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1

This book is about tasks that teacher educators might use with prospective or prac-
ticing secondary mathematics teachers. There is a substantial literature that has es-
tablished the critical role that tasks play in the teaching and learning process for 
school mathematics classes. Kilpatrick et al. (2001), for example, claim that the 
quality of teaching depends on whether teachers select cognitively demanding 
tasks, and whether these tasks unfold in the classroom in ways that allow the stu-
dents to elaborate on the tasks and learn through those tasks. The basic argument 
is that it is through and around tasks that teachers and students communicate and 
learn mathematical ideas, so the tasks used by the teachers become the mediating 
tools. Christiansen and Walther (1986), drawing on the work of Leont’ev (1978), 
argued that the tasks set and the associated activity form the basis of the interaction 
between teaching and learning. Other authors who have similarly emphasized the 
critical role of tasks in creating learning opportunities for school students as well as 
the significant influences tasks have on what students actually learn include Stein 
and Lane (1996), Brousseau (1997), Hiebert and Wearne (1997), and Boaler (2002). 
This book is contributing to a related literature on the important role of tasks in 
teacher education.

One of the goals of teacher education is to help prospective and practicing teach-
ers develop from novice possibly uncritical perspectives on teaching and learning 
to more knowledgeable, adaptable, judicious, insightful, resourceful, reflective 
and competent professionals ready to address the challenges of teaching secondary 
mathematics. These ambitious goals present great demands on teacher educators, 
who are responsible for facilitating learning opportunities for teachers to develop 
and become capable of working towards these goals. We take the stand that simi-

O. Zaslavsky, P. Sullivan (eds.), Constructing Knowledge for Teaching Secondary 
Mathematics, Mathematics Teacher Education 6,
DOI 10.1007/978-0-387-09812-8_1, © Springer Science+Business Media, LLC 2011

Setting�the�Stage:�A�Conceptual�Framework�
for�Examining�and�Developing�Tasks�
for�Mathematics�Teacher�Education

Orit�Zaslavsky�and�Peter�Sullivan

O. Zaslavsky ()
Technion—Israel Institute of Technology,  
Haifa 32000, Israel 

New York University,  
NY 10003, USA
e-mail: oritrath@gmail.com



2

larly to students, teacher learning occurs largely through engagement in effective 
tasks, along with reflection on the experience of working on the tasks.

By tasks, we refer to problems or activities that are posed to prospective and 
practicing teachers by teacher educators. Such teachers are expected to engage in 
these tasks actively, collaboratively, and intellectually with an open mind and an 
orientation to future practice. The tasks might be similar to those used by classroom 
teachers (e.g., the analysis of a graphing problem) or idiosyncratic to teacher educa-
tion (e.g., critique of videotaped practice).

There is an evolving body of literature indicating the subtleties involved in de-
veloping worthwhile tasks for secondary mathematics teacher education. The pro-
cess of designing, evaluating, and refining tasks for mathematics teacher education 
is iterative and mostly occurs over a long period of time (Zaslavsky 2007, 2008). In 
this book, we offer a collection of chapters that constitute a rich resource for math-
ematics teacher educators. These chapters provide exemplary tasks for mathematics 
teachers, which have been tested and proven effective in facilitating teacher learn-
ing. They also provide analyses of the affordances and limitations of these tasks, 
descriptions of ways to implement them, evidence of teacher learning from engage-
ment in these tasks, insights into design issues, and links to theoretical and practical 
perspectives. The types of tasks vary and address several aspects of teacher knowl-
edge and skills that may be constructed through them.

In planning this edited volume, we developed a conceptual framework encom-
passing eight unifying themes of tasks used in secondary mathematics teacher 
education. These themes reflect goals for mathematics teacher education, and are 
closely related to various aspects of knowledge required for teaching secondary 
mathematics. The following are eight themes we had in mind:

1. Developing adaptability
2. Fostering awareness of similarities and differences
3. Coping with conflicts and dilemmas
4. Designing and solving problems for use in mathematics classroom
5. Learning from the study of practice
6. Selecting and using (appropriate) tools and resources for teaching
7. Identifying and overcoming barriers to students’ learning
8. Sharing and revealing self, peer, and student dispositions

Our intention was to have a section with 2–3 chapters for each theme. Thus, for 
each theme, we invited at least two authors to contribute a chapter to that particular 
theme. However, when reading the final chapters we became aware that several 
authors focused on more than one of the above themes, thus, the original structure 
needed rethinking and adjustment. We believe this reflects the complexity of the 
field and its interconnectedness. We still find our conceptual framework useful in 
reflecting on the various chapters, and turn to an elaborative description of the eight 
themes.

Theme 1: Developing Adaptability. A unifying theme in many aspects of teacher 
education is the development in teachers of an orientation to being adaptable, to 
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considering variations to questions, tasks, and intended curriculum, to searching 
for alternatives to unsuccessful approaches, and to adapting existing resources to 
intended goals. This kind of orientation can be considered as adaptability and con-
curs with Cooney’s (1994) ideas of adaptation, as well as the notion of contingency 
discussed by Rowland et al. (2005). Especially in a teaching and learning environ-
ment that encourages active learning by students, there is a need for teachers to be 
prepared to make active responses that cannot be planned in advance. Thus, adapt-
ability is inter-related to flexibility (Leikin and Dinur 2007). Indeed, it is not only a 
desirable orientation, but also a desirable personal quality. Teacher adaptability can 
be useful in diverse situations. Often teacher adaptability and flexibility are closely 
connected to knowing to act in the moment (Mason and Spence 1999).

From a teacher educator perspective and the role of designer of tasks, in order 
to enhance teacher adaptability one needs to be able to design tasks that address 
this issue from several perspectives; particularly from pedagogical, curricular, and 
mathematical perspectives.

Tasks enhancing pedagogical adaptability could include: varying types of ques-
tions, and the specific questions themselves, to catering for students experiencing 
difficulty and for students for whom the work lacks challenge, both before the class, 
and during the class “on your feet”; and when finding the students to be not yet 
ready for a lesson as planned, adapting the plan and delivering an alternate lesson.

Tasks that promote teacher curriculum adaptability could include: adapting ex-
isting context based resources to a current context relevant to their class; and iden-
tifying connections across the curriculum, and designing ways to connect different 
topics in various ways.

Tasks that promote teacher mathematical variability could include: taking a suc-
cessful game or other activity, using a particular content, and extending it to differ-
ent content and level of demand; and examining dimensions and domains of pos-
sible variation (of tasks, of examples), as described in Watson and Mason (2006).

In order to help teachers become adaptable, teacher educators must themselves 
be adaptable and exhibit this quality. Thus, the role of the teacher educator is to 
model flexibility and the ability to vary and consider alternatives and at the same 
time provide experiences for teachers to engage in such activities.

Theme 2: Fostering Awareness to Similarities and Differences. Noticing similari-
ties and differences, in the broad sense, is at the heart of learning and teaching 
(Mason 1998). It is well known that the gradual process of associating concepts 
with categories is a critical aspect of learning. Classification of different objects 
according to various criteria may enhance awareness of ways in which they are 
related to each other (Silver 1979). This process requires the identification of 
similarities and differences between objects along several dimensions; this type of 
activity is considered fundamental to mathematical thinking. The awareness asso-
ciated with comparing and contrasting is also needed in order to identify patterns 
and make connections between and across topics, contexts, types of problems and 
approaches. This theme can also be seen from pedagogical, curricular and math-
ematical perspectives.

Setting the Stage
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Tasks aimed at developing teachers’ awareness to similarities and differences 
from a pedagogical perspective could focus on students’ thinking, for example by 
sorting student errors according to their possible sources/ways of thinking. Such 
tasks can also raise teachers’ appreciation of, and ability to analyse, different learn-
ing opportunities for their students, such as by comparing and contrasting various 
classroom situations.

Tasks promoting curricular awareness could include: learning to distinguish be-
tween structure and surface features by analysing and sorting various textbook tasks 
(e.g., according to their levels of cognitive demand and solution processes); and 
analysing and comparing textbooks’ presentations of a topic.

Tasks drawing attention to sameness from a mathematical perspective could in-
clude: revealing and promoting teachers’ mathematical understanding by compar-
ing mathematical objects (e.g., graphs) in various ways; designing sorting tasks 
involving mathematical objects; and generating examples according to common 
features and examining their differences.

Designing tasks involving sorting is rather demanding and often requires careful 
consideration of the choice of the specific examples/objects with respect to numer-
ous criteria by which they may be grouped. Such tasks are open-ended in nature 
and may provide a rich context for eliciting many viewpoints. They are “low risk”, 
as different learners may approach them in different ways, some attending to more 
immediate features, and others to deep structure ones. They have the potential of 
drawing attention and raising awareness, generating much discussion on a wide 
range of issues, including common features of various families of objects, different 
representations of mathematical objects, and connections between them (Zaslavsky 
and Leikin 2004). The special nature of this family of tasks makes them accessible 
and applicable to various communities of practice (students, teachers, and teacher 
educators). They may be used to identify learners’ mathematical thinking as well as 
educators’ pedagogical knowledge.

Clearly, in order to help teachers develop a tendency to notice and an ability to 
identify similarities and differences as a state of mind, and particularly in classroom 
situations, the teacher educator must exhibit such awareness, not only in the plan-
ning stage, but also in-the-moment decisions and interactions with teachers.

Theme 3: Coping with Conflicts and Dilemmas. Teachers constantly face dilemmas 
and need to make decisions and choices under conflicting constraints, and deal with 
uncertainty and complexity (Sullivan and Mousley 2001; Sullivan 2006). Thus, it is 
imperative that teachers are prepared for dealing with this complex terrain, both as 
teachers, as designers and orchestrators of such situations for their students.

The grounds for creating learning situations that involve uncertainty and doubt 
are rooted in Dewey’s (1933) notion of reflective thinking. According to Fischbein 
(1987) the need for certitude is a strong driving force for learning. Engaging teach-
ers in tasks evoking conflict has two main goals: first, the process of resolving the 
conflict may lead to insights and to refining teachers’ understandings; second, when 
encouraged to reflect on their personal experience, teachers are likely to gain ap-
preciation of the use of certain tasks for their students, as well as awareness of the 
problematic aspects that such tasks present.

O. Zaslavsky and P. Sullivan
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Perplexity, confusion and doubt are often associated with and evoked by cog-
nitive conflict. Most research on cognitive conflict has been inspired directly or 
indirectly by Piaget’s (1985) notion of equilibration. Generally, cognitive conflict 
for teachers may be evoked in a number of ways (Zaslavsky 2005). The main use 
of tasks evoking cognitive conflict is to overcome misconceptions and/or challenge 
intuitions and to confront teachers with inconsistencies they may hold (e.g., Tirosh 
and Graeber 1990). The basic idea in this approach is to probe for anticipated mis-
conceptions held by the learner by presenting tasks that provide evidence that con-
tradicts these misconceptions. Thus, the tasks are designed to contradict existing be-
liefs. In tasks that involve cognitive conflict, social interactions play a particularly 
significant role both in evoking conflict and in leading to its resolution. This context 
lends itself to authentic argumentation and debate, requiring personal articulation 
and explanation.

This theme can be addressed from several perspectives, including pedagogical, 
curricular and mathematical. Tasks that deal with classroom dilemmas could in-
clude: dealing with and resolving teachers’ dilemmas in different ways; anticipating 
conflicts in the classroom, analysing their origins, and considering their connec-
tion to relevant theories and literature; designing tasks that potentially involve un-
certainty and conflict for students, implementing them, and reflecting on students’ 
ways of dealing with such tasks; and attending to affective aspects of students who 
are faced with cognitive conflict.

Tasks aimed at identifying and dealing with curricular discrepancies or incoher-
ency could include: examining curricular documents and textbooks for inconsisten-
cies, ambiguity, and impossibilities; and taking apparently conflicting curriculum 
statements and seeking a reconciliation that allows the achievement of diverse goals.

Tasks involving coping with cognitive conflict in mathematics could include: 
evoking teachers’ cognitive conflict that are followed by accounts of mathematical 
understandings they gain in the course of its resolution.

One of the most significant and challenging roles of a mathematics teacher edu-
cator is to prepare teachers for creating an ongoing, genuine, mathematical discourse 
in their classroom (Lampert 1990; Cobb et al. 1993). To do so, a teacher educator 
must demonstrate and reflect on ways to generate some degree of uncertainty or 
even confusion, a condition that Brown (1993) considers critical for learning math-
ematics, and Leinhardt (2001) considers a fruitful prompt for explanation of both 
the teacher and the student. Such experiences for teachers constitute opportunities 
for them to observe how a teacher educator may deal with dilemmas and conflicts 
that arise in real situations.

Theme 4: Designing and Solving Problems for Use in Mathematics Classrooms. 
Learning to attend to and enhance students’ problem solving skills and strategies is a 
significant goal for prospective and practicing mathematics teachers. Teachers need 
to be problem solvers in the broad sense of this term, and enhance their students’ 
ability to solve mathematical problems. Teacher education should aim at enhancing 
teachers’ learning to incorporate in the classroom exploration of problems that have 
multiple solutions or solution-strategies (Leikin and Levav-Waynberg 2009), learn-
ing to analyze and evaluate students’ problem solving strategies, learning to elevate 

Setting the Stage



6

the degree of openness of textbook problems, and learning to use mathematical 
games as a problem solving context.

Tasks that involve a focus on pedagogical actions to support problem solving 
could include: those that have multiple solutions and/or multiple pathways to solu-
tion; those that can be accessed at different levels requiring some adaptation by 
teachers to address the needs of particular learners (Sullivan et al. 2006); those 
which require the use of materials and tools; and those that are amenable to solution 
only after persistence by the student (Dweck 2000).

Tasks that can be used to foster engagement and prompt communication to sup-
port problem solving could include: problems that have an explicit social dimension 
which require some realistic interpretation as part of their solution (Peled 2008); 
those that involve creating a mathematical model of an authentic situation; and 
those in which the group members must take particular roles in order to arrive at a 
group solution.

Tasks that include a mathematical focus to support problem solving could in-
clude: those that involve connecting together different representations, those that 
use known mathematical principles to derive a new principle or concept; those that 
involve comparing and contrasting similar mathematical ideas; and those that in-
volve proving or justifying a solution or identifying inaccuracies in the reasoning of 
others (Stein and Lane 1996).

It is important that teachers engage in mathematical problem solving and prob-
lem formulation. Tasks that can do this include: promoting teachers’ problem solv-
ing skills by solving problems in multiple approaches and/or strategies; engaging 
teachers in exploration of open-ended problems; and structuring teachers’ meta-
cognitive approaches to problem solving and problem posing. In addition to being 
competent problem solvers and familiar with the relevant content and pedagogy,  
teacher educators are expected to be confident enough to engage teachers in open-
ended problem situations to which the possible solutions and new questions that 
may arise are not necessarily known to them in advance. A teacher educator must be 
open minded and willing to accept and explore in real time unexpected approaches 
and ideas that teachers may suggest. This is similar to the demands on teachers to 
exhibit the same approaches with their students.

Theme 5: Learning from the Study of Practice. Teacher education is sometimes 
characterized by extremes. On the one hand, in response to criticisms of the remote-
ness of the content of teacher education programs and the positive reports that grad-
uate teachers give to their practicum experience, there are calls for more teacher 
education activities to take place in schools. On the other hand, an orientation to 
learning from practice requires much more than time spent in unreflective field 
based experiences, and school based programs in the absence of research-informed 
teacher educator perspectives. Many teacher education programs are seeking ways 
to enhance the practical relevance of their curriculum, while allowing prospective 
teachers opportunities to review key theoretical perspectives, and ultimately to 
develop a career long orientation to learning from the study of their own teaching 
or the teaching of others.

O. Zaslavsky and P. Sullivan



7

It seems that there are opportunities for prospective teacher learning in the in-
tensive and intelligent study of practice; the critique of practice both within its own 
context and within the light of other factors; the encouragement of critical reflec-
tion; the development of orientations toward moving beyond merely describing 
practice to analysing actions, responses, and pedagogical practices. Experience in 
schools is clearly necessary for the practical orientation to the study of teaching but 
it is not sufficient.

Worthwhile teacher education tasks are those that are motivated by desire to 
foster the orientation in prospective teachers to the study of practice. A unifying 
characteristic of such tasks is that they provide simulated access to practice in an en-
vironment that fosters critical analysis of practice. Examples of such tasks include: 
the realistic simulations offered by videotaped study of exemplary lessons (Clarke 
and Hollingsworth 2000); interactive study of recorded exemplars (e.g., Merseth 
and Lacey 1993); case methods of teaching dilemmas that problematise aspects of 
teaching (e.g., Stein et al. 2000); and Lesson Study that engages teachers in think-
ing about their long-term goals for students, developing a shared teaching-learning 
plan, encountering tasks that are intended for the students, and finally observing a 
lesson and jointly discussing and reflecting on it (e.g., Lewis et al. 2004; Fernandez 
and Yoshida 2004). Each of these requires appropriate prompts for critical analysis 
to be effective. In each case, the teacher learning is through the opportunity to view 
and review exemplars, to discuss with peers interpretations of the exemplars, to en-
gage in critical dialog on the experience, and to hear informed analysis of both the 
practice and the experience of critique.

Tasks facilitating learning from the study of pedagogical, curriculum and math-
ematical practice (actual and hypothetical) could include: teachers learning from 
the study of videotaped lessons (including interactive DVD or on-line exemplars) 
emphasizing pedagogical, curricula, and mathematical challenges; teachers learn-
ing from the study of real or simulated (e.g. microteaching) exemplars, including 
“lesson study” approaches, emphasizing pedagogical, curricula, and mathematical 
challenges; and teachers learning from the study of specifically prepared cases of 
pedagogical, curricula, and mathematical challenges.

Numerous teacher educators have written on these and other approaches to 
teacher education that emphasise the learning opportunities in the study of practice 
(e.g., Sullivan 2002), and many have reported successful implementation of the 
delivery of teacher education in school settings that facilitates and fosters direct 
linking of theory and practice. Clearly, teacher educators who design and imple-
ment these experiences are presented with great challenges. They need to be able 
to capture problematic and insightful classroom situations, and translate them into 
challenging cases for teachers to ponder. Fostering critical discussions regarding 
such cases requires high level metacognitive and mentoring skills.

Theme 6: Selecting and Using (Appropriate) Tools and Resources for Teaching. 
Selecting appropriate tools for mathematics teaching and using them effectively is a 
major challenge for teachers. Tools can be text books, additional readings, manipu-
latives, construction and measuring devices, transparencies, graphical calculators, 
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and other technological environments. Making educated choices about what tools to 
use for certain purposes and how to use them requires familiarity with a wide range 
of tools from both a learner’s and a teacher’s perspective. It also requires awareness 
of the potential and limitations of each tool, for various purposes and contexts, and 
confidence in using it for teaching. Over the past decade there has been an increas-
ing demand on teachers to become competent with the use of advanced technologi-
cal tools for teaching mathematics (e.g., Yerushalmy and Chazan 2002)

Tools can be seen in their broadest sense, to include many different kinds of 
resources, including human and cultural resources, in particular language and time, 
as Adler (2000) argues that increasing attention should be given to resources in 
mathematics teacher education from two aspects:

First, mathematics teacher education programmes need to work with teachers to extend 
common-sense notions of resources beyond material objects and include human and cul-
tural resources such as language and time as pivotal in school mathematical practice. Sec-
ond, attention in professional development activities needs to shift from broadening a view 
of what such resources are to how resources function as an extension of the mathematics 
teacher in the teaching-learning process. (p. 207).

Tasks that help teachers become component and comfortable in using tools of the 
trade as learners could include: experiencing dynamic geometry environments; 
exploring graphical technologies; using physical technological models (and other 
micro-worlds); and encountering hands-on activities (e.g., with transparent paper, 
dice, visual aids).

Tasks addressing learning about the strengths and limitations of various tools for 
teaching could include: developing expertise in selecting and adjusting appropriate 
tools for the classroom; designing and incorporating suitable tasks for students in 
accordance to the implemented tools; experiencing a problem solving process with 
different tools; and entering time constraints into the picture by taking time into 
consideration in choosing tools.

From a mathematics teacher educator perspective, designing tasks for enhancing 
teachers’ competence in selecting and effectively using tools for teaching requires 
a sound knowledge of a wide range of available tools and their potential for ac-
complishing various goals. It also requires great sensitivity to teachers’ reluctance 
to incorporate unfamiliar innovative tools in their teaching.

Theme 7: Identifying and Overcoming Barriers to Students’ Learning. Education 
and schooling strive to redress the advantages of privilege, and create opportunities 
for all students, especially those who would not otherwise have those opportuni-
ties. There is a need though to overcome some real, and in some cases substantial, 
barriers that would otherwise inhibit the realization of the opportunities. One of the 
challenges for teacher education is to educate prospective and practicing teachers 
about the existence and sources of barriers, and of strategies that can be effective in 
assisting students to overcome those barriers (Sullivan et al. 2003).

The literature is replete with identification and analysis of factors that create 
barriers to learning or engagement or success for some students. The barriers might 
be due to: epistemological aspects of mathematics (e.g., informal vs. formal ap-
proaches; modes of representation; missed prior learning opportunities; learning 

O. Zaslavsky and P. Sullivan



9

styles); cultural factors including community expectations, gender, school/home as-
pirational mismatches; language barriers and usage; physical and other disabilities; 
socio-economic factors including geographical considerations (rural vs. city); and 
family income and parental occupation.

It is important to understand teacher actions that facilitate successful lessons, 
defined as those that engage all students, especially those who may sometimes feel 
alienated from mathematics and schooling, in productive and successful mathemati-
cal thinking and learning. An underlying assumption is that lessons can seek to 
build a sense in students that their experience has elements in common with the rest 
of the class and that this can be done through attention to particular aspects of math-
ematical and socio-mathematical goals. This can be achieved by using open-ended 
tasks, preparing prompts to support students experiencing difficulty, and posing 
extension tasks to students who finish the set tasks quickly.

From a pedagogical perspective, tasks aiming at identifying and overcoming 
pedagogical barriers and developing sensitivity to student thinking could focus 
on drawing teacher attention to the impact of factors that may operate differ-
entially on students such as geography, gender, socioeconomic status, cultural 
background, language and learning style, and on ways of addressing some barri-
ers including through attention to aspect of pedagogy and building communities 
of learners.

From a mathematical perspective, tasks aiming at identifying and overcoming 
mathematical barriers and becoming sensitive to student inventive ideas could 
focus on developing teacher awareness of barriers to learning resulting from par-
ticular task types, societal expectations, conventions, forms of representation, 
and inappropriate formality, and on ways of overcoming barriers through effec-
tive scaffolding, appropriate sequencing, and considering prior learning oppor-
tunities.

A teacher educator, who intends to address this theme and offer teachers oppor-
tunities to become aware of, and able to identify, barriers to students’ learning, must 
be aware of such barriers not just for students learning but also for teacher learning. 
One way to enhance teachers’ appreciation of barriers to student learning is to expe-
rience overcoming of barriers to their own learning. To do this, a teacher educator 
must understand the causes of such barriers and their nature (e.g., mathematical, 
representational, communicational), and be knowledgeable with respect to possible 
productive interventions. He or she needs to be able to address any prejudices or 
knowledge mismatches within the prospective or practicing teachers, and design 
experiences that can assist teachers in intervening effectively to overcome barriers 
for their own learning as well as for their students.

Theme 8: Sharing and Revealing Self, Peer, and Student Dispositions. In the multi-
dimensional endeavour of teaching and learning mathematics, and learning to teach 
mathematics, a key dimension is the disposition of the (prospective and practicing) 
teacher as a learner, the teacher as a teacher, and the pupil as a learner.

The dimension of disposition is itself multifaceted. It can include the following 
overlapping categories:
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• beliefs about: the nature of mathematics; the utility of mathematics; the way 
mathematics is learned; and one’s own ability to learn mathematics;

• self-regulatory behaviours such as persistence, self-efficacy, motivation, and re-
silience; and

• attitudes such as: liking for mathematics; enjoyment of mathematics; and math-
ematical anxiety.

Indeed almost all aspects of teacher education have an attitudinal or dispositional 
dimension that should be considered.

Tasks addressing dispositions toward learning, and learning to teach mathemat-
ics, could include consideration of specific tasks used in teacher education that ad-
dress aspects of the disposition of prospective teachers, and allow consideration of 
the ways that their disposition influences their own learning, and learning to teach, 
and how the disposition of prospective and practicing teachers might influence their 
own teaching. Teachers should also engage in relating to their own dispositions and 
becoming familiar with ways to prompt and reveal peers’ and students’ dispositions.

Tasks dealing with motivation and self regulation could include examination 
and consideration of self-regulatory behaviours and the effects of dispositions such 
as self fulfilling prophecy (e.g., Brophy 1983) and openness to change. This can 
be done through reflection on individual and group actions and interactions and 
designing differential learning experiences that reduce mathematical anxiety by 
promoting learner’s success.

Tasks aiming at developing positive dispositions toward mathematics could in-
clude building on surprises (e.g., Movshovitz-Hadar 1988), showing the beauty and 
usefulness in mathematics, and connecting mathematics and the learning of math-
ematics to real world experiences.

It follows that a teacher educator needs to know about the multifaceted dimen-
sion of beliefs and dispositions and their effects on various aspects of learning and 
teaching mathematics. Moreover, it is important for a mathematics teacher educator 
to exhibit positive dispositions and enthusiasm towards mathematics and learning 
mathematics.

As discussed earlier, we modified the structure of the book. This was done by 
grouping together the chapters that were intended for Themes 1, 2, 3, and 4. They all 
address a broader theme, which we term Designing and Solving Pedagogical and 
Mathematical Problems (Sect. 1). We also grouped together chapters intended for 
Themes 7 and 8 under a broader theme which we term Dealing with Students’ Bar-
riers and Dispositions (Sect. 4). We discuss the chapters according to the four broad 
themes. The way authors addressed the various themes provided an opportunity for 
us to crystallize our thinking and make some helpful distinctions.

Part 1 includes seven chapters that focus on designing and solving pedagogical 
and mathematical problems.

Challenging teachers’ existing beliefs and conceptions of what mathematics or 
doing mathematics is and how this may look in the classroom is a major undertak-
ing of teacher educators. The chapters in this section all address this challenge. 
Most of them do it through problems that are closely related to school mathematics. 
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One chapter goes beyond school mathematics. The mathematical problems are used 
in a broader context that encourage pedagogical considerations, reflections and dis-
cussions. Teachers move from experiencing mathematics as learners to reflecting 
on their experiences as teachers. Many of the tasks in this section mirror the kinds 
of activities, approaches and prompts teachers are expected to use with their stu-
dents. Five of the chapters deal with prospective teachers. It appears that the theme 
of this section is naturally included in programs for prospective teachers (opposed, 
for example, to learning from the study of practice, which requires more experi-
ence on the part of the teachers). Interestingly, in spite of the diversity of goals 
and approaches, all chapters build to some extent on creating uncertainty, surprise, 
conflict, or tension. Three chapters explicitly advocate classification/sorting tasks 
as means for teacher learning to teach mathematics.

The first chapter, by Daniel Chazan, Patricio Herbst, and Hagit Sela, titled “In-
structional alternatives via a virtual setting: Rich media supports for teacher de-
velopment” describes the use of animations of classroom interactions in algebra 
to support conversations between prospective teachers and their mentors about the 
practice of teaching mathematics. This chapter focuses on the practice regarding 
students’ multiple answers (correct and incorrect) to algebra word problems. The 
discussion analyzed in this chapter focuses on two alternative ways in which teach-
ers can deal with a diversity of student answers to algebra word problems. One 
approach, which the authors consider more standard, encourages teachers to attend 
to the right answer and the correct solution method; the other, which the authors 
consider non-standard, encourages them to facilitate students’ discussion about the 
reasonableness of each of the different answers in the context of the specific word 
problem. Analysis of actual conversations indicates that the comparison between 
the two approaches, the discussion of the merits and limitation of each, and the 
connection to the participants’ own experiences is helpful in preparing prospective 
teachers to teach. In addition to the specific issue in the context of word problems in 
algebra, the act of considering alternative approaches to teaching (a particular topic) 
is in itself a desirable habit for teachers to adopt.

The second chapter, by John Mason, titled “Classifying and characterising: 
Provoking awareness of the use of a natural power in mathematics and in math-
ematical pedagogy” provides an overarching examination and illustration of what 
classifying and characterising entail in mathematical activities. These cognitive 
activities are natural powers, which children exhibit before entering formal educa-
tion. Classifying and characterising constitute a significant process and key ele-
ment of mathematics, as well as mathematical learning, thinking, and pedagogy. 
In addition to providing a rich and diverse collection of mathematical classifica-
tion and characterization tasks, Mason offers special lens through which to look at 
mathematics. Accordingly, most theorems can be seen as classifying mathematical 
objects into those that satisfy certain properties versus those that do not. Moreover, 
for a particular solution strategy or method, there is both merit and challenge in 
classifying all the problems which lend themselves to the same method. Mason 
maintains that this fundamental process in mathematics is a key aspect of learn-
ing mathematics in a way that enhances interconnectedness and the appreciation 
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of various techniques as well as the concepts on which they draw. Clearly, teach-
ers need to become aware of and draw attention to students’ use of these powers, 
throughout their schooling.

In the third chapter, by Malcolm Swan, titled “Designing tasks that challenge 
values, beliefs and practices: A model for the professional development of prac-
ticing teachers”, the author describes a four-stage model for the professional de-
velopment of practicing secondary and adult education mathematics teachers. This 
chapter provides a rich collection of specific tasks and prompts organized according 
to the four stages of the model: (1) recognizing existing values, beliefs and prac-
tices; (2) Analyzing discussion-based practices; (3) Suspending disbelief and adopt-
ing new practices; (4) Reflecting on experience. The tasks were used with teachers 
to evoke tension, conflict, and discussion that challenge their existing beliefs and 
practices by exposing their ways of thinking, observing contrasting practices, and 
reflecting on actual classroom experiences (e.g., through videotaped lessons). Swan 
presents several types of tasks by articulating their purpose and illustrating each 
type with a sample task. Some tasks are typical of teacher learning, however, the 
mathematical tasks can serve to promote students’ learning as well. One type is a 
classification task, in the spirit that Mason discusses. Swan’s work, similar to Cha-
zan et al., provides opportunities for teachers to consider alternative approaches to 
teaching mathematics.

Irit Peled and Anat Suzan, in the fourth chapter titled “Pedagogical, mathemati-
cal, and epistemological goals in designing cognitive conflict tasks for teacher 
education”, offer a fresh and in-depth look at the design and implementation of 
tasks that elicit cognitive conflict. Similar to the previous chapter, this work focuses 
on tasks that have the potential of changing (prospective) mathematics teachers’ 
conceptions and beliefs by creating tension and conflict. The authors analyze the 
potential contribution of cognitive conflict tasks in promoting teacher learning ac-
cording to three dimensions of knowledge for teaching mathematics: pedagogical; 
mathematical; and epistemological. The authors provide a detailed account of a 
sample of three tasks, which includes the motivation and underlining design prin-
ciples that guided their construction, as well as some description of task implemen-
tations. Analysis of and comparison between the three tasks indicate that in spite of 
the common features of such tasks, they differ in ways that lead to different kinds of 
changes in teachers’ conceptions and beliefs.

The fifth chapter, by Anne Watson and Liz Bills, titled “Working mathematically 
on teaching mathematics: Preparing graduates to teach secondary mathematics” il-
lustrates an approach to using mathematical tasks with prospective teachers aimed 
at promoting complex thought about what it means to do and learn mathematics. 
The authors challenge prospective teachers’ existing conceptions and beliefs by 
challenging their spontaneous responses to mathematical tasks that relate directly 
to school curriculum. Often a specific problem is followed by a related though dra-
matically more difficult problem, that requires re-thinking, debating, comparing, 
and/or resolving uncertainty. The mathematical tasks are designed in order to sup-
port the development of teachers’ habits of probing mathematical meaning and con-
nectedness as the starting point for thinking about teaching.
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The sixth chapter, by Jarmila Novotná and Bernard Sarrazy, titled “Didactical 
variability in teacher training”, sets forth as a goal for teacher education to enhance 
teachers’ didactical variability—a construct they present and discuss. The authors 
build on their earlier work about the construct of didactical variability. Accordingly, 
their assumption is that students benefit more from teachers with strong didactical 
variability. More specifically, students of teachers with weak didactical variability 
in the domain of word problems are strong in standard problems, while those of 
teachers with advanced didactical variability can apply their mathematical knowl-
edge in new contexts, thus, are stronger in solving non-routine, non-algorithmic 
problems. The chapter illustrates through one mathematical activity how it lends 
itself to developing prospective teachers’ variability. Similar to previous chapters, 
the authors elicit teachers’ considerations of alternative solutions, and build to some 
extent on cognitive conflict.

The seventh chapter, by Nitsa Movshovitz-Hadar, titled “Bridging between 
mathematics and education courses: Strategy games as generators of problem solv-
ing and proving tasks” describes the rationale and structure of one course of a series 
of four independent problem solving courses for prospective teachers that inter-
twine mathematics and pedagogy. The main goal of these courses is to provide rich 
hands-on experiences that facilitate prospective teachers’ appreciation of the nature 
of mathematics as an engaging discipline, the core of which consists of problem 
posing, conjecturing and proving. This chapter focuses on a course on mathemati-
cal strategy games, and illustrates its merits through detailed account of two sample 
tasks, that includes design principles, classroom management considerations, math-
ematical analysis, and examples of students’ responses to the tasks. Through her 
analysis, the author conveys how in addition to the ultimate goal of the course, the 
participants develop an enthusiastic attitude towards communicating to high-school 
students their realizations about the culture of mathematics, its beauty, and the intel-
lectual fulfillment it offers.

Part 2 includes three chapters that focus on learning from the study of practice. 
Our experience, surely like that of our readers, is that many secondary teachers, 
both experienced and neophyte, have fixed views of what mathematics teaching is, 
and once they are comfortable in enacting that view, seek to replicate their approach 
in all of their teaching. Our fundamental assumption is that all teachers (whether 
at school or university level) can improve, but this requires an acceptance that im-
provement is possible and a commitment to processes for improvement. This sec-
tion of this book describes three processes for improvement, two with practicing 
teachers and one with prospective teachers. All three chapters are based on eliciting 
an inquiry stance on the part of the teachers with whom the researchers worked, and 
indeed for themselves as well. It seems that this orientation to inquiry is the essen-
tial ingredient for improvement.

The first chapter, by Barbara Jaworski, Simon Goodchild, Stig Eriksen and 
Espen Daland, titled “Mediating Mathematics Teaching Development and Pupils’ 
Mathematics Learning: The Life Cycle of a Task” describes a developmental col-
laborative project between university staff and school teachers. The project fo-
cused attention onto different aspects of inquiry: into doing mathematics; into 
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the design of tasks; and into the process of researching teacher learning. They 
describe a particular classroom task and its use. They use activity theory as a way 
of describing actions and analysing the interaction between elements of the proj-
ect: the actors; the tasks; and the activity. The task is clear and easy to pose, and 
is even deceptively simple, but the authors illustrate how the task might be used 
in classrooms across the whole school age range, including quite sophisticated 
adaptations. The inquiry stance is evident in the responses of the teachers to the 
experience.

The second chapter, by Catherine Lewis, Shelley Friedkin, Elizabeth Baker and 
Rebecca Perry titled “Learning from the Key Tasks of Lesson Study” illustrates 
how the well known Japanese Lesson Study process was adapted to a Western set-
ting. They described five cycles of inquiry, described as tasks, that range from the 
initial choice of the theme, through anticipating classroom responses, to developing 
a plan, to data collection and the review of the process. Using a rich investigative 
task as the basis of the description, they outline the way that the five stages of their 
lesson study approach are enacted, and the ways that their participants respond. The 
whole approach assumes an orientation to learning from inquiry, as is described in 
this chapter.

The third chapter, “Mathematical problem solving: Linking theory and practice” 
by Berinderjeet Kaur and Toh Tin Lam, describes their approach to introducing 
prospective secondary teachers to problem solving, and orienting those teachers to 
an inquiry stance to that problem solving. They draw on the pentagonal model that 
has been used to inform the teaching and emphasis on problem solving in Singapore 
since 1990. As an aside, this stability in focus, evident in many Asian systems, is 
the envy of western educators who are coping with systems which seem to change 
foci and models capriciously. Kaur and Toh first introduce their prospective teach-
ers to some literature on problem solving, then teachers analyse mathematically rich 
realistic tasks, and then engage in inquiry into problem solving processes by choos-
ing, solving and analysing tasks chosen from a list of tasks. The authors create the 
potential for these teachers to commence their careers understanding that inquiry 
into teaching and learning is possible.

Part 3 includes three chapters that focus on designing, selecting, and using tools 
for teaching mathematics. The chapters in this section share three central themes. 
First, all three build on socio-cultural theories and set forth to involve participants 
in active collaborate work. Interactions between teachers (as learners) as well as 
between teachers and teacher educators is considered critical for desirable learning 
outcomes about the potential role and use of physical or digital devices in teaching 
mathematics. The second theme relates to the challenges and demands the choice 
and use of tools for teaching puts on a teacher. Most teachers have little or no earlier 
relevant experience and are not as competent in the use of technology. Moreover, 
the kind of use that the chapters in this section introduce requires a shift in the teach-
er’s role from ‘telling’ to listening, observing, facilitating, and guiding. Finally, the 
third theme deals with learning to use such tools in an educated way requires teach-
ers to experience as learners the kinds of activities they would offer their students 
and reflect on their own learning experiences with teaching lens.
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The first chapter in this section, by Michal Yerushalmy and Galit Botzer, titled 
“Guiding mathematical inquiry in mobile settings”, introduces innovative explor-
atory work using mobile devices with prospective and practicing teachers. The goal 
is to enhance teachers’ mathematical knowledge, and at the same time prepare them 
to teach in ways that resonate with social constructivist views of and commitments 
to teaching; that is, guiding active inquiry; teaching skills; and covering the cur-
riculum. The chapter presents tasks for mobile inquiry, each followed by a teaching 
scenario and discussion of possible integration in teacher education sessions. These 
specially designed tasks are related to the goals of teaching the construction of 
mathematical models in algebra and calculus. The tasks illustrate guided explora-
tion of real-life phenomena, collaborative group discussions, and personal experi-
ence. The authors suggest that the learning encounters created by engaging in these 
tasks offer opportunities for identifying teachers’ needs and open new directions for 
research of mobile learning and teaching.

In the second chapter, by Merrilyn Goos, titled “Technology integration in sec-
ondary mathematics: Enhancing the professionalisation of prospective teachers” the 
author addresses the need for teachers to become more effective and confident us-
ers of technology to support student learning. Similar to the previous chapter, this 
chapter draws on socio-cultural theories; however, the emphasis here is on using the 
concept of community of practice for understanding how teachers develop profes-
sional knowledge through more experienced members of the community. The au-
thor describes and analyzes an assessment task that is part of an undergraduate tech-
nology seminar and has proven successful in preparing prospective teachers to use 
digital technologies in secondary school mathematics classrooms and to share this 
work with the broader professional community of mathematics teachers. Through 
the analysis of three examples of prospective teachers’ responses to the task, the 
author illustrates some difficulties as well as strengths. The author distinguishes 
between using technology as a servant (e.g., carrying out calculations) versus as a 
partner for building understanding, advocating for the latter. The chapter concludes 
with the author’s reflections on her role as teacher educator in promoting the partner 
approach to incorporating technology in teaching mathematics.

The third chapter, by Michela Maschietto and Maria G. Bartolini Bussi, titled 
“Mathematical machines: From history to mathematics classroom”, draws on the 
work done in a laboratory of mathematical machines that contains more than two 
hundred working reconstructions of ancient mathematical artifacts taken from the 
history of geometry. A laboratory in this context is, on one hand, an approach to 
teaching that consists of learning activities that involve the use of tools and, on the 
other hand, rely heavily on interactions between the participants who are expected 
to work collaboratively on the task. The authors present and discuss three ways of 
introducing a mathematical machine for the purpose of drawing an elliptical trajec-
tory: a discussion and interpretation of a historical text describing an ancient arti-
fact; a physical manipulative exploration based on the ancient artifact; a production 
of a digital simulation of the ancient artifact. The potential and challenge of such 
activities in developing teachers’ experience, confidence, and expertise in choosing 
and modifying suitable tools for the mathematics classroom are discussed.
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Part 4 focuses on issues associated with tasks that can assist teachers in address-
ing barriers students experience in their mathematics learning or their disposition to 
that learning. The chapters in this part have some unifying themes. One is that the 
approaches to teaching that are recommended, and the tasks that are associated with 
those approaches, emphasise the potential for teachers to learn about teaching from 
the reflective and thoughtful study of practice. Another is a theme that the diversity 
of readiness in mathematics classes creates challenges and that teachers need sup-
port in addressing those challenges. A third theme is that, through experiencing 
challenges, both practicing and prospective teachers can appreciate the character-
istics of challenge, and pedagogical features that make challenge productive rather 
than debilitating.

The first chapter in this part, by João Pedro da Ponte is titled “Using video epi-
sodes to reflect on the role of the teacher in mathematical discussions”. João ad-
dresses a challenge faced by teacher educators across the world through the peda-
gogical changes associated with models of teaching based on student activity, and in 
particular the review of that activity. The teachers with whom he works first analyse 
a task, then observe and critique classroom action on that task, with particular focus 
on actions that facilitate the review. This approach recognises the complexity of 
practice and emphasises benefits to be gained from thoughtful study of that practice.

The second chapter, titled “Sensitivity to student learning: A possible way to 
enhance teachers’ and students’ learning” by Ulla Runesson, Angelika Kullberg and 
Tuula Maunula describes an approach similar to Japanese Lesson Study which fo-
cuses on the learning of the students. They term it “learning study”. Runesson and 
her colleagues choose a topic that secondary students find difficult everywhere, 
operations with integers, and use this as the basis of the study of learning goals, an-
ticipating challenges students might experience, and focusing on actions of students 
and their responses while they are learning. Ultimately it is the teachers’ reflection 
on the students’ challenges that prompt the teacher learning.

The potential of dynamic geometry software in prompting prospective teacher 
learning is described in the chapter “Overcoming pedagogical barriers associated 
with exploratory tasks in a college geometry course” by Norma Presmeg. Norma 
outlines the use of such software, particularly with exploratory tasks and the chal-
lenges that this creates, and the potential that the approach offers for allowing key, 
albeit sophisticated, concepts associated with the teaching of geometry to be raised. 
The chapter focuses on the issue of proof, and particularly that the software can 
have the effect of seemingly reducing in the prospective teachers’ minds the need 
for, or importance of, learning about the nature of proof. Reflection of their experi-
ence provides powerful potential for learning about teaching by these prospective 
teachers.

In the fourth chapter in this part by Peter Sullivan, Robyn Zevenbergen and 
Judith Mousley, titled “Using a model For planning and teaching lessons as part 
of mathematics teacher education”, they argue that it is important to recognise the 
complexity of converting tasks to lessons, that creating lessons is engaging for 
teachers, but that hypothetical models of teaching proposed may be different from 
the common models experienced by both prospective and even practicing teachers. 
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They outline tasks that can be posed to both prospective and practicing teachers to 
focus their attention to these key issues. A key aspect of their tasks is that they focus 
attention on ways of addressing differences in readiness among the students.

Gaye Williams in the fifth chapter in this part, in a chapter titled “Building opti-
mism in prospective mathematics teachers: Psychological characteristics enabling 
flexible pedagogy”, also uses a geometrical environment to pose challenging tasks 
to her prospective teachers. The tasks not only expose them to the pedagogical chal-
lenges of teaching difficult concepts such as proof, but also to their own experience 
as they work through tasks that are challenging for them. She describes a frame-
work based on optimism and how the experience of success becomes sustaining and 
sustainable. The approach creates the potential for prospective teachers to extend 
this experience to develop an orientation to flexibility in their pedagogy.

These chapters, like all the others in this handbook, can serve as a model, re-
sources and reference for mathematics teacher educators wherever they work.
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�Introduction

Thought Experiments in Mathematics Teaching (ThEMaT), a U.S. National Science 
Foundation funded project, has created two-dimensional representations of cartoon 
characters engaged in classroom mathematics. The classroom stories are presented 
as “live” animations and printed comic strips. By using these stories in meetings of 
study groups of teachers, the project’s initial thesis has proven itself—rich media 
technologies can be used to represent classroom stories that stimulate practitioners 
to engage in revealing conversations about practice; practitioners respond to these 
stories by producing alternative stories, stories that have happened or could hap-
pen in their own classrooms (see Herbst and Nachlieli 2007; Herbst and Miyakawa 
2008; Miyakawa and Herbst 2007a, b; Weiss and Herbst 2007).

Based on findings in the literature and on the teaching experience of project 
staff, we created a model of teaching word problems, word problems of the sort 
typically encountered in a US Algebra 1 classroom. Our model of the instructional 
situation (Herbst 2006) of doing word problems describes the responsibilities of 
the students and teacher and the nature of the objects of trade between them. Our 
model serves as a baseline to interpret ‘usual’ instructional moves and ‘alternative’ 
instructional moves. We used the model’s hypotheses to invent the two alternatives 
for the discussion of one problem, which we then represented in the comic strips 
and animations.

Representing customary and non-standard teaching in a virtual space has par-
ticular affordances when it comes to supporting teachers’ reflection on instruction-
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al alternatives. Whereas sampling from a large corpus of video records may help 
teachers conceive of alternative moves a teacher might carry out in a given situa-
tion, any one video case narrates one story forcefully and provides few supports 
for alternative stories that might have happened instead or could have happened 
in another setting. After all, what happened, happened! And, in addition, video is 
limited to what has actually happened; it can be hard to find examples of teachers 
trying non-standard instructional moves. It can be especially hard to find a teacher 
who might want to teach in her classroom exactly what a teacher educator would 
like prospective teachers to consider, let alone to be able to videotape the exact oc-
casion on which they were able to carry out this instruction.

Animations and comic strips of cartoon characters are a more malleable medium. 
In this medium, the Animated Teacher can carry out an instructional alternative 
that teachers would be unlikely to try. This Animated Teacher can also do and say 
exactly what a teacher educator might wish, though if misused the result may read 
more like a fable or a fairy tale than a representation of practice. In addition, in this 
medium, animation designers can create alternative responses, for example, to a 
student comment. Each of these alternatives exists on the same existential plane and 
represent as faithfully what might have happened. Inasmuch as they only sketch sto-
ries, these virtual representations of teaching invite the formulation of alternatives, 
the second-guessing of moves, and the projection of the circumstances and settings 
of viewers (Herbst and Chazan 2006). Such representations of teaching can support 
teachers by providing opportunities to ponder how different instructional alterna-
tives might play out, as opposed merely to considering alternatives to a particular 
classroom video. When one of the alternatives includes a non-standard instructional 
move, there is an opportunity to consider the potential costs and benefits of such an 
instructional move.

In this chapter, we present an instructional story with variants and illustrate how 
groups of teachers have used two alternative enactments of a classroom task to re-
flect on what it means to help students learn to solve word problems.

�Using�Animations�in�Teacher�Preparation

One of the key challenges in teacher education is to help future teachers imagine 
possibilities for instructional interaction that they themselves have not seen or ex-
perienced. In the service of providing future teachers with images of alternative 
practice, many teacher educators use videos or visits to classrooms of teachers us-
ing such practices. In this chapter, we explore the potential of animations of class-
room practice as a new “technology” for teacher preparation. While animations are 
clearly “authored” texts, without the authenticity of videotaped events that have 
actually occurred, they have other affordances that may offset this liability. In par-
ticular, within the hypothetical space of an animated classroom, as suggested ear-
lier, prospective teachers can observe the “same” teacher carry out the same lesson 
in different ways with the “same” group of students. The ways in which particular 
teacher moves might play out differently can then be the focus of conversations 
about pedagogical actions.

D. Chazan et al.
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We explore the potential of this new technology for teacher preparation by exam-
ining an animation involving a word problem. The students in this animated class 
generate four potential answers to the word problem. The teacher is faced with the 
challenge of this diversity in student responses. In one alternative, the teacher asks 
the students to use their knowledge of the problem to determine which of these 
answers is a reasonable response to the question and which of these answers cannot 
possibly be correct. In the second alternative, the teacher asks one student to show 
how they obtained the correct answer and uses this response to convince students 
that the other answers are not correct.

This pairing of animations was used with a group of prospective teachers and 
their mentors (supervising teachers) in after-school meetings during the student 
teaching semester of the program. The prospective teachers were in their final se-
mester; they had already completed the coursework for their B.A. in mathematics 
and had taken two “methods” classes in the College of Education. During this se-
mester, they had teaching responsibilities in their mentors’ classrooms. In bringing 
together prospective teachers and mentors, the research project sought to test a 
model for understanding student and teacher responsibilities in the solving of word 
problems. However, for participants, this was not the focus of the sessions; with the 
participants, we sought to have conversations around specific incidents in teaching 
where prospective teachers might ask mentors (explicitly or tacitly) why teach-
ing works the way that it does, and where mentors might explain to prospective 
teachers why, in their view, it does work this way. We call the knowledge at play 
in these questions and responses practical rationality (Herbst and Chazan 2003), 
what Schön (1983) calls ‘knowledge-in-action’ and ‘reflection-in-action.’ This is 
the knowledge that enables practitioners to do what they do; such rationality is 
common to people who perform the same job. Thus, we hoped that the rationality of 
the practice of teaching of mathematics would come to the fore around examples of 
teaching that were not the teaching of any particular mentor or prospective teacher, 
in a hypothetical classroom onto which the experiences of prospective teachers and 
mentors might be projected. In one of the sections, we analyze the conversation the 
prospective teachers and mentors had around these two alternatives to illustrate the 
kinds of conversations about teaching that can be stimulated by the use of anima-
tions in the service of teacher education (an analysis of teacher and student respon-
sibilities when doing word problems can be found in Chazan, Sela, & Herbst, in 
review).

The “Stories” in the Animated Alternatives

The two animated alternatives we focus on involve a class doing an algebra word 
problem. The problem is a standard motion problem (Yerushalmy and Gilead 
1999). The interaction in the classroom is in many ways consistent with Gerof-
sky’s (2004) notion of word problems as a genre of problem and the interaction 
around them as a genre of classroom interaction (which we call “instructional 
situation”, Herbst 2006). The following development is common to the two al-
ternatives:
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Narrator: the class was working on the following problem:

A and B are 280 miles apart. A truck and a cab started traveling at the same 
time towards each other on the same road. The cab traveled from A towards B 
at an average speed of 80 miles per hour. The truck traveled from B towards 
A at an average speed of 60 miles per hour. How long after they set off did 
the two vehicles meet?

Both of the animated alternatives around this problem begin with students sharing 
the answers they had gotten for this problem. While the correct answer for the prob-
lem is 2 hours, the answers that were offered by the students are: 14, negative 14, 
2, 2 hours and 20 minutes. We present with a comic strip the beginning of the story, 
which is common to the two alternatives (Fig. 1).

The teacher at this point in the animation is faced with a question of how to 
proceed. How does a teacher deal with multiple student answers in the context of 
a word problem in an algebra class? Most concretely, on whom should the teacher 
call? Should the teacher call on a student who has the correct answer and focus on 
the correct answer and how it was obtained? Will this help the students who did not 
get that answer? Should students with the incorrect answers be called upon? Should 
their answers be addressed in the public space, if so, as answers, or as outcomes 
of solution methods whose flaws can be brought to the attention of the class and 
thus learned from? How does the teacher help students with incorrect answers un-
derstand both that their answers are incorrect and why their answers are incorrect?

From this point in the animated story, there are two diverging alternatives. In one 
alternative, the teacher makes what, in our model for the teaching of word prob-
lems, is a non-standard move. In this alternative, the teacher focuses on the answers 
as answers, not on the solution methods that led to them. Rather than have students 
show how they have solved the problem, the teacher focuses on the answers that 
students obtained and asks students to decide whether or not these answers are 
reasonable given the circumstances described in the problem. The students resist 
this move by repeatedly asking for the teacher to tell them which answer is correct 
and asking the teacher to show how to solve the problem. The other alternative, one 
that is more standard according to our model, focuses first on the correct answer 
and moves swiftly to understanding how students got their answers; the question 
of judging the reasonableness of the answers is set aside, the focus is on how the 
students solved the problems, whether the solution method is correct or not, and, if 
not, how it might be corrected.

As teachers of algebra, we tend to focus on the solution method by which a so-
lution was derived. In the context of doing word problems, teachers of an algebra 
class typically would like to see their students solve the problem by writing an equa-
tion and then solving the equation. After all, the function of the word problem in the 
curriculum is often two-fold, to provide a rationale for the importance of equation 
solving by illustrating its potential to answer questions embedded in a non-mathe-
matical context and to provide a setting for the practice of equation solving. Such a 
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focus on solution method however can obscure other important mathematical les-
sons, like learning to check the reasonableness of one’s solutions. Particularly when 
it comes to solving applied problems, it is important to verify that the solution one 
has come to mathematically indeed is a reasonable solution to the problem. There 
are algebraic solution techniques that sometimes can lead a person to a solution to 
an equation that is not the solution to the problem as articulated in a context. Thus, 

Fig.� 1�� Common introduction to the two alternatives. (The character set ThExpians M and the 
comic strip are © University of Maryland and University of Michigan)
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on occasion, it seems valuable to consider asking students to argue for the reason-
ableness of the solutions they have found. An important task for teacher education 
is to help prospective teachers consider how and when to engage students in dis-
cussion about the reasonableness of answers. In the context of these word problem 
animations, this general lesson is bound up with the question of whom to call when 
there are multiple answers, and why?

Below, we present the two alternatives in detail, reviewing key elements of the 
alternative stories and providing commentary. For each alternative we suggest spe-
cific sets of questions that might be addressed to both prospective and practicing 
teachers about these stories.

The�Alternative�“A�Correct�Solution�Method”�and�Questions��
for�Teacher�Discussion

In this alternative, the Animated Teacher focuses on the right answer by choosing 
to call on Orange, a student who had the right answer, to come up to the board and 
show what he did.

We discuss this alternative in three parts. In the first part of this alternative, 
Orange uses a common ‘method’, one that the teacher has presumably taught: a 
“Distance equals Rate times Time” chart1 to generate an equation to solve. Orange 
writes on a board a chart and an equation, and does not explain what he has written 
(Fig. 2):

The teacher encourages him “That looks good. Well done, Orange”. Questions 
that might be addressed to teachers for this part of the animation include:

• Why might a teacher want a class to examine Orange’s work? What are the pros 
and cons of choosing Orange’s work for examination?

• Is Orange’s work sufficient? Orange did not speak, do we as teachers, or do the 
other students in the class, need further explanation?

1 See Hall et al. (1989) though rather than writing d = r * t, they write v * t = s.

Fig.�2�� Orange’s solution

v t s

Cab 80 x 80x

Truck 60 x 60x

80x + (60x) = 280 
140x = 280

x = 2 
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• Is the chart an important component of the solution process? How is the equation 
generated from the chart? Do you think this is a useful tool for teaching students 
how to solve word problems, why or why not?

• Should the teacher affirm Orange’s work (at this stage) as correct, why or why 
not?

In the second part of this alternative, Purple takes the initiative and has the courage 
to ask what is wrong with his solution:2 “I got 2 hours and 20 minutes. I don’t know 
what I did wrong. Can I show what I did?” The teacher does not take up the re-
quest to spend classroom time on understanding Purple’s solution. The teacher says: 
“Why don’t you just be sure to copy the correct answer from the board and try to 
see what went wrong in yours. If you’re still having trouble, we can talk after class.”

Questions that might be addressed to teachers at this part of the animation in-
clude:

• Is Purple’s question a typical question, why or why not? Is it a good question for 
a student to ask? Would you like your students to ask this sort of question, why 
or why not?

• Do you like how the teacher responded to Purple or not? If not, how should the 
teacher react to Purple’s question? What effect might the teacher’s response have 
on Purple? On other students in class?

• What might have been some reasons for the teacher’s response?

In the third part of this alternative, after setting aside Purple’s question, the teacher 
decides to question the students who though the answer was 14: “I’m curious how 
so many of you got 14 as an answer. Can somebody show us how you got that 
answer?” Red comes to the board and uses Orange’s table to show the class that 
thinking about the speeds as directed quantities (the velocity of the truck is nega-
tive) results in another equation (one that does not adequately capture the situation) 
and a solution (Fig. 3).

Orange asks why Red wrote negative 60. Blue joins Red: “Yeah, that’s right. I 
did the same thing, but I had 80 as negative…so I got x = −14.” Red replies that it’s 
because they traveled in opposite directions. The teacher praises the students that 
thought about negative speed, but says it isn’t appropriate to use a negative number 
for speed here.

2 Note that this is often something that students might ask when they have an incorrect answer and 
when they do not understand why what they did was incorrect, see Office of Educational Research 
and Improvement (1998).

Fig.�3�� Red’s solution

80x + (–60x) = 280
20x = 280

x = 14
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Questions that might be addressed to teachers at this part of the animation include:

• Given that the correct answer had been given, why might a teacher continue the 
discussion of the problem?

• If a teacher wanted the class to discuss 14 as a solution, should this discussion 
occur before Orange presented a correct solution, why or why not?

• Why might a teacher be curious about the 14 and not about the 2 hour and 
20 minutes?

The�Alternative�“Reasonableness�of�Answers”�and�Questions��
for�Teacher�Discussion

In this alternative, instead of having students share how they solved the problem, 
the Animated Teacher focuses on the reasonableness of the answers obtained. We 
discuss this alternative in two parts.

In the first part of this alternative, the students are asked to work in groups in or-
der to figure out which one of the solutions: 14, negative 14, 2 or 2 and 20 minutes, 
is correct, and also what they need to do to show that the correct answer is indeed 
correct. A few minutes later, Green presents one group’s findings: “In our group, 
we couldn’t decide which one was correct; all of them seemed okay for different 
reasons. Can we solve it together on the board?” The Animated Teacher returns 
the question to the class: “Let’s go back and try to see how you decided which one 
of the solutions is correct.” One student wants to rule out the negative 14 answer 
by saying: “Time can’t be negative.” The teacher does not acknowledge this bid 
initially and directs the discussion to the meaning of 14 in this context by asking 
questions like: “What does the number 14 represent?”

Questions that might be addressed for this part of the animation are:

• Is this a good context/problem for group work?
• Should the teacher have said that one (and only one) of these answers is correct?
• How could Green’s group decide that each solution is reasonable?
• How might a teacher react now?

In the second part of this alternative, the teacher continues to ask students to decide 
whether or not a given answer is reasonable and fits with the given situation. The 
conversation becomes heated when there is a return to the answer negative 14. The 
teacher asks: “What does it mean when we get negative 14 as an answer? Can you 
explain with the story what negative 14 might mean?” Students are not able to an-
swer these questions to the teacher’s satisfaction and the teacher continues to probe. 
The students begin to lose patience, saying things like: “Just tell us what the answer 
is! Show us how to get it! Let’s just solve it together on the board.” The teacher 
settles the class down, saying it is important to understand how the numbers they get 
are related to the story, and that it allows them to decide if a solution is reasonable, 
“You have to use your commonsense to see if your answer is correct. Without doing 
that, you could write down an answer that couldn’t possibly be true”. The teacher 
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makes one more pass at negative 14 and then relents and indicates that negative 
14 is ruled out, but still wants to continue to discuss the other answers. When one 
of the students says he is sure that 2 is the right answer, the teacher asks if it is the 
only correct answer, and asks to explain by using the story, and not by writing an 
equation and solving it. Eventually, one student articulates that 14 couldn’t possibly 
work because the cab and truck would travel too far, then another student illustrates 
how with 2 hours the cab and truck would both be between A and B and the sum of 
the distances traveled would be 280. Even after this progress, some students seem 
perturbed by the fact that they haven’t solved the problem. Blue comments: “I don’t 
understand why we are spending so much time on this one problem without even 
solving it”.

Questions that might be addressed here include:

• Why might students start to lose their patience?
• What are students’ expectations about solving word problems? About time al-

location?
• How is the questioning of the students influencing their participation and their 

understanding?
• Is it a problem if classroom conversation gets heated?

Comparing�the�Two�Alternatives

After having seen both alternatives and having discussed them both, in discussions 
with teachers, one might consider the following questions:

• What is the difference between the approaches taken in the two alternatives?
• What are the advantages of each of them? Disadvantages? Constraints?
• Could a teacher enact both of these strategies in one classroom session? If so, 

would there need to be a particular order, or could either order work?

�Mentor/Prospective�Teacher�Discussion�of�the�Animations

While the previous section focused on how the animation might be used with teach-
ers, this section illustrates our use of this animation with a particular group that 
consisted both of prospective teachers and their mentors. The meeting took place 
during the student teaching semester when prospective teachers have mentors in 
whose class they are teaching. Convening a group of pairs, each pair consists of 
an experienced teacher and his or her student teacher, to discuss the animation and 
its two alternatives, had some additional affordances beyond those described ear-
lier. The study group described here consisted of thirteen teachers: six mentors and 
seven prospective teachers during senior’s year in a four-year undergraduate sec-
ondary teacher preparation program. They watched and discussed the alternative 
“reasonableness of answers” first, and then they dealt with the alternative “a cor-
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rect solution method”. The alternatives could have been used in a different order. 
Our choice was to start with a less-typical teacher response figuring that then there 
would be more vigorous response around the more typical teacher response when 
it was shown.

The study group was not a class. No grades were given; participants were given 
financial incentives for attending. The broad goal of the discussions was, in the con-
text of “soft” professional development, creating conversation between prospective 
teachers and mentors where the prospective teachers could ask mentors how teach-
ing is supposed to go and where mentors could share their wisdom of practice. The 
facilitator did not have an explicit agenda to convince participants of particular 
understandings of teaching.

In accordance with the project’s goals, we did not use the specific questions sug-
gested in the previous section to probe the participants’ thinking. Specifically, the 
conversation about this animation and its two alternatives targeted the following 
key questions:

• How do teachers talk with students about how to decide whether answers to 
word problems are correct or incorrect?

• To what degree should teachers teach students to use the context of the word 
problem as a check on solutions, or is the check tied up with methods for generat-
ing and solving an equation?

Two people facilitated the group discussions. One person took the lead in direct-
ing the conversation. The other asked for points of clarification around the specific 
teaching aspects in each animation.

Typically, after watching an animation, the teachers in the study group were in-
vited to share their thoughts with the group. The overall tenor of the discussions was 
serious and positive. The teachers treated the animations as instances of teaching 
practice and shared their thoughts with the group.

Discussion of the Alternative “Reasonableness of Answers”

The discussion of this alternative encouraged the prospective teachers to ask their 
mentors about the importance of checking the reasonableness of answers in the 
context of solving word problems. The mentors used this occasion to share their 
experience by responding to the comments that the prospective teachers raised.

The initial part of the discussion between prospective teachers and mentors was 
about the importance of determining if an answer is reasonable. It began when one 
of the mentors (Ralph3) was enthusiastic about the Animated Teacher’s spending 
time teaching students to judge the reasonableness of answers. Ralph seems to ap-
preciate what the Animated Teacher did, even though he considered the teaching 
unusual.

3 This name and other teacher names are pseudonyms assigned to protect confidentiality.
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Ralph: You know what I like about this video [the animation they just watched]? Because, 
I’m always telling the kids to “check the reasonableness of your answer”, but I liked it 
that the teacher actually spent time teaching4 checking the reasonableness of the answer. 
Because that −14, I said [to myself], “Oh please, that’s something my kids would do” 
[laughter]. And it would make perfect sense to them that that [time cannot be a negative 
number] was the correct answer.

After eight turns, a prospective teacher (Pat) makes what Sfard (2001) calls “pro-
active utterance”, an utterance that calls for a group reaction. She expresses her 
concern about teaching students to test the reasonableness of their answers: “I didn’t 
really like the way she [the Animated Teacher] rejected the equation”. The contrast 
between Pat’s remark, as a prospective teacher, and Ralph’s, the mentor, initial re-
mark, implicitly asks: “Why did you like this teaching? And, why do you think 
reasonableness is so important?” Pat continues her thought by wondering why the 
Animated Teacher discouraged the using of equations:

Pat: I think she [the Animated Teacher] should have encouraged the fact that they [the 
students] used an equation and said, “If we have time after our reasoning process, maybe 
we’ll go back to that [equation] at the end of class”. Or, like, because they [the students] are 
going to be asked to set up equations, so discouraging that [the use of equations], I don’t 
think is beneficial, necessarily, especially if that [writing equations] helps them organize 
their thoughts.

Other mentors reacted to Pat’s concern by arguing for the importance of teaching 
to check the reasonableness of answers. They did it by describing alternative ways, 
which are, to their mind, more effective in accomplishing this goal. For example, 
Floyd offered a different activity structure, that of preparing students for exams with 
multiple-choice questions. He suggested that it is better to deal with reasonableness 
within a context where students do not have solution methods, only answers. This 
way they can reason about the answers without thinking about the method they have 
used and without being biased by the solution that they have produced:

Floyd: I wasn’t against the reasonableness of the solution, but I probably wouldn’t have 
used it [reasonableness] in that particular problem. It [the problem I would use] would’ve 
been more like a multiple choice. I always tell my students there are 4 choices, 3 of them 
wrong. Now explain to me why… Some days I do, instead of saying, ‘What is the right 
answer?’, I say, ‘Why are the other 3 answers wrong?’ [Ralph nods with agreement].

From there, everyone seemed to accept this line of reasoning. In contrast to his first 
remark that suggests he rarely teaches students to judge the reasonableness of their 
answers, the first mentor (Ralph) then says that in the context of multiple choice 
questions, he does that kind of work all the time; his (prospective teacher) mentee 
even confirms he had done something of that sort on that very day. So, the sense of 
the group seemed to be, this is a valuable focus, but, in response to Pat, not in this 
sort of problem context. Mary, a prospective teacher, reinforced Floyd’s point. She 
hypothesizes that when students first work on a problem themselves, they are too 
focused on their own solutions, so they cannot think of other answers:

4 Oral stress in vocal track.
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Mary: I thought maybe the kids [in the animation] didn’t really want to [spend time on 
reasonableness], because everyone was very focused on their answer. Like, the one kid, I 
think it was Blue, kept saying “No, my answer’s right, my answer’s right.” I don’t think 
he got anything there talking about reasonableness, because he just wanted to sit and say 
“My answer’s right, I know my answer’s right, I don’t have to explain it.” Some of the kids 
who, like, had answers were more focused on their answer than checking what the other 
answers were.

Discussion of the Alternative “A Correct Solution Method”

While in the alternative “Reasonableness of Answers” the Animated Teacher fo-
cuses on the reasonableness of each answer without paying attention to the ‘meth-
od’ used to produce it, in this alternative the teacher focuses on the right answer. 
The Animated Teacher calls on a student who shows the ‘method’ (chart/table and 
equation), without an explanation (i.e. how one produces the equation) and without 
checking the reasonableness of the answer.

We expected the study group teachers to react to this alternative in light of the 
previous one, saying that reasonableness is important. Indeed, while watching the 
animation, the teachers were very surprised by the Animated Teacher’s turn, “Copy 
the correct answer from the board”. They reacted with an uproar, loud laughter and 
sharp movements: two mentors clapped their hands, one mentor held his head in his 
hands, and one mentor got up from her chair; one prospective teacher also got up 
from his chair.

Similar to the initial responses to the previous alternative, prospective teachers 
wanted the Animated Teacher to ask Orange to explain his solution. Also similar to 
the previous alternative, mentors focused on explaining why the teacher’s act repre-
sents the reality of classrooms. Lea (a prospective teacher) was the first to say that 
the Animated Teacher was wrong to not have Orange explain his answer:

Lea: If you let the first guy [Orange] explain [how he constructed the equation], the guy 
[Orange] just, like, put it [the chart and the equation] up the board and he’s [the Teacher] 
like [said to Orange] “Okay, good, sit down”.

Lea thinks that explaining the answer could help other students understand why 
they were wrong:

Lea: Maybe if he [Orange] explained what he was doing… then the guy who got 2 hours 
and 20 minutes would have been like, “Oh, I see what he did [and therefore I understand 
what I should have done]”. And then he [the student who got 2 hour and 20 minutes] could 
have come back to his [solution] and been [thinking] like, “Oh, I see why I’m wrong”.

Pat (a prospective teacher) suggests that the exact place where an explanation is 
needed is the equation because this is the place that she herself had difficulty with: 
“I think… I wouldn’t have thought to do 280 = 80t + 60t.”

Mentors’ reactions then came in with Ralph making a sharp shift in the conversa-
tion back to the Animated Teacher’s response to the student who wanted an explana-
tion about 2 hours and 20 minutes. His turn seemed to shift the overall tenor of the 
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discussion. He looked very decisive, striking the table with his hands and looking at 
his colleagues around the table and addressing the prospective teachers:

Ralph: But you [the prospective teachers] will [act as the Animated Teacher did by ask-
ing students to copy the right answer], and I know you will. Next year you’re going to be 
crankin’ through your lesson, and some kid’s going to have an off-the-wall answer [like 
2 hours and 20 minutes] and you’re going to say [like the Animated Teacher did], “I’m 
sorry, I don’t have time to explain it”, because you [as a teacher] have to cover all this stuff 
by the end of the year.

Similar to his role in the discussion around the alternative “reasonableness of an-
swers”, Ralph talks about the distinction between theory and practice. His teaching 
experience allows him to contend that the prospective teachers are paying too little 
attention to actual classroom constraints. According to Ralph, explaining answers 
is great, but having to cover content does not allow teachers to spend class time 
on explaining each answer. It is interesting to note here that while the prospec-
tive teachers were upset that Orange did not explain the correct answer, Ralph’s 
response focused on not explaining other wrong answers like Purple’s. It seems 
that Ralph agreed with the prospective teachers that Orange’s answer should have 
been explained. But he wants the prospective teachers to realize that sometimes as 
a teacher you cannot deal with every answer a student puts forth.

Craig (another mentor) was concerned with “how” the Animated Teacher acted, 
more than “what” that teacher did. He felt that the Animated Teacher acted poorly 
and should have said that there was no time to explain.

Craig: Seriously, if the teacher had just said that [not having the time to explain it], I would 
have said OK [It is fine not to spend time on Purple’s wrong answer].

Craig’s response suggests that there are circumstances under which not explaining 
the answers is appropriate. But the prospective teachers still remain troubled. Mary 
and Lea remind the group of the Animated Teacher’s decision to ignore Purple’s 
answer (2 hours and 20 minutes), but to address another answer (14) without any 
explicit reason. Mary: “And then they [the Animated Teacher] went and put another 
wrong answer on the board.” Lea: “One wrong answer was better than another 
wrong answer”.

Darcy, a mentor, agrees: “[the Animated Teacher said] I don’t really want to see 
why you got it (2 hours and 20 minutes), but I want to see the 14”. The study group 
members reply to this concern by relating to circumstances in which it makes sense 
to address the 14 but not to address the 2 hours and 20 minutes. Pat (prospective 
teacher) suggests that the Animated Teacher might have anticipated the 14, but not 
the 2 hours and 20 minutes. Two mentors and another prospective teacher propose 
that many students in the classroom got 14, which led to the decision to focus on 
the common answer. Ralph (mentor) suggests another circumstance, which causes 
teachers not to deal with an answer:

Ralph: That kid [who asks the teacher to look at his wrong answer] might have been Bran-
don [a student in his class], who purposely goes on the board. He knows he has the wrong 
answers, but he wants the attention from the class for about 5 minutes, so he’ll volunteer to 
go do the problem on the board.
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�Concluding�Remarks

The discussions between mentors and prospective teachers around the two alterna-
tives of the story brought forth some ideas that both mentors and prospective teach-
ers seem to agree upon:

• Teaching students to judge the reasonableness of their answers in the way that 
the Animated Teacher did is a non-standard act. What makes it non-standard, 
and not viable in the reality of classrooms, is that when students have solution 
methods as well as answers, and when it is those methods that are what must be 
learned, focusing simply on the answers is a counter-cultural act, because the 
answers are not what is important. Reasonableness of answers is better focused 
on in other contexts.

• Choosing to deal with one wrong answer and not with others, emphasizes the 
difference between the desirability of responding to all students and the reality 
of what actually can happen: during the lesson, the teacher has to be flexible and 
make in-the-moment decisions according to circumstances, and cannot act only 
according to generalities about what is desirable.

In terms of the mentor/prospective teacher interaction during this conversation, it 
is interesting to note that a prospective teacher raised concerns about the Animated 
Teacher’s action (checking the reasonableness of answers), while the mentors ap-
preciated an aspect of that same action. As mentors work to identify what they value 
in the teacher action, they use their knowledge of the practice and are reminded 
of a teaching context in which examining the reasonableness of answers is easier 
to accomplish. This difference in point of view between prospective teachers and 
mentors about a non-standard teaching move supported a meaningful conversation 
where they could examine teaching practice as a group of experienced and novice 
teachers. In general, across all of our study group sessions, the prospective teachers 
and mentors use the animations to think about their own teaching and talk about 
themselves and their own teaching, and to say what teachers should and should not 
do. Indeed, use of the animations created a venue for mentors sharing the wisdom 
of the practice and for prospective teachers to ask questions about teaching that are 
on their mind.

In terms of the affordances of this animation for teacher preparation, we think 
this particular animation can be used in the context of “methods” courses to have 
prospective teachers explore issues of teaching like which student to call when stu-
dents have multiple answers. The questions we proposed earlier are designed to 
support the use of this animation for such a purpose.
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�Introduction

Mathematically, most theorems can be seen as classifying those mathematical ob-
jects which satisfy certain properties, in terms of other, usually more manageable 
properties. Thus Pythagoras’ theorem classifies right-angled triangles as those tri-
angles for which the sum of the squares on two sides is the square on the third, while 
the law of cosines defines a property which holds for all triangles. Whenever a 
method is devised for solving a particular problem, there is an immediate challenge 
(and value) to classify all those problems which succumb to the same method. This 
is a fundamental process in mathematics, and a key aspect of learning mathematics 
in order to appreciate each technique and the concepts on which it draws.

Classifying and characterising are natural powers which children display long 
before they get to school. They are also a core component of mathematical peda-
gogy. For mathematical thinking, it is important that learners are provoked to use 
their own powers to classify and characterise so that these are developed explicitly 
throughout their mathematical schooling, which means teachers being aware of and 
drawing attention to their use, whether actual or potential. This chapter elaborates 
on these claims. Since anything which is powerful can have negative as well as 
positive consequences, mention is made of situations in which it is possible to mis-
use these powers.

Human beings have natural powers for dealing with the complex world of sense-
impressions which impact on them moment by moment. It is worth noting in pass-
ing that David Hume’s basic assumption of sense-impressions as the basis of expe-
rience (Hume 1793) is recorded in the frozen idiom of ‘sense-making’. To ‘make 
sense’ is to develop a narrative based on sensory experience (current and previous), 
however abstracted and rarefied. Many authors have thought in terms of powers, 
including Whitehead (1932), Gattegno (1987) and Bruner (1996). Examples of 
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natural powers for sense-making of particular value in mathematics include imag-
ining and expressing, specialising and generalising, conjecturing and convincing, 
stressing and ignoring, and classifying and characterising (Mason et al. 2005). This 
chapter aims to develop the last of these pairs and to point out both positive and 
negative consequences of the use of this power.

Classifying and Characterising Manifested in Natural Language

If every sense-impression that struck us had to be dealt with ab initio with no refer-
ence to previous experience, then human beings would be very slow processors and 
rather weak thinkers. In fact, as Nørretranders (1998) shows, the quantity of sense-
impressions impacting on our brains is so immense that it forces our somatic system 
to pre-process them before we are consciously aware. In a sense, this is what brains 
are designed to do. Thus even before we become aware of a sense-impression, con-
siderable classifying and characterising has already taken place. The next layer of 
classifying takes place in language, which Maturana (1988, p. 47) defined as ‘the 
consensual coordination of the consensual coordination of action’. People coordi-
nate actions through interacting, and they use language (including words, gestures, 
posture, etc.) to coordinate the way they interact. Actions are initiated because of 
perceived similarity of current conditions to conditions associated with that action. 
Minsky (1975) went so far as to try to describe human functioning in terms of de-
fault values for frames which ‘fire’ when their input values are all instantiated. So 
situations are effectively classified by the way in which metonymic associations 
and metaphoric resonances activate habits.

Verbal language itself is unavoidably general and so based on classification: 
nouns such as cup, foot, triangle are difficult to instantiate without gestural pointing 
or lengthy verbal description (“the cup on the table here where I am standing…”). 
Their generality arises because they apply to a large class of objects. Similarly, 
verbs are general because they apply to a large range of actions. As Lakoff (1987) 
pointed out, drawing on the work of Rosch (1977), many classification systems de-
pend not on equivalence, as in mathematics, but on having central or paradigmatic 
examples, and examples of varying degrees of peripheral-ness. Thus a log is not 
seen as a chair when inside a house, but may be seen as one at a campfire; a stool 
rarely comes to mind when the word ‘furniture’ is used.

In mathematics definitions may seem to make concepts precise, but their power 
arises from the generality afforded by language. In order to be useful a definition 
has to be sufficiently general to apply in several or many different situations and 
contexts. Axioms are derived through abstraction of properties by omitting con-
texts. Powerful concepts and axiom systems are those which admit multiple inter-
pretations or instantiations of the abstract relationships expressed in the definition 
or in the axioms. Classifying all the objects which satisfy a theorem or which pos-
sess a property is second nature to mathematicians.

Notation, which is a form of language, similarly carries power within its ambigu-
ity when it can be interpreted in many different ways. For example, the term number 
can be used to refer to whole numbers, integers, fractions, decimals and beyond; 
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multiplication can be used with each of these types of numbers as well as with other 
types of objects, because they all share certain core properties. The symbols 2/3 can 
be interpreted as a ratio, as a division, as the answer to a division, as a fraction, as 
the value of a fraction, and as an operator. Much of the power of mathematics comes 
from the curious relationship between precision, on the one hand, and ambiguity, on 
the other. Thus mathematical theorems are about relationships between properties: 
one property may be a consequence of another, they may be mutually equivalent, or 
those objects having both properties can be characterised in yet another way. Math-
ematical concepts are defined and characterised, often in several different ways. Yet 
it is the context-independence, the underlying generality, the ambiguity due to lack 
of specificity, which provides power through generalisation.

Classifying and Characterising in Mathematics

To discuss mathematics and mathematical pedagogy without actually engaging in 
mathematics is in my view a mistake. So much more can be learned from directly 
experiencing what is being talked about than can be garnered from mere descrip-
tions. Consequently I begin this section with some mathematical tasks chosen to 
highlight mathematical aspects of classifying and characterising (Fig. 1).

For most people the issue immediately arises as to what constitutes ‘different’. 
Many people find that as they pursue the task, their sense of what is different actu-
ally changes, so that by the end they conclude that there is only one way to do it, 
because all available methods appear to be variations of starting at the centre, draw-
ing a non-self-intersecting curve to the boundary, and then rotating that about the 
centre through 90, 180 and 270°. More difficult to articulate is the condition on the 
curve so that the rotated copies do not intersect each other.

This task captures the essence of classifying and characterising in mathematics. 
Different dissections are classified as being ‘essentially the same’ through differ-
ent features being stressed while other features are ignored. This is the process of 
generalisation, as Gattegno (1987) pointed out: ignoring some aspects opens up the 
possibility of other aspects being shared with a wider class of objects, hence ‘clas-

Fig.�1�� First task: circular division

Circular Division

Divide the first of the circles shown into four congruent pieces in the sense of a jigsaw
puzzle.

Now do it again, differently, in another circle. And again, differently. Keep going, each time
trying to find a different way to divide a circle into four congruent pieces. 
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sification’. Language is the great classifier, for it is the use of one word in several 
situations or instances which prefigures the notion of the class of objects to which 
the word applies.

Mathematics typically goes beyond classification to characterisation. In math-
ematics it is desirable to prove that all and only the anticipated or imagined objects 
have the specified properties. The desire to articulate precisely a condition on a 
curve from the centre of the circle to the boundary so that when copies are rotated 
there will be no intersections, reflects the mathematician’s desire to characterise the 
set of all such curves in some helpful way.

Classifying and Definitions

A definition identifies a class of objects that satisfy the definition. Mathematics 
abounds with theorems that provide alternative classifications by characterising ob-
jects satisfying a definition in terms of some other property (Fig. 2).

Fig.�2�� Classifying and characterising quadrilaterals by their diagonals (strongly guided version)

Which if any of the following statements are always true? 

The diagonals of a parallelogram bisect each other

If the diagonals of a quadrilateral bisect each other, the quadrilateral is a
parallelogram. 

The diagonals of a square bisect each other and are perpendicular  

If the diagonals of a quadrilateral bisect each other and are perpendicular, the
quadrilateral is a square. 

The diagonals of a kite are perpendicular, and one is bisected by the other 

If the diagonals of a quadrilateral are perpendicular and one is bisected by the
other, the quadrilateral is a kite. 

The diagonals of a dart are perpendicular, and when extended so that they meet,
one is bisected by the other 

If the diagonals of a quadrilateral are perpendicular, and if when extended, one
bisects the other, then the quadrilateral is a dart. 

The diagonals of a rectangle bisect each other and are equal 

If the diagonals of a quadrilateral bisect each other and are equal, then the
quadrilateral is a rectangle. 

Which of these classes contain quadrilaterals in which the diagonals do not
intersect?  

Which of these classes contain quadrilaterals which self-intersect? 
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An alternative presentation of the task would be more likely to stimulate explora-
tion (Fig. 3).

A completely open version might take the form (Fig. 4).
In the first version, each case describes a property of the named quadrilateral and 

invites proof that the property characterises it, because all quadrilaterals with that 
property belong to the class with that name and vice versa. Any version of the task 
could turn into a major project, or could be used simply to highlight the actions of 
classifying and characterising. Version B would be likely to lead to people asking 
for examples or direction; version A would be likely to lead to confusion about the 
meanings of the identified properties; the original version would be likely to lead to 
people reasoning about the stated cases but not proceeding further without prompts. 
No version is perfect; each situation suggests a tailor-made version as judged by the 
proposer.

Curiously we do not have names for the class of all quadrilaterals with equal 
diagonals nor for the class of all quadrilaterals with perpendicular diagonals. The 
usual reason for not naming a class is that there are no interesting theorems about all 
and only those members of the class, however the next task shows that the class of 
quadrilaterals with perpendicular diagonals does have another interesting property 
which enables a wider class of polygons to be characterised as well (Fig. 5).

This classifies all quadrilaterals having perpendicular diagonals as also having 
the alternating sum of squares property (that the alternating sum of squares of edge 
lengths in cyclic order is zero). Immediately the mathematical thinker asks whether 
there might be other quadrilaterals with the alternating sum of squares property, or 

Fig.�3�� Classifying and characterising quadrilaterals by their diagonals (partly guided variant)

Use the five properties: diagonals perpendicular; diagonals intersect; one diagonal
bisects the other; both diagonals bisect each other, and diagonals equal; to chara-
cterise types of quadrilaterals such as squares, rectangles, parallelograms, kites,
darts, and rhombi. What about trapezia? 

Fig.�4�� Classifying and characterising quadrilaterals by their diagonals (unguided variant)

Characterise named quadrilaterals solely in terms of properties of their diagonals.                   
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Fig.�5�� Alternating square sums

a

bc

d

a 2 – b 2 + c 2 – d 2 = 0    

Show that a quadrilateral with perpendicular diagonals has the property that the alter-
nating sum of the squares of the edges (proceeding around the quadrilateral) is zero. 
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does that property provide an equivalent characterisation of the property of perpen-
dicular diagonals? The converse is in fact true: if a quadrilateral has the alternating 
sum of squares property, then its diagonals are perpendicular. Thus the two properties 
are equivalent, and each characterises the other. Alert readers will notice a parallel 
with the classification and characterisation of escribed quadrilaterals (those whose 
edges are all tangent to a single circle). Classification involves associating or relat-
ing apparently disparate objects and trying to articulate what properties they share.

However, the characterisation has payoff, for even though it is the case that to 
have a pair of diagonals perpendicular really requires two diagonals and so a quad-
rilateral, the property of having alternating sum of squares of edges equalling zero 
can be extended to any even-sided polygon. This raises the question of what impli-
cations there are for perpendicularity of diagonals, and it turns out that polygons 
with alternating cyclic sums of squared edge lengths being zero characterises poly-
gons which can be dissected into quadrilaterals each with perpendicular diagonals.

With the circle dissections, there may be a lingering doubt that perhaps there is 
another way to dissect the circle, for example without having the centre of the circle 
on the boundary of all the pieces. It seems intuitively to be unlikely, but a convinc-
ing argument remains elusive. With 12 congruent pieces, there is a dissection in 
which only half of the pieces have the centre on their boundary, and it remains an 
open question whether there is any dissection of a circle into congruent pieces for 
which the centre is not on the boundary of any piece.

To classify mathematically is to isolate or stress a property and to consider the 
set of all objects which satisfy that property. To characterise is to establish through 
mathematical reasoning that some other property classifies exactly the same objects. 
For example, the notion of an odd number classifies certain numbers; the descrip-
tion of an odd number as one more than an even number provides a characterisation, 
as does, ‘leaves a remainder of 1 on dividing by 2’ or ‘does not end in an even digit’.

Lakatos (1976) exposed the role of characterisation in relation to definition in 
the context of Euler’s relationship between vertices, edges and faces of polyhedra: 
definitions are chosen so as to make proofs work, and proofs are often or mainly to 
characterise one property in terms of others. This is particularly true when a defini-
tion is given as a global property, but can be characterised in terms of a local prop-
erty. Thus continuity of functions is at first a global feature of ‘having neither gaps 
nor inordinate wiggles’, but is also captured locally in terms of continuity at a point; 
quadrilaterals inscribed in a circle (a global property) are also characterised by hav-
ing one (and hence both pairs) of opposite angles adding to half a revolution (a local 
property); quadrilaterals escribed about a circle (a global property) are also char-
acterised by having the sums of their opposite sides being equal (a local property). 
Considerable mathematical power arises from having both global and local charac-
terisations of properties. As another example, numbers can be classified as rational 
or irrational, so irrationality is global in the sense of the number not being rational; 
irrationals can be characterised by the fact that they have a decimal representation 
with no repeating tail, which is a property local to the decimal presentation. Not 
all characterisations have the local-global relationship: whole numbers which are 
one more than the product of four consecutive numbers can be characterised as the 
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squares of numbers which are themselves one less than double a triangular number, 
and vice versa.

More elementary examples abound in the primary and secondary curriculum: 
squares can be characterised as rectangles with a pair of adjacent edges equal; rect-
angles can be characterised as quadrilaterals with two pairs of opposite sides equal 
and one right angle, or as quadrilaterals with three right angles; circles are the locus 
of points equidistant from a fixed point, or the locus of points subtending a fixed 
angle with respect to two fixed points (care is needed to define ‘subtended’ ap-
propriately!). Note that the property—all chords through a fixed point have a fixed 
length—does not in fact characterise circles, as other figures have the same prop-
erty. An obtuse angled triangle is characterised by having the square of one edge 
greater than the sum of the squares of the other two edges.

None of this is ‘advanced’ or beyond the reach of children. In order to read, 
children have to recognise letters despite variations in the way letters are written 
due to handwriting and fonts. This is a form of unarticulated intuitive classification 
and characterisation which has been carried out quite spontaneously. If learners of 
mathematics do not have their attention drawn to classifying and characterising in 
mathematical contexts then they are being severely short-changed and impover-
ished in their endeavours.

Methods as Classification of Tasks

The whole essence of a ‘method’ for solving a class of problems is to recognise 
when the method is suitable for resolving or contributing to the resolution of a 
problem. So as soon as a learner can solve a problem, they are ready to be asked 
what features other problems might have which would make the method suitable 
for them as well. The observation that giving a child a hammer converts everything 
into nails has a more positive manifestation in mathematical exercises. As soon as 
learners have an action which they can ‘do’, an action they can perform, a method 
or technique which they can carry out, they are ready to consider associated ‘undo-
ing’ questions: what other problems of a similar type would have the same answer 
and what sorts of answers are possible when using the technique, as well as what 
features of problems make them amenable to the method. Prompting learners to 
explore classes of similar tasks and to work on ‘undoing’ problems is a good way, 
if not the only effective way, to exploit Vygotsky’s zone of proximal development 
(van der Veer and Valsiner 1991, p. 334). Carrying out actions triggered by some 
outside agency (‘acting in itself’) is transformed into learners being able to initiate 
actions ‘for themselves’ when learners become aware of a wider class of tasks all 
susceptible to the same ‘action’. Put another way, such tasks serve to prompt learn-
ers to educate their awareness, and their ‘awareness of their awareness’ (Gattegno 
1987) thus contributing to their mathematical thinking.

A very simple version occurs when children are presented with tasks like 
3 + 4 = 5 + ?. Once they have found a way to resolve one such task, they can be 
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asked how they can adapt their method to solve ones with different numbers. Dave 
Hewitt (Open University 1992) developed this into a lesson in which, starting with 
simple tasks such as “I’m thinking of a number, I add 2 and the answer is 7; what 
is my number?”, more and more complexity was added, such as “I’m thinking of a 
number, I add 2 then divide by 3 then subtract 4 then multiply by 5 and the answer is 
13; what is my number?”. Once fluency developed, he focused attention on the re-
lationship between the sequence of actions he described and the sequence of actions 
performed to reach a solution (doing and undoing). He then moved to a symbolic 
version in which the arithmetic operations involve numbers represented by letters of 
the Greek alphabet! The core of the lesson involved characterising the relationship 
between doing addition and undoing it using subtraction (and vice versa), and doing 
multiplication and undoing it by division (and vice versa).

A more sophisticated version of generalising a single task so as to become aware 
of a whole class of similar tasks, which also yields a rich exploration when reversed 
(an undoing task) is the following (Fig. 6).

It is not difficult to find an expression in the number of rows and the number 
of columns of the block, and to generalise this to take account of the number of 
perforations for the horizontal and vertical sides of a stamp as parameters. (Note 
that for 0 stamps, the usual formulae anticipate a corner perforation!) It is even pos-
sible to have the number of perforations in a corner as a third parameter. The act of 
generalising is a form of classifying a space of tasks each of which has a particular 
number of perforations horizontally, vertically and in the corners. These tasks can 
of course all be done in the ‘same way’. It is the ‘same way’ which is important, not 
the particularities of counting the perforations themselves that contributes to learn-
ers’ mathematical thinking. Indeed, the multiplicity of similar tasks suggests finding 
structural approaches rather than resorting to actual counting.

The calculations alluded to so far are all ‘doing’ calculations, however general. 
‘Undoing’ questions take the form of characterising those numbers of perforations 
which can arise from a particular size of stamp (number of perforations on each side 
and in the corners of each stamp), and in how many ways. This can be done first for 
a specified size of stamp and its perforations, and then in general.

The same process applies to routine exercises. A learner, who has not considered 
and tried to articulate what it is about a problem that makes a particular technique 
likely to succeed, has not understood or appreciated the technique sufficiently to 
make use of it in the future. A learner, who has not considered what it is about an ob-

Fig.�6�� Perforation count. 
(See Mason et al. 2005, p. 98)

The picture shows a block of stamps with 2 rows and 3 columns,
delineated by perforations. How many perforations will be used in
a block of r rows and c columns of stamps? 
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ject which makes it an instance of a mathematical concept or definition, has not un-
derstood or appreciated the concept. An excellent way of promoting this type of clas-
sification is to get learners to construct their own examples, whether of problems or 
indeed of other mathematical objects as well (Watson and Mason 2005, 2006). Rather 
than having learners beat their way through a collection of prepared and pre-digested 
exercises, having them construct easy-hard-general problems promotes classification 
and characterisation, thereby preparing them more surely for tests and examinations. 
Similarly, tasks asking them to construct examples of objects with specified proper-
ties are powerful stimuli for making sense of concepts and properties.

Learners who develop an inter-connected and structured space of examples (and 
ways to construct examples) associated with each mathematical concept, heuristic, 
theme, and technique have a rich collection to access when they are trying to make 
sense of some situation which brings the concept, heuristic, theme or technique to 
mind (Watson and Mason 2005). Taking every opportunity, whether with routine 
exercises or with explorations and problems, to try to classify and characterise the 
associated class of objects stimulates the growth and interconnectedness of learners’ 
accessible example spaces (Goldenberg and Mason 2008). Prompts which promote 
classification and characterisation include variants of:

• What similar problems give the same answer?
• What answers can be obtained from similar problems?
• What features can be changed in an example of a concept and still it is an ex-

ample?
• What features can be changed in a task and still it makes use of the same tech-

niques and concepts, the same mathematical themes and heuristics?

By asking themselves what aspects or features are permitted to change, learners 
explore the dimensions of possible variation within which objects remain exam-
ples, instances of a property, or which satisfy the conditions of a theorem. By ask-
ing themselves what the range of permissible change is in each aspect which can 
change, learners extend and enrich the class of examples to which they may have 
access in the future (Watson and Mason 2005).

By looking for similar or related tasks, including simplifications, extensions and 
variations to explore, teachers and learners enrich their sense of the utility (Ainley 
1997; Ainley and Pratt 2002) of the techniques and concepts used in the task.

�Exploiting�Classifying�and�Characterising��
in�the�Classroom

As with any of the many natural powers that learners bring to class, it is useful to 
bring the power to classify and characterise to teachers’ attention by first engaging 
them in a task for themselves, in which they are highly likely to experience clas-
sification and even characterisation, along the lines of tasks in the previous section. 
The same thing applies to teachers working with learners. The first ‘circles’ task 
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(Fig. 1) was of this type, and it has worked well in many situations with teach-
ers. Having generated an experience which can be ‘taken-as-shared’, teachers and 
pre-service teachers can be asked to think back to other tasks they have worked 
on, either for themselves or with learners, which also have potential for highlight-
ing classifying and characterising. The purpose of this reflection is to enrich their 
awareness of the potential and the ubiquity of classifying and characterising. Then 
they can be invited to engage in tasks which are more curriculum-based, with the 
suggestion that they look for opportunities to engage in classifying and characteris-
ing. The whole enterprise is, in this case, to sensitise them to possibilities of calling 
upon their learners’ natural powers in the midst of some mathematical topic or other 
activity. In other words, the power to classify and characterise can be added to the 
awarenesses which inform planning, and which can then be called upon in the midst 
of mathematical work. It helps every so often to engage learners in tasks not directly 
on the curriculum but which challenge and extend the use of specific powers. Thus, 
tasks can be devised (such as Perforations) which call upon other powers in concert, 
so providing teachers and pre-service teachers with a rich web of interconnected 
experiences.

Learners can be engaged in tasks that ask them to classify and characterise math-
ematical objects (e.g. quadrilaterals, numbers leaving a given remainder on divid-
ing by a given number, number sentences, algebraic expressions and equations), 
definitions in terms of local properties, unfamiliar properties of familiar objects 
(such as numbers one more than the product of four consecutive number mentioned 
earlier or triangles containing an obtuse angle in terms of squares of edge lengths), 
tasks amenable to a particular approach or method, and methods of approaching 
tasks. Discovering that there may be many different ways to organise, classify or 
characterise can only add to their flexibility and appreciation of interconnectedness 
of mathematics.

The role of the teacher educator working with teachers and pre-service teachers 
parallels the role of the teacher working with learners. The aim is to initiate tasks 
which will generate activity in the form of people making use of familiar actions, 
modified so as to meet fresh challenges. The purpose of the activity is to gain expe-
rience; but to learn from experience requires more than the experience itself. ‘One 
thing we do not seem to learn from experience, is that we do not often learn from 
experience alone’ (Mason 1992).

Something more is required. Having engaged people in activity, it is then neces-
sary to draw them out of their immersion so that they can become aware of actions 
they were using, so as to better able to initiate those actions for themselves. One 
of my principles (Mason 2002) is that in order to sensitise myself to notice some-
thing in others, I need to become aware of and sensitised to my own experience. 
A very helpful device is to find some resonant label for situations which typically 
have potential for exploiting classifying and characterising. Examples include ‘lo-
cal-global’, ‘equivalent’, ‘sorting’ (see below), ‘The effect of a label’ is to classify 
appropriate situations, so that recent experience informs future practice. The single 
most effective aspect of reflection is to imagine yourself as fully and as specifically 
as possible in a teaching situation making use of some strategy or tactic in a typi-
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cal situation while having the chosen label in mind. When something in a situation 
resonates with the label, you may then find the potential action coming to mind.

Sorting and Matching Tasks

To classify an object is to identify properties it satisfies, which is a form of sorting, 
on the way to characterising. Sorting tasks provide an excellent stimulus for classi-
fication. Inviting learners to take a collection of objects and to sort them, implicitly 
calls upon discerning the way other people have sorted and to try to articulate the 
basis of their criteria awakens the possibility of different sorting criteria, different 
distinctions and hence different classifications. Trying to find a succinct but de-
scriptive name for the different classes in a classification is also informative, and 
can help inform choices in the future. Having some extra objects to insert into the 
sorting scheme to see if the original sorter agrees is a good way of testing criteria. 
If the sorting is done by groups of two or more learners, then one person can stay 
behind and check the conjectures of other visitors to the classification when they try 
to insert further objects.

As an introduction to sorting or if you have learners from very varied back-
grounds, you can use locally available objects such as leaves, pebbles, shells, seeds, 
etc. Sorting ordinary objects provides direct experience of how human beings natu-
rally classify, and it is salutary to discover that different people see things very dif-
ferently, and so classify differently.

Where the leader has a preferred sorting or is intending people to encounter a 
particular way to sort, it is necessary to provide a reason for the sorting which can 
act as criteria. Sometimes it is worthwhile adding the desired sort to the collection 
produced by the learners. Thus teachers can be invited to sort a collection of cards 
with fraction calculations of the form

where there are additions and subtractions with same and different denominators, 
according to different criteria, such as method used, ease of calculation, or likely 
learner errors. This then provides the basis for discussion which is likely to reveal 
different pedagogic assumptions and approaches. It is unwise to expect that teach-
ers will suddenly change their approaches or their thinking, but encountering other 
perspectives opens up the possibility of choosing to think or sort differently next 
time. Learners could be invited to sort according to similar criteria, or according to 
whether the calculations give the same answer (calculations need to be carefully 
constructed), or, accompanied by graphical displays of partly shaded rectangles, 
according to whether they represent the same calculation. Discussion can then be 
focused on efficiency of calculation, or on the relationship between the ‘easier’ 
ones, and the method used for the ‘hardest’ ones, or on complexity of the diagrams. 
Discussing what it is that makes a question ‘hard’ or ‘easy’ can also be very fruitful.
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Swan (2006, 2007) has devised a variety of clever sorting and matching tasks 
which invite learners to associate expressions or other mathematical objects, so that 
in the process of sorting, they make connections between previously disparate (re)
presentations. For example, cards with graphs, with equations and with tables of 
values can be sorted for equivalence, as can packs of cards with decimals, fractions 
and positions on a number line, or cards with rectangular area diagrams, algebraic 
expressions and instantiations of those expressions.

You can also use the set of exercises at the end of a chapter or of several chapters, 
or other mathematical objects. Here what is revealed by sorting is what learners 
stress and consequently may overlook when they tackle an examination question. 
By exposing them to alternative ways of sorting (the teacher can include their pre-
ferred sorting as well) learners can sensitise themselves to the classes of problems 
they are likely to meet, rather than simply rehearsing particular ones over and over.

If you invite sorting without specifying an aim, then you get insight into the 
criteria which dominate different teachers’ attention; if you invite sorting with a 
specific aim such as method or assumed difficulty, then you get insight into peoples’ 
pedagogical assumptions and dominant awarenesses. If there are criteria, partici-
pants can discuss which sorting is most effective. Sorting and matching tasks can 
also be used as research probes to reveal the richness of learners’ interconnections 
(Collis 1971; Silver 1979; Zaslavsky and Leiken 2004).

Ordering Tasks

Putting objects in order according to some criteria is often a useful way to provoke 
learners into finding a simple way to do comparisons. For example, the fraction 
cards mentioned above could be ordered according to the magnitude of the answer 
or according to perceived difficulty. A simpler set of fraction cards with single frac-
tions, including ones with common factors between numerator and denominator can 
be used to direct learner attention to the structure and meaning of the denominator 
and the numerator by being put in order. Ordering a mixed set of fractions and 
decimals can be similarly instructive. A set of linear expressions in one variable can 
be ordered according to the value achieved for a particular value of the variable, 
and then participants can search for values of the variable that produce each of the 
possible orders.

Prestage and Perks (2001) provide a variety of strategies for adapting and modi-
fying tasks to make them more focussed and more effective, including ways of 
working with ordering tasks such as those suggested. Teachers and pre-service 
teachers can be asked to order tasks from a textbook or work-card according to pre-
sumed difficulty (as evidenced by learner scores), or according to the order in which 
learners would be exposed to questions of that type. Both of these can lead to lively 
discussions which bring pedagogic assumptions and theories to the surface. Teach-
ers can also be asked to predict how learners (or pre-service teachers) will order 
a set of tasks, and compare these with the actual scores when they try to do them.
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�Classifying�and�Characterising�Pedagogically

Some of the power of mathematical characterisation and classification carries over 
into pedagogical and didactic settings, but not all. For example, analysing research 
data consists of a mixture of applying a previously determined ‘framework’ of dis-
tinctions while at the same time allowing distinctions to emerge from close reading 
of the data, as in grounded theory (Strauss and Corbin 1990). In other words, sorting 
is carried out by becoming aware of possible distinctions, and using those distinc-
tions to classify data elements, whether they be transcripted discourse, observed be-
haviour or responses to probes. Unfortunately, it is often very difficult to be precise 
about criteria for discerning detail in the way that it is possible within mathematics. 
Instead of trying to tie down distinctions exactly, researchers resort to triangulation 
(getting at least two different perspectives on the same situation) or seeking a mea-
sure of agreement between different classifiers.

A considerable amount of research in mathematics education has focused on 
classifying and characterising different forms of learner and teacher responses to 
probes administered by interview, observation of spontaneous or prompted behav-
iour, and questionnaire. These probes have variously emphasised cognitive, affec-
tive and enactive features. It is assumed that where distinctions can be made which 
correlate with some observation or desired outcome, those distinctions can be used 
to inform future practice. For example, tasks can be classified according to the de-
gree of engagement displayed by learners; by the possibilities they are perceived to 
afford for access to mathematical concepts, themes, heuristics; by the potential use 
of their powers by learners; by the potential for development of facility and fluency 
in use of techniques and concepts; by how they promote participation, engagement, 
discussion and collaboration; and so on. It remains unclear whether having made 
distinctions, these are easily communicated to and used by teachers to alter their 
practice, or whether indeed the mere actualising of actions associated with the dis-
tinctions is expected to make significant difference to learning.

In searching for ways to improve learner learning, especially in schools, research-
ers, teachers and policy makers have explored the classroom ethos (socio-mathemti-
cal norms of Yackel and Cobb 1996), classroom rubric (Floyd et al. 1981); teachers’ 
beliefs (Thompson 1984, 1992; Leder et al. 2002; Forgasz and Leder 2009); teach-
ers’ mathematical background; textbooks; pedagogical practices (Keller 1968; Hake 
2007; and so on); tasks; obstacles, errors and misconceptions; questions and prompts 
and other interactions between teacher and learners; mathematical sophistication 
and challenge; and so on. They have made use of more or less elaborate theories 
of how learning and development take place, and they have imposed a variety of 
practices on teachers through national curricula and national campaigns for reform.

In each case, it seems as though there is a search for some magic potion which, if 
instituted, would transform the learning of mathematics for everyone. Tasks, ques-
tions, social interactions, texts, mathematical techniques, and obstacles encountered 
by learners have all been and continue to be classified through increasingly com-
plex taxonomies. The result is a recurrent cycle of amplification of distinctions as 
items for practitioners to ‘tick off’, and for inspectors to confirm as having been 
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‘ticked off’. Reliance on cause-and-effect, a mechanism derived from manipulat-
ing the material world through the use of machines and derived from Descartes’ 
legacy of fascination with the cuckoo clock as a metaphor for the material world, 
completely misses the essence of human beings as complex, will-full, intentional, 
and sometimes aware, organisms. It is true that discoveries arising from behaviour-
ism about stimulus-response are certainly pertinent and useful, but they apply only 
when the individual or the group is acting mechanically, automatically, and out of 
habit, rather than responding freshly and mindfully to the situation.

If real progress is to be made against the tide of increasingly fine distinctions 
redolent of the medieval tendency to dissect and further dissect in lists, then it is 
necessary to maintain complexity. Proponents of ‘complexity theory’ (see for ex-
ample Davis et al. 2006) and of approaches influenced by eastern thought (see for 
example Brookes 1966; Varela et al. 1991) prefer to work with the mathematical, 
pedagogic and didactic sensitivities and awarenesses of the teacher (and hence of 
the learner) rather than on observable and repeatable behaviour per se. If teachers 
are deeply and resonantly aware of pervasive mathematical themes, mathematical 
powers and heuristics, and especially of their own awarenesses, then they are in the 
best position to have suitable actions come to mind when they are teaching.

Focusing on the domain where mathematics, pedagogy and didactics intersect, 
Wheeler et al. (1984) asked for the fundamental awarenesses (the basis for action) 
which underpin the school curriculum. The idea is that if learners are exposed to 
these awarenesses, then much of the curriculum becomes instantiation in specific 
contexts. Gattegno (1987) went so far as to say that the fundamental problem in 
mathematics education is what to do with learners once you have taught them the 
whole of the school mathematics curriculum by the age of about 12, since he was 
convinced that by working with and on awareness you could short-cut the obstacles 
thrown up by repeatedly but inefficiently and ineffectually teaching concepts that 
learners have already been taught previously but have not internalised. Simon and 
Tzur (2004) are similarly interested in the basic awareness, the fundamental shifts 
needed in order to re-construct for oneself the fundamental ideas of mathematics. 
Ma (1999) claimed that Chinese primary teachers differ from American teachers in 
having a profound understanding of fundamental mathematics, although other stud-
ies (Li et al. 2008) suggest that this profound understanding may not be universal, 
and may not always penetrate to the fundamental awarenesses, being content to 
remain at the level of efficient transmission of techniques and procedures.

It seems that although classification can be powerful in mathematics, if over 
done in domains such as mathematics education, it may become counter productive.

�Dangers�of�Classifying�and�Characterising

Once classification takes place, a distinction comes into existence, and there is often 
a considerable degree of ontological commitment to its maintenance. Once a class or 
property is defined it can be difficult to appreciate overlaps or alternative perspectives 
which cut across the distinction or even which intentionally blur it. For example, 
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someone committed to class or gender issues tends to ‘see’ these, tends to use them 
as the basis for distinctions they make. Their value system is integrated into their 
distinctions. It can be quite difficult to conduct a conversation much less to reach an 
agreed analysis where value systems and hence distinctions do not coincide. Someone 
committed to the importance and centrality of socio-cultural interaction, or to a par-
ticular theoretical frame may find it impossible to communicate with someone with 
a different frame or with a commitment to the idiosyncrasy of individual psychology.

In mathematics, the same object can quite happily be seen as exemplifying quite 
different constructs as illustrated by the symbols 2/3 mentioned earlier. Flexibility 
to move between interpretations is vital; being confined to only one or a few can 
severely limit effective use of the construct. When learners intuitively classify frac-
tion notation as having a specific meaning, they make it difficult for themselves 
to extend that meaning to encompass other interpretations. The result is that they 
miss out on the mathematical power of such notation. In mathematics education, 
although an interaction between a teacher and a learner can similarly be interpreted 
in many ways, there is a tendency to settle on a single interpretation rather than on 
an amalgam. The single interpretation promotes reductive simplification; multiple 
interpretation celebrates and exploits complexity.

As soon as labels appear, ontological commitment sets in, and with it, metonymic 
association. When someone makes a good conjecture or is slow in picking up an idea, 
it is tempting to classify their behaviour (‘good thinking’; ‘slow thinking’; ‘low attain-
ment’) which is then all too easily transferred to the person (“she is a good thinker”; 
“he is a slow thinker”; “she is a low attainer”). Labelling negative behaviour can 
induce adolescents to take on those attributes, so that the label reinforces and ampli-
fies the undesirable behaviour. Once the description moves to the person, it is very 
difficult to overcome. Indeed is well known that there is often either a self-fulfilling 
prophecy in that individuals adjust to meet the labels that they are given, or there is 
a reaction which carries over into other situations and leads to disruption and further 
labelling. Used with positive behaviour (such as aspects of using their powers to think 
mathematically) learners may begin to adopt the behaviours of mathematical thinkers.

Whenever teachers make assumptions about what their learners ‘can’ and ‘can-
not’, or ‘will not be able to’ do, they limit the opportunity for learners to reveal as yet 
undeveloped and undisclosed powers. For example, it is well known that a visitor to 
a class can often spark individuals into uncharacteristic behaviour, suggesting that 
the ‘ability’ has been present all along, but the conditions have not been appropriate. 
Dweck (2000) reports a career-long study into ways to promote learners to switch 
from a language of “can’t” to “didn’t but could try harder or differently” in an effort 
to combat the effect of inappropriate labels being adopted as accurate by individuals.

�Conclusion

Classifying and characterising are important natural powers displayed by all human 
beings through their participation in social interaction and their use of language. 
Where teachers are able to provoke learners into using those powers, and so into 
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developing and refining their use in making mathematical sense and in making 
sense of mathematics, learners are likely to appreciate mathematics as a mode of 
enquiry, as well as succeed in their studies. They will learn how to learn mathemat-
ics. Not all classification is helpful, however. Overly refined classification may not 
be helpful in informing teaching, and where learners are labelled by behaviours they 
sometimes exhibit, possibilities for learning are likely to be limited if not truncated.
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�Introduction

Over the years, we have come to realise that teacher development does not come 
about through repeated attempts to persuade but through opportunities for individ-
ual teachers ‘to doubt, reflect and reconstruct’ in unhurried, ‘safe’ environments 
(Wilson and Cooney 2002, p. 132). We do not seek to change teachers’ beliefs so 
that they behave differently, but rather offer opportunities to behave differently so 
that their experiences may give them cause to reflect on and modify their beliefs 
(Fullan 1991, p. 91). In our work with teachers, this experiential approach is con-
ducted in four broad stages:

1. Recognise�existing�values,�beliefs�and�practices. We invite teachers to describe 
the situations in which they work, and elicit their existing values and beliefs 
about mathematics, teaching and learning and their classroom practices. We 
articulate and clarify classroom dilemmas and their underlying causes. During 
this process, a shared experience begins to emerge.

2. Analyse�discussion-based�practices. Through working on classroom tasks, then 
watching their use on video, teachers are confronted with practices that contrast 
with their own. They discuss the research-based principles that underpin these. 
These provide ‘challenge’ or ‘conflict’. We articulate and address some common 
objections to these ways of working.

3. Suspend�disbelief�and�adopt�new�practices. Teachers are encouraged to try 
out the new classroom activities using prepared classroom resources. They are 
offered a mentor and a network of support as they do this.

4. Reflect�on�the�experience. After trying out the activities, teachers are invited to 
meet together to share their classroom experiences and discuss the pedagogical 
implications. They are explicitly encouraged to reflect on the growth of new 
beliefs. Further challenges are provided.
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We have conducted several professional development courses using this model 
(DfES 2005; NRDC 2006; Swain and Swan 2007; Swan 2005, 2007; Swan and 
Green 2002). While these courses used a similar structure, their context and content 
varied considerably. Some courses were aimed at adult numeracy teachers, while 
others were focused on teachers of 16–19 year-old students of varying levels of at-
tainment. Each course began with a two-day residential workshop in which the first 
two stages were explored, and were followed up with a series of one-day workshops 
in which teachers reported back and reflected on their experiences. The total com-
mitment for teachers was from 4 to 6 full days face-to-face contact time, spread 
over one year. Each time we have done this, teachers, students and independent 
classroom observers have reported to us that they noticed substantial changes to 
classroom practices, and to students’ attitudes and attainments (Swan 2006a, b). 
The discursive classroom approaches we advocate are much more complex and 
challenging for teachers and students than the “explanation, example, exercise” 
methods used in the past. They also conflict with the prevailing cultures within the 
institutions within which the teachers work. Teachers have, however, found that 
they can use many of the tasks with other teachers within their own institutions and 
in this way, the professional development has spread and continued long after the 
initial input.

This chapter follows the four-part structure of the above model, and displays 
some of the tasks we use with teachers. We also report on obstacles and difficulties 
encountered and on the transformative effects that this process has had.

�Four�Stages�in�Professional�Development

Recognising Existing Values, Beliefs and Practices

Teachers usually attend professional development sessions in order to gain infor-
mation, ideas and materials. They expect that an ‘expert’ will try to persuade them 
that a new method of teaching is better than their current practice and are surprised 
when we begin, not by informing, but by asking them to reflect on their existing 
values, beliefs and practices. The purpose of this is to make teachers more aware of 
the reasons underlying their classroom actions and to develop a language for values, 
beliefs and practices. This, we hope, will help them to more able to consciously 
monitor and control their own behaviours.

We attempt to do this in a non-judgmental atmosphere in a way that will encour-
age sharing. To begin with, we ask them to work together in pairs or groups of three 
to discuss a number of beliefs about mathematics, teaching and learning, such as 
those shown in Table 1.

We ask teachers to sort statements into three piles according to whether they 
broadly agree with the statements, disagree with them, or whether they cannot de-
cide. They are also encouraged to modify statements, adding amplifications, condi-
tions and caveats. This task usually occupies about 30 minutes.

M. Swan
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Although these statements clearly present false dichotomies (for example, one 
may argue that Mathematics is both a network and at least partially hierarchical) 
the activity raises a number of common sources of tension in mathematics teaching. 
For example:

“If I allow time for discussion, how will we cover all the content?”
“If I allow the freedom to explore and work at their own pace, how can I be sure that 

they will discover anything of significance?”
“If I encourage students to make and discuss mistakes, then how can I be sure that 

they will not simply become confused?”
“If I tell students how to tackle a problem, they are likely to follow my instructions 

in a mechanical way, without understanding. If I don’t tell them how to tackle a 
problem, how are they going to make any progress?”

Generally speaking, we have found that teachers’ belief orientations may be clas-
sified as predominantly transmission, discovery or connectionist (Askew et al. 
1997; Swain and Swan 2007; Swan 2007). Briefly, a transmission orientation views 
mathematics as a series of ‘rules and truths’ that must be conveyed to students and 

Table�1�� A set of cards to stimulate a discussion of beliefs and practices
Mathematics is a network of ideas. You follow 

up connections as they arise so lessons are 
always unpredictable

Mathematics is a hierarchical subject. You 
need to plan a logical sequence of activities 
and stick to it

Mathematics is best learned when individuals 
practice on their own

Mathematics is best learned through discus-
sion in pairs or small groups

It is important to complete the whole syllabus, 
even if students do not understand it all

It is important that students understand all 
that they do, even if this means we cannot 
cover the syllabus

It is best to begin teaching mathematics with 
easy problems, working gradually up to 
harder ones; otherwise students make 
mistakes and lose confidence

It is best to begin teaching mathematics with 
complex problems, or students won’t 
appreciate the need for it

Mathematics is a creative subject. Students 
learn best by creating their own questions 
and methods

Students learn mathematics best by working 
through carefully constructed exercises. 
They cannot create these for themselves

It is best to spend time on few questions and 
solve them in more than one way, even if 
this slows the lesson down

It is best to cover a wide range of questions, 
so that students are able to practice the 
methods intensively

Students are at such different levels of compe-
tence that I have to allow them to work at 
their own pace

I try to teach the whole class at once and keep 
them at the same pace

I find out which parts of mathematics students 
already understand and don’t teach those 
parts

I start teaching mathematics from the begin-
ning, assuming they know nothing

I try to avoid students making mistakes when 
learning mathematics

I encourage my students to make and discuss 
mistakes when learning mathematics

I prefer to share my objectives the beginning 
of the lesson so that the class know what it 
is all about

I prefer to keep quiet about my lesson objec-
tives so that the lesson retains some ele-
ments of surprise

Designing Tasks that Challenge Values, Beliefs and Practices
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teaching as explanation, example, exercise until fluency is attained. The discovery 
orientation views mathematics as a human creation and encourages students to learn 
through individual exploration and reflection, while the teacher adopts a rather pas-
sive, reactive, facilitating role. The connectionist orientation views mathematics as 
a network of ideas that the teacher and student must construct together through col-
laborative discussion. Here, the teacher has a proactive role in challenging students. 
These are not, of course, exclusive categories but they do offer a useful framework 
for discussion with teachers (and for the analysis of the effects of the professional 
development on teachers’ beliefs)1.

As teachers discuss these ideas, they usually realise that different belief orienta-
tions are called into play, according to the values and purposes that apply in a partic-
ular lesson. A lesson designed to encourage fluency in a technique, they argue, will 
tend to involve students in individual practice, while a lesson intended to develop 
interpretations and meanings will tend to involve discussion and debate. A lesson 
designed to develop problem solving strategies may start by offering a non-routine 
problem and comparing alternative solutions, while a lesson designed to foster an 
appreciation of the cultural roots of mathematics may be introduced with an exposi-
tory film or a story, followed by a discussion. The issue thus becomes one of values: 
What relative emphasis should/do we place on each of these priorities?

In order to clarify such distinctions, we offer teachers a list of five purposes and 
invite them to indicate the emphasis that they would ideally like to give to each 
purpose (Table 2), and then the proportion of their time that they actually give to 
each purpose in their daily practice. The difference offers them an indication of the 
discrepancy between their values and their practices. Examples of classroom activi-
ties fulfilling each purpose are given, so that teachers understand the implications 
of implementing these values.

So far, we have repeated this task with several hundred teachers and the most fre-
quent outcome is that they perceive their current practices to be predominantly con-
cerned with developing fluency through practice, while they would wish to spend 
much more time working towards other goals, particularly those concerned with 
interpretations and strategies. They recognise that conflicting goals (even within a 
single lesson) are at the root of many pedagogical difficulties they face. When they 
try, for example, to teach Pythagoras’ theorem through an open-ended investigation 
their convergent purpose conflicts with the divergent nature of the task. This creates 
the dilemma: “Should I let them follow their own line of enquiry, or should I direct 
them?” It is thus made clear to teachers that the aim of the professional development 
is to equip them to develop a better match between their values and practices. We 
emphasise that we are not condemning existing teaching methods, but are rather 
offering to increase teachers’ repertoire of teaching strategies to encompass a wider 
range of purposes.

1 In passing, we note that research evidence suggests that the connectionist orientation is the most 
effective for conceptual learning, while the discovery orientation is the least effective (Askew 
et al., 1997)
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Analyse Discussion-Based Practices

In the first stage, as noted above, most teachers express a desire to develop teach-
ing strategies that will foster a greater emphasis on interpretations for concepts 
and representations and improved strategies for investigation and problem solving 
in their students. These therefore form foci for the second stage of the professional 
development. Now, we attempt to directly challenge the beliefs and practices elic-
ited in the first stage with specific examples of contrasting beliefs and practices. 
Evidence suggests that as teachers ‘suspend disbelief’, take risks, implement novel 

Table�2�� Purposes and related classroom activities. Indicate the approximate percentage of class-
room time you would ideally give to each purpose. Now repeat this showing the time you actually 
do give
Purpose is to develop If this purpose is valued, then students will be 

engaged in ….
% Ideal % Actual

Fluency in recalling 
facts and perform-
ing skills

•  Learning and memorising names and 
notations

•  Practicing algorithms and procedures for 
fluency and ‘mastery’

Interpretations for 
concepts and 
representations

•  Discriminating between examples and non-
examples of concepts

•  Generating and interpreting representations of 
concepts

• Constructing relationships between concepts
•  Translating between representations of 

concepts
Strategies for investi-

gation and problem 
solving

•  Formulating situations and problems for 
investigation

•  Constructing, refining, comparing strategies 
and solutions

•  Monitoring their own progress during prob-
lem solving and investigation

•  Interpreting, evaluating solutions and com-
municating results

Awareness of maths, 
learning maths and 
the values of the 
educational system

• Learning how maths ‘fits together’
•  Recognising different purposes of learning 

mathematics
•  Developing appropriate strategies for learn-

ing/ reviewing mathematics
•  Appreciating aspects of performance valued 

by the examination system
Appreciation of the 

power of math-
ematics in society

•  Appreciating mathematics as human creativ-
ity of historical/cultural value

•  Creating and critiquing ‘mathematical 
models’ of situations

•  Appreciating uses/abuses of mathematics in 
social contexts

•  Using mathematics to gain power over prob-
lems in one’s own life

Designing Tasks that Challenge Values, Beliefs and Practices
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classroom practices and reflect on the outcomes, they grow professionally. We be-
gin by addressing two questions: “What general research-based principles should 
underpin the teaching and learning of mathematical concepts and strategies?” and 
“What specific types of classroom task are most appropriate and how should these 
be used?”

Table 3 displays the research-based principles that we introduce to teachers. 
They are much easer to state than to implement2! We therefore illustrate each prin-
ciple by modelling it in action while teachers engage in a series of practical tasks; 
we play the role of teacher while they are the students. Typically, we select from 
the following five generic task-types, spending about one hour on each: Classifying 
mathematical objects; Evaluating mathematical statements; Interpreting multiple 

2 After one extensive professional development program, observations of teachers showed that 
many succeeded in effectively using ‘higher order questions’ and ‘cooperative small group work’ 
but still had great difficulty in ‘building on what students already know’ and in ‘exposing and 
discussing common misconceptions’ (Swain and Swan 2007).

Table�3�� Research-based principles for teaching concepts and strategies. (For research that sup-
port these principles see, for example: Askew et al. (1997), Askew and Wiliam (1995), Black and 
Wiliam (1998), Mercer (2000))
Teaching is more effective when it …
•  Builds on the knowledge students 

already have
This means developing formative assessment tech-

niques and adapting our teaching to accommo-
date individual learning needs

•  Exposes and discusses common 
misconceptions

Learning activities should exposing current think-
ing, create ‘tensions’ by confronting students 
with inconsistencies, and allow opportunities for 
resolution through discussion

• Uses higher-order questions Questioning is more effective when it promotes 
explanation, application and synthesis rather 
than mere recall

• Uses cooperative small group work Activities are more effective when they encourage 
critical, constructive discussion, rather than 
argumentation or uncritical acceptance. Shared 
goals and group accountability are important

•  Encourages reasoning rather than 
‘answer getting’

Often, students are more concerned with what they 
have ‘done’ than with what they have learned. 
It is better to aim for depth than for superficial 
‘coverage’

• Uses rich, collaborative tasks The tasks we use should be accessible, extendable, 
encourage decision-making, promote discussion, 
encourage creativity, encourage ‘what if’ and 
‘what if not?’ questions

• Creates connections between topics Students often find it difficult to generalise and 
transfer their learning to other topics and con-
texts. Related concepts (such as division, frac-
tion and ratio) remain unconnected. Effective 
teachers build bridges between ideas
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representations; Creating problems for others to solve; Comparing solution strate-
gies on unstructured problems. These are chosen and adapted to closely fit the cur-
ricula needs of the teachers.

We work with teachers on each task-type using the following four-step proce-
dure3. First, teachers work collaboratively on an exemplar task at an appropriate-
ly challenging level. As they do this, we model introductions, interventions and 
discussions that promote learning. Teachers then watch a video of an experienced 
teacher working with students on a task of the same type (though sometimes with a 
simpler example). They often express surprise at the high quality of student-student 
discussions and level of engagement shown on these videos. Thirdly, we discuss 
how the tasks were constructed to expose existing knowledge and misconceptions 
and, fourthly, we offer teachers the opportunity to generalise by modifying and 
constructing new tasks of the same type for themselves and also by considering 
alternative examples that others have constructed. Finally we challenge teachers 
to use these tasks in their own classrooms. Through this sequence of experiences, 
teachers feel what it is like to be a student challenged to think, reason and explain 
mathematically, appreciate their own role in facilitating this and also begin to un-
derstand the importance of careful task design.

Below, we describe the five task-types, offering an example of how each type 
may be presented first to teachers and then to students. We should point out, how-
ever that teachers are also offered detailed sample lesson plans4.

Classifying�Mathematical�Objects

Purpose: For teachers to recognise that concepts develop as students discriminate 
between and recognise properties of mathematical objects.

Sample task for professional development: In each of the triplets below, how can 
you justify each of (a), (b), (c) as the odd one out? What properties of the objects 
does this reveal? Create triplets of your own that you could use to stimulate discus-
sion among your students.

3 It may be noted that there are close similarities between the local four-step procedure being 
adopted for each task-type and the global four-stage structure outlined for the series of profes-
sional development workshops outlined in the introduction. Both are seeking to generate surprise 
and ‘conflict’ by confronting current practices and expectations with novel practices and research 
evidence.
4 Further examples, including videos and lesson plans may be found in DfES (2005) (see: http://
www.nationalstemcentre.org.uk/elibrary/collection/282/improving-learning-in-mathematics) and 
in Swan (2006a).
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Now try this activity with students. Also, ask students to devise their own clas-
sifications for mathematical objects (e.g. shapes, formulae). For example, ask stu-
dents to place cards showing such objects into two-way attribute grids and devise 
their own alternatives. As they do this, encourage them to articulate meanings of 
words and develop definitions.

Evaluating�Mathematical�Statements

Purpose: For teachers to recognise the importance of confronting and discussing 
common misconceptions with students.

Sample task for professional development: Classify each statement below as al-
ways, sometimes or never true. If you think it is always or never true, then try to 
explain how you can be sure. If you think it is sometimes true, then try to define 
exactly when it is true and when it is not. Write statements based on common mis-
conceptions that your own students could discuss.

Now try this activity with students. Ask students to decide on the validity of math-
ematical statements that incorporate misconceptions that they may have. Encourage 
students to defend their reasoning by devising examples and counterexamples.

Interpreting�Multiple�Representations

Purpose: For teachers to appreciate the importance of developing mental images 
for concepts by exploring alternative representations and the multiple connections 
between them.

Sample task for professional development: Match the cards together if they have 
equivalent meaning. Now add cards to this set that will force students to distin-
guish between representations that are often confused (such as (3n)2 and 3n2 in the 
example below). Create a different set of cards that will encourage students to in-

Large area

Large
perimeter

Small
perimeter

Small area
Line
symmetry

Rotational
symmetry

No rotational
symmetry

No line
symmetry

Numbers with more digits are greater in value When you multiply 12 by a number, the 
answer is greater than 12

When you cut a piece off a shape, you reduce 
its area and perimeter

Max gets a 15% pay rise and Jane gets a 10% 
pay rise

So Max gets the greater pay rise
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terpret other representations in mathematics. These may include: Words, algebraic 
symbols, pictures, graphs, tables, geometric shapes….

Now try using your own card sets with students.

Creating�Problems�for�Others�to�Solve

Purpose: For teachers to appreciate the value of: students seeing mathematical 
problems as instances of more general structures; offering opportunities for students 
to creative and communicate mathematically.

Sample task for professional development: Take a typical problem from a text-
book or examination paper. Modify the problem to make a new version according to 
a given constraint (e.g., make it more realistic, change the numbers in the problem 
and/or the questions asked about the context). Try to make your problem interest-
ing, difficult and solvable. Answer your own question and then give it to someone 
else to solve. Reflect on the different mathematics the creator and solver employed.

Now try this activity with students. Ask students to create problems for other 
students to solve. When the ‘solver’ becomes stuck, ask the problem ‘creators’ to 
take on the role of teacher and explainer. For example, one student may create an 
equation (by starting with the ‘answer’ x = 7, and then building it up step-by-step to 

n

nnn
nnn

n

n

n

Square n
then

multiply
your answer 

by 3

Multiply n
by 3 then 

square your
answer 

9n2 (3n)2

3n2

Square n
then

multiply
your answer 

by 9
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give 2( x + 10)/3 = 12). Their partner must now tries to solve it by working out the 
steps involved and ‘undoing’ each one.

Comparing�Solution�Strategies�on�Unstructured�Problems

Purpose: For teachers to recognise the importance of removing step-by-step scaf-
folding in order that students will develop greater autonomy when problem solving.

Professional development task: Take a typical ‘closed’ textbook task. List all the 
decisions that are made for students. (For example, tasks that start ‘copy and com-
plete the following table’ prevent students from being able to choose how they will 
organise data for themselves). Rewrite the task in a more open, ustructured form so 
that some of these decisions are handed back to students.

Now try the unstructured task with students. Encourage students to put together 
their own chains of reasoning. Invite students to share and discuss the different ap-
proaches that are taken. Supply further, complete (imperfect) solutions for students 
to discuss and improve.

Listening to Students

Classrooms are busy places and we find that many teachers spend little time listen-
ing probing the understanding of individual students. One activity that we use with 
teachers to encourage listening and questioning is a role play in which one teacher 
takes the role of a ‘student’ with a particular misconception, while the other, the 
‘teacher’, tries to identify it (Swan and Crust 1992). This activity is set up by giv-
ing one participant a ‘teacher’ card describing a general topic area, while the other 
is given a ‘student’ card describing a specific misconception within that topic. The 
‘teacher’ must then ask the ‘student’ a series of questions designed to uncover the 
problem while the ‘student’, without articulating the misconception explicitly, an-
swers the questions consistently in the manner suggested by the misconception.

M. Swan

Teacher’s card 

Your student answers questions like this
sometimes correctly, sometimes incorrectly: 
“I take a ball out at random from each bag.
Which bag gives me the best chance of
drawing out a black ball?”

Student’s card 

You consistently compare differences rather
than proportions when deciding which event
is most likely. So bag B would give the better
chance of choosing a black ball because there
are 3 more blacks than whites in B; while there
are 2 more blacks than whites in A.   

A B
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A New Classroom Culture

As we illustrate such tasks in use, with the help of video, teachers gradually realise 
that we are presenting a different paradigm of teaching to that found in most class-
rooms. Students are seen articulating misconceptions, discussing these in collabora-
tive groups and teachers are seen intervening in non-directive ways that stimulate 
further discussion and debate. This presents a challenge to teachers that is wel-
comed by some and seen as a threatening by others. Objections are often felt, if not 
always articulated. We therefore provide a task that attempts to expose such objec-
tions for scrutiny by offering teachers a series of genuine quotes and asking them to 
work together to write a reasoned response to each objection:

Control:
“ What will other teachers think of the noise?”
“ How can I possibly monitor what is going on?”

Views of students:
“ My students cannot discuss.”
“ My students are too afraid of being seen to be wrong.”

Views of mathematics:
“ In mathematics, answers are either right or wrong – there is nothing to discuss.” 
“If they understand it there is nothing to discuss. If they don’t, they are in no posi-
tion to discuss anything.”

Views of learning:
“ Mathematics is a subject where you listen and practise.”
“ Mathematics is a private activity.”

We then continue by showing teachers how they might recognise the qualities of 
classroom talk that are conducive to learning using, for example, the constructs of 
dialogic and exploratory talk (Alexander 2006; Mercer 1995, 2000), and then share 
strategies on how these forms of talk may be encouraged in mathematics class-
rooms. Included in this is a discussion of the ways in which ‘ground rules’ may be 
established with students and the teacher’s role during small group and whole class 
discussion. We introduce the two tasks as follows:

• Most students (and adults!) do not discuss in helpful ways most of the time. 
Some are reluctant to talk at all, while others just take over and dominate. Stu-
dents may therefore need to be taught how to discuss. Prepare your own list of 
‘ground rules’ that, in appropriate language, give guidance to pupils on how to 
talk together profitably. How could you introduce such rules to pupils? How 
could they be involved in drawing up such a list?

• While pupils are discussing, teachers often find it difficult to define their role. 
The character and content of pupil–pupil can change dramatically when the 
teacher listens in! How do you decide when to intervene? What are helpful and 
unhelpful things to say or do? Describe your own role while pupils talk together.

After each discussion, we ask teachers to compare their suggestions with those of-
fered in Table 4, below.

Designing Tasks that Challenge Values, Beliefs and Practices
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Suspending Disbelief and Adopting New Practices

After exposing teachers to the tasks described above, we invite them to tempo-
rarily ‘put to one side’ their doubts and fears and simply implement the tasks we 
have provided in an open-minded way. This is a risk for them, and we emphasise 
that it is the pedagogical principles under trial—not the teachers. We offer on-
going advice and support through classroom visits, or where this is impractical 
through a system of ‘telephone mentors’—teachers who have been through the 
process before. We monitor the implementation through a triangulation of stu-
dent questionnaires, researcher observation and teachers’ own self-reports (dia-
ries, interviews and questionnaires). For a complete set of instruments, see Swan 
(2006a).

As may be expected, teachers implement the principles in many ways, with dif-
fering degrees of success. This appears to be profoundly influenced by teachers’ 
prior beliefs about mathematics, teaching and learning.

Many secondary and adult education teachers on our professional development 
courses begin with a transmission belief system that they have held for a long time. 
These beliefs (see Sect. 2 above) are resistant to change and act as filters through 
which the teachers both anticipate what will happen when they implement the prin-
ciples (e.g., ‘I will lose control’), and interpret lesson outcomes (e.g., ‘Discuss-
ing misconceptions confused them’). In contrast, connectionist teachers appear to 
have higher expectations of students (e.g., ‘Students can cope with more demand-
ing work’) and are enthusiastic when reporting outcomes (e.g., ‘I’m very glad they 
did get confused, because then they started to think’). Other transmission teachers, 
however, appear more open and able to act in new ways as if they believed differ-
ently. Some abandon their traditional ‘explainer’ role completely and move to the 
opposite extreme playing a passive, reactive role. They thus change their behaviour 
to act in ways consistent with a discovery orientation. It is only later that we find 
they begin to renegotiate their role and learn how to intervene, provoke and col-
laborate without ‘taking over’. This may go towards explaining why some teachers 

Table�4�� Ground rules for students and the role of the teacher during a discussion
Ground rules for students The role of the teacher
• Give everyone a chance to speak • Make the purpose of the discussion clear
• Listen without interrupting • Keep reinforcing the ‘ground rules’
• Check that everyone else listens • Listen before intervening
• Try to understand what is said • Join in, don’t interrupt
• Build on what others have said • Don’t judge or praise—this discourages contributions
• Challenge what is said • Ask students to describe, explain and interpret
• Demand good explanations • Do not do the thinking for the students
• Treat opinions with respect
• Share responsibility
• Try to reach agreement

•  Don’t feel you need to resolve everything before leav-
ing a group or before the end of the lesson
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temporarily (we hope!) become less effective during professional development as 
they ‘unlearn’ old habits.

As may be expected, interpretations of the principles evolve considerably 
through the course of professional development. Initially, for example, some appear 
to interpret our purpose as one of curriculum development rather than professional 
development. They see the different tasks as providing ‘enrichment’ to existing re-
sources rather than as a generic means to foster conceptual development and dif-
ferent forms of reasoning. They become productive instead of reflective. Some use 
language imprecisely and do not discriminate between, for example, mistakes and 
misconceptions or between talk and discussion. This causes a number of implemen-
tation problems. For example, after exposing an error, the teacher might focus on 
putting students right, rather than on developing their reasoning. The teacher may 
ask students to work together, without talking to them about how they should work 
together. Students and teachers clearly need time to explicitly discuss and accom-
modate new ways of working.

Reflecting on Experience

In our model, teachers meet periodically for follow-up whole day ‘workshops’ to 
reflect on their classroom experiences. Initially, we ask them to use their class-
room ‘diaries’ to recollect what happened when they tried to implement a princi-
ple and to report on it descriptively, without passing judgments, such as “It went 
well”. They use student work to help in this process. We organise this in pairs or 
small groups in the form of informal interviews, with one partner prompting with 
questions and taking notes, while the other responds in a detailed, vivid way. A 
typical set of prompting questions is reproduced in Table 5. Towards the end of 
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Table�5�� Suggested prompts for teacher feedback
• What was your purpose for the lesson?
• What were your fears and expectations?
• How did you organise the lesson? How was the classroom arranged? Why did you organise 

things in this way?
• How did you introduce the lesson? What did you tell the students about: (a) the project; 

(b) the particular task? (c) the way students should work on the activity; (d) the reasons why 
you wanted them to work in this way?

• What happened during small group work? What did your students find difficult? What did 
you find difficult?
How and when did you intervene?

• What happened during whole class discussions? How did you organise it? Just at the end, or 
during the lesson?
What did students find difficult? What did you find difficult?
Did students report back on their discussions? How did this happen?
What generalisations/big ideas emerged?

• What issues have arisen for you? What changes should be made to the tasks? What would 
you do differently next time?
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the report, we invite teachers to identify areas with which they are struggling 
and then plan discussions on these issues for the following workshop. Common 
requests for help are on managing small group and whole class discussion.

Towards the end of each workshop, we encourage teachers to describe how their 
perceptions of teaching and learning have changed and the reasons for this. Those 
that profess the greatest changes are usually those who recognise the inadequacies 
of their current practices and are willing to persist with the tasks over several les-
sons. These teachers frequently report both surprise and delight at the improvement 
in the engagement and attitude of their students:

There was a significant increase in student involvement…. It took one or two lessons for 
students to adjust to the new learning style. I have learned to wait and listen to student 
responses. I like to start lessons with ‘what do you know about?’ which encourages discus-
sion. I am learning when to stand back at the appropriate time and allow students to reason 
on their own or with fellows. My teaching style is now far less prescriptive. Exploring what 
students know encourages a far wider participation. I also believe that allowing students to 
make mistakes and learn from them is a very powerful technique. (Teacher’s written report)

�Concluding�Remarks

Research evidence to suggest that teachers’ values, beliefs and practices are ex-
tremely resistant to change (Kagan 1992; Nespor 1987). In a literature review fo-
cused on the design of effective professional development, Wilson and Cooney dis-
till three important themes. Firstly, they found focused, specific reflection is neces-
sary in order to avoid teachers merely recalling past events and experiences.

To accommodate change, teachers need first hand experiences working on specific innova-
tive investigations and activities that they are attempting to use in their classrooms. These 
experiences, as both students and teachers, influence what teachers ultimately think and 
do…. It is through the act of reflecting on specific events that those centrally held beliefs 
can be affected in fundamental ways (Wilson and Cooney 2002, p. 142).

Secondly, they comment on the power of encouraging teachers to attend to students’ 
understanding. Encouraging student debate in the classroom not only helps teachers 
to become sensitized to student understanding, it also emphasises the value of this 
way of working. Thirdly, they emphasise the importance of teachers sharing the 
‘authority’ of both intellectual and pedagogical issues with students. Teachers thus 
begin to learn from their students and the environment becomes truly collaborative.

In the sequence I have described, all three themes are evident. Our research sug-
gests that when teachers adopt new practices and reflect upon the often-surprising 
consequences, their beliefs are changed in profound ways. We also find that teach-
ers welcome an opportunity to clarify and discuss their values and the framework 
we have provided for this offers one way of understanding the tacit dilemmas that 
they face every day. Rather than trying to find the ‘best way’ to teach mathematics, 
they begin to look for an appropriate way to teach each particular lesson according 
to whether the primary goal is to improve fluency, understanding, strategies, aware-
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ness or appreciation. Research may then be used to indicate appropriate teaching 
principles that may be applied. The tasks and ‘lesson plans’ we design then offer one 
way of realizing these principles in practice.
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�Introduction

The Emergence of Cognitive Conflict  
as an Instructional Strategy

The analysis of different dimensions of teacher knowledge as described by Shulman 
(1986) in general and further detailed for teaching mathematics, has called atten-
tion to the complexity of the teacher educator’s role. Teacher education is expected 
to promote prospective teacher knowledge in mathematics, in pedagogical content 
knowledge, psychological aspects of children’s learning, existing curricula, and ad-
ditional important dimensions and issues such as goals and beliefs.

Commonly, the teacher educator (TE) does not have a textbook, and has to ex-
hibit a lot of creativity in designing and implementing tasks to achieve these goals. 
As a result, teacher educators develop their own task construction principles and 
strategies that fit with their beliefs about learning, their assumptions about pro-
spective teacher knowledge, and their knowledge about the learning of prospective 
teachers. Thus, for example, Zaslavsky (2005) designs tasks to evoke teacher uncer-
tainty, and Peled (2007a) uses analogical reasoning in constructing tasks that make 
prospective teachers aware of children’s difficulties.

It is not surprising that in searching for an instructional strategy that has a good 
potential for promoting change and knowledge growth, the use of cognitive conflict 
as a strategy comes to mind. Cognitive conflict was originally considered by Piaget 
(1985, original work 1975) as a pivotal step in his equilibration theory. According 
to Piaget (1985, original work 1975), development is a constant process of growth 
motivated by the desire to stay in a state of equilibrium. Piaget suggests that an 
opportunity for growth arrives when some new experience conflicts and cannot be 
explained using existing knowledge schemes. When the conflict is strong, it can-
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not be resolved by simply assimilating the new piece of knowledge. The drive for 
regaining equilibrium results in a stronger effort to find a resolution, leading to the 
accommodation of existing schemes and the construction of new ones.

One of the main educational implications of Piaget’s theory is that in order to 
encourage and support development, it might be a good idea to deliberately cre-
ate cognitive conflict opportunities. As a result, cognitive conflict has become an 
instructional strategy.

In its use as an instructional strategy, cognitive conflict has become an immedi-
ate association with conceptual change. The conceptual change model suggested 
by Posner et al. (1982) builds on Piaget’s theory (1985, originally1975) elaborating 
and highlighting the crucial phase of dissatisfaction that generates cognitive conflict 
creating the need to restructure existing concepts.

Accumulated experience with the cognitive conflict strategy has shown that its 
implementation and effect are not straightforward and that different considerations 
should be made. Limón (2001) reviews and analyzes research results, identifying 
several factors and conditions that determine whether instruction would lead to a 
meaningful conflict. Some of these factors are motivation, prior knowledge and be-
liefs. Zohar and Aharon-Kraversky (2005) focus on an important factor that relates 
to prior knowledge, showing that students’ academic levels play a significant role in 
determining the effect of the cognitive conflict strategy.

Cognitive Conflict in Mathematics and Science  
Teacher Education

There is more literature on using cognitive conflict with children than on its imple-
mentation with teachers. But many considerations that apply in working with chil-
dren apply to our work with teachers and prospective teachers.

In designing a task that aims to create a cognitive conflict for teachers the teacher 
educator deals with problems that are similar to what a teacher faces in designing 
a task for children. Specifically, just as the teacher should know that what she as-
sumes to be evidence that would create conflict for children might not be perceived 
as such by them, the teacher educator would have to be aware of the possibility that 
what she views as anomalous data might not be accepted as such by the teacher or 
prospective teacher.

This obstacle is demonstrated by Peled (2007a) following prospective teacher 
use of an inappropriate linear model in a task that asks about the number of greeting 
cards that can be cut from a rectangular cardboard. Some teachers calculated the 
ratio between the length of the board and the length of a card, and the ratio between 
their widths. Then instead of multiplying the two values, they gave one of them as 
the answer. It was speculated that this linear model resulted from the fact that the ra-
tios in both dimensions happened to be the same and because the prospective teach-
ers did not pay much attention to the situation. It was also assumed that different 
ratios might trigger confusion when one tries to use only one ratio. Following these 
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assumptions and in an effort to refrain from telling the teachers what was wrong, 
Peled (2007a) designed a similar task with numbers that the yield different ratios. 
It was expected that these numbers would create conflict and encourage problem 
re-organization, reflection and self correction. Unfortunately, in the first new task 
more than half of the prospective teachers who used a linear model did not note or 
experience any conflict.

The failure to facilitate a conflict often results in cycles of task design efforts in 
the spirit of design experiments. Thus, realizing the need to make the cognitive con-
flict strong enough for his prospective primary teachers, Parker (2006) explores the 
effect of a range of scenarios of increasing depth of conflict in developing teachers’ 
knowledge about a scientific concept (shadow formation).

Some of the work on cognitive conflict in mathematics teacher education is con-
ducted under a more general perspective of a search for powerful tasks to promote 
learning. In this capacity Zaslavsky’s work (2005) that was mentioned earlier offers 
a reflective account on task design and task implementation in teacher education 
and arrives at the conclusion that conflict has played a central role in the tasks she 
has found to be effective.

An example of the effect of a task that evokes uncertainty is demonstrated by 
Zaslavsky et al. (2002), who draw a graph in a non-homogeneous coordinate system 
creating conflicting answers about the slope of a graph. This non standard situation, 
presented to students, teachers, and prospective teachers, creates, on the one hand, a 
(desired) need to settle definition inconsistencies. On the other hand, it demonstrates 
that a conflict might lead to frustration instead of facilitating knowledge growth.

�Three�Examples�of�Cognitive�Conflict�Goals

As mentioned earlier, there are many knowledge dimensions on which mathematics 
teachers and prospective teachers are expected to grow. Our purpose, in this article, 
is to demonstrate the potential power of the cognitive conflict strategy in a wide 
range of goals pertaining to teacher knowledge.

A specific task might facilitate the “whole” cognitive conflict process in the 
sense that it serves both as a source for conflict and instability, and at the same 
time as an opportunity to reflect, reorganize one’s knowledge and construct new 
knowledge. Yet, the use of a cognitive conflict strategy quite often involves a se-
quence of activities and not just one task. Tasks can serve different roles in such a 
process. A task that is used in the initial stage of the process might be designed to 
make teachers aware of the limitations of their knowledge creating dissatisfaction 
and motivation to acquire new knowledge. A task that is used at a later point in the 
sequence might be designed for the purpose of promoting the construction of new 
knowledge (that, to use Piaget’s terms, is expected to resolve the conflict, bringing 
one back to a stable state).

As will be shown (and compared in the discussion), the following three exam-
ples demonstrate the use of the cognitive conflict pedagogical strategy for making 
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different types of changes. At the same time they demonstrate tasks that are used 
at different points in the process. The first example is an initial task in an activity 
sequence. It intends to cause dissatisfaction with current knowledge about chil-
dren’s thinking and create motivation to understand the development of children’s 
decimal conception. The other two examples have been designed to serve a double 
purpose. In addition to creating a conflict, they are expected to help prospective 
teachers in constructing new knowledge. The second example deals with affecting 
mathematical and pedagogical content knowledge while the third example deals 
with prospective teacher epistemological knowledge related to beliefs on the role 
of mathematics.

All the following examples describe activities and student responses in a teacher 
education course that deals with psychological and didactical aspects in teaching 
mathematics (this is also the course’s name). The prospective teachers in this course 
are studying towards their teacher certificate in secondary school mathematics. 
Most of them are in their third year of undergraduate mathematics and some have 
already completed their undergraduate degree in mathematics. The course was de-
signed and taught by the first author. The lessons were recorded by the second au-
thor as a part of her doctorate research.

�A�Pedagogical�Goal:�Trading�Places

Background and Design

This task was constructed as a part of a sequence of activities that were designed to 
promote prospective teacher knowledge on children’s thinking about decimal frac-
tions. It was designed to be the initial task the purpose of which was to substanti-
ate the importance of learning about children’s development of this mathematical 
concept.

The task consisted of an episode that showed the results of two tests taken by two 
(imaginary) children that represent two common types of decimal conceptions. The 
TE designed the tests using items that can detect the two conceptions. The propor-
tion of the different items was purposefully chosen to create a “trading places” phe-
nomenon. That is, although none of the children undergoes any knowledge change, 
their grades change dramatically from the first to the second test. Specifically, one 
of them succeeds in the first test and fails in the second test, while the opposite is 
true for the second child.

Based on earlier experience with prospective teachers and teachers, the TE’s as-
sumption was that, being told that the children did not study between tests, the pro-
spective teachers would expect each child to get similar grades in the two tests, and 
would be perplexed upon viewing a situation that conflicts with this expectation. 
This realization was expected to create dissatisfaction with their own conception of 
children’s decimal knowledge and with their knowledge about the nature of tests. 
As a result it was supposed to generate motivation and curiosity for further learning.
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Task Implementation

At the start of the activity sequence on children’s decimal conceptions, the prospec-
tive teachers were asked to analyze the episode presented in Table 1.

The instructions included an explanation about the task and about the test cir-
cumstances. The TE added the following information: The two children, William 
and Frank, whose tests are presented in Table 1, were in sixth grade. Their teacher 
gave her class two decimal comparison tests on two consecutive days without any 
additional instruction between the first and the second tests. In each test the children 
were asked to compare pairs of decimals and circle the bigger number or mark them 
as equal. The teacher checked the tests using pluses for correct answers and minuses 
for incorrect answers (as seen in Table 1). She then calculated the proportion of cor-
rect answers for each child in both tests. While doing so, the teacher was especially 
surprised at the change in performance of two of her students, William and Frank.

The prospective teachers were told that their task is to help the teacher interpret 
and explain these results. They were told to record their speculations in the space 
allocated for “first explanation”, and informed that they would be asked to suggest 
a “second explanation” at a later point. During the task implementation, when the 

Table�1�� The trading places task: a pedagogical goal
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prospective teachers were showing signs of puzzlement, they were told that it is 
“legitimate” to record these feelings in the space assigned for the first explanation.

Based on their first explanations, all the prospective teachers in the course ex-
pressed surprise at the fact that there was such a change in grades given there was 
no change in knowledge. A variety of different speculations was suggested in these 
explanations, such as: “Maybe one of them was sick”, or “Maybe William remem-
bered answers from the first test”. While a part of the prospective teachers could 
not think of any interpretation, some others suggested that William might have used 
a certain rule in both tests, judging longer numbers to be bigger. A few of the pro-
spective teachers suggested that, contrary to William, Frank judged shorter numbers 
to be bigger. These explanations remained at a superficial level and did not go any 
deeper than looking at number lengths.

The emerging conclusion from class discussion was that it was important to find 
an explanation for the observed episode, and that it could be done by learning about 
the way children perceive decimals. Thus the discussion set the ground for teacher 
learning about the development of children’s decimal conceptions. In terms of the 
cognitive conflict process, following the realization that one’s knowledge does not 
suffice in explaining the given case, the first stage was reached. That is, a state of 
dissatisfaction with one’s knowledge was established, as depicted in Table 2.

The more advanced stages of the desired (cognitive conflict based) change 
process occurred in following tasks that involved reading excerpts of children’s 
interviews, discussing children’s conceptions informed by decimal number re-
search (Nesher and Peled 1986), and role playing some of the main conception 
types. Equipped with new knowledge the prospective teachers were asked to give 
a second explanation for the trading places episode. At this point they were able 
to diagnose William as a child who has a whole number conception of decimals. 
This conception fails him in some cases where he would say “0.35 > 0.7 because 
35 > 7” but sometimes results in a correct response (for the wrong reasons) such 
as “0.35 > 0.2 because 35 > 2”. Frank was diagnosed as using a “shorter is bigger” 
rule that could be derived from several different conceptual sources. The common 

Table�2�� Components of cognitive conflict in the trading places example
Initial beliefs or 
knowledge

Cause for equilibrium 
disruption

Essence of conflict Expected effect

1.  Feeling confident 
about understanding 
children’s thinking 
about decimals

2.  Believing that a test 
grade reflects the 
child’s knowledge 
(and given two test, 
a child should get 
similar grades)

A case where children 
get very different 
grades in two con-
secutive decimal 
tests

Specifically, a child 
with a high grade 
gets a very low 
grade, and a child 
with a low grade 
gets a very high 
grade

Conflict between the 
belief about tests 
and the observed 
case

Existing knowledge 
does not provide 
an explanation

1.  Motivation for 
learning about 
children’s decimal 
knowledge 
development. 
New knowledge 
is expected to 
explain the case

2. New conceptions 
about tests
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speculation, based on the most prevailing source, was that Frank holds a decimal 
fraction unit conception leading him to view tenths as bigger than hundredths 
disregarding the number of units of each type and thus concluding that 0.2 > 0.35. 
This strategy “wins” him some points in items such as “0.32 > 0.248” because the 
number “in hundredths” (0.32) happens to be bigger than the number “in thou-
sandths” (0.248).

With this diagnosis what was still left to discuss was the “trading places” phe-
nomenon from a testing and evaluation perspective. The grounds for this discussion 
were prepared by one of the activity sequence tasks involving test construction and 
role playing different conceptions. This task served to demonstrate the tight relation 
between choice of test items and children’s success rate. Specifically, it demonstrat-
ed that a test that consists of a large proportion of items that “detect” one conception 
would result in a low grade for a child with this conception and, possibly, a high 
grade for a child holding a different conception.

The discussion strengthened teacher awareness of the crucial role of the choice 
of item frequencies (the proportion of items that were constructed to detect each 
conceptual model) in determining children’s grades. With regard to the episode, 
it was also realized that the teacher educator’s success in designing this task had 
resulted from the same explanation. That is, that one can design a test that will 
yield the grades 40, 80 for two children holding some known conceptions, and also 
design a test where these same children would get the grades 80, 40 correspond-
ingly. This realization promoted a shift towards viewing the role of such tests as a 
diagnostic rather than a mean for assigning grades.

�A�Mathematical�(and�Pedagogical)�Goal:�Father�and�Son

Background and Task Design

While the previous example was designed by the teacher educator as a pre-planned 
activity mainly intended to create doubt and need to learn more about a specific 
topic, the current activity was created ad-hoc and designed to achieve several 
goals.

The task was preceded by a sequence of lessons that dealt with complex aspects 
of percent problems involving a focus on the crucial role of the operator’s reference 
and the use of qualitative argumentation. The prospective teachers were given a 
homework assignment that included the following problem:

The price of an adult ticket to an amusement park is 40% lower than the price of a child’s 
ticket. A father and his son paid $128 for their tickets. What was the price of the father’s 
ticket?

As expected, most of the prospective teachers solved the problem correctly, fol-
lowing the choice of the price of the son’s ticket as the missing value, x. Yet, two 
of the prospective teachers chose the father’s ticket price as x, and then went on to 
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(incorrectly) claim that both tickets would amount to 240% x, getting the expression 
240% x = 128. As can be seen, although their mistake was not in the choice of x but 
in the wrong inversion of the direction of the percentage relations (i.e. in saying that 
if A is 40% less than B, then B is 40% more than A), it was this choice that made 
the inversion necessary to begin with (the common choice of x did not require an 
inversion).

This was an unexpected and therefore interesting response, since these pro-
spective teachers had coped with problems involving increase and decrease of 
prices, and had discussed the concept of reference in calculating percentages. The 
TE was wondering whether these two students had not acquired the mathematical 
knowledge needed for handling situations with percentages, or perhaps they do 
hold this knowledge, but the unfamiliar situation enabled their (wrong) intuitions 
to take control and suppress existing formal knowledge. The TE was also wonder-
ing if the prospective teachers that did solve the problem correctly would make 
the correct conversion if they were put in a situation that required inversion of 
relations.

Following these deliberations, the TE decided to design a “follow up” similar 
problem in the spirit described by Peled (2007a) with an effort to create a conflict 
that would promote self reflection. The idea behind the design of the task was to 
request all prospective teachers to solve the task in two ways, using the convenient 
choice of x, and the less convenient choice of x, that involves the inversion of the 
given relation. The TE expected the two teachers who made an earlier incorrect 
conversion to get a correct solution when they use the “convenient x”, and an incor-
rect solution for the “inconvenient x”. Moreover, the TE expected some of the other 
prospective teachers to (also) make a wrong conversion when they would be forced 
to use the “inconvenient x”. All the teachers who would make the wrong conversion 
would get two different results, and were expected to become perplexed by these 
conflicting answers, and engage in an effort to resolve the conflict.

By designing this task the TE had several simultaneous goals in mind. She want-
ed to investigate the source of teacher incorrect answers and at the same time use 
the new situation as an additional opportunity to extend teacher knowledge. The 
task was expected to promote their knowledge about the concept of reference in 
percentages, and demonstrate the use of a pedagogical approach that promotes self 
reflection, increasing teacher content knowledge and pedagogical content knowl-
edge (Shulman 1986). It was also intended to serve as an opportunity to discuss the 
struggle for control between intuitive knowledge and formal knowledge (Fischbein 
1987; Fischbein et al. 1985). That is, demonstrate the strength of intuitive knowl-
edge through their own experience and thus facilitate better understanding of the 
forces that are involved in children’s problem solving.

Task Implementation

In the next class period (that happened to be about a month later because of a semes-
ter break), the whole class was given the following problem:
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The�Country�Fair�Problem: A group of 6 adults and 10 children went on a 
trip. One of the group members, Dan, paid for the group’s entrance to a Coun-
try Fair a total amount of $560. When he wanted to collect the money from 
his mates he realized that he does not remember the different ticket prices. 
All he remembered was that the price of a child’s ticket was 20% lower than 
an adults’ ticket. On the basis of this data Dan tried to reconstruct the ticket 
prices. Suggest�at�least�two�ways�by�means�of�which�Dan�could�have�fig-
ured�out�these�prices.

When the task was presented to the prospective teachers, they deliberated on what 
could be considered as different ways. The TE explained that the difference did not 
have to be radical, and that the diverse choices of what to represent as x could be 
considered as different ways. The prospective teachers continued their work. After 
a while the remark “but I am getting different solutions” started coming up from 
different directions.

As it turned out, all of the prospective teachers, and not only the two teachers 
who erred in the original assignment, failed in calculating the inverted price rela-
tions. They all concluded that if one amount is 20% less then another amount, then 
the latter is 20% more than the first. Specifically, while with the more convenient 
choice of x, the price of an adult ticket, there was no problem figuring out that the 
child’s ticket was 0.8x, but, when x stood for the price of a child’s ticket, the adult’s 
ticket was incorrectly calculated as being 20% more than x, getting 1.2x.

For some time the prospective teachers worked individually, trying to figure 
out what went wrong, but could not detect the source of the problem. Thus, at 
this point they reached the stage of disequilibrium (depicted in Table 3) but did 

Table�3�� Components of cognitive conflict in the father and son (tickets) example
Type of 
knowledge

Initial beliefs or 
knowledge

Cause for equilib-
rium disruption

Essence of 
conflict

Expected effect

Content 
knowledge

Given that a certain 
amount A is 
20% less than 
B, it can be 
deduced that 
B is 20% more 
than A

Given a problem 
that should have 
one specific 
result, the two 
different ways 
to solve the 
problem yield 
(unexpected) 
different results

A feeling that 
there must 
be something 
wrong in the 
knowledge 
related to 
solving the 
problem

Strengthening 
formal knowl-
edge related to 
the reference 
in calculating 
percentages

Pedagogical 
content 
knowledge

Getting the right 
answer indicates 
good formal 
knowledge, 
while a wrong 
answer indicates 
lack of formal 
knowledge

Encountering dif-
ficulty in spite 
of possessing 
relevant formal 
knowledge

A feeling that dif-
ferent forces 
take part in 
their thinking

Understanding 
that intuitive 
knowledge 
might interfere 
even when 
one has rel-
evant formal 
knowledge
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not resolve it yet. Only a collective effort through group discussion brought up 
the problematic inversion. Once it was realized, one of the prospective teachers 
identified the connection to problems that had been dealt with in previous classes: 
“It’s like what we talked about! When a product’s price increases by 20% and then 
there’s a 20% reduction, it does not return to its original price because the ‛whole’ 
changes!”

The discussion continued, and when it seemed that all prospective teachers 
agreed about the conversion and arrived at the ratio of 1/0.8 = 1.25 between the 
adult’s ticket and the child’s ticket, they were asked to generalize and interpret this 
relation. That is, asked whether it is always the case that when one value is 20% less 
than another, then the latter is 25% more than the first.

At the end of this class session the TE discussed the goals of the problem solving 
sequence. She highlighted the mathematical difficulty involved with the issue of 
reference in calculating percentages together with the strong misleading intuitions 
that keep “creeping up”. She pointed out to the teachers that they were influenced 
and “overpowered” by these intuitions in spite of their formal knowledge and their 
previous experience with relevant problems; It was, therefore, expected that they 
would acquire more understanding and compassion towards similar difficulties ex-
hibited in the future by their own students.

In addition to that, the TE detailed the didactical rationale for designing the sec-
ond problem (the Country Fair problem), explaining her effort to make students 
aware of this mathematical difficulty by creating a situation that would get them 
into a cognitive conflict.

Since this task involved several goal levels, and it was important to make sure 
that the prospective teachers became aware of the different perspectives, a reflec-
tion process complemented the task. The prospective teachers were asked in their 
homework assignment to reflect on the whole process and on the different goals 
of their teacher, the TE. They were asked to describe what the TE expected would 
happen (being advised to use the term cognitive conflict the TE had used in class), 
the task characteristics that were expected to cause it, and their own personal ex-
perience.

�An�Epistemological�Goal:�The�Lemonade�Stand

Background and Task Design

This example entails goals that have not been discussed in the literature on teacher 
knowledge, but we believe them to be important. These goals are epistemologi-
cal, relating to teacher understanding of the role of mathematics in general and in 
problem solving in particular. Similarly to the “trading places” example, this was 
a pre-planned example aimed to elicit cognitive conflict leading to change in the 
prospective teacher beliefs.

I. Peled and A. Suzan



83

As discussed by Peled and Basan-Cincenatus (2005) and by Peled (2007b), our 
assumption was that the prospective teachers would regard alternative solutions for 
problems involving normative contexts as mathematically inferior to conventional 
solutions that use proportion. Our purpose was to make them realize that the differ-
ent solutions should have the same mathematical status.

To establish prospective teacher prior beliefs we presented them with the lottery 
problem:

Two friends, Anne and John, bought a $5 lottery ticket together. Anne paid $3 and John paid 
$2. Their ticket won $40. How should they share the money?

All the prospective teachers solved the problem by sharing the money according to 
the ratio of the friends’ contributions to the ticket’s price. Class discussion showed 
that while choosing to use proportion, the prospective teachers were not aware of 
using any assumption. It is only during the discussion that the implicit assumption, 
that each invested dollar should yield the same profit, became explicitly formulated.

Following this discussion, prospective teachers were presented with children’s 
answers and asked whether these answers were correct and whether they would 
have accepted them as valid answers:

Aviv:   They should split it evenly. 40:2 = 20 so each gets $20.
Ron:   Since Anne paid one dollar more than John, she should get $20½ and John 

should get $19½.
Dona:   They should get according to what they paid. 40:5 = 8, 8×3 = 24 8×2 = 16, 

so Anne should get $24 and John should get $16.

Most of the prospective teachers stated that the only correct answer is the third 
one. Even though the other two answers were viewed as practically reasonable, 
they regarded them as mathematically inferior, or, to say it more bluntly, as 
mathematically incorrect. This activity was conducted in several slight varia-
tions. In another class, instead of the lottery ticket, prospective teachers were 
presented with a shopping problem that involved several options of sharing a 
purchase price between friends. Similarly to the reaction to the lottery ticket 
example, prospective teachers believed that there was only one mathematically 
sound solution, while the rest of the solutions were acceptable morally but not 
mathematically.

This attitude towards alternative solutions reflected and established teacher 
epistemological beliefs about the role of mathematics and the meaning of fitting 
a mathematical model in a given situation. To achieve a change in these beliefs, 
we designed the lemonade stand problem. This task was similar in structure to 
the lottery problem, conventionally considered as a proportion problem. But its 
expected solution did not involve proportion and we anticipated that it would 
be more willingly accepted as a sound mathematical solution by the prospective 
teachers.

It was also expected that a conflict would be created as a result of the prospective 
teachers’ realization that they were inconsistent in their attitudes towards the solu-
tions of similar structure problems.
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Task Implementation

The prospective teachers were asked to solve the following problem:

The�Lemonade�Stand�Problem: During the Country Fair Tammy and Abby 
put up a lemonade stand. Tammy bought disposable cups for $10 and Abby 
bought concentrated lemon-juice for $14 and mineral water bottles for $36. 
They sold lemonade for a total of $480. How should they split the money?

Two different solutions were suggested by the prospective teachers. One solution 
involved regarding the expenditures as investments and splitting the total amount 
according to the investment ratio. A second solution involved reimbursing each of 
the two friends for the money that was spent on the products, i.e. $10 for Tammy 
and $50 for Abby, and splitting the remaining $420 evenly between them.

At this point some of the prospective teachers began noticing that there was 
some inconsistency in their attitude towards problem solutions. As depicted in 
Table 4, they were puzzled by the realization that although the problem’s structure 
is similar to the structure of the lottery problem, they regarded its solutions differ-
ently. While alternative solutions of the lottery problem were not accepted, here 
they were ready to accept an alternative solution and thought that it did not have a 
more inferior mathematical status. They were even beginning to wonder whether 
this same solution could apply to the lottery problem. That is, that each partner 
would get what she paid for the ticket and the rest of the money would be split 
evenly. This, in fact, resulted in the same answer as offered by the second child 
($20½ and 19½).

Table�4�� Components of cognitive conflict in the lottery vs. lemonade example
Initial beliefs or knowledge Cause for equilibrium 

disruption
Essence of 
conflict

Expected effect

The lottery problem and 
other problems of a 
similar structure (where 
2 partners make different 
investments) should only 
be solved by propor-
tional profit sharing. 
Alternative solutions 
might be accepted on 
realistic basis, but should 
not be considered as 
mathematical solutions

A problem that is ana-
logical in structure 
to the lottery prob-
lem (i.e. 2 partners 
make different 
investments), and 
yet what seems like 
a sound mathemati-
cal solution is not 
based on a math-
ematical model of 
proportion

Different solu-
tions and 
different 
attitudes 
towards 
realistic con-
siderations in 
supposedly 
analogical 
problems

1. Readiness for 
change in attitude 
towards solutions 
that are based 
on realistic 
considerations 
(in terms of their 
mathematical 
structure)

2. Motivation for 
better understand-
ing of mathemati-
zation processes
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�The�Nature�of�Examples:�A�Comparison

We have chosen to present three examples that demonstrate the wide range of goals 
for which the cognitive conflict strategy can be used. Obviously, through the use 
of the same strategy, they all have much in common. All three tasks were designed 
to facilitate change. They all offer an opportunity for experiencing discomfort and 
confusion creating motivation to search for a resolution and setting the ground for 
welcoming new ideas that might offer better answers.

Still, each example has its own special features that we have highlighted and 
presented in Table 5. Some of the differences are less “dramatic” and simply 
involve a different focus or goal preference. For example, while all tasks are 
expected to create motivation for learning new knowledge or new perspectives, 
the “Trading places” example focuses on this goal in particular. As can be seen 
in Table 5, although all three tasks were carefully designed, the second example 
(father and son tickets) was constructed ad hoc triggered by some incorrect pro-
spective teacher solutions to an earlier problem. This difference is also an indi-
cation of the type of knowledge that was handled in this example. On the one 
hand it is less “impressive” because it deals with some very specific knowledge, 
while the third example is aimed at a more general and abstract goal. On the 
other hand this example turns up as an opportunity to achieve several goals at 
the same time:

1. Growth in mathematical knowledge relating to the issue of reference in calculat-
ing percentages;

2. Growth in understanding children’ difficulties on this issue; and,
3. Learning about cognitive conflict as an instructional strategy.

Table�5�� A comparison of the three examples
Trading places (test 
grades)

Father and son 
(tickets)

Lemonade and lottery 
(profit sharing)

Goal in terms of 
knowledge 
dimension/type

Pedagogical Mathematical and 
pedagogical

Epistemological

Design 
circumstances

Planned Designed ad hoc Planned

Mathematical 
context

Decimal fractions Algebra and 
percentages

Proportion

Main expected 
effect

Create motivation 
for acquiring 
more pedagogical 
knowledge. Further 
change is expected 
to occur following 
an instructional 
trajectory

Acquire new content 
knowledge and 
pedagogical con-
tent knowledge 
by collective 
discussion of task 
solution

Create disposition for 
change in attitude and 
for change in concep-
tions. Possibly actual 
change for some of 
the prospective teach-
ers, while others need 
additional instruction
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The first example stands out in a different way. While the other two examples were 
administered with the expectation for a “complete” conceptual change process, the 
trading-places example was only meant to arouse curiosity and prepare the ground 
for future change. An added value to the motivation for learning is its contribution 
to better understanding the role of diagnostic tests, when the process of designing 
the task becomes transparent.

It should be noted that each of the examples was originally designed by the 
teacher educator to attain a different goal. But because they are all examples of 
using cognitive conflict as an instructional strategy, each example also models this 
strategy for teachers. However, to ensure awareness and learning from this experi-
ence, each example has to be discussed with the prospective teachers on a meta-
level. That is, the teachers have to reflect on the process and to explain the role of 
the task characteristics in promoting conflict and change.

�Concluding�Remarks

The use of cognitive conflict as an instructional strategy is common in science edu-
cation, where data is presented for the purpose of making the learner realize that 
for her current scientific schema this data is anomalous. Since the schema is not 
powerful enough to explain the given data, the learner realizes it should undergo a 
change. The new schema that emerges following further instruction, deliberations 
and investigations is a schema that can view the originally anomalous data as “nor-
mal” data. This instructional process imitates the development of new schemes and 
new scientific theories in the history of science, where new ideas were triggered 
by identifying and noticing anomalous data rather than being introduced to it by an 
instructor.

In the learning of mathematics “anomalous observations” are substituted by data 
that is considered to be unexpected or in conflict with one’s mathematical knowl-
edge. For example, encountering different answers to a problem might be in conflict 
with one’s knowledge in cases where the problem has a structure that is associated 
with one answer. Similarly, getting an equation that involves multiplication might 
be in conflict with the solver’s qualitative evaluation that “the number should get 
smaller” if this solver believes that “multiplication makes [the number] bigger” 
(Fischbein et al. 1985).

In mathematics teacher education anomalous data is substituted by situations 
that contradict prospective teacher beliefs, knowledge, or conceptions about chil-
dren’s thinking. These situations together with group discussions can trigger cogni-
tive conflict and conceptual change. In this article we have demonstrated the poten-
tial use of cognitive conflict tasks in achieving a variety of teacher education goals. 
However, as is often the case with children, it cannot be guaranteed that the desired 
processes will indeed occur. Obviously, there is much need for identifying the con-
ditions and factors that will increase their onset chances making them meaningful 
and effective.
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�Introduction

In working with prospective teachers our practice is to start with mathematical 
tasks, so in this chapter we describe three tasks which we presented to them, the 
way in which they responded to the tasks, and our interpretation of their learning 
through these tasks.

We saw the chance to write this chapter together as an opportunity to examine 
for the first time the way we are working together as teacher educators. We knew 
already that both of us had a strong commitment to the view that the shared expe-
rience of working on mathematical tasks is at the heart of learning mathematics, 
learning about mathematics, and learning about learning mathematics. Although 
we have been colleagues in a number of different contexts for many years, this year 
is the first time that we have worked together with a group of prospective teachers 
over the period of a year. Our common approach has developed over the period of 
this year through shared planning and teaching and through observation of each 
other’s teaching. We have spent time discussing the responses of our students to our 
teaching, especially the way in which we see them working in schools, but had not 
explicitly compared our teaching approaches.

In this chapter we have written about the mathematical tasks we present to pro-
spective teachers and the work which they have done with the tasks. Most of our 
taught sessions with the group start from mathematical tasks and move on to peda-
gogical questions. Occasionally their experience as teachers is used as the starting 
point. The work we present here is typical of our teaching sessions rather than il-
lustrative of an occasional approach.

The prospective teachers we teach are taking a one year post graduate course 
which will give them Qualified Teacher Status (necessary for teaching in state fund-
ed schools in the UK) as well as academic credits at masters level. Teaching is still 
not a popular career choice for mathematics graduates in the UK, which means that 
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admission to our course is competitive but not highly so. We usually attract around 
60 applications for 30 places each year. Nevertheless, our students tend to be well 
qualified mathematically. They have a good first degree which includes at least 50% 
mathematics (this might be an engineering degree, for example, where experience 
of rigorous pure mathematics is limited) and a significant number of them have 
higher degrees as well. They have mostly been very successful in mathematics at 
school, but may more recently have felt that they reached some kind of wall in 
their own learning. Because most of our applicants are academically qualified for 
the course, we are able to select on the basis of other requirements, which include 
strong interest in mathematics and evidence of the ability to think critically about 
teaching and learning.

�Some�Theoretical�Background�on�Using�Tasks�to�Learn��
to�Teach�Mathematics

The approach we take to mathematics teacher education is to offer a sequence of 
complex mathematical experiences which are designed to expose and bring to artic-
ulation ambiguities, distinctions, alternative conceptions, of teaching and of school 
mathematics. In each session we work on what Thompson and colleagues call ‘co-
herent mathematical meaning’ (Thompson et al. 2007) through bringing what is co-
herent for our students alongside what might be seen as coherent for their learners. 
In this way, we ask them to appreciate learners’ experiences, and to see ‘coherence’ 
from the learners’ perspective.

This is a delicate task, because as we have worked for many years as teacher 
educators, some distinctions and constructions are very obvious to us—but this 
does not mean that they will be helpful for our students. It is a classic temptation in 
education to teach unifying theories, which make sense to those who already have 
a lot of relevant knowledge, to novices who do not know what is being unified. 
Instead, we use their existing mathematical knowledge and experience as learners 
as a starting point for developing language and realisations about their experience, 
and then applying those realisations in their teaching. Even with high level qualifi-
cations, there is always enough variety in ways of understanding the tasks we give 
to use diversity, comparison, analysis of implications, and relationships to school 
mathematics as structuring devices for interactive sessions.

We rarely offer easy closure by giving ways to teach topics, or ways to use ideas. 
We do not give generalisations about teaching and learning. Instead we work to-
gether on tasks, we use their responses to expose pedagogic and didactic details 
and choices, and we reflect on what is afforded for learners in imagined situations. 
It is a characteristic of our work that we do this through mathematics, so that the 
thinking required at every stage is mathematical, that is, concerned with presenta-
tion, exploration and perception of variation in questions, examples, diagrams, and 
other mathematical artifacts. Yet the atmosphere is about pedagogy. For example, in 

A. Watson and L. Bills



91

an early session on fractions, several different representations were used, each for a 
different task for which they were well-suited. The final task was intended to evoke 
criticism of reliance on limited images. All the representations which had been used 
so far were offered as a list:

The task was:

Decide the uses and limitations of each representation, bearing in mind that 
secondary school students have to work with objects which have a ‘fraction’ 
structure such as “sine = opposite/hypotenuse”.

This end-of-session task provided more complexity than closure, prompting one 
prospective teacher to say that he thought this was why some teachers only taught 
procedures—working with images and understanding took a lot longer. Another an-
nounced that he was confused, but this is not a problem for us—a sense of confusion 
reduces as they realise there are no ‘right’ answers. What we aim to achieve is a shift 
from an approach characterised by the question, ‘How shall I teach so-and-so?’ to 
one of ‘What does it take to learn so-and-so?’

We report on some tasks we have used, and how we use them, seen within the 
holistic nature of our course. School-based experience, mentoring, and university-
based teaching are integrated to support the development of complex understand-
ing of teaching mathematics. Key ideas about mathematical pedagogy are raised 
in practice, in formal sessions, or in small-group tasks or assignments. Within a 
student’s individual trajectory there are opportunities to recognise structures and 
distinctions, through talking about experiences, which will inform future thinking 
about teaching. In the task sequences described below, some of these themes can 
be seen as threads that run through several sessions. Distributivity emerges in work 
on mental arithmetic and in algebra. Representation is explicit in the session using 
a line segment, explicit in a session on fractions, and implicit in other sessions. 
Ratio arises as an example of a shift to be made from additive to multiplicative 
thinking, but is given a full session of its own later. In a session on ‘student errors 
seen in school’ our students find that they learn even more about arithmetic, and we 
find that they apply a view based on alternative conceptions rather than ‘mistakes’. 
All of this is enacted in schools through observing experienced teachers and by 
prospective teachers being supported through mentoring. In this way, we manifest 

Fraction walls Folded rectangles
Squares in rectangular arrays Folded strips
Congruent parts of shapes Area representations
Shaded parts, not congruent Shaded elements of set
Slices of pizza Division sums
Points on a number line Decimal number
Conventional symbolic form
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many of the practices which are taken-as-shared internationally (Watson and Mason 
2007). Where we might differ from others is in the established, integrated, relation-
ship between all aspects of our course (McIntyre et al. 1994; Furlong et al. 2000). 
It would be wrong to give an impression that there is a finely-detailed advance plan 
underneath what we do. Each prospective teacher teaches different years, groups 
and topics in school, so mentoring is responsive to individuals. Our teaching focus-
es on coherent mathematical meaning, and is influenced by the ‘preparing to teach’ 
frameworks developed at the Open University in the 1980s (e.g. Griffin and Gates 
1989). This framework (which is still evolving) offers three dimensions, cognitive 
awareness, behaviour and emotional engagement, to think about teaching a topic 
(see Fig. 1).

In our teaching, therefore, we offer opportunities to do some mathematics and 
talk about it, to articulate their responses to it, and to think about how these would be 
contextualised for their students in school. For this chapter we observed each other 
teaching and identified common principles of how we do this. Since we are teaching 
teachers, we often state openly to them and each other how we have planned our 
sessions, but what we had not realised until this shared observation and analysis was 
that we also adhere to similar methods of putting these into practice, using prospec-
tive teachers’ comments to develop a critical atmosphere.

Typically, we offer a mathematical task or set of tasks which relates directly to 
the school curriculum, and which can be tackled by all prospective teachers. Often, 
this task will trigger experiences they have had in school, either as teachers, sup-
porters, or as learners. Soon after this, we give a new task which develops from the 
earlier one, but which is unexpectedly harder for some reason. It might demand 
comparisons between tasks or methods. We may have asked an unexpected question 
in a familiar context, or pushed a mathematical commonplace into an unfamiliar 
arena, or gone beyond the usual range of numbers or shapes, or questioned some-
thing which is often assumed. An example of this might be to ask prospective teach-
ers if it is valid to join the points of a curve which has been generated from integer 
data. The introduction of such shifts and comparisons generates uncertainty, debate, 
intrigue, disturbance, which is not publicly resolved but becomes more comfortable 
through shared perceptions and thought about pedagogical implications.

In the next three sections we present accounts of three teaching episodes and 
relate them to this theoretical perspective.

Fig.�1�� Preparing to teach 
framework. (Taken from 
Mason 2002, p. 191)

Prior language
& Skills

Contexts

Confusions, Obstacles,
Standard misconstruals

Language & Techniques

Root Problems

Images & Awarenesses
Connections

A. Watson and L. Bills

                  



93

�Working�with�a�Line�Segment�to�Think�About�Shifts��
of�Understanding

Static image 1 was projected on the board as prospective teachers entered the room. 
They were asked to say what they saw. Initial comments were: ‘65%’ and ‘golden 
ratio’ and ‘a black line with blobs on’. The diagram was then animated by moving 
the middle dot while maintaining the overall length. I1 then asked them to say more 
about what they were seeing.

Sandy:  A line of set length which is divided into two sections—two variable 
lengths—well one is variable and the other is fixed to the variable

Pat:  There are two or three lengths, which is the starting length?

I commented that they had shifted from trying to guess what the diagram meant 
to reporting what they had seen, and that this shift appeared to have come when I 
animated the diagram and asked them to say what they saw.

Don:  Part of the line has a variable length

I asked them to write down something which represented this variable. Eventually 
someone offered:

Someone else observed that this simplifies to t = p. The next offering was:

And I queried the status of each term. L was said to be a constant, or given; x rep-
resented one of the lengths, and y was therefore a dependent variable. The letters 
therefore had three different uses in this statement of a relationship.

Someone then offered two further versions of the same relationship:

1 In these descriptions of episodes the word ‘I’ refers to the one of us who was teaching at the time.

t = kp + (1 − k)p

x + y = L

L − x = y

L − y = x

Image1 

Image 2 

Image 3 
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I said it was important for learners to have a sense of these three representations as 
a package, as three ways to represent the same relationship. I then described shifts 
of understanding that had been demonstrated so far:

• from guessing to being analytical about what they were shown
• from descriptive comments to analysing in terms of variables
• to interpreting what is free to move and what is constrained
• from variables to conjectures about variables
• from variables to relationships

I announced that we were about to shift from additive to multiplicative ways of con-
ceiving relationships. I pointed out that x + y  = L seemed to be an attempt to record 
an additive relationship, where the earlier attempt using k seemed to be trying to 
express a multiplicative relationship. Someone said, ‘It is like probability.’

I then animated image 2, the length being extended but the blob which was po-
sitioned on the line staying in the same place. This animation creates a different 
invariant, but is still additive. Finally I animated the line again in the way shown in 
image 3. Could they all try to express this as a multiplicative relationship? Eventu-
ally this was offered:

where x and y are the two parts of the total segment. I had been hoping for an ex-
pression of direct proportionality such as x  = ky.

I commented that this group had ‘gone into algebra’ straight away, but I was not 
sure that everyone was able to ‘see’ the relationships they were describing. What 
question could they ask learners to help them shift from seeing the lines additively 
to seeing multiplicatively?

The prospective teachers suggested:

How much of …?
What fraction of …?
How many times does this bit go into that bit?
What proportion of…?
What is the ratio of x to y?
Tell me the length of this bit in terms of this bit?

At this point it became clear that one of our students had not noticed how the point 
positioned on the line had moved, so I repeated the animation, asking ‘what stays 
fixed and what changes in each diagram?’

I finished by exemplifying with 7 = ? × 3, asking for three different expressions:

x = k × total length

y = (1 − k) × total length

7 = k × 3

7

k
= 3

7

3
= k
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I repeated the earlier comment about having a ‘package’ of three ways to express 
one relationship.

Superficially, the session was about how diagrams can be used as images for 
algebraic relationships and how focusing on invariance and change in dynamic rep-
resentations can trigger new ways of seeing. The line segment image is particularly 
powerful because, seen as a statement about lengths, it carries semantic meaning 
about addition and multiplication, and it also acts syntactically, in that the three 
ways of transforming the key algebraic relationships can each be constructed from 
the diagram itself, rather than only from manipulating the formal expression.

However, this session contained far more about mathematical awareness than 
‘just’ this. For example, someone referred to earlier work about how giving dia-
grams in particular orientations could be misleading for learners. I also hoped to 
initiate new awareness which would be revisited later on, and these were that:

• learners have difficulty in shifting from additive to multiplicative understandings 
of change—and in that respect this session was precursor to considerations of 
ratio later;

• there are alternative ways to express relationships—and this signalled an ap-
proach to algebra as expressing generality, and transforming equations as con-
structing equivalent expressions;

• letters have various roles; and,
• shifts from thinking about variables to thinking about relationships are important.

Also there had been opportunities during the session for those who were not sure 
about the mathematics themselves to work alone or with others, either on the direct 
mathematical tasks or the related pedagogical issues.

�Working�with�Mental�Calculations�to�Explore�Links�
Between�Algebra�and�Arithmetic

The following calculations appear on the screen one at a time without comment, 
with time for our students to consider each before the next appears.

They were asked to work on each individually and make notes about what they did. 
Next they were asked to compare their methods with their neighbours (there were six 
per table) and to consider whether they could draw out any mechanisms or principles.

After a few minutes they were asked for comments. The first contribution was 
about calculating 25 × 33 by ‘multiplying by 100 and dividing by 4’. They called 
this ‘compensation’. I asked for further examples of compensation strategies and 
these were offered:

85 +               195×                     3325×                       175216 −  

50.42£%
2
117  of                          5.16 ÷               5.26 ÷  
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Do 216 – 175 by subtracting 200 and adding 25
Do 5 × 19 by multiplying 5 by 20 and then subtracting 5

Tutor:  When is it helpful to use compensation?
Val:  To break a complicated sum into something easier you can do in your head
Tutor:  Let’s be fairly specific about this. How do you recognise what is going to 

be easier?

A series of responses to this mentioned: multiples of 10 and 100, multiplication 
by single digits, single digits used as ‘the adjustment’, dealing with decimals by 
multiplying and dividing by powers of 10, familiarity and ‘roundness’ and ‘splitting 
things into chunks of some bits that work’.

The discussion continued and touched on the usefulness of powers of ten, the use of 
‘known’ facts and converting between percentages, decimals and fractions. After a few 
more minutes I asked them to take a few moments to consider whether they could link 
what had been said so far with things they had read or discussed earlier in the course.

Tutor:  Anyone got anything to say?
Will:  There is implicit use of the distributive law
Tutor:  I thought I might have stopped you from seeing that by choosing 25 × 33

Will wrote on the board:

Andrew:  When you thought it, did you think ‘bracket ten plus ten plus five’?
Will:  I didn’t think ‘bracket’
Tutor:  Did anyone see that idea in any of the others?

Madena wrote on the board:

Tutor:  What if we had used Andrew’s approach of 10 + 9 is 19?

They nodded. Tansy wrote:

commenting “but it’s not nice to write percentages inside brackets.”

25 × 33
= (10 + 10 + 5) × 33
= 10 × 33 + 10 × 33 + 5 × 33
= 330 + 330 + 165

5 × 19
= 5(20 − 1)
= 5 × 20 − 5 × 1
= 100 − 5

17
1

2
% of 42.50

=
(

10 + 5 + 2
1

2

)
× 42.50 ×

1

100

OR =
(

10% + 5% + 2
1

2
%

)
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Sally wrote:

Caroline added ‘I started with 25 squared’.

Tutor:  So you are using known facts.
Andrew:  There are ‘known known facts’ and ‘recently known facts’. For example 

in the 17 1
2 %  example from 10% you get 5%–it’s recent knowledge. 

This is different from ‘knowing’ 25 × 25.

At this point I referred the prospective teachers to a government publication about 
strategies for mental calculation and we moved on to consider written calculation.

One of the main purposes of this session was to offer the possibility to see alge-
braic structure in arithmetic. I did this by:

• generating mathematical activity (asking them to do the calculations them-
selves);

• focusing on sameness and difference (by comparing similar methods for differ-
ent calculations and different methods for the same calculation); and,

• prompting prospective teachers to connect their recent experience with past ex-
perience.

As a result many, perhaps all, were able to see a relationship between distributivity 
as a property of the number system and a variety of informal methods they had used 
to calculate. The examples presented made it possible to see the wide application of 
this structure, not just as the distribution of multiplication over addition.

Beyond this a number of ideas arose from individuals, thus becoming available 
for the group to work with in this session and subsequently, for example:

• Andrew’s question to Will about what he thought when doing the mental cal-
culation (‘Did you think “bracket”?’) enabled a distinction to be made between 
informal use and formal expression of structure;

• the importance of ten and its powers in the arithmetic of our decimal system;
• the usefulness of being able to shift from one representation to another (here 

from percentage to fraction).

The prospective teachers also had the opportunity to experience the variety of valid 
approaches to the same calculation and learning with and from each other by com-
paring different ways of seeing.

�Exploring�the�Meaning�of�Algebra

The prospective teachers were seated at tables in threes or fours. Each table was 
given a collection of slips of paper on which the following items (questions or ex-
pressions) were printed:

25 × 33 = 25 × (32 + 1)
= (25 × 4) × 8 + 25

Working Mathematically on Teaching Mathematics
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They were asked to negotiate with each other in order to separate the slips into two 
piles ‘Algebra’ and ‘Not Algebra’. As they talked they tended to consider the items 
in the pairs or threes in which they are presented above. They also often preferred to 
talk about items being more or less algebraic rather than ‘algebra’ or ‘not algebra’.

After about ten minutes of group discussion I asked for comments. The first 
offered was about the expressions in set A above and asserted that the second is 
algebra but the first is not.

Veronica:  It depends on how you present it
Tutor:  Does putting a letter in make a difference?
Veronica:  No, it’s because it is an unknown
Tutor:  So what makes it algebra or not?
Andrew:  Without the box the first one looks just like a problem
Tutor:  If you think of it as something to rearrange it is algebra, but otherwise 

it is just a ‘sum’?

A
15 +16 = 15 + = 31

B

16 × 7 = 10 × 7 + 6 × 7 (a + b) × c  = ac + bc
C

Find the next term in the 
sequence 1, 4, 7, 10, ...

Find the 100th term in the sequence
1, 4, 7, 10, ... 

Find the nth term in the 
sequence 1, 4, 7, 10, ...  

D I asked my grandma to tell me 
how old she was. She replied, ‘If 
you multiply my age by 3 and 
then subtract 100 you get the 
same answer as if you took my 
age and added 34.’ Find 
grandma’s age. 

Alan thinks of a number, multiplies it 
by 7, then adds 13 to the result. The 
final answer is 69. What number did 
Alan think of? 

E The spreadsheet formula 
= A3*0.15 + 12.50  
produced by typing on the 
keyboard

The spreadsheet formula 
= A3*0.15 + 12.50  
produced by clicking on A3, and 
typing 

The spreadsheet formula 
= A3*0.15 + 12.50  
produced by dragging a formula 
from a higher cell 

A. Watson and L. Bills
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Soon after this Veronica summarised the discussion by saying that algebra is not 
marks on paper, but an approach that is taken to what is written.

The next comment was on the pair of expressions labelled B. Madena said that 
the first is a realisation of the axiom expressed in the second, so that neither of them 
is algebra if algebra is seen as something you do. This allowed us to contrast two 
meanings of algebra, that is the task of manipulating symbols according to certain 
rules (manipulative algebra) as opposed to the study of the rules themselves (ab-
stract or axiomatic algebra).

The next remarks were about set C. Saidah said that the first is not algebra be-
cause you can ‘just add three’. The second is algebra because in order to find the 
100th term you need to know how to find the nth term.

Tutor:  If you do it by keeping on adding three is it algebra? Or if you add 96 
times three is that algebra?

Madena:  It depends whether you see algebra in the structure or as something you 
do. 10 × 7 + 6 × 7 is algebra depending on what you focus on.

David:  If they are adding 96 times three they might just see it like that—it’s not 
necessarily algebra—it depends on what they do with what they see

Tutor:  So you mean that having structure is not enough. Can you say a bit 
more?

David:  Algebra is about letters, unknowns, generalising, so for me the nth term 
is algebra, but not the 100th term.

Tutor:  You are talking about how they express the generality. Would the per-
son who says that you add 96 times three be able to give the 102nd term 
or the 99th? This is a test of whether they see the generality?

In discussion of the ‘word problems’ (row D) Alastair said, ‘The one you can “undo” 
is not algebra.’ Madena added that writing down the expression (perhaps as a func-
tion machine) is the same thing as doing it in your head. In the continuing discus-
sion we agreed that neither of the problems ‘is algebra’ but that algebra provides 
methods to solve either of them.

The discussion of E was curtailed by shortage of time, only allowing for a brief 
mention of the difference between using a ‘label’ consciously or unconsciously.

Later in the same session our students were offered experiences through which 
to consider the differences between uses of letters as unknowns, variables and gen-
eralised numbers. They also were introduced to the six uses of letters identified by 
Küchemann (1981)2, to research on understanding of the ‘equals’ sign and to Gray 
and Tall’s (1994) notion of ‘procept’. The next day was spent considering some 
curriculum materials for teaching and learning algebra. They were asked to work in 
groups to comment on the materials using the mathematical distinctions they had 
developed the previous day.

The main intention of the card sorting activity described above was to broaden 
the prospective teachers’ understanding of what might be meant by algebra. Madena 

2 The book from which this comes is a set text for the course.

Working Mathematically on Teaching Mathematics



100

and David presented two points of view, namely that algebra (at least at school) is 
about manipulation of expressions involving letters and that expression using letters 
is the distinguishing feature of algebraic activity. During the discussion these ideas 
were explicitly challenged by several assertions that algebra is not what is written, 
but the way in which we think about what is written. The idea that the structure of a 
problem, relationships between quantities, and generalisation, can be the drivers for 
algebra was made available. In addition common mathematical experiences were 
offered from which a language of distinctions could be derived. Our students were 
also offered another opportunity to experience the usefulness of looking for similar-
ity and difference between mathematical entities.

�Coda

The three examples above illustrate our general approach to using mathematical 
tasks to promote complex thought about what it means to do and learn mathemat-
ics. Because this approach is sustained by us throughout our teaching, prospective 
teachers are being enculturated into ways of thinking about teaching mathematics 
which persist, by and large, when they are in school. At the start of our course, it is 
usual for them to want to exchange stories about what they have seen teachers and 
learners doing in school, whatever the task we give them and whatever we hoped 
the focus would be. By offering tasks organised to challenge their own instant re-
sponses, we support the development of habits of probing mathematical meaning 
as the starting point for thinking about teaching, rather than trawling memory for 
associated stories.

We are not claiming that all our students sustain this approach all the time—that 
would be too hard. However, when we observe them teaching in school and ask 
about their planning and in-the-moment decisions it is clear that the majority start 
from wondering about how their students are going to learn and structuring what 
they do to support this, rather than adopting ‘tricks of the trade’. We have little 
knowledge about how many of them sustain this once they are in their first posts, 
but we do know that in some of our partnership schools the culture of the mathemat-
ics department is to think first about learning, and then about tasks, sequences of 
tasks and ‘coverage’.
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�Introduction

Learning mathematics is successful only when the learner is able to identify condi-
tions for the use of algorithms, to take one aspect, in new situations. These condi-
tions, however, are not present in the algorithms and cannot be transferred directly 
from teachers to their learners. This is one the paradoxes of the didactical contract: 
“The more the teacher gives in to her demands and reveals whatever the student 
wants, and the more she tells her precisely what she must do, the more she risks 
losing her chance of obtaining the learning which she is in fact aiming for.” (Brous-
seau 1997, p. 41).

How can we explain why some students1 show an ability to use taught knowl-
edge in new contexts, while others although familiar with the taught algorithms are 
not able to do so? Without a suitable model, these differences are attributed to dif-
ferent individual personalities, to their cognitive skills, or simply to the mysterious 
mental properties for which teachers have no didactical tools for further transforma-
tion or development. Sarrazy (2002) presents such a model: he explains these dif-
ferences as an effect of the teachers’ didactical variability in the domain of setting 
problem assignments.

Sarrazy’s model is based on the following idea: The more versions of realisation 
a particular form includes, the more uncertainty is attached to this form. To satisfy 
the teacher’s expectations, the student must ‘examine’ the domain of validity of his/
her knowledge much deeper than a student who is exposed to strongly ritualised 
(repetitive) teaching and therefore considerably reduced variability. In other words, 
a strongly ritualised teaching lets the student know in advance what he/she must 
do and thus to behave in an appropriate way. However, as soon as the introduced 

1 In the text the word student refers to school students and teacher trainees to pre-service teachers.
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routines are interrupted the students cannot rely only on their cues (e.g. semantic 
indicators, triggers) and therefore can neither anticipate nor master the behaviours 
expected by the teacher.

In Sarrazy (2002) and Sarrazy and Novotná (2005), it is shown that the teach-
ers’ variability in the domain of setting problem assignments may be the variable 
explaining the significant differences in the number of models of the assignment 
structure created spontaneously by students.2 This is in accordance with the fact 
that the students’ results differ when they are asked to reproduce only the reference 
language presented by the teacher from when they get acquainted with several ref-
erence languages or even use their own reference languages. In the latter two cases 
their results are better. In addition, these two cases support the development of the 
students’ cognitive skills and psychological characteristics, mainly their ability to 
analyse critically and their consciousness of responsibility for their own activity.

Moreover, we believe that the analysis of models created by students enables the 
teacher to help them when their effort to solve the problem correctly is not success-
ful; in particular, it helps the teacher in determining the type of obstacles the student 
has faced. This point is elaborated in more details in Novotná (2003).

Our research supports the idea that the more the teacher creates (whether con-
sciously or voluntarily) contextual variations in the organisation of teaching, the 
more students are guided to meditate upon the content of teaching beyond the 
formal characteristics of lessons. To illustrate the point, let us imagine a teacher 
who, after a lesson on multiplication, assigns to his/her students three problems 
on multiplication; if the teacher behaves systematically in the same way, students 
will behave economically: The lesson is on multiplication; therefore the problems 
are to be solved by multiplication! It is not surprising that the students determine 
the type of calculation according to the semantic indicator (“share”, divide) or to 
the signal (“altogether”, addition; “remainder”, subtraction; “everybody”, division; 
etc.). It corresponds with the following French proverb: “When the boss points to 
the moon, the ox sees the finger”. On the other hand, if the teacher decides to get 
his/her students acquainted with several types of reference languages, he/she should 
be aware that there are not only positive consequences, but also negative ones. One 
of the important considerations is an increased uncertainty in the less able students 
who, besides their doubt in their ability to solve the problem correctly, also face 
the uncertainty about which reference language enables them to solve the problem 
(Novotná and Sarrazy 2005).

In the following paragraph, the index of teachers’ variability developed by Sar-
razy is introduced. Then, the consequences of the research results for mathematics 
teacher training are discussed.

2 The following terminology is used: Coding of word problem assignment is the transformation 
of the word problem text into a suitable system ( reference language) in which data, conditions and 
unknowns can be recorded in a more clearly organized and/or more economical form. The result 
of this process is called a model (in both cases—models taught by teachers or models as results of 
the inner need of the solver). The reference language contains basic symbols and rules for creating 
a model. There exist different reference languages for any one type of word problem.
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�Teachers’�Variability

Sarrazy (1996) introduces a model sensitive to differences in students’ treatment 
of problem types. This model facilitates describing the modes of teachers’ actions 
through the following three dimensions:

1. Didactical structure of the lesson (what the teacher really does from the perspec-
tive of the knowledge to be taught);

2. Forms of social organisation (the teacher’s activities regarding class management);
3. Variability of arithmetical problem assignment.

As far as this set of three domains is concerned, six variables are defined in order to 
measure variability in organisation and management of the teacher’s work during 
and between lessons:

1. Didactical structure of the lesson

v1  Type of didactical dependence: Does the teacher proceed from simple to more 
complex tasks or the other way round?

v2  Place of institutionalisation in the sense of Brousseau (1997): At which moment 
does the teacher present a model of how to solve such problem? Closer to the 
beginning or to the end of the lesson? Or only at the beginning or at the end?

v3  Types of validation: Are the students informed about validity of their answers? 
Does the teacher always use the same type of evaluation and assessment (e.g. 
through the milieu, by direct evaluation, by the Topaze effect3, by peers).

2. Social organisation (How are exchanges in the classroom organised?)

v4  Interaction modes: teacher-student(s), student(s)-student(s), etc.
v5  Management with regard to the students’ groupings: the whole class, small 

groups, individual work, etc.

3. Variability

v6  The variable is related to editing the problem assignment. It is given by an indi-
cator which measures the teacher’s “capacity” to consider diverse modalities 
of the same didactical variable in the assignment.
Let us recollect here: (1) The rate of variability in the case of word problems 
is a suitable tool for broadening the register of variables that have the potential 
to influence the difficulty of the solving procedure. (2) This measure makes 
it possible to distinguish between the levels of variability of individual teach-
ers. (3) The more a teacher shows the ability to see different ways of wording 

3 Topaze effect. When the teacher wants the pupils to be active (find themselves an answer) and 
when they can’t, then the teacher suggests disguises the expected answer or performance by dif-
ferent behaviours or attitudes without providing it directly. Example: Teacher: 6 × 7? Pupils: 56. 
Teacher: Are you sure?
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a problem, the better the teacher can cope with an unexpected and incorrect 
response from a learner, for example via a “didactic artefact” by immediately 
finding (“off the cuff”) a counter-example to invalidate (or develop) it. For 
more details about the construction of this variable, its epistemological status 
and empirical results whose establishment it enables, see Sarrazy (2002).

�Consequences�for�Teacher�Training

The crucial question concerning teacher training is “What professional skills, what 
attitudes are to be acquired for teaching of mathematics?” Restricted to the teachers’ 
capacity for variability, the question changes into “What professional skills, what 
attitudes are to be acquired for developing higher variability in teaching?” Learning 
to teach requires a balance between teachers’ theoretical and practical knowledge 
and skills. Therefore the answer to the above posed question has two sides. It cov-
ers knowledge of psychology and pedagogy on the one hand and the knowledge 
and skills supporting the preparation of suitable didactical situations on the other. 
Our experiences as teacher trainers with both prospective and practicing teachers 
confirm that there are two crucial phases in the process of developing teachers’ 
variability: the phase of constructing and solving a mathematical model of the as-
signed problem and the phase of the a priori analysis of the didactical situation. 
The a priori analysis is an important instrument enabling the teacher to manage the 
didactical situation in all its parts—devolution, a-didactical situation and institu-
tionalization (Brousseau 1997).

Example of an Activity Aiming to Developing Prospective  
Teacher’ Variability

The following activity was used in training secondary mathematics teachers at 
Charles University in Prague, Faculty of Education. The activity was a part of the 
programme of training teachers for teaching mathematics through a foreign lan-
guage (Content and Language Integrated Learning—CLIL (Favilli 2006)). This 
two-semester pre-service teacher training course is opened to students from the sec-
ond year of their studies. It has a form of a seminar, two teaching units per week, 
with many activities run in the form of a workshop.4

4 The course was originally designed for teacher training of prospective teachers of mathematics 
and English language. It is run in English. Regardless of this fact, also students who are prospec-
tive teachers of other non-language subjects and foreign languages (and moreover, not only lan-
guage specialists) participate. This feature enriches the course in the multilingual perspective. It is 
easily adaptable for the practicing teacher training.
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Prospective teachers were asked to choose a mathematical topic to be developed 
at lower secondary level. At first, they worked with traditional materials, later they 
decided to adapt one of them and develop it into a lesson plan. The lesson was first 
simulated in the teacher training course in the form of peer teaching, and later taught 
in a real classroom.

Original materials come from Mathematical Rally Transalpine (see http://www.
rmt-sr.ch/archives.htm):

The mathematical topics within the task included solving word problems, pat-
terns combining arithmetic, algebra, and combinatorics.

The first phase of the activity took place as peer teaching in the training course 
with the participation of ten prospective teachers, 22–25 years of age. It took place 
in 45 minute training session during four successive weeks. The programme cov-
ered:

• a priori analysis of the text of the presented problem which included discussion 
from the perspective of possible mathematical solutions and the language of the 
assignment)

• preparation of the lesson.

Reflecting on and analyzing the training lesson: Trainees presented critical remarks 
both about the wording of the problem and the execution of the lesson plan. The 
necessity to change the assignment in order to reduce the algorithmic nature of the 
problem was emphasized. The trainees volunteered to prepare some new teaching 
material that would better correspond with the learners’ age and interests. It resulted 
in the “Fashion World Magazine” (for the extract, see the Appendix).

The second phase of the activity took place in the classroom in a secondary 
school in Prague. It took 45 minutes. Both, the original version and the “Fashion 
World Magazine” were used. The third phase—a posteriori analysis of the lesson—
took place again in the training course. The discussion was based on observations 
and the video recording of the whole lesson. The items discussed were: lesson anal-
ysis, comments, critical remarks and suggestions for alternatives.

Bizarre colouring

Maxime is filling in a square grid. In each line, the rule of colouring is different: 

He has already filled correctly the first 15 columns. He states that the columns 1, 9 and 13
are fully filled. He continues with column 16. 

Will column 83 be fully filled? And column 265? 

Explain how you have found the solution. 

Didactical Variability in Teacher Education
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During the process of material adaptation, the trainees modified both the con-
text and the wording of the original problem. The new version offers variability in 
dealing with the original assignment (see the Appendix). Three different perspec-
tives of dealing with the original situation motivated the trainees to try to increase 
their variability (see an extract from the “Fashion World Magazine” in the Ap-
pendix).

We believe that by means of classroom observations and subsequent analyses, 
the trainees are encouraged to look for important characteristics of good teaching 
strategies. Our observations of further work in the course and the prospective teach-
ers’ consequent school practice indicated that their use of variation in problems had 
increased.

�Discussion

The example presented above, and works on didactic diversity5, make it possible 
to show the significance of teachers’ variability for the improvement of teaching of 
mathematics, especially in the perspective of flexibility in the use of taught algo-
rithms.

In the following text, the question discussed is: Is it possible to increase teach-
ers’ variability through training it? This is a legitimate but difficult question. Its 
difficulty lies in the fact that it cannot be answered directly. In fact, as far as we 
know, research that would give an answer does not exist. In the text below, we first 
examine some hypotheses that are related to the effects of the flexibility in students’ 
use of algorithms; then some propositions for teacher training are presented.

Interpretation of Effects of Variability

How can the effects of didactical variability on students’ achievements be explained 
from the perspective of knowledge decontextualisation?

This question is investigated from three perspectives:

a1—Psychological interpretation: For Richelle (1986) or Drévillon (1980), vari-
ability gives priority to the change of students’ operational register by diversifying 
their relationship to the object of teaching or to their action. In fact, the diversity 
of modes of relationship to the object of teaching, which is typical for didactical 
environments with strong variability, brings in an alternation between the phases of 
knowledge integration and differentiation in their usage. For example, let us imag-

5 See e.g. Martel (1999). Culturally colored didactics: The sociopolitical at the heart of second/
foreign language teaching in Francophone geolinguistic spaces. Instructional Science, Vol. 27, 
Numbers 1–2, pp. 73–96. or http://www.e-learning-baltics.de.
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ine two categories of didactical environments which are in contrast in the perspec-
tive of variability: in the first category typical for weak variability the classical 
structure of an additive problem (e.g.: the initial state, the transformation and the 
final state) is presented with a relative stability—the question posed to the students 
asks for the final state; in the category developed didactical variability, the question 
will in different moments ask for the initial state, or the transformation, or the final 
state. It is clear that the relationship of the students in the latter category to an addi-
tive structure will grow stronger and will be diversified; on the contrary, in case of 
weak variability the students will not feel the need (or will feel it in a very limited 
extent) to examine relationships between the given numerical data because for these 
students each linguistic structure has the same model of arithmetical solving.

This alternation facilitates coordination and differentiation of operational 
schemes—their importance in the development of hypothetic-deductive thinking 
was shown by Piaget (1975); as a consequence, students would possess a plurality 
in their access to objects that would be efficient to help “not only to proceed to the 
operational formal stage but to construct a repertoire of cognitive registers. This 
repertoire enables a student, if asked or if it is needed, to examine a problem and 
solve it at the functional level, i.e., practical and objective, or to extract the opera-
tional quintessence and thus to construct a more general activity model” (Drévillon 
1980, p. 336)6.

According to Piaget (1975, 1981), it is also possible to consider variability as 
one of the sources of perturbations resulting from variations of didactical environ-
ments; this variability provokes cognitive adaptations (accommodations) and thus 
increases the student’s cognitive register in relation to a conceptual field—e.g., ad-
ditive and multiplicative structures studied by Vergnaud (1979, 1982, 1994).

A précis of this first aspect as considered from a didactical position can be for-
mulated by changing the frameworks proposed by Douady (1986) in the theory of 
“dialectic ‘tool-object’ (outil-objet)”: “A student possesses mathematics knowledge 
if he/she is able to provoke its functioning as explicit tools in problems he/she must 
solve […] if he/she is able to adapt it when the normal conditions of its use are not 
exactly satisfactory for interpreting problems or for posing questions with regards 
to it”7 (Douady 1986, p. 11).

a2—Anthropological interpretation: It is also possible to interpret variability effects 
in relationship to what could be called the “school culture” of the class. Then vari-

6 Translation from French by J. Novotná. Original text: « non pas seulement à passer au stade 
opératoire formel mais à construire un clavier de registres cognitifs. Ce clavier permet à la de-
mande, et en cas de besoin, d’examiner un problème et de le résoudre au niveau fonctionnel, 
c’est-à-dire pratique et objectif, ou d’en extraire la quintessence opératoire et de construire ainsi 
un modèle plus général de l’activité. »
7 Original text: « Un élève a des connaissances en mathématiques s’il est capable d’en provoquer 
le fonctionnement comme outils explicites dans des problèmes qu’il doit résoudre […] s’il est ca-
pable de les adapter lorsque les conditions habituelles d’emploi ne sont pas exactement satisfaites 
pour interpréter des problèmes ou poser des questions à leurs propos ».
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ability creates a characteristic of the environment in which students develop and 
learn mathematics. On the other hand, knowledge of mathematics that students 
really learn (e.g. to solve an equation of the first degree, compare two fractions 
with the same denominator, divide rational numbers), may also be learnt without 
being it taught. This happens for example in creative, reflexive, ritualised and other 
activities. In other words, students learn mathematics that they are asked to do. On 
their own they learn to manipulate mathematical contents, to consider them etc. For 
details about preparation of such activities, see Brousseau’s Theory of didactical 
situations. In order to adapt themselves to the usual teacher’s demands, the student 
develops strategies of coping (Woods 1990) trying to answer in accordance with the 
criteria usually used. It is not unreasonable to think that repetitive teaching, poorly 
varying in its forms of organisation and in the content, leads the students to a hyper-
adaptation8 of the proposed situations. An example of this is when students can 
easily detect indicators that allow them to adapt their decisions and their behaviour 
to their teacher’s didactical requests. In that case, students can easily apply suitable 
behaviour without really understanding the sense of the lesson or of the problem 
they were assigned. Alternatively, in cases of strong variability, the student cannot 
rely solely on activity ritualisation because he/she can neither anticipate nor manage 
the succession of sequences or behaviours expected by the teacher. As stressed by 
Bru (1991, p. 163), with strong variability, simulation becomes more difficult and 
the students’ engagement in the situation is much more probable.

It is well known that a particular teacher’s attitudes create the educational envi-
ronment, a “climate”, a special attitude towards “the life of mind” (Cookson 1988). 
In individual cases, this climate can support or, on the contrary, block students’ fu-
ture success in developing a productive orientation to learning. Flanders (1966) has 
shown the influence of teachers’ ways of functioning on the “class climate”. This 
climate was defined as “common attitudes that students have, in spite of their indi-
vidual differences, with respect to the teacher and the class”. According to Flanders, 
these attitudes are firm and influence the way the class functions. Some authors in 
the domain of didactics of mathematics, e.g., Perrin-Glorian (1993) or Noirfalise 
(1986), support this observation.

The experience of the authors of this text has shown that, according to their 
methods of class management, some teachers focus their teaching rather on the 
content that is to be taught while others prefer to focus on their students. The first 
mainly look for progress in subject matter and gaining new knowledge, and they 
appreciate all attitudes with which the students manifest their interest in what they 
are taught; whereas the latter privilege their relationships with students and the re-
lationships between students. In other words they prefer the production of ideas and 
communication among students. According (Perrin-Glorian 1993) and (Noirfalise 
1986), achievements obtained by students differ significantly according to the con-

8 Hyperadaptation is a term which refers to features overly well adapted to their present function 
(Rudnick, D., Burian, R.: Hyperadaptation—Another Missing Term in the Science of Form. http://
scholar.lib.vt.edu/theses/available/etd-6797-111852/unrestricted/etd.pdf)
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sidered domains: focus on the content appears to favour success in algebra while 
a focus on students leads to better results in geometry and to making mathematics 
more attractive for the student.

a3—Didactical interpretation: As mentioned in a1, Douady’s results (1986) allowed 
us to clarify the processes which enabled us to report the effects of variability. This 
research is done in two frameworks: Theory of conceptual fields by Vergnaud 
(1990) and Theory of didactical situations by Brousseau (1997). For Douady, teach-
ing a mathematical concept requires a transformation, on the completion of which 
there may even be a rejection by the students of some of their previous knowledge. 
The assigned problems must be composed in such a way that the students have an 
opportunity to use at least one basic solving strategy. However, this strategy will be 
insufficient on its own: the taught knowledge ( object) must correspond to the tool 
most suitable for solution of the particular problem.

Douady (1986) distinguishes 6 different phases constituting the process of the 
“dialectic tool-object”:

1. Phase a—Mobilisation of “former knowledge”: Corresponds to the phase of the 
problem adaptation by the student.

2. Phase b—“Research”: Corresponds to the phase of action of the Theory of 
didactical situations (Brousseau 1997). During this phase, students encounter 
difficulties caused by the insufficiency of their previous knowledge and conse-
quently look for new, better adapted instruments.

3. Phase c—“Local explication and institutionalisation”: The teacher points out 
the elements that played an important role in the initial phase and formu-
lates them in terms of the object with the condition of their use at the given 
moment.

4. Phase d—“Institutionalisation” (in the sense of the Theory of didactical situa-
tion—Brousseau 1997): The teacher gives a cultural (mathematical) status to the 
new knowledge and he/she requests memorization of current conventions. He/
she structures the definitions, theorems, proofs, pointing out what is fundamental 
and what is secondary.

5. Phase e—“Familiarisation-reinvestment”: It concerns the maintenance of what 
was learned and institutionalised in the various exercises.

6. Phase f—“Complexification of the task or a new problem”: The aim of this last 
phase is to allow the students to make use of the new knowledge in order to 
allow new objects to occupy their position in the students’ previous knowledge 
repertoire.

Douady (1986) states that the aim is to exploit the fact that most mathematical 
concepts operate in several frameworks—in fact in diverse types of problems. 
For example, a numerical function can be presented at least in three frameworks: 
numerical, algebraic, and geometrical. These changes of frameworks (“game of 
frameworks”) allow varying the significances (“supports of significations”) for the 
same concept and avoid the possibility of making them function in partial or over-
contextualised ways. The interactions among diverse frameworks allow, according 
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to the Douady, knowledge to progress while maintaining all the conceptual potential 
of the taught object.

Variability and Teacher Training

The previous section focuses on the advantages associated with variability in teach-
ing mathematics. What remains is to determine the conditions for its development 
in teacher training.

As mentioned earlier, it is not a simple task; we do not know of any research on 
the question in the field of mathematics. The only works we know have been pub-
lished are those of Bru (1991) about teaching written language.

In Bru’s model of the variability estimation (not presented in detail in this text) 
eleven variables are used. The model enables to construct two variability indices 
(Bru 1991, pp. 122–123): (a) Index of scheduled variety corresponding to variations 
that the teacher is able to foresee when he/she is asked about his/her approach to the 
lesson, and (b) index of realised variety corresponding to variations really imple-
mented when teaching.

Bru shows that when the realised variety is high, then the students’ performances 
are significantly better than when it is low. Moreover, he shows that there is no 
correlation between the indices of scheduled or planned and realised variations. In 
other words, if a teacher plans a large number of variations, it is not sure whether 
he/she will really carry it out; nevertheless, and it is an important result, the realised 
variety is effective only if it is associated with a high scheduled variety.

This last point has direct impact on teacher training; it is very encouraging for 
orienting it in such a way that it allows teachers:

1. to foresee different modalities of action in the organisation of their teaching (hav-
ing in mind phases of Brousseau’s Theory of didactical situations or on Douady’s 
game of frameworks of the dialectic tool-object);

2. to develop a better knowledge of theories which explain the effects on students’ 
learning.

As already mentioned above, the development of planned variety is necessary but 
not sufficient for realising it efficiently in lessons. This is an area to be further re-
searched, but the first results encourage us to think that teachers who realise varia-
tion in their teaching differ from others (those with a high scheduled - low realised 
variety) in the educational capacities they possess (e.g., equality, justice, success of 
all) and by they attempt to promote it in their teaching. Here we recover the ideal 
that Jan Amos Komenský raised in his fundamental work “Didacta Magna” (1631) 
but also a non-radical limitation of teacher training. For English translation see 
(Comenius 1967).
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�Appendix:�Extract�from�“Fashion�World�Magazine”

Didactical Variability in Teacher Education
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�Introduction:�The�Problem�of�Bridging�Between�
Mathematics�Courses�and�Education�Courses

In many universities the pedagogical, psychological, and didactic courses that con-
stitute a part of the preparation for high-school mathematics teaching are given in 
the school of education while the mathematics courses are taken in the mathemat-
ics department, by students who are future mathematicians and have very limited 
interest in education. These courses are usually taught by faculty who possess little, 
if any, awareness of prospective teachers’ intellectual needs, and the courses quite 
often have the structure of “theorem-proof” presentation of a theory.

It has been a challenge for teacher-educators all over the world to create a bridge 
between the mathematical content, to which prospective teachers are exposed in 
these university-level mathematics courses, and the pedagogical, psychological, 
and didactic issues involved in learning and in teaching high-school mathematics, 
to which prospective teachers are exposed in their education courses. Furthermore, 
mathematics-education faculty have a commonly agreed-upon goal of providing 
for a context in which future teachers can grasp the wide-scope nature of math-
ematics as a problem-posing/conjecturing and problem-solving/proving discipline, 
as well as the culture, beauty, and intellectual fulfillment of mathematics, so that 
they develop an enthusiastic attitude towards communicating these values to school 
children. Solutions to this challenge are eagerly sought. (For a discussion of the dif-
ferent ways in which mathematics needs to be known by teachers of mathematics as 
opposed to the ways in which mathematicians need to know mathematics see Ball 
and Bass 2004).

This chapter proposes a four-course series as a possible solution, and elaborates 
on one of the four.
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Bridging�Courses—A�Possible�Solution

Four courses were specially designed to bridge between the subject-matter courses, 
pure and applied, taken towards a first degree in mathematics, and the pedagogi-
cal, psychological, and didactic courses taken towards the accreditation as a (junior 
and senior) high-school mathematics teacher. The four courses are non-sequential; 
all are problem-solving centered; and each is implanted in a different motivating 
context:

1. Mathematics problems that arise in the context of (strategy) games;
2. Mathematics problems that raise cognitive conflicts (paradoxes)1;
3. Mathematics problems that had a significant impact on the development of 

mathematics throughout its history;
4. Mathematics problems related to applications of mathematics and mathematical 

modeling.

Experimentation

Following the development of preliminary syllabi, challenging activity tasks were 
drafted so that each one would be suitable for a 90-minute in-class activity and 
possible follow-up homework assignment. Each class session was designed to be 
independent of the previous ones, igniting new interest in the relevant activity, irre-
spective of a student’s involvement in the preceding activities. A teaching approach 
that engages prospective teachers in group-work and reflective discussions was ad-
opted and tried out in all four courses. Analysis of the data accumulated systemati-
cally in the naturalistic setting of the courses during the first two semesters of their 
experimental implementation served as the basis for modifying and improving the 
tasks, as well as the impact on prospective teachers’ preparation for their future 
professional life.2

Assessment

Each student’s evaluation and course grade was based upon three factors:

1. Active participation in class sessions;
2. Weekly homework associated with the activity of that week; and,
3. An individual term paper in the spirit of the particular course. Term paper prep-

aration required student’s ‘minds-on’ worksheet design, student’s ‘heart-on’ 

1 Tasks related to the second course were published in Movshovitz-Hadar and Webb (1997).
2 For publications related to the other courses, please refer to Kleiner and Movshovitz-Hadar 
(1994); Movshovitz-Hadar et al. (1994); Movshovitz-Hadar (1993a, b); Movshovitz-Hadar and 
Hadass (1990, 1991); Hadar and Hadass (1981).
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experimental work with a group of high-school students, and an in-depth analy-
sis of these experiences.

Theoretical�Anchors

The theoretical anchors of such courses are many. The reader is assumed to be 
familiar with notions such as concept formation; cognitive conflicts; conjectur-
ing and proving; constructivism; contextual learning; history of mathematics 
and its pedagogical aspects; human rationality; knowledge fragility; motivation 
and frustration; people’s desire to win games; problem solving; spiral learning; 
setting of role models; the utilitarian value of mathematics; and value system 
development.

Preparing�and�Conducting�Such�Courses

The challenge in preparing such courses is threefold:

• Integrating the mathematical contents of university-level mathematics courses 
with the pedagogical, psychological, and sociological issues dealt with in the 
education courses, while revisiting high-school mathematics;

• Finding the right balance between friendliness and mathematical accuracy/rigid-
ity; and,

• Providing a context in which future teachers can grasp the wide-scope nature 
of mathematics culture, its beauty, and its intellectual fulfillment, so that they 
develop an enthusiastic attitude towards communicating these values to school 
children.

It is of particular interest to note that ambiguity, contradictions, surprise, and 
paradoxes are the common thread of all the activities. These attributes as Byers 
(2007) suggests, are in use by mathematicians to create mathematics. Conducting 
such courses effectively requires a great deal of attention to students’ fragility of 
knowledge, and requires coping with occasional frustration students may face 
during the struggle with problem-solving.3 Nevertheless, in these courses pro-
spective teachers experience intellectual as well as social mathematical courage 
(Movshovitz-Hadar and Kleiner 2009), which they will hopefully induce on their 
school-students.

The next section is devoted to details about, and sample tasks taken from the first 
course, namely: Mathematics problems that arise in the context of (strategy) games. 
Some more task-specific details related to task design, and class management strat-
egies aimed at enhancing the underlying pedagogical principles, accompany the 
sample tasks.

3 For a discussion of these issues as related to the second course see Movshovitz-Hadar (1993a).
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�The�Case�of�Strategy�Games�as�Generators�of�Problem�
Solving�and�Proving�Tasks

A typical activity in this course is designed as a solo game or a two to four player 
game. A handout for each game describes the needed materials, the rules of the 
game, and the definition of winning the game. Following the instructions for the 
players, the handout includes a series of mathematical questions that come to life 
in the context of this game. Through solving these problems, prospective teachers 
are exposed to various problem-solving/proving heuristics, while looking at high-
school mathematics from an advanced viewpoint.

Students’ activity starts with free play, followed by problem solving, indi-
vidually and, for more advanced problems, in groups, with possible whole-class 
negotiations of the solutions guided by the course mentor, who may assign a 
few parts for follow-up as homework, where appropriate. A reflection on the 
experience as a whole and on its values for prospective professional mathemat-
ics teachers closes the activity. In particular, the joy of problem solving and of 
learning ‘serious’ mathematics in the context of strategy games comes to the 
surface.

The list of games that constitute the syllabus of this course includes:

• Checker board jumps (Quadratics, geometric series, golden ratio)
• Dominoes (Combinatorial reasoning)
• Hex (Game theory)
• Magic tricks (Odd and even numbers)
• Map Coloring (Graph theory)
• Nim games—“Who gets first to 100?” (Number sense, recursion)
• Sir Pinsky’s game (Chaos and fractals)
• Sitting and standing (Chinese rings, recursion)
• Sprouts (Strategy game)
• Tax Man (Prime factorization)
• The 15 game (Permutations)
• Tri-square rug game (Pythagorean triplets)

The rest of this chapter is an elaboration on the problem-solving tasks generated by 
two of these games: “Who gets first to 100?” (Nim games), and “Checker Board 
Jumps” (also known as “Kangaroo Game”).

Sample Task 1: Nim Games

The games in this task require very limited background in mathematics, but they 
yield a set of problems that demonstrate processes typical of doing mathemat-
ics, such as: synthesizing mathematical findings (question 4), inductive inquiry 
and verification (questions 5, 6), and generalization from a collection of particu-
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lar cases (question 7). When prospective high-school mathematics teachers are 
exposed to a sequence of such problems, which they usually find insightful and 
intellectually fulfilling, they may pick up the general idea and adopt it to their own 
task design. Making this explicit is the goal of the whole-class discussion that fol-
lows the task.

Sample�Task�1:�Student�Handout

Who�Gets�First�to�100?

How to play

Game�1
• Get in pairs, and decide who goes first.
• First player calls his/her choice of a number from 1 to 10.
• Players take turns adding any number from 1 to 10 to the previously-called 

number, announcing the sum only.
• The winner is the first one to reach 100.

Questions
1. Play several times and see if you can come up with a conjecture about a 

number x for which the following is true: “To be first to reach 100, it is 
sufficient to be first to reach x”. What value of x did you find sufficient?

2. Can you find a lower value for x?
3. Does it matter if you go first or second?
4. Working with your partner for the game, try to develop a winning strategy, 

that is, a set of behavior-rules which guarantee that you will win inde-
pendent of your opponent’s moves. Verify your strategy by replaying the 
game. Write down your strategy clearly.

5. Once you have verified your winning strategy, change the target number to 
150 and see if your winning strategy is still working. Play again. Can you 
make sure you win this new game? How? Verify your strategy by replaying 
the game.

6. Play again “100 wins” but this time change the rules so that players may 
add any number from 1 to a different agreed-upon number (e.g., 9 or 12, 
instead of 10). Can you make sure you win this new game? How? Verify 
your strategy by replaying the game.

7. Generalize the winning strategy to the case where your target number is T 
and you can add any number between 1 and N.

8. How do the values of T and N change the level of difficulty of the game?

Game�2
The same rules as in Game 1, except that the first person to reach 100 loses. 
Play repeatedly. Answer questions 1–7 modified for this game.
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Discuss�with�your�peers
• What did YOU learn while playing the games?
• Reflect upon the steps it took you to discover the winning strategy. Do you 

see why the process is commonly called “backward induction”?
• Consider the appropriate level of the game for age-specified school 

students.
• Look back at the structure of the task as a whole. Describe the pedagogy 

underlying its design.
• (Challenge!) Design a learning sequence for high-school students in a 

mathematics topic of your choice that leads the learners to new findings 
employing similar pedagogy.

Historical�background
This game is a simple example of a group of games known as Nim games. 
Other versions of Nim games exist in the literature. Although Nim is known 
to be an old game, its origin is not well established. Charles Leonard Bouton 
of Harvard University, developed the complete theory of the game in 1901, 
see: http://www.jstor.org/stable/pdfplus/1967631.pdf.4

Sample�Task�1:�Classroom�Management

In presenting games, it is generally not a good practice to assign reading the whole 
set of rules from a handout. It is much more engaging to students if the instructor 
starts by playing the game with the class and introduces the rules one by one while 
demonstrating how to play. It is advisable NOT to employ the winning strategy in 
the first demonstration game, but rather to let the class (or individual student) win. 
Here is a sample instructor-class dialogue for introducing the first game in Sample 
Task 1:

Instructor:  We’ll play today a game called “Who gets first to 100?” Sam, will you 
play with me, please?

Student:  OK.
I:  I’ll let you go first, Sam. Chose a number between 1 and 10.
S:  OK.
I:  Tell me your number, please.

4 One of the reviewers commented: In the form presented here (only one pile, no separation into 
piles), it was popularized if not invented by Henry Dudeney. Using 31 and numbers 1 to 5 forms 
the basis for a good deal of Guy Brousseau’s theorizing about didactic situations.
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S:  7.
I:  It is now my turn, so I add a number between 1 and 10 and tell you my sum—It 

is 12. Your turn, Sam. Add to 12 any number between 1 and 10 and tell me your 
sum.

S:  12 + 8 = 20.
I:  Good. You don’t have to tell me anything except the sum, 20. Now it’s my turn, 

and I say 25.
S:  Alright, I say 35.
I:  45.
S:  55.
I:  63.
S:  73.
I:  81.
S:  87.
I:  92.
S:  100.
I:  Bravo, Sam—you won. (To class:) Now please get in pairs and repeat the 

game.

While students are playing, instructor distributes the handout, suggesting to stu-
dents to follow the questions in the handout.

Sometimes after the first demonstration game, another student asks to play again 
against the instructor. At this point it would be challenging to the class if the instruc-
tor wins, alas. Without employing the whole strategy, just make sure to be first to 
get to 89. Winning again, against yet another challenged student would then set the 
stage for students to play in pairs.

Students now play in pairs for a few minutes and soon enough—sometimes im-
mediately after the demo game, if the instructor is not careful enough in choosing 
the steps—they realize that 89 is a key stepping stone. That is, whoever gets first 
to 89 can get first to 100 by adding a number between 1 and 10. Hence the game 
reduces to “Who gets first to 89?”. In subsequent rounds of the game, the race to 
89 yields 78 as a key value, this then reduces the game to “Who gets first to 78?”, 
and so on.

It is important to note that in any given class, there may be a few students who 
are familiar with Nim games. This should not inhibit the free play of others. Those 
few can proceed to the next questions in the handout. It is very unlikely that they 
know the answers to all of them.

Question 5 which asks for generalizing to “Who gets first to 150?” might 
prove to be a pitfall. Students who discovered that going first and choosing 1, 
12, 23, 34, 45, 56, 67, 78, 89, is a winning strategy for getting first to 100, may 
extend it to seeing 100, 111, 122, 133, and 144 as the key stops along the way. 
But in fact, this approach will lead them astray when they attempt playing by 
this strategy. They will realize that generalization requires some more careful 
thinking.
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Related�Task-Design�Issues�for�Sample�Task�1

A significant part of this task is the first problem. Many students do not stop to 
recognize for themselves the recursive meaning of their finding about 89 as a key 
to winning. They keep playing over and again towards 89, without seeing this as a 
reduced version of the original game. Once they do realize it, they usually get quite 
easily down to 78, 67, etc. and finally to 1, which implies that in order to guarantee 
winning, one needs to be the player who goes first.

Question 6 was added in the revision of this handout, in order to facilitate the 
transition to the general rule, particularly to seeing that it is N + 1 that needs to be 
repeatedly subtracted from T in order to get to the initial step. Game 2 was added 
in order to introduce a higher level challenge for those who claim they are familiar 
with game 1 and express a low motivation to play it. (Some may even claim that it 
is a “trivial game” once you know the winning strategy.) These students may find 
it satisfying to discover that the variation “the first to 100 loses” is equivalent to 
“The first to 99 wins”. Furthermore, this small change implies a major difference in 
the winning strategy, because backwards analysis of the winning steps leads to the 
refreshing conclusion that the winner here is not the first player but the second one.

Students’�Response�to�Sample�Task�1

Although the mathematics in the Nim games is limited to simple arithmetic, students 
related to it favorably, appreciating the “thinking backwards” feature of discover-
ing the winning strategy. “This game is not about drill and practice in addition and 
subtraction as I thought at the beginning”, one of them commented. Quite a few stu-
dents got really involved in the discussion of Question 8. One, who was impressed 
by the control over level of difficulty that a change in the target number implies, 
indicated: “Playing to 150 in adding 7s is a challenge even to high-school kids, and 
they must be able to do it without a calculator”. Interestingly, those students who 
claimed familiarity with game 1 to start with, and were therefore referred to Game 
2, became quite involved in it, and actually found themselves back to Game 1, with 
no complaint. One of them even admitted: “It was a nice trick to assign Game 2 to 
us. It made me realize how much I do not know about Game 1…”.

Sample Task 2: Checker Board Jumps

This activity consists of three handouts. The first introduces the game. The second 
includes a set of immediate questions about the game in an increasing order of dif-
ficulty, and the third is a guided discovery to a surprising result embedded in the 
game, and to its proof. Solving the problems, or at least reading their solutions, may 
help the reader see the value of these tasks for prospective teachers, as discussed 
later on.
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Sample�Task�2:�Student�Handout�1�(of�3)

Checker�Board�Jumps5�(Alternative�name:�Kangaroo�Game)

Materials�for�each�player
• Two regular 8 × 8 checker boards placed end to end;
• A set of 24 identical chips;
• Graph paper, a pencil, and an eraser.

Number�of�players
This is a solo game, with a 2-player optional version. See comments below.

Object�of�the�game
The object of the game is to move chips by legal jumps from the 8×8 Starting 
Board onto the adjacent 8 × 8 Target Board, scoring as many points as pos-
sible. (It is advisable to make a record of the initial setting and the moves.)

How to play

At�the�start
Designate the board near you as the Starting Board, and the farther one as the 
Target Board. (See Fig. 1).

Select any number of chips to start playing with, and place them one by 
one in different boxes anywhere you like on the Starting Board. Move one 
chip at a time according to rules.

Rules
• A chip can only move by jumping over another chip to an empty space on 

the Starting Board or on the Target Board. Jumps may be performed either 
vertically or horizontally, but not diagonally.

• A jumped-over chip is removed from the board.
• The game ends when no legal move can be performed.
• The final position of the chips is then scored by row position on the Target 

Board as follows: 1 point for one chip (or more) in the 1st row; 2 points for 
one chip (or more) in the 2nd row; 4 points for one chip (or more) in the 
3rd row; 8 points for one chip (or more) in the 4th row scores; 16 points for 
one chip (or more) in the 5th row scores; 32 points for one chip (or more) 
in the 6th row; 64 points for one chip (or more) in the 7th row scores; and 
100 points for one chip (or more) in the 8th row.

Your�job
Read the rules, then play and record the number of chips you start with, their 
Starting Board arrangement, and the highest score you were able to reach with 
them on the Target Board.

5 Development of this activity was inspired by Honsberger (1976).
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Comments

This game can easily be turned into a two-player game. Each player plays with a 
different set of colored-chips. The two players play on the same pair of jumping 
boards, sitting at opposite ends, defining the Starting Board of one player as the Tar-
get Board of the other one, and vice versa. The two players play the one-player game 
with their own colored chips, taking turns in performing one legal move at a time 
upon their own chips. There are two versions for a two-player game, as described 
below. You can have students decide with their partner the version they wish to play:

1. The players agree on the outset on the number of chips they both start with, and 
they each display this number of chips on their Starting Board in any layout they 
each like. During the game it may happen that two chips, one of each player, are 
in the same box, but each player may touch only his/her own color chip. The 
game ends when one of the two players has no way of making another legal 
move. The winner is the one who reached farther on his or her Target Board. 
(The game can end in a tie, that is, nobody wins.)

Fig.�1�� Layout of the two 
boards and sample jumps
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2. The players agree on the target row the winner has to reach. Each is free to 
decide how many chips to start with and how to display them on the Starting 
Board. The winner is the first one to reach the target row. If both reached the 
target row in the same number of moves, the winner is the one who started with 
a smaller number of chips. (The game can end in a tie.)

Sample�Task�2:�Student�Handout�2�(of�3)

Checker�Board�Jumps

Part 2

After�playing�for�a�while,�answer�the�following�questions
(a) (Easy). What is the least number of chips on the Starting Board that will 

allow a chip to reach the first row on the Target Board? Show how those 
chips should be arranged at the outset.

(b) What is the least number of chips on the Starting Board that will allow a 
chip to reach the second row on the Target Board? Show how those chips 
should be arranged at the outset.

(c) What is the least number of chips on the Starting Board that will allow a 
chip to reach the third row on the Target Board? Show how those chips 
should be arranged at the outset.

(d) Based upon your findings so far, what would you expect the least number 
of chips on the Starting Board to be, so that it would be possible for a chip 
to reach the fourth row on the Target Board? Check your conjecture. How 
accurate was it? What is the actual number of chips with which you were 
able to reach the fourth row? Show how they were initially arranged.

(e) (Challenge!). How many chips do you think it will take to get to the fifth 
row on the Target Board? See if you can confirm your conjecture by 
playing this number of chips in some different initial arrangements.

Solutions�to�the�Problems�in�Student�Handout�2

(a) The smallest number of chips needed to get a chip to the Target Board is two, 
arranged in the same column and in rows 0 and −1.

(b) Four chips are needed to reach row 2 of the Target Board: 3 adjacent chips in 
row 0 and one chip in row −1 below the extreme left or the extreme right chip 
in row 0. Then three jumps are needed to get a chip to the Target Board as 
illustrated in Fig. 2.

(c) Eight chips are needed to get to row 3: five in row 0 and three more in row −1. 
The first moves are identical to those needed to get a chip to row 2 as shown 
in Fig. 2. For this, four chips are needed. Four more chips are necessary to get 
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a chip to the third row, afterwards. The illustration in Fig. 3 is an example of a 
possible arrangement of the eight chips (other arrangements are possible).

(d) On the basis of the fact that to reach row 1, two chips are required at the outset, 
to reach row 2, four (22) chips are required, and to reach row 3, eight (23) are 
needed, one might expect that 24 = 16 chips would be needed to start with, in 
order to get to row 4. Actually the least number is 20. Starting with the initial 
configuration described in Fig. 4, the first 12 jumps are as follows:

Fig.�2�� Initial layout of four chips on the starting board, and the three jumps needed to get a chip 
to the 2nd row of the target board
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Fig.�3�� Initial layout of eight chips on the starting board, and the position after the first three jumps 
(four more jumps are needed to get a chip to the 3rd row of the target board)
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Fig.�4�� Initial layout of 20 chips on the starting board, and the first 12 jumps needed to get eight 
chips arranged in row 0 and 1 to enable a chip to get to the 4th row of the target board
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 The first twelve moves get us back to the initial configuration of eight chips by 
which we showed a chip can reach the third row. Since this eight-chips con-
figuration “sits” one row higher, it can get a chip to the fourth row, in a process 
similar to that shown in answer c. (Note: This does not prove that this is the 
smallest possible number of chips).

(e) Although the process as described up to here seems to be recursive, it is not. There 
is no way one could get to the 5th row!!! The proof, due to Conway, is within 
reach for a high-school student who has had experience with quadratic and higher 
simple polynomials whose coefficients are all 1 (geometric progression). The 
proof is introduced to students via a series of advanced problems in Handout 3.

Sample�Task�2:�Student�Handout�3�(of�3)

Checker�Board�Jumps

Part 3: Advanced problems

(You may wish to verify your findings with your peers or ask for advice at any 
point.)

Let us get more mathematical, now. The mathematics to which this game 
gives rise involves quadratic and higher simple polynomials whose coeffi-
cients are all 1 (namely, geometric progression). By solving the following 
problems, you will see how.

(f) Let P designate a particular box on some row you want to reach. We 
define the distance from P to any other box to be the smallest number of 
unit-steps in parallel to one of the two axes, needed in order to get from 
P to that box.

 We now assign a position value to every box: It is a power of x with the dis-
tance from P as its exponent. (For now, x represents a positive real number, 
which will be specified later). For instance, P itself has position value x0.

 How many boxes have position value x1? x2?
 Find the position value of all the boxes on the Starting Board and on the 

Target Board, if P is in the 3rd row and the 5th column of the Target Board.
(g) For a given target point P, let us define the value of a set of chips to be 

the sum of the position-values of their positions on the board at one time. 
You may note that this value may change if you perform a legal jump, 
because in any legal jump, two adjacent boxes are evacuated and a for-
merly empty box becomes occupied.

 There are three different types of changes a legal jump can bring about 
for the distance of a chip from P:

(i) It can bring that chip closer to P;
(ii) It can bring that chip farther from P; and
(iii) It can keep the distance of that chip from P unchanged

N. Movshovitz-Hadar



131

Familiarize yourself with these three kinds by performing examples of 
each one.
How does each type of move change the value of the whole set of chips?

(h) We now determine the value of x, such that jumps of type (i) will not have 
any impact on the sum. What is the (positive) value of x that keeps the 
total value of the set unchanged? In other words, for what value of x does 
the total change amount to 0?

(i) It is interesting to note that the solution to the previous question is related 
to the Golden Ratio: (1 +

√
5)/2.

 Actually it is its reciprocal, and x is a positive number smaller than 1.
 Now, that you have determined the value of x, such that type (i) jump will 

have no impact on the total value of the set of chips, consider how each 
of the other two types of jump will change the value of the set of chips. 
Will there be an increase, a decrease, or no change in the total value?

 From the results you obtained, try to find a lower bound for the total 
value of the initial set-up of the chips, in order to reach the target point P.

(j) At this point we wonder if there is a row one can never get to, even if 
the number of chips at start is not limited, nor is the size of the board. To 
answer this question, consider an arbitrary point P on the 5th row as the tar-
get point, starting with an infinite Starting Board fully covered with chips. 
What would be the total value of this starting layout? (To get it you will 
have to recall your knowledge of polynomials and geometric series, and 
choose x such that the value of the sum doesn’t change for a jump of the 
first type. You found this value in part ‘g’ above. Note that for that particu-
lar value: x2 = 1−  x). Now, keeping in mind the lower bound you determined 
in part ‘i’, prove that the fifth row cannot be reached, no matter how many 
chips you start with (and this is true even if the board is infinitely large!).

(k) Phrase the result as a statement you have actually proved through the 
above series of questions.

Discuss�with�your�peers
Review the proof you constructed in answering items f–j. What properties 
would you attribute to this proof? Is it elegant? Which part(s) of it in particu-
lar deserve a credit of this sort? Which of the steps deserves credit for ingenu-
ity? Would you attribute beauty to the proof? In what way? Is any one of the 
steps extraordinarily courageous?

Historical�Background
This proof was discovered by the prolific mathematician John Horton Con-
way, born in 1937 in Liverpool England, now at Princeton NJ. Conway is 
known for many inventions of strategy games, notably Sprouts and The Game 
of Life. (For more details see: http://www-history.mcs.st-andrews.ac.uk/
Biographies/Conway.html.)
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Solutions�to�the�Advanced�Problems�in�Student�Handout�3

(f) Let P designate a particular box on some row one wants to reach. We defined 
the distance from P to any other box to be the smallest number of unit-steps 
in parallel to one of the two axes, needed in order to get from P to that box. 
We then assigned a position value to every box to be a power of x with the dis-
tance from P as its exponent. Thus P has position value x0 ( x itself is yet to be 
specified).

 There are four boxes with position value x1, and 8 with position value x2. The 
position value of all the boxes on the Starting Board and on the Target Board, 
where P is in the 3rd row and the 5th column of the Target Board, is given in 
Fig. 5 

(g) For a given target point P, we defined the value of a set of chips to be the 
sum of the position-values of their positions on the board at one time. Since in 
any legal move two adjacent boxes are evacuated and a formerly empty box 
becomes occupied, by performing a legal move this value may change.

 There are three different types of changes a legal jump can imply on the dis-
tance of a chip from P:

(i) Bringing a chip closer to P. This change implies gaining xn while losing 
xn+1 and xn+2,, for some value of n, hence the total change of value of the 
set in this case is:

(ii) Bringing a chip farther from P. This change implies gaining xn+2 while 
losing xn+1 and xn, for some value of n, hence the total change of value of 
the set in this case is:

(iii) Keeping the distance from P the same. This happens if the jump is over 
the same row or over the same column in which P is positioned. The total 
change of value implied by this type of jump is:

(h) We now determine the value of x so that jump of type (i) will not have any 
impact on the sum. To do it, we solve for x : 1 − x − x2 = 0, and get

Considering the positive root we get

Note that this is the reciprocal of the well known Golden Ratio: (1 +
√

5)/2.

xn − (xn+1 + xn+2) = xn(1 − x − x2)

xn+2 − (xn+1 + xn) = xn(x2 − x − 1)

xn − (xn−1 + xn) = −xn−1

x1,2 =
1 ±

√
5

−2
.

x =
√

5 − 1

2
.
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(i) We have obtained a value of x that is positive and smaller than 1. For this value 
x2 = 1 − x,  hence the change implied by type (ii) jump is:

 

 Namely, it decreases the total value. Type (iii) jump also decreases the total as 
−xn−1 < 0.  Hence, to reach P (the value of which = 1), one must get started 

xn(x2 − x − 1) = xn(1 − x − x − 1) = xn( − 2x) < 0
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Fig.�5�� : The position value 
of all the boxes on the Start-
ing Board and on the Target 
Board, where P is in the 3rd 
row and the 5th column of 
the Target Board
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from a layout that has total value ≥1. A set with value less than 1 would require 
an increase in its value in order to reach P, and this cannot be realized by any 
type of jump.

(j) As shown above, the 4th row is within reach by 20 jumps. We now consider 
reaching the 5th row. If one box on the 5th row can be reached, then any other 
box on that row can also be reached, as it only takes moving the initial layout 
to the left or to the right. Hence we consider an arbitrary point P on the 5th row 
as the target point, starting with an infinite Starting Board.

 As stated above the total value of the starting layout must be ≥ 1 .
 Let us calculate the value of the half plane of the Starting Board by columns, 

starting from the points underneath P. As 0 < x < 1 the value of this column is:

The value of each of the two adjacent columns is:

Hence their total is 2x6/(1 − x) . The next pair consists of x7 + x8 + x9 + · · ·  
each, adding to the total 2x7/(1 − x). Similarly, there are pairs of columns on 
each side of the column of boxes below P. Thus we get for the half plane the 
total value S, where

Since for the chosen value of x we have x2 = 1 − x, we get

Therefore, in order to get to the 5th row we must start with an infinite board in 
which all the boxes are occupied or else the total value will be less than 1. Now, 
any finite board, even a fully occupied one, is a part of an infinite board with emp-
ty boxes, hence there is no way of getting to the 5th row in a finite game. QED

Sample�Task�2:�Main�Concepts,�Skills,�and�Strategies

This activity involves two levels of un-anticipated results: One in part d, where stu-
dents are asked to generalize from particular cases, a risk they should not take too 

x5 + x6 + x7 + · · · =
x5

1 − x

x6 + x7 + x8 · · · =
x6

1 − x

S =
x5

1 − x
+ 2

(
x6

1 − x
+

x7

1 − x
+

x8

1 − x
+ · · ·

)

=
x5

1 − x
+ 2

x6

1 − x
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lightly. The other one is in part e, where it becomes very difficult to achieve a suc-
cess empirically, because it is actually impossible, as they will be guided to prove in 
Student Handout 3. (See the solutions section).

It also provides an opportunity to discuss the following important issues:

• Inductive patterns that do not necessarily generalize;
• Organizing and analyzing data;
• Proving something to be impossible;
• Ingenuity and beauty in mathematics;
• Intellectually courageous moves in mathematics.6

Sample�Task�2:�Classroom�Management

In Sample Task 2, as in Sample Task 1 and in general, introducing the game it-
self is better done before the handout is distributed. In this case, preparing a game 
board transparency and demonstrating the moves using transparent colored circle 
cutouts works nicely. (Alternatively, one can use an erasable marker on a transpar-
ency where the boards are marked with non-erasable ink). Students’ free play can 
take place with chips on a grid paper, or using pencil marks and an eraser to replace 
the chips and the jumps. Emphasize that a player may start with as many chips as 
he or she wishes, and the chips may be placed wherever the player wishes. Players 
may even extend the boards as much as they wish.

Upon distribution of the second handout, the first two problems can also be 
solved through discussion with the whole class. The rest should be left for indi-
vidual or in-pair struggle. It is worth encouraging the less competitive students 
to get as far as they can on the board, even if the number of chips they start with 
is not the least possible number. A good goal is to do it. A secondary goal is to 
do it with less chips. The solution to the advanced problems in the third handout, 
in particular the last two, may require instructor’s intervention, to clarify their 
solutions.

The most important part of this activity is the discussion that it yields of prop-
erties of the proof that follows the game. The sense of beauty and ingenuity this 
proof brings up are appreciated by the majority of the students and it is believed 
that it has an influence on their mathematical taste, as well as on their pedagogical 
ability.

In implementing tasks of this nature one should be careful not to “steal one’s 
thunder”, that is, leave students feeling proud of their own work, even if it is not 
fully polished. It is not necessary for the course instructor to always present the 
most elegant solution (Resek, D., 2009, Department of Mathematics, San-Francisco 
State University, personal communication.).

6 For an elaborated discussion of Intellectually Courageous Moves in mathematics, see Movsho-
vitz-Hadar and Kleiner (2009).
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Sample�Task�2:�Related�Task-Design�Issues

Honsberger (1976) presents a problem in checker jumping that inspired the devel-
opment of Sample Task 2 above. For him, the problem is “to determine the least 
number of men in the starting zone which permits a man to reach a prescribed height 
above the x-axis”, where the starting zone consists of the half plane of lattice points 
on and below the x-axis, and the object is “to get a man as far as possible above 
the x-axis”. He then provides, in a few lines augmented by three illustrations, the 
solutions for the first three levels as 2, 4, and 8, respectively, and then gives the sur-
prising result of the fourth level being 20 rather than 16 as might be expected. Now 
he introduces the question of getting to the fifth level, stating that: “Incredibly, no 
arrangement, with however many men, is sufficient to reach level five!” The rest of 
his exposition is devoted to establishing this incredible result.

It was quite a challenge to turn Honsberger’s charming yet concise exposition 
into a problem-solving task that involves trial-and-error free play to start with, fol-
lowed by guess-and-test, conjecturing, and proving activities. In doing so, one must 
be very careful about making things concrete, competitive/collaborative, and play-
ful, while raising curiosity about problems that are inherent in the game and main-
taining interest in solving them. It involves a process I call: Pedagogical cracking 
of mathematical exposition.

There are several principles underlying this “cracking” of mathematical exposi-
tion, which implies sequencing the steps into a well-structured game task that leads 
to a surprise, leaves enough freedom for exploration and proof, and emphasizes the 
ingenuity in the findings. The principles are these: (1) Design a game with clear 
rules and a well-defined state of winning; (2) dramatize the activity by providing 
for counterintuitive findings; (3) turn an expository proof into a guided-discovery 
learning task by breaking the exposition into short paragraphs each addressing one 
question, thus obtaining a series of questions and answers replacing the exposition; 
and (4) wherever appropriate, have students work on a “transparent” particular case, 
i.e., an example that is large enough to mirror the general case, yet is small enough 
to remain concrete. (For the definition of transparent proof, see: Movshovitz-Hadar 
1988, p. 19. For its employment in teaching college mathematics, see Malek and 
Movshovitz-Hadar (2011))

Consequently, Sample Task 2 took a format of handouts at three different levels: 
The first one introduces the game (in two versions). The second one includes five 
questions, intentionally phrased in a very similar way. The first three are straightfor-
ward questions about getting to the first, second, and third row of the Target Board, 
respectively. Each is harder than its predecessor. The fourth question is about get-
ting to the fourth row, yielding a surprising result as compared to the expectations 
created by the solutions to the first three. The last question is about getting to the 
fifth row. Having solved the previous four, students do not suspect the fifth row to 
be inaccessible. Since the fifth row cannot be reached, students clearly will have a 
hard time here. Needless to say, it is in the hands of the instructor to stop the work on 
the second handout before too much frustration is accumulated, but without letting 
out the secret that the last question on that handout is impossible to solve. The third 
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handout starts as if it has nothing to do with the former. It is composed as a guided 
discovery activity, gradually leading the students to find out that getting to the fifth 
row is impossible, which brings us back to the last question on the second handout.

Construction of the series of problems started from reading Honsberger’s exposi-
tion, but contrary to Honsberger’s way of telling the results, the series of questions 
puts the student into an exploratory adventure. For example: Following the defini-
tion of a position value to every point in the plane, relative to a distinguished point 
P, Honsberger says:

Thus P itself bears the value x0 or 1; the four lattice points adjacent to P are valued at x, 
the eight lattice points which are two steps from P have value x2, and so on. As a result the 
rows and columns of lattice points are assigned sequences of consecutive powers of x. (See 
Fig. 19)

Instead, the student’s handout calls the student to find “How many boxes have posi-
tion value x1? x2?”, and then to get the full picture for a particular point P: “Find the 
position value of all the boxes on the Starting Board and on the Target Board, if P 
is in the 3rd row and the 5th column of the Target Board”. Thus, students are active 
in clarifying the notion of position value, by working on a particular case which is 
large enough to reflect the general case but small enough to remain concrete.

Note that in the first handout, the game is described in a ‘neutral’ way, namely 
without disclosing a hint about the 5th row being inaccessible. Scoring is assigned 
to getting anywhere from the 1st to the 8th row of the Target Board. This is an ex-
ample of what I call poker-face pedagogy. It appears again in the design of handout 
2, where students are asked to conjecture about the number of chips it may take 
to get to the 5th row, giving no clue to the fact that it might be impossible. This 
same strategy guides phrasing questions in a “neutral” mode, namely, replacing 
the phrase “prove that” by “Is it true that…” followed by “If yes, prove it; if not, 
provide a counter example”. This strategy helps reducing the student’s dependence 
upon the instructor’s verbal feedback or body language, and supports the develop-
ment of the student’s trust in logical reasoning.

Students’�Response�to�Sample�Task�2

Because this is a part of a course that consists of self-contained meetings, each fo-
cused on a new game, students come in curious to see what is waiting for them each 
day. The atmosphere becomes playful and cooperative very quickly. With respect to 
Sample Task 2, it is of particular interest to note the reactions of students to ques-
tions d and e in handout 2, before they realized that part e is impossible, and their 
discussion of these questions once they did realize it, having completed part 3 of 
the handout. Some of them may argue that it is somewhat ‘unfair’ to assign an im-
possible task, a few may even use expressions like “kind of cheating”, and wonder 
about the message the teacher may send to class in using such a method of problem 
posing. An in-depth analysis of the resources for such doubts, possibly with oppo-
site views expressed by peers who appreciate the “poker face” strategy of posing 
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such questions, could lead to an acceptance of such an approach. Some participants 
may suggest school-level situations in which the teacher may assign similar tasks, 
e.g., to draw a triangle with 1 acute angle, 1 straight angle, and 1 obtuse angle (as a 
part of a drawing task of various triangles, before learning the angle-sum theorem, 
of course).

�Main�Points�for�Students’�Discussion�in�This�Bridging�Course

In addition to task-specific points, prospective teachers have the opportunity, 
throughout this bridging course, to:

• Enjoy refreshing basic mathematical knowledge while playing and solving prob-
lems;

• Reflect upon their own experiences in playing strategy games;
• Discuss the breaking of a proof published in a book or a journal into a series of 

problem solving tasks; Creating good hints; What is it that makes a hint a good 
one?

• Discuss the merits of learning mathematics in the context of strategy games: 
Beyond the fun, is it sufficiently rich? Is it an acceptable approach for learning 
mathematics by the majority, or is it only appropriate for some (elite/disadvan-
taged) group?

• Consider: Problem posing, hypothesis generation and testing, representations, 
generalization from particular cases, verifying, defining and modeling, making 
connections, problem solving and proving, as parts of a mathematical activity.

�Wrapping-up

This chapter describes one of four courses for educating prospective high-school 
mathematics teachers. All four are problem solving courses that consist of a series 
of stand-alone class meetings. They differ in the contexts that give rise to the prob-
lems: games; paradoxes, historically significant problems, and problems related to 
applications of mathematics and mathematical modeling. All four courses are aimed 
at bridging the gap between the mathematical courses—pure or applied—and the 
education courses—psychology, sociology, and philosophy of education—that pro-
spective teachers are required to take in order to become professional high-school 
teachers. The former are usually taught by research mathematicians whose care for 
playing a role model of quality teaching is not always present. The latter courses 
usually are taught in heterogeneous classes of future teacher preparing for teaching 
various school subjects, by experts whose keenness about mathematics is not their 
pride, to say the least.

These bridging courses focus on challenge, curiosity, connectivity, and creative 
thinking, which until recently have been quite rare in the ordinary Algebra, Cal-
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culus, Analytic Geometry, and other courses in the mathematics department, but 
need to be present in high-school if implanting a positive image of mathematics 
is a preference. They augment the didactic courses (sometimes called Methods or 
Mathematics Pedagogy courses) in providing the prospective teachers with some 
exposures to mathematics that make their eyes sparkle, carrying the message that 
mathematics is a boxful of surprise on the one hand, and on the other hand that in 
doing mathematics investing effort, being persistent, and not giving-up easily yield 
a lot of intellectual satisfaction.

Pólya (1962, 1965/1981) envisioned the teacher’s job to be to help students “dis-
cover by themselves as much as feasible” and develop problem-solving “know-how” 
(Pólya 1962, 1965/1981, p. 104). It is no secret that the basic university-level prepa-
ration towards the school teaching profession is only the initial step. It takes a lot 
of digestion, classroom experience, sharing of ideas, and further studies to become 
a knowledgeable teacher. Yet being knowledgeable is not enough. It is becoming 
a sensitive and creative teacher that will keep the professional teacher from being 
burned out. The bridging courses, one of which is described in some detail in this 
chapter, aim at giving the prospective teacher a wide umbrella of resources to hang 
on to, when in the future she or he might look for ways to enliven and refresh their 
mathematics classes, thus raising and maintaining their pupils’ motivation to succeed 
in mathematics and making them find it intellectually rewarding. (For publications 
related to the other courses, please refer to Movshovitz-Hadar and Webb 1997; Klein-
er and Movshovitz-Hadar 1994; Movshovitz-Hadar et al. 1994; Movshovitz-Hadar 
1993a, b; Movshovitz-Hadar and Hadass 1990, 1991; Hadar and Hadass 1981).

Finally, a personal note: The four problem-solving environments mentioned 
above were always given the highest student-survey evaluation scores. However, 
their enduring impact on those who graduated and became practicing mathematics 
teachers always remained a question I wondered about. While I was composing 
this chapter, I happened to meet a former student who graduated several years ago. 
She is now the mathematics department head of a large high-school in Israel. We 
had a casual conversation about her professional development and personal life. 
As we were ready to depart from each other, she said, suddenly looking at me very 
seriously: “May I tell you something personal?” “Surely” I responded, not without 
quietly wondering what it was that she had been holding back all these years. And 
she said: “These problem-solving courses I took from you … I keep recalling many 
of the tasks and have been trying to adopt that spirit to the daily planning of my 
mathematics classes”, she said, and I was relieved. “My major effort during all 
the years I have been teaching mathematics” she added “is to plan every lesson to 
include some mathematical surprise or something dramatic so that the kids will be 
looking forward to the next lesson, as we were in those courses”. This made me very 
happy, of course, but the best was still coming. “Most of my lessons” she carried on 
“evolve from a clear statement of a new problem that we deal with and solve during 
that lesson. I erased from our vocabulary the term ‘rehearsal lessons’; there must be 
something new and interesting in every lesson.” I thanked her deeply and secretly 
wished that many other students have similar recollections and attempt to bring to 
their classes experiences that have similar taste to what they had in these courses.
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�Introduction

This chapter addresses the development of mathematics learning and teaching in 
a four-year developmental research project in which the role of mathematically-
related tasks has been significant to developmental practice of the educators taking 
part in the project. In the chapter we first introduce the project—Learning Com-
munities in Mathematics (LCM). We go on to discuss the theoretical development 
on which the project was based and which proceeded with the project, followed 
by more detail of project activity. Our next section introduces our use of Activity 
Theory in analyses of data and to trace development within LCM. We go on then 
to discuss one example of a mathematical task—the Mirror Task—through which 
we aim to show how the project used tasks to promote learning of pupils, teachers 
and didacticians in the project. Finally we return to our activity theory analysis to 
discuss tensions in mediated activity and learning in the project.

The project, Learning Communities in Mathematics (LCM)1 was founded on 
principles of co-learning inquiry between didacticians2 in a university and teachers 
in eight schools in Norway. Its fundamental aim was the enhancement of learning 
experiences in mathematics for pupils in Norwegian schools from grades 1 to 13. 
Didacticians wrote the project proposal, gained funding from the research council 

1 The LCM project was funded by the Research Council of Norway (RCN) in their programme 
Kunnskap, Utdanning og Laering (Knowledge, Education and Learning—KUL): Project number 
157949/S20.
2 Didacticians are university academics who conduct research in mathematics education (matema-
tikk didaktikk, in Norway) and work with teachers to promote development of mathematics learn-
ing and teaching in classrooms. The four authors of this paper were didacticians.

O. Zaslavsky, P. Sullivan (eds.), Constructing Knowledge for Teaching Secondary 
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and invited schools to participate. The eight schools who volunteered spanned the 
full age range of pupils. (See Jaworski et al. 2007, for a comprehensive account of 
the project as a whole.)

The LCM project involved cooperation between didacticians and teachers to 
explore development of mathematics teaching to enhance learning opportunities. 
Thus, its main focus was on mathematics teaching development. Research was 
seen as a tool both for promoting a developmental process as well as for chart-
ing development. Both teachers and didacticians were insider researchers in the 
project, exploring their own practice and its development. Didacticians were also 
outsider researchers studying activity, progress and development in the project 
(Bassey 1985; Cochran-Smith and Lytle 1999; Goodchild 2007; Jaworski 2003, 
2004b).

The main centres of activity in the LCM project were workshops, held peri-
odically in the university and attended by all project participants (teachers and 
didacticians), and schools where the school project team (of three or more teach-
ers) were responsible for innovative practice in classrooms. Each school team 
had an associated didactician team (of three people) some or all of whom visited 
the school, worked with teachers on planning for the classroom, and collected 
video data from innovative classroom activity. Four doctoral students, conducting 
research within the project, offered the main contact with and collected data from 
schools with which they were associated according to their own specific research 
questions3.

An early decision, taken by the didactician team, was to use specially designed 
mathematical tasks as a basis for workshop activity, an aim of which was to explore 
the processes through which pupils, teachers and didacticians learn. Tasks were 
designed to:

(a) build community between teachers and didacticians through engaging in math-
ematics together;

(b) enable discussion on specific areas of mathematics;
(c) provide a basis for raising didactical and pedagogical issues related to learning 

mathematics and working with pupils in classrooms;
(d) provide examples from which teachers could design their own tasks for the 

classroom; and, overall
(e) contribute to the learning of pupils, teachers and didacticians.

The four year project included three phases, each of one school year, of activity 
between didacticians and teachers. We show in discussion below how these aims 
(a–e) were achieved during the three phases and indicate the emergence of devel-
opmental insights, as well as issues and tensions arising from design and use of 
tasks.

3 Stig Eriksen and Espen Daland were two of these doctoral students and are currently complet-
ing theses entitled respectively Mathematical tasks and the building of a learning community of 
mathematics between teachers and teacher educators and Developing learning communities in 
mathematics: Exploring issues in a mathematics teaching development and research project.
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�Theoretical�Development

Inquiry Community

Tasks were designed to promote inquiry within the project within three layers:

1. Inquiry in doing mathematics in workshops and classrooms;
2. Inquiry in planning for workshop or classroom and in design of mathematical 

tasks;
3. Inquiry in the research process of developing teaching and exploring development.

Inquiry, according to Chambers’ English Dictionary (Schwarz 1988), means to ask 
a question; to make an investigation; to acquire information; to search for knowl-
edge. Wells (1999, p. 122) speaks of “dialogic inquiry” as “a willingness to wonder, 
to ask questions, and to seek to understand by collaborating with others in the at-
tempt to make answers to them”. He emphasizes the importance of dialogue to the 
inquiry process in which questioning, exploring, investigating, and researching are 
key activities or roles of teachers and didacticians (and ultimately, we hope, pu-
pils). In LCM we have sought to create communities of inquiry in and related to the 
project in which we use inquiry as a tool to develop our thinking and practice, and 
work towards developing inquiry identities or inquiry as a way of being in practice 
(Holland et al. 1998; Jaworski 2004a).

Inquiry communities can be seen to develop from communities of practice as 
conceptualized by Lave and Wenger (1991) and Wenger (1998). According to 
Wenger (1998), belonging to a community of practice involves engagement, imagi-
nation and alignment. Participants engage together in the activity or practice of the 
specified community with its own purposes and goals. Engagement implies mean-
ingful involvement and co-participation. Imagination allows individuals to envi-
sion their activity and role and to engage meaningfully in the practice. Alignment 
implies literally ‘lining up with’ the norms and rules of engagement established over 
time within the practice. According to Wenger (1998, p. 183), these are “modes of 
belonging which are involved with varying degrees of emphasis in different types 
of community”. From an LCM perspective, we saw our activity in university or in 
schools to be part of established communities of practice in which we were experi-
enced participants, familiar with and adhering to the norms and rules of practice: di-
dacticians as academics and university teachers, engaging in research and publish-
ing findings as expected by the academic community; teachers engaging in teaching 
activity in and out of the classroom and according to the systemic functioning of the 
school as an educative organism.

An inquiry community derives from a community of practice through the in-
troduction of inquiry to promote critical alignment. Thus, rather than aligning 
tacitly with the practices of the community of practice, those engaging in criti-
cal alignment question their participation, seek to know more about the hows and 
whys of participation, create dialogue with peers to recognize and address issues in 
practice, and open up possibilities for changing or developing aspects of practice 
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(Jaworski 2006). Rogoff et al. (1996, p. 388) speak of a learning community in 
which “learning involves transformation of participation in collaborative endea-
vour”. The idea of inquiry community makes the nature of transformation more 
explicit: didacticians and teachers (and ultimately pupils) engage together in inquiry 
activity through which new ways of seeing and doing become evident and learning 
occurs. What such activity should or could consist of, and how it should or could 
relate to activity in existing communities of practice, the classrooms, schools and 
university settings was a focus of research in LCM. The use of tasks was seen as 
central to learning activity.

Project Activity

In order to enable critical alignment with the norms of everyday practice for both 
teachers and didacticians it seemed important to create situations in which norms 
of practice could be made evident, alternatives considered and opportunity for in-
novation become a reality. From a community of practice model it seems clear 
that world views of those concerned in a developmental project will be strongly 
related to the norms in established communities of practice—largely, the schools 
and university where they work. When a project begins, it has yet to develop its 
own norms. So, planning and design of activity in the project have to encourage 
growth of new ways of doing and being. However, those planning or designing at 
any stage are a part of this system, and cannot be seen as standing outside of it. In 
the beginning, didacticians, according to sound theoretical principles wished to es-
tablish practices in which inquiry ways of doing and being could be fostered. They 
could only think about this from within their own community of practice, albeit 
within an inquiry frame so modes of practice could be considered, questioned and 
analysed.

From the perspective of didacticians at the beginning of the project it seemed 
that carefully designed mathematical tasks could be a basis for enabling teachers 
and didacticians to work together in an area of common interest and lead to discus-
sion of mathematics learning and teaching in classrooms. Tasks planned for work-
shops were not intended as recommendations for classroom activity: project design 
suggested that teachers would design their own tasks for classrooms, related to their 
own curriculum, with didactician support. However, teachers, from the perspectives 
of a school community of practice and experience of teacher education events in 
other contexts expected didacticians to suggest ideas for the classroom. In a focus 
group interview at the end of Phase 2, one teacher, Agnes, reflecting on her early 
experience, expressed this as, “I thought very much that you should come and tell us 
how we should run the mathematics teaching. This was how I thought, you are the 
great teachers”. So, in many cases, tasks experienced in workshops, perhaps seen 
as recommendations for classroom activity, were used by teachers in classrooms, 
either directly following their mode of use in the workshop, or modified in some 
way to suit particular groups of pupils.
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In each of the three phases of activity, tasks were designed (mainly by didac-
ticians), used in workshops (didacticians and teachers together) and adapted for 
the classroom (mainly by teachers). The nature of the tasks used evolved during 
the three phases. At the beginning of Phase 1, tasks were chosen to be readily ac-
cessible to teachers of varying mathematical experience, yet with opportunity for 
extension to offer serious mathematical challenge for all. They were not necessarily 
linked directly to particular areas of the curriculum. Teachers characterised such 
tasks as general or fun tasks. Some teachers, particularly at upper secondary level, 
suggested that they needed tasks which were more curriculum related as they did 
not have time for the so-called fun tasks. Responding to comments of this kind, 
and requests to address certain curriculum topics in workshops, didacticians tried 
hard to design tasks that had clear relevance to an agreed curriculum area, such as 
algebra, or probability.

One early, and in retrospect we can see quite rare, example of teachers designing 
their own tasks came from the team in an upper secondary school. They requested 
didactician support to design tasks related to the teaching of a topic on linear func-
tions at Grade 11. Two special meetings, one in school and one in the university 
were organized at which the material of linear functions was discussed with ref-
erence to the textbook the teachers used. Discussion went deeply into meanings 
of linear functions and considered activity that went beyond the textbook. Subse-
quently, the three teachers designed a set of four tasks to engage pupils in inquiry 
related to the topic, and each of them used these tasks in a lesson with pupils, video 
recorded by didacticians (Hundeland et al. 2007; Jaworski 2007). A meeting held 
after these lessons to discuss outcomes and reflect on activity allowed the teachers 
and didacticians to consolidate professional relationships that had grown through 
this collaboration. The teachers agreed to present their activity and issues arising at 
a workshop—where other teachers were able to try out the designed tasks and share 
in consideration of issues—and later at a project conference.

The tasks discussed above were mathematical tasks focusing on key concepts 
in the topic of linear functions. Increasingly as the project progressed, tasks were 
clearly related to a given mathematical topic such as algebra, geometry or probabil-
ity, and interpreted at a variety of levels related to the age or grade of pupils with 
whom teachers worked. Key task-related elements of activity introduced above in-
clude:

• initial design of mathematical tasks by didacticians for workshops in which col-
laborative mathematical activity was desired for reasons given above;

• some teachers’ use of such tasks, adapted by teachers for pupils’ activity in their 
classrooms;

• some teachers’ design of curriculum-related tasks with didactician support; and, 
subsequent presentation and discussion of school activity in project workshops 
and conference, disseminating thinking and activity locally and more widely.

Considering that task design evolved through three years of activity, what we have 
said here is extremely brief. Three factors emerged as being highly significant for 
task design related to developmental progress: that is the development of knowl-
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edge and practice of teachers and didacticians through their engagement in the proj-
ect. The first was that teachers were eager for tasks of an inquiry or investigative 
nature that they could use with pupils, and readily used workshop tasks in a variety 
of ways in classrooms. Secondly, teachers’ own design of tasks in the school setting 
proved problematic due to difficulties in finding time and opportunity for teach-
ers to meet during the school day. This resulted, in Phase 2, in workshop activity 
in which teachers from different schools, in same-grade groups, designed activity 
for the classroom which individuals would then take further in their own contexts. 
Thirdly, as video material from innovation in classrooms accumulated, it became an 
important tool for dissemination in the project. Seeing tasks used by teachers in the 
realities of classrooms led to developing awareness of teachers and didacticians of 
possibilities for engaging pupils and the associated issues, didactical, pedagogical 
and systemic (For further detail, see also Bjuland and Jaworski 2009; Daland 2007).

Using Activity Theory to Address Issues from Activity Using Tasks

As the project community matured and inquiry practices developed, teachers and 
didacticians gained insights into each other’s ways of doing and being through proj-
ect activity and dialogue. A major goal of the project from the start was to achieve 
co-learning (Wagner 1997) between teachers and didacticians: that is our learn-
ing through participation and inquiry should have a mutual dimension in which 
both groups brought knowledge and expertise and both learned from joint activity. 
We learned to talk to each other in ways that opened up each other’s perspectives. 
Teachers came to use the language of inquiry, and didacticians learned about school 
systems and structures that influenced teachers’ thinking and what was possible in 
school. At a meeting of all teachers and didacticians to discuss the style and content 
of Phase 2, Oswald, a teacher at upper secondary level who had been frank in his 
criticism of what the project was offering him and his colleagues, said,

…the rumour could easily spread that we are dissatisfied with what is done, or that I am dis-
satisfied. On the contrary, I will gladly give you praise for what you have done and I think it 
has been very interesting what we have done so far. (Goodchild 2007, p. 200)4

The teacher Agnes, quoted above, went on to say,
…now I see that my view has gradually changed because I see that you are participants in 
this as much as we are even though it is you that organise. Nevertheless I experience that 
you are participating and are just as interested as we are to solve the tasks on our level and 
find possibilities, find tasks, that may be appropriate for the pupils, and that I think is very 
nice. So I have changed my view during this time. (Daland 2007, p. 168)

One teacher, working at lower primary level, was inspired by the phrase “inquiry as 
a way of being” and quoted this phrase at a number of public meetings. He started 

4 This is a translation from Norwegian, as are other teachers’ words quoted in the text.
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to analyse his work with pupils from perspectives of inquiry in collaboration with 
one didactician (Jørgensen and Goodchild 2007).

Didacticians learned what teachers preferred in terms of group formation in 
workshops, and planning for the classroom as part of workshop activity (Goodchild 
2007). Thus, insights emerged from project activity, and issues and tensions became 
evident, vested as they usually were in the established practices of teachers and 
didacticians. The theories of communities of practice and inquiry did not extend to 
providing an analysis of emergent insights, issues and tensions. For this we turned 
to activity theory. We provide here a brief explanation of Activity Theory as we saw 
it relating to the project and being of use in analysis. We later demonstrate our use 
of it in analysis of the Mirror Task.

The key idea for us here is that human activity is motivated within the sociocul-
tural and historical processes of human life and comprises mediated, goal-directed 
action. According to Leont’ev (1979, p. 46), “Activity is the non-additive, molar 
unit of life … it is not a reaction, or aggregate of reactions, but a system with its own 
structure, its own internal transformations, and its own development”. We can see, 
in these terms, the complexity of the educational system of which the LCM project 
was a part. To analyse the nature and role of tasks within this complexity, we start 
from a simple mediational triangle (Fig. 1).

For pupils (as subject), engaging in mathematics in classrooms, with object and 
intended outcome that of mathematical learning and understanding, the mathemati-
cal task designed by the teacher is a mediational artefact. Through the task, pupils 
should have opportunity to engage in mathematics, make sense of mathematics (en-
joy mathematics) and become able to use and apply the mathematics they have 
learned. For teachers (as subject), engaging in tasks in workshops, and adapting or 
designing tasks in consequence, is a mediational process in which tasks are arte-
facts. Through this process, teachers come to understand more about teaching and 
learning processes and how to engage pupils appropriately, the object and intended 
outcome of their activity. For didacticians (as subject), designing tasks and working 
on tasks with teachers in workshops is a mediational process in which tasks and task 
design are artefacts. Through this process, didacticians learn about the contribu-
tion of tasks to the learning of both teachers and pupils; they learn to modify their 
design of tasks according to observation and reflection, and to respond to systemic 
issues arising when tasks and their design enter into the school community. The 
object of activity for the didacticians was to encourage teachers to design tasks for 

Fig.�1�� A simple mediational 
triangle. (c.f. Vygotsky 1978, 
p. 40)

Mediating Artefact

Subject Object  Outcome 

Based on Vygotsky’s model of 
a complex mediated act 
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pupils, and the intended outcome was the implementation of task design in schools 
for enhanced learning of pupils. What emerged for didacticians were deeper aware-
nesses of teachers’ thinking, teachers’ activity systems in schools, and the systemic 
complexities in which the developmental process is embedded5.

We use an expanded version of the mediational triangle (Engeström 1998) to try 
to capture, theoretically, this complexity (Fig. 2). The simple triangle sits at the top 
of this new figure, and below it is what Engeström refers to as “the hidden curricu-
lum”. Community, as expressed above, is central to activity. It affords collaborative 
development of insights and issues and also constrains what is possible through its 
established practices which are hard or impossible to shift. These include the rules 
or norms of engaging in the established practice. For example, the project teacher 
group within the school community affords a collaborative base for working on 
tasks in school classrooms. However, such collaborative activity has to fit with 
the educational system (curriculum expectations etc.) and school organisation and 
ways of being and doing in school which may not fit well with the objectives of the 
project. The established school system is hard to change, so the project has to adapt 
to what is seen to be possible in school, albeit with aims for school development 
through the activity of teachers in the longer term. Division of labour includes the 
differing roles of teachers in the project and their colleagues in schools as well as 
differences between teachers and didacticians. The rootedness of activity, expecta-
tions of practitioners, modes of being and doing are all significant to how individu-
als or groups can achieve project goals.

Thus, the hidden curriculum captures much of the complexity with which the 
project engages in design and use of tasks for effective development at a range of 
levels. The expanded triangle allows identification of norms or modes of activity 
within the project and the complex mediational factors that influence outcomes. It 
makes possible the mapping of issues and tensions that both constrain what is pos-
sible and lead to possibilities for development. Engeström (1999) emphasises the 
importance of tensions or contradictions between elements of the hidden curriculum 
in promoting learning within activity.

5 See Mason (2008) for a discussion of awareness.

Fig.�2�� An expanded media-
tional triangle. Engeström’s 
(1998) complex model of an 
activity system

Mediating Artefact

Subject Object  Outcome 

Rules Community Division of Labour
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Before going further, we offer a more detailed example of one mathematical 
task, explaining its initiation, design, use and outcomes, in order to exemplify in 
practice some of these theoretical ideas, and return at the end of this chapter to our 
Activity Theory analysis of developmental issues and their achievement through 
mediation in task design.

�The�Mirror�Task

Didacticians’ Design of the Task

The task we describe was presented in Workshop 8, the second workshop of Phase 
2 of the project (the second year of activity between didacticians and teachers). 
The preceding workshop had included overt planning of tasks for the classroom, 
as requested by teachers, and feedback from teachers and didacticians’ reflections 
led us to believe that the format and content had been well received. It had been de-
cided that Workshop 8 would focus on geometry. Prior to the meeting in which the 
workshop was to be planned, Stig initiated an e-mail discussion in the didactician 
team that took place over 16 days, involving contributions from seven didacticians.

In the first message, Stig had reminded us of the importance of continued atten-
tion to community building and the value of engaging in some mathematics togeth-
er to achieve this end. He suggested several problems on which we might work: one 
of these, the basis of what we refer to as ‘the Mirror Task’, is simply stated: How 
tall a mirror must you buy if you want to be able to see your full vertical image? 
(Shultz et al. 2003, p. 310). The e-mail discussion considered many of the issues 
that had emerged in the project over the previous months. The perceived tension 
between investigative tasks that open up the mathematics and tasks focused on the 
curriculum and textbooks used by teachers was uppermost. The goal of community 
building was considered important and the value of mathematics in achieving this 
accepted; however, if the teachers did not share the didacticians’ enthusiasm for 
a task it might prove counter productive. The teachers had requested that time in 
workshops could be spent in planning for their classrooms and it was important not 
to forget this after one, apparently successful, workshop which followed the pattern 
they had requested. It was believed important to find a rationale that would offer 
a bridge between what might be conceived as the project’s goals and the demands 
of the curriculum; although from the didacticians’ perspective the goals coincided. 
Furthermore, as the project included teachers of classes from Grade 1 to Grade 13 
there was some question about how the task might be interpreted or adapted for 
pupils at different stages of development, and whether a knowledge of the physics 
of reflection was required. Stig responded to the challenge by mapping variations of 
the task to different levels of the school curriculum. This accorded with aims in the 
project to show the versatility of mathematical tasks and ways in which tasks could 
be adapted in relation to the differing needs of pupils. It was seen to contribute to 
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community building in helping teachers at different levels to perceive the experi-
ence of their pupils more holistically throughout schooling.

Figure 3 shows what Stig presented to didacticians at the planning meeting. The 
words in italics in this version are written by Stig for didacticians, who will consider 
the task and possibly help to modify it for use with teachers. The simple statement 
of the task is the question at the top: How tall must a mirror must you buy if you 
want to be able to see your full vertical image? It can be seen that this question is 
expanded below into forms of activity that relate to 13 grade levels for pupils from 
ages 6 to 19. After discussion in the didactician team, the text was modified for pre-
sentation in the workshop: the ideas for Grades 12 and 13 became, ‘What if the mir-
ror is not vertical?’ together with relevant quotations from the national curriculum.

It might therefore be seen as if the task became 13 separate tasks, and indeed 
this is one way of seeing it since we think of a task as more than just the problem 
posed. The task includes the problem posed and other factors generating activity in 
relation to this problem. So, when we talk about The Mirror Task, we can be think-
ing about the whole situation as created by didacticians for use in the workshop, 
including the 13 problem statements and the modes of activity in the workshop (as 
described below), or alternatively we can think of the task for any group of teachers 
in the workshop which possibly involved considering just one of the 13 statements 
relating to their own pupils.

The Wider Activity Related to the Task

It is sometimes difficult to see where a task begins and ends. The Mirror Task could 
be seen as the simple question asked at the top of Fig. 3. Or it could be seen as this 
question together with ideas for addressing the question at different grade levels. 
However, task-related activity went beyond just these simple words on paper as we 
explain. When nine didacticians met to plan the workshop several had not contrib-
uted to the e-mail discussion but all had been able to read the mails that had been 
exchanged. Stig opened up the discussion by giving a practical demonstration of 
the Mirror Task.

Much of the discussion focussed on what would take place in the workshop. It 
was decided that Stig and Espen would introduce the Mirror Task in a plenary ses-
sion. Participants would be provided with mirrors and short columns of (multilink) 
small interlocking cubes to try the task practically during the plenary. Stig would 
follow this with some open discussion and an exposition of the work he had done on 
the task and how he had reflected on the way the task might be adapted to various 
levels of the curriculum. Another didactician would demonstrate how the task might 
be interpreted and explored using Cabri-Géomètre, a dynamic geometry program 
on the computer. The Mirror Task would be presented orally with reference to the 
article by Shultz et al. (2003).

The discussion between the didacticians explored deeper issues fundamental to 
the project. It was decided to recommend teachers to read, in advance of the work-
shop, two articles with a geometry focus that had appeared in teachers’ mathematics 
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Fig.�3�� Relating the mirror problem to the curriculum at specific grade levels

How tall  a mirror must you buy if you want to be able to see your full vertical 
image?

    Below you will find one short description of an activity I see as linked both to the 
‘læreplan’ (curriculum) and to the task above for each year. I have tried to keep the  
surprise part of the original task. I have not discussed HOW to use the presented 
activities in a “building-community-of-inquiry-way”.
    Maybe you can take these initial ideas further?

Grade 1 
One pupil faces a mirror holding a stick (against his stomach). This pupil
directs another, who, using a whiteboard marker, marks the mirror image the 
first one sees. Compare the original stick with the marks on the mirror. Try 
different distances from the mirror.

Grade 2 
One pupil holds a geometric figure (against the stomach) and explains to 
another pupil how to draw (on the mirror) the mirror image he sees. Compare. 

Grade 3 
Measure yourself in centimetres. Measure your mirror image in centimetres. 
Draw yourself seeing yourself in a mirror.

Grade 4 
Have a mirror with a grid. One pupil holds a geometrical figure (against 
stomach) and explains how another pupil can draw this on the mirror. Count 
number of squares (area) and compare.

Grade 5 
Cut a figure from paper. Measure it and find the perimeter. Find perimeter of 
mirror image. Compare.

Grade 6 
Measure yourself and your mirror image. Draw yourself (simplified) looking in 
a mirror with the correct ratios (and angles) in your drawing.

Grade 7 
Draw model of a figure and an eye and the mirror image the eye sees (keep the 
eye and the figure at the same distance from the mirror?). Describe lengths and 
angles. What do you see?

Grade 8

Hold a cube and go close to the mirror. Draw on the lines of the cube on the 
mirror. What do you see?

Grade 9 
How tall a mirror must you buy if you want to be able to see your full vertical 
image?
- draw model
- describe angles and triangles

Grade 10 
How tall a mirror must you buy if you want to be able to see your full vertical 
image?
- justify your conclusion
- try with objects with different distances from mirror  

Grade 11 
How tall a mirror must you buy if you want to be able to see your full vertical 
image?
- justify your conclusion
- try with objects with different distances from mirror  
- describe ratios in model

Grade 12 
How tall a mirror must you buy if you want to be able to see your full vertical 
image?
- justify your conclusion
- try with objects with different distances from mirror  
- describe ratios in model
- use the cosine rule to derive the height of the actual figure when the height of 
  the mirror image is known

Grade 13 
Draw yourself and a mirror in a three dimensional vector space.

(perspective drawing)
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journals (Karkoutli 1996; Smith 2003). These articles were intended to raise teach-
ers’ awareness of pedagogical issues related to the teaching of geometry. It was also 
decided to send out an analysis of responses to shape and space items that had been 
part of a longitudinal test that pupils in grades 4, 7, 9 and 11 had taken as part of the 
project one year earlier. The purpose of sending this analysis was to raise aware-
ness of where pupils’ learning opportunities might be improved. Finally it was de-
cided to send out four investigative tasks that teachers might try in advance with the 
thought that in the workshop they might choose to develop teaching material based 
on one or more of them. Thus, the wider activity included pre-readings in geometry, 
problems to engage with in preparation for the workshop, the practical activity in 
plenary and the example offered in Cabri-Géomètre.

The planning meeting also decided that it was important to make clear in the 
workshop the reasons for sending the materials in advance and for the activities 
included in the workshop. This would take the form of one didactician making a 
plenary presentation of about 15 minutes that would once again (the issues had been 
explained in previous workshops) explain the rationale for the tasks. The reasons 
included community building, offering an example of how a single task could be 
interpreted differently to make it appropriate for a variety of grade levels, and to 
stimulate design activity for the classroom. This presentation would open the work-
shop, followed by a report from one teacher of his design and implementation of 
probability tasks inspired by the previous workshop.

We include this detail to indicate the range of activity envisaged by didacticians, 
with an aim to draw teachers into broader thinking about geometry within which 
the task could be situated relative to their own level of teaching and their pupils’ 
understanding of geometry. It would have been ideal if teachers could have taken 
part in such thinking and planning, but time and opportunity for teachers to engage 
in activity was scarce, and so reserved for workshop participation.

Discussing and Planning in the Workshop

As planned, Stig and Espen first introduced the task in plenary and participants 
all engaged in practical activity with small mirrors and columns of cubes for 10–
15 minutes. Stig then related the task and possible variations to the curriculum, 
drawing on what is written in Fig. 3 above and encouraging discussion. This was 
followed by a dynamic demonstration (in Cabri-Géomètre) of the relationship be-
tween the lengths of objects and their reflected image on the surface of the mirror to 
show what happened when the mirror or object were moved relative to the observer. 
After these presentations participants were organised into small groups in which 
they could develop one or more of the tasks for using with their class. The groups 
comprised teachers whose classes were at similar grade levels. Groups were given 
the opportunity to choose which task(s) they wanted to work on. Our account fol-
lows one lower secondary school teacher (Trude) who eventually implemented the 
Mirror Task with her class in Fjellet School.
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Trude was in a group that included one other lower secondary school teacher, 
two upper secondary school teachers and two didacticians. Despite the intentions 
of the didacticians the group did not engage in doing any mathematics together, 
rather the teachers led a discussion on their ideas about teaching and largely con-
trolled the discussion. Some of this focused on different opportunities for develop-
ing mathematical ideas that existed at the different schools, for example the upper 
secondary teachers expressed a belief that it was possible to spend more time on 
some topics in the lower secondary schools. There was some discussion focused 
on the teaching of Pythagoras’ rule, which was current in the experience of one 
of the teachers although not included in any of the materials sent out in advance 
of the workshop, or in the preceding plenary presentation. A substantive part of 
the discussion focused on the Mirror Task and the teaching of similar figures. One 
teacher wondered whether the Mirror Task might be appropriate for teaching about 
similarity but Trude and the other lower secondary teacher agreed that it would be 
better to leave it until later, as an application of the principle. One of the didacticians 
suggested that an approach to the topic could be to collect similar objects that occur 
in everyday life.

In the discussion a number of pedagogical issues were considered. For example, 
the benefit of visualization and motivation at all levels, and Trude reflected on her 
own teaching and wondered whether she used different examples to support pupils’ 
understanding or to make the mathematics more enjoyable. Trude also observed 
that pupils want to have a reason for studying a topic, her concern for providing a 
rationale for her pupils apparently matching the didacticians’ concern to provide 
teachers with reasons for the activities chosen in the workshop. By the end of the 
group discussion Trude expressed her eagerness to teach the topic of similarity and 
to use the Mirror Task, but as agreed earlier, she would not use it as an introduction 
to the topic.

Just over one week later Trude introduced her 8th grade class to similarity. Stig 
was invited to attend and video record the lesson. Trude had assembled a collection 
of objects, such as milk cartons and pictures that could be explored for proper-
ties of similarity. She had even included an ironing board because the hinged legs 
formed two similar triangles, one with the surface of the board, the other with the 
floor. Trude started her lesson by telling the class of an incident where she had re-
quested an enlargement of a photograph. There had been some misunderstanding in 
the shop: whereas Trude gave the specification in centimetres the enlargement was 
produced using the same numbers but measured in inches. Following this introduc-
tion, despite the intention stated in the workshop, Trude moved on to introduce the 
Mirror Task. Following the format of the workshop, pupils were supplied with small 
mirrors and columns of cubes to explore and expose some solution. Pupils worked 
on the practical task for about 30 minutes.

In Workshop 9, about four weeks later, Trude reported, in plenary, on the activ-
ity with her class, she was disappointed that it had not worked out as intended and 
blamed herself for not making the task sufficiently clear. Trude explained that the 
pupils had not understood that the mirror needed to be held at face level, and that 
the column of cubes should be held in the same vertical plane as the observer’s eye, 
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and both on the same vertical plane perpendicular to the surface of the mirror. Also 
the pupils had been able to tilt the small mirrors, which again distorted the results. 
She reported that at the end of thirty minutes of practical activity some results 
(length of column, length of image on the surface of the mirror) were collected and 
entered into a table on the chalk board but it was impossible to discern any relation-
ship because the orientations and positions of the column and the mirrors had not 
been managed effectively. Despite the activity, she said, pupils remained convinced 
that the size of the mirror did not matter; it would be possible to see a reflection of 
their whole body in a small mirror. Trude had provided a larger mirror in the class 
and invited one pupil to use it to test the conjecture but he refused, embarrassed 
because of the presence of the video camera. The pupils were left to test their belief 
at home.

�Discussion�and�Conclusions:�Tensions�in�Mediated�Activity

Trude’s very frank report from her classroom experience with the Mirror Task 
seems to indicate a high degree of confidence and trust in the LCM community, es-
pecially her willingness to reveal sensitive aspects of her thinking and practice. She 
spoke forthrightly and with humour, and those listening responded with indications 
of understanding and sympathy. It seemed that pupils had not gained as she hoped 
from the mathematical activity and that she saw her own preparation for the activity 
as (at least partially) responsible. As didacticians, we also reflect on our part in these 
events and recognize aspects of the activity overall which could have contributed 
to observed outcomes. Of the five aims expressed in section “Introduction” above, 
we can see (a) and (c) being clearly addressed in workshops and classroom jointly. 
However, it is not clear if (b) was addressed, and the extent to which (d) was ad-
dressed is limited. This discussion now attends to (e), what has been learned jointly 
by teachers and didacticians from workshop and classroom events, and draws on 
Activity Theory constructs to support analysis.

Trude designed her lesson to include a Mirror Task and that was modelled al-
most exactly on the workshop activity. It seemed clear that it was only when pupils 
worked with the mirrors and cubes that Trude appreciated the importance of the 
rules of the task, as she expressed them later in her workshop presentation. What 
do we learn from this? We have some evidence of what Trude learned, since she 
expressed this in her talk. Through her pupils’ engagement, she came to see im-
portant conditions that must be satisfied if the Mirror Task is to provide insights 
to a solution for the mirror problem. Didacticians learn that, despite engagement 
of Trude and others in Workshop 8 in the Mirror Task, key aspects of the task had 
not been addressed or understood. Had there been mathematical discussion in the 
small group, these factors might have become evident. However, the teachers had 
led, even controlled, this discussion. Should or could the didacticians have made it 
otherwise? The nature of community, with confidence, trust and openness in work-
ing together, was established through an effort to create equity between didacticians 
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and teachers in influencing activity. This could have been damaged if didacticians 
had tried to control the small group discussion.

An outcome of workshop activity was that in Fjellet school, one group of pupils 
worked on a version of the Mirror Task. By Trude’s account, and analysis of the 
video recording of the lesson, we perceive that little was achieved mathematically 
by the pupils. They seemed to believe something which teachers and didacticians 
knew to be mathematically false. We can appreciate how such belief came about. 
A didactician would have hoped to challenge pupils’ conceptions in the classroom. 
However, the means to do this within the classroom ethos are at the teacher’s dis-
posal but not necessarily available to an outsider didactician. A clumsy handling 
of the pupils’ activity could be just as damaging for confidence and trust in the 
classroom as could a clumsy handling of the small group in the workshop. Perhaps 
the reasons for leaving pupils with their misconceptions would be similar to leaving 
teachers with avoidance of mathematics in the small group.

We see the hidden curriculum deeply exemplified in these situations. In both 
workshop and classroom, community norms and ethos mediated activity related to 
the task. Here community includes both the established communities and the project 
(inquiry) community. Division of labour figures strongly in decisions made to act or 
to hold back. The rules of engagement derive from established norms or delicately 
balanced relationships including the interactions of didacticians in workshops and 
teachers and pupils in schools. The Mirror Task seems central to activity, mediating 
what takes place, but we see very clearly that the task itself cannot achieve desired 
outcomes. It is the way the people using the task engage with it and the nature 
and quality of the engagement that leads to learning. Thus we see tensions arising 
between elements of the Activity Theory model, which, as Engeström (1999) has 
expressed, can lead to opportunities for learning.

A central tension relating to knowledge, expertise and experience of both teach-
ers and didacticians can be seen between the elements community and division of 
labour. The didacticians are strong in mathematical know-how, with the didactical 
experience to modify the task and challenge those engaging in it to draw out key 
mathematical ideas. However, didacticians have no power in schools, little knowl-
edge of established ways of being in the school, and no direct knowledge of the 
pupils. These are all in the province of teachers. It is the teachers who can work 
with the pupils and who have to develop both mathematical understandings and the 
didactical and pedagogic awarenesses that are necessary to offer a task and chal-
lenge pupils sensitively in relation to the task. Workshops are the place where such 
understandings and awarenesses can be fostered. Here didacticians have power to 
engage teachers in tasks and offer mathematical challenge. Yet, didacticians do not 
wish to be cast in the role of telling teachers what to do and how to do. We see this 
tension between community and division of labour to be a manifestation of what 
John Mason has called the didactic tension:

The more explicit I am about the behaviour I wish my pupils to display, the more likely it 
is that they will display the behaviour without recourse to the understanding that the behav-
iour is meant to indicate; that is they will take the form for the substance…The less explicit 
I am about my aims and expectations about the behaviour I wish my pupils to display, the 
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less likely they are to notice what is (or might be) going on, the less likely they are to see 
the point, to encounter what was intended or to realize what it was all about. (Mason 1988; 
rooted in Brousseau’s Topaze effect (Brousseau 1984), cited in Jaworski 1994, p. 180)

Thus a teacher has to navigate carefully between directing pupils and providing 
opportunity for their own self-direction. Challenge has to be judged extremely 
sensitively and it is not always clear what levels of intervention offer appropriate 
mediation. The same is true for didacticians working with teachers. As we have 
exemplified above, in the words of Agnes, teachers have a growing awareness of 
the tension—expressed simply as expecting didacticians to tell teachers what to 
do and how to do it, versus teachers becoming aware as part of their own growing 
knowledge and experience of what is needed in classrooms and the challenges 
they need to face. We see this tension manifested clearly in the activity of the 
Mirror Task.

From an activity theoretical perspective of learning and development the tension 
outlined above can be seen to have potential to motivate activity that might result in 
learning. Didacticians do not want to ‘tell’ teachers what to do, nor do teachers want 
to ‘tell’ pupils, the aim is to provoke engagement with the substance of teaching or 
mathematics, respectively, not with the surface form that is apparent in ‘telling’ or 
giving scripts or recipes for action. Designing a lesson based on a well chosen task 
will engage teachers in critical reflection about what it is they want to achieve in their 
classes. A well chosen task will engage pupils in critical reflection on the substance 
of the mathematical ideas embedded in the task. Thus the task mediates between 
didacticians and teachers, and between teacher and pupils. The tension that arises 
from engaging critically with the task—“How do I do this?”—leads potentially to 
creative thinking, innovation, for the teacher new insights and actions in teaching, 
for the pupil new understanding and possibilities in mathematics, for the didacticians 
new awarenesses of school community norms and teachers’ ways of thinking.

Didacticians learned a great deal, for example, in terms of project patterns in de-
sign and use of tasks. Stig was able to formulate and lead development of the Mirror 
Task as a result of previous activity involving design and use of tasks, reflection in 
the didactician team and synthesis of aims and objectives of workshop activity. For 
didacticians, task design and use has been central to project activity and learning in 
the project. It is not that any task per se has its own power and developmental prop-
erties (although some tasks weather the passage of time and grow into the norms of 
practice) but power rests in what is learned by practitioners about task design and 
use, the challenges and tensions that it generates. Didacticians and teachers now 
know so much more about mediation within the hidden curriculum than they did 
four years ago when LCM began.

The reality of such events is that a convenient ‘closure’ is rarely available. There 
is no closure to the story of the Mirror Task. It was not possible, for example, to 
analyse Trude’s learning, nor provide evidence of outcomes of that learning in fu-
ture use of the Mirror Task with pupils. The learning of which we speak takes place 
over time, and this time might be considerable. In the case of the Mirror Task, 
in its various manifestations, we see an example of growth over time related to 
the tensions as experienced by didacticians and teacher within our own established 
communities and the developing inquiry community. The teacher became more 
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aware of the mathematics of the mirror task through her pupils’ responses which did 
not fit with her expectations. Didacticians became more aware of interpreting their 
aims and intentions in workshop settings through the teachers’ activity which did 
not fit with their expectations. Thus, didacticians can trace their activity from the 
planning stage to classroom activity and recognize factors which influence direc-
tions and outcomes. The tensions, valuably, are a motivating factor in planning for 
future events and the ongoing planning ↔ activity process leads to development in 
knowledge and awareness. This is the main outcome of the developmental process, 
and its impact for the classroom follows. Research needs now to find ways of track-
ing this impact. We have written elsewhere about other examples of such learning 
(Goodchild and Jaworski 2005; Jaworski and Goodchild 2006).
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�Introduction

Lesson study is a professional learning approach that originated in Japan and has 
recently spread among both prospective and practicing teachers in North America. 
In lesson study, teachers engage in cycles of inquiry in which they collaboratively 
plan, observe, and discuss classroom “research lessons” in order to improve their 
shared understanding of teaching, learning, students, and subject matter. These “re-
search lessons” are ordinary lessons in the sense that they are real classroom lessons 
with students, with the unpredictability and on-the-spot decision-making that all 
teaching entails. Research lessons are often unusual, however, in that a group of 
teachers has carefully studied the subject matter and collaboratively considered the 
lesson design most appropriate to the students, and these teachers (as well as invited 
colleagues) observe, collect data, and formally discuss how the lesson actually un-
folds with students. When practised over time, lesson study is designed to build the 
skills, habits of mind, tools, and culture for teachers to learn daily from colleagues, 
students, and curriculum materials. Japanese teachers typically teach one research 
lesson in their own classroom each year and observe and discuss research lessons in 
about 10 other classrooms (Fernandez and Yoshida 2004).

This chapter breaks out the five core tasks of the lesson study cycle shown in 
the left column of Table 1. Typically, lesson study begins with teachers formulating 
a shared “research theme” that captures their long-term goals for student learning 
and development. Often this is done by a whole school faculty. Next, teachers break 
into grade-level or subject matter groups to study the topic they want to teach (often 
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looking at innovative curricula and research related to that topic) and they collab-
oratively choose or develop a “research lesson” designed to bring to life their long-
term goals for student development as well as their goals for student learning about 
the topic. One team teaches the research lesson in a classroom, with other team 
members gathering data on student thinking and responses as the lesson unfolds. In 
the post-lesson discussion, teachers share and discuss the data they collected during 
the lesson, using these data to consider how the lesson might be improved and more 
generally to build their knowledge of teaching, learning, students and subject matter 
(Lewis 2002a; Lewis et al. 2009).

Lesson study originated in Japan but has spread to many other countries in recent 
years, and is used by both preservice and practicing teachers (Akita 2004, 2007; 
Cossey and Tucher 2005; Isoda et al. 2007; Lewis et al. 2006; Matoba et al. 2006; 
Wang-Iverson and Yoshida 2005)

This chapter will explore five tasks that together constitute the major elements 
of the lesson study cycle. Each task is described briefly, followed by examples from 

Table�1�� Five key tasks of lesson study and their impact on teachers
Task Impact on individual teachers Impact on teacher community
Task 1: Develop 

research theme
Consider long-term goals for 

students
Connect daily instruction to 

long-term goals such as stu-
dent motivation to learn

Teacher community develops 
shared long-term vision

Task 2: Solve and 
discuss mathemat-
ics task, anticipate 
student thinking

Develop own mathematics 
knowledge

Develop knowledge of student 
thinking

See colleagues as useful resource 
for understanding mathematics 
and student thinking

Task 3: Develop shared 
teaching-learning 
plan

Refine and build own ideas 
about mathematics and its 
teaching- learning by negoti-
ating a shared lesson plan

Develop a habit of anticipating 
student thinking and connect-
ing daily lessons to long-term 
goals

Negotiation of lesson plan 
builds shared ideas, reveals 
differences

Written teaching-learning plan 
enables teachers to see how 
anticipated and actual student 
thinking compare

Written plan allows teachers to 
capture their learning and 
revisit and spread their ideas

Task 4: Collect data 
during the research 
lesson

Develop knowledge of student 
thinking, focus on student 
thinking, and skill captur-
ing it

Teachers focus on different 
students, enabling teacher com-
munity to construct picture of 
learning across the class

Data on student thinking enables 
re-design and improvement of 
teaching-learning plan

Task 5: Conduct a post-
lesson discussion

Refine ideas about mathemat-
ics teaching and learning by 
hearing colleagues’ perspec-
tives on instruction seen by 
all

Develop habits of lesson analysis 
and refinement

Develop shared vocabulary for 
analysis of teaching-learning 
that is linked to actual 
instruction

Develop sense of shared responsi-
bility for all students’ learning

C. Lewis et al.
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Alma Middle School (pseudonym), a public lower secondary school serving a ra-
cially and socioeconomically diverse student body (ages 11–14). The final section 
of the chapter makes theoretical conjectures about the contribution of the tasks to 
teachers’ development.

�Task�1:�Development�of�a�Research�Theme

The first task of lesson study is to develop a “research theme” to guide the lesson 
study work. The research theme allows teachers to voice their long-term aspirations 
for students and come to a shared set of goals. Figure 1 provides a step-by-step 
guide to developing a research theme. Each part of the task should be presented 
separately, before seeing the next part. Typically, the research theme is developed 
by all the teachers at a school or all the members of a class for prospective teachers, 
based on careful observation of the strengths and challenges of students they teach. 
The purpose of development of the research theme is to focus teachers on their 
long-term goals for student development, and to identify gaps between these goals 
and students’ current characteristics.

While at first blush, the process of developing a research theme may not seem 
“mathematical,” it lays the groundwork for teachers’ mathematical lesson study 

Learning from the Key Tasks of Lesson Study

Fig.�1�� Development of a research theme

Part 1:
Think about the students you serve. What qualities would you like these students to
have 5-10 years from now? Jot down a list of the qualities you would like your
students to have if you were to meet them 5–10 years from now.
Present this prompt separately, verbally or visually, before looking at the prompts below.
Have participants discuss their lists.

Part 2:
Once again, call to mind the students you serve. List their current qualities. Think
about their strengths as well as any qualities you may find worrisome. Make a
second list, of your students’ current qualities.
Present this prompt separately, verbally or visually, before looking at the prompts below.
Have participants discuss their lists.
Part 3:
Compare the ideal and the actual qualities you listed. Identify a gap between the
ideal and the actual that you really feel merits your attention as an educator.
Have participants briefly work individually, and then share their ideas with the group. 

Part 4:
Collaboratively develop a research theme—that is, a long-term goal—for your
lesson study work, by stating positively the ideal student qualities you wish to
build. For example, teachers at a school serving low-achieving students whose
families had suffered discrimination chose the following goal:
“For students to develop fundamental academic skills that will ensure their progress and
a rich sense of human rights.”  

 

Teachers (for example, a school faculty or a class of prospective teachers) work together
develop a shared research theme. 
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work in three important ways. First, teachers focus on qualities crucial to students’ 
long-term development as mathematics learners that may be neglected in daily plan-
ning, such as curiosity, persistence, or the habit of relating mathematics to daily life. 
Second, teachers carefully consider their students: Who are they, and what are their 
strengths and challenges? As they share out ideas, teachers can compare their own 
views of students with those held by colleagues. For example, science teachers at a 
California high school were shocked to realize that the teachers of the ninth graders 
saw incoming students as very curious about the subject matter and eager to learn, 
but that by twelfth grade students were seen as disaffected. Third, development 
of the research theme can provide motivational fuel, by connecting teachers’ most 
central goals as teachers—such as building motivation to learn—to the particular 
topic under study. The long-term focus of the research theme provides a welcome 
counterbalance to the short-term focus of much educational evaluation, remind-
ing us that it is important not simply whether students have learned to perform a 
particular procedure, but whether they have learned to do it in a way that fosters 
mathematical habits of mind more broadly. For prospective teachers, the research 
theme also provides a way of seeing what they share with colleagues, and a chance 
to practice negotiating some of their differences of educational goals before enter-
ing the challenging realm of planning the research lesson.

As one prospective teacher commented,
A lot of [American] schools develop mission statements, but we don’t do anything with 
them. The mission statements get put in a drawer and then teachers become cynical because 
the mission statements don’t go anywhere. Lesson study gives guts to a mission statement, 
makes it real, and brings it to life.1

Development of the Research Theme

Mathematics teachers at Alma Middle School have practised lesson study since 
2002, and they typically revisit their research theme each year, adjusting it as 
necessary to fit their current concerns. Of persistent interest to these teachers has 
been the very large achievement gap among students. Mathematics classes are not 
tracked, and they include a very wide range of student achievement levels. Hoping 
to build students’ persistence and self-image as mathematics learners, the teachers 
developed in 2003 the research theme of “helping students learn to have math-
ematical conversations and reason mathematically.” During subsequent years, as 
teachers noticed continuing achievement gaps among students, they expanded their 
research theme to include a focus on improved achievement on the state test, and 
they also focused on ways to increase the “status” of students who might be ignored 
in classroom conversations because they were not considered mathematically able 
by their peers. The research theme informed teachers’ development of the teaching-
learning plan (see Sect. Task 3: Development of a shared teaching-learning plan). 

1 I am indebted to a prospective teacher at Mills College for this remark, January 12, 2001.
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For example, in order to build mathematical conversations, the teachers included 
in one research lesson a large visual representation that would enable students to 
easily share their thinking with the class. When focused on raising the “status” of 
low-achieving students, the teachers had students learn certain “expert skills” at 
the beginning of class that they could share with classmates during the lesson. The 
research theme helped teachers begin their work from long-term goals, such as hav-
ing students show persistence and success as mathematics learners, and to consider 
the intermediate steps, such opportunities to engage in mathematical reasoning and 
mathematical conversations, that might be designed into research lessons to pro-
mote these goals.

�Task�2:�Solve�the�Mathematical�Task�in�Order�
to�Anticipate�Student�Thinking

A second task of lesson study is for teachers to solve and share their thinking about 
the task to be given to students during the research lesson, in order to help antici-
pate a range of student responses. As teachers discuss their approaches, they make 
their mathematical thinking visible to colleagues, and teachers may expand their 
knowledge of solution methods in this way. These conversations may also surface 
difficulties or misunderstandings related to the subject matter, making problematic 
ideas available for discussion and revision. By solving tasks, sharing solutions, and 
anticipating student solution methods, teachers may build their own understanding 
of both mathematics and student thinking.

The following conversation occurred during an hour-long lesson study meeting 
at a Alma Middle School. These practicing mathematics teachers had just solved 
a problem from a Japanese textbook (see description of problem in Fig. 2); the 
problem was provided along with a range of other US and foreign resources in 
a toolkit designed to support teachers’ lesson study on proportional reasoning. 
Comparing how different curricula (such as those from US and Japan) present a 
topic can expand teachers’ thinking about what is important. When the teachers 
shared their solutions and anticipated how students might think about the prob-
lem, one teacher commented that some students might not distinguish between 
proportional and non-proportional increases. His comment sparked a conversa-
tion about whether students in their school have had an opportunity to learn to 
make this distinction (Video-recorded teacher meeting on 1.21.08, video time-
code: 24:00–35:48):

Teacher 3:  So … my belief is that some students when they attempt to answer 
the question will think, “More water, more depth” for the first, “More 
water, more depth” for the second, so they’ll say both are propor-
tional. More water, more depth: as one goes up, the other goes up, so 
it’s kind of like correlation.

Teacher 5:  And the table carries that through …

Learning from the Key Tasks of Lesson Study
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Teacher 3:  So the constant rate, that’s not mentioned anywhere. You see the con-
stant but they don’t see the constant. Constant in the first one but not 
in the second one.

Teacher 4:  I would really like to be able to have my students in the 7th grade be 
able to look at the tables and realize that the top one is dealing with 
equivalent fractions and the bottom one isn’t. To know that aspect of 
proportionality, through ratio tables or, yeah

Teacher 5:  Either ways, equivalent fraction or common multiplier … that they 
should be flexible enough to do that, and know that it doesn’t apply to 
the second table.

Fig.�2�� How things change (Problem reproduced from Book 6A Tokyo Shoseki’s Mathematics for Ele-
mentary School (p. 72). Copyright 2004 Global Education Resources (myoshida@globaledresources.
com). Do not copy, reproduce or distribute without written permission)

If water is poured into these test tubes, looking at these containers do you think the depth of
water will be proportional to the amount of water? 

For container (1)

For container (2)

What do you notice about the numbers in the tables below? 

(1)

(2)

Amount of Water
(dl)

Depth of Water 
(cm) 

Amount of Water
(dl)

Depth of Water 
(cm) 

(2)(1)

2420161284

4 7 10 13 16 19

1 2 3 4 5 6

1 2 3 4 5 6

C. Lewis et al.
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Teacher 4  Um hmm. [As if he is a student solving it:] 2 times 3 is 6, 8 times 3 is 
24.

Teacher 5:  So do you think if you gave this to your seventh graders now, they 
would have an understanding of it, since you guys have finished your 
ratio and proportion unit? I don’t think my 7th grade intervention class 
would do very well with this …

Teacher 3:  What if it was stripped of the problem context … would they be able 
to look at the two tables and say which one is proportional?

Teacher 5:  That’s a good question. I don’t know, but I like that thinking. What do 
you think, Teacher 2?

Teacher 2:  I don’t [think so]. Because I think that’s the piece we haven’t done. 
We’ve done work with ratio tables but we’ve kind of stated “This is 
a rate problem, this is a problem where you use proportional reason-
ing.” They haven’t done much to determine when a situation is pro-
portional or not … when the data follows that. So I think that’s sort 
of where we’re heading with the multiple representations: being able 
to distinguish cases in which it should be proportional and in which it 
shouldn’t.

The preceding conversation illustrates what teachers may learn from solving and 
discussing a student task and anticipating student responses to the task. Teachers 
identified a potential difficulty for students (distinguishing between proportional 
and non-proportional increase) and discussed the implications for their own teach-
ing. Through such discussions, teachers can share and build their knowledge of 
student thinking. Although the teachers in this lesson study group all seemed to be 
clear about the difference between proportional and non-proportional increase, in 
other lesson study groups this task surfaced teachers’ own misunderstandings of 
proportional increase, and enabled discussion of them.

Research suggests that these teachers are quite right in observing that stu-
dents may have difficulty distinguishing proportional from non-proportional 
situations (Van de Walle 2007). More generally, research suggests that teachers 
who ground their instructional decisions in careful analysis of students’ current 
mathematical knowledge may be better able to promote student learning (Pe-
terson et al. 1989) and that orientation to student thinking supports continuing 
learning by teachers (Franke et al. 2001). The activity of solving and discussing 
a task in order to anticipate student solutions thus builds a core aspect of teach-
ers’ instructional skill.

�Task�3:�Development�of�a�Shared�Teaching-Learning�Plan

Development of the Shared Teaching-Learning Plan brings together the research 
theme (Task 1) and the mathematical topic teachers want to focus on during the 
lesson (explored in Task 2), as teachers ask, “How can we help students learn about 
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Fig.�3�� Template for teaching-learning plan

C. Lewis et al.
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this topic in a way that supports our research theme?” Figure 3 provides a tem-
plate for the Teaching-Learning Plan that is developed collaboratively during lesson 
study. Even when the group starts, as it should, with the best available lesson plan 
on a topic, it may take two or more meetings to flesh out the Teaching-Learning 
Plan, which includes elements often omitted from standard US lesson plans—such 
as anticipated student thinking and data to be collected during the research lesson. 
Development of a shared teaching-learning plan surfaces teachers’ ideas about the 

Learning from the Key Tasks of Lesson Study
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important content within a topic and about how students best learn mathematics. 
As teachers’ thinking becomes visible, so may differences of opinion among them. 
The instructional plan represents the thinking of the whole lesson study group about 
three concentric layers of practice: the lesson itself, the larger unit and academic 
subject area of which it is part, and the even larger domain of students’ long-term 
development. As a lesson study team moves on to conduct the research lesson, the 
instructional plan will:

• Support the research lesson teacher, by providing a detailed outline of the lesson 
and its logistical details (such as time allocation, needed materials and wording 
of key problems);

• Guide observers’ data collection by specifying the “points to notice” and data to 
be collected;

• Help observers understand the rationale for the research lesson, including the 
lesson’s connection to goals for subject matter and students and the reasons for 
particular pedagogical choices;

• Record the lesson study group’s thinking and planning, so that team members 
can revisit it after the research lesson and notice where their thinking may have 
changed.

Because the instructional plan plays several important roles and because it may be 
quite different from the lesson plans familiar to American teachers (which tend to 
focus on teacher actions), it is useful to examine in some detail instructional plans 
developed by experienced Japanese or US lesson study practitioners (Global Educa-
tion Resources 2006; Lesson Study Communities Project in Secondary Mathemat-
ics n.d.; Lewis 2002b; Mills College Lesson Study Group n.d., 2005; Teachers’ 
College Lesson Study Research Group n.d.). Team members “become aware of 
how you think about lessons and about mathematics.”2 as each element of the plan 
is considered, including anticipated student thinking, the learning flow of the entire 
unit, how the topic connects to prior and subsequent learning and to long-term goals 
for students, and the data that will be collected during the lesson.

For example, one teaching-learning plan developed by teachers from Alma Mid-
dle School integrated twin goals of providing challenging mathematics tasks and 
implementing research-based strategies to raise the status of low-achieving students 
(Cohen 1994). The teachers noted in their pre-lesson brief for observers that the 
research lesson is designed to “allow more students to contribute mathematically … 
not just I’ll be the colourer.” One team member commented:

Some of us have experimented with group roles, and that promotes experimentation, but 
sometimes the engagement was not at a very high mathematical level; it was “I’ll be the 
record-keeper, and you tell me what to write.” There’s not much cognitive demand there. 
So here, it’s hopefully are they engaged at a mathematically high level.

2 Nakamura, T. p. 18, in Zadankai: Shougakkou ni okeru juugyou kenkyuu no arikata wo kangae-
ru. (Panel Discussion: Considering the nature of lesson study in elementary schools) in Ishikawa 
et al. 2001.
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The team members asked observing teachers to collect data on individual stu-
dents over the course of the lesson, in order to see whether low-achieving students 
showed increased mathematical participation after an intervention that taught them 
a particular “expert skill” (how to represent data in a table).

Development of the teaching-learning plan helps teachers refine their knowl-
edge of mathematics and its teaching and learning by making their own knowledge 
visible and negotiating with other team members about what constitutes good in-
struction and important mathematical content. Researchers have documented the 
cacophony of competing demands on teachers and the very limited opportunity for 
teachers to integrate and make sense of these demands in the context of actual class-
room practice (Elmore 1996). In their lesson study cycles, the Alma teachers have 
persistently experimented, over multiple lesson study cycles and several years, with 
strategies to increase the participation of low-achieving students and to build math-
ematical problem-solving.

�Task�4:�Enactment�of�the�Research�Lesson�with�Data�Collection

As noted earlier, research suggests that teachers who ground their instructional de-
cisions in careful analysis of students’ current mathematical knowledge may be 
better able to promote student learning (Peterson et al. 1989; Franke et al. 2001). 
The fourth lesson study task, collection and discussion of student data during the 
research lesson, develops teachers’ knowledge of student thinking. Although 4–6 
is an optimal number of teachers for lesson planning, additional teachers may be 
invited to observe and collect data during the research lesson. For example, teachers 
of algebra may work as a lesson study group to plan a research lesson, and invite 
teachers of other mathematics classes to observe and discuss the lesson. During the 
research lesson, team members and invited observers carefully observe selected 
students throughout the lesson, collecting detailed data on their activities, speech, 
writing, and use of materials. These data allow the team to construct a detailed 
record of how the lesson “played” from the point of view of the observed students. 
How did they initially think about the problem? How did their thinking change or 
develop over time? What supported or obstructed their progress? What role did the 
problem design and wording, visual aids, the teacher’s interventions, or comments 
by peers play in the development of their thinking?

Because the data to be collected vary with the specific mathematical topic, there 
is no single blueprint for data collection, making it one of the most challenging as-
pects of lesson study. However, some rules usually apply. The thinking and actions 
of several target students should be documented in as much detail as possible from 
the beginning to the end of the lesson. The target students should be selected to 
represent different issues the team wants to understand: for example, how does the 
lesson look from the point of view of high-, middle-, and low-achieving students, 
second-language learners, students who show little curiosity about mathematics, or 
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other subgroups of interest. The observers should not teach or help the students or 
otherwise interfere with the natural flow of the lesson. (It should be explained to 
students that the teachers are there to investigate the lesson—not to evaluate stu-
dents or to provide help.)

A second general principle is that the lesson should be designed to reveal as 
much student thinking as possible (Lesh et al. 2000). Gathering students’ writ-
ten work supplements the in-depth observation of selected students and provides 
a broader picture of learning within the class. For example, the lesson by Alma 
Middle School teachers, described in the previous section, was designed to help 
lower-achieving students take a more active role in heterogeneous small groups, 
by teaching these students certain mathematical “expert skills.” Each observer fol-
lowed a selected student to see whether and how they brought skills from their 
“expert” groups back to the heterogeneous groups, and how their written work 
on a proportional reasoning task changed after learning the “expert skill” of mak-
ing a table to record data. Written work and observational data suggested that the 
expert skills enabled some students, but not others, to increase their mathematical 
participation in the heterogeneous groups. The contrast among the students was 
striking, with some students moving from virtually no written work prior to the 
“expert skills” experience to extensive written work afterwards, and other students 
making little apparent advance in their mathematical participation. The contrasts 
offered a useful reminder of the diverse experiences within a class and the power 
of data collection.

�Task�5:�Discussion�of�the�Research�Lesson

The fifth task is discussion of the research lesson. The purpose of this task is for 
teachers to draw conclusions about the strengths and weaknesses of their lesson 
design, and more generally to refine their ideas about mathematics teaching and 
learning based on an actual concrete sample of instruction that all members have all 
just seen. Figure 4 provides a protocol designed to support thoughtful, data-focused 
discussion of the research lesson. The protocol allows the teacher who taught the 
lesson to speak first, followed by the team members, who focus on presenting the 
data they collected on student thinking, rather than on evaluation of the teaching.

The discussion following a research lesson by Alma Middle School teachers il-
lustrates the potential for learning about lesson design and about instruction and 
student learning more broadly. This proportional reasoning lesson focused on the 
relationship between the height of a ball’s bounce and the height from which it is 
dropped. Students found it hard to focus on the proportional relationship because 
they struggled with variations in measurement of the bounce height. The observers 
of the lesson also noticed that although students efficiently calculated the mean of 
three bounces, they were not clear about the purpose of calculating the mean as a 
way to mitigate error. A team of elementary teachers, whose students feed into Alma 
Middle School, observed the research lesson. Part of the discussion follows.
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Alma Teacher 2:  Well, I think that’s really interesting [that they didn’t grasp 
the purpose of calculating the mean] because, I think a ton 
of time at the beginning of the year in seventh grade is spent 
calculating means, so …

Alma Teacher 5:  And sixth grade.
Elementary Teacher:  And fifth grade and fourth grade.
Alma Teacher 2:  So we didn’t say this is why we calculate mean, but the fact 

that it’s not entirely clear to them says that the way we’ve been 
teaching it is … you know, I don’t. No student said, “How do 
you calculate mean?” Like they all knew how to do it.

Elementary Teacher:  But … the purpose of doing it was not clear, which is really, 
sort of diagnostic, you know, do kids make sense of the 
power of mean not just how to do it.

Discussion of the lesson yielded ideas about how to improve lesson design; in a lat-
er version of the lesson, students received data, and were able to focus more clearly 
on the proportional relationship. In addition, the discussion led both elementary 
and secondary teachers to consider what kind of instruction would facilitate better 

Fig.�4�� Agenda for discussion of a research lesson

1. The Instructor’s Reflections
The instructor describes the hopes for the lesson, comments on anything that was surprising,
and reflects on what was learned in planning and conducting today’s lesson.

2. Background Information from the Lesson Study Group Members
Using the instructional plan, the lesson study team members explain their long- and short-
term goals, and why they designed the lesson as they did. They may also describe how the
lesson changed over time.

3. Presentation of Data from the Research Lesson
Lesson study team members present data on student thinking and behavior from the
research lesson (and sometimes the larger unit of which it is part). The data may include
observational notes, student work, discussion record, record of the blackboard, etc., that
have been agreed upon in advance.   

4. Discussion
A brief free discussion period, facilitated by a moderator, may be provided, during which
additional participants add their observations. The focus is on student learning and
development. Comments of a sensitive nature may be conveyed privately at a later time.   

5. Outside Commentator (optional)
An invited outside commentator may discuss the lesson.

  Note: The items in bold are the actual agenda items from a faculty discussion following a
research lesson. The regular typeface is our commentary. It is common for each speaker to
preface his or her comments with an expression of thanks to the teachers who taught, planned,
and supported the lesson. 

6. Thank
If the gathering is large, it is common for an administrator to thank the instructor, planners,
and attendees.
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understanding of the purpose of calculating means. As this lesson study example 
illustrates, using data from the lesson may yield implications for the lesson design, 
and also for the understanding of student learning and instruction more broadly—
for example, the idea that students may efficiently calculate means without a good 
understanding of the purposes for doing so.

�How�Do�the�Tasks�of�Lesson�Study�Support��
Teachers’�Learning?

Figure 5 reproduces a widely-used framework for understanding mathemat-
ics teachers’ learning from and in practice (National Research Council 2001). It 
represents as three points of a triangle the three major types of learning within 
practice—learning from colleagues, learning from students, and learning from 
mathematics (from curriculum, mathematical tasks, etc.). Lesson study supports 
learning from each element of practice represented in the triangle. Teachers learn 
from each other as they consider long-term goals for students, solve and discuss 
mathematical tasks, collaboratively develop the teaching-learning plan, and share 
and discuss observations from the research lesson. They learn from students as 
they observe and collect data during the research lesson, and from mathematics as 
they study curriculum and solve and discuss the mathematical tasks. Lesson study 
often brings the points of the triangle into closer relationship so that teachers can 
draw on colleagues’ ideas to help them unpack student thinking and to make sense 
of the mathematics in the curriculum. For example, one teacher wrote at the end of 
a lesson study in which she solved several mathematical tasks and then discussed 
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them with colleagues, “The discussion with colleagues along with the review of 
student work opened my eyes to the many possible ways to solve the problem. 
Many people will have different ways to do things than me and I need to understand 
that to be a better teacher.”3 

Lesson study makes elements of teachers’ thinking visible that might other-
wise remain invisible and unexamined. For example, the lesson study cycle “How 
Many Seats?” (Lewis et al. 2009; Mills College Lesson Study Group 2005) sur-
faced a disagreement among teachers about whether it was desirable to have stu-
dents struggle to organize data themselves (rather than be given an empty function 
table that “spoonfed” them the pattern). Teachers often expand or refine their own 
thinking as they encounter colleagues’ ideas. For example, teachers in the “How 
Many Seats?” lesson study cycle adopted the idea of examining students’ counting 
methods after watching a colleague use this strategy productively to gain insight 
into student thinking during a research lesson (Lewis et al. 2009). As noted above, 
after watching students struggle to describe the relationship between ball bounce 
and dropped height, the Alma teachers developed a shared realization that students 
could calculate a mean but did not understand the purpose of doing so.

The five tasks of lesson study described in this chapter are not “one-shot” tasks, 
but core elements of lesson study cycles that recur throughout one’s lesson study 
work as a prospective and practicing teacher. Table 1 summarizes influences of 
these tasks on individual teachers and on the teacher community. Over time, these 
tasks build teachers’ knowledge of mathematics, pedagogy, and student thinking, 
as well as habits of mind that are central to teaching, such as careful observation of 
students and an inquiry stance toward teaching. Beyond impact on individual teach-
ers, lesson study also impacts the teacher community, as teachers come to share 
goals for students, ideas about what is good instruction, and a common language for 
talking about features of teaching and learning.
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�Introduction

Mathematical problem solving has been the primary goal of the school mathemat-
ics curriculum in Singapore since 1990 (Ministry of Education 1990, 2000, 2006). 
Such a goal is not unique as there has been a world-wide push for problem solving 
to be the central focus of school mathematics curriculum since the 1980s. In the UK, 
the Cockcroft Report emphasized that ‘mathematics teaching at all levels should in-
clude opportunities for problem solving’ (Cockcroft Report 1982, paragraph 249) 
and that problem-solving ability lies ‘at the heart of mathematics’ (p. 73), a means 
by which mathematics can be applied to a variety of unfamiliar situations. In the 
United States, the principles and standards for school mathematics of the National 
Council of Teachers of Mathematics (NCTM) stated that “Problem solving should 
be the central focus of mathematics curriculum” (NCTM 1989, p. 23) as it encom-
passes skills and functions which are an important part of everyday life. In Australia 
the 1990 National Statement on Mathematics for Australian Schools stated, as one 
of the goals, that students should develop their capacity to use mathematics in solv-
ing problems individually and collaboratively (Australian Education Council 1990).

In the teaching and learning of mathematics problem solving is critical. It is a 
vehicle for teaching and reinforcing mathematical knowledge and helping to meet 
everyday challenges. It is also a skill which can enhance logical reasoning. Individ-
uals can no longer function optimally in society by just knowing the rules to follow 
to obtain a correct answer. They also need to be able to decide through a process of 
logical deduction what algorithm, if any, a situation requires, and sometimes need 
to be able to develop their own rules in a situation where an algorithm cannot be 
directly applied. For these reasons problem solving can be developed as a valuable 
skill in itself, a way of thinking (NCTM 1989), rather than just as the means to an 
end of finding the correct answer.
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In Singapore, mathematical problem solving is central to mathematics learning 
at both the primary and secondary school levels. It involves the acquisition and ap-
plication of mathematics concepts and skills in a wide range of situations, including 
non-routine, open-ended, and real-world problems (Ministry of Education 2006). 
Once again, emphasis is placed on mathematical problem solving as the primary 
outcome of school mathematics. Figure 1 shows the framework of the school math-
ematics curriculum. The framework guides the teaching and learning of mathemat-
ics in Singapore schools and it is imperative that prospective mathematics teachers 
learn about it as part of their teacher education.

The framework highlights that the development of mathematical problem solv-
ing ability is dependent on five inter-related components, namely, Concepts, Skills, 
Processes, Attitudes and Metacognition, which are detailed in the secondary school 
mathematics syllabus document (Ministry of Education 2006). From Fig. 1, it is ap-
parent that development in all five components is necessary for students to become 
successful mathematical problem solvers.

As part of the curriculum studies course, Teaching and Learning of Mathematics, 
prospective secondary school mathematics teachers are engaged in solving math-
ematical problems throughout the course. A formal introduction to mathematical 
problem solving and review of the relevant literature is done at the beginning of 
the course. As an introduction to mathematical problem solving, we engage our 
teachers in two tasks, The Circular Flower Bed, shown in Appendix A, and Solve 
4 Problems, shown in Appendix B, to jump start discussion on mathematical prob-
lem solving and bridge theory into practice. The goals of the tasks are as follows. 
The Circular Flower Bed task provides prospective teachers an opportunity to en-

Fig.�1�� Framework of school mathematics curriculum
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gage in problem solving and initiate discussion on the process of finding a solution, 
specifically the feelings, emotions and regulation of thinking during the process. 
The Solve 4 Problems task helps prospective teachers to clarify the definition of a 
problem, distinguish heuristics from strategies and link their “steps taken” during 
problem solving with Polya’s (1973) four phases of problem solving. Elaborations 
of the terms, heuristics, strategies and Polya’s (1973) four phases of problem solv-
ing follow in the next section which also outlines the background of the tasks. The 
tasks are also presented and the nature of responses they illicit from the teachers 
discussed.

�Background�to�the�Tasks

To engage in problem solving one has to confront a task which is a problem. Hence 
to identify a task as a problem, the definition of a problem as spelt out by Charles 
and Lester (1982, p. 5) is used, this being a task for which:

• The person confronting it wants or needs to find a solution.
• The person has no readily available procedure for finding the solution.
• The person must make an attempt to find a solution.

This definition emphasizes three crucial components of a problem. Firstly, a desire 
or need on the part of the problem solver to find a solution to the problem, secondly 
the solution cannot be obtained directly or immediately by mere recall of knowl-
edge, and thirdly the problem solver must make a conscious attempt to arrive at the 
solution.

In solving a problem one has to engage in a complex process that requires an 
individual to coordinate previous experiences, knowledge, understanding and intu-
ition, in order to satisfy the demands of a novel situation. In simple terms it is the 
mental journey one takes to arrive at a solution starting with the “givens” of a situ-
ation. According to Charles and Lester (1982), generally three factors influence the 
problem-solving process of an individual. They are:

1. experience factors, both environmental and personal, such as age, content 
knowledge;

2. familiarity with solution strategies, familiarity with problem context and content;
3. affective factors, such as interest, motivation, pressure, anxiety, tolerance for 

ambiguity, perseverance, and so on;
4. cognitive factors, such as reading ability, spatial ability, analytical ability, logical 

ability, computational skill, memory, and so on.

In problem solving, the terms strategies and heuristics are often used to describe 
certain approaches and techniques used in the solution process. These two terms 
are often used interchangeably or at times used jointly as “heuristic strategies” to 
mean the same. In this chapter, we use the word “strategy” to mean an overall plan 
and heuristic to mean a specific technique or approach. Polya (1973) stated that 
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there were four phases in the process of problem solving. They are: Understand the 
problem; Devise a plan; Carry out the plan; and Look back. It is important to note 
that these phases are not linear as a problem solver may proceed from the first to 
the second and return to the first to check for correctness of his understanding or a 
problem solver may proceed from the first to the second and on to the third before 
returning to the first again to clarify some doubts that may have surfaced due to the 
nature of the resulting answer.

To meet our goals of engaging prospective teachers in problem solving and ini-
tiating discussion on the process of finding a solution, specifically the feelings, 
emotions and regulation of thinking during the process we needed a task that is a 
problem to most if not all of our prospective teachers. Over the course of our work 
with many secondary school teachers, we piloted several tasks and found that The 
Circular Flower Bed Task met our criteria i.e. most of the teachers we asked to solve 
it were unable to do it like an exercise. Hence we selected it. To be able to find a 
solution to the problem posed prospective teachers had to:

• accept the challenge and be interested in finding a resolution;
• draw on their mathematical knowledge of concepts and skills;
• use their process skills to analyse, construct logical arguments, and apply math-

ematical knowledge; and
• engage in metacognition to regulate their thinking.

The prospective teachers were given the Circular Flower Bed task to do at the onset 
of introduction to mathematical problem solving and as such no prior knowledge 
of problem solving was reviewed or expected of them. The second task, Solve 4 
Problems, was given to the prospective teachers after an extensive class discussion 
of the solutions to the Circular Flower Bed problem. The formulation of the second 
task was guided by the definition of a problem (Charles and Lester 1982) and the 
general strategies (Polya 1973) and heuristics that may be used in the process of 
problem solving (Ministry of Education 2006).

A Circular Flower Bed

This task, sourced from an internet website, is used to engage the prospective teach-
ers in collaborative problem solving. The mathematical structure of the task draws 
on some basic mathematical knowledge of geometry and trigonometry which is 
within the grasp of the teachers. The framing of the task makes it an interesting 
problem because it is non-routine and the many possible solutions make it a math-
ematically enjoyable one because it is a closed yet open kind of mathematical task. 
The instructions posed to the prospective teachers as part of the task are intentional. 
They are meant to guide the prospective teachers in thinking about aspects of the so-
lution process, in particular their emotions, metacognition, and use of mathematical 
knowledge and mathematical processes when solving the problem. The prospective 
teachers are asked to work in pairs as we want them to question each others think-
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ing. This is something we encourage them to do throughout the course. Furthermore 
we also like them to experience working collaboratively, as many of them will later 
engage their own students in such activities.

Solve 4 Problems

This task is given to the prospective teachers as an extended piece of work af-
ter the solutions to the first task described in this chapter have been extensively 
discussed in class clarifying the concepts “problem” and “problem solving”. The 
prospective teachers are given this task as an assignment. They spend two weeks 
working on it before submitting their work for grading and subsequent class 
discussion on general problem solving strategies and heuristics. The prospec-
tive teachers were asked to select four mathematical problems from a collection 
shown in Appendix C. The mathematical problems are taken from Kaur and Yeap 
(2006, p. 330).

This task requires prospective teachers to select mathematical problems that are 
problems to them and solve them. They record their attempts, detailing the strate-
gies and heuristics that they used to solve each problem. After solving the four prob-
lems they reflect on their problem solving process and generalize how they solve 
problems. Finally they are asked to compare their generalization of the process with 
that of Polya’s (1973), i.e. the four phases of problem solving: understand the prob-
lem, devise a plan, carry out the plan and look back.

�Development�of�the�Theory�and�Practice�Linkage

This section discusses the nature of classroom discourse that follows the comple-
tion of the above two tasks by prospective teachers. The objective of the classroom 
discussion is to link their practice to theory.

A Circular Flower Bed

This task takes two lessons to complete. Each lesson is three hours in duration, 
inclusive of a 15 minutes break. During the first lesson prospective teachers are 
given 2.5 hours to do the task. After completion of the task prospective teachers 
display their flower beds on the side boards that line their tutorial rooms. Their 
models are made to scale. From the flower beds displayed their interpretations of 
the flower bed are apparent. The main type of flower bed constructed has an an-
nulus of 11 cm, an outer circumference of approximately 36 × 22 cm and a radius 
of x  = 11 (cot 5° − 1).
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The not so common flower bed constructed has an annulus of 22 cm, an outer 
circumference of approximately 36 × 11 cm and a radius of x = 11 (cot 5° − 2).
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As mentioned earlier on, in the chapter that this is a mathematically enjoyable 
task as it has the scope for the teachers to go beyond the above two possibilities. 
They may decide to cut the 22 cm by 11 cm bricks into more rectangular bricks to 
make the “circular flower bed”. Some prospective teachers have actually shown 
in their solutions varying sizes of the flower bed as well as the concept that as the 
width of the brick gets smaller and the number of bricks gets larger the shape of the 
flower bed tends to a better approximation of a circle.

In the next lesson, the class discussion begins with the question “How did you 
solve the task?” From their responses, we make notes on the board and draw com-
monalities amongst their experiences leading to a distinction between having an 
algorithm to solve the task and exploration (i.e., having no obvious means of resolv-
ing the task drawing on prior experience) leading to the solution of the task. From 
our experience working with prospective teachers, this task is a problem, in the 
sense of the definition, to many of them.

When sufficient inputs have been drawn from the prospective teachers, we en-
courage them to define a problem in their own words. After presentations by several 
teachers of what a problem is, we share with them Charles and Lester’s (1982) 
definition of a problem. Next we focus on the process they undertook to arrive at 
the resolution of their problem by asking them to share with the class their feelings, 
emotions and regulation of thinking. The many and varied responses are catego-
rized by us on the chalkboard leading to factors such as concepts, skills, attitudes, 
metacognition and processes. When all the inputs from them have been exhausted 
we share with them the framework of the school mathematics curriculum, shown 
in Fig. 1, which encapsulates the five factors. To all of them, this pentagonal shape 
is new knowledge but having drawn on many of the five aspects while solving the 
task they are often impressed by its succinct representation of mathematical prob-
lem solving.

We next ask them to share with the class their list of content knowledge needed 
to solve the problem. This enables the class to see that the problem can be solved 
with different levels of content knowledge, such as plane geometry, measures of 
circles or trigonometry. During the last phase of the discussion we draw on their re-
sponses to questions d and e so that they may see the different perspectives of their 
classmates or peers and consider the task as an open-closed one which has several 
solutions depending on the assumptions they make. In particular responses to ques-
tion e uncovers many of their beliefs as students. A common response is “no, the 
task did not ask for it”. The class discussion for the task stops short of introducing 
the students to the work of Polya (1973) and problem solving heuristics.

Solve 4 Problems

Prospective teachers are given two weeks to complete this task as out of class assign-
ment. Along with the task sheet they are given a sheet of paper containing Polya’s 
(1973) four stages of problem solving. They submit their assignments which are 
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graded by us and returned to them. What follows is a session, three hours in duration 
inclusive of a 15 minutes break, of class discussion on the four problems, strategies, 
heuristics and framework for problem solving.

The class discussion is initiated by the question “How did you select your prob-
lems?” which lends to the listing of their responses on the board which are in turn 
summarized and Charles’s and Lester’s (1982) definition of a problem revisited. 
From the collection of 20 problems (Appendix C), all the teachers do find four 
problems for themselves to solve. Next, several of them share with the class specific 
solutions to some of the problems. After every presentation of a solution to a prob-
lem by a prospective teacher, others in the class are encouraged to share alternative 
solutions to the problem. The solutions are studied and strategies as well as heuris-
tics used in the process of problem solving highlighted by us with inputs from the 
teachers. From the presentations it becomes apparent that heuristics are not problem 
specific while strategies are general plans that guide the problem solver through 
the process just like in a cooking lesson—first collect the ingredients, next prepare 
the ingredients, then cook the dish and finally taste it and see if any thing may be 
improved or improvised!

The discussion proceeds from solutions of specific problems to generalizations 
of their problem solving trajectories. We write on the board, “When I am given a 
problem to solve I …” and ask them to get in groups of four and complete the state-
ment on flip charts. They are given 15 minutes to complete the task before coming 
forward to the board and displaying their charts along the side boards of the tutorial 
rooms. Next, the teachers are asked to do a gallery walk before returning to their 
places. During the last part of the session, they are asked to share with the class how 
generalizations of their problem solving process compare with that of Polya’s (1973) 
four stages: Understand the problem; Devise a plan; Carry out the plan; and Look 
back. Many of the prospective teachers report that their generalizations are lacking 
of the fourth stage, i.e., looking back. They are often pleased with a solution and 
this has always been expected of them. The session ends with a discussion of what 
looking back may entail other than checking for the answer or reasonableness of.

�Conclusion

As mathematical problem solving is the primary goal of the school mathematics 
curriculum, it is essential for our prospective secondary school teachers to clarify 
the concepts and skills of mathematical problem solving during their teacher educa-
tion. The first task, A Circular Flower Bed, engages them in solving a problem and 
initiates an exploration of “what a problem is” and discussion of the feelings, emo-
tions and regulation of thinking during the process of solving it. The second task, 
Solve 4 Problems, facilitates the clarification of the definition of a problem and dis-
tinction of heuristics and strategies. It also engages the teachers in reflecting about 
their problem solving process and making connections with Polya’s (1973) four 
phases of problem solving. Being mindful of the fact that our prospective teachers 
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do not develop the conception that problem solving is a topic of the curriculum 
but rather a part of every topic we engage them in mathematical problem solving 
throughout the course. At appropriate junctures, we introduce them to the three 
types of problem solving lessons, that are: teaching for problem solving, teaching 
about problem solving and teaching via problem solving.

�Appendix�A
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�Appendix�B

B. Kaur and T. L. Toh 



187

�Appendix�C

• How many squares are there on a standard 
(8 × 8) chessboard?

• Karen has to number the 396 pages in her 
biology book. How many digits will she 
have to write?

• Into how many different plane regions do n 
 lines, no three of which are concurrent and 
none of which are parallel, separate the 
plane?

• Find all rectangles with integral sides 
whose area and perimeter are numerically 
equal.

• What is the maximum number of regions 
into which n chords divide a circle?

• In the “equation”, ( he)2 = she, the letters 
represent digits and the configurations 
represent numerals in base 10. Find the 
replacements for the letters that make the 
statement true.

• Find the last three digits of 19951995.
• Two circles are concentric. The tangent to 

the inner circle forms a chord of 12 cm in 
the larger circle. Find the area of the “ring” 
between the two circles.

• A rectangle 4 by 3 has six squares passed 
through a diagonal. Find the number of 
squares passed through by a diagonal for a 
rectangle of size m by n.

• A palindrome is a number that reads the 
same backwards as forwards. How many 
4-digit palindromes are there? Show that 
all palindromes are divisible by 11.

• Tennis balls are packed in cylindrical cans 
of three. The balls just touch the sides, top 
and bottom of the can. How does the height 
of the can compare with the circumference 
of the top? What is the ratio of the volume 
of a ball to that of the can?

• The Tans are having a party. The first time 
the doorbell rings, a guest enters. On the 
second ring, three quests enter. On the third 
ring, five guests enter, and so on. That is, 
on each successive ring, the entering group 
is two larger than the preceding group. 
How many guests will enter on the 15th 
ring? How many guests will be present 
after the 15th ring?

• Two towns lie to the south of a straight 
road, but they are neither connected to it, 
nor to one another. The citizens of the two 
towns decide to build two roads, one from 
each town, to the existing road. They are 
cost conscious in the choice of the roads. 
Find the shortest route connecting the two 
towns via the existing road.

• A curious biological fact is that a male bee 
has only one parent, a mother, whereas a 
female bee has both a mother and a father. 
How many second-generation ancestors 
(grandparents) does the male bee have? 
Third-generation ancestors (great-grand-
parents)? Fourth? Fifth? Tenth?

• A cake that is in the form of a cube falls 
into a large vat of frosting and comes out 
frosted on all faces. The cake is cut into 
small cubes of the same size. The cake is 
cut so that the number of pieces having 
frosting on three faces will be 1/8 the num-
ber of pieces having no frosting at all. Find 
the total number of small cubes.

• Five women are seated around a circular 
table. Mrs Ong is sitting between Mrs Lim 
and Miss Mah. Ellen is sitting between 
Cathy and Mrs Ng. Mrs Lim is between 
Ellen and Alice. Cathy and Doris are 
sisters. Betty is seated with Mrs Png on her 
left and Miss Mah on her right. Match the 
names with the surnames.

• A new school has exactly 1000 lockers 
and exactly 1000 students. On the first day 
of school, the students meet outside the 
building and agree on the following plan: 
The first student will enter the school and 
open all of the lockers. The second student 
will then enter the school and close every 
locker with an even number (2,4,6,8, etc.). 
The third student will then “reverse” every 
third locker. That is, if the locker is closed, 
he will open it; if the locker is open, 
he will close it. The fourth student will 
reverse every fourth locker, and so on until 
all 1000 students in turn have entered the 
building and reversed the proper lockers. 
Which lockers will finally remain open?
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• Twelve golf balls appear identical but 11 
weigh exactly the same while 1 is either 
lighter or heavier than the others. Deter-
mine the odd ball and whether it is lighter 
or heavier than the others in as few weight-
ing of the balls on a balance as possible.

• Sixty-four cubes are assembled to form a 
large cube. The face of the large cube is 
then painted. How many of all the small 
cubes are untouched by paint? How many 
of the small cubes have (a) one face, (b) 
two faces, and (c) three faces painted?

• After gathering a pile of coconuts one day 
three sailors on a deserted island agreed to 
divide the coconuts evenly after a night’s 
rest. During the night, one sailor got up, 
divided the coconuts into three equal piles 
with a remainder of one, which he tossed 
to a monkey that was conveniently near 
by, and, secreting his pile, mixed up the 
others and went back to sleep. The second 
sailor did the same thing, and so did the 
third. In the morning, the remaining pile of 
coconuts (less one) is again divisible by 3. 
What is the smallest number of coconuts 
that the original pile could have contained?
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�Introduction

Engaging students in active exploration of real-life scenarios and supporting inquiry 
processes are major challenges for mathematics teachers. It requires a shift in the 
teacher’s role from lecturing and telling to listening, observing, facilitating, and 
guiding. It also requires new considerations in choosing curricular materials, with 
attention to both textual materials and technological support. Important questions 
focus on the ways in which particular pieces of software, for example, do or do not 
support particular pedagogical methods and goals or how they work in concert with 
them. As teachers consider using technology with their students, they make many 
decisions. What technology should they use? How does it support what they want 
to do with their students? And, what sorts of tensions might arise from the use of 
this technology? To answer these questions teachers must use their understanding 
of the curricular approaches they wish to adopt and must develop their own ap-
proaches to teaching. Current teacher education programs, as described by Chazan 
and Schnepp (2002), “…often devoted substantial attentions to helping pre-service 
candidates envision the type of teacher that they would like to be” (p. 192). In 
particular, engaging in tasks within technology enhanced learning environments de-
signed to support inquiry-based learning enable teachers to rethink and revise their 
pedagogical, curricular, and subject matter knowledge. Use of technology anywhere 
anytime is one of the notable qualities of mobile learning. Students can use mobile 
applications to gather, access, and process information outside the classroom, and 
to bridge school, afterschool, and home activities. In our exploratory work we found 
that mobile devices can offer a challenging setting for educators to deepen their 
thinking about sensing mathematics and about socially constructing and mediating 
mathematical knowledge. The qualities of this unique setting are grounded in the 
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mobility that enables learners to share knowledge through mobile applications and 
tools. We consider mobile learning to be an important aspect of future changes in 
the curriculum and in the nature of classroom. For these changes to occur, prospec-
tive and practicing teachers must learn to interact in this novel setting and develop 
new communicative skills. Attempting to analyze the challenging aspects of mobile 
learning and teaching with cellular phones, Shuler (2009) suggested that it is nec-
essary to address the cultural norm and attitude whereby teachers regard mobile 
phones as distractions and consider that they have no place in school. It is difficult 
to change this norm because only a few attempts have been made to establish a 
mobile theory of learning (e.g., Pachler et al. 2010; Sharples 2009), and there are 
no assessments of sustained effectiveness. In our work we attempt to support pro-
spective teachers, intending to teach in innovative settings, to conduct an effective 
mathematical mobile discussion with their peers and future students. “Mathematical 
mobile discussion” refers to learning interactions in which participants use personal 
mobile devices (cellular phones) to create and manipulate mathematical objects and 
to communicate about them. Participants can work both in face-to-face and remote 
settings. In both settings the challenge lies in linking personal and collaborative 
manipulations and understandings, which requires a moderator to guide the mobile 
discussion and set norms of collaboration. “Moderator” refers to a teacher educator 
who directs a discussion among prospective teachers. We attach great importance 
to developing norms and guidelines for mathematical discussion in a setting that 
enables practicing teachers to moderate mobile discussions in their future classes.

This chapter focuses on tasks and activities related to the goals of teaching the 
construction of mathematical models in algebra and calculus. It starts with the theo-
retical considerations underlying the design of inquiry tasks in mobile settings for 
prospective and practicing teachers. It then presents mathematical tools and tasks 
for mobile inquiry and discusses the integration of these tasks in teacher educa-
tion sessions. In the final section the chapter presents opportunities and challenges 
for mathematics educators in mobile learning settings, discusses how mobile tools 
can help social constructivist teachers fulfill their commitment of guiding active 
inquiry, teaching skills, and covering the curriculum, and suggests further research 
directions.

�Designing�Inquiry�Tasks�in�Mobile�Settings:��
Theoretical�Considerations

Our goal in designing task-based situations for prospective teachers is twofold. 
First, we attempt to design innovative examples that create opportunities for edu-
cators to learn through mobile guided inquiry and explore the type of teaching in 
which they would like themselves and their students to be involved. Second, guided 
inquiry of real-life scenarios and collaborative activities using handheld devices are 
expected to reveal the socio-cultural aspects of knowledge construction and to be 
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based on these aspects. We suggest that the learning instances created around these 
specially designed tasks offer opportunities for identifying the teachers’ needs and 
open new vistas for research of mobile learning and teaching.

Modelling and Representing Real-Life Phenomena  
in Secondary Mathematics

A mathematical model is a mathematical construction that describes a class of phe-
nomena external to mathematics (e.g., temporal phenomena). In this sense, model-
ling uses mathematical language for reasoning about the phenomenon. There is a 
wide range of pedagogical approaches concerning the link between the phenom-
enon and the mathematical model. In the traditional application approach the math-
ematical symbols and operations are taught first and only later do students interact 
with the signified physical field to model the situations. Shternberg and Yerushalmy 
(2003) claim that in this case the link between the physical field and mathematics 
is weak and even artificial, and the construction of formal mathematical language 
often remains meaningless and cannot be applied later. Alternative approaches start 
with applications or daily life situations, assuming that learners can describe the 
situations in ordinary language and proceed from there to formal mathematical lan-
guage. Cobb (2002) and Gravemeijer and Stephan (2002) both recommend “guided 
reinvention,” in which formal mathematics should grow out of the students’ activity. 
They describe how the process of modelling grows from construction of model of 
a phenomenon in a specific context which then becomes a model for represent-
ing a mathematical reality and a point of reference for more formal mathematical 
reasoning. We regard such process of modelling as an important tool for inquiry 
based learning mathematics. Familiar situations provide meaning to a mathemati-
cal concept, and the mathematical concept facilitates deeper understanding of the 
situations. Lehrer and Schauble (2000) suggested that models are vehicles for big 
ideas in mathematics and science, and serve the design of instructional activities. 
To become more effective and meaningful, mathematics should not be expected to 
emerge only from specially structured situations and must be accompanied by spe-
cially designed mediators. Learning technology can integrate both representational 
tools for augmenting mathematical cognition and mediation tools for social partici-
pation in the practice of mathematics (Roschelle et al. 2007), which requires careful 
design of inquiry tasks and support for teacher attempts to mediate such activities. 
Carrejo and Marshall (2007) argued that,

As teachers immersed in a modelling environment move within the realms of personal 
experience, mathematics, and science (e.g., physics), emerging tensions in student learn-
ing (and their own) could become apparent to them. If teachers are to move effectively 
between these realms, they must make choices on how to relieve resulting tensions within 
themselves and their students; such choices have a profound impact on the use of modelling 
approaches in the classroom (p. 48).
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Therefore, by engaging in modelling tasks, mathematics teachers can rethink their 
pedagogical, curricular, and subject matter knowledge, connect mathematical 
knowledge with real-life contexts, and interact socially in ways that support the 
creation of a community of proficient mathematics teachers.

Social Interactions and Mathematics Teaching and Learning

One of the instructional views that requires the teachers’ attention and a shift in the 
habits and goals of mathematics teaching has to do with the belief that knowledge is 
socially constructed. Construction of knowledge is best supported through collabo-
ration. It should be designed to enable participants to share knowledge and carry out 
projects that incorporate teamwork, real-world content, and the use of varied infor-
mation sources (Scardamalia and Bereiter 2002). Leikin (2004) described processes 
occurring through constructive engagement in tasks that help in the acquisition of 
knowledge and reinforce individual habits of mind, but also provide opportunities 
for working together, sharing knowledge, inspiring each other, and applying active 
social interactions. The social construction of knowledge is of primary significance 
for mobile learning. Sharples (2000) proposed a theory of personal learning medi-
ated by mobile technology, founded on social constructivist theories. Handheld de-
vices can improve classroom dynamics because their data connectivity supports so-
cial interaction and collaboration (Low and O’Connell 2006; Naismith et al. 2004; 
Hoppe et al. 2003). Naismith et al. (2004) suggested that mobile devices provide a 
“shared conversation space” (p. 27) that enables people to share their descriptions 
of the world and construct common understandings and knowledge. The commu-
nication capabilities of mobile devices can augment face-to-face interactions (Liu 
and Kao 2007). In particular, the communication capabilities of mobile phones 
have promising implication for learning because of their high adoption rate among 
school-age children and the active part they play in our social practice (Wagner 
2005). Wei et al. (2007) reported on the integration of voice conversations through 
mobile phones into a Web discussion forum enabling learners to extend learning 
experiences anytime anywhere in order to facilitate the exchange of voice and text 
knowledge. However, there are only a few reports on using communication capa-
bilities for learning with mobile phones.

Handheld Devices in Mathematics Education

Roschelle et al. (2007) reviewed three successful implementations of handheld de-
vices in mathematics education: graphing calculators, classroom response systems, 
and probeware, which have produced valuable improvements in school learning. 
The success of graphic calculators can be attributed to the fact that they provide stu-
dents with multiple linked representations, especially a combination of linguistic and 
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graphical representations, that can produce significant learning gains. Networked 
response systems are participatory and feedback tools that with teacher mediation 
can increase the students’ engagement in learning, enhance classroom communica-
tion between teacher and students, and provide an opportunity for peer instruction 
(Mazur 1997). The networked response system enables rapid classroom interaction 
with a small-size task. For example, students can be asked to draw a graph line, pro-
vide their responses as input into a personal computing device such as a graphing 
calculator or palm computer, after which the teacher’s desktop machine collects the 
students’ responses and can reveal common patterns in them (Hegedus and Kaput, 
2003). Hegedus and Kaput suggested that the integration of a dynamic software 
environment with connectivity can dramatically change students’ engagement with 
core mathematics. Probeware uses probes and sensors with associated software. 
For example, probeware that models motion uses sensors and software to record 
the motion and provide mathematical representations of it. Nemirovsky and Borba 
(2003) suggested that “the use of appropriate materials and devices facilitates the 
inclusion of touch, proprioception (perception of our own bodies) and kinesthesia 
(self initiated body motion) in mathematics learning” (p. 103). Kaput and Roschelle 
(1997) emphasized,

the important role of physical motion in understanding mathematical representations…
[whereby] students confront subtle relations among their kinesthetic sense of motion, inter-
pretations of other objects’ motions, and graphical, tabular, and even algebraic notations 
(p. 106).

Probeware incorporates elements of representations (instantly graphing data) and 
feedback (students quickly obtain feedback on the collected data). Math4Mobile 
applications (Yerushalmy et al. 2006) are similar in their computational capabilities 
with those of the handheld tools described above, but they offer new learning op-
portunities in a 1:1 setting. Math4Mobile challenges known aspects of social inter-
activity and connectivity, context sensitivity, and the use of personal technological 
tools in a new type of learning in which mobility, availability, and flexibility are the 
key terms.

�Mathematical�Tools�and�Tasks:�Designing�a�Setting�
for�Mobile�Inquiry

Math4Mobile Applications

In recent years the voice function of mobile phone ceased to be the only dominant 
one. Textual and visual communications and the use of web resources and applica-
tions (online and local) are fast becoming central functions of mobile communica-
tion. The ability to use the devices to send graphs and formulas to other students as 
short text messages (SMS), the communication capabilities of the mobile phone, 
and the availability of cellular accessories such as cameras can be used to enhance 
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the learners’ engagement with mathematics learning. The graphing applications de-
veloped within the Math4Mobile project are designed to support the qualitative and 
quantitative inquiry of temporal phenomena described by single variable functions. 
According to Johnson et al. (2009), the ability to run third-party applications rep-
resents a fundamental change in the way mobile devices will be used in education. 
We describe here four Math4Mobile applications and illustrate each one with a task 
that can be integrated in teacher education sessions.

Sketch2Go (Fig. 1a) is a qualitative graphing tool based on the results of a 
long-term research and development project carried out by Schwartz and Yerush-
almy (1995) and Yerushalmy and Shternberg (2001), who propose an intermedi-
ate bridging representation based on the function and its vocabulary. Graphs are 
sketched using seven graphic icons that describe the change in both the function 
and its rate of change. The seven icons represent constant, increasing, and de-
creasing functions that change at constant, increasing, or decreasing rates. The 
application provides immediate feedback on the drawn graph by presenting a 
derivative graph. The following exercise sent as an SMS message demonstrates 
an activity with the tool.

SMS�Sketching�Exercise When you receive this veloc-
ity vs. time graph by SMS, use the Sketch2Go applica-
tion to sketch a corresponding position vs. time graph. 
Compare your derivative graph with the given graph to 
check whether your graph is correct.

Fit2Go (Fig. 1b) is a linear and quadratic function graphing tool and curve fitter that 
supports data collection and measurement, and highlights the numerical aspects of a 
phenomenon by proposing a model that can appropriately describe the user’s data. 
The following is an example of a task planned for a face-to-face setting in which 
learners work on their own with their personal mobile phone:

Fig.�1�� Graphing applications in the Math4Mobile environment
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In-Class�Measuring�Task:�The�Motion�of�a�Toy�Car 
1. Observe the motion of the toy car in the inclined plan. Predict how the 

position vs. time graph will look and sketch it.
2. Take several measurements of position and time. Use a ruler to mark the 

line at equal distances on the inclined plan and the stop-watch in your cell 
phone to measure time.

3. Use the Fit2Go application to mark the (x, t) points and find a graph that 
traverses the points you marked. Compare the resulting graph with the one 
you predicted.

Graph2Go (Fig. 1c) is a special-purpose graphing calculator that operates on given 
sets of function expressions. Its contribution to modelling, as that of other graph-
ing tools, can be essential in exploring given or conjectured symbolic models. Its 
unique feature is enabling the dynamic transformation of functions. Thus, by pa-
rameterizing an example, students turn it into a family of functions. Research sug-
gests that this type of dynamic control creates a kinesthetic relation between the 
user and the object on the screen and can play an important role in developing a 
deeper understanding of the mathematical concept (Kieran and Yerushalmy 2004; 
Sever and Yerushalmy 2007). The following task takes advantage of the dynamic 
control of functions in Graph2Go.

Exploration�Task:�Analyzing�a�Position�vs.�Time�Function The following 
expression describes the position vs. time of the motion of a toy car.

1. Use Graph2Go to explore this function and determine the meaning of each 
of the coefficients for the motion of the car.

2. Display the graph of the derivative. What features of the motion does the 
graph of the derivative describe?

3. Change each of the coefficients of the x(t) function, and explore the graph 
of the derivative, and interpret the graph with reference to the motion of the 
toy car.

This exploration task, when introduced to prospective teachers motivated a group 
discussion in which participants use their cellular phones to manipulate the func-
tion. It can also be posed in a mobile distance setting in which participants solve 
the task at their own pace and can receive online support. The moderator can 
elaborate the mathematical discussion by encouraging the group to collaborate, 
share information, present and assess each other’s solutions, and justify their 
work.

x(t) = 2t2 + 3t + 2
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Solve2Go (Fig. 1d) supports solving equations and inequalities by means of con-
jectures based on visual comparisons of two processes. Conjectures can be refuted 
or supported by examples provided by the tool, and ought to be proven using sym-
bolic manipulations on paper.

SMS�Solving�Exercise The following expressions describe the position vs. 
time of two race cars.

When will car A pass car B?

Sequence of Tasks for Secondary Mathematics Teacher Education

The following sequence of tasks was designed to engage teachers in modeling tak-
ing advantage of the computational capabilities of Math4Mobile applications and 
of the accessories of mobile phones. The sequence combines activities in a mobile 
setting with face-to-face activities, and involves both personal and collaborative 
challenges. Parts of the task presented here were examined in a learning experiment 
with prospective teachers (Botzer and Yerushalmy 2007; Genossar et al. 2008). The 
sequence presented here has been extended and refined based on our observations.

Rationale,�Goals,�and�Context

The main consideration that led the design of the following task was to enable 
teachers to link their everyday experiences with mathematical content and enable 
them to explore within themselves how they can bring real-life contexts to their 
classrooms. Although we expect teachers to be familiar with formal mathematics 
for modelling tasks, we followed the “guided reinvention” approach (Cobb 2002; 
Gravemeijer and Stephan 2002) in which formal mathematics grow out of the learn-
er’s activity. Therefore, the task sequence begins with open-ended tasks that involve 
documentation and analysis of daily life situations, followed by more structured 
modelling tasks. This sequence can serve as a model to guide the work of prospec-
tive and practicing teachers. Naturally, teachers would have to rewrite these tasks 
when presenting them to their students (e.g., including more detailed instructions or 
helping students determine which application to use).

Another important consideration in the design of the tasks was engaging teach-
ers in mathematical discourse. Each task requires learners to present and justify 
their work, comment on their colleagues’ work, and obtain feedback from the 
moderator and from their colleagues. The unique characteristics of mobile tools 
and their communication capabilities can contribute to the development of socio-
cultural norms.

A: x(t) = t2 + 3t + 1; B: x(t) = 3t + 5
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The tasks can be integrated in teaching methods courses in algebra and calculus, 
with a potential to facilitate prospective teachers’ understanding of the potential 
and complexity of modelling real-life scenarios. The tasks can also be integrated 
in courses for practicing teachers to encourage them to enrich learning practices in 
their classrooms.

Task�Sequence

The task sequence includes exploration tasks in a mobile setting followed by face-
to–face discussion and by modelling tasks in a mobile setting.

Videotaping�Real-Life�Phenomena 
a. Use the mobile phone camera to document phenomena of change that 

occur anywhere in your environment (school yard, home, the road, sports 
field, etc).

b. Send the video clip to the group (your colleagues and the moderator) by 
MMS. Add a short verbal description of the phenomena with reference 
to the changing quantity and to the pattern of change. Use one of the 
Math4Mobile applications to sketch a temporal graph and send it to your 
colleagues and to the moderator.

c. Watch your colleagues’ videos and read you’re their descriptions. Deter-
mine whether the descriptions fit the clips. Justify your position and send 
your comments to the group.

d. Read the comments of your colleagues and of your moderator, and recon-
sider your description. Send your comments or the refined description to 
the group by SMS.

e. Continue to comment on your colleagues’ work and refine and consolidate 
your own work. You may reach a consensus. If not, at the next meeting 
present the points of disagreement.

Analyzing� the� Videotaped� Phenomena� According� to� the� Pattern� of�
Change
1. Present the phenomena that you videotaped and the graph that you sketched 

to the group, refer to the comments that you received from the moderator 
and from your colleagues, and explain how they affected the graph you 
finally sketched.

2. The following icons present 7 different patterns of change:

 Interpret each icon and describe the pattern of change that it represents.
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3. Describe the group’s collection of video clips and additional videos pre-
sented by the moderator using the 7 icons.

Modelling�Task:�Stopping�Car A car travels at a speed of 20 meters per 
second when the driver sees a ball rolling on the road. The driver’s reaction 
time is one second (reaction time is the time that passes between identifying 
the ball and pressing the brakes.) During that time the car continues at its 
constant speed. After the driver presses the brakes, the car decelerates for 2 
seconds and stops.

1(a) Use Sketch2Go to describe in a graph the distance that the car traveled 
from the time the driver saw the ball until the car stopped. Send the graph 
to your colleagues and to the moderator by SMS.

1(b) Predict whether the graph will change in each of the following scenarios, and 
if so how: (i) The driver drove faster; (ii) the driver was drunk; (iii) it was a 
rainy day. Send your prediction to your colleagues and to the moderator

1(c) Use the dragging capability of Sketch2Go to modify the original graph 
to describe situations i-iii. Send the graphs to your colleagues and to the 
moderator.

Presenting the Task in Teacher-Education Sessions

The videotaping task takes advantage of the accessories of the mobile phone and 
of the Math4Mobile applications to enrich traditional graphing tasks with real-life 
context. The main challenge is to videotape a phenomenon that is simple enough 
to identify the pattern of change. Selection of the phenomena requires an abstrac-
tion of reality and focusing on certain aspect of the phenomena. Figure 2 presents 
phenomena that were videotaped by prospective teachers (Botzer and Yerushalmy 
2007; Genossar et al. 2008).

Fig.�2�� Videotaped phenomena. a Two kids walking; b Water being poured into glasses
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Amman (a prospective teacher) videotaped two kids walking: a boy walking 
forward and a girl walking forward to the middle of the path, then turning and walk-
ing backward. Her colleague, Ziva, videotaped water pouring into two glasses of 
different shapes.

These phenomena are simple enough for a “naked eye” observer to identify a 
pattern of change. The social interactivity and connectivity of the cellular phone 
provided an opportunity to exchange the videos together with mathematical ob-
jects. Ziva sent the pouring water video clip to her colleagues. Anna and Amman 
used the Graph2Go application to graph water height vs. time for each glass. 
Their graph for the left glass (Fig. 3a) shows an increasing rate of change rather 
than a decreasing one. Ziva asked her colleagues to review their graph but did not 
provide a mathematical justification for her request. Amman then sent another 
graph representing the possibly correct rate of change vs. time (Fig. 3b). Ziva 
confirmed that the graphs were correct. She explained in her diary that using 
Graph2Go had the benefit of displaying the water height by graphing the integral 
function alongside the graph of the rate. The moderator did not intervene during 
the discussion, although such intervention may have served to elaborate the issues 
under discussion.

The analyzing task was designed to call the learners’ attention to different pat-
terns of change and provide them with a mediating language for modelling. The task 
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was designed for face-to-face settings in which learners use their personal mobile 
phones. The moderator can take a more active role than in the videotaping task, and 
may review with the learners the interpretation of each icon, arrange the presenta-
tions of the video clips according to the complexity of the videotaped phenomena, 
and call attention to their features. Personal technological tools at hand may enable 
learners to move flexibly between face-to-face discussion, personal exploration, 
and collaborative work. For example, the moderator can present a video clip that 
has not yet been explored, ask the group to sketch a graph using their personal mo-
bile phones, then share the graphs through SMS. Obtaining a live screen rather than 
a static graph may encourage collaboration, as several learners must agree about the 
graph that represents the phenomenon.

The stopping-car task is a prototype for a variety of modelling tasks that require 
turning a verbal description of phenomena into a qualitative graph. The task was 
designed to emphasize the benefit of using the graphic icons. The mobile tools en-
able learners to solve the task wherever they choose, at their own pace, consult with 
their colleagues and with the moderator, and share mathematical objects. Table 1 
presents a hypothetical scenario of mathematical discussion in a mobile setting.

The scenario described here resembles to some extent distant learning models, 
in particular the asynchronous collaboration model (e.g., Tinker 2001) that involves 
asynchronous discussions and group problem solving among learners.

Mediating Prospective Teachers’ Mathematical Mobile Discussion 
on Modelling Task: Summary

In outlining the above scenario, we suggest that it is important to go beyond the 
specific example to understand some general principles we have identified as being 
important: (a) during the mobile discussion the moderator attempts to set norms for 
the discussion, for example, sharing personal comments, questions, and solutions 
with the entire group; (b) the moderator attempts to motivate mathematical discus-
sions to engage learners in conjectures and solutions using terms and representa-
tions that appear in the suggested applications; (c) moderator responses of different 
types implicitly encourage a variety of solutions and avoid direct responses about 
the truth of any specific suggestion.

Summarizing the communication with the group, the moderator may designate 
three main issues that require further work. (1) Challenging the prospective teach-
ers’ content knowledge in this unit of modelling and derivatives (beyond the issues 
already planned, which appear above). For example, the moderator may devise a 
similar challenge that would more naturally promote work with single function ex-
pressions (as in the toy-car task above). Next, the moderator may introduce several 
exercises, each including a given pairs of graphs of a function and its derivative, 
asking the group to explain which graph can describe the phenomena. We expect 
prospective teachers working in a mobile setting to engage in the modelling of com-
plex real-life scenarios that challenge their mathematical and pedagogical content 
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knowledge. (2) Introducing other ICT tools. We believe that mobile tools should be 
used as complementary to other ICT applications. For example, the moderator may 
ask the group to collect data in a mobile setting then analyze the data collaboratively 
using traditional computerized tools as spreadsheets or simulations. (3) Explicitly 
discussing general principles for effective mobile discussion in order to direct the 
attention of prospective teachers to the norms of mobile discussion. We believe that 
implementation of the guided inquiry approach in the classroom using mobile tools 
requires long-term support to encourage both beginner and professional teachers 
to take part in a community of practice. The communication capabilities of mobile 
tools can play an important role in the creation of such a community.

�Opportunities�and�Challenges

The tasks presented above exemplify different teaching methods such as guided ex-
ploration of real-life phenomena (the videotaping task), collaborative group discus-
sion (modelling of the motion of a stopping car), or personal exercise (e.g., the rac-
ing cars task). These tasks were designed not only to enrich the content knowledge 
of prospective and practicing teachers but also to illustrate the different commit-
ments of the social constructivist teacher described by Chazan and Schnepp (2002). 
Chazan and Schnepp referred to a teacher in the calculus class who is

committed both to helping his students develop substantial understanding of broad issues, 
like relationships between rates of change and accumulation of totals … and detailed, tech-
nical facility with specific techniques of differentiation and integration (ibid, p. 171).

They suggested that while sometimes these commitments reinforce each other, at 
other times they come into conflict and the teacher may experience tensions. The 
tasks and teaching scenario we selected for this chapter exemplify three different 
ways of working in the classroom as described by Marty Schnepp. In the video-
taping task the role of the moderator was to support the learners’ exploration by 
listening and assessing their work. Later, during the group discussion about the 
videotaped phenomena and in the M-discussion we described a more active role of 
the moderator and showed how the moderator may suggest issues for discussion, in-
troduce mathematical concepts and representations, and call the learners’ attention 
to interesting features of the phenomena. We also presented a sample of exercises 
in which the mobile tools are used to help the teachers fulfill their commitment to 
teach skills and cover the curriculum. In regular classroom settings teachers must 
consider carefully how to shift between these ways of teaching in order to balance 
the tensions between their different commitments. The mobile setting may reduce 
these tensions by augmenting face-to-face interactions (Liu and Kao 2007) and ex-
panding the opportunities for learner-learner and learner-teacher social interactions. 
But this requires reconsideration of socio-mathematical norms (Yackel and Cobb 
1996) that may sustain inquiry-based discussion and argumentation in a mobile 
setting. We suggested some general principles for the moderation of M-discussions 
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with emphasis on setting norms of collaboration, encouraging variety in solutions, 
and avoiding direct responses regarding the truth of a specific suggestion.

The brief example we presented and the work that has been developed along 
similar ideas by Daher (2009) illustrate the opportunities that mobile mathemat-
ics tools such as Math4Mobile can provide for secondary mathematics teaching. 
Because mobile phones are becoming popular all over the world, the tools and 
tasks we presented can be easily implemented even in rural area where access to 
technological learning tools is limited. Similarly to other works that examined the 
use of handheld devices (Roschelle et al. 2007; Hegedus and Kaput 2003; Vahey 
et al. 2004), we suggest that the integration of dynamic software tools with social 
interactions can dramatically change the engagement with core mathematics. Shift-
ing attention from static, inert representations to dynamic personal constructions 
on the learner’s personal device, and sharing these constructions among learners 
create new challenges for teachers. Substantial teacher knowledge of both content 
and pedagogy is needed to facilitate this shift and to focus the public mathematical 
dialogue on the features and meanings of these visually shared objects (Roschelle 
et al. 2003).

Mobile phones have an advantage over specially designed tools such as the 
graphic calculator as a platform for the mobile learning environment because they 
already regularly serve daily out-of-school personal functions of all sorts. Using 
the cellular accessories such as the camera and the stop watch to enrich traditional 
inquiry tasks with the documentation and measurements of authentic situations, can 
upgrade and improve upon previous attempts to use the students’ daily exposures 
and habits of interaction as part of the foundation of math learning.

While mobile applications for cellular phones are promising innovations for 
mathematics teaching, extensive research of the cognitive processes involved in the 
use of cell phones in the mathematics classroom is required. As with any pedagogi-
cal innovation, use of mobile applications raises a set of questions with regard to the 
teachers’ views about what the technology has to offer. Does it support alternative 
approaches or simply offers novel solution strategies? Do teachers feel tensions 
in their instruction as they try to carry out curricular changes supported by out-of-
school personal devices? How do they view opportunities to teach in a mode in 
which every student has a personal mobile phone as a tool for exploring and manip-
ulating in mathematics and is encouraged to use it? And how do they view their new 
involvement with their students in mathematical inquiries outside the classroom? 
These questions indicate the complexity that must be addressed when teachers and 
developers try change and incorporate curricular ideas and technological innova-
tions that support a range of approaches to school mathematics.
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�Introduction

For some time, education researchers have recognised the potential for mathemat-
ics learning to be transformed by the availability of digital technologies such as 
computers, graphics calculators, and web based applications (see Burrill et al. 2002; 
Hoyles et al. 2006 for recent reviews). These technologies offer new opportunities 
for students to develop and communicate their mathematical thinking by enabling 
fast, accurate computation, collection and analysis of data, and exploration of the 
links between numerical, symbolic, and graphical representations (e.g., Hennessy 
et al. 2001; see also Yerushalmy and Botzer, this volume). In most parts of Austra-
lia, secondary school mathematics curriculum documents now encourage or require 
teachers to incorporate digital technologies into learning and assessment activities 
(e.g., Queensland Studies Authority 2008; Victorian Curriculum and Assessment 
Authority 2005). To meet state mandated curriculum and assessment requirements 
teachers may need to consider use of:

• general purpose computer software that can be used for mathematics teaching 
and learning (e.g., spreadsheeting software);

• computer software designed for mathematics teaching and learning (e.g., dy-
namic graphing software, dynamic geometry software);

• hand held (calculator) technologies designed for mathematics teaching and 
learning (e.g., graphing calculators with and without algebraic manipulation or 
dynamic geometry facilities). (Queensland Studies Authority 2008, p. 8)

However, actual use of digital technologies is uneven across Australian schools and 
many teachers remain unconvinced that technology can help students understand 
mathematical concepts or explore unfamiliar problems (Goos and Bennison 2004). 
As a result, technology is more likely to be used merely as a replacement for pen 
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and paper calculations than a means of transforming the very nature of mathematics 
teaching and learning as proposed by researchers in this field. These are issues that 
need to be dealt with when working with prospective teachers as they learn how to 
select and use technologies and to design suitable tasks for the students they will 
teach. Research has also suggested that novice teachers who are nevertheless tech-
nologically knowledgeable can act as agents of change in schools by demonstrating 
effective technology use in practice (Marcovitz 1997; Weinburgh et al. 1997). Thus 
a central goal of my teacher education course is to prepare graduates who can not 
only respond to the technology requirements of current curricula, but also anticipate 
and initiate new developments in technology integration in mathematics education.

This chapter describes an assessment task (the Technology Seminar task) that I 
have used with prospective teachers since 1998. The task requires them to work in 
pairs to prepare a technology based learning activity for classroom use with senior 
secondary mathematics students and to present the activity to an audience of their 
peers in the form of a professional development seminar. Through this assessment 
task they learn about the strengths and limitations of different technology tools 
while experiencing the benefits of sharing ideas with colleagues in a professional 
development setting. The first part of the chapter describes the conceptual frame-
work underlying the design of the task. This is followed by an outline of the task 
as it is presented to the prospective teachers, a discussion of how I prepare them to 
tackle the task and examples of how they have responded. I conclude with reflec-
tions on my role as the teacher educator in this process.

�Conceptual�Framework

My work as a teacher educator is framed by sociocultural theories of learning. Ler-
man (1996) defined sociocultural approaches to mathematics teaching and learning 
as involving “frameworks which build on the notion that the individual’s cognition 
originates in social interactions (Harré and Gillett 1994) and therefore the role of 
culture, motives, values, and social and discursive practices are central, not second-
ary” (p. 4). The conceptual framework underlying the design of the Technology 
Seminar task draws on two sociocultural concepts: (a) cultural tools and (b) com-
munities of practice.

Technology as a Cultural Tool

Sociocultural perspectives on learning grew from the work of Vygotsky in the early 
twentieth century (Forman 2003). Vygotsky’s theoretical approach refers to the so-
cial origins of higher mental functions, and the mediation of these functions by tools 
and signs, such as language, writing, systems for counting and calculating, algebra-
ic symbol systems, diagrams, and so on. From a sociocultural perspective, technolo-
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gies such as computers and graphics calculators are viewed as cultural tools that not 
only re-organise cognitive processes but also transform classroom social practices 
(Berger 1998; Resnick et al. 1997).

In research involving experienced mathematics teachers and their senior second-
ary school classes, my colleagues and I developed metaphors to describe how digi-
tal technologies can provide a vehicle for incorporating new teaching roles (Goos 
et al. 2003). Teachers can see technology as a master if their knowledge and com-
petence are limited to a narrow range of operations, especially in situations where 
external pressures from education systems force implementation. Technology is a 
servant if it is used as a fast, reliable adjunct to pen and paper (e.g., as a tool for 
drawing graphs or performing numerical calculations), but does not change the na-
ture of classroom activities. However, when teachers develop an affinity for tech-
nology as a partner, there is potential for students to achieve more power over their 
own learning by, for example, providing access to new kinds of tasks or new ways 
of approaching existing tasks. Technology becomes an extension of self when seam-
lessly incorporated into a teacher’s pedagogical and mathematical repertoire, such 
as through the integration of a variety of technology resources into course planning 
and the everyday practices of the mathematics classroom.

The four modes of working outlined above are not necessarily tied to the level 
of mathematics taught or to the kinds of technologies available, and teachers do 
not necessarily remain attached to a single mode of working with technology in the 
classroom (see Goos et al. 2003, for a classroom case study that illustrates multiple 
modes of working). Nevertheless, the categories elaborate increasingly sophisti-
cated ways in which teachers may appropriate technology as a cultural tool. In pre-
paring prospective teachers to undertake the Technology Seminar assessment task I 
emphasise the role of technology as a partner in developing secondary school stu-
dents’ mathematical understanding or exploring different perspectives on problems.

Learning to Teach in a Community of Practice

Contemporary sociocultural theory acknowledges that learning involves increasing 
participation in socially organised practices, and the idea of situated learning in a 
community of practice composed of experts and novices is now well established 
(Lave and Wenger 1991; Wenger 1998). A community of practice is a sustained 
social network of individuals who share common beliefs, values, and practices in 
the pursuit of a mutual enterprise that is connected to the larger social system in 
which the community is nested. Such communities have a common cultural and 
historical heritage, and it is through the sharing and re-construction of this collec-
tive knowledge base that individuals come to define their identities in relationship 
to the community. Because communities of practice evolve over time they also have 
mechanisms for reproduction through which the community can maintain itself.

The concept of community of practice is useful for understanding how teachers 
gain access to professional knowledge through collaboration with more experienced 
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members of the community (Lerman 2001; Peressini et al. 2004). For prospective 
teachers, these “more experienced members” are usually limited to the university-
based teacher educator and the school-based practicum supervisor; thus an over-
arching aim of the Technology Seminar task is to connect prospective teachers with 
the broader professional community of practicing mathematics teachers.

�Program�Structure

At my university, prospective secondary school teachers enroll in either a one year 
Graduate Diploma in Education (DipEd) or a four year dual degree program that 
overlaps an initial non-education degree with a Bachelor of Education (BEd). In 
the latter case a three year non-education degree provides the disciplinary knowl-
edge for subject specialisation as a secondary school teacher as well as foundation 
courses in education addressing learning theories, adolescent development, and the 
sociology of education. Dual degree participants complete the BEd in a fourth year, 
known as the professional year, which is devoted solely to the study of practical and 
professional issues in education. Prospective teachers enrolling in the DipEd are 
typically mature age entrants who are changing careers, having already completed 
an undergraduate degree in areas such as science, engineering or information tech-
nology. The one year DipEd program is identical to the fourth year (professional 
year) in the BEd dual degree program.

All prospective mathematics teachers complete their curriculum studies as a sin-
gle class group in a course that lasts for the duration of the professional year (Feb-
ruary–October). This period includes fourteen weeks of practicum sessions taken 
in two blocks of seven weeks each. The mathematics curriculum class meets twice 
weekly for three hour workshops during the remaining seventeen weeks of the aca-
demic year. Assessment tasks for the course typically comprise (a) a review of an 
article published in a professional journal, (b) a Technology Seminar (described 
below), and (c) a curriculum planning task.

�Design�of�the�Task

I designed the Technology Seminar assessment task with three purposes in mind:

1. to develop prospective teachers’ skills in selecting and using digital technologies 
and in preparing technology based teaching resources;

2. to elicit from prospective teachers demonstrations of how they would use spe-
cific digital technologies in teaching mathematics; and,

3. to encourage prospective teachers to share ideas with colleagues in a profes-
sional development setting.

These purposes, along with the intended audience for the task, are made explicit in 
the task instructions provided to the class (see Appendix). Additional guidelines on 
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the task sheet are intended to clarify the scope of the task and highlight examples of 
past course participants’ work as a source of assistance.

The assessment criteria and standards for the task specify the relevant perfor-
mance dimensions and benchmarks that will be used in making judgments about the 
quality of the prospective teachers’ work (Fig. 2; standards range from A to E, only 
the A standard descriptors are shown here). My emphasis on using technology as a 
partner is reflected in the standards descriptors for the assessment criteria labelled 
“Understanding of the use of technology in teaching mathematics” and “Relevance 
of selected technology based activity”.

The seminars are presented over two days to simulate the format of a profes-
sional development conference. I then help the prospective teachers to share their 
work with the wider professional community by encouraging them to present their 
seminars at mathematics teacher conferences and to prepare articles for publication 
in professional journals, thus offering their work for critical scrutiny by practicing 
teachers and initiating them into their community of practice. An extended example 
of this process is presented later in the chapter.

�Preparing�for�the�Technology�Seminar�Task

Most prospective mathematics teachers come to my course as quite competent us-
ers of general purpose computer software (e.g., word processing, spreadsheets), 
having gained some experience with these technologies during previous university 
or school courses. However, very few have been exposed in their own secondary 
schooling to graphics calculators and data logging peripherals, such as motion de-
tectors and temperature probes. Thus on their first encounters with digital technolo-
gies in a mathematics teaching context they are inclined to view technology as a 
servant (a tool for performing calculations quickly and accurately) or as their mas-
ter (when the technology is unfamiliar to them). Rather than giving workshops on 
how to use specific software applications or hand held devices, I integrate a range 
of technologies throughout the course in order to serve broader pedagogical pur-
poses. For example, a workshop on teaching geometry typically rotates participants 
through a menu of tasks that asks them to investigate use of dynamic geometry 
software (loaded onto a laptop computer) as well as manipulables; a workshop on 
mathematical modelling may involve use of graphics calculators as part of the mod-
elling process. A low cost hiring scheme provides each prospective teacher with 
continuous personal access to a Texas Instrument TI-83 or TI-84 graphics calculator 
for the duration of the course (including practicum sessions). They bring their cal-
culators to all classes so that we can use the technology spontaneously, as well as in 
workshops specifically planned for this purpose, thus modelling effective pedagogy 
while also circumventing some of the difficulties in gaining access to computer 
laboratories that need to be booked for classes some weeks in advance.

Because my research has shown that practicing teachers are more convinced 
of the benefits of digital technologies for doing numerical calculations or making 
graphing quicker and easier (technology as servant) than for building understanding 
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or exploring unfamiliar problems (Goos and Bennison 2004), I engage prospective 
teachers in a range of tasks that exemplify the role of technology as partner. One 
way in which I do this demonstrates how to use graphical approaches to build stu-
dents’ understanding before moving into analytical work. For example, graphical 
treatment of simple optimisation problems—such as finding the maximum area of a 
rectangle with fixed perimeter—makes this concept accessible to lower secondary 
students without the need to invoke calculus concepts.

I have 20m of wire with which to fence a rectangular garden. What are the dimensions of 
the largest area that can be enclosed?

The prospective teachers usually begin by randomly choosing a range of lengths 
and calculating the corresponding breadths and areas, filling in a table of values “by 
hand” as shown below.

Allowing them to begin with such an unsystematic approach provides an opportu-
nity for me to demonstrate how to use the graphics calculator to generate these data 
using lists (Fig. 1, first screen; there is also some discussion about the use of whole 
number versus decimal values). Through questioning I elicit the independent and 
dependent variables of interest (length and area respectively), and ask for a predic-
tion of what a scatterplot might look like (observing fingers move through the air to 
trace out a parabola). The calculator is used to produce the scatterplot (Fig. 1, sec-
ond screen), and the area function is graphed over these points (Fig. 1, third screen). 
We then explore various methods for finding the maximum area, such as by tracing 
along the curve or querying the calculator directly (Fig. 1, fourth screen).

l

b

b + l = 10

b = 10 – l

A = l x b

= l (10 – l )

Length (m) Breadth (m) Area (m2)

2 8 16
4 6 24
7 3 21
9 1 9

Fig.�1�� Finding the maximum area of a rectangle with fixed perimeter
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Thus this simple example allows me to introduce graphics calculator lists, statis-
tical plots, function graphing, the trace function, and calculation of specific values, 
all in the context of a typical textbook problem that taps into significant mathemati-
cal concepts. However, the greatest impact comes from seeing prospective teach-
ers—who already “know” the answer to the problem—mesmerised by the visual 
impact of real time graphing of the quadratic function over the scatterplot.

�Responses�to�the�Technology�Seminar�Assessment�Task

Three examples of prospective teachers’ responses to the Technology Seminar as-
sessment task are provided in this section to illustrate difficulties as well as suc-
cesses since I started using this task in 1998. This is important because, despite my 
efforts in preparing the class for this task by emphasising the use of technology as 
a partner in mathematics learning, some prospective teachers design technology 
based activities that do not give balanced attention to the mathematics, technology, 
and teaching approach (as required by the assessment criteria shown in the Appen-
dix), and thus they limit the roles of technology to either master or servant.

Example 1: Unsuccessful Response to the Task (Optimisation 
Using a Spreadsheet)

A recent example of an unsuccessful response to the task comes from the class of 
2007. One pair of prospective teachers designed an activity based on the question 
shown below and accompanied it with a spreadsheet solution method for calculat-
ing cylinder volumes for varying heights and graphing volume versus height as a 
means of identifying the maximum value. In preparing the activity they had in mind 
teachers who might not be familiar with spreadsheets. The activity was presented 
in a computer laboratory so that all participants (i.e., fellow prospective teachers) 
could attempt a spreadsheet solution for themselves.
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B

C

Find the maximum volume of a cylinder that
can be inserted in a cone of height 24 cm and
a base radius 8 cm.
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Instead of beginning with a mathematical discussion of possible solution ap-
proaches that led naturally to construction of a spreadsheet, the method they dem-
onstrated led participants through a step by step procedure for labeling spreadsheet 
columns, entering data, and writing Excel formulae (partly illustrated below). Al-
though motivated by the expectation that they would need to explain to teachers 
how to use a spreadsheet (technology as master), they placed undue emphasis on 
procedural aspects of the technology and thus obscured the mathematical aims of 
the activity. This approach caused much confusion amongst their peers (the seminar 
participants) as they tried to implement the demonstrated solution on their own 
computers, but it nevertheless led to fruitful suggestions for alternative approaches 
that might provide a better understanding of the mathematical basis for the solution.

Step�1:  Open Excel (Start—All programs—Microsoft Office—Microsoft Excel). 
(Excel: You should have a spreadsheet on your screen.)

Step�2:  Label column with information that we need to know. 
  (Excel: To auto size your columns so that your text fits, use your mouse 

to double click on the right side of the column letter.)
Step�3:  Work out the volume of the cone and enter in the Volume Cone column. 

(Excel: Insert in A2.)
Step�4:  Discuss what height the cylinder can take within the cone.
Step�5:  Enter height data into Height Cone column. 
  (Excel: click on C2, type 0.1, hold shift and press down until you have 

highlighted all the rows you wish to fill, then click edit; fill; series; type 
step value as 0.1 as you are counting down, and then hit OK.)
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Example 2: Task Response Modified During Seminar Presentation 
(Fitting a Function to Data)

In 1998, the first year in which I set the task, a pair of prospective teachers de-
signed an activity based on the basketball data shown in Table 1 (Hays 1978) 
that required participants to find a function that models the relationship between 
shooting percentage and distance from the basket. Their solution method involved 
using a graphics calculator to fit regression model equations to the data stored in 
lists and to calculate the corresponding R-squared values as a measure of good-
ness of fit. In their seminar presentation they asked each group of participants to 
investigate one function (e.g., exponential, power, quartic) and they then collated 
the respective R-squared values on the whiteboard so that the best model could 
be identified.

One participant challenged this data-driven approach, pointing out that models 
with high R-squared values did not always satisfy the real life constraints of the 
problem. For example, a power model (R-squared = 0.9749) predicts that the shoot-
ing percentage—which is limited to a maximum value of 100%—becomes infi-
nitely large when the distance from the basket approaches zero (Fig. 2). A quartic 
model (R-squared = 0.9976) strikes problems for large distances from the basket as 
it predicts negative values for shooting percentage (Fig. 3). These observations led 

Table�1�� Basketball shooting data
Distance (ft) 3 6 9 12 15 18 21 24 27 30 40
Shooting Percentage (%) 62 52 40 32 28 24 21 20 18 17 13

Fig.�2�� Power regression model

PwrReg

y = a*x^b
a = 145.2291
b = –.6276
r2 = .9749
r =  –.9874

\Y1 = 145.2291X^ –.6276
\Y2 =
\Y3 =
\Y4 =
\Y5 =
\Y6 =

Plot1 Plot2 Plot3                  
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Fig.�3�� Quartic regression model

QuarticReg
y = ax4+bx3+...+e

c = .1980
d = –5.7597
e = 78.2696
R2 = .9976

Plot1 Plot2 Plot3

\Y2 =
\Y3 =
\Y4 =
\Y5 =

\Y1 = 0X^4+ –.0027X
^3+.198X^2+ –5.7597X
+78.2696

b = –.0027
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to a lively discussion amongst participants that eventually converged on the view 
that using only the R-squared value to determine the most appropriate model results 
in students deferring to the calculator’s “black box” algorithms rather than engaging 
in mathematical reasoning, and possibly choosing a model that does not make sense 
in the context of the problem. In this case, then, an approach that treated the technol-
ogy as a servant to do the regression calculations was rejected in favour of seeking 
mathematical understanding. An exponential model (R-squared = 0.9683, Fig. 4) 
was selected as being the most appropriate because it predicts sensible values for 
shooting percentages when the distance from the basket is small (approaching 60% 
for zero distance) and large (approaching 0%).

After listening to the debate amongst the prospective teachers I proposed an 
alternative approach that relies even more explicitly on exponential reasoning and 
thus treats technology as a partner for investigating mathematical concepts. This 
method seeks the real world meaning for a and b in the function y = abx, uses the 
data to estimate reasonable values for a and b, and then tests and adjusts these val-
ues by graphing the function over the scatterplot of data points. Here, a represents 
the shooting percentage at zero distance and b the constant ratio between successive 
values for the shooting percentage. Estimating a = 75 and b = 0.94 gives a reason-
ably good fit to the data provided, and arriving at these values via experimentation 
with the graphics calculator requires mathematical understanding of the effects of 
both parameters on the y-intercept and the gradient of the graph.

Example 3: Successful Response to the Task (Modelling  
with a Spreadsheet)

This third example illustrates what I regard as a successful response to the Technol-
ogy Seminar assessment task, where “success” is evaluated via the sociocultural 
criteria of tool use (mode of working with technology) and initiation of the prospec-
tive teachers into a community of professional practice. This activity was devised 
in 2004 by a pair of prospective teachers to model the transit of Venus, a rare astro-
nomical event that occurred most recently on 8 June that year. Earlier in the year, 
one of the pair had attended a presentation at a local astronomical society at which 
he discovered that transits occurred in a regular cycle but with an unusual pattern. 

Fig.�4�� Exponential regression model

ExpReg
y = a*b^x
a = 58.4817
b = .9585
r2 = .9375
r = –.9683

Plot1 Plot2 Plot3
\Y1 = 58.4817*.9585^X
\Y2 =
\Y3 =
\Y4 =
\Y5 =
\Y6 =
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Transits are separated by periods of eight years, followed by a gap of 105 years, 
then eight years, and then 121 years. After an extensive internet search yielded over 
5000 entries related to the transit phenomenon but none that provided a satisfy-
ing mathematical explanation for the sequence of transits, the prospective teachers 
decided to investigate whether this intriguing cycle could be modelled using math-
ematics. A summary of their investigation is given below.

The orbit of Venus lies closer to the Sun than Earth’s orbit. A transit of Venus 
occurs when Venus passes between the Sun and the Earth, or, as seen from Earth, 
seems to pass directly in front of the Sun. Because Venus and Earth have different 
orbital periods, it is of interest to know when such planetary alignments occur. Fre-
quency of alignments can be calculated from the planets’ respective orbital periods 
as 583.9 days. However, an alignment does not imply a transit because Venus’s 
orbital plane is inclined with respect to Earth’s orbital plane (called the plane of the 
ecliptic), as shown in Fig. 5.

An initial condition for a transit is that Venus, Earth, and Sun must be collinear, 
and this occurs when Venus crosses the ecliptic at alignment. But since the Sun ap-
pears as such a large disk in the sky, Venus need not be exactly crossing the ecliptic 
at this time—there is some margin involved (shown in Fig. 6) that can be calculated 
using simple trigonometry as 0.1929 million km.

Thus the underlying problem requires identifying how far above or below the 
ecliptic Venus is at each alignment and whether this distance is within the margin 
defining a transit. If we assume that Venus travels in a roughly circular orbit at con-
stant speed, for half its orbit it is above the ecliptic and for half below. This oscilla-
tory behaviour can be modelled using the trigonometric function

y = A sin Bx
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Fig.�5�� Orbits of Venus and 
Earth

Sun

Venus’s orbit 

Earth’s orbit 

                  

Fig.�6�� Margin for height of Venus above (or below) ecliptic

Sun
Venus 

Earth

                  



220

where A is the amplitude (maximum distance of Venus above the ecliptic), B the 
period (determined by Venus’s orbital period), and y the height of Venus above the 
ecliptic at time x, the number of days into Venus’s orbit measured from a nominated 
starting point. We now inspect the graph of this function to find every alignment 
(i.e., every 583.9 days along the x-axis) when Venus is within the calculated mar-
gin above or below the ecliptic (± 0.1929 million km along the y-axis). However, 
the prospective teachers found that the axis scales make the graph difficult to read 
in this manner whether it is produced on a graphics calculator or with a spread-
sheet, as in Fig. 7. Instead, they created a sophisticated spreadsheet (part of which 
is displayed in Fig. 8) that calculated past and future transit dates predicted by their 

Fig.�7�� Graphical model of 
the transit of Venus
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Fig.�8�� Spreadsheet model of the transit of Venus
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model. These corresponded exactly to dates of previously observed transits (thus 
validating the model) as well as to future dates calculated by contemporary astrono-
mers.

In terms of the conceptual framework presented at the start of the chapter, the 
abbreviated account of this investigation makes it clear that technology was used 
as a partner to develop the mathematical model as the use of a spreadsheet made 
it possible to explore a complex real world phenomenon. The other aspect of the 
framework—learning to teach in a community of practice—is illustrated in the three 
sequels to the Technology Seminar assessment task that took the prospective teach-
ers’ work to a wider audience of teachers.

• They presented a one hour workshop at the annual conference of the state math-
ematics teachers’ professional association.

• They published a refereed journal article outlining the development of the Tran-
sit of Venus model (Quinn and Berry 2006).

• They published another short article in a professional journal describing the 
genesis and dissemination of the modelling task through the phases of con-
ception (initial curiosity about the transit phenomenon), birth (preparation of 
the Technology Seminar as a university assessment task), development (pre-
sentation of a conference workshop to an authentic audience of experienced 
mathematics teachers), and maturity (transformation of the workshop into an 
academic paper for an unknown but critical professional audience) (Berry and 
Quinn 2005).

The purpose of the latter article was to encourage other teachers to share their suc-
cessful classroom activities with the professional community. The words of the two 
prospective teachers capture their excitement in transforming the original idea:

… from a paper manufactured to satisfy the needs of an undergraduate assignment to gain 
those elusive passing grades, to a workshop tailored to the needs of practising teaches 
working in front of actual students whom we did not know (apart from our cloistered ses-
sions of practicum experience at real schools), to the broadest of all audiences, the great 
mass of interested practising mathematics teachers in the workplace, who have the need to 
present real problems to students on an everyday basis and keep it interesting. (Berry and 
Quinn 2005, p. 18)

�Teacher�Educator�Reflections

My own role as the teacher educator is critical to the success of this task, although, 
as the examples presented above demonstrate, success is not always guaranteed. 
This role can be analysed with respect to the conceptual framework that guided the 
design of the Technology Seminar assessment task. First, I model the use of tech-
nology as a cultural tool that has the potential to transform students’ mathematics 
learning and teachers’ classroom practice by emphasising a mode of working with 
technology as a partner for building understanding rather than simply as a servant 
for performing calculations or for checking work done first by hand. Often this may 
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involve using standard textbook tasks, such as the gardening problem presented 
earlier, to show how technology can make mathematical concepts more accessible 
to students. However, I gain more pleasure from designing my own tasks, testing 
these in teacher education and professional development settings, and publishing 
them as resources for a wider audience of practicing teachers (e.g., Goos 2000a, b). 
Second, I claim membership of the community of practice composed of professional 
mathematics teachers, and I regard my teacher education course as being nested 
within this larger community. Part of my role, therefore, is to maintain this profes-
sional community by bringing in new members who are prospective teachers and 
connecting them to more experienced members. I do this by selecting prospective 
teachers to attend and present workshops at professional development conferences 
and helping them publish their work in professional journals. Because these activi-
ties are framed by my sociocultural perspective on learning they give coherence to 
my work as a researcher and a teacher educator.

�Appendix
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�Introduction

Mathematical machines are cultural artefacts that draw on centuries (and even mil-
lennia) of tradition. Briefly, a mathematical machine is a tool that forces a point 
to follow a trajectory or to be transformed according to a given law. These ma-
chines are collected in the Laboratory of Mathematical Machines at the Department 
of Mathematics of the University of Modena and Reggio Emilia (MMLab: http://
www.mmlab.unimore.it). The Laboratory is a well known research centre for the 
teaching and learning of mathematics by means of artefacts (Maschietto 2005).

Familiar examples of mathematical machines are the standard compass (that 
forces a point to go on a circular trajectory, Fig. 1) and the Dürer’s glass (Fig. 2) 
used as a perspectograph (that transforms a point into its perspective image on a 
glass from a given point).

As argued by Bartolini Bussi and Maschietto (2006), they are part of the histori-
cal phenomenology of geometry: ruler and compass are at the roots of elementary 
geometry (e.g., Euclid); curve drawing devices are at the roots of algebraic geome-
try (e.g., Descartes, van Schooten, Newton); and, perspectographs are at the roots of 
projective geometry (e.g., Desargues). They are linked to the cultural development 
of mankind in a sense that does not consist merely of mathematics but encompasses 
also art and technology. They are concretely manipulable, in order to produce the 
intended effect. In a nutshell, they are good candidate to equip the mathematics 
classroom for meaningful mathematical experiences, where practice (manipulation 
and real experiments) and theory (elaboration of definitions, production of conjec-
tures and construction of proofs) are strictly interlaced within a historic-cultural 
perspective, up to the present modelling of concrete machines by means of Dy-
namic Geometry Environments (DGE).
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All the above activities are consistent with the idea of mathematical laboratory: 
this idea has a long tradition not only in the professional mathematical practice—as 
we have said above—but also in the history of mathematics education (see for in-
stance Maschietto and Martignone 2008; Bartolini Bussi in press). The laboratory 
activity is a great challenge for teachers. In this chapter, we discuss some kinds of 
activity concerning a particular mathematical machine as paradigmatic examples 
of mathematical laboratory activities. They are proposed to prospective teachers:

• to be experienced in a mathematical laboratory session;
• to provide a model that might serve for future class activity; and,
• to make them think over the relationships between manipulative and theoretical 

aspects in doing mathematics, on the basis that only manipulation is not enough 
to construct mathematical knowledge.

These activities can be transferred to students’ classes because of the availability of 
materials (working sheets1 and artefacts that can be reconstructed, using plastic or 
cardboard bars, by students too).

1 For the Italian version see http://www.mmlab.unimore.it/on-line/Home/VisitealLaboratorio/
Materiale.html

Fig.�2�� Dürer’s glass

M. Maschietto and M. G. Bartolini Bussi

                  

Fig.�1�� The compass                  
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The chapter is composed of four sections. The first section presents some ele-
ments concerning the idea of mathematical laboratory connected to teacher educa-
tion, then the theoretical background developed within a Vygotskian perspective. 
The other three sections propose three different activities about van Schooten’s 
ellipse drawing device, according to three different dimensions: in particular, the 
second session focuses on historical sources (historic-epistemological dimension); 
the third section on the manipulation of the mathematical machine (manipulative 
dimension) and the fourth section on the construction of a model of the same math-
ematical machine by a DGE (digital dimension).

�Some�Theoretical�Elements

Mathematical Laboratory and Teachers Education

The Italian Mathematical Union has drawn on the ancient idea of the mathematical 
laboratory, when the new mathematics standards for 5–18 years old students were 
prepared (Anichini et al. 2004). The document reads:

A mathematics laboratory is not considered a place (e.g., a computer classroom) but rather a 
methodology, based on various and structured activities, aimed to the construction of mean-
ings of mathematical objects. A mathematics laboratory activity involves people, struc-
tures, ideas. We can imagine the laboratory environment as a Renaissance workshop, in 
which the apprentices learned by doing, seeing, imitating, communicating with each other, 
in a word: practicing. In the laboratory activities, the construction of meanings is strictly 
bound, on one hand, to the use of tools, and on the other, to the interactions between people 
working together. It is important to bear in mind that a tool is always the result of a cultural 
evolution, and that it has been made for specific aims, and insofar, that it embodies ideas. 
This has a great significance for the teaching practices, because the meaning can not be only 
in the tool per se, nor can it be uniquely in the interaction of student and tool. It lies in the 
aims for which a tool is used and in the schemes of use of the tool itself. (p. 60)

In this quotation, the last sentences evoke the distinction between artefact and in-
strument (Rabardel 1995). The instrument (to be distinguished from the artefact) 
is defined as a hybrid entity made up of both artefact-type components and sche-
matic components that are called utilization schemes. The utilization schemes 
are progressively elaborated when an artefact is used to accomplish a particular 
task; thus, the instrument is a construction of an individual. It has a psychologi-
cal character and it is strictly related to the context within which it originates and 
its development occurs. The elaboration and evolution of the instruments is a 
long and complex process that Rabardel names instrumental genesis. Instrumen-
tal genesis can be articulated into two coordinated processes: instrumentalisa-
tion, concerning the emergence and the evolution of the different components 
of the artefact, drawing on the progressive recognition of its potentialities and 
constraints; instrumentation, concerning the emergence and development of the 
utilization schemes.
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According to the Italian governmental regulations issued in 1998, teacher edu-
cation (including mathematics teachers education) is organized around three main 
kinds of activities: lectures (for large groups of prospective teachers, up to 100 and 
more), in-school apprenticeship (individual participation in standard classroom ac-
tivities, under the supervision of expert teachers) and laboratories (with a number of 
prospective teachers around 25, i.e., the standard size of a classroom). In these labo-
ratories, prospective secondary mathematics teachers come personally into contact 
with new methodologies, with new tools that offer innovative models for their fu-
ture teaching practice: the personal experience is accompanied by a reflection of the 
possible application in secondary school teaching. The laboratory activity is a great 
challenge for teachers, as it requires specific professional competences, which can-
not be taken for granted. Some authors have discussed the domains of professional 
knowledge for teachers. For instance, Ball et al. (2008), suggest at least the fol-
lowing domains, as a refinement of Shulman’s (1986) categories of Subject Matter 
Knowledge and Pedagogical content knowledge:

• the common content knowledge, i.e., the mathematical knowledge at stake in the 
material to be taught;

• the knowledge of content and students, related to the prediction and interpreta-
tion of students’ processes when a task is given;

• the knowledge of content and teaching, related to the teacher’s actions aiming at 
the students’ construction of mathematical meaning; and,

• the specialised content knowledge, that is the mathematical knowledge and skill 
uniquely needed by teachers in the conduct of their work.

Elsewhere Bartolini Bussi and Maschietto (2008) have linked the analysis of Ball 
et al. (2008) to the model developed in the Laboratory of Mathematical Machines 
(MMLab) for teacher education, as both encompass the needed complex and sys-
temic approach. Our aim is to put the prospective teacher in a situation where the ar-
tefacts of the Laboratory (either mathematical machines or computers) are used ac-
cording to an approach based on the Vygotskian perspective of semiotic mediation 
(details in the quoted paper and in Bartolini Bussi and Mariotti 2008). In this way, 
prospective teachers can experiment with both exploration processes (that could be 
activated in their students) and a model of didactic management of activities with 
artefacts used as tools of semiotic mediation (by the teacher educator).

Tools of Semiotic Mediation

The theoretical construct of semiotic mediation draws on Vygotsky’s papers2 pub-
lished in the Thirties (for an English translation, see Vygotsky 1978). It has been 
elaborated and applied to mathematics education by some authors. In this chapter 

2 See Goos’ contribution in this volume for other elements concerning the socio-cultural perspec-
tive and cultural tools.
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we follow the elaboration of Bartolini Bussi and Mariotti (2008) which is shortly 
outlined below.

The process of semiotic mediation may be described schematically by means of 
the following drawing (Fig. 3).

A learner (either a secondary student or a prospective teacher) is given a task 
(left-top vertex of the rectangle of the Fig. 3; for an example, see below), to be 
solved by means of a specific artefact (e.g., the pair straightedge and compass, 
centre of the rectangle of the Fig. 3). The piece of mathematics knowledge at stake 
may concern the meaning of circle and of straight line and geometrical properties 
of some figures.

In the resolution process of the given task, two levels can be distinguished. At the 
first level, a technical solution of the task may be given using the artefact mechani-
cally, i.e., repeating, in automatized way, a set of instruction, without wondering 
why the geometrical construction works. At the second level, a solution becomes 
“meaningful” (in the etymological sense) when it is justified and commented with 
reference to the properties of circles, triangles and so on, as, in this way, the mean-
ing of geometrical construction is approached at and enriched. This meaning is a 
piece of mathematics knowledge (left-bottom vertex of the rectangle of the Fig. 3).

If the activity stays on the technical plane (task, artefact and situated texts tri-
angle in the Fig. 3), the justification of the correctness may be not at stake. The con-
trol by either perception or measuring might be enough, to agree that the solution is 
correct. The justification belongs to the theoretical plane. The technical description 
answers the question, “How?”, whilst the theoretical description is the first step to 
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answer the question, “Why?”. The path towards the justification is neither simple 
nor fast. For example, from the initial situated expressions which refer to the actual 
use of the ruler and the compass, the reference to the artefact disappears, remaining 
embodied or evoked in the straight line and in the circle, i.e., the geometrical objects 
traced by means of them.

Consider, for instance, the task to bisect a given finite straight line3 by ruler and 
compass, and compare the following texts, that accompany similar (yet not identi-
cal) drawings (Fig. 4a, b). In the two texts, the artefact is the same (the pair ruler 
and compass). On the left, there is an evident reference to the physical operations 
to be performed by means of the concrete available tools, whilst on the right the 
reference is to geometrical objects that evoke their geometrical properties. The two 
sets of instructions are different: the left one evokes a text of technical drawing or 
engineering4, whilst the right one evokes Euclid’s construction. A novice might be 
at ease with the left set of instructions, whilst an expert might be annoyed by it. In 
the left set of instructions, the characteristic properties of the circle are not explicitly 
evoked, at both linguistic and graphical level. The text only mentions (and the draw-
ing only contains) a “small arc” instead of a “circle”. In the right list of instructions, 
the references to the circle and its properties are explicit. The text on the left is 
situated, whilst the text on the right is decontextualised (hence, it is a mathematical 
text). This may be interpreted, after Rabardel (1995, see Section “Mathematical 

3 This construction problem is taken from the First Book of Euclid’s elements (Proposition 10, see 
Heath 1956, p. 267). The solution we propose is a bit different from Euclid’s one.
4 http://www.tpub.com/engbas/4.htm. Accessed February 2010.

Fig.�4�� �a Set the needlepoint of the compass on A and the lead point on B and draw a small arc 
on each side of the line AB. Set the needlepoint of the compass on B and the lead point on A and 
draw a small arc on each side of the line AB. Mark by means of a pencil the points C and D where 
the arcs intersect each other. Put the edge of the ruler on C and D and draw by means of a pencil a 
line r. Mark by means of a pencil the point M where the line r intersects AB (Java animation: http://
www.mathopenref.com/constbisectline.html. Accessed February 2010). b�Draw a circle with cen-
tre A and radius AB. Draw a circle with centre B and radius BA. Find the intersection C and D of the 
two circles. Draw a straight line r joining C and D. Find the intersection M of r and AB
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Laboratory and Teachers Education” above), saying the authors are referring to two 
different instruments.

The reader might be interested to write, for the same task, the instructions for 
another artefact, e.g., a DGE like Cabri or Geometer’s Sketchpad. The situated text 
in this case is different, as the reference is to the commands available on the menus. 
For instance, in DGE there is no needlepoint and arcs can be drawn only after hav-
ing drawn the whole circle. Yet the Euclid-style text on the right can serve still as a 
geometrical reference text.

Whichever is the artefact (the concrete pair ruler and compass on the paper, but 
also the virtual commands on the screen in the case of a DGE), the mathematics 
teacher’s aim is not (only) the technical process, but also the geometrical process 
that evokes the properties (either definitions or theorems) of geometrical objects. 
The artefacts allow the implementation of concrete actions (i.e., they are outward 
oriented) and, on the other hand, they allow the formation of the subject’s plane of 
consciousness (i.e., they are inward oriented). In this second case, culturally based 
psychological processes are created (Vygotsky 1978), in the sense that by means of 
the physical activity (either ruler and compass or the menu commands) the user is 
constructing the meanings of circles and lines. According to Vygotskian approach, 
within the social use of artefacts in the accomplishment of a task, shared signs are 
generated. These signs are related to the accomplishment of the task and to the used 
artefact, on the one hand, and they may be related to the content that is to be medi-
ated, on the other hand. They can be intentionally used by the teacher to exploit 
semiotic processes, aiming at guiding the evolution of meanings by the evolution of 
signs centred on the use of an artefact within the class community. In other words, 
the teacher acts as mediator using the artefact to mediate mathematical content to 
the students. In this sense, the teacher uses the artefacts as tools of semiotic media-
tion (Bartolini Bussi and Mariotti 2008, Fig. 3).

The ruler and the compass are the most known drawing devices. In the follow-
ing sections we study the case of another drawing device, based on the geometrical 
properties of antiparallelogram, i.e., a quadrilateral in which the pairs of nonadja-
cent sides are congruent, but in which the pairs of opposite sides intersect (unlike in 
a parallelogram). The analysis is distinguished into three parts: the historic-episte-
mological dimension concerning textual descriptions; the manipulative dimension 
involving material copies and the digital dimension based on simulations by a DGE. 
For all dimensions, the focus is on tasks for teacher’s education.

�Historic-Epistemological�Dimension

The Background

The ruler and the compass have been used from Euclid’s era to solve construc-
tion problems in plane geometry. The discussion about acceptable tools to solve 
construction problems was raised in the classical age (Heath 1956) and later at-
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tacked directly by Descartes, in the XVII century, when he wrote the Géométrie 
(Descartes 1637), i.e., the appendix to the Discourse de la Méthode. His aim was to 
delineate the frontier between those curves that are acceptable in geometry, which 
Descartes called “geometric”, and the rest, which he called “mechanical” (Bos 
2001; Dennis and Confrey 1995; see also Bartolini Bussi 2001). As said above, 
in the classical age the “identification” of curves and artefacts (drawing devices) 
had been realized for straight line (ruler) and circles (compass). Conics were rather 
considered as solid curves (conic sections), i.e., curves obtained by cutting a cone. 
Yet conics and other curves could be used to solve construction problems (e.g., the 
trisection of an angle, see Heath 1956) that could not be solved using only straight 
lines and circles. Descartes looked for artefacts able to draw curves by a continu-
ous motion: in this way the perceptual evidence of intersection between curves 
could be used to state the existence of a rigorous solution of a construction problem 
(Lebesgue 1950). Van Schooten followed him in the same direction: he translated 
Descartes’ Géométrie into Latin and appended commentaries ( Exercitationes) about 
curve drawing devices. The Fig. 5 shows an articulated antiparallelogram used as a 
curve drawing device from van Schooten (1657). The Fig. 7 shows students using a 
modern wooden reconstruction of it.

Drawings and Texts as Artefacts

With respects to artefacts, Wartofsky (1979) distinguished primary, secondary and 
tertiary artefacts:

Fig.�5�� van Schooten’s antiparallelogram. (van Schooten 1657)
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What constitutes a distinctively human form of action is the creation and use of artifacts, 
as tools, in the production of the means of existence and in the reproduction of the species. 
Primary artifacts are those directly used in this production; secondary artifacts are those 
used in the preservation and transmission of the acquired skills or modes of action or praxis 
by which this production is carried out. Secondary artifacts are therefore representations of 
such modes of actions. (Wartofsky 1979, p. 200 ff.)

In this chapter, we have examples of primary artefacts (the antiparallelogram of the 
Fig. 7) and of secondary artefacts (drawings and text from van Schooten’s book). 
There is also another class of artefacts (tertiary artefacts):

(…) which can come to constitute a relatively autonomous ‘world’, in which the rules, 
conventions and outcomes no longer appear directly practical, or which, indeed, seem to 
constitute an arena of non-practical, or ‘free’ play or game activity. This is particularly true 
(…) when the relation to direct productive or communicative praxis is so weakened, that 
the formal structures of the representation are taken in their own right as primary, and are 
abstracted from their use in productive praxis. (Wartofsky 1979, p. 208 ff.)

Mathematical theories are examples of tertiary artefacts, organizing the models con-
structed as secondary artefacts. Mathematical theories have the potential of being 
expanded to create something anew, that maintains links with practical and repre-
sentative activities.

The two drawings of the Fig. 5 (van Schooten 1657) show two different positions 
(like two ‘frames’ in a modern motion picture) of the articulated antiparallelogram. 
They seem realistic (bars, pivots, and even the hands), but we discuss this point 
below. Beside the locus of E also the tangent line in E is drawn.

Van Schooten’s text follows (the reference is to the Fig. 5a, b):
Chapter VIII. About the way of tracing ellipses in a plane, when the foci and the vertices 
are given.
There are several ways to trace ellipses: the one when foci and vertices are given is not 
more complex than others […]. Given in a plane the foci H and I, a vertex L and the other 
vertex K, so that LK is the transverse axis, to trace, in the same plane, the drawing of an 
ellipse, with those vertices and foci. To prepare, in either brass or wood or other hard 
material, three bars HG, GF and FI, with HG and FI equal to LK, whilst FG is equal to the 
distance HI between the two foci. Besides, let the bars HG and FI be fissured (along their 
length) by two runners with the same width of the diameter of the cylindrical stylus, that 
will be inserted into them to trace the elliptical drawing. Let each of the bars HG and FI be 
drilled at the ends H and I, to insert the hinges pegged down in the foci H and I; the ends G 
and F of the same bars will be hinged on the ones of the bars FG, to create the configuration 
of the figure. That done, if the stylus inserted in both runners (i.e., in the point E where the 
bars HG and FI intersect each other) is moved, it will drag the bars Hg and FI, which will 
rotate on the points H and I: moving it from L to K the stylus will trace half (LEK) of the 
elliptical drawing. In the same way the other half will be traced (van Schooten 1657, p. 339, 
translated by the authors).

The Task

Van Schooten’s text hints at the process of instrumental genesis for both the coordi-
nated processes of instrumentalisation and instrumentation (see Section Mathemati-
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cal Laboratory and Teacher Education above). This suggests the following task for 
prospective teachers, as an example of analysis of a secondary artefact:

Read van Schooten’s texts about the ellipse drawing device by antiparallelo-
gram. Find the parts concerning the components of the artefact and the con-
straints for its points and the parts concerning the utilization schemes5 of the 
artefact.

The antiparallelogram construction is related yet different from the better known 
string construction of ellipses (or gardener’s string construction, see the Fig. 6, tak-
en from van Schooten 1657). An additional task may be designed, for prospective 
teachers, as a comparison between them:

Compare van Schooten’s text about antiparallelogram and the gardener draw-
ing of the artefact pencil-string, with regard to the components of the artefacts 
and the utilization schemes.

5 Béguin and Rabardel (2000) define instrumentation as follows: 
Utilization schemes have both a private and a social dimension. The private dimension is 
specific to each individual. The social dimension, i.e., the fact that it is shared by many 
members of a social group, results from the fact that schemes develop during a process 
involving individuals who are not isolated. Other users as well as the artefact’s designers 
contribute to the elaboration of the scheme. (Bèguin and Rabardel 2000, p. 182)

Fig.�6�� Drawing of gardener’s 
string. (van Schooten 1657)
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In the antiparallelogram there is a linkage whose motion is perfectly determined by 
the physical constraints, whilst in the gardener’s string construction the string has to 
be taut by the user by means of a pencil during the process. Hence, in the former the 
motion is controlled by the artefact, whilst in the latter is controlled by the user. The 
hand in the former has mainly the function to keep the pencil in the right position, 
although the motion might be given to the artefact pushing other points of the bars 
(e.g., G, F and others); the hand in the latter has both functions: it holds the pencil 
and moves it as well, keeping the string taut.

Following Ball et al.’s (2008) approach (see Section “Mathematical Laboratory 
and Teachers Education” above), these tasks are related to the specialised content 
knowledge. In fact, they concern the mathematical knowledge needed for teaching: 
for instance, social dimension of the instrumental genesis and different instruments 
(artefacts + utilisation schemes) related to the same mathematical meanings. In this 
case, they also contribute to enrich the knowledge of content and teaching.

�Manipulative�Dimension

The Background

In the MMLab there are more than two hundred working reconstructions (based on 
the original sources) of mathematical artefacts taken from the history of geometry. 
Some of them (e.g., van Schooten’s antiparallelogram, see Fig. 7) are reproduced 
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in multiple copies to allow small groups (four or five people) use them in the same 
session (with either secondary school students or prospective teachers). Afterwards, 
we present the features of a mathematical laboratory session. The structure of a ses-
sion and the working sheet result from a long process of revision and refinement, 
based on our analysis of the laboratory sessions realised in the MMLab (for both 
students and prospective teachers).

The Task

The working sessions are usually split into three parts:

• historical introduction for the whole group;
• small group work on the linkage, by means of a working sheet; and,
• collective work on the solutions for the given tasks.

In the second part, a copy of the van Schooten’s antiparallelogram (considered as a 
primary artefact) with an exploration sheet (Fig. 8), where a schema of the artefact 
is drawn, is given to each group. Each group is asked to write its answers to the 
questions. Each working sheet contains several different questions that support the 
exploration process of the mathematical machine. They take into account on one 
hand the process of instrumental genesis (Rabardel 1995), on the other hand our 
intention to foster the processes of both production of conjecture and construction 
of proof, beyond the pure manipulation. In fact, questions concern not only how 
the artefact is made and works, but also the properties of the drawn curve and the 
characteristics of the device permitting to draw that curve. The proposed sequence 
of questions considers the temporal commitment of two hours (at the maximum) for 
a session, in order to permit a suitable work.

Fig.�8�� Working sheet

1.  How many rigid rods make up the linkage?
2.  Measure the lengths of the individual rods.
Which figures do the rods form?
3.  Which are the elements of the instrument which
     are fixed at the plan?
Move the linkage.
4.  Which are the segments that do not change in
     length during the movement?
5.  Which are the segments that change their length
     during the movement?
6.  Which variable length segments are equal?
This instrument has three tracer points: Q, R and T. 
Answer the following questions:
7.  Which curves do the points Q and R trace?
8.  Put your pencil in T and draw a part of a curve. Which is the property of the
     curve plotted by the point T?
9.  Choose a suitable Cartesian axes system. Write the equations of the curves
     plotted  by the points Q, R and T.
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Questions 1, 2 and 3 aim at highlighting the physical features of the given artefact 
(the emergence of the components in the instrumentalisation process). In particular, 
Question 2 offers elements to justify the functioning of the linkage and the property 
of the drawn curve. Questions 4, 5 and 6 require the movement of the quadrilateral 
and aim at highlighting some invariants in its structure during this movement. In 
this request, the first elements of the instrumentation process are in play, because 
the users have to choice a pilot point, often in an implicit way. This instrument has 
three tracer points (Q, R and T), but there is only a hole for pencil in T. So, the 
trajectories of Q and R could not be really traced, but only supposed. Question 8 
concerns the instrumentation process. It also requires to explicit the property of the 
drawn curve, on the basis of the exploration. The definition of ellipse as a locus of 
points in a plane such that the sum of the distances to two fixed points (foci A and B) 
is a constant is expected. In particular, Question 8 prompts a process of conjecture 
production ( what) and proof construction ( why). Question 9 imposes the passage to 
the analytic geometrical register. The best choice for the Cartesian axes system is 
as follow: straight line containing the line segment AB as x-axis, the perpendicular 
bisector of the line segment AB as y-axis. Furthermore, the solver can choice the 
distance AB as a and the distance AR as b in writing the required equations.

The collective part of the session (third part) concerns the shift from the texts 
(right-top vertex in the Fig. 3) produced by the prospective teachers towards math-
ematical texts with definition and properties of ellipse (right-bottom vertex in the 
Fig. 3). In particular, Questions 2 and 7 are interesting to be developed in a col-
lective discussion, because the former is related to the mathematical meaning of 
tangent line to ellipse and the latter to a definition of ellipse different from the defi-
nition evoked by Question 8. As regards to Question 2, if the quadrilateral ABRQ is 
recognize as an isosceles trapezoid, its symmetry axis is the tangent line to ellipse at 
its point T (as it appears in van Schooten’s drawings, Fig. 5). Question 7 allows at-
tention being paid to the relationship between the circle with centre on focus A and 
the point T. In fact, T is a point at the same distance from the focus B and the circle 
traced by R with centre on focus A (in other term, ellipse as a locus of points in a 
plane such that the distances to a fixed point and to a circle with centre on another 
fixed point is equal). The circle with centre A is named “directrix”.

In a mathematics laboratory session, the teacher educator uses the artefact as a 
tool of semiotic mediation. At the same time, prospective teachers are involved and 
test an example of didactic management of this session.

�Digital�Dimension

The Background

Dynamic Geometry Environments (DGE; e.g., Cabri) are used in MMLab as model-
ling contexts for dynamic artefacts. Prospective secondary mathematics teachers, af-
ter having explored the physical drawing device, are asked to produce a digital model 
of it. This task represents a challenge for prospective and practicing teachers. In fact, 
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the main idea is to use DGE not to explore open problems or as a model for theoreti-
cal systems (for a discussion, see Laborde 2000), but as a modelling environment.

The Task

Prospective teachers are given again a working copy of the drawing device (Fig. 7) 
and the following task:

Construct on the Cabri screen a model of the drawing device, that may be 
piloted in order to work in the same way of the physical one.

In this case, the artefact is DGE (i.e., Cabri) and the prospective teacher has the 
possibility to use the menus to solve the task. Some different solutions emerge: we 
illustrate only two solutions6 (Fig. 9 and Fig. 10) and discuss the difference.

First Solution

Line segments are assembled to produce an antiparallelogram.
Two prototypes of the bar are drawn (AB and CD) (Fig. 9).

 1. compass: AB in H
 2. intersection: I
 3. compass: CD in H: select G on the circle
 4. compass: CD in I
 5. compass: AB in G
 6. intersection: F
 7. segment: IF
 8. segment: HG
 9. intersection: FI and HG: E
10. intersection: L and K
11. drag G to pilot E.

6 We refer in a short way to the Cabri commands. Legend:

•  compass: to transport the given segment with a vertex in a given point (the software draws a 
circle);

• intersection: to find the intersection point of two objects on the screen;
•  intersection (after compass command): to intersect the circle with another object on the screen;
• segment: to draw a segment joining two points;

The others ( axis, locus, symmetrical point) hint at geometrical meanings, and are realized by 
means of the available commands.
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Locus:  the same as the one drawn by the physical device; different from van 
Schooten drawing (see Fig. 5).

Motion:  when the point G is dragged on the circle suddenly the antiparallelogram 
unknits and becomes a parallelogram.

If one recognizes that the quadrilateral HFGI is an isosceles trapezoid, whose HG 
and FI are its diagonals, he/she is able to design a digital antiparallelogram, satisfy-
ing the two previous conditions. In this case, the symmetry axis of the antiparal-
lelogram is the tangent line to the ellipse in each point, as van Schooten’s drawing 
clearly shows. The second solution is described below.

Second Solution

A geometric property of antiparallelogram is used.
Two prototypes of the bar are drawn (AB and CD) (Fig. 10)

 1. compass: AB in H
 2. intersection: I
 3. compass: CD in H: select G on the circle
 4. axis of GI
 5. symmetrical point of H with respect to the axis: F
 6. segment: IF
 7. segment: HG
 8. intersection: FI and HG: E
 9. intersection: L and K
10. drag G to pilot E

Fig.�9�� A technical solution
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Locus:  the same as van Schooten drawing (see Fig. 5); different from the draw-
ing produced by the physical device.

Motion:  when the point G is dragged on the circle the antiparallelogram is 
maintained.

In the two solutions, the same commands (artefacts) are instrumented in different 
ways.

In all the cases a difference emerges. The task is impossible if it is taken literally. 
Actually, it is not possible to design a model that works exactly like the physical 
one. As we have observed, the physical artefact can be moved pushing many points 
of the bars, provided that the pencil is firmly inserted into the moving hole E. This 
cannot be realised with Cabri. Every construction is ordered: the user has to define 
which is the starting point (G in the above constructions), to be assumed as indepen-
dent variable, and what follows is strictly dependent on this choice. This is a general 
property. If one wishes to select the point E as the piloting point, she/he should pro-
duce a different set of instruction where E is a piloting point (independent variable) 
and the others are dependent on E. The choice of the piloting point (a point with one 
degree of freedom) has to be done explicitly before starting the Cabri construction. 
This means looking at the antiparallelogram according to the constraints of Cabri 
(and the same is true for whichever other DGE). The second construction produces 
van Schooten’s model, but does not work as the linkage. The first construction (with 
adjustment) is closer to the linkage but produces only a part of the ellipse.

If one goes back to the schema of the Fig. 3, the first solution may be described 
by means of a situated text (right-up vertex of the rectangle of the Fig. 3): copies of 
the prototypes of the bars are assembled as in a meccano setting. The names used 
are bars rather than straight lines. The observation of prospective teachers at work 
shows that they try to mime the rotation of the bars GH and FI on the screen with 

Fig.�10�� A geometrical 
solution
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fingers, pointing with thumb in H and I and with forefingers in G and F, and look 
for a position where FG has the given length. The second solution, instead, hints at 
a non- transparent property of the artefact (the presence of a symmetry axis), that is 
better acknowledged when a static frame is considered. This is not a spontaneous 
solution, as the manipulation of the concrete artefact suggests rather the first one. 
Yet, as soon as the second solution is found, a new exploration of van Schooten’s 
antiparallelogram may be started on the screen, to highlight the tangent line and the 
relationships between the length of the longest bar and the major axis of the ellipse 
(as said in van Schooten’s 1657 text).

�Concluding�Remarks

In this paper we have presented and discussed three different ways of introducing 
a mathematical machine (i.e., a curve drawing device, that produces an elliptical 
trajectory) into the mathematical laboratory of a secondary teacher education pro-
gram: the discussion and the interpretation of an artefact given by the pair text and 
drawings from a XVII century treatise; the manipulative exploration, according to a 
working sheet, of a material copy of the ancient artefact; the production of a digital 
simulation of the ancient artefact. Additional tasks may be designed (e.g., build-
ing a material copy, drawing on van Schooten’s 1657 description) and analysed as 
well. All these activities can be carry out in two hours (at the maximum) sessions. 
For this reason, they can be easily proposed in both teacher training and students’ 
mathematics course. Nevertheless, a systematic use of mathematical machines for 
all conic sections needs a careful planning and it represents a methodological choice 
of the teacher.

In all cases the instrumental genesis (according to Rabardel 1995) is at work, yet 
in different ways. In the first case the prospective teacher is invited to recognize in 
the text hints at the instrumentation and the instrumentalisation process concerning 
the task of drawing an ellipse: as usual in most ancient treatises, the two processes 
are intertwined and not easily separable from each other. In the second case the pro-
spective teacher is invited to experience in a personal way the instrumental genesis 
working with suitable tasks on a material model: the tasks are similar to the ones 
that he/she might give to his/her students. In the third case the curve drawing device 
is paired with another artefact (i.e., a DGE), that introduces additional strong con-
straints which force a new exploration of the material artefact and produce another 
way for drawing the same curve. The expert geometer might say that what is fo-
cused is “the same” artefact, i.e., van Schooten’s ellipse drawing device by means of 
an antiparallelogram. Actually the artefacts are different. According to Wartofsky’s 
classification (1979) in the first case it is a secondary artefact, used in transmission 
of modes of actions; in the second case it is a primary artefact that is directly used, 
although the justification required to introduce also secondary and tertiary artefacts; 
in the third case what is called into play is a tertiary artefact, i.e., the geometrical 
properties (referred to a mathematical theory) of the figure “antiparallelogram” in 
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the Cabri setting. From a didactical perspective, the instruments (Rabardel 1995) 
are different in the three cases because of different utilization schemes and con-
straints (material or digital) as well.

This experience shows to be paradigmatic for prospective teachers, in order to 
make them aware that, in spite of some widespread simplifications (see for instance 
the National Library of Virtual Manipulatives, http://nlvm.usu.edu/) it is quite dif-
ferent to operate on textual descriptions (even with “realistic” drawings), on ma-
terial copies, on digital simulations. This is obviously true not only for the van 
Schooten’s parallelogram but also for other teaching aids that may exist in either 
descriptive or material or digital forms. In every case, for every task, a careful anal-
ysis of the instrumental genesis and of its relationships with the construction of 
mathematical meaning is needed for the use in the mathematical laboratory with 
secondary school students.
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�Introduction

This chapter presents a practice-based teacher education task and reflects on its 
actual use with a group of experienced teachers. First, it draws the rationale for us-
ing such kind of tasks. Next, it presents the context in which this task was designed 
and reports on its actual enactment with a group of middle school teachers. And, 
finally, it concludes with a discussion about what I learned from using this task, the 
conditions necessary to make it successful, and its potential for teacher education of 
prospective and practicing teachers.

�Exploratory�Tasks�in�the�Mathematics�Classroom

Traditionally, the prevailing mode of work in Portuguese classrooms involves two 
steps: in the first step, the teacher introduces a new topic, concept or procedure, 
and provides one or more examples. In the second second, the teacher assigns a 
set of exercises for the students to do and, finally, provides the solutions on the 
blackboard.

Many teachers refer to this mode of work as presenting “theory” and providing 
moments of “practice”. The presentation of “theory”, lecturing or “exposition” can 
be done in many ways—sometimes the students are asked questions, and short dis-
cussions take place during the presentation of the new material. During “practice”, 
in solving the exercises, the students usually work individually, but, in some cases, 
they are allowed to check their solutions with those of their nearby colleagues. The 
solutions for the exercises are presented on the board, sometimes by the teacher, 
other times by a student who volunteers or who the teacher asks to present his/her 
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work to the classmates. Working in this way has been has been labelled “expository 
teaching” or “direct teaching” (Brooks and Suydam 1993) and has been common in 
mathematics classrooms for many years (Fey 1979).

Recently, an alternative mode of work is emerging in Portugal and elsewhere: 
the teacher introduces a task for the students to work for some period of time 
and, in a second step, the students present their solutions to the whole class and 
discuss the solutions of their classmates. This second mode of working is being 
increasingly used at grades 1–4 (1st cycle of basic education), 5–6 (2nd cycle) 
and 7–9 (3rd cycle)1. The students usually work in pairs or in small groups (often 
with four students). Sometimes they are asked to write a report with their strate-
gies and solutions, in other cases they present it orally during the discussion. This 
mode of work requires suitable tasks to propose to students—exploratory, inquiry, 
or investigative tasks that lead them to do substantial work and from which they 
can learn new mathematics. It also requires that teachers support students work-
ing during an extended period and, later, conduct a productive discussion dur-
ing which mathematics ideas are raised, clarified, and, finally, formalized. This 
vision of the mathematics classroom fit with what many documents refer to as 
“reform mathematics education” (NCTM 2000), or “inquiry-based mathematics 
classroom” (Battista 1999; Kazemi and Stipek 2001), or “exploratory mathematics 
learning” (Ponte 2005).

Worthwhile mathematics tasks are a necessary condition for good mathematics 
teaching (NCTM 1991). However, appropriate tasks for one class may not be ap-
propriate for another. Thus, the teacher needs to know how to select the right kind of 
task for his/her students. Tasks vary in a number of dimensions. For example, some 
tasks are very structured, indicating exactly what is given and what is asked, and 
even sometimes suggesting what is to be done. Other tasks are more open, requiring 
some degree of interpretation from the students concerning the question to address 
the givens, conditions and strategies (Ponte 2005). Some tasks begin with structured 
questions but then continue with rather open questions. This may help the students 
to get started in the conceptual field related to the task, thus providing some direc-
tion for the subsequent work.

Another important dimension of tasks is the degree of mathematical challenge 
(Potari and Jaworski 2002). If a task is perceived as too difficult, the students rather 
quickly will likely give up working on it. If it is perceived as too easy, the students 
will not invest much energy and creativity on it. This, of course, creates a serious 
difficulty for the teacher, given the heterogeneity of student ability in a regular 
mathematics classroom.

Tasks still differ in other dimensions. For example, one needs to consider the 
context—mathematical or non-mathematical—and the time required to complete a 
given task; this may range from a few minutes to some days, weeks, months or even 

1 Students at 1st cycle of basic education (grades 1–4), are aged 6–9 years, at 2nd cycle (grades 
5–6), 10–11 years, and at 3rd cycle (grades 7–9), 12–14 years. In fact, students are often retained 
at a particular grade, and, therefore, in a given class it is frequent to see students with the expected 
age together with students that are 1 or 2 years or more older.
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more (Ponte 2005). The critical role of open and challenging tasks in mathematics 
teaching has been recognized by many mathematics educators (e.g., Skovsmose 
2001; Sullivan et al. 1997) and indeed already plays significantly in some countries 
(Boaler 1998).

However, appropriate mathematical tasks do not work just by themselves. The 
role of the teacher in the classroom is critical at every step (Stein and Smith 1998). 
The task needs to be presented in a way that is appealing and interesting to students 
and these must be supported during their work. However, as students ask for help, 
the teacher needs to restrain from giving directions immediately that would take 
away all the challenge from the task. Rather, he/she needs to understand well what 
the students’ difficulty is and find a subtle way of putting them back on track. Of 
course, also very important is the development of a classroom atmosphere of shar-
ing, discussion, argumentation, and critical analysis, so that the mathematical work 
done in these tasks is socialized by all the students and institutionalized as valid 
classroom knowledge.

In Portugal, a new mathematics curriculum for basic education—grades 1–9—
was recently approved. Mathematics content is organized in four main themes: 
Number and operations, Geometry, Algebra, and Data Handling. In contrast with 
the former curriculum, this puts more emphasis on algebraic thinking (in the former 
curriculum the emphasis was on algebraic computation), as well as on geometric 
transformations (isometries, similarities) and on data handling (designing inves-
tigations and representing, analysing and drawing conclusions from data). It also 
stresses three transversal capacities: problem solving, reasoning, and communica-
tion. This curriculum has several levels of objectives:

• general objectives for mathematics teaching for all basic education;
• general objectives for each cycle and theme (that is, algebra has a set of general 

objectives at the 2nd cycle and another set at the 3rd cycle); and,
• specific learning objectives in each cycle.

This new curriculum encourages teachers to propose exploratory tasks in math-
ematics classrooms. It suggests that rich exploratory tasks and whole class discus-
sions are important elements in the students’ learning experiences but it leaves to 
the teacher to decide about the appropriate balance of classroom working modes.

Such exploratory tasks are quite demanding on teachers in several respects: Their 
selection involves a high level of understanding of the mathematics ideas involved 
as well as an in-depth knowledge about students’ abilities and interests. In support-
ing students, teachers have to restrain themselves from saying too much, at the risk 
of taking away the need for students’ thinking and thus trivializing the moment of 
final discussion. This discussion moment, on the other hand, requires that teachers 
are able to orchestrate the classroom discourse, providing opportunities for all stu-
dents to intervene, stimulating moments of controversy and argumentation, and also 
moments of systematization and formalization of mathematical ideas. Several other 
countries have curriculum documents with similar orientations regarding classroom 
work (Ponte et al. 2006).

Using Video Episodes to Reflect on the Role of the Teacher in Mathematical Discussions



252

�Teacher�Education�to�Transform�Classroom�Practice

Teacher education has been strongly critiqued because of its inability to have any 
impact on classroom practice (Lampert and Ball 1998). For some time, many teach-
er educators put special attention on teachers’ beliefs, conceptions, and knowledge 
regarding mathematics and mathematics teaching. The implicit underlying assump-
tion was that if those could be changed, then teachers’ classroom practice would 
also change. Now, it is becoming quite clear that if the goal is to have a real impact 
on teachers’ classroom practice, then classroom practice needs to play a key role in 
teacher education (Ball and Cohen 1999; Smith 2001).

This leads to the consideration of practice-based teacher education. However, 
this notion may have several meanings. At a first level, teacher educators may seek 
to recognize the existing problems in the practical situation that the teachers expe-
rience and frame some possible strategies to deal with them, perhaps taking into 
account educational theory. Such strategies are then exemplified by some materials 
constructed on purpose that are then used in teacher education settings. At another 
level, teacher education may be situated in practice. That means that the materi-
als that represent the teaching activity and their results (for example, mathematical 
tasks, records of students’ work, classroom episodes) are used as opportunities for 
critique and investigation. Teachers then develop knowledge analyzing real situa-
tions that they may use later in their actual teaching practice. On a third level, teacher 
education may be based on teachers’ own practice. In this case, teachers collect data 
from their practice and reflect about them with support of the teacher education set-
ting, that includes the teacher educator, other teachers, and possibly other resources.

The first level is already oriented towards practice, but one works with “artifi-
cial” materials, constructed on purpose for teacher education. On the second level, 
one works with material drawn from actual classrooms that may be more or less 
familiar to the teachers that will analyze it. On the third level, teachers use material 
collected from their practice as the basis for their reflections and analysis. This is 
very powerful, but requires a lot of effort in planning for data collection, collecting 
data, and making it suitable to use in teacher education. All three levels have their 
specific strengths and weaknesses. The second level—that informs this chapter—is 
a good choice for a small teacher education activity, when there is not much time for 
teachers to collect data from their classes, but that seeks to pay attention to issues 
related to classroom events.

�The�Teacher�Education�Task�and�Context

The General Setting

The new Portuguese mathematics curriculum will be used by schools from Sep-
tember 2009 onwards, but the Ministry of Education decided that the preparation of 
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teachers should begin immediately. A first group of about 50 middle/lower second-
ary school teachers (from 2nd and 3rd cycles) was invited to act as teacher educa-
tors in workshops that were carried from March to June 2008. Each workshop lasts 
for 25 hours, including 6 sessions over a period of 5 months. The workshops include 
the analysis of the curriculum, doing mathematical tasks, preparing and conducting 
a small classroom experiment, and discussing and sharing experiences.

These teachers will now act part of their time as workshop leaders.2 In order to 
assist them in preparing these workshops, a small activity (15 hours) was conducted 
over two days February 2008. The task reported in this chapter was presented in 
the first day. This is a task for teachers (Fig. 2) that is based on the analysis of a 
classroom episode based on a mathematics task for students (Fig. 1). This student 
task was designed and proposed to a grade 8 class by a mathematics teacher, Idália 
Pesquita3. I found that the work that went on in the classroom is very interesting 
and could be used as a basis for a teacher education activity. So, next I describe the 
task and the situation that Idália experienced in her class and then I come back to 
the teacher education setting.

The Classroom Situation

The mathematics task proposed to students concerns working with a pattern (Fig. 1). 
The pattern may be seen as representing a (growing) linear model, with 4 as the first 
element and increments of 3. However, there are other ways to regard such pattern, 
for example, assuming that it is a repeating pattern in which the three given terms 
repeat themselves, or assuming that it alternates increasing and decreasing sections. 
Therefore, there are many possible answers to the questions posed and all of them 
might be accepted if justified on the basis of a proposed pattern.

At first sight, it appears as a very simple problem, but the disposition of the 
elements in the pictures makes it a little tricky, especially for those students 
(and teachers) who have little experience in working in this kind of problems. 
First, the grade 8 students are just asked to continue the pattern, assuming that 
it represents the growing linear model, but then other questions encourage them 
to find a generalization. Such generalization may be formulated in a number of 
ways, notably in words (using natural language) or with symbols (using algebraic 
language).

2 The participants in this teacher education activity continue to have their regular teacher duties, 
teaching their own classes. They will act as workshop leaders just for about 5 hours a month, dur-
ing 5 months. Therefore, in this chapter, they will be referred to as “participants” or “teachers”.
3 The initiative for the design of the task, the recording of classroom work, and its analysis was 
part of the activities of the Portuguese Group of International Comenius Project PDTR—Profes-
sional Development of Teachers Researchers. I am the national coordinator of this group and the 
project, besides Portugal, involves groups of teachers from Poland, Hungary, Italy, and Spain.
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The students worked on this task in groups for about 45 minutes. Then Idália, 
the classroom teacher, conducted a classroom discussion, in which all students had 
a chance to participate. The whole class was video recorded and later transcribed.

The Workshop Setting

The participants in the activity that I describe in this chapter were 20 teachers (10 
of 2nd cycle and 10 of 3rd cycle) who were preparing workshops on Numbers and 
Operations and Algebra. The group included a mixture of experienced teachers and 
younger teachers, many of whom, however, had completed post graduate studies 
in mathematics education (master degrees). These teachers come from all parts of 
the Portuguese territory and constitute a group committed to contribute to improve 
mathematics teaching and learning in this country. I was the teacher educator in 
this activity, assisted by Hélia Sousa, a 1st cycle teacher acting in this case also as 
teacher educator. We had as main aim for this activity making participants aware of 
the power of exploratory tasks to foster students’ learning and to become aware of 
the role of the teacher in conducting classroom discussions. In addition, we wanted 
to provide a model of how classroom situations can be used in teacher education, 
and also to show the relevance of tasks involving the study of patterns for the de-
velopment of students’ algebraic thinking. Our expectation was that the participants 
would use similar activities in the workshops they would be leading later and also 

Fig.�1�� Students’ task: generalizing a pattern

1. Observe the following sequence of pictures: 

a)  How would you construct the 4th picture of this sequence?
b)  Using 25 stars, what is the order of the picture that you could construct? All the stars
      would be necessary?
c)   How many stars are necessary to construct the 10th picture?
d)  Describe a method to indicate the number of stars in the 40th picture. What about the
     100th picture?
e)  How many stars are necessary to construct the nth picture?
f)   The sequence will include a picture with exactly 150 stars?  

321
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that they would have an opportunity o reflect on the importance of algebraic think-
ing and classroom discussions for their own teaching practice.

The Teacher Education Task

This task has three parts (Fig. 2) and was planned to be carried out in 3 hours and 
a half.

Part 1. The first part involves an a priori analysis of the task. The teachers are 
asked first to solve the task, then to analyse what objectives of the curriculum it 
may help to achieve—general objectives, theme objectives, and specific objectives. 
Next, the teachers are encouraged to think how this task could be used in the class-
room, especially how to organize students and how to manage time. This part took 
2 hours. The aim of this part is to have the teachers analysing the characteristics of 
this task (structure, degree of challenge) and its fit of this task to the new curricu-
lum, and, at the same time, recognizing the structure and content of this curriculum.

This part ended with a collective discussion about these issues and the possible 
reactions from the students. The teachers had no trouble in identifying the links 
with the curriculum objectives and to suggest group work as suitable setting to de-
velop the activity. However, they were rather pessimistic about the way the students 
would handle the task:

Fig.�2�� Teachers’ task: analysing a classroom discussion

1. Solve the task presented in figure 1, intended for grade 8 students. Answer the following
    questions:  

a) This task is related to some general objectives for mathematics teaching, general 
objectives of the cycle/theme and specific objectives of the mathematics curriculum 
and the 2nd or 3rd cycle? 

b) How this task be used in the classroom? How to organize students? What time 
should they be given to solve it? And for a final discussion? 

c) What difficulties may the students feel in doing it? 

2. Observe the video with students discussing this task as well as the transcript. 

a) Identify and analyse then roles assumed by the teacher. 

b) Identify and analyse the interventions of the teacher. 

c) What important decisions the teacher assumes during this segment? 

d) Identify and analyse the roles assumed by students. 

3. Final reflection. 

a) Discuss if what you saw in this episode is in line with your initial expectations. 

b) Indicate the aspects that you find important that the teacher may have into account 
in order that this kind of task is successful in class?  

c) What other comments and suggestions can you draw from this episode?
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• They will have trouble in seeing any regularity …
• I can them with a lot of trouble in formulating a generalization.
• Maybe they will draw a table… And represent the number of starts at each 

stage …
• For me the most difficult to the students is to explain how each picture is con-

structed from the former …

Part 2. Then, on a second part, the teachers were shown an extract of the video 
record of the lesson (7 minutes), covering different moments of the final discus-
sion of the task. Along with the video record they could read the corresponding full 
transcript (parts of which are shown in Figs. 3 and 4).

The video shows first a group of students responding to question (a) and de-
scribing verbally the rule of this pattern. Idália, the classroom teacher, finds their 
presentation as not clear and encourages them several times to go on and explain 
better their idea (Fig. 3).

Then, another group indicates that they “have a better explanation” takes the lead 
presenting their ideas (Fig. 4). These students indicate verbally their solution “is 3 
times the number of the picture plus 1” and finally provide the algebraic expression 
“3x + 1”. Uncomfortable with the way some students were participating in the dis-
cussion, the teacher gives some indications about how they must sit and suspends 
the discussion of this solution.

After, we see another group of students presenting the way they responded to 
question (b). Several students ask their colleagues about clarifications, indicating 
that they had done it differently.

Fig.�3�� First excerpt of the classroom discussion

Transcript of the classroom discussion (excerpts) 
Students’ explanation 1 (question a)
Teacher:  Look (with emphasis), I need to hear … Say. 
Joana:  Is the star on the middle and then we add groups of 4 stars horizontally at the right 

and left horizontal and downwards vertically. 
Teacher:  How is that? Say in very slowly…
Catarina:  We have a star at the middle. 
Teacher:  A star at the middle…
Catarina:  Then...  
Ana:  Groups of 4 stars... 
Teacher:  Groups of 4 stars.... 
Joana:  At the right... 
Ana:  Horizontally and at the left horizontally... 
Teacher:  And then? 
Ana and Catarina:  Downwards vertically. 
Sofia:  Ours is better explained. 
Inês:  Ours too. 
Teacher:  So, Inês, how did you explain?... How did you explain? 
Inês:  Pedro explains. 
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Next, the teacher asks about the 12th picture (this was not mentioned in the writ-
ten task) and one student draws it on the board. There is some discussion and the 
students concluded that what was shown was the 11th picture and added a few stars 
to make it the 12th. The teacher then inverted the question and asked the students 
how many stars were necessary to draw the 12th picture and this originated another 
exchange participated by several students.

Finally, the teacher asked what would be the general method to know the num-
ber of stars in the 40th picture and the same students that had already indicated the 
generalization indicated it again.

The role of the teacher was mostly that of giving voice the students and encour-
aging them to clarify and justify their explanations. However, there was a criti-
cal moment, when one group of students presented a generalization formulated in 
rather abstract terms, and Idália decided to postpone for a latter discussion. This 
decision enabled the pursuing of a detailed discussion with all the students. Seeing 
the video, reviewing collectively the transcript and interpreting the episodes took 
about 30 minutes.

Part 3. The final part of the task is a discussion about this class. The first part 
aimed at leading the participants to recognize key elements of the roles and inter-
ventions of Idália and the students during this lesson, as well as important decisions 
taken by the classroom teacher. And, finally, teachers are encouraged to contrast 
their initial expectations regarding what would happen with what they actually saw 
on the video. The aim here is that the participants recognize some of the key fea-
tures of the work in such an environment, and make them aware of the challenges 
it poses to teachers. The teachers first discussed this in small groups (3 elements), 
for about 15 minutes, and them there was a final collective discussion, for about 
45 minutes.

Fig.�4�� Second excerpt of the classroom discussion

Transcript of the classroom discussion (excerpts)
Students’ explanation 2
Teacher:  Pedro, how did your group explain?
Pedro:  It is 3 times the number of the figure plus 1
Teacher:  Ah… you decided to say something else right way... How did you say it?
       Picture 4… [Yes] This is picture 4… How have you done it?
Pedro:  It is picture 4 times 3 plus 1.
Teacher:   … Picture 4…
Ana:  That is the number of stars, teacher!
Teacher:   …  Times 3 plus 1. Is it this? Then explain it to me.
Inês:   No Pedro, that is what you concluded yourself!
Sofia:  I wrote 3x+1.
Hugo:  No, teacher.
Teacher:  Wait. Just a moment. Hey children … Look. I think that it may be better that you turn
yourselves to the front. Yes…Turn to the front. You are sitting back to the blackboard and that
is not a very good idea.            
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In the collective discussion, the teachers recognized that the students were able 
to do much more than they initially expected. But the style of teacher in leading the 
discussion and some critical moments, in which the teacher posed key questions, 
were also noted:

• This is not just the teacher asking questions and the students providing answers…
• In fact we see the students arguing with each other…
• Sometimes the teacher poses questions such as, “How have you done?” or “Why 

did you do 25 minus 1?” Other times the teacher seems to keep encouraging the 
students to go on with their reasoning, just repeating what they said.

Those students had a complete response to the question. But the teacher did very 
well in holding their intervention, to allow the students who had just partial re-
sponses to speak first.

�Discussion

This task has a high potential for teacher education of prospective and practicing 
teachers. In fact, the way the teachers participated in the final discussion showed 
that they felt they learned a lot from it. This task proved to be quite successful in a 
number of respects, as it was apparent from the high involvement of the teachers 
during its realization by the frequent number of cases that were referred to in later 
moments, and the interest that it promoted in the participants to look at classroom 
situations as teacher education activities. It is more difficult to know in what mea-
sure it led these teachers to become more aware of issues on algebraic thinking or 
in leading classroom discussions, but my perception is that at least it was helpful in 
increasing their interest for these issues.

Some conditions that seemed important for the success of this teacher education 
task include: (1) its clear relation to a curriculum topic (algebra) and to specific 
learning objectives (solving problems involving patterns); (2) the fact that it includ-
ed detailed elements about the classroom activity on the mathematical task; (3) the 
teachers’ perception of ecological validity in terms of the usual teaching conditions 
(the time available for the students to carry out the task, the number of students in 
the class, students’ characteristics, etc.); and, (4) the fact that the issues raised in 
this tasks resonate with broader curriculum orientations and existing literature on 
the topic.

What did I learn from this teacher education activity?

In Relation to Algebraic Thinking

I noticed that the participating teachers have very little experience in carrying out 
this kind of mathematical tasks (searching patterns, generalizing). In fact, working 
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with sequences at grade 8 is part of the former curriculum but it is a topic that tends 
to be given very little attention. In consequence, the teachers had some trouble in 
understanding the questions posed to the students and took more time to do the 
different parts of the task than I initially foresaw. Also, as the curriculum is a new 
document, relating the questions to the topics and objectives required some time 
and effort.

Teachers’ Perceptions of Students’ Difficulties and About 
Classroom Discussions

The teachers tend to stress the difficulty that the mathematical task would have for 
the students. They indicated that students would have difficulty in understanding 
the questions, in finding the pattern, and, most especially, in providing the aimed 
generalization. Of course, all of these were difficulties for the students, but the 
video of the classroom shows that they were overcome with much more ease than 
the teachers indicated. This happened, in great measure, because of the questioning 
style of Idália, the classroom teacher, showing the importance of the way the teacher 
conducts classroom discussions.

This activity shows that the teachers are not used to analysing classroom discus-
sions. In Portugal, the normal routine of school activity does not involve teachers 
observing each other’s classes. Even when they do it (for example, in teacher edu-
cation for prospective teachers), they tend to look issues such as the general atmo-
sphere, use of teaching materials, use of the blackboard, management of the time, 
or mathematical mistakes, and not at classroom discourse, paying attention to the 
nature of the interventions of teacher and students.

The Value of This Teacher Education Activity

The participating teachers were strongly impressed by seeing and analysing an ac-
tual mathematics classroom episode. This is very unusual in mathematics teacher 
education in our country. The technological apparatus (showing video excerpts of 
the classroom on a data projector connected to a computer, using sound columns, 
etc.) was intriguing. But the most important was the fact that the teachers could 
relate to the actual situation, had the time to discuss it in small groups with a few 
colleagues and finally had the opportunity to discuss it in the whole group.

This activity was carried out during 3.5 hours as planed. Some participating 
teachers found this time too short to do everything that was asked. Some of them 
did not finish working on the mathematics task and thinking about how to use it in 
the classroom (Part 1); some others said they needed more time to reflect on the 
episodes and the review the transcripts (beginning of Part 3). However, the way the 
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task was structured, and the review that was made at the beginning of Part 2 and 
Part 3 helped to maintain all the teachers “on board” and enabled them to spend the 
necessary time on Part 3, the crucial part of the activity.

�Conclusion

Looking on the work done with this teacher education task, I become more con-
vinced that this format proved very useful to provide teachers with a reflection 
about exploratory algebraic tasks and classroom discussions and the problems that 
such activities pose to the teacher. The importance given in this case to the Por-
tuguese curriculum document derives from the fact that we just introducing it in 
schools. In other situations, perhaps less stress should be put in similar documents, 
even if some relation is desirable to make sure that the task is related to significant 
curriculum objectives and to significant mathematics concepts, processes and ideas.

Similar activities may be also of much value with beginning teachers and pro-
spective mathematics teachers. Looking at actual mathematics teaching situations, 
especially at situations that may provide useful models for successful mathematics 
teaching, may help them to realize that these are not just abstract models or utopian 
theories impossible to put into to practice in the classroom. However, with prospec-
tive mathematics teachers perhaps some more structure or some reading assign-
ments could be useful to help them to deal with the complexity of the classroom 
situations.

The preparation of such teacher education tasks is quite demanding in terms of 
planning, recording data and transcribing and analysing it. In this case, it was an 
output of another teacher education project. Using and evaluating such material in 
teacher education is an important activity for teacher educators involved in research.
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�Introduction

It has been suggested that learning to teach implies to shift from a simple to a more 
complex understanding of the phenomenon (Wood 2000). To plan for and evaluate 
student learning is complex in terms of aspects that needs to be taken into consider-
ation by the teacher. This chapter will highlight some, which we consider to be more 
significant than others. However, first we invite the reader to stop reading here and 
carefully considering the task in following:

Imagine you are planning for teaching addition and subtraction with negative 
numbers like:

−5 + (−3) =
3 + (−5) =

−5 − (−3) =
5 − (−3) =
3 − (−5) =

Suppose the topic is new to the students. They have not got any formal teach-
ing before.

What would you take into consideration when planning and evaluating the 
lesson?

What do you think is necessary for learning this?
What could be critical?
What will you do if they do not learn what you had intended to?
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Perhaps you would consider the activities, for instance how to make the lesson 
interactive, if the students should be working in pairs/groups or individually, what 
your role as a teacher should be, what tasks, devices or hands on material to use and 
so on. Perhaps you would also consider the time allocated for learning and practic-
ing. Maybe you also would consider whether you should ‘teach for understanding’ 
or if it sufficient for the students to learn this by applying ‘rules’ and practice these 
on various examples.

All this we think is necessary for a teacher to consider and carefully plan for. 
It is true that the character of the activity in the lesson is important just as the task 
and learning devices the students encounter and work with and the amount of time 
allocated. Although we consider these as necessary, we do not think they are suffi-
cient. To all these, we want to add some more things that we believe are significant 
also. We would suggest that how the students understand and experience that which 
is taught and learned must, in our view, be one of the most important aspects that 
the teacher must have in mind when planning and evaluating learning (cf., Ausubel 
1968). However, when we talk about ‘sensitivity to students’ learning here we do 
not refer to sensitivity in general, but sensitivity to students’ learning a particular 
topic, concept or skill. Trying to understand the learners’ ways of understanding 
could be a demanding task for the teacher. It is not easily understood why students 
come up with answers like ‘−18 > −3’, for instance. How do they make sense of 
this? What rationales lie behind that way of reasoning? However, just being sensi-
tive and understand how the learner understands is not sufficient. We think this must 
be related to the idea of what is critical for learning. I order to learn something, for 
instance how to calculate ‘−5 − (−3) =’, there are certain critical features that must 
be discerned by the learner. The awareness of what those aspects may be, we would 
advocate, is necessary for a teacher to take into consideration when planning for 
teaching and learning.

To be able to handle this complexity—the relation between what the learner 
learns and what is critical for learning—must be one of the core competencies of a 
teacher, we believe. One way to develop this could be made by a systematic inquiry 
into the teaching—learning process, preferably in a collaborative process among 
a group of teachers and teacher educators. In this chapter we will illustrate how 
such a joint collaboration could be done by reporting on a group of experienced 
mathematics teachers in a Swedish comprehension school working with a particu-
lar approach of ‘plan-teach-review’ process—Learning study—aiming at enhancing 
student learning. The particular study took place in a combination of a research and 
developmental project among teachers and educators from the university. The aim 
of a Learning study is forefront and most to enhance students’ learning. However, 
Learning study includes the teachers’ learning as well (Gustavsson 2008). Although 
this particular study involved experienced teachers, Learning study is appropriate 
for a prospective context also. Davies and Dunhill (2008), for instance, report about 
the implementation of this approach in a two year project in the initial teacher edu-
cation programme in the UK. They conclude that this promoted a more complex 
understanding of teaching among the prospective teachers.
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�Learning�Study:�A�Systematic�Enquiry�Approach�into�
Students’�Learning�and�Understanding

In a Learning study a group of teachers investigate the nature of learning a particu-
lar concept or skill and how to promote learning this. The capability the students are 
supposed to develop and how they conceptualise this is in focus; hence, Learning 
study is both content and learner oriented. The ultimate aim of Learning study is to 
enhance students’ learning. However, in order to provide the best learning opportu-
nities and to make learning possible, the teachers themselves must learn about the 
nature of the capability they want the students to develop. For instance, if the aim 
is that students should learn how to calculate ‘−5 − (−3) =’, and similar tasks with 
negative numbers, the teachers deeply investigate what it implies to be able to do 
this operation, what the learning difficulties for the students may be, and what fea-
tures of this that the students must be aware of. So, Learning study is about learning 
on two levels: the teachers’ and the students’ learning.

In Learning study an iterative process of planning, observing and revising is 
used. This process is similar to Lesson study (Lewis 2002; Yoshida 1999). However, 
whereas the aim of Lesson study could be to implement curriculum or a particular 
teaching arrangement, Learning study is always focused on a particular ‘object of 
learning’, a capability that the students should develop, and therefore the organisa-
tion of the lesson, methods or other teaching arrangements is not the main issue of 
concern. Furthermore, to meet the learners’ difficulties and to provide better learn-
ing opportunities, in Learning study a theoretical framework serves as a guiding 
principle in the process. This framework called variation theory (Marton and Booth 
1997) is used both for structuring and designing the lessons and for understand-
ing students’ learning outcomes. Variation theory is mainly a framework for learn-
ing, but has been used as an analytical tool when studying teaching and designing 
for learning and has been demonstrated to be powerful and appropriate to better 
understand how teachers’ actions affect what is made possible to learn (Lo et al. 
2006; Marton and Tsui 2004). In variation theory what the learner learns and how 
this is perceived, understood or experienced is fundamental. Thus, being sensitive 
to the learners’ ways of understanding becomes very important in Learning study. 
‘The learner’s perspective’ is central and paid attention to on two levels. The teach-
ers analyse what is made possible to learn in the lesson (what the learners should 
encounter and what they actually encounter in the lesson) by carefully observing 
recorded lessons and how the learners make sense of that which is learned (in the 
lessons and on pre- and post-tests/interviews).

From a variation theory perspective, learning is seen as a process of differen-
tiation, thus to be able to discern similarities and differences (Gibson and Gibson 
1955). However, what is critical for learning, for instance to calculate ‘−5 − (−3) =’, 
can probably not be prescribed on a general level, or be derived from mathematical 
theory alone but must include the learner and what she/he brings into the learning 
situation in terms of previous experiences and how she/he understands what is be 
learned. The way the learner perceives, understands or experiences that which is 
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learned is due to what extent the critical aspects are discerned by the learner. A 
student’s failure or lack of understanding can be understood in the light of un-dis-
cerned aspects; for instance if the learner does not differentiate the double meaning 
of the ‘minus’ sign in the operation above. So, the discernment of critical aspects is 
essential for learning. From this theoretical point of departure, in Learning study, 
the teachers try to find out what the critical aspects are and how they should be 
brought out in the learning situation in a way that makes discernment possible.

�A�Learning�Study�About�Negative�Numbers

The Learning study reported here was included in a project combining school de-
velopment and research. The authors of this chapter were all involved in the project, 
two as researchers and one as a teacher. One of the aims of the research project was 
to gain insights into the relation teaching and learning. This was done by study-
ing the way the object of learning was handled in the classroom, thus what was 
made possible to learn and what students actually learned in the lesson. Although 
the researchers and the teachers had a common goal—to promote students’ learn-
ing—they had different roles in the project. The teachers decided about the object of 
learning, thus what capability they wanted the students to develop, and they planned 
and revised the lessons mainly on their own decisions. The researcher’s role was to 
support the teacher group with video recording the lessons, testing and, if needed, 
literature. She/he was also a discussant partner in the meetings, but since it was im-
portant that the teachers themselves had the ownership of the study (another aim of 
the research project was to investigate in what ways a group of teachers by the help 
of the iterative process and guided by variation theory can investigate and improve 
their teaching to maximize the learning of all students in the class) the researcher 
did not try to impose her/his ideas nor did she/he reject to ideas brought up by the 
teachers.

The Learning study reported here lasted about one semester. There were six 
meetings with the teachers (lasting about one and a half hours each) before and 
after the lessons and four lessons (about 60 min) were conducted. The four par-
ticipating teachers were all experienced and well-educated mathematics teachers 
and took part on a voluntary basis in the project that involved two other Learning 
study groups at their school. Three of the teachers in the study reported here taught 
grade 7, the other one grade 8 (13–14 years old). All lessons were video recorded 
and the pre- and post-meetings with the teachers were audio recorded. The analysis 
presented in this chapter is based on those and on results from the pre- and post-test 
from all four participating classes. Each class had only one lesson in the Learning 
study cycle. It should be noted that the students had little or no experience of nega-
tive numbers before the intervention lesson. In Sweden usually this topic is taught 
in grade 8 as a teaching unit of about two weeks.

Although team-work among teachers is common in Swedish schools, co-opera-
tion about a particular topic is rare among mathematics teachers. Most teachers in 
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Sweden are dependant on the textbook. Furthermore, in order to cater for individual 
differences the students mostly work individually on their own pace with tasks in 
the textbooks. Whole class discussions about a common mathematical topic are not 
so frequent. So, this way of collectively going deeply into teaching and learning 
about addition and subtraction of negative numbers and to teach a common theme 
for a whole class was in to some extent a new experience for the teachers.

Anticipating Learning Difficulties and Planning of the First 
Lesson in the Cycle

A Learning study starts with deciding about the object of learning—a capability to 
be developed—mainly something the teachers find problematic to teach and stu-
dents to learn. In this case the teachers had previously experienced that addition 
and subtraction with negative numbers was very hard for the students to learn. In 
the first two meetings previous teaching experiences and information from research 
findings was the topic discussed. The teachers demonstrated their sensitivity to 
students’ learning by anticipating learning difficulties that students may encounter 
when calculating with negative numbers. Why is, for instance, the task ‘−5 − (−3) =’ 
so difficult? Is ‘5 − (−3) =’ an easier task? And what about ‘−3 − (−5) =’? How do the 
students make sense of this? The teachers wanted to teach for understanding, not 
just to get the students to come up with the correct answer. With the background of 
considering such issues, the teachers designed a pre-test and gave it to the students 
to find out about the particular learning difficulties their students may have.

Testing students before a teaching unit, thus investigating the learners’ pre-
knowledge, very seldomly occurs in the Swedish mathematics classrooms. How-
ever, the teachers realised that a careful analysis of the pre-test results would give 
them valuable information if they tried to make sense of why the students had failed 
on certain tasks and how they had explained their ways of reasoning. This gave the 
teachers deeper insights into what could be problematic for the students and subse-
quently about possible ways to teach the topic. They found, for example, that many 
students could solve the tasks with problem solving skills or by using the rule ‘two 
minus signs make plus’ and without an understanding of addition and subtraction 
with negative numbers. This ‘rule’ was often of no meaning to the students and was 
used as a method of a procedure. They also realised that the different meanings 
of the operational sign for subtraction and the ‘minus’ sign for a negative number 
probably was confusing for the students (cf., Ball 1993; Vlassis 2004). In Sweden 
the signs look and sounds the same (minus) and could easily be interpreted as such1. 
The teachers considered possible solutions to this problem: different words for the 
number (e.g., ‘negative three’) and the operation (subtraction or minus) could be 
used, the two signs could be separated by putting the sign for the negative number 

1 −5 − (−3) = is read ‘minus five minus minus three’ equals. In Swedish: ‘minus fem minus minus 
tre är lika med’.
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‘higher up’ than the operational sign. They discussed whether concrete representa-
tions and metaphors, for example temperature (−3 as three degrees below zero) 
and debt, would be a limitation for a deeper understanding. These representations 
seemed to be of use for solving some of the tasks but not all. How could, for in-
stance subtraction task ‘5 − (−3) =’, be represented in a good way? And how could 
the different tasks ‘5 − 3 =’ and ‘5 − (−3) =’ be told apart. The fact that this topic in 
mathematics is hard to represent in the different combinations (e.g., a + − b, −a + −b, 
−b + a, −b + −a, a − −b, −a − b, −a − −b, −b − a, −b − −a) made the teachers to consider 
an approach without concrete representation at all.

With the experience of the students’ pre-knowledge the team jointly planned 
the first lesson (L1) that aimed for that the students would understand addition and 
subtraction with negative numbers. The teachers had an idea that the lesson should 
focus on opposite numbers, an idea they found in a mathematics text book. They 
wanted the students to see that an addition of the opposite numbers, e.g. +5 and −5 
equals zero. “We have to show that the rules of operation have to be the same on the 
negative side as on the positive one”, one of the teachers said. In order to draw the 
learner’s attention to this, the team decided to teach negative numbers as ‘patterns’ 
(cf., Freudental 1983). Paradoxically, although the teachers were very much in to 
avoiding teaching about rules, the main idea for the first lesson was to use ‘patterns’ 
to make the students “invent” a rule or to “see the consequence of a rule”. “At least 
with this, we will have shown how the rules work. At least shown the rule in one 
way”, T1 said. “They [the students] will ask about this rule about minus and minus 
[becoming plus]”, T2 added. “No, my soul, I will avoid that”, T1 replied. To over-
come learning difficulties they were very much into ‘avoiding things’. They wanted 
to make the lesson as simple as possible without any examples that would mix up 
things for the students. For instance, although they were aware of that subtraction 
could be seen as a difference between two numbers, they thought that this would 
make it more complicated. “Subtraction means ‘taking away’. It is stupid to call it 
‘difference’. Let us just say subtraction. They know what that is”, T2 suggested.

The team was very aware that the two different meanings of the minus-sign 
might be confusing to the learners. They discussed how they systematically should 
vary the meanings by using examples like ‘8 − 3 = 5’ and ‘3 − 8 = −5’ to draw the 
learners awareness to the different meanings of the sign for a positive or a negative 
number, but still keep the sign for the operation the same.

Implementing the First Lesson in the Cycle (L1)

The first lesson brought up the feature of opposite numbers as was planned. This 
was an introduction to find and discuss negative numbers in relation to the positive 
numbers and let the learners themselves discover the rule “adding (subtracting) a 
negative number is the same as subtracting (adding) its opposite” (Freudental 1983, 
p. 437). The teacher in this lesson wanted the students to find the answers to the 
following questions: “What happens when we add the opposite number to five with 
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five, ‘5 + (−5)’?” and “What happens if we go below zero, ‘5 + (−1)’?” This was for 
the students to explore in pairs during the first lesson. The students came up with 
different possible solutions to the questions (see Fig. 1). The point with bringing up 
different solutions of the same task (pattern A, B, C) was done with the intention of 
contrasting different ways of understanding what happened with the operation when 
counting with negative numbers. In this way the learners’ interpretations of the 
operations was elicited and discussed, thus they became visible. In this case pattern 
A (correct) and B (incorrect) came from the students, but pattern C (incorrect) was 
introduced deliberately by the teacher. To demonstrate an in-correct pattern to the 
learners could be considered as un-appropriate to do. Is it not a risk that the students 
will learn the ‘wrong thing’? However, the teacher held the idea (in line with varia-
tion theory) that, in order to know what something is, you must know what it is not. 
To make the student aware of aspects concerning the nature of negative numbers 
he contrasted it with an example that demonstrated feature that did not belong to 
negative numbers.

In a second phase of the lesson the patterns of addition was connected to patterns 
in subtraction. The teachers wanted the student to find out that subtraction with a 
negative number could be substituted with addition of the opposite number. Fur-
thermore, the different meaning of the ‘minus-sign’, for instance in ‘5 − (−5) =’ was 
elicited in the lesson. The teacher said:

T: The minus sign does not stand for exactly the same thing. Uh…this [points] tells us, this 
minus sign tells us that it is an operation, for example this [pointing to the first minus sign] 
is the operation. For example this [points to + in another expression] is different …[they 
are] symbols for the operation.

The teacher pointed out one of the different meanings of the minus sign by compar-
ing it to the ‘+’ in addition, the operational meaning. The minus sign as indicating 

Fig.�1�� Three contrasting patterns used in lesson 1 for the students to explore “What happens in 
addition when we go below zero?” (Note, pattern B and C are incorrect)

Pattern A 

5 + 5 = 10 

5 + 4 = 9 

5 + 3 = 8 

5 + 2 = 7  

5 + 1 = 6 

5 + 0 = 5 

5 + (–1) = 4 

5 + (–2) = 3 

5 + (–3) = 2 

5 + (–4) = 1 

5 + (–5) = 0 

Pattern B 

5 + 5 = 10 

5 + 4 = 9 

5 + 3 = 8 

5 + 2 = 7 

5 + 1 = 6 

5 + 0 = 5 

5 + (–1) = –4 

5 + (–2) = –3 

5 + (–3) = –2 

5 + (–4) = –1 

5 + (–5) = 0 

Pattern C 

5 + 5 = 10 

5 + 4 = 9  

5 + 3 = 8 

5 + 2 = 7 

5 + 1 = 6 

5 + 0 = 5 

5 + (–1) = 6 

5 + (–2) = 7 

5 + (–3) = 8 

5 + (–4) = 9 

5 + (–5) = 10 
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positive/negative numbers was elicited by contrasting the same digit (5, (−5)) and 
varying the sign.

Analysing�the�First�and�Planning�the�Second�Lesson:�Subtraction��
Has�a�Double�Meaning

Analysing the video recorded lesson together with the results from the post-test 
made the teachers realise that this way of teaching was not successful in all respects. 
The progress concerning addition was better than subtraction. On subtraction tasks 
with two negative numbers, the students in class 1 (i.e., lesson 1) showed a lower 
result on the post-test (29% correct answers) than on the pre-test (35% correct an-
swers). Why? The teachers together with the researcher carefully watched the re-
corded lesson from the point of view of in what way it was made possible for the 
students to learn about subtraction of negative numbers. So, by analysing the lesson 
in the light of the learning outcomes (on the post-test and in the lesson) they tried 
to make sense of how the way the topic was handled affected students’ learning. 
This is of course not an easy task. Learning outcomes can not be explained by a 
simple cause–effect explanation. Therefore it is important to take the nature of the 
capability into consideration. What is necessary for the students to be aware of in 
order to learn? Are there aspects of subtracting negative numbers that has been 
taken for granted (when planning and in the lesson) that should not have been taken 
for granted? These were questions posed by the researcher in order to make them 
discern if aspects of adding/subtracting negative numbers that students ought to be 
aware of were made possible to experience in the lesson. They drew the conclusion 
that using ‘patterns’ (Fig. 1) did not give the students the opportunity to discern 
certain features of negative numbers and the operation that probably were neces-
sary to discern for learning about subtraction. They realised that the way the topic 
was handled did not bring out the critical features of subtracting negative numbers. 
There must be some necessary conditions missing in the lesson.

From these insights, they decided to take quite another approach for the second 
lesson. Instead of using patterns to solve mathematical expressions, they planned 
to contrast addition to subtraction. However from observing the recorded lesson 
they also noticed another thing. One student brought out something which they had 
decided to avoid when planning the lesson. The student remarked that “minus could 
be seen as a difference, not just as take away”. When planning the first lesson they 
decided not to mix up things to much and not to vary the ‘meaning’ of the opera-
tion sign. This idea was really challenged now, not by the researcher or by anyone 
of the teachers, but by one of the students! The statements from the student made 
the teachers aware of the advantage of seeing subtraction as a ‘difference’ and as 
‘take away’ and that this ‘double meaning’ of the minus sign probably is a critical 
aspect of subtraction. Thus, when being sensitive to the students’ interpretation the 
meaning of the minus-sign, they realised how their aspiration to help the learners by 
just using ‘take away’, might have had the opposite effect. Therefore they decided 
to teach ‘5 − (−5) =’ is the ‘distance’ between them [the numbers]. But one problem 
still remained; when using difference as a metaphor, the students would get both 
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positive and negative differences due to which number was placed first in the ex-
pression. If the smallest number was first, the difference would be negative. “What 
is a negative difference? Is it wrong to discuss that during the lesson?” one of the 
teachers wondered. In order to make things less difficult for the students the team 
decided to just try to avoid examples with a negative difference in lesson 2.

Implementing the Second Lesson in the Cycle (L2)

From the recording of lesson 2 it is possible to see that the decision in the post-
session meeting after lesson 1—to focus on subtraction as ‘difference’—had a great 
influence on how the topic was handled in the lesson. For instance the teacher made 
the students aware that the meaning of ‘minus’ may be taken for granted, when the 
teacher said:

T: Today I want you to think about the minus sign as something, something new, something 
different…for example a difference, a difference between two different things, between two 
numbers [writes ‘difference’ on the board]

The rest of the lesson was focused on ‘the distance’ between two numbers. A num-
ber line was used as a teaching aid. A pair of numbers was compared, for instance:

T: If you think like this…the number five [writes 5] and the number two [writes 2 and a 
minus between them]. Then it must be…what is the answer then, Erica?
E: Three
T: Then you can think about the minus sign as the difference between five and two…it is 
three.

During the second lesson, the teacher in different ways drew the students’ attention 
to experiencing subtraction as a ‘difference’ instead of as a ‘take away’ only. This 
was done by a comparison between numbers on the number line. However, this was 
also in accordance with the planning—in all the examples taken, the difference be-
tween the numbers were always a positive number (e.g., ‘5 − (−7) =’ or ‘8 − (−3) =’).

However, one aspect which was present in lesson 1 was missing in lesson 2; the 
minus sign as both a sign for operation and the number value (cf. lesson 1 above). 
This absence was not planned, so he may just have forgotten about it.

Analysing the Second and Planning the Third Lesson:  
‘A View Turn’

After having analysed the second lesson and the results from the post tests it be-
came clear to the team that lesson 2 was not successful either. The post-test showed 
that the students performed better on tasks concerning subtraction, especially to 
subtract a negative number from a positive number. Certainly the results increased 
from 41% of correct answers on the pre-test to 76% on the post-test, but results 
from subtraction tasks with two negative numbers ‘(−5) − (−2) =’, did not increase 
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so much (from 41% to 65%). Since the lesson paid little attention to addition with 
negative numbers the increase in results concerning addition was small. So, having 
planned and conducted two lessons in the cycle without getting the outcome they 
had expected, they realised that there were still some critical aspects that remained 
to be discovered.

Neither using a pattern (as in lesson 1) nor comparing pairs of numbers with the 
help of a number line (lesson 2) seemed to give the students possibilities to learn 
what was intended. All aspects critical for learning this had not been brought out in 
these lessons. But still there were a few things in lesson 2 that they were satisfied 
with. The post-tests had shown better results for subtraction compared to lesson 1. 
The teachers considered what effect that ‘negative difference’ never appeared in the 
lesson may have had: “You never showed a negative difference between numbers. 
5 − 1 should have been followed by 1 − 5,” T3 said. “We had decided to try to avoid 
that. We felt that it would mess up things for them”, T2, the teacher who had imple-
mented the lesson, said. A long discussion about whether they should try to avoid 
or focus on expressions with a negative difference followed. Would it be confusing 
for the students or was it necessary to bring this up? Could the difference between 
‘5 − 4 =’ ‘and 4 − 5 =’ be a critical aspect (i.e., the law of commutativity is not valid 
for subtraction)? “You could start with 4 − 5 = and discuss what happens in that case. 
With ‘5 − 4 =’ it will be one left, but with ‘4 − 5 =’ it will be one missing. That dif-
ference is understood by every little child,” the researcher said. “Yes, and still we 
ignored that since we felt that we could not explain that,” T1 replied.

At this point there was a dramatic view turn. Instead of discussing in terms of 
avoiding negative differences, which they anticipated would be problematic for 
the learners, they now considered teaching this. Thus, they reconsidered their view 
of how to help the learners; from avoiding to confronting. To facilitate learning, 
however, it was suggested to connect the examples to an every day context which 
would be familiar to the learners. For example, they suggested to compare the age 
of two persons differing nine years in age, one will be the younger and the other the 
older. How you represent that (positive or negative difference) depends on whose 
perspective you take. For instance: John is 12 and David is 9 years old. Starting 
with the oldest (12 − 9 = 3) you say: “John is 3 years older”. If you do it the opposite 
way (9 − 12 = −3) you say “David is 3 years younger than John”. The possibility 
of using different metaphors like ‘longer/shorter’, ‘smaller/bigger’ and so on were 
discussed. Subtraction as a difference was still meant to be in focus. They consid-
ered using another metaphor for negative numbers: debt, as a possible way to show 
subtraction as a difference between two numbers; for instance to give a scenario of 
two persons sharing their economies (addition) and comparing them (subtraction).

Implementing the Third Lesson in the Cycle (L3)

Due to an unexpected incident (lightening) happened the third lesson was inter-
rupted. From the video recording of the lesson it could be noted that this incident 
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draw the students’ attention away from mathematics, and we have therefore chosen 
not to present details and tests from this lesson. However the video recorded lesson 
and the results on the post-test was analysed by the teachers and served as a ground 
for considerations about the last lesson in the cycle.

The lesson started with discussing the difference between ‘8 − 3 =’ and ‘3 − 8 =’ 
(just as planned). This was followed by an example comparing persons of different 
lengths and having different amount of money. The students were asked to consider 
who is the tallest/shortest and richest/poorest. By this, the teacher wanted to show 
that there is an ‘in-built perspective’ for instance in 87 − 85 and 85 − 87. In the first 
case you could say that 87 is bigger/taller/richer than 85. In the second 85 is smaller/
shorter/poorer than 87. Due to the incident of the lightening, this was not followed 
up. Neither was subtraction as ‘difference’ brought out in the lesson. However, the 
different meaning of the minus sign (operation and value) was an aspect present in 
lesson 3.

Analysing the Third and Planning the Last Lesson: The Critical 
Aspects Emerge

In the post-session after lesson 3 the task of comparing tallness was much paid 
attention to. The teachers thought that they had found something critical for learn-
ing to subtract with negative numbers when they discussed that the difference in 
tallness is dependent of from which ‘perspective’ you are looking at it from. For 
instance they said: “If you think about the difference between 9 and 15 is 6, but 
whether it is −6 or 6 depends upon the perspective you take”. They decided to make 
‘the perspective’ in subtraction very clearly to the students in the next lesson. This 
should be done by contrasting the difference between addition and subtraction at 
the beginning of lesson 4 and to use the metaphor of debt in the context of shared 
and compared economies. In addition to this they explicitly pointed out that it was 
important to make sure that the critical aspects identified earlier in the process really 
would be present in the fourth lesson.

Implementing the Fourth Lesson in the Cycle (L4)

The last lesson in the cycle became a synthesis of all the three previous lessons and 
the conclusions drawn from the analysis from them. In this lesson the teacher tried 
to direct the students’ attention to all the critical aspects that she knew about. During 
this lesson it was possible for the students to experience:

1. the difference between the two signs for subtraction and for a negative number;
2. that subtraction could be both seen as ‘a take away’ and as ‘a difference’ between 

numbers; and,
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3. that it matters from which point of view you regard subtraction; it is always from 
the perspective from the ‘first position’. For example, if, Liza has 5 crowns and 
Bill −10 crowns (5 − (−10) = 15), the difference between their economies is that 
Liza has 15 more than Bill (i.e., positive or negative difference).

These were the critical aspects the teacher group had identified so far. However, 
during lesson 4 something happened which illustrates the importance of being sen-
sitive to students’ learning and understanding. During lesson 4 the teacher asked 
the students to come up with two negative numbers that in a subtraction equals one 
(___ − ___ = 1). This task caused a lot a discussion among the students. Initially, the 
teacher did not understand what the problem was, but perhaps due to the fact that 
she was ‘tuned to be sensitive’ to the learners’ ways of experiencing that which is 
learned, she successively understood what was problematic for the students—they 
were not sure about which was the biggest number −2 or −1. The teacher said:

T: I know what your problem is, and it was stupid of me not having considered this before. 
We have to find out which of the two numbers (−1) and (−2) is the biggest number.

On the question “which is the biggest number −1 or −2?” the majority of the stu-
dents incorrectly answered “−2”. Why? Probably, those students believed that, 
starting from the point zero on the number line, the positive numbers ‘get bigger 
the more to the right you get’ and the negative numbers get bigger ‘the more to 
the left from zero you get’. Experiencing the number system like this, it is rea-
sonable to think that ‘−18 is a bigger number than −3’. One could assume that 
understanding how the number system is structured, thus realising that −18 is a 
smaller number compared to −3 and 18 for instance, is critical for understanding 
and calculating negative numbers. However, that the students could have the op-
posite and in-correct understanding was never anticipated by the teachers, neither 
when they planned or observed the three previous lessons. It was not until the 
students in the last lesson in the cycle gave expressions of being confused and the 
teacher really tried to understand what this confusion was about, she became aware 
of this important feature of learning to calculate negative numbers. It became clear 
to her that ‘understanding opposite numbers’ was a critical feature for learning to 
add and subtract negative numbers. This was probably a critical feature that had 
been taken-for-granted by the teachers when planning and revision the lessons and 
thus, had not been brought out in the previous lessons. So, besides the three aspects 
mentioned above, yet another one was possible to discern in the last lesson in the 
cycle, namely:

4. The structure of the number system

The post-test from lesson 4 showed the best results compared to the other classes 
for the learning outcomes. After this lesson there was an increase from 29% correct 
answers on the pre-test to 81% on the post-test on tasks concerning subtraction of 
negative numbers. The results on addition tasks with negative numbers are also 
showing the same increase. Our interpretation is that there were other and better 
possibilities to experience aspects critical for learning provided in this lesson com-
pared to the previous ones.
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Through the cycle the awareness of aspects critical for learning to add and sub-
tract negative numbers grow among the teachers. The teacher who implemented 
the lesson plan in the last class (lesson 4 in the cycle) had, as a consequence of the 
in-depth analysis of teaching and student learning, a more developed understanding 
of what must be brought out in the lesson to provide better learning. She was more 
prepared to bring out the identified critical aspects in her class and managed to do 
so also.

�Sensitivity�and�a�Systematic�Approach�to�Enhance��
Student�Learning

To summarise, in a Learning study the aim is try to connect students’ learning (how 
they conceptualise and understand what is learned) with what it takes to know 
something. There is a collaborative inquiry into what kind of architecture the spe-
cific capability has, what aspects of the object of learning are critical and are nec-
essary to discern in order to learn. Once we think we know about these, we try to 
draw the students’ awareness to them in the lesson and plan activities that will make 
them possible to discern for the students. Hence, the focus is therefore on the critical 
aspects and the activities and organisation of teaching are seen as means to make it 
possible to discuss and discern the aspects.

Our interpretation is that the process of analysing lessons collaboratively with 
the aim to improve students’ learning in regard to a specific object of learning, what 
was made possible to learn and what was actually learned was, in this case, a fruit-
ful and rewarding experience both for the teachers and the learners. The teachers 
deeply investigated how the learners understand and solve tasks like ‘5 − (−2) =’ or 
‘−3 − (−4) =’ for instance, and what it takes to learn this. They explored and identi-
fied what was critical for the students’ learning. You could say that the teachers 
learned about the students’ learning and this learning made them able to refine and 
develop the lesson plan in terms of how to handle the content. Through out the 
process the students’ learning, what they learned, what particular combinations of 
addition and subtraction with negative numbers they failed or succeeded with, was 
the main concern. In that sense, the assessment of students’ learning outcomes was 
qualitative and formative, thus used for refining the lesson. Students’ failure was 
never discussed in terms of attributes or shortcomings among the learners which, in 
our experience, is common, but rather to deficiencies in teaching. However, being 
sensitive to students’ learning in mathematics, for these teachers, did not just refer 
to how they interacted with their students and whether they cared for them or not. 
Sensitivity implied to learn more about why students may have learning difficulties, 
how they perceive and conceptualise that which is learned and how that was related 
to what was made possible to learn in the classroom, thus their teaching.

The teachers had a true ambition to help the learners to understand, not just to 
rely on ‘tricks’ and rules that were meaningless to them; unfortunately a common 
way to teach negative numbers in Sweden. It is easy to be wise afterwards and 

Sensitivity to Student Learning



276

classify the first lessons as being poor, and since they were not so successful, con-
sidering the teachers as unskilled. Remember however, that going so deeply into 
how to teach and learn a topic was not just a new experience for them, it was also 
a challenge. Usually they rely on the text book. Here they were confronted with 
their own ways of teaching and what effect that had on students’ learning. They had 
to consider their knowledge of the subject matter, their students’ understandings 
and learning as well as of their own teaching skills. The sensitivity to the students’ 
understanding before, in and after the lesson gave information about the way of 
handling the content and how that might provide possibilities for learning.

However, it is worth noticing that the teachers’ ambition to facilitate learning, 
at some occasions, had the opposite effect. Avoiding negative difference and not 
bringing out the double meaning of subtraction, for instance, seemed to have been 
counter-productive for providing learning possibilities. The teachers successively 
came to realising that there must be certain conditions met in the lesson in order for 
their students to learn to add and subtract negative numbers. Certain aspects were 
critical for these students’ possibility to learn. Such critical aspects identified by 
the teachers were the ‘minus-sign’ as operational sign for subtraction compared 
to the ‘minus’ sign for a negative number, different semantic meaning of ‘minus’ 
(e.g., subtraction as ‘take away’ or ‘difference’), that a − b does not equal b − a, thus 
the law of commutability is not valid in subtraction, and understanding the order 
of negative and positive numbers (e.g. −3 > −18) (Maunula, 2006). We have doubts 
about whether the teachers would have come to these conclusions on their own and 
without this systematic and cyclic approach of investigating teaching and learning.

�Learning�Study:�A�Possibility�for�Learning�to�Teach��
and�for�Professional�Development?

Learning study is a labour-intensive and time consuming activity, is it really pos-
sible to do this on regular basis concerning all the other obligations teachers have? 
We think this is a powerful tool for teachers’ professional development and an ap-
propriate form of a learning community in teacher education as well.

Considering the demands mathematics teachers face from politicians and the 
public to improve students’ mathematical learning (e.g., as reactions to international 
comparisons of mathematical performance in TIMSS and PISA) they must be given 
time and other opportunities to deepen and develop knowledge about how their ac-
tivities shape students’ learning and if that which is intended to be learned is made 
possible to learn from their teaching. This is valid for prospective teacher education 
as well. Learning study as an approach in teacher education, Davies and Dunhill 
(2008) points to, requires “substantial organization and effort, particularly in setting 
up lessons, working with mentors” (p. 15), However, they argue, the prospective 
teachers’ experience of Learning study changed their understanding of teaching and 
this shaped their teaching.
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“Teachers often feel that learning outcomes are un-predictable, mysterious and 
uncontrollable,” Nuthall argues (2004, p. 276). We can probably not predict learn-
ing, but at least (among other things) be able to analyse and design learning situ-
ations from the point of view of what is necessary for learning and how to make 
this learning possible. To improve knowledge about that is a life long professional 
learning process. In Learning study teachers with different teaching experiences can 
learn with and from each other by observing themselves and other teachers teaching 
the same topic.

In Learning study we value teachers’ experience and contributions. It is believed 
that, given opportunities, teachers could develop expertise and valuable knowledge. 
Such knowledge is not just a private experience but could be disseminated and com-
municated to other teachers in networks as examples of good practice. A Learning 
study is a way for teachers to conceptualise and talk about teaching and learning. 
We assume it can help teachers to develop a research stance and an investigative 
approach to their teaching (Lo et al. 2006), something Davies and Dunhill’s (2008) 
study indicated. They found that a number of teacher students began to “recognise 
explicitly and relish the research element of the demand that was being placed upon 
them” (p. 15). Learning study gives a possibility to continue to learn and improve, 
we believe. In this process, students’ learning, teacher learning and what is learned 
are interconnected.
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�Focus�and�Significance

Because the objects of mathematics cannot be apprehended directly by the senses, 
the role of mediating signs (Peirce 1998) is crucial in all mathematical activity, in-
cluding its thinking and learning. However, it has been documented (Presmeg 1997, 
2006) that compartmentalized thinking may prevent learners of mathematics from 
making the connections amongst mathematical signs that will facilitate their learn-
ing. In particular, when students have satisfied themselves by empirical means—for 
example, using measurement, or by dragging points in a dynamic geometry envi-
ronment—that a geometric drawing satisfies some geometrical principle, then their 
sense of certainty and closure may constitute a barrier to understanding the deep 
structure of the mathematical principle or principles that underlie the construction.

The environments of geometric constructions and geometric proof may be 
viewed as different registers, to use Duval’s (1999) terminology. In overcoming the 
barriers of compartmentalized thinking, educators of prospective high school teach-
ers need to model and facilitate ways that students may connect these registers and 
build the integrated knowledge of deep structure that enables learners to understand 
why constructions work, and how it may be proved that they are rigorous. This 
chapter illustrates one such task, taken from a geometry content course for prospec-
tive high school teachers.

�Theoretical�Perspectives

Theoretical lenses that are useful in this context are Peirce’s (1998) triadic semiotic 
system, and Duval’s (1999) theory of conversions within and amongst mathemati-
cal registers. In Peirce’s system, a sign consists of three components, namely, an 
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object, a representamen (which I prefer to call a sign vehicle—Presmeg 2006) that 
stands for the object in some way, and an interpretant, which is the result of inter-
preting the relationship between the sign vehicle and its object. Peirce (1998) also 
introduced the notion of abduction, as one of three modes of logical reasoning. He 
described abduction as follows.

Abduction is the process of forming an explanatory hypothesis. It is the only logical oper-
ation which introduces any new idea; for induction does nothing but determine a value 
and deduction merely evolves the necessary consequences of a pure hypothesis. Deduc-
tion proves that something must be, Induction shows that something actually is operative, 
Abduction merely suggests that something may be. Its only justification is that from its 
suggestion deduction can draw a prediction which can be tested by induction and that, if we 
are ever to learn anything or to understand phenomena at all, it must be by abduction that 
this is to be brought about. (p. 216)
An Abduction is a method of forming a general prediction without any positive assurance 
that it will succeed either in the special case or usually, its justification being that it is the 
only possible hope of regulating our future conduct rationally, and that Induction from past 
experience gives us strong encouragement to hope that it will be successful in the future. 
(p. 299)

The purpose of using these theoretical perspectives is to attain a finer grain of analy-
sis of the processes involved, by taking into account ways that students interpret 
mathematical relationships. Duval’s theory is significant because it provides a con-
struct—register—that is broader in its connotations than the terms representation or 
sign vehicle. As a mode of representation, examples of registers used in mathemat-
ics are diagrams, algebraic symbols, and graphs. Dynamic geometry modes and 
classical Euclidean constructions may be viewed as different registers. However, 
both of these registers may be contrasted with the register of rigorous deductive 
reasoning involved in proof of theorems in classical Euclidean geometry. It is the 
connections amongst these registers that are the focus of this chapter. Specifically, 
the goal of this chapter is to illustrate some of the abductions and logical thought 
processes required to unpack why a particular geometric construction is success-
ful, and to address implications of the fact that none of the prospective high school 
mathematics teachers in the college geometry course concerned, felt the need to 
undertake this unpacking.

�Tasks�from�a�College�Geometry�Textbook

A college geometry course, Euclidean and non-Euclidean Geometry, taught by the 
author in fall of 2007, had the following description:

This course is designed to provide geometry content background for students preparing 
to teach mathematics at the middle school or high school levels. The primary purpose of 
the course is to involve the participants in thinking about, working on, and communicat-
ing about Euclidean and non-Euclidean geometries. Although this is not a course about 
the teaching of geometry, we may occasionally discuss related topics. More specifi-
cally, the course will involve activities and discussions in each of the following general 
categories:
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• Inductive, deductive, and abductive reasoning (in all areas listed below)
• Purposes and methods of proving in geometry
• Euclidean geometry
• Classical geometry
• Transformations
• Use of dynamic geometry software
• Non-Euclidean geometries
• Three-dimensional geometry and spatial reasoning
• Miscellaneous topics in geometry.

The four-semester-hour (i.e., four hours per week for fifteen weeks) course is typi-
cally taken by undergraduates in the second or third year of a four-year mathematics 
teacher preparation program, after they have taken an introductory two-semester-
hour Methods course in their first year. The final year is fully taken up with two 
further Methods courses, clinical experiences, and student teaching.

The specific aspect of the course that is the focus of this chapter is the barrier 
created to student learning when students have a ready-made protocol or formula for 
carrying out a task, which eliminates their need for understanding the deep structure 
that would explain why the protocol gives a solution to the task. This phenomenon, 
which may occur in either a dynamic geometry environment using computers or 
when students are doing geometric constructions using Euclidean tools, may inhibit 
the need for proof in geometry. The following task provides an example of this effect.

Several weeks into the course, the undergraduates had revised various basic Eu-
clidean constructions using compasses and straightedge. The following assignment 
was given from the course textbook (Reynolds and Fenton 2006, p. 23).

30 a.  Find a construction to inscribe an equilateral triangle in a circle. Do the same for a 
square and for a regular hexagon.

b. Here is a construction to inscribe a regular pentagon in a circle: Construct a diameter 
AB of the circle. At the centre, C, construct a perpendicular line and let D be one of 
the line’s intersections with the circle. Let E be the midpoint of CD. Bisect angle AEC, 
and let F be the intersection of this bisector with the diameter AB. Construct a line l 
through F that is perpendicular to AB. The points where l intersects the circle, together 
with A, begin the pentagon. Carry out this construction and finish the pentagon.

Because the use of Euclidean tools consisting of compasses and unmarked straight-
edge is equivalent to using the dynamic geometry software of Geometer’s Sketchpad 
(Jackiw 1991), using only “Circle by Centre+Point” and “Line” from the Construct 
menu, I illustrate the constructions involving the equilateral triangle and the regular 
pentagon in this GSP environment (Figs. 1a, b and 3, respectively). The construc-
tions to inscribe the square and the regular hexagon in a circle are straightforward 
and are not addressed further, because few students had difficulty connecting these 
constructions with the register of proof (Duval 1999), linked with the registers of 
constructions using computers and Euclidean tools in which they were working.

In contrast to the construction for the regular pentagon—which was presented 
in the textbook in cookbook fashion—the construction for the equilateral triangle 
was presented in the textbook as an investigation for undergraduates. The circle is 
the given starting point of these constructions, and the measure of the radius of this 
circle defines the side of the inscribed equilateral triangle or regular pentagon.
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Before proceeding, the reader might want to investigate how the construction for 
the equilateral triangle may be done, and why it works.

A key to one solution to this problem (Fig. 1a) is the theorem that states that 
the point of concurrency of the medians (the centroid) of any triangle divides each 
median in the ratio 2:1. Students had proved this theorem previously, and those who 
remembered this theorem could deduce that starting with a diameter AB of circle 
centre C, and bisecting the radius CB in the diagram, would provide the required ra-
tio. Then drawing chord EF perpendicular to AB at D would provide one side of the 
required triangle. Joining E and F to A would then complete the equilateral triangle, 
using the property of symmetry. Because of the properties of the centroid in an equi-
lateral triangle (that it is also the circumcentre, the orthocentre, and the incentre), this 
construction provides no barrier to the proof that triangle AEF is in fact equilateral.

In constructing an equilateral triangle in a circle, a solution that is accessible to 
students who do not recall the centroid properties is illustrated in Fig. 1b. Any chord 
(such as KL in the diagram) has a diameter of the circle as its perpendicular bisec-
tor (GH in the diagram). An equilateral triangle may be constructed on side KL. 
Triangle JKL is not the required inscribed triangle. However, this construction pro-
vides the correct angle, and by drawing parallels to the sides of triangle JKL through 
G, the positions of M and N are determined. Then GMN is the required inscribed 
equilateral triangle. Again, it is the properties of circles and equilateral triangles that 
provide entry to the construction through reasoning. The same principles apply if 
a radius is used to construct a first equilateral triangle with one vertex at the centre 
of the circle, and then parallel lines are constructed to obtain the required triangle 
using the method of Fig. 1b.

A memory image of the diagram for the proof that the medians of a triangle are 
concurrent (Fig. 2) could be the prompt for the construction in Fig. 1a. In Fig. 2, BE 

Fig.�1�� a, b An equilateral triangle inscribed in a circle
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and CF are given as medians of triangle ABC, and G is their point of intersection. 
By joining AG and extending it its own length to H, the midpoint theorem may be 
invoked to prove that FG and BH are parallel. Similarly GE and HC are parallel. 
Thus GBHC is a parallelogram, and its diagonals bisect each other. Thus AD is a 
median (proving that the medians are concurrent at G), and it also follows that the 
ratio AG:GD = 2:1.

Because the inscribed equilateral triangle construction (as presented in the text-
book) is left to the undergraduates to complete as an investigation, their solutions 
and the underlying principles and properties of the figures become explicit topics 
in the ensuing whole-class discussions of the task. Several ways of proceeding are 
possible1, and abductions of students (e.g., that starting with any chord and drawing 
an equilateral triangle will facilitate a solution after further reasoning) are encour-
aged and pursued in small groups and in whole-class deliberations.

The construction of the inscribed regular pentagon, by way of contrast, is pro-
vided in the text as a protocol to be followed, rather than an investigation. This 
protocol enables undergraduates to construct the required pentagon in the circle, 
and to verify by measurement that it is in fact a regular pentagon. But why is this 

1 John Mason reported that he completed the construction by inscribing a regular hexagon in the 
circle, using the radius as a side of the hexagon, and then joining alternate vertices of the hexagon 
to form the inscribed equilateral triangle.

Fig.�2�� Diagram for a proof 
that the medians of a triangle 
are concurrent
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so? The sense of closure in this method and the empirical checking of its accuracy 
give no hints about why the construction works or which properties of the figures 
involved would be useful in proving that the pentagon obtained is regular. More 
than that, many undergraduates are convinced by their empirical measurements that 
the construction generates a regular pentagon in a circle, and for them the need for 
a formal deductive proof may disappear in this process. Not only is the “cookbook 
recipe” then a barrier to further learning, but an opportunity to investigate some 
very interesting properties of the Golden Ratio is thereby lost.

The reader might want to try to figure out why this construction works (see 
Fig. 3) before proceeding further.

�Preliminary�Pedagogical�Considerations

Although all of the 38 undergraduates in the two sections of the Euclidean and Non-
Euclidean Geometry course completed the inscribed pentagon task using DGS in 
the computer laboratory, not one of them raised the question of why the construction 
works. There was no concern at all regarding the need to prove, or at least under-
stand the structure and reasons, why the textbook “recipe” produced the required 
inscribed regular pentagon. As the instructor of the course, walking around and 
helping the undergraduates as they worked on individual computers, I felt disturbed 
on two counts. There was no doubt (and measurement confirmed) that the resulting 
figure was the required pentagon. But, firstly, I myself could not immediately deci-
pher the underlying structures that revealed the properties behind the construction. 

N. Presmeg
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Secondly, it was disconcerting that none of the undergraduates expressed a need 
to find out why. An overarching theme in the course (and also in the two Methods 
courses that followed in the final year of the program) was that we should accept 
no rules without reasons. This pedagogical principle was intended to model teach-
ing that we hoped the prospective teachers would take into their own professional 
careers in high schools, reflecting a view of the nature of mathematics as logically 
integrated and structured, rather than a set of techniques to be memorized. As the 
teacher of the course, I could have asked the undergraduates to investigate why 
the construction worked. But I did not know the answer to this question myself, 
and the process of finding out turned out to be complex and time-consuming, al-
though finally the revealed structure was immensely rewarding and pleasurable. 
The effort required in this process raises the question of the degree to which it is 
possible for mathematics teachers to adhere consistently to the principle of always 
requiring reasons for rules used. With the pressures and constraints of high school 
classrooms, a measure of balance is probably the best compromise, and the culture 
of the classroom is a relevant factor, although this aspect is beyond the scope of the 
present chapter.

The following is an account of the logical and abductive processes that I went 
through in the effort to find out why the construction for the inscribed regular pen-
tagon is successful. The principles involved could form the basis for a formal proof.

�Abductive�Processes

In trying to decipher the inner structure of the regular pentagon construction, one 
may recall that the angles subtended by the sides of a regular pentagon at the centre 
of the circle are one fifth of a revolution, i.e., 72°, which is reminiscent of the base 
angles of the Golden Triangle (Fig. 4). Abduction suggests that this triangle may 
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be relevant. In Fig. 4, because BD is the bisector of angle ABC, triangles ABC and 
BCD are similar. Then if side BC has length 1, it follows from the angle measures 
that BD and AD must also have length 1. Now if the length of AB is x, then the 
length of AC is also x, and thus the length of DC is (x − 1). Then in the two similar 
triangles,

Solving the resulting quadratic equation gives x = (1 + square root of 5)/2, the Gold-
en Ratio.

Returning to the pentagon construction (Fig. 3), some further abductions are 
needed. Right triangle ACE in the pentagon construction looks promising, because 
if the radius of the circle with centre C is taken to be 2, then the two legs of this tri-
angle, AC and CE, are 2 and 1 respectively, and the hypotenuse AE must then be the 
square root of 5 (by the Pythagorean theorem). Tantalizing as these numerical ratios 
are, they are still not enough to unlock the inner structure of why the construction 
produces a regular pentagon. Something more is needed.

There is one more aspect of the construction that has not been considered yet, 
and that is the angle bisector, EF. We might recall that the angle bisector theorem2 
states that the bisector of an angle of a triangle divides the opposite side of the tri-
angle in the ratio of the two sides of the bisected angle (a theorem that the students 
had already proved). So in triangle ACE, the ratio AF:FC = AE:EC = sq.rt.5:1.

One could consider right angled triangle GFC in its own right (Fig. 5).

2 I am indebted to John Mason for the insight that the angle bisector theorem provides a missing 
link in the logical processes involved.

x/1 = 1/(x − 1) .

Fig.�5�� A key triangle in justi-
fying the construction
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GC is a radius of the circle. If FC is taken to be 1, then by the foregoing 
argument, the radius GC = AC  =  1 + sq.rt.5, which is double the Golden Ratio. 
Can we link these relationships with the ratios in the Golden Triangle? Yes! The 
ratio GC:FC is then 1 + sq.rt.5, which is exactly what would be obtained if we 
dropped a perpendicular to the base of the Golden Triangle and calculated the 
corresponding ratio. We know that the base angles of the Golden Triangle mea-
sure 72°, thus the measure of angle GCF must be 72°. Alternatively, the secant 
of this angle is 1 + sq.rt.5, which confirms that the angle measure of angle GCF 
is 72°. Thus each of the congruent sides of pentagon AGHIJ subtends an angle 
of measure 72° at the centre of the circle, and this fact tells us why the construc-
tion produces the required inscribed regular pentagon. The abduction that the 
relationships in the Golden Triangle might be useful in the pentagon construc-
tion, turned out to be a powerful one, but deductive reasoning based on the angle 
bisector theorem gave the key to the inner structure, as explored further in the 
next section.

�Hindsight�and�Pedagogical�Implications

The earlier abduction that the justification of the construction involved the ratio of 
the sides of right triangle ACE, in which the legs AC and CE were in the ratio 2:1 by 
construction, seemed an obvious one. Constructing the bisector of angle AEC had to 
be involved in some way, but the implications of this part of the construction were 
not immediately apparent. Sometimes talking with a knowledgeable friend, who 
views the problem through new lenses, may provide a breakthrough. In sharing my 
puzzlement, it was the insight of John Mason that the angle bisector theorem could 
be brought to bear on the situation, which resolved the impasse. This point speaks in 
favor of collaborative pedagogy in which students use small-group and whole-class 
discussions to provide such insights.

Once the ratio AF:FC was determined using the angle bisector theorem, the way 
was opened for the further abduction that right triangle GFC could be thought of as 
“half” of the Golden Triangle. Knowing the properties of the Golden Ratio served 
as a prompt for this abduction. All abductions had to be confirmed by deductive 
reasoning, and all fell into place.

The insights that enabled me to see the inner structure of this construction 
came after the course was over, too late to share them with the two sections of my 
class, or rather, to suggest activities that would facilitate undergraduates being 
able to prove for themselves that the construction produced a regular inscribed 
pentagon. These prospective teachers were content without a proof: they had veri-
fied empirically, in the register of the dynamic geometry environment, that the 
pentagon was regular, and that it was inscribed. In hindsight, I would not follow 
the textbook in providing a ready-made construction, which created barriers to 
deep learning. The following are tasks that could be used as forerunners to this 
construction.

Overcoming Pedagogical Barriers Associated with Exploratory Tasks
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1. Investigate the ratio of the sides of a right triangle in which one leg is double 
the length of the other leg. (The Pythagorean theorem is involved.) If the angle 
formed by the smaller leg and the hypotenuse is bisected, in what ratio does this 
bisector cut the larger leg of the triangle? (The angle bisector theorem is useful 
here.)

2. Investigate the properties of the Golden Triangle. What is the measure of the 
base angles of the Golden Triangle? How is the Golden Ratio implicated? If a 
regular pentagon were inscribed in a circle, what is the measure of the angle that 
the sides of the pentagon would subtend at the centre of the circle?

3. Suppose that you have inscribed a regular pentagon in a circle. Investigate how 
the Golden Ratio could be applied to a radius of this circle.

There would still be abductions to be made before such tasks could be connected 
to the formal construction. However, such tasks could provide the basis for such 
abductions, just as the theorem concerning the centroid dividing medians in the 
ratio 2:1 provided the basis for a possible construction in the case of the inscribed 
equilateral triangle.

Connecting the registers of geometric constructions with that of formal proof 
involving deductive reasoning can be exciting and challenging (Mason 1989; Mari-
otti 2002). Researchers such as Mason and Mariotti are aware of the difficulties 
regarding generality that may accrue when students are given the tools of dynamic 
geometry software. What is gained through the use of computer constructions in 
which shapes may be varied by dragging points, is the ability to vary the sign ve-
hicles—the geometric inscriptions—quickly and efficiently, and to verify measures 
of angles and lengths of segments using the tools provided. Some students may in 
this process see “the general in or through the particular” (Mason 1989, p. 45). All 
geometric sign vehicles are by their nature particular, but they refer to a general ob-
ject, which cannot be seen, but must be inferred through an interpretation process, 
or interpretant in Peirce’s (1998) terminology. Dragging points in a dynamic geom-
etry register may facilitate the construction of such a mental interpretant. But these 
advantages also point to a potential loss: the very sense of certainty given by these 
measures may obviate students’ need to know why the procedures are successful.

The issues involved concerning geometric construction tasks described in this 
chapter suggest that an investigative approach is potentially fruitful. Investigative 
tasks provide one way of overcoming the barrier to understanding of deep structure 
that may be occasioned by giving students procedures or protocols for geometric 
constructions.

Although my class was over by the time I had finally worked out a satisfying 
justification for the pentagon construction, there are a number of further issues that 
could be investigated in future research. Some of these were suggested by Barbara 
Jaworski, whose co-authored chapter in this book (Jaworski, Goodchild, Eriksen, 
and Daland) made use of a structure of levels of learning by researchers (or “di-
dacticians” as they are called in their chapter), by teachers or prospective teachers 
(such as my undergraduate students), and potentially by students in mathematics 
classes in schools (such as the learners in the classes that they will teach in the 
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future). Their threefold learning structure is reminiscent of the “multi-tiered teach-
ing experiments” described as a research methodology by Lesh and Kelly (2000), 
in which researchers, teachers, and their students, are all learning, thus constituting 
three tiers of investigation going on simultaneously. It would be useful to conduct 
future research to investigate the following questions, amongst others.

• What kinds of investigations are effective in encouraging students to seek justifi-
cation for constructions in registers of dynamic geometry software and classical 
Euclidean tools?

• What are the relationships amongst abductive, inductive, and deductive reason-
ing in investigating geometric constructions?

• How do the learning processes of prospective mathematics teachers in investi-
gating geometric constructions relate to those they may encounter in classroom 
situations when they themselves are teachers?

One final thought is captured in a citation from Mason (1989), whose words are 
eminently quotable:

Geometrical activity is one excellent way of gaining access to that world [the world of 
mathematical objects], through the power to form mental images, through seeing through 
diagrams to the world of generality which can be read in them. It is one way to encounter 
the discipline of mathematics, where convincing people why something must be a fact is as 
important as finding out what the fact is. (p. 44, emphasis in the original)

Investigations that encourage students to generate abductions and explore the conse-
quences of pursuing them, may be productive pedagogical means (as future research 
may tell) of helping them find out why something must be a fact, and subsequently 
convincing others—thus providing the basis for mathematical proof.

References

Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathemati-
cal thinking. Basic issues for learning. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st 
Conference of the North American Chapter of the International Group for the Psychology of 
Mathematics Education (Vol. 1, pp. 3–26). Cuernavaca: PME-NA.

Jackiw, N. (1991). Geometer’s Sketchpad. Emeryville: Key Curriculum Press.
Lesh, R., & Kelly, A. (2000). Multitiered teaching experiments. In A. Kelly & R. Lesh (Eds.), 

Handbook of research design in mathematics and science education (pp. 197–230). Mahwah: 
Erlbaum.

Mariotti, M. A. (2002). Influences of technologies’ advances on students’ mathematics learning. 
In L. D. English (Ed.), Handbook of international research in mathematics education (Vol. 1, 
pp. 695–723). Mahwah: Erlbaum.

Mason, J. (1989). Geometry: What, why, where and how? Mathematics Teaching, 129, 40–47.
Peirce, C. S. (1998). The essential Peirce (Vol. 2, Edited by the Peirce Edition Project). Blooming-

ton: Indiana University Press .
Presmeg, N. C. (1997). Generalization using imagery in mathematics. In L. English (Ed.), Math-

ematical reasoning: Analogies, metaphors, and images (pp. 299–312). Mahwah: Erlbaum.

Overcoming Pedagogical Barriers Associated with Exploratory Tasks



290

Presmeg, N. C. (2006). Research on visualization in learning and teaching mathematics: Emer-
gence from psychology. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the 
psychology of mathematics education: Past, present and future (pp. 205–235). Rotterdam: 
Sense.

Reynolds, B. E., & Fenton, W. E. (2006). College geometry using the Geometer’s Sketchpad. Em-
eryville: Key College Publishing.

N. Presmeg



291

�Introduction

The task for teachers that forms the basis of this chapter asks them to use a specific 
model for planning and teaching mathematics lessons. The model is based on a 
particular approach to choosing classroom tasks for students, and implementing 
pedagogies that are appropriate for the type of classroom task.

One of our assumptions is that the use of appropriate mathematics classroom 
tasks with associated interactions and activities is a key to successful teaching and 
learning of mathematics. It is through and around classroom tasks that teachers and 
students work towards the development of understandings, skills and knowledge. 
The teacher education task that is the focus of this chapter is educating prospective 
and practicing teachers to use a specific model for planning and teaching mathemat-
ics lessons to create productive experiences that can be successful with the diversity 
of learners and learning that exists in most classrooms.

There are some other assumptions that underpin our teacher education task. 
These are:

• the process of creating effective lessons from interesting tasks is far from trivial 
even though many commentators do not acknowledge this;

• the creation of lessons, both hypothetically and actually, offers an ideal milieu in 
which theoretical perspectives can be juxtaposed with practical considerations;

• given that the prospective teachers have had plenty of experience with the con-
cept of a lesson throughout their school careers, the unit of the lesson offers 
a comfortable base from which some pre-existing conceptions of learning and 
teaching can be challenged; and,

• offering teachers a model for planning and teaching helps them to cope with the 
complexity of lessons and classrooms and offers them a language that can facili-
tate both collaborative planning and reflective review.
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We note that while the focus of the following discussion in on prospective teachers, 
the same process can provide a suitable stimulus for the learning of practicing teach - 
ers, and we have used this focus in this way.

Another important focus of our work with prospective teachers is to allow con-
sideration of ways that mathematics can create major barriers to learning for disad-
vantaged students. One of the current challenges confronting Australian educators 
is differences in achievement among particular groups of students. For example, the 
following data are extracted from the report on the PISA 2006 results (Thompson 
and De Bortoli 2007) relating to mathematical literacy of 15 year old students. They 
compared the responses to the PISA questions commonly discussed equity groups. 
Table 1 compares the achievement of students based on the socio-economic back-
ground of their parents.

A first implication is that it is difficult to teach such a diverse range of students 
within the one class. Those not achieving level 2 are responding at a very low level, 
yet those achieving at the highest level are progressing at the best international lev-
els. Any model for planning and teaching mathematics needs to support teachers in 
strategies for teaching such diverse classes.

A second implication is that SES background seems very much related to achieve-
ment at school, which is contrary to a fundamental ethos of Australian education, 
that of creating opportunities for all students. The planning and teaching model also 
specifically seeks to address the needs of these particular groups.

We consider that it is imperative that graduating teachers feel able to address 
underlying causes of inequalities, partly so that they can actually deal with those 
difficulties when they are teachers, and partly so that they will feel able to apply for 
and succeed in schools with high proportions of such students.

Our fundamental approach is to support prospective teachers in designing ef-
fective classroom experiences. It is difficult, though, to identify unequivocal re-
search results that can assist teachers in creating effective lessons in the everyday 
complexity and multidimensionality of mathematics classrooms. We acknowledge, 
for example, the importance of factors such as classroom resources, classroom or-
ganisation, climate, interpersonal interactions and relationships, social and cultural 
contexts, student motivation and sense of their futures, family expectations, and 
organisation of schools. Nevertheless, we argue that the key components of un-
derstanding teaching and improving mathematics learning are identification of the 
types of tasks that prompt engagement, thinking, and the making of cognitive con-
nections, as well as the associated teacher actions that support the use of such tasks, 
especially addressing the needs of individual learners.

The following first summarises the key aspects of the research that informed the 
development of the planning and teaching model, then illustrates the key elements 

Table�1�� Percentage of students from particular socio-economic backgrounds in highest and low-
est levels of PISA mathematical literacy achievement

Percent at highest level Percent not achieving level 2
Low SES quartile 6 22
High SES quartile 29 5
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of the model. This is followed by some specific examples of lessons observed as 
part of our research. The final section outlines the task that we set prospective teach-
ers: that of implementing the model to plan and teach mathematics lessons that use 
particular types of classroom tasks and which incorporate the elements that are 
implied by the model.

�The�Research�that�Informed�the�Planning�and�Teaching�Model

The planning and teaching model described below was a product of research that 
sought to address tensions in complex learning environments. The research was 
conducted in classrooms that typically had significant numbers of students who 
were from disadvantaged backgrounds. These were usually students who were from 
Indigenous backgrounds, working-class families, rural families or some combina-
tions of these groups.

Initially, our research involved teachers and others in helping to identify and 
describe aspects of classroom teaching that may act as barriers to mathematics 
learning for some students, particularly when open-ended tasks were used by math-
ematics teachers. We also used a range of focus groups to suggest strategies for 
overcoming such barriers (see Sullivan et al. 2002). This provided a strong framing 
for our research, particularly as we were exploring the ways in which aspects of the 
environment and pedagogy mediated learning (Zevenbergen et al. 2004). Next, we 
created some partially scripted experiences to be taught by participating teachers 
and analysed by us (see Sullivan et al. 2004). This analysis allowed reconsideration 
of the emphasis and priority of respective teaching elements. We found that it was 
possible to create sets of experiences that could be taught as intended by teachers, 
and that many of these experiences had the effect of including most students in 
rich, challenging mathematical learning. Arising from this work, we developed a 
model comprising five key elements of planning and teaching mathematics. Our 
later research focused on teachers’ use of this model in the planning, teaching and 
reflective evaluation of their own lessons, examples of which are described below.

�The�Elements�of�the�Planning�and�Teaching�Model

There are five key elements in the model for planning and teaching mathematics 
that are described in the following section.

The Classroom Tasks and Their Sequence

Of course the first step in designing a lesson is to choose a classroom task(s) 
that should result in the desired learning opportunities for the students. Within a 
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socio-cultural perspective, the role of mediating tools is central in the learning pro-
cess—and classroom tasks are a key tool in any mathematics classroom. For us, 
it is through and around classroom tasks that teachers and students communicate 
and learn mathematical ideas. The nature of tasks shapes forms of communication, 
so the classroom tasks used by the teachers become key mediating tools. There 
is good support in the literature for this point of view. Christiansen and Walther 
(1986), drawing on the work of Leont’ev (1978), argued that the classroom tasks 
set and the associated activity form the basis of the interaction between teaching 
and learning. Similarly, Brousseau (1997) proposed that, “the teacher must imagine 
and present to the students situations within which they can live and within which 
the knowledge will appear as the optimal and discoverable solution to the problems 
posed” (p. 22). Hiebert and Wearne (1997) also suggested that, “instructional tasks 
and classroom discourse moderate the relationship between teaching and learning” 
(p. 420). In other words, the classroom tasks used by the teachers to engage students 
in classroom activity and interactions become the key means for facilitating learn-
ing about specific mathematical concepts and skills.

We focus in particular on open-ended tasks because of their particular potential 
to contribute to mathematics learning. Stein and Lane (1996), for example, noted 
that student performance gains were greater with relatively open-ended tasks, when 
“tasks were both set up and implemented to encourage use of multiple solution 
strategies, multiple representation and explanations” (p. 50). Boaler (2002) provid-
ed further evidence of open-ended tasks being a key to progress when she compared 
the activity, operations, and achievement outcomes in two schools. The schools 
were chosen to represent similar socio-economic mixes of students; but in one 
school, the teachers based their teaching on open-ended tasks and in the other tradi-
tional text-based approaches were used. After working on an “open, project based 
mathematics curriculum” (p. 246) in mixed ability groups in the former school, the 
relationship between social class and achievement was much weaker after three 
years, whereas the correlation between social class and achievement was still high 
in the latter school where teachers used traditional approaches. Further, the students 
in the school adopting open-ended approaches “attained significantly higher grades 
on a range of assessments, including the national examination” (p. 246). Boaler 
argued that her project demonstrated the “particular teaching practices that need to 
be considered in mathematics classrooms and the effectiveness of teachers who are 
committed to equity and the goals of open-ended work” (p. 254). In other words, the 
use of open-ended tasks proved effective in improving mathematics learning and 
overcoming disadvantage, but it took commitment from the teachers as well as the 
adoption of particular teaching strategies.

The type of classroom tasks used by teachers mediates the learning between 
the subject (student) and object (mathematics). We propose that open-ended class-
room tasks offer greater opportunities to scaffold learning opportunities for students 
than do closed tasks. Essentially, we assume that working on open-ended tasks can 
support mathematics learning by fostering operations such as investigating, creat-
ing, problematising, communicating, generalising, and coming to understand pro-
cedures—as distinct from merely recalling them. There is substantial support for 
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this assumption. Examples of researchers who have found that classroom tasks or 
problems that have many possible solutions contribute to such activity and learning 
include those working on investigations (e.g., Wiliam 1998), and those using prob-
lem fields (e.g., Pehkonen 1997). It has been shown that opening up classroom tasks 
can engage students in productive exploration (Christiansen and Walther 1986), 
enhance motivation through increasing the students’ sense of control (Middleton 
1995), and encourage pupils to investigate, make decisions, generalise, seek pat-
terns and connections, communicate, discuss, and identify alternatives (Sullivan 
1999). Open-ended classroom tasks have been shown to be generally more accessi-
ble than closed examples, in that students who experience difficulty with traditional 
closed and abstracted questions can approach such tasks in their own ways (see Sul-
livan 1999). Well-designed open-ended classroom tasks also create opportunities 
for extension of mathematical operations and dimensions of thinking, since students 
can explore a range of options as well as considering forms of generalised response. 
We have found that many such classroom tasks lead students to make important 
abstractions and generalizations.

We encourage prospective teachers to use a particular form of such open-ended 
tasks that can be readily incorporated in conventional mathematics programs. We 
describe our classroom tasks as content specific. The nature of content specific 
open-ended tasks can be illustrated by some examples:

Give the co-ordinates of two points on a line with a gradient of 4. List some other pairs of 
points for this line.
What are some events with outcomes that are equally likely?
A ladder reaches 10 metres up a wall. How long might be the ladder, and what angle might 
it make with the wall?
What are some functions that have a turning point at (1,2)?
On the train to Melbourne, the probability that a passenger is reading a newspaper is 2/3, 
and the probability that a passenger is female is 1/2. How many passengers might be on the 
train? How many males might be not reading the newspaper?

Such tasks are content specific in that they address the type of mathematical op-
erations that form the basis of textbooks and the conventional mathematics cur-
riculum. The learning that results from such tasks about specific mathematical 
content is at least what would be expected from completion of a typical text-book-
based exercise, so teachers can include these as part of their teaching without 
jeopardising students’ performance on subsequent internal or external mathemat-
ics assessments.

These classroom tasks are open-ended in that there is a variety of possible op-
erations and ways of communicating responses. Emphasis is taken off particular 
solution strategies and specific examples, and put on to general properties. There 
is a sense of open entry with relatively simple responses as well as extension pos-
sibilities.

As discussed above, open-ended classroom tasks create opportunities for person-
al constructive activity by students directed at mathematical objects. We also con-
sider that careful sequencing of classroom tasks can maximise learning. This relates 
closely to what Simon (1995) described as a hypothetical learning trajectory that
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… provides the teacher with a rationale for choosing a particular instructional design; thus, 
I (as a teacher) make my design decisions based on my best guess of how learning might 
proceed. This can be seen in the thinking and planning that preceded my instructional inter-
ventions … as well as the spontaneous decisions that I make in response to students’ think-
ing. (pp. 135–136)

Simon (1995) noted that such a trajectory is made up of three components: the 
learning goal that determines the desired direction of teaching and learning, the 
activities to be undertaken by the teacher and students, and a hypothetical cognitive 
process, “a prediction of how the students’ thinking and understanding will evolve 
in the context of the learning activities” (p. 136).

During our research, we found that the use of well sequenced open-ended class-
room tasks promoted understanding, as evidenced by students’ participation in 
discussions, improved students’ engagement by their time on task, and successful 
completion of the teaching and learning activities. The use of such classroom tasks 
also had an impact on participating teachers’ notion of mathematical activity.

Enabling�Prompts

Perhaps the key component of our teaching model is our proposition that teachers 
offer enabling prompts to allow students experiencing difficulty to engage in active 
experiences that are closely related to the overall classroom task(s). These prompts 
can involve slightly lowering an aspect of the task demand, such as the form of 
representation, the size of the number, or the number of steps, so that a student 
experiencing difficult can proceed at that new level. After success at this level, the 
student can proceed with the original task. This approach can be contrasted with the 
more common requirement that such students (a) listen to additional explanations; 
or (b) pursue goals substantially different from the rest of the class.

The approach has substantial support in the literature. Christiansen and Walther 
(1986), for example, argued that, “One of the many aims of the teacher is … to dif-
ferentiate according to the different needs for support but to ensure that all learners 
recognise that these …actions are created deliberately and with specific purposes” 
(p. 261). Similarly, Griffin and Case (1997) described teaching as involving know-
ing what individual learners understand, being aware what knowledge is within 
their developmental zone, providing carefully constructed tasks to engage students 
in learning, helping learners as they construct their knowledge, and “constantly 
shifting or changing the ‘bridge’ to accommodate the learners’ growing knowledge” 
(p. 4).

The notion of adapting classroom tasks has also been a consistent theme in ad-
vice to teachers. For example, the Association of Teacher of Mathematics (ATM 
1988) detailed 14 specific suggestions to support students experiencing difficulty, 7 
of which relate to task adaptation.

We have found that in every classroom the use of enabling prompts has resulted 
in students experiencing difficulties being able to start (or restart) work at their own 
level of understanding, has enabled them to overcome barriers met at specific stages 
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of the lessons, has led to increased student engagement in discussions, and has gen-
erally resulted in satisfactory task completion.

Extending�Prompts

Very much related to this is the proposition that teachers pose prompts that extend the 
thinking of students who complete tasks readily in ways that do not make them feel 
that they are merely getting more of the same. Students who complete the planned 
classroom tasks quickly are posed supplementary tasks or questions on the same 
topic and concepts that extend their reflections and understanding, that continue to 
engage and challenge them, and that serve to enrich later classroom discussions.

In practice, extending prompts have proved effective in keeping higher-achiev-
ing students profitably engaged as well as supporting their development of general-
isable understandings that we associate with higher order learning.

Explicit�Pedagogies

A further step in the planning and teaching model is for teachers to make explicit 
for all students the usual practices, organisational routines, and modes of commu-
nication that impact on approaches to learning. These include ways of working and 
reasons for these, types of responses valued, views about legitimacy of knowledge 
produced, and the responsibilities of individual learners. As Bernstein (1996) noted, 
through different methods of teaching and different backgrounds of experience, 
groups of students receive different messages about the overt and the hidden cur-
riculum of schools.

We have listed, and used in research, a range of specific strategies that teachers 
can use to make implicit pedagogies more explicit and so address aspects of pos-
sible disadvantage of particular groups (Sullivan et al. 2002). We have found that 
making expectations explicit enables a wide range of students to work purposefully, 
with teachers involved in the research commenting positively about the resulting 
relatively low levels of teacher-student friction.

Learning�Community

A deliberate intention in our model for planning and teaching is that all students 
progress through learning experiences in ways that allow them to feel part of the 
class community and contribute to it, including being able to participate in reviews 
and summative class discussions about the work. To this end, the model is based 
on an assumption that all students benefit from participation in at least some core 
classroom tasks that can form the basis of common discussions and shared social 
and mathematical experience, as well as a common basis for any following lessons 
and assessment items on the same topic.
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We have found the use of classroom tasks and prompts that support the par-
ticipation of all students has resulted in classroom interactions that have a sense of 
learning community (Brown and Renshaw 2006), with wide-ranging participation 
in learning activities as well as group and whole-class discussions.

�An�Example�of�an�Implementation�of�the�Planning��
and�Teaching�Model

To illustrate the ways that the planning and teaching model works in practice, the 
following is a description of two sequential lessons that were designed to address 
aspects of the relationships between dimensions and 3D shapes, and also the rela-
tionship between nets of shapes and the shapes they create. Note that we would use 
records of lessons that had been taught using the planning and teaching model as 
part of the initial phases of our teacher education program.

Both lessons were taught to a small group of eight Year 9 and 10 students (7 
boys and 1 girl, all aged about 15) in a school serving only Indigenous Austra-
lian students. In discussion with the teachers at the school, it seemed that the 
students had had interrupted school attendance, did not see schooling as creating 
opportunities, did not usually come to class with the appropriate resources, and 
seemed to have substantial gaps in the prior knowledge if described in terms of 
the conventional mathematics curriculum. The teachers at the school were expe-
rienced and committed. The overwhelming impression, from discussion and from 
observation, is that the mathematics teachers in the school struggle to maintain 
the students’ interest. The curriculum of the school has been adapted to the back-
grounds of the students, while still preserving the option for some students to 
progress to a mainstream public school on leaving this school after four years of 
secondary education. Most of the students do not progress beyond Year 10 (age 
15), but some do.

The teacher of the two lessons, Mr Smith (pseudonym), was not a teacher at 
the school, but was experienced with teaching similar students and also familiar 
with the project and the teaching model described above. His role was to dem-
onstrate the model to the mathematics teachers in the school and to discuss its 
perceived viability in this relatively challenging context. The two lessons were 
taught one after the other, after lunch on a Friday afternoon—a demanding time 
for any teacher. There was a trained observer present, as was the students’ usual 
mathematics teacher. The lessons had been planned by the research team before-
hand, and Mr Smith and the observer met with the class teacher before and after 
each lesson.

The following report is an amalgamation of the lesson plans, Mr Smith’s rec-
ollections captured after the lesson, and the observer’s notes written at the time. 
It is presented in this way to illustrate the way the model operates in a difficult 
classroom context, and to exemplify the ways that enabling prompts can be used to 
support learning.
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Lesson One

The aim of the sequence of two lessons was to further develop the students’ under-
standing of measurement. For the first lesson, the teacher intended that the students 
work on the following classroom task (see also Watson and Sullivan 2008, for a 
different discussion of this particular problem):

You have a box that needs 1 m of string to tie 
it up like this. What might be the dimensions 
of the box?

Assume that 30 cm is needed to make the 
bow.

The class teacher had earlier suggested both the lesson focus and this context of 
wrapping presents, and so it was assumed that it was familiar to the students, and it 
proved to be so.

The classroom task is illustrative of the type that formed the basis of the project, 
in that:

1. it addresses challenging and useful mathematics, specifically visualising objects, 
using dimensions to describe and quantify rectangular prisms, and exploring the 
relationships between those dimensions, and focuses on mathematics concepts 
that may have applicability in other contexts;

2. there are many ways of solving the task, and different possible interpretations of 
the task demand, and so it could be assumed that most students would be willing 
to make an attempt, given that they have some choice over their approach, and 
most would be able to do so because of different potential entry levels;

3. the students would have the opportunity to find a solution and to describe their 
solution to the class, allowing opportunities for problem solving and for con-
sidering challenges in communicating the solution as well as experiencing the 
advantage of being part of a community working on the same learning task;

4. the range of possible solutions, when viewed together, could allow students to 
see the potential variability in the box within the constraints of the tasks, and that 
the key dimensions (L, W, H) can vary;

5. there would be limited need to listen to explanations by the teacher at the start, 
avoiding the potentially disengaging effect of teacher explanations; and,

6. because of the openness of the task, students who finish quickly could be posed 
extension exercises readily.

As a first step in the lesson, Mr Smith gave each pair of students a box wrapped and 
tied with string as in the photograph above, and asked them to calculate the length 
of the string without untying it. Mr Smith later explained that he considered this to 
be a way of introducing the students to the key concepts without requiring extensive 
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explanations, and the demands of the task would be readily communicated to the 
students.

When Mr Smith stated that the bow used 30 cm of string, the observer recorded 
the students’ response as follows:

The students refused to believe that the bow was actually 30 cm. (As in the photo, it did not 
look like 30 cm.) The teacher asked the students to assume that it was. The students still did 
not start on the task, so the teacher untied the bow and asked one of the students to measure 
the loose ends. Each end of the string was 15 cm, and so the students then agreed that the 
bow used 30 cm of string.

We stress that it is important to clarify aspects of the problem, including specific 
language. Note that this is different from telling the students how to do the problem. 
In the rest of this lesson, the consideration of the bow was no longer an issue. This 
is an example of how the sequencing of tasks can contribute to the success of the 
lesson, and how in this case an appropriate choice of a preliminary problem allowed 
the students to engage with the context for themselves, and also prepared them for 
the task that was to intended to be the focus of the lesson.

As enabling prompts for this preliminary classroom task, Mr Smith had ready 
some other boxes and loose string for students who might need to tie up a box, a 
box covered in a streamer that could be cut into sections, and a box covered in plain 
paper but with no string. Only this latter prompt was used in the class. Note that the 
initial task posed could also serve as an enabling prompt.

After the students had worked on this preliminary task, Mr Smith invited indi-
vidual students, on behalf of their pair, to explain their methods of solution to the 
group. The observer recorded this as follows:

One student explained that they had measured separately each section of “string”, written 
down the lengths and added them up. There were 4 sections on the top (from each edge to 
the centre where the string crosses), 4 on the bottom and 4 on the sides.

Another student explained that they had measured each of the lengths and then coloured in 
the string to show they had done it, adding the lengths as they went.

Another student said all the pieces of string on the sides (meaning not the top or bottom) 
were the same. There was some debate about this (there were slight differences depending 
on whether the wrapping on the box was neat and regular), and (Mr Smith) explained that 
for this purpose those sections were the same. The student then said that the top and the 
bottom was the same, and that this is how they worked it out.

This initial task was a key part of the lesson, because the subsequent task required 
the assumption of regularity of the box. This is an example of the teacher consider-
ing the trajectory of the class learning and sequencing tasks accordingly.

The classroom task that formed the focus of the lesson, as presented above, was 
then posed. Terms and assumptions were clarified, and the students invited to ask 
questions, then they set to work. In normal circumstances it is assumed that the 
teacher will have already established the appropriate classroom norms for behav-
iour. Note that all of the boxes in the previous task required more than 2 m of string, 
and so did not detract from the visualisation needed to address the problem. All 
pairs retained their box and could have chosen to use it, if they wished.
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The observer noted:
Again, the students worked in pairs. The students required constant monitoring in that their 
interactions with each other were confrontational but they engaged with the task, and knew 
what to do.

Mr Smith had prepared some enabling prompts for students who may have experi-
enced difficulty in engaging with this task, including a box covered in white paper 
on which they could draw, and a box that used approximately 1 m of string (as men-
tioned above). He gave the first of these boxes to one group of students, and they used 
it effectively in coming to understand the nature of the problem they had been set.

Mr Smith later commented that he had also asked students experiencing diffi-
culty to try out a particular dimension, such as assuming that the height was 5 cm. 
This has the effect of reducing an aspect of the task demand, and so is an example 
of an enabling prompt.

The students, in pairs, used a variety of approaches to solving the problem. The 
observer recorded the summary class discussion of the task as follows:

One student reported that the group had assumed that it was a cube, and that the lengths 
would add to 70 cm, and that there would be 8 equal lengths but did not progress beyond that.

Another student reported that his pair had said the 4 sides were the same, the 2 lengths the 
same, and the 2 widths. He represented this as follows on the whiteboard:

He said that the total had to be 70, and that they were working out what numbers to use 
to make the total 70. They had first tried unrealistic numbers, but using trial and error the 
lengths turned out to be 5, 10 and 15 cm respectively, which made 70 together. (Mr Smith) 
asked the other students to ask any questions.

Another student drew a table of values, with columns headed length, width and height, and 
made guesses of the dimensions.

In summary, this lesson is illustrative of the planning and teaching model. There 
was a potentially engaging classroom task, whose openness indicated the possibil-
ity of student control and choice, a hypothetical trajectory to lead students to key 
aspects of the focus classroom task, both pre-prepared and impromptu enabling 
prompts for students experiencing difficulty, and the potential for ready extension, 
if needed. In terms of the particular phase of the research, it seems that the model 
did describe key aspects of the planning, and it was possible to implement each of 
these elements in this class.
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Lesson Two

The second lesson was to the same group of students, immediately following the 
first, after a short break. The task around with the lesson was planned was posed as 
follows:

It is possible to make an open top box by 
cutting squares from the corners of a rect-
angular card, and then folding up the sides.

If the card is 20 cm × 16 cm, describe the 
dimensions of some boxes you can make.

Mr Smith said the words, but drew a diagram similar to the one above on the white-
board.

The characteristics of this classroom task are similar to those described in the 
first lesson. As an introductory problem, Mr Smith gave each of the pairs an open 
topped box made from a net on dotted squared paper. The students were asked to cut 
out the net, using a different sheet of dotted squared paper.

Mr Smith explained later that he considered this to be enough of a problem to en-
gage the students, but that he had expected they would be able to do it. The observer 
recorded this aspect of the lesson as follows:

(Mr Smith) moved from group to group, encouraging the students. He suggested to some 
students that they open out the box and trace around it. To another student, he said “Have 
you counted the dots?” They did this quite quickly and showed each other the nets they had 
cut. (Mr Smith) talked about the shape of the net, and pointed out the missing squares in 
the corners.

In other words, Mr Smith offered prompts to some students as a way of supporting 
their engagement with the preliminary task.

The classroom task as presented above was then posed. Mr Smith emphasised 
that he wanted the students to imagine what might happen if squares are cut out 
of the corners, without actually cutting them out. He also emphasised that there is 
more than one possible answer, and that he hoped the students would come up with 
a number of answers. This is an example of making explicit aspects of the pedagogy.

The observer recorded the next aspect of the lesson as follows:
The students did not settle down to this. Some seemed to want to continue with the dot 
paper task. There were only two of the students who got started. (Mr Smith) asked the oth-
ers to use dotted square paper to cut out some rectangles that were 20 cm long and 16 cm 
wide, which they did readily. (Mr Smith) asked them to cut squares of the same size from 
the corners, and pointed to the diagram. They worked by themselves on this. He asked some 
students to fold the box once they had cut the net.

This alternate suggestion is an example of an impromptu enabling prompt. The 
classroom task had not engaged a number of the students, so Mr Smith posed the 
similar alternate task that had potential to lead the students toward the original task. 
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It had the effect of engaging the students in the concept, albeit at a slightly lower 
level than originally intended.

Two of the students worked on the original task. One student identified two pos-
sible solutions, and the other identified multiple possibilities, including some using 
decimal lengths of the side of the square (e.g., 15 cm long, 11 cm wide, and 2.5 cm 
high). Mr Smith commented to this student, “I wonder how many possibilities there 
are. How big could the cut out rectangles be?” This is an example of an extending 
prompt. Later the class teacher was enthusiastic about the response of the two stu-
dents, and especially one who did not usually engage in any way and who in this 
case had produced creditable responses, even though they did not actually reach the 
ultimate task. It would have been possible, though, for the teacher to continue with 
the task in the next lesson, while allowing the students who had identified some 
solutions to develop further responses, discuss the common properties, and come to 
some general whole-class conclusions.

Even though the end-point of the trajectory was not reached in the given time, 
the teacher was generally happy with the lesson and it does illustrate elements of the 
model described: a sequence of open-ended tasks, some enabling prompts, and some 
extending prompts. The openness of the classroom tasks allowed all students to en-
gage effectively—especially given the difficult time of the week. The full planned 
trajectory of the tasks worked for some students and, with enabling prompts, the 
others were also engaged in meaningful mathematical activity that focused on the 
same concepts and, in fact, all students were all working on the same tasks. This es-
tablishes the important foundation for the specific attention to building a classroom 
community, although this would require additional actions by the teacher.

These two lessons exemplify the respective elements of the teaching and plan-
ning model. They illustrate how the model contributed to the structuring of work-
able mathematics lessons, and how each element of the model contributed to the 
whole. This forms part of the rationale given to prospective teachers for requiring 
them to use the planning and teaching model as part of their learning to plan and 
teach inclusive mathematics lessons.

�The�Task�for�Prospective�Teachers

The planning and teaching model described above can be used as a focus for partic-
ular consideration of theoretical perspectives associated with mathematics teaching. 
Classroom tasks are the basis of the social interactions that lead to learning, so they 
offer ways of considering alternate approaches to learning mathematics and even 
of the nature of mathematics itself. The sequencing of tasks allows consideration 
of psychological perspectives on how learning develops, the forms of communica-
tion and classroom activity that are most likely to promote the learning process, 
and philosophical considerations of what it means to come to know. Consideration 
of enabling prompts allows the study of how to overcome aspects of learning that 
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contribute to student difficulties, including common misconceptions. Extending 
prompts offer ways of catering for diverse student needs and rich opportunities to 
raise the level of class discussions. The building of community and being explicit 
about specific pedagogies can form a useful framework for study of approaches to 
teaching and learning generally, but especially those than can represent barriers to 
particular groups of students.

The task that we set for our prospective teachers is to use the planning and teach-
ing model as the basis of, first, hypothetical, and, second, actual classroom les-
sons, followed by structured reflection on the planning and teaching experience. 
Essentially the task for teacher education is a process. The use of the planning and 
teaching model in this way incorporates some elements of approaches to teacher 
learning from the study of practice such as learning study (Runesson 2008), study 
groups (Arbaugh 2003), and Japanese lesson study (e.g., Stigler and Stephenson 
1994). Each of these involve collaborative reflective study of aspects of practice, 
with a fundamental assumption that planning, trialling, and reflecting on aspects of 
practice is a powerful learning opportunity for teachers.

Some of the key phases in this process include prospective teachers:

• Studying the nature of classroom tasks, and especially ways in which non-rou-
tine classroom tasks are different mathematically and pedagogically from con-
ventional tasks. This can involve working through tasks can considering both 
strategies and solutions, sorting tasks into categories, and identifying common-
alities and differences in types of tasks.

• Considering the affordances and constraints in using non-routine classroom 
tasks. This can include consideration of what makes a particular task non-rou-
tine, what might contribute to the complexity of a particular task for students, 
and what might make teaching with a particular task difficult.

• Experiencing the planning and teaching model through a mathematics “lesson” 
taught to the prospective teachers. This involves the lecturer teaching a lesson 
that involves mathematics that is new for most students, incorporating all aspects 
of the model such as open-ended tasks appropriately sequenced, enabling and 
extending prompts, and specific actions to build the group as a community of 
learners. After the lesson, the prospective teachers are invited to comment on 
their mathematics learning, their affective response, and any aspects that were 
noteworthy for them.

• The prospective teachers are formed into small groups (maximum 3) for col-
laborative planning of hypothetical lessons, with no intention that the lessons be 
taught, with critical review of those plans, with particular attention to whether 
each of the aspects of the planning model are incorporated, and what particular 
pedagogies may be necessary to implement the lesson as intended.

• Using the same small groups, the prospective teachers plan and then teach a les-
son based on the planning and teaching model in a real classroom, incorporating 
iterative processes for review. This can take the form of one prospective teacher 
teaching the lesson, then having a group review, with the plan revised, and re-
taught by a different group member, and so on.
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• Ultimately, it is necessary to create opportunities for review and reflection not 
only on the teaching and planning model but also on the teacher learning process 
itself. The intention is the task of using the planning and teaching model that 
becomes part of the prospective teachers’ future practice and forms the basis of 
future teacher learning opportunities.

Of course, the same process can be adapted for use with practicing teachers. The 
fundamental proposition is that the task of planning and teaching lessons is complex 
and can be the object of specific study. The planning and teaching model provides 
a suitable framework for this.
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�Introduction

[I learnt] not to narrow a student’s way of thinking based on the ways in which I think…I’m 
not sure how she did it, but [my lecturer]…taught me not to block student thinking; some-
thing that has made an incredible difference to the way I approach teaching [mathematics]. 
(Hayley, ‘P-M-T’, Undertook ‘Mathematics Curriculum Studies’ the Previous Year)

The ‘prospective mathematics teacher’ (P-M-T) quoted above perceived herself to 
have developed a greater awareness that mathematical problems can be solved in 
multiple ways, and that her own students should be encouraged to think for them-
selves rather than only follow her lead. Mathematics Curriculum Studies (MCS) 
had raised her awareness of the need to respond flexibly to students’ mathematical 
thinking. This chapter helps to illuminate ways this was achieved and the psycho-
logical characteristics P-M-Ts need to enable this.

The context in which MCS is undertaken is described, and its purposes identi-
fied. The focus of the chapter is not on flexible pedagogies these P-M-Ts become 
more likely to use (see quote: Hayley) after participation in this subject, but rather 
on how a three-task-sequence that connects geometric representations can build 
psychological characteristics that enable flexible pedagogical moves: ‘optimism’ 
(‘resilience’). An optimistic orientation increases the ability to overcome adversity 
(Seligman et al. 1995), and teaching mathematics by flexibly responding to stu-
dent responses can be considered a situation of adversity as many attempts may be 
made whilst searching for successful pedagogical ‘moves’ to elicit further student 
thinking. The chapter also elaborates theory that guides MCS pedagogy through a 
framework that focuses on building mathematical and pedagogical understandings, 
and optimism. P-M-Ts identified this task sequence as particularly significant to 
their developing pedagogical realizations. Thus it has been used to elaborate the 
theoretical perspective that guides my pedagogy. Tasks are described and analyzed 
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to illuminate the fit between task activity and optimism building. Creative thinking 
and spontaneous student responses crucial to optimism building are illustrated.

�The�Context

MCS is a two-semester subject sequence studied by P-M-Ts, undertaking differ-
ent courses (approximately 30 students). P-M-Ts vary in their mathematical back-
grounds and personal histories. There are local Australian, and international, par-
ticipants who have undertaken an undergraduate degree that included at least four 
units of mathematics. These P-M-Ts undertake MCS as part of a two-year primary/
secondary, or one year secondary, teacher qualification. There are also P-M-Ts in 
their second or third year of a four-year undergraduate teaching qualification un-
dertaken simultaneously with a content related degree (e.g., Arts, or Science). They 
have completed two, or four, mathematics subjects from that degree when they 
participate in MCS. There are extremes in the mathematical backgrounds of these 
P-M-Ts in geometrical topics (geometric construction, congruence, and deductive 
proof) because most of the local P-M-Ts undertook secondary mathematics in the 
interval in Victoria when geometric proof was almost completely eliminated from 
the secondary mathematics curriculum. Other P-M-Ts were generally exposed to 
geometry through rules and procedures.

More geometry has recently been reintroduced to the secondary curriculum 
so these P-M-Ts will be expected to teach these topics. Thus, the cohort in MCS 
provides an amplified version of common differences existing between P-M-Ts in 
tertiary settings. Their varying mathematical backgrounds, and personal histories 
influence their mathematical confidence.

MCS aims to increase P-M-Ts’ understandings of:

• The mathematics they will teach;
• The difficulties their students might encounter with this mathematics;
• Pedagogies that could increase student understanding; and,
• Psychological characteristics of students that enable exploratory activity.

In addition, MCS as implemented is intended to build psychological characteristics 
in P-M-Ts that will increase their flexibility in responding to their students. Theo-
ry (Seligman et al. 1995) suggests that embedding P-M-Ts in classroom activities 
(explorations) in which groups can spontaneously focus their own challenges, and 
experience intensity, excitement, and pleasure as they achieve successes, should 
build optimism.

�Theoretically�Framing�the�MCS�Pedagogy

This section describes the Engaged to Learn Model (Williams 2000, 2005) used to 
represent conditions to elicit intensity and pleasure during deep learning for second-
ary students overcoming self-selected challenges. It also describes how and why 
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I recently extended this to the Engaged to Learn (‘Mathematical and Pedagogi-
cal’, MAP) Model (to represent the greater magnitude of overall mathematical and 
pedagogical challenge faced by MCS participants when these secondary tasks were 
adapted for their use).

Engaged to Learn Model

Flow (Csikszentmihalyi 1992) is a state of high positive affect during creative ac-
tivity that occurs when a person or group perceive the need to develop new skills 
to overcome self-set challenges. During flow, all sense of time, self, and the world 
around is lost as all energies focus on the task at hand. This is the overarching theory 
that frames the Engaged to Learn Model. With mathematical problem solving, flow 
conditions are created when a student group, or an individual student, idiosyncrati-
cally identifies an unfamiliar mathematical complexity that was not apparent to them 
at the commencement of the task, and decide to explore it (Williams 2005, 2007). 
High positive affect that can accompany the development of insights has been dem-
onstrated to occur during primary, and secondary mathematical problem solving 
(Williams 2000, 2005, 2007), and problem solving in engineering (Wood et al. 2008).

Figure 1 represents flow conditions during mathematical problem solving. M 
represents a ‘comfortable’ level of challenge and A represents the level of skills 
and concepts perceived known. For flow to occur, participants spontaneously fo-
cus an intellectual mathematical challenge of magnitude MN (vertical axis) that 
can be overcome by developing new mathematical ideas and concepts just beyond 
their present understanding (magnitude AB, horizontal axis). The shaded region be-
tween the parallel lines in Fig. 1 represents the state of flow (pursued challenge MN 
building knowledge AB). When the challenge is too low/too high, and/or skills and 
concepts required are already known/too far out of reach, different affective states 
can occur: boredom, apathy, anxiety and panic (see Fig. 1). Once students have 
experienced flow in attaining the positions N and B (Fig. 1), they ‘fall out of flow’ 
unless they focus a new challenge NP building concepts BC (flow parallelogram 
now within parallel lines beyond shaded region).

Inclination to undertake (or not undertake) exploratory activity associated with 
flow is linked to psychological factors that affect how people respond to success-
es and failures (Seligman et al. 1995; Williams 2003). During ‘not yet successful’ 
problem solving attempts, successful problem solvers use their ‘failures’ to get clos-
er to success (but do not call them ‘failures’). This is a characteristic of ‘optimism’ 
along the dimension Pervasive-Specific (Seligman et al. 1995; Williams 2005). An 
optimistic person examines their lack of present success to find what to change 
to increase their likelihood of success. In contrast, a person who does not possess 
optimistic indicators along this dimension perceives their failure as characteristics 
of self: “I failed, I am dumb”. The enacting of optimism is represented in Fig. 1 by 
black arrows extending beyond M and A: ‘inclining to explore the unknown’.

Where optimistic people feel comfortable working outside their present under-
standing as they ‘set up’ new challenges, those who are not yet optimistic do not. 
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An optimistic person perceives successes as permanent (they will be able to do 
this again), personal (it was achieved through their own effort), and pervasive (it 
was achieved because of characteristics they possess). They perceive ‘failures’ as 
temporary (able to be overcome), external (including some external factors out of 
their control), and specific (including factors they can vary). Seligman has shown 
that optimism can be built through experiencing successes during flow situations. 
The pedagogical approach in MCS provides opportunities for P-M-Ts to set up flow 
situations to enable successes (develop insights) that can build optimism.

Flow conditions experienced by P-M-Ts and the optimistic dimensions they start 
to build are illustrated through the following two email reflections during, and after 
these two students completed this subject:

The classes were engaging and you really did feel proud of your accomplishment (Bianca, 
P-M-T during MCS).

Bianca captures the pervasive (‘feel proud’) and personal (‘you’) nature of success. 
She attributed these successes to characteristics of herself rather than to something 
external. She felt proud of herself for what she had accomplished: perceived ac-
complishment as confirmation of her capability.

Fig.�1�� Diagrammatic representation of conditions for flow and other affective states during the 
learning of mathematics
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You were right when you said to me in first semester that the maths would come back, 
it did!!! I have had a number of ‘magic moments’ when I have realized why things work 
(Debra, ‘Beginning Mathematics Teacher’, B-M-T, who undertook MCS the previous year).

Barnes’ (2000) term ‘magic moments’ captures intense affect associated with de-
veloping insight. Debra (B-M-T), who had just completed both MCS and her teach-
ing qualification, used the term ‘magic moments’ to capture her excitement and 
pleasure as she overcame self-set mathematical challenges associated with finding 
‘why’ not just ‘how’. Similar pedagogy to that in MCS was used in my senior sec-
ondary mathematics class studied by Barnes. Both included small group and whole 
class interactions as students explored mathematical complexities in tasks. MCS 
tasks are adaptations of the complex tasks designed for learning secondary math-
ematics. They differ in that attention is also drawn to pedagogy associated with task 
implementation.

I had not consciously considered that a double focus on mathematics and peda-
gogy increased the overall challenge until Liz (B-M-T) raised my awareness. I had 
consulted her about an assignment that initially caused anxiety for some, but was 
eventually found to be extremely useful by most (see Fig. 1):

I felt like there were several components that were really difficult to work out (Liz, B-M-T).

Liz elaborated ‘several components’ as both mathematics, and how to teach it. I 
suddenly realized that simultaneous mathematical and pedagogical challenges were 
harder to overcome than these challenge occurring one after the other. I extended 
the Engaged to Learn Model to the Engaged to Learn Model: Mathematical and 
Pedagogical or Engaged to Learn (MAP) (Fig. 2) to capture this new realization and 
remind myself of how important it was to reduce this multiple challenge.

In Fig. 2, two vertical and two horizontal axes are used to represent the simul-
taneous mathematical and pedagogical challenges and simultaneous building of 
mathematical and pedagogical insights respectively. In designing and implement-
ing tasks, I now knew I needed to reduce the magnitude of the overall simultaneous 
challenges or eliminate their simultaneity.

Different aspects of the implementation of the three-task sequence herein illus-
trate ways this was achieved. In particular, although the tasks still request dual fo-
cus, the implementation is responsive to what P-M-Ts focus upon. The following 
excerpts illustrate email feedback from P-M-Ts who identified this task sequence as 
significant for them. Jayde saw the task sequence as a turning point during which 
she became more resilient (her words), Bianca identified features of the classroom 
culture that contributed to this, and Michael developed confidence through par-
ticipation in such tasks across the year. Quotes are used to elaborate the nature of 
optimism.

Key: ‘…’ wording omitted that does not alter meaning.
‘[text]’: text added by researcher to elaborate.
At the beginning [of the year] I was quite frustrated and anxious about the way we were 
being taught [in MCS] … I’m pleasantly surprised how much I have grown this semester. 
… looking at the big picture, I can see how much it has benefited me. I had to be patient, 
ponder over things, and let it eventually fit into place in my own head rather than wanting 
it to happen straight away (Jayde, P-M-T during MCS).
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Jayde possessed optimistic indicators on two of the three dimensions (permanent-
temporary, personal-external) when she commenced MCS. She saw failure to un-
derstand straight away as temporary and able to be overcome through her personal 
effort of ‘pondering over things’. Her successes achieved during this task sequence 
in which she was not ‘told’ but struggled in ‘working it out’ increased her confi-
dence in her capacity to cope with uncertainty (Success as Pervasive; seeing suc-
cess as due to characteristics of self “how much I have grown”). Bianca identified 
crucial aspects of the developed classroom culture:

I loved the Determining Triangles, Construction, and Proof Sequence. I really enjoyed 
working the construction and triangles out for myself/in the group … [and] how the class 
dynamic became co-operative and reflective … [even] though we were working in separate 
groups … it was also amazing that the classroom atmosphere became so accepting of dif-
ferent opinions (Bianca, P-M-T undertaking MCS).

Bianca captures the development of a ‘community of inquiry’, which did not judge 
what was contributed but rather reflected on how it could help. The types of activi-
ties she identified are illustrated later in this chapter. Bianca’s reflections pinpoint 
the accepting of all contributions (not judging some as ‘dumb’) as a feature of the 
learning environment.

Finally achieving successes in this culture helped Michael build confidence:
[I] noticed that my knowledge of mathematics was always being tested [challenge opportu-
nities] and that near the end of the year I was feeling confident enough to lead in discussions 

Fig.�2�� Engaged to Learn (MAP)
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and believed that my personal knowledge of math’s increased due to our class discussions 
(Michael, P-M-T, previous MCS participant).

The role of successfully overcoming mathematical challenges contributed to Mi-
chael perceiving Success as Pervasive. This increased his perceived mathematical 
ability, and thus confidence to lead mathematical discussions. The tasks are now 
described.

Three-Task Sequence

This sequence of ‘complex tasks’ (Table 1) was designed to connect several math-
ematical topics in unfamiliar ways, build P-M-Ts’ awareness of the affective value 
of such activities, and build their own optimism through this experience. Math-
ematically, the sequence:

• Builds understandings of congruent and similar triangle properties;
• Elicits thinking about how to create geometric constructions (e.g., bisecting a 

line); and,
• Links these ideas by asking for proof that the constructions always work.

These are links that are not traditionally made between topics in Victorian math-
ematics classrooms. The tasks were presented one after another in the ninth and 
tenth of eighteen three-hour MCS classes. Task wording is purposefully tentative, 
to give P-M-Ts the autonomy to focus their own explorations and indicate they are 
not expected to progress rapidly in a linear fashion to a previously determined end-
point. Features crucial to each task are now discussed and linked to Tables 2, 3 and 
4, which include excerpts of activity that led to insights that should build optimism.

Task�1�Features�and�Enactment

The sequence leads naturally to the need for geometric notation, logical argument, and 
communication of these arguments in succinct ways. By focusing on pathways sec-
ondary students might take, P-M-Ts’ own lack of mathematical knowledge need not be 
revealed. Thus, P-M-Ts are more inclined to contribute in groups and report to the class 
because any mistakes are attributed to what secondary students might do. P-M-Ts com-
mence the task thinking as students but become engrossed in new ideas themselves.

At intervals, groups gave 1.5-minute reports to the class on one or some of:

1. Ways secondary students might work with the task.
2. Something interesting students might find, and/or that you found.
3. Some generalization students might develop/you developed.
4. Insights that might develop for students or for you.
5. What you as teacher could do to progress learning of your students.
6. Difficulties the teacher might encounter in implementing the task.
7. Ways you have identified to help to overcome such difficulties.
8. Anything else you decide could be interesting to class as a whole.
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By focusing the class on these possibilities for reporting, optimistic aspects of prob-
lem solving (e.g., 2, 3, 4, 5, 7) are highlighted. If not knowing (mathematically or 
pedagogically) is a situation of failure, then 2, 3, 4, 5, and 7 emphasize failure as 
temporary and 2, 3, 5, and 7 emphasize success as personal. Rather than using the 
term ‘failure’, we use terms like ‘not knowing yet’ or ‘not quite there’ emphasizing 
its temporary nature.

Reporting new insights (successes) to others can increase perceptions that suc-
cess is pervasive (due to characteristics of self) where class members show appre-

Table�1�� Sequence of complex tasks: secondary three task sequence adapted as oral MCS task
Task 1: Determining triangles (see Williams 1996)
Given sets of information about triangles: (a) two side lengths; (b) three side lengths; (c) three 

angles; or (d) a mixture of angles and side lengths in various combinations and relative posi-
tions, work in groups of three/four to decide which triangles are ‘determined’. Determined 
is taken to mean: only one triangle can be made with this information. Groups will share 
their ideas with class at intervals. (Specific example given, see Table  2, example in (d)) 

Task 2: Constructing
Lecturer: Constructing involves making accurate drawings without measuring. It involves using 

any or all of the following: (a) Straight edge of a ruler (not the measures); (b) pencil; (c) 
compass; and (d) set square (without using right angle, other angles or edge as measures)

Work in groups of 3 or 4 on the task: Can you find how to construct:
1. A line that bisects another line
2. A line perpendicular to another line at a point other than midpoint
3. A line that bisects a given angle
4. A line parallel to another line
5. Line segmented into n equal parts where n is given?
As soon as you think you have found how to achieve one of these constructions, come out to 

board and show the class your finding

Task 3: Prove These Constructions Work
Lecturer introduces:
1. ‘Axiom’ and illustrates with corresponding angle equality
2. Proofs as arguments supported by evidence (illustration not given)
3.  Possibility of arguments as oral, diagrammatic, and/or symbolic or any other type of argu-

ment the group decides is appropriate
4.  Restriction: can use anything developed through this sequence and any theorems as long as 

they are proven before used the first time
5. Suggestion: bisector of angle construction could be a useful start
6. Orchestrates reporting: order reports to progressively build ideas
P-M-Ts:
1.  Work in groups of three/four for 5 minutes to develop proofs that each of the constructions 

in Task 2 always work
2.  Each group is to explain to the class some of their thinking so far (1.5 mins each). Prime 

your reporter first by hearing/adjusting report
3.  Return to groups and work on with your ideas. Decide what is and is not relevant to your 

group from reports of others
4.  Report progress to the class through reporters selected by the group (each group member 

must report before one reports a second time)
5. Continue this cycle of group work and reporting for four cycles
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ciation of original findings. Such appreciation can arise when reporting findings 
in 2, and 3, or a generalization arising from 3 or 7. P-M-Ts tend to exclaim when 
something unexpected and/or elegant is found. Thus, optimistic activity is valued 
(not praised) because P-M-Ts and/or lecturer’s responses make explicit how find-
ings contribute to class development of ideas. Although P-M-Ts may not recognize 
the subtly of the pedagogy in MCS during task implementation, reflections of be-
ginning teachers illustrate that awareness develops over time. Liz illustrates this:

You took the back seat and modeled the reporting classroom and encouraged us to interact 
with each other. It’s such a subtle difference, and so obviously important, but something 
that you can easily forget to do when you’re so used to classrooms with students facing the 
teacher in a two-way interaction. (Liz, B-M-T)

The lecturer’s role in Task 1 is to ask questions to elicit further thinking, help P-M-
Ts clarify ideas, and orchestrate reporting sessions at regular intervals. Liz shows an 
awareness of sources of control important to the role.

Although P-M-Ts can focus on pedagogical aspects (e.g., 5–7 above), they tend 
to focus intently on the mathematics as shown in Table 2. For example, P-M-Ts 
expressed surprise at finding two possible triangles when they had expected to find 
one, or many. I now realize this focus on mathematics only, not pedagogy as well, 

Table�4�� Excerpts of activity during Tasks 3 and how they help build mathematical knowledge 
and optimism
Excerpt  
from T3

Illustration of aspects of activity of one 
cohort
Key: ‘L’ lecturer; ‘P-M-T’ prospective 
mathematics teacher

Intended 
purpose

Optimism build-
ing elements

Prove proce-
dure for 
construct-
ing bisec-
tor of a 
line:

(a) Procedure found to Prove ‘Construct  
CD bisecting AB’:
Use compass length longer than  

half AB
Drawing arcs above and below AB  

using centers A and B
Arcs intersect at C and D above and 

below AB respectively
Join C and D with line intersecting  

with AB at P
(b) Generally P-M-Ts focus on right-

angled triangles ACP and BCP, find 
two pieces of information, but not 
third
L: “Are those triangles the only things 

you can work with?”
(c) P-M-Ts are then usually able to ‘see’ 

the larger triangles and use them to 
find more information about smaller 
ones

(d) If not, L gives strategy: “Look for 
other triangles that may help give 
more information in those triangles”

Recognize 
congruent 
triangles 
can be used. 
L does not 
focus in spe-
cifically on 
using other 
triangles at 
this stage.

If necessary, L 
gives strat-
egy without 
identifying 
what tri-
angles to use 
and how

Flow from 
identifying 
complexities 
around con-
gruence and 
overlapping 
triangles

‘Big ideas’ 
developed in 
Task 1 and 2 
can contribute 
to overcom-
ing later 
challenges and 
contribute to 
magnitude of 
pleasure asso-
ciated with 
connecting 
several (big 
ideas)
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occurred because simultaneous focus was too great a challenge in this task sequence 
where students had little or no understanding of the geometry involved at the start 
of the sequence.

I no longer focus P-M-Ts on pedagogy when they are intensely engaged in de-
veloping mathematical ideas. Instead, I draw attention to pedagogy after they gain 
insight (achieve learning success). As P-M-Ts are embedded in the pedagogy during 
the task sequence, and many experience high positive affect as they learn geometry 
they did not know, they want to know more about how such situations are created 
(so they can create them for their own students). A discussion of what was happen-
ing pedagogically ensues with students initially focusing the attention. These post-
task discussions show pedagogical realizations develop then too.

Task�2�Features�and�Enactment

Some P-M-Ts may have seen some of these constructions before, but it is unlike-
ly that they have seen them all. The competitive aspect of letting groups report 
constructions as soon as they find them saves time and leads to appreciation of 
constructions found by those still struggling to find some. P-M-Ts tend to exclaim 
about new interesting ideas, and sometimes comment on how they might use them. 
This can add to the pervasiveness of success: by emphasizing what aspects of suc-
cesses were valued by others. Table 3, Task 2 (cutting lines into n equal segments) 
provides an example of multiple small successes contributing to new insights. The 
optimistic characteristic Success as Pervasive can be built through such multiple 
opportunities for successes. The intensity of this collaborative whole class activity 
is demonstrated by the spontaneity with which students kept coming to the board to 
build on ideas or add new ideas.

Task�3�Features�and�Enactment

Because proofs of constructions (see Table 4, Task 3) were not part of the secondary 
mathematics curriculum in Victoria, many opportunities existed to discover com-
plexities. Implementing Task 3 through group work, and sharing ideas with class 
at intervals, can gradually shift P-M-Ts from intuitive verbal arguments based on 
visual images, to analysis and rigorous justification (Dreyfus 1994). New math-
ematical ideas developed in Tasks 1 and 2 (congruence, similarity, constructing) are 
used in unfamiliar sequences/combinations to develop unfamiliar geometric proofs.

Task 3 provides many opportunities for positive affect and optimism building as 
progressive small successes bring the class closer and closer to proving why each 
construction works. Activity associated with the bisecting a line proof (Table 4, 
Task 3) created surprises that: (a) congruent triangles could be used to develop 
proofs; and/or (b) overlapping triangles can be used together to prove equalities and 
demonstrate congruence.
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As using congruence for proving is unfamiliar to most or all P-M-Ts (either not 
understood, or never learnt), the lecturer sometimes needs to contribute an idea 
without giving specific information about how it might be used (e.g., drawing at-
tention to the possibility of other triangles, see Table 4). Otherwise, the size of the 
challenge can be too great and panic or anxiety can result (see Fig. 1). The nature 
and timing of possible lecturer interventions is crucial to retaining spontaneity (for 
flow).

Once one group recognizes congruence as a tool to show equality of features, 
the first reporting session starts (to share this idea while it is still in un-crystallized 
form). This gives other groups an idea to pursue; find whether/how to use it. Ini-
tial reports tend to include ideas like: (a) a verbal clarification of what needs to 
be shown; (b) construction lines added to diagram; (c) identifying what is already 
known; or (d) labeling to make communication easier. In this way, students begin 
to develop strategies for undertaking and communicating geometric proofs. During 
group activity, if some have not spontaneously focused their questions the lecturer 
asks groups clarifying questions like: “What are you trying to prove?” and “What 
do you know that could help you to show what you have stated you want to show 
(e.g., those two angles are equal)”. The lecturer also asks questions to stimulate P-
M-Ts’ evaluations of the reasonableness of their findings; rather than affirming or 
disputing them. The lecturer decides on the order of reporting so every group has 
something new to add.

�Meta-cognitive�Overlay

As P-M-Ts do not tend to focus on pedagogical aspects of the tasks (during 
task completion) for reasons discussed earlier (see Engaged to Learn (MAP) in 
Fig. 2), focus on pedagogy occurs after new mathematical ideas have developed. 
At that time, the lecturer focuses a ‘meta-cognitive overlay’, which involves 
drawing attention to the pedagogical strategies that contributed the development 
of insight. Initially P-M-T’s are asked to reflect on the experience and identify 
what assisted their learning. Then the lecturer identifies aspects that were not 
‘seen’. P-M-Ts appreciate that something significant has occurred for them dur-
ing this task sequence and want to know more about how to recreate this for their 
students.

Discussion

This section discusses how mathematical knowledge, pedagogical knowledge, and 
optimism were built through this three-task sequence. The Engaged to Learn (MAP) 
Model (Fig. 2) frames the discussion.
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Mathematical�Knowledge

Learning through the Engaged to Learn approach requires tasks that encourage P-
M-Ts to step outside their present understanding. The tasks enable access to creative 
thinking through experimentation, and the use of ideas developed earlier in the task 
sequence. Students can gain understanding of mathematics that was previously not 
known, or only known as fragmented rules and procedures. By using mathemati-
cal ideas they possessed, in unfamiliar combinations and sequences, P-M-Ts built 
knowledge of congruence, similarity, and geometric constructions, and linked them 
through proofs as they developed mathematical insights.

P-M-Ts did not focus on pedagogical aspects of the task at that time because they 
became so engaged in the mathematics that this was sufficient challenge on its own. 
Table 2, Task 1, shows examples of where flow occurred when the second triangle 
was found, and students began to wonder: “Why?” “Are there more?” “Are there 
always two triangles?” “Can we generalize?” The spontaneity of their actions was 
demonstrated in the questions they asked themselves when a second triangle was 
discovered. Success in this case included: recognizing only two triangles were pos-
sible, why, and hopefully generalizing the conditions.

P-M-Ts’ understanding of the meaning of congruence and purposes for learning 
about it developed through these tasks. For example, they found that overlapping 
triangles can sometimes be useful for identifying equalities, and that this can be a 
strategy for identifying sufficient equalities to demonstrate congruence. In addition, 
they found that the construct of congruence could be used in formulating proofs. 
Crucial to the mathematical learning that occurred was tasks that stimulated interest 
beyond P-M-Ts present understanding and elicited spontaneously focused questions 
that structured their future exploration (e.g., Table 2, Task 1, Column 4).

Pedagogical�Knowledge

Task 1 was intended to allow P-M-Ts to explore both mathematical and pedagogical 
challenges. Instead, they disregarded pedagogical challenges because they became 
so focused on mathematical challenges. Considering both simultaneously was ‘too 
big a leap’. Guided by the Engaged to Learn (MAP) Model in Fig. 2, I learnt to 
watch for indications of flow and wait for successful outcomes before focusing 
a metacognitive overlay around pedagogy that enabled the development of their 
insights.

Many P-M-Ts spontaneously state, after this task sequence, that they can now 
see how such an approach is possible. Their intent post-task attention to, and re-
flections on, the pedagogy in which their activities were embedded helped to build 
their own pedagogical understandings. As they want to provide similar pleasurable 
experiences (for their own students) in overcoming mathematical struggles, they are 
interested in analyzing pedagogy that appeared to them at the time to have minimal 
lecturer intervention.
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The spontaneous whole class brainstorming in Task 2 (see Table 3, Column 2, 
(i)) gave P-M-Ts opportunity to experience intensity during the collaborative devel-
opment of new knowledge. Task 3 provided opportunities for ‘big leaps’ in math-
ematical knowledge: through intense focus accompanied by high positive affect as 
mathematical connections were progressively made (see Table 4, Task 3, Columns 
2, 3, 4).

Formulating the Engaged to Learn (MAP) Model has raised my sensitivity to 
simultaneous mathematical and pedagogical challenges that can be too great for 
some P-M-Ts to overcome. Intense P-M-T focus on mathematics now alerts me to 
the need to delay drawing attention to pedagogy. The pedagogical understandings 
developed through this subject have confirmed that it is often appropriate to delay 
focus on pedagogy until P-M-Ts have built deeper mathematical understandings.

Optimism�Building

High positive affect of different types can result from various activities occurring 
during this task sequence. For example:

• Intensity during search for ways forward (e.g., Table 3, Task 2, how to complete 
the construction);

• Excitement at recognizing some previously known mathematics may be useful 
(e.g., Table 4, Task 3, congruent triangles help); and,

• Pleasure when everything suddenly becomes clear (e.g., Table 2, Task 1, why 
there are sometimes two triangles)

Identifying complexities that were not apparent earlier in a task occurred during 
each activity, and flow situations were a feature of each. Thus, the situations are 
expected to be optimism building. The idiosyncratic questions P-M-Ts asked them-
selves sustained the exploratory processes. Where P-M-Ts were unable to sustain 
their explorations alone, the lecturer asked questions that structured future sponta-
neous exploration, or sometimes needed to add partial information to elicit further 
thinking. These interventions were followed by further spontaneous activity con-
firming opportunities for spontaneity were not eliminated by the type of interven-
tion provided. For example, when the lecturer added the additional construction 
line to the diagram to assist P-M-Ts to find ways to cut lines in to n equal parts (see 
Table 3, Task 2, Column 2, (g)), many later spontaneous explorations drew upon 
this added information. This led to many small successes, and resulted in collab-
orative solving of problems (see Table 3, Column 2, (i) (i–v)). Lecturer questions 
sometimes focused on the optimistic activity of examining the situation to see what 
can be varied to increase chances of success (Table 3, Task 2, Columns 2 and 3) 
and sometimes on eliciting generalizations leading to insights (e.g., Table 2, Task 1, 
Column 2, (d). Modeling of optimistic activity by the lecturer (and other P-M-Ts) 
should help to build optimism in more P-M-Ts over time as they learn these new 
strategies that can reduce the magnitude of challenges they face.
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Excitement that accompanies the development of insight is amplified when re-
porting of these insights to others, and receiving acknowledgement of their useful-
ness. This consolidates the personal and pervasive dimensions of optimism. Thus, 
ongoing building of optimism occurs through flow situations and the amplification 
of these optimism-building aspects during reporting sessions. Due to the varied 
nature of activity in this task sequence, many different students contributed new 
ideas that add to the class achieving their goals. Thus many different students had 
opportunities for optimism building experiences.

Through attention to psychological factors, many P-M-Ts change their percep-
tions about the nature of mathematics teaching (see opening quote from Hayley), 
and their implementation capacity because optimism has built (see quote from 
Jayde). It is hoped that sharing these findings will lead to further conversations with 
other secondary mathematics educators that will assist me to develop my pedagogy 
further, and also stimulate ideas of others.

Optimism building through overcoming mathematical challenges should in-
crease P-M-T’s inclination to overcome both mathematical and pedagogical chal-
lenges because optimism is not content specific (Seligman et al. 1995). Overcoming 
challenges during pedagogical situations includes responding flexibly to student re-
sponses and to other difficulties that may arise during the learning of mathematics. 
Building optimistic P-M-Ts, and examining the effects of this increased optimism 
upon the pedagogy they employ is an important area for further study. I look for-
ward to hearing from others who try some of these ideas in their classes.
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