-dimensional version of an approach
originally used for detecting clustering in time; even this one-dimensional version
is notoriously intractable analytically and simulations or other numerical methods
would seem to be unavoidable.
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37.6.2 Knox’s Test

The use of what we may call pairing methods is historically older than the methods
based on the risk surface discussed above; they have the attraction of being very
simple to describe and understand.

The earliest such test is due to Knox (1964), who counted the number, Z,
of pairs of children with leukaemia diagnosed within 60 days and 1 km of each
other in Northumberland and Durham, two counties in the North East of England
(see Table 37.3, taken from Knox (1964)). The study used local registration and
hospital records, as well as death certificates to ascertain 185 children with an onset
of leukaemia under 15 years of age between the years 1951 and 1960 inclusive.
However, certain cases were excluded, and Table 37.3 refers just to children under
the age of six, a restriction that needs to be borne in mind when interpreting the
results; in fact, older children showed no effect.

The rationale for this test is explicitly related to the non-independence of the
cases, namely, that a contagious mechanism passing a disease from one individual
to another would be likely to lead to cases that are closer to one another in space and
time than would be expected by chance. This in turn leads to the idea of considering
pairs of cases.

Knox refers this statistic to its expectation calculated on the assumption that the
spatial locations and times of occurrence of the disease are independent. This is
given by

EŒZ� D NTNS�
n

2

� ;

where NT ; NS are the numbers of pairs of cases close in time and close in space,
respectively, and the denominator is the total number of pairs out of the n cases.

In effect, this becomes a test of the independence of these two variables, and
it uses their marginal distributions to determine the null distribution of Z. Knox
conjectures thatZ should follow a Poisson distribution approximately; this is shown
to be true in certain circumstances in work reported by David and Barton (1966),
who give a formula for the variance of Z. It is wise to calculate this or to use
a Monte Carlo test in which the times of occurrence of the cases are randomly
permuted relative to the space coordinates, and the statistic Z is recomputed
a large number of times. For Knox’s data, the value of EŒZ� is 0.83, for which
Z D 5 has a p-value of 0.0017 when tested as a Poisson observation. David

Table 37.3 Pairs of cases of childhood leukaemia classified according to their closeness in space
and time (see text)

Distance apart (km)

0–1 Over 1 Total

Time apart 0–59 5 147 152

(days) 60–3,651 20 4,388 4,408
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and Barton report an early simulation experiment for Knox’s data carried out by
M.C. Pike; the latter finds Z � 5 in 4 out of 2,000 simulations. This leads to an
estimated significance level of 0.002 which is very close to that based on the Poisson
approximation.

The choice of the critical distance and time separation is of course crucial. It
determines the scale of clustering likely to be detected, and it should ideally be
fixed in advance for the formal validity of the testing procedure. In particular, it is
certainly not formally valid to test at a large number of different critical distances
and times and then select the most significant result without allowance for this
selection. If we really have no idea of the time and distance scales that would be
appropriate, we need to use a data-driven method of identifying the most promising
values (see Sect. 37.6.6).

37.6.3 Other Space-Time Clustering Methods

An alternative test based on the proximity in space and time of pairs of cases is
proposed by Jacquez (1996). This is based on the number out of the l nearest
neighbors in space of a given case that are also among the l nearest neighbors in
time. Like the Knox test, it can be adapted to provide a test of space-only clustering.
Jacquez claimed superior power to that of the Knox test, though in practice, this is
likely to depend on the alternative being considered. Here, the parameter l serves
as a kind of scale parameter since it determines how far we look for association
between cases.

Knox’s very elegant idea permits us to dispense with the need to estimate the
marginal distributions, though only under the assumption that space and time are in
fact independently distributed in the population. This assumption applies of course
to Jacquez’ test also. It will clearly be violated by population drift, i.e., a change of
population distribution with time. Kulldorf and Hjalmars (1999) examine the size of
this effect and conclude that it can be “a considerable problem.” They recommend
that space-time clustering should be tested using the joint space-time distribution of
the population size, but this is of course rather hard to obtain with good accuracy
and resolution. It seems likely that the use of the interaction tests will remain
popular.

37.6.4 Space-Only Clustering

Knox’s idea of counting pairs has been very fruitful and has been adapted to
a number of related situations, including the use of a sample of controls to provide
a reference distribution when testing for space-only clustering (Pike and Smith
1974). The essential idea here is to regard the controls as being similar to the cases,
except that they are considered to have occurred at different “pseudo-times,” while
the cases are considered to have occurred simultaneously. The statistic computed is
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then the number of pairs of cases that are close in space, and it is not hard to see that
this is formally equivalent to Z, with identical distributional statistical properties.
Knox’s test is not the only test that can be adapted to detecting space-only clustering
using controls. Other possibilities are explored by Rogerson (2006) in a paper giving
some analytical results but no power study.

37.6.5 Population Distance

One alternative to this adaptation of Knox’s test for case-control data is a kind of
dual approach due to Cuzick and Edwards (1990). This is based on the count of
the number of individuals among the l nearest neighbors of each case that are also
cases (as opposed to controls). The quantity l in the Cuzick–Edwards test serves as
a determinant of the scale of clustering to be detected in this method. It is given in
terms of the number of individuals likely to be within a region of contagion, rather
than by a distance.

This may be seen as more relevant for some, though not for all, mechanisms of
disease spread. Indeed, for any given pair, we can think of closeness in terms of
distance or in terms of the number of other members of the population residing
between the two members of the pair. The choice between these two metrics
is crucial, though which is the more appropriate will presumably depend on the
supposed etiology of the disease.

The idea of a population distance lies behind another method of testing, due to
Besag and Newell (1991), who consider each case in turn and aggregate the areas
around it that are necessary to include the r th nearest case. The expectation for
the aggregate of these areas is then compared with r in the usual way. This can be
regarded as a kind of inverse sampling, and again the number of cases considered,
r , is a parameter that determines the scale of clustering to which the procedure is
sensitive.

37.6.6 Choosing Scale Parameters

Every clustering phenomenon has an implied scale of the clustering effect and it is
clearly desirable to have some idea of this before attempting to detect it. When we
have no idea, the temptation to perform multiple testing arises and it is important
to make allowance for this. A method for testing a range of distances and times in
the Knox test is proposed by Abe (1973); effectively, this examines a multi-way
table for association between space and time, making due allowance for the non-
independence of the pairs. This statistic is sensitive to association over the whole
range of distances and times rather than attempting to identify the most interesting
scale. To identify the scale of maximal clustering effect, we can use a general data-
driven procedure that can be constructed along the following lines:
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1. Test the data at each of a number of critical space and time distance pairs.
2. Form a single test statistic, either using some aggregate over different values

of the scale parameters or using some measure of the maximum degree of
clustering; call this statistic tobs.

3. Simulate further data sets under the null hypothesis: for Poisson data, this will
probably involve sampling Poisson-distributed counts, while for case-control
data, it may involve pooling all the cases and controls and randomly selecting
a subset to serve as simulated “cases.”

4. Rank the simulated values of the statistic t1; t2; : : : ; ts and compare the ranked
values with tobs.

This Monte Carlo procedure is of general applicability and provides a way of
getting round the problem of unknown scale. It does of course sacrifice power by
comparison with a test that correctly focuses on the true degree of clustering, so that
the more carefully alternative hypotheses can be framed a priori the better.

Faced with this wide variety of tests, it is difficult for the researcher to know
which to use. Each new test published typically is claimed to be more powerful than
previously existing tests, but there is a wide variety of alternatives to uniformity
of risk that could be considered, and it is certain that no one test is uniformly
most powerful against all alternatives. In principle, it is open to the researcher to
examine competing tests to see which would be best for the data and the alternative
hypothesis in question, but this can be an arduous exercise. This is an area where
we badly need more insight into which tests are preferable.

37.7 Predefined Sources of Risk

One of the epidemiological questions most often asked in a geographical context is
whether there appears to be an aggregation of cases around a putative source of risk
S such as an industrial plant. For example, there has been much interest in the UK,
as in other countries, in the possibility of an elevated risk of childhood leukaemia
around nuclear power stations. This results in part from the finding of an unusually
large aggregation of cases near the nuclear reprocessing plant at Sellafield, which
is situated on the coast of Cumbria in the North West of England. In fact, ordinary
nuclear generating stations have little in common with the reprocessing plant and
the experimental reactor at Sellafield, nor is there evidence of significant releases
of radioactivity into the environment from generating stations. Nevertheless, public
anxiety persists about the safety of the plants, partly perhaps because of the difficulty
in comprehending the nature of nuclear power and partly because of sensational
reporting in the news media. In fact, there is little evidence of a general increase in
risk (Bithell et al. 1994), but it is highly desirable that the best statistical procedures
are used to test the data that come under scrutiny. The public may not have a very
sophisticated understanding of statistics, but it is obvious even to the uninitiated that
some of the procedures used in the past have not been well-chosen from the point
of view of maximizing the chance of detecting a real effect.



37 Geographical Epidemiology 1439

Aggregations around S are sometimes referred to as “clusters,” but it is not
generally supposed that the cases involved are related, only that the risk to
individuals in the vicinity of S is elevated. Analyses could therefore proceed
using the methods described in Sect. 37.3.1, with the obvious qualification that
geographical variables clearly represent spatial relationship to S. In practice, this
nearly always means using distance from S or some function of it, so that the
analysis is implicitly one-dimensional. Moreover, analyses are often required in
situations where the number of cases is very small, and in this situation, the fitting of
GLM’s tends to be unstable and to lead to parameter estimates with large standard
errors and unknown distributional properties.

37.7.1 Tests for Concentration of Risk

In this situation, it is probably better to rely on a formal significance test and
the issue then becomes that of selecting the most powerful test against a suitable
hypothesis or range of hypotheses. The resulting analyses are likely not to be very
powerful in any case, but choosing the most powerful test at least increases the
chance that a significant result can be attributed to a genuine departure from the null
hypothesis of uniform risk.

The method of early investigators of simply comparing the risk in the area around
S with a reference or “control” rate outside the area defines a test procedure that is
in fact powerful only against an alternative hypothesis prescribing a uniform excess
risk within the area, which drops to zero on the boundary. This is clearly implausible
and critically dependent on the size of the area chosen; one inevitably concludes
that a better test would be one designed for some systematic relationship between
the risk and the distance from S. We may reasonably suppose that this relationship
is monotonic, but the rate of decay and the shape of the RRF (expressed now as
a function of distance) will determine the power of the test.

An ingenious class of tests designed to be powerful against general monotonic
alternatives was proposed by Stone (1988). His “MLR test” compares the ratio of
the maximum of the likelihood under the null hypothesis of uniform risk against the
likelihood of the observations maximized subject to the restriction that the risk is
a non-increasing function of distance from S, i.e.,

H1 W �1 � �2 � : : : � �k .� 1/ ; (37.2)

where �i is the relative risk in the i th area in order of increasing distance from S.
Stone’s test has become very popular in the UK epidemiological literature, though
it is known that it is never the most powerful test against a specific hypothesis, this
being provided by a linear risk score (LRS) test of the form

T D
X

j

ln
�
�

�
dj

��
;
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where dj is the distance of the j th case from S and �.d/ is the risk at a distance d
from S as specified by the alternative hypothesis (Bithell 1995).

Unfortunately, knowing the most powerful test against a specific alternative
hypothesis does not greatly help if we do not know what that alternative is. However,
it provides a benchmark against which we can judge other tests, and in particular, it
enables us to determine the sensitivity of the power to variations in the alternative.
It turns out that statistics of the form

T D
X

j

1=�
�
dj

�
;

for monotonic functions �.�/, define a class of canonical tests which can come close
to optimal power in many circumstances. In particular,

�
�
dj

� D dj and �
�
dj

� D
q

rank
�
dj

�

behave well in areas with a reasonably uniform population distribution. However,
the latter affects quite strongly which of the canonical tests actually is most powerful
and it is wise to check the performances of the competing tests in each different
study using simulation. In addition to their simplicity, the canonical tests have the
great advantage that they are not dependent on any parameters in the RRF; the
test based on the reciprocal of distance, for example, is most powerful against all
alternatives for which the RRF is of the form a exp.b=dj /, for any parameters a
(which governs the overall degree of risk) and b (which governs the rate of decay).
The fact that risk is unbounded at zero is a small price to pay for this advantage,
which means that there is no need to perform multiple tests with different values of
a and b.

Because the LRS test statistics are sums, they should in principle have an
approximately normal distribution, and it is easy to compute their moments. In small
samples, this asymptotic normal approximation will not necessarily apply, and it
is advisable to use simulation also to carry out the tests, i.e., to carry out Monte
Carlo tests. In doing so, it is easy to see that the way the samples are drawn can
be either to fix the total number of cases and use the multinomial distribution or
to use unconstrained Poisson distributions to determine the counts in the areas Ai .
Which of these two sampling schemes is used is very important and will typically
affect the results quite substantially. The first method defines a conditional test
which might be appropriate if the expectations ei for the rates in the different
areas are unreliable in absolute terms (though possibly still all right relatively); it
is important to note though that, if the expectations are correct, a conditional test
could reject the null hypothesis because of a deficit of cases near the boundary of the
region rather than an excess near S. The second, unconditional, test is appropriate if
the rates are reliable and in this case the test statistic combines the evidence from the
overall relative risk in the area with that from the spatial distribution. In this case,
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the appropriate form of Stone’s test should also include the last (bracketed)
inequality in Eq. 37.2 above.

Many other tests have been proposed for testing the concentration of risk
around a point source; these are sometimes referred to as “focused tests.” Some
of these are in the class of LRS tests, though this is not always recognized. Some
have been designed to use polar coordinates (Lawson 1993) and so to test for
a directional effect; unfortunately no equivalent of the canonical test appears to
be available for this problem, and so the maximal direction of the effect is a
nuisance parameter that has to be estimated from the data unless there is a clear
a priori reason for choosing one specific direction. Such tests have been applied
to rather few datasets in practice. Tango (2010) gives a recent review of the field
and reports extensive power calculations; these confirm that the canonical LRS
tests do reasonably well for non-directional alternatives corresponding to a smooth
monotonic RRF.

37.7.2 Example: Childhood Leukemia Around UK Nuclear
Installations

The tests described above were developed partly in conjunction with analyses of the
distribution of childhood leukaemia around nuclear installations. An analysis of all
major sites in England and Wales is described by Bithell et al. (1994) using the data
on leukaemia and non-Hodgkin lymphoma described in Sect. 37.3.2. The sites were
examined separately using the LRS test with the reciprocal of distance rank as the
primary test, though Stone’s MLR test was also used for comparison. As remarked
above, the results were largely negative.

However, public interest in the possibility of a raised risk persists, and two subse-
quent updated unconditional analyses have been published (COMARE 2005, 2011).
In the first of these, the analyses were carried out in the light of a large simulation
study that identified which of a number of tests would be most powerful at each of
the sites. Experience of these analyses suggests that the power does indeed depend
on the population distribution, but it has been found that, for the majority of test
sites studied, the most powerful test against the alternatives considered was the LRS
test based on 1=

p
distance rank.

Table 37.4 shows the average power averaged over 75 alternative hypotheses
and the significance levels achieved by each of five tests for one of the datasets
from the 1994 analysis. It will be noticed that the smallest p-value was the Poisson
maximum (often known as “Pmax”); this is in effect the maximum value of the
cumulative relative risk as we move out from S. The most powerful test, on the
other hand, gives a non-significant result. This analysis is a timely warning against
judging a test by the significance level achieved in a real dataset. More details and
discussion of this analysis are given in Bithell (2003).

In the later study of nuclear power plants in Britain (COMARE 2011), the
analysis was restricted to children under the age of 5 years and distances closer
to the installations. This reduced the numbers to the point where it was necessary
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Table 37.4 Average power of five tests and significance levels achieved for the 80 wards within
25 km of Hinkley Point, in which there were 57 cases observed against 57.2 expected

Test MLR Pmax 1=rank 1=distance
p
1=rank

Power 0.359 0.204 0.421 0.649 0.630
p-value 0.150 0.020 0.108 0.357 0.341

to combine all 13 plants, and there were then sufficient cases to perform a Poisson
regression on 1/distance. The resulting estimate of the risk coefficient was positive,
but not statistically significant.

37.7.3 Summary of Recommendations

In summary, this is an area of geographical epidemiology where some progress
has been made in identifying efficient procedures, perhaps because the problem is
essentially one dimensional. Because data sets are usually small, it is an especially
important aim to use tests of maximum power, and this criterion seems to be
sensitive to the population distribution as well as the precise alternative considered.
As far as areal data are concerned, it is recommended that a study should be guided
by the following considerations:
1. First and foremost, thought should be given to the patterns of risk that it is

desired to detect; these can be expressed in terms of the RRF and may reasonably
be supposed to be monotonic decreasing unless special circumstances prevail.
The more specifically this can be linked to a biological hypothesis, the more
convincing a positive result will be.

2. Next, a circular region of radius R around S should be chosen and the observed
and expected numbers of cases for the areas Ai in R obtained. There is no great
advantage for testing purposes in calculating the numbers within fixed distance
bands from S. The magnitude of R is important since, if it is much greater than
the distance of any conceivable risk, the analysis will inevitably lose power. As
a guideline, it would seem sensible to choose the radius R so that the excess
relative risk might reasonably be supposed to have declined to half its value at
distance R=2.

3. A Poisson regression should be used only if the total number of observations is
large enough to ensure convergence of the estimation procedure and to provide
reliable estimates of the parameters. It is difficult to provide guidelines, but
an analysis with fewer than 20 cases in R should be treated with caution. The
alternative of a non-parametric test may then be preferable.

4. For a non-parametric test, the first choice to make is between the conditional and
the unconditional versions. This will depend largely on the perceived reliability
of the expectations and whether it is desired to detect an overall excess in the
area as well as spatial pattern.

5. Among tests of either kind, the LRS canonical tests will be reasonably powerful
against most monotonic hypotheses, and it is recommended that 1/distance or
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1=
p

distance rank be used unless the population distribution is very unusual or
unless a very non-standard RRF is suspected. In either case, it is recommended
that a simulation study be undertaken to determine the most powerful test for the
suspected alternatives.

6. The analysis should then proceed with the test identified as best, using
simulation to perform a Monte Carlo test unless the expectations are quite
large, in which case normal approximations can be used for assessing the
significance.

37.8 Conclusions

In this chapter, we have attempted to give a simple but unifying overview of the
statistical methods that underlie geographical epidemiology. We have been able to
refer to only a small proportion of the very large number of methods that have been
proposed for different aspects of the subject. For further reading, we refer to edited
volumes by Elliott et al. (1992, 2000), Lawson et al. (1999), and to the Encyclopedia
of Biostatistics edited by Armitage and Colton (1998), for example the review article
by Bithell (1998).

It will be clear that the rational choice of method is not an easy matter.
Although the classical theory of statistics provides a number of principles leading
to optimal procedures, there are areas of geographical epidemiology where they
do not apply. In the first place, they apply essentially to the frequentist paradigm:
the increasingly popular Bayesian methods raise essentially new optimality issues
that are not easy to resolve. Secondly, many optimality results are asymptotic:
when observations are effectively widely distributed throughout two-dimensional
space, asymptotic results are less likely to be applicable even in moderately large
datasets. Thirdly, many methods are essentially non-parametric and the classical
optimality theory applies less directly to these. Lastly, the theoretical results
apply mostly to situations where there is a large degree of independence in the
structure of the data; they are therefore less applicable to models for the contagious
processes needed to model alternatives to the null hypotheses in studies on
clustering.

It follows that evaluating the relative merits of different methods has in practice
to proceed by largely empirical methods, making extensive use of simulation.
This makes appraisal difficult because of the large number of parameters that
can be varied in the simulation experiments. It is important that any general
principles suggested by the underlying theory are used to direct the empirical
investigations, as exemplified, for example, by the discussion of methods
for predefined sources of risk in Sect. 37.7. We conclude that geographical
epidemiology, despite its practical limitations, can in principle provide useful
pointers to the etiology of disease but that the methodology would be much
more convincing if we knew more about its behavior in various plausible
situations.
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