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36.1 Introduction

The use of meta-analyses in order to synthesize the evidence from epidemiological
studies has become more and more popular recently. It has been estimated by Egger
et al. (1998) that from articles retrieved by MEDLINE with the medical subject
heading (MeSH) term “meta-analysis” some 33% reported results of a meta-analysis
from randomized clinical trials and nearly the same proportion (27%) were from
observational studies, including 12% papers in which the etiology of a disease was
investigated. The remaining papers include methodological publications or review
articles. Reasons for the popularity of meta-analyses are the growing information
in the scientific literature and the need of timely decisions for risk assessment or in
public health. Methods for meta-analyses in order to summarize or synthesize evi-
dence from randomized controlled clinical trials have been continuously developed
during the last years. In 1993, the Cochrane Collaboration was established as an
international organization, which provides systematic reviews to evaluate healthcare
interventions. They have published a handbook (Higgins and Green 2009) with
detailed information on how to conduct systematic reviews of randomized clinical
trials. While methods for meta-analyses of randomized clinical trials are now also
summarized in several text books, for example, Sutton et al. (2000) and Whitehead
(2002), and in a handbook by Egger et al. (2001a) and Dickersin (2002) argued
that statistical methods for meta-analyses of epidemiological studies are still behind
in comparison to the progress that has been made for randomized clinical trials.
The use of meta-analyses for epidemiological research caused many controversial
discussions; see, for example, Blettner et al. (1999), Berlin (1995), Greenland
(1994), Feinstein (1995), Olkin (1994), Shapiro (1994a, b), or Weed (1997) for a
detailed overview of the arguments. The most prominent arguments against meta-
analyses are the fundamental issues of confounding, selection bias, as well as the
large variety and heterogeneity of study designs and data collection procedures in
epidemiological research. Despite these controversies, results from meta-analyses
are often cited and used for decisions. They are often seen as the fundamentals
for risk assessment. They are also performed to summarize the current state of
knowledge often prior to designing new studies.

This chapter will first describe reasons for meta-analyses in epidemiological
research and then illustrate how to perform a meta-analysis with the focus on meta-
analysis of published data. Furthermore, network meta-analyses are introduced,
which are a new methodological tool.

36.2 Reasons for Meta-Analysis in Epidemiology

One major issue in assessing causality in epidemiology is “consistency” as pointed
out by Hill in 1965. The extent to which an observed association is similar in
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different studies, with different designs, using different methods of data collection
and exposure assessment, by different investigators, and in different regions or
countries is an essential criterion for causality. If different studies with inconsistent
results are known, there is a need for understanding the differences. Reasons may
be small sample sizes of individual studies (chance), different methods of exposure
assessment (measurement errors), different statistical analyses (e.g., adjustment
for confounding), or the use of different study populations (selection bias). Also,
Thompson et al. (1997) showed that different baseline risks may cause heterogene-
ity. The goal of a meta-analysis is then to investigate whether the available evidence
is consistent and/or to which degree inconsistent results can be explained by random
variation or by systematic differences between design, setting, or analysis of the
study as has been pointed out by Weed (2000).

Meta-analyses are often performed to obtain a combined estimator of the
quantitative effect of the risk factor such as the relative risk (RR) or the odds ratio
(OR). As single studies are often far too small to obtain reliable risk estimates, the
combination of data of several studies may lead to more precise effect estimates and
increased statistical power. This is mainly true if the exposure leads only to a small
increase (or decrease) in risk or if the disease or the exposure of interest is rare. One
example is the risk of developing lung cancer after the exposure to passive smoking
where relative risk estimates in the order of 1.2 have been observed; see Boffetta
(2002) for a summary of the epidemiological evidence. Another typical example is
the association between childhood leukemia and exposure to electromagnetic fields.
Meinert and Michaelis (1996) have performed a meta-analysis of the available
case-control studies as the results of the investigations were inconsistent. Although
many huge case-control studies have been performed in the last decade, in each
single study, only a few children were categorized as “highly exposed.” In most
publications, a small but non-significant increase in risk was found, but no single
study had enough power to exclude that there is no association between EMF
exposure and childhood leukemia.

Sometimes, meta-analyses are also used to investigate more complex dose-
response functions. For example, Tweedie and Mengersen (1995) investigated
the dose-response relationship of exposure to passive smoking and lung cancer.
A meta-analysis was also undertaken by Longnecker et al. (1988) to study the dose-
response of alcohol consumption and breast cancer risk. However, results were
limited as not enough data were present in several of the included publications.
Interestingly, a large group of investigators led by Hamajima et al. (2002) has
recently used individual patient data from 53 studies including nearly 60,000
cases for a reanalysis. It has been shown by Sauerbrei et al. (2001) in a critique
that meta-analysis from aggregated data may be too limited to perform a dose-
response analysis. A major limitation is that different categories are used in different
publications. Thus, dose-response analyses are restricted to published values. Meta-
analyses of published data have their main merits for exploring heterogeneity
between studies and to provide crude quantitative estimates but probably less for
investigating complex dose-response relationships.
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36.3 Different Types of Overviews

Approaches for summarizing evidence include five different types of overviews:
first, traditional narrative reviews that provide a qualitative but not a quantitative
assessment of published results. Methods and guidelines for reviews have been
recently published by Weed (1997).

Second, meta-analyses from literature (MAL) which are generally performed
from freely available publications without the need of cooperation and without
agreement of the authors from the original studies. They are comparable to a
narrative review in many respects but include quantitative estimate(s) of the effect
of interest. One recent example is a meta-analysis by Zeeger et al. (2003) of studies
investigating some familial clustering of prostate cancer. Another meta-analysis has
been recently published by Allam et al. (2003) on the association between Parkinson
disease, smoking, and family history.

Third, meta-analyses with individual patient data (MAP) in which individual data
from published and sometimes also unpublished studies are reanalyzed. Often, there
is a close cooperation between the researcher performing the meta-analysis and
the investigators of the individual studies. The new analysis may include specific
inclusion criteria for patients and controls, new definition of the exposure and
confounder variables, and new statistical modeling. This reanalysis may overcome
some but not all of the problems of meta-analyses of published data (Blettner et al.
1999). They have been performed in epidemiological research for many years. One
of the largest investigations of this form was a recent investigation on breast cancer
and oral contraceptive use, where data from 54 case-control studies were pooled and
reanalyzed (CGHFBC 1996). A further international collaboration led by Lubin and
colleagues were set up to reanalyze data from 11 large cohort studies on lung cancer
and radon among uranium miners. The reanalysis allowed a refined dose-response
analysis and provided data for radiation protection issues. Pooled reanalyses are
mostly performed by combining data from studies of the same type only. For
example, Hung et al. (2003) reanalyzed data from all case-control studies in which
the role of genetic polymorphisms for lung cancer in non-smokers was investigated.
The role of diet for lung cancer was recently reviewed by Smith-Warner et al. (2002)
in a qualitative and quantitative way by combining cohort studies. An overview
of methodological aspects for a pooled analysis of data from cohort studies was
published by Bennett (2003). There are methods under development which allow to
combine individual and aggregate data. See, for example, the work by Riley et al.
(2007) or Sutton et al. (2008).

Fourth, prospectively planned pooled meta-analyses of several studies in which
pooling is already a part of the protocol. Data collection procedures, definitions
of variables are as far as possible standardized for the individual studies. The
statistical analysis has many similarities with the meta-analysis based on individual
data. A major difference, however, is that joint planning of the data collection
and analysis increase the homogeneity of the included data sets. However, in
contrast to multicenter randomized clinical trials, important heterogeneity between
the study centers still may exist. This heterogeneity may arise from differences
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in populations, in the relevant confounding variables (e.g., race may only be a
confounder in some centers) and potentially differences in ascertainment of controls.
For example, complete listings of population controls are available in some but
not all countries. In the latter situation sometimes neighborhood controls are used.
Mainly in occupational epidemiology, those studies are rather common, many of
them were initiated by international bodies such as the International Agency for
Research on Cancer (IARC) as the international pooled analysis by Boffetta et al.
(1997) of cancer mortality among persons exposed to man-made mineral fiber.
Another example for a prospectively planned pooled meta-analysis is given by a
large brain tumor study initiated by the IARC including data from eight different
countries (see Schlehofer et al. 1999).

Fifth, network meta-analyses which is a method that is increasingly used to esti-
mate comparative effectiveness of treatments not compared directly in randomized
controlled trials. This technique is introduced in more detail in Sect. 36.7.

Steinberg et al. (1997) compared the effort required and the results obtained of
MAL and MAP with an application to ovarian cancer. Certainly, MAL are easier to
perform, cheaper, and faster than MAP. Their credibility may be more questionable
as discussed by many authors; see, for example, Blettner et al. (1999) or Egger
et al. (1998). Statistical issues of pooling data from case-control studies have been
investigated by Stukel et al. (2001) recently. The authors proposed a two-step
approach and showed conditions under which the two-step approach gives similar
results in comparison to the pooled analysis including all data. Here, the two-step
approach implies to estimate first the odds ratio for each study in the usual way.
Then in the second step, a combined estimator using either a fixed or random effects
model is calculated.

36.4 Steps in Performing a Meta-Analysis

Each type of overview needs a clear study protocol that describes the research
question and the design, including how studies are identified and selected, the
statistical methods to use, and how the results will be reported. This protocol should
also include the exact definition of the disease of interest, the risk factors, and
the potential confounding variables that have to be considered. In accordance with
Friedenreich (1993) and Jones (1992), the following steps are needed for a meta-
analysis/pooled analysis.

Step 1. Define a clear and focused topic for the review: As for any other
investigation, a clear protocol in which the research hypothesis, that is, the
objectives of the meta-analysis are described, is mandatory. This protocol should
include the exact definition of the disease of interest, the risk factors, and the
potential confounding variables that have to be considered. The protocol should
also include details on the steps that are described below, including specification
of techniques for location of the studies, the statistical analysis, and the proposed
publications.
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Step 2. Establish inclusion and exclusion: It is important to define in advance
which studies should be included into the meta-analysis. These criteria may
include restrictions on the publication year as older studies may not be compara-
ble to newer ones, on the design of the investigation, for example, to exclude
ecological studies. Friedenreich (1994) has also proposed quality criteria to
evaluate each study. Whether these criteria, however, should be used as inclusion
criteria is discussed controversially. Another decision is whether studies that
are only published as abstracts or internal communications should be included
(Cook et al. 1993). A rule for the inclusion or exclusion of papers with repeated
publication of the data is required. For example, for cohort studies, often several
publications with different follow-up periods can be found. As one out of many
examples, a German study among rubber workers by Straif et al. (1999, 2000)
can be mentioned. In one paper, 11,633 workers were included, while the second
paper is based on a subcohort of only 8,933 persons. Which results are more
appropriate for the meta-analysis?
Step 3. Locate all studies (published and unpublished) that are relevant to the
topic: Since the existence of electronic databases, retrieval of published studies
has become much easier. Mainly systems like MEDLINE or CANCERLIT from
the National Library of Medicine are valuable sources to locate publications.
However, as Dickersin et al. (1994) showed for some examples as little as 50%
of the publications were found by electronic searches. Therefore, there is a
need to extend the search by manual checks of the reference lists of retrieved
papers, monographs, books, and if possible by personal communications with
researchers in the field. A clear goal of the search has to be to identify all relevant
studies on the topic that meet the inclusion criteria. Egger et al. (2003) have
pointed out that the completeness of the literature search is an important feature
of the meta-analysis to avoid publication bias or selection bias. Of course, the
publication should include the search strategies as well as the keywords and the
databases used for electronic searches.
Step 4. Abstract information from the publications: The data collection step in
a meta-analysis needs as much care as in other studies. In the meta-analysis, the
unit of observation is the publication, and defined variables have to be abstracted
from the publication (Stock 1995). In epidemiological studies, the key parameter
is often the relative risk or odds ratio. Additionally, standard error, sample size,
treatment of confounders, and other characteristics of the study design and data
collection procedure need to be abstracted to assess the quality of the study.
This is also important for subgroup analyses or for a sensitivity analysis. An
abstract form has to be created before abstracting data. This form should be
tested like other instruments in a pilot phase. Unfortunately, it may not always
be possible to abstract the required estimates directly, for example, standard
errors are not presented and have to be calculated based on confidence intervals
(Greenland 1987). It may be necessary to contact the investigators to obtain
further information if results are not published in sufficient detail. Abstracting
and classification of study characteristics is the most time-consuming part of the
meta-analysis. It has been recommended to blind the data abstractors, although
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some authors argue that blinding may not have a major influence on the results;
for further discussion, see Berlin et al. (1997). Additionally, the rater may be
acquainted with some of the studies and blinding cannot be performed. Another
requirement is that two persons should perform the abstraction in parallel. When
a meta-analysis with original data is performed, the major task is to obtain data
from all project managers in a compatible way. Our experience shows that this is
possible in principle but time consuming as data may not be available on modern
electronic devices and often adaptations between database systems are required.
Step 5. Descriptive analysis: A first step in summarizing the results should
be an extensive description of the single papers, including tabulation of rele-
vant elements of each study, such as sample size, data collection procedures,
confounder variables, means of statistical analysis, study design, publication
year, performing year, geographical setting, etc. This request is also included
in the guidelines for publications of meta-analysis that were published by Stroup
et al. (2000).
Step 6. Statistical analysis: This includes the analysis of the heterogeneity of the
study-specific effects, the calculation of a pooled estimate and the confidence
interval as well as a sensitivity analysis. Details are given in the next section on
statistical methods.
Step 7. Interpretation of the results: The importance of the sources and magnitude
of different biases should be taken into account when interpreting the re-
sults. Combining several studies will often give small confidence intervals and
suggest a false precision (Egger et al. 1998), but estimates may be biased.
For clinical studies, Thompson (1994) has pointed out that the investigation
of the heterogeneity between studies will generally give more insight than
inspecting the confidence interval of the pooled estimate. This is even more
true for a meta-analysis from epidemiological studies. Additionally, the possible
effects of publication bias (see below) need to be considered carefully (Copas and
Shi 2001).
Step 8. Publication: Guidelines for reporting meta-analyses of observational
studies have been published by Stroup et al. (2000). More recently, a large
group of methodologists and clinicians revised an existing guidance and checklist
focused on the reporting of meta-analyses of randomized controlled trials
named PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses, Moher et al. 2009). These guidelines are quite useful for preparing the
publication and are also supported by most editors of major medical journals.
Especially the detailed description of methods is required so that the analysis
could be replicated by others.

36.5 Statistical Analysis

The statistical analysis of aggregated data from published studies was first
developed in the fields of psychology and education (Glass 1977; Smith and Glass
1977). These methods have been adopted since the mid-1980s in medicine primarily
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for randomized clinical trials and are also used for epidemiological data. A recent
overview may be found in the review by Sutton and Higgins (2008). We will give
a brief outline of some issues of the analysis using an example based on a meta-
analysis performed by Sillero-Arenas et al. (1992). This study was one of the first
meta-analyses which tried to summarize quantitatively the association between
hormone replacement therapy (HRT) and breast cancer in women. Sillero-Arenas
et al. based their meta-analysis on 23 case-control and 13 cohort studies. The data
extracted from their paper are given in Appendix A of this chapter.

The statistical analysis of MAP is more complex and not covered here.

36.5.1 Single Study Results

A first step of the statistical analysis is the description of the characteristics and
the results of each study. Tabulations and simple graphical methods should be
employed to visualize the results of the single studies. Plotting the odds ratios and
their confidence intervals (so-called forest plot) is a simple way to spot obvious
differences between the study results.

Figure 36.1 shows a forest plot of 36 studies investigating the association of HRT
and breast cancer in women. Obviously there is a high variability of effects between
studies present. Later we will describe how to account for heterogeneity of studies
quantitatively.

36.5.2 Publication Bias

An important problem of meta-analysis is publication bias. This bias has received a
lot of attention particularly in the area of clinical trials. Publication bias occurs when
studies that have non-significant or negative results are published less frequently
than positive studies. For randomized clinical trials, it has been shown that even
with a computer-aided literature search not all of the relevant studies will be
identified (Dickersin et al. 1994). In epidemiological studies, additional problems
exist, because often a large number of variables will be collected as potential
confounders (Blettner et al. 1999), but only significant or important results are
mentioned in the abstract. Therefore, the respective publication may be overlooked
for variables which are not mentioned in the abstract. Results of important variables
may be published in additional papers, which have often not been planned in
advance. In general, publication bias yields a non-negligible overestimation of the
risk estimate. Consequently, publication bias should be investigated prior to further
statistical analyses.

A simple graphical tool to detect publication bias is the so-called funnel plot. The
basic idea is that studies which do not show an effect and which are not statistically
significant are less likely to be published. If the sample size or alternatively the
precision (i.e., the inverse of the variance) is plotted against the effect, a hole in
lower left quadrant is expected. Figure 36.2 shows examples of funnel plots. The left
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Fig. 36.1 Confidence interval plot of the breast cancer data

subplot of Fig. 36.2 shows a funnel plot with no indication of publication bias. The
right subplot shows a so-called apparent hole in the lower left corner. In the case of
the right subplot of Fig. 36.2, the presence of publication bias would be assumed.

Figure 36.3 shows a funnel plot for the breast cancer data. No apparent hole in
the lower left corner is present. Thus, based on this figure, no publication bias would
be assumed.

For a quantitative investigation of publication bias, several methods are available.
This may be based on statistical tests; see, for example, Begg and Mazumdar (1994)
or Schwarzer et al. (2002). A recent simulation study performed by Macaskill et al.
(2001) favored the use of regression methods. The basic idea is to regress the
estimated effect sizes O�i directly on the sample size or the inverse variance ��2

i

as predictor. An alternative idea is to use Egger’s regression test (Egger et al. 1997)
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which uses standardized study-specific effects as dependent variable and the cor-
responding precision as an independent variable. Simulation studies by Macaskill
et al. (2001) and by Peters et al. (2006) indicate that the method proposed by
Macaskill is superior to Egger’s method. Thus, our analysis is restricted to the
method by Macaskill which leads to the following regression model

O�i D ˛ C ˇ
1

�2
i

C �i ; i D 1; : : : ; k; �i � N.0; �2
i /:

Here, the number of studies to be pooled is denoted by k. In this setting, it is
assumed that the estimated treatment effects are independently normally distributed.
With no publication bias present, the regression line should be parallel to the x-axis,
that is, the slope should be zero. A non-zero slope would suggest an association
between sample size or inverse variance, possibly due to publication bias. The
estimated regression line in Fig. 36.4 shows no apparent slope. Likewise, the model
output (not shown) does not indicate the presence of publication bias for the data at
hand.

36.5.3 Estimation of a Summary Effect

Frequently, one of the aims of a meta-analysis is to provide an estimate of the overall
effect of all studies combined. Methods for pooling depend on the data available.
In general, a two-step procedure has to be applied. First, the risk estimates and
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Fig. 36.4 Funnel regression plot of the breast cancer data
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variances from each study have to be abstracted from publications or calculated
if data are available. Then, a combined estimate is obtained as a (variance based)
weighted average of the individual estimates. The methods for pooling based on the
2 � 2 table include the approaches by Mantel-Haenszel and Peto (see Pettiti 1994
for details). If data are not available in a 2 � 2 table, but as an estimate from a more
complex model (such as an adjusted relative risk estimate), the Woolf approach
can be adopted using the estimates and their (published or calculated) variance
resulting from the regression model. This results in a weighted average of the log
odds ratios O�i of the individual studies where the weights wi are given by the inverse
of the study-specific variance estimates O�2

i . For a discussion of risk measures, see
chapter �Rates, Risks, Measures of Association and Impact of this handbook. Please
note that the study-specific variance is assumed to be fixed and known, although they
are based on estimates of the study-specific variances. As a result, the uncertainty
associated with the estimation of �2

i is ignored. Thus, in the following, the �i are
treated as constants and the “hat” notation is omitted. The estimate of the summary
effect of all studies is then given by

O� D
Pk

iD1 wi
O�i

Pk
iD1 wi

;

wi D 1

�2
i

:

The variance is given by

var. O�/ D 1
Pk

iD1
1

�2
i

:

Applying this approach to the HRT data leads to a pooled risk estimate of 0.05598
with an estimated variance equal to 0.00051. Transforming this back to the original
scale leads to an odds ratio of 1.058 with a 95% confidence interval of (1.012, 1.11).
Thus, we would conclude combining all studies that there is a small harmful effect
of hormone replacement therapy.

The major assumption here is that of a fixed model, that is, it is assumed that the
underlying true exposure effect in each study is the same. The overall variation and,
therefore, the confidence intervals will reflect only the random variation within each
study but not any potential heterogeneity between the studies.

Figure 36.5 displays this idea. Whether pooling of the data is appropriate should
be decided after investigating the heterogeneity of the study results. If the results
vary substantially, no pooled estimator should be presented or only estimators for
selected subgroups should be calculated (e.g., combining results from case-control
studies only).

http://dx.doi.org/10.1007/978-0-387-09834-0_3
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Fig. 36.5 Fixed effects model: common effect with different study variances

36.5.4 Heterogeneity

The investigation of heterogeneity between the different studies is a main task in
each review or meta-analysis (Thompson 1994). For the quantitative assessment of
heterogeneity, several statistical tests are available (Pettiti 1994; Paul and Donner
1989). A simple test for heterogeneity is based on the following test statistic:

�2
het D

kX

iD1

. O� � O�i /
2

�2
i

� �2
k�1 (36.1)

which under the null hypothesis of heterogeneity follows a �2 distribution with k�1

degrees of freedom. Hence, the null hypothesis is rejected if �2
het exceeds the 1 � ˛
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quantile of �2
k�1 denoted as �2

k�1;1�˛ . For the data at hand, we clearly conclude that
there is heterogeneity present (�2

het D 116:076, df = 35, p-value: 0.00000). Thus,
using a combined estimate is at least questionable. Pooling the individual studies and
performing this test can be done with any statistical package capable of weighted
least squares regression. In part B of the Appendix of this chapter shows a SAS
program which provides the results obtained so far. A major limitation of formal
heterogeneity tests like the one presented before is, however, their low statistical
power to detect any heterogeneity present.

A more powerful method is given by model-based approaches. A model-based
approach has the advantage that it can be used to test specific alternatives and thus
has a higher power to detect heterogeneity. So far, we considered the following
simple fixed effects model:

�i D � C "i ; i D 1; : : : ; k; "i � N.0; �2
i /:

Obviously, this model is not able to account for any heterogeneity, since deviations
from �i and � are assumed to be explained only by random error.

Thus, alternatively a random effects model should be considered. This model
incorporates variation between studies. It is assumed that each study has its own
(true) exposure effect and that there is a random distribution of these true exposure
effects around a central effect. This idea is presented in Fig. 36.6. Frequently, it is
assumed that the individual study effects follow a normal distribution with mean �i

and variance �2
i and the random distribution of the true effects is again a normal

distribution with variance �2. In other words, the random effects model allows non-
homogeneity between the effects of different studies. This leads to the following
model:

�i D � C bi C �i ; i D 1; : : : ; k; bi � N.0; �2/; �i � N.0; �2
i /: (36.2)

The observed effects from the different studies are used to estimate the parameters
describing the fixed and random effects. This may be done using maximum-
likelihood procedures. In the following sections, two further methods of estimating
the heterogeneity variance in a random effects model are presented.

36.5.4.1 The Heterogeneity Variance Estimator Proposed by
DerSimonian and Laird

The widely used approach by DerSimonian and Laird (1986) applies a method of
moments to obtain an estimate of �2. Taking the expectation of (36.2) leads to
E.�i/ D � and calculating the variance leads to var.�i / D var.bi / C var."i / D
�2 C�2

i D ��2

i assuming that bi and �i are independent. The heterogeneity variance
�2 is unknown and has to be estimated from the data. The method by DerSimonian
and Laird equates the heterogeneity test statistic (36.1) to its expected value. This
expectation is calculated under the assumption of a random effects model and given
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Fig. 36.6 Random effects model: variable effects drawn from a population of study effects

by E.�2
het/ D k�1C�2

�P
wi �

P
w2

iP
wi

�
. The weights wi are those defined in (36.1).

Equating �2
het to its expectation and solving for �2 gives

O�2 D Œ�2
het � .k � 1/�=

�X
wi �

P
w2

iP
wi

�

:
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In case �2
het < k�1, the estimator O�2 is truncated to zero. Thus, the pooled estimator

O�DL under heterogeneity can be obtained as weighted average:

O�DL D
Pk

iD1 w�
i

O�i
Pk

iD1 w�
i

(36.3)

with w�
i D 1

��2

i

D 1

O�2 C �2
i

we obtain (36.4)

O�DL D
Pk

iD1
O�i=. O�2 C �2

i /
Pk

iD1 1=. O�2 C �2
i /

:

The variance of this estimator is given by:

var. O�DL/ D 1
Pk

iD1
1

��
2

i

D 1
Pk

iD1
1

O�2C�2
i

:

The between-study variance �2 can also be interpreted as a measure for the
heterogeneity between studies. For our example, we obtain a pooled DerSimonian-
Laird estimate of 0.0337 with heterogeneity variance equal to 0.0453. The variance
of the pooled estimator is given by 0.0024. Transformed back to the original scale,
we obtain an odds ratio of OR = 1.034 with 95% CI (0.939, 1.139). Based on
this analysis, we would conclude that after adjusting for heterogeneity, this meta-
analysis does not provide evidence for an association between HRT replacement
therapy and breast cancer in women. It should be noted that within this approach,
the study-specific variances are assumed to be known constants. This can lead to
a considerable bias when pooling estimates using the DerSimonian-Laird estimator
as demonstrated by Böhning et al. (2002).

36.5.4.2 Another Estimator of �2: The Simple Heterogeneity Variance
Estimator

Sidik and Jonkman (2005) proposed a simple method for the estimation of the
heterogeneity variance �2. As before, they consider a model as in (36.2) with
bi � N.0; �2/. Now, for the purpose of their estimation method random effects
model, they reparameterize the variance as

var. O�i / D �2 C �2
i D �2 �2

i C �2

�2
D �2.ri C 1/
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with ri D �2
i =�2. Then, the problem of estimating �2 is cast into the framework of

simple linear regression:

E. O�/ D X�

var. O�1/ D �2V:

Here, X is a vector of 1s with dimension k � 1, and V is a diagonal matrix with
elements r1 C 1; : : : ; rk C 1. In the framework of the usual weighted least squares,
an estimator of � is obtained as

O�� D
Pk

iD1 ��1
i

O�i
Pk

iD1 ��1
i

with �i D ri C 1. Please note that this is equivalent to (36.3) and (36.4). The
advantage of casting the problem into the usual weighted least squares approach
is that an estimator of �2 can be obtained as the usual weighted residual sum of
squares as follows:

O�2 D 1

k � 1

kX

iD1

��1
i . O�i � O��/2: (36.5)

Of course, an estimator of � is needed to compute the ratios ri of the within-study
variance �2

i and the between-study variance �2. Here, Sidik and Jonkman propose
to use the empirical variance of the study-specific estimates O�i

O�2
0 D 1

k

kX

iD1

. O�i � N�/2:

Plugging this into (36.5) leads to

O�2
SH D 1

k � 1

kX

iD1

O��1. O�i � O��/2

with O�i D Ori C 1 and Ori D �2
i = O�2

0 . Please note that this estimator is strictly positive
in contrast to the DerSimonian-Laird estimator. This estimator will be referred to
as the heterogeneity variance estimator SH. For the data at hand, an estimate of �2

equals 0.199.

36.5.4.3 Heterogeneity Variance Estimation by Likelihood-Based
Methods

Besides the moment-based method by DerSimonian and Laird or the simple hetero-
geneity variance estimator, estimates of �2 can be obtained using likelihood-based
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methods. See, for example, the tutorials by Normand (1999) and van Houwelingen
et al. (2002) for more details. The Appendix B and C of this chapter gives a SAS
code to estimate the fixed and random effects models based on likelihood methods
with the SAS program proc mixed. Estimates based on likelihood methods offer the
advantage that they provide the option to formally test which model is appropriate
for the data by applying the likelihood ratio test or penalized criteria such as
the Bayesian information criterion (BIC). The BIC is obtained by the formula
BIC D �2 � log Likelihood C log.k/ � q where q is the number of parameters
in the model and k denotes the number of studies.

When using random effects models, another topic of interest is the form of
the random effects’ distribution. Besides a parametric distribution for the random
effects, a discrete distribution may be assumed. Here, we suppose that the study-
specific estimators O�1; O�2; : : : ; O�k are coming from q subpopulations �j ; j D
1; : : : ; q. Again, assuming that the effect of each individual study follows a normal
distribution

f . O�i ; �j ; �2
i / D 1

q
2	�2

i

e
� . O�i ��j /2

2�2
i ; j D 1; : : : ; q;

we obtain a finite mixture model

f . O�i ; P / D
qX

j D1

f . O�i ; �j ; �2
i /pj :

The parameters of the distribution P

P �
�

�1 : : : �q

p1 : : : pq

�

with pj � 0; j D 1; : : : ; q;

p1 C � � � C pq D 1;

need to be estimated from the data. The mixing weights pj denote the a priori
probability of an observation of belonging to a certain subpopulation with parameter
�j . Please note that also the number of components q needs to be estimated
as well. Estimation may be done with the program C.A.MAN (Schlattmann and
Böhning 1993; Böhning et al. 1998) or more recently with the R package CAMAN
(Schlattmann 2009). For the HRT data, we find a solution with three components
which gives an acceptable fit to the data

weight: 0.2804 parameter: -0.3365
weight: 0.5671 parameter: 0.0778
weight: 0.1524 parameter: 0.5446

Log-Likelihood at iterate : -17.6306
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Table 36.1 Model comparison for the breast cancer data

Residual Estimates (SE)
Method Hetero Intercept Het. (O�2) log Lik. BIC

Fixed None 0.056 (0.023) – �33.19 70.0
Mixed Additive 0.027 (0.061) 0.086 �18.65 44.4
FM Additive 0.079 �17.63 53.2

Here, the weights correspond to the mixing weights pj , and the parameter
corresponds to the subpopulation mean �j . These results imply that about 28% of
the studies show a protective effect of HRT, whereas the majority of the studies show
a harmful effect. About 57% of the studies show an increased log(risk) of 0.08, and
15% of the studies show a log(odds ratio) of 0.54. Thus, using a finite mixture model
(FM), we find again considerable heterogeneity where the majority of studies find a
harmful effect of hormone replacement therapy. It is noteworthy that a proportion of
studies find a beneficial effect. Of course, this needs to be investigated further. One
way to do this would be to classify the individual studies using the finite mixture
model. Doing so, we find that, for example, study nine from the data given in
the Appendix A belongs to this category. This is a case-control study for which
no information about confounder adjustment is available. This would be a starting
point for a sensitivity analysis. Table 36.1 gives an overview about the models fitted
so far. These include the fixed effects model with a BIC value of 70.0, the mixed
effects model using a normal distribution for the random effects with a BIC value
of 44.4. The finite mixture model (FM) has a BIC value of 53.2. Thus, based on
Table 36.1, it is quite obvious that a fixed effects model does not fit the data very well
and that a random effects model should be used. Of course, the question remains
which random effects model to choose for the analysis. Based on the BIC criterion
given in Table 36.1, one would choose the parametric mixture model provided the
assumption of a normal distribution of the random effects is justifiable. This can
be investigated, for example, by a normal quantile-quantile plot of the estimated
individual random effects given by the parametric model. For the data at hand,
the assumption of normally distributed random effects appears reasonable; thus, we
would choose the parametric mixture model.

36.5.4.4 Further Aspects of Heterogeneity
It should be noted that in general random effects models yield larger variance and
confidence intervals than fixed effects models because a between-study component
�2 is added to the variance. If the heterogeneity between the studies is large, �2

will dominate the weights and all studies will be weighted more equally (in the
random effects model weight decreases for larger studies compared to the fixed
effects model).

Furthermore, pooling in the presence of heterogeneity may be seriously mislead-
ing. Heterogeneity between studies warrants careful investigation of the sources
of the differences. If there are a sufficient number of different studies available,
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further analyses, such as “meta-regression,” may be used to examine the sources
of heterogeneity (Greenland 1987, 1994). One specific problem that occurs when
binary endpoints are considered is that different risk measurements are used. While
in case-control studies, an odds ratio is estimated, cohort studies yield an estimate
for the relative risk. Although for studies in which rare events are investigated, odds
ratios and relative risk estimates are very similar, this is not the case in studies where
diseases with a higher prevalence are investigated. Odds ratio and relative risk differ
and should not be combined. The problem that arises if studies with different designs
are combined has not been well studied. We believe that no pooled estimate should
be calculated combining data from case-control and cohort studies. There are many
sources of heterogeneity, not only the size of risk estimates.

36.5.4.5 Meta-Regression
An important method for investigating heterogeneity is sensitivity analysis, for
example, to calculate pooled estimators only for subgroups of studies (according to
study type, quality of the study, period of publication, etc.) to investigate variations
of the odds ratio. An extension of this approach is meta-regression as proposed by
Greenland (1987); see also Thompson and Sharp (1999). The principal idea of meta-
regression is once heterogeneity is detected to identify sources of heterogeneity by
inclusion of known covariates.

For the breast cancer meta-analysis example a potential covariate is study type,
case-control studies may show different results than cohort studies due to different
exposure assessment. For our data, case-control studies are coded as xi1 D 0, and
cohort studies are coded as xi1 D 1.

The fixed effect model is now

�i D ˇ0 C ˇ1xi1 C �i ; "i � N.0; �2
i /; i D 1; : : : ; k:

Here, we find that cohort studies identify an association between HRT and breast
cancer based on the regression equation O�i D 0:0015 C 0:145 for a cohort
study. Obviously, cohort studies come to results different form case-control studies.
Clearly, after adjustment for covariates, the question remains if there is still residual
heterogeneity present. Again, we can analyze the data using a random effects model
in this case with a random intercept:

�i D ˇ0 C ˇ1xi1 C bi C �i ; bi � N.0; �2/; "i � N.0; �2
i /:

For this model, the regression equation for the fixed effects gives now for a cohort
study O�i D �0:009 C 0:1080, and the corresponding heterogeneity variance is
estimated as O�2 D 0:079.

Table 36.2 compares fixed and random effects models for the HRT data. The table
shows models with and without an estimate for the slope. Model selection can be
based again on the BIC criterion. Apparently based on the BIC criterion, both fixed



36 Meta-Analysis in Epidemiology 1397

Table 36.2 Comparison of fixed and random effects models

Residual Estimates (SE)
Method Hetero Intercept Slope Het. (O�2) �log Lik. BIC

Fixed None 0:056 .0:023/ – – �33.85 70.0
Fixed None 0:0014 .0:029/ 0.145 (0.046) – �28.36 63.9
Mixed Additive 0:027 .0:061/ – 0.086 �18.65 44.4
Mixed Additive �0:009 .0:072/ 0.108 (0.126) 0.079 �18.25 47.3

effects models do not fit the data very well since their BIC values are considerably
higher than those of the random effects models. Please note that if only the fixed
effects models would be considered, this meta-analysis would show that cohort
studies show a harmful effect. Comparing the mixed effects models in Table 36.2,
the model with the covariate does not provide an improved fit of the data. The log-
likelihood is only slightly larger, and penalizing the number of parameters leads to a
larger BIC value for the mixed effect model with the covariate. Another interesting
point is to compare the heterogeneity variance estimated by both models. Here,
there is no substantial portion of heterogeneity explained by the covariate, since the
heterogeneity variance is reduced to 0.079 from 0.086. From a statistical point of
view, further covariates need to be identified and included into the model. From a
public health point of view, the conclusion is perhaps less straightforward. Although
inclusion of the covariate study type does not explain the heterogeneity of the studies
very well, we find that cohort studies find a harmful effect. One might argue that
although these results are far from perfect, they should not be ignored as absence
of evidence does not imply evidence of absence. Looking back at these data in the
light of the results from the woman health initiative (WHI) study (Rossouw et al.
2002), it becomes clear that caution is required in the analysis and interpretation
of meta-analyses of observational studies. The major finding of the WHI study
was that the group of subjects undergoing treatment with combined HRT in the
form of Prempro (0.625 mg/day conjugated equine estrogens (CEE) +2.5 mg/day
medroxyprogesterone acetate) was found to have increased risk of breast cancer
(hazard ratio = 1.26, 95% CI: 1.00–1.59) and no apparent cardiac benefit. This is
contradictory to the prior belief that HRT provides cardiovascular benefit. As a
result, although several benefits were considered, these interim findings at 5 years
were deemed sufficiently troubling to stop this arm of the trial at 5.2 years.

36.6 Interpretation of the Results of Meta-Analysis of
Observational Studies

The example from above shows that the interpretation of the results of a meta-
analysis should not only discuss the pooled estimator and the confidence interval
but should focus on the examination of the heterogeneity between the results of the
studies. Strength and weaknesses as well as potential bias should be discussed.
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36.6.1 Bias

For epidemiological studies in general, the main problem is not the lack of precision
and the random error but the fact that results may be distorted by different sources
of bias or confounding; for a general overview of the problem of bias, see Hill and
Kleinbaum (2000). That means that the standard error (or the size of the study) may
not be the best indicator for the weight of a study. If more or better data are collected
on a smaller amount of subjects, results may be more accurate than in a large study
with insufficient information on the risk factors or on confounders. The assessment
of bias in individual studies is therefore crucial for the overall interpretation.

The central problem of meta-analyses of clinical trials is publication bias that has
already been a topic in a paper by Berlin et al. as early as 1989 and is still a topic of
recent methodological investigations (see, e.g., Copas and Shi 2001). This bias has
received a lot of attention particularly in the area of clinical trials. As mentioned in
Sect.36.5.2, publication bias yields in general a non-negligible overestimation of the
risk estimate. However, as Morris (1994) has pointed out, there exist little systematic
investigations of the magnitude of the problem for epidemiological studies. A major
worry is that non-significant results are neither mentioned in the title nor in the
abstract and publications and may be lost in the retrieval process.

36.6.2 Confounding

Another problem arises because different studies adjust for different confounding
factors. It is well known that the estimated effect of a factor of interest is (strongly)
influenced by the inclusion or exclusion of other factors, in the statistical model
if these factors have an influence on the outcome and if they are correlated with
the risk factor of interest. Combining estimates from several studies with different
ways of adjusting for confounders yields biased results. Using literature data only,
crude estimates may be available for some of the studies, model-based estimates
for others. However, as the adjustment for confounders is an important issue for
the assessment of an effect in each single study, it is obvious that combining
these different estimates in a meta-analysis may not give meaningful results. It is
necessary to use “similar” confounders in each study to adjust the estimated effect
of interest in the single studies. In general, that would require a reanalysis of the
single studies. Obviously, that requires the original data and a MAP is needed for
this purpose.

36.6.3 Heterogeneity

In epidemiological research, different study designs are in use, and none of them
can be considered as a gold standard as the randomized clinical trial for therapy
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studies. Therefore, it is necessary to evaluate the comparability of the single designs
before summarizing the results. Often, case-control studies, cohort studies, and
cross-sectional studies are used to investigate the same questions, and results of
those studies need to be combined. Egger et al. (2001b) pointed out several examples
in which results from case-control studies differ from those of cohort studies. For
example, in a paper by Boyd et al. (1993), it was noted that cohort studies show
no association between breast cancer and saturated fat intake, while the same
meta-analysis using results from case-control studies only revealed an increased,
statistically significant risk. Other reasons for heterogeneity may be different uses
of data collection methods, different control selection (e.g., hospital vs. population
controls), and differences in case ascertaining. Differences could be explored in a
formal sensitivity analysis but also by graphical methods (funnel plot). However,
meta-analyses from published data provide only limited information if the reasons
for heterogeneity shall be investigated in depth.

The problem of heterogeneity can be well demonstrated with nearly any example
of published meta-analysis. For example, Ursin et al. (1995) investigated the
influence of the body mass index (BMI) on the development of premenopausal
breast cancer. They included 23 studies of which 19 are case-control studies and
4 are cohort studies. Some of these studies were designed to investigate BMI as
risk factor, others measured BMI as confounders in studies investigating other risk
factors. It can only be speculated that the number of unpublished studies in which
BMI was mainly considered as a confounder and did not show a strong influence
on premenopausal breast cancer is non-negligible and that this issue may result
in some bias. As is usual practice in epidemiological studies, relative risks were
provided for several categories of BMI. To overcome this problem, the authors
estimated a regression coefficient for the relative risk as a function of the BMI;
however, several critical assumptions are necessary for this type of approach. The
authors found severe heterogeneity across all studies combined (the p-value of a
corresponding test was almost zero). An influence of the type of study (cohort study
or case-control study) was apparent. Therefore, no overall summary is presented for
case-control and cohort studies combined. One reason for the heterogeneity may be
the variation in adjustment for confounders. Adjustment for confounders other than
age was used only in 10 out of the 23 studies.

36.7 Network Meta-Analysis

Network meta-analyses are a recent development in meta-analyses, especially for
randomized clinical trials, and are also referred to as multiple treatments meta-
analyses. They are applied when the difference between two or more medical
treatments should be investigated, but no or only few head-to-head comparison
studies are available. In this situation, studies comparing the treatments of interest
with a common comparator can be used for relative effect inferences. For example,
there are randomized studies comparing treatment B versus standard treatment
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Treatment A

Treatment B Treatment C?

Fig. 36.7 Indirect comparison between treatment B and treatment C

A and furthermore randomized studies comparing treatment C versus treatment
A (shown graphically in Fig. 36.7). A previously unresearched effect of treatment
B versus treatment C can then be evaluated by an indirect comparison using the
available studies.

36.7.1 Statistical Methods

In the setting of Fig. 36.7, let O�BA and O�CA be the estimated summary effects of
the corresponding studies. These effects, for example, log odds ratios for binary
outcome or differences in means for continuous data, can be combined in a network
meta-analysis as follows:

O�BC D O�BA � O�CA:

Extending this network, different paths for the same treatment comparison can also
exist.

If further randomized studies were available comparing treatment D with
treatments B and C , respectively (see Fig. 36.8), the effect �BC could be estimated
on a second way:

O�BC D O�BD � O�CD:

The network of different treatment comparisons can be arbitrarily extended to use
all available evidence. Accordingly, several treatments can be compared simulta-
neously based on pairwise comparative or multiarm studies. If direct and indirect
comparisons are included in a network meta-analysis, it is also named as mixed
treatment comparisons (MTC) meta-analysis (Lu and Ades 2004). For example,
Elliott and Meyer (2007a) investigated the effect of five antihypertensive drugs and
placebo on incident diabetes mellitus based on 22 clinical trials with comparisons
between two and three treatments. Figure 36.9 shows the network with the summary
estimates for pairwise comparisons of traditional meta-analyses and each included
study. None of these 22 trials performed a direct comparison between angiotensin-
converting enzyme (ACE) inhibitors and angiontensin receptor blockers (ARB).

The effect estimates used for indirect comparisons or the combination of different
network paths may be based on fixed or random effects models. In the simplest
case, independent estimates of different paths can be synthesized by an average,
weighted by the inverse of their respective variances. Furthermore, Bayesian
methods and hierarchical models can be used to analyze indirect comparisons as
well as more complex data structures such as multiarm trials, especially when
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Fig. 36.8 Simple network meta-analysis
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Fig. 36.9 A network of antihypertensive drug clinical trials (Reprinted from Elliott and Meyer
2007b, with permission from Elsevier)

additional information is available (Lu and Ades 2004). Adjustments for covariates
and the use of meta-regression methods are also possible in network meta-analyses.
Nixon et al. (2007) presented an MTC Bayesian meta-regression model to estimate
the efficacy of biological treatments in rheumatoid arthritis adjusted for the both
study-level covariates, disease duration and severity of disease.
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36.7.2 Limitations

The reasons for potential bias, as already discussed for common meta-analysis, can
also lead to distortions in network meta-analysis. But since an indirect comparison
requires at least two meta-analyses, there is assumedly more scope for error.

For a valid indirect comparison, the studies should be methodologically and
clinically comparable. Also, it is important to synthesize the evidence from different
randomized clinical trials by comparing their treatment effects, such as log odds
ratios. Considering only single treatment arms of the original controlled studies
would break the randomization (Bucher et al. 1997). For example, the observations
of treatment arm B and treatment arm C of the original by treatment A controlled
studies (see Fig. 36.7) should not be pooled. Although the data originate from
randomized controlled trials, they are reduced to the equivalent of those that come
from an observational study. The comparison of effectiveness can therefore be
biased by several confounders. Estimates of indirect comparisons based only on
single treatment arms of randomized controlled trials are sometimes referred to as
“unadjusted indirect estimates” and should be avoided.

In a network meta-analysis, not only the heterogeneity in treatment effects
between studies of each pairwise contrast should be discussed, but also different
network paths for the same comparison. For example, the estimations O�BA � O�CA

and O�BD � O�CD in Fig. 36.8 can disagree. Particularly in MTC meta-analyses,
inconsistencies in treatment effects obtained from direct and indirect comparisons
of the same treatments may exist (Song et al. 2003). Baker and Kramer (2002)
highlighted examples where the transitivity assumption between a direct and an
indirect comparison is not given, for example, due to differences in patient or
trial characteristics. In addition, imperfections in study design or analysis may
lead to inconsistencies. For example, the observed treatment effect in open-label or
ineffectively blinded studies might depend on whether the treatment is new or used
as an active control which may alter the expectation of researchers and patients. This
may in turn influence the observed treatment effect (see Lumley 2002). Song et al.
(2009) surveyed systematic reviews published between 2000 and 2007 with indirect
comparisons and investigated basic assumptions and methodological problems in
the application. The assumption of consistency was explicitly mentioned in only 18
of the 30 included reviews where direct and indirect estimates were compared or
combined.

The investigation of inconsistency, or also known as incoherence, is possible
when there are closed loops such as in the connected polygonal network in Fig.36.9.
Independent estimates of different network paths can be tested, for example, with
the simple �2-test like in the testing of heterogeneity (see Sect. 36.5.4 and Caldwell
et al. 2009). Lumley (2002) offered a quantitative estimation procedure using linear
mixed models, in which not only the heterogeneity but also the inconsistency can
be fitted as a further random effect. Lu and Ades (2006) set the estimation of
inconsistency in the framework of Bayesian hierarchical models. However, large
inconsistency needs, as large heterogeneity, a closer look for possible reasons.
The adjustment for covariates and the use of meta-regression methods are another
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Fig. 36.10 Different network geometries: (a) radiating star (b) linear structure

possibility to address the inconsistency and also the heterogeneity within compar-
isons (Cooper et al. 2009). But since inconsistency is a property of loops, it is
not easily possible to ascertain which specific contrast is responsible for the in-
consistency, and it is an open question to which extent unexplained inconsistency is
acceptable in an MTC meta-analysis. For a radiating or linear network meta-analysis
structure, the estimation of inconsistency is impossible. Pattern (a) in Fig. 36.10
arises, for example, if there are only placebo-controlled studies and the active
treatments are not compared to each other. If new treatments are tested only against
the current standard, pattern (b) in Fig. 36.10 might result. Fewer cross-links and
longer paths, for example, between treatment B and treatment C in Fig. 36.10, lead
to greater uncertainty of the treatment effect estimation. But the information in these
networks can be used, for example, in the planning of future trials to directly test
the comparison where no direct evidence exists or to enhance the network. Salanti
et al. (2008) discussed network geometry and asymmetry in this context, namely,
that specific treatments or comparisons are represented more heavily than others.

Comparing the estimation accuracy between direct and indirect comparisons
shows that under the assumption of statistical independence of different studies
and consistent estimation accuracy, the variance of the effect estimator in indirect
comparisons is greater than in direct comparisons. Assuming, for example, that
the effect estimates of all studies have the same variance �2, the variance of the
fixed-effect inverse variance estimator of the direct comparisons based on 2k studies
would be

var. O�BCdirect/ D �2=2k:

However, the variance of the indirect comparison based on k studies for each
comparison would be

var. O�BCindirect/ D var. O�BAdirect / C var. O�CAdirect/ D �2=k C �2=k D 2�2=k:

Thus, for the indirect approach, four times as many studies are needed to have the
same power as the direct comparisons provide (Glenny et al. 2005).

Consequently, indirect comparisons are not preferable to direct comparisons, but
they are useful in planning direct comparisons and where head-to-head comparisons
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are not possible. Both can be combined to include all the existing evidence and to
obtain more precise estimates when direct comparisons are not sufficiently available
(Higgins and Whitehead 1996). Song et al. (2008) hypothesized as to whether
adjusted indirect comparisons may provide less biased results than direct compar-
isons under certain circumstances. For example, when an indirect comparison is
based on studies with the same extent of bias, adjusted indirect comparison could
counterbalance this. However, discrepancies between both approaches should be
carefully investigated for potential explanations whenever possible.

36.8 Conclusions

Despite the many problems, there is an immense need to summarize current know-
ledge, for example, to assess the consequence of human exposure to environmental
exposure. For this task, all available data and information will be needed, and meta-
analysis is becoming increasingly influential. Particularly where the previously
conducted epidemiological studies have provided inconsistent results, a meta-
analysis may give some insight. As discussed, a major impediment for meta-analysis
of epidemiological data is the heterogeneity across studies in their design, data
collection methods, and analyses performed. The statistical combination of risk
estimates should not be the central component of a meta-analysis using published
data. An expert group in cooperation with the US Environmental Protection Agency
was recently established to discuss the use of meta-analyses in environmental health
studies. One of the objectives of this group was also to develop a consensus on
“when meta-analysis should or should not be used” (Blair et al. 1995). There
is always a danger that meta-analysis of observational studies produces precise
looking estimates which are severely biased. This should be kept in mind as more
and more public health regulators and decision-makers may rely on the results of a
meta-analysis.

Appendices

A. Data

The listing shows the effect measure on the log-scale, the corresponding variance
and the study type of each of the 36 studies analyzed in the meta-analysis by Sillero-
Arenas et al. (1992):

data sillar;
input study or est type;
cards;
1 0.10436 0.299111 0
2 -0.03046 0.121392 0
3 0.76547 0.319547 0
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4 -0.19845 0.025400 0
5 -0.10536 0.025041 0
6 -0.11653 0.040469 0
7 0.09531 0.026399 0
8 0.26236 0.017918 0
9 -0.26136 0.020901 0
10 0.45742 0.035877 0
11 -0.59784 0.076356 0
12 -0.35667 0.186879 0
13 -0.10536 0.089935 0
14 -0.31471 0.013772 0
15 -0.10536 0.089935 0
16 0.02956 0.004738 0
17 0.60977 0.035781 0
18 -0.30111 0.036069 0
19 0.01980 0.024611 0
20 0.00000 0.002890 0
21 -0.04082 0.015863 0
22 0.02956 0.067069 0
23 0.18232 0.010677 0
24 0.26236 0.017918 1
25 0.32208 0.073896 1
26 0.67803 0.489415 1
27 -0.96758 0.194768 1
28 0.91629 0.051846 1
29 0.32208 0.110179 1
30 -1.13943 0.086173 1
31 -0.47804 0.103522 1
32 0.16551 0.004152 1
33 0.46373 0.023150 1
34 -0.52763 0.050384 1
35 0.10436 0.003407 1
36 0.55389 0.054740 1
run;

B. Elementary Analysis with SAS

SAS code for the elementary analysis using weighted least squares:

/* calculation of weights */
data sillar;
set sillar;
weight =1./est;
run;



1406 M. Blettner et al.

/* intercept only */
proc glm data=sillar; /* use proc GLM with data set sillar */
model logor=/solution inverse ; /* Show solution */

/* Show inverse of weighted design matrix */
weight weight; /* weights 1./variance */
run;

This gives the following shortened output:

The GLM Procedure
Dependent Variable: logor
Weight: weight

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 1 6.1683128 6.1683128 1.86 0.1813
Error 35 116.0756869 3.3164482
Un.Total 36 122.2439997

Parameter df Estimate SE t Value Pr > |t|
Intercept 1 0.0559813731 0.04104847 1.36 0.1813

Please note that for performing a meta-analysis the standard error given by the
program must be divided by the root mean square error in order to obtain the
standard error of the pooled estimate. In order to avoid additional calculations the
SAS output giving the inverse of the weighted design matrix gives the desired
variance. The test of heterogeneity is given by the residual sum of squares as
indicated by formula (36.4). This result can also be obtained using the SAS code
for the fixed effect model based on maximum likelihood:

proc mixed method=ml data=sillar; /* Use proc mixed (ML
estimation) */

class study; /* Specifes study as ’classif
icaton variable’ */

model or=/ s cl; /* Intercept only model, show
solution and CI */

repeated /group =study; /* Each trial has its own
within trial variance */

parms /parmsdata=sillar /* The parmsdata option reads
in the variable EST indi
cating the variances from
the data set sillar.sd2 */

eqcons=1 to 36; /* The within study variances
are known and fixed */

run;
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C. SAS Code for the Random Effects Model

The SAS procedure proc mixed requires the following manipulations of the data

data covvars; /* data set containing the variances */
set sillar;
keep est;
run;
data start; /* include the starting value for the */
input est; /* heterogeneity variance */
cards;
0.0
run;
data start; /* Combine both data sets */
set start covvars;
run;

Obtain the model with proc mixed
proc mixed method=ml cl data=sillar; /* CL asks for confidence intervals */

/* of covariance parameters */

class study; /* Study is classification variable */

model or= / s cl; /* Intercept only model, Fixed solution and CI */

random int /subject=study ; /* Study is specified as random effect */

repeated /group =study; /* Each study has its own variance */

parms /parmsdata= start /* start contains starting value a. trial vars. */

eqcons=2 to 37; /* entries 2 to 37 are the fixed study vars. */

run;
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