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Abstract 

Ligand binding to cell membrane receptors sets off a series of protein interactions that convey 
the nuances of ligand identity to the cell interior. The information may be encoded in con
formational changes, the interaction kinetics and, in the case of multichain immunorecep-

tors, by chain rearrangements. The signals may be modulated by dynamic compartmentahzation 
of the cell membrane, cellular architecture, motility, and activation—all of which are difficult to 
reconstitute for studies of receptor signaling in vitro. In this chapter, we will discuss how protein 
interactions in general and receptor signaling in particular can be studied in living cells by dif
ferent fluorescence imaging techniques. Particularly versatile are methods that exploit Forster 
resonance energy transfer (FRET), which is exquisitely sensitive to the nanometer-range proximity 
and orientation between fluorophores. Fluorescence correlation microscopy (FCM) can provide 
complementary information about the stoichiometry and diffusion kinetics of large complexes, 
while bimolecular fluorescence complementation (BiFC) and other complementation techniques 
can capture transient interactions. A continuing challenge is extracting from the imaging data the 
quantitative information that is necessary to verify different models of signal transduction. 
Introduction 

Recognition of extracellular ligands by cell surface receptors depends on membrane com
partmentahzation, subcellular organization, and whole cell dynamics. Ligand-engaged or free 
receptors can interact with numerous proteins that co-inhabit the cell membrane, partition in 
different membrane domains, as well as being targets for intracellular adaptors, effector enzymes, 
cytoskeleton terminals, and the recycUng machinery. Any of these interactions may modulate the 
activity of receptor components and all are themselves subject to continuous change according to 
subcellular localization, cell motiUty, polarity, state of activation, and the extracellular environment. 
Not surprisingly, the mechanisms of ligand recognition by different receptors can be difficult to 
understand based on in vitro studies alone and have to be verified in the milieu of the living cell. 

Particularly puzzling is the signal transduction by the multichain immunoreceptors that use 
dedicated chains for ligand binding and a number of noncovalently associated signaUng chains to 
interface with the intracellular effector enzymes. How the information about the quality of bind
ing between the ligand and the extracellular domain is projected by multichain receptors to the 
cell interior is of great general interest; especially for understanding antigen recognition, cytokine 
communication, and homeostasis in the immune system and beyond. According to the structural 
models, binding of a ligand to the extracellular domain induces a range of structural changes that 
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propagate to the intracellular domains to expose sites for docking of various adaptors and signaling 
enzymes. The structural changes could be conformational, chain rearrangements, ligand-driven 
dimerization, or multimerization.^ In contrast, the kinetic models favor the view that the informa
tion is conveyed by the net balance of otherwise unstructured interactions between the receptors 
and the membrane-resident kinases and phosphatases, which have opposing effects on signaling.^ 
To distinguish between the alternative mechanisms requires quantitative characterization of various 
parameters of protein interactions in living cells. Verifying the structural mechanisms of ligand 
recognition requires determining distances and orientations between protein domains within and 
between receptors, while the kinetic models call for determination of affinities, lifetimes, diffusion 
coefficients, and frequencies of random collisions—all with subcellular resolution in living cells. 

The last two decades witnessed significant refinement of fluorescence microscopy techniques 
that allowed looking non-invasively inside cells and visualizing receptor dynamics in situ. The most 
powerful approaches harness fluorescence to provide information about protein interactions 
(Fig. 1). The general strategy is to hyperlink the structural data on a pixel-by-pixel basis to addi
tional parameters of fluorescence that are sensitive to the local environment. The most direct and 
versatile are imaging modalities based on Forster (fluorescence) resonance energy transfer (FRET), 
which is sensitive to the proximity and orientation between fluorophores and is amenable to the 
structural and the kinetic analysis. Complementary information about diffusion and stoichiometry 
of large protein complexes can be obtained by fluorescence correlation microscopy (FCM), while 
bimolecular fluorescence complementation (BiFC) and other complementation techniques can 
be used to determine protein interactions. 

FRET 
FRET microscopy is the most powerfiil and popular approach to study protein interactions in 

living cells. Occurring through dipole-dipole resonance between the excited donor fluorophore 
and a nearby acceptor, FRET allows direct detection of nanometer-range proximity between 
appropriately labeled proteins as well as conformational changes. FRET can be imaged based on 
several parameters that are detectable by wide field, confocal, multiphoton, as well as total internal 
reflection fluorescence microscopy. Being a proximity effect, FRET can be used to detect both the 
specific complex formation as well as random coUisions—both of which may be important for 
signaling by multichain immunoreceptors. We will focus later on how quantitative FRET imaging 
can be leveraged to study the underlying mechanisms of protein interactions. 

Bimolecular Fluorescence Complementation 
The BiFC technique is based on nonfluorescent, complementary fragments of fluorescent 

proteins (FPs) that can refold into a fluorescing product.^ By genetically attaching the fragments 
to different proteins, their interactions can be detected based on de novo fluorescence.^ Due to 
irreversible refolding, BiFC is not a general approach to monitor the dynamics of protein interac
tions but it excels as an end-point kinetic assay.̂  Qinntitative application of BiFC is possible by 
multiplexing fragments from different color FPs. That way, the relative efficiency of competing 
interactions can be evaluated ratiometrically.̂ *^ Recent improvements include new fragments of 
the Cerulean and Venus FPs that offer faster refolding kinetics and better sensitivity.^ The BiFC 
assay can complement FRET to determine and screen for protein interactions.^ 

Fluorescence Correlation Techniques 
The formation of large protein complexes that exceed the nanometer range of FRET can be 

studied at the single-molecule level in living cells by FCM.^° This method uses highly sensitive 
detectors to detect bursts of fluorescence due to diffusion of single fluorophores through a 
small observation volume, which can come from a confocal or multiphoton excitation. The 
diffusion coefficient, which depends on the mass of freely diffusing complexes, can be dis
cerned by applying the autocorrelation function to the fluctuations of fluorescence. Classic 
FCM is performed under free diffusion conditions to quantify the absolute molecular mass 
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Figure 1. Major experimental approaches to quantitative imaging of protein interactions in 
living cells. 

and the relative representation of the different weight species—in cells, it is best suited to 
follow interactions in the cytosol. Nevertheless, importantly to study membrane receptors, 
FCM is applicable to cell membranes as well.̂ ^ 

FCM is robust only when detecting interactions of a small labeled ligand with a large 
partner. This limitation is avoided by labeling two proteins with different color fiuorophores 
and enumerating the coincidence of diffusion, hence complex formation, by fluorescence 
cross-correlation microscopy (FCCM).^^^^ FCCM is a powerful approach to directly measure 
the concentrations of the free and complexed species and from these, to calculate the affinity 
constant of complex formation in solution. Furthermore, the stoichiometry of the complex 
can be determined from the relative intensities during the coordinate bursts of fluorescence. 
By cross-correlating fluorescence in three or more colors, complex formation between more 
than two components can be studied.^^ Recent advances in FCCM improved the sensitivity 
and cross-talk separation by using time- and space-correlated single photon counting as well 
as interleaved excitation.^ '̂̂ ^ F(C)CM techniques are not suitable for full frame imaging, 
however, and are typically used for spot measurements in predetermined sites of the cell 
body. An imaging variant of FCM is achieved by cross-correlating fluorescence fluctuations 
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across space instead of time; the technique is termed image cross-correlation microscopy 
(ICCM). ICCM allows imaging of the degree of aggregation and colocalization in living 
cells by confocal or multiphoton laser scanning.^° As all fluorescence correlation techniques, 
ICCM performs well at low (physiological) concentrations of fluorophores but may require 
prolonged acquisition times. 

Fluorescent Labeling of Proteins in Living Cells 
Common to all techniques, the critical first step to visuaUzing protein interactions in Uving 

cells is fluorescent tagging of proteins with fluorophores that have suitable spectral properties and 
minimal impact on the biological functions. Foremost, proteins can be genetically fused with dif
ferent color FPs that may be attached to the C or the N terminus or, if the structure of the carrier 
protein permits, spliced into the sequence of the protein.^^ The growth of FRET imaging studies 
in living cells is particularly indebted to the development of FPs that are monomeric and have 
favorable spectral overlap, low cross-detection, high quantum yield, and low sensitivity of fluores
cence to environmental changes.̂ '̂̂ "̂  Currently, the recommended pairs of fluorescent proteins for 
FRET include mCerulean, CyPet, or SCFP3A as the donors and the yellow mVenus, mCitrine, 
or SYFP2 as the acceptors.̂ *̂̂ -̂̂ ^ Less often used but advantageous due to lesser photobleaching 
are the green-red pairs: EGFP as the donor and mRFPl, mKO, mOrange, or mCherry as accep-
tors.̂ '̂̂ ^ The nonfluorescent yellow chromoprotein REACh can be used as an acceptor-quencher 
with EGFP for lifetime and anisotropy-based FRET imaging.̂ ^ 

Ihe biggest drawback of FPs is their bulkness, which may alter the cellular distribution or in
terfere with ligand binding. An alternative approach relies on small biarsenical fluorophores green 
FlAsH or red ReAsH that react specifically with short tetracysteine motifs, which can be incorpo
rated at almost any place by genetic modification. A recent optimization of the tetracysteine motif 
improved the selectivity and lessened the conditions required for labeling in living cell.̂ ^ For FRET, 
FlAsH and ReAsH can be acceptors for cyan FP and GFP, respectively.̂ '̂̂ ^ Additional possibilities 
for multiplexed labeling and pulse-chase studies are provided by attaching to the protein a binding 
domain that is specific for a small fluorophore. The 06-alkylguanine-DNA alkyltransferase (AGT) 
domain can be labeled with fluorescent 06-benzylguanine (06-BG) derivatives,^ '̂̂  oligohistidine 
sequences on cell surfaces can be labeled with nitroloacetate fluorophores,^^'^^ and acyl carrier 
protein (ACP) can be labeled with acyl-fluorophores.^^ Highly fluorescent nanocrystals (quantum 
dots) are advantageous for imaging of low abundance cell surface proteins and for FRET thanks 
to their brightness and good spectral separation of emission from excitation (Stokes shift).̂ '̂̂ ^ 
Ihese and many other fluorophores can be attached to cell surface proteins in living cells using 
antibodies that do not interfere with biological functions. In permeabilized cells, imaging FRET 
between GFP-tagged receptors and fluorescent-labeled anti-phosphotyrosine antibodies allowed 
specific detection of receptor phosphorylation.'^'^^ A more extensive review of different classes of 
fluorophores and dyes suitable for FRET experiments is provided by Sapsford et al."̂ ^ 

Quantitative FRET Imaging 
Determining the efficiency of FRET is the key to analyze the structures and kinetics of protein 

interactions. FRET efficiency depends on the distance between donor and acceptor, as well as the 
relative orientation of the electrical dipoles, the spectral overlap of donor emission with acceptor 
absorption, and the refractive index of the medium. In principle, one could triangulate the topol
ogy of multiprotein complexes by attaching donors and acceptors at various positions, measur
ing efficiencies of FRET, and calculating the distances according to the Forster equation. (The 
orientation factor (K^) is equal 2/3 if the donor or the acceptor has freedom of rotation.) However, 
when imaging FRET in a heterogeneous population of donors and acceptors, a typical situation 
in living cells, an important distinction has to be made between the intrinsic FRET efficiency, 
which characterizes individual donor-acceptor pairs, and the apparent efficiency (£^^), which 
is actually measured by most techniques. E^pp is a weighted average of intrinsic efficiencies for all 
donors in the measurement volume; therefore, a particular ̂ ^^ value can be due to a combination 
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of distances, orientations, and degrees of donor occupancy by acceptor, as well as it could be due 
to random collisions. While E^^ of a heterogeneous population cannot be used to calculate the 
donor-acceptor distance, a systematic analysis of the dependence of £ ^ on the local concentra
tions of donors and acceptors can shed light on the mechanism of protein interactions, which 
will be discussed later. 

FRET efficiency can be quantified based on the donor fluorescence intensity, lifetime, and 
polarization, as well as from sensitized emission of acceptors (if these are fluorescent)—each 
modality oflfers a different balance of sensitivity, speed, and quantitation. 

Donor Dequenching 
FRET quenches donor fluorescence; therefore, the rebound of donor fluorescence after photo-

destruction of acceptors provides a straightforward means to measure £̂ ^̂ . The raw data consist of 
two images: donor fluorescence taken before {Dy^f^^ and after iP^J) acceptor photobleaching: 

An alternative approach is to monitor the rate of donor photobleaching, which is decreased 
in presence of FRET. '̂̂ ^ Since the range of apparent FRET efficiencies may be in the order of 
only a few percent, low noise, precise detectors, and strong signals are essential to obtain reliable 
data—the accuracy can be improved by gradual acceptor photobleaching."^ Due to a finite time 
required to substantially eliminate acceptors, photobleaching methods are limited by cell motil
ity and instrument drift. Accordingly, donor dequenching tends to be used primarily for fixed or 
immobile specimens. Despite limitations, donor dequenching is a robust method to image E^pp 
and is often used to corroborate FRET imaged by other methods. Lnaging of FRET by pho
tobleaching has been applied extensively to study the subcellular regulation of immunoreceptor 
interactions."^^^^ 

An elegant extension of the donor quenching approach takes advantage of photoactivatable 
GFP (PA-GFP),^^ which can be instantaneously activated by illumination with a 405 nm laser 
and accept FRET from cyan FP donors.^^ When photo-activated locally in a subcellular compart
ment, the spreading of FRET (detected by the drop of donor fluorescence) provides invaluable 
information about diffusion, stability of protein complexes, and the rates of dissociation and 
association.̂ "^ 

Sensitized Fluorescence Imaging 
Unlike donor dequenching, sensitized emission-based FRET imaging does not require harsh ir

radiation and can be performed repeatedly on live cells with a high temporal and three-dimensional 
resolution.̂ ^^^ Numerous methods evolved over the years that take advantage of sensitized emission 
to detect FRET. In general, the sample is illuminated at the donor excitation wavelength and the 
measurement (imaging) is done at the donor as well as the acceptor emission wavelengths or, the 
full emission spectra are collected. The latter approach is often termed spectral FRET. For heter
ologous FRET experiments (as opposed to the internal FRET in covalently linked donor-acceptor 
sensors), the acceptor concentration has to be accounted for, hence an additional exposure is taken 
to acquire the acceptor-only fluorescence. E^pp is calculated on a pixel-by-pixel basis based on the 
three intensities that are linearly unmixed from any spectral overlap :̂ '̂̂ ^ 

E^^ = S/{S + GD) 

where S is sensitized fluorescence, Z), donor fluorescence, and the G parameter °̂ can be cali
brated by acceptor photobleaching,̂ '̂ *^^ lifetime measurements,̂ ^ or by using pairs of donor-acceptor 
constructs having different FRET efficiencies.̂ ^ Additional calculations allow determination of 
local stoichiometry of donors, acceptors, and FRET complexes.̂ ^ 

In the non-imaging mode, sensitized emission FRET was applied to study receptor aggregation 
in platelets,^^ interactions between antibody-labeled IL-1 receptors,^^ ligand-dependent rearrange-
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ments of IL-2 receptor subunits,^ the multivalent structure of T-cell receptor (TCR),^^ as well 
as MHC-I-dependent^'^^ and -independent^^ interactions between TCRand CDS. Quantitative 
FRET imaging based on sensitized emission allowed time-lapse, three-dimensional visualization of 
interactions between the TCR^ chain and CD4^^ or CD8^^ in immunological synapses. MFIC-II 
interactions were tracked in subcellular compartments by confocal sensitized emission FRET.̂ ° In 
B-cells, quantitative sensitized emission allowed dissecting chain interactions and the lyn kinase 
recruitment during B-cell receptor (BCR) activation.̂ '̂̂ ^ Sensitized emission FRET is perhaps 
easiest to implement using wide field microscopy but it is appUcable to confocal detection as well 
as two-photon, near-field scanning, or atomic force microscopy.̂ *̂̂ ^ ^̂  

Fluorescence Lifetime Imaging 
FRET shortens the time donors spend in the excited state, which can be imaged by fluorescence 

lifetime imaging microscopy (FLIM).^^ Two FLIM modalities are available, using pulsed excitation 
with time-gated detection (time-domain) or modulated excitation with phase-shifi:ed detection 
(firequency-domain). Time-domain FLIM, especially when using time and space-correlated single 
photon coimting mode (TSCSPC), allows recording entire fluorescence decay profiles for each 
voxel in three dimensions.^'^^ This is a distinct advantage of time-domain FLIM over all other 
FRET modalities because the fluorescence decay curves can be deconvolved into individual lifetime 
exponents that are proportional to£,„^ which is the basis for distance determinations. The average 
lifetime is proportional to JE^ :̂̂ °'̂ ^ 

Ei„t = 1 -T,/TO Eapp=\- T/TO 

where TQ is the lifetime of free donors. 
Important for the development of FRET imaging in vivo, time-domain lifetime imaging is an 

excellent match for multiphoton, femtosecond-pulsed excitation.̂ '̂̂ ^ Frequency-domain FLIM 
offers improved temporal resolution but is limited to average lifetimes,"̂ '̂̂ *̂̂ ^ except when using 
more advanced, nonsinusoid modulation^^ or two-component analysis.̂ ^ Acquisition times may 
be shortened by using a streak camera-based detection that can be combined with multiphoton 
excitation.̂ '̂̂ ^ In practice, however, a compromise is necessary between the temporal, spatial, and 
Ufetime resolution. For this reason, application of FLIM to image fast interaction dynamics has 
been scarce. A general advantage of FLIM is the abihty to detect FRET between spectrally similar 
donors and acceptors, in which case the combined donor and acceptor lifetime is increased.^^ 
Like all FRET imaging methods, FLIM has its caveats. One is the dependence of lifetimes on 
the refractive index around the fluorophore—the property that can be used to monitor the local 
environment in cells but can also interfere with the quantitation of FRET.̂ '̂̂ ^ Another difficulty 
is the sensitivity to photobleaching, which may be lessened by using GFP and mCherry instead 
of the more common CFP and YFP pair.̂ ^ 

FRET Imaging by Polarization Anisotropy 
Yet another technique to image FRET is based on changes in fluorescence polarization anisot

ropy. The degree of fluorescence depolarization (in relation to the excitation light) depends on the 
rotational dynamics of the fluorophore and FRET^^ Therefore, FPs are particularly suitable for 
polarization-based FRET imaging because, due to their large size, FPs are only minimally depolar
ized by the rotational mechanism and all depolarization can be attributed to FRET. Fluorescence 
polarization anisotropy is calculated from the intensities of fluorescence that is detected through 
polarizing filters placed parallel (D =) and perpendicular (Di) to excitation: 

Through additional calculations, polarization measurements can be converted to apparent 
FRET efficiencies.̂ ^ 
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Unlike other FRET imaging modalities, anisotropy imaging can detect FRET between fluoro-
phores of the same type, obviating the need for double labeling with different donors and accep-
tors.^ '̂̂  This way, anisotropy imaging is particularly convenient to visualize homotypic aggregation 
and multimerization of FP-labeled proteins. Polarization FRET can be combined with lifetime 
microscopy for comprehensive characterization of rotational coefficients^^ or with sensitized emis
sion to allow imaging of heterologous FRET in a single-exposure, which reduces motility errors.^'^^ 
A minor drawback of polarization-based FRET imaging is somewhat lower spatial resolution and 
sensitivity due to using low numerical aperture objectives to maintain polarization. 

Multiphoton Imaging of Heterologous FRET 
Multiphoton microscopy has been used to image FRET based on donor lifetimes, polarization 

anisotropy^^^ and sensitized emission of acceptors. ̂ °̂  Nevertheless, due to single wavelength excita
tion, multiphoton-excited FRET could be imaged only when using internally linked biosensors 
but not in heterologous protein-protein interaction experiments, whereby donors and acceptors 
are attached to independently expressed proteins. 

In heterologous experiments, FRET can result from molecular crowding and/or com
plex formation while no FRET can be due to a lack of interaction or insufficient acceptors. 
Therefore, regardless of the imaging modality employed to detect FRET, it is critical to 
account for the local acceptor concentrations that requires selective excitation at donor and 
acceptor specific wavelengths. By using dual, interline-switched femtosecond laser excita
tion and dual channel detection, we recently realized truly heterologous FRET imaging by 
multiphoton microscopy.^^^ The system was tested using dimer-forming TCR^ chains tagged 
with cyan and yellow FPs (Fig. 1)}^^ Future application of sensitized emission multiphoton 
FRET imaging will be to study the motions of the intracellular signaling domains of TCR 
and other receptors at the sites of antigen exposure in vivo. 

Using FRET to Analyze Receptor (Re)arrangements 
Dimerization and multimerization of membrane receptors can be studied by co-expressing 

the receptors labeled with donor or acceptor and imaging FRET using any imaging modality.^^ 
For example, FRET images revealed differences in the oligomerization of B7-1 and B7-2 family 
members.̂ ^^ By fitting alternative mathematical models of molecule distribution to E^pp, FRET 
can give insight into the spatial arrangement of clustered proteins. ̂ ^ Such analysis was applied to 
study IgA-ligand-receptor complexes in the endocytic membranes in MDCK cells and indicated 
that single receptors in microclusters are surrounded by 2.5-3 neighbors. Similar quantitative 
FRET imaging confirmed multimerization of otherwise dimeric receptors of transferrin upon 
ligand binding,^^^ dimerization of galanin-1 receptor,̂ ^^ and the dimer-tetramer transition of 
epidermal growth factor. ̂ ^̂  

Internal rearrangements of multichain receptors were studied most extensively using 
cytokine receptors, whose signaling does not necessarily coincide with large scale clustering 
and is therefore more likely explained by conformational changes or chain rearrangements. 
Changes in the distance between the common signaling chain and ligand-specific chains were 
detected by FRET in IL-2 family receptors.̂ "^ Likewise, in the case of the leukemia inhibitory 
factor receptor (LIFR), FRET between the LIF-specific chain and gpl30 increased upon 
binding of LIF indicating ligand-induced heterodimerization or an intra-complex rear
rangement.^ The latter possibility was supported by another study, which found that FRET 
between gpl30 and LIFR was constitutive at the steady state and increased above the basal 
level upon LIF binding.^^° An opposite effect was observed for the IL-17 receptor: FRET 
between intracellular domains of IL-17R (labeled with CFP and YFP) was constitutive at 
the steady state and decreased upon binding of IL-17.̂ ^^ The decrease indicated a scissor-like 
opening of the intracellular domains,^ ̂ ^ which was reminiscent of earlier observations in the 
interferon-y receptor.^^^ In the case of the IL-10 receptor, binding of IL-10 did not cause a 
change in FRET between the cytoplasmic domains.^^^ The homotypic lateral interaction 
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Figure 2. Imaging of heterologous FRET by dual laser, two-photon, interline excitation. A) 
Experimental system to detect the proximity between the intracellular domains of T-cell 
Receptor (TCR)^ chains. CFP denotes the mCerulean fluorescent protein. YFP denotes the 
enhanced yellow FP. B) Normalized two-photon excitation spectra of CFP and YFP or CFP 
and the red fluorescing tdimer(12) have poor overlap, which precludes efficient excitation at a 
single wavelength but allows selective excitation at 860 nm, 970 nm, and 990 nm, respectively. 
C) Raw two-photon excited images of mCerulean, EYFP, and the raw FRET at the indicated 
excitation/emission wavelengths, respectively, in a mixture of T-cells expressing different ratios 
of TCR^-mCerulean and TCR^-EYFP. D) Quantitation of donor-normalized sensitized emission 
in cells co-expressing donor and acceptor. Donor normalized sensitized emission (VJD) was 
calculated after subtracting the directly excited donor and acceptor signals from the raw FRET 
channel, as generally described for single photon FRET.̂ ^ VJD = (laeo/sso -dlaeoMvo-^lgyo/ssoV 
heo/470' The cross-talk coefficients d and a were calibrated based on donor or acceptor only 
cells imaged under identical conditions. Non-interacting: co-expressed cytoplasmic (free) 
fluorescent proteins. E) The optical path of the dual laser multiphoton microscope setup. 
MaiTai /, 2: femtosecond lasers, e: electrooptical modulators, p: polarization merge optics, 
m: mirrors, xy: resonant scanner (Leica SP2 RS), exp: beam expander, dm: dichroic mirror, 
PMT: photomuitipliers, o: water dipping objective (Olympus 20 x NA = 0.95 or Leica 63 x NA = 0.9). 
The figure is adapted from ZaI et al. Proceedings of SPIE, with permission from the Society 
of Photo-Optical Instrumentation Engineers 2007.^°^ 
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between gpl30 chains was studied in IL-6R using CFP and YFP fusions of gpl30. FRET 
was constitutive and did not increase upon IL-6 ligation, which indicated that the gpl30 
chains in IL-6R are pre-associated and are not further cross-linked by IL-6.^ Ligand-induced 
internal rearrangements in BCR were also demonstrated by FRET7^ A largely undeveloped 
is the issue of the orientation of receptor domains with respect to the cell membrane, which 
may be tackled by introducing FRET donors or acceptors to the lipid environment.^ ̂ "̂  

Imaging TCR-Coreceptor Interactions in the Immunological Synapse 
According to the kinetic proofreading model of peptide-MHC recognition by TCR, genera

tion of activation signals depends on a transient complex that needs to be stable enough to allow 
phosphorylation of CD3 chains by the lck kinase. Lck is brought to the immunological synapse by 
CDS or CD4 glycoproteins. Like TCR, these molecules can bind to MHC-I or MHC-II, respec
tively, and are brought in the vicinity of TCR coincident with TCR ligation. '̂̂ ^^ It was therefore 
possible that the dynamics of the interaction between TCR and coreceptors is regulated by the 
ligand quality. This hypothesis was tested by imaging FRET between the intracellular domains 
of TCR^-CFP (donor) and CD4-YFP (acceptor) using the sensitized emission method, which 
allowed three-dimensional time-lapse imaging of the immunological synapse and quantitation in 
terms o£Eapp. Indeed, TCR^ and CD4 are brought together as early as 30 s after T-cell encounter 
of agonist peptide-loaded antigen-presenting cells, i.e., before a cSMAC is formed, indicating that 
cSMAC formation is not prerequisite for the TCR-CD4 association.^^ Moreover, E^pp was de
creased in a dominant fashion by presentation of antagonist peptides that inhibit T-cell activation. 
A similar although not identical effect was observed between TCR^-CFP and CD8-YFP.̂ ^^ The 
TCR^-CDS associations were transient and had lower peak FRET efficiencies than the association 
of CD4 with TCR^, indicating a kinetic and/or structural difference between the ways CDS and 
CD4 associate with TCR. Nevertheless, the kinetics of association between TCR^ and CDS in 
immune synapses correlated with the biological activities of presented peptides: agonists drove a 
fast raise of FRET and antagonists caused delayed FRET.̂ ^^ Overall, FRET imaging supports the 
kinetic proofreading role of CD4 and CDS. However, it remains unclear to what extent exactly is 
FRET due to the formation of relatively stable complexes, i.e., affinity-driven interaction, or due 
to the regulation of diffusion-driven collisions in the immunological synapse. 

Affinity versus Random Collisions: Acceptor Titration FRET 
Irrespective which imaging modality is used to obtain quantitative FRET images, further 

analysis of the data, preferably in terms of FRET efficiency, is the key to study the mechanisms of 
protein interactions. Receptor signaling is often coincident with the clustering of receptors in a small 
area of the cell membrane; for example TCRin the immunological synapse, BCR cross-linking, or 
receptor clustering in lipid rafts. When using FRET to image receptor interactions, the question 
comes up on how to distinguish FRET due to the formation of specific complexes from FRET 
due to random collisions in the areas of receptor clustering. 

In general, the strategy is to discriminate specific complexes from random coUisions by titrating 
donors and acceptors and measuring local changes of FRET efficiency. For high affinity interac
tions, .Eapp is relatively independent of concentration (beyond stoichiometric acceptor concentra
tion), while FRET due to random collisions will be evident only at a high local concentration 
of acceptor. ̂ ^̂ '̂ ^̂  The acceptor titration approach found extensive use to study how proteins are 
arranged in lipid rafts, which are submicrometer-sized assemblies of lipids and membrane proteins 
that are often involved in signaling. Titration analysis of FRET between raft-resident glycosyl-
phosphatdylinositol (GPI)-linked fluorescent proteins showed that FRET depends on concentra
tion, which is indicative of random interactions.^ ̂ ^ More detailed analysis involved fitting alterna
tive theoretical raft models to the observed relationship between apparent FRET efficiencies and 
concentrations of donors and acceptors. ̂ °̂ The best fit was with the model where lipid rafts are 
small and harbor only several GPI-linked proteins in equilibrium with dispersed monomers. A 
poor fit was observed with models that assumed larger and more populous rafts. Concentration 
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dependent FRET was also noted in other systems such as MHC-I, MHC-II, CD48, the IL-2R/ 
IL-15R subunits, or ErbB transmembrane receptor tyrosine kinases.̂ ^̂ '̂ ^̂  Some of these concentra
tion effects could be attributed to partitioning in lipid rafts. Overall, these studies demonstrated 
that fitting the data to mathematical models is a powerfiil tool to distinguish complex formation 
from random interactions as well as to evaluate the distribution of receptors in membrane micro-
domains.̂ "̂̂ '̂ ^̂  Moreover, acceptor titration is also applicable to high throughput FRET screening 
to distinguish high affinity ligands in living {E. coli) cells.̂ ^^ 

Mathematical Model of FRET for Simultaneous Complex Formation 
and Random Collisions 

It would be valuable to have a mathematical model to quantify FRET due to donors and ac
ceptors forming specific complexes concurrent with interacting randomly due to diffiision-driven 
collisions. Both of these processes have been proposed to occur in immunological synapses. The 
frequency of random coUisions can be characterized by the bimolecular interaction constant 
that is related to the diffusion coefficient in the Stern-Volmer equation of diffusion quenching of 
donor hfetimes.̂ ^̂ *̂ ^̂  We modeled E in response to titration of donors by acceptors in solution 
by combining the Stern-Volmer equations with affinity and taking into account the relationship 

Figure 3. Modeling of the FRET dependence on the acceptor concentration for concurrent 
processes, formation of specific complexes and diffusion-driven random collisions. The 
model was derived by combining the Stern-Volmer equation for collision quenching with 
the affinity constant and the fluorescence lifetime—FRET efficiency relation. Assuming a 1:1 
stoichiometry and donor concentration 2 x 1 0 ' ^ M. Squares: a high affinity interaction, 
Ka = 10 ,̂ triangles: a low affinity interaction Kg = 10^ dots: no affinity, Ka = 0. Solid lines: no 
collisions, dashed lines: an intermediate rate of random collisions, dotted lines: a high rate 
of random collisions. 
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between donor lifetimes and FRET efiGciency. Figure 3 shows a family of analytical solutions for 
different affinities and diffusion kinetics. The model exhibits the characteristic biphased response 
ofEapp. The initial raise in Eapp is determined by the affinity constant, while the slope o£Eapp above 
the stoichiometric concentration reflects the bimolecular interaction constant. We envisage that by 
curve fitting the two-dimensional version of this model to the experimental data, it will be possible 
to evaluate the relative contribution of affinity and random collisions in membrane compartments 
as well. In general, continued development of acceptor (and donor) titration analysis will help in 
discriminating which mechanisms of protein interactions are modulated by ligand engagement. 

Conclusion 
Rapid development of quantitative imaging techniques allows non-invasive study of protein 

biochemistry in living cells. Arguably, a particularly promising approach is a combination of FRET 
imaging with computational modeling of FRET efficiency at different concentrations of donor 
and acceptor. Through such analysis, FRET imaging can be used to evaluate the affinity of complex 
formation and the frequency of diffusion-driven random collisions, both of which may contribute 
to signal transduction by multichain receptor complexes. Future developments will improve the 
quantitative analysis of FRET as well as applying other, complementary imaging approaches to 
uncover the structure and internal dynamics of cell surface receptors in living cells. 
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