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From Self/Nonself to Similar/Dissimilar Sequences 
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Abstract 

The nature of the relationship between an antigenic amino acid sequence and its capability 
to evoke an immime response is still an unsolved problem. Although experiments indicate 
that specific (dis)continuous amino acid sequences may determine specific immune re­

sponses, how immunogenic properties and recognition informations are mapped onto a non-linear 
sequence is not understood. 

Immunology has invoked the concept of self/nonself discrimination in order to explain the 
capabiUty of the organism to selectively immunoreact. However, no clear, logical and rational 
pathway has emerged to relate a structure and its immuno-nonreactivity. It cannot yet be dismissed 
what Koshland wrote in 1990: "Of all the mysteries of modern science, the mechanism of self 
versus nonself recognition in the immune system ranks at or near the top."^ 

This chapter reviews the concept of self/nonself discrimination in the immune system start­
ing from the historical perspective and the conceptual fi-amework that underlie immune reaction 
pattern. It also introduces future research directions based on a proteomic dissection of the 
immune unit, quahtatively defined as a low-similarity sequence and quantitatively delimitated 
by the minimum amino acid requisite able to evoke an immune response, independently of any, 
microbial or viral, "foreignness". 
Introduction 

Peptides and anti-peptide antibodies are widely used in biochemistry and molecular biology 
mosdy for purification and characterization of specific oligopeptides and proteins, characterization 
of protein-protein, enzyme-substrate, or enzyme-inhibitor interactions, as well as for identification 
and mapping of the binding sites of antibodies. In addition, the last two decades have seen the 
exploitation of peptide antigens and anti-peptide antibodies in disease diagnosis and synthetic 
vaccine development. Previous and current clinical trials test a number of peptide-based vaccines 
against cancer̂ "̂  and both autoimmune and infectious diseases.̂ '̂  These vaccines suppose that 
short amino acid fragments derived from the parent protein antigen may induce or augment an 
immune response in cancer or, viceversa, alternatively the vaccines may neutralize autoreactive 
autoantibodies in autoimmune pathologies. As a matter of fact, peptide-immunotherapy appears 
able to obtain antibodies of predetermined specificity and without the complications associated 
with whole cells or entire protein vaccines. 
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Whatever the purpose of using peptide antigens and anti-peptide antibodies or whether trying 
to evoke or neutralize an immune response, success depends on the precise and exact identification 
of the antigenic peptide sequences at the root of an immune response. In this regard, a central 
concern is the understanding of the molecular basis of immunogenicity. 

Ihe Question: What Renders a Peptide Immunogenic? 
We currently do not know why a peptide sequence is non-immunogenic, how the changing of 

only one amino acid residue can dramatically alter the peptide non-immunogenicity,^ and when 
and where it arises the premises of the tight physico-chemical interaction between paratope and 
epitope. Empirically, epitope mapping shows the amino acid sequence interacting with the antibody 
under analysis. In abstract, we talk about the fine discrimination of the immune systems ability 
to sense and understand that specific single amino acid residue which is changed in the sequence. 
Experimentally, we are able to use harsh pH conditions and high salt reagents to break the strong 
bonds between the epitope and the paratope. But we do not know how the immunogenic epitope 
potency and the high paratope specificity originate. 

Our ignorance is mainly due to (and partly justified by) the complexity of the system. As a 
general definition, the epitope is a set of atom groups in three-dimensional space that form the 
"target" of the immunoglobulin antigen binding site (the paratope). A typical epitope is roughly 
5-6 residues long, but both trimer and octamer epitopes have been described.^^ The variability of 
the epitope length itself adds several orders of complexity to the analysis of epitope specificity. 
Indeed, peptide diversity is enormous and fits well with the enormous potential of antibody 
diversity. Using the 20 naturally occurring amino acids, one can generate about 3x10^ different 
5-mer peptides and about 2.5 x 10̂ ^ different 8-mer peptides. 

Protein epitopes (or antigenic determinants) are classified into linear and nonlinear determi­
nants. The latter are composed of noncontiguous residues that are not adjacent in the parent protein 
primary sequence but become so by three-dimensional folding. That makes practically infinite the 
possible determinant configurations, especially when considering a medium to high molecular 
weight protein. Moreover, numerically limited linear determinants might exist in a few configura­
tions as components of linear determinants endowed with some mobility. Nonetheless, antibodies 
are exquisitely specific by hitting only a few of the numerous possible epitopic sequences. 

The factors by which specific peptides are able to induce a B-cell response remain elusive.̂ '̂̂ ^ 
A parallel question is present in our understanding in T-cell recognition: although the structural 
characteristics of the trimeric complex is clarifying^ ̂ '̂ "̂  and we have learned that the TCRs recog­
nize peptide-MHC with diagonal orientation and the CDR3 domains interact with the peptide 
bound to the MHC,̂ '̂̂ ^ we remain ignorant of the functional process by which specific peptides 
are able to induce a T-cell response. 

So, the inescapable question is: what characteristics render a peptide capable to evoke an im­
mune response ? 

From a Historical Point of View—^Ihe Immune Response 
and Self/Nonself Sequences 

The question of "what characteristics enable a structure to evoke an immune response" was easily 
answered in the nascent immunology of the late 19th-century concerned with understanding harm­
ful infectious diseases.̂ ^ In that context, immunology started as the study of defence mechanisms 
against the foreign pathogens. The patient as the attacked host became the "self" whose integrity 
had been threatened by external, foreign, nonself enemies. Slowly and tacitly the basis of the self/ 
nonself dichotomy were dogmatically established in immunology. Potential immunogens were 
catalogued according to this self/nonself discrimination principle^^ with "nonself" strictly defined 
as belonging to a foreign organism, as opposed to "self", which were tolerated elements eliciting no 
response by being part of the organism itself ^̂  The language of self and nonself had its foundations 
in a metchnikovian image of competitive struggle between organisms and infectious agents (e.g., 
bacteria and viruses)^^ and reflects the antinomy between benign and toxic, protection and damage. 
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internal and external.̂ '̂̂ ^ In this perspective, intentionaUty and teleology became the molecular 
biochemistry of the immune response. The self became (and still is) a human category with ethical, 
political, psychological and existential meanings. The same immune system is viewed as 'recogniz­
ing', 'remembering', learning' and 'acting'—terms borrowed from the cognitive sciences.̂ ^ 

The immunological self/nonself antinomy became an example of "coincidentia oppositorum" by 
which everything could be intuitively explained, from cancer (tumor escape from immunosurveil-
lance) to autoimmunity (self-defense excess). With the antibody molecule chemistry and pathology 
overlapped and the clear-cut physico-chemical coordinates that marked the three distinct domains 
of antigenicity, immunogenicity and pathogenicity fused together, surrounded by the emotional 
involvement of good against bad in a war-peace scenario. 

This dominant self/nonself perspective remained unaltered during the century from Metchnikoff 
through Burnet̂ '̂̂ ^ and still lingers.^^^ Upon that metaphor, a theory of immunological tolerance 
was constructed that still dominates the field. Changes amount to litde more than new terminol­
ogy such as, Matzinger's danger model.̂ *̂̂ ^ "Standing on the shoulders of the Self/Nonself "ĵ ^ the 
danger model proposes that antigen-presenting-cells are activated by danger/alarm signals from 
injured cells, such as those exposed to pathogens, toxins, or mechanical damage. 

The danger model pari passu reproposes the Metchnikoff's overall representation, where the 
phagocyte is an agent^° able to "sense" and "understand" the danger and, consequently, mount a 
response with a sense of independent arbitration.^^ 

In this regard, Oldstone's molecular mimicry hypothesis, which defined molecular mimicry as 
similar structures—either linear amino acid sequences or their conformational foldings—shared 
by the host and virus, made significant scientific progress. The hypothesis suggested cross-reactivity 
between similar microbial determinants and host 'self' antigens as a pathogenic mechanism for auto­
immune disease. In the hypothesis, the immune response against the determinant evokes a destructive 
tissue-specific immune response and the induction of cross-reactivity does not require a replicating 
^ent, since the immune-mediated injury could occur after the immunogen has been removed—a 
hit-and-nm event. The Oldstone's hypothesis marks a breaking point with the perspective of bad 
attacking spirits and good defensive intentions and introduces the immune response in molecular 
terms. For the first time in the immunology history, foreign entities have been reductionistically 
defined as bacterial or viral molecular sequences that mimic host molecular sequences. 

The hypothesis has had an enormous impact on the science of the time and has greatly contrib­
uted to developing the sequence bioinformatic tools all of us utilize routinely. An intensive effort 
was undertaken in the attempt to validate the association of infectious agents with autoimmunity 
using molecular mimicry models to dissect the parameters required for the activation and associa­
tion of virus-induced autoimmune disease. For decades the attention focused (and still focuses) 
on possible associations between infectious agents and autoimmunity. A list of examples includes, 
but are not limited to: Mycobacterium tuberculosis^^ and adjuvant arthritis; beta haemolytic 
streptococci and rheumatic fever;̂ '̂̂ ^ herpes and autoimmune reactions against corneal tissues ;̂ ^ 
B3 coxsackieviruses and myocarditis;^^ Trypanosoma cruzi and Chagas' disease;̂ ^ diverse viruses 
and multiple sclerosis;̂ ^^^ Borrelia burgdorfii and Lyme arthritis ;'̂ '̂'̂  and B4 Coxsackievirus, 
cytomegalovirus or rubella and type 1 diabetes.^^^^ However, many of the postulated associations 
remain unproven.̂ '̂̂ *̂̂ ^ 

Exemph gratia, the fact that the nitrogenase enzyme of K. pneumoniae, a bacterium present in 
the bowels of many individuals including ankylosing spondyhtis patients, contains a 6-mer amino 
acid motif in common with HLA B27 protein sequence has repeatedly been reported as a model of 
molecular mimicry that might have a role in ankylosing spondylitis autoimmune disease. However, 
it is not a new observation that ankylosing spondyhtis is mainly limited to the synovial joints of 
the spine, whereas HLA B27 molecules are expressed on almost all somatic cells.̂ ^ 

The weakness in the molecular mimicry hypothesis appears to be that molecular sequences are 
not analysed by themselves as a funaion of their own intrinsic quaUties such as hydrophobicity/ 
hydrophylicity, function, reactivity, 3-D conformation, masking (by glycosylation, polymerization, 
pairing to other molecules, etc.), spatiotemporal egression, quantitative level of expression, stability/ 
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Table /. From literature: examples of epitopic peptides characterized by being (or 
containing) sequences with low similarity to the host proteome 

Protein 

Large tumour antigen (tag) 

of simian virus 40^^ 

Duffy glycoprotein^^ 

Receptor of vascular 

endothelial growth factor^^ 

p185HER2«o 

Bovine leukemia virus 

transactivator protein tax^^ 

HIVgp41«2 

Bordetella pertussis FM2^^ 

Bordetella pertussis FIM3^^ 

Gluthathione-s-transferase 

from Schistosoma bovis^"^ 

Leishmania infantum GRP94^^ 

X Repressor Cll^^ 

Ovalbumin^^ 

Toxic shock 

syndrome toxin-1^^ 

Staphylococcal 
enterotoxin B̂ ^ 

HOXD4 protein«9 

a-subunit CK2^« 

HLA class 1 H chain^^ 

Cytochrome P4502D6^2 

Acetylcholinesterase^^ 

Acetyl-Choline Receptor^^ 

Amino Acid 
Position 

91-95 

22-26 

262-266 

256/257/261/ 

313/315*** 

235-243 

261-280 

683-689 

74-80 

53-69 

91-97 

58-67 

281-300 

12-26 

325-336 

47-56 

83-92 

319-324 

55-64 

193-212 

112-119 

143-151 

294-302 

332-341 

496-503 

523-532 

111-126 

122-138 

182-198 

Sequence* Matches** 

W E Q W W 

FEDVW 

YPSSK 

IDELT 

cCHEQCAag 

HVWSSpqalqrflhdptltw 

NWFDIt 

gRTPFIi 

kvvqIpklSKNAIrndg 

IkLYFEP 

iTDNHGHvkw 

tqgvvkerrwtlvneN RPIW 

ledarrLKAIYekkk 

isqavhaaHAEINe 

fpSPYYSpaf 

dvfgaNYYYQ 

VYPWMK 

MEHPYf 

egpEYWDR(n/e)t 

RRFEYddprflrlldlaqeg 

tpvLVWIY 

rtvlVSMNY 

VFRFSfvpv 

kdegsYFLVY 

kapQWPPY 

gIraqACAFW 

qytCHITWTppaifks**** 

aifkSYCEIIvthfpfd**** 

gwkhsvTYSCCpdtpy**** 

0 

0 

3 

2 

0 

2 

0 

1 

2 

2 

0 

0 

1 

1 

2 

0 

0 

0 

1 

2 

0 

2 

2 

2 

1 

0 

0 

0 

1 

Proteome 

Murine 

Murine 

Murine 

Murine 

Murine 

Murine 

Murine 

Human 

Human 

Human 

Murine 

Human 

Murine 

Murine 

Murine 

Murine 

Murine 

Murine 

Murine 

Human 

Murine 

Murine 

Murine 

Murine 

Murine 

Murine 

Human 

Human 

Human 

Continued on next page 
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Table 1. Continued 

Protein 

Myelin Basic Protein^ "̂̂ ^ 

Proteo-Lipid Protein ^̂  

Myelin Oligodendrocyte 
Glycoprotein^^ 

Thyroglobulin^^ 

Amino Acid 
Position 

1-11 
83-99 
70-89 

139-151 
178-191 

1-22 

92-106 

2339-2358 

2471-2490 
2651-2670 

Sequence* 

asqkrPSQRHg 
adpgsRPHLIrlfsrda 
tadPKNAWQD 
ahpadpgsrp 

chCLGKWIghpdk**** 
FNTWTtcqsiafps**** 

gqfrVIGPRhpiralvgdevel 

deggFTCFFrDHSYQ**** 

qvaaltWVQTHirgfggdpr 

pparalkRSLWVevdIligs 
yefsrkvptfaTPWPDfvp 

Matches** 

1 
1 
0 

0 
1 

1 

0 

0 

3 
1 

Proteome 

Murine 
Murine 
Human 

Murine 
Murine 

Murine 

Murine 

Human 

Human 
Human 

*Low similarity 5-mers given in capital letters. **Matches: refer to the 5-mer in capital letters; corre­
spond to the number of times a 5-mer occurs in the set of proteins that comprehensively constitutes 
the host proteome; calculated as already described in detail/^"^^ Low-similarity numerically defined 
as ^ 3. ***Conformational epitope. ****AII 5-mers forming the determinant have low similarity to 
the host proteome. 

half-life time, proteolytic susceptibility, etc. The oldstonian analysis of the molecular sequences in the 
immunological context is still based mosdy upon their derivance from bacterial or viral organisms. 

From a Logical Point of View—^Ihe Immune Response 
and Similar/Dissimilar Sequences 

Recently, it has been proposed that sequence similarity to the host proteome may modulate 
peptide immunogenicity.̂ '̂̂ ^ Ihe rationale is the following. If it is true that normal autoantigens are 
tolerated through the elimination of the antigen-reactive cells^ '̂̂  and that the receptor repertoire 
must be purged of all antigen receptors that could possibly recognize self-antigens,̂ ^"^ then it is 
logical to postulate that the sequences/patterns never or uniquely expressed in a proteome have 
more chances to escape the deletion process and, consequendy, have more chances to induce an 
immune response. 

But How to Define Sequence Similarity in the Immunological Context ? 
Similarity between biological sequences is represented as sequence identity: the number 

of aligned positions where the corresponding characters (e.g., amino acids in proteins) are 
identical.^^ This protein similarity characterization by amino acid sequence comparison utilizes 
(multi)alignment programs and represents a very accurate method for predicting an evolutionary 
relationship among sequences.^ High sequence identity (i.e., a high number of identical aligned 
amino acid residues) between two biological sequences indicates they belong to the same family. 
In other words, amino acid sequence similarity is a property that describes evolutionary history 
and whether biological sequences have a common ancestor. 

In the immunological context, similarity analysis among biological sequences identifies amino 
acid groupings that represent rare or conmion sequences and, consequendy, might or might not be 
considered as possible epitopes. To this aim, similarity search for immunogenic amino acid group­
ings (that we named Immunogenic Peptide Blocks, IPBs) utilizes perfect peptide match programs 
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and, by so doing, transforms sequence similarity from an evolutionary quality (when two sequences 
are compared point by point, i.e., amino acid by amino acid) into a mathematical quantity that 
describes "IPB percent identity" and can be numerically measured by the match number, i.e., the 
number of times that an IPB is present in the set of proteins analysed. 

In such a context, the immunological significance of the IPB percent similarity to the host 
proteome primarily depends on the length definition of the shorter sequence that can constitute 
a linear determinant. Since literature data indicate five to six amino acids are sufficient minimal 
antigenic determinants,^^ ̂ ^ IPB was defined as delimited by a minimal epitopic length of five 
amino acids. Therefore, immunologically the similarity between a pair of aUgned biological se­
quences may be represented by the number of aligned IPBs (e.g., 5-mers in proteins) with perfect 
identity matching. Using this definition, the similarity level of a peptide sequence to a proteome 
is calculated as the number of times the peptide pentamers occur in the analysed proteome. More 
precisely, the similarity level of a peptide is zero when the 5-mers forming the peptide are absent 
in the proteome under analysis, whereas the similarity level of a peptide is high when its 5-mers 
are repeatedly represented in the protein set that comprehensively forms the proteome. As an 
important collateral notation, the relationship between peptide and proteome introduces the 
difference between similarity and redundancy, where similarity applies to peptide sequences from 
heterologous proteins and redundancy refers to autologous peptide sequences. 

Browsing Through Literature: Similarity Level of Identified Epitopes 
IPB similarity analysis has been successfully applied to define epitopic sequences in different 

experimental models.̂ ^^^ In addition, the data obtained by analysing the scientific literature on 
identified epitopes are even more eloquent. Table 1 illustrates the concrete application of this 
IBP similarity rationale in analyzing the literature data. It shows how a first screening produced 
dozens of well-defined epitopic sequences that are or harbor IPB(s) with no or low similarity to 
the host proteome. 

Concluding Remarks 
In 1859 Darwin demonstrated that complex, gradual adaptation processes arise over time 

without outside agency and, in so doing, he demolished teleology in science. Nonetheless, today 
we still have an immunology science dominated by the teleology of intentionality: explaining im­
mune reactions in terms of self entities against nonself enemies and interpreting immune processes 
as meditated actions against enemies and protective conduct towards self entities. 

In this context, the development of high-throughput technologies and the nascent peptidomics 
research offer exciting new opportunities to comprehensively analyse peptides in the immune 
subsystem, that is to define the immuno-peptidome. The time for a more precise answer to the 
logical question, "what are the molecular features that make a peptide immunogenic?" appears 
closer. The time for a geometrical definition of the limits and intersections among the three distinct 
domains of peptide antigenicity, immunogenicity and pathogenicity is getting closer as well. The 
challenges for these goals lie in archiving and functionally relating the vast majority of data derived 
from immunoassay experiments and bioinformatic predictions into a coherent informational 
mass relevant to physio- and pathological processes. To this end, it will be necessary to establish 
universally accepted criteria for positive identification of immunoreactive peptides to design ef­
fective peptide-immunotherapies. 
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