
P

Parafrase

Bruce Leasure
Saint Paul, MN, USA

Synonyms
Parallelization

Discussion
Parafrase was a successful project allowing experi-
mentation in source-to-source translation of FOR-
TRAN programs. Parafrase was the work of David J.
Kuck and his students at the University of Illinois at
Urbana-Champaign. It was supported largely by NSF.
The name of system is due to Stott Parker. A wide
variety of optimization strategies were developed by
researchers, and the performance achieved was mea-
sured using a broad cross section of applications, across
a variety of theoretical and actual machines. Parafrase
was successful because it reduced the effort required of
the researcher to implement an optimization strategy,
and to perform experiments.

Parafrase was structured much like a multi-pass
compiler of the same era. The FORTRAN program
being compiled was processed one routine at a time.
A scanner consumed the source code for a FOR-
TRAN routine and built an equivalent representation
in the Internal Language (IL). Then a series of passes
that transformed the IL in various ways was run. The
researcher would select the passes based on the goals of
the research. Then lastly, a FORTRAN code regenera-
tor pass was run. This entire process was repeated for
each of the routines in the input program. The FOR-
TRAN program output by Parafrase could be compiled
by a FORTRAN compiler and run on any machine.

Because the ultimate goal of Parafrase was to
regenerate optimized FORTRAN code, the IL used by
Parafrase was considerably different than the IL found
in a compiler. The IL used by Parafrase was a relatively

straight forward representation of FORTRAN source,
with some additional look-aside tables to hold sum-
mary information about variables and loop structures.
Each pass was required to accept and generate this
common IL.

Having an IL that was very close to FORTRAN
enabled Parafrase to provide an easily understandable
IL dump by simply pretty printing the FORTRAN
program that was represented in the data structures.
The pretty printer could be invoked by Parafrase at the
end of a pass, or called by the pass itself to display inter-
mediate results. This made it easy for the researcher
to see what an optimization was doing because the
researcher only had to understand FORTRAN, not the
details of some unusual IL.

Parafrase also included an IL verification phase that
could be enabled to run after any pass to ensure that that
pass was following the rules. This was especially useful
when identifying which pass was incorrectly processing
a FORTRAN routine.

Because all of the passes were required to accept
and generate the common IL, the passes could be run
in any order. This flexibility allowed the researcher to
construct a specialized ordering of the passes to achieve
specific goals. Very early in Parafrase’s life, the ability to
specify the order of the passes in a text file was added.
This enabled the researcher to adjust the order of the
passes without having to rebuild the executable image
of Parafrase.

Parafrase was implemented in PL/I and run on an
IBM System/ before virtual memory. With all of
the passes and the limited amount of physical mem-
ory available, the executable had to be built using the
technique of overlays. By placing each pass in its own
overlay, the passes would all share the same memory
address space, thus reducing the memory foot print.
Of course, it was a little more complicated than that,
and the obscure interface to IBM’s link editor to build
the overlays was understood by only a few people.
A build tool was created for Parafrase to automatically

David Padua (ed.), Encyclopedia of Parallel Computing, DOI ./----,
© Springer Science+Business Media, LLC

http://dx.doi.org/10.1007/978-0-387-09766-4_2162

 P Parafrase

identify an appropriate overlay structure, to create the
appropriate link editor commands, and to build the
overlay executable, thus relieving the researcher from
understanding the messy details of this process.

When researchers started to use Parafrase on more
than just toy programs, it was quickly discovered that
a scanner handling ANSI FORTRAN was not nearly
strong enough.Thevarious extensions to FORTANpro-
moted by computer manufacturers had changed com-
mon use. The only solution was to add these extensions
to the Parafrase scanner, and to extend the IL where
needed to include them. Eventually, VAX, CDC, HP,
IBM, and other manufactures extensions were imple-
mented. Some syntax extensions were just syntactic
sugar, and were translated away by the scanner. Others
required unique extensions to the IL.

Another unexpected discovery when processing
non-toy programs was that most FORTRAN programs
contained hand optimized code targeting a particu-
lar machine. For most of the research performed with
Parafrase, the ideal input program was one that was not
hand optimized.

Consider the case of exploring the impact of vec-
torization on a program. If the loops in the program
that could be vectorized were unrolled by hand in the
original code, then the vector length and the refer-
ence pattern for each vector operand would be different
than if the loops were not unrolled in the original pro-
gram. Vector lengths would be shorter, and operands

would be less likely to be contiguous. On most vec-
tor capable machines, these changes would seriously
impact performance.

Consequently, a collection of de-optimization passes
were written for Parafrase. It was impossible to write
de-optimization passes for every hand optimization.
There were just too many. Instead, we kept track of
how many important loops exhibited a particular hand
optimization, and whenever a sufficiently large number
of loops exhibited a particular hand optimization, we
wrote a de-optimization pass to address the issue.

Parafrase ended up having de-optimization passes
and optimization passes that performed inverses of
each other for many of the common optimizations. For
example: Loop rerolling and loop unrolling, forward
substitution and code floating, and loop distribution
and loop fusion.

The research efforts supported by Parafrase dealt
with optimization techniques for supporting new types
of hardware acceleration devices: vector processors,
streaming memory systems, cache memory systems,
multiple functional units, parallel processors, and
memory banks. At the time, the impact of any one
of these acceleration devices on the performance of
ordinary programs was not well understood.

Theoptimization techniques to automatically exploit
these acceleration devices were not well understood.
Parafrase provided a reasonable vehicle to explore opti-
mization techniques.

Parafrase. Table Theses related to Parafrase

Year Author Topics

 Yoichi Muraoka Arithmetic expressions, loop dependence testing, wave fronts, scheduling

 Steve S.C. Chen m-th order linear recurrences

 Ross A. Towle Dependence testing, loops with branching, parallel parsing time

 Bruce Leasure Design of Parafrase

 Walid Abu Sufah Virtual memory optimization, name partitioning, loop reindexing

 Utpal Banerjee Data dependence tests for multi-loop programs

 David A. Padua Clustered system loop transforms, loop pipelining, scheduling

 Robert H. Kuhn Vector optimization, decision tree optimization

 Michael J. Wolfe Direction-vector based optimization, recurrences, while loops

 Ron G. Cytron Doacross loop optimization and scheduling

 Alex Veidenbaum Blocks of assignment statements, coarse grain optimization

 Constantine Polychronopoulos Loop coalescing, subscript blocking, static and dynamic scheduling (GSS)

Parallel Computing P

P

The history of research can be traced from the early
s to the mid s through thesis topics, shown in
Table , and published papers listed in the References.
Twelve theses and papers are listed from a larger
collection of work on the Parafrase system.

Bibliography
. Kuck D, Muraoka Y, Chen SC () On the number of oper-

ations simultaneously executable in Fortran-like programs and
their resulting speedup. IEEE Trans Comput C-():–

. KuckD, Budnik P, Chen SC, Davis E Jr, Han J, Kraska P, Lawrie D,
Muraoka Y, Strebendt R, Towle R () Measurements of paral-
lelism in ordinary FORTRAN programs. Computer ():–

. Kuck DJ () Parallel processing of ordinary programs. Adv
Comput :–, Rubinoff M, Yovits MC (eds). Academic
Press, New York

. Abu-Sufah W, Kuck D, Lawrie D () Automatic program
transformations for virtual memory computers. Proceedings of
the national computer conference, AFIPS Press, June ,
pp –

. Kuck DJ, Padua DA () High-speed multiprocessors and their
compilers. Proceedings of the international conference on
parallel processing, Aug , pp –

. Padua DA, Kuck DJ, Lawrie DH () High-speed multipro-
cessors and compilation techniques, special issue on parallel
processing. IEEE Trans Comput C-():–

. Kuck DJ, Kuhn RH, Leasure B, Wolfe M () The structure
of an advanced vectorizer for pipelined processors. Proceedings
of COMPSAC , The th international computer software and
applications Conference, Chicago, IL, Oct , pp –

. Kuck DJ, Kuhn RH, Padua DA, Leasure B, WolfeM. Dependence
graphs and compiler optimizations. Proceedings of the th ACM
symposium on principles of programming languages (POPL),
Williamsburg, VA, Jan , pp –

. Cytron R, Kuck DJ, Veidenbaum AV () The effect of restruc-
turing compilers on program performance for high-speed com-
puters. In: Duff IS, Reid JK (eds) Special issue of computer physics
communications devoted to the proceedings of the conference on
vector and parallel processors in computational science II, vol
Elsevier Science Publishers B V (North-Holland Physics Publ.),
Oxford, England, pp –

. Lee G, Kruskal CP, Kuck DJ () An empirical study of auto-
matic restructuring of nonnumerical programs for parallel pro-
cessors. Special issue on parallel processing. IEEE Trans Comput
C-():–

. Constantine Polychronopoulos, Kuck D, Padua D ()
Utilizing multidimensional loop parallelism on large-scale
parallel processor systems. IEEE Trans Comput ():–

Parallel CommunicationModels

�Bandwidth-Latency Models (BSP, LogP)

Parallel Computing

David J. Kuck
Intel Corporation, Champaign, IL, USA

Definition
Parallel computing covers a broad range of top-
ics, including algorithms and applications, program-
ming languages, operating systems, and computer
architecture. Each of these must be specialized to sup-
port parallel computing, and all must be designed and
implemented coherently to provide highly efficient par-
allel computations.

Discussion

Introduction and History
All computations transform data – logically and arith-
metically – following a series of algorithms. The broad
goals of parallel computing are to improve the speed or
functional ease with which this is done. Speed and func-
tionality goals can usually be met, but in many practical
cases, difficulties arise that present far more complexity
than does traditional sequential computing. The fol-
lowing gives an overview of background issues and the
current state of parallel computing.

The long and diverse history of computing is inter-
twined with parallelism. There will be no attempt here
to formulate a rigorous definition of parallel comput-
ing. Instead, an introduction to parallel computing can
be provided by sketching the many uses for parallelism
over time. Computer system performance has always
been the key driver of hardware parallelism. On the
other hand, software parallelism has been driven by both
performance and application functionality.

The baseline of parallelism is serial computing, and
in the beginning, some computers operated in bit-serial
fashion. One bit, the minimal information unit in a
computer, was processed at a time. To improve speed,
multiple bits were fetched from memory and trans-
formed in parallel, a process that continued up to word-
level computation (or bits). This required making
all data paths in a system – memory, processor, and
interconnection – one word wide. Fast parallel algo-
rithms for individual arithmetic operations occupied
the research agenda in early computing, into the s.

http://dx.doi.org/10.1007/978-0-387-09766-4_189

 P Parallel Computing

Some early machines used one hardware (HW)
technology to implement all parts of a computer,
from processor to memory. Over time, as technology
advanced and more performance was demanded, dis-
tinct technologies were used in different parts of
machines – e.g., transistors for processing andmagnetic
cores for memory. As processor technology speeds
increased more quickly than memory, parallel memory
unitswere introduced tomatch the data rates (i.e., band-
widths measured in bits per second) of processors. As
one part of the processor became a performance bot-
tleneck relative to others, multiple units (e.g., adders)
were introduced within the processor.

The idea of performing more than one arithmetic
operation in parallel is an obvious way to improve per-
formance, and was mentioned by the first computer
designer, Charles Babbage (who designed a mechanical
digital computer in the s [,]). Eventually, reason-
ably balanced systems for various types of computation
became well understood, and parallelism as above was
employed to produce very efficient uniprocessor sys-
tems. Simultaneous operation on whole words and over-
lap of various operations are the basic principles that
support parallelism.

After sufficient HW has been invested to produce a
good architecture using various types of low-level par-
allelism, the clock speed (which determines the time
of a computer’s most basic steps) can be increased to
speed up a system. From the beginning, new device
technology allowed faster clocks; from the s on,
this and architectural refinements drove system perfor-
mance. But at the high end of performance demands,
the ability to change the internal structure of a sys-
tem by simply adding low-level parallelism became
increasingly difficult and yielded slower growth. Archi-
tectural refinements were added to keep systems bal-
anced (e.g., cache memory hierarchies) as technology
advances drove processor performance faster than off-
chip memories.

Parallel Architectures
System clock speed determines the bandwidth (bits/sec)
of various computer elements, and the clock speed
depends on the basic technology available. Physical
issues underlie technology, including:

● Transistor density in an integrated circuit limits
clock speed

● The speed of light limits data transmission time or
latency (measured in seconds)

● Manufacturing costs of HW limit the complexity
that can be built into a system

To avoid limits imposed by the first and last of these,
parallel processors can be used, each carrying out part of
an overall computation. In other words, transistor den-
sity increases can be frozen as can the complexity of
faster uniprocessor manufacturing, by moving to par-
allel processing. Although this forces the system size to
grow, which in turn exacerbates latency issues, two of
the three physical issues are controlled. The number of
parallel units being used is often expressed as the degree
of parallelism, n, see Fig. .

Parallelism also raises a new architectural issue:
How does one interconnect the processors and the pro-
cessors to memory? Ideally one would choose direct
connection of each unit to all others (a crossbar switch),
but this raises severe cost and design issues as the degree
of parallelism grows. At the other extreme, the bus can
be extended from within each processor to all oth-
ers, a simple but low-performance idea. Between these
extremes, one can choose a fast parallel ring, torus, or
shuffle interconnect network pattern, each with many
parallel data transmission paths and various perfor-
mance and manufacturing trade-offs. For details and
more references see [,].

From the s through the s, a host of research
and commercially available parallel systems were built,
exploring a wide variety of architectural trade-offs.
At the same time, beginning in the s, several related
approaches to computing emerged. Multiprocessing,
the connection of whole computers to increase system
throughput, began. The distinction can be captured by
viewing parallel computing as turnaround computing –
whose goal is the fast turnaround of one job at a time. In
contrast, multiprocessing can be viewed as throughput
computing – the goal being to complete a large volume
of similar transactions quickly.

The third approach, distributed computing arose
for a totally different reason []. Large companies
bought multiple computer systems at different sites, and
wanted to exchange results among them – e.g., finan-
cial information for thewhole enterprise – via telephone
line communications. Distributed computing in general
puts less demand on communication than parallel com-
puting or multiprocessing. By the late s, this idea

Parallel Computing P

P

p1

p2

.

.

.
pi

.

.

.

pn

D
egree of parallelism

Load
imbalance

Nonoverlapped
communication
time

Parallel-phase
operations / processor

Parallel Computing. Fig. Key parallel computation parameters

grew into the ARPANET among government contrac-
tors and agencies, and was followed by new concepts
that led to the Internet.

At the HW technology level, transistor speeds
increased continually and casualties developed – by
the early s ECL (emitter coupled logic) could
not be pushed faster, and was supplanted by tradi-
tionally slower CMOS transistors. By the first decade
of the twenty-first century, it became clear that sil-
icon transistors, whose size continued to decrease
(Moore’s Law []) and whose power dissipation density
concomitantly increased with clock speed, were hitting
a “powerwall.”The result was that clock speeds could no
longer increase, even though densities could continue
to grow, allowing more processors on a single semi-
conductor chip. Thus, parallel computing reached the
mainstream, and by has become ubiquitous.

Parallel Software Concepts
Over the decades of parallel architecture develop-
ment, research into algorithms and parallel pro-
gramming tools enjoyed broad growth. However,
software (SW) application development is a very
diverse subject, and parallel programming has not
matured at the rate that parallel HW has arrived
in the mainstream of computing. Roughly speak-
ing, parallel application development suffers from all
the problems inherent in sequential programming,

plus a number of additional problems arising from
parallelism.

As is obvious from the release delays, security weak-
nesses, and other flaws in sequential applications, SW
development methods are still maturing. Some decades
after sequential computing HW reached its eventual
complexity (except perhaps for cache hierarchy man-
agement), SW development remains labor intensive,
with results that are error prone, and hard to test.
Improving parallel SW development tools remains an
important activity.

Application Software Development
In , various programming languages are able to
capture any given algorithm in many forms. Some
algorithms and applications are naturally parallel.
For example, little dependence exists among tasks in
multiprogramming and distributed computing, and any
language that suits their problem domain will do. Other
applications contain data and control dependences that
appear to force sequential execution of program phases.
While a continuum of ideas exists to deal with parallel
programming, the following breakdown captures some
key points, concluding with the unexploited parallelism
remaining in useful parallel applications. This section
is an introduction; more details appear in the following
sections.

 P Parallel Computing

Parallelization Methods
. For some apparently nonparallel algorithms and

programs, effective SW procedures lead to good
parallel performance:
(a) Compilers can extract some parallelism from

sequential constructs by language-level trans-
forms [].

(b) Parallel libraries allow developers to express
parts of programs in parallel terms at the lan-
guage level, without the need to understand the
underlying parallel algorithms [].

(c) For other program constructs, compilation is
too hard and libraries are not available, so a
language or algorithm change is necessary for
compiler success, forcing the application devel-
oper to think through parallelism detail. Three
programmingmodelswill be discussed in detail
below as found in [–].

Thus, there are several ways to adjust some programs to
be suitable for efficient parallel execution, but in other
cases parallelism is harder to obtain.

Parallelization Impediments
. For the most difficult applications, algorithms

and their programs, there are inherent, non-
parallelizable issues:
(a) Data and control dependences arise that can-

not practically be removed by a combination of
compiler and run-time HW checks. For exam-
ple, too much branching, or too many pointers
or run-time parameter tests exist.

(b) Architecture-related clashes arise, e.g., there
is too much nonoverlapped interprocessor
communication or imbalance between the sizes
of parallel tasks that waste parallel computation
time, see Fig. .

In case , the best approach is to rethink the algo-
rithms and program, and restructure the program or
use entirely different algorithms. These steps can be
very difficult and nonintuitive, unless a developer is
specifically driven by the parallel architectural con-
straints imposed, understands parallel languages, and
has a deep understanding of the underlying problem
and various algorithms for solving it.

Unexploited Parallelism in “Well-Parallelized”
Applications
. Consider the amount of “unexploited” parallelism

remaining in an application that is already regarded
as well parallelized for a given system. In other
words, how far do parallel applications in use devi-
ate from the perfect exploitation of parallelism in
their algorithms? This question exposes language
and compiler issues. Assume that an algorithm and
program contain reduction operations in the form
of Eq. , which sums the elements ai of array a into
scalar x. If the compiler cannot parallelize this,

x = ; for all i (x = x + ai) ()

then unexploited parallelism can be recovered by
using a language (extension) that contains a paral-
lel reduction operator. Much language research is
directed toward filling such language gaps in ways
that are easy to use in specific algorithms or appli-
cation domains, e.g., games, image processing, and
transaction processing.

Figure summarizes several details that determine
parallel system performance. The shaded areas repre-
sent useful work (their unequal lengths show that not
all processor steps take the same amount of time),
and the trees represent communication or synchroniza-
tion, e.g., join/fork or message-passing patterns. Per-
formance increases with the degree of parallelism and
parallel-phase operations per processor, which increase
the use of parallel resources. Performance decreases due
to load imbalance and nonoverlapped communication,
which waste resources relative to decreasing elapsed
time in Eq. .

SystemArchitecture Performance Criteria
Let computation time be defined as a measure of the
useful processing steps in a source program, i.e., corre-
sponding to necessary steps in the original algorithms
and their program counterparts. Communication time
includes the total HW interconnect time and system
SW overhead required in a program and its resulting
computation to support the desired computation time.

Our overall objective is to minimize total elapsed
time, in Eq. (cf. Fig.).

Total elapsed time = Computation time

+ Nonoverlapped communication time ()

Parallel Computing P

P

In general, the diversity of parallel architectures, espe-
cially issues arising from major increases in processor
count, change some of the inherent needs of algorithms
to satisfy the constraints outlined above. Furthermore,
each data size to which a given algorithm applies may
force algorithm adjustments for machine size. Thus, for
a given algorithm type, adaptations to machine param-
eters may be necessary.

As outlined above, algorithms, languages, run-time
libraries, and architecture are closely linked in obtain-
ing top performance. Good parallel performance across
all types of problems can usually be obtained by an
approach that includes all of these factors.

A universally important performance criterion that
follows from Eq. is shown in Eq. (where communica-
tion time includes overlapped andnonoverlapped time).

Computation time
Communication time

≥ ()

Maintaining this inequality, averaged over time win-
dows throughout a computation, means that the HW
design and application SWrunningmay be brought into
balance by overlapping communication with meaning-
ful computation.

The ratio can be used as a guideline in system and
SW design. If the ratio of Eq. is less than , increas-
ing the numerator, while decreasing the denominator
can reduce overall time and bring the HW use into bal-
ance. For example, if the ratio is less than , performance
may be improved by using an algorithm with redundant
operations that reduces the total data communication
time. Such a trade-off causes no problems because the
key ratio was too low to begin with.

Parallel Performance
A successfully performing parallel computation must
satisfy four basic requirements:

. Algorithmic parallelism
. Program parallelism
. Data size and parallelism
. Architecture balance and parallelism

These success requirements have many interpretations
and interrelations, which are sketched below. They
include mathematical issues at the algorithmic level,
programming languages that well-suit important appli-
cation areas, accommodating the data structures and

sizes that occur naturally, and then synthesizing these
requirements into an architectural design that is well
suited to efficient solution of the problems defined
by the original applications. Many books discuss var-
ious aspects of performance for a range of algorithms
and applications, ranging from broad coverage [] to
emphases on nonnumerical [] to numerical [] com-
putations.

. Algorithmic parallelism: The algorithms used must
avoid dependences among operations that force one
step to follow another. The essence of parallelism is
to be able to do large numbers of operations simul-
taneously, and this must begin at the algorithm and
data structure level. A simple case is an interactive
program that has several sequential algorithms, each
of which can be run simultaneously – e.g., a game
may use three processors working independently on
processing user input, readying the next frame, and
displaying the current frame.

A more scalable algorithm that may require any num-
ber of processors is one that operates on arrays of many
numbers, or files of many records. For example, if com-
puting xi requires ai and bi , ≤ i ≤ n, as in Eq. ,
the process can be carried out for any number of val-
ues at once. If it requires xi−, as in Eq. , this is a linear
recurrence, which

for all i (xi = ai + bi) ()

x = ; for all i (xi = xi− + ai) ()

appears to have sequential dependences but can be
transformed and computed by reasonable parallel algo-
rithms inO(log n) steps. On the other hand, nonlinear
recurrences, e.g., Eq. (≤ i ≤ n), usually present
insurmountable mathematical problems

x
− = ; x

− = ; x = ; for all i (xi =
ai(xi−)xi−

bixi−
)

()

for parallelization, so a different algorithm must
be found.

. Program parallelism: Given a set of parallel algo-
rithms, expressing themeffectively in an appropriate
parallel language is relatively straightforward. How-
ever, the structure of an algorithm and architecture

 P Parallel Computing

will force the choice of language, as the following
example illustrates.

Game Example: Consider the many algorithms neces-
sary to support an interactive computer game. At the
highest level, communication from the players must
be coordinated with the internals of the game. These
include a changing scene driven by the game logic as
well as modifications made by players’ actions. High-
quality graphics depends on computationally intense
solutions of complex physics equations for mechani-
cal structures, fluid flow, cloth and hair motion, etc.
An important consideration for game writers is how
to use all of the computing power available to create
appealing graphics and game experiences. Finally, each
new frame must be composed and displayed. All of this
must occur in real time.

Three programming models form the core of most
programming languages and methods (cf. Fig.).

(a) Message passing among communicating sequen-
tial (or parallel) processes may be the appro-
priate programming model at the highest level
of game SW. Each process runs under indepen-
dent control of the operating system on one
or more processors, with the added feature that
processes occasionally may send data to, and
receive data from, one another. To keep the pro-
gram logic valid, the system SW must provide
for processes interrupting one another, and later
expecting acknowledgements back fromother pro-
cesses. Communication delays are typical of per-
formance problems in message-passing programs.
A good exposition of MPI, a popular message-
passing language for scalable systems, is found
in [].

(b) The fork-join parallelmodel matches well with the
execution of high-level tasks internal to a game.
Any number of tasks can be dispatched with fork
statements to separate processors, in the form of
threads, and when their independent work is fin-
ished, they combine in join statements. Threads
sharememory andmay be controlled by each appli-
cation without OS intervention in scheduling. The
degree of parallelism is limited by the number of
parallel tasks. For a description of OpenMP and its
use in shared memory programming, see [].

(c) Data parallel languages, embody a third type of pro-
gram parallelism. They normally express a great
deal of low-level parallelism in the data, e.g.,
application-specific array oriented languages can
be used to express parallelism directly in the form
required by an application algorithm. Equation is
an example, and may occur in rendering an image
for display, where each pixel is computed inde-
pendently of all others. Another example is movie
making, where each frame can be rendered inde-
pendently of the others. An introduction to Cuda
and OpenCL, two recent data parallel languages, is
given in [].

. Data size and parallelism: The degree of parallelism
is also limited by data dependence and data size.
The number of independent data structures and the
size of each are indicators of the degree of available
parallelism in a computation. A successful paral-
lel computation requires data locality in that pro-
gram references stay relatively confined to the data
available in each processor – otherwise too much
overhead time can be consumed, ruining parallel
performance.

The number of parallel-phase operations per proces-
sor must be sufficient to dominate the communication
time per phase, see Fig. . Equation can be used to
explain the reason why. In parallel algorithms, com-
munication among processors (or processor-memory
communication) occurs with some frequency; in the
easy case, the frequency is low. But as the frequency
grows, so does the communication in any time window.
Equation says that as the communication time exceeds
computation time, performance can suffer. If there is
little data per processor, then the computation timewin-
dow without communication is expected to be small.
Thus a small numerator leads to a large denominator,
driving the ratio to violate the inequality.

. Architecture balance and parallelism: The architec-
ture must have a sufficient number of processors,
sufficiently fast global memory access, and interpro-
cessor communication of data and control informa-
tion that allows parallel scalability. As systems grow
in degree of parallelism, the memory and commu-
nication systems define the success of a design.

Parallel Computing P

P

Of course, these qualitative statements imply many
difficult technical design choices (mentioned earlier)
that must provide a good match to the programs and
data sets to be run. In systems with low degrees of
parallelism, including modern multicore chips, all of
the processors generate addresses for a single, shared
address space. This shared-memory parallelism (SMP)
allows them to communicate quickly and simply via
memory. But as the degree of parallelism increases and
parallelism grows, distributed-memory parallel (DMP)
systems are used.

Whether DMP clusters of smaller SMP systems
occupy a single large computer room, or span dif-
ferent cities, large systems have nonuniform memory
access time (NUMA), so called because of the very
large range of overheads involved in communicating
with local (SMP) and global (DMP) memory. These
systems present greater programming challenges, in
order to minimize and overlap communication and
computation time (recall Eq.) and to schedule tasks
properly (load balancing) tominimize wasted resources
(cf. Fig.).The great variety in real-world computations
has led designers down many successful paths from the
s to the present [,].

Parallel Program Correctness
Correctness is harder to determine for a parallel pro-
gram than for a sequential program, and fixing bugs
is concomitantly much harder. Whole new classes of
bugs arise in parallel programs, for various reasons.
A major problem that arises at the hardware level is
non-determinism of execution. Because the system is
large and some clocks may be out of sync, slight timing
variationsmay exist from run to run of a given program.

Even if in sync, different interactions with the OS
(e.g., on which processor a process is scheduled) or with
other applications, or slightly different data-dependent
execution paths can cause a program to execute in dif-
ferent ways each time it runs. These nondeterministic
issues make error states nearly impossible to capture
or recreate. This is obvious for reactive or interactive
programs, whose inputs are difficult to recreate exactly
(precisely when did a keystroke that triggered a process
occur?).

In some parallel programs, synchronization points
occur to coordinate the work of distinct processors, e.g.,

at join points and at the end of data parallel operations.
These are necessary to ensure that the computations on
all processors are complete for a given parallel phase of
the overall program, before continuing. In some pro-
gramming languages, message passing is used to send
data and synchronize control of various processors.This
is common in distributed memory machines. Software
developers often find it hard to get the logic of such pro-
grams exactly right, given the variety of inputs some
programs have, and the fact that multiple developers
may have worked on a given section of code.

The logic of some programs may require critical
sections, in which a data structure is accessed by only
one computational process at a time. For example, if
work tasks are being chosen from a queue, to assure
that each task is assigned to only one processor, the task
assignment algorithm would include a critical section.
Software locksmay be used to allow just one process at
a time to execute a critical section.

When combinations of the above occur, various
anomalies may arise, including program deadlock, in
which, e.g., two processors halt, each waiting for the
other. Inwhat is perhaps theworst case, poorly synchro-
nized programs actually do not halt, but spend so much
time waiting for one another and occasionally proceed-
ing, that the effect is to lead naïve developers to confuse
a complex correctness bugwith a performance problem.
The result may be fruitless developer time spent using
performance tools and techniques to find a correctness
problem, which needs other approaches.

Future
The era of ubiquitous parallel processing hardware has
arrived, but the development of parallel application SW
is lagging. In , single chips contain eight shared
memory processors (or “cores”). Distributed memory
clusters of these, containing from to over K pro-
cessors are the state of the art in server computers.
The use of clustered systems ranges from scientific
research and engineering design, to Internet search
engine support.

While their clock speeds are frozen, the core count
in future chips will continue to provide more perfor-
mance, based on better architecture, parallel applica-
tions algorithms, and SW. Computers based on new
technologies and principles (e.g., quantum or biological

 P Parallel I/O Library (PIO)

principles) could change all of this in some application
areas, but it is most likely that parallel SW and architec-
tural issues will continue to dominate much of system
design for many decades.

There is a seldom mentioned issue in parallelism.
After the challenges of getting all current applications
well parallelized are met, how does performance con-
tinue to grow? There are only two ways that more par-
allel processors can produce more performance: larger
data sets, or more complexity in algorithms for today’s
applications. Both of these factors have driven much of
computing in the past, but clearly there are limitations
for some applications in the future. Those that cannot
grow, will be frozen at a performance level, which is fine
in some areas. However, application developers will be
forced towork harder in the future to exploit parallelism
than they did in the past, and new parallel applications
will continue to arise.

This leads to a host of new and continuing problems
to be solved in order to allow parallelism to continue
to provide performance benefits. Parallel algorithm
research will continue to provide important basic par-
allelism. SW researchers will design new development
tools to aid the above, work on languages that prevent
the commission of serious bug errors, and drive toward
hardware support for easier ways to write correct pro-
grams or tools to aid in debugging. Architecture and
HW research will provide faster systems in accordance
with Eqs. and. All of these efforts tend to increase the
degree of parallelism while reducing parallel computa-
tion time; increasing the width and shrinking the length
of Fig. .

Bibliography
. Kuck DJ () The structure of computers and computations.

Wiley, New York
. Randell B () The origins of digital computers. Springer,

New York
. Hennessy J, Patterson DA () Computer architecture: a quan-

titative approach, nd edn. Morgan Kaufmann, San Francisco
. Jia W, Zhou W () Distributed network systems: from con-

cepts to implementations. Springer, New York
. Noyce RN () Microelectronics. Sci Am ():–
. Kennedy K, Allen R () Optimizing compilers for modern

architectures. Morgan-Kaufmann, San Francisco
. Reinders J () Intel threading building blocks. O’Reilley

Media, Sebastapol
. Chapman B, Jost G, van der Pas R () Using open MP:

portable shared memory parallel programming. O’ReilleyMedia,
Sebastapol

. GroppW, Lusk E, Skjellum A () Using MPI: portable parallel
programming with the message-passing interface, nd edn. MIT,
Cambridge

. Kirk D, Hwu W-m () Programming massively parallel pro-
cessors. Morgan Kaufmann, San Francisco

. Akl SG () The design and analysis of parallel algorithms.
Prentice Hall, Englewood Cliffs

. Grama A () Introduction to parallel computing. Addison
Wesley, Reading

. Trobec R, Vajtersic M, Zinterhof P (eds) () Parallel comput-
ing: numerics, applications, and trends. Springer, New York

. KuckDJ () High performance computing. OxfordUniversity
Press, New York

. Culler DE, Singh JP, Gupta A () Parallel computer architec-
ture. Morgan Kaufmann, San Francisco

Parallel I/O Library (PIO)

�Community Climate System Model

Parallel Ocean Program (POP)

�Community Climate System Model

Parallel Operating System

�Operating System Strategies

Parallel Prefix Algorithms

�Reduce and Scan
�Scan for Distributed Memory, Message-Passing Sys-
tems

Parallel Prefix Sums

�Reduce and Scan
�Scan for Distributed Memory, Message-Passing
Systems

http://dx.doi.org/10.1007/978-0-387-09766-4_303
http://dx.doi.org/10.1007/978-0-387-09766-4_211
http://dx.doi.org/10.1007/978-0-387-09766-4_120
http://dx.doi.org/10.1007/978-0-387-09766-4_518
http://dx.doi.org/10.1007/978-0-387-09766-4_518
http://dx.doi.org/10.1007/978-0-387-09766-4_120
http://dx.doi.org/10.1007/978-0-387-09766-4_518
http://dx.doi.org/10.1007/978-0-387-09766-4_518
http://dx.doi.org/10.1007/978-0-387-09766-4_303

Parallel Skeletons P

P

Parallel Random Access Machines
(PRAM)

�PRAM (Parallel Random Access Machines)

Parallel Skeletons

Sergei Gorlatch, Murray Cole
Westfälische Wilhelms-Universität Münster, Münster,
Germany
University of Edinburgh, Edinburgh, UK

Synonyms
Algorithmic skeletons

Definition
A parallel skeleton is a programming construct (or
a function in a library), which abstracts a pattern of
parallel computation and interaction. To use a skele-
ton, the programmer must provide the code and type
definitions for various application-specific operations,
usually expressed sequentially. The skeleton implemen-
tation takes responsibility for composing these oper-
ations with control and interaction code in order to
effect the specified computation, in parallel, as effi-
ciently as possible. Abstracting from parallelism in this
way can greatly simplify and systematize the devel-
opment of parallel programs and assist in their cost-
modeling, transformation, and optimization. Because
of their high level of abstraction, skeletons have a natu-
ral affinity with the concepts of higher-order function
from functional programming and of templates and
generics from object-oriented programming, and many
concrete skeleton systems exploit these mechanisms.

Discussion
Traditional tools for parallel programming have adopted
an approach in which the programmer is required
to micromanage the interactions between concur-
rent activities, using mechanisms appropriate to the
underlying model. For example, the core of MPI is
based around point-to-point exchange of data between
processes, with a variety of synchronization modes.
Similarly, threading libraries are based around primi-
tives for locking, condition synchronization, atomicity,

and so on. This approach is highly flexible, allowing the
most intricate of interactions to be expressed. However,
in reality many parallel algorithms and applications fol-
low well-understood patterns, either monolithically or
in composition. For example, image processing algo-
rithms can often be described as pipelines. Similarly,
parameter sweep applications present a parallel schedul-
ing challenge which is orthogonal to the detail of the
application and parameter space.

Programming with Skeletons
The term algorithmic skeleton stems from the
observation that many parallel applications share com-
mon internal interaction patterns. The parallel skele-
ton approach proposes that such patterns be abstracted
as programming language constructs or library opera-
tions, in which the implementation is responsible for
implicitly providing the control “skeleton,” leaving the
programmer to describe the application-specific oper-
ations that specialize its behavior to solve a particu-
lar problem. For example, a pipeline skeleton would
require the programmer to describe the computation
performed by each stage, while the skeleton would be
responsible for scheduling stages to processors, com-
munication, stage replication, and so on. Similarly, in
a parameter sweep skeleton, the programmer would
be required to provide code for the individual experi-
ment and the required parameter range. The skeleton
would decide upon (and perhaps dynamically adjust)
the number of workers to use, the granularity of dis-
tributed work packages, communication mechanisms,
and fault-tolerance. At a more abstract level, a divide-
and-conquer skeleton would require the programmer
to specify the operations used to divide a problem,
to combine subsolutions, to decide whether a prob-
lem is (appropriately) divisible, and to solve indivisi-
ble problems directly. The skeleton would take on all
other responsibilities, from whether to use parallelism
at all, to details of dynamic scheduling, granularity, and
interaction.

Thus, in contrast to the micromanagement of tra-
ditional approaches, skeletons offer the possibility of
macromanagement – by selection of skeletons, the pro-
grammer conveys macro-properties of the intended
computation. This is clearly attractive, provided that
the skeletons offered are sufficiently comprehensive col-
lectively, while being sufficiently optimizable individ-
ually and in composition. Sometimes a skeleton may

http://dx.doi.org/10.1007/978-0-387-09766-4_23
http://dx.doi.org/10.1007/978-0-387-09766-4_2132

 P Parallel Skeletons

have several implementations, each geared to a partic-
ular parallel architecture, for example, distributed- or
shared-memory, multithreaded, etc. Such customiza-
tion has the potential for achieving high performance,
portable across various target machines.

Application programmers gain from abstraction,
which hides much of the complexity of managing mas-
sive parallelism. They are provided with a set of basic
abstract skeletons, whose parallel implementations have
a well-understood behavior and predictable efficiency.
To express an application in terms of skeletons is usu-
ally simpler than developing a low-level parallel pro-
gram for it.

This high-level approach changes the program
design process in several ways. First, it liberates the user
from the practically unmanageable task of making the
right design decisions based on numerous, mutually
influencing low-level details of a particular application
and a particular machine. Second, by providing stan-
dard implementations, it increases confidence in the
correctness of the target programs, for which traditional
debugging is too hard to be practical on massively par-
allel machines. Third, it offers predictability instead of
an a posteriori approach to performance evaluation, in
which a laboriously developed parallel program may
have to be abandoned because of inadequate efficiency.
Fourth, it provides semantically soundmethods for pro-
gram composition and refinement, which open up new
perspectives in software engineering (in particular, for
reusability). And last but not least, abstraction, that is,
going from the specific to the general, gives new insights
into the basic principles of parallel programming.

An important feature of the skeleton-basedmethod-
ology is that the underlying formal framework remains
largely invisible to application programmers. The pro-
grammers are given a set of methods for instantiating,
composing, and implementing diverse skeletons, but
the development of these methods is delegated to the
community of implementers.

In order to understand the spectrum of skeleton
programming research, it is helpful to distinguish
between skeletons that are predominantly data-parallel
in nature (with an emphasis on transformational
approaches), skeletons that are predominantly task-
parallel or related to algorithmic classes, and the con-
crete skeleton-based systems that have embedded these
concepts in real frameworks.

Data-Parallel Skeletons and
Transformational Programming
The formal background for data-parallel skeletons can
be built in the functional setting of the Bird–Meertens
formalism (BMF), in which skeletons are viewed as
higher-order functions (functionals) on regular bulk
data structures such as lists, arrays, and trees.

The simplest – and at the same time the “most paral-
lel” – functional ismap, which applies a unary function
f to each element of a list, that is,

map f [x , x, . . . , xn] = [f x, f x, . . . , f xn] ()

Map has the following natural data-parallel interpre-
tation: each processor of a parallel machine computes
function f on the piece of data residing in that proces-
sor, in parallel with the computations performed in all
other processors.

There are also the functionals red (reduction) and
scan (parallel prefix), each with an associative operator
⊕ as parameter:

red (⊕) [x , x, . . . , xn] = x ⊕ x ⊕ . . . ⊕ xn ()

scan (⊕) [x , x, . . . , xn] = [x , x⊕x, . . . , x⊕ . . . ⊕xn] ()

Reduction can be computed in parallel in a tree-like
manner with logarithmic time complexity, owing to
the associativity of the base operation. There are also
parallel algorithms for computing the scan functional
with logarithmic time complexity, despite an apparently
sequential data dependence between the elements of the
resulting list.

Individual functions are composed in BMF by
means of backward functional composition ○, such that
(f ○ g) x = f (g x), which represents the sequential
execution order on (parallel) stages.

Special functions, called homomorphisms, possess
the common property of being well-parallelizable in a
data-parallel manner.

Definition (List Homomorphism) A function h on
lists is called a homomorphism with combine operation
⊛, iff for arbitrary lists x, y:

h (x ++ y) = (hx) ⊛ (hy) ()

Definition describes a class of functions, operation ⊛

being a parameter, which is why it can be viewed as

Parallel Skeletons P

P

defining a skeleton. Both map and reduction can obvi-
ously be obtained by an appropriate instantiation of this
skeleton.

The key property of homomorphisms is given by the
following theorem:

Theorem (Factorization) A function h on lists is a
homomorphism with combine operation ⊛, iff it can be
factorised as follows:

h = red(⊛) ○ map ϕ ()

where ϕ a = h [a].

In this theorem, homomorphism has one more
parameter beside ⊛, namely function ϕ. The practi-
cal importance of the theorem lies in the fact that the
right-hand side of the equation () is a good candidate
for parallel implementation. This term consists of two
stages. In the first stage, function ϕ is applied in parallel
on each processor (map functional). The second stage
constructs the end result from the partial results in the
processors by applying the red functional. Therefore, if
a given problem can be expressed as a homomorphism
instance then this problem can be solved in a standard
manner as two consecutive parallel stages – map and
reduction.

The standard two-stage implementation () may be
time-optimal, but only under an assumption that makes
it impractical: the required number of processors must
grow linearly with the size of the data. A more prac-
tical approach is to consider a bounded number p of
processors, with a data block assigned to each of them.
Let [α]p denote the type of lists of length p, and sub-
script functions defined on such lists with p, for exam-
ple, mapp . The partitioning of an arbitrary list into p
sublists, called blocks, is done by the distribution func-
tion, dist (p) : [α] → [[α]]p . The following obvious
equality relates distribution to its inverse, flattening:
red (++) ○ dist (p) = id.

Theorem (Promotion) If h is a homomorphism
w.r.t.⊛, then

h ⊛ red (++) = red (⊛) ○ map h ()

This general result about homomorphisms is useful
for parallelisation via data partitioning: from (), a

standard distributed implementation of a homomor-
phism h on p processors follows:

h = red (⊛) ○ mapp h ○ dist (p) ()

Sometimes, it can be assumed that data is distributed in
advance: either the distribution is taken care of by the
operating system, or the distributed data are produced
and consumed by other stages of a larger application.

The development of programs using skeletons dif-
fers fundamentally from the traditional process of par-
allel programming. Skeletons are amenable to formal
transformation, that is, the rewriting of programs in
the course of development, while ensuring preserva-
tion of the program’s semantics. The transformational
design process starts by formulating an initial version
of the program in terms of the available set of skele-
tons. This initial version is usually relatively simple and
its correctness is obvious, but its performance may be
far from optimal. Program transformation rules are
then applied to improve performance or other desir-
able properties of the program. The rules applied are
semantics-preserving, guaranteeing the correctness of
the improved program with respect to the initial ver-
sion. Once rules for skeletons have been established
(and proved by, say, induction), they can be used in dif-
ferent contexts of the skeletons’ use without having to
be reproved.

For example, in the SAT programming methodol-
ogy [] based on skeletons and collective operations
of MPI, a program is a sequence of stages that are
either a computation or a collective communication.
The developer can estimate the impact of every single
transformation on the target program’s performance.
The approach is based on reasoning about how individ-
ual stages can be composed into a complete program,
with the ultimate goal of systematically finding the best
composition. The following example of a transforma-
tion rule from [] is expressed in a simplified C+MPI
notation. It states that, if binary operators ⊗ and ⊕ are
associative and ⊗ distributes over ⊕, then the follow-
ing transformation of a composition of the collective
operations scan and reduction is applicable:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

MPI_Scan (⊗);

MPI_Reduce (⊕);
�⇒

 P Parallel Skeletons

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Make_pair;

MPI_Reduce (f (⊗,⊕));

if my_pid==ROOT then Take_first;

()
Here, the functions Make_pair and Take_first
implement simple data arrangements that are executed
locally in the processes, that is, without interprocess
communication. The binary operator f (⊗,⊕) on the
right-hand side is built using the operators from the
left-hand side of the transformation.

Rule () and other, similar transformation rules have
the following important properties: () they are formu-
lated and proved formally as mathematical theorems;
() they are parameterized in one or more operators, for
example, ⊕ and ⊗, and are therefore usable for a wide
variety of applications; () they are valid for all possible
implementations of the collective operations involved;
() they can be applied independently of the parallel
target architecture.

Task- and Algorithm-Oriented Skeletons
In contrast to the data-parallel style discussed in the
preceding section, there are many instances of skele-
tons in which the abstraction is best understood by
reference to an encapsulated parallel control structure
and/or algorithmic paradigm. These can be examined
along a number of dimensions, including the linguistic
framework within which the skeletons are embedded,
the degree of flexibility and control provided through
the API, the complexity of the underlying implemen-
tation framework and the range of intended target
architectures.

While map is the simplest data-parallel skeleton,
farm can be viewed as the simplest task-parallel skele-
ton. Indeed, in its most straightforward form, farm is
effectively equivalent to map, calling for some opera-
tion to be applied independently to each component
of a bulk data structure. More subtly, the use of farm
often carries the implication that the execution cost of
these applications is unpredictable and variable, and
therefore that some form of dynamic scheduling will be
appropriate – the programmer is providing a high-level,
application-specific hint to assist the implementation.
Typical farm implementations will employ centralized

or decentralized master–worker approaches, with inter-
nal optimizationswhich try to find an appropriate num-
ber of workers and an appropriate granularity of task
distribution (trading interaction overhead against load
balance). From the programmer’s perspective, all that
must be provided is code for the operation to be applied
to each task, and a source of tasks, which could be a data
structure such as an array or a stream emerging from
some other part of the program.The bag-of-tasks skele-
ton extends the simple farmwith a facility for generating
new tasks dynamically.

Pipeline skeletons capture the pattern in which
a stream of data is processed by a sequence of
“stages,” with performance derived from parallelism
both between stages, and where applicable, within
stages. Even such a simple structure allows considerable
flexibility in both API design and internal optimization.
For example, the simplest pipeline specification might
dictate that each item in the stream is processed by
each stage, that each such operation produces exactly
one result, and that all stages are stateless. For such
a pipeline, the programmer is required to provide a
sequential function corresponding to each stage. More
flexible APIs may admit the possibility of stateful stages,
of stages in which the relationship between inputs and
outputs is no longer one-for-one (e.g., filter stages,
source, and sink stages), of bypassing stages under cer-
tain circumstances, and even of controlled sharing of
state between stages. From the implementation perspec-
tive, internal decisions include the selection of the num-
ber of implementing processes or threads, allocation of
operations to processes or threads, whether statically
or dynamically, and correct choice of synchronization
mechanism.

The divide-and-conquer paradigm underpins many
algorithms: the initial problem is divided into a num-
ber of sub-instances of the same problem to be solved
recursively, with subsolutions finally combined to “con-
quer” the original problem. For the situation in which
the sub-instances may be solved independently the
opportunities for parallelism are clear. Within this con-
text, there is considerable scope to explore a skeleton
design space in which constraints in the API are traded
against performance optimizations within the imple-
mentation. A very generic API would simply require
the programmer to provide operations for “divide” and
“conquer,” together with a test determining whether an

Parallel Skeletons P

P

instance should be solved recursively, and a direct solu-
tion method for those instances failing this test. Less-
flexible APIs, could, for example, require the degree of
division to be fixed (every call of divide returns the same
number of sub problems), the depth of recursion to be
uniform across all branches of divide tree, or even for
some aspects of the “divide” or “conquer” operations to
be structurally constrained. Each such constraint pro-
vides useful information, which can be exploited within
the implementation.

Wavefront computations are to be found at the core
of a diverse set of applications, ranging from numeri-
cal solvers in particle physics to dynamic programming
approaches in bioinformatics. From the application per-
spective, a multidimensional table is computed from
initial boundary information and a simple stencil that
defines each entry as a function of neighboring entries.
Constraints on the form of the stencil allow the table
to be generated with a “wavefront” of computations,
flowing from the known entries to the unknown, with
consequent scope for parallelism. A wavefront skeleton
may require the programmer to describe the stencil and
the operation performed within it, leaving the imple-
mentation to determine and schedule an appropriate
level of parallelism.Aswithdivide-and-conquer, specific
wavefront skeletonAPIsmay impose further constraints
on the form of these components.

Branch-and-bound is an algorithmic technique for
searching optimization spaces, with built-in pruning
heuristics, and scope for parallelization of the search.
Efficient parallelization is difficult, since although
results are ultimately deterministic, the success of prun-
ing is highly sensitive to the order in which points in the
space are examined. This makes it both promising and
challenging to the skeleton designer. With respect to the
API, a branch-and-bound skeleton can be characterized
by small number of parameters, capturing operations
for generating new points in the search space, bound-
ing the value of such a point, comparing bounds, and
determining whether a point corresponds to a solution.

Skeleton-Based Systems
Past and ongoing research projects have embedded
selections of the above skeletons into a range of pro-
gramming frameworks, targeting a range of platforms.
The PL language [] was a notable early example in
which skeletons became first-class language constructs,

together with sequential “skeletons” for iteration and
composition. Subsequent projects within the Pisa group
have taken similar skeletons into object-oriented con-
texts, with a focus on distributed and Grid imple-
mentations. In contrast, Muesli [] allows data-parallel
skeletons to be composed and called from within a
layer which itself composes task-parallel skeletons, all
within a C++ template-based library. Several systems
have taken a functional approach. Hermann’s HDC
[] focuses exclusively on a collection of divide-and-
conquer skeletons within Haskell, and implemented on
top of MPI, while the Eden skeleton library [] and
related work [] have implemented skeletons on top
of both implicitly and explicitly parallel functional lan-
guages. The COPS project [] presents a layered inter-
face in which expert programmers can also have access
to the implementation of the provided “templates,” all
embedded in Java with both threaded and distributed
RMI-based implementations. The SkeTo project offers
a BMF-based collection of data-parallel skeletons for
lists, matrices, and trees, implemented in C with MPI.
Domain-specific skeletons are represented within the
Mallba project [] (focusing on combinatorial search)
and Skipper and QUAFF projects (image processing).
Higher-Order Components (HOCs) [], Enhance [],
and Aspara [] extend the idea of skeletons toward
the area of distributed computing and Grids. HOCs
implement generic parallel and distributed processing
patterns, together with the required middleware sup-
port and are offered to the user via a high-level service
interface. Users only have to provide the application-
specific pieces of their programs as parameters, while
low-level implementation details such as transfer of data
across the grid are handled by the HOC implementa-
tions. HOCs have become an optional extension of the
popular Globus middleware for Grids.

Skeleton principles are also evident in a num-
ber of other emerging parallel programming tools.
Most notably, the MapReduce paradigm (related to,
but distinct from the similarly named BMF skele-
tons) represents a pattern common to many applica-
tions in Google’s infrastructure. Emphasis in the origi-
nal implementation was placed on load balancing and
fault-tolerance within an unreliable massively paral-
lel computational resource, a task strongly facilitated
by the structurally constraining nature of the skeleton.
Thain’s Cloud Computing Abstractions [] implement

 P Parallel Tools Platform

a range of distributed patterns with applications in Bio-
metrics and Genomics. As with MapReduce, these are
trivial to implement sequentially, and relatively straight-
forward on a reliable, homogeneous parallel architec-
ture. The strength of the approach becomes apparent
when ported to less predictable (or reliable) targets,
with no additional effort on the part of the program-
mer. Finally, skeletal approaches can also be discerned
inMPI’s collective operations [], whereMPI_Reduce
and MPI_Scan are parameterized by operations as
well as data, and Intel’s Threading Building Blocks [],
which in particular includes a pipeline skeleton.

Related Entries
�Collective Communication
�Eden
�Glasgow Parallel Haskell (GpH)
�NESL
�Reduce and Scan
�Scan for Distributed Memory, Message-Passing
Systems

Bibliographic Notes and Further
Reading
The term “algorithmic skeleton” was originally intro-
duced by Cole []. A considerable body of work now
exists. Helpful snapshots can be obtained by consulting
the book edited by Rabhi and Gorlatch [], the
September special edition of the journal Parallel
Computing [], and the recent survey by Gonzalez-
Velez and Leyton [].

Bibliography
. Alba E, Almeida F, Blesa MJ, Cabeza J, Cotta C, Díaz M, Dorta I,

Gabarró J, León C, Luna J, Moreno LM, Pablos C, Petit J, Rojas A,
Xhafa F () MALLBA: a library of skeletons for combinatorial
optimisation. Euro-Par ’: Proceedings of the th International
Euro-Par Conference on Parallel Processing, Springer, London,
pp –

. Anvik J, Schaeffer J, Szafron D, Tan K () Why not use a
pattern-based parallel programming system? Euro-Par, Klagen-
furt Austria, pp –

. Ciechanowicz P, PoldnerM, KuchenH ()TheMünster skele-
ton library muesli – a comprehensive overview. Technical report,
University of Münster

. Cole M () Algorithmic skeletons: structured management of
parallel computation. MIT Press, Cambridge

. Dünnweber J, Gorlatch S () Higher-order components for
grid programming:making gridsmore usable. Springer,NewYork

. Gonzalez-Velez H, ColeM () Adaptive structured parallelism
for distributed heterogeneous architectures: A methodological
approach with pipelines and farms. Concurrency Comput Pract
Exp ():–

. Gonzalez-Velez H, Leyton M () A survey of algorithmic
skeleton frameworks: high-level structured parallel programming
enablers. Software Pract Exp :–

. Gorlatch S () Towards formally-based design of message
passing programs. IEEE Trans Softw Eng ():–

. Gorlatch S () Send-receive considered harmful: Myths and
realities of message passing. ACM TOPLAS ():–

. Gorlatch S, Lengauer C () Abstraction and performance in
the design of parallel programs: an overview of the SAT approach.
Acta Inf (/):–

. Hammond K, Berthold J, Loogen R () Automatic skeletons in
template Haskell. Parallel Process Lett ():–

. Herrmann CA, Lengauer C ()HDC: a higher-order language
for divide-and-conquer. Parallel Process Lett (/):–

. Kuchen H, Cole M (eds) () Algorithmic skeletons. Parallel
Comput (/):–

. Loogen R, Ortega Y, Pena R, Priebe S, Rubio F () Paral-
lelism abstractions in Eden. In: Rabhi F, Gorlatch S (eds) Patterns
and skeletons for parallel and distributed computing. Springer,
London, pp –

. Pelagatti S () Structured development of parallel programs.
Taylor & Francis, London

. Rabhi FA, Gorlatch S (eds) Patterns and skeletons for parallel and
distributed computing. Springer, London, ISBN ---

. Reinders J () Intel threading building blocks. O’Reilly,
Sebastopol CA

. Thain D,Moretti C () Abstractions for cloud computing with
condor. In: Ahson S, IlyasM (eds) Cloud computing and software
services. CRC Press, Boca Raton

. Yaikhom G, Cole M, Gilmore S, Hillston J () A structural
approach for modelling performance of systems using skeletons.
Electr Notes Theor Comput Sci ():–

Parallel Tools Platform

Gregory R. Watson
IBM, Yorktown Heights, NY, USA

Synonyms
PTP

Definition
TheParallel Tools Platform (PTP) is an integrated devel-
opment environment (IDE) for developing parallel pro-
grams using the C, C++, Fortran, and Unified Parallel
C (UPC) languages. PTP builds on the Eclipse platform

http://dx.doi.org/10.1007/978-0-387-09766-4_28
http://dx.doi.org/10.1007/978-0-387-09766-4_48
http://dx.doi.org/10.1007/978-0-387-09766-4_46
http://dx.doi.org/10.1007/978-0-387-09766-4_225
http://dx.doi.org/10.1007/978-0-387-09766-4_120
http://dx.doi.org/10.1007/978-0-387-09766-4_518
http://dx.doi.org/10.1007/978-0-387-09766-4_518
http://dx.doi.org/10.1007/978-0-387-09766-4_56

Parallel Tools Platform P

P

by adding features such as advanced help, static anal-
ysis, parallel debugging, remote projects, and remote
launching andmonitoring. It also provides a framework
for integrating other non-Eclipse tools into the Eclipse
platform. The Parallel Tools Platform is not restricted
to any particular programming model, but most
tools to date are designed to support course-grained
parallelism.

Discussion

Challenges
The challenges facing a developer writing parallel pro-
grams largely fall into the following three areas:

Coding: The programmer must translate the mathe-
matical model of a problem into an algorithm that is
implemented using a particular programming language
and parallel programming model.This process of trans-
lation involves a large degree of effort, since there is
often a significant mismatch between the model and an
implementation that fully exploits the available paral-
lelism.
Testing and debugging: Once an application programhas
been created, its correctness and accuracy must be val-
idated. This involves a cycle of comparing the program
output to known values using a variety of input data sets
in order to verify that the results are correct. Coding
errors, logic errors, and nondeterministic behavior all
have to be addressed during this process, typically by
employing an interactive debugger that allows program
state to be inspected at key points during execution.
Performance optimization: A correctly functioning pro-
gram may still not optimally utilize the available hard-
ware resources. A variety of tools are typically employed
to examine program behavior in order to identify bot-
tlenecks and other performance related issues. These
tools usually collect relevant information about the pro-
gram execution, either directly, or in an aggregated
form, and provide ameans of analyzing and interpreting
the data in order to identify actions that can be taken to
improve performance. This is important for many situ-
ations when the speed of execution is time critical, such
as in weather applications.

These activities are made significantly more difficult
when applications are being developed for architec-
tures that employ concurrent execution (or parallelism)

in order to achieve extremely high levels of perfor-
mance. Parallel programming introduces many addi-
tional complexities that impact on all aspects of the
development process. The nature of these complexi-
ties depends on the particular programming model
employed, but includes issues such as deciding how
the algorithm or data is to be partitioned, the need
to deal with communication in addition to computa-
tion, and the inherent nondeterminism introduced by
concurrent execution.

Productivity
Thequest tomaximize productivity has received amuch
greater emphasis in recent years, where productivity is
defined as both the speed and ease at which a correctly
functioning application can be developed combined
with the level of performance achieved by fully exploit-
ing the available parallelism. Improving productivity is
therefore dependent on a wide range of factors. One
approach for improving the application development
process, and that has seen wide success across a range
of computing disciplines, is the use of an integrated
development environment (IDE).

An IDE combines a core set of tools into a sin-
gle package that provides a consistent user interface
across a variety of systems and architectures. Many
IDEs also provide a plug-in capability so that the core
set of tools can be extended as new tools are devel-
oped or extra functionality is required. IDEs tend to
improve developer productivity because the required
tools are always available regardless of the environment,
and also because they are integrated together, tools can
share data and other information in order to stream-
line the developer workflow. Scientific computing is one
of the few areas that have largely shunned the use of
IDEs. Recently, however, the benefits of using an IDE
for developing scientific programs have become more
apparent to the community.This is probably because the
scope of the programming task for the new generation
of supercomputers is looking increasingly daunting,
combined with an influx of new developers who have
already had exposure to, and understand the advantages
of, IDEs.

Productive Parallel Programming
The goal of the Parallel Tools Platform is to address the
challenges facing developers of parallel programs in a

 P Parallel Tools Platform

manner that leads to improved productivity. The strat-
egy employed by PTP to achieve this is to combine the
productivity enhancements inherent in an integrated
development environment with a number of key tools
that specifically target the parallel application devel-
opers’ capacity to deliver correct applications that are
optimized for their target platforms.

C, C++, Fortran, and UPC Programming
in Eclipse
The Eclipse platform is an open source, vendor neu-
tral, portable, extensible platform for tool integration.
It employs a plug-in architecture that allows tools to
be integrated directly with the platform, and provides
a range of core functionality that is suited to a variety
of application development activities. This core func-
tionality includes support for multi-developer projects,
an integrated help system, multiple language support,
project resource management, advanced editing fea-
tures, incremental builds, and a range of other features.
Eclipse functionality is extensible using the plug-in

mechanism, and there is a rich community of devel-
opers and a large number of both commercial and
open source plug-ins available. The IDE is also highly
portable, so it is available on a wide variety of hardware
platforms.

The main interface provided by Eclipse is the work-
bench shown in Fig. . The workbench arranges views
(text editors, project explorers, consoles, and other user
interface components) into groupings known as per-
spectives. There is typically a perspective available for
particular types of activities (coding, debugging, etc.)
Eclipse also permits views to be shared between dif-
ferent perspectives. Along with a traditional menu bar,
the workbench provides a toolbar containing a variety
of actions that are associated with the currently active
perspective. There is also a status bar and a range of
other user interface decorations. Individual views may
also have toolbars and menus that vary depending on
context.

Eclipse provides a number of advanced coding and
editing features that are common across any language

Parallel Tools Platform. Fig. The eclipse workbench showing the C/C++ development perspective

Parallel Tools Platform P

P

that it supports. Many of these features rely on core
functionality that is provided as standard in Eclipse, but
is typically not available in other development environ-
ments. Such features include:

Context-sensitive help: In order to provide user assis-
tance that is targeted to a particular context, this fea-
ture can deliver help documentation on demand (for
example, when the user hits a key) or automatically dis-
play information such as prototype definitions or code
snippets that pop up when the cursor is placed over a
particular piece of text.
Searching: In addition to the usual string or pattern
matching searches available in many editors, Eclipse
allows searching on language elements (such as types,
variables, functions etc.), the ability to limit searches to
contexts (such as declarations, references, etc.), and to
specify the scope of the search (such as a subset of the
files in a project).
Content assistance: Reducing the amount of typing that
a developer is required to do can be a powerful means
of improving productivity. By inferring what the devel-
oper will type based on context and scope information,
Eclipse’s code completion makes suggestions using the
first few letters of the language element currently being
entered (e.g., a function name, variable name, etc.),
via either manual or automatic activation. Frequently
used snippets of code can also be saved as code tem-
plates.These templates can then be inserted into the text
according to the current scope in the same manner as
other code completions.
Refactoring: Improving code by changing its structure
without changing behavior is a common, but error-
prone, task in programming. By providing a range
of common but sophisticated refactorings that can be
automatically performed, Eclipse is able to prevent
many of the errors that are introduced by manual
changes. Typical refactorings include the ability to
rename language elements, such as variables or func-
tions, extract sections of code into a method or func-
tion, and automatically declare an interface, as well as
many others.
Wizards: Another method of reducing the amount of
repetitive work is to automate many of the common
tasks that a developer must undertake. Eclipse pro-
vides a variety of wizards for activities such as creating
new projects, classes, or files, importing projects into

Eclipse, exporting projects from Eclipse, and project
conversion.

In addition to these powerful features, Eclipse pro-
vides support for application building, either using
project supplied build scripts (for example Make-
files), or using an internal build system to track file
dependencies and manage external tools such as com-
pliers and linkers. The build support is also able to
process errors andwarnings generated by external tools,
and map these back to messages displayed in the user
interface, and markers that are inserted into the edi-
tor views.

The Eclipse C/C++ Development Tools (CDT) pro-
vide C, C++, and UPC language support, while the
Parallel Tools Platform Photran feature adds Fortran
support to Eclipse. Support for a wide range of other
languages also available through a variety of Eclipse and
third-party plug-ins.

Code and Static Analysis for Parallel
Programs
In addition to the advanced editing features that are a
standard part of Eclipse, PTP adds a range of enhanced
features that are specifically targeted toward parallel
programming.

The first of these provides additional high-level help
documentation for language elements used by com-
mon programmingmodels, such as themessage passing
interface (MPI), the OpenMP Application Program-
ming Interface, IBM’s Low-level messaging Application
Programming Interface (LAPI), and UPC. This doc-
umentation can be accessed using Eclipse’s standard
context sensitive help feature during coding, and will
display prototype information along with a detailed
description of the element.

Another feature provided by PTP is cataloging and
navigation of MPI application programming interfaces
and OpenMP pragma statements in a parallel program.
This enables the developer to see the elements that have
been used in the program at a single glance, and to nav-
igate to the source code line that contains a selected
element.

PTP also includes a Barrier Analysis tool that pro-
vides a more sophisticated analysis of MPI programs.
This tool locates all calls to MPI barrier functions
(synchronization points) in a program, and computes
logical paths through the program to determine if it

 P Parallel Tools Platform

is possible for a deadlock to occur. This can happen
because all tasks must synchronize on an MPI barrier,
but logic errors may enable one or more tasks to miss
execution of the barrier. The advantage of this type of
analysis is that it can be performed without the need to
execute the program.

Launching andMonitoring Parallel
Programs
One hindrance to developer productivity is the seem-
ingly basic ability to easily launch an application on a
target parallel system. Most high-performance comput-
ing systems employ complex environments to monitor
and control application launching. Many of these sys-
tems are also highly centralized assets that are tightly
controlled, and they will typically restrict direct user
access using a batch scheduler system. A developer’s
ability to interact with these systems will therefore be
limited by their ability to deal with the additional com-
plexity that this introduces. This is particularly the case
where programs are being ported from one system to
another, or where the developer has access to multiple
systems and architectures.

PTP’s approach to this issue is to provide a single,
uniform interface that allows the developer to launch
and monitor applications on a wide range of systems,
without needing to understand the intricacies of each
particular system.This is achieved through two features:

Parallel runtime perspective: This perspective provides a
number of views that give the developer a snapshot of
system activity at any particular time. Importantly, the
views are independent of the type of system that is being
targeted, so the developer does not need to be con-
cerned with the underlying system details. The perspec-
tive is comprised of the Resource Manager View, which
lists the systems that are available to the developer for
launching and debugging applications, the Machines
View, which shows the status of the system and its com-
puting elements, and the Jobs View, which lists pending,
running, and completed jobs on the system.A console is
also available to display the program-generated output.
Parallel application run configuration: This utilizes the
standard Eclipse Run Configuration dialogs, which are

used to enter all the parameters necessary for a success-
ful program launch. Run configurations are automati-
cally saved so they can be easily used to relaunch an
application during testing or debugging activities. PTP
provides an extended run configuration for parallel pro-
grams that allows system-specific information about the
parallel run to be supplied.

Parallel Debugging
Developing complex parallel programs is a difficult task,
and it is particularly challenging to ensure that they
operate correctly. Finding errors in a parallel program
is complicated because the many concurrent threads
of execution make it difficult to observe the program
operation in a deterministic manner. Managing large
applications running onmany processorsmay present a
problem to the developer as well since the sheer volume
of information may be overwhelming. The very act
of debugging the program may also disturb its opera-
tion enough to make identifying the cause of an error
impossible.

ThePTP debugger attempts to address some of these
issues. In particular, the debugger provides the basic
functionality needed to step through the execution of
the program examining variables and program state
along the way, and an easy to use interface that enables
the developer to quickly obtain pertinent information
about an executing application.Thedebugger is invoked
in the same manner as any other application launch,
by clicking a button. Eclipse will automatically switch
to the Parallel Debug Perspective when the debugging
session is ready.

The Parallel Debugger Perspective comprises a
number of views to facilitate the debugging task. The
Parallel Debug View provides a high level view of the
application, showing all the tasks currently executing.
Debug operations on groups of processes, such as single
stepping, can be performed using this view. The Debug
View provides information about individual threads of
execution, including a stack frame showing the current
location. The Variables View shows the local variables
from the currently selected stack frame in the Debug
View, and can be used to inspect variables from a range
of tasks. Other views are also available to inspect differ-
ent aspects of the program state.

Parallel Tools Platform P

P

Utilizing External Tools
Although PTP provides a range of tools for developing
parallel programs, there are many other tools available
that could be used to the developer’s advantage if they
were accessible from within the Eclipse environment.
To facilitate this, PTP provides an external tools frame-
work that allows non-Eclipse tools to be integrated in
a manner that preserves the developer’s workflow. The
framework defines threemain integration points during
the application development workflow: compile, exe-
cute, and analyze. The compile integration point speci-
fies how the normal build commands are to bemodified
during the build process to perform any tool-specific
actions. An example of this might be to instrument the
application to collect tracing or profiling information.
The execute integration point specifies how the com-
mand used for launching of the application executable
can be modified to perform any tool-specific actions.
An example of this might be to pass the application exe-
cutable to a tool that performs data collection during
the execution. The analyze integration point allows an
external tool to be launched once the program execu-
tion is complete, such as a tool to analyze performance
data generated during execution.

In addition to these integration points, the external
tools framework provides a Feedback View that enables
externally generated information to be mapped back to
source files and lines within the Eclipse environment.
Eclipse can then display this information in the form of
sortable tables, or by annotating the source code directly
with markers or other forms of highlighting.

Remote Development
To be an effective enhancement to conventional devel-
opment processes, PTP needs to support a broad range
of environments and systems. Many of these systems
are scarce resources, so access is often tightly con-
trolled from remote locations. Ideally, application devel-
opers for these systems need to be able to access these
resources for testing, debugging, and performance opti-
mization as if they were local. This enables the develop-
ment process to be significantly streamlined, since the
developer does not need to be concerned with copying
executables and/or data files from system to system.

PTP addresses this requirement by adding a Remote
Development Tools (RDT) feature.This enables a project

to be physically located on a remotemachine, but allows
access to the project and its source files for editing and
building as if they were local. RDT takes care of all
the activities necessary to make this process appear as
transparent as possible to the developer. This can also
be combined with PTP’s ability to launch and debug
programs on a remote target system, so the developer
is able to take advantage of a fully remote enabled
environment.

The Parallel Tools Platform Today
PTP is an evolving project. Started in , it has an
active and growing developer community that spans
a range of government, academic, and commercial
organizations. The number of developers contribut-
ing to the project continues to increase, including the
renowned National Center for Supercomputing Appli-
cations, which has recently begun to actively participate
in PTP development.

Another promising development is the contribution
of value-added components that enhance the function-
ality of PTP. Contributions have been made by the
University of Oregon to add functionality to support
their performance analysis tool, called Tuning and
Analysis Utilities (TAU), the University of Utah to
support their tool for formal verification of MPI pro-
grams, called In-situ Partial Order (ISP), and the Uni-
versity of Florida to support their tool for performance
analysis of partitioned global-address-space (PGAS)
programmingmodels, called Parallel PerformanceWiz-
ard (PPW).

PTP’s main goal to date has been to demonstrate
that Eclipse is a viable alternative for the development of
scientific applications for large-scale computer systems.
The list of features that are now available, and the grow-
ing developer and contributor community, demonstrate
that this goal has been met.

Future Directions
A comprehensive IDE for developing applications for a
broad range of parallel platforms is a huge undertaking.
PTP has begun by addressing many of themost pressing
issues, such as programmer assistance, uniform access
to remote systems, parallel debugging, and external tool
integration. However there are still a large number of

 P Parallel Tools Platform

issues that remain to be dealt with, and these will form
the basis of much of the ongoing development over the
coming years. Some of these issues include:
Scalability: Both application and systems sizes are
increasing dramatically.Thenext generation of petascale
systems will have hundreds of thousands of process-
ing elements, and executions that exceed one million
threads will be likely. The applications themselves are
growing continuously, with millions of lines of code
now becoming increasingly common. To continue to be
effective, PTP will need to support such scales without
unduly impacting developer productivity.
Debugging paradigms: Conventional debugging
approaches have been successfully applied to parallel
programs for some years. However, as program sizes
increase, it is likely that these techniques will break
down. One reason for this is that the sheer volume of
information (for example, a million executing threads)
is likely to overwhelm the developer. New debugging
paradigms will need to be introduced that address
this information overload, yet still allows the developer
to accurately pinpoint the location of errors within a
program.
Static analysis tools: Eclipse has an enormously power-
ful infrastructure available to the tool developer, and
PTP has only really touched the surface of possible
tools to exploit this. There is significant scope for much
more powerful static analysis and refactoring tools that
could have a very beneficial impact on developer pro-
ductivity, and work is actively underway to enhance this
capability.
Remote development: To be a truly effective remote
development platform, PTP needs to support additional
paradigms for developing applications remotely. In par-
ticular, the ability to work off-line and support for syn-
chronizing with a remote repository are two areas that
would enhance developer productivity significantly.
Multi-core architectures: The computing industry is
beginning to see a real convergence between multi-
core systems, which have already reached hundreds
or even thousands of cores, and parallel architectures,
which already employ multi-core programming ele-
ments. Many of the techniques used for parallel pro-
gramming may also be beneficial for applications that
wish to exploit multi-core technology. PTP is the log-
ical home for exploring this convergence, and work is
beginning to take place in this area.

Related Entries
�Compilers
�Debugging
�Fortran and its Successors
�MPI (Message Passing Interface)
�OpenMP
�PGAS (Partitioned Global Address Space) Languages
�Performance Analysis Tools
�Scheduling
�TAU
�UPC

Bibliographic Notes and Further
Reading
The idea of using computers to aid in the software engi-
neering process extends back to the late s; how-
ever, it was not until the s that the market for
computer-aided software engineering or CASE-based
tools became significant (the termCASEwas not coined
until). CASE covers a very broad area of software
engineering practices, whereas integrated development
environments, which are one class of CASE tools, tend
to focus on the relatively small set of software engineer-
ing practices associated with the edit-build-test-debug
development lifecycle.

There have been a number of papers describing the
relationship between productivity and the use of IDEs,
and the productivity and quality improvements that
can be obtained by such environments is well docu-
mented [, , ,].Their success is also reflected in the
best practice use of IDEs for most commercial software
development today.

Van De Vanter, et al. [] have asserted that there
are many reasons why existing developer tools are not
going meet the productivity requirements of high per-
formance computing: they are difficult to learn, they
may not scale as machine sizes increase, they are differ-
ent across different platforms, they are hard to develop
or port to new platforms, they are often poorly sup-
ported, and they can be expensive.

The use of IDEs for parallel computing has also been
explored before [–,], but all of these appear to have
suffered from low levels of use, were academic research
projects, or were too expensive to develop and main-
tain, and so have gradually died out. PTP is the first time
that an open-source IDE has been tailored specifically
for scientific and parallel computing [].

http://dx.doi.org/10.1007/978-0-387-09766-4_2009
http://dx.doi.org/10.1007/978-0-387-09766-4_135
http://dx.doi.org/10.1007/978-0-387-09766-4_264
http://dx.doi.org/10.1007/978-0-387-09766-4_222
http://dx.doi.org/10.1007/978-0-387-09766-4_50
http://dx.doi.org/10.1007/978-0-387-09766-4_210
http://dx.doi.org/10.1007/978-0-387-09766-4_267
http://dx.doi.org/10.1007/978-0-387-09766-4_2104
http://dx.doi.org/10.1007/978-0-387-09766-4_59
http://dx.doi.org/10.1007/978-0-387-09766-4_271

Parallelism Detection in Nested Loops, Optimal P

P

The non-for-profit Eclipse Foundation was cre-
ated in to oversee the stewardship of the open-
source Eclipse platform. Since it was established, the
Foundation membership has grown to exceed orga-
nizations. Many of these companies use Eclipse as the
core of a commercial product offering, after having
abandoned their own proprietary IDE technology and
switched to the Eclipse platform. Eclipse is widely used
across many computing fields, and arguably has the
largest number of users of any IDE in history. It is also
now one of the largest open-source projects and there
have been over two million downloads of the latest
version alone [].

Bibliography
. Bemmerl T () TOPSYS for programming distributed

multiprocessor computing environments. In: Proceedings
of computer systems and software engineering, The Hague,
pp –

. Brode BQ,Warber CR () DEEP: a development environment
for parallel programs. In: Proceedings of the international parallel
processing symposium, Orlando, pp –

. Callahan D, Cooper K, Hood R, Kennedy K, Torczon L ()
ParaScope: a parallel programming environment. In: Proceedings
of the first international conference on supercomputing, Athens,
Greece, June

. Cownie J, Dunlop A, Hellberg S, Hey AJG, Pritchard D ()
Portable parallel programming environments – the ESPRIT PPPE
project, massively parallel processing applications and develop-
ment, The Netherlands, June

. Frazer A () CASE and its contribution to quality. The Institu-
tion of Electrical Engineers, London

. Granger MJ, Pick RA () Computer-aided software engineer-
ing’s impact on the software development process: an experiment.
In: Proceedings of the th Hawaii international conference on
system sciences, Jan , pp –

. http://eclipse.org/downloads
. Kacsuk P, Cunha JC,DózsaG, Lourencço J et al () A graphical

development and debugging environment for parallel programs.
Parallel Comput ():–

. Luckey PH, Pittman RM () Improving software quality utiliz-
ing an integrated CASE environment. In: Proceedings of the IEEE
national aerospace and electronics conference, Dayton, May ,
pp –

. Norman RJ, Nunamaker JF Jr () Integrated develop-
ment environments: technological and behavioral productiv-
ity perceptions. In: Proceedings of the annual Hawaii interna-
tional conference on system sciences, Kailua-Kona, Jan ,
pp –

. Van De Vanter ML, Post DE, Zosel ME () HPC needs a tool
strategy. In: Proceedings of the second international workshop

on software engineering for high performance computing system
applications, ACM, May , pp –

. Watson GR, DeBardeleben NA () Developing scientific
applications using eclipse. Comput Sci Eng ():–

Parallelism Detection in Nested
Loops, Optimal

Alain Darte
École Normale Supérieure de Lyon, Lyon, France

Synonyms
Detection of DOALL loops; Nested loops scheduling;
Parallelization

Definition
Loops are a fundamental control structure in imperative
programming languages. Being able to analyze, trans-
form, and optimize loops is a key feature for compilers
to handle repetitive schemes with a complexity propor-
tional to the program size and not to the number of
operations it describes. This is true for the generation
of optimized software as well as for the generation of
hardware, for both sequential and parallel execution.

Exploiting parallelism is a difficult task that
depends, among others, on the target architecture, on
the structure of computations in the program, and on
the way data are mapped, used, and communicated.
In contrast, detecting parallelism that can be expressed
as loops, i.e., transforming Fortran-like DO loops into
DOALL loops (loops whose iterations are all indepen-
dent) depends only on the dependences between com-
putations in the program being analyzed. Intuitively,
an algorithm is optimal for parallelism detection in
loops, if it transforms the loops of a program so that
each statement is surrounded, after transformation, by a
maximal number of parallel (DOALL) loops. However,
such a notion of optimality needs to be definedwith care
(see the discussion hereafter) to avoid inconsistent or
inaccurate claims.

Discussion

Optimal Parallelism Detection in Loops
How to define optimal parallelism detection in loops?
An optimality criterion solely based on the number of

http://eclipse.org/downloads
http://dx.doi.org/10.1007/978-0-387-09766-4_2478
http://dx.doi.org/10.1007/978-0-387-09766-4_2479
http://dx.doi.org/10.1007/978-0-387-09766-4_2162

 P Parallelism Detection in Nested Loops, Optimal

parallel loops – thus not on the number of iterations –
has no meaning for loops with constant bounds as
they can always be unrolled or strip-mined. For exam-
ple, it is true that hyperplane scheduling can always
be applied on n perfectly nested loops with constant
bounds, resulting in a code with one outer sequential
loop and (n −) parallel loops. However, it does not
mean that it exhibits any parallelism as, for a purely
sequential code, each parallel loop has then a single
iteration. Similarly, an optimality criterion should not
lead to inconsistencies due to the way loops are gener-
ated, e.g., n nested loops with constant loop bounds can
be fully unrolled leading to a code with no loop while
applying loop tiling leads to n loops.

One way to define optimality is with respect to
the execution time of the parallelized code on an ideal
PRAM-like machine, with an unlimited number of
computation units, where any instruction takes a sin-
gle unit of time. An algorithm for parallelism detec-
tion is then optimal if the corresponding code with
DOALL loops has an optimal execution time for this
ideal machine, which is the maximal length of a path in
the dependence DAG (directed acyclic graph) obtained
by fully unrolling the program. However, a full unroll
of the code is too costly, often undesirable as it loses the
loop structure, and sometimes impossible, e.g., when
the loop bounds are parameterized. A more practical
definition of optimality is to assume that each loop has a
parameterized number of iterations, of order N, and to
say that an algorithm is optimal if the execution time of
the parallelized program on the ideal machine isO(Nd

)

where d is minimal. Optimality can then be proved by
exhibiting a dependence path in the unroll program
whose length is not O(Nd−

). A more accurate defini-
tion of optimality can be given by applying the same
reasoning for each statement, considering that any other
statement takes no time on the ideal machine, i.e., does
not count in the length of a dependence path.

In general, algorithms for parallelism detection
transform the code so that each statement is surrounded
by the same number of loops before and after trans-
formation. This is true, in particular, for algorithms
based on unimodular transformations. In this case,
one retrieves the intuitive notion of optimality which
states that parallelism detection is optimal if each state-
ment is surrounded, after transformation, by a maximal
number of parallel loops. The only constraint that a

parallelism detection algorithm must respect is that the
partial order of operations defined by the dependences
in the program are preserved. How these dependences
are computed and abstracted is not part of the algo-
rithm, it is its input. In other words, the optimality
of an algorithm can only be defined with respect to
the dependence abstraction it uses. To show that it
is optimal, one needs to exhibit a dependence path of
the required length, not in the original program, but
in its abstraction, i.e., a dependence path in an over-
approximation of the actual dependence graph.

A more complete discussion on the definition of
optimality for parallelism detection algorithms is pro-
vided in [, ,].The rest of this essay, with large parts
borrowed from [], shows that it is possible to give, for
each classic dependence abstraction (dependence level,
uniform dependence vector, direction vector, depen-
dence cone, dependence polyhedron), an algorithm
which is optimal with respect to this abstraction. More-
over, this algorithm is a specialization of a more generic
algorithm [], inspired by the decomposition of Karp,
Miller, andWinograd for checking the computability of
a system of uniform recurrence equations []. Notice
that the previous optimality criterion makes no dis-
tinction between an outer parallel loop and an inner
parallel loop. If a parallel loop can always be pushed
down, i.e., interchanged with inner loops, the converse
is not true. However, detecting parallel loops that con-
tain sequential loops and detecting permutable loops
(the base for loop tiling) are two similar problems that
can be achieved by variations of the algorithms men-
tioned hereafter. But optimality for these goals is more
difficult to define. Here is a summary of the main opti-
mality results:

Dependence level The algorithm of Kennedy and
Allen [] is optimal, which implies that loop distri-
bution is sufficient to detect maximal parallelism for
dependence levels.

Uniform dependences Hyperplane scheduling (as de-
fined by Lamport []) is optimal, for perfectly
nested loops, which implies that unimodular trans-
formations with one outermost sequential loop is
sufficient for uniform dependences.

Direction vectors An adaptation of the algorithm of
Wolf and Lam [] (which detects permutable
loops) is optimal, which implies that unimodular

Parallelism Detection in Nested Loops, Optimal P

P

transformations (loop interchange, loop reversal,
loop skewing) are sufficient for direction vectors.

Dependence polyhedron The algorithm of Darte and
Vivien [] is optimal, which implies that unimod-
ular transformations, combined with loop distribu-
tion and loop shifting, are sufficient for dependence
polyhedra.

Affine dependences The algorithm of Feautrier [] is
optimal among all affine transformations, but these
transformations are not sufficient to detect maximal
parallelism for affine dependences.

This essay is organized as follows. The first section
recalls themodel of system of uniform recurrence equa-
tions (SURE) and the link between the computability
and scheduling problems of such a system. The sec-
ond section shows how, thanks to a uniformization
of dependence distance abstractions, the detection of
parallelism in nested DO loops can be transferred to
the model of SURE so as to derive optimality results.
The last section illustrates yet another connection: the
multi-dimensional scheduling techniques used to ana-
lyze a SURE and to detect parallelism in nested DO
loops can also be used to prove the termination of some
WHILE loops.

The Organization of Computations in a
System of Uniform Recurrence Equations
In , Karp,Miller, andWinograd introduced amodel
(system of uniform recurrence equations or SURE) to
describe a set of regular computations as mathemati-
cal equations []. The goal of their paper, entitled “The
Organization of Computations for Uniform Recurrence
Equations,” was to study the parallelism that such a
description contains implicitly, motivated by “the recent
[at this time] development of computers capable of per-
forming many operations concurrently,” in particular
for regular applications such as solving partial differen-
tial equations by finite-difference methods. This work
was purely theoretical: the paper does not even have
a conclusion section, which would possibly mention
some applications. Nevertheless, it turned out to be very
prophetic, when considering the large number of devel-
opments for which it served as foundations. For exam-
ple, it has some connections with accessibility problems
in vector addition systems and Petri nets. The develop-
ments of systolic arrays and of high-level synthesis from

systems of recurrence equations are directly inspired
from it. Most scheduling methods developed for auto-
matically parallelizingDO loops are based on it, directly
or indirectly. As a by-product, the theory of unimodular
transformations and the different parallelism detection
algorithms [, , , ,] can be seen as exten-
sions and/or specializations of the technique of Karp,
Miller, and Winograd, adapted to specific dependence
abstractions and objectives. Last but not least, it has also
some connections with techniques to prove the termi-
nation of imperative programs, either with the inser-
tion of counters or by the derivation of affine ranking
functions [, , ,].

Definition of a SURE
A SURE is a finite set ofm equations of the form

ai(p) = fi(ai(p − di ,i), . . . ,aimi
(p − dimi ,i)) ()

where p ∈ Z
n is called an iteration vector, di,j ∈ Z

n

is called a dependence vector, fi is a strict function
with mi arguments whose properties are not consid-
ered (only the structure of computations is analyzed,
not what they do). The value ai(p) has to be computed
for all integral points p in a subset P of Z

n, called the
evaluation region. Values are supposed to be given at
p − di,j ∉ P (input variables) wherever required for the
evaluation at p ∈ P .

The value ai(p) is said to depend on aij(p−dij ,i), for
 ≤ j ≤ im. These dependence relations define a graph Γ,
called the expanded dependence graph (EDG). Its set
of vertices is {, . . . ,m} × P and there is an edge from
(j, q) to (i,p) if ai(p) depends on aj(q). A SURE can be
equivalently defined by a weighted-directed multigraph
G = (V ,E,w), called the reduced dependence graph
(RDG), as follows:

● For each ai, there is a vertex vi in V .
● If ai(p) depends on aj(p − dj,i), G has an edge e =

(vj, vi) in E from vj to vi with weight w(e) = dj,i .

A SURE is thendefined by anRDGG = (V ,E,w) and an
evaluation regionP . For example, the following system,
to be evaluated for P = {(i, j) ∣ ≤ i, j ≤ N},

⎧

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

a(i, j) = c(i, j −)

b(i, j) = a(i − , j) + b(i, j +)

c(i, j) = a(i, j) + b(i, j)

 P Parallelism Detection in Nested Loops, Optimal

0
0

a

b

c

1
0

0
−1

0
0

0
1

Parallelism Detection in Nested Loops, Optimal. Fig.

Corresponding RDG for the SURE example

defines a SURE with three equations on a square of
size N, corresponding to the RDG of Fig. .

Computability: Definition and Properties
The definition of a SURE, either by Equation (), or by
the reduced dependence graph, is implicit: to compute
a value ai(p), one must first compute all values that
appear in the right-hand side of the definition of ai(p).
These values are computed the same way, by evaluating
the right-hand side of their definition, and so on. Thus,
two questions arise:

Computability problem Does this recursive process end,
i.e., are all values ai(p) computable?

Scheduling problem If the system is computable, how to
organize the computations?

A schedule is a function θ from the vertices of the
EDG Γ to N such that θ(j,q) < θ(i,p) whenever (i,q)
depends on (j,q). A SURE is computable (or explicitly
defined) if there exists a schedule. It is not computable
if there exists a vertex (i,p) in the EDG Γ such that the
length of a dependence path leading to it is unbounded.
Then, either ai(p) depends on itself (possibly through
other computations) or it needs to wait “infinite” time
before the complete evaluation of its right-hand side.
In this case, because the in-degree in the EDG Γ is finite,
there is an infinite path leading to (i,p).

To make the analysis simpler, the following dis-
cussion focuses on (parametric) bounded evaluation
regions. An RDG G is said computable if all SUREs
defined fromG onbounded evaluation regions are com-
putable.

Theorem An RDG is computable if and only if (iff) it
has no cycle of zero weight.

More precisely, the fact that G has no cycle of zero
weight is a sufficient condition for a SURE defined
from G to be computable, whatever the bounded evalu-
ation region. However, it is a necessary condition only if
the evaluation region is “sufficiently large” (see [,]).

The case of a single equation

A uniform recurrence equation (URE) is defined by
an evaluation region P ⊆ Z

n and an RDG G with
a single vertex, i.e., by a single equation a(p) =

f (a(p − d), . . . ,a(p − dm)). Let D be the n ×m matrix
whose columns are the dependence vectors. Consider
the following sets:

T(D) = {t ∈ Z
n
∣ tD ≥ }

Q(D) = {q ∈ Z
m
∣ q ≥ , q ≠ , Dq = }

and TQ(D) and QQ(D) their rational relaxations. G is
computable iff it has no cycle of zero weight, i.e., Q(D)
is empty. Farkas Lemma [] shows the following result:

Theorem Q(D) = / ⇔ QQ(D) = / ⇔ TQ(D) ≠

/ ⇔ T(D) ≠ /.

Thisproperty shows that checking if anRDG is com-
putable can be done in polynomial time by checking
that TQ(D) is non empty, i.e., that the cone generated
by the dependence vectors is strictly included in a half-
space. Each t ∈ T(D) corresponds to a separating
hyperplane and a schedule θt defined by θt(p) = t.p+K
where t.p is the vector product and K = −minp∈P t.p.
Indeed, if q depends on p, q = p + di , then θt(q) =

t.q + K = t.p + t.di + K > θt(p). Thus, an RDG is
computable iff there is an affine schedule, i.e., a way
of computing the URE by a regular schedule, whose
definition does not depend on the evaluation region P .

Given a vector t ∈TQ(D), the latency of the sched-
ule θt , i.e., the total number of sequential steps it
induces, can be rounded to L(θt) = maxp,q∈P t. (p − q).
Finding the “fastest” linear schedule means solving a
min-max optimization problem Lmin = min{L(θt) ∣ t ∈
TQ(D)}. If P is a polytope {p ∣ Ap ≤ b}, then L(θt) =
max{t. (p − q) ∣ Ap ≤ b, Aq ≤ b}. The duality theorem
of linear programming [] leads to:

L(θt) = max{t. (p − q) ∣ Ap ≤ b, Aq ≤ b}
= min{(t + t). b ∣ t , t ≥ , tA = t, tA = −t}

Lmin = min{(t + t). b ∣ t , t ≥ , tA = −tA = t, tD ≥ }

Parallelism Detection in Nested Loops, Optimal P

P

Solving the previous linear program gives a way to
produce a vector t in TQ(D) from which a fast sched-
ule can be built. Its performance can be characterized
as follows:

Theorem If the evaluation region P is sufficiently
large, the difference between Lmin (the latency of the
fastest affine schedule) and the longest dependence path
in Γ (the latency of the fastest schedule) is bounded by a
constant that does not depend on the domain size.

Theorems and together show that only two cases
can occur for a URE defined on bounded regions: either
the URE is not computable as soon as the evaluation
region is large enough, or there is an affine schedule.
In the latter case, for a URE defined on polyhedra
{Ap ≤ Nb}, the length of the longest path is kN + O()
for some positive rational k and an affine schedule with
latency kN+O() can be derived. Seemore details in [].

The case of several equations

For one equation, a vector q ∈ Q(D) can be inter-
preted directly as a cycle in the RDG since all edges
are connected to the same vertex: they can be used
in any order. For several equations, it is more difficult
to express a cycle by linear constraints and to ensure
that edges are traversed in a specific order. To detect
cycles of zero weight in G = (V ,E,w), the key is to
consider G′ the subgraph of zero-weight multicycles
(union of cycles), i.e., the subgraph of G generated by
the edges that belong to a union of cycles whose total
weight is zero.The following theorem identifies the links
between G and G′.

Theorem (a) G contains a zero-weight cycle iff its
subgraph G′ does. (b) G contains a zero-weight cycle iff
one of its strongly connected components (SCCs) does. (c)
If G′ is strongly connected, G has a zero-weight cycle.

These properties give the hint for solving the prob-
lem with a recursive search. To detect a zero-weight
cycle in G, it is sufficient to consider each SCC of G′.
If G′ is empty, G has no zero-weight multicycle, thus no
zero-weight cycle. If G′ has more than one SCC, then G
has a zero-weight multicycle if at least one SCC has
a zero-weight cycle. It remains to solve the terminat-
ing case, i.e., when G′ is strongly connected, in which
case G has a zero-weight cycle. Finally, this leads to the
decomposition of Karp, Miller, and Winograd.

(Decomposition of Karp, Miller, and Winograd)
Boolean KMW(G):

● Build the subgraph G′ of zero-weight multicycles
in G.

● Compute G′, …, G′s, the s SCCs of G′.
– If s = , G′ is empty, return TRUE.
– If s = , G′ is strongly connected, return FALSE.
– Otherwise return ∧iKMW(G′i) (logical AND).

Then, G is computable iff KMW(G) returns TRUE.

Consider the SUREwhose RDG is depicted in Fig. .
The two edges (a,b) and (b, c) cannot belong to a
zero-weight multicycle, since the weight of any multi-
cycle that traverses them has a positive first component.
The self-dependence on b and the cycle formed by the
edges (a, c) and (c,a) define a zero-weight multicy-
cle, thus G′ is the subgraph of G obtained by deleting
the two edges from (a,b) and (b, c) (see Fig.). It has
two SCCs. For both, the subgraph of zero-weight multi-
cycle is empty, thus the decomposition stops: both SCCs
are computable, thus G′ is computable, and finally G is
computable too.

Let us now focus on the construction of the sub-
graph G′. The cycle vector associated to a cycle in G
is a vector q, with ∣E∣ components, such that qe is the
number of times the edge e is traversed in the cycle.
The connection matrix is a ∣V ∣ × ∣E∣matrix C such that
Cv,e = (resp.Cv,e = −) if the edge e leaves (resp. enters)
vertex v, and Cv,e = otherwise. A vector q ≥ such
that Cq = represents a union of cycles, which is a
cycle if the subgraph of G generated by the edges e such
that qe > is connected. Let W be the n × ∣E∣ weight

0
0

a

b

c

1
0

0
−1

0
0

0
1

Parallelism Detection in Nested Loops, Optimal. Fig.

As dotted lines, edges that do not belong to G′

 P Parallelism Detection in Nested Loops, Optimal

matrix whose columns are the edges weights of G.
Then, the edges of G′ are exactly the edges e for which
ve = in any optimal solution of the following linear
program:

min{ ∑e ve ∣ q ≥ , v ≥ , q + v ≥ , Cq = , Wq = }

Now, to better understand what is behind this linear
program, let us interpret its dual. After algebraic manip-
ulations, it can be written as:

max{ ∑e ze ∣ ≤ z ≤ , t.w(e) + ρye − ρxe ≥ ze , ∀e ∈ E }

where e goes from xe to ye. The complementary slack-
ness theorem [] shows interesting properties in
the dual.

Theorem For any optimal solution (z, t, ρ) of
the dual:

e ∈ G′⇔ t.w(e) + ρye − ρxe = ()
e ∉ G′⇔ t.w(e) + ρye − ρxe ≥ ()

Theorem shows how the constraints t.D ≥
obtained for linear scheduling in the case of a URE
(remember the set T(D) in Theorem) can be general-
ized to the case of a SURE. For a URE, t was interpreted
as a vector normal to a hyperplane that separates the
space into two half-spaces, all dependence vectors being
strictly in the same half-space. Here, the vector t defines
(up to a translation given by the constants ρ) a hyper-
plane which is a strictly separating hyperplane for the
edges not in G′, see Inequality (), and a weakly sepa-
rating hyperplane for the edges in G′, see Equality ().
Furthermore, for each subgraph G that appears in the
decomposition, t defines a hyperplane that is the “most
often strict”: the number of edges, for which such a
hyperplane is strict, is maximal (since ∑e ze is maxi-
mal). See more details in [].

Define the depth d of G = (V ,E,w) as the maxi-
mal number of recursive calls generated by the initial
call KMW(G) (counting the first one), except if G is
acyclic, in which case d = .The depth d is a measure of
the parallelism described by G: it is related both to the
length of the longest paths (intrinsic sequentiality) and
to the minimal latency of particular schedules, called

shifted-linear multi-dimensional schedules, i.e., map-
pings from V × Z

n to Z
d. The execution order is the

lexicographic order ≤lex on vectors of dimension d: the
components of the schedule can be interpreted as hours,
minutes, seconds,…, described by nested loops starting
from the outermost one.

For each v ∈ V , involved in dv recursive calls,
a sequence of vectors tv , …, tdvv and of constants
ρv, …, ρdvv can be built by considering the dual pro-
gram during the decomposition algorithm. The two
sequences can be completed with zeros, if needed, to get
sequences of length d.

Theorem LetG = (V ,E,w) be a computable, strongly
connected RDG of depth d. If the evaluation region is a
n-dimensional cube of size N, the mapping defined by
θ(v,p) = (tv .p + ρv, . . . , tdvv .p + ρdvv , , . . . ,) defines
a multi-dimensional schedule with latency O(Nd

). Fur-
thermore, the associated EDG Γ contains a dependence
path of length Ω(Nd

), whose projection onto G visits
Ω(Ndv

) times each vertex v ∈ V.

A dependence path of length Ω(Nd
) can be

built in Γ, following the hierarchical structure of G′, by
traversing order N times a cycle that visits all vertices
of G and by plugging, during this traversal, each SCC
of G′ order ofN times, in a recursive manner. Consider
the example of Fig. again. Go from a(,) to a(,N−),
following (N−) times the cycle between a and c.Then,
go to b(,N −) following the edge (a,b), and to b(,)
following (N −) times the self-loop on b. Finally, go to
c(,) and a(,) following the edges (b, c) and (c,a)
once.Thismakes a path of length (N−)++(N-)+ =
N. This pattern can be repeated (N −) more times,
leading to a(N,N), for a path of length N.

In terms of scheduling, solving the constraints of
Theorem shows that a(i, j) can be computed at time
step (i + , j), b(i, j) at step (i,−j), and c(i, j) at step
(i+ , j+). Indeed, for the first level of the decompo-
sition, the constraints amount to look for a vector t such
that t. (,) = t. (,−) = (for the two cycles ofG′) and
t. (,) ≥ (for the cycle (a,b, c,a) with two edges not
in G′), which leads, e.g., to t = (,) and suitable con-
stants ρa, ρb, and ρc. The second level leads to t = (,)
for a and c, and t = (,−) for b. This explicit schedule

Parallelism Detection in Nested Loops, Optimal P

P

corresponds to the code below. It is purely sequential (-
dimensional schedule, for a dependence of length order
N, in a square of size N). In general, if a statement is
surrounded in the initial code by n loops and scheduled
with a d-dimensional schedule, it will be surrounded
by d sequential loops and (n − d) parallel loops in the
resulting code.

DO i=, N

DO j=N, , -

b(i,j) = a(i-,j) + b(i,j+)

ENDDO

DO j=, N

a(i,j) = c(i,j-)

c(i,j) = a(i,j) + b(i,j)

ENDDO

ENDDO

Loop Transformations and Automatic
Loop Parallelization
Linear programming methods, optimizations on poly-
topes, manipulations of integral matrices, are now com-
monly used in the field of automatic parallelization and
program transformations, in particular for imperative
codes with DO loops. The key is to represent, ana-
lyze, and transform loops without unrolling them, in
an abstract way, thanks to polyhedral representations
and transformations. This way, compilation methods
can be developed with a complexity that depends on
the (textual) size of the program and not on the num-
ber of operations it describes. DO loops are indeed,
as SUREs, a condensed way for representing repetitive
computations. Such an approach started in when
Lamport introduced the hyperplanemethod [] to par-
allelize perfectly nested loops. Similar techniques were
applied for the automatic synthesis of systolic arrays
from uniform recurrence equations. In , Feautrier
introduced PIP [], a software tool for parametric
(integer) linear programming, and he demonstrated
its interest for dependence analysis [], loop paral-
lelization [], code generation [], etc. This work ini-
tiated many more developments based on polytopes
for detecting dependences, scheduling computations,

mapping data and communications, generating code for
computations and communications, etc.

The following presentation, borrowed from [],
recalls the link between the decomposition of Karp,
Miller, and Winograd, and different algorithms for
transforming (sequential) DO loops intoDOALL loops,
i.e., loops whose iterations can be computed in any
order, in particular in parallel. These algorithms per-
form high-level source-to-source transformations, in
the same way a user inserts parallelization directives
in OpenMP. Exploiting the parallelism is another story,
which requires data and communication optimizations,
depending on the target architecture.

Representation of DO Loops
Loop transformations apply to codes defined by nested
loops, for which the control structure is simple enough
to be captured with polytopes. Each loop has its own
loop counter that takes, if the loop step is , any inte-
ger value from the lower to the upper bound, which
are defined by affine expressions of the surrounding
loop counters. The iterations of n perfectly nested loops
can thus be represented by an iteration domain, set
of all integer vectors in a polyhedron. When running
the program, each statement S is executed for each
value of the surrounding loop counters, represented by
an iteration vector p. Such an execution is an opera-
tion, denoted S(p).

Thus, as for SUREs, nested loops have an evaluation
region, the iteration domain. However, unlike SUREs,
the schedule is explicit and defines the semantics,
while the dependences are implicit and must be pre-
computed. Indeed, because each inner loop is scanned
for each iteration of an outer loop, the operations S(p)
are carried out in the predefined sequential order <seq ,
given by the lexicographic order defined on iteration
vectors plus the textual order:

S(p) <seq T(q) ⇔ (p̃ <lex q̃) or (p̃ = q̃ and S <text T)

where p̃ and q̃ are the vectors p and q restricted to
the loop counters that surround both S and T. There
is a data dependence from S(p) to T(q) (denoted
S(p) ⇒ T(q)) if both operations access the same
memory location, at least one access is a write, and
S(p) <seq T(q). As for SUREs, the relation ⇒ defines
a partial order between operations, i.e., an expanded

 P Parallelism Detection in Nested Loops, Optimal

dependence graph (EDG). To keep the program
semantics, code transformations should preserve this
partial order. In general, instead of representing all
pairs (S(p),T(q)) for which S(p) ⇒ T(q), the depen-
dences are approximated by a reduced dependence
graph (RDG), with one vertex per statement, where
the weight w(e) of each edge e describes a set De of
dependence distances q̃ − p̃, in a conservative way: if
S(p) ⇒ T(q) in the EDG, then there exists e = (S,T)
in the RDG such that q̃ − p̃ ∈ De. In other words, the
RDG describes a superset of the EDG called apparent
dependence graph (ADG). All loop transformations
algorithmshave to respect the dependences in theADG.
Thus, their properties, in particular their optimality for
detecting parallelism, need to be analyzed with respect
to the ADG (and not the EDG, which is not provided),
i.e., with respect to the dependence abstraction used.

Approximations of Distances: Dependence
Level and Direction Vector
The simplest way to represent a dependence distance is
to use the abstraction by dependence level. A depen-
dence between S(p) and T(q) is loop-independent if
it occurs for a fixed iteration of each loop surrounding
both S and T (i.e., q̃ = p̃). Otherwise, it is loop-carried
and its level is the index of the first nonzero component
of q̃ − p̃. Then, all iterations of a loop L at depth k can
be executed in any order, i.e., L is parallel, if there is no
dependence at level k in the RDG that corresponds to
the code surrounded by L.

The main idea of Allen and Kennedy’s
parallelization algorithm [] is to use loop distribu-
tion to reduce the number of statements within a loop,
and thus the number of potential dependences. Briefly
speaking, loop distribution separates, in different loops,
the statements of the different SCCs of the RDG.
Then, each SCC is treated separately and, according to
the dependence levels, the outermost loop is marked as
a DOALL or DOSEQ loop. Inner loops are treated the
same way, recursively. Here is a sketch of the algorithm
(different but equivalent to the original formulation).
The initial call is AK(G,), where G is the RDG with
dependence levels.

A careful analysis [] reveals that this algorithm
is nothing but the decomposition of Karp, Miller, and
Winograd, applied to an RDG with levels, except that
parallel loops are generated at the outermost level,

(Algorithm of Allen and Kennedy)
AK(G, k):

● Remove from G all edges of level < k.
● Compute the SCCs of G.
● For each SCC C in topological order, do:

– If C is reduced to a single statement S, with no
edge, generate DOALL loops in all remaining
dimensions, and generate code for S.

– Else
● Let l be the minimal dependence level in C.
● Generate DOALL loops from level k to level

l − , and a DOSEQ loop for level l.
● Call AK(C, l +).

when possible. Indeed, if schedules are searched as in
Theorem , considering that w(e) corresponds to any
distance vector represented by the dependence level
of the edge e, then the only valid schedules are the
elementary schedules that correspond to loop distribu-
tion/parallelization. This can also be understood with
the uniformization principle mentioned in the next
section. Moreover, using a proof technique similar to
the one used in Theorem , one can even prove the
following optimality result.

Theorem Allen and Kennedy’s algorithm is optimal
for parallelism extraction in an RDG labeled with depen-
dence levels.

Here, the optimality means the following. Let dS be
the number of DOSEQ loops generated around a state-
ment S. Assume that each loop has order N iterations.
Then, it is possible to build, in the ADG corresponding
to the RDG, a dependence path that visits Ω(NdS

) times
the statement S. It is even possible to build a code,
with the same RDG, whose EDG contains such a path.
In other words, without any other information, there is
no way to extract more parallelism.

Another popular dependence abstraction is the
direction vector whose components belong to Z ∪

{∗,+,−}∪(Z×{+,−}). Its ith component is an approx-
imation of the ith components of all possible distance
vectors: it is equal to z+ (resp. z−) if all ith components
are at least (resp. at most) z ∈ Z. It is equal to ∗ if the ith
componentmay take any value and to z ∈ Z if it takes the
unique value z.The notation + (resp. −) is a shortcut for
+ (resp. (−)−. A dependence of level k corresponds

Parallelism Detection in Nested Loops, Optimal P

P

to a direction vector (, . . . , ,+,∗, . . . ,∗) where + is
the k-th component. Unlike the dependence level, the
direction vector gives information on all dimensions of
the distance vectors. But, it is still not powerful enough
to express relations between different components.

When loops are perfectly nested and direction vec-
tors are constant, loops are called uniform.
Since dependences are directed according to the
sequential order, the direction vector is always lexico-
positive, its first nonzero component is positive, and
Theorem applies: there is a linear schedule, and the
code can always be rewritten with one outer sequen-
tial loop (which carries all dependences) surrounding
parallel loops. Lamport’s hyperplane method [] is
just a different way to build a linear schedule, with-
out requiring linear programming. To reduce the num-
ber of sequential steps, Theorem can be applied too.
Variants in which not all dependences are carried by
the outermost loop lead, among others, to more subtle
NP-complete retiming problems (see []).

Finally, a more powerful abstraction of dependence
distances is to represent them by a dependence poly-
hedron, defined by a set of vertices, a set of rays, and
a set of lines. A direction vector is a particular polyhe-
dral representation. For example, the direction vector
(+,∗, (−)−,) defines the polyhedron with one ver-
tex (, ,−,), two rays (, , ,) and (, ,−,), and
one line (, , ,). Thanks to a uniformization princi-
ple, an RDG with dependence polyhedra can be rein-
terpreted in terms of SUREs as recalled in the next
section.

Uniformization Principle: From Dependence
Polyhedra to SUREs
Consider the following code example:

DO i=, N

DO j=, N

a(i,j) = a(i,j-) + a(j,i)

ENDDO

ENDDO

It has three dependences: a uniform flow depen-
dence of distance (,) from S(i, j) to S(i, j +), a
flow dependence from S(i, j) to S(j, i) if i < j, and an
anti-dependence from S(j, i) to S(i, j) if j < i. The latter
two dependences correspond to the same dependence

distances and can be combined. The uniform depen-
dence has level and the combined dependence has
level , thus the algorithm of Allen and Kennedy can-
not find any parallelism. The corresponding direction
vectors are equal to (,) and (+,−). In the second
dimension, the “” and the “−” are incompatible and
prevent the detection of parallelism. However, there is
a linear schedule θ(i, j) = i + j, which leads to a
transformed code with one parallel loop:

DO j = , N

DOALL i=max(,⌈ j−N ⌉), min(N, ⌊ j− ⌋)

a(i,j-i) = a(j-i,i) + a(i,j-i-)

ENDDOALL

ENDDO

To find this program transformation, one can notice
that the set of distance vectors {(j − i, i − j) ∣ ≤ j − i ≤
N − } can be (over)-approximated by D = {(,−) +
λ(,−) ∣ λ ≥ }, i.e., a polyhedron with one vertex
v = (,−) and one ray r = (,−). Now, as for Theo-
rem , consider t such that t.d ≥ for any dependence
vector d. Thus, t. (,) ≥ and t.d ≥ for all d ∈ D.
The latter inequality is equal to t. (,−) + λt. (,−) ≥
with λ ≥ , which is equivalent to t. (,−) ≥ and
t. (,−) ≥ , i.e., t. v ≥ and t. r ≥ . Therefore, a valid
linear schedule is defined by a vector t that satisfies the
three inequalities t.u ≥ , t. v ≥ , t. r ≥ , which leads,
as desired, to t = (,) and θ(i, j) = i + j.

What is important here is the “uniformization” prin-
ciple, which transforms an inequality onD into uniform
inequalities on v and r. In terms of dependence path,
this amounts to consider an edge e, labeled by the dis-
tance vector p = v + λr, as a path that uses once the
“uniform” vector v and λ times the “uniform” vector r.
Now, the dependence vectors are not necessarily lexico-
positive anymore (e.g., a ray can be equal to (,−)).
Thus, the uniformized dependence graph looks more
like the RDG of a SURE than the RDG of a uniform
loop nest. However, the constraint imposed on a ray r
is weaker, it is t. r ≥ instead of t. r ≥ , and t. l =
for a line l. This freedom must be taken into account
in the parallelization algorithm. This leads to the algo-
rithm of Darte and Vivien, devoted to an RDG with
dependence polyhedra []. The technique is simple, it
consists in uniformizing the dependences so as to trans-
form the initial RDG into the RDG of a SURE, with
some new vertices emulating rays and lines. Despite the

 P Parallelism Detection in Nested Loops, Optimal

fact that these new vertices must be considered in a
special way, all results obtained for SUREs, such asThe-
orems and , and the structure of the subgraph G′,
can then be transferred to provide an optimal algorithm
for parallelism detection in an RDG with dependence
polyhedra. Furthermore, thanks to this uniformization
principle, the algorithm can be specialized to a particu-
lar dependence abstraction, such as dependence level or
direction vector, while keeping optimality with respect
to the dependence abstraction. For the dependence level
abstraction, it is the algorithm of Allen and Kennedy.
For direction vectors and a single instruction (or block
of instructions considered atomically), it leads to a vari-
ant of the algorithm of Wolf and Lam that would gen-
erate parallel loops instead of permutable loops (to find
permutable loops, one needs to analyze the cone gen-
erated by the cycle weights, those in G′ form the vector
space of this cone).

Figures and depict the uniformized RDGs for
the previous example when the non-uniform depen-
dence is represented by a direction vector (+,−) and a
dependence polyhedron along (,−). In the first case,
two self-loops on the new vertex b, of weight (,) and
(,−), are introduced, resulting in a nonempty sub-
graph G′, and no parallelism. In the second case, the
self-loop on b has weight (,−) and the RDG has no
multicycle of zero weight, and thus contains some par-
allelism. Similarly, the graph of Fig. is the uniformized

0
1

0
0

1
−1

0
−1

1
0

a b

Parallelism Detection in Nested Loops, Optimal. Fig.

Uniformized graph for direction vectors

0
1

0
0

1
−1

1
−1a b

Parallelism Detection in Nested Loops, Optimal. Fig.

Uniformized graph for polyhedron vector

RDG for the following code, where b is the vertex intro-
duced by the uniformization:

DO i=, N

DO j=, N

a(i,j) = c(i,j-)

c(i,j) = a(i,j) + a(i-,N)

ENDDO

ENDDO

Going Beyond, with the Affine Form of Farkas
Lemma
So far, the discussion focused, as inTheorem , on loop
transformations based on multi-dimensional schedul-
ing functions (with the lexicographic order) called
shifted-linear, i.e., of the form θ(v,p) = (tv .p +

ρv, . . . , tdvv .p+ ρdvv , , . . . ,) where, for all vertices of the
same SCC encountered at depth i of the decomposition,
the linear part tiv is the same. Different constants (simi-
lar to retiming []) can be used for different statements
however. The fact that the linear part is the same made
life easier. Indeed, to get valid scheduling functions, one
had to solve inequalities of the form θ(T,q)−θ(S,p) ≥ є
(є = or as inTheorem), i.e., t. (q− p) + ρT − ρS ≥ є.
If the dependence distance q−p is constant, one directly
ends up with a system of linear inequalities. Otherwise,
as just showed, the set of all q − p can be approximated
by a polyhedron and linear inequalities involving the
vertices, rays, and lines of this polyhedron are obtained.

Now, what if even more general functions are
searched, i.e., affine functions with a different linear
part for each statement? This is the approach of
Feautrier []. With θ(S,p) = tS .p + ρS, the constraints
that need to be solved are then of the form tT .q− tS .p+
ρT − ρS ≥ є for all p and q such that S(p) ⇒ T(q).
The number of inequalities depends on the number of p
and q, which is not practical. However, if the set of pairs
(p,q) such that S(p) ⇒ T(q) can be described by a
polyhedron, the affine form of Farkas lemma can be
used to simplify the inequalities. This lemma states that
c.p ≤ δ for all vectors p in a polyhedron {p ∣ Ap ≤ b} iff
c = y.A for some vector y ≥ such that y.b ≤ δ. With
this mechanism, an inequality involving all (p,q) in a
polyhedron can be replaced by a finite set of inequalities.

The affine form of Farkas lemma is the key tool
for writing inequalities in Feautrier’s algorithm, which
generates general multi-dimensional affine scheduling

Parallelism Detection in Nested Loops, Optimal P

P

functions. The skeleton of the algorithm itself is similar
to the decomposition of Karp, Miller, and Winograd:
trying to find a function for which as many depen-
dences as possible are satisfied. As for previous algo-
rithms, some optimality result can be formulated, but
of a different nature. For affine dependences, i.e., if p
is expressed as an affine function of q, for q in a poly-
hedron, whenever S(p) ⇒ T(q), optimal parallelism
detection requires more than affine functions, in par-
ticular index splitting, i.e., piecewise affine functions.
Thus Feautrier’s algorithm cannot be optimal with
respect to the dependence abstraction it was designed
for. However, among all affine functions, it can find one
with the “right” parallelism extraction, in other words,
the algorithm is optimal with respect to the class of
functions it considers []. Extensions to detect outer
parallel loops, to derive permutable loops for tiling, and
to generate codes where not all dependences are carried
have also been proposed, see, e.g., [,].

Multi-dimensional Affine Ranking
Functions and Program Termination
Recall the graph of Fig. . It is the RDG of a SURE with
three equations, a, b, c. Starting from such a descrip-
tion of repetitive computations, with explicit evaluation
region, implicit schedule, and explicit dependences, an
explicit schedule for it was derived. As seen in the
previous section, this RDG can also be interpreted as
the uniformized RDG of two Fortran-like nested loops
where b is a dummy vertex added to emulate the (, −)
direction vector. In this case, from a description of
repetitive computations, with explicit iteration domain
and explicit initial schedule (the sequential order),
dependences that were implicit are first computed and
abstracted.
Then, another schedule is derived that respects the
dependences and expresses, possibly, some parallelism.
Now, consider the following C-like code example:

y = ; x = ;

while (x ≤ N and y ≤ N) {

if (unknown) {

x = x + ;

while (y ≥ and unknown) y = y − ;

}

y = y + ;

}

This code is yet another description of repetitive
computations. Here, the schedule is explicit, it is the
sequential schedule. However, loop counters are not
specified, no iteration domain is specified, and the pro-
gram may not terminate. The program is controlled
by a parameter N and the integer variables x and y
whose values are modified by the program. Now, the
RDG of Fig. depicts, not the dependences between
computations, but how integer variables, implied in the
program control, evolve. Each vertex corresponds to a
state (program point + values of variables), edges repre-
sent transitions, i.e., modifications of variables. Again,
this leads to a model of computations similar to the
model of SUREs, for which the techniques and results
previously exposed can be useful. In this example, the
program can be proved to terminate, after performing
O(N

) operations.

Integer Interpreted Automata and Invariants
The following presentation is borrowed from [].
To prove the termination of an imperative pro-
gram, a standard approach is to transform it into an
affine integer interpreted automaton (K,n, kinit ,T)
defined by () a finite setK of control points, () n inte-
ger variables represented by a vector x of size n, () an
initial control point kinit ∈ K, and () a finite set T
of -tuples (k, g,a, k′), called transitions, where k ∈ K
(resp. k′ ∈ K) is the source (resp. target) control point.
The guard g : Z

n
↦ B = {true, false} is a logical for-

mula expressed with affine inequalities Gx + g ≥ and
the action a : Z

n
↦ Z

n assigns, to each variable val-
uation x, a vector x′ of size n, expressed by an affine
expression x′ = Ax + a.

The guard g in the transition t = (k, g,a, k′) gives
a necessary condition on variables x to traverse the
transition t from k to k′, and to apply its correspond-
ing action a. If, for two transitions going out of k, the
guards describe non-disjoint conditions, the automa-
ton expresses some non-determinism. To approximate
non-affine or non-analyzable assignments in the pro-
gram, the link between x and x′ can be described by
affine relations instead of functions, which introduces
another form of non-determinism. Unlike for SUREs,
this non-determinism can be unbounded, i.e., a single
transition can give rise to an unbounded number of
“successors” x′ for a given x.

 P Parallelism Detection in Nested Loops, Optimal

Unlike for DO loops and SUREs where the range
of iteration vectors is explicitly defined, with the iter-
ation domain and the evaluation region respectively,
here, the set of all possible values for x at control point k,
denoted Rk , is implicit and hard to compute exactly.
However, it is possible to over-approximate Rk by an
invariant at control point k, i.e., a formula true for
all reachable states (k, x). Polyhedral invariants can
be computed with abstract interpretation techniques,
widely studied since the seminal paper of Cousot and
Halbwachs []. In this case, Rk is over-approximated
by the integer points within a polyhedron Pk, which
represents all the information on the variables at con-
trol point k that can be deduced from the program by
state-of-the-art analysis techniques.

Termination and Ranking Functions
Invariants can only prove partial correctness of a pro-
gram. The standard technique for proving termination
is to consider a ranking function to a well-founded set,
i.e., a setW with a (possibly partial) order ⪯ (the nota-
tion a ≺ b means a ⪯ b and a ≠ b) with no infinite
descending chain, i.e., no infinite sequence (xi)i∈N with
xi ∈ W and xi+ ≺ xi for all i ∈ N. More precisely, a
ranking is a function ρ : K × Z

n
→ W , from the

automaton states to a well-founded set (W ,⪯), whose
values decrease at each transition t = (k, g,a, k′):

(x ∈ Rk) ∧ (g(x) = true) ∧ (x′ = a(x))

⇒ ρ(k′, x′) ≺ ρ(k, x) ()

The ranking is said to be affine if it is affine in the
second parameter (the variables). It is one-dimensional
if its co-domain is (N,≤) and d-dimensional (or multi-
dimensionalofdimensiond) if its co-domain is(Nd ,⪯d),
where the order ⪯d is the standard lexicographic order
on integer vectors.

Obviously, the existence of a ranking function
implies program termination for any valuation v at the
initial control point kinit . A well-known property is that
an integer interpreted automaton terminates for any ini-
tial valuation if it has a ranking function. Furthermore,
if it terminates and has bounded non-determinism,
there is a one-dimensional ranking function (but it is
not necessarily affine). The problem is now very sim-
ilar to the scheduling problem described for SUREs
and for DO loops, except that dependences are consid-
ered in the opposite direction. In the same way, affine
multi-dimensional ranking functions can be derived.

Considering rankings with d > is mandatory to be
able to prove the termination of programs that induce
a number of transitions, i.e., a trace length, more than
linear in the program parameters. Considering rank-
ings with a different affine function for each control
point also extends the set of programs whose termina-
tion can be determined, compared, e.g., to shifted-linear
rankings or to the technique of [].

A Greedy Complete Polynomial-Time
Procedure
A ranking function ρ of dimension d needs to sat-
isfy two properties. First, as ρ has co-domain N

d, it
should assign a nonnegative integer vector to each rele-
vant state:

x ∈ Pk ⇒ ρ(k, x) ≥ (component-wise) ()

Second, it should decrease on transitions. LetQt be the
polyhedron giving the constraints of a transition t =

(k, g,a, k′), i.e., x ∈ Pk , g(x) is true, and x′ = a(x).Qt is
built from thematrices A andG, and the vectors a and g.
For an automaton whose actions are general affine rela-
tions, Qt is directly given by the action definitions.
With Δt(ρ, x, x′) = ρ(k, x) − ρ(k′, x′), Inequality ()
then becomes:

(x, x′) ∈ Qt ⇒ Δt(ρ, x, x′) ≻d ()

which means Δt(ρ, x, x′) ≠ and its first nonzero com-
ponent is positive. If this component is the i-th, the level
of Δt(ρ, x, x′) is i. A transition t is said to be (fully) sat-
isfied by the i-th component of ρ (or at dimension i) if
the maximal level of all Δt(ρ, x, x′) is i. To build a rank-
ing ρ, the same greedymechanism as in [, ,] can be
used.The components of ρ, functions fromK×Z

n toN,
are built from the first one to the last one. For a compo-
nent σ of ρ and a transition t not yet satisfied by one of
the previous components of ρ, the following constraint
is considered:

(x, x′) ∈ Qt ⇒ Δt(σ , x, x′) ≥ єt with ≤ єt ≤ ()

and a ranking is selected for which as many transi-
tions as possible have єt = , i.e., are now satisfied.
Again, inequalities such as () are captured thanks to
the affine form of Farkas lemma. The algorithm itself
has the same structure as the decomposition of Karp,
Miller, and Winograd, and of Feautrier’s algorithm.

Parallelism Detection in Nested Loops, Optimal P

P

(Generation of a multi-dimensional affine ranking)
: i = ; T = T ; ▷ Initialize T to all transitions
: while T is not empty do
: Find a D affine function σ and values єt such

that all inequalities () and () are satisfied
and as many єt as possible are equal to ;
▷This means maximizing∑t∈T єt

: Let ρi = σ ; i = i + ; ▷ σ defines the i-th
component of ρ

: If no transition t with єt = , return false ▷ No
multi-dimensional affine ranking.

: Remove fromT all transitions t such that єt = ;
▷The transitions have level i

: end while;
: d = i; return true; ▷ d-dimensional ranking found

Since nonterminating programs exist, there is no
hope of proving that a ranking function always
exists. Moreover, there are terminating affine inter-
preted automata with no multi-dimensional affine
ranking. Thus, what can be proved is only that, if a
multi-dimensional affine ranking exists, the algorithm
finds one, i.e., it is complete for the class of multi-
dimensional affine rankings. Also, as the sets Rk are
over-approximated by the invariants Pk, completeness
has to be understood with respect to these invariants,
which means that if the algorithm fails when an affine
ranking exists, it is because invariants are not accurate
enough.

Theorem If an affine interpreted automaton, with
associated invariants, has a multi-dimensional affine
ranking function, then the greedy algorithm finds one.
Moreover, the dimension of the generated ranking is
minimal.

Conclusion
In [], Karp, Miller, and Winograd introduced several
new concepts and techniques that gave rise to impor-
tant developments in the context of loop transforma-
tions and program analysis. The key is to represent a
repetitive scheme of computations, even infinite, by a
finite structure, the reduced dependence graph (and
its variants). This allows a compiler to manipulate a
program in a time that depends on the structure of
the code but not on the number of operations that it
describes. In other words, there is no need to unroll
loops to understand what they do. Linear programming

techniques and polyhedral representations can be used
to analyze and optimize such programs, in a parametric
way.

This essay mentioned three related problems: deter-
mining if a system of uniform recurrence equations is
computable, transforming DO loops so as to reveal par-
allel loops, and proving the termination of programs
with IFs and WHILE loops, thanks to affine ranking
functions. The link with program termination is still to
be explored. Indeed, if the derivation of affine rankings
is similar to the derivation of affine schedules, there are
many subtle differences, in particular concerning the
underlying iteration domains (invariants). One of the
most challenging problems is to derive piecewise affine
rankings to prove the termination of many more pro-
grams. For the detection of parallelism, deriving parallel
codes with more data reuse and a better handling of
memory transfers is still a challenge.

Related Entries
�Dependence Abstractions
�Dependence Analysis
�Dependences
�Loop Nest Parallelization
�Loops, Parallel
�Parallelization, Automatic
�Polyhedron Model
�Scheduling Algorithms
�Tiling
�Unimodular Transformations

Bibliography
. Alias C, Darte A, Feautrier P, Gonnord L () Multi-

dimensional rankings, program termination, and complexity
bounds of flowchart programs. In th International Static Anal-
ysis Symposium (SAS’). Lecture notes in computer science, vol
. Springer Verlag, Perpignan, pp –

. Allen JR, Kennedy K () Automatic translation of Fortran
programs to vector form. ACM Trans Program Lang Syst ():
–

. Bondhugula U, Baskaran MM, Krishnamoorthy S, Ramanujam J,
Rountev A, Sadayappan P () Automatic transformations for
communication-minimized parallelization and locality optimiza-
tion in the polyhedral model. In Compiler Construction (CC’).
Lecture notes in computer science, vol . Springer Verlag,
pp –

. Collard J-F, Feautrier P, Risset T () Construction of DO
loops from systems of affine constraints. Parallel Process Lett ():
–

http://dx.doi.org/10.1007/978-0-387-09766-4_272
http://dx.doi.org/10.1007/978-0-387-09766-4_2014
http://dx.doi.org/10.1007/978-0-387-09766-4_172
http://dx.doi.org/10.1007/978-0-387-09766-4_228
http://dx.doi.org/10.1007/978-0-387-09766-4_27
http://dx.doi.org/10.1007/978-0-387-09766-4_197
http://dx.doi.org/10.1007/978-0-387-09766-4_502
http://dx.doi.org/10.1007/978-0-387-09766-4_66
http://dx.doi.org/10.1007/978-0-387-09766-4_511
http://dx.doi.org/10.1007/978-0-387-09766-4_196

 P Parallelization

. Colón MA, Sipma HB () Practical methods for proving pro-
gram termination. In th International Conference onComputer
Aided Verification (CAV). Lecture notes in computer science, vol
. Springer Verlag, pp –

. Cousot P, Halbwachs N () Automatic discovery of linear
restraints among variables of a program. In th ACM Symposium
on Principles of Programming Languages (POPL’). ACM, Tuc-
son, pp –

. Darte A () Understanding loops:The influence of the decom-
position of Karp, Miller, and Winograd. In th ACM/IEEE
International Conference on Formal Methods and Models for
Codesign (MEMOCODE’). IEEE Computer Society, Grenoble,
pp –

. Darte A, Huard G () Complexity of multi-dimensional
loop alignment. In th International Symposium on Theoreti-
cal Aspects of Computer Science (STACS’), vol . Springer
Verlag, pp –

. Darte A, Khachiyan L, Robert Y () Linear scheduling is nearly
optimal. Parallel Process Lett ():–

. Darte A, Robert Y, Vivien F () Scheduling and Automatic
Parallelization. Birkhauser. ISBN ---

. Darte A, Vivien F () Revisiting the decomposition of Karp,
Miller, and Winograd. Parallel Process Lett ():–

. DarteA, Vivien F ()On the optimality of Allen andKennedy’s
algorithm for parallelism extraction in nested loops. J Parallel
Algorithms Appl (–):–

. Darte A, Vivien F () Optimal fine and medium grain paral-
lelism detection in polyhedral reduced dependence graphs. Int J
Parallel Program ():–

. Feautrier P () Parametric integer programming. RAIRORech
Opérationnelle :–

. Feautrier P () Dataflow analysis of array and scalar references.
Int J Parallel Program ():–

. Feautrier P () Some efficient solutions to the affine scheduling
problem, part II: Multi-dimensional time. Int J Parallel Program
():–

. Gulwani S,MehraKK, Chilimbi T () SPEED: Precise and effi-
cient static estimation of program computational complexity. In
th ACM Symposium on Principles of Programming Languages
(POPL’). ACM, Savannah, pp –

. Karp RM,Miller RE,Winograd S ()The organization of com-
putations for uniform recurrence equations. J ACM ():–

. Lamport L () The parallel execution of DO loops. Commun
ACM ():–

. Leiserson CE, Saxe JB () Retiming synchronous circuitry.
Algorithmica ():–

. Lim AW, Lam MS () Maximizing parallelism and minimiz-
ing synchronization with affine transforms. In th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’). ACM, New York, pp –

. Podelski A, Rybalchenko A () A complete method for the
synthesis of linear ranking functions. In Verification, Model
Checking, and Abstract Interpretation (VMCAI’). Lecture
notes in computer science, vol . Springer Verlag, pp –

. Schrijver A () Theory of Linear and Integer Programming.
Wiley, New York

. Vivien F () On the optimality of Feautrier’s scheduling algo-
rithm. Concurr Comput (–):–

. Wolf ME, Lam MS () A loop transformation theory and
an algorithm to maximize parallelism. IEEE Trans Parallel Dis-
tributed Syst ():–

Parallelization

�FORGE
�Loop Nest Parallelization
�Parafrase
�Parallelism Detection in Nested Loops, Optimal
�Parallelization, Automatic
�Parallelization, Basic Block
�Polaris
�Run Time Parallelization
�Speculative Parallelization of Loops

Parallelization, Automatic

David Padua
University of Illinois at Urbana-Champaign, Urbana,
IL, USA

Synonyms
Parallelization

Definition
Autoparallelization is the translation of a sequential
program by a compiler into a parallel form that out-
puts the same values as the original program. For some
authors, autoparallelization means only translation for
multiprocessors. However, this definition is more gen-
eral and includes translation for instruction level, vec-
tor, or any other form of parallelism.

Discussion

Introduction
The compilers of most parallel machines are autopar-
allelizers, and this has been the case since the ear-
liest parallel supercomputers, the Illiac IV and the
TI ASC, were introduced in the s. Today, there
are autoparallelizers for vector processors, VLIW
processors, microprocessor vector extensions, andmul-
tiprocessors.

http://dx.doi.org/10.1007/978-0-387-09766-4_55
http://dx.doi.org/10.1007/978-0-387-09766-4_228
http://dx.doi.org/10.1007/978-0-387-09766-4_434
http://dx.doi.org/10.1007/978-0-387-09766-4_519
http://dx.doi.org/10.1007/978-0-387-09766-4_197
http://dx.doi.org/10.1007/978-0-387-09766-4_227
http://dx.doi.org/10.1007/978-0-387-09766-4_273
http://dx.doi.org/10.1007/978-0-387-09766-4_164
http://dx.doi.org/10.1007/978-0-387-09766-4_35
http://dx.doi.org/10.1007/978-0-387-09766-4_2162

Parallelization, Automatic P

P

Autoparallelization is for productivity. Autoparal-
lelizers, when they succeed, enable the programming of
parallel machines with conventional languages such as
Fortran or C. In this programming paradigm, code is
not complicated by parallel constructs and the obfusca-
tion typical of manual tuning.

Inserting explicit parallel constructs and tuning
is not only time-consuming but also produces non-
portable, machine-dependent code. For example, codes
written for multiprocessors and those for SIMD
machines have different syntax and organization.
On the other hand, with the support of autoparal-
lelization, conventional codes could be portable across
machine classes.

Explicit parallelism introduces opportunities for
program defects that do not arise in sequential pro-
gramming. With autoparallelization, the code has
sequential semantics. There is no possibility of deadlock
and programs are determinate. The downside is that it
is not possible to implement asynchronous algorithms,
although this limitation does not affect the vast majority
of applications.

Requirements for Autoparallelization
A parallelizing compiler must analyze the program to
detect implicit parallelism and identify opportunities
for restructuring transformations, and then apply a
sequence of transformations.

Detection of implicit parallelism can be accom-
plished by () computing the dependences to determine
where the sequential order of the source program can
be relaxed, and () analyzing the semantics of code
segments to enable the selection of alternative parallel
algorithms.

The transformation process is restricted by the
information provided by this analysis and is guided by
heuristics supported by static prediction of execution
time or program profiling.

Dependence Analysis
The dependence relation is a partial order between
operations in the program that is computed by
analyzing variable and array element accesses. Execut-
ing the program following this partial order guarantees
that the program will produce the same output as the
original code. For example, in
for (i=0; i < n; i++) {a[i] += 1;}
for (j=0; j < n; j++) {b[j] = a[j]*2;}

corresponding iterations of the first and the second loop
must be executed in the specified order. However, these
pairs of iterations do not interact with other pairs and
therefore do not have to execute in the original order to
produce the intended result. Only corresponding iter-
ations of these two loops are ordered. By determining
what ordersmust be enforced, dependence analysis tells
us which reordering is valid and what can be done in
parallel: two operations that are not related by the par-
tial order resulting from the dependence analysis can be
reordered or executed in parallel with each other.

Dependence analysis can be done statically, by a
compiler; or dynamically, during program execution.

Static analysis is discussed next, while dynamic anal-
ysis is discussed below under the heading of “Runtime
Resolution”.

How close the dependences generated by static
dependence analysis are to the minimum number of
ordered pairs required for correctness depends on the
information available at compile time and the algo-
rithms used for the analysis. The loops above are exam-
ples of loops that can be analyzed statically with total
accuracy because () all the information needed for
an accurate analysis is available statically, and () the
subscript expressions are simple, so that most analy-
sis algorithms can analyze them accurately. Accuracy is
tremendously important becausewhen the set of depen-
dences computed by a test is not accurate, spurious
dependences must be assumed and this may preclude
valid transformations including conversion into parallel
form.

There are numerous algorithms for dependence
analysis that have been developed through the years.
They typically trade off accuracy for speed of analysis.
For example, some fast tests do not make use of infor-
mation about the values of the loop indices, while others
require them. Ignoring the loop limits works well in
some cases. The loops above are an example of this sit-
uation. The value of n in these loops is not required
to do an accurate analysis. However, in other cases,
knowledge of the loop limits is needed. Consider the
loop

for (i=10; i<15; i++) {a[i]+=a[i-8];}

The loop limits, and , are necessary to determine
that no ordering needs to be enforced between loop
iterations since, for these values, the iterations do not

 P Parallelization, Automatic

interactwith each other. A test that ignores the loop lim-
its will report that (some) iterations in this loop must be
executed in order.

Some of the most popular dependence tests require
for accuracy that the subscript expressions be affine
expression of the loop indices and the values of the coef-
ficients and the constant be known at compile time.
For example, a test that requires knowledge of the
numerical values of coefficients would have to assume
that iterations of the loop

if (m >0) {
for (i=0; i < n; i+=2){

a[m*i]+=a[m*i+1];
}

}

must be executed in order, while a test with symbolic
capabilities would be able to determine that the iter-
ations do not have to be executed in any particular
order to obtain correct results. Table presents the main
characteristics of a few dependence tests.

When the needed information is not available at
compile time or the analysis algorithm is inaccu-
rate, the decision can be postponed to execution time
(see “Transformations for Runtime Resolution” below).
For example, the loop

for (i=0; i <n; i++) {a[i+k]+=a[i];}

can be transformed into an array operation as long as
k is negative, but the compiler will not know that this
is the case if k happens to be a function of the input to
the program or if the value propagation analysis con-
ducted by the compiler cannot decide that k is negative.
A similar situation arises in the loop

for (i=0; i < n; i++) {a[m[i]]+=a[i];}

where m[i] must be ≤ i or ≥ n and all the m[i]’s be dif-
ferent for a transformation into vector operation to be

valid. But this will only be known to the compiler, if it
can propagate array values and these values are avail-
able in the source code. Otherwise, dependences must
be assumed or the analysis postponed to execution time.

Semantic Analysis
Semantic analysis identifies operators or code sequences
that have a parallel implementation. A good example
is the analysis of array operations. For example, in the
Fortran statement

a(1:n) = sin(a(2:n+1))

the n evaluations of sin can proceed in parallel since
their parameters do not depend on each other.

Although array operations like this can be inter-
preted as parallel operations, most Fortran compilers
at the time of the writing of this entry do not parallelize
directly array operations, but instead translate them into
loops which are analyzed by later passes for paralleliza-
tion. So, in effect, they rely on semantic analysis.

The compiler can also apply semantic analysis to
sequence of statements with the help of a database of
patterns. For example,

for (i=0; i <n; i++) {s+=a[i];}

cannot be parallelized by relying exclusively on depen-
dence analysis, because this analysis will only state the
obvious: that each iteration requires the result of the
previous one (the values of sum) to proceed. However,
accumulations like this can be parallelized, if assum-
ing that + is associative is acceptable, and are frequently
found in real programs. Therefore, this pattern is a
natural candidate for inclusion in this database.

Other frequently found patterns include: finding the
minimum or maximum of an array, and linear recur-
rences such as

x[i]=a[i]*x[i-1]+b[i]

Parallelization, Automatic. Table Characteristics of a few dependence tests

Test name # of loop indices in subscript Subscript expressions must be affine? Uses loop bounds? Ref.

ZIV (constant) Y N/A []

SIV Y Y []

GCD Any Y N []

Banerjee Any Y Y []

Access Region Any N Y []

Parallelization, Automatic P

P

Some compilers have been known to recognize more
complex patterns such a matrix–matrix multiplication.

Once the compiler knows the type of operation, it
can choose to replace the code sequence with a parallel
version of the operation.

Program Transformations
Program transformations are used to

. Reduce the number of dependences
. Generate code for runtime resolution, that is, code

that at runtime decides whether to execute in
parallel

. Schedule operations to improve locality or paral-
lelism

Transformations for Reducing the Number of

Dependences

This class of transformations aims at reducing the num-
ber of ordered pairs to improve parallelism and enable
reordering. Induction variable substitution and privati-
zation are two of the most important examples in this
class. Induction variables are those that assume values
that form an arithmetic sequence. Their computation
creates a linear order that must be enforced. In addi-
tion, using induction variables in subscripts hinders the
dependence analysis of other computations. For exam-
ple, the loop

for (i=0; i<n; i++){j+=2; a[j]=a[j]*2;}

cannot be parallelized in this form since j+= must be
executed in order. Furthermore, dependence analysis
cannot know that each iteration of the loop accesses a
different element unless it knows that j takes a different
value in each iteration. Fortunately, in this example, as
in most cases, the induction variable can be eliminated
to increase parallelism and improve accuracy of analy-
sis. Thus, here j may be represented in terms of the loop
index and forward substituted:

for (i=0; i<n; i++) {a[j+2*i+1]=a[j+2*i+1]*2;}

The effect of this transformation is that the chain of
dependences resulting from the j++ statement goes
away with the statement. Also, the removal of the incre-
ment makes j a loop invariant and this enables an
accurate dependence analysis at compile time.

The identification of induction variables was origi-
nally developed for strength reduction, which replaces

operations with less expensive ones. A typical strength
reduction is to replace multiplications with additions.
For parallelism, the replacement goes in the opposite
direction. For example, additions are replaced by mul-
tiplications as shown in the last example. Induction
variable identification relies on conventional compiler
data-flow analysis.

Privatization can be applied when the a variable is
used to carry values from one statement to another
within the one iteration of the loop. For example, in

for(i=0;i<n; i++){a=b[i]*2;c[i]= a*c[i]}

the use of a single variable, a, in all iterations demands
that the iterations be executed in order to guarantee cor-
rect results because, a should not be reassigned until
its value has been obtained by the second statement of
the loop body. The privatization transformation simply
makes a private to the loop iteration and thus eliminates
a reason to execute the iterations in order.

An alternative to privatization is expansion.
This transformation converts the scalar into an array
and has the same effect on the dependence as privati-
zation. For the previous loop, this would be the result:

for (i=0;i<n;i++) {
a1[i]=b[i]*2;

c[i]=a1[i]*c[i]
}

a=a1[n-1];

Privatization is applied when generating code for mul-
tiprocessors, and expansion is necessary for vectoriza-
tion. The main difficulty with expansion is the increase
in memory requirements. While privatization increases
the memory requirements proportionally to the num-
ber of processors, expansion does so proportionally to
the number of iterations, a number that is typically
much higher.

However, expansion can be applied together with a
transformation called stripmining to reduce the amount
of additional memory.

Privatization and expansion require analysis to
determine that the variable being privatized or expanded
is never used to pass information across iterations of the
loop.This analysis can be done using conventional data
flow analysis techniques.

 P Parallelization, Automatic

Transformations for Runtime Resolution

In its simplest form, runtime resolution transforma-
tions generate if statements to select between a parallel
or serial version of the code. For example,

do i=m,n
a(i+k)=a(i)*2

end do

as discussed above, can be vectorized if k ≤ .
The compiler may then generate a two-version code

if (k<=0) then
a(k+m:k+n)+=a(m:n)

else
do i=m,n
a(i+k)=a(i)*2
end do

end if

Two-version code can be also be used in other situa-
tions. Thus, if the loop contains an assignment state-
ment that accesses memory through pointers in the
right- and left-hand sides, such as the loop

for (i=0; i <n; i++) {*(a+i)=*(b+i)+2;}

the if statement should check that address a is either less
than address b or greater than address (b+n-).

More complex runtime resolution would be needed
for loops like

for (i=0; i <n; i++) {a[m[i]]+=a[i];}

where the m[i]’s must be ≤ i or ≥ n and all distinct for
vectorization to be possible, or m[i] either = i or out-
side the values in the iteration space and all distinct for
transformation into a parallel loop. In

for (i=0; i <n; i++) {a[m[i]]+=a[q[i]];}

the m[i]’s and q[i]’s must be such that m[i] ≤ q[i] and
the m[i]’s all distinct for vectorization, or m[i] ≠ q[j]
whenever i ≠ j for parallelization. Two-version loops
can be generated also in this case, but the if condi-
tion is somewhat more complex as it must analyze a
collection of addresses. In this last case, the technique is
called inspector-executor. Another approach to runtime
resolution is speculation, which attempts to execute in
parallel and optimistically expects that there will be no
conflicts between the different components executing in
parallel. During the execution of the speculative parallel
code or at the end, the memory references are checked
to make sure that the parallel execution was correct.

If it was not, the execution is undone and the com-
ponents executed at a later time either in the right order
or again speculatively, in parallel.

Run time resolution is also used to check for prof-
itability, i.e., that parallel execution will make execution
faster. For example, if the number of iterations of a par-
allel loop is not known at compile time, runtime resolu-
tion can be used to decide whether to execute a loop in
parallel as a function of the number of iterations. Also,
runtime resolution can be used to guarantee that vector
operations are only executed if the operands are or can
be properly aligned inmemorywhen this is required for
performance. For example, SSE vector operations some-
times perform better when the operands are aligned on
double word boundaries.

Scheduling Transformations

An important class are the transformations that sched-
ule the execution of program operations or partition
these operations into groups. To enforce the order, the
compiler typically uses the barriers implicit in array
operations or multiprocessor synchronization instruc-
tions. One such transformation is stripmining. It parti-
tions the iterations of a loop into blocks by augmenting
the increment of the loop index and adding an inner
loop as follows:

for (i=0; i <n; i++) {a[i]=a[i]+1;}

↓

for (i=0; i < (n/q)*q; i+=q)
for(j=i; j< i+q, j++) {

a[j]=a[j]+1;
}

for (i=(n/q)*q; i< n, i++) {a[i]=a[i]+1;}

Stripmining is useful to enhance locality and reduce the
amount of memory required by the program. In partic-
ular, it can be used to reduce the memory consumed by
expansion. If the goal is vectorization and the size of the
vector register is q, this transformation will not reduce
the amount of parallelism.

Another type of loop partitioning transforma-
tion is that developed for a class of autoparalleliz-
ing compilers targeting distributed memory operations.
These compilers, including High-Performance Fortran
and Vienna Fortran, flourished in the s but are
no longer used. The goal of partitioning was to orga-
nize loop iterations groups so that each group could

Parallelization, Automatic P

P

be scheduled in the node containing the data to be
manipulated.

An important sequencing transformation is loop
interchange, which changes the order of execution by
exchanging loop headers. This transformation can be
useful to reduce the overhead when compiling for
multiprocessors and to enhance memory behavior by
reducing the number of cache misses. For example, the
loop

for (i=0; i < (n/q)*q; i+=q)
for(j=i; j< i+q, j++) {

a[j]=a[j]+1;
}

can be correctly transformed by loop interchange into

for (j=0; j<n; j++)
for(i=0; i<n, i++){

a[i][j]=a[i-1][j]+1;
}

The outer loop of the original nest cannot be exe-
cuted in parallel. If nothing else is done, the only option
of the compiler targeting a multiprocessor is to trans-
form the inner loop into parallel form and while this
could lead to speedups, the result would suffer of the
parallel loop initiation overhead once per iteration of
the outer loop. Exchanging the loop headers makes
the iteration of the outer loop independent so that the
outer loop can be executed in parallel and the over-
head is only paid once per execution of the whole loop.
Furthermore, the resulting loop has a better locality
since the array is traverse in the order it is stored, so that
the elements of the array in a cache line are accessed in
consecutive order, improving in this way spatial locality.

A third example of sequencing transformation is
instruction level parallelization. Consider, for example,
a VLIWmachine with a fixed point and a floating point
unit. The sequence

r1=r2+r3
r4=r4+r5
f1=f1+f2
f3=f4+f5

contains two fixed point operations (those operating
on the r registers) and two floating point operations.
Exchanging the second and the third operation is neces-
sary to enable the creation of two (VLIW) instructions
each making use of both computational units.

In some cases, the partitioning and sequencing
of the operations is not completely determined at
compile time. For example the sum reduction

for (i=0; i <n; i++) {s+=a[i];}

once identified as such by semantic analysis, may be
transformed into a form in which subsets of iterations
are executed by different threads and the elements of a
are accumulated into different variables, one per thread
of execution. These variables are then added to obtain
the final sum. The number of these threads can be left
undefined until execution time. In OpenMP notation,
this can be represented as follows:

#pragma omp parallel
{float sp=0;
#pragma omp for
for (i=0; i <n; i++){
sp+=a[i];}

#pragma omp single
{s+=sp;}
}

or, more simply,

#pragma omp parallel for reduction (+: sum)
for (i=0; i <n; i++) {

sp+=a[i];}

It should be pointed out that in this example, it has been
assumed that floating point addition is associative, but
because of the finite precision of machines, it is not. In
some cases, it is correct to do this transformation, even
if the result obtained is not exactly the same as that of
the original program.

However, this is not always the case and transforma-
tions like this require authorization from the program-
mer. Table contains a list of important transformations
not discussed above.

Autoparallelization Today
Most of today’s compilers that target parallel machines
are autoparallelizers. They can generate code for
multiprocessors and vector code. Although autoparal-
lelization techniques have become the norm, the few
empirical studies that exist as well as anecdotal evidence
indicate that these compilers often fail to generate high-
quality parallel code. There are two reasons for this.
First, sometimes the compiler fails to find parallelism
due to limitations of its dependence/semantic analysis
or transformation modules. In other cases, it is unable
to generate good quality code because of limitations in

 P Parallelization, Automatic

Parallelization, Automatic. Table An incomplete list of transformations for autoparallelization

Name Description Example of use

Alignment Reorganizes computation so that
values produced in one iteration
are consumed by the same itera-
tion

Reduce synchronization costs

Distribution Partitions a loop into multiple
loops

Separates sequential from parallel parts

Fusion Merges two loops Reduce parallel loop initiation overhead

Skewing Partitions the set of iterations into
groups that are not related by
dependences (i.e. are not ordered)

Enhance parallelism

Node Splitting Breaks a statement into two Reduce dependence cycles and thus
enable transformations

Software pipelining Reorders andpartitions the execu-
tions of operations in a loop into
groups that are independent from
each other

Enhance instruction level parallelism

Tiling Partitions the set of iterations of a
multiplynested loop intoblocksor
tiles

Enhance locality

Trace scheduling Reorder and partition the execu-
tions of operations in a loop into
groups that are independent from
each other

Enhance instruction level parallelism

Unroll and Jam Partitions the set of iterations of a
multiplynested loop intoblocksor
tiles with reuse of values

Enhance locality

its profitability analysis.That is, the compiler incorrectly
assumes that transforming into parallel form would
slow the program down.

To circumvent these limitations, compilers accept
directives from programmers to help the analysis or
guide the transformation and code generation process.
A few vectorization directives for the Intel C++ com-
piler and IBM XLC compiler are shown in Table . The
programmer can also influence the result by modifying
the program into a form that can be recognized by the
compiler.

Despite their limitations, autoparallelizers today
contribute to productivity by

. Saving labor. As mentioned, manual intervention
in the form of directives or rewriting is typically
necessary, but programmers can often rely on the
autoparallelizing compiler for some sections of code
and in some cases the whole program.

. Portability. Sequential code complemented with
directives is portable across classes ofmachines with
the support of compilers. Portability is after all one
of the purposes of compilers and autoparallelization
brings this capability to the parallel realm.

. As a training mechanism. Programmers can learn
about what can and cannot be parallelized by inter-
acting with an autoparallelizer. Thus, the compiler
report to the programmer is not only useful for
manual intervention, but also for learning.

Future Directions
Autoparallelization has only been partially success-
ful. As previously mentioned, in many cases today’s
compilers fail to recognize the existence of paral-
lelism, or having recognized the parallelism, incor-
rectly assume that transforming into parallel form is not
profitable. Although autoparallelization is useful and

Parallelization, Automatic P

P

Parallelization, Automatic. Table Vectorization directives for the IBM (XLC) and Intel (ICC) compilers

Vectorization directive Purpose

#pragma vector always (ICC) Vectorize the following loop whenever dependences allow it, disregarding
profitability ananlysis

#pragma nosimd (XLC) Preclude vectorization of the following loop

#pragma novector (ICC)

__assume_aligned (A,); ICC The compiler is told to assume that the vector (A in the examples) start at

__alignx(, A); (XLC) addresses that are a multiple of a given constant (in the examples)

effective when guided by user directives, there is clearly
much room for improvement. Research in the area has
decreased notably in the recent past, but it is likely that
there will be more work in the area due to the renewed
interest in parallelism that multicores have initiated.
Two promising lines of future studies are

. Empirical evaluation of compilers to improve
parallelism detection, code generation, compiler
feedback, and parallelization directives. Evaluating
compilers using real applications is necessary to
make advances in autoparallelization of conven-
tional languages. Although there has been some
work done in this area, much more needs to be
done. This type of work is labor intensive since
the best and perhaps the only way to do it is for
an expert programmer to compare what the com-
piler does with the best code that the program-
mer can produce. This process is likely to converge
since code patterns repeat across applications [].
These costs and risks are worthwhile given the
importance of the topic and the potential for an
immense impact on productivity.

. Study programming notations and their impact on
autoparallelization. Higher level notations, such as
those used for array operations, tend to facilitate the
task of a compiler while at the same time improv-
ing productivity. Language-compiler codesign is an
important and promising direction not only for
autoparallelization but for compiler optimization in
general.

Related Entries
�Banerjee’s Dependence Test
�Code Generation
�Dependence Analysis
�Dependences

�GCD Test
�HPF (High Performance Fortran)
�Loop Nest Parallelization
�Modulo Scheduling and Loop Pipelining
�Omega Test
�Parallelization, Basic Block
�Run Time Parallelization
�Scheduling Algorithms
�Semantic Independence
�Speculative Parallelization of Loops
�Speculation, Thread-Level
�Trace Scheduling
�Unimodular Transformations

Bibliographic Notes And Further
Reading
As mentioned in the introduction, work on autoparal-
lelization started in the s with the introduction of
Illiac IV and the Texas Instrument Advanced Scientific
Computer (ASC). The Paralyzer, an autoparallelizer for
Illiac IV developed by Massachusetts Computer Asso-
ciates, is discussed in [].

This is the earliest description of a commercial
autoparallelizer in the literature. Since then, there have
been numerous papers and books describing commer-
cial autoparallelizers. For example, [] describes an
IBM vectorizer of the s, [] discusses Intel’s vector-
izer for their multimedia extension, and [] describes
the IBM XLC compiler autoparallelization features.

Many of the autoparallelization techniques were
developed at universities. Pioneering work was done
by David Kuck and his students at the University of
Illinois [,] . The field has benefited from the contri-
butions of numerous researchers. The contributions of
Ken Kennedy and his coworkers [] at Rice University
have been particularly influential.

http://dx.doi.org/10.1007/978-0-387-09766-4_195
http://dx.doi.org/10.1007/978-0-387-09766-4_67
http://dx.doi.org/10.1007/978-0-387-09766-4_2014
http://dx.doi.org/10.1007/978-0-387-09766-4_172
http://dx.doi.org/10.1007/978-0-387-09766-4_2018
http://dx.doi.org/10.1007/978-0-387-09766-4_224
http://dx.doi.org/10.1007/978-0-387-09766-4_228
http://dx.doi.org/10.1007/978-0-387-09766-4_65
http://dx.doi.org/10.1007/978-0-387-09766-4_266
http://dx.doi.org/10.1007/978-0-387-09766-4_227
http://dx.doi.org/10.1007/978-0-387-09766-4_164
http://dx.doi.org/10.1007/978-0-387-09766-4_66
http://dx.doi.org/10.1007/978-0-387-09766-4_288
http://dx.doi.org/10.1007/978-0-387-09766-4_35
http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_251
http://dx.doi.org/10.1007/978-0-387-09766-4_196

 P Parallelization, Basic Block

There have been only a few papers evaluating the
effectiveness of autoparallelizers. In [], different vec-
torizing compilers are compared using a collection of
snippets, and in [] the effectiveness of parallelizing
compilers is discussed using the Perfect Benchmarks.

More information on autoparallelization, can be
found in the related entries or in books devoted to this
subject [, , ,]. Reference [] contains a discussion
of compiler techniques for High-Performance Fortran.

Bibliography
. Allen R, Kennedy K () Automatic translation of FOR-

TRAN programs to vector form. ACM Trans Program Lang Syst
():–. DOI= http://doi.acm.org/./.

. Banerjee UK () Loop transformations for restructuring com-
pilers: dependence analysis. Kluwer Academic, Norwell

. Bik AJC (May) The software vectorization handbook. Intel,
Hillsboro

. Eigenmann R, Hoeflinger J, Padua D (Jan) On the automatic
parallelization of the perfect Benchmarks� . IEEE Trans Parallel
Distrib Syst ():–. DOI=http://dx.doi.org/./.

. Kennedy K, Allen JR () Optimizing compilers for modern
architectures: a dependence-based approach.Morgan Kaufmann,
San Francisco

. Kuck DJ () Parallel processing of ordinary programs. Adv
Comput :–

. Kuck DJ, Kuhn RH, Padua DA, Leasure B, Wolfe M
() Dependence graphs and compiler optimizations. In:
Proceedings of the th ACM SIGPLAN-SIGACT sympo-
sium on principles of programming languages. POPL ’.
Williamsburg, – Jan , ACM, New York, pp –.
DOI=http://doi.acm.org/./.

. Levine D, Callahan, D, Dongarra, J () A comparative study of
automatic vectorizing compilers. Parallel Comput :–

. Paek Y, Hoeflinger J, Padua D (Jan) Efficient and precise
array access analysis. ACMTransProgramLang Syst () –.
DOI=http://doi.acm.org/./.

. Presberg DL () The Paralyzer: Ivtran’s parallelism ana-
lyzer and synthesizer. In: Proceedings of the conference
on programming languages and compilers for parallel and
vector machines, New York, – March , pp –.
DOI=http://doi.acm.org/./.

. Scarborough RG, KolskyHG (March) A vectorizing Fortran
compiler. IBM J Res Dev ():–

. WolfeM ()High performance compilers for parallel comput-
ing. Addison-Wesley, Reading

. Zhang G, Unnikrishnan P, Ren J () Experiments
with auto-parallelizing SPECFP benchmarks. LCPC,
pp –

. ZimaH,ChapmanB () Supercompilers for parallel and vector
computers. ACM, New York

Parallelization, Basic Block

Utpal Banerjee
University of California at Irvine, Irvine, CA, USA

Synonyms
Parallelization

Definition
A basic block in a program is a sequence of consec-
utive operations, such that control flow enters at the
beginning and leaves at the end without halt. Basic block
parallelization consists of techniques that allow execu-
tion of operations in a basic block in an overlapped
manner without changing the final results.

Discussion

Introduction
The operations in a basic block are to be executed in
the prescribed sequential order. This execution order
imposes a dependence structure on the set of operations,
based on how they access different memory locations.
A new order of execution is valid if whenever an oper-
ation B depends on an operation A in the block, exe-
cution of B in the new order does not start until after
the execution of A has ended. The basic assumption is
that executing the operations in any valid order will not
change the final results expected from the basic block.

To reduce the total execution time of the block,
one needs to find a new valid order where opera-
tions are overlapped. Among all such orders, one must
choose only those that are compatible with the phys-
ical resources of the given machine. Even when the
simultaneous processing of two or more operations is
permissible by dependence considerations alone, there
may not be enough resources available to process them
simultaneously.

There are many algorithms for basic block paral-
lelization. This essay presents four of them: two for
a hypothetical machine with unlimited resources, and
two for a machine with limited resources. It starts with
a section on basic concepts, and after developing the
algorithms, ends with a simple example that compares

http://dx.doi.org/10.1007/978-0-387-09766-4_2162
http://doi.acm.org/10.1145/29873.29875
http://dx.doi.org/10.1109/71.655238
http://doi.acm.org/10.1145/567532.567555
http://doi.acm.org/10.1145/509705.509708
http://doi.acm.org/10.1145/800026.808396

Parallelization, Basic Block P

P

the actions of all four on a given basic block. Refer-
ences to more algorithms are given in the bibliographic
notes.

Basic Concepts
By an operation one means an atomic operation that a
machine can perform. An assignment operation reads
one or more memory locations and writes one location.
It has the general form:

A : x = E

where A is a label, x a variable, and E an expression.
Such an operation reads the memory locations speci-
fied in E, and writes the location x. A basic block in a
program is a sequence of assignment operations, where
flow of control enters at the top and leaves at the bot-
tom. There are no entry points except at the beginning,
and no branches, except possibly at the end. The object
of study in this essay is a basic block of n operations. The
set of those operations is denoted by B. There is a map-
ping c : B → {, , , . . . } that gives the cycle times of
the operations.

An operation B in the block depends on another
operationA, and onewritesAδ B, ifA is executed before
B, and one of the following holds:

. B reads the memory location written by A.
. B writes a location read by A.
. A and B both write the same location.

An operation B is indirectly dependent on an operation
A, and one writes A δ̄ B, if there exists a sequence of
operations A,A, . . . ,Ak , such that

A = A,A δ A, . . . ,Ak− δ Ak ,Ak = B.

Two operations A and B are mutually independent if
A δ̄ B and B δ̄ A are both false. The dependence graph of
the basic block is a directed acyclic graph, such that the
nodes correspond to the operations, and there is an edge
from a node A to a node B if and only if Aδ B. Thus,
A δ̄ Bmeans there is a directed path from the node A to
the node B in the dependence graph.

A new execution order for the operations in B is
valid if whenever A,B in B are such that Aδ B, B is
executed after A in the new order. If the prescribed
sequential order of execution for B is changed to any
valid order, the results would still be the same. The
goal is to find a valid execution order where operations

are overlapped as much as possible. However, any such
order must also be compatible with the resources of the
given machine.

Control steps for execution of the basic block are
numbered , , , Scheduling an operation in the
block means assigning a control step to it where it can
start executing. An instruction for a given machine is a
set of operations that the machine can perform simul-
taneously. An instruction may be empty. Scheduling the
basic block means creating a sequence of m instruc-
tions (I, I, . . . , Im), where Ik starts in control step k,
such that

. Each instruction consists of operations in B,
and each operation in B appears in exactly one
instruction.

. The operations in each instruction are pairwise
mutually independent.

. If an operation B in an instruction Ik depends on an
operation A in an instruction Ij, then j + c(A) ≤ k.

. In any control step, the given machine has enough
resources to process simultaneously all operations
being executed.

Such a sequence of instructions is a schedule for the
basic block. A schedule for the block can be speci-
fied indirectly by scheduling each individual operation.
Then all operations starting in control step k constitute
the instruction Ik .

The weight of a path (A,A, . . . ,Ak) in the depen-
dence graph for the basic block B is the expression
[c(A)+c(A) +⋯+c(Ak)]. A path is critical if it has the
greatest possible weight among all paths in the graph.
Let T denote the weight of a critical path. Then, any
schedule for B will need at least T cycles to finish.

For each operation A ∈ B, the set of all immedi-
ate predecessors (in the dependence graph) is denoted
by Pred(A) and the set of all immediate successors by
Succ(A):

Pred(A) = {B ∈ B : B δ A}, Succ(A) = {B ∈ B : Aδ B}.

The number of members of a set S is denoted by ∣S∣.

Unlimited Resources
In this section, it is assumed that the given machine has
an unlimited supply of resources (functional units, reg-
isters, etc.). Consequently, operations in the basic block

 P Parallelization, Basic Block

can be scheduled subject only to the dependence con-
straints between them. The two algorithms considered
in this section complete the execution of B in exactly T

cycles.
TheASAP algorithm schedules an operation as soon

as possible so that the basic block can be processed in
the shortest possible time. It creates a simple function
ℓ : B → {, , . . .} such that ℓ(A) is the earliest possible
step when A can start executing. The ALAP algorithm
schedules an operation as late as possible within the
constraint of executing B in the shortest possible time.
It creates a function L : B → {, , . . .} such that L(A) is
the latest possible step when A can start executing. The
ASAP label of A is ℓ(A) and its ALAP label is L(A). It is
clear that ℓ(A) ≤ L(A) for each operation A. The range
of consecutive integers from which the control step for
Amay be chosen is {ℓ(A), ℓ(A) + , . . . ,L(A)}.

ASAP Algorithm
The goal of the ASAP algorithm (Fig.) is to compute
the ASAP label ℓ for each operation in the given basic
block B. If A and B are two operations such that Aδ B,
then after starting A, one must wait at least until A has
finished before starting B. This means one must have
ℓ(B) ≥ ℓ(A) + c(A).

Algorithm Given a basic blockB, its dependence graph, and
a machine with unlimited resources, this algorithm computes
the ASAP label ℓ of each operation, and the total number m
of instructions needed to replace B. For each A ∈ B, the sets
Pred(A) and Succ(A) are assumed to be known.

m ← 1
V ← B
for each operation A ∈ V do

Pcount(A) ← |Pred(A)|
�(A) ← 1

endfor
while V �= ∅ do

for each operation A ∈ V do
if Pcount(A) = 0 then

for each B ∈ Succ(A) do
Pcount(B) ← Pcount(B) − 1
�(B) ← max{�(B), �(A) + c(A)}

endfor
V ← V − {A}
m ← max{m, �(A)}

endif
endfor

endwhile

Parallelization, Basic Block. Fig. The ASAP algorithm

An operation is scheduled only after all its prede-
cessors have been scheduled. An integer-valued func-
tion Pcount on B is defined as follows: at any point in
the algorithm, Pcount(A) is the number of immedi-
ate predecessors of an operation A that have not been
scheduled yet.

Initially, all operations are assigned the control
step , that is, ℓ(A) is initialized to for each A ∈ B.
Operations A for which Pcount(A) = keep this value
of ℓ(A); they have been scheduled. If Pcount(A) =
and B is a successor of A, then reduce Pcount(B) by ,
and increase ℓ(B) to [ℓ(A) + c(A)] if it is smaller. The
operations whose Pcount is now zero keep their ASAP
label; they have been scheduled. This process continues
until all operations in B have been scheduled.

The earliest control step where an operation B can
start is given by

ℓ(B) = max
A∈Pred(B)

[ℓ(A) + c(A)].

The total number of cycles needed to execute the block
B is

max
A∈B

[ℓ(A) + c(A)] −

which is clearly equal to the weight T of a critical path
in the dependence graph. The total number of instruc-
tions needed to replace the basic block is given by m =

maxA∈B ℓ(A).

ALAP Algorithm
The goal of the ALAP algorithm (Fig.) is to compute
the ALAP label L for each operation in the given basic
block B. The entire block has to be completed in the
shortest possible time in such a way that each oper-
ation starts as late as possible. For each operation A,
let f (A) denote the number of cycles from the point
when A is scheduled to start to the point when execu-
tion of the entire block has been completed. The idea
then is to minimize f (A) for each A. When operation
A starts, [L(A) −] cycles have already elapsed. Hence,
the total number of cycles T needed to complete B is
[L(A) − + f (A)], so that

L(A) = T + − f (A). ()

The ALAP algorithm first computes T, and f (A) for
each A, and then evaluates L(A) from this equation. If
A and B are two operations such that Aδ B, then after
starting A, one must wait at least until A has finished

Parallelization, Basic Block P

P

AlgorithmGiven a basic blockB, its dependence graph, and
a machine with unlimited resources, this algorithm computes
the ALAP label L of each operation, and the total number m
of instructions needed to replace B. For each A ∈ B, the sets
Pred(A) and Succ(A) are assumed to be known.

T ← 0
V ← B
for each operation A ∈ V do

Scount(A) ← |Succ(A)|
f(A) ← 0

endfor
while V �= ∅ do

for each operation A ∈ V do
if Scount(A) = 0 then

f(A) ← f(A) + c(A)
T ← max{T, f(A)}
for each B ∈ Pred(A) do

Scount(B) ← Scount(B) − 1
f(B) ← max{f(B), f(A)}

endfor
V ← V − {A}

endif
endfor

endwhile
for each operation A ∈ V do

L(A) ← T + 1 − f(A)
endfor
m ← maxA∈B L(A)

Parallelization, Basic Block. Fig. The ALAP algorithm

before starting B. This means L(B) ≥ L(A) + c(A), or
f (A) ≥ f (B)+ c(A) by (). Thus, the minimum possible
value for f (A) is

f (A) = c(A) + max
B∈Succ(A)

f (B).

An operation is scheduled only after all its succes-
sors have been scheduled. An integer-valued function
Scount on B is defined as follows: at any point in
the algorithm, Scount(B) is the number of immedi-
ate successors of an operation B, that have not been
scheduled yet.

Initialize T to , and f (A) to for each A ∈ B. If an
operation A has Scount(A) = , then f (A) is increased
by c(A) to reach f (A) = + c(A) = c(A). This oper-
ation has now been scheduled. The value of T is also
increased to f (A) if T < f (A). If Succ(A) = and B
is a predecessor of A, then reduce Scount(B) by , and
increase f (B) to f (A) if f (B) < f (A). The operations A
for which Scount(A) is now zero are handled next.This
process continues until all operations in B have been

processed. When the final value of f (A) for each oper-
ation A and the final value of T are known, the ALAP
labels are found from the equation L(A) = T + − f (A).

The total number of cycles needed to execute the
block is T = maxA∈B f (A) which is equal to the weight
T of a critical path in the dependence graph. The
total number of instructions needed to replace the basic
block is given bym = maxA∈B L(A).

Limited Resources
In this section, the reality is acknowledged that any
given machine has limited amount of functional
resources. While scheduling the operations in the basic
block B, one now needs to worry about the potential
resource conflicts between two operations, in addition
to the dependence constraints that may exist between
them. For simplicity, a pipelined implementation is
assumed for each multi-cycle operation. Register allo-
cation is not treated here; it should be done either before
or after scheduling.

List Scheduling
List Scheduling employs a greedy approach to sched-
ule as many operations as possible among those whose
predecessors have been scheduled. Each operation is
assigned a priority. Operations that are ready to be
scheduled are placed on a ready list ordered by their
priorities. At each control step, the operation with the
highest priority is scheduled first. If there are two or
more operations with the same priority, then a selec-
tion is made at random. List scheduling encompasses
a family of different algorithms based on the choice of
the priority function. In the algorithm described here
(Fig.), the priority of an operation A is defined by the
difference μ(A) = L(A) − ℓ(A) between its ALAP and
ASAP labels, called the mobility of the operation. An
operation with a lower mobility has a higher priority.

First, Algorithm and Algorithm are used to find
the ASAP and ALAP labels of each operation in the
given basic block. Operations without predecessors are
placed on a ready list S and arranged in the order of
increasing mobility. They are taken from the ready list
and scheduled one by one subject to the availability
of machine resources. After one round, if there is still
an operation A left over in S , then its ASAP label is
increased by without exceeding its ALAP label. This
will reduce the mobility of A, if it is not already zero.

 P Parallelization, Basic Block

Algorithm Given a basic blockB, its dependence graph, and amachinewith limited resources, this algorithm finds a schedule
for B. For each A ∈ B, the sets Pred(A) and Succ(A) are assumed to be known.

V ← B
k ← 1
for each operation A ∈ V do

Compute the labels �(A) and L(A) by Algorithm 1 and Algorithm 2
endfor
while V �= ∅ do

S ← all operations in V whose predecessors have finished
executing before control step k

for each A ∈ S do
μ(A) ← L(A) − �(A)

endfor

Arrange the operations of S in a sequence (Ar1
, Ar2

,..., Ar|S|)
in the increasing order of their mobilities

Create an empty instruction Ik

for i = 1 to |S| do
if Ari

does not have resource conflicts with operations in Ik then

Put Ari
in Ik

V ← V − {Ari
}

S ← S − {Ari
}

endif
endfor
k ← k + 1
for each A ∈ S do

�(A) ← min{�(A) + 1, L(A)}
endfor

endwhile

Parallelization, Basic Block. Fig. List scheduling algorithm

Linear Analysis
The Linear Algorithm (Fig.) checks the operations of
the basic block linearly in their order of appearance,
and puts them into instructions observing dependence
constraints and avoiding resource conflicts.

Arrange the operations in the block in their pre-
scribed sequential order: A,A, . . . ,An. For an easy
description of the algorithm, it is convenient to assume
that a control step could be any integer. Start with a
sequence of empty instructions {Ik : −∞ < k < ∞}

arranged in an imaginary vertical column. The oper-
ations A,A, . . . ,An are taken in this order and put
in instructions one by one. At any point, all opera-
tions already scheduled are in a range of instructions
(It , It+, . . . , Ib), where t ≤ and b ≥ . The value of
t keeps decreasing and the value of b keeps increas-
ing. At the end of the algorithm, the final sequence
(It , It+, . . . , Ib) can be renumbered to get a sequence of
instructions (I′, I

′

, . . . , I
′

m), wherem = b − t + .

Both t and b are initialized to . The first oper-
ation A is put in instruction I. Suppose operations
A,A, . . . ,Ai− have already been scheduled, and the
time has come to schedule Ai , where ≤ i ≤ n. Let k
denote the smallest integer ≥ t, such that all predeces-
sors of Ai finish executing before control step k. If Ai

has no predecessors, then k = t. Otherwise, if a prede-
cessor Ar is in an instruction Ij, where t ≤ j ≤ b, then
k ≥ j+ c(Ar). The exact value of k is found by taking the
maximum of all such expressions.

So, operation Ai can be put in instruction Ik with-
out violating any dependence constraints. If k ≤ b, start
checking the instructions Ik , Ik+ , . . . , Ib, in this order,
for potential resource conflicts. If an instruction is there
in this range with which Ai does not conflict, then put
Ai in the first such instruction. Otherwise, Ai conflicts
with all instructions in the range and k = b + . If k > b
was true before the checking could start, then its value
did not change. At this point, if Ai had no predecessors

Parallelization, Basic Block P

P

Algorithm Given a basic block (A,A, . . . ,An) of n operations, its dependence graph, and a machine with limited resources,
this algorithm finds a schedule for the block. At any point in the algorithm, all scheduled operations lie in the sequence of
instructions (It , It+ , . . . , Ib), where t ≤ and b ≥ .

t ← 1
b ← 1
Put the operation A1 in instruction I1
for i = 2 to n do

k ← earliest control step ≥ t before which all predecessors of Ai finish executing
while k ≤ b and Ai has a resource conflict with operations in Ik do

k ← k + 1
endwhile
if k ≤ b then

put Ai in Ik

else
if Pred(Ai) = ∅ then

Put Ai in It−1
t ← t − 1

else
Put Ai in Ik

b ← k
endif

endif
endfor

Parallelization, Basic Block. Fig. The linear algorithm

in the first place, then put it at the top in instruction It−
and decrease t to t − . If Ai had predecessors, then put
it in instruction Ik and increase b to k.The process ends
when all operations in the given basic block have been
scheduled.

An Example
Consider a basic block B consisting of eight operations
A,A, . . . ,A arranged in this order. The dependence
graph of B is given in Fig. . The type, cycle time, the
immediate predecessors, and the immediate successors
of each operation are listed in Table . It is assumed that
the cycle time of an addition is , and that of a multipli-
cation is . The four algorithms described in this essay
are applied to B one by one.The list scheduling and lin-
ear algorithms are customized for a machine with one
adder and one multiplier. Note that the critical path in
the dependence graph is A → A → A → A. Since
its weight is T = , the total number of cycles taken by
each algorithm to process B must be at least .

ASAP Algorithm. At the beginning, the ASAP label
ℓ(Ai) of each operation Ai is initialized to . Opera-
tions A and A have no predecessors. They keep their
ASAP labels, that is, they are scheduled to start in con-
trol step . Since A and A are successors of A, and

A1 A2

A3

A7

A4

A6

A8

A5

Parallelization, Basic Block. Fig. Dependence graph of

basic blockB

A and A are successors of A, their ASAP values are
increased as follows:

ℓ(A) ←max{ℓ(A), ℓ(A) + c(A)} = max{, } =

ℓ(A) ←max{ℓ(A), ℓ(A) + c(A)} =max{, } =

ℓ(A) ←max{ℓ(A), ℓ(A) + c(A)} = max{, } =

ℓ(A) ←max{ℓ(A), ℓ(A) + c(A)} = max{, } = .

 P Parallelization, Basic Block

Parallelization, Basic Block. Table Details of the basic block of example

OP A Type c(A) Pred(A) Succ(A) ℓ(A) f(A) L(A) μ(A)
A + A,A

A ∗ A,A

A + A A

A + A A

A + A

A + A,A A

A + A

A ∗ A

After A and A have been scheduled, operations
A, A, and A do not have any predecessors remain-
ing to be scheduled. So, they can be scheduled in steps
determined by their current ASAP values. Since A is a
successor of A and A a successor of A, their ASAP
values are increased as follows:

ℓ(A) ← max{ℓ(A), ℓ(A) + c(A)} = max{, } =

ℓ(A) ← max{ℓ(A), ℓ(A) + c(A)} = max{, } = .

After A and A have been scheduled, operations
A and A do not have any predecessors remaining
to be scheduled. So, they can be scheduled in steps
determined by their current ASAP values. Since A

is a successor of A, its ASAP value is increased as
follows:

ℓ(A) ← max{ℓ(A), ℓ(A) + c(A)} = max{, } = .

After A has been scheduled, operation A does not
have any predecessors remaining to be scheduled. So,A

keeps its current ASAP value, and is scheduled to start
in step . All the ASAP values are shown in Table .

The total number of control steps taken to execute
B is

max
≤i≤

[ℓ(Ai) + c(Ai)] − = .

The total number of instructions in the schedule is
maxi ℓ(Ai) = . The instructions are (I, I, . . . , I),
where I is empty, and

I = {A,A}, I = {A}, I = {A},

I = {A,A}, I = {A}, I = {A}.

ALAP Algorithm. At the beginning, T is initialized to ,
and f (Ai) is initialized to for each Ai. Since A, A,

and A have no successors, f (A), f (A), and f (A) are
increased as follows:

f (A) ← f (A) + c(A) = + =

f (A) ← f (A) + c(A) = + =

f (A) ← f (A) + c(A) = + = .

These operations have now been scheduled. The value
of T is increased to . Since A is a predecessor of A,
A of A, and A of A, their f values are increased as
follows:

f (A) ← max{ f (A), f (A)} = max{, } =

f (A) ← max{ f (A), f (A)} = max{, } =

f (A) ← max{ f (A), f (A)} = max{, } = .

Since A has no successors remaining to be sched-
uled, f (A) is changed as follows:

f (A) ← f (A) + c(A) = + = .

A is now scheduled.The value of T remains unchanged
at . Since A is a predecessor of A, f (A) is increased
as follows:

f (A) ← max{ f (A), f (A)} = max{, } = .

Since A has no successors remaining to be sched-
uled, f (A) is changed as follows:

f (A) ← f (A) + c(A) = + = .

A is now scheduled. The value of T is increased from
 to . Since A and A are predecessors of A, their f
values are increased as follows:

f (A) ←max{ f (A), f (A)} = max{, } =

f (A) ← max{ f (A), f (A)} = max{, } = .

Parallelization, Basic Block P

P

Now A and A do not have any successors remain-
ing to be scheduled. Their f values are increased again
as follows:

f (A) ← f (A) + c(A) = + =

f (A) ← f (A) + c(A) = + = .

These two operations are now scheduled.The value of T
is increased from to . Since A is a predecessor of A,
f (A) is increased from to f (A) or .

Since A now has no successors remaining to be
scheduled, f (A) is increased again by c(A) to +, or
.Thevalue ofT is also increased from to .Now that
the value of T (total number of cycles), and the value of
f (Ai) for each Ai are known, the ALAP labels are com-
puted from the equation L(A) = T+−f (A).The values
of f (Ai) and L(Ai) for each Ai are shown in Table .

The total number of instructions in the schedule is
maxi L(Ai) = . The instructions are (I, I, . . . , I),
where I, I, I, I are empty, and

I = {A}, I = {A,A}, I = {A},

I = {A}, I = {A}, I = {A,A}.

List Scheduling Algorithm. Initially, V has all opera-
tions. The initial value of the mobility of each operation
is listed in Table . At step , S = {A,A}. The opera-
tions are arranged in the order (A,A), since μ(A) <

μ(A). Both operations can be put in instruction I,
since there is no resource conflict between them. At
step , S = {A}. So, A goes into I. Similarly, A goes
into I. At step , S = /. At step , S = {A,A}. The
operations are arranged in this order, since μ(A) <

μ(A). Only A can be put into I. Take A out of S
and decrease μ(A) to . At step , S = {A,A}.
The operations are arranged in the order (A,A), since
μ(A) < μ(A). Only A can be put into I. Decrease
μ(A) to . At step , S = {A,A}. The operations are
arranged in the order (A,A), since μ(A) < μ(A).
Both operations can be put in instruction I since there
is no resource conflict between them. The total num-
ber of instructions in the schedule for B is . Those
instructions are (I, I, . . . , I), where

I = {A,A}, I = {A}, I = {A}, I = /,

I = {A}, I = {A}, I = {A,A}.

Total number of cycles = [+max{c(A), c(A)} −]
= .

Linear Algorithm. Initially, t = b = . Put operation A

in instruction I. SinceA has no predecessors and does
not conflict with A, put A also in I. Operation A has
only one predecessor, namely, A. Since c(A) = , A

can be put in instruction I. Increase b to . The sole
predecessor of A is A and c(A) = . Hence, A can
go into instruction I. Increase b to . Operation A also
hasA as its only predecessor. But,A cannot go into I,
since it conflicts with A. So, putA in I and increase b
to . Operation A has two predecessors:A andA.The
earliest instruction that can take A without violating
dependence constraints is I. But I already has A and
it conflicts with A. So, put A in I and increase b To
. Now it is easy to see that A can go into I and A

into I. Increase b to .
The total number of instructions in the schedule for

B is . Those instructions are (I, I, . . . , I), where

I = {A,A}, I = {A}, I = {A}, I = /,

I = {A}, I = {A}, I = {A}, I = {A}.

Total number of cycles = [+ c(A) −] = .

Related Entries
�Code Generation
�Loop Nest Parallelization
�Parallelization, Automatic
�Unimodular Transformations

Bibliographic Notes and Further
Reading
Basic block parallelization was first studied in the con-
text of microprogramming. The book by Agerwala and
Rauscher [] gives a good introduction to micropro-
gramming. The theory of job scheduling in operations
research turned out to be a rich source of algorithms for
the microprogramming research community [, ,].
For linear analysis and list scheduling as covered in this
entry, a good place to start is the paper by Landskov
and others []. (The algorithms presented above try to
factor in explicitly the cycle times of operations.) Other
standard references are [, , ,].

Only two algorithms are given in this entry for the
limited resource case; there are many more. For exam-
ple, for Force-directed Scheduling, see [].

http://dx.doi.org/10.1007/978-0-387-09766-4_67
http://dx.doi.org/10.1007/978-0-387-09766-4_228
http://dx.doi.org/10.1007/978-0-387-09766-4_197
http://dx.doi.org/10.1007/978-0-387-09766-4_196

 P Parallelization, Loop Nest

The ten references listed here constitute a small per-
centage of what is available.

Bibliography
. Agerwala AK, Rauscher TG () Foundations of micropro-

gramming architecture, software, and applications. Academic,
New York

. Agerwala T (Oct) Microprogram optimization: a survey.
IEEE Trans Comput C-():–

. Coffman EG Jr () Computer and job-shop scheduling theory.
Wiley, New York

. Conway RW, Maxwell WL, Miller LW () Theory of schedul-
ing. Addison-Wesley, Reading

. Dasgupta S, Tartar J (Oct) The identification of maximal
parallelism in straightline microprograms. IEEE Trans Comput
C-():–

. Gonzalez MJ Jr (Sep) Deterministic processor scheduling.
ACM Comput Surv ():–

. Hu TC (Nov-Dec) Parallel sequencing and assembly line
problems. Oper Res ():–

. Landskov D, Davidson S, Shriver B, Mallett PW (Sep) Local
microcode compaction techniques. Comput Surv ():–

. Paulin PG, Knight JP (June) Force-directed scheduling for
the behavioral synthesis of ASIC’s. IEEE Trans CAD Integ Circ
Syst ():–

. Ramamoorthy CV, Chandy KM, Gonzalez MJ (Feb) Opti-
mal scheduling strategies in a multiprocessor system. IEEE Trans
Comput C-():–

Parallelization, Loop Nest

�Loop Nest Parallelization

ParaMETIS

�METIS and ParMETIS

PARDISO

Olaf Schenk, Klaus Gärtner
University of Basel, Basel, Switzerland
Weierstrass Institute for Applied Analysis and
Stochastics, Berlin, Germany

Definition
PARDISO, short for “PARallel DIrect SOlver,” is a
thread-safe software library for the solution of large

sparse linear systems of equations on shared-memory
multicore architectures. It is written in Fortran and
C and it is available at www.pardiso-project.org. The
solver implements an efficient supernodal method,
which is a version of Gaussian elimination for large
sparse systems of equations, especially those arising, for
example, from the finite element method or in nonlin-
ear optimization. It is the only sparse solver package
that supports all kinds ofmatrices such as complex, real,
symmetric, nonsymmetric, or indefinite. PARDISO
can be called from various environments including
MATLAB (via MEX), Python (via pypardiso), C/C++,
and Fortran. PARDISO version .. was released in
October .

Discussion

Introduction
The solution of large sparse linear systems lies at
the heart of many calculations in computational science
and engineering and is also of increasing importance
in computations in the medical imaging and financial
sectors. Today, systems of equations with millions to
hundreds ofmillions of unknowns are solved. To do this
within reasonable time requires efficient use of pow-
erful parallel computers and advanced combinatorial
and numerical algorithms based on direct or approx-
imate direct factorizations. To date, only very limited
software for such large systems is generally available.
The PARDISO software addresses this issue.

In this chapter, some important combinatorial
aspects andmain algorithmic features for solving sparse
systems will be reviewed. The algorithmic improve-
ments of the past years have reduced the time
required to factor general sparse matrices by almost
three orders of magnitude. Combined with significant
advances in the performance to cost ratio of computing
hardware during this period, current sparse solver tech-
nologymakes it possible to solve those problems quickly
and easily, which might have been considered by far
too large until recently. This chapter discusses the basic
and the latest developments for sparse direct solution
methods that have lead to modern LU decomposition
techniques.

The PARDISO development started in the context
of a PhD Project [] at ETH Zurich in Switzerland.

http://dx.doi.org/10.1007/978-0-387-09766-4_228
http://dx.doi.org/10.1007/978-0-387-09766-4_500
http://www.pardiso-project.org

PARDISO P

P

The first aim was to improve parallel sparse factoriza-
tionmethods for highly ill-conditioned matrices arising
in the semiconductor device simulation area. The close
collaboration with the simulation community resulted
in a large amount of test cases and industrial use of the
solver.

The library version of PARDISO is publicly released
since March . Ongoing research projects resulted
in the current version .., available since October
.This new version also includes novel state-of-the-
art incomplete factorization-type preconditioners. The
results of the research have appeared in several sci-
entific journals, including the paper “On Large Scale
Diagonalization Techniques for the Anderson Model of
Localization” in the SIGEST section of the SIAMReview
Journal [].

It is the purpose of this chapter to describe the
main combinatorial and numerical algorithms used in
an efficient parallel solver.

Sparse Gaussian Elimination in PARDISO
To introduce the notations, the LU-factorization of a
nonsymmetric matrix A with pivoting is described.
A simple description of the algorithm for solving sparse
linear equations by sparseGaussian elimination in PAR-
DISO is as follows:

● Compute the triangular factorization PrDrPf APT
f

DcPc = LU. Here Dr and Dc are diagonal matri-
ces to equilibrate the system, Pf is a permutation
matrix that minimizes the number of nonzeros in
the factor, and Pr and Pc are permutation matrices.
Premultiplying A by Pr reorders the rows of A, and
premultiplying A by Pc reorders the columns of A.
Pr and Pc are chosen to enhance sparsity, numerical
stability, and parallelism. L is a unit lower triangular
matrix with Lii = and U is an upper triangular
matrix.

● Solve AX = B by evaluating

X = A−B = (P−f D−r P−r LUP−c D−c P−Tf)

−B,

X = PT
f DcPcU−L−PrDrPf B.

This is done efficiently by multiplying from right to
left in the last expression: the rows of B are permuted
with Pf and scaled by Dr . Multiplying PrB means
permuting the rows ofDrB. Multiplying L−(PrDrB)
means solving triangular systems of equations with

nr right-hand sides with matrix L by substitution.
Similarly, multiplying U−(L−(PrDrPf B)) means
solving triangular systems with U.

For symmetric indefinite matrices, PARDISO performs
a numerical factorization into LDLT , in which the
factorization is also stabilized by extended numerical
pivoting techniques. In addition to the complete fac-
torization, advanced support for incomplete inverse-
based factorization preconditioners, in which the
factors are computed approximately, are also included
in PARDISO.

The efficient computation of the LU decomposi-
tion is of utmost importance in Gaussian elimination.
Typically, a compact representation of the elimination
tree can be used to derive all information concerning
fill-in and numerical dependencies. In particular, the
fact that pivoting and the factorization must be inter-
laced requires a completely different treatment than in
the case without pivoting. Consider the situation when
computing the LU decomposition column by column.

for k = , . . . ,n
update column k of L and U via the equation A:n,k

= L:n,:k−U:k−,k − L:n,kukk
. step. solve L:k−,:k−U:k−,k = A:k−,k

. step. Lk:n,k := Ak:n,k

for i < k such that uik /=
Lk:n,k := Lk:n,k − Lk:n,iuik

. step. ukk = lkk
Lk:n,k = Lk:n,k/ukk

Note that it is easy to add pivoting after step
by interchanging lkk with some sufficiently large ∣lmk ∣,
where m ⩾ k before ukk is defined. The art of effi-
ciently computing column k of L and U consists of how
the sparse forward solve L:k−,:k−U:k−,k = A:k−,k in
step is efficiently implemented and, a fast update of
Lk:n,k in step .

The dense LU decomposition as it is described so
far can be implemented in a way that it makes heavily
use of level- BLAS. One important aspect that allows
raising efficiency and speeding up the sparse numerical
factorization will be discussed now. It is the recognition

 P PARDISO

of an underlying block structure with dense submatri-
ces caused by the factorization and the fill. The block
structure allows to collect parts of the matrix in dense
blocks and to treat them commonly using higher levels
of BLAS. As a consequence of the LU decomposition,
parts of the triangular factors can be encountered that
are dense or become dense by the factorization.This key
structure in sparse Gaussian elimination is based a on
supernodal representation of the columns and rows in
the factors L and U. A sequence k, k + , . . . , k + s −
of s subsequent columns in L that form a dense lower
triangular matrix is called a supernode.

To illustrate the use of supernodes, Figs. and
illustrate the underlying dense block structure.

Supernodes in PARDISO are stored in rectangu-
lar dense matrices. Beside the storage scheme as dense
matrices, the nonzero row indices for these blocks need
only be stored once. Next, the use of dense subma-
trices allows the usage of level- BLAS routines. To
understand this, one can easily verify that the update
process

Lk:n,k := Lk:n,k − Lk:n,iuik

•

•
•
• •

• •
• ◦

• •
•
• •

◦
• • ◦ ◦

• • • •
• • • • •

PARDISO. Fig. Supernodes in L, symmetric case

(“○”denotes fill-in)

•

• • •

• •

• • ◦ •
• • ◦ •

• •
•

•

• •

• • ◦ •
• ◦

• •

• ◦
• •
• • •

PARDISO. Fig. Supernodes in L + U, general case

(“○”denotes fill-in)

that computes Lk:n,k in the algorithm can easily be
extended to the block case. Assumung that columns
, . . . , k + s − are collected in p supernodes with col-
umn indices K, . . . ,Kp . Apparently, the column set is
Kp = {, . . . , k + s − }. Then updating Lk:n,Kp can be
rewritten as

Lk:n,Kp := Lk:n,Kp − Lk:n,Ki UKi ,Kp ,

where the sum has to be taken over all i in the block
version of the elimination tree. Depending on whether
one would like to compute the diagonal block L

Kp ,Kp

as full or as lower triangular matrix one is able to use
level- BLAS or even level- BLAS subroutines. This
allows exploiting machine-specific properties, such as
caches to accelerate the computation.

As discussed above, dynamic pivoting has been
a central tool by which nonsymmetric sparse lin-
ear solvers gain stability. Therefore, improvements in
speeding up direct factorization methods were limited
to the uncertainties that have arisen from using piv-
oting. Certain techniques, like the column elimination
tree [], have been useful for predicting the sparsity
pattern despite pivoting. However, in the symmetric
case, the situation becomes more complicated since
only symmetric reorderings, applied to both columns
and rows, are required, and no a priori choice of piv-
ots is given. This makes it almost impossible to predict
the elimination tree in a sensible manner, and the use of
cache-oriented level- BLAS is impossible.

With the introduction of symmetric maximum
weighted matchings [] as an alternative to complete
pivoting [], it is now possible to treat symmetric indef-
inite systems similarly to symmetric positive definite
systems. This allows to predict fill using the elimina-
tion tree, and thus allows to set up the data structures
that are required to predict dense submatrices (also
known as supernodes). This in turn means that one
is able to exploit level- BLAS applied to the supern-
odes. Consequently, the classical Bunch–Kaufman piv-
oting approach needs to be performed only inside the
supernodes.

This approach has recently been successfully imple-
mented in symmetric indefinite version of PAR-
DISO []. As a major consequence of this novel
approach, the sparse indefinite solver has been improved
to become almost as efficient as its symmetric positive
counterpart.

PARDISO P

P

Finally, iterative refinement is the last option to test
and enhance the precision of the solution. To encourage
the use of L and U as preconditioner in solving contin-
uously dependent families of problems, PARDISO also
offers a CG and CGS branch.

Reordering Algorithms and Software
in PARDISO
The efficiency of a direct solver depends strongly on
the order in which the variables of the matrix are
eliminated. This largely determines the computational
amount of work executed during the numerical fac-
torization and hence the overall time for the solution.
Furthermore, the elimination order of the variables also
determines the number of entries in the computed fac-
tors and the amount of main storage required. Experi-
ments have shown that the multiple minimum degree
(MMD) algorithm of J. Liu [] is very well suited for
D problems, but nested dissection type orderings do
a much better job on larger problems from D dis-
cretizations. Thus, the ordering METIS package from
Karypis andKumar [] and a constrainedminimumfill-
in orderings developed by Schenk andGärtner [] have

been added to PARDISO. In a somewhat more loosely
coupled way, orderings from other packages such as
approximate minimum degree [] can also be used.

Parallelization Strategies in PARDISO
Parallelism can be expressed by the elimination tree:
different branches are independent (see Fig.). The
length of each vertical line is proportional to the size
of a dense diagonal block. The hight counted in levels
characterizes the longest chain of sequentially depend-
ing steps. Memory writes should be minimized and
asynchronous scheduling is possible in PARDISO on
SMP and NUMA architectures. It is used to reduce load
balance requirements. Hence, the small amount of syn-
chronization data is passed towards the root (or to the
right in L, U), while the numerical data is read from
the left of the actual supernode. Especially large supern-
odes close to the root of the elimination tree are split
into panels to increase the number of parallel tasks.
PARDISOusesMETIS by default to generate nested dis-
section permutations and maps all sparse computations
on densematrix operations to achieve level- BLAS per-
formance for the numerical factorization. Scheduling

PARDISO. Fig. Typical elimination tree with a MMD reordering

 P PARDISO

distinguishes two levels in the elimination tree to reduce
synchronization events: updates within the lower level
are conflict free, hence must not be synchronized.
In PARDISO, complete lower level subtrees of the elim-
ination are mapped onto a single core of the multipro-
cessing architecture. The columns and rows associated
with this complete subtree are factorized independently
with respect to other subtrees. The nodes near the root
of the elimination tree normally involve more compu-
tation than supernodes further away from the root. In
practical examples more than % of the floating-point
computations are performed on the supernodes close to
the root the tree. Unfortunately, the number of indepen-
dent supernodes near the root of the tree is small, and so
there is less parallelism to exploit. For example, the root
in Fig. has only two neighboring nodes and hence only
two processors would perform the corresponding work
while the other processors remain idle. The introduc-
tion of the panels and the execution of partial updates
as tasks for supernodes close to the root increases the
parallelism.

An additional constrained that has to be taken into
account is that PARDISO is designed to solve a wide
range of application problems including symmetric and
nonsymmetric matrices, and numerical pivoting is per-
formed within the numerical factorization. This means
that only a static analysis of the sparsity pattern and a
static allocation of supernodes to cores could be very
inefficient if numerical pivoting is required. As a solu-
tion, a novel left-right looking factorization has been
implemented that uses a dynamic allocation of threads
during the numerical factorization. This has the benefit
of enabling the linear scalability of the code to per-
formwell onmulticore architectures with up to cores.
The parallel execution in PARDISO does not change the
constant in the leading order of the complexity bound
compared with that of the sequential algorithm.

Approximate Sparse Gaussian
Factorization in PARDISO
The solver also includes a novel preconditioning solver
[]. The preconditioning approach for symmetric
indefinite linear system is based onmaximumweighted
matchings and algebraic multilevel incomplete LDLT

factorization. These techniques can be seen as a com-
plement to the alternative idea of using more complete

pivoting techniques for the highly ill-conditioned sym-
metric indefinite matrices. In considering how to solve
the linear systems in a manner that exploits sparsity as
well as symmetry, a diverse range of algorithms is used
that includes preprocessing the matrix with symmet-
ric weighted matchings, solving the linear system with
Krylov subspace methods, and accelerating the linear
system solution with multilevel preconditioners based
upon incomplete inverse-based factorizations.

General Software Issues in PARDISO
The PARDISO package was originally designed for
structurally symmetric matrices arising in the semicon-
ductor device simulation area, but, in the newer version,
all other types of matrices such as real and complex
symmetric, real or complex nonsymmetric systems, or
complex Hermitian systems are permitted. The PAR-
DISO software is written in C and Fortran. However, in
recognition that some users prefer a Matlab or Python
programming environment, an appropriate interface
has been developed for these programming languages.

It requires OpenMP threading capabilities and
makes heavy use of level- BLAS and LAPACK sub-
routines. For the parallel version of PARDISO, a single-
threaded version of level- BLAS and LAPACK routines
is used. PARDISO has been ported to a wide range
of computers from previous generations of vector-
computers such as Cray or NEC, to all kind ofmulticore
architectures including Intel, AMD, IBM, SUN, and SGI
[] and also to recent throughput manycore processors
such as GPUs from NVIDIA [].

The PARDISO package has an excellent
performance relative to other parallel sparse solvers. An
extensive evaluation of the performance of the numeri-
cal factorization in comparison to a wide range of other
sparse direct linear solver packages is given by Gould,
Hu, and Scott []. Other independent comparisons can
be found in []. PARDISO is currently heavily used
in linear and nonlinear optimization solvers. Recent
results can be found in []. The current version of
the solver and a manual including several examples is
available at www.pardiso-project.org.

Example
The example illustrates the complexity gap between
numerical factorization and solution in the sparse direct

http://www.pardiso-project.org

PARDISO P

P

solution process. As shown in Table , the numeri-
cal factorization is the most time-consuming phase.
This is demonstrated on a D eigenvalue problem.
The symmetric eigenvalue problem Ax = λBx is cho-
sen with up to . × unknowns to be close to the size
limits of a today’s GB SMP machines.

The eigenvalue problem is solved by inverse iter-
ation, polynomial acceleration, a few different spec-
tral shifts, and the same number of factorizations. On
average, five eigenvalues are computed per factoriza-
tion. The spectral shifts can be chosen to result in

PARDISO. Table The serial computational complexity of

the various phases of solving a sparse system of linear

equations arising from D and D constant node-degree

graphs with n vertices

Phase Dense D complexity D complexity

Reordering: – O(n) O(n)

Symbolic
factorization – O(n logn) O(n/)
Numerical
factorization O(n) O(n/) O(n)
Triangular solution O(n) O(n logn) O(n/)

highly ill-conditioned but sufficiently regular sparse lin-
ear systems.The symmetric indefinite linear systems are
solved by the Bunch-Kaufman pivoting. The quadratic
complexity of the sparse direct factorization is shown in
Fig. .

Future Research Directions
Clearly, the quadratic complexity bound is limiting the
problem size in D for sparse direct methods. How-
ever, from the user perspective, the robustness and the
nearly achieved black box behavior are very conve-
nient. The emergence of multicore architectures and
scalable petascale architectures does not change both
points. Instead, it motivates the development of novel
algorithms and techniques that emphasize both concur-
rency and robustness for the solution of sparse linear
systems. Since direct solvers do not generally scale to
large problems and machine configurations, efficient
application of preconditioned iterative solvers are war-
ranted but involve more a priori knowledge. These
hybrid solversmust optimize parallel performance, pro-
cessor (serial) performance, as well as memory require-
ments, while being robust across specific classes of
applications and systems.

log(ops)

0.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1.0 2.0 3.0 log(n/23494)

CPU-time-factor(n)

operations(n)

CPU-time-solve(n)

c n^4/3

fill_in(n)

c n^2

PARDISO. Fig. Unstructured tetrahedral meshes with n = ′, ′, ′, ′, ′ and ′

tetrahedra for a discrete Laplace problem. The left graphic shows the measured times for the numerical factorization and

the solution, the number of floating-point operations, and the complexity bounds. The first eigenvector is shown in the

right graphic. The selfsimilar tetrahedral meshes are generated by TetGen, http://www.tetgen.org

http://www.tetgen.org

 P PARSEC Benchmarks

The research groups at Purdue University and
University of Basel are currently developing a new
parallel solver PSPIKE [] that combines the desirable
characteristics of directmethods (robustness) and effec-
tive iterative solvers (low computational cost), while
alleviating their drawbacks (limited scalability, memory
requirements, lack of robustness). The hybrid solver is
based on the general sparse solver PARDISO and the
Spike family of hybrid solvers [].The resulting PSPIKE
algorithm is an extension of PARDISO to distributed-
memory architectures. Results can be found in, for
example, [].

Related Entries
�BLAS (Basic Linear Algebra Subprograms)
�Graph Partitioning
�Load Balancing, Distributed Memory
�Linear Algebra Software
�Nonuniform Memory Access (NUMA) Machines
�Shared-Memory Multiprocessors
�LAPACK

Further Reading
. Davis T () Direct methods for sparse linear systems. Society

for industrial mathematics, ISBN:

Bibliography
. Amestoy R, Davis TA, Duff IS () An approximate minimum

degree ordering algorithm. SIAM J Matrix Anal Appl :–
. Demmel JW, Eisenstat SC, Gilbert JR, Li XS, Liu JWH () A

supernodal approach to sparse partial pivoting. SIAM J Matrix
Anal Appl :–

. Duff IS, Koster J () The design and use of algorithms for per-
muting large entries to the diagonal of sparse matrices. SIAM J
Matrix Anal Appl ():–

. Gould NIM, Hu Y, Scott JA () A numerical evaluation of
sparse direct solvers for the solution of large sparse, symmetric
linear systems of equations. ACM Trans Math Software (TOMS)
():–

. Grasedyck L, Hackbusch W, Kriemann R () Performance
of H-LU preconditioning for sparse matrices. Comput Methods
Appl Math ():–

. Hagemann M, Schenk O () Weighted matchings for pre-
conditioning of symmetric indefinite linear systems. SIAM J Sci
Comput :–

. Karypis G, Kumar V () A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J Sci Comput
:–

. Liu J () Modification of the minimum-degree algorithm by
multiple elimination. ACM Trans Math Software ():–

. Ng E, Peyton B () Block sparse Cholesky algorithms on
advanced uniprocessor computers. SIAM J Sci Comput :
–

. Manguoglu M, Sameh A, SchenkO () PSPIKE Parallel sparse
linear system solver. In: Proceedings of the th international
Euro-Par conference on parallel processing. Lecture Notes in
Computer Science, vol , pp –,DOI ./---
- (vol , pp –)

. Polizzi E, Sameh AH () A parallel hybrid banded system
solver: the SPIKE algorithm. Parallel Comput ():–

. Schenk O () Scalable parallel sparse LU factorization meth-
ods on shared memory multiprocessors. PhD thesis, ETH Zürich

. Schenk O, Bollhöfer M, Römer RA () On large-scale diag-
onalization techniques for the Anderson model of localization.
SIAM Rev :–

. Schenk O, Christen M, Burkhart H () Algorithmic perfor-
mance studies on graphics processing unit. J Parallel Distrib
Comput :–

. Schenk O, Gärtner K () Solving unsymmetric sparse systems
of linear equations with PARDISO. J Future Gener Comput Syst
():–

. Schenk O, Gärtner K () On fast factorization pivoting meth-
ods for symmetric indefinite systems. Electron Trans Numer Anal
:–

. Schenk O,Wächter A, Hagemann M () Matching-based pre-
processing algorithms to the solution of saddle-point problems
in large-scale nonconvex interior-point optimization. Comput
Optim Appl (–):–

PARSEC Benchmarks

The PARSEC benchmarks [] are mutithreaded codes
that represent important applications of multicores.
PARSEC stands for Princeton Application Reposi-
tory for Shared-Memory Computers. Currently, the
benchmark suite contains programs: blackscholes,
bodytrack, canneal, dedup, facesim, ferret, fluidani-
mate, freqmine, raytrace, streamcluster, swaptions, vips,
and x.

Bibliography
. Bienia C () Benchmarking modern multiprocessors. Ph.D.

thesis, Princeton University

Partial Computation

�Trace Theory

http://dx.doi.org/10.1007/978-0-387-09766-4_84
http://dx.doi.org/10.1007/978-0-387-09766-4_92
http://dx.doi.org/10.1007/978-0-387-09766-4_504
http://dx.doi.org/10.1007/978-0-387-09766-4_150
http://dx.doi.org/10.1007/978-0-387-09766-4_2115
http://dx.doi.org/10.1007/978-0-387-09766-4_142
http://dx.doi.org/10.1007/978-0-387-09766-4_152
http://dx.doi.org/10.1007/978-0-387-09766-4_491

PASM Parallel Processing System P

P

Particle Dynamics

�N-Body Computational Methods

Particle Methods

�N-Body Computational Methods

Partitioned Global Address Space
(PGAS) Languages

�PGAS (Partitioned Global Address Space) Languages

PASM Parallel Processing System

Howard Jay Siegel, Bobby Dalton Young
Colorado State University, Fort Collins, CO, USA

Definition
PASM was a partitionable mixed-mode parallel system
designed and prototyped in the s at Purdue Uni-
versity to study three dimensions of dynamic reorga-
nization: mixed-mode parallelism, partitionability, and
flexible interprocessor communications.

Discussion

Introduction
PASM was a partitionable mixed-mode parallel system
designed and prototyped in the s at PurdueUniver-
sity [,]. Research was conducted about numerous
software, hardware, parallel algorithm, and application
aspects of PASM.

In the s, two of the dominant organizations for
parallel machines were “SIMD” and “MIMD” []. Be
forewarned that our use of the term “SIMD” is more
general than the way it is used with current multi-
core systems, where it refers to operating on subfields
of a long data word within a single processor. We will
use the following definition: An SIMD (single instruc-
tion stream, multiple data stream) machine consists

of N processor-memory pairs, an interconnection net-
work, and a control unit. The control unit broadcasts a
sequence of instructions to the N processors that exe-
cute these instructions in lockstep (this is the “single
instruction stream”). All “enabled” (active) processors
execute the same instruction at the same time, but each
processor does it on its own data.The operands for these
instructions are fetched from the local memory associ-
ated with each processor (the fetching of operands from
the collection of local memories form the “multiple data
streams”). The interconnection network supports inter-
processor communication. Thus, the SIMD definition
used here assumes a collection of separate processors
operating in lockstep, with all enabled processors fol-
lowing the same single instruction stream, but each
processor operating on its own local data, resulting in
multiple data streams. Examples of SIMD systems that
have been constructed are Illiac IV [], MasPar MP-
and MP- [], and MPP [].

A multiple-SIMD system can be structured as a
single SIMD machine or as two or more indepen-
dent SIMD machines of various sizes. The Thinking
Machines CM- [] and original design of the Illiac IV
[] are examples of MSIMD systems.

The MIMD (multiple instruction stream, multiple
data stream) mode of parallelism [] uses N indepen-
dent processor-memory pairs that can communicate
via an interconnection network (i.e., a multicomputer).
Each processor fetches its own instructions and its own
operands from its local memory; thus, there are “mul-
tiple instruction streams” and “multiple data streams.”
The nCUBE [] and IBM RP [] are examples of
MIMD systems that have been constructed. One mode
of operation possible for MIMD is SPMD (single pro-
gram, multiple data stream), where all processors inde-
pendently execute the same program on different data
sets [].

A mixed-mode system can dynamically change
between the SIMD and MIMD modes of parallelism at
instruction-level granularity with negligible overhead.
This allows different modes of parallelism to be used to
execute various portions of an algorithm. Because the
mode of parallelism has an impact on performance (see
Fig.), a mixed-mode system may outperform a single-
mode machine with the same number of processors
for a given algorithm. A partitionable mixed-mode sys-
tem can dynamically restructure to form independent

http://dx.doi.org/10.1007/978-0-387-09766-4_97
http://dx.doi.org/10.1007/978-0-387-09766-4_97
http://dx.doi.org/10.1007/978-0-387-09766-4_210

 P PASM Parallel Processing System

PASM Parallel Processing System. Fig. Trade-offs between the SIMD and MIMDmodes of parallelism []. Processing

Elements (PEs) are processor-memory pairs. Examples of variable-time instructions are floating-point operations on the

prototype’s Motorola MC processors, and function calls (such as floating-point trigonometric operations) on

current GPUs

or communicating submachines of various sizes, where
each submachine can independently perform mixed-
mode parallelism (e.g., TRAC []).

PASM is a PArtitionable-SIMD/MIMD system con-
cept that was developed at PurdueUniversity as a design
for a large-scale partitionable mixed-mode machine
based on commodity microprocessors []. PASM
used a flexible multistage interconnection network
for interprocessor communication. Thus, PASM could
be dynamically reorganized along these three dimen-
sions: partitionability, mode of parallelism, and connec-
tions among processors. This ability to be reorganized

allowed the system to match the computational struc-
ture of a problem, and also provided for fault tolerance
in many situations. This fault tolerance is a form of
robustness [,], where the robust behavior require-
ment is continued system operation given the uncer-
tainty of any single component failure, and quantified
as the portion of the system that can still be used after a
fault occurs.

A small-scale prototype was completed in as a
proof-of-concept machine for the PASM design ideas,
and was still running in , with over , hours
of execution time logged (Fig.) []. It was used

PASM Parallel Processing System P

P

PASM Parallel Processing System. Fig. A photograph of the completed PASM prototype circa and some of the

PASM team. Left to right: Pierre Perrot (Technician), Tom Casavant (Professor), Wayne Nation (PhD Student), H.J. Siegel

(Professor, team leader)

for research and in a parallel programming course at
Purdue. The goal of the PASM research team was to
design, develop, and build a unique research tool for
studying the combined three dimensions of dynamic
reorganization mentioned above: mixed-mode par-
allelism, partitionability, and flexible interprocessor
communications.

An overview of the organization of PASM is
given in section “�The Overall PASM Organization.”
Section “�The Parallel Computation Unit” describes
the processing elements, memory, and interconnec-
tion network in the Parallel Computation Unit. The
Memory Storage and Memory Management Systems
are discussed in section “�The Memory Storage and
Management Systems.” Section “�Using the PASM
System” mentions some PASM prototype software
tools and application studies. We conclude in section
“�Conclusions” with a list of advantages of the PASM
approach. A list of PASM-related publications is avail-
able at http://hdl.handle.net//.

The Overall PASMOrganization
The PASM concept was a distributed-memory machine
with a computational engine consisting of processor-
memory pairs referred to as PEs (Processing Elements).
The PASM design concepts could support at least
, PEs. The small-scale prototype built at Purdue
University (Motorola MC , processors, in

the computational engine) supported experimentation
with all three dimensions of reconfigurability men-
tioned earlier, and produced insights not observed from
earlier simulations and theoretical studies.

The PASM system concept consists of six basic com-
ponents shown in Fig. . The System Control Unit is the
overall system coordinator and is the part of PASMwith
which the user directly interacts. The Q PE Controllers
(PECs) serve as the PE control units in SIMDmode and
may coordinate the PEs in MIMD mode. The Parallel
Computation Unit contains the N = n PEs, physically
numbered to N − , and the interconnection network
used by the PEs. The Memory Storage System provides
secondary storage for the PEs, and consists ofN/Q sec-
ondary storage devices, each with an associated proces-
sor for file management. It is used to store data files for
SIMDmode and both program and data files forMIMD
mode. TheMemory Management System contains mul-
tiple processors for controlling the transferring of files
between the Memory Storage System and the PEs. Con-
trol Storage consists of a secondary storage device and
an associated file server processor. It supports the PECs
and the System Control Unit by holding all code and
data used by these components, including the instruc-
tions to be broadcast to the PEs from the PECs in SIMD
mode. The PASM prototype had a total of proces-
sors: N = PEs, Q = PECs, N/Q = Memory
Storage System processors, four Memory Management

http://hdl.handle.net/10217/34662

 P PASM Parallel Processing System

System
Control Unit

Control
Storage

Parallel
Computation Unit

Processing Element
Controllers

Memory
Storage
System

Memory
Mgmt.

System

PASM Parallel Processing System. Fig. The high-level

architectural organization of the PASM design concept

System processors, the Control Storage processor, and
the System Control Unit.

The tasks to be performed by the System Control
Unit include support for program development, job
scheduling, general system coordination, management
of system configuration and partitioning, assignment of
user jobs to submachines, and connection to the host
computer network. The hardware needed to combine
and synchronize the PECs and PEs to form SIMD sub-
machines of various sizes resides in the System Control
Unit. Its functions include combining information from
multiple PECs when collective conditionals, discussed
in the next section, are performed. It also is responsible
for coordinating the loading of the PE memories from
theMemory Storage Systemwith the loading of the PEC
memories from the Control Storage.

We now describe how the PECs are connected to the
PEs, and how this connection scheme is used to form
independent mixed-mode submachines. The organiza-
tion we use provides an efficient PEC/PE interface and
supports the partitioning of the PE Interconnection
Network.

The PECs, shown in Fig. , are the multiple control
units required to form a multiple-SIMD system. There
are Q = q PECs, physically numbered from to Q − .
Each PEC controls a fixed group ofN/Q PEs in the Par-
allel Computation Unit. A PEC and its associated PEs
form a PEC Group. PEC i is connected to the N/Q PEs
whose low-order q bits of their PEphysical number have
the value I (for reasons discussed in section “�The Par-
allel Computation Unit”). In an N = , system, Q
may be ; for the N = prototype, Q = . Figure
shows the composition of the physical number of a PE.

The memory units in each PEC are double-buffered
so that computation andmemory I/O can be overlapped

(see Fig.). For example, the PEC processor can exe-
cute a job in one memory unit while the next job is
preloaded into the other memory unit from PEC sec-
ondary storage (theControl Storage). InMIMDmode, a
PEC fetches from its memory the instructions and data
used to coordinate the operation of its PEs. In SIMD
mode, a PEC fetches the instructions and common PE
data from its memory units. In general, in SIMD mode,
control-flow instructions are executed in the PEC, and
data processing instructions are broadcast to the PEC’s
group of PEs.
Submachines are formed by one or more PEC Groups.
The partitioning rule in PASM is that the numbers of
all PEs in a submachine of size p must agree in their
n − p low-order bit positions (for the reasons discussed
in section “�The Parallel Computation Unit”). The p
high-order bits of the physical number of a PE corre-
spond to the PE’s logical number within the partition.
Thus, a submachine containing R = r PEC Groups
(R∗N/Q = p PEs), where ≤ r ≤ q, is formed by
combining the PEs connected to the R PECs whose
addresses agree in their q − r low-order bits. The PECs
within a submachine of R∗N/Q PEs are logically num-
bered from to R − . For R > , the logical number
of a PEC is the high-order r bits of its physical number.
Similarly, the PEs assigned to a submachine are logically
numbered from to (R∗N/Q)− (to p−).The logical
number of a PE is the high-order r + n− q = p bits of its
physical number (see Fig.). There is a maximum of Q
submachines, each of size N/Q.

Each submachine can operate as an independent
mixed-mode system. PEs can switch between modes as
often as desired; however, all PEs in a submachine must
be in the same mode (SIMD or MIMD) at any point
in time.

When a submachine is operating in SIMDmode, the
R PECs must execute and broadcast the same instruc-
tions, and all PEs in the submachine must be synchro-
nized. The PECs are given the same instruction simply
by loading the memory units of the R PECs with the
same program. The PEs are synchronized by provid-
ing a small amount of special circuitry in the System
Control Unit that coordinates instruction broadcasts
among these PECs.

Some advantages of this fixed PE to PEC map-
ping as compared with a dynamic PE to PEC intercon-
nection (e.g., a crossbar switch []) include reducing

PASM Parallel Processing System P

P

PASM Parallel Processing System. Fig. PASM Processing Element Controllers (PECs), and how they are connected to

the Parallel Computation Unit (PCU) Processing Elements (PEs)

PEC/PE interface hardware, eliminating the overhead
of maintaining a record of PE to PEC assignments,
scheduling only Q PECs instead of N PEs, allowing
the partitioning of the PE interconnection network into
independent subnetworks (section “�TheParallel Com-
putation Unit”), and supporting the structure of the
efficient parallel primary to secondarymemory connec-
tions (section “�TheMemory Storage andManagement
Systems”). The main disadvantage to this approach is
that the size of each submachine must be a power
of two, with a minimum of N/Q PEs. However, for
PASM’s intended experimental environment, flexibil-
ity at a “reasonable” cost is the goal, not maximum PE
utilization.

The Parallel Computation Unit
The Parallel Computation Unit, shown in Fig. , con-
tains N = n PEs and an interconnection network. Sim-
ilar to the double-buffering for the PECs, two memory
units are used in eachPE so that computation andmem-
ory I/O can be overlapped. For example, the PE pro-
cessor can execute a job in one memory unit while the
next job is preloaded into the other memory unit from
PE secondary storage (the Memory Storage System).
These memory units compose the primary memory of
the system. In SIMD or MIMD mode, each PE can
perform indirect memory addressing using its own PE
logical number or local data.

Consider how PASM switches dynamically between
the SIMD and MIMD modes of parallelism in our
implemented prototype (Fig.). In MIMD mode, a PE
processor fetches instructions from its local memory by

PASM Parallel Processing System. Fig. Physical number

of a Processing Element (PE) for a systemwhere N = =

PEs,Q = = Processing Element Controllers (PECs), and

N/Q = = Memory Storage Units (MSUs). The PE is in a

submachine of size R∗N/Q = PEC Groups (corresponding

to = p = PEs). For this example, the physical numbers

of all PEs in this submachine agree in bit position

placing its program counter value on the address bus
and latching the data placed on the data bus by the
memory device holding that instruction word. A PE
is forced into SIMD mode by executing a jump to the
“logical” SIMD instruction space, which is not a phys-
ical space. Figure illustrates the address space of a
PE, showing the logical SIMD instruction space, phys-
ical RAM, and I/O space. Logic in the PE detects read
accesses to the logical SIMD instruction space, and any
such access sends a SIMD instruction request to the
PE’s PEC. The SIMD instruction is issued by the sub-
machine’s PECs only after all the PEs of a submachine
have requested the instruction (recall the System Con-
trol Unit has special hardware to synchronize the PECs
that are part of the same submachine). The instruc-
tions are sent by the submachine PECs’ Fetch Units to
the PEs (Fig.). All enabled PEs in the submachine

 P PASM Parallel Processing System

PASM Parallel Processing System. Fig. The PASM Parallel Computation Unit

PASM Parallel Processing System. Fig. How the

Processing Element (PE) logical address space in the PASM

prototype is used to support mixed-mode computation

then execute the instruction simultaneously, each PE
on its own data. Thus, all the PEs of the submachine
are synchronizedwhen a SIMD instruction is broadcast.
The PE continues to access instructions from the SIMD
instruction space until an instruction is broadcast that
causes each PE to jump to an instruction in its physical
RAM (Fig.), changing to MIMD mode. Such flexibil-
ity in mode switching allows mixed-mode programs to
be written that change modes at instruction-level gran-
ularity with negligible overhead. The SIMD instruction
fetch mechanism also can be used to support a form of
MIMD “barrier synchronization” [].

Masking schemes are used in SIMD mode to enable
and disable PEs. The PASM system uses PE-address

masks (originated by the PASM project []) and data-
conditional masks. A PE-address mask enables a set of
PEs based solely on the logical addresses (numbers) of
PEs; it does not depend on local PE data. A PE-address
mask has n positions, where each position contains
either a , , or X (“don’t care”). A PE is enabled only
if the binary representation of its number matches the
mask. For example, for N = , [{X}{}] is equiv-
alent to [XXXXX] and enables all even-numbered
PEs. A negative PE-address mask enables all PEs whose
addresses do not match the mask. For example, for N =

, [{X}{}] = [XXXX] enables all PEs whose
numbers are not multiples of four. PE-address masks
are a convenient notation for enabling PEs in a large-
scale parallel machine, and proved very useful in image
processing applications.

Data-conditional masks enable PEs based on some con-
dition that is dependent on local PE data. The resulting
data condition may be true in some PEs and false in
other PEs. An example use of data-conditional mask-
ing is the where statement, the SIMD counterpart to
the if-then-else statement. When the segment

where <data-condition> do <where-part>

elsewhere <else-part>

is executed, each PE independently evaluates the
<data-condition>. The PEs where the condition
evaluates true execute the <where-part>, and the
PEs where the condition evaluates to false are idle.
Next, the PEs where the condition evaluates to false

PASM Parallel Processing System P

P

execute the <else-part>, and the PEs where the
condition evaluates true are idle. This type of masking
is used in many SIMD machines (e.g., CM-, MP-).
Data-conditional and PE-address masks can be used
together.

There are situations in which the combined condi-
tional status of all enabled PEs in a SIMD submachine
is needed, e.g., if-none, if-any, and if-all. For
example, if the PEs of a submachine are each examining
a portion of an image to find certain objects, it may be
necessary to know whether any of the PEs have found
such an object. Because PASM is a partitionable sys-
tem, operations such as these require conditional results
to be communicated from the PEs to their PECs and
subsequently combined among the PECs comprising
a SIMD submachine. These operations are efficiently
supported by providing a small amount of additional
circuitry in the System Control Unit that combines
PEC Group results according to the current system
partitioning.

The Interconnection Network allows PEs to commu-
nicate with each other. As described earlier, the parti-
tioning rule in PASMrequires that the physical numbers
of all PEs in a submachine of p PEs agree in their n− p
low-order bit positions (see Fig.). Thus, the p high-
order bits of a PE’s physical number form its logical
number within a submachine of p PEs. The low-order
partitioning rule was chosen for PASM so that either the
multistage cube [] or the augmented data manipula-
tor (ADM) [] networks could be used. However, the
multistage cube was selected because of its comparative
cost-effectiveness.

The multistage cube network has N input ports, N
output ports, and contains n = logN stages ofN/ two-
input/two-output interchange boxes. Each interchange
box can be set to one of the four states shown in Fig. .
The network can be used in both the SIMD and MIMD
modes of parallelism.

PASM Parallel Processing System. Fig. The four valid

states of a multistage cube network interchange box

Figure shows the multistage cube network for
N = . PE i is connected to network input port i and
output port i. The stages are numbered consecutively
from n − at the input stage to at the output stage.
The upper interchange box output label is the same as
the upper input, and the lower interchange box output
label is the same as the lower input. The interconnec-
tion pattern between stages is such that at stage j the
two links whose labels differ only in bit j are connected
to the same interchange box. Figure shows the net-
work set for a “permutation” connection (input i →

output(i +) mod) for an N = multistage cube
network.The network can be controlled in a distributed
fashion using routing tags for specifying permutations,
one-to-one connections (e.g., PE a to PE b), one PE
to many multicast connections, and combinations of
these [].

A network is partitionable if it can be divided into
independent subnetworks of smaller sizes that have all
the properties of the original network []. In general,
a size N multistage cube network can be partitioned
into multiple subnetworks of different sizes, where the
size of each subnetwork is a power of two. For example,
Fig. shows an N = network partitioned into two
subnetworks by setting the interchange boxes in stage
to straight. Because stage is straight, even-numbered
inputs cannot reach odd-numbered outputs, and odd

PASM Parallel Processing System. Fig. Amultistage

cube network for N = Processing Elements (PEs) set to

perform the “permutation”of sending data from PE i to PE

(i +)mod N for ≤ i < N

 P PASM Parallel Processing System

PASM Parallel Processing System. Fig. A multistage cube network for N = Processing Elements (PEs)

partitioned into two independent subnetworks, each of size eight. Subnetwork A consists of the even-numbered input

and output ports, and subnetwork B the odd

inputs cannot reach even outputs. The two resulting
subnetworks are subnetwork A, which contains physi-
cal ports , , . . ., , and subnetwork B, which contains
physical ports , , . . ., . Because each of these sub-
networks is an independent multistage cube network
(of size N/ =), either or both subnetworks may be
further partitioned by forcing all interchange boxes in
stage of the subnetwork to be straight.This process can
be applied recursively.

The Extra Stage Cube network [] (designed as a
part of the PASM project) is a single-fault tolerant vari-
ation of the multistage cube network. There is an extra
stage of interchange boxes at the input, labeled stage n.
Links whose labels differ in the th bit position are
paired at these extra stage boxes in the same way that
they are at stage . This Extra Stage Cube network
fault-tolerant variation has all of the useful properties
described above for the multistage cube, and was con-
structed in the PASM prototype. It is robust in the sense

that it can still provide all of the capabilities of a fully
functional multistage network despite the failure of any
single network component.

TheMemory Storage andManagement
Systems
The Memory Storage System (Fig.) is the secondary
storage for the Parallel Computation Unit, storing data
files in SIMD mode and both program and data files
in MIMD mode (programs for SIMD mode are stored
in the Control Storage). The Memory Storage System is
comprised of N/Q independent Memory Storage Units
(MSUs), numbered from to (N/Q) − .

Each of the N/QMSUs is connected to the memory
modules of Q PEs. An example for the prototype size of
N = and Q = is shown in Fig. . The benefit of
this MSU to PE connection scheme is that the memo-
ries of all N/Q PEs connected to any one PEC can be
loaded or unloaded in one parallel block transfer. For

PASM Parallel Processing System P

P

PASM Parallel Processing System. Fig. The

organization of the PASMMemory Storage System for the

prototype size of N = Processing Elements (PEs), Q =

Processing Element Controllers (PECs), and N/Q Memory

Storage Units (MSUs)

example, in Fig. , PEC ’s group of PEs (PEs , , ,
and) are loaded by having MSU load PE , MSU
load PE , MSU load PE , and MSU load PE , all
simultaneously.

In the general case, MSU i is connected to and
stores files for the Q PEs whose n − q high-order bits
of their PE physical numbers are equal to i (see Fig.).
This high-ordermapping is used so that each of theN/Q
PEs connected to a given PEC is connected to a differ-
ent MSU. Recall that the low-order q bits of the physical
number of a PE correspond to the number of the PEC
to which it is attached (see Fig.). Thus, the full band-
width of the Memory Storage System can be used when
transferring files between the Memory Storage System
and the Parallel Computation Unit. If there are only
N/(Q∗D) distinct MSUs, where ≤ D ≤ N/Q, then
this scheme can be scaled so that D parallel block trans-
fers are required to load or unload the memories of the
PEs connected to any one PEC. Each MSU contains a
mass storage unit and a processor tomanage the file sys-
tem and to transfer files to and from its associated PE
memory units.

Similarly, a submachine formed by combining the
(R∗N)/Q PEs controlled by R PECs can be loaded or
unloaded in R parallel block transfers if there are N/Q
MSUs. For example, in Fig. , a submachine comprised
of the PEs of PEC and PEC can be loaded in R =
parallel block loads as follows: First PEC ’s PEs are
loaded in one parallel block transfer, and then PEC

’s PEs are loaded. If there are only N/(Q∗D) distinct
MSUs, only R∗D parallel block transfers are required.

Figure demonstrates which MSU connects to
which PE. MSU i is connected to the PE whose high-
order n − q bits of its logical number are i (which equal
the n − q high-order bits of its physical number). As a
result, no matter which PECs are assigned to a task, the
data will be in the appropriate MSUs. For example, in
Fig. , for any submachine of size N/Q = , MSU is
connected to logical PE (which could be physical PE
, , , or).

The Memory Management System (Fig.) is a set
of processors that send file system requests from the
System Control Unit, PECs, and PEs to the appropri-
ate MSUs; control data transfers between the Memory
Storage System and the PEs; supervise input/output
operations involving peripheral devices; and enforce
consistent file naming and placement across the mul-
tiple Memory Storage System disks.

Using the PASM System
ELP (Explicit Language for Parallelism) was a C-based
language and associated compiler designed as part of
the PASM project for programming mixed-mode par-
allel machines []. ELP provided constructs for both
SIMD and MIMD parallelism, and an ELP application
program could perform computations that use these
parallelism modes in an instruction-level interleaved
fashion for mixed-mode operation. ELP provided a
vehicle for the exploration of and experimentation with
mixed-mode parallelism on the PASM prototype.

CAPS (Coding Aid for the PASM System) was
designed to assist in the development and evaluation
of application and system software for the PASM pro-
totype []. CAPS integrated hardware support and
software tools to provide a remote execution and
program debugging/monitoring environment for the
PASM prototype. The PASM prototype was accessi-
ble over the Internet using CAPS, and multiple win-
dows could be displayed tomonitor different processors
simultaneously.

The programming challenges for partitionable
mixed-mode systems are a superset of those for SIMD
and MIMD single-mode systems. Application and
algorithm research activities to explore PASM’s three
dimensions of flexibility included theoretical analyses,

 P PASM Parallel Processing System

simulations, and experiments on the PASM prototype
[]. These studies examined issues such as mapping
tasks onto multistage cube network–based parallel pro-
cessing systems; trade-offs among the SIMD, MIMD,
and mixed-mode classes of parallelism; PEC/PE com-
putational overlap in SIMDmode; impact of increasing
the number of PEs used; and partitioning for improved
performance. Applications considered include edge-
guided thresholding, FFTs, global histogramming,
image correlation, image smoothing, matrix multipli-
cation, and range-image segmentation (references are
given in Armstrong, Watson, and Siegel []). Here, we
will summarize three application studies that utilized
the PASM prototype.

Fineberg, Casavant, and Siegel [] used the PASM
prototype to study the benefits of mixed-mode par-
allel architectures for bitonic sequence sorting. Four
variations of the bitonic sequence sorting algorithm
were developed: a SIMD version, a MIMD version,
a MIMD version with hardware barrier synchroniza-
tions, and amixed-mode version that allowed switching
between SIMD and MIMD modes during execution.
The algorithm variations were then coded and profiled
on the PASM prototype using varying problem and
partition sizes.

The research demonstrated that, by supporting
hardware barrier synchronization and mode switch-
ing, a machine can achieve better performance than
with only SIMD orMIMD parallelism on problems that
are computationally similar to bitonic sequence sorting.
The authors also proposed a modification to the PASM
prototype condition code logic that would increase the
performance of the SIMD version.

Saghi, Siegel, and Gray [] programmed cyclic
reduction (a method for solving a general tridiago-
nal set of irreducible linear algebraic equations) on
three parallel systems, including the PASM prototype,
to study the trade-offs between SIMD and MIMD
parallelism, the effects of increasing the number of
processors used on execution time, the impact of the
interconnection network on performance, and the
advantages of a partitionable system. The cyclic reduc-
tion algorithm was implemented using SIMD paral-
lelism on the MasPar MP- [], using MIMD paral-
lelism on the nCUBE [], and using the same four
versions of parallelism on the PASM prototype as men-
tioned above. The authors also developed a mechanism

to predict the algorithm performance on each machine
using algorithm analysis and performance measure-
ments from each machine.

By using the PASM prototype as a common basis
to compare the modes of parallelism, the authors con-
cluded that a cyclic reduction algorithm using mixed-
mode was better than a purely SIMD or purely MIMD
algorithm. Execution-time measurements from the
other two parallel machines emphasized the need to
carefully choose the number of processing elements and
distribution of data to obtain efficient computation.

Tan, Siegel, and Siegel [] used several parallel
machines to study block-based motion vector estima-
tion. A SIMDMasPar MP- [], a MIMD Intel Paragon
XP/S, a MIMD IBM SP, and the mixed-mode PASM
prototype were used with different data partitioning
schemes to perform the estimation, and the results were
analyzed to contrast the benefits of each mode of paral-
lelism. In this research, the PASMprototype used SIMD,
SPMD, and mixed-mode parallelism.

The research demonstrated a method to analytically
predict the performance of various parallel implemen-
tations of the algorithm. It also described the impact of
the number of processors and mode of parallelism used
on algorithm performance. The authors found that,
using the PASMprototype, themixed-mode implemen-
tation slightly outperformed the pure SPMD implemen-
tation and significantly outperformed the pure SIMD
implementation.

Conclusions
Designing, simulating, prototyping, using, and evaluat-
ing the PASM partitionable SIMD/MIMDmixed-mode
system, based on amultistage cube network, was a great
research and educational experience for a large group
of faculty and students at Purdue University from the
s through the s. As stated earlier, PASM was
flexible along three dimensions: partitionability, mode
of parallelism, and variable connectivity amongPEs.We
found that advantages of systems with such flexibility
over a pure SIMD machine or a pure MIMD machine
included the following []:

. Multiple simultaneous users: Because there can be
multiple simultaneous independent submachines,
there can be multiple simultaneous users of the

PASM Parallel Processing System P

P

system, each executing a different program (not
allowed in a pure SIMD machine).

. Program development: Rather than trying to debug
a new parallel program on, for example, , PEs,
it can be debugged on a smaller size submachine of
 PEs, and then extended to , PEs.

. Variable submachine size for increased utilization: If
a task requires only N′ of N available PEs, the other
N −N′ can be used for another task (not allowed in
a pure SIMD machine).

. Variable submachine size for decreased execution
time: There are some algorithms for which themini-
mum execution time is obtained when fewer than N
PEs are used due to inter-PE communication over-
head (e.g., image smoothing []); thus, it is desir-
able to create a submachine consisting of the optimal
number of PEs.

. Subtask parallelism: Two independent subtasks that
are part of the same job can be executed in paral-
lel, sharing resources if necessary, which may result
in improved overall task execution time [] (not
allowed in a pure SIMD machine).

. Multiple processing modes: An algorithm can be exe-
cuted by using a combination of SIMD and MIMD
control with the same set of PEs (mixed-mode par-
allelism), using the mode that best matches the
computations required at each step of the program
(Fig.).

. Matching inter-PE connectivity to the task: The mul-
tistage cube allows different connection patterns
among PEs to be established depending on the task
(as opposed to, for example, having a fixed mesh
network).

. System fault tolerance: If a single PE fails, only those
submachines that include the failed PE are affected.
This provides some robustness, as mentioned in
section “�Introduction,” and is not allowed in a pure
SIMD machine.

. Submachine fault tolerance: If a PE in a submachine
fails, itmay be possible to redistribute data andmake
use of mixed-mode parallelism (i.e., changing from
SIMD to MIMDmode) and the variable connectiv-
ity (i.e., to establish connection patterns that do not
include the faulty PE) so that the job executing on
the submachine may continue on that submachine
with minimal degradation (this is another form of
robustness).

The references cited in this list of advantages, and
the complete reading list of PASM-related publications
(http://hdl.handle.net//), give much more
detail about our experiences.

Related Entries
�Connection Machine
�Distributed-Memory Multiprocessor
�Flynn’s Taxonomy
�Illiac IV
�MasPar
�MPP
�nCube
�Networks, Multistage

Acknowledgments
The preparation of this entry was supported by
the National Science Foundation under grants CNS-
 and CNS-, and by the Colorado State
UniversityGeorgeT.Abell Endowment.The large group
of faculty and students who have participated in the
PASM project are the coauthors of the papers listed
in the PASM-related reading list (http://hdl.handle.net/
/). Numerous agencies supported aspects
of PASM-related research: Air Force Office of Scien-
tific Research, Army Research Office, Ballistic Mis-
sile Defense Agency, Defense Mapping Agency, Naval
Ocean Systems Center, Naval Research Laboratory,
National Science Foundation, Office of Naval Research,
and Rome Laboratory. IBM provided a grant for much
of the prototype equipment. Donations for various parts
for the prototypewere provided byAmphenol Products,
Augat Inc., Belden, Motorola, and Power One.

Bibliographic Notes and Further
Reading
This entry is a brief summary of the PASM architec-
ture; details are available in the papers in the PASM-
related reading list available at http://hdl.handle.net/
/.

Bibliography
. Ali S, Maciejewski AA, Siegel HJ, Kim J () Measuring the

robustness of a resource allocation. IEEE Trans Parallel Distrib
Syst ():–

. Armstrong JB, Watson DW, Siegel HJ () Software issues for
the PASM parallel processing system. Software for parallel com-
putation. Springer, Berlin

http://hdl.handle.net/10217/34662
http://dx.doi.org/10.1007/978-0-387-09766-4_387
http://dx.doi.org/10.1007/978-0-387-09766-4_223
http://dx.doi.org/10.1007/978-0-387-09766-4_417
http://dx.doi.org/10.1007/978-0-387-09766-4_422
http://dx.doi.org/10.1007/978-0-387-09766-4_424
http://dx.doi.org/10.1007/978-0-387-09766-4_317
http://hdl.handle.net/10217/34662
http://hdl.handle.net/10217/34662
http://hdl.handle.net/10217/34662
http://hdl.handle.net/10217/34662
http://dx.doi.org/10.1007/978-0-387-09766-4_2
http://dx.doi.org/10.1007/978-0-387-09766-4_285

 P Path Expressions

. Barnes GH, Brown RM, Kato M, Kuck DJ, Slotnick DL, Stokes
RA () The ILLIAC IV computer. IEEE Trans Comput C
():–

. Batcher KE () Bit serial parallel processing systems. IEEE
Trans Comp C-():–

. Blank T () The MasPar MP- architecture. In: Proceedings
IEEE compcon spring ’, pp –

. Bouknight WJ, Denenberg SA, McIntyre DE, Randall JM, Sameh
AH, Slotnick DL () The ILLIAC IV system. Proc IEEE
():–

. Fineberg SA, Casavant TL, Siegel HJ () Experimental analy-
sis of a mixed-mode parallel architecture using bitonic sequence
sorting. J Parallel Distrib Comput ():–

. Flynn MJ () Very high-speed computing systems. Proc IEEE
():–

. Hayes JP, Mudge T () Hypercube supercomputers. Proc IEEE
():–

. Lipovski GJ, Malek M () Parallel computing: theory and
comparisons. Wiley, New York

. Lumpp JE, Fineberg SA, Nation WG, Casavant TL, Bronson EC,
Siegel HJ, Pero PH, Schwederski T, Marinescu DC () CAPS –
a coding aid used with the PASM parallel processing system.
Commun ACM ():–

. NationWG,Maciejewski AA, Siegel HJ () Amethodology for
exploiting concurrency among independent tasks in partition-
able parallel processing systems. J Parallel Distrib Comput ():
–

. Nichols MA, Siegel HJ, Dietz HG () Data management and
control-flow aspects of an SIMD/SPMD parallel language/com-
piler. IEEE Trans Parallel Distrib Syst ():–

. Nutt GJ () Microprocessor implementation of a parallel pro-
cessor. In: Proceedings th annual symposium on computer
architecture, pp –

. Pfister GF, Brantley WC, George DA, Harvey SL, Kleinfelder
WJ, Mcauliffe KP, Melton ES, Norton VA, Weiss J () The
IBM research parallel processor prototype (RP): introduction
and architecture. In: Proceedings International conference
parallel processing, pp –

. Saghi G, Siegel HJ, Gray JL () Predicting performance and
selecting modes of parallelism: a case study using cyclic reduc-
tion on three parallel machines. J Parallel Distrib Comput ():
–

. Shestak V, Smith J, Maciejewski AA, Siegel HJ () Stochas-
tic robustness metric and its use for static resource allocations.
J Parallel Distrib Comput ():–

. Siegel HJ () Interconnection networks for large-scale paral-
lel processing: theory and case studies, nd edn. McGraw-Hill,
New York

. Siegel HJ, Armstrong JB,Watson DW () Mapping computer-
vision-related tasks onto reconfigurable parallel-processing sys-
tems. IEEE Comput ():–

. Siegel HJ, Schwederski T, Nation WG, Armstrong JB, Wang L,
Kuehn JT, Gupta R, Allemang MD, Meyer DG, Watson DW
() The design and prototyping of the PASM reconfigurable
parallel processing system. Parallel computing: paradigms and
applications. International Thomson Computer Press, London

. Siegel HJ, Siegel LJ, Kemmerer F, Mueller PT Jr, Smalley HE Jr,
Smith SD () PASM: a partitionable SIMD/MIMD system for
image processing and pattern recognition. IEEE Trans Comput C
():–

. Tan M, Siegel JM, Siegel HJ () Parallel implementations of
block-based motion vector estimation for video compression on
four parallel processing systems. Int J Parallel Program ():
–

. Tucker LW, Robertson GG () Architecture and applications
of the connection machine. IEEE Comput ():–

Path Expressions

Roy H. Campbell
University of Illinois at Urbana-Champaign, Urbana,
IL, USA

Synonyms
Coordination; Concurrency control; Mutual exclusion;
Process synchronization

Definition
A path expression is a declaration of the permitted
sequences of operations on an object that is shared by
parallel processes.

For example, consider a path expression based
on a regular expression notation for a shared buffer.
The shared buffer may have operations read and write
that may only occur in a sequence specified by the reg-
ular expression (write; read)∗ where a write to the buffer
may be followed by a read before it can be repeated.
The reads and writes aremutually exclusive.The expres-
sion indicates the sequence of actions that may occur
independent of the number of processes or the order in
which the processes invoke the operations.

Discussion
Path expressions provide a declarative specification of
synchronization and coordination of parallel processes
performing operations on an object in parallel comput-
ing systems []. They provide a language mechanism
to separate the specification of synchronization from
the algorithmic means of providing that synchroniza-
tion []. Although the regular expression is used in our
example, other languages that are well defined can be
used instead.

http://dx.doi.org/10.1007/978-0-387-09766-4_2329
http://dx.doi.org/10.1007/978-0-387-09766-4_2330
http://dx.doi.org/10.1007/978-0-387-09766-4_2331
http://dx.doi.org/10.1007/978-0-387-09766-4_2332

Path Expressions P

P

In general, the synchronization for an object being
manipulated by parallel processes involves mutual
exclusion, sequence, and repetition and these may be
combined to form path expressions. In more detail, a
path expression language based on regular expressions
can been described as:

. A sequence of operations on a resource.
. A selection from one or more operations on a

resource.
. A repetition of a sequence or selection.
. A path expression composed of (), (), or () above.

Other primitives besides these three have been consid-
ered including:

. A burst of parallel sequences of executions: If there
is one execution of the operations in a path expres-
sion, then there can be parallel executions of the
sequences of operations in a path expressionup until
the event when there are no more parallel execu-
tions of those operations occurring. For example,
the expression (write, {read})∗ for a buffer would
specify that a write or a burst of parallel reads can
occur, but not a read and a write in parallel [].

. A concurrency restriction: This allows parallel exe-
cutions of the path expression up to the limit of
the restriction. For example, the expression :(write;
read)would allowup to parallel instances of awrite
followed by a read [].

. Guarded selection: A path expression selection that
describes the synchronization of the parallel exe-
cution of its operations when a guard is true. For
example, the expression #buffers < ∣ (put), #buffers
> (get) would describe synchronization where if
the variable #buffers is less than , a put may occur
or if the variable #buffers is greater than , a get may
occur (see also []).

More general forms of path expression may also be
described []. For example, a general path expression
can be composed of independent path expressions such
that if all the path expressions allow the execution of an
operation, it may occur. The general path expression:

path (A; B)∗ end
path (A; C)∗ end

requires an operation A to be followed by operation B
and C. Operations B and C may possibly occur in par-
allel since there are no constraints between B and C
but there are constraints between A and B and between
A and C.

Implementation
An operation on an object can be considered as a transi-
tion that changes the state of the object. When a process
invokes an operation on an object, it can be viewed as
a request for a transition from one state of the object
to another. The implementation of a path expression
decides whether to accept the request and proceed or
whether to delay the request until an appropriate state
and block the process invocation of that operation.
When a path expression is built upon a regular expres-
sion that has the property that an operation can only
occur when the object is in one particular state, then a
simple implementation can be built using semaphores
to represent the states.

In this exposition, the implementation for open
path expressions is described. An open path expres-
sion allows much of the power of a semaphore to
be used in a declarative expression and forms the
basis for the implementation of “Path Pascal,” a ver-
sion of Pascal that includes concurrency and synchro-
nization []. Open path expressions are composed of
four constraints: sequence, selection, restriction, and
derestriction.

The open path expression notation allows a simple
rewriting scheme to translate a path expression syn-
chronization declaration into the prologues and the
epilogues of semaphore operations of each of the oper-
ations mentioned in the path expression:

[path<op_expr>end] ⊢
∣α <op_expr>β

Where ⊢ designates a rewrite rule and αi, βi are empty
strings of semaphore operations forming the prologue
and epilogue to be inserted in each of the operations
named in op_expr.

The following set of path expression rewrite rules
evaluated in the order specified either by parentheses
or by following precedence from left to right generate
prologues and epilogues that implement the four syn-
chronization constraints: sequence, selection, restric-
tion, and burst:

 P Path Expressions

Rule Selection (comma): α <op_expr>,<op_expr>β ⊢

∣α <op_expr> β
∣α <op_expr> β

Rule Sequence (semicolon): α <op_expr>; <op_expr>
β ⊢

∣α <op_expr> “Sj.V();”
∣ “Sj.P();” <op_expr>β

where Semaphore Sj is initialized to

Rule Restriction (colon): α n: (<op_expr>)β ⊢

∣α ∥ “;Sk.P();” <op_expr> “;Sk.V();” ∥ β

where Semaphore Sk is initialized to n and ∥ expresses
the concatenation of two strings making up a prologue
or epilogue.

Rule Derestriction (brace): α{<op_expr >} β ⊢

∣ “Sk.P(); if count++ == then [” α ∥ “Sk.V();];”
<op_expr> “ Sk.P(); if count−− == then [” β ∥

“Sk.V();];”

where Semaphore Sk is initialized to , integer count is
initialized to , the ++ and −− operators denote incre-
menting or decrementing a counter count by , and
square parentheses within the strings denote a block of
instructions.

The derestriction rule applies the synchronization
prologue α if count is incremented through in the
prologue and applies the synchronization epilogue β if
count is decremented through in the epilogue.

Finally, the prologues and epilogues are complete
when <op_expr> contains only a method_name of an
operation declared in an object.

Operation: α <method_name > β

∣ insert prologue α; < method_body>; insert epilogue β

The following are some examples of the implemen-
tations of open path expressions:

. path x, y end
creates empty prologues and epilogues in the meth-
ods x and y allowing them to be executed without
synchronization constraints.

. path : (x) end
rewrites to:
∣ S.P(); <x_body>; S.V();

Semaphore S = ;
The body of x is executed in mutual exclusion.

. path : (x, y) end
rewrites to:
∣ S.P(); <x_body>; S.V();
∣ S.P(); <y_body>; S.V();

Semaphore S = ;
and creates prologues and epilogues in the meth-
ods x and y constraining their execution to mutual
exclusion.

. path : (x; y) end
rewrites to:
∣ S.P(); <x_body>; S.V();
∣ S.P(); <y_body>; S.V();

Semaphore S, S = (,);
and creates prologues and epilogues in the meth-
ods x and y constraining their execution to mutual
exclusion and a sequence that alternates the execu-
tion of x with one of y.

. path : (write; {read}) end
rewrites to:
∣ S.P(); <write_body>; S.V();
∣ S.P(); if count++ == then [S.P(); S.V();]

<read_body> S.P(); if count−− ==
then [S.V(); S.V();];

Semaphore S, S, S = (, ,); Integer count = ;
and allows one write operation to be followed by a
burst of read operations.

. path : (: (write); : (read)) end
rewrites to:
∣ [S.P(); S.P(); <write_body>; S.V(); S.V();]
∣ [S.P(); S.P(); <read_body>; S.V(); S.V();]

Semaphore S, S, S, S = (, , ,);

The body of write is executed in mutual exclusion as
is the body of read. However, there must always bemore
writes than reads and there may be up to more writes
than reads.

Uses of Path Expressions
Path expressions as a declarative form of specifying
synchronization have found use in several parallel pro-
gramming languages [, ,]. They have also been
employed in single-assignment languages [], real-time
control languages [], distributed objects [], event
systems [], multimedia systems [], debugging [],
VLSI design [], synchronization contracts for web
services [], and workflow languages []. Typically,

PaToH (Partitioning Tool for Hypergraphs) P

P

processes and path expressions are dual approaches
to specifying the traces created in a computation; the
processes generate sequences of actions which are con-
strained by path expressions to achieve particular syn-
chronization constraints associated with the operations
on abstract data types.

Summary
In practice, synchronization of parallel processes
remains a difficult problem that becomes ever more
complex with increased concurrency in architecture.
Path expressions provide a separate specification of syn-
chronization from the code of processes that, under
some circumstances, can simplify parallel program-
ming. Although not widely adopted, their declarative
approach to specifying synchronization has been found
useful in various parallel applications. Path expressions
have been used to synchronize parallel operations on
objects in parallel languages, real-time languages, event
systems, VSLI, workflow, and debugging.

Bibliographic Notes and Further
Reading
The semantics of parallel programs may be described
using trace-based semantics. Path expression imple-
mentations restrict or recognize the permitted traces
of parallel programs as described by Lauer and Camp-
bell []. A semantics for path expressions is given by
Dinning and Mishra using partially ordered multisets
[] and the authors provide a fully parallel imple-
mentation for a path expression language on MIMD
shared memory architectures. Path Pascal and open
path expressions were used as pedagogical tools for
teaching parallel programs [,].

Bibliography
. Anantharaman TS, Clarke EM, Mishra B () Compiling path

expressions into VLSI circuits. Distrib Comput :–
. Andler S () Predicate path expressions. In: POPL’ pro-

ceedings of the th ACM SIGACT-SIGPLAN symposium on
principles of programming languages. ACM Press, New York,
pp –

. Bruegge B, Hibbard P () Generalized path expressions:
a high-level debugging mechanism. J Syst Softw :–
(Elsevier Science Publishing)

. Campbell RH () Path expressions: a technique for speci-
fying process synchronization. PhD. Thesis, The University of
Newcastle Upon Tyne

. Campbell RH, Habermann AN () The specification of pro-
cess synchronization by path expressions. In: Gelenbe E, Kaiser
C (eds) Operating systems. Lecture notes in computer science,
vol . Springer, Berlin, pp –

. Lauer PE, Campbell RH () Formal semantics of a class of
high-level primitives for coordinating concurrent processes, Acta
Informatica, ():–

. Comte D, Durrieu G, Gelly O, Plas A, Syre JC () Parallelism,
control and synchronization expression in a single assignment
language. ACM SIGPLAN Not (): –

. Dinning A, Mishra B () A fully parallel algorithm for imple-
menting path expressions. J Parallel Distrib Comput :–

. Dowsing RD, Elliott R () Programming a bounded buffer
using the object and path expression constructs of path pascal.
Comput J ():–

. Heinlein C () Workflow and process synchronization with
interaction expressions and graphs. Ph. D. Thesis (in German),
Fakultät für Informatik, Universität Ulm

. Hoepner P () Synchronizing the presentation of multimedia
objects. Comput Commun ():–

. Kidd M-EC () Ensuring critical event sequences in high
integrity software by applying path expressions. Sandia Labs,
Albuquerque

. Kolstad RB, Campbell RH () Path Pascal user manual.
SIGPLAN Not ():–

. Laure E () ParBlocks – a new methodology for specifying
concurrent method executions in opus. In: Amestoy P, Berger P,
Dayde M, Ruiz D, Duff I, Fraysse V, Giraud L (eds) Euro-Par’.
Lecture notes in computer science, vol . Springer, Berlin,
pp –

. Preiss O, Shah AP, Wegmann A () Generating synchroniza-
tion contracts for web services. In: Khosrow-Pour M (ed) Infor-
mation technology and organizations: trends, issues, challenges
& solutions, vol . Idea Group Publishing, Hershey, pp –

. Rees O () Using path expressions as concurrency guards.
Technical report, ANSA

. Schoute AL, Luursema JJ () Realtime system control by
means of path expressions. In: Proceedings Euromicro ’Work-
shop on Real Time, Horsholm, Denmark, pp –

. ShawAC () Software description with flow expressions. IEEE
Trans Softw Eng SE-():–

PaToH (Partitioning Tool for
Hypergraphs)

Ümit Çatalyürek, Cevdet Aykanat
The Ohio State University, Columbus, OH, USA
Bilkent University, Ankara, Turkey

Synonyms
Partitioning tool for hypergraphs (PaToH)

http://dx.doi.org/10.1007/978-0-387-09766-4_2197

 P PaToH (Partitioning Tool for Hypergraphs)

Definition
PaToH is a sequential, multilevel, hypergraph partition-
ing tool that can be used to solve various combinatorial
scientific computing problems that could be modeled
as hypergraph partitioning problem, including sparse
matrix partitioning, ordering, and load balancing for
parallel processing.

Discussion

Introduction
Hypergraph partitioning has been an important prob-
lem widely encountered in VLSI layout design [].
Recent works since the late s have introduced new
application areas, including one-dimensional and two-
dimensional partitioning of sparse matrices for paral-
lel sparse-matrix vector multiplication [–,], sparse
matrix reordering [,], permuting sparse rectangu-
lar matrices into singly bordered block-diagonal form
for parallel solution of LP problems [], and static
and dynamic load balancing for parallel processing [].
PaToH [] has been developed to provide fast and high-
quality solutions for these motivating applications.

In simple terms, the hypergraph partitioning prob-
lem can be defined as the task of dividing a hyper-
graph into two or more roughly equal sized parts such
that a cost function on the hyperedges connecting ver-
tices in different parts is minimized. The hypergraph
partitioning problem is known to be NP-hard [],
therefore a wide variety of heuristic algorithms have
been developed in the literature to solve this complex
problem [, , , ,]. Following the success of
multilevel partitioning schemes in ordering and graph
partitioning [, ,], PaToH [] has been developed as
one of the first multilevel hypergraph partitioning tools.

Preliminaries
A hypergraphH=(V ,N) is defined as a set of vertices
(also called cells) V and a set of nets (hyperedges) N
among those vertices. Every net n ∈ N is a subset of
vertices, that is, n⊆V . The vertices in a net n are called
its pins in PaToH. The size of a net, s[n], is equal to the
number of its pins. The degree of a vertex is equal to
the number of nets it is connected to. Graph is a special
instance of hypergraph such that each net has exactly
two pins. Vertices and nets of a hypergraph can be asso-
ciated with weights. For simplicity in the presentation,

net weights are refered as cost here and denoted with
c[.], whereas w[.] will be used for vertex weights.

Π={V,V, . . . ,VK} is a K-way partition ofH if the
following conditions hold:

● Each part Vk is a nonempty subset of V , that is,
Vk ⊆V and Vk ≠ / for ≤ k ≤ K.

● Parts are pairwise disjoint, that is, Vk ∩Vℓ = / for all
 ≤ k < ℓ ≤ K.

● Union of K parts is equal to V , that is, ⋃K
k= Vk =V .

In a partition Π ofH, a net that has at least one pin
(vertex) in a part is said to connect that part. Connectiv-
ity λn of a net n denotes the number of parts connected
by n. A net n is said to be cut (external) if it connects
more than one part (i.e., λn >), and uncut (internal)
otherwise (i.e., λn =). In a partition Π ofH, a vertex is
said to be a boundary vertex if it is incident to a cut net.
A K-way partition is also called a multiway partition if
K > and a bipartition if K = . A partition is said to be
balanced if each part Vk satisfies the balance criterion:

Wk ≤Wavg(+ ε), for k = , , . . . ,K. ()

In (), weight Wk of a part Vk is defined as the sum
of the weights of the vertices in that part (i.e., Wk =

∑v∈Vk
w[v]), Wavg denotes the weight of each part

under the perfect load balance condition (i.e., Wavg =

(∑v∈V w[v])/K), and ε represents the predetermined
maximum imbalance ratio allowed.

The set of external nets of a partition Π is denoted as
NE.There are various [,] cutsize definitions for rep-
resenting the cost χ(Π) of a partition Π. Two relevant
definitions are:

(a) χ(Π) = ∑

n∈NE

c[n] and

(b) χ(Π) = ∑

n∈NE

c[n](λn −). ()

In (a), the cutsize is equal to the sum of the costs of the
cut nets. In (b), each cut net n contributes c[n](λn −)
to the cutsize.The cutsize metrics given in (a) and (b)
will be referred to here as cut-net and connectivitymet-
rics, respectively. The hypergraph partitioning problem
can be defined as the task of dividing a hypergraph into
two or more parts such that the cutsize is minimized,
while a given balance criterion () among part weights
is maintained.

A recent variant of the above problem is the multi-
constraint hypergraph partitioning [, , , ,] in
which each vertex has a vector of weights associated

PaToH (Partitioning Tool for Hypergraphs) P

P

with it. The partitioning objective is the same as above,
and the partitioning constraint is to satisfy a balanc-
ing constraint associated with each weight. Let w[v, i]
denote the C weights of a vertex v for i = , . . . ,C. Then
balance criterion () can be rewritten as:

Wk,i ≤Wavg,i (+ ε) for k = , . . . ,K and i = , . . . ,C ,
()

where the ith weight Wk,i of a part Vk is defined
as the sum of the ith weights of the vertices in that
part (i.e., Wk,i = ∑v∈Vk

w[v, i]), and Wavg,i is the
average part weight for the ith weight (i.e., Wavg,i =

(∑v∈V w[v, i])/K), and ε again represents allowed
imbalance ratio.

Another variant is the hypergraph partitioning with
fixed vertices, in which some of the vertices are fixed in
some parts before partitioning. In other words, in this
problem, a fixed-part function is provided as an input
to the problem. A vertex is said to be free if it is allowed
to be in any part in the final partition, and it is said to
be fixed in part k if it is required to be in Vk in the final
partition Π.

Using PaToH
PaToH provides a set of functions to read, write, and
partition a given hypergraph, and evaluate the quality
of a given partition. In terms of partitioning, PaToH
provides a user customizable hypergraph partitioning
via multilevel partitioning scheme. In addition, PaToH
provides hypergraph partitioning with fixed cells and
multi-constraint hypergraph partitioning.

Application developers who would like to use
PaToH can either directly use PaToH through a simple,
easy-to-use C library interface in their applications, or
they can use stand-alone executable.

PaToH Library Interface
PaToH library interface consists of two files: a header
file patoh.h which contains constants, structure def-
initions, and functions proto-types, and a library file
libpatoh.a.

Before starting to discuss the details, it is instruc-
tive to have a look at a simple C program that par-
titions an input hypergraph using PaToH functions.
The program is displayed in Fig. . The first state-
ment is a function call to read the input hyper-
graph file which is given by the first command line

argument. PaToH partition functions are customiz-
able through a set of parameters. Although the appli-
cation user can set each of these parameters one
by one, it is a good habit to call PaToH func-
tion PaToH_Initialize_Parameters to set all
parameters to one of the three preset default val-
ues by specifying PATOH_SUGPARAM_<preset>,
where<preset> is DEFAULT,SPEED, or QUALITY.
After this call, the user may prefer to modify the
parameters according to his/her need before calling
PaToH_Alloc. All memory that will be used by
PaToH partitioning functions is allocated by PaToH_
Alloc function, that is, there will be no more
dynamic memory allocation inside the partitioning
functions. Now, everything is set to partition the hyper-
graph using PaToH’s multilevel hypergraph partition-
ing functions. A call to PaToH_Partition (or
PaToH_MultiConst_Partition) will partition
the hypergraph, and the resulting partition vector, part
weights, and cutsize will be returned in the parameters.
Here, variablecutwill hold the cutsize of the computed
partition according to cutsize definition (b) since, this
metric is specified by initializing the parameters with
constant PATOH_CONPART. The user may call parti-
tioning functions as many times as he/she wants before
calling function PaToH_Free. There is no need to
reallocate the memory before each partitioning call,
unless either the hypergraph or the desired customiza-
tion (like changing coarsening algorithm, or number of
parts) is changed.

A hypergraph and its representation can be seen in
Fig. . In the figure, large circles are cells (vertices) of
the hypergraph, and small circles are nets. xpins and
pins arrays store the beginning index of pins (cells)
connected to each net, and IDs of the pins, respectively.
Hence, xpins is an array of size equal to the num-
ber of nets plus one (in this example), and pins
is an array of size equal to the number of pins in
the hypergraph (in this example). Cells connected
to net nj are stored in pins[xpins[j]] through
pins[xpins[j+1]-1].

Stand-Alone Program
Distribution includes a stand-alone program, called
patoh, for single constraint partitioning (this exe-
cutable will not work with multiple vertex weights; for
multi-constraint partitioning there is an interface and
some sample source codes). The program patoh gets

 P PaToH (Partitioning Tool for Hypergraphs)

its parameters from command line arguments. PaToH
can be run from command line as follows:

> patoh <hypergraph-file>
<number-of-parts> [[parameter1]
[parameter2]].

Partitioning can be customized by using the optional
[parameter] arguments. The syntax of these
optional parameters is as follows: two-letter abbrevia-
tion of a parameter is followed by an equal sign and a
value. For example, if the user wishes to change refine-
ment algorithm (abbreviated as “RA”) to “Kernighan–
Lin with dynamic locking” (sixth algorithm out of
 implemented in PaToH), the user should specify
“RA=.” For a complete example, consider the sample
hypergraph displayed in Fig. . In order to partition this
hypegraph into three parts by using the Kernighan–Lin
refinement algorithm with cut-net metric (the default is
connectivity metric (Equation (b)), one has to issue the
following command whose output is shown next:

This output shows that the cutsize (cut cost) according
to cut-net metric is . Final imbalance ratios (in paren-
theses) for the least loaded and the most loaded parts
are % (perfect balance with four vertices in each part),
and partitioning only took about ms.The input hyper-
graph and resulting partition is displayed in Fig. . A
quick summary of the input file format (the details are
provided in the PaToHmanual []) is as follows: the first
non-comment line of the file is a header containing the
index base (or) and the size of the hypergraph, and
information for eachnet (only pins in this case) and cells
(none in this example) follows.

All of the PaToH customization parameters that are
available through library interface are also available
as command line options. PaToH manual [] contains
details of each of those customization parameters.

Customizing PaToH’s Hypergraph
Partitioning
PaToHachievesK-way hypergraphpartitioning through
recursive bisection (two-way partition), and at each
bisection step it uses a multilevel hypergraph bisection

> patoh sample.u 3 RA=6 UM=U

+++

+++ PaToH v3 (c) Nov 1999-, by Umit V. Catalyurek

+++ Build # 872 Date: Fri, 09 Oct 2009

+++

**

Hypergraph : sample.u #Cells : 12 #Nets : 11 #Pins : 31

**

3-way partitioning results of PaToH:

Cut Cost: 2

Part Weights : Min= 4 (0.000) Max= 4 (0.000)

--

I/O : 0.000 sec

I.Perm/Cons.H: 0.000 sec (2.9%)

Coarsening : 0.000 sec (1.1%)

Partitioning : 0.000 sec (75.8%)

Uncoarsening : 0.000 sec (3.7%)

Total : 0.001 sec

Total (w I/O): 0.001 sec

--

PaToH (Partitioning Tool for Hypergraphs) P

P

#include <stdio.h>
#include "patoh.h"

int main(int argc,char *argv[])
{
PaToH_Parameters args;
int c, n, nconst, *cwghts, *nwghts,

*xpins, *pins, *partvec, cut, *partweights;

PaToH_Read_Hypergraph(argv[1], &_c, &n, &_nconst, &cwghts, &nwghts,
&xpins, &pins);

printf("Hypergraph %10s -- #Cells=%6d #Nets=%6d #Pins=%8d #Const=%2d\n",
argv[1], _c, _n, xpins[_n], _nconst);

PaToH_Initialize_Parameters(&args, PATOH_CONPART, PATOH_SUGPARAM_DEFAULT);

args._k = atoi(argv[2]);
partvec = (int *) malloc(_c*sizeof(int));
partweights = (int *) malloc(args._k*sizeof(int));

PaToH_Alloc(&args, _c, _n, _nconst, cwghts, nwghts, xpins, pins);

if (_nconst==1)
PaToH_Partition(&args, _c, _n, cwghts, nwghts,

xpins, pins, partvec, partweights, &cut);
else

PaToH_MultiConst_Partition(&args, _c, _n, _nconst, cwghts,
xpins, pins, partvec, partweights, &cut);

printf("%d-way cutsize is: %d\n", args._k, cut);

free(cwghts); free(nwghts);
free(xpins); free(pins);
free(partweights); free(partvec);

PaToH_Free();
return 0;
}

PaToH (Partitioning Tool for Hypergraphs). Fig. A simple C program that partitions an input hypergraph using PaToH

functions

algorithm. In the recursive bisection, first a bisection of
H is obtained, and then each part of this bipartition is
further partitioned recursively. After lg K steps, hyper-
graphH is partitioned into K parts. Please note that, K
is not restricted to be a power of . For anyK > , one can
achieve K-way hypergraph partitioning through recur-
sive bisection by first partitioningH into two parts with
a load ratio of ⌊K/⌋ to (K−⌊K/⌋), and then recursively
partitioning those parts into ⌊K/⌋ and (K − ⌊K/⌋)
parts, respectively, using the same approach.

A pseudo-code of the multilevel hypergraph bisec-
tion algorithm used in PaToH is displayed in Algo-
rithm . Mainly, the algorithm has three phases: coars-
ening, initial partitioning, and uncoarsening. In the
first phase, a bottom-up multilevel clustering is suc-
cessively applied starting from the original hypergraph
until either the number of vertices in the coarsened
hypergraph reduces below a predetermined threshold
value or clustering fails to reduce the size of the hyper-
graph significantly. In the second phase, the coarsest

 P PaToH (Partitioning Tool for Hypergraphs)

n9

n8

n6

n5

n7

n0n2

n1 n10 n4

n3

v11 v12

v8v9v3

v7

v6v5
v4v2v1v0

0xpins:

2

0

3

1

5

2

6

3 5

0 1

6 7

0 1

8

2

9

3

10 11

1 3

12 13

4 5

14 15

4 5

16

6

17

7

18

6

19

7

20

8

21

9

22

10

23

11

24

8

25

9

26

9

27

11

28

2

29

5

30

0

5

1

7

2

11

3

13

4

15

5

19

6

21

7

25

8

27

9

29

10

31

11

pins:

6

4

PaToH (Partitioning Tool for Hypergraphs). Fig. A sample hypergraph and its representation

% base:(0/1) #cells #nets #pins

0 12 11 31

% pins of each net in the hypergraph

2 3 5 6 9

0 1

0 1 2 3

1 3

4 5

4 5 6 7

6 7

8 9 10 11

8 10

8 11

2 5

V0

V2

n1
n2n3

v3

v2

v0

v1

n10

n6

n5

n4

v4

v7v6

v5
n0

n9

n7

n8

v9v9

V1v11

v12

a b

PaToH (Partitioning Tool for Hypergraphs). Fig. Text file representation of the sample hypergraph in Fig. and

illustration of a partition found by PaToH

hypergraph is bipartitioned using one of the initial
partitioning techniques. In the third phase, the parti-
tion found in the second phase is successively projected
back towards the original hypergraph while it is being
improved by one of the iterative refinement heuristics.
These three phases are summarized below.

. CoarseningPhase: In this phase, the given hyper-
graphH=H =(V,N) is coarsened into a sequence of
smaller hypergraphs H = (V,N), H = (V,N), . . .,
Hℓ =(Vℓ ,Nℓ) satisfying ∣V∣> ∣V ∣> ∣V ∣> . . . >∣Vℓ ∣. This

coarsening is achieved by coalescing disjoint subsets of
vertices of hypergraph Hi into clusters such that each
cluster in Hi forms a single vertex of Hi+ . The weight
of each vertex of Hi+ becomes equal to the sum of its
constituent vertices of the respective cluster inHi . The
net set of each vertex ofHi+ becomes equal to the union
of the net sets of the constituent vertices of the respec-
tive cluster inHi . Here, multiple pins of a net n∈Ni in a
cluster ofHi are contracted to a single pin of the respec-
tive net n′ ∈ Ni+ of Hi+ . Furthermore, the single-pin

PaToH (Partitioning Tool for Hypergraphs) P

P

Algorithm Multilevel Bisection.
function PaToHMLevelPartition(H = (V ,N))
H ←H

ℓ ←
/* Coarsening Phase: */
while ∣Vℓ ∣ > CoarseTo do

find a clustering, Cℓ , using one of the coarsening
algorithms

constructHℓ+ using Cℓ
if (∣Vℓ+ ∣ − ∣Vℓ ∣)/∣Vℓ ∣ < CoarsePercent then

break
else

ℓ ← ℓ +
end if

end while
/* Initial Partitioning Phase: */
find an initial partitioning Πℓ ofHℓ

/* Uncoarsening Phase: */
while ℓ > do

refine Πℓ using one of the refinement algorithms
if ℓ > then

project Πℓ to Πℓ−

end if
ℓ ← ℓ −

end while
return Π

end function

nets obtained during this contraction are discarded.The
coarsening phase terminates when the number of ver-
tices in the coarsened hypergraph reduces below the
predetermined number or clustering fails to reduce the
size of the hypergraph significantly.

In PaToH, two types of clusterings are implemented,
matching-based, where each cluster contains at most of
two vertices; and agglomerative-based, where clusters
can have more than two vertices. The former is sim-
ply called matching in PaToH, and the latter is called
clustering.

The matching-based clustering works as follows.
Vertices ofHi are visited in a user-specified order (could
be random, degree sorted, etc.). If a vertex u ∈ Vi has
not been matched yet, one of its unmatched adjacent
vertices is selected according to a criterion. If such a ver-
tex v exists, the matched pair u and v are merged into
a cluster. If there is no unmatched adjacent vertex of

u, then vertex u remains unmatched, that is, u remains
as a singleton cluster. Here, two vertices u and v are
said to be adjacent if they share at least one net, that is,
nets[u] ∩ nets[v] ≠ /.

In the agglomerative clustering schemes, each vertex
u is assumed to constitute a singleton cluster Cu = {u}
at the beginning of each coarsening level.Then, vertices
are again visited in a user specified order. If a vertex u
has already been clustered (i.e., ∣Cu ∣>) it is not consid-
ered for being the source of a new clustering. However,
an unclustered vertex u can choose to join a multi-
vertex cluster as well as a singleton cluster. That is, all
adjacent vertices of an unclustered vertex u are consid-
ered for selection according to a criterion. The selection
of a vertex v adjacent to u corresponds to including ver-
tex u to cluster Cv to grow a new multi-vertex cluster
Cu=Cv =Cv ∪ {u}.

PaToH includes a total of coarsening algorithms:
eight matchings and nine clustering algorithms, and
the default method is a clustering algorithm that uses
absorption metric. In this method, when selecting the
adjacent vertex v to cluster with vertex u, vertex v
is selected to maximize ∑n∈nets[u]∩nets[Cv]

∣Cv∩n∣
s[n]− , where

nets[Cv] = ∪w∈Cvnets[w].
. Initial Partitioning Phase:The goal in this phase

is to find a bipartition on the coarsest hypergraph Hℓ .
PaToH includes various random partitioning methods
as well as variations of Greedy Hypergraph Growing
(GHG) algorithm for bisecting Hℓ . In GHG, a cluster
is grown around a randomly selected vertex. During the
coarse of the algorithm, the selected and unselected ver-
tices induce a bipartition onHℓ .The unselected vertices
connected to the growing cluster are inserted into a pri-
ority queue according to theirmove-gain [], where the
gain of an unselected vertex corresponds to the decrease
in the cutsize of the current bipartition if the vertex
moves to the growing cluster. Then, a vertex with the
highest gain is selected from the priority queue. After
a vertex moves to the growing cluster, the gains of its
unselected adjacent vertices that are currently in the
priority queue are updated and those not in the prior-
ity queue are inserted. This cluster growing operation
continues until a predetermined bipartition balance cri-
terion is reached. The quality of this algorithm is sen-
sitive to the choice of the initial random vertex. Since
the coarsest hypergraph Hℓ is small, initial partition-
ing heuristics can be run multiple times and select the
best bipartition for refinement during the uncoarsening

 P PaToH (Partitioning Tool for Hypergraphs)

phase. By default, PaToH runs different initial par-
titioning algorithms and selects the bipartition with
lowest cost.

. Uncoarsening Phase: At each level i (for i =

ℓ, ℓ− , . . . ,), bipartition Πi found on Hi is projected
back to a bipartition Πi− onHi− . The constituent ver-
tices of each cluster in Hi− is assigned to the part of
the respective vertex inHi. Obviously, Πi− ofHi− has
the same cutsize with Πi ofHi . Then, this bipartition is
refined by running a KL/FM-based iterative improve-
ment heuristics onHi− starting from initial bipartition
Πi−. PaToH provides refinement algorithms that are
based on the well-known Kernighan–Lin (KL) [] and
Fiduccia–Mattheyses (FM) [] algorithms. These iter-
ative algorithms try to improve the given partition by
either swapping vertices between parts or moving ver-
tices from one part to other, while not violating the bal-
ance criteria.They also provide heuristicmechanisms to
avoid localminima.These algorithms operate on passes.
In each pass, a sequence of unmoved/unswapped ver-
tices with the highest gains are selected for move/swap,
one by one. At the end of a pass, the maximum pre-
fix subsequence of moves/swaps with the maximum
prefix sum that incurs the maximum decrease in the
cutsize is constructed, allowing the method to jump
over local minima. The permanent realization of the
moves/swaps in this maximum prefix subsequence is
efficiently achieved by rolling back the remainingmoves
at the end of the overall sequence. The overall refine-
ment process in a level terminates if the maximum
prefix sum of a pass is not positive.

PaToH includes original KL and FM implementa-
tions, hybrid versions, like one pass FM followed by
one pass KL, as well as improvements like multilevel-
gain concept of Krishnamurthy [] that adds a look-
ahead ability, or dynamic locking of Hoffman [], and
Dasdan and Aykanat [] that relaxes vertex moves
allowing a vertex to be moved multiple times in the
same pass. PaToH also provides heuristic trade-offs, like
early-termination in a pass of KL/FM algorithms, or
boundary KL/FM, which only considers vertices that are
in the boundary, to speed up the refinement.The default
refinement scheme is boundary FM+KL.

Related Entries
�Chaco
�Data Distribution

�Graph Algorithms
�Graph Partitioning
�Hypergraph Partitioning
�Linear Algebra, Numerical
�Preconditioners for Sparse Iterative Methods

Bibliographic Notes and Further
Reading
Latest PaToH binary distributions, including recently
developed MATLAB interface [], and related papers
can be found on the Web site listed in []. The “Hyper-
graph Partitioning” entry contains some use cases of
hypergraph partitioning.

Bibliography
. Alpert CJ, Kahng AB () Recent directions in netlist partition-

ing: a survey. VLSI J (–):–
. Aykanat C, Cambazoglu BB,Uçar B (May)Multi-level direct

k-way hypergraphy partitioning with multiple constraints and
fixed vertices. J Parallel Distrib Comput ():–

. AykanatC, PinarA,ÇatalyürekUV () Permuting sparse rect-
angular matrices into block-diagonal form. SIAM J Sci Comput
():–

. Bui TN, Jones C () A heuristic for reducing fill-in sparse
matrix factorization. In: Proceedings of the th SIAM conference
on parallel processing for scientific computing, Norfolk, Virginia,
pp –

. Catalyurek U, Boman E, Devine K, Bozdag D, Heaphy R, Riesen
L (Aug) A repartitioning hypergraphy model for dynamic
load balancing. J Parallel Distrib Comput ():–

. ÇatalyürekUV()Hypergraphmodels for sparsematrixparti-
tioningandreordering.Ph.D. thesis,BilkentUniversity,Computer
Engineering and Information Science, Nov . http://www.cs.
bilkent.edu.tr/tech-reports//ABSTRACTS..html.

. Çatalyürek UV, Aykanat C (Dec) A hypergraph model for
mappingrepeatedsparsematrixvectorproductcomputationsonto
multicomputers. In: Proceedings of international conference on
high performance computing

. Çatalyürek UV, Aykanat C () Hypergraph-partitioning based
decomposition for parallel sparse-matrix vector multiplication.
IEEE Trans Parallel Distrib Syst ():–

. Çatalyürek UV, Aykanat C () PaToH: amultilevel hypergraph
partitioning tool, version .. Bilkent University, Department of
ComputerEngineering,Ankara,Turkey.PaToH.http://bmi.
osu.edu/~umit/software.html, (accessed on November ,
)

. Çatalyürek UV, Aykanat C () A hypergraph-partitioning
approach for coarse-grain decomposition. In: ACM/EEE SC,
Denver, CO, November

. Çatalyürek UV, Aykanat C, Kayaaslan E () Hyper-
graph partitioning-based_ll-reducing ordering. Technical Report

http://dx.doi.org/10.1007/978-0-387-09766-4_310
http://dx.doi.org/10.1007/978-0-387-09766-4_40
http://dx.doi.org/10.1007/978-0-387-09766-4_102
http://dx.doi.org/10.1007/978-0-387-09766-4_92
http://dx.doi.org/10.1007/978-0-387-09766-4_1
http://dx.doi.org/10.1007/978-0-387-09766-4_126
http://dx.doi.org/10.1007/978-0-387-09766-4_247
http://bmi.osu.edu/~umit/software.html
http://bmi.osu.edu/~umit/software.html
http://www.cs.bilkent.edu.tr/tech-reports/1999/ABSTRACTS.1999.html
http://www.cs.bilkent.edu.tr/tech-reports/1999/ABSTRACTS.1999.html

PCI Express P

P

OSUBMI-TR--n and BU-CE-, The Ohio State Uni-
versity, Department of Biomedical Informatics and Bilkent
University, Computer Engineering Department, . submitted
for publication

. Çatalyürek UV, Aykanat C, Ucar B () On two-dimensional
sparse matrix partitioning: models, methods, and a recipe. SIAM
J Sci Comput ():–

. Cheng C-K, Wei Y-C () An improved two-way partitioning
algorithm with stable performance. IEEE Trans Comput Aided
Des ():–

. DasdanA,Aykanat C (February) Two novelmultiway circuit
partitioningalgorithmsusingrelaxedlocking. IEEETransComput
Aided Des ():–

. Fiduccia CM, Mattheyses RM () A linear-time heuristic
for improving network partitions. In: Proceedings of the th
ACM/IEEE design automation conference, pp –

. Hendrickson B, Leland R () A multilevel algorithm
for partitioning graphs. Technical reports, Sandia National
Laboratories

. Hoffmann A () Dynamic locking heuristic – a new graph
partitioning algorithm. In: Proceedings of IEEE international
symposium on circuits and systems, pp –

. Karypis G, Kumar V () A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J Sci Comput
():–

. Karypis G, Kumar V () Multilevel algorithms for multi-
constraint graphpartitioning.TechnicalReport -,University
of Minnesota, Department of Computer Science/Army HPC
Research Center, Minneapolis, MN , May

. Kernighan BW, Lin S (Feb) An efficient heuristic procedure
for partitioning graphs. Bell SystTech J ():–

. Krishnamurthy B (May) An improvedmin-cut algorithm for
partitioning VLSI networks. IEEE Trans Comput ():–

. LengauerT ()Combinatorial algorithms for integrated circuit
layout. Willey–Teubner, Chichester, UK

. Sanchis LA (Jan) Multiple-way network partitioning. IEEE
Trans Comput ():–

. Schloegel K, Karypis G, Kumar V () Parallel multilevel
algorithms for multi-constraint graph partitioning. In: Euro-Par,
pp –

. Schweikert DG, Kernighan BW () A proper model for the
partitioning of electrical circuits. In: Proceedings of the th
ACM/IEEE design automation conference, pp –

. Uçar B, Çatalyürek ÜV, Aykanat C () A matrix partitioning
interfacetoPaToHinMATLAB.ParallelComput(–):–

. WeiY-C,ChengC-K(July)Ratiocutpartitioningforhierarchical
designs. IEEE Trans Comput Aided Des ():–

Partitioning Tool for Hypergraphs
(PaToH)

�PaToH (Partitioning Tool for Hypergraphs)

PC Clusters

�Clusters

PCI Express

Jasmin Ajanovic
Intel Corporation, Portland, OR, USA

Synonyms
GIO; PCI-Express; PCIe; PCI-E

Definition
PCI (Peripheral Component Interconnect) Express is a
highly scalable interconnect technology that is the most
widely adopted IO interface standard used in the com-
puter and communication industry []. By providing
scalable speed/width, extendable protocol capabilities,
a common configuration/software model, and various
mechanical form-factors, PCI Express supports a broad
range of applications. It allows implementation of flexi-
ble connectivity between a processor/memory complex
and an IO subsystems, including peripheral controllers,
such as graphics, networking, storage, etc. PCI Express
technology development is managed by PCI-SIG (PCI
Special Interest Group), an industry association com-
prising of over member companies.

Discussion
Introduction – A Brief History of PCIe
PCI Express has his roots in Peripheral Component
Interconnect (PCI), an open standard specification that
was developed by the computing industry in . PCI
was a replacement for the ISA bus which was a main-
stream PC architecture IO expansion standard at the
time. Although there were several alternative solutions,
such as MicroChannel, EISA, and VL-bus, that were
aiming to replace/supplement ISA, none of them fully
addressed the needs of an evolving PC industry.ThePCI
specification covered both the hardware and software
interfaces between PC’s CPU/memory complex and
add-in cards, such as graphics, network, and disk con-
trollers. One of the most important aspects of PCI was
support for the so called “plug-and-play” mechanisms

http://dx.doi.org/10.1007/978-0-387-09766-4_93
http://dx.doi.org/10.1007/978-0-387-09766-4_18
http://dx.doi.org/10.1007/978-0-387-09766-4_2354
http://dx.doi.org/10.1007/978-0-387-09766-4_2357
http://dx.doi.org/10.1007/978-0-387-09766-4_2355
http://dx.doi.org/10.1007/978-0-387-09766-4_2356

 P PCI Express

which allowed operating system software to detect
installed hardware components, including both add-in
cards and motherboard-down devices, configure sys-
tem resources required for their operations, includ-
ing memory address ranges and interrupts, and install
appropriate software device drivers. From a hardware
perspective, PCI was initially defined as a -bit multi-
plexed address/data bus that was shared amongmultiple
devices attached to it, operating at Volt and at speed
of MHz. Over time, faster variants of PCI evolved
to support ever increasing performance requirements
of CPUs which rose operational frequencies from
MHz in to over GHz by . These variants
include:

● MHz - and -bit PCI operating at V or V.
● AGP (Accelerated Graphic Port), a graphics-

optimized interface operating at a common clock
speed of MHz and carrying data transfers at x,
x, and x of that nominal speed resulting in maxi-
mum bandwidth of ., , and GB/s over the -bit
interface.

● PCI-X, a server-optimized solution operating at
clock speeds of , , and MHz and resulting
in maximum bandwidth of ., ., and GB/s over
the -bit interface.

Towards the end of the twentieth century, neither of
these solutions proved to be an adequate answer to
emerging applications that required higher scalability
(performance and protocol capabilities) and amore effi-
cient interface (pins, bandwidth, and power). In ,
Intel Corporation, together with several other industry
leaders, spearheaded the development of the next gen-
eration IO architecture. Initially called GIO [], this
architecture was later endorsed by the PCI-SIG as PCI
Express (PCIe).

Appearing in systems starting in , PCI Express
was rapidly adopted by the PC/PCI ecosystem replacing
entirely AGP and PCI-X, and in some instances PCI,
within or product generations. The key to the PCI
Express success was in leveraging of PCI base architec-
ture by supporting full backwards compatibility at the
software level while providing a more optimized inter-
connect solution. The PCI Express physical interface
is based on width- and speed-scalable, point-to-point,

differential serial signaling technology operating ini-
tially at . GT/s (Giga Transfers/second). As fast as
the new PCI Express standard was, processor architec-
tures have continued to accelerate to meet the demands
of emerging applications, and PCI Express needed to
keep up. For an example, increasing bandwidth was
needed to improve the performance of data-intensive
graphics workloads as well as server-class storage and
network solutions. PCI Express continued to improve
by scaling-up speed as well adding architectural/pro-
tocol extensions. Figure shows the evolution of PCI
Express technology.

Technology Overview

Basic Elements and Concepts
Link and Lane

PCI Express is a point-to-point interconnect technol-
ogy where Link represents a fundamental element of
PCIe -based interconnect fabric. A basic Link is a dual-
simplex communications channel between two compo-
nents that represents a single Lane. Lane consists of two
low-voltage, differentially driven signal pairs: a Trans-
mit pair and a Receive pair as shown in Fig. . To aggre-
gate the bandwidth of a PCIe Link, multiple Lanes can
be grouped together to provide a “wider” Link. In PCIe
terminology, Link width is expressed using xN (“by N”)
denotation, where N is the number of Lanes that form
the Link. PCIe architecture specification defines oper-
ations for x, x, x, x, x, x, and x Link widths.
Companion form-factor specifications (add-in card and
connector) define operations for a subset of operational
widths (x, x, x, and x).

Signaling, Speed, and Bandwidth

To carry communication over the Link, PCIe uses Low-
Voltage Differential Signaling (LVDS) with embedded
clocking. Embedded clocking is a mechanism where
clock information is embedded within the transmitted
data by providing a guaranteed number of transitions
between “”s and “”s that are required to correctly
extract the clock on the receiver side. Revision .
(Gen) and Revision . (Gen) of PCIe Specification
use standard b/b encoding scheme [] which is a
commonmechanism for a number of industry standard
interfaces based on serial signaling technology (e.g.,
Infiniband, Fibre Channel, SATA, etc.). This scheme

PCI Express P

P

20

30

40

50

PCIe 1.0
Gen1 @ 2.5GT/s
8b/10b encoding

PCIe 2.0
Gen2 @ 5GT/s

8b/10b encoding

IOV Extensions:
• IO Virtualization
• Device Sharing

1999 2001 2003 2005 2007 2011 20132009

Rev 2.1 Protocol Extensions:
• Atomic Ops, Caching Hints
• Improved PM, Multicast
• Enhanced SW Model

60

G
B

/s
ec

 *

PCI/PCI-X

*Bandwidth shown for x16 PCIe

10

PCIe 3.0
Gen3 @ 8GT/s

130/128b encoding

PCI Express. Fig. PCI express technology roadmap

comes with an overhead of % because it uses bits
to carry bits of actual information. Since it is relatively
simple and very robust, b/b was used by PCIe as
a reasonable tradeoff between efficiency and complex-
ity allowing PCIe Gen and Gen to hit target effective
bandwidths while operating at moderately high speeds
of . GT/s and GT/s respectively. However, contin-
uing with x increase of operational speed proved to
be difficult froma technology enabling/adoptability and
ecosystem perspective. For PCIe . (Gen), the PCI-
SIG defined a new more efficient b/b encoding
scheme, which with ∼% overhead effectively doubles
the bandwidth of GT/s Gen while operating only
at GT/s instead of GT/s (Note that % overhead
of b/b brings effective data transfers of Gen from
 GT/s down to GT/s.) The following Table shows
raw and effective speeds of all three generations of PCIe,
including a total bandwidth based on an example of x
PCIe link.

To support backwards compatibility at the sys-
tem and component/add-in card level, PCI Express
Specification requires newer generation devices that
operate at higher speeds to support operations at

lower speed. Examples: Gen PCIe device operating
at nominal GT/s must support operations at .
GT/s, Gen device must support operations at both
GT/s and . GT/s.

Link Configuration
PCI Express architecture allows devices that support
different Link widths and speeds to be configured for
proper operation. The negotiation of width and speed
is done as a part of Link initialization process where
two devices exchange information about their capa-
bilities using a lowest common denominator method
to determine the operational width and speed. For an
example, if Device A that supports x width at . GT/s
is connected to Device B that supports x width at .
GT/s, the Link that connects them will be initialized for
x width operating at . GT/s. Note that PCIe allows
only configurations of the devices with symmmetric
Link width. Link width/speed connfiguration occurs
at the Link hardware level without any involvement of
software.

 P PCI Express

Ref. clock Ref. clockD
ev

ic
e

A

D
ev

ic
e

B

VCC

VSS

+
–

+
–

Packet

Packet

Ref. clock Ref. clock

D
ev

ic
e

A

D
ev

ic
e

B

VCC

VSS

+
–
+

+

+

+

+
–

–

–

–

–

+
–
+
–

Lane Link

�4 PCIe Link

�1 PCIe Link

PCI Express. Fig. PCI express link examples - x and x

PCI Express. Table PCI express speeds and bandwidths

Bandwidth per lane Total bandwidth∗

PCIe Generation Raw bit rate Effective bit rate Per direction For x link

PCIe .x . GT/s Gb/s ∼ MB/s ∼ GB/s
PCIe . . GT/s Gb/s ∼ MB/s ∼ GB/s
PCIe . . GT/s Gb/s ∼ GB/s ∼ GB/s
∗Total bandwidth represents the aggregate interconnect bandwidth in both directions

Once Link is initialized and configured for proper
width/speed operations, it may be re-configured dur-
ing the run-time as a result of a RAS (Reliability, Ser-
viceability, Availability) event due to, for example, data
integrity problems. Speed and/or width can be reduced
in an attempt to correct the problem and keep the
system running with reduced performance/functional-
ity. Note that the PCIe Specification defines a mecha-
nism where software, through aceess to configuration/-
control registers, can overide the established hardware
configuration of the Link and force Link to operate at
lower speed than nominally capable.

Packet-Based Protocol

Instead of using dedicated signals for address, control,
and data (such as its predecessor PCI), PCI Express uses
packets to communicate information between com-
ponents connected to the PCIe fabric. Packets con-
tain all of the information related to transactions such
as: source and target identification/address, type (e.g.,
Memory Read, Memory Write, Message), attributes
(e.g., Isochronous, No Snoop), and data. In addition
to this information, Link hardware logic inserts addi-
tional information required for correct packet transfer
across the Link such as framing, sequencing and packet

PCI Express P

P

Frame

CRC FrameFrame
D

ev
ic

e
A

D
ev

ic
e

B

Sequence
number

Request
packet

CRC
Completion

packet
Sequence

number
Frame

PCI Express. Fig. Packet-based protocol

integrity protection (CRC). Packets can be differenti-
ated as Request and Response packets. To complete the
entire transaction (e.g.,Memory Read), a single Request
packet may cause one or multiple Response packets.
Note that some request transaction types (e.g.,Message)
do not require responses (Fig.).

PCI Express Layering Overview
The PCIe interface stack is defined using a layered
approach with PCIe Transaction, Data Link, and Phys-
ical Layers being formally defined in PCIe Base Specifi-
cation and the rest of the stack related to Software and
Mechanical being covered in companion documents.
The following simplified Fig. shows PCIe interface
stack and highlights major aspects of each layer.

Transaction Layer

The Transaction Layer is responsible for assembly (for
transmit) and disassembly (upon receive) of Transac-
tion Layer Packets (TLPs). PCIe supports load-store
as well as message-based transactions, where TLPs
are used to communicate transactions such as reads,
writes, messages, and events using different type of
semantics (Memory, I/O, Configuration, and Message),
address types/formats (-bit/-bit, device ID), and
attributes (No Snoop, Relaxed Ordering, and ID-Based
Ordering).

The Transaction Layer manages flow of pack-
ets between transmitting and receiving devices using
credit-based flow control scheme.

Instead of using physical pins/wires to support side-
band signals, such as interrupts, power-management

Software

Data link

Mechanical

Transaction

Physical

� PCI compatible configuration and
device driver software model

� Packet-based split-transaction
protocol

� Reliable data transport services

� Electrical interface and signaling
mechanisms

� Market segment specific form factors

PCI Express. Fig. PCI express interface stack

requests, etc., PCIe uses Messages as “virtual wires” that
carry information in-band. This improves overall effi-
ciency of the interface by eliminating large number of
pins/wires.

Data Link Layer

This layer provides Linkmanagement and data integrity,
including error detection and error correction. On the
transmit side the Data Link Layer calculates and applies
a CRC (Cyclic Redundancy Check) data protection
code on the TLP submitted by Transaction Layer. It also
adds a TLP sequence number, and passes entire packet
to Physical Layer for transmission across the Link. On
the receive side the Data Link Layer checks the integrity
of received TLPs before passing them to the Transac-
tion Layer for further processing. In the case if an error
is detected, this Layer requests retransmission of TLPs
until information is correctly received, or the Link is
determined to have failed.

 P PCI Express

Physical Layer

The Physical Layer converts information received from
the Data Link Layer into an appropriate serialized
format and transmits it across the Link. This Layer
consists of Electrical and Logical functional blocks.
Electrical block includes all circuitry required for inter-
face operation: output and input buffers, parallel-to-
serial and serial-to-parallel conversion, PLL(s), and
transmitter/receiver signal conditioning circuitry. Log-
ical block supports functions required for interface ini-
tialization and maintenance, including configuration of
Link speed and width.

Packet Flow Through the Layers

The TLPs are formed in the Transaction Layer to carry
the information from the transmitting component to
the receiving component. As the transmitted packets
flow through the other layers, they are extended with
additional information necessary to carry out transfers.
At the receiving side the reverse process occurs and
packets get transformed from their Physical Layer rep-
resentation to the Data Link Layer representation and
finally to the form that can be processed by the Trans-
action Layer of the receiving device. Figure shows the
conceptual flowof transaction -level packet information
through the layers.

Note that for the purpose of Link management, a
simpler form of packet communication is supported
between two Data Link Layers that are connected to the
same Link. These packets are referred to as Data Link
Layer Packets (DLLP).

PCI Express Platform Examples
The PCIe architecture supports a variety of platform
configurations by allowing the mixing and matching of
PCIe link speeds and widths to support different appli-
cations. Figure shows examples of PCIe -based client
and server computer platforms.

To support high-performance graphics applications,
client/workstation computer platforms typically utilize
x PCIe. Lower bandwidth functions such as network
adapters typically use x PCIe. Various additional func-
tions (e.g., enhanced audio) can be provided using add-
in card slots. Note that an IO Bridge shown on a client
platform in Fig. also provides support for some legacy
functions, such as old V/ MHz PCI bus that is
required until the technology transition completes.

Server platforms typically use x and x PCIe
ports that are required by the high-bandwidth appli-
cation such as high-performance network (GigE)
and storage (SAS) adapters, Infiniband, Fibre Channel,
etc. An important building block for servers is PCIe
Switch which is architecturally supported by the PCIe
Specification. PCIe Switch is typically used for expan-
sion of IO subsystem by providing additional PCIe
interface ports.

Architecture Features
PCI Express is a scalable architecture that provides a
highly flexible and expandable set of capabilities. This
section highlights essential features of PCIe.

Transaction layer

Header
12/16 byte

Data link layer

LCRC
4 byte

Sequence#
2 byte

Physical layer

Frame
1 byte

Frame
1 byte

ECRC
4 byte

Data
0–4 Kbyte

PCI Express. Fig. Packet formation

PCI Express P

P

USB

Graphics Memory
bridge

HDD

PCI

CPU

SATA

1Gb
ethernet

Wireless
NIC

PCI express
expansion

IO
Bridge

Add ins

Add ins

PCIe �1

PCIe
�16

Memory

Client platform

PCIe �1

PCIe �1

PCIe �1

PCIe �8/�16

RAID
storage

SAS
RAID Infiniband

IO Hub

CPU CPU Memory

PCIe
�4/�8

PCIe �8

PCIe �8

10Gb
ethernet

Memory

Server platform

PCIe
switch

PCIe �4 expansion slots

PCI Express. Fig. Examples of PCIe based platforms

Scalable Protocol
PCIe uses a fully packetized split-transaction protocol
as described under the Technology Overview section.
In addition to load-store semantics, it provides messag-
ing support that is used by the Virtual Wire mecha-
nism to eliminate side-band signals by converting them
into in-bandmessages. PCIe uses a credit-based scheme
to control the flow of packets within the PCIe fabric.
This scheme applies per Link, and it is used to prevent
buffer overflow. To minimize the dependency between
different traffic flows in a system, PCI Express pro-
videsVirtual Channel (VC)mechanism and transaction
ordering relaxations. These mechanisms mitigate the
overhead of a strict producer-consumer orderingmodel
(that may create head-of-line blocking conditions) and
allow support for differentiated Quality of Service at the
platform level.

For future scalability of supported packet formats,
PCIe defines Transaction Layer Packet Prefix, a mecha-
nism for extending TLP headers.

PCI Compatible Software Model
PCIe leverages standard mechanisms defined in the PCI
Plug-and-Play specification for device initialization,
enumeration, and configuration. This allows legacy

software operating systems to boot without modifica-
tions on a PCIe -based system. It also preserves com-
patibility with device driver software model, enabling
existing API, and application software to execute
unchanged. To remove platform overhead and limita-
tions associated with legacy PCI software configuration,
PCIe provides Enhanced Configuration mechanism.
This mechanism needs to be supported by newer
operating systems to fully take the advantage of
PCIe advanced capabilities (e.g., Advanced Error
Logging/Reporting, Virtual ChannelMechanism). Enha
nced Configuration also allows new capabilities to be
added in the future.

Scalable Performance
Primary factor in PCIe performance scaling as mea-
sured by the interface bandwidth is function of interface
width and operational frequency and can be expressed
using the following formula:

Total Link Bandwidth [GB/s]
= Link_Width[Number of lanes]
× Effective_Signaling_Rate[Gb/s]
× [directions]/[bits]

 P PCI Express

GB/s = Giga Byte per second, Gb/s = Giga bit per sec-
ond, GT/s = Giga Transfer per second
for Gen and Gen: Effective_Signaling_Rate[Gb/s] =
Raw_ Signaling_Rate[GT/s] × .
for Gen: Effective_Signaling_Rate [Gb/s] ≈ Raw_
Signaling_Rate [GT/s]

Secondary factor of PCIe performance is related to the
fact that PCIe is point-to-point interconnect with two
unidirectional signaling paths which are contention-
free i.e., do not require arbitration. This means that
in systems that contain multiple PCIe Links, traffic
on each Link can occur independently and simulta-
neously which improves total system throughput. An
additional contributor to performance is related to
PCIe -pin/bandwidth efficiency. By improving this
aspect, PCIe allows a tighter IO integration within the
platform, e.g., direct PCIe attach to high-integration
CPUs. This can result in lower IO system latencies in
an optimized system.

Note that the above formula shows only theoret-
ical bandwidths, but that actual performance as seen
at the application level depends on number of factors.
These factors include PCIe -interface and system imple-
mentation aspects such as: supported data payload size,
interface-level data buffering/queuing and effectiveness
of flow-control, arbitration mechanisms throughout the
platform (e.g., competing for host memory access),
power -managementmechanisms and policies, software
device driver and API overheads, etc.

Advanced Power Management
PCIe defines Link level power -management scheme
including the active-state power -management (ASPM)
protocol. The ASPM manages power -state transitions
on the Link transparently to run-time software by
detecting idle conditions on the Link, i.e., when no
actual data is being communicated over the Link. Note
that in signaling schemes that use embedded clocking,
data needs to be transmitted continuously to main-
tain synchronization between transmitter and receiver.
To reduce the power consumption during “idle,” PCIe
defines low-power link states. These states save power
but transitions into and out of them require recov-
ery time to resynchronize the transmitter and receiver
which potentially may impact the Link latency and
affect the overall system performance. In addition to

Link level, power-management PCIe defines related sys-
tem level power-management mechanisms such as:

● Latency Tolerance Reporting – reduces platform
power based on PCIe device service requirements.

● Opportunistic Buffer Flush and Fill – aligns PCIe
-device activity with platform power-management
events to further reduce platform power.

● Dynamic Power Allocation–dynamic control of
power/thermal budget per PCIe device.

Reliability, Availabilty, Serviceability
(RAS) Support
RAS capabilities are defined to: ensure data integrity,
provide ability to identify/manage errors, and allow
installation/removal of components in the running sys-
tem without requiring operating system shutdown.

● Data Integrity – As a basic/required mechanism,
PCIe defines a data integrity scheme where -bit
CRC (Cyclic Redundancy Check) is used to pro-
tect packets transmitted over the single Link. For
platforms that use more complex topologies (i.e.,
with PCIe Switches) and require end-to-end data
integrity, PCIe defines an optional end-to-end -bit
CRC.ThisCRCcode is used in addition to Link local
-bit CRC to protect the data in high -reliability
server applications.

● Hot Plug and Hot Swap – PCIe defines native
support for hot plugging or hot swapping of IO
cards/modules. Solutions based on PCIe hot plug/
swap address requirements of both server and
portable computer platforms and support industry
standard software stacks for platform management
and configuration.

● Advanced Error Reporting/Handling – PCIe defines
support for error logging/reporting to improve sys-
tem -fault isolation and enable recovery solutions.

Differentiated Quality of Service (Qos) Support
Using Virtual Channel (VC) mechanism as a foun-
dation, PCIe supports eight levels of QoS differ-
entiated traffic including isochronous traffic type.
PCIe specification defines VC-system configuration
and programmable-VC arbitration mechanism neces-
sary to support an end-to-end solution designed for
applications, such as isochronous that require real-time
delivery of voice and video related data.

PCI Express P

P

IO Virtualization and Device Sharing Support
PCIe defines an IO interface-level mechanism for sup-
port of platform virtualization. In virtualized platforms,
a single instance of platform hardware is mapped in to a
multiple independent Virtual Machines, each running
their own operating system and application software
stacks. In addition to PCI Express Base Specification,
the PCI-SIG maintains a set of specifications that cover
PCIe support for:

● Address Translation Services: allow PCIe devices to
obtain copies of translated system addresses to mit-
igate address translation latencies in IO Virtualized
platform.

● Single-Root IO Virtualization and Device Sharing:
improves system performance scaling by allowing
a single PCIe device to be presented to the soft-
ware as multiple independent/pseudo-independent
hardware devices.

● Multi-Root IO Virtualization: allows multiple inde-
pendent PCIe-based platforms (such as in blade-
server systems) to overlap/share system resources.

Note that IO Virtualization capabilities require new
software, both at the PCIe fabric configuration/manage-
ment level as well as at the system level.

Support for Heterogeneous Processing and
Application Acceleration
There is a set of capabilities that are provided to sup-
port high-performance applications which require effi-
cient co-processing and data sharing, such as GP-GPU,
computational accelerators, and network/storage accel-
erators. These include:

● TransactionLayer Packet ProcessingHints –Request
hints fromPCIe device to enable optimized process-
ing within host memory/cache hierarchy.

● Atomic Read-Modify-Write Transactions – Reduce
synchronization overhead for shared data structures.

● Address Based Multicast – Allows significant gains
in efficiency compared to multiple unicast trans-
actions by carrying transaction between the single
source and multiple destinations.

Form-Factors
In addition to chip-chip connectivity usage, PCI
Express supports a variety of system board and add-in

card form-factors. To address diversity of applica-
tions across many segments (desktop and mobile PCs,
servers, embedded/communications, etc.), the follow-
ing add-in form-factors are defined:

● PCIe Card Electromechanical (CEM) used for desk-
tops, workstations, and servers.

● PCIe Mini Card used for portable computers.
● PCIe Module also known as Server IO Module

(SIOM) optimized for server/communication sys-
tems.

● ExpressCard used for portable computers and small
form-factor desktops.

● PCIe External Cabling Spec used for embedded/
communication.

Figure shows a sample of form-factors including the
most common PCIe CEM add-in card specified by the
PCI-SIG. This card is defined to fit into the traditional
desktop PC and server systems and comeswith different
connector widths (x, x, x, and x). It supports power
usage from baseline W up to W in x variant
used for high-end graphics and similar applications.

In addition to the PCI-SIG, there are several other
industry associations, such as PCMCIA and PICMG
that have been involved in development of PCI Express
based form-factors.

PCI Express Today
Products based on first generation (. GT/s) and
second generation (GT/s) of PCIe technologies are
deployed broadly across computer and communica-
tion/embedded industries. When you consider this in
light of the PCI-SIG’s members, many of them very
active, the PCIe product development and users com-
munity represents a large ecosystem. According to a
report from an industry analyst organization, In-Stat
[], the size of market of components that include PCIe
interface will exceed million units/year by .

PCI-SIG is marching towards the milestone of
releasing a third generation of PCI Express spec, i.e.,
PCIe Rev . in second half of . In addition to
. and GT/s, PCIe . supports GT/s operational
speed by using a new, more efficient signaling encoding
scheme which will allow doubling of bandwidth com-
pared to the prior generation. In addition, the new gen-
eration of PCIe products based on Rev . will support
enhanced power management as well as features for

 P PCI Express

PCIe add-in card Connectors
�1

�4

�8

�16

Traditional desktop/server form-factor add-in card

Server IO moduleMobile expresscard

PCI Express. Fig. Example of PCIe form-factors

application performance acceleration through: atomic
read-modify-write, data reuse/caching hints, multicast
operations, etc.

Future Directions
There are two very significant trends within the main-
stream computer and communication industry that will
influence the evolution of PCI Express technology:

● Increasing level of integrated functionality resulting
in very high-integration single die devices, known as
SoC (System on a Chip), or high-integration multi-
die components/modules, known as SiP (System in
a Package).

● Evolution of Internet with ever increasing need for
improved computational, storage, and communica-
tion performance of the main building blocks that
provide the service.

First trend is mainly driven by the applications that dic-
tate small form-factors, low-power, and low-cost. They
range from smart-phones and entertainment devices
to the components used in embedded control applica-
tions such as home appliances, cars, printers, etc. For
some of these products, levels of integration will result
in removal of external interfaces such as PCIe and for

the others, external interfaces will be still needed, but
with a requirement for significantly improved power
efficiency. This may dictate evolution of PCIe technol-
ogy in two directions:

● On-die interconnects that are architecturally equiv-
alent to PCIe and allow integration of PCIe devices
in the form of IP (Intellectual Property) building
blocks.

● Lower power and lower speed variants of
PCIe.

Note that significant value of PCIe ecosystem comes
from the ability to support standard operating sys-
tem software, device drivers, and applications. On-die
interconnects that are an architectural equivalent (not
necessarily physical/electrical equivalent) of PCIe, will
enable integration of hardware functionality without
the requirement to change the software stack. This
may result in huge R&D savings and faster time-to-
market for SoC/SiP designs that use PCIe IP building
blocks.

Second trend, evolution and expansion of Inter-
net, will translate into a requirement to the computer
industry to provide new generations of communication

PCI Express P

P

servers and data centers that are capable of handling
increasing and diverse workloads. This will drive a
need for hardware and software optimizations for vir-
tualization and cloud computing. Evolution of tradi-
tional rack-servers and blade-servers may open room
for a new interconnect backbone/fabric based on PCIe
technology. This will drive the following enhancements
to the PCIe technology:

● Enhanced routing and configuration to support
more elaborate topologies (besides PCI/PCIe hier-
archical tree) to allow system scalability through
aggregation of large number of discrete devices as
well as high-integration devices (that consist ofmul-
tiple logical devices).

● Capability for tunneling and mapping other pro-
tocols (e.g., for storage, networking, system man-
agement, etc.) which will allow consolidation of
interconnect technologies within the rack/blade and
perhaps even a data center.

● Doubling/multiplying bandwidth needed to sup-
port next generation of Internet, HPC (High-
Performance Computing), and cloud computing.
This will eventually result in emergence of PCIe
Optical connectivity starting with discrete solutions
at speeds ranging from GT/s to GT/s and evolv-
ing to GT/s silicon-photonics-based integrated
solution.

Evolution of PCIExpresswill likely track the future path
of the computer industry.New IO technologieswill con-
tinue to emerge in the future, using some elements of
PCI Express as its foundation.

Related Entries
�Bandwidth-Latency Models (BSP, LoGP)
�Benchmarks
�Buses and Crossbars
�Collective Communication
�Computer Graphics
�Data Centers
�Deadlocks
�Ethernet
�Flow Control
�InfiniBand
�Interconnection Networks
�Network Interfaces

�Routing (Including Deadlock Avoidance)
�Switch Architecture
�Switching Techniques
�Synchronization

Bibliographic Notes and Further
Reading
As mentioned in the introduction, development of PCI
Express technology as an industry standard is being
coordinated through PCI Special Interest Group (PCI-
SIG). This organization maintains the website with
officially published specification documents and other
collaterals that are part of PCI Express standard. For
detailed information go to:

● PCI-SIG: www.pcisig.com.

Note that, although some documents are available to
a general audience, membership with the PCI-SIG is
required for non-restricted access to all documents and
specifications managed by the SIG.

In addition to PCI-SIG, there are several other
industry organizations, such as:

● PCMCIA: www.pcmcia.org
● PICMG: www.picmg.org

that manage development of complementary industry
standards based on PCIe Base Specification.These orga-
nizations enhance PCI Express technology by defining
additional form-factors and design collaterals that allow
even broader adoption of PCI Express component-level
hardware products as well as companion software.

Among the component and platform vendors that
provide significant additional support for PCI Express
technology is Intel Corporation with: Intel� Developer
Network for PCI Express∗ Architecture. This forum
provides members with technical data, marketing sup-
port and industry connections needed to accelerate the
innovation and marketing of PCI Express based solu-
tions. For more details see:

● PCIeDevNet: http://www.intel.com/technology/pci
express/devnet/

There are several technical books that provide overviews
of PCIExpress technology aswell as detailed implemen-
tation guidelines. See references [–].

http://dx.doi.org/10.1007/978-0-387-09766-4_154
http://dx.doi.org/10.1007/978-0-387-09766-4_476
http://dx.doi.org/10.1007/978-0-387-09766-4_28
http://dx.doi.org/10.1007/978-0-387-09766-4_385
http://dx.doi.org/10.1007/978-0-387-09766-4_391
http://dx.doi.org/10.1007/978-0-387-09766-4_282
http://dx.doi.org/10.1007/978-0-387-09766-4_481
http://dx.doi.org/10.1007/978-0-387-09766-4_316
http://dx.doi.org/10.1007/978-0-387-09766-4_21
http://dx.doi.org/10.1007/978-0-387-09766-4_484
http://dx.doi.org/10.1007/978-0-387-09766-4_319
http://dx.doi.org/10.1007/978-0-387-09766-4_314
http://dx.doi.org/10.1007/978-0-387-09766-4_299
http://dx.doi.org/10.1007/978-0-387-09766-4_296
http://dx.doi.org/10.1007/978-0-387-09766-4_252
http://dx.doi.org/10.1007/978-0-387-09766-4_189
http://www.intel.com/technology/pciexpress/devnet/
http://www.intel.com/technology/pciexpress/devnet/
http://www.pcisig.com
http://www.pcmcia.org
http://www.picmg.org

 P PCIe

Bibliography
. Intel white paper. Creating a Third Generation I/O Inter-

connect. www.intel.com/technology/pciexpress/devnet/docs/
WhatisPCIExpress.pdf

. In-Stat – In Depth Analysis (www.in-stat.com): I/O, I/O, Chang-
ing the Status Quo: Chip-to-Chip Interconnects, February ,
, http://www.instat.com/newmk.asp?ID=

. Widmer AX, Franaszek PA () A DC-balanced, partitioned-
block B/B transmission code. IBM J Res Dev ():–

. Budruk R, Anderson D, Shanley T () PCI express system
architecture. Mindshare, Colorado

. Wilen A, Schade JP, Thornburg R () Introduction to PCI
express: a hardware and software developer’s guide IntelHillsboro

. Solari Ed, Congdon B, Clark D () The complete PCI express
reference: design implications for hardware and software devel-
opers (Engineer to Engineer series). Intel, Hillsboro

. OpenSystems Media – Articles: PCI Express. http://
www.opensystems-publishing.com/articles/search/?topic=PCI+
Express

. Compact PCI Systems. http://www.compactpci-systems.com
. DSP-FPGA.com – Articles, Videos and White Papers: PCI

Express. http://www.dsp-fpga.com/articles/search/index.php?
mag=&max=&op=ew&q=pcie&skip=

. Embedded Systems. www.embedded.com
. PCI Express Architecture Frequently Asked Questions, PCI-SIG.

http://www.pcisig.com/news_room/faqs/faq_express/
. PCI Express External Cabling . Specification. http://www.

pcisig.com/specifications/pciexpress/pcie_cabling./
. PCI-SIG Announces PCI Express . Bit Rate For Products In

 And Beyond. Aug . http://www.pcisig.com/news_
room/__/

. PHY Interface for the PCI Express Architecture, version
. (PDF). http://download.intel.com/technology/pciexpress/
devnet/docs/pipe_.pdf

. PCI Express . Frequently Asked Questions, PCI-SIG. http://
www.pcisig.com/news_room/faqs/pcie._faq/

PCIe

�PCI Express

PCI-E

�PCI Express

PCI-Express

�PCI Express

Peer-to-Peer

Stefan Schmid, Roger Wattenhofer
Telekom Laboratories/TU Berlin, Berlin, Germany
ETH Zürich, Zurich, Switzerland

Synonyms
Distributed hash table (DHT); Overlay network;
Decentralization; Open distributed systems; Consistent
hashing

Definition
The term peer-to-peer (pp) is ambiguous, and is used
in a variety of different contexts, such as:

● In popular media coverage, pp is often synony-
mous to software or protocols that allow users to
“share” files (music, software, books, movies, etc.).
pp file sharing is very popular and a large fraction
of the total Internet traffic is due to pp.

● In academia, the term pp is used mostly in two
ways. A narrow view essentially defines pp as
the “theory behind file-sharing protocols.” In other
words, how do Internet hosts need to be organized
in order to deliver a search engine to find (share)
content (files) efficiently? A popular term is “dis-
tributed hash table” (DHT), a distributed data struc-
ture that implements such a content search engine.
A DHT should support at least a search (for a
key) and an insert(key, object) operation. A DHT
has many applications beyond file sharing, e.g., the
Internet domain name system (DNS).

● A broader view generalizes pp beyond file shar-
ing: Indeed, there is a growing number of applica-
tions operating outside the juridical gray area, e.g.,
pp Internet telephony à la Skype, pp mass player
games, pp live audio and video streaming as in
PPLive, StreamForge or Zattoo, or pp social storage
and cloud computing systems such asWuala. Trying
to account for the new applications beyond file shar-
ing, onemight define pp as a large-scale distributed
system that operates without a central server bottle-
neck. However, with this definition almost “every-
thing decentralized” is pp!

● From a different viewpoint, the term pp may also
be synonymous for privacy protection, as various

http://dx.doi.org/10.1007/978-0-387-09766-4_309
http://dx.doi.org/10.1007/978-0-387-09766-4_309
http://dx.doi.org/10.1007/978-0-387-09766-4_309
http://dx.doi.org/10.1007/978-0-387-09766-4_2320
http://dx.doi.org/10.1007/978-0-387-09766-4_2322
http://dx.doi.org/10.1007/978-0-387-09766-4_2319
http://dx.doi.org/10.1007/978-0-387-09766-4_2321
http://dx.doi.org/10.1007/978-0-387-09766-4_2318
http://dx.doi.org/10.1007/978-0-387-09766-4_2318
http://www.intel.com/technology/pciexpress/devnet/docs/WhatisPCIExpress.pdf
http://www.intel.com/technology/pciexpress/devnet/docs/WhatisPCIExpress.pdf
http://www.instat.com/newmk.asp?ID=1909
http://www.opensystems-publishing.com/articles/search/?topic=PCI+Express
http://www.opensystems-publishing.com/articles/search/?topic=PCI+Express
http://www.opensystems-publishing.com/articles/search/?topic=PCI+Express
http://www.compactpci-systems.com
http://www.dsp-fpga.com/articles/search/index.php?mag=&max=10&op=ew&q=pcie&skip=10
http://www.dsp-fpga.com/articles/search/index.php?mag=&max=10&op=ew&q=pcie&skip=10
http://www.pcisig.com/news_room/faqs/faq_express/
http://www.pcisig.com/specifications/pciexpress/pcie_cabling1.0/
http://www.pcisig.com/specifications/pciexpress/pcie_cabling1.0/
http://www.pcisig.com/news_room/08_08_07/
http://www.pcisig.com/news_room/08_08_07/
http://download.intel.com/technology/pciexpress/devnet/docs/pipe2_00.pdf
http://download.intel.com/technology/pciexpress/devnet/docs/pipe2_00.pdf
http://www.pcisig.com/news_room/faqs/pcie3.0_faq/
http://www.pcisig.com/news_room/faqs/pcie3.0_faq/
http://www.in-stat.com
http://www.embedded.com

Peer-to-Peer P

P

pp systems such as Freenet allow publishers of
information to remain anonymous and uncensored.

In other words, there is no single well-fitting defini-
tion of pp, as some definitions in use today are even
contradictory. In the following, an academic viewpoint
is assumed (second and third definition above).

Discussion

The Paradigm
At the heart of pp computing lies the idea that each
network participant serves both as a producer (“server”)
and consumer (“client”) of services. Depending on the
application, the shared resources can be data (files),
CPU power, disk storage, or network bandwidth. Often
pp systems have an open clientele, and do not rely on
the availability of specific individual machines; rather
they candeal with dynamic resources and do not exhibit
single points of failure or bottlenecks.

Compared to centralized solutions, the pp paradigm
features a better scalability because the amount of
resources grows with the network size, availability
(avoiding a single point of failure), reliability, fair-
ness, cooperation incentives, privacy, and security –
just about everything researchers expect from a future
Internet architecture. As such, it is not surprising that
new “clean slate” Internet architecture proposals often
revolve around pp concepts.

Onemight naively assume that for instance scalabil-
ity is not an issue in today’s Internet, as even most pop-
ular web pages are generally highly available. However,
this is not necessarily due to our well-designed Internet
architecture, but rather due to the help of so-called over-
lay networks: The Google Web site for instance man-
ages to respond so reliably and quickly because Google
maintains a large distributed infrastructure, essentially
a pp system. Similarly, companies likeAkamai sell “pp
functionality” to their customers to make today’s user
experience possible in the first place. Quite possibly
today’s pp applications are just testbeds for tomorrow’s
Internet architecture.

Implications
pp networks are often highly dynamic in nature.While
traditional computer systems are typically based on
fixed infrastructures and are under a single adminis-
trative domain (e.g., owned and maintained by a single

company or corporation), the participating machines in
pp networks are under the control of individual (and
to some extent: anonymous) users who can join and
leave at any time and concurrently. In pp parlor, such
membership changes are called churn.

A second implication of the autonomy of the
machines in pp networks is that the network consists
of different stakeholders. Users canhave various reasons
for joining the network. For instance, an (anonymous)
user may not voluntarily contribute his or her band-
width, disk space, or CPU cycles to the system, but
prefer to free ride. This adds a socioeconomic aspect
to pp computing. As the pp paradigm relies on the
contributions of the participating machines, effective
incentive mechanisms have to be designed, which foster
cooperation and punish free riders.

Another source of inequality in pp systems apart
from selfishness is heterogeneity: Due to the openmem-
bership, different machines run different operating sys-
tems, have different Internet connections, and so on.

Applications
The best-known representatives of pp technology are
probably the numerous file-sharing applications such as
Napster, Gnutella, KaZaA, eMule, or BitTorrent. Also,
the Internet telephony tool Skype is very popular and
used by millions everyday. Zattoo, PPLive, and Stream-
Forge, amongmany others, use pp principles to stream
video or audio content. The cloud computing service
Wuala offers free online storage by exploiting the par-
ticipants’ disks and Internet connections to improve
performance. Recently, the power and anonymity of
decentralized Internet working has gained the atten-
tion of operators of botnets in order to attack cer-
tain infrastructure components by a denial-of-service
attack. Finally, pp technology is used for large-scale
computer games.

Architecture Variants
Several pp architectures are known:

● Client/Server goes pp: Even though Napster is
known to the be first pp system (), by today’s
standards its architecture would not deserve the
label pp anymore. Napster clients accessed a cen-
tral server that managed all the information of the
shared files, i.e., which file was to be found on

 P Peer-to-Peer

which client. Only the downloading process itself
was between clients (“peers”) directly, hence pp.
In the early days of Napster the load of the server
was relatively small, so the simple Napster architec-
ture was sufficient. Over time, it turned out that the
server may become a bottleneck – and an attractive
target for an attack. Indeed, eventually a judge ruled
the server to be shut down (a “juridical denial of ser-
vice attack”). However, it remains to note that many
popular PP networks today still include centralized
components, e.g., KaZaA or the eDonkey network
accessed by the eMule client. Also, the peer swarms
downloading the same file in the BitTorrent network
are organized by a so-called tracker whose function-
ality today is still centralized (although initiatives
exist to build distributed trackers).

● Unstructured pp: The Gnutella protocol is the
antithesis of Napster, as it is a fully decentralized sys-
tem, with no single entity having a global picture.
Instead each peer connects to a random sample of
other peers, constantly changing the neighbors of
this virtual overlay network by exchanging neigh-
bors with neighbors of neighbors. (Any unstruc-
tured system also needs to solve the so-called
bootstrap problem, namely how to discover a first
neighbor in a decentralizedmanner. A popular solu-
tion is the use of well-known peer lists.) The fact
that users often turn off their clients once they
downloaded their content implies high levels of
churn (peers joining and leaving at high rates), and
hence selecting the right “random” neighbors is an
interesting research problem. The Achilles’ heal of
unstructured pp architectures such as Gnutella is
the cost of searching. A search request is typically
flooded in the network and each search operation
will costmmessages, m being the number of virtual
edges in the architecture. In other words, such an
unstructured pp architecture will not scale. Indeed,
when Napster was unplugged, Gnutella broke down
as well soon afterward due to the inrush of former
Napster users.

● Hybrid pp: The synthesis of client/server archi-
tectures such as Napster and unstructured archi-
tectures such as Gnutella are hybrid architectures.
Some powerful peers are promoted to so-called
superpeers (or, similarly, trackers). The set of super-
peers may change over time, and taking down

a fraction of superpeers will not harm the sys-
tem. Search requests are handled on the superpeer
level, resulting in much less messages than in flat/
homogeneous unstructured systems. Essentially, the
superpeers together provide a more fault-tolerant
version of the Napster server, as all regular peers
connect to a superpeer. As of today, almost all pop-
ular pp systems have such a hybrid architecture,
carefully trading off reliability and efficiency.

● Structured pp: Inspired by the early success of
Napster, the academic world started to look into
the question of efficient file sharing. Indeed, even
earlier, in , Plaxton et al. [] proposed a
hypercubic architecture for pp systems. This was a
blueprint for many so-called structured pp archi-
tecture proposals, such as Chord [], CAN [],
Pastry [], Tapestry [], Viceroy [], Kadem-
lia [], Koorde [], SkipGraph [], and Skip-
Net []. Maybe surprisingly, in practice, structured
pp architectures did not take off yet, apart fromcer-
tain exceptions such as the Kad architecture (from
Kademlia []), which is accessible with the eMule
client.

Scientific Origins
The scientific foundations of pp computing were laid
many years before the most simple “real” pp systems
like Napster emerged. As already mentioned, in ,
a blueprint for structured systems has been proposed
in []. Indeed, also the [] paper was standing on the
shoulders of giants. Some of its eminent precursors are
the following:

● Research on linear and consistent hashing, e.g., [].
● Research on locating shared objects, e.g., [] or [].
● Research on so-called compact routing: The idea is

to construct routing tables such that there is a trade-
off between memory (size of routing tables) and
stretch (quality of routes), e.g., [] or [].

● Even earlier, hypercubic networks, see below.

Hypercubic Overlays and Consistent
Hashing
Every application run on multiple machines needs a
mechanism that allows the machines to exchange infor-
mation. A naive solution is to store at each machine the
domain name or IP address of every other machine.

Peer-to-Peer P

P

While this may work well for a small number of
machines, large-scale distributed applications such as
file sharing, grid computing, cloud computing, or data
center networking systems need a different, more scal-
able approach: instead of forming a clique (where every-
body knows everybody else), each machine should
only be required to know some small subset of other
machines. This graph of knowledge can be seen as a
logical network interconnecting the machines; it is also
known as an overlay network. A prerequisite for an over-
lay network to be useful is that it has good topological
properties. Among the most important are small peer
degree, small network diameter, robustness to churn, or
absence of congestion bottlenecks.

The most basic network topologies used in practice
are trees, rings, grids, or tori. Many other suggested net-
works are simply combinations or derivatives of these.
The advantage of trees is that the routing is very easy: for
every source-destination pair there is only one possible
path. However, the root of a tree can be a severe bottle-
neck. An exception is a pp streaming systemwhere the
single content provider forms the network root. How-
ever, trees are also highly vulnerable, e.g., with respect
to membership changes.

Essentially all state-of-the-art pp networks today
have some kind of hypercubic topology (e.g., Chord,
Pastry, Kademlia). Hypercube graphs have many inter-
esting properties, e.g., they allow for efficient routing:
although each peer only needs to store a logarithmic
number of other peers in the system (the peers’ neigh-
bors), by a simple routing scheme, a peer can reach each
other peer in a logarithmic number of steps (or “hops”).
In a nutshell, this is achieved by assigning each peer
a unique d-bit identifier. A peer is connected to all d
peers that differ from its identifier at exactly one bit
position. In the resulting hypercube network, routing
is done by adjusting the bits in which the source and
the destination peers differ – one at a time (at most d
many). Thus, if the source and the destination differ by
k bits, there are k! routes with k hops. Figure gives an
example.

Given a hypercubic topology, it is then simple to
construct a distributed hash table (DHT): Assume there
are n = d peers that are connected in a hypercube
topology as described above. Now a globally known
hash function f is used, mapping file names to long
bit strings. Let fd denote the first d bits (prefix) of

000 001

010

100

011

111110

101

Peer-to-Peer. Fig. A simplified pp topology: a

three-dimensional hypercube. Each peer has a three-bit

identifier. For example, peer is connected to the three

peers , , whose identifiers differ at exactly one

position. In order to route a message from peer to say

peer , one bit is fixed after the other. One possible

routing path is depicted in the figure: → → →

. An alternative path could be → → →

the bitstring produced by f . If a peer is searching for
file name X, it routes a request message f (X) to peer
fd(X). Clearly, peer fd(X) can only answer this request
if all files with hash prefix fd(X) have been previously
registered at peer fd(X).

There are some additional issues to be addressed
in order to design a DHT from a hypercubic topol-
ogy, in particular how to allow peers to join and leave
without notice. To deal with churn the system needs
some level of replication, i.e., a number of peers, which
are responsible for each prefix such that failure of some
peerswill not compromise the system. In addition, there
are security and efficiency issues that can be addressed
to improve the system.

There are many hypercubic networks that are
derived from the hypercube: among these are the but-
terfly, the cube-connected-cycles, the shuffle-exchange,
and the de Bruijn graph. For example, the butter-
fly graph is basically a “rolled out” hypercube (hence
directly providing replication!) of constant degree.
Another important class of hypercubic topologies are
skip graphs [,].

A simple, interesting way to design dynamic pp
systems is the continuous–discrete approach described
by Naor and Wieder []. This approach is based on a
“think continuously, act discretely” strategy, and can be
used to design a variety of hypercubic topologies. The
continuous–discrete approach gives a unified method

 P Peer-to-Peer

for performing join/leave operations and for dealing
with the scalability issue, thus separating it from the
actual network. The idea is as follows: Let I be a
Euclidean space, e.g., a (cyclic) one-dimensional space.
Let Gc be a graph where the vertex set is the continu-
ous set I. Each point in I is connected to some other
points. The actual network then is a discretization of
this continuous graph based on a dynamic decompo-
sition of the underlying space I into cells where each
“server” is responsible for a cell. Two cells are connected
if they contain adjacent points in the continuous graph.
Clearly, the partition of the space into cells should be
maintained in a distributed manner. When a join oper-
ation is performed, an existing cell splits, when a leave
operation is performed two cells are merged into one.
The task of designing a dynamic and scalable network
follows these design rules: () Choose a proper con-
tinuous graph Gc over the continuous space I. Design
the algorithms in the continuous setting, which is often
simpler (also in terms of analysis) than in the discrete
case. () Find an efficient way to discretize the con-
tinuous graph in a distributed manner, such that the
algorithms designed for the continuous graph would
perform well in the discrete graph. The discretization is
done via a decomposition of I into the cells. If the cells
that compose I are allowed to overlap, then the resulting
graph would be fault tolerant.

To give an example, in order to build a dynamic de
Bruijn network (a so-called Distance Halving DHT),
a peer at position x ∈ [,) (in binary form bb. . .
such that x = ∑

∞

i= −bi) connects to positions l(x) :=
x/ ∈ [,) and r(x) := (+ x)/ ∈ [,) in Gc

(out-degree two per peer). Observe that if position x
is written in binary form, then l(x) effectively shifts in
a “” from the left and r(x) shifts in a “” from the
left.Thus, routing is straightforward: based solely on the
current position and the destination (without the over-
head of maintaining routing tables), a message can be
forwarded by a peer by fixing one bit per hop.The set of
peers in the cyclic [,) space then define the pp net-
work: Let xi denote the position of the ith peer (ordered
in increasing order with respect to position). Peer i is
responsible for the cell [xi , xi+), computed in a mod-
ulomanner, i.e., this peer is responsible to store the data
mapped to this cell plus for the establishment of the cor-
responding connections defined inGc. Figure gives an
example.

xi

xi /2

(1+xi)/2
011010

001101

101101

xi+1

Cell

Peer-to-Peer. Fig. The continuous–discrete approach

for the dynamic de Bruijn graph. Peers are indicated using

circles, files using rectangles. In the continuous setting, the

peer at position xi = . (in binary notation) is

connected to positions xi/ and (+ xi)/. In the discrete

setting, it is responsible for the cell (i.e., the connections

and files that are mapped there) between positions

xi and xi+

Dealing with Churn
A distinguishing property of pp systems are the fre-
quent membership changes. Measuring the churn lev-
els of existing pp systems is challenging and one has
to be careful when generalizing a given measurement
to entire application classes (e.g., []). Nevertheless,
several insightful measurement studies have been con-
ducted. For instance, [,] reported on the dynamic
nature of early pp networks such as Napster and
Gnutella, and [] analyzed low-level data of a large
Internet Service Provider (ISP) to estimate churn. Also
the Kad DHT has been subject to measurement studies,
and the reader is referred to the results in [] and [].

It is widely believed that hypercubic structures are a
good basis for churn-resilient pp systems. As written
earlier, a DHT is essentially a hypercubic structure with
peers having identifiers such that they span the ID space
of the objects to be stored. A simple approach tomap the
ID space onto the peers has already been described for
the hypercube. To give another example, in the butterfly
network, we may use its layers for replication, i.e., all
peers with the same ID redundantly store the data of the
same hash prefix. Other hypercubic DHTs can be more
difficult to design, e.g., networks based on the pancake
graph [].

Peer-to-Peer P

P

For many well-known systems, theoretic analyses
exist showing that the networks remain well-structured
after some joins, leaves, or failures occur. In order to
evaluate the robustness formally, metrics such as the
network expansion (for deterministic failures) or the
span [] (for randomized failures) are used. Unfortu-
nately, the span is difficult to compute, and the span
value is known only for the most simple topologies.

The continuous–discrete approach [] already
mentioned constitutes the basis of several dynamic sys-
tems. For example, the SHELL system [] is robust
to certain attacks by connecting older or more reliable
peers in a core network where access can be controlled;
SHELL also allows to organize heterogeneous peers in
an efficient topology.

Many systems proposed in the literature offer a
high robustness in the average case, i.e., they provide
probabilistic guarantees that hold with high probabil-
ity. Robustness under attacks or worst-case dynamics
is less well understood. In [], a system is developed
that achieves an optimal worst-case robustness in the
sense that there is no alternative system that can toler-
ate higher churn rates without disconnecting. The basic
idea is to simulate a hypercube: each peer is part of a dis-
tinct hypercube node; each hypercube node consists of a
logarithmic number of peers. Peers have connections to
other peers of their hypercube node and to peers of the
neighboring hypercube nodes. After a number of joins
and leaves, some peers may have to change to another
hypercube node such that up to constant factors, all
hypercube nodes have the same cardinality at all times.
If the total number of peers grows or shrinks above or
below a certain threshold, the dimension of the hyper-
cube is increased or decreased by one, respectively. The
balancing of peers among the nodes can be seen as a
dynamic token distribution problem on the hypercube:
Each node of a graph (hypercube) has a certain number
of tokens, and the goal is to distribute the tokens along
the edges of the graph such that all nodes end up with
the same or almost the same number of tokens. Thus,
the system builds on two basic components: () an algo-
rithm, which performs the described dynamic token
distribution and () an information aggregation algo-
rithm, which is used to estimate the number of peers
in the system and to adapt the hypercube’s dimension
accordingly. These techniques also work for alternative
graphs, like pancake graphs [].

An appealing notion of robustness is topological self-
stabilization: A pp topology is called self-stabilizing
if it is guaranteed that from any weakly connected
initial state (e.g., after an attack), it will quickly con-
verge to a desirable network in the absence of fur-
ther membership changes. In contrast to the worst-case
churn considered in [], self-stabilization focuses on
the convergence time in periods without membership
changes, but allows for general initial system states.
While until recently, self-stabilizing algorithms with
guaranteed runtime have only been known for sim-
ple one-dimensional or two-dimensional linearization
problems [], recently a construction for a variation of
skip graphs, namely SKIP+ graphs [], has been pro-
posed. Single joins and leaves in SKIP+ can be handled
locally, and require logarithmic time and polylogarith-
mic work only. However, there remains the important
open question of how to provide degree guarantees
during convergence from arbitrary states.

Fostering Cooperation
The appeal of pp computing arises from the collab-
oration of the system’s constituent parts, the peers.
If all the participating peers contribute some of their
resources, highly scalable decentralized systems can
be built. However, in reality, peers may act selfishly
and strive for maximizing their own utility by ben-
efitting from the system without contributing much
themselves []. Hence, the performance of a pp sys-
tem crucially depends on its capability of dealing with
selfishness.

Already in , Adar and Huberman [] noticed
that there exists a large fraction of free riders in the
file-sharing network Gnutella. The problem of selfish
behavior in pp systems has been a hot topic in pp
research ever since, and many mechanisms to encour-
age cooperation have been proposed []. Perhaps the
simplest fairness mechanism is to directly incorporate
contribution monitoring into the client software. For
instance, in the file-sharing system KaZaA, the client
records the contribution of its user. However, such a
solution can simply be bypassed by implementing a dif-
ferent client that hard-wires the contribution level to the
maximum, as it was the case with KaZaA Lite. Inspired
by real economies, some researchers have also proposed
the introduction of some form of virtual money, which
is used for the transactions.

 P Peer-to-Peer

BitTorrent has incorporated a fairness mechanism
from the beginning and has hence been subject to
intensive research (e.g., [, ,]). Although this
mechanism has similarities to the well-known tit-for-
tat scheme, the strategy employed in BitTorrent dis-
tinguishes itself from the classic mechanism in many
respects. For instance, it is possible for peers to obtain
parts of a file “for free,” i.e., without reciprocating.
While this may be a useful property for bootstrapping
newly joined peers, it has been shown that the Bit-
Torrent mechanism can be exploited: the BitThief Bit-
Torrent client [] allows to download entire files fast
without uploading any data. It has also been demon-
strated in [] that sharing communities are particularly
vulnerable to such exploits. BitThief is not the only
client cheating BitTorrent. Piatek et al. [] presented
BitTyrant. BitTyrant’s strategy is to exploit the BitTor-
rent protocol in order to maximize download rates.
For instance, BitTyrant uses a smart neighbor selection
strategy and connects to those peers with the best recip-
rocation ratios. In contrast to BitThief, BitTyrant does
not free ride. BitTyrant seeks to provide the minimal
necessary contribution, and also increases the active
neighbor set if this is beneficial to the download rate.
The authors claim that their client provides a median
% performance gain in certain environments.

There can be many other forms of strategic behav-
ior in open distributed systems. One subject that
has recently gained attention, especially by the game-
theoretic research community, is neighbor selection in
unstructured pp networks (e.g., []). There may be
several reasons for a peer to prefer connecting to some
peers rather than others. For instance, a peer may want
to connect to peers with high bandwidths, peers storing
many interesting files, or peers having large degrees and
hence provide quick access to many other peers. At the
same time, a selfish peer itself may not be eager to store
and maintain too many neighbors itself.

Current Trends and Outlook
One can argue that today, pp computing is already
a relatively mature (research) field; nevertheless, there
are still many active discussions and developments, also
in the context of the future Internet design. Moreover,
there exists a discrepancy between the technology of the
systems in use and what is actually known in theory.

For example, the Kad network is still vulnerable to quite
simple attacks [].

If employed by the wrong people, the flexibility
and robustness of pp technology also constitutes a
threat. Denial-of-service attacks are arguably one of the
most cumbersome problems in today’s Internet, and
it is appealing to coordinate botnets in a pp fashion.
A DHT can be used by the bots, e.g., to download new
instructions. For instance, it was estimated that in ,
the DHT-based Storm botnet [] ran on several million
computers. Apart frommechanisms to detect or prevent
attacks even before they take place, a smart redundancy
management may improve availability during the attack
itself (see, e.g., the Chameleon system []).

In terms of cooperation, there is a tension between
the goal of providing incentive compatible mechanisms
that exclude free riders and the goal of designing het-
erogeneous pp systems that also tolerate (and make
use of!) weak participants. Moreover, in addition to
design mechanisms dealing with pure selfishness, there
is a trend toward pp systems that are also resilient to
malicious behavior (see, e.g., [] or []).

Another active discussion regards the interface
between pp systems and ISPs. The large amount of
pp traffic raises the question of how ISPs should deal
with pp, e.g., by caching contents. pp networks often
employ inefficient overlay-to-ISP mappings as the logi-
cal overlay network is typically not aware of the underly-
ing “real” networks and constraints, andmuch overhead
can be avoided by improving the interface between pp
networks and ISPs, e.g., by an oracle []. For a criti-
cal point of view on the subject, the reader is referred
to [].

It seems that while a few years ago the lion’s share
of Internet traffic was due to pp, the proportion seems
to be declining [] now. Especially web services and
server-based solutions such as the popular YouTube and
RapidShare are catching up. The measured data traces
should be interpreted with care however, as they do not
take into account what happens behind the scenes of
big corporations. Indeed, it is believed that there is a
paradigm shift in pp computing: While pp retreats
(relatively to other applications) from public Internet
traffic, today pp technology plays a crucial role in the
coordination andmanagement of large data centers and
server farms of corporations such as Akamai or Google.

Peer-to-Peer P

P

Related Entries
�Hypercubes and Meshes

Bibliographic Notes and Further
Reading
Beyond the specific literature pointed to directly in
the text, there are several recommendable introductory
books on pp computing. In particular, the reader is
referred to the classic books [, ,] and two more
recent issues [,]. The theoretically more inclined
reader may also be interested in [], which provides an
overview of compact routing solutions, and [] which
discusses trade-offs in local algorithms that achieve
global goals based on local information only and with-
out centralized entities whatsoever. Regarding the chal-
lenges of distributed cooperation, the recent book []
gives a thorough and up-to-date survey of current
(game-theoretic) trends, and also includes a chapter on
pp specific questions.

Bibliography
. Adar E,HubermanB () Free riding on gnutella. FirstMonday

():–
. Aggarwal V, Feldmann A, Scheideler C () Can ISPs and

pp users cooperate for improved performance? ACM Comput
Commun Rev ():–

. Aspnes J, Shah G () Skip graphs. In: Proceedings of the th
annual ACM-SIAM symposium on discrete algorithms (SODA),
Baltimore,

. Awerbuch B, Peleg D () Sparse partitions. In: Proceedings of
the st annual symposium on foundations of computer science
(SFCS), vol , pp –, Washington,

. Awerbuch B, Peleg D () Online tracking of mobile users.
JACM ():–

. Bagchi A, Bhargava A, Chaudhary A, Eppstein D, Scheideler C
()The effect of faults on network expansion. In: Proceedings
of the th annual ACM symposium on parallelism in algorithms
and architectures (SPAA), Barcelona,

. Baumgart M, Scheideler C, Schmid S. ADoSresilient information
system for dynamic data management. In: Proceedings of the st
ACM symposium on parallelism in algorithms and architectures
(SPAA), Calgary, Alberta,

. Buford J, Yu H, Lua EK () PP networking and applications.
Morgan Kaufmann, San Francisco,

. Gummadi K, Dunn R, Saroiu S, Gribble SD, LevyHM, Zahorjan J
() Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload. In: Proceedings of the th ACM sympo-
sium on operating systems principles (SOSP), Bolton Landing,

. Haeberlen A, Mislove A, Post A, Druschel P () Fallacies
in evaluating decentralized systems. In: Proceedings of the th
international workshop on peer-to-peer systems (IPTPS), Santa
Barbara,

. Harvey NJA, Jones MB, Saroiu S, Theimer M, Wolman A. Skip-
net: a scalable overlay network with practical locality proper-
ties. In: Proceedings of the th USENIX Symposium on Internet
Technologies and Systems (USITS), Seattle,

. IPOQUE () Internet study /. http://www.ipoque.
com/resources/internet-studies/internet-study--,
pp – (accessed on October ,)

. Jacob R, Richa A, Scheideler C, Schmid S, Täubig H () A dis-
tributed polylogarithmic time algorithm for self-stabilizing skip
graphs. In: Proceedings of the ACM symposium on principles of
cistributed computing (PODC), New York,

. Jacob R, Ritscher S, Scheideler C, Schmid S () A self-
stabilizing and local delaunay graph construction. In: Proceedings
of the th international symposium on algorithms and compu-
tation (ISAAC), Hawaii,

. Kaashoek F, Karger DR () Koorde: a simple degree-optimal
distributed hash table. In: Proceedings of the international work-
shop on peer-to-peer systems (IPTPS), Berkeley,

. Karger D, Lehman E, LeightonT, Panigrahy R, LevineM, LewinD
() Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web. In: Pro-
ceedings of the th ACM symposium on theory of computing
(STOC), New York, pp –,

. Khan J,Wierzbicki A () Foundation of peer-to-peer comput-
ing. Elsevier Computer Communication,

. Kuhn F, Moscibroda T, Wattenhofer R () The price of being
near-sighted. In: Proceedings of the th ACM-SIAM symposium
on discrete algorithms (SODA), Miami,

. Kuhn F, Schmid S, Wattenhofer R () Towards worstcase
churn resistant peer-to-peer systems. J Distrib Comput (DIST)
():–

. Larkin E () Storm worm’s virulence may change tactics.
British Computer Society (accessed on August ,)

. Legout A, Urvoy-Keller G, Michiardi P () Rarest first
and choke algorithms are enough. In: Proceedings of the th
ACM SIGCOMM conference on internet measurement (IMC),
pp –, Rio de Janeriro,

. Levin D, LaCurts K, Spring N, Bhattacharjee B () Bittor-
rent is an auction: analyzing and improving bittorrent’s incentives.
SIGCOMM Comput Commun Rev ():–

. Li H, Clement A,Marchetti M, KapritsosM, Robinson L, Alvisi L,
Dahlin M () Flightpath: obedience vs choice in cooperative
services. In: Proceedings of the symposium on operating systems
design and implementation (OSDI), San Diego,

. Locher T, Moor P, Schmid S, Wattenhofer R () Free riding in
bittorrent is cheap. In: Proceedings of the th Workshop on Hot
Topics in Networks (HotNets), Irvine,

. Malkhi D () Locality-aware network solutions. Technical
Report, The Hebrew University of Jerusalem, HUJI-CSE-LTR-
-

http://dx.doi.org/10.1007/978-0-387-09766-4_408
http://www.ipoque.com/resources/internet-studies/internet-study-2008-2009
http://www.ipoque.com/resources/internet-studies/internet-study-2008-2009

 P Pentium

. Malkhi D, Naor M, Ratajczak D () Viceroy: a scalable
and dynamic emulation of the buttery. In: Proceedings of the
st annual symposium on principles of distributed computing
(PODC), Monterey,

. Maymounkov P, Mazières D () Kademlia: a peer-to-peer
information system based on the xor metric. In: Proceedings of
the st international workshop on peer-to-peer systems (IPTPS),
Cambridge,

. Moscibroda T, Schmid S,Wattenhofer R ()On the topologies
formed by selfish peers. In: Proceedings of the th annual sym-
posium on principles of distributed computing (PODC), Denver,

. Naor M, Wieder U () Novel architectures for pp applica-
tions: the continuous-discrete approach. In: Proceedings of the
th annual ACM symposium on parallel algorithms and archi-
tectures (SPAA), pp –, San Diego,

. Nisan N, Roughgarden T, Tardos E, Vazirani VV () Algorith-
mic game theory. Cambridge University Press, Cambridge

. Peleg D, Upfal E () A tradeoff between space and efficiency
for routing tables. In: Proceedings of the th annual ACM sym-
posium on theory of computing (STOC), pp –, Chicago,

. Piatek M, Isdal T, Anderson T, Krishnamurthy A,
Venkataramani A () Do incentives build robustness in
bittorrent? In: Proceedings of the th USENIX symposium on
networked systems design and implementation, Cambridge,

. Piatek M, Madhyastha HV, John JP, Krishnamurthy A,
Anderson T () Pitfalls for ISP-friendly pp design. In:
Proceedings of the hotnets, New York,

. Plaxton C, Rajaraman R, Richa AW () Accessing nearby
copies of replicated objects in a distributed environment. In: Pro-
ceedings of the th ACM symposium on parallel algorithms and
architectures (SPAA), pp , , Newport,

. Qiu D, Srikant R () Modeling and performance analysis
of bittorrent-like peer-to-peer networks. In: Proceedings of the
conference on applications, technologies, architectures, and pro-
tocols for computer communications (SIGCOMM), pp –,
New York,

. Ratnasamy S, Francis P, Handley M, Karp R, Schenker S
() A scalable content-addressable network. In: Proceedings
of the ACM SIG-COMM conference on applications, technolo-
gies, architectures, and protocols for computer communications,
pp –, New York,

. Rowstron AIT, Druschel P () Pastry: scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. In: Proceedings of the IFIP/ACM international confer-
ence on distributed systems platforms (middleware), pp –,
Heibelberg,

. Saroiu S, Gummadi PK, Gribble SD () A measurement study
of peer-to-peer file sharing systems. In: Proceedings of the multi-
media computing and networking (MMCN), San Jose,

. Scheideler C () How to spread adversarial nodes?: rotate! In:
Proceedings of the th Annual ACM symposium on theory of
computing (STOC), pp –, Baltimore,

. Scheideler C, Schmid S () A distributed and oblivious heap.
In: Proceedings of the th international colloquiumonautomata,
languages and programming (ICALP), Rhodes,

. Sen S, Wang J () Analyzing peer-to-peer traffic across large
networks. IEEE/ACM Trans Netw ():–

. Shneidman J, Parkes DC () Rationality and self-interest in
peer to peer networks. In: Proceedings of the nd international
workshop on peer-to-peer systems (IPTPS), Berkeley,

. Steiner M, Biersack EW, Ennajjary T () Actively monitoring
peers in KAD. In: Proceedings of the th international workshop
on peer-to-peer systems (IPTPS), Bellevue,

. Steiner M, En-Najjary T, Biersack EW () Exploiting KAD:
possible uses and misuses. Comput Commu Rev ():–

. Steinmetz R, Wehrle K () Peer-to-peer systems and applica-
tions. Springer, Heidelberg

. Stoica I, Morris R, Karger D, Kaashoek F, Balakrishnan H ()
Chord: a scalable peer-to-peer lookup service for internet appli-
cations. In: Proceedings of the ACM SIGCOMM conference on
applications, technologies, architectures, and protocols for com-
puter communications, San Diego,

. Stutzbach D, Rejaie R () Understanding churn in peer-to-
peer networks. In: Proceedings of the th internet measurement
conference (IMC), New York,

. Subramanian R, Goodman B () Peer-to-peer computing: the
evolution of a disruptive technology. IGI, Hershey

. Thorup M, Zwick U () Compact routing schemes. In: Pro-
ceedings of the annual ACM symposium on parallel algorithms
and architectures (SPAA), pp –, Crete, Greece,

. Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD,
Kubiatowicz J () Tapestry: a resilient global-scale over-
lay for Service deployment. IEEE journal on selected areas in
commonuincations vol , No.

Pentium

�Intel Core Microarchitecture, x Processor Family

PERCS System Architecture

E. N. (Mootaz) Elnozahy, EvanW. Speight, Jian Li,
Ram Rajamony, Lixin Zhang, Baba Arimilli
IBM Research, Austin, TX, USA
IBM Systems and Technology Group, Austin, TX, USA

Definition
In , IBM started to develop a pioneering supercom-
puter, codenamed PERCS (Productive, Easy-to-use,
Reliable Computing System), with support from the

http://dx.doi.org/10.1007/978-0-387-09766-4_10

PERCS System Architecture P

P

Defense Advanced Research Project Agency (DARPA).
The project was part of DARPA’s High Productiv-
ity Computing Systems (HPCS)[] initiative, a -year
research program that sought to change the landscape
of high-end computing by shifting the focus away from
just floating point performance toward overall system
productivity. Enhancing system productivity required
unprecedented innovation in the system design to sim-
plify system usage and programming tasks, all while
maintaining the system cost within the requirements
of a realistic commercial offering. The system’s pro-
ductivity is orders of magnitude better than previous
supercomputers as expressed by the High Productivity
Challenge benchmark suite [].

Discussion

Introduction
High-end computing went through a generational
transformation during the s, which saw emerging
clusters of commodity processors and networks gradu-
ally replace traditional supercomputer systems based on
vector and large shared-memory systems. Commodity
clusters offered advantages in cost and scalability com-
pared with the technologies they replaced. The simul-
taneous emergence of the Message Passing Interface
(MPI) provided programmers with a portable, stan-
dard programming environment that exploited these
clusters well. Interest in high-performance computing
gained momentum, and a semiannual “top super-
computers” contest was created based on the Linpack
benchmark [] to assess the available supercomputers
in the market and to provide an arena for vendors to
compete.

With the Linpack benchmark’s emphasis onfloating-
point performance, designers focused on improving
processor performance, and the resulting systems were
showing great leaps in Linpack performance. These
improvements however did not benefit mainstream
applications that required a system design that balances
floating-point operations with commensurate memory
and communication bandwidths. For example, stream-
ing data applications, message-intensive applications
exemplified by the GUPS benchmark [], and digital-
signal processing applications based on Fast Fourier
Transform [] are sensitive to network performance and
memory bandwidth. Programmers were forced to adapt

their algorithms to reduce data transfers and harness the
increased computational capability of commodity clus-
ters. The approach proved futile as programmers gen-
erally failed to achieve performance gains to show for
the added code complexity and programming efforts. A
programmer and systemproductivity criseswere clearly
at hand.

In , visionaries at DARPA and various U.S.
defense agencies took the initiative to confront the sit-
uation and started the High Productivity Computing
System (HPCS) program. HPCS took the form of three
competitive stages, the first two being devoted to pure
research with each round culminating in the elimina-
tion of proposals that were deemed noncompetitive or
noninnovative. The third stage was devoted to the com-
mercialization of the research results of the first two
stages into amainstream product. Five companies com-
peted in the initial stage, namely Cray, HP, IBM, SGI,
and Sun, and by , only Cray and IBM were sup-
ported to proceed with the third stage of commercial-
ization. The HPCS vision called for balanced system
attributes and high-level computing abstractions that
alleviate programmers from the chores of adapting code
to improve performance. The program aimed to foster
research that would result in systems that are amenable
to productive use without too much effort on the part
of the programmer. This article provides a short sum-
mary of IBM’s PERCS project. Compared to state-of-
the-art high-performance computing (HPC) systems,
PERCS achieves high performance and productivity
goals through tight integration of computing, network-
ing, storage, and software. PERCS focuses on scaling
all parts of the system while easing the programming
complexity.

Key Elements of the PERCS Design

Compute Node Design
Thebuilding block for the PERCS design is the compute
node as shown in Fig. .

There are four POWER chips [] in a node with
a single operating system image that controls resource
allocation. Each chip features eight cores, four threads
per core, and two memory controllers that can con-
nect to GB of DRAM memory. Applications exe-
cuting on a single compute node can thus utilize
cores, SMT threads, eight memory controllers, up

 P PERCS System Architecture

Quad Chip Module (QCM)

Memory

Memory

MemoryP7

P7

P7
A/X

A/X

C/ZC/Z
B/Y

P7 Memory

PERCS System Architecture. Fig. PERCS compute node architecture

to GB of memory capacity, one teraflop of com-
pute power, and over GB/s of memory bandwidth.
The four POWER chips are cache coherent and are
tightly coupled using three pairs of buses. Each pro-
cessor has six fabric bus interfaces to connect to three
other processors in a multi-chip module (MCM).These
-teraflop tightly coupled shared-memory nodes deliver
GB/sec of bandwidth (. Byte/flop) to a special-
ized hub chip used for I/O, messaging, and switching.
The POWER chip represents a large leap forward in
single-chip performance, available both in terms of
computational ability and achievable memory band-
width over other processor chip offerings.

PERCS Interconnect
The challenge of building a highly productive sys-
tem required the entire system infrastructure to scale
along with the microprocessor’s capabilities. Previous
solutions such as fat-tree Interconnect suffered from
substantial communication latency due to message
copying, protocol processing, multiple data conversions
between optical and electrical signaling, and switch-
ing overheads. Other approaches such as toroidal net-
works mitigated some of these issues at the expense of
handing the programmer very complex communication
topologies.

Such limitations have forced programmers tradi-
tionally to consolidate data communications into large
messages that amortize the communications overhead.
Applications that required frequent exchange of short
messages [] either had to settle for poor performance
or had to be modified in nontrivial ways to exploit large
messages. To solve this problem, we had to design an

Interconnect that obeyed the following design princi-
ples in a cost-effective product:

(a) Minimum data copying
(b) Only one conversion from electrical to optical

domain was allowed for any message
(c) Simple communications protocol with limited pro-

cessing overhead
(d) Maintain a simple topology that simplifies

programming

We approached the problem in an unorthodox way by
building on the shared-memory protocol that IBM uses
to build highly-scalable shared-memory machines. The
communication is treated at three levels:

(a) Within a node, communications take place over the
shared-memory bus.

(b) A second level consists of a supernode, which is
a group of nodes connected via noncoherent
shared-memory buses. Physically, two supernodes
fit within a single rack.

(c) A third level consists of communications between
supernodes. Supernodes are connected using a
fully connected graph of optical cables. Thus, each
supernode has an equal distance to other supern-
odes, simplifying the topology and the program-
ming task.

A communication coprocessor [] resides on the mem-
ory buswithin eachnode, and thus data can be streamed
from source to destination using the shared-memory
protocol, using a -byte payload. This eliminates the
data copying common in previous solutions where data
had to be copied from the memory to the I/O bus.

PERCS System Architecture P

P

The communication coprocessor, also called the
hub-chip [], is directly connected to the POWER
MCM at GB/s and provides GB/s to seven other
nodes in the same drawer on copper connections;
GB/s to nodes in the same supernode (com-
posed of four drawers, or compute nodes) on optical
connections; GB/s to other supernodes on optical
connections; and GB/s for general I/O, for a total of
,GB/s peak bandwidth per hub chip (see Fig.).

Two key design goals for PERCS were to dramati-
cally improve bisection bandwidth (over other topolo-
gies such as fat-tree interconnects) and to eliminate the
need for external switches. With these goals in mind,
the hub chip was designed to support a large number of
links that connect it to other hub chips. These links are
classified into two categories “L,” and “D,” which per-
mit the system to be organized into a two-level direct-
connect topology. Every hub chip has thirty-one L links
that connect to other hub chips. Within this group of
thirty-two hub chips, every chip has a direct communi-
cation link to every other chip.The hub chip implemen-
tation further divides the L links into two categories:
seven electrical LL links with a combined bandwidth of
GB/s and optical LR linkswith a combined band-
width of GB/s.The L links bind thirty-two compute
nodes into a supernode.

Every hub chip also has D links that are used to
connect to other supernodes with a combined band-
width of GB/s. The topology maintains at least one
D link between every pair of supernodes in the system,
although smaller systems can employ multiple D links
between supernode pairs.

The hub chip is connected to the POWER chips
in the compute node at a bandwidth of GB/s and
has GB/s of bandwidth for general I/O. The peak

switching bandwidth of the hub chip exceeds . GB/s.
When all links are populated and operate at peak, the
injection bandwidth to network bandwidth ratio is :..
Note though that by performing the dual roles of data
routing and interconnect gateway, the majority of traffic
through the hub chip will typically be destined for other
compute nodes. The low injection to network band-
width ratio means that plenty of bandwidth is available
for that other traffic.

The topology used by PERCS permits routes to be
made up of very small numbers of hops. Within a
supernode, any compute node can communicate with
any other compute node using a distinct L link. Across
supernodes, a compute node has to employ at most one
L hop to get to the “right” compute node within its
supernode that is connected to the destination supern-
ode (recall that every supernode pair is connected by at
least one D link). At the destination supernode, at most
one L hop is again sufficient to reach the destination
compute node.

Routing Between Nodes
Theabove-described principles form the basis for direct
routing in the PERCS system. A direct route employs
a shortest path between any two compute nodes in the
system. Since a pair of supernodes can be connected
together by more than one D link, there can be multi-
ple shortest paths between a given set of compute nodes.
With only two levels in the topology, the longest direct
route L-D-L can have at most three hops made up of no
more than two L hops and at most one D hop.

PERCS also supports indirect routes to guard
against potential interconnect hot spots. An indirect
route is one that has an intermediate compute node in

Node Node Supernode Supernode

S
up

er
no

de
S

up
er

no
de

S
upernode

S
upernode

Supernode

Node

N
od

e
N

od
e

N
od

e
N

od
e

PERCS System Architecture. Fig. Diagram of PERCS interconnect

 P PERCS System Architecture

the route that resides on a different supernode from that
of the source and destination compute nodes. An indi-
rect route must employ a shortest path from the source
compute node to the intermediate one, and a short-
est path from the intermediate compute node to the
destination compute node. The longest indirect route
L-D-L-D-L can have at most five hops made up of
no more than three L hops and at most two D hops.
Figure illustrates direct and indirect routingwithin the
PERCS system.

A specific route can be selected in three ways when
multiple routes exist between a source-destination pair.
First, software can specify the intermediate supernode
but let the hardware determine how to route to and then
from the intermediate supernode. Second, hardware
can select amongst the multiple routes in a round robin
manner for both direct and indirect routes. Finally,
the hub chip also provides support for route random-
ization, whereby the hardware can pseudo-randomly
pick one of the many possible routes between a source-
destination pair.

The minimum direct-routed message latency in the
system is approximately μ second. The peak uni-
directional link bandwidths are as follows: GB/s
from each POWER chip in an SMP to its hub/switch,
GB/s from a given hub/switch to each of the other
seven hub/switches in the same drawer (GB/s
total), GB/s from a given hub/switch to each of
the other hub/switches in different drawers in the
same supernode (GB/s total), and GB/s from a
given hub/switch in one supernode to a hub/switch in
another supernode to which that particular hub/switch
is directly connected (GB/s total).

Novel Features of the PERCS Hub Chip
The PERCS Hub Chip, detailed in Fig. , incorporates
many features to enable the high-performance targets
set for the system on HPC applications.

Collective Accelerator Unit (CAU)
Many HPC applications perform collective opera-
tions that involve all or a large subset of the nodes

SuperNode 1

0 7

8 15

16 2322

S

LL4

LR15

24 31 D3

Maximum Direct Route = L D L

Maximum Indirect Route = L D L D L

D5

D10

SuperNode 3

SuperNode 2

0 7

8 15

16 23D

LR3

LR22

24 26 31

0 74

8 15

16 23

LR7

24 28 31

PERCS System Architecture. Fig. Direct and indirect routing in PERCS

PERCS System Architecture P

P

336 GB/s

192 GB/s

40 GB/s

In
te

r-
N

od
e

C
on

ne
ct

7
LL

oc
al

 –
 3

 G
b/

s
×

8B
P

C
IE

 C
onnect

3 P
C

IE
 – 5 G

b/s ×
 40b

POWER7 QCM Connect
4 POWER7 Links – 3 Gb/s × 8B

24 LRemote –10 Gb/s × 6B
Intra-SuperNode Connect

240 GB/s

16D – 10 Gb/s × 12B
Inter-SuperNode Connect

320 GB/s

POWER7 LinkCtl

POWER7 Coherency Bus

NMMU

CAU
HFI HFI

ISR

LR LinkCtl D LinkCtl
24x

24x

16x

16x

PCIE 2.1
×16

PCIE 2.1
×16

PCIE 2.1
×8

PERCS System Architecture. Fig. Details of PERCS Hub chip

participating in the computation. Forward progress can
only be realized when each node has completed the
collective operation and results have been returned
to all participating nodes. The PERCS hub chip pro-
vides specialized hardware to accelerate frequently used
collective operations such as multicast, barriers, and
reduction operations. For reductions, a dedicated arith-
metic logic unit (ALU) within the CAU supports the
following operations and data types:

● Fixed point: NOP, SUM, MIN, MAX, OR, AND,
XOR (signed and unsigned)

● Floating point:MIN,MAX, SUM, PROD(single and
double precision)

Software organizes the CAUs in the system into col-
lective trees, firing when data on all of its inputs are
availablewith the result being fed to the next “upstream”
CAU in a data-flow manner. Each hub chip contains
a single CAU. A multiple-entry content addressable
memory (CAM) structure per CAU supports multi-
ple independent trees that can be concurrently used
by different applications, for different collective pat-
terns within the same application, or some combination
thereof.

Power Bus Interface
The on-chip interconnect for the POWER processor
is the newly-designed PowerBus architecture. Each hub
chip contains a PowerBus interface that enables it to
participate in the coherency operations taking place
between the four POWER chips in the compute node,
providing the hub chip visibility to coherence transac-
tions taking place in the node.

Host Fabric Interface
The two Host Fabric Interface (HFI) units in the hub
chip manage communication to and from the PERCS
interconnect. The HFI was designed to provide user-
level access to applications. The basic construct pro-
vided by theHFI to applications for delineating different
communication contexts is the “window.”TheHFI sup-
ports many hundreds of such windows each with its
associated hardware state.

An application invokes the operating system to
reserve a window for its use.The reservation procedure
maps certain structures of the HFI into the application’s
address space with window control being possible from
that point onward through user-level reads and write to
the HFI-mapped structures.

 P PERCS System Architecture

The HFI supports three APIs for communication:
a general packet transfer mechanism that can be used
for composing either reliable or unreliable protocols
upon which to build MPI or other messaging layers; a
protocol for global address space operations that allow
user-level codes to directly manipulate memory of a
task residing on a different compute node; and direct
internet protocol transfer ability.

The HFI can extract data that needs to be commu-
nicated over the interconnect from either the POWER
memory or directly from the POWER caches. The
choice of source is transparent, and data is automatically
sourced from the faster location (caches can typically
source data faster than memory). In addition to writ-
ing network data to memory, the HFI can also inject
network data directly into a processor’s L cache, low-
ering the data access latency for code executing on that
processor [].

Integrated Switch Router (ISR)
The ISR implements the two-tiered full-graph network
utilized in the PERCS system. It is organized as a ×
full crossbar that operates at up to GHz. In addition to
the L and D ports described previously, the ISR also
has eight ports to the two local Host Fabric Interfaces,
and one service port.

The ISR uses both input and output buffering with
a packet replay mechanism to tolerate transient link

errors. This feature is especially important since the D
links can be several tens of meters in length. The ISR
operates in units of -byte FLITs with a maximum
packet size of , bytes. Messages are composed of
multiple packets with the packets making up a message
being potentially delivered out of order.

High-performance computing applications benefit
from having access to a single global clock across the
entire system. The ISR implements a global clock fea-
ture, whereby a clock onboard is globally distributed
across the interconnect and kept consistent with the
clocks on other Hub chips. Deadlock prevention is
achieved through virtual channels, each corresponding
to a hop in the L-D-L-D-L worst case route.

POWER Processor Overview
PERCS systems use a version of the new POWER
processor chip fabricated in IBM’s nm SOI CMOS
technology, a die photo of which is shown in Fig. .
POWER incorporates eight high-performance proces-
sor cores, L, L, and L caches per core, on-chip inter-
connect, multiple I/O controllers, memory controllers,
and the SMP fabric controller. The processor design is
closely linked with the technology node development,
which is co-developed with the high-performance
server processors to produce a high-performance server

PERCS System Architecture. Fig. Die photo of the POWER processor chip

PERCS System Architecture P

P

processor as well as a world class CMOS technol-
ogy node.

The version of the POWER processor chip used
in PERCS is fabricated utilizing IBM’s nm technol-
ogy at frequencies ranging up to GHz.The chip size is
 mm and contains eight multithreaded cores. The
processor design offers an excellent balance between
floating and fixed-point operations, and between com-
putation and memory access. Each core has four double
precision floating-point units (FPU) implemented as
two -way SIMD engines (scalar floating point instruc-
tions can only use two FPUs), two fixed-point units
(FXU), two load-store units (LSU), a vector (VMX)
unit, a decimal floating point unit, a branch unit, and
a condition register. Each FPU is capable of performing
one multiply-add instruction (FMA) in one cycle, and
each LSU can execute simple integer operations. Thus
the chip is capable of GF/s and GOp/s at Ghz.
The chip also features two memory controllers serving
up to eight memory channels, with an aggregate band-
width of GB/s. This offers about . B/F or B/Op
greater memory bandwidth balance.

Processor Core
POWER implements the -bit Power PC-AS archi-
tecture and is backward compatible with previous
POWER chips, ensuring that existing binaries will run
on the new architecture without the need to recom-
pile. IBM’s continued focus on single-thread perfor-
mance in POWER remains an important component
in its viability in the HPC marketplace. The core uses
an extremely power-efficient, high-frequency design
with a superscalar, out-of-order execution engine with
highly-accurate branch prediction mechanism. Up
to eight instructions may be executed in a given
cycle.

POWER also provides excellent performance for
throughput-oriented workloads. Simultaneous multi-
threading consisting of four hardware contexts per core
provides up to different instruction streams per chip
for use by software. The multithreaded design ensures
that a thread does not block the flow of instructions
for other threads through the instruction pipeline, the
cache or memory hierarchy, while keeping the area and
power overhead low.

Processor Cache Hierarchy
The POWER processor chip has three levels of cache,
all sharing a common line size of bytes. ECC is used
extensively to ensure reliability and data integrity across
all cache levels. While the Level (L) and Level (L)
caches contain both instruction and data, the Level
(L) cache is split into separate instruction and data
caches. The L instruction cache is KB, -way set-
associative and provides a maximum bandwidth of B
per processor cycle. The L data cache is KB, -way
set-associative and can be accessed in every processor
cycle to deliver two B load operations, and one B
store operation.

Each core has a private, -way set-associative,
KB L cache. The L cache access latency is about
seven processor cycles, and in every processor cycle, the
processor core can load B of data or instructions from
L and store B of data.

Each core has a private -way set-associative L
cache of size MB constructed from on-chip embed-
ded DRAM (eDRAM), which offers low power, high
density, and excellent access times. The L cache access
latency is about processor cycles, and in every pro-
cessor cycle, it can supply B of data to the L cache
and receive B of data from the L cache. The L cache
serves as a victim cache of the L cache. All L caches
on a chip may be virtually aggregated into a quasi-
shared cache by causing Ls to write back dirty lines
to each other before writing them off-chip to mem-
ory. A sophisticated multi-tier LRU algorithm main-
tains balance among this confederation of L caches.
The L cache arrays can also be reconfigured so that
two adjacent banks are combined into a larger L cache
of size MB shared between the two corresponding
cores, which is useful for commercial workloads.This is
another instance of the configurability of the architec-
ture, and how this configurability is used to meet differ-
ent workload characteristics and enhance the commer-
cial viability of the system as outlined in the vision set
forth by DARPA for the HPCS program.

On-chip Integrated Fabric and Chip
Interconnect
Another innovative aspect of the POWERdesign is the
use of existing system buses to both implement shared-
memory traffic and integrate the network switching
functionality. Effectively, the POWER implements a

 P PERCS System Architecture

distributed switch function within the computer rack.
The POWER Fabric Bus Controller (FBC) is the
building block that implements this distributed switch
functionality.

The FBC is integrated on the POWER chip and
acts as the central point of cache-coherent data traf-
fic. It is responsible for implementing cache-to-cache
data transfers, bus arbitration, address routing, etc. It
maintains simple and configurable routing tables and
implements all necessary flow control to ensure free-
dom from deadlocks and livelocks. The FBC acts as the
hub of all coherent and noncoherent communications
among all internal chip units (eight processor cores, two
memory controllers, L and L caches, Non-Cacheable
Unit, Gigabit Ethernet, and PCI-Express controller) to
other internal units on or outside of the chip. The FBC
provides all of the interfaces, buffering, and sequenc-
ing of address and data operations within the coherent
memory subsystem.

Physically, the Fabric bus is an -Byte wide, split-
transaction, multiplexed address and data bus. Data
packets are four beats each carrying bytes of data. It
takes four data packets to transfer the entire Byte
cache line. Configuration switches assign node identi-
fication for each chip and also for data routing tables.
Data transactions within the node are always sent along
a unique point-to-point path. A tag travels with the data
to help make routing decisions along the way. The Fab-
ric busses provide fully connected topology to reduce
latency.

Memory Subsystem
Special care has been taken in the design of the
POWER chipmemory subsystem to ensure the max-
imum bandwidth within reasonable constraints of cost
and power.Thedesign is flexible and configurable, offer-
ing different memory access modes, each optimized
to a certain application profile, ranging from sequen-
tial access of memory to random access of memory.
The memory subsystem also can perform partial cache
line loads, improving the efficiency and bandwidth for
applications with poor spatial locality such as sparse
matrix computations.

The PERCS memory subsystem has two memory
controllers with support for up to eight DIMM sockets
and uses custom DDR DRAM chips running at .
GHz. These DIMMs include specialized buffer chips

to increase the amount of memory and bandwidth to
memory per chip.

Peak memory bandwidth (read + write) of a single
channel is rated at GB/s, two thirds of which is for
read bandwidth and the remaining one third for write
bandwidth.The address space is split across themultiple
fully buffered DIMM arrays in a manner that allows for
an evenly distributed access pattern across them. This
access pattern results in the highest bandwidth avail-
able at the processor interface and an evenly distributed
thermal pattern.

BlueWaters: The First PERCS
Installation
The PERCS system design will first be implemented
in the Blue Waters supercomputer to be placed at
the National Center for Supercomputing Applications
(NCSA) at the University of Illinois []. BlueWaters will
be comprised of supernodes with nearly ,
POWER cores, more than PB memory, more than
 PB disk storage, more than . EB archival storage,
and will achieve close to PF/s peak performance.
Acquisition of the Blue Waters system is supported
by the National Science Foundation and leverages the
investment made by the Defense Advanced Research
Projects Agency’s High Productivity Computing Sys-
tems (HPCS) program.

IBM, the University of Illinois, and the NCSA
will work together throughout Blue Waters’ lifespan to
enhance IBM’s high-performance computing environ-
ment, ensuring that applications can take full advan-
tage of Blue Waters and achieve performance on a
variety of real-world applications. The enhanced high-
performance computing environment will also increase
the productivity of applications developers, system
administrators, and researchers by providing an inte-
grated toolkit for using, analyzing, monitoring, and
controlling Blue Waters.

BlueWaters is expected to be one of themost power-
ful supercomputers in the world when it comes online.
It will have a peak performance close to petaflops (
quadrillion calculations every second) and will achieve
sustained performance of petaflop per second running
a range of science and engineering codes. Scientists will
create breakthroughs in nearly all fields of science using
Blue Waters, including predicting the behavior of com-
plex biological systems; understanding how the cosmos

Performance Analysis Tools P

P

evolved after the Big Bang; designing new materials at
the atomic level; predicting the behavior of hurricanes
and tornadoes; and simulating complex engineered sys-
tems like the power distribution system, airplanes, and
automobiles.

Bibliography
. Arimilli B, Arimilli R, Chung V, Clark S, Denzel W, Drerup B,

Hoefler T, Joyner J, Lewis J, Li J, Ni N, Rajamony R () The
PERCS high-performance interconnect. Proceedings of Hot Inter-
connects, Mountain View, CA, August

. Blue waters project at the national center for supercomputing
applications. http://www.ncsa.illinois.edu/BlueWaters/. Accessed
January

. DARPA high productivity computer systems. http://www.
highproductivity.org/

. Dongarra J, LuszczekP, PetitetA ()TheLINPACKbenchmark:
past, present, and future. J Concur Comput Pract Exp :–

. Duhameland P, VetterliM () Fast Fourier transforms: a tutorial
review and a state of the art. Signal Process :–

. Kalla R, Sinharoy B () POWER: IBM’s next generation server
processor. IEEE symposiumonhigh-performance chips (Hot chips
), Stanford, August

. Luszczek P, Dongarra J, Koester D, Rabenseifner R, Lucas B, Kep-
ner J, Mccalpin J, Bailey D, Takahashi D () Introduction
to the HPC challenge Benchmark Suite. http://icl.cs.utk.edu/
projectsfiles/hpcc/pubs/hpcc-challenge-benchmark.pdf. March

. Milenkovic A, Milutinovic V () Cache injection: a novel tech-
nique for tolerating memory latency in bus-based SMPs. EURO-
PAR parallel processing. Lecture notes in computer science,
vol /, Munich, pp –

Perfect Benchmarks

The Perfect Benchmarks [] were created in the late
s under the leadership of the University of Illi-
nois’ Center for Supercomputing Research and Devel-
opment (CSRD) with the participation of several other
institutions (the Perfect Club). The name Perfect is
an acronym for PERFormance Evaluation by Cost-
effective Transformations. The Benchmarks came from
real applications in contrast to the Livermore Loops
and other simple codes used in the s to eval-
uate machines. Thirteen Benchmarks were included:
ADM, solves the hydrodynamics equations to sim-
ulate air pollution, contributed by IBM Kingston;

ARCD, a finite difference fluid dynamics code devel-
oped at NASA Ames; BDNA, a molecular dynamics
code for nucleic acid simulation contributed by IBM
Kingston; DYFESM, a structural dynamics finite ele-
ment code contributed by NASA Langley Research
Center; FLOQ, a computation fluid dynamics code
contributed by Princeton University; MDG, which uses
molecular dynamics to simulate liquid water; MGD,
a signal processing code contributed by Tel Aviv Uni-
versity; OCEAN, a computational fluid dynamics code
contributed by Princeton University; QCD, a quan-
tum chromodynamics code contributed by Caltech;
SPEC, a weather simulation code contributed by
CSRD; SPICE, a circuit simulator contributed by UC
Berkeley; TRACK, which determines the course of a
collection of targets from observations taken at regular
intervals, contributed by Caltech; and TRFD, a quan-
tum mechanics computation code contributed by IBM
Kingston.

Bibliography
. Berry M, Chen D, Koss P, Kuck D, Lo S, Pang Y, Pointer L,

Roloff R, Sameh A, Clementi E, Chin S, Schneider D, Fox G,
Messina P, Walker D, Hsiung C, Schwarzmeier J, Lue K, Orszag S,
Seidl F, Johnson O, Goodrum R, Martin J () The perfect club
Benchmarks: effective performance evaluation of supercomputers.
International Journal of Supercomputing Applications ():–

Performance Analysis Tools

Michael Gerndt
Technische Universität München, München, Germany

Synonyms
Performance measurement; Profiling; Tracing

Definition
Performance analysis tools support the application
developer in tuning the application’s performance for
a given architecture. They measure performance data
during the execution of the application and provide
means to analyze and interpret the provided data and
to detect performance bottlenecks.

http://www.ncsa.illinois.edu/BlueWaters/
http://www.highproductivity.org/
http://www.highproductivity.org/
http://icl.cs.utk.edu/projectsfiles/hpcc/pubs/hpcc-challenge-benchmark05.pdf
http://icl.cs.utk.edu/projectsfiles/hpcc/pubs/hpcc-challenge-benchmark05.pdf
http://dx.doi.org/10.1007/978-0-387-09766-4_2306
http://dx.doi.org/10.1007/978-0-387-09766-4_2038
http://dx.doi.org/10.1007/978-0-387-09766-4_2058

 P Performance Analysis Tools

Discussion

Introduction
The development of high-performance applications
requires a careful adaptation of the program to the
underlying parallel architecture. Due to the manifold
interrelations of the parallel program and the archi-
tecture, designing an application with optimal per-
formance on parallel systems is almost impossible.
Therefore, the application goes through a tuning cycle
which consists of measuring performance, detecting
performance bottlenecks, and applying program trans-
formations. The assumption for this tuning approach is
that the performance will be the same for different runs
with the same resources and the same input data.

Performance analysis tools support the programmer
in the first two tasks of the tuning cycle. Performance
data are gathered during program execution by moni-
toring the application’s execution. Performance data are
either summarized and stored as profile data or all the
details are stored in so-called trace files.

In addition to application monitoring, performance
analysis tools also provide the means to analyze and
interpret the provided performance data and thus to
detect performance problems. The following sections
present the basis of performance analysis, i.e., the execu-
tion event model, the different monitoring techniques,
and the most important analysis techniques.

Event Model
The abstraction of the execution used in performance
analysis is an event model. Events happen at a specific
point in time in a process or thread. Events belong to
event classes, such as enter and exit events of a user-
level function, start and finish events of a send operation
inMPI programs, iteration assignment in work-sharing
constructs in OpenMP, and cache misses in sequential
execution.

In profiling, information about events of the same
class is aggregated during runtime. For example, cache
misses are counted, the time spent between the start
event and finish event of a send operation is accumu-
lated as the communication time of the call site, and the
time for taking a scheduling decision in work-sharing
loops is accumulated as parallelization overhead.

In tracing, specific information is recorded for each
event in a trace file. The event record written to the file

at least contains a time stamp and an identification of
the executing process or thread. Frequently, additional
information is recorded, such as the message receiver
and the message length or the scheduling time for an
iteration assignment.

Monitoring
The general technique for collecting information about
events is called Monitoring. Three different monitoring
techniques can be distinguished: hardware monitoring,
sampling, and instrumentation. These techniques are
explained in the next three paragraphs.

Hardware Monitoring
Themonitoring of applications should not influence the
program’s execution. Therefore, hardware monitoring
is required for frequent events, such as events in the
processor or the caches. If cache misses, e.g., were to
be counted via hardware interrupts, the intrusionwould
be immense. Therefore, current microprocessors pro-
vide event counters. A small number of hardware coun-
ters can be used to count a large number of different
event types. Careful selection of the right event type is
thus required.

The low-level APIs for accessing the system’s hard-
ware counters are quite different on different architec-
tures. Therefore, standard APIs have been developed.
The most notable one is the Performance Application
Programming Interface (PAPI) [,].

Sampling
Many profiling tools such as the Unix prof utility col-
lect statistical performance information via sampling.
The processor is interrupted with a certain frequency,
known as the sampling rate.The interrupt routine deter-
mines the address of the current instruction from the
program counter and adds, e.g., the length of the sam-
pling interval to the accumulated execution time of the
currently executed source location. Instead of the exe-
cution time, other metrics such as the number of cache
misses or of floating point operations can be used.

The most important advantage of this technique is
that its intrusion is usually low and can be controlled
by setting the sampling rate appropriately. The major
drawback is that only statistical information is gath-
ered. More precise information can be obtained via
instrumentation.

Performance Analysis Tools P

P

A similar technique is called Event-Based Sampling.
Each time a hardware counter passes a threshold, an
interrupt is generated and information is accumulated
for the current source line. The user can control the
intrusion of this method by specifying the overflow
threshold. A larger threshold will give less accurate
information, but is less intrusive.This technique is used,
e.g., in the Digital Continuous Profiling Infrastructure
(DCPI) [].

Instrumentation
In contrast to sampling, precise information about the
dynamic application behavior can be obtained via pro-
gram instrumentation. Here the application is modified
to gather information at specific events. For example, a
call to a monitoring routine is inserted at the beginning
and end of a user function to measure the execution
time of the function.

Three important instrumentation techniques can
be distinguished: source code instrumentation, object
code instrumentation, and library interposition.
In source code instrumentation, the compiler or a
source-to-source transformation tool inserts the moni-
tor calls into the program before compilation. In object
code instrumentation, the instrumenter patches the
machine code.

While the first approach is very portable, object
code instrumentation is extremely machine specific. It
depends not only on the machine’s instruction set but
also on the compiler, the OS, and the object format.
On the other hand, with object code instrumentation,
the source language is unimportant and programs can
even be instrumented for which no source code is
available.

Object code instrumentation can also be applied
at runtime. While the program is already executing,
instrumentation is inserted only at the required places.
This technique was developed within the Paradyn envi-
ronment and is supported in DYNINST [,] and
DPCL [,].

While object code instrumentation is limited to
code regions that can be deduced from the binary, it
is typically limited to functions or basic blocks. Source
code instrumentation can be used to gather information
for arbitrary program regions.

Instrumentation of functions can also be done
based on a technique called library interposition. This

technique is used to instrument MPI functions via the
MPI profiling interface (PMPI). It determines for all
MPI functions a second name via the PMPI prefix.
The implementor of an MPI monitoring library can
writewrappers forMPI functions and call the PMPI ver-
sion inside. Within the wrapper, code can be inserted to
collect performance information.Thewrapper library is
then linked to the application before the original MPI
library so that the wrappers are called instead of the
original functions.

Analysis
The techniques and tools for performance analysis pre-
sented in this entry all assume that the performance
behavior of the application is the same over mul-
tiple experiments. Based on this assumption, multi-
ple experiments can be performed with different tools
or different tool configurations to identify and rank
performance problems.

The following aspects are relevant for performance
analysis tools:

. Level of detail
. Performance aspects
. Application perturbation
. Level of automation
. Scalability

Level of Detail
Three classes of performance analysis tools can be
distinguished depending on how detailed the raw
performance data are gathered and analyzed, i.e., pro-
files, profile time series, and traces.

Profiling tools aggregate the raw performance data
over possiblymultiple dimensions. Most common is the
aggregation over time, e.g., the number of cache misses
for individual functions in each process. Some tools
also aggregate the data over processes and threads or
even into a single value for the entire execution, e.g.,
the number of floating point instructions executed by an
application. Furthermore, tools apply aggregation with
respect to the program regions, i.e., functions and loops.
They either compute a flat profile, in which the data
are aggregated for each region, or a call path profile,
where the data are aggregated for each call path. Call
path profiles are very useful if the behavior of functions
is different for individual invocations. This is frequently

 P Performance Analysis Tools

the case for library routines such as basic mathematical
or MPI routines.

Some profiling tools provide not only aggregated
data over the entire execution but also time series of
snapshots of profile information. Such time series of
profile data allow the analysis of time-dependent vari-
ations of the performance behavior.

The most detailed analysis is performed by tracing
tools that store information about individual events in
so-called traces. For each event a trace record with a
time stamp is generated. A trace record includes addi-
tional data, such as the sender and receiver, the amount
of data, and an identification of the message sent by
an MPI send operation. The trace records are typically
stored in trace files that are subsequently analyzed for
performance problems.

While profiling tools have the advantage that
the amount of performance data is not proportional to
the execution time of the application, tracing tools gen-
erate performance data proportional to the execution
time and the number of processes and threads. On the
other hand, profiling tools are limited in the analyses
they can perform.

Performance Aspects
Most performance analysis tools are specialized for spe-
cific performance aspects. Tuning an application with
respect to all possible performance problems probably
requires the use of multiple performance analysis tools.
The performance tools are typically specialized in one
or multiple of the following aspects:

. Execution time
. Instruction execution
. Memory access behavior
. Memory usage
. IO
. Parallel execution

The most basic and thus the most frequently used
performance tools provide the user with a time profile.
This allows the user to detect the hot code regions, i.e.,
those regions where most of the execution time is spent
and thus have the highest potential for performance
improvement.

The next class of tools supports the programmer in
the inspection of performance problems related to the
utilization of the resources in an individual core. These

tools typically provide information about the instruc-
tionmix, highlight expensive operations such as divides
or type conversions, point out exception handling, or
identify pipeline stalls, e.g., due to branch mispredic-
tions. They are based onmeasurements performed with
the processor’s hardware performance counters.

Very critical for the performance of applications is
the memory access behavior. The long latency of mem-
ory accesses and the limited bandwidth require that
most of the data accesses are served from the on-chip
caches. Programs must be carefully tuned for data local-
ity so that the caches are most effectively used. Perfor-
mance tools support the analysis of the access behavior
with information about the number of cache hits and
misses as well as the number of stall cycles for memory
references. More precise information can be obtained
from cache simulators which are fed with memory ref-
erence traces of the application. Cache simulation tools,
e.g., can determine the distribution of misses across
miss classes, i.e., compulsory, conflict, capacity, and
invalidation misses. They can identify false sharing as
well as compute higher-level metrics, such as the reuse
distance.

Another memory-related analysis supported by per-
formance analysis tools is the inspection of memory
usage. Performance problems might arise from allocat-
ing too much memory may be due to the size of data
structures or to memory leakages.

High-performance applications tend to work on
huge data sets. Thus performance tools need to help in
the identification of performance problemswith respect
to file IO. Information can be obtained from runtime
libraries implementing IO operations as well as from
the OS.

Many performance analysis tools support the detec-
tion of performance problems with respect to the paral-
lel execution. Certainly, the two standard programming
interfaces MPI and OpenMP have the best support.

Profiling and tracing tools are available for message
passing programs that support the analysis of commu-
nication among the processes. More elementary tools
providemeasurements on the time spent in certainMPI
functions and the amount of data transferred between
communication partners, while advanced tools provide
information on different waiting times that indicate cer-
tain performance problems, e.g., the late sender prob-
lem where the sender of a message arrives later at the

Performance Analysis Tools P

P

send than the receiver at the receive statement. Tools for
message passing also indicate load balancing problems
based on the execution time of collective operations.

Analysis tools for shared memory programming,
i.e., OpenMP, focus on load imbalances, synchroniza-
tion, and management overhead. Currently available
tools do not yet fully support the extensions ofOpenMP
., most notably the tasking concept.

Perturbation
Performance analysis tools are based onmeasurements.
If those measurements are not fully done by additional
hardware, the tool will influence or change the codes
performance behavior.The intrusion of tools has multi-
ple sources. First of all the time spent in the monitoring
library delays the execution. Another important over-
head is flushing performance data to external fileswhich
needs to be done by tracing tools since the trace records
cannot be stored in main memory. These flushes can
either be done at global synchronization points and
thus delay the execution of all processes, or they can
be done asynchronously in the processes which might
lead to artificial load imbalance. The intrusion can also
be more subtle because memory accesses of the perfor-
mance analysis tool might change the cache status, or
execution delays might even influence the algorithmic
behavior in the case of nondeterministic algorithms.

Performance analysis tools try to work around that
problem by either correcting the obtained measure-
ments or by reducing the amount of perturbation. Since
the first approach is extremely difficult many current
tools focus on the second approach.

While the overhead induced by the measurements
can be controlled in the sampling approach by select-
ing an appropriate sampling rate, instrumentation-
based measurements can be optimized by reducing
the amount of instrumentation and by tuning the
instrumentation functions. Instrumentation of pro-
gram regions that are frequently called but have only
little execution time suffer most from the instrumenta-
tion overhead. Performance analysis tools provide the
means to guide the instrumentation, such as to instru-
ment only certain region types or to exclude individual
program regions.

Of course, perturbation not only results from the
instrumentation but also from other time-consuming

activities of the analysis tools during the program’s exe-
cution. Examples are the management of trace records
and the computation of call path profiles. Various tech-
niques have been developed to tune those operations.

Automation
The ultimate goal of performance analysis tools is
to indicate performance problems and thus poten-
tial for performance improvement. Ideally, the tools
should perform that task in a fully automatic way. Full
automation requires the formalization of the perfor-
mance analysis specialist’s and the application special-
ist’s knowledge. Until now, this has only partially been
achieved.

One area of automation is program instrumenta-
tion. The techniques here range from manual instru-
mentation to fully automatic instrumentation.
Some tools require the user to insert instrumentation
into the program. Other tools provide semiautomatic
instrumentation via the compiler or a source-to-source
instrumenter. The instrumentation can be configured
to control the amount of program perturbation. Some
tools assist the user in the configuration by pointing out
regions that need not be or should not be instrumented
based on a previous analysis run. In the fully auto-
matic approach, the instrumentation is selected by the
performance analysis tool. Based on the tool’s knowl-
edge of which instrumentation is required to obtain
the required performance data, the instrumentation is
automatically configured.

Automation is also required in the actual mea-
surement of performance data via the monitoring.
The analysis tool decides automatically which data will
be measured. However for some tools, especially if they
access the hardware performance counters, the mea-
surement configuration is done manually. Depending
on the type of performance problem the user is inter-
ested in, he or she can configure the analysis to measure
certain events with the hardware counters. Itmight even
be necessary to performmultiple runs of the application
to gather all the required information.

In addition, the last step of the analysis process can
be automated. A performance analysis tool should auto-
matically extract and rank the performance problems
such that the user can start by tuning the application to
solve the most severe performance problem.

 P Performance Analysis Tools

In most tools, this step is not automated. The tools
allow the user tomanually inspect the performance data
either via textual or graphical displays. Textual informa-
tion, i.e., a sorted list of hot regions, is provided with
references to the source code or the source code is actu-
ally annotated with information such as the number of
cache misses. Graphical diagrams are typically used in
tracing tools. The dynamic behavior is visualized via
timeline diagrams, statistics are shown as bar charts,
and many other chart types are utilized to visually rep-
resent the huge data sets. It is the task of the user of those
tools to select the right displays to identify performance
problems.

Only a few tools automate the last step and automat-
ically identify performance problems and their severity.
The tools use a formal description of potential per-
formance problems and verify whether those known
potential problems can be found based on the mea-
sured data.

Fully automatic tools automate the whole process,
covering instrumentation, measurement, and analysis.
The search for performance problems is driven based on
formalized potential performance problems. Following
a certain search strategy, they deduce from the per-
formance problem specifications which information is
required, measure the data, verify whether a problem
exists, and report the found problems to the tool user.

Fully automatic tools can perform the analysis
online. Online tools have also been developed for
semiautomatic tools that visualize performance data,
but those require that the user performs the analysis
while the application is executing. This is not appropri-
ate especially since large-scale application runs are only
possible in batch jobs. Therefore, most of those tools
are offline tools. They produce the data by monitor-
ing an actual run of the application but the inspection
and analysis of the data is done independently of the
execution.

Scalability
Especially in the field of high-performance computing,
performance analysis tools have to be scalable. Applica-
tions are run on thousands of processors and the perfor-
mance behavior cannot be studied for scaled down runs.
Tools have to be scalable with respect to the number
of processors as well as to the duration of the applica-
tion’s execution. Typical limitations of the tools are the

time spent in the analysis as well as the space require-
ments to store and process performance data. Scalability
is obviously a big issue for tracing tools, but profiling-
based tools can also easily run into scalability problems
if hundreds of thousands of processors are used as in the
current BlueGene systems. This problem can be allevi-
ated by processing the data in a tree analysis network
(MRNet []).The leaves measure the performance data
and while the data travel up the tree, they are aggregated
to coarsen the information.

Several techniques for tracing tools have been devel-
oped to increase scalability. Most important is to reduce
the size of the traces.Therefore, compression techniques
as well as “on the fly” detection of recurring patterns in
traces are applied. A few tools also parallelize the analy-
sis step. SCALASCA post-processes the trace in parallel
on the processors of the application after this has ter-
minated. Vampir uses a parallel analysis server that
processes the trace files while the user is working with
the analysis tool to inspect the measured performance
data. Periscope processes the performance data within
a hierarchy of analysis agents while the application is
executing.

Representative Tools
This section identifies a few performance analysis tools
and gives a short characterization. Thementioned tools
are only a very small set of examples from the numerous
tools developed.

Gprof is the GNU Profiler tool. It provides a flat pro-
file and a callpath profile for the program’s functions.
The measurements are done by instrumentation.

Vtune is a performance analysis tool from Intel that pro-
vides flat and callpath profiles based on sampling
and instrumentation, as well asmeasurements based
on the hardware performance counters. The mea-
surements can be inspected on source and assembler
level.

pfmon is a tool for accessing the hardware performance
counters developed by HP. It can be used to col-
lect certain events specified via command line argu-
ments. Application-specific as well as system-wide
measurements can be performed.

ompP is a profiling tool forOpenMP developed at Tech-
nische Universität München and University of Ten-
nessee []. It is based on instrumentationwithOpari

Performance Analysis Tools P

P

[] and determines certain overhead categories of
parallel regions.

HPC Toolkit from Rice University uses statistical sam-
pling to collect a performance profile []. It relates
the measurements back to the original source code
based on a static analysis of the binary and presents
the data by annotating the sources.

Tau is a flexible performance environment from the
University of Oregon []. It can generate applica-
tion profiles as well as traces. While it provides tools
to analyze the profiles, traces can be analyzed with
Vampir.

Vampir is a commercial trace-based performance anal-
ysis tool from the Technische Universität Dresden
[]. It provides a powerful visualization of traces
and scales to thousands of processors based on a
parallel visualization server.

Paraver is a trace visualization and analysis environ-
ment from the Barcelona Supercomputing Center.
It provides powerful analysis services such as auto-
matic phase detection [] and clustering.

Paradyn from the University of Wisconsin was the first
automatic online analysis tool []. Its performance
consultant guided the search for performance bot-
tlenecks while the application was executing.

SCALASCA is an automatic performance analysis tool
developed at the Forschungszentrum Jülich []. It is
based on performance profiles as well as on traces.
The automatic trace analysis determines MPI wait
time via a parallel trace replay after the application
execution on the application’s processors.

Periscope currently under development at the Tech-
nische Universität München follows the approach of
Paradyn and performs an online search for perfor-
mance problems []. It is based on a hierarchy of
analysis agents to fulfill scalability requirements of
current and future HPC systems.

Related Entries
�Intel� Thread Profiler
�OpenMP Profiling with OmpP
�Parallel Tools Platform
�Periscope
�PMPI Tools
�Scalasca
�Tau
�Vampir

Bibliography
. Digital continuous profiling infrastructure. www.unix.digital.

com/dcpi
. Dynamic probe class library. oss.software.ibm.com/

developerworks/opensource/dpcl/
. Dyninst api. www.dyninst.org
. Performance application programming interface. icl.cs.utk.edu/

papi
. Buck B, Hollingsworth JK ()An API for runtime code patch-

ing. Int J High Perform Comput Appl ():–
. Casas M, Badia RM, Labarta J () Automatic phase detec-

tion of MPI applications. In: Bischof C et al (eds) Proceedings
of the international conference on parallel computing (ParCo
’), Jülich/Aachen. Advances in Parallel Computing, vol , IOS,
Amsterdam, pp –

. DeRose L, Hoover T, Hollingsworth JK ()The dynamic probe
class library – an infrastructure for developing instrumentation
for performance tools. IBM,

. Dongarra J, London K, Moore S, Mucci P, Terpstra D, You H,
Zhou M () Experiences and lessons learned with a portable
interface to hardware performance counters. In: IPDPS ’: Pro-
ceedings of the th international symposium on parallel and
distributed processing,Washington, DC, IEEEComputer Society,
p .

. Fürlinger K, Gerndt M, Dongarra J () Scalability analysis
of the SPEC OpenMP benchmarks on large-scale shared mem-
ory multiprocessors. In: Shi Y, van Albada GD, Dongarra J,
Sloot PMA (eds) Computational science – ICCS , Beijing.
Lecture notes in computer science, vol . Springer, Berlin,
pp –

. Geimer M, Wolf F, Wylie BJN, Mohr B () Scalable par-
allel trace-based performance analysis. In: Proceedings of the
th European PVM/MPI users’ group meeting on recent
advances in parallel virtual machine and message passing inter-
face (EuroPVM/MPI), Bonn, pp –

. Gerndt M, Ott M () Automatic performance analysis with
Periscope. Concurr Comput Pract Exp ():–

. Miller BP, Callaghan MD, Cargille JM, Hollingsworth JK, Irvin
RB, Karavanic KL, Kunchithapadam K, Newhall T () The
Paradyn parallel performance measurement tool. IEEE Comput
():–

. Mohr B, Malony AD, Shende SS, Wolf F () Towards a perfor-
mance tool interface for OpenMP: An approach based on direc-
tive rewriting. In: Proceedings of the third workshop onOpenMP
(EWOMP’), Barcelona, September

. Müller MS, Knüpfer A, Jurenz M, Lieber M, Brunst H, Mix H,
Nagel WE () Developing scalable applications with Vampir,
VampirServer and VampirTrace. In: Bischof C et al (eds) Proceed-
ings of the international conference on parallel computing (ParCo
), Jülich/Aachen. Advances in Parallel Computing, vol , IOS,
Amsterdam, pp –

. Roth PC, Arnold DC,Miller BP ()MRNet: A software-based
multicast/reduction network for scalable tools. In: Proceedings
of the conference on supercomputing (SC), Phoenix,
November

http://dx.doi.org/10.1007/978-0-387-09766-4_58
http://dx.doi.org/10.1007/978-0-387-09766-4_56
http://dx.doi.org/10.1007/978-0-387-09766-4_270
http://dx.doi.org/10.1007/978-0-387-09766-4_57
http://dx.doi.org/10.1007/978-0-387-09766-4_61
http://dx.doi.org/10.1007/978-0-387-09766-4_59
http://dx.doi.org/10.1007/978-0-387-09766-4_60
www.unix.digital.com/dcpi
www.unix.digital.com/dcpi
oss.software.ibm.com/developerworks/opensource/dpcl/
oss.software.ibm.com/developerworks/opensource/dpcl/
www.dyninst.org
icl.cs.utk.edu/papi
icl.cs.utk.edu/papi
http://dx.doi.org/10.1007/978-0-387-09766-4_113

 P Performance Measurement

. Shende SS, Malony AD ()TheTAU parallel performance sys-
tem. Int J High Perform Comput Appl, ACTS Collection Special
Issue, SAGE, ():–

. Tallent NR, Mellor-Crummey JM, Adhianto L, Fagan MW,
KrentelM () Diagnosing performance bottlenecks in emerg-
ing petascale applications. In: SC ’: Proceedings of the confer-
ence on high performance computing networking, storage and
analysis, Portland, ACM, New York, pp –

PerformanceMeasurement

�Performance Analysis Tools

PerformanceMetrics

�Metrics

Periscope

Michael Gerndt
Technische Universität München, München, Germany

Definition
Periscope is an automatic performance analysis tool for
highly parallel applications written in MPI or OpenMP.
It performs an online search for performance proper-
ties in a distributed fashion. The properties found by
Periscope point to areas of parallel programs that might
benefit from further tuning.

Discussion

Introduction
Performance analysis is an important step in the devel-
opment of parallel applications for high-performance
architectures. Due to the complexity of the architec-
ture of these machines, applications can typically not be
designed to be most efficient. Experiments are required
to understand the performance obtained and to identify
possible areas in the code that might profit from further
tuning.

Performance analysis tools help the developer in
analyzing the application’s performance. During an exe-
cution of the application with a typical input data set

and a typical number of processors, performance data
are measured. Afterwards those data are analyzed to
detect performance problems of the application. Cer-
tain tuning actions can then be selected, e.g., selection
of different compiler optimization switches or mod-
ifications of the source code, based on the detected
performance problems.

Periscope is a performance analysis tool developed
at Technische Universität München. It is a representa-
tive for a class of automatic performance analysis tools
automating the whole analysis procedure. Specific for
Periscope is that it is an online tool and it works in a
distributed fashion.Thismeans that the analysis is done
while the application is executing (online) and by a set
of analysis agents that are searching for performance
problems in a subset of the application’s processes
(distributed).

Periscope was inspired by the work of the European
American APART working group and especially by
Paradyn developed at University of Wisconsin, Madi-
son. Paradyn uses a performance consultant that does
dynamic instrumentation and searches for bottlenecks
based on summary information during the program’s
execution.

Automation in Periscope is based on formalized
performance properties, e.g., inefficient cache usage
or load imbalance. Those properties are formalized
in the APART Specification Language (ASL). Based
on a repository of performance properties the analy-
sis agents can search for those properties in the pro-
gram execution under investigation. They automati-
cally determine which properties to search for, which
measurements are required, which properties were
found, and which are more specific properties to look
for in the next step. The low-level performance data
are analyzed in a distributed fashion and only high-
level performance properties are finally reported to the
user, significantly reducing the amount of data to be
inspected by the user.

Performance Properties
The basis for the analysis is the formalization of perfor-
mance properties. Each performance property consists
of a condition, a severity, and a confidence. The condi-
tion uses measured performance data and static infor-
mation to decide whether the property holds and thus is
a performance problem. The confidence defines whether

http://dx.doi.org/10.1007/978-0-387-09766-4_267
http://dx.doi.org/10.1007/978-0-387-09766-4_69

Periscope P

P

the property is only a hint for a performance prob-
lem or a proof. For example, properties based on static
information, e.g., the number of prefetch operations,
are typically only hints since the actual execution of
those operations depends on runtime values. The sever-
ity states the importance of the performance problem
in comparison to the other found performance prob-
lems. Typically, the severity is calculated as the amount
of time lost due to the problem.

Search Strategies
The overall search for performance problems is deter-
mined by search strategies. A search strategy defines in
which order an analysis agent investigates the multidi-
mensional search space of properties, program regions,
and processes. Many of Periscope’s search strategies are
multistep strategies, i.e., they consist of multiple search
steps. A very important concept for multistep strategies
is a program phase which is determined by a certain
repetitive program region. A good example for such
a phase region is the body of the time loop in sci-
entific simulations where each iteration simulates one
time step.

In a first search step, the strategy determines a set
of candidate properties, e.g., load imbalance at a bar-
rier in a certain process.The agent then requests certain
measurements from the monitor linked into the appli-
cation. Afterwards the application is released for one
execution of the phase. At the end of the phase the exe-
cution is stopped again and the measured performance
data are returned to the agent. Based on the measure-
ments the agent evaluates the candidate properties and
determines the set of found properties. If a refinement
is possible, i.e., for the found properties more precise
properties are available, a next analysis step is started
with a new candidate property set.

Periscope provides search strategies for single-node
performance, e.g., searching for inefficient use of the
memory hierarchy, MPI, and OpenMP.

Architecture
Periscope consists of an agent hierarchy shown in Fig. .
The leaves in the hierarchy are the analysis agents that
perform the actual performance analysis. Each analysis
agent is responsible for a subset of the application’s
processes. It communicates with the monitor linked
with the application processes.TheMRImonitor serves

Application Processes

Analysis Agents

Communication
Agents

Performance Analysis Agent Network

Frontend

Periscope GUI

USERSUSERS

Master
Agent

MRI
Monitor

MRI
Monitor

MRI
Monitor

Periscope. Fig. Architecture of periscope

two purposes: It performs the measurements of per-
formance data requested by the analysis agent and it
controls the execution of the process which means, it
takes commands from the agent to release or stop the
execution.

The root of the hierarchy is the master agent which
takes commands from the frontend, propagates the
commands to the analysis agents, and provides the list
of found performance properties to the frontend. The
agents in the middle of the hierarchy are responsible for
forwarding information among the analysis agents and
the master agent.

The search is controlled by the frontend. It invokes
the application and creates the agent hierarchy. How
many agents are created depends on the number of
application processes and of additional processors pro-
vided in the batch job. The processes and agents are
mapped to the available processors in a way that com-
munication is local with respect to the physical inter-
connection network topology.

 P Periscope

After the application and the agent hierarchy have
been started, the frontend starts the search by prop-
agating a command to all the analysis agents. If an
agent requests a new experiment, i.e., an execution of
the program phase with measurements to evaluate per-
formance properties, the master agent starts the next
experiment via another command. The reason for the
global synchronization is that Periscope also supports
automatic restart. If another experiment is requested but
the application terminated, the application can auto-
matically be restarted by the frontend.

On top of the frontend, Periscope provides a graph-
ical user interface based on Eclipse and the Parallel
Tools Platform (PTP). The GUI allows the program-
mer to define a project with all the source files, start a

performance analysis via the frontend and,most impor-
tant, to investigate the performance properties found by
Periscope.

Figure illustrates Periscope’s GUI. In the lower
right a table view visualizes all the properties found
in the application. It provides multi-criteria sorting to
identify the most severe performance problems, filter-
ing, regular expressions searching, multi-level group-
ing, as well as clustering. The clustering can be used to
identify groups of processes with the same performance
problems.

Double clicking on one of the properties will focus
on the source code of the respective region in the central
source editor. On the right, an outline view of the
entire program is provided. It presents an overview of

Periscope. Fig. Inspection of performance properties with the graphical user interface of Periscope

Petri Nets P

P

the regions, the nesting of regions, and the number of
properties found for a region. Selecting a region in the
outline view canbe used to enforce that only those prop-
erties found for that region are shown in the region
view below.

Summary
Periscope is an automatic performance analysis tool for
large-scale parallel systems. It performs a distributed
online search for performance properties. The proper-
ties are formalized and the set of properties can be easily
extended. Specialized search strategies determine how
the analysis agents walk the multidimensional search
space.The result of a search is a set of high-level perfor-
mance properties that can be inspected via a graphical
user interface implemented as an Eclipse plugin.There-
fore, the user can follow an integrated approach of pro-
gram development in Eclipse and performance analysis
with Periscope.

Related Entries
�Parallel Tools Platform
�Performance Analysis Tools
�Scalasca
�Tracing

Bibliographic Notes and Further
Reading
A recent overview of Periscope can be found in [].
The steps in applying Periscope to parallel applications
as well as results obtained with Periscope are reported
in []. Details on the graphical user interface can be
found in []. More information on the formalization of
performance properties with the APART Specification
Language (ASL) can be found in [].

Bibliography
. Gerndt M, Ott M () Automatic performance analysis with

Periscope Concurr Comput Pract Exp ():–
. Benedict S, Petkov V, Gerndt M () PERISCOPE: an online-

based distributed performance analysis tool. In: rd parallel tools
workshop, Dresden. Springer, Berlin, pp –, ISBN ---
-

. Petkov V, Gerndt M () Integrating parallel application devel-
opment with, performance analysis in periscope. In: th interna-
tionalworkshop onhigh-level progammingmodels and supportive
environments (HIPS), Atlanata, GA, April –. Springer,
Berlin, pp –, ISBN ----

. Fahringer T, Gerndt M, Riley G, Träff JL () Specification of
performance problems in MPI-programs with ASL. In: Interna-
tional conference on parallel processing (ICPP’), Toronto. IEEE
Computer Society, Washington, DC, pp –

Personalized All-to-All Exchange

�All-to-All

Petaflop Barrier

�Roadrunner Project, Los Alamos

Petascale Computer

Petascale computers are those capable of executing at
least floating point operations per second. This
number of operations per second is known as a petaflop.

Related Entries
�Roadrunner Project, Los Alamos
�Top

Petri Nets

Jack B. Dennis
Massachusetts Institute of Technology, Cambridge,
MA, USA

Synonyms
Place-transition nets

Definition
A Petri Net is a graph model for the control behavior of
systems exhibiting concurrency in their operation. The
graph is bipartite, the twonode types being placesdrawn
as circles, and transitions drawn as bars. The arcs of the
graph are directed and run from places to transitions
or vice versa. Each place may be empty, or hold a finite
number of tokens. The state of a Petri net is the distribu-
tion of tokens on its places, called amarking of the net.

http://dx.doi.org/10.1007/978-0-387-09766-4_56
http://dx.doi.org/10.1007/978-0-387-09766-4_267
http://dx.doi.org/10.1007/978-0-387-09766-4_61
http://dx.doi.org/10.1007/978-0-387-09766-4_2058
http://dx.doi.org/10.1007/978-0-387-09766-4_411
http://dx.doi.org/10.1007/978-0-387-09766-4_411
http://dx.doi.org/10.1007/978-0-387-09766-4_157
http://dx.doi.org/10.1007/978-0-387-09766-4_2223
http://dx.doi.org/10.1007/978-0-387-09766-4_34

 P Petri Nets

A transition is enabled if each of its input places holds at
least one token. Firing a transition means removing one
token from each input place and adding one token to
each output place. A run of a Petri net is any sequence of
firings of enabled transitions; a run defines a sequence
of markings. Because many transitions may be enabled
in a state, there are oftenmany possible distinct runs of a
Petri net. Hence, a Petri net represents a kind of nonde-
terministic state machine, but in a convenient form for
modeling and analyzing concurrent systems. Various
extensions and generalizations of Petri nets have been
found useful in applications.

Discussion

Introduction
The study of Petri nets began in with the disserta-
tion of Carl Adam Petri entitled Communication with
Automata. Petri’s work was promoted in the United
States by Anatol Holt and Fred Commoner, who intro-
duced the graphical form of Petri nets now widely used.
Further development of properties and applications of
Petri nets was done at the MIT Laboratory for Com-
puter Science and elsewhere, and promulgated through
workshopmeetings held in and . Extensions to
Coloured Petri nets, Timed Petri nets, and Continuous
Petri nets have been developed for modeling additional
properties of concurrent systems. Methods based on
Petri nets have become widely used for control aspects
of all sorts of concurrent systems, fromdigital hardware
through cooperating computation processes, to diverse
applications in areas such as project management and
even biological systems.

Definition and Examples
Figure shows a Petri net with three places (the cir-
cles) and three transitions (the bars) interconnected by
directed arcs. The graph is bipartite, the two node types
being places and transitions. The places may be empty,
or may hold any finite number of tokens, represented by
black dots.The distribution of tokens is called amarking
of the Petri net and represents its state. Operation of a
Petri net produces a sequence of markings by successive
applications of the firing rule:

FiringRule:A transition in a Petri net is enabled if each
of its input places holds at least one token. Firing an
enabled transition means removing one token from

each of its input places and adding one token to each
of its output places.

Note that, because more than one transition may be
enabled in a marking of a Petri net, the net is, in
general, a nondeterministic system, that is, many dis-
tinct firing sequences may exist starting from a given
initial marking.

Example: A Barber Shop
Figure is a Petri net model for a barber shop. The net
includes a place waiting that models a waiting area
where customers wait for the barber to serve them, and
two places that model the barber’s status, busy or idle.
The transitions model events that can occur: A firing of
transition enter corresponds to a customer entering
the waiting area of the shop. Transition serve corre-
sponds to a customer moving to the barber’s chair for
service. Transition done corresponds to the customer
leaving the barber chair after receiving service, with the
barber becoming idle. This model of the barber shop
permits any number of customers to enter the waiting
room, but models the constraint that only one customer
can occupy the barber chair. This net is an unbounded
Petri net because the number of tokens in thewaiting
place can increase indefinitely.

Figure shows a model of a barber shop with two
additional features: there are now two barbers and the
waiting area has bounded capacity. Place available
models the number of empty spaces for customers in the
waiting area and place occupiedmodels the occupied
spaces. This addition turns the model into a bounded

WAITING

ENTER SERVE
DONE

IDLE

BUSYWaiting Area

The Barber

Petri Nets. Fig. The barber shop with one barber. Places

are shown as circles; transitions are shown as bars. Two

tokens represent customers in the waiting area. A third

token represents the waiting state of the barber

Petri Nets P

P

ENTER

SERVE_A

DONE_A

IDLE_A

BUSY_A

DONE_B

IDLE_B

BUSY_B

SERVE_B

AVAILABLE

OCCUPIED

Waiting Area

The Barbers

Petri Nets. Fig. The barber shop with two barbers. Either barber may serve a waiting customer

Petri net. Note that there are now two transitions that
model a customer moving to a barber chair. These tran-
sitions share an input place and are said to be in conflict.
This structure represents the nondeterminacy of decid-
ing which barber serves the next customer in the case
that both barbers are idle. A Petri net in which there can
be no conflict is determinate, that is, its behavior is such
that all firing sequences are equivalent, even though
operation is nondeterministic.

If one wishes more detail about the discipline of the
waiting area, it can be modeled as a FIFO queue, as
shown in Fig. . This net contains as many stages as
desired (the capacity of the queue), each stage modeling
a single queued item (waiting customer).

Themodeling techniques shown by the barber shop
example illustrate application of Petri nets to such sys-
tems as pipelined processors and production systems
for manufacturing or business workflow. Petri nets lack
means to model the timing of actions represented by
transition firings, but extensions have been developed
to remedy this limitation (See below).

Petri Nets and Finite StateMachines
The Finite State Machine (FSM) model, a well-known
tool used in the design and analysis of switching cir-
cuits and other engineering artifacts, lacks the ability

provided by Petri nets to capture the spatial structure
of systems in a way that can aid study and analysis. This
is illustrated by the FIFO queue of Fig. . By means of
N places and N transitions, a queue of length Nmay be
represented, including the occupancy state of each posi-
tion in the queue. An equivalent FSM description of the
queue would have N states. This difference is a strong
argument in favor of using Petri nets in system design
and analysis.

Petri nets can exhibit some interesting properties.
A Petri net with a marking may have no enabled tran-
sitions; no firings are possible and the net is in dead-
lock. Also, as seen in Fig. , a Petri net can have firing
sequences inwhich the number of tokens in someplaces
increases without limit. Two definitions restrict Petri
nets to subclasses most useful for modeling certain
kinds of realistic systems:

Liveness: A Petri net with marking M is live if and only
if given any marking M′ reachable from the given
marking M, and any transition T of the net, there
exists a firing sequence starting from M′ that fires
transition T.

Safety: A Petri net is N-safe for a given marking if
and only if no marking reachable from the given
marking has more than N tokens in any place. A net
and marking that is -safe is said to be safe.

 P Petri Nets

ENTER

EMPTY

FULL

STAGE 1 STAGE NSTAGE 2

REMOVE

Petri Nets. Fig. Model of a FIFO queue with stage occupied

Note that the definition of live is formulated to rule out
nets containing an initialization sequence that is never
executed again in steady-state operation of the net.

A Petri net cannot be both live and N-safe for a
marking unless the net is connected, that is, the net
contains a directed path between any pair of nodes.
The nets of Fig. and Fig. are both live as marked, but
only Fig. is safe because the waiting place in Fig.
may accumulate tokens without limit. The class of live
and safe Petri nets is especially interesting because these
properties are characteristic of real systems that con-
tinue in operation indefinitely and are implementable
with finite hardware.

Conflict and Determinacy
Conflict in a Petri net occurs if, in some reachable mark-
ing, two transitions are both enabled and share an input
place. A Petri net and marking for which no conflict is
possible is determinate. The net in Fig. has no conflict
and is determinate; the net of Fig. is not determinate
because transitions serve_a and serve_b may be in
conflict, representing the choice of barber in the case
that both servers are idle.

The Petri Net Hierarchy
A convenient hierarchy of classes of Petri nets having
increasing modeling power may be specified by syntac-
tic constraints on the structure of a net. The simplest of
these subclasses is the marked graphs, which are Petri
nets in which each place is an input place of exactly one
transition and an output place of exactly one transition.
These nets describe systems whose behavior is an end-
less repetition of a pattern of events. The name marked
graphs is given to these nets because they may be drawn
with each place, together with its input arc and output
arc, represented as a simple arc, as shown in Fig. b for

the net of Fig. a. Transitions are drawn as dots instead
of bars, and a marking is shown by placing tokens on
the arcs. A marked graph with an initial marking that is
live must be connected, and can be shown to be N-safe
for some N.

Another simple class of Petri nets is the state
machines, which are nets in which each transition has
exactly one input and one output place. A state machine
with a one-token marking corresponds to an FSM with
as many states as the net has places. A Petri net can be
both a marked graph and a state machine. Such a net is
very simple and consists of a set of disconnected cycles
of alternating transitions and places.

Both marked graphs and state machines are deter-
minate because conflict is impossible.

Free choice Petri nets constitute the next interesting
level toward greater expressivity. Free choice nets per-
mit a constrained form of conflict to be represented,
corresponding to decisions in a digital system, or to
choices based on predicates in a system description.
A Petri net is a free choice net if and only if for each place
P that is an input place of two transitions t and t; place
P is the only input place of t and t. This ensures that
in any marking in which P holds at least one token, it is
guaranteed that a free choice is available – both t and
t are enabled and either may fire, disabling the other.
Figure b is not a free choice net because the decision
is conditioned by a barber being available. Free choice
Petri nets that have conflict are not determinate for any
live marking.

A Petri net is a simple Petri net if and only if it
has no transition with more than one shared input
place. Simple nets can represent systems in which arbi-
tration occurs among several activities competing for
shared resources, behavior not representable with free
choice nets.

Petri Nets P

P

t3

t2

t4t1 t2

t4t1

t3a b

Petri Nets. Fig. A Petri net (a) and its representation as a marked graph (b)

The subclasses of Petri nets form a hierarchy of
strictly increasing expressive power:

Marked Graphs State Machines
Free Choice Nets
Simple Nets

All Basic Petri Nets

Extensions
The basic Petri nets described above have found uses in
describing digital systems, modeling process synchro-
nization schemes using Dijkstra’s P and V operations,
and monitors, and for the control structures under-
lying dataflow graphs. Methods have been developed
for converting Petri nets into logic designs. Outside
the realm of computer science, Petri nets have found
application inmodelingmanufacturing systems, among
many other uses.

On the other hand, basic Petri nets are cumber-
some and limited for application to many important
problems in the analysis of concurrent systems such
as performance analysis and job/work flow manage-
ment. To make the formalism more generally useful,
several extensions of basic Petri nets have been devel-
oped, and a rich body of formal analysis and application
for these extensions has evolved. The most important
extensions are Coloured Petri Nets, Timed Petri Nets,
and Continuous/Hybrid Petri Nets.

Coloured Petri Nets
In a Coloured Petri Net, each token may be labeled with
a color from an arbitrary set of colors. The use of col-
ored tokens permits more compact representations of
large and complex systems. If transitions are permitted

tomap the colors of input tokens to new colors of output
tokens, a powerful model of arbitrary parallel compu-
tations is realized. If the set of colors is finite, then any
colored Petri net has an equivalent basic Petri net, albeit
possibly very large. Thus, the coloring of tokens does
not increase the expressive power of basic nets. How-
ever, adding hierarchy to the colored Petri nets permits
recursive computation to be directly represented.

Timed Petri Nets
One important extension is the addition of explicit tim-
ing. One form of this extension is to associate a fixed
time with each transition. The interpretation is that
when an enabled transition fires, tokens are removed
from its input places; then, at the specified later time,
tokens are added to the output places of the transi-
tion. In this interpretation, a transition may have sev-
eral instances of operation progressing simultaneously.
This may be seen as a generalization of the Program
Evaluation and Review Technique (PERT) of critical
path planning for project scheduling. Association of
time specifications with places and with arcs has also
been studied. Analysis methods have been developed
for determining bounds on the overall execution time
of timed Petri nets. Another variation associates a prob-
ability distribution of operation times with each tran-
sition, leading to a generalization of queuing networks.
Timed Petri nets have significant applications in perfor-
mance analysis of computer systems, workflow analysis
and manufacturing systems.

Continuous and Hybrid Petri Nets
Another direction in extension of Petri nets ismotivated
by applications to industrial control and manufacturing

 P PETSc (Portable, Extensible Toolkit for Scientific Computation)

systems. In a continuous Petri net, tokens carry values
that are nonnegative real numbers and are thought of
as comprising an infinite number ofmarks. Transitions
are permitted to fire continuously so long as each input
place holds a positive, nonzero value. In such a net, a
place can model, for example, the amount of liquid in
a tank, the number parts in a bin, or the rate of traf-
fic flow on a highway. In a hybrid Petri net, two kinds
of places are distinguished: continuous places that hold
real values, and discrete places that hold a nonnegative,
integral number of tokens as in basic Petri nets. Tran-
sitions are also of two kinds. By means of a transition
that has both a continuous place and a discrete place as
inputs, turning a flow on and off can be modeled.

Many variations and extensions of the Petri net
model have arisen in the years since the early develop-
ments. The principal record of these developments has
been the series of conference proceedings published by
Springer as Lecture Notes in Computer Science (LNCS)
under the title Applications and Theory of Petri Nets.

Related Entries
�CSP (Communicating Sequential Processes)
�Data Flow Graphs
�Synchronization

Bibliographic Notes and Further
Reading
The study of Petri nets began with the doctoral disserta-
tion of Carl Adam Petri [].The graphical expression of
Petri nets now widely used was presented by Holt and
Commoner []. TheMIT Project MAC report in which
this paper is published includes annotated references to
significant prior work in the field. The book by James
Peterson [] was the first exposition of the theory and
applications of Petri nets in book form, and includes
a good summary of the subject’s early development
and its literature. The survey paper of Murata [] is an
excellent summary of work on basic Petri nets through
the s. Timed Petri nets were first studied by Ram-
chandani [] in and many versions of Petri nets
dealing with system timing have been studied since [].
The three volumes by Jensen provide a comprehensive
treatment of “colored” Petri nets []. Continuous and
hybrid Petri nets are treated by David and Alla [],
where a review of basic net theory and extensive bib-
liographic notes may be found. The principal current

record of advances and applications in Petri nets is the
series of Conferences now titled “Applications andThe-
ory of Petri Nets” []. An interesting web site is main-
tained by Carl Adam Petri and Wolfgang Reisig [],
and these two authors are the contributors of the Petri
net entry in scholarpedia [].

Bibliography
. David R, Alla H () Discrete, continuous, and hybrid Petri

Nets. Springer, Berlin
. Girault C, Valk R () Petri Nets for systems engineering.

Springer, New York
. Holt A, Commoner F () Events and conditions. In: Record of

the project MAC conference on concurrent systems and parallel
computation. ACM, New York, pp –

. Jensen K (,) Coloured Petri Nets: basic concepts, anal-
ysis methods and practical use. Monographs in theoretical com-
puter science, vol , . Springer, Berlin

. Murata T (Apr) Petri nets: properties, analysis and applica-
tions. Proc IEEE ():–

. Peterson JL () Petri Net theory and the modeling of systems.
Prentice-Hall, Englewood Cliffs

. Petri CA () Kommunikation mit automaten. Schriften des
Institutes für Instrumentelle mathematik. Ph.D. dissertation,
University of Bonn, Germany

. Petri CA. http://www.informatik.uni-hamburg.de/TGI/
mitarbeiter/profs/petri_eng.html

. Petri CA, Reisig W () Petri net. Scholarpedia ():.
http://www.scholarpedia.org/article/Petri_net

. Ramchandani C (Feb) Analysis of asynchronous concurrent
systems by Petri Nets. Technical Report MIT/LCS/TR-, MIT
Laboratory for Computer Science

. Springer () Application and theory of Petri Nets. In: Infor-
matik fachberichte; (–) Advances in Petri Nets. Lecture
notes in computer science, vol ; (–) Applications and
theory of Petri Nets. Lecture notes in computer science, vol .
Springer, Berlin

PETSc (Portable, Extensible
Toolkit for Scientific
Computation)

Barry Smith
Argonne National Laboratory, Argonne, IL, USA

Definition
The Portable, Extensible Toolkit for Scientific com-
putation (PETSc, pronounced PET-see) is a suite of

http://dx.doi.org/10.1007/978-0-387-09766-4_186
http://dx.doi.org/10.1007/978-0-387-09766-4_294
http://dx.doi.org/10.1007/978-0-387-09766-4_252
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html
http://www.scholarpedia.org/article/Petri_net

PETSc (Portable, Extensible Toolkit for Scientific Computation) P

P

open source software libraries for the parallel solu-
tion of linear and nonlinear algebraic equations. PETSc
uses the Message Passing Interface (MPI) for all of its
parallelism.

Discussion
The numerical solution of linear systems with sparse
matrix representations is at the heart of many numer-
ical simulations, from brain surgery to rocket science.
These linear systems arise from the replacement of con-
tinuum partial differential equation (PDE) models with
suitable discrete models by the use of the finite ele-
ment, finite volume, finite difference, collocation, or
spectral methods and then possibly linearization by a
fully implicit strategy such as Newton’smethod or semi-
implicit techniques. The resulting linear systems can
range from having a few thousand unknowns to billions
of unknowns, thus requiring the largest parallel com-
puters currently available. Large-scale linear systems
also arise directly in optimization, economics model-
ing, and many other non-PDE-based models.Themain
focus of PETSc is in solving linear systems arising from
PDE-based models, though it is applied to other prob-
lems as well. PETSc also has limited support for dense
matrix computations (through an interface to LAPACK
and PLAPACK); but if the computation involves exclu-
sively dense matrices, then PLAPACK or ScaLAPACK
are appropriate libraries.

PETSc is a software library intended for use by
mathematicians, scientists, and engineers with a solid
understanding of programming, some basic under-
standing of the issues in parallel computing (though
they need not have programmed inMPI), a basic under-
standing of numerical analysis, and an understanding of
the basics of linear algebra. It has a higher and deeper
learning curve than do software packages such as Mat-
lab. PETSc can be used directly from Fortran /,
C/C++, and Python, with bindings that are specialized
to each language.

PETSc is used by a variety of parallel PDE
solver libraries, including freeCFD, a general-purpose
CFD solver; OpenFVM, a finite-volume-based CFD
solver; OOFEM, an object-oriented finite element
library; libMesh, an adaptive finite element library;
and DEAL.II, a sophisticated C++- based finite ele-
ment simulation package. Magpar is a widely used,

parallel micromagnetics package written using PETSc.
For large-scale optimization and the scalable computa-
tion of eigenvalues, PETSc has two companion pack-
ages, TAO and SLEPc, developed by other groups,
that use all of the PETSc parallelism and linear solver
infrastructure.

The emphasis of the PETSc solvers is on itera-
tive methods for the solution of linear systems, but
it provides its own efficient sequential direct (LU and
Cholesky factorization-based) solvers as well as inter-
faces to several parallel direct solvers; see Table . PETSc
has a unique configuration system that will automat-
ically download and install the multitude of optional
packages that it can use. In addition to the direct solvers,
it can use several parallel partitioning packages as well
as preconditioners in the hypre and TRILINOS solver
packages; see Table . A key design feature of PETSc
is the composibility of its linear solvers. Two or more
solvers may be combined in various ways: by split-
tings, multigrid, and Schur complementing to produce
efficient, problem-specific solvers.

The parallelism in PETSc is usually achieved by
domain decomposition. The geometry on which the
PDE is being solved is divided among the processes,

PETSc (Portable, Extensible Toolkit for Scientific)

Computation. Table Partial list of direct solvers available

in PETSc

Complex numbers Parallel
Factorization Package support support

LU PETSc x

SuperLU x

SuperLU_Dist x x

MUMPS x x

Spooles x x

PaStiX x x

IBM’s ESSL

UMFPACK

LUSOL

Cholesky PETSc x

Spooles x x

MUMPS x x

PaStiX x x

DSCPACK x

 P PETSc (Portable, Extensible Toolkit for Scientific Computation)

PETSc (Portable, Extensible Toolkit for Scientific)

Computation. Table Partial list of preconditioners

available in PETSc

Complex
numbers Parallel

Preconditioner Package support support

ICC(k) PETSc x

ILU(k) PETSc x

Euclid/hypre x

ILUdt pilut/hypre x

Jacobi PETSc x x

SOR PETSc x

Block Jacobi PETSc x x

Additive
Schwarz

PETSc x x

Geometric
multigrid

PETSc x x

Algebraic BoomerAMG/hypre x
multigrid ML/TRILINOS x

Approximate SPAI x
inverse Parasails/hypre x

and each process is assigned the unknowns and matrix
elements associated with that domain. The commu-
nication required during the solution process is then
nearest neighbor ghost (halo) point updates and global
reductions (using MPI_Allreduce()) over a MPI com-
municator. PETSc has optimized code based on the
inspector-executor model to perform the ghost point
updates.

In addition to its broad support for linear solvers,
PETSc provides robust implementations of Newton’s
method for nonlinear systems of equations. These
include a variety of line-search and trust-region
schemes for globalization. The solvers are extensible,
allowing easy provision of user-provided convergence
tests, line-search strategies, and damping strategies.
Several variants of the Eisenstat–Walker convergence
criteria for inexact Newton solves are available. There is
also support for grid sequencing to efficiently generate
high-quality initial solutions for fine grids. To compute
the Jacobians commonly needed for Newton’s method,
PETSc provides coloring of sparsematrices and efficient
computation of the Jacobian entries using the coloring

with finite differencing, ADIC (automatic differentia-
tion for C programs), and ADIFOR (automatic differ-
entiation for Fortran programs). All of these run
scalably in parallel.

PETSc also provides a family of implicit and explicit
ODE integrators, including an extensive suite of explicit
Runge–Kutta methods. The implicit methods support
all the functionality of the PETSc nonlinear solvers and
use of any of the Krylov methods and preconditioners.
The more sophisticated adaptive time-stepping ODE
integrators of SUNDIALS can also be used with PETSc
and allow use of all PETSc preconditioners.

Provided in PETSc is an infrastructure for profil-
ing the parallel performance of the application and
the solvers it uses, including floating-point operations
done,messages, and sizes ofmessages sent and received.
It provides the results in a table that indicates the per-
centage of time spent in the various parts of the solver
and application.

Development of PETSc was started in by Bill
Gropp, Lois Curfman McInnes, and Barry Smith at
Argonne National Laboratory. They were joined shortly
later by Satish Balay. Aside from a small amount of
National Science Foundation funding in the mid-s,
the USDepartment of Energy has provided the funding
for PETSc development and support. Since its origin,
PETSc has received software contributions from many
of its users.

PETSc was the winner of a R&D award.
It also has formed the basis of three Gordon Bell Prize
application codes in , , and as well as
several Gordon Bell finalists.

Library Design
PETSc follows the distributed-memory single program
multiple data (SPMD) model of MPI, with the flexi-
bility of having different types of computation running
on different processes. Specifically PETSc allows users
to create their own MPI communicators and designate
computations for PETSc to perform on each of these
communicators. A typical application code written with
PETSc requires very few MPI calls by the developer.

PETSc is written in C using the object-oriented
programming techniques of data encapsulation, poly-
morphism, and inheritance. Opaque objects are defined
that contain function tables (using C function point-
ers) used to call the code appropriate for the underlying

PETSc (Portable, Extensible Toolkit for Scientific Computation) P

P

data structures. The six main abstract classes in PETSc
are the Vec vector class for managing the system solu-
tions, the Mat matrix class for managing the sparse
matrices, the KSP Krylov solver class for managing the
iterative accelerators, the PC preconditioner class, the
SNES nonlinear solver class, and theTS ordinary differ-
ential equations (ODE) integrator class.TheDM helper
class manages transferring information about grids and
discretizations into theVec andMat classes. Virtually all
of the parallel communication required by PETSc (the
MPI message passing and collective calls) takes place
within these objects. The constructor for each PETSc
object takes an MPI communicator, which determines
on what processes the object and its computations will
reside. The most common are MPI_COMM_WORLD,
in which the object is distributed across all the user’s
processes (and computations involving the object will
require communication within that communicator),
and MPI_COMM_SELF, in which the object lives on
just that process and no communication is ever required
for its computations.

A typical application that requires linear solvers has
a structure as depicted in Fig. . In this example, the
DA object, which is an implementation of theDM class
for structured grids, is used to construct the needed
sparse matrix and vectors to contain the solution and
right-hand side; it serves as a factory for Vec and Mat
objects. Once the numerical values of the matrix are set,
in this case by calls to MatSetValues(), the matrix is
provided to the linear solver via KSPSetOperators().
Since MatSetValues() may be called with values that
belong to any process, the calls to MatAssemblyBe-
gin/End() are used to communicate the values to the
process where they belong. Values may be set into vec-
tors either by using VecSetValues(), with a conclud-
ing VecAssemblyBegin/End(), as with matrices, or by
accessing the array of values using VecGetArray(),
VecGetArrayF(), or DAVecGetArray() and putting
values directly into the array. In this latter case, no
communication of off-process values is done by PETSc.

A typical application that requires nonlinear solvers
has a structure as depicted in Fig. . In addition to
serving as a factory for the Jacobian sparse matrix
and solution vector (as in the linear case), the DA
object is used as a factory for the ghosted represen-
tation of the solution xlocal and performs the ghost
point updates withDAGlobalToLocal() in the routines

ComputeFunction() and ComputeJacobian(). These
call-back routines are registered with the nonlinear
solver object SNES with the routines SNESSetFunc-
tion() and SNESSetJacobian(). They are called when
needed by the solver class.

A typical application that requires ODE integra-
tion has a structure as depicted in Fig. . This simple
example uses the Python interface to TS where the
entire discretized ODE (in this case using the back-
ward Euler method) is provided directly as the function
and Jacobian. It is also possible to provide the func-
tion and Jacobian of the right-hand side of the ODE,
that is, ut = F(u), and have the TS class manage the
ODEdiscretization, with either an explicit or an implicit
scheme.

Each PETSc object has a methodXXXSetFromOp-
tions() that allows runtime control of almost all of the
solver options through the PETSc options database.
Command-line arguments (as keyword value pairs)
are stored in a simple database. The XXXSetFromOp-
tions() routines then search the options database, select
any appropriate options, and apply them. For example,
the option -ksp_type gmres is used by KSPSetFro-
mOptions() to call KSPSetType() to set the solver type
to GMRES. The options database may also be used
directly by user code.

Also common to all classes are the XXXView()
methods. These provide a common interface to print-
ing and saving information about any object to a
PetscView object, which is an abstract representation
of a binary file, a text file (like stdout), a graphical
window for drawing, or a Unix socket. For example,
MatView(MatA,PetscViewer v)will present thematrix
in a wide variety of ways depending on the viewer type
and its state. Calling the viewermethod on a solver class,
such as SNES, displays the type of solver and all its
options; see Fig. for an example. Note that the figure
displays both the nonlinear and linear solver options.

For the Mat class, PETSc provides several realiza-
tions. The most important of these are the following:

● Compressed sparse row (CSR) format
● Point-block version of the CSR where a single index

is used for small dense blocks of the matrix
● Symmetric version of the point-block CSR that

requires roughly one-half the storage
● User-provided format (via inheritance)

 P PETSc (Portable, Extensible Toolkit for Scientific Computation)

program main ! Solves the linear system J x = f
#include "finclude/petscalldef.h"

use petscksp; use petscda
Vec x,f; Mat J; DA da; KSP ksp; PetscErrorCode ierr
call PetscInitialize(PETSC_NULL_CHARACTER,ierr)

call DACreate1d(MPI_COMM_WORLD,DA_NONPERIODIC,8,1,1,PETSC_NULL_INTEGER,da,ierr)
call DACreateGlobalVector(da,x,ierr); call VecDuplicate(x,f,ierr)
call DAGetMatrix(da,MATAIJ,J,ierr)

call ComputeRHS(da,f,ierr)
call ComputeMatrix(da,J,ierr)

call KSPCreate(MPI_COMM_WORLD,ksp,ierr)
call KSPSetOperators(ksp,J,J,SAME_NONZERO_PATTERN,ierr)
call KSPSetFromOptions(ksp,ierr)
call KSPSolve(ksp,f,x,ierr)

call MatDestroy(J,ierr); call VecDestroy(x,ierr); call VecDestroy(f,ierr)
call KSPDestroy(ksp,ierr); call DADestroy(da,ierr)
call PetscFinalize(ierr)
end
subroutine ComputeRHS(da,x,ierr)

#include "finclude/petscalldef.h"
use petscda
DA da; Vec x;PetscErrorCode ierr;PetscInt xs,xm,i,mx; PetscScalar hx;PetscScalar, pointer::xx(:)
call DAGetInfo(da,PETSC_NULL_INTEGER,mx,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,...
call DAGetCorners(da,xs,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,xm,PETSC_NULL_INTEGER,...
hx = 1.d0/(mx-1)
call VecGetArrayF90(x,xx,ierr)
do i=xs,xs+xm-1

xx(i) = i*hx
enddo
call VecRestoreArrayF90(x,xx,ierr)
return
end
subroutine ComputeMatrix(da,J,ierr)

#include "finclude/petscalldef.h"
use petscda
Mat J; DA da; PetscErrorCode ierr; PetscInt xs,xm,i,mx; PetscScalar hx
call DAGetInfo(da,PETSC_NULL_INTEGER,mx,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,...
call DAGetCorners(da,xs,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,xm,PETSC_NULL_INTEGER,...
hx = 1.d0/(mx-1)
do i=xs,xs+xm-1
if ((i .eq. 0) .or. (i .eq. mx-1)) then
call MatSetValue(J,i,i,1d0,INSERT_VALUES,ierr)

else
call MatSetValue(J,i,i-1,-hx,INSERT_VALUES,ierr)
call MatSetValue(J,i,i+1,-hx,INSERT_VALUES,ierr)
call MatSetValue(J,i,i,2*hx,INSERT_VALUES,ierr)

endif
enddo
call MatAssemblyBegin(J,MAT_FINAL_ASSEMBLY,ierr); call MatAssemblyEnd(J,MAT_FINAL_ASSEMBLY,ierr)
return
end

PETSc (Portable, Extensible Toolkit for Scientific Computation). Fig. Example of linear solver usage in PETSc

in Fortran

● “Matrix-free” representations, where the matrix
entries are not explicitly stored, but instead matrix-
vector products are performed by using one of the
following:
– Finite differencing of the function evaluations

– Automatic differentiation of the function evalu-
ations using either ADIC, for C language code,
or ADIFOR, for Fortran language code

– User-provided C, C++, Fortran, or Python
routine

PETSc (Portable, Extensible Toolkit for Scientific Computation) P

P

static char help[] = "Solves -Laplacian u - exp(u) = 0, 0 < x < 1\n\n";
#include "petscda.h"
#include "petscsnes.h"

int main(int argc,char **argv) {
SNES snes; Vec x,f; Mat J; DA da;
PetscInitialize(&argc,&argv,(char *)0,help);

DACreate1d(PETSC_COMM_WORLD,DA_NONPERIODIC,8,1,1,PETSC_NULL,&da);
DACreateGlobalVector(da,&x); VecDuplicate(x,&f);
DAGetMatrix(da,MATAIJ,&J);

SNESCreate(PETSC_COMM_WORLD,&snes);
SNESSetFunction(snes,f,ComputeFunction,da);
SNESSetJacobian(snes,J,J,ComputeJacobian,da);
SNESSetFromOptions(snes);
SNESSolve(snes,PETSC_NULL,x);

MatDestroy(J); VecDestroy(x); VecDestroy(f); SNESDestroy(snes); DADestroy(da);
PetscFinalize();
return 0;}

PetscErrorCode ComputeFunction(SNES snes,Vec x,Vec f,void *ctx) {
PetscInt i,Mx,xs,xm; PetscScalar *xx,*ff,hx; DA da = (DA) ctx; Vec xlocal;
DAGetInfo(da,PETSC_IGNORE,&Mx,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,...
hx = 1.0/(PetscReal)(Mx-1);
DAGetLocalVector(da,&xlocal);DAGlobalToLocalBegin(da,x,INSERT_VALUES,xlocal);DAGlobalToLocalEnd(da,x,...
DAVecGetArray(da,xlocal,&xx); DAVecGetArray(da,f,&ff);
DAGetCorners(da,&xs,PETSC_NULL,PETSC_NULL,&xm,PETSC_NULL,PETSC_NULL);

for (i=xs; i<xs+xm; i++) {
if (i == 0 || i == Mx-1) ff[i] = xx[i]/hx;
else ff[i] = (2.0*xx[i] - xx[i-1] - xx[i+1])/hx - hx*PetscExpScalar(xx[i]);

}
DAVecRestoreArray(da,xlocal,&xx); DARestoreLocalVector(da,&xlocal);DAVecRestoreArray(da,f,&ff);
return 0;}

PetscErrorCode ComputeJacobian(SNES snes,Vec x,Mat *J,Mat *B,MatStructure *flag,void *ctx){
DA da = (DA) ctx; PetscInt i,Mx,xm,xs; PetscScalar hx,*xx; Vec xlocal;
DAGetInfo(da,PETSC_IGNORE,&Mx,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,...
hx = 1.0/(PetscReal)(Mx-1);
DAGetLocalVector(da,&xlocal);DAGlobalToLocalBegin(da,x,INSERT_VALUES,xlocal);DAGlobalToLocalEnd(da,x,...
DAVecGetArray(da,xlocal,&xx);
DAGetCorners(da,&xs,PETSC_NULL,PETSC_NULL,&xm,PETSC_NULL,PETSC_NULL);

for (i=xs; i<xs+xm; i++) {
if (i == 0 || i == Mx-1) { MatSetValue(*J,i,i,1.0/hx,INSERT_VALUES);}
else {
MatSetValue(*J,i,i-1,-1.0/hx,INSERT_VALUES);
MatSetValue(*J,i,i,2.0/hx - hx*PetscExpScalar(xx[i]),INSERT_VALUES);
MatSetValue(*J,i,i+1,-1.0/hx,INSERT_VALUES);

}
}
MatAssemblyBegin(*J,MAT_FINAL_ASSEMBLY);MatAssemblyEnd(*J,MAT_FINAL_ASSEMBLY);*flag = SAME_NONZERO_...
DAVecRestoreArray(da,xlocal,&xx);DARestoreLocalVector(da,&xlocal);
return 0;}

PETSc (Portable, Extensible Toolkit for Scientific Computation). Fig. Example of nonlinear solver usage in PETSc in C

Because PETSc is focused on PDE problems, row-
based storage of the sparse matrices (each pro-
cess holds a collection of contiguous rows of the
matrix) is satisfactory for higher-performance paral-
lel matrix operations. Hence, all of PETSc’s built-in
sparse matrix implementations use this approach. Cus-
tom formats can be provided to handle parallelism for

“arrow-head” matrices where row-based distribution
does not scale.

PETSc has the point-block-based storage of sparse
matrices for faster performance. The speed of sparse
matrix computations is essentially always strongly
limited by the memory bandwidth of the system, not
by the CPU speed. The reason is that sparse matrix

 P PETSc (Portable, Extensible Toolkit for Scientific Computation)

import sys, petsc4py
petsc4py.init(sys.argv)
from petsc4py import PETSc
import math

class MyODE:
def __init__(self,da):
self.da = da

def function(self, ts,t,x,f):
mx = da.getSizes(); mx = mx[0]; hx = 1.0/mx
(xs,xm) = da.getCorners(); xs = xs[0]; xm = xm[0]
xx = da.createLocalVector()
da.globalToLocal(x,xx)
dt = ts.getTimeStep()
x0 = ts.getSolution()
if xs == 0: f[0] = xx[0]/hx; xs = 1;
if xs+xm >= mx: f[mx-1] = xx[xm-(xs==1)]/hx; xm = xm-(xs==1);
for i in range(xs,xs+xm-1):
f[i] = (xx[i-xs+1]-x0[i])/dt + (2.0*xx[i-xs+1]-xx[i-xs]-xx[i-xs+2])/hx - hx*math.exp(xx[i-xs+1])

f.assemble()
def jacobian(self,ts,t,x,J,P):
mx = da.getSizes(); mx = mx[0]; hx = 1.0/mx
(xs,xm) = da.getCorners(); xs = xs[0]; xm = xm[0]
xx = da.createLocalVector()
da.globalToLocal(x,xx)
x0 = ts.getSolution()
dt = ts.getTimeStep()
P.zeroEntries()
if xs == 0: P.setValues([0],[0],1.0/hx); xs = 1;
if xs+xm >= mx: P.setValues([mx-1],[mx-1],1.0/hx); xm = xm-(xs==1);
for i in range(xs,xs+xm-1):
P.setValues([i],[i-1,i,i+1],[-1.0/hx,1.0/dt+2.0/hx-hx*math.exp(xx[i-xs+1]),-1.0/hx])

P.assemble()
return True # same_nz

da = PETSc.DA().create([9],comm=PETSc.COMM_WORLD)
f = da.createGlobalVector()
x = f.duplicate()
J = da.getMatrix(PETSc.MatType.AIJ);

ts = PETSc.TS().create(PETSc.COMM_WORLD)
ts.setProblemType(PETSc.TS.ProblemType.NONLINEAR)
ts.setType(’python’)

ode = MyODE(da)
ts.setFunction(ode.function, f)
ts.setJacobian(ode.jacobian, J, J)

ts.setTimeStep(0.1)
ts.setDuration(10, 1.0)
ts.setFromOptions()
x.set(1.0)
ts.solve(x)

PETSc (Portable, Extensible Toolkit for Scientific Computation). Fig. Example of ODE usage in PETSc in Python

computations involve few operations per matrix entry.
For example, for matrix-vector products there are two
floating-point operations (a multiply and an addition)
for each entry in the matrix. Memory-bandwidth-
limited computations are sometimes said to hit the
memory wall. In the CSR format, there is a column

index for every nonzero entry in the matrix, and the
matrix-vector product is coded as y[i] = ∑j<nzi

j=nzi− aa[j]∗
x[aj[j]]. For each multiply in the computation, a
double-precision value of aa[] must be loaded as well
as an integer value aj[]. Thus, bytes are loaded per
multiply. In the point-block CSR format (with block

PETSc (Portable, Extensible Toolkit for Scientific Computation) P

P

SNES Object:
type: ls
line search variant: SNESLineSearchCubic
alpha=0.0001, maxstep=1e+08, minlambda=1e-12

maximum iterations=50, maximum function evaluations=10000
tolerances: relative=1e-08, absolute=1e-50, solution=1e-08
KSP Object:
type: fgmres
GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization
GMRES: happy breakdown tolerance 1e-30

maximum iterations=10000, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
right preconditioning
using UNPRECONDITIONED norm type for convergence test

PC Object:
type: mg
MG: type is FULL, levels=2 cycles=v

Coarse grid solver -- level 0 presmooths=1 postsmooths=1 -----
KSP Object:(mg_coarse_)
type: preonly

PC Object:(mg_coarse_)
type: lu
LU: out-of-place factorization
matrix ordering: nd

LU: tolerance for zero pivot 1e-12
LU: factor fill ratio needed 1.875

Matrix Object:
type=seqaij, rows=64, cols=64
total: nonzeros=1024, allocated nonzeros=1024
using I-node routines: found 16 nodes, limit used is 5

Down solver (pre-smoother) on level 1 smooths=1 --------------------
KSP Object:(mg_levels_1_)
type: gmres
GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization
GMRES: happy breakdown tolerance 1e-30

maximum iterations=1
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using PRECONDITIONED norm type for convergence test

PC Object:(mg_levels_1_)
type: ilu
ILU: 0 levels of fill
ILU: factor fill ratio allocated 1
ILU: tolerance for zero pivot 1e-12

Matrix Object:
type=seqaij, rows=196, cols=196
total: nonzeros=3472, allocated nonzeros=3472
using I-node routines: found 49 nodes, limit used is 5

Matrix Object:
type=seqaij, rows=196, cols=196
total: nonzeros=3472, allocated nonzeros=3472
using I-node routines: found 49 nodes, limit used is 5

PETSc (Portable, Extensible Toolkit for Scientific Computation). Fig. Example of output using SNESView()

size bs), there is one column index per block, and the
matrix-vector product may be coded as y[bs ∗ i + k] =
∑

j<nzi
j=nzi− ∑

l<bs
l= aa[bs ∗ (j + l) + k] ∗ x[aj[j] + l]. Here,

for every (bs ∗ bs)multiplies, (bs ∗ bs) loads of aa[] are
needed, but only a single integer aj[]. For evenmoderate
block size, this approach reduces the loads per multi-
ply from to less than . bytes. In addition, the same
x[] values are used repeatedly for each k, and a smart

unrolling can keep the reused values in registers. Using
the block CSRwhen appropriate, depending on the par-
ticular processor, can improve the performance of the
sparse matrix operators by a factor of to .

The KSP Krylov accelerator class provides over a
dozen Krylov methods; see Table . The data encapsu-
lation and polymorphic design of the Vec,Mat, and PC
classes in PETSc allow the immediate use of any of their

 P PETSc (Portable, Extensible Toolkit for Scientific Computation)

PETSc (Portable, Extensible Toolkit for Scientific

Computation). Table Partial list of Krylov methods

available in PETSc

Richardson (simple) iteration, xn+ = xn + B(b − Axn)
Chebychev iteration

Conjugate gradient method

Biconjugate gradient

Biconjugate gradient stabilized (bi-CG-stab)

Conjugate residuals

Conjugate gradient squared

Minimum residuals (MINRES)

Generalized minimal residual (GMRES)

Flexible GMRES (fGMRES)

Transpose-free quasi-minimal residuals (QMR)

implementations with any of the Krylov solvers. When
possible, these are implemented to allow left, right,
or symmetric preconditioning and the use of various
norms of the residual in the convergence tests includ-
ing the “natural” (energy) norm. Custom convergence
tests and monitoring routines can be provided to any of
the solvers.

The PC preconditioners class contains a vari-
ety of both classical and modern preconditioners
including incomplete factorizations, domain decom-
position methods, and multigrid methods. See Table
 for a partial list. In addition, several precondi-
tioner classes are designed to allow composition of
solvers. These include PCKSP, which allows using
a Krylov method as a preconditioner; PCFieldSplit,
which allows constructing solvers by composing solvers
for different fields of the solution; KSPCOMPOS-
ITE, which allows combining arbitrary solvers; and
PCGALERKIN, which constructs preconditioners by
the Galerkin process (that is, as projections of the error
in some appropriate inner product). PCFieldSplit pre-
conditioners are often called block preconditioners; for
example, when one field is velocity and another pres-
sure, the resulting Stokes solver is often solved with one
block for velocity and one for pressure.

Applications
A wide variety of simulation applications have been
written by using PETSc. These include fluid flow for

aircraft, ship, and automobile design; blood flow sim-
ulation for medical device design; porous media flow
for oil reservoir simulation for energy development
and groundwater contamination modeling; modeling
of materials properties; economic modeling; struc-
tural mechanics for construction design; combustion
modeling; and nuclear fission and fusion for energy
development.

PETSc-FUNd was an early application based on
Kyle Anderson’s NASA code, FUNd, that solves the
Euler andNavier–Stokes equations including both com-
pressible and incompressible on unstructured grids.
PETSc-Fund won a Gordon Bell special prize in
running on over , of the ASCI Red processors.This
application, the dissertation work of Dinesh Kaushik,
motivated many of the early optimizations of PETSc.

The forward and inverse modeling of earthquakes
using the PETSc algebraic solvers, developed by
Volkan Akcelik, Jacobo Bielak, George Biros, Ioannis
Epanomeritakis, Antonio FernandezOmarGhattas, Eui
Joong Kim, David O’Hallaron, and Tiankai Tu, resulted
in a Gordon Bell special prize.

The algebraicmultigrid solver Prometheuswaswrit-
ten by Mark Adams using the PETSc Vec, Mat, KSP,
and PC classes. It takes advantage of the block CSR
sparse format in PETSc to maximize performance. It
was to simulate whole-bone micromechanics with over
half a billion degrees of freedom, resulting in a
Gordon Bell special prize.

PETSc has been used by several research groups
to simulate heart arrhythmias, which are the cause of
the majority of sudden cardiac deaths. These applica-
tions involve solving the nonlinear bidomain equations,
which are two coupled partial differential equations
that model the intracellular and extracellular potential
of the heart. Numerical solutions to these equations
(and more sophisticated models) explain much of the
electrical behavior of the heart, including defibrillation.

PFLOTRAN, led by Peter Lichtner of Los Alamos
National Laboratory, is a subsurface flow and contami-
nant transport simulator that uses the PETSc DM class
to manage the parallelism of its mesh, the SNES non-
linear solver class for the solutions needed at each time
step, the Mat class to contain the sparse Jacobians, and
the Vec class for its flow and contaminant’s solutions.
It has been run on up to , cores of the Cray XT

PGAS (Partitioned Global Address Space) Languages P

P

and has been used to more accurately model uranium
plumes at DOE’s Hanford site.

The UNIC neutronics package developed by Mike
Smith and Dinesh Kaushik of Argonne National Labo-
ratory has run full reactor core simulations on ,
cores of the IBM Blue Gene/P. It supports both the
second-order Pn and Snmethods with dozens of energy
groups. It parallelizes simultaneously over the geometry
by means of domain decomposition and angles using
a hierarchy of MPI communicators and PETSc solver
objects.

Related Entries
�Algebraic Multigrid
�BLAS (Basic Linear Algebra Subprograms)
�Chaco
�Distributed-Memory Multiprocessor
�Domain Decomposition
�LAPACK
�Memory Wall
�METIS and ParMETIS
�MPI (Message Passing Interface)
�PLAPACK
�Scalability
�ScaLAPACK
�SPAI (SParse Approximate Inverse)
�SPMD Computational Model
�SuperLU

Bibliographic Notes and Further
Reading
The PETSc web site is the best location for up-to-date
information on PETSc []. A complete list of external
packages that PETSc can use is given in [].More details
of the applications developed by using PETSc can be
found at []. Further details on the design decisions
made in PETSc may be found in [].

Other related parallel solver packages include
TRILINOS [], hypre [], and SUNDIALS []. TRILI-
NOS is a large, general-purpose solver package much
in the spirit of PETSc and written largely in C++; it
currently has little support for use from Fortran. The
hypre package specializes in high-performance precon-
ditioners and includes a scalable algebraic multigrid

solver BoomerAMG. SUNDIALS specializes in nonlin-
ear solvers and adaptive ODE integrators; it expects
the required linear solver to be provided by the user
or another package. Many of the solvers in these other
packages can be called through PETSc.

Bibliography
. Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D,

Knepley MG, McInnes LC, Smith BF, Zhang H () PETSc
Users Manual, Argonne National Laboratory Technical Report
ANL-/ - Revision ..

. Balay S, GroppWD, McInnes LC, Smith BF () Efficient man-
agement of parallelism in object oriented numerical software
libraries. In: Arge E, Bruaset AM, Langtangen HP (eds) Modern
software tools in scientific computing. Birkhauser Press, Boston,
pp –

. Balay S, Gropp WD, McInnes LC, Smith BF () Software for
the scalable solution of PDEs. In: Dongarra J, Foster I, Fox G,
Gropp B, Kennedy K, Torczon L,White A (eds) CRPC handbook
of parallel computing. Morgan Kaufmann Publishers

. J Dongarra’s freely available software for linear algebra. http://
www.netlib.org/utk/people/JackDongarra/la-sw.html

. List of external software packages available from PETSc. http://
www.mcs.anl.gov/petsc/petsc-as/miscellaneous/external.html

. Saad Y () Iterative methods for sparse linear systems, nd
edn. SIAM

. Partial list of applications written using PETSc. http://www.mcs.
anl.gov/petsc/petsc-as/publications/petscapps.html

. PETSc’s webpage. http://www.mcs.anl.gov/petsc
. TRILINOS’s webpage. http://trilinos.sandia.gov
. Hypre’s webpage. https://computation.llnl.gov/casc/linear_

solvers/sls_hypre.html
. SUNDIAL’swebpage. https://computation.llnl.gov/casc/sundials/

main.html

PGAS (Partitioned Global Address
Space) Languages

George Almasi
IBM, Yorktown Heights, NY, USA

Definition
PGAS (Partitioned Global Address Space) is a pro-
gramming model suited for shared and distributed
memory parallel machines, e.g., machines consisting of
many (up to hundreds of thousands of) CPUs.

http://dx.doi.org/10.1007/978-0-387-09766-4_498
http://dx.doi.org/10.1007/978-0-387-09766-4_84
http://dx.doi.org/10.1007/978-0-387-09766-4_310
http://dx.doi.org/10.1007/978-0-387-09766-4_223
http://dx.doi.org/10.1007/978-0-387-09766-4_291
http://dx.doi.org/10.1007/978-0-387-09766-4_152
http://dx.doi.org/10.1007/978-0-387-09766-4_234
http://dx.doi.org/10.1007/978-0-387-09766-4_500
http://dx.doi.org/10.1007/978-0-387-09766-4_222
http://dx.doi.org/10.1007/978-0-387-09766-4_277
http://dx.doi.org/10.1007/978-0-387-09766-4_2046
http://dx.doi.org/10.1007/978-0-387-09766-4_151
http://dx.doi.org/10.1007/978-0-387-09766-4_144
http://dx.doi.org/10.1007/978-0-387-09766-4_26
http://dx.doi.org/10.1007/978-0-387-09766-4_95
http://www.netlib.org/utk/people/JackDongarra/la-sw.html
http://www.netlib.org/utk/people/JackDongarra/la-sw.html
http://www.mcs.anl.gov/petsc/petsc-as/miscellaneous/external.html
http://www.mcs.anl.gov/petsc/petsc-as/miscellaneous/external.html
http://www.mcs.anl.gov/petsc/petsc-as/publications/petscapps.html
http://www.mcs.anl.gov/petsc/petsc-as/publications/petscapps.html
http://www.mcs.anl.gov/petsc
http://trilinos.sandia.gov
https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html
https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html
https://computation.llnl.gov/casc/sundials/main.html
https://computation.llnl.gov/casc/sundials/main.html

 P PGAS (Partitioned Global Address Space) Languages

Shared memory in this context means that the
total of the memory space is available to every pro-
cessor in the system (although access time to different
banks of this memory can be different on each proces-
sor). Distributed memory is scattered across processors;
access to other processors’ memory is usually through a
network.

A PGAS system, therefore, consists of the following
components:

● A set of processors, each with attached local storage.
Parts of this local storage can be declared private by
the programming model, and is not visible to other
processors.

● A mechanism by which at least a part of each pro-
cessor’s storage can be shared with others. Sharing
can be implemented through the network device
with system software support, or through hard-
ware shared memory with cache coherence. This,
of course, can result in large variations of memory
access latency (typically, a few orders of magnitude)
depending on the location and the underlying access
method to a particular address.

● Every shared memory location has an affinity –
a processor on which the location is local and
therefore access is quick. Affinity is exposed to
the programmer in order to facilitate performance
and scalability stemming from “owner compute”
strategies.

All PGAS programming languages contain the com-
ponents enumerated above, although the ways in which
these are made available to the programmer differ.
Every PGAS language allows programmers to distin-
guish between private and shared memory locations,
and to determine the affinity of shared memory loca-
tions. Some PGAS languages provide work distribution
primitives such as parallel loops based on affinity, or
program syntax to allow special handling of remote
(and therefore, slow) data accesses. The rest of this
entry expands some of these differences between PGAS
languages.

Discussion

Introduction
There exist a variety of choices for PGAS languages and
implementations. Some of these choices are about the

ubiquity of shared memory, the method of accessing
remote memory, or the choice of a parent program-
ming language. Consequently there is a wide variety of
PGAS-like languages and libraries:

● UPC [] (Unified Parallel C) is a language descended
from C. It extends C arrays and pointers with
shared arrays and shared pointers that address into
global memory. UPC also features a forall loop
that distributes iterations based on affinity of array
elements.

● Coarray Fortran [] is a Fortran-based language
that extends Fortran arrays with co-dimensions that
allow accessing arrays on other processes (called
images). A variant of Coarray Fortran is included in
the Fortran standard, making it the only PGAS
language with ISO approval.

● Split-C [] is a C-based PGAS language that
acknowledges the latency of remotememory accesses
by allowing split-phase, or non-blocking, transac-
tions. This allows overlapping of remote accesses
with computation, hiding latency.

● Titanium [] is a Java-based PGAS language. Tita-
nium features SPMD parallelism, pointers to shared
data and an advanced distributed array model.

● ZPL [] is an array-based language featuring the
global view programming model.

● Chapel [] is Cray Inc’s flagship modern program-
ming language. It incorporates elements of ZPL but
also features themultiresolution paradigm, allowing
users to bore down to performance from an initial
high-level program.

● X [] is a PGAS language that provides task par-
allelism as well as data parallelism. The key feature
of X is asynchronous task dispatching.

● HPF [] (High-Performance Fortran) is an early
attempt to solidify concepts from global view array
programming in a Fortran-based language. It is one
of the bases from which the PGAS concepts grew.

● MPI [] (Message Passing Interface) is the de facto
standard for high-performance parallel program-
ming. It does not implement the PGAS program-
ming model, since it does not have the concept of
global memory: All inter-processor data exchange
is explicit. However, MPI contains many ideas and
concepts relevant to PGAS and that makes it worth
mentioning in this context.

PGAS (Partitioned Global Address Space) Languages P

P

● OpenMP [] is a cross-language standard for
shared-memory programming used widely in the
high-performance computing world. The standard
allows loops to be annotated as executed in parallel,
and variables as shared or private; the newer stan-
dard has task-parallel features as well. OpenMP is
in a similar situation to MPI: not a PGAS language,
but containing many relevant concepts.

● Global Arrays [] is a library or parallel array com-
puting. It provides an abstraction of a shared array
but is backed by distributed memory. Actual mem-
ory operations are implemented by a one-sidedmes-
saging library called ARMCI.

● HTAs (Hierarchical Tiled Arrays) are another
library-based approach, providing the user with
an array abstraction embedded into the multiple
levels of a distributed system’s memory hierarchy.
HTAs can be laid out to reflect this hierarchy: levels
of cache, shared memory with affinity to partic-
ular processors, and of course nonlocal memory
accessed (under the covers) by messaging.

Local Versus Shared Memory
While all PGAS languages distinguish between local,
shared local and shared remote memory. However, the
default assignment ofmemory to the local versus shared
space greatly varies across the space of languages.

All memory in MPI (the Message Passing Interface
standard) is local, and the only way to convey infor-
mation to another process space is through messages.
In contrast all memory in OpenMP (a GAS program-
ming paradigm) is global, and the only way to make
memory locations safe fromother threads is to explicitly
denote it as thread private. InUPC,Coarray Fortran and
Split-C memory is declared as private by default, and
has to bemade global with an explicit declaration mod-
ifier. In Titanium program stacks are thread-private, but
the heap is shared by default. In the array language ZPL
and in the HTA library all arrays are shared by default.
In X, memory is local and only accessible by send-
ing units of work (“asyncs”) to the remote locations to
execute.

Computation and Address Spaces
Parallelism implies multiple processing units execut-
ing a particular program. However, the relationship
between executing programs and address spaces differs

across programming languages. In UPC and Coarray
Fortran address, spaces are tightly bound to computa-
tion. Executionunits are called threads inUPC;Address
affinity is calculated relative to UPC threads. Titanium
calls the execution units processes, and locality is bound
to these implicitly. By contrast, in Coarray Fortran it is
the address spaces themselves that are named – images –
and the implication is that each image has computation
executing on it. X completely separates the notions
of address space and computation. Every address space
is called a place, and multiple computational threads
called activities are allowed to execute simultaneously,
subject to the capability of the hardware.

Messaging
The PGAS programming model does not make any
representation about the mechanics of accessing data
in nonlocal address spaces. On distributed-memory
hardware data exchange is done by exchanging mes-
sages across any network devices are available on the
hardware in question; PGAS programming models are
implemented on top of a messaging system.

The preferred messaging system for PGAS imple-
mentations is one sided:That is, one of the participants is
active and is responsible for specifying all parameters of
the exchange (identities of sender, receiver, addresses on
both ends, amount of data), while the other participant
is passive and contributes nothing but the data itself.

Active messages are also used preferentially by PGAS
languages. Active messages vary from one-sided mes-
sages in that the passive participant is called upon to
execute user code as part of receiving the message.

Every PGAS language makes a choice as to what
extent language syntax hides the underlying messag-
ing system. In Split-C messages look like assignments,
and provisions are made to hide the large latency of
such messages. In UPC, local and shared assignments
have the same syntax, making the indistinguishable;
however, the programmer is allowed to write explicit
one-sided messages into the program. Even third-party
messages are allowed (e.g., UPC thread A specifying
a data transfer between threads B and C). Coarray
Fortran and Chapel do not allow explicit messaging.
X exposes messaging to the programmer in the form
of asyncs which are very close in concept to active
messages.

 P PGAS (Partitioned Global Address Space) Languages

References to RemoteMemory
Just as in the C language arrays and pointers are
two sides of the same coin, in PGAS languages there
is a close relationship between arrays and references
in global address space especially in those languages
rooted in C syntax, like Split-C and UPC. The syntax
and semantics of references to remote memory, includ-
ing pointer arithmetic, tends to follow that of nor-
mal pointers. The unique features of remote pointer
access revolve around hiding of access latency. Remote
accesses tend to be orders of magnitude slower than
local ones. The increased latency can be partially mit-
igated by posting remote operations as soon as the
initial conditions are met, e.g., both source data and
destination buffers are ready for transfer. However, the
operation need not be complete until the data is actu-
ally needed on the destination end. To implement this,
Split-C features the split assignment operator, and the
Berkeley UPC extensions (not part of the UPC stan-
dard) allow non-blocking remote memory operations.

Array Programming and Implicit
Parallelism
Array programming is a generic term describing a pro-
gramming environment suitable for the processing of
n-dimensional arrays. In these environments arrays are
first-class citizens, allowing compact declaration and
operators (unlike in conventional imperative program-
ming languages where arrays are handled by loops).
Some examples of array programming languages/envi-
ronments are APL, Fortran , MATLAB, and R.

The attraction of array languages is their ability to
express operations on large amounts of data with few
instructions. This has many benefits, including efficient
programming of vector processors (e.g., Intel SSE,
IBMAltivec) and graphics processors (NVIDIAGPUs),
but array languages also lend themselves to explicit
SPMDparallelism with the PGAS programmingmodel.
The programmer specifies the layout of array elements
in distributed memory. The compiler and/or the run-
time optimize array operations by staying as close as
possible to the owner compute rule, i.e., scheduling
computation on the CPUs closest to each array ele-
ment. The execution model of pure array languages is
SIMD; conceptually there is a single thread of control
acting on a large amount of data. PGAS languages have

borrowed heavily from the array processing paradigm.
The Fortran D and High-Performance Fortran (HPF)
languages allow users to specify data layouts with the
TEMPLATE and DISTRIBUTE commands. An HPF
template declares a processor layout (and hence the
structure of the partitioned address space). Global
arrays are distributed across this template. A large set
of intrinsic operators allow the concise expression of
operations like shifting/transposing/summing up array
slices.

In Coarray Fortran, array data distribution takes
the form of a co-dimension. Vector indexing in the
Fortran style is permitted. The Chapel and ZPL lan-
guages offer a refinement of the Fortran /Matlab vec-
tor syntax by means of regions, or named subsets/slices
of arrays: shifts, reductions, dimensional floods (i.e.,
broadcasts), boundary exchanges can be expressed this
way. The partitioned global address space is set up by
means of distributions, an analogue of HPF templates.
The Titanium programming language also follows this
approach.

Less conventional runtime-only approaches include
the Hierarchical Tiled Arrays (HTAs) library a pure
runtime solution that provides multiple levels of data
decomposition, one for each level of non-locality in
a modern computer architecture. The Global Arrays
toolkit also allows programmers to specify and optimiz
their own array layouts. The Matlab Parallel Toolbox
uses the spmd keyword and specialized array distribu-
tion syntax to control data parallel execution.

There is a natural affinity between array processing
and parallelism. By putting arrays into global memory
one transcends the memory limitations of any single
CPU, while still allowing for quick access to the array
fromanywhere. Array operations are generally floating-
point intensive, and therefore natural candidates for
parallelization. The large number of operations causes
more granular computation, resulting in less parallelism
overhead and therefore fewer losses to Amdahl’s law.

Well-known parallel algorithms exist formany array
operators. Some of these algorithms have good scaling
properties (i.e., low cross-CPUcommunication require-
ments, good load balance) and can be coded into the
supporting runtime system or even the compiler, allow-
ing the programmer instant access to high-performance
parallel array operations.

PGAS (Partitioned Global Address Space) Languages P

P

Parallel Loops and Explicit Data Parallelism
The parallel loop construct is an established way of
expressing explicit parallelism; Fortran’s DOALL state-
ment is one of the oldest such constructs. The essence
of the construct is to divide the iteration space of a loop
nest among processors, either statically or dynamically.
OpenMP in particular is known for a wide variety of
parallel loop options.

Several PGAS languages have their own versions of
parallel loops. Perhaps the most prominent of these is
the UPC forall construct which ties execution of
particular iterations to an affinity expression that can
depend on the induction variable of the loop. ZPL,
Chapel, X, andTitaniumallowparallel loops to be run
on affinity sets which implicitly determine which CPU
executes what iteration.

Collectives, Teams, and Synchronization
Collective operations in parallel programming lan-
guages denote operations that potentially involve more
than two participants. Collective communication con-
cepts were popularized by MPI, although basic ideas
like parallel prefix are considerably older.

Collectives are important in the context of par-
allel programming models for two major reasons.
First, collective communication primitives succinctly
express complex data movement operations, contribut-
ing to brevity and clarity in parallel programs. Second,
because of their relatively simple and well-studied
semantics, collectives are good optimization targets,
resulting in improved performance and scalability.

Collective operations are either pure data exchange
protocols (such as broadcast, scatter, and all-to-all
exchanges), or computational collectives (like reduc-
tions, where data are interpreted and recomputed dur-
ing the collective).

Another way to describe collectives is based on
whether they have synchronizing properties. For exam-
ple, the Alltoall collective causes synchronization
between every pair of tasks involved, since completion
of the collective involves bidirectional data dependen-
cies on every pair. Other collectives, like Scatter,
create much fewer data dependencies and therefore do
not cause global synchronization. Finally, Barrier is
an example of a collective that exchanges no data at all;
its only purpose is to effect a synchronization.

Collective communication is further categorized by
the number of participants. The simplest case is that of
every task in a job participating in a collective. However,
arbitrary teams of tasks (called communicators in MPI)
can be set up for collective communication.

There are several intriguing aspects that cause the
mapping of collective communication to be nonobvi-
ous in a PGAS context. The most immediate of these
involves data integrity. A natural way to think about
data integrity in collective communication is as follows:
Data buffers passed from the caller to a collective cannot
be touched (either read or written) by the user until the
collective completes. In other words, data buffers’ own-
ership changes when the collective is invoked and when
it terminates.

However, on a systemwith sharedmemory and one-
sided data access the invocation boundary is fuzzy. The
collective may be entered at different times on different
processors. For example, in the presence of one-sided
communication the calling process is unable to provide
a strong guarantee to the collective that the data buffer
will not be touched – since other processes may not yet
have entered the collective and may be in the middle of
a remote update to the very buffer being processed by
the collective.

UPC attempts to deal with this problem by allow-
ing the programmer to state pre- and post-conditions
on the boundaries of a collective operation with regard
to shared data.

Just like the PGAS model extends point-to-point
communication with non-blocking and split-phase
transactions, a similar extension can be envisaged for
collective communication. The evident advantage of
non-blocking collective communication is the ability to
overlap it with computation or other communication.
There is a case to be made for one-sided collectives.
Far from a contradiction in terms, one-sided collective
communication involves the address spaces of multiple
tasks, but possibly not every task participates actively in
the collective. An example would be a one-sided broad-
cast similar to a one-sided write operation but targeting
multiple address spaces.

Some PGAS languages, like Coarray Fortran, fea-
ture synchronization operation on teams of tasks des-
ignated on an ad hoc basis. This extends the MPI
notion in which MPI communicators are predefined

 P PGAS (Partitioned Global Address Space) Languages

and relatively heavyweight objects. Collective com-
munication exists in some of the PGAS languages
today. Titanium features teams and exchange, broad-
cast, reduction collectives. UPChas a usual complement
of collectives but no teams. Coarray Fortran features ad
hoc teams in its synchronization operations.Many array
languages feature array operations that are essentially
“syntax sugar” for collective operations.

Memory Consistency
The memory consistency model of PGAS programs
deals with the effect of writing to remote memory; i.e.,
under what conditions does a remotewrite become visi-
ble by the source, destination, or third parties. The gold
standard for memory consistency is sequential consis-
tency: In this model, the memory behaves as if it were
written by a single processor at a time.

Sequential consistency is expensive to implement in
a distributed memory system because performance can
be gated by the slowestwrite.Therefore,most PGAS lan-
guages implement aweak consistencymodel. For exam-
ple, Coarray Fortran’s consistency model is designed
to avoid conflicts and allows compiler optimization.
Ordering of memory accesses made to remote locations
is done explicitly by the programmer by breaking the
program into ordered segments. Conflicting writes in
the same segment are disallowed: The basic constraint
is that if a variable is defined in a segment, it cannot
be read or written by any other image in the same seg-
ment. UPC has two memory consistency modes, strict
and relaxed, where strict consistency is understood to
be sequential consistency. In Titanium, local dependen-
cies are observed. Shared reads and writes performed in
critical sections cannot appear to have executed outside.

Future Trends
The future of the Partitioned Global Address Space pro-
gramming model is difficult to predict. A variety of
programming languages based on the model have been
proposed, none meeting with universal approval. The
state of the art in parallel programming continues to
be MPI and OpenMP programming; it is safe to say
that the programming model has not yet fulfilled its
promise.

The face of parallel computing is continuously
changing. While single processor performance has
stopped following Moore’s law, peak performance on
the Top website continues to track an exponential

growth curve.This growth is achieved bymachines with
hybrid (shared and distributed memory) architectures,
forcing a change in programming technology. Also,
an increasing share of high-performance programming
also targets hybrid architectures of another kind: dedi-
cated accelerators based on, e.g., GPU compute engines.
OpenMP and MPI face some difficulty in coping with
these challenges, and may leave the field open for new
software technology.

Recognizing that PGAS languages are unlikely to
replace MPI, the current trend is to enhance inter-
operability, allowing coexistence of multiple languages
in the same executable. The challenge is both con-
ceptual and practical, and includes reconciliation of
the execution models, data representations, and execu-
tion semantics of different programming models. On
a practical level, the trend is toward shared infrastruc-
ture with MPI and an expression of PGAS functionality
through library calls to enable amultiplicity of language
implementations.

Related Entries
�Array Languages
�Chapel (Cray Inc. HPCS Language)
�Coarray Fortran
�Collective Communication
�Fortress (Sun HPCS Language)
�Global Arrays Parallel Programming Toolkit
�HPF (High Performance Fortran)
�Memory Models
�MPI (Message Passing Interface)
�OpenMP
�SPMD Computational Model
�Titanium
�UPC
�ZPL

Bibliography
. Chamberlain BL, Choi S-E, Christopher Lewis E, Lin C, Snyder L,

Weathersby D ()ZPL: amachine independent programming
language for parallel computers. Softw Eng ():–

. The cascade high productivity language. HIPS, :–,
. High Performance Fortran Forum (). High performance For-

tran language specification, version .. Technical report CRPC-
TR, Houston

. Nieplocha J, Palmer B, TipparajuV, KrishnanM, TreaseH,Apra E
(). Advances, applications and performance of the global
arrays shared memory programming toolkit. Int J High Perform
Comput Appl :–

http://dx.doi.org/10.1007/978-0-387-09766-4_25
http://dx.doi.org/10.1007/978-0-387-09766-4_54
http://dx.doi.org/10.1007/978-0-387-09766-4_477
http://dx.doi.org/10.1007/978-0-387-09766-4_28
http://dx.doi.org/10.1007/978-0-387-09766-4_190
http://dx.doi.org/10.1007/978-0-387-09766-4_403
http://dx.doi.org/10.1007/978-0-387-09766-4_224
http://dx.doi.org/10.1007/978-0-387-09766-4_419
http://dx.doi.org/10.1007/978-0-387-09766-4_222
http://dx.doi.org/10.1007/978-0-387-09766-4_50
http://dx.doi.org/10.1007/978-0-387-09766-4_26
http://dx.doi.org/10.1007/978-0-387-09766-4_516
http://dx.doi.org/10.1007/978-0-387-09766-4_271
http://dx.doi.org/10.1007/978-0-387-09766-4_510

Phylogenetics P

P

. NumrichRW,Reid J ()Co-array fortran for parallel program-
ming. SIGPLAN Fortran Forum ():–

. Open MP () Simple, portable, scalable SMP programming.
http://www.openmp.org/

. Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J.
MPI-the complete reference. The MPI Core, vol . MIT Press,
Cambridge, MA

. Split-C website. http://www.eecs.berkeley.edu/Research/
Projects/CS/parallel/castle/split-c/

. UPC language Specification, V., May
. The X programming language. http://x.sourceforge.net,
. Yelick K, Semenzato L, Pike G, Miyamoto C, Liblit B,

Krishnamurthy A, Hilfinger P, Graham S, Gay D, Colella P,
Aiken A (). Titanium: a high-performance Java dialect.
Concurrency Pract Experience (–):–

Phylogenetic Inference

�Phylogenetics

Phylogenetics

Alexandros Stamatakis
Heidelberg Institute for Theoretical Studies, Heidelberg,
Germany

Synonyms
Molecular evolution; Phylogenetic inference; Recon-
struction of evolutionary trees

Definition
Phylogenetics, or phylogenetic inference (bioinformat-
ics discipline), deals with models and algorithms for
reconstruction of the evolutionary history – mostly
in form of a (binary) evolutionary tree – for a set of
living biological organisms based upon their molec-
ular (DNA) or morphological (morphological traits)
sequence data.

Discussion
Introduction
The reconstruction of phylogenetic (evolutionary) trees
from molecular or morphological sequence data is a
comparatively old bioinformatics discipline, given that
likelihood-based statistical models for phylogenetic
inference were introduced in the early s, while

discrete criteria that rely on counting changes in the
sequence data date back to the late s and early s.

Computationally, likelihood-based phylogenetic
inference approaches represent a major challenge,
because of highmemory footprints and of floating point
intensive computations.

The goal of phylogenetic inference consists in recon-
structing the evolutionary history of a set of n present-
day organisms for which molecular sequence data can
be obtained. In some cases it is also possible to extract
ancient DNA or establish the morphological properties
(traits) of fossil records.

Input
The input for a phylogenetic analysis is a list of organism
names and their associated DNA or protein sequence
data. Note that the DNA sequences for distinct organ-
isms will typically have different lengths. In modern
phylogenetics, instead of using the raw sequence data,
a so-called multiple sequence alignment (MSA) of the
molecular data of the organisms is used as input. Multi-
ple sequence alignment is an important – generally NP-
hard – bioinformatics problem. The key goal of MSA is
to infer homology, that is, determine which nucleotide
characters in the sequence data share a common evo-
lutionary history. Because insertions and/or deletions
of nucleotides may have occurred during the evolu-
tionary history of the organisms (represented by their
DNA sequences), such events are denoted by insert-
ing the gap symbol - into the sequences during the
MSA process. After the alignment step, all n sequences
will have the same length m, that is, the MSA has m
alignment columns (also called: characters, sites, posi-
tions). A simple example for an MSA of DNA data for
the Human, the Mouse, the Cow, and the Chicken with
n = species and m = sites is provided below:

Cow ATGGCATATCCCA-ACAACTAGGATTC
Chicken ATGGCCAACCACTCCCAACTAGGCTTA
Human ATGGCACAT---GCGCAAGTAGGTCTA
Mouse ATGG----CCCATTCCAACTTGGTCTA

Output
The output of a phylogenetic analysis is mostly an
unrooted binary tree topology. The present-day organ-
ismsunder study (forwhichDNAdata can be extracted)
are assigned to the leaves (tips) of such a tree, whereas
the inner nodes represent common extinct ancestors.
The branch lengths of the tree represent the relative

http://www.openmp.org/
http://www.eecs.berkeley.edu/Research/Projects/CS/parallel/castle/split-c/
http://www.eecs.berkeley.edu/Research/Projects/CS/parallel/castle/split-c/
http://x10.sourceforge.net
http://dx.doi.org/10.1007/978-0-387-09766-4_443
http://dx.doi.org/10.1007/978-0-387-09766-4_2421
http://dx.doi.org/10.1007/978-0-387-09766-4_2422
http://dx.doi.org/10.1007/978-0-387-09766-4_2423
http://dx.doi.org/10.1007/978-0-387-09766-4_2423

 P Phylogenetics

evolutionary time between two nodes in the tree. A
likelihood-based phylogenetic tree for the Human, the
Mouse, the Cow, and the Chicken using the above MSA
is provided in Fig. .The biological interpretation of this
tree is that the Mouse and the Human are more closely
related to each other than to the Cow and the Chicken.

Combinatorial Optimization
In order to reconstruct a phylogenetic tree, criteria
are required to assess how well a specific tree topol-
ogy explains (fits) the underlying molecular sequence
data. One may think of this as an abstract function f ()
that scores alternative tree topologies for a given, fixed
MSA. Thus, the goal of a phylogenetic tree reconstruc-
tion algorithm is to find the tree topology with the best
score according to f (), that is, phylogenetic inference is
a combinatorial optimization problem.The algorithmic
problem in phylogenetics is characterized by the num-
ber of possible distinct unrooted binary tree topologies
for n organisms that is given by: ∏n

i=(i −). For n =

, there already exist approximately possible tree
topologies; this number corresponds to the number of
atoms in the universe. Because of the size of the tree
search space, phylogenetic inference under commonly
used scoring criteria f () such as maximum likelihood
or maximum parsimony is NP-hard. Therefore, a sig-
nificant amount of research effort in phylogenetics has

Mouse

Cow

Chicken

Human

0.1

Phylogenetics. Fig. Likelihood-based tree for the Cow,

the Chicken, the Mouse, and the Human

focused on the design of efficient heuristic search strate-
gies. Moreover, the optimization of the scoring function
f () by algorithmic and technical means also represents
an important research objective in phylogenetics.

Optimality Criteria
The most straightforward approach to phylogenetic
inference is to use distance-based methods as opposed
to character-based methods (see below). Distance-
based methods rely on initially building a symmetric
n×nmatrixD of pair-wise distances between the organ-
ismsunder consideration, which is subsequently used to
infer a tree. The optimality of a tree with given branch
lengths is determined via a least squares method that
is deployed to quantify the difference between the dis-
tances given by D and the distances induced by the
tree topology (also called patristic distances).Thus, least
squares optimization strives to find the tree that min-
imizes the difference between the pair-wise distances
induced by the tree and the corresponding distances
in D and is known to be NP-hard. Commonly used
heuristics for distance-based tree reconstruction are the
Unweighted Pair Group Method with Arithmetic mean
(UPGMA) and Neighbor Joining (NJ) methods.

Character-based methods (parsimony and likeli-
hood) directly operate on the sequences of the MSA.
The sequences are assigned to the leaves of the tree and
an overall score for the tree is computed via a post-
order tree traversal with respect to a virtual root. One
of the main properties of the likelihood and parsimony
criteria is that the respective scores (function f ()) are
invariant to the placement of such a virtual root, that
is, the scores will be identical, irrespective of where the
virtual root is placed. Parsimony and likelihood criteria
are characterized by two additional properties. ()They
assume that MSA columns have evolved independently,
that is, given a fixed tree topology, one can simultane-
ously compute a parsimony or likelihood score for each
column of the MSA. To obtain the overall tree score,
the sum over all m, where m is number of columns in
theMSA, per-column likelihood or parsimony scores at
the virtual root is computed. () Likelihood and parsi-
mony scores are computed via a post-order tree traver-
sal that proceeds from the tips toward the virtual root
and computes ancestral sequence or ancestral probabil-
ity vectors of length m at each inner node that is visited
(see Fig.).

Phylogenetics P

P

AG
Place virtual root

into arbitrary branch

Post-order
traversal

AT

AC AC

Virtual root

Ancestral vector

Ancestral vector

1.

2.

Sequence data

AC

AC AG

AT

3. Compute overall score
by summing over per-site scores

Phylogenetics. Fig. Virtual rooting and post-order traversal of a phylogenetic tree. During the post-order traversal,

ancestral state vectors are computed. The per-column parsimony or likelihood scores are summed up at the root to

obtain the overall tree score

The parsimony criterion intends to minimize the
number of nucleotide changes on a tree, while maxi-
mum likelihood strives to maximize the fit between the
tree and the data (the MSA) using an explicit statistical
model of sequence evolution. Bayesian approaches
that integrate over the tree (parameter) space using
(Metropolis-Coupled) Markov-Chain Monte-Carlo
approaches have become popular since the late s.
The underlying computational problems are similar,
because, as for maximum likelihood, execution times
are dominated (–%) by evaluations of the phyloge-
netic likelihood function.

Finally, there exist methods that do not directly use
molecular sequence data for phylogeny reconstruction.
Instead, thesemethods use gene order data as input, that
is, they strive to infer evolutionary relationships based
on distinct arrangements of corresponding genes along
the chromosome(s) of the organisms under study. In
this context, two organisms are more closely related to
each other, if the order of their corresponding genes has
not substantially changed, that is, if their chromosomes
have not been rearranged to a large extent in the course
of evolution.Theoverall goal can be formulated as infer-
ring a tree that explains the evolutionary history in a
parsimonious way, that is, with a minimum number of
gene rearrangement events. Even simple versions of this
problem are NP-hard [].

Vectorization
Both likelihood and parsimony computations can be
vectorized at a low level.

Parsimony operations for counting the number of
changes in a tree can be represented as operations on
bit vectors, since ancestral parsimony vectors require

bits per alignment column to denote the presence or
absence of one of the DNA characters A, C, G, T.
The bit-level operations that are required are: bit-wise
and, bit-wise or, bit-wise nand, and population count
(popcount; counting the number of bits that are set
to in a data word) operations. Using Streaming Single
Instruction Multiple Data (SIMD) Extensions (SSE)
vector instructions on x architectures, which are
bits wide, ancestral states (divided by) can be
computed during a single CPU cycle.

Likelihood computations can also be vectorized,
since the computation of the ancestral state at a position
c, where c = . . .m, of the alignment entails comput-
ing the probabilities P(A),P(C),P(G),P(T) of observ-
ing a nucleotide A, C, G, or T at this position. At
an abstract level, the phylogenetic likelihood computa-
tions for DNA data are dominated by a dense matrix–
matrix multiplication of a × floating point matrix
(nucleotide substitution matrix) with a × m floating
point matrix (ancestral probability vector).

The open-source phylogenetic inference program
Randomized Axelerated Maximum Likelihood
(RAxML) by Stamatakis [] provides SSE-vectorized
implementations of the likelihood and parsimony func-
tions for DNA data. Vector instructions for the like-
lihood function have also been deployed on the IBM
CELL architecture by Blagojevic et al. []. In general,
both optimality criteria allow for vectorization using
wider (e.g., -bit) vector lengths. Auto-vectorization
is not always possible because of code complexity or
because the codes need to be redesigned to take advan-
tage of vector instructions. In RAxML, for instance,
intrinsic SSE functions have been used for explicit
vectorization.

 P Phylogenetics

Distance-based methods can in principle also be
vectorized, but the specific strategy depends on the
function used to compute the pair-wise distances
between sequences and also on the heuristic search
strategy that is deployed.

Fine-Grain Parallelization
As outlined in Fig. , the computations of per-site parsi-
mony or likelihood scores are completely independent
of each other until the virtual root is reached. Given an
MSA with m = sites, this means that all per-site
scores can be computed simultaneously and in parallel.
The only limitation is that, to obtain the overall score
for the tree, the per-site scores need to be accumulated
when the virtual root is reached via a respective parallel
reduction operation.

The parallel efficiency of this approach depends on
the speed of reduction operations in a parallel system
and on the number of sites m in the MSA. Generally,
scalability increases with m since a large m will yield
a more favorable computation to synchronization (via
a reduction operation) ratio. Both vectorization and
fine-grain parallelization approaches for the likelihood
and parsimony criteria are independent of the search
strategy used.

To date, fine-grain parallelism has mainly been
adopted by likelihood-based programs, since the like-
lihood function has significantly higher memory and
computational requirements than parsimony.

In terms of parallel programming paradigms,
Open Multi-Processing (OpenMP), POSIX threads
(Pthreads), the Message Passing Interface (MPI), and
the Compute Unified Device Architecture (CUDA)
have been deployed for exploring fine-grain par-
allelism. The following types of parallel computer
architectures or accelerator devices have been used
for phylogenetic likelihood computations to date: Field
Programmable Gate Arrays (FPGAs), Graphics Pro-
cessing Units (GPUs), the IBM Playstation and
the IBM CELL processor, Symmetric Multi-Processors
(SMPs), multi-core architectures, clusters of SMPs
with InfiniBand and Gigabit-Ethernet interconnects,
the massively parallel IBM BlueGene/L, and a shared-
memory Silicon Graphics Instruments (SGI) Altix
supercomputer.

Medium-Grain Parallelization
Medium-grain parallelization refers to parallelizing the
search algorithms of parsimony- or likelihood-based
methods and is also called inference parallelism. How-
ever, because of their diversity and complexity, the par-
allelization of the steps of heuristic search algorithms
is a nontrivial task. Moreover, every parallelization will
need to be highly algorithm-specific and thereby not
be generally applicable to other phylogenetic inference
programs. An additional problem is that many mod-
ern search algorithms, as implemented for instances
by Ronquist and Huelsenbeck in MrBayes [], by
Zwickl in GARLI [], by Guindon and Gascuel in
PHYML [], by Stamatakis in RAxML [], or by
Goloboff in TNT [], are characterized by hard-to-
resolve sequential dependencies. However, other search
algorithms like IQPNNI by Minh et al. [] and
TreePuzzle by Strimmer et al. [] are straightforward
to parallelize at this level.

Coarse-Grain Parallelization
Likelihood-based and distance-based phylogenetic
inference algorithms exhibit relatively easy-to-
exploit sources of coarse-grain/embarrassing paral-
lelism, which are discussed below.

Coarse-Grain Parallelism in Distance-Based
Analyses
Parallelization of distance-based analyses is straightfor-
ward. The execution times of distance-based analyses
are dominated by the computation of the n × n sym-
metric distance matrix D that contains the pair-wise
distances between alln organisms. Alln entries ofD are
independent of each other and can hence be computed
in parallel.

Coarse-Grain Parallelism in Maximum
Likelihood Analyses
There are two sources of coarse-grain parallelism in
ML analyses. One can conduct a number of completely
independent tree searches, starting from different rea-
sonable, that is, nonrandom, starting trees. Such rea-
sonable starting trees can, for instance, be obtained
by using simpler (and less computationally intensive)

Phylogenetics P

P

methods such as neighbor joining or maximum parsi-
mony. Given a collection of distinct, nonrandom, start-
ing trees, individual ML tree searches can be conducted
to find the best-scoring (remember that ML optimiza-
tion is NP-hard) tree. Thereby, one may find a tree
with a better likelihood score than by conducting a sin-
gle search. The same technique can also be applied to
parsimony searches for finding the most parsimonious
tree.

The second source of embarrassing parallelism in
ML phylogenetic analyses is the phylogenetic boot-
strapping procedure that was proposed by Felsenstein
[]. Phylogenetic bootstrapping serves as a mecha-
nism for inferring support values, that is, for assigning
confidence values to inner branches of a phylogenetic
tree. Those confidence values at the inner branches are
usually interpreted as the certainty that a particular
evolutionary split of the set of organisms has been cor-
rectly inferred. Cutting the tree into two parts at an
inner branch generates a split (also called bipartition)
of the organisms into two disjoint sets. Therefore, the
goal consists in obtaining support values for all possi-
ble splits/bipartitions induced by the internal branches
of a tree.

The phylogenetic bootstrap procedure works as
follows: Initially, the input alignment is perturbed by
drawing columns/sites (with replacement) at random to
assemble a bootstrap replicate alignment of length m.
Thus, a bootstrapped alignment has the same numberm
of sites/columns as the original alignment, but exhibits
a different site composition. This re-sampling process
is repeated –, times, that is, –, boot-
strap replicate alignments are generated. When those
–, bootstrapped alignments have been gener-
ated, one applies the phylogenetic inference method of
choice to infer a tree for each of the replicates. Thereby,
as many trees as there are bootstrap replicates are gen-
erated.This set of bootstrap trees is then used to answer
the question: How stable is the tree topology under
slight alterations of the input data?

This collection of bootstrapped trees is then either
used to compute a consensus tree, that is, compute the
“average” tree topology or for drawing support values on
the best-knownML tree obtained on the original – non-
bootstrapped – alignment. In the latter case, one just
needs to count how frequently each bipartition of the

best-known ML tree occurs in the set of bootstrapped
trees.

The bootstrapping procedure is embarrassingly par-
allel because tree searches on individual bootstrap repli-
cates are completely independent from each other and
can be parallelized by executing the –, bootstrap
inferences on a cluster, GRID, or cloud.

A question that naturally arises in this context
is: How many bootstrap replicates are required to
obtain reliable support values? Hedges [] proposed
a theoretical upper bound for phylogenetic bootstrap-
ping. The number of required bootstrap replicates also
appears to depend on the input data.Therefore, adaptive
criteria as proposed byPattengale et al. []may bewell-
suited to determine a sufficient number of bootstrap
replicates.

Coarse-Grain Parallelism in Bayesian Analyses
Bayesian analyses exhibit a source of coarse grain par-
allelism at the level of executing multiple chains in
parallel, that is, using the Metropolis-Coupled Markov-
Chain Monte-Carlo (MC) approach (see Metropolis
et al. []). In a typical program run of the widely
used MrBayes code by Ronquist and Huelsenbeck []
for Bayesian phylogenetic inference, the program will
use three heated Markov chains that accept more rad-
ical moves in parameter space (this entails topological
moves as well as moves to sample other parameters of
the likelihood model) and a cold chain that only accepts
more conservative moves. The cold chain operates on
the tree with the currently best likelihood. However,
one of the heated chains may at some point encounter
a tree with a higher likelihood than the cold chain. In
this case, the cold chain and the heated chain with the
better tree need to exchange states, that is, the cold
chain will become a heated chain and the heated chain
will become the cold chain. Therefore, while those four
chains (three heated chains and one cold chain) may be
started as independentMessage Passing Interface (MPI)
processes, the chains will need to be synchronized after
a certain number of, for instance , generations (pro-
posals) to assess if states need to be exchanged between
chains. Thus, parallel load balance is a critical issue,
because the chains will need to run at similar speeds in
order to minimize synchronization delays. On a homo-
geneous cluster (equipped with a single CPU type) this

 P Phylogenetics

is not problematic, because the average execution times
for or , proposals are expected to be very sim-
ilar. This good expected load balance is due to the fact
that the same average number of proposal types (tree
proposal, model parameter proposal) will be executed
in each chain. Finally, completely independent runs can
be executed in an embarrassingly parallel manner.

Phylogenetics Today
Phylogenetics currently face two main challenges. One
major challenge is the significant advances in wet-lab
sequencing technologies that have led to an unprece-
dented molecular data “flood.” In fact, the amount of
publicly available molecular data increases at a signif-
icantly higher speed than the number of transistors
according to Moore’s law (see Goldman and Yang []
for a respective plot). To this end, researchers today
do not use sequence data from a single gene or just a
couple of genes to reconstruct trees for the organisms
they study. Instead, they use data from several hundreds
or even thousands of genes (e.g., Hejnol et al. []).
Thus, the number of sitesm in alignments has increased
from ,–, to over ,,. This transition
from single-/few-gene phylogenies to many-gene phy-
logenies is also reflected by the increased use of the
term phylogenomics, that is, phylogenetic inference at
(almost) the whole-genome level.

In current phylogenomic analyses the number of
organisms n ranges between and , but given
the constant innovations in wet-lab sequencing, this
number may soon increase by one order of magni-
tude. Because of sequencing innovations, input datasets
are also growing with respect to n, that is, analyses
using up to ten genes for ,–, organisms are
becoming more common. To date, the largest published
likelihood-based tree contained , organisms (see
Smith and Donoghue []) while the largest pub-
lished parsimony-based tree contained , organ-
isms (see Goloboff et al. []). The general growth in
dataset sizes poses problems with respect to the mem-
ory requirements of phylogenetic analyses, in particular
with respect to likelihood-based approaches. Memory
footprints for computing the likelihood on a single
tree, exceeding GB are not uncommon any more.
The highest reported memory footprint the author is
aware of was GB for a likelihood-based analysis

of mammalian genomes (Ziheng Yang, personal
communication, April). Memory-related prob-
lems also affect distance-based methods (for large n)
because of the space requirements of the n × n dis-
tance matrix (Wheeler [] and Price et al. [] dis-
cuss some technical solutions to this problem). Apart
from memory-related problems, the computation of
trees with more than , organisms also poses novel
algorithmic challenges. Finally, the increasing complex-
ity of the statistical models that are used for phyloge-
netic inference, such as, mixture models (e.g., Lartillot
and Philippe []), further increase the computational
complexity of likelihood-based approaches.

The second major challenge is the emergence of
multi-core systems at the desktop level and of acceler-
ator architectures such as GPUs (Graphics Processing
Units) or the IBM Cell. Those new parallel architec-
tures pose challenges regarding the parallelization of the
likelihood or parsimony functions. Given the aforemen-
tioned high memory footprints, a parallelization at a
fine-grain level, that is, multiple processors/cores work-
ing together to compute the score on a single tree, is
required. In order to be of value and to be used by the
biological user community, such parallelizations need
to be readily available at the production level and also
need to be easy to install and use. Developers of phy-
logenetics software, which has come off age by now,
are also increasingly facing software engineering issues,
because the codes have become more complex over
recent years. Programs such as RAxML or MrBayes
provide a plethora of substitution models and search
algorithms. They also allow for analyzing different data
types, for instance, binary, morphological, DNA, RNA
secondary structure (see Savill et al. [] for a discus-
sion of RNA secondary structure evolution models), or
protein data. Therefore, the phyloinformatics and HPC
communities are facing an unprecedented challenge in
trying to keep pace with data accumulation and parallel
architecture innovations to provide ever more scalable
and powerful analysis tools. HPC in phylogenetics has
thus become a key to the success of the field.

Future Directions
One of the major future challenges in phylogenet-
ics consist of efficiently exploiting parallel architec-
tures to compute the likelihood or parsimony scoring

Phylogenetics P

P

functions at the production level. There exists an on-
going effort to implement an open-source likelihood
function library (http://code.google.com/p/beagle-lib/)
that can be executed on GPUs and multi-core archi-
tectures (including a vectorization using SSE intrinsics
and anOpenMP-based fine-grain parallelization). Fine-
grain parallelizations of those functions are required
to be able to accommodate and distribute the growing
memory space requirements across several cores or –
potentially hybrid – multi-core nodes. Nonetheless,
alternative directions for handling memory consump-
tion should be explored. While there exist suggestions
for reducing memory requirements via algorithmic
means (see Stamatakis and Ott [] and Stamatakis and
Alachiotis []), trade-offs between using single and
double precision arithmetics as well as their impact on
numerical stability need to be further explored. Out-
of-core execution may provide a solution for execut-
ing large-scale analyses on the desktop. Analyses of
trees with over , organisms require a – poten-
tially difficult – parallelization at the algorithmic level,
because scalability of fine-grain parallelism is limited
to or cores due to the relatively small number
of sites in such alignments. Finally, the simultaneous
development of parallelization and algorithmic strate-
gies appears to be the most promising approach to
address current and future challenges.

Related Entries
�Bioinformatics
�Cell Broadband Engine Processor
�Clusters
�Collective Communication
�Distributed-Memory Multiprocessor
�Ethernet
�Genome Assembly
�Hybrid Programming With SIMPLE
�IBM Blue Gene Supercomputer
�InfiniBand
�Load Balancing, Distributed Memory
�Loops, Parallel
�MPI (Message Passing Interface)
�Multi-Threaded Processors
�NVIDIA GPU
�OpenMP

�Parallelization, Automatic
�POSIXThreads (Pthreads)
�Reconfigurable Computers

Bibliographic Notes and Further
Reading
The text-books by Felsenstein [] and Yang [] pro-
vide a detailed introduction to the field of phyloge-
netic inference and the underlying models of evolution.
The phylogenetic likelihood function was introduced
by Felsenstein in []. One of the early papers
dealing with parsimony was published by Fitch and
Margoliash []. NP-hardness was demonstrated by
Day [] for the least squares approach, by Day et al.
for parsimony [], and by Chor and Tuller for like-
lihood [] (also see Roch [] for a shorter proof).
Morrison [] provides an overview and discussion of
current heuristic search strategies. The vectorization of
the likelihood function aswell as numerical aspectswith
respect to single and double precision implementations
of the likelihood function are addressed by Stamatakis
and Berger []. FPGA implementations are covered by
Alachiotis et al. [,], Mak and Lam [–], Zierke
and Bakos [], and Bakos [,]; GPU implementa-
tions by Charalambous et al. [], Suchard and Ram-
baut [], while Pratas et al. describe a performance
comparison between GPUs, the IBMCELL, and general
purpose multi-core architectures []. Blagojevic et al.
have published a series of papers on porting RAxML to
the IBMCELL [–,]. Pthreads and OpenMP-based
parallelization of the parsimony and likelihood func-
tions have been described by Stamatakis et al. [,].
Ott et al. [,] and Feng et al. [] describe fine-
grain parallelizations with MPI on distributed memory
machines. Stamatakis andOtt also address load-balance
issues [] and assess performance of Pthreads ver-
sus MPI versus OpenMP for fine-grained parallelism
in the likelihood function []. Medium-grain paral-
lelizations are covered by Minh et al. [], Stamatakis
et al. [], Stewart et al. [], and Ceron et al. [].
Hybrid parallelizations have been described by Minh
et al. [], Feng et al. [], and Pfeiffer and Stamatakis
[]. The two post-analysis steps for analyzing boot-
strapped trees (consensus tree building and drawing
bipartitions on the best-known tree) have also been
parallelized (see Aberer et al. [,]; the papers also

http://dx.doi.org/10.1007/978-0-387-09766-4_110
http://dx.doi.org/10.1007/978-0-387-09766-4_121
http://dx.doi.org/10.1007/978-0-387-09766-4_18
http://dx.doi.org/10.1007/978-0-387-09766-4_28
http://dx.doi.org/10.1007/978-0-387-09766-4_223
http://dx.doi.org/10.1007/978-0-387-09766-4_481
http://dx.doi.org/10.1007/978-0-387-09766-4_402
http://dx.doi.org/10.1007/978-0-387-09766-4_82
http://dx.doi.org/10.1007/978-0-387-09766-4_409
http://dx.doi.org/10.1007/978-0-387-09766-4_504
http://dx.doi.org/10.1007/978-0-387-09766-4_27
http://dx.doi.org/10.1007/978-0-387-09766-4_222
http://dx.doi.org/10.1007/978-0-387-09766-4_276
http://dx.doi.org/10.1007/978-0-387-09766-4_50
http://dx.doi.org/10.1007/978-0-387-09766-4_197
http://dx.doi.org/10.1007/978-0-387-09766-4_447
http://dx.doi.org/10.1007/978-0-387-09766-4_4
http://dx.doi.org/10.1007/978-0-387-09766-4_423
http://code.google.com/p/beagle-lib/

 P Phylogenetics

contain a detailed description of the discrete algorithms
for consensus tree building and drawing bipartitions on
trees). A related discrete problemon trees, that of recon-
structing a species tree from (potentially incongruent)
per-gene trees by the minimum possible number of
gene duplication events, has been parallelized by Wehe
et al. [] on an IBM BlueGene/L supercomputer.
The review by Maddison [] provides an overview of
the gene tree species tree problem. Heuristic algorithms
for gene order phylogeny reconstruction have been
implemented and optimized by Moret et al. [,] in
a tool called GRAPPA. GRAPPA has also been paral-
lelized using a coarse-grain approach to simultaneously
enumerate and evaluate all possible trees for organ-
isms on a cluster with cores. The original heuristic
algorithm has been proposed by Blanchette et al. [].
Finally, the papers by Fleissner et al. [], Loytynoja
and Goldman [], or Bradley et al. [], for instance,
deal with the more challenging and advanced problem
of simultaneous alignment (MSA) and tree building.

Bibliography
. Aberer A, Pattengale N, Stamatakis A () Parallel computa-

tion of phylogenetic consensus trees. Procedia Comput Sci ():
–

. Aberer A, Pattengale N, Stamatakis A () Parallelized phylo-
genetic post-analysis on multi-core architectures. J Comput Sci
():–

. Alachiotis N, Sotiriades E, Dollas A, Stamatakis A () Explor-
ing FPGAs for accelerating the phylogenetic likelihood func-
tion. In: IEEE international symposium on parallel & distributed
processing, . IPDPS , pp –. IEEE

. Alachiotis N, Stamatakis A, Sotiriades E, Dollas A ()
A reconfigurable architecture for the Phylogenetic Likelihood
Function. In: International Conference on Field Programmable
Logic and Applications, . FPL , pp –. IEEE,

. Bakos J () FPGA acceleration of gene rearrangement anal-
ysis. In: Proceedings of th annual IEEE symposium on field-
programmable custom computing machines. IEEE, Napa, CA,
pp –

. Bakos J, Elenis P, Tang J () FPGA acceleration of phylogeny
reconstruction for whole genome data. In: Proceedings of the
th IEEE international conference on bioinformatics and bio
engineering. IEEE, Boston, MA, pp –

. Berger S, Stamatakis A () Accuracy and performance of sin-
gle versus double precision arithmetics for maximum likelihood
phylogeny reconstruction. Lecture notes in computer science,
vol . Springer, pp –

. Blagojevic F, Nikolopoulos D, Stamatakis A, Antonopoulos C
() Dynamic multigrain parallelization on the cell broadband
engine. In: Proceedings of PPoPP , San Jose, CA,March ,
pp –

. Blagojevic F, Nikolopoulos D, Stamatakis A, Antonopoulos C,
Curtis-Maury M () Runtime scheduling of dynamic paral-
lelism on accelerator-based multi-core systems. Parallel Comput
:–

. Blagojevic F, Nikolopoulos DS, Stamatakis A, Antonopoulos CD
() RAxML-Cell: Parallel phylogenetic tree inference on the
cell broadband engine. In: Proceedings of international parallel
and distributed processing symposium (IPDPS),

. Blanchette M, Bourque G, Sankoff D () Breakpoint phy-
logenies. In: Miyano S, Takagi T (eds) Workshop on genome
informatics, vol . Univ. Academy Press, pp –

. Bradley R, Roberts A, Smoot M, Juvekar S, Do J, Dewey C,
Holmes I, Pachter L () Fast statistical alignment. PLoS Com-
put Biol ():e

. Bryant D () The complexity of the breakpoint median prob-
lem. Technical report, University of Montreal, Canada

. Ceron C, Dopazo J, Zapata E, Carazo J, Trelles O () Par-
allel implementation of DNAml program on message-passing
architectures. Parallel Comput (–):–

. Charalambous M, Trancoso P, Stamatakis A () Initial expe-
riences porting a bioinformatics application to a graphics pro-
cessor. Lecture notes in computer science, vol . Springer,
New York, pp –

. Chor B, Tuller T () Maximum likelihood of evolutionary
trees: hardness and approximation. Bioinformatics ():–

. DayW() Computational complexity of inferring phylogenies
from dissimilarity matrices. Bulletin of Mathematical Biology
():–

. DayW, JohnsonD, Sankoff D ()The computational complex-
ity of inferring rooted phylogenies by parsimony. Mathematical
biosciences (–):

. Felsenstein J () Evolutionary trees from DNA sequences: a
maximum likelihood approach. J Mol Evol :–

. Felsenstein J () Confidence limits on phylogenies: an
approach using the bootstrap. Evolution ():–

. Felsenstein J () Inferring phylogenies. Sinauer Associates,
Sunderland

. Feng X, Cameron K, Sosa C, Smith B () Building the tree of
life on terascale systems. In: Proceedings of international parallel
and distributed processing symposium (IPDPS),

. FitchW, Margoliash E () Construction of phylogenetic trees.
Science ():–

. Fleissner R, Metzler D, Haeseler A () Simultaneous statisti-
cal multiple alignment and phylogeny reconstruction. Syst Biol
:–

. Goldman N, Yang Z () Introduction. statistical and com-
putational challenges in molecular phylogenetics and evolution.
Philos Trans R Soc B Biol Sci ():

. Goloboff P () Analyzing large data sets in reasonable times:
solution for composite optima. Cladistics :–

. Goloboff PA, Catalano SA, Mirande JM, Szumik CA, Arias JS,
Källersjö M, Farris JS () Phylogenetic analysis of taxa
corroborates major eukaryotic groups. Cladistics :–

. Guindon S, Gascuel O () A simple, fast, and accurate
algorithm to estimate large phylogenies by maximum likelihood.
Syst Biol ():–

Phylogenetics P

P

. Hedges S () The number of replications needed for accurate
estimation of the bootstrap P value in phylogenetic studies. Mol
Biol Evolution ():–

. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse G, Edgecombe G,
Martinez P, Baguna J, Bailly X, Jondelius U, Wiens M, Müller W,
Seaver E, Wheeler W, Martindale M, Giribet G, Dunn C ()
Rooting the bilaterian treewith scalable phylogenomic and super-
computing tools. Proc R Soc B :–

. Lartillot N, Philippe H () A Bayesian mixture model
for across-site heterogeneities in the amino-acid replacement
process.Mol Biol Evol ():–

. Loytynoja A, GoldmanN () Phylogeny-aware gap placement
prevents errors in sequence alignment and evolutionary analysis.
Science ():

. MaddisonW()Gene trees in species trees. Syst Biol ():
. Mak T, Lam K () High speed GAML-based phylogenetic

tree reconstruction using HW/SW codesign. In: Bioinformatics
Conference, . CSB . Proceedings of the IEEE,
pp –

. Mak T, Lam K () Embedded computation of maximum-
likelihood phylogeny inference using platform FPGA. In:
Proceedings of IEEE Computational Systems Bioinformatics
Conference (CSB), pp –

. Mak T, Lam K () FPGA-Based Computation for Maximum
Likelihood Phylogenetic Tree Evaluation. In: Lecture notes in
computer science, pp –

. MetropolisN, RosenbluthA, RosenbluthM, Teller A, Teller E et al
() Equation of state calculations by fast computing machines.
J Chem Phys ():

. Minh B, Vinh L, Haeseler A, Schmidt H () pIQPNNI: par-
allel reconstruction of large maximum likelihood phylogenies.
Bioinformatics ():–

. Minh B, Vinh L, Schmidt H, Haeseler A () Large maximum
likelihood trees. In: Proceedings of the NIC Symposium ,
pp –

. Moret B, Tang J, Wang L,Warnow T () Steps toward accurate
reconstructions of phylogenies from gene-order data∗ . J Com-
put Syst Sci ():–

. Moret B, Wyman S, Bader D, Warnow T, Yan M () A
new implementation and detailed study of breakpoint analysis.
In: Pacific symposium on biocomputing :–

. Morrison D () Increasing the efficiency of searches for the
maximum likelihood tree in a phylogenetic analysis of up to
nucleotide sequences. Syst Biol ():–

. Ott M, Zola J, Aluru S, Johnson A, Janies D, Stamatakis A ()
Large-scale phylogenetic analysis on current HPC architectures.
Scientific Programming (–):–

. OttM,Zola J,Aluru S, StamatakisA () Large-scalemaximum
likelihood-based phylogenetic analysis on the IBM BlueGene/L.
In: Proceedings of IEEE/ACMSupercomputing Conference
(SC), IEEE, Reno, Nevada

. Pattengale N, Alipour M, Bininda-Emonds O, Moret B,
Stamatakis A () How many bootstrap replicates are
necessary? J Comput Biol ():–

. Pfeiffer W, Stamatakis A () Hybrid MPI/Pthreads
parallelization of the RAxML phylogenetics code. In: IEEE

International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), , IEEE, Atlanta,
Georgia, pp –

. Pratas F, Trancoso P, Stamatakis A, Sousa L () Fine-grain
Parallelism using multi-core, Cell/BE, and GPU systems: accel-
erating the phylogenetic likelihood function. In: International
conference on parallel processing, . ICPP’, IEEE, Vienna,
pp –

. Price M, Dehal P, Arkin A () FastTree –approximatelymax-
imumlikelihood trees for large alignments. PLoS One ():e

. Roch S () A short proof that phylogenetic tree reconstruc-
tion by maximum likelihood is hard. IEEE/ACM transactions on
Computational Biology and Bioinformatics, pp –

. Ronquist F, Huelsenbeck J () MrBayes : Bayesian phylo-
genetic inference under mixed models. Bioinformatics ():
–

. Savill NJ, Hoyle DC, Higgs PG () Rna sequence evolution
with secondary structure constraints: comparison of substitu-
tion rate models using maximum-likelihood methods. Genetics
:–

. Smith S, Donoghue M () Rates of molecular evolution are
linked to life history in flowering plants. Science ():–

. Stamatakis A () RAxML-VI-HPC: maximum likelihood-
based phylogenetic analyses with thousands of taxa and mixed
models. Bioinformatics ():–

. Stamatakis A, Alachiotis N () Time and memory efficient
likelihoodbased tree searches on phylogenomic alignments with
missing data. Bioinformatics ():i

. Stamatakis A, Blagojevic F, Antonopoulos CD, Nikolopoulos DS
() Exploring new search algorithms and hardware for phy-
logenetics: RAxML meets the IBM Cell. J VLSI Sig Proc Syst
():–

. Stamatakis A, Ludwig T, Meier H () Parallel inference of
a .-taxon phylogeny with maximum likelihood. In: Pro-
ceedings of Euro-Par , September , IEEE, Pisa Italy,
pp –

. Stamatakis A, Ott M () Efficient computation of the phylo-
genetic likelihood function on multi-gene alignments and multi-
core architectures. Philos Trans R Soc B, Biol Sci :–

. Stamatakis A, Ott M () Exploiting fine-grained parallelism
in the phylogenetic likelihood function with MPI, Pthreads, and
OpenMP: a performance study. In: Chetty M, Ngom A, Ahmad S
(eds) PRIB, Lecture notes in computer science, vol . Springer,
Heidelberg, pp –

. StamatakisA,OttM () Loadbalance in the phylogenetic like-
lihoodkernel. In: International conference on parallel processing,
. ICPP’, IEEE, Vienna, Austria, pp –

. Stamatakis A, Ott M, Ludwig T () RAxML-OMP: an effi-
cient program for phylogenetic inference on SMPs. Lecture notes
in computer science, vol . Springer, Berlin, Heidelberg,
pp –

. Stewart C, HartD, BerryD, OlsenG,Wernert E, FischerW ()
Parallel implementation and performance of fastDNAml – a pro-
gram for maximum likelihood phylogenetic inference. In: Super-
computing, ACM/IEEE conference, ACM/IEEE, Denver,
Colorado, pp –

 P Pi-Calculus

. Strimmer K, Haeseler A () Quartet puzzling: a quartet
maximum likelihood method for reconstructing tree topologies.
Mol Biol Evol :–

. Suchard M, Rambaut A () Many-core algorithms for statisti-
cal phylogenetics. Bioinformatics ():

. Wehe A, Chang W, Eulenstein O, Aluru S () A scalable
parallelization of the gene duplication problem. J Parallel Distr
Comput ():–

. Wheeler T () Large-scale neighbor-joining with ninja.
Lecture notes in computer science, vol . Springer, Berlin,
pp –

. Yang Z () Computational molecular evolution. Oxford
University Press, USA

. Zierke S, Bakos J () FPGA acceleration of the phyloge-
netic likelihood function for BayesianMCMC inferencemethods.
BMC Bioinformatics ():

. Zwickl D () Genetic algorithm approaches for the phylo-
genetic analysis of large biological sequence datasets under the
maximum likelihood criterion. PhD thesis, University of Texas at
Austin, April

Pi-Calculus

Davide Sangiorgi
Universita’ di Bologna, Bologna, Italy

Synonyms
Calculus of mobile processes

Definition
The π-calculus is a process calculus that models mobile
systems, i.e., systems with a dynamically changing com-
munication topology. It refines the constructs of the
calculus of communicating systems (CCS) by allowing
the exchange of communication links. Ideas from the
λ-calculus have also been influential.

Discussion
Introduction
A widely recognized practice for understanding pro-
gramming languages, be they sequential or concurrent,
is to distill small “core languages,” or “calculi,” that
embody the essential ingredients of the languages. This
is useful to develop the theory of the programming lan-
guage (e.g., techniques for static analysis, behavioral
specification, and verification), to study implementa-
tions, to devise new or better programming language
constructs.

A well-known calculus in the realm of sequential
languages is the λ-calculus. Invented by Church in the
s, it is a pure calculus of functions. Everything in the
λ-calculus is a function, and computation is function
application. The λ-calculus has been very influential
in programming languages. It has been the basis for
the so-called functional programming languages. Even
more important, it has been essential in understanding
concepts such as procedural abstraction and binding,
parameter passing (e.g., call-by-name vs. call-by-value),
and continuations. All these concepts have then made
their way into mainstream programming languages.
The λ-calculus can be regarded as a canonical model
for sequential computations with functions: on the one
hand, it describes the essential features of functions
(function definition and function application) in a sim-
ple and intuitive way; on the other hand, all the known
models of sequential computation have been proved to
have the same expressive power as the λ-calculus. In
other words, the λ-calculus describes all computable
functions (a statement referred to as “Church’s thesis”).

For concurrent languages (possibly including dis-
tribution), a similar canonical model does not exist.
This can be explained with the varieties of such
systems. In concurrency, the central computational
unit is a process. However, there is no universally
accepted definition of what a process is. For instance,
the ways of conceiving interaction among processes
may be very diverse: via synchronous signals, via
shared variables, via broadcasting, via asynchronous
message passing, via rendezvous. Therefore, in con-
currency one does not find a single calculus, but,
rather, a variety of calculi, referred to as process cal-
culi, or process algebras when one wishes to empha-
size that both the analysis and the description of a
system are carried out in an algebraic setting. The
best known such calculi are calculus of communicating
systems (CCS), communicating sequential processes
(CSP), algebra of communicating processes (ACP), the
π-calculus. Among these, the π-calculus is the clos-
est to the λ-calculus. Many fundamental ideas from
the λ-calculus can be carried over to the π-calculus.
For instance, abstraction and type systems are central
concepts in both calculi. Moreover as the λ-calculus
underlies functional programming languages, so the
π-calculus, or variants of it, are taken as the basis for
new programming languages. The process concept of

http://dx.doi.org/10.1007/978-0-387-09766-4_2258

Pi-Calculus P

P

the π-calculus is roughly that of structured entities
interacting by means of message-passing.

The π-calculus has two aspects. First, it is a theory
of mobile systems, with a rich blend of techniques for
reasoning about the behavior of systems. Second, it is a
general model of computation, in which everything is
a process and computation is process interaction. Syn-
tactically, the main difference between the π-calculus
and its principal process calculus ancestor, CCS, is that
communication links are first-class values, and may
therefore be passed around in communications. Thus,
the set of communication links used by a term may
change dynamically, as computation evolves. Such sys-
tems are called mobile, and the π-calculus is hence
called a calculus of mobile processes. In CCS, in contrast,
the set of communication links for a term is fixed by
its initial syntax, and only very limited forms of mobil-
ity can be described. Mobility gives the π-calculus an
amazing expressive power. For instance, functions and
the λ-calculus can be elegantly modeled in it, reduc-
ing function application to special forms of process
interactions.

Mobility
A mobile concurrent system has a communication
topology that can dynamically change, as the sys-
tem evolves. Mobility can be found in many areas
of computer science, such as operating systems, dis-
tributed computing, higher-order concurrent program-
ming, and object-oriented programming. Two kinds
of mobility can be broadly distinguished. In one kind,
links move in an abstract space of linked processes. For
example, hypertext links can be created, can be passed
around, and can disappear; the connections between
cellular telephones and a network of base stations can
change as the telephones are carried around; and ref-
erences can be passed as arguments of method invoca-
tions in object-oriented systems. In the second kind of
mobility, processes move in an abstract space of linked
processes. For instance, code can be sent over a network
and put to work at its destination; mobile devices can
acquire new functionality; an active laptop computer
can be moved from one location to another, and made
to interact with resources in a different environment.
Languages in which terms of the language itself, such as
processes, are first-class values, are called higher-order
(in this sense, the λ-calculus is higher-order too).

The π-calculus models the first kind of mobility:
it directly expresses movement of links in a space of
linked processes. There are two kinds of basic entity in
the (untyped) π-calculus: names and processes. Names
specify links. Processes can interact by using names that
they share. The crux is the data that processes com-
municate in interactions are themselves names, and a
name received in one interaction can be used to par-
ticipate in another. By receiving a name, a process
can acquire a capability to interact with processes that
were previously unknown to it. Thus, the structure of a
system – the connections among its component
processes – can change over time, in arbitrary ways.
The source of strength in the π-calculusis how it treats
scoping of names and extrusion of names from their
scopes.

There are various reasons for having only mobility
of names in the π-calculus. First, naming and name-
passing are ubiquitous: think of addresses, identifiers,
links, pointers, and references. Second, as will be shown
later, higher-order constructs can often be modeled
within the π-calculus. Further, by passing a name, one
can pass partial access to a process, an ability to interact
with it only in a certain way. Similarly, with name-
passing one can easily model sharing, for instance of
a resource that can be used by different sets of clients
at different times. It can be complicated to model these
things when processes are the only transmissible values.
Thirdly, the π-calculus has a rich and tractable theory.
The theory of process-passing is harder, and important
parts of it are not yet well understood.

Syntax
As the λ-calculus, so the language of the π-calculus
consists of a small set of primitive constructs. In the
λ-calculus, they are constructs for building functions.
In the π-calculus, they are constructs for building pro-
cesses, similar to those one finds inCCS.The syntax is as
follows. Capital letters range over processes, and small
letters over names; the set of all names is infinite.

P :: = x(y).P ∣ x⟨y⟩.P ∣ τ.P ∣ ∣ P + P′ ∣ P ∣ P′

∣ νx P ∣ !P ∣ [x= y]P

The input prefix x(z).P can receive any name via x
and continue as P with the received name substituted
for z. The substitution of the all occurrences of z in

 P Pi-Calculus

P with y is written P{y/z} (some care is needed here,
to properly respect the bindings of a term). An out-
put x⟨y⟩.P emits name y at x and then continues as P.
The unobservable prefix τ. P can autonomously evolve
to P, without the help of the external environment. As
in CCS, τ can be thought of as expressing an internal
action of a process. The inactive process can do noth-
ing. For instance, x(z). z⟨y⟩. can receive any name via
x, send y via the name received, and become inactive.
A choice (or sum) process P + P′ may evolve either as
P or as P′; if one of the processes exercises one of its
capabilities, the other process is discarded. In the com-
position P ∣ P′, the components P and P′ can proceed
independently and can interact via shared names. For
instance, (x(z). z⟨y⟩. + w⟨v⟩.) ∣ x⟨u⟩. has four
capabilities: to receive a name via x, to send v via w,
to send u via x, and to evolve invisibly as an effect of
an interaction between its components via the shared
name x. In the restriction νz P, the scope of the name z
is restricted to P. Components of P can use z to inter-
act with one another but not with other processes. For
instance, νx ((x(z). z⟨y⟩. + w⟨v⟩.) ∣ x⟨u⟩.) has
only two capabilities: to send v via w, and to evolve
invisibly as an effect of an interaction between its com-
ponents via x. The scope of a restriction may change as
a result of interaction between processes. This impor-
tant feature of the calculus will be explained later. (The
π-calculus notation for the restriction operator is differ-
ent from that of CCS; indeed, exchange of names makes
restriction in the π-calculus semantically quite differ-
ent from restriction in CCS.) The replication !P can be
thought of as an infinite composition P ∣ P ∣ ⋯ or, equiv-
alently, a process satisfying the equation !P = P ∣ !P.
Replication is the operator that makes it possible to
express infinite behaviors. For example, !x(z). !y⟨z⟩.
can receive names via x repeatedly, and can repeatedly
send via y any name it does receive. In certain presen-
tations, recursive process definitions are used in place of
replication: the expressiveness injected into the calcu-
lus by these two constructs is the same. Amatch process
[x= y]P behaves as P if names x and y are equal, other-
wise it does nothing. For instance, x(z). [z = y]z⟨w⟩. ,
on receiving a name via x, can send w via that name just
if that name is y; if it is not, the process can do nothing
further.

This is the syntax of the pure, untyped, π-calculus.
The calculus is monadic, in that only one value at a

time can be exchanged. In examples and applications,
one often uses the polyadic π-calculus, in which the
input and output constructs are refined as follows: a
polyadic input process x(y, . . . , yn).P waits for an n-
tuple of names z, . . . , zn at x and then continues as
P{z , . . . , zn/y, . . . , yn} (i.e., P with the yi’s replaced by
the zi ’s); a polyadic output process x⟨y, . . . , yn⟩.P emits
names y, . . . , yn at x and then continues as P.

The input construct x(y).P and the restriction νy P
are binders for the free occurrences of y inP, in the same
sense as the abstraction construct of the λ-calculus.
These binders give rise in the expected way to the defi-
nitions of free and bound names of a process.

When writing processes, parentheses are used to
resolve ambiguity, and the conventions are observed
that prefixing and restriction bind more tightly than
composition and sum.Thus x⟨v⟩. P ∣ Q is (x⟨v⟩. P) ∣ Q,
and νzP ∣ Q is (νzP) ∣ Q. A process x⟨⟩.P is abbreviated
as x.P and, similarly, x().P as x.P.

Examples
Below some simple examples are given to illustrate the
use of the main constructs. The first example is about
encoding of data types. In general, processes inter-
act by passing one another data. The only data of the
π-calculus are names. However, it may well be con-
venient to admit other atomic data, such as integers,
and structured data, such as tuples and multisets. It is
in the spirit of process calculi generally to allow the
data language to be tailored to the application at hand,
admitting sets, lists, trees, and so on as convenient. And
one should admit the relevant data when using the π-
calculus to reason about systems. Remarkably, however,
all such data can be expressed. For instance,

T def
= b(x, y). x. and F def

= b(x, y). y. .

represent encodings of the boolean values true and
false, located at name b. These processes receive a pair
of names via b; then T will respond by signaling on the
first of them, whereas F will signal on the second. The
following process R reads the value of a boolean located
at b and, depending on the value of the boolean, it will
behave as P or Q:

R def
= νt νf b⟨t, f ⟩. (t. P + f . Q),

It is assumed that t and f are only used to read a boolean,
hence they do not appear in P and Q. Now, a system

Pi-Calculus P

P

with both R and T can evolve as follows, using :→ to
indicate a single computation step, i.e., a single interac-
tion; below ∼ indicates the application of some simple
garbage-collection algebraic laws of the π-calculus that
will be discussed later (laws for garbage collecting trail-
ing inactive processes and restrictions on name that are
not used anymore).

T ∣R :→ νt νf (t ∣(t. P + f . Q))

:→ νt νf (∣P)

∼ P

In the first step, R sends to T two names, t and f , that
were initially private to R; after the interaction, these
names are shared between (what remains of) R and T;
no other process in the system (in principle, other pro-
cesses could run in parallel) will now be able to interfere
on the following interaction between R and T along t.
The capability of creating new names, and sending them
around, is at the heart of the expressiveness and the the-
ory of the π-calculus; without it, the π-calculus would
not be much different from CCS.

In the second step, the interaction along t selects P,
and the other branch of the choice is discarded. In the
final line, the garbage-collection laws are applied.

In the example, the act of interrogating a process
T or F for its value destroys it. Persistence of data is rep-
resented using replication. The encoding of persistent
booleans would then be

TRUE def
= !b(x, y). x. FALSE def

= !b(x, y). y.

Instances of these processes can conduct arbitrarily
many dialogues, yielding the same value in each. For
example, with R as above, using �⇒ to indicate the
transitive closure of:→, and using ∼ as above to indi-
cate application of some cleanup laws, it holds that

R ∣ R ∣ TRUE�⇒∼ P ∣ P ∣ TRUE

and
R ∣ R ∣ FALSE�⇒∼ Q ∣ Q ∣ FALSE.

Our second example is about the encoding of
higher-order constructs in the π-calculus. Consider a
higher-order language with constructs similar to those
of the π-calculus but with the possibility of passing pro-
cesses. In such a language one could write, for instance,

P def
= a(x). (x∣x)∣a⟨R⟩.Q

On the right-hand side of the composition, a process R
is emitted along a; on the left-hand side, an input at a
is expecting a process and then two copies of it will be
run. Process P evolves as follows:

P �⇒ R ∣ R ∣ Q

This behavior can be mimicked in the π-calculus as fol-
lows.The communication of the higher-order value R is
translated as the communication of a private name that
acts as a pointer to (the translation of) R and that the
recipient can use to trigger a copy of (the translation of)
R; the mapping from the higher-order language into the
π-calculus is indicated with [[.]]:

[[P]] def
= a(x). (x.∣x.)∣νy a⟨y⟩. (Q∣!y.R)

where name y does not occur elsewhere. It holds that

[[P]] :→ νy (y.∣y.∣[[Q]]∣!y. [[R]])

:→:→ νy (|∣[[Q]]∣[[R]]|[[R]]∣!y. [[R]])

∼ [[Q]]∣[[R]]∣[[R]]

where, on the second line,:→:→ represents two con-
secutive reduction steps. On the third line, the same
algebraic laws as above are used, plus a law for garbage-
collecting an input-replicated process such as !y. [[R]]
if the initial name y is restricted and does not occur
elsewhere in the system.

The translation separates the acts of copying and of
activating the value R; copying is rendered by the repli-
cation, and activation by communications along the
pointer y. Here again, it is essential that the pointer y is
initially private to the process emitting at a.This ensures
that the following outputs at y are not intercepted by
processes external to [[P]].

Names
In the π-calculus, names specify links. But what is a
link? The calculus is not prescriptive on this point: the
notion of a link is construed very broadly, and names
can be put to very many uses. This point is impor-
tant and deserves some attention. For example, names
can be thought of as channels that processes use to
communicate. Also, by syntactic means and using type
systems, π-calculus names can be used to represent
names of processes or names of objects in the sense
of object-oriented programming. Further, although the
π-calculus does not mention locations explicitly, often

 P Pi-Calculus

when describing systems in π-calculus, some names are
naturally thought of as locations. Finally, some names
can be thought of as encryption keys as done in cal-
culi that apply ideas from the π-calculus to computer
security.

Types
A type system is, roughly, a mechanism for classifying
the expressions of a program. Type systems are useful
for several reasons: to perform optimizations in com-
pilers; to detect simple kinds of programming errors
at compilation time; to aid the structure and design of
systems; to extract behavioral information that can be
used for reasoning about programs. In sequential pro-
gramming languages, type systems are widely used and
generallywell-understood. In concurrent programming
languages, by contrast, the tradition of type systems is
much less established.

In the π-calculus world, types have quickly emerged
as an important part of its theory and of its applica-
tions, and as one of the most important differences with
respect to CCS-like languages. The types that have been
proposed for the π-calculus are often inspired by well-
known type systems of sequential languages, especially
λ-calculi. Also, type systems specific to processes have
been investigated, for instance, for preventing certain
forms of interferences among processes or certain forms
of deadlocks.

One of the main reasons for which types are
important for reasoning on π-calculus processes is the
following. Although well-developed, the theory of the
pure π-calculus is often insufficient to prove “expected”
properties of processes. This is because a π-calculus
programmer normally uses names according to some
precise logical discipline (the same happens for the
λ-calculus, which is hardly ever used untyped since
each variable has usually an “intended” functionality).
This discipline on names does not appear anywhere in
the terms of the pure calculus, and therefore cannot
be taken into account in proofs. Types can bring this
structure back to light.

This point is illustrated with an example that has
to do with encapsulation. Facilities for encapsulation
are desirable in both sequential and concurrent lan-
guages, allowing one to place constraints on the access
to components such as data and resources. The need of
encapsulation has led to the development of abstract

data types and is a key feature of objects in object-
oriented languages. In CCS, encapsulation is given by
the restriction operator. Restricting a channel x on a pro-
cess P, written νx P, guarantees that interactions along
x between subcomponents of P occur without interfer-
ence from outside. For instance, suppose one has two
one-place buffers, Buf1 and Buf2, the first of which
receives values along a channel x and resends them
along y, whereas the second receives on y and resends
on z.They can be composed into a two-place buffer that
receives on x and resends on z; thus: νy(Buf1 ∣ Buf2).
Here, the restriction ensures us that actions on y from
Buf1 andBuf2 are not stolen by processes in the exter-
nal environment. With the formal definitions of Buf1
and Buf2 at hand, one can indeed prove that the sys-
tem νy (Buf1 ∣ Buf2) is behaviorally equivalent to a
two-place buffer.

The restriction operator provides quite a satisfactory
level of protection in CCS, where the visibility of chan-
nels in processes is fixed. By contrast, restriction alone is
often not satisfactory in the π-calculus, where the visi-
bility of channelsmay change dynamically. Consider the
situation in which several client processes cooperate in
the use of a shared resource such as a printer. Data are
sent for printing by the client processes along a chan-
nel p. Clients may also communicate channel p so that
new clients can get access to the printer. Suppose that
initially there are two clients

C1 = p⟨ j⟩.p⟨ j⟩ . . .

C2 = b⟨p⟩

and therefore, writing P for the printer process, the
initial system is

νp (P ∣ C1 ∣ C2).

One might wish to prove that C1’s print jobs repre-
sented by j and j are eventually received and processed
in that order by the printer, possibly under some fairness
condition on the printer scheduling policy. Unfortu-
nately this is false: a misbehaving new client C3 that has
obtained p from C2 can disrupt the protocol expected
by P and C1 just by reading print requests from p and
throwing them away:

C3 = p(j).p(j′)..

Pi-Calculus P

P

In the example, the protection of a resource (the
printer) fails if the access to the resource is transmit-
ted, because no assumptions on the use of that access
by a recipient can bemade. Simple and powerful encap-
sulation barriers against the mobility of names can be
created using type concepts familiar from the literature
of typed λ-calculi. For instance, themisbehaving printer
client C3 can be recognized by distinguishing between
the input and the output capabilities of a channel. It suf-
fices to assign the input capability on channel p to the
printer and the output capability to the initial clients C1
andC2. In thisway, new clients that receive p fromexist-
ing clients will only receive the output capability on p.
The misbehaving C3 is thus ruled out as ill-typed, as it
uses p for input.

The concept of a channel with direction can be for-
malized by means of type constructs, sometimes called
the input/output types. They give rise to a natural sub-
typing relation, similar to those used for reference types
in imperative languages. In the case of the π-calculus
encodings of the λ-calculus, this subtyping validates the
standard subtyping rules for function types. It is also
important when modeling object-oriented languages,
whose type systems usually incorporate some powerful
form of subtyping.

In the λ-calculus, where functions are the unit of
interaction, the key type construct is the arrow type.
In the π-calculus names are the unit of interaction and
therefore the key type construct is the channel (or name)
type ♯ T. A type assignment a : ♯ T means that a can be
used as a channel to carry values of type T. As names
can carry names, T itself can be a channel type. If one
adds a set of basic types, such as integer or boolean types,
one obtains the analog of the simply-typed λ-calculus,
which is therefore called the simply-typed π-calculus.
Type constructs familiar from sequential languages,
such as those for products, unions, records, variants,
recursive types, polymorphism, subtyping, and linear-
ity, can be adapted to the π-calculus. Having recursive
types, one may avoid basic types as initial elements
for defining types. The calculus with channel, product,
and recursive types is the polyadic π-calculusmentioned
earlier on.

Beyond types inherited from the λ-calculus, several
other type systems have been put forward that are spe-
cific to processes; they formalize common patterns of
interaction among processes. Types may even serve as

a specification of (parts of) the behavior of processes, as
in session types.The behavioral guarantees that are guar-
anteed by types are typically safety properties, such as the
absence of certain communication errors, of interfer-
ences, of deadlock, and information leakage in security
protocols. Safety is expressed in the subject reduction
theorem, a fundamental theorem of type theory stating
the invariance of types under reduction. Type systems
for liveness properties have been studied too, for instance
for properties such as termination (the fact that compu-
tation in a concurrent system will eventually stop) and
responsiveness (the fact that a process will eventually
provide an answer along a certain name). However, live-
ness properties, already difficult enough to prove in the
presence of concurrency, can be evenharder to prove for
mobile processes (in the sense that it may be difficult to
design a type system capable of guaranteeing the prop-
erty of interest while being expressive enough to handle
most common programming idioms).

Theory
Fundamental for a theory of a concurrent language is a
means of stating what the behavior of a process is, and
what does it means for two behaviors to be equal. These
notions in concurrency are usually treated via opera-
tional semantics. A brief and informal account of how
these issues are treated in the π-calculus is given below,
referring to [] for details.

Traditionally, the operational semantics of a pro-
cess algebra is given in terms of a labeled transition
system describing the possible evolutions of a process.
This contrasts with what happens in term rewriting sys-
tems, as based on an unlabeled reduction system. In
the λ-calculus, probably the best known term-rewriting
system, what makes a reduction system possible is that
two terms having to interact are naturally in contiguous
positions. This is not the case in process calculi, where
interaction does not depend on physical contiguity. To
put this another way, a redex of a λ-term is a subterm,
while a “redex” in a process calculus is distributed over
the term.

To allow a reduction semantics on processes, axioms
for a structural congruence relation, usually written ≡,
are introduced prior to the reduction system, in order
to break a rigid, geometrical view of concurrency; then
reduction rules can easily be presented in which redexes
are indeed subterms again.

 P Pi-Calculus

The interpretation of the operators of the language
emerges neatly with a reduction semantics, due to the
compelling naturalness of each structural congruence
and reduction rule. This is not quite the case in the
labeled semantics, at least for process algebras express-
ing mobility: the manipulation of names and the side
conditions in the rules are nontrivial and this can make
it delicate understanding and justifying the choices
made. However, if the reduction system is available,
the correctness of the labeled transition system can be
shown by proving the correspondence between the two
systems.

On the other hand, the advantages of a labeled
semantics appear later, when reasoning with processes.
In a reduction semantics, the behavior of a process
is understood relatively to a context in which it is
contained and with which it interacts. Instead, with a
labeled semantics every possible communication of a
process can be determined in a direct way. This allows
us to get simple characterizations of behavioral equiva-
lences. Moreover, with a labeled semantics the proofs
benefit from the possibility of reasoning in a purely
structural way. Another possible problem with a reduc-
tion semantics is that it allows one to accommodate only
limited forms of the choice operator. The conclusion is
that both semantics are useful and that they integrate
and support each other.

To see an example of the two semantics, consider the
process

S def
= x(y).P∣z⟨w⟩.R∣x⟨v⟩.Q

A reduction semantics would only specify that S has a
reduction

S:→ P{v/y}∣z⟨w⟩.R∣Q

To derive this, structural congruence is first used to
bring the participant of the interaction into contiguous
positions, usingmonoidal rules for parallel composition
such as

T ∣ T ≡ T ∣ T

T ∣ (T ∣ T) ≡ (T ∣ T) ∣ T

with which the order of the components in parallel
compositions can be modified. Then the rewriting rule

a(b).T∣a⟨u⟩.T′ :→ T{u/b}∣T′

can be applied.

In contrast, a labeled transition system reveals,
beside the above reduction, also the potentials for S to
interact with the environment, namely the input and
output transitions:

S
x(y)
−−−−→ P∣z⟨w⟩.R∣x⟨v⟩.Q S

x⟨v⟩
−−−−→ x(y).P∣z⟨w⟩.R∣Q

S
z⟨w⟩
−−−−→ x(y).P∣R∣x⟨v⟩.Q

(Note that, with a restriction in front of S, name x
becomes private to S and the input and output actions
along x are forbidden.) The rules for the labeled tran-
sition semantics are formalized following the style of
Plotkin’s Structured Operational Semantics, where the
derivation proof of a transition is uniquely determined
by the position, in the syntax of the term, of the prefixes
consumed in the transition.

The notion of behavioral equivalence normally
adopted in the π-calculus is barbed congruence. Its def-
inition is couched in terms of a bisimulation game on
reductions and a simple notion of observation on pro-
cesses (for instance, a predicate revealing whether a
process is capable of emitting a signal at some special
name). Two π-terms are deemed barbed congruent if
no difference can be observed between the processes
obtained by placing them into an arbitrary π-context.
The notion of observation has the flavor of the report of
the successful outcome of an experiment, as in a theory
of testing.

Barbed congruence has the advantage of being sim-
ple and robust, in that it can be applied to different cal-
culi. Moreover, as its definition involves quantification
over contexts, it gives a natural notion of equivalence,
properly sensitive to the calculus under consideration
(this is important when considering, for instance, type
systems, as types implicitly limit the class of contexts in
which a process may be placed; as a consequence, more
equalities among processes hold). The quantification
over contexts, however, makes the definition difficult
to work with. This fact motivates the study of auxiliary
notions of behavioral equivalences that afford tractable
techniques. These labeled equivalences are based on
direct comparison of the actions that processes can per-
form, rather than on the observation of arbitrary sys-
tems containing them. There are in fact several notions
of labeled equivalence, each of which has character-
istics that make it useful in some way. Examples are

Pi-Calculus P

P

late bisimilarity, early bisimilarity, and open bisimilar-
ity [,].The labeled equivalences are not as robust as
barbed congruence. For instance, they can be much too
discriminating on refinements of the π-calculus with
types.

A number of proof techniques for behavioral equal-
ities on π-calculus processes have been developed.
For instance, enhancements of the bisimulation proof
method, sometimes called “up-to” techniques [].
There has been also some work on the development of
(semi-) automatic tools to assist in reasoning, though
this remains an active research area. Other behavioral
equivalences for the π-calculus have been studied, too,
for instance testing equivalence [].

The π-calculus has also a well-developed algebraic
theory. Equational reasoning is a central technique in
process calculus. In carrying out a calculation, appeal
can be made to any axiom or rule sound for the equiva-
lence in question.

In general, the equivalence of two processes is unde-
cidable, indeed it is not even semi-decidable. On finite
processes, however, axiomatizationsmay be possible. By
an axiomatization of an equivalence on a set of terms,
one means some equational axioms that, together with
the rules of equational reasoning, suffice for proving
all (and only) the valid equations. The rules of equa-
tional reasoning are reflexivity, symmetry, transitivity,
and congruence rules that make it possible to replace
any subterm of a process by an equivalent term. Here
are examples of axioms for the π-calculus.These axioms
are sound, in that the processes so equated are barbed
congruent. See [] for more details.

P + P = P

νx x⟨v⟩.P =

νx P = P if x does not occur in P

x(y).P∣z⟨v⟩.Q = x(y). (P∣z⟨v⟩.Q) + z⟨v⟩. (x(y).P∣Q)

+[x= z]τ. (P{v/y}∣Q)

The first law is an idempotence law for choice. The sec-
ond law shows that an output at a name x preceded
by a restricted on x is a blocked process. The third
law allows the removal a useless restriction. The final
law, called expansion, explains the behavior of a parallel
composition in terms of choice and matching.

A behavioral equivalence abstracts from internal
action is sometimes called a weak equivalence, and one
that does not a strong equivalence. The above laws are
valid for strong barbed congruence, hence also for its
weak counterpart. Here is an equality that is only valid
for weak barbed congruence:

R∣νx (x(y).P∣x⟨v⟩.Q) = R∣νx (P{v/y}∣Q)

The law shows that an interaction between two pro-
cesses along private names cannot be disturbed by other
processes.

Variants and Extensions
In the π-calculus, communication between processes
is synchronous – it is a handshake synchronization
between two processes. Variants of the π-calculus
have been proposed in which communication may be
thought of as being asynchronous. The most distinctive
feature of such extensions is that there is no continua-
tion underneath the output prefix (i.e., all outputs are
of the form x⟨v⟩), and only limited forms of choice are
allowed. A major advantage of the asynchronous vari-
ants is that their implementation is simpler, and indeed
most programming languages, or constructs for pro-
gramming languages, inspired by π-calculus are asyn-
chronous.

The ordinary π-calculus does not distinguish
between channels, or ports, and variables: they are all
names. In some variants, such a separation is made.
The π-calculus also does not explicitly mention loca-
tion or distribution of mobile processes. The issue of
location and distribution is orthogonal. Several exten-
sions, or variants, of the π-calculus have appeared with
the goal of explicitly addressing distribution and all the
associated phenomena. Ideas from π-calculus have con-
tributed to the development of their theories. Examples
of languages are the Distributed Join Calculus [], the
Distributed π-calculus [], the Ambient Calculus [],
and Oz [].

Related Entries
�Actors
�Bisimulation
�CSP (Communicating Sequential Processes)
�Process Algebras

http://dx.doi.org/10.1007/978-0-387-09766-4_125
http://dx.doi.org/10.1007/978-0-387-09766-4_149
http://dx.doi.org/10.1007/978-0-387-09766-4_186
http://dx.doi.org/10.1007/978-0-387-09766-4_450

 P Pipelining

Bibliographic Notes and Further
Reading
The first paper on the π-calculus, [], was written by
Milner et al. A book that gives a gentle introduction
to both CCS and the π-calculus, with an emphasis on
motivating the interest in them, is []. A book with
an in-depth treatment of the theory of the π-calculus
and its main variants is []. A book with a focus on
a distributed extension of the π-calculus is []. These
textbooks may be consulted for details on the con-
cepts outlined above, including type systems, variants of
the π-calculus, behavioral theory, and comparison with
higher-order languages.

Recent developments, not covered in the above
books, include session types [], type systems for
deadlock-freedom, and lock-freedom such as [].
Experimental typed programming languages, or pro-
posals for typed programming languages, inspired by
the π-calculus include Pict [], Join [], XLang, devel-
oped atMicrosoft as a component of the .NET platform.
An active research area is the application of concepts
from the π-calculus to languages aimed for Web ser-
vices (see, e.g., []), biology (see, e.g., [,]), and
security (see, e.g., [,]).

Bibliography
. Abadi M, Gordon AD () A calculus for cryptographic proto-

cols: the spi calculus. Inf Comput ():–
. Blanchet B, AbadiM, Fournet C () Automated verification of

selected equivalences for security protocols. J LogAlgebr Program
():–

. Boreale M, De Nicola R () Testing equivalence for mobile
processes. Inf Comput :–

. Carbone M, Honda K, Yoshida N () Structured
communication-centred programming for web services. In:
Proceedings of the ESOP , vol , Lecture Notes in
Computer Science. Springer, Heidelberg, pp –,

. Cardelli L, Gordon AD () Mobile ambients. In: Proceedings
of the FoSSaCS’, vol , Lecture Notes in Computer Science.
Springer, Heidelberg, pp –,

. Fournet C, Gonthier G, Lévy J-J, Maranget L, Rémy D () A
calculus of mobile agents. In: Proceedings of the CONCUR’,
vol , LectureNotes inComputer Science. Springer,Heidelberg,
pp –,

. Fournet C, Gonthier G () The join calculus: a language for
distributed mobile programming. In: Summer School APPSEM
, vol , Lecture Notes in Computer Science. Springer,
Heidelberg, pp –

. Hennessy M, Riely J () Resource access control in sys-
tems of mobile agents. In: Proceedings of the HLCL ’: High-
Level Concurrent Languages, vol ., ENTCS. Elsevier Science,

. Hennessy M () A distributed pi-calculus. Cambridge Univer-
sity Press, New York

. Kobayashi N () A new type system for deadlock-free pro-
cesses. In: Proceedings of the CONCUR’, vol , Lec-
ture Notes in Computer Science. Springer, Bonn, pp –,

. Milner R () Communicating and mobile systems: the /-
Calculus. Cambridge University Press, Cambridge

. Milner R, Parrow J, Walker D () A calculus of mobile pro-
cesses, (Parts I and II). Inf Comput :–

. Milner R, Parrow J, Walker D () Modal logics for mobile
processes. Theor Comput Sci :–

. PierceBC,TurnerDN() Pict: a programming language based
on the pi-calculus. In: Proof, Language and Interaction: Essays in
Honour of Robin Milner. MIT Press, Cambridge

. Priami C, Quaglia P, Romanel A () Blenx static and dynamic
semantics. In: Proceedings of the CONCUR’, vol , Lec-
ture Notes in Computer Science. Springer, Bologna, pp –,

. Regev A, Panina EM, SilvermanW, Cardelli L, Shapiro EY ()
Bioambients: an abstraction for biological compartments. Theor
Comput Sci ():–

. Sangiorgi D () On the bisimulation proof method. In: Pro-
ceedings of the MFCS’, vol , Lecture Notes in Computer
Science. Springer, pp –,

. Sangiorgi D, Walker D ()The /-calculus: a theory of mobile
processes. Cambridge University Press, Cambridge

. SmolkaG ()Thedefinition of kernel Oz. ResearchReport RR-
-, Deutsches Forschungszentrum für Künstliche Intelligenz,
Kaiserslautern, Germany

. Vasconcelos VT () Fundamentals of session types. In: SFM
 School, vol , Lecture Notes in Computer Science.
Springer, Heidelberg, pp –

Pipelining

Pipelining [] is a parallel processing strategy in which
an operation or a computation is partitioned into dis-
joint stages. The stages must be executed in a partic-
ular order (could be a partial order) for the operation
or computation to complete successfully. Each stage is
implemented as a component which could be a hard-
ware device or a software thread. When a stage com-
pletes, it becomes available to do otherwork. Parallelism
results from the execution of a sequence of operations

PLAPACK P

P

or computations so that at any given time several
components of the sequence are under execution
and each one of these is at a different stage of the
pipeline.

Pipelining is pervasive in today’s machines. Pro-
cessor control units and arithmetic units are typically
pipelined. Also, programs take advantage of pipelined
parallelism by partitioning computations into stages.

Related Entries
�Cray Vector Computers
�Floating Point Systems FPS-B and Derivatives
�Fujitsu Vector Computers
�Stream Programming Languages

Bibliography
. Kogge PM ()The Architecture of Pipelined Computers. Hemi-

sphere Publishing Corporation, New York

Place-Transition Nets

�Petri Nets

PLAPACK

John A. Gunnels
IBM Corp, Yorktown Heights, NY, USA

Definition
PLAPACK is a software library for dense parallel linear
algebra computations.

Discussion

Introduction
ThePLAPACK (van deGeijn, Robert.,Using PLAPACK,
pp. , , , , , , , © Massachusetts Institute
of Technology, by permission of the MIT Press) library
is a modern, dense parallel linear algebra library that
is extensible, easy to use, and available under an open
source license. It is designed to be user-friendly while
offering competitive performance when compared
to the more traditionally constructed ScaLAPACK
library.

The PLAPACK Project
Motivation PLAPACK’s design was motivated by
the observation that the parallel implementation of
most dense linear algebra operations is a relatively
well-understood process. Nonetheless, the creation of
general-purpose, high-performance parallel dense lin-
ear algebra libraries is severely hampered by the fact that
translating the sequential algorithms to a parallel code
requires careful manipulation of indices and parame-
ters describing the data, its distribution to processors,
and/or the communication required. The creators of
PLAPACK believe that these details make such parallel
programming highly error prone and that this overhead
stands in theway of the parallel implementation ofmore
sophisticated algorithms.

AnObject-Based ApproachThe PLAPACK library
is constructed so as to allow the user to express
their parallel algorithms in a very concise manner. It
does this, largely, through the encapsulation of data in
objects. To achieve this, PLAPACK adopted an “object-
based” (or object-oriented) approach to programming,
inspired by efforts including the Message Passing Inter-
face (MPI) library [], and the PETSc library []. In
object-based programming, all of the data related to an
operand (matrix, vector, etc.) is cohesive, maintained in
a data structure that describes the object. Further, the
descriptor is interrogated or modified only indirectly,
through the use of accessor and modifier functions.

Objects and Communications
Object Types In the PLAPACK library there are sev-
eral different types of linear algebra objects.These object
types have a one-to-one correspondence with the man-
ner in which they are distributed.
The PLAPACK object types include:

● PLA_Matrix: This object is distributed as a two-
dimensional object, in a particular block cyclic
fashion referred to as the Physically Based Matrix
Distribution (PBMD).

● PLA_Mvector: The multivector is distributed
over the compute fabric in blocked fashion, view-
ing the grid as one dimensional. It is used as a
vector operand and as an intermediate form for
copying data from one object (form) to another.

http://dx.doi.org/10.1007/978-0-387-09766-4_479
http://dx.doi.org/10.1007/978-0-387-09766-4_281
http://dx.doi.org/10.1007/978-0-387-09766-4_11
http://dx.doi.org/10.1007/978-0-387-09766-4_520
http://dx.doi.org/10.1007/978-0-387-09766-4_134

 P PLAPACK

A multivector object may consist of one or more
“columns” of data.

● PLA_Pmvector: Theprojectedmultivector object
is distributed in the same manner as (a set of) rows
or columns of a matrix. This object is often dupli-
cated in one dimension of the computational grid.
For example, a column-oriented projectedmultivec-
tor is distributed across rows of the processor mesh
and may be duplicated across processor columns.
PLAPACK code often uses this object type to create
buffers for communication.

● PLA_Mscalar: The multiscalar object is most
conveniently thought of as a local matrix. It is not
distributed, but replicated on all processors.

The Special Role of the Multivector Multivectors
can be thought of as a number of vectors, side-by-side,
distributed over the entire processor mesh, where that
mesh is viewed as a one-dimensional array of proces-
sors. The multivector can be used as a first-class object
or as an intermediate form in various kinds of com-
munication. An example of the former would be the
redistribution of the panel fromablocked LUdecompo-
sition. In taking the object from, typically, a column of
processors to the entire processor mesh, more compu-
tation per unit of time can be applied to the object. The
latter use of the multivector appears in the PLA_Copy
and PLA_Reduce routines. Copying data from one
object to another or reducing (e.g., summing) data from
several objects into another potentially involves com-
plex mapping and communication, but these are encap-
sulated in the PLA_Copy and PLA_Reduce routines,
respectively. The copy routine is used to seemlessly
move data between objects of potentially differing dis-
tributions and types while the reduction operator is
used to do the same, but is logically limited to using a
duplicated object as its source.The central nature of the
multivector in the copy operation is illustrated in Fig. .

Referencing (Sub)Objects
Views In order to both facilitate concise algorith-
mic encodings and to eliminate many indexing errors,
PLAPACK makes heavy use of linear algebra object
(matrix, vector, etc.) “views.” In this context, a view is,
abstractly, a subset of an object (a submatrix is the most
commonly used view) with its own descriptor.

The promotion of the view to a first-class entity in
PLAPACK stems from the fact that many common lin-
ear algebra algorithms such as parallel BLAS routines,
solvers, and factorization routines, can be expressed in
terms of windows into matrices and vectors. Thus, the
use of the view (implicit or explicit) is common. By
formalizing the use of the view and localizing the func-
tionality related to creating andmodifying these objects,
PLAPACK both removes the need for the user to create
this functionality and places it in a well-tested routine.
As the routines used for views are heavily tested and the
level of abstraction used to create views is high, rela-
tive to explicit indexing, this functionality is intended
to reduce the opportunity for programmer error and to
make such errors, when introduced, easier to locate.

A view is identical to an object created via the
PLA_Obj_create function except that it references
the same data as the parent object or view from which
it was derived. Thus, a change to the values in the data
that the view translates to a corresponding change in the
data that the parent object describes. It is legitimate in
PLAPACK to derive views from views.

In PLAPACK, a view of a linear algebra object is cre-
ated by a call to the PLA_Obj_view routine. The user
specifies the dimensions of the new view as well as its
offset relative to the parent object and this routine cre-
ates a new view into an existing object. Routines for
shifting (sliding) views as well as specialized subview
operators, partitioningmatrices intomultiple submatri-
ces or coalescing submatrices into a single-view object
are also supplied in the PLAPACK library.

Distributing and Interfacing with Parallel
Operands
Physically Based Matrix Distribution PLAPACK
employs an object distribution called the “Physically
Based Matrix Distribution" (PBMD). This distribution
scheme is based on the thesis that the elements of vec-
tors are typically associated with data of physical signifi-
cance, and it is therefore their distribution to nodes that
is directly related to the distribution of the problem to
be solved. From this point of view, a matrix (discretized
operator) merely represents the relation between two
vectors (discretized spaces):

y = Ax ()

PLAPACK P

P

Interleave

Unravel

Unravel

Local copy

Local copy

Scatter
within col

Scatter
within row

Mvector

Mvector

Mvector

Mvector

Shift

Gather
within col

Gather
within row

Collect
within row

Collect
within col

Interleave
Pmvector

(row, undup)

Pmvector
(row, dup)

Pmvector
(col, dup)

Pmvector
(col, undup)

Mvector

Pmvector
(row, undup)

Pmvector
(row, dup)

Pmvector
(col, dup)

Pmvector
(col, undup)

Mvector

Interleave

Interleave

PLAPACK. Fig. A systematic approach to copying (duplicated) (projected) (multi)vectors from and to (duplicated)

(projected) (multi)vectors

PLAPACK partitions x and y, and assigns portions of
these vectors to nodes. The matrix A should then be
distributed to nodes in a fashion consistent with the
distribution of the vectors.

To employ PBMD, one must start by describing the
distribution of the vectors, here, x and y, to nodes, after
which the matrix distribution is induced (derived) by
the vector distribution as illustrated in Fig. .

The Application Programming Interface PLA-
PACKwas architected under the assumption that appli-
cations will employ the library to:

● Create PLAPACK vector, multivector, and matrix
objects.

● Fill the entries in these PLAPACK objects.
● Performa series of parallel linear algebra operations.
● Query elements of the updated PLAPACK objects.

Many applications are inherently set up to gener-
ate numerous sub-vector, sub-multivector, or subma-
trix contributions to global linear algebra objects. The
contributions of these applications can be viewed as
dimensional “sub-objects.”However, frequently they are
also partial sums of the global linear algebra objects,
in which case the contribution must be added to exist-
ing entries. One approach for parallelizing these appli-
cations is to partition the numerous sub-object com-
putations among processors. Such a parallelization of

the applications’ linear algebra object generation phase
produces sub-vector, sub-multivector, and submatrix
partial sums that may or may not be entirely local
with respect to the data distribution of the global linear
algebra objects.

In order to fill or retrieve entries in a linear alge-
bra object, an application enters the API-active state
of PLAPACK. In this state, objects can be opened in a
shared-memory-likemode, which allows an application
to either fill or retrieve individual elements, sub-vectors,
or subblocks of linear algebra objects. The PLAPACK
application interface supports filling global linear alge-
bra objects with sub-object partial sums.

An Illustrative Example
Parallel Cholesky Factorization Fig. is a PLAPACK
implementation of a blocked, parallel Cholesky factor-
ization. It utilizes level- BLAS routines locally and is a
simple, but efficient implementation of this algorithm.
The representation is compact and relatively easy to
explain to those familiar with the underlying sequential
algorithm (see, e.g., the encyclopedia entry on libflame).

The algorithmproceeds by applying (local) Cholesky
factorization to the upper left corner of the matrix of
interest, updating the remainder of the matrix accord-
ingly, and reducing the active area (the part that will
be further updated) of the matrix. The same algorithm

 P PLAPACK

9

1
4
7

10

2
5
8

11

0
3

110 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

6

5

R
ow

 in
di

ce
s

7

8

9

10

6

11

Column indices

10,0

1,0

2,0

4,0

7,0

8,0

11,0

0,11

3,11

6,11

9,11

1,11

4,11

7,11

10,11

2,11

5,11

8,11

11,11

5,0

0,0

3,0

9,0

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,10

3,1 3,2 3,4 3,5 3,6 3,7 3,8 3,9 3,10

6,1 6,2

9,1 9,2

4,1

7,1

10,1

2,1

5,1

8,1

11,1

1,2

4,2

7,2

5,2

11,2

4,3

7,3

11,3

2,3

5,3

8,3

11,3

6,3

10,9

9,3

6,4

9,4

1,4

7,4

10,4

2,4

8,4

11,4

6,5

1,5

4,5

7,5

10,5

2,5

8,5

11,5

9,6

1.6

4,6

7,6

10,6

5,6

8,6

11,6

9,7

1,7

4,7

10,7

2,7

5,7

8,7

11,7

6,8

9,8

1,8

4,8

7,8

2,8

5,8

11,8

6,9

1,9

4,9

7,9

2,9

5,9

8,9

11,9

6,10

9,10

1,10

4,10

2,10

5,10

8,10

11,10

1,3

9,5

10,8

8,2

5,4

2,6

6,7

1,1

2,2

3,3

4,4

5,5

6,6

7,7

8,8

9,9

10,1010,2

7,10

6,0 2

1

2

1

2

1

2

0,0 0,0

0,0 0,0

0,0 0,0

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3 0,3 0,3

1

2

1,0 1,0 0,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3 1,3 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3 2,3 2,3

0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3 0,3 0,3

1,0 1,0 0,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3 1,3 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3 2,3 2,3

0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3 0,3 0,3

1,0 1,0 0,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3 1,3 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3 2,3 2,3

0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3 0,3 0,3

1,0 1,0 0,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3 1,3 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3 2,3 2,3

0

0

0

0

30 1

PLAPACK. Fig. Inducing a matrix distribution from vector distributions. Top: Here each box represents a node of a ×

mesh. The sub-vectors of x and y are assigned to the mesh in column-major order. Thus the number in the box represents

the index of the sub-vector assigned to that node. By projecting the indices of y to the left, the distribution of the matrix

row-blocks of A is established. By projecting the indices of x to the top, the distribution of the matrix column-blocks of A is

determined. Bottom-left: The resulting distribution of the subblocks of A is given where the indices refer to the indices of

the subblocks of A. Bottom-right: The same information, except now from the matrix point of view. The figure shows the

matrix partitioned into subblocks, with the indices in the subblocks indicating the node to which the subblock is mapped

is applied to this active part of the matrix until there
is no active matrix remaining and the algorithm is
complete.

In the implementation in Fig. a, the while loop
continues until the active portion of the matrix no
longer exists. That condition is signaled when the top-
left (A_TL) quadrant of the matrix (the part that has

been completely factored) is the entire matrix. Since the
matrix is assumed to be (globally) square this condition
can be tested by comparing the (global) length of the
entire matrix to the factored (sub)section.

The calls to PLA_Obj_split_size are used
to determine the matrix dimensions of the top-left
quadrant of the active matrix that resides on a single

PLAPACK P

P

int Chol_blk_var3(PLA_Obj A, int nb_alg)
{

PLA_Obj ATL=NULL , ATR=NULL , A00=NULL , A01=NULL , A02=NULL ,
ABL=NULL , ABR=NULL , A10=NULL , A11=NULL , A12=NULL ,

A20=NULL , A21=NULL , A22=NULL;
PLA_Obj MINUS_ONE=NULL , ZERO=NULL , ONE=NULL;
int b;
/* Create constants -1, 0, 1 of the appropriate type */
PLA_Create_constants_conf_to(A, &MINUS_ONE , &ZERO , &ONE);
PLA_Part_2x2(A, &ATL , &ATR ,

&ABL , &ABR , 0, 0, PLA_TL);
while (PLA_Obj_length(ATL) < PLA_Obj_length(A)){

/* Determine how big of a block A11 exists within one block */
PLA_Obj_split_size(ABR , PLA_SIDE_TOP , &size_top , &owner_top);
PLA_Obj_split_size(ABR , PLA_SIDE_LEFT , &size_left , &owner_left);
b = min((min(size_top , size_left), nb_alg);
PLA_Repart_2x2_to_3x3(ATL , /**/ ATR , &A00 , /**/ &A01 , &A02 ,

/* ********** */ /* ****************** */
&A10 , /**/ &A11 , &A12 ,

ABL , /**/ ABR , &A20 , /**/ &A21 , &A22 ,
b, b, PLA_BR);

/* --*/
/* Update A_11 <- L_11 = Chol. Fact.(A_11) */
PLA_Local_chol(PLA_LOWER_TRIANGULAR , A11);
/* Update A_21 <- L_21 = A_21 inv(L_11’) */
PLA_Trsm(PLA_SIDE_RIGHT , PLA_LOWER_TRIANGULAR ,

PLA_TRANSPOSE , PLA_NONUNIT_DIAG , ONE , A11 , A21);
/* Update A_22 <- A_22 - L_21 * L_21’ */
PLA_Syrk(PLA_LOWER_TRIANGULAR , MINUS_ONE , A21 , ONE , ABR);
/* --*/
PLA_Cont_with_3x3_to_2x2 (&ATL , /**/ &ATR , A00 , A01 , /**/ A02 ,

A10 , A11 , /**/ A12 ,
/* *********** */ /* *************** */
&ABL , /**/ &ABR , A20 , A21 , /**/ A22 ,
PLA_TL);

}
PLA_Obj_free(&ATL); PLA_Obj_free(&ATR);
PLA_Obj_free(&ABL); PLA_Obj_free(&ABR);
PLA_Obj_free(&A00); PLA_Obj_free(&A01); PLA_Obj_free(&A02);
PLA_Obj_free(&A10); PLA_Obj_free(&A11); PLA_Obj_free(&A12);
PLA_Obj_free(&A20); PLA_Obj_free(&A21); PLA_Obj_free(&A22);
PLA_Obj_free(&MINUS_ONE); PLA_Obj_free(&ZERO); PLA_Obj_free(&ONE);
return PLA_SUCCESS;

}

PLAPACK. Fig. An efficient variant of Cholesky factorization implemented in the PLAPACK API

processor. This is done so that an efficient, local (no
communication) Cholesky factorization can be per-
formed via PLA_Local_chol.

The PLA_Repart_2x2_to_3x3 and PLA
_Cont_with_3x3_to_2x2 calls create multiple
views from a single object and coalesce multiple views
into a single object, respectively. The comment bars in
the code are visual cues as to the semantics of these
functions. In the case ofPLA_Repart_2x2_to_3x3
function, ABR is split into four subviews. In order to
unambiguously carry out this operation only the size

of the A11 subview needs to be specified (here, that
size is b by b).The PLA_Cont_with_3x3_to_2x2
function coalesces nine views into four. This is done in
order to update the view of the active part of the matrix,
shrinking it.

Computational work is performed through the calls
to PLA_Local_chol, which performs the sequential
Cholesky factorization, PLA_Trsm whose purpose is
to perform a parallel triangular solve with multiple
right-hand-sides, and PLA_Syrk, a parallel version of
the symmetric rank-k update.

 P PLASMA

Related Entries
�BLAS (Basic Linear Algebra Subprograms)
�LAPACK
�libflame
�ScaLAPACK

Bibliographic Notes and Further
Reading
ThePLAPACKnotation and APIs were used as the basis
for those employed in the FLAME [] project and the
libflame library [].

The first papers that outlined the ideas that PLA-
PACK is based upon were published in [] and a
book has been published that describes PLAPACK in
detail [].

Bibliography
. Gropp W, Lusk E, Skjellum A () Using MPI. The MIT Press,

Cambridge, MA
. Balay S, Gropp W, McInnes LC, Smith B () PETSc . users

manual. Technical report ANL-/, Argonne National Labora-
tory, Cass Avenue Argonne

. Gunnels JA, Gustavson FG, Henry GM, van de Geijn RA ()
FLAME: formal linear algebra methods environment. ACM T
Math Software ():–

. Van Zee FG () Libflame: the complete reference.
http://www.lulu.com/content//

. Alpatov P, Baker G, Edwards HC, Gunnels J, Morrow G,
Overfelt J, van de Geijn R () PLAPACK: parallel linear algebra
package design overview. In: Proceedings of the ACM/IEEE
conference on supercomputing, ACM, New York, pp

. van de Geijn RA () Using PLAPACK. The MIT Press,
Cambridge, MA

PLASMA

Jack Dongarra, Piotr, Luszczek
University of Tennessee, Knoxville, TN, USA

Definition
Parallel Linear Algebra Software for Multi-core Archi-
tectures (PLASMA) is a free and open-source software
library for numerical solution of linear equation systems
on shared memory computers with multi-core proces-
sors. In particular, PLASMA is designed to give high
efficiency on homogeneous multi-core processors and

multi-socket systems of multi-core processors. As of
today, majority of such systems are on-chip symmet-
ric multiprocessors with classic super-scalar processors
as their building blocks augmented with short-vector
SIMD extensions (such as SSE and AltiVec). PLASMA
is available for download from the PLASMA Web site
(To obtain the PLASMA library logon to: http://icl.cs.
utk.edu/plasma/).

Discussion
The emergence of multi-core microprocessor designs
marked the beginning of a forced march toward an
era of computing in which research applications must
be able to exploit parallelism at a continuing pace
and unprecedented scale []. To answer this challenge
PLASMA redesigns LAPACK [] and ScaLAPACK []
for current and future multi-core processor architec-
tures. To achieve high performance on this type of
architectures, PLASMA relies on tile algorithms, which
provide fine granularity parallelism. The standard lin-
ear algebra algorithms can then be represented as a
Directed Acyclic Graph (DAG) [] where nodes rep-
resent tasks, either panel factorization or update of
a block-column, and edges represent dependencies
among them. Figure shows a small DAG for a tile QR
factorization. Tasks of the same type (implemented by
the same function) share the same color of nodes.

Moreover, the development of programming mod-
els that enforce asynchronous, out of order scheduling
of operations is the concept used as the basis for the def-
inition of a scalable yet highly efficient software frame-
work for computational linear algebra applications. In
PLASMA, parallelism is no longer hidden inside Basic
Linear Algebra Subprograms (BLAS – for more details
see http://www.netlib.org/blas/) but is brought to the
fore to yield much better performance. Each of the one-
sided tile factorizations presents unique challenges to
parallel programming. Cholesky factorization is repre-
sented by a DAG with relatively little work required on
the critical path. LU and QR factorizations have cor-
responding dependency pattern between the nodes of
the DAG. These two factorizations exhibit much more
severe scheduling and constraints than the Cholesky
factorization. Currently, PLASMA schedules tasks stat-
ically while balancing the trade-off between load bal-
ancing and data reuse. PLASMA’s performance depends

http://dx.doi.org/10.1007/978-0-387-09766-4_84
http://dx.doi.org/10.1007/978-0-387-09766-4_152
http://dx.doi.org/10.1007/978-0-387-09766-4_91
http://dx.doi.org/10.1007/978-0-387-09766-4_151
http://icl.cs.utk.edu/plasma/
http://icl.cs.utk.edu/plasma/
http://www.netlib.org/blas/
http://www.lulu.com/content/5915632/

PLASMA P

P

DGEQRT

DGEQRT

DGEQRT

DGEQRT

DGEQRT

DSSRFBDSSRFBDSSRFB DSSRFB

DSSRFB

DSSRFB

DSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB

DSSRFB

DSSRFB DSSRFB

DSSRFB DSSRFB

DSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB DSSRFB DSSRFB DSSRFB

DSSRFBDSSRFBDSSRFB

DSSRFBDSSRFBDSSRFB

DLARFB

DLARFB

DLARFB DLARFB

DLARFB

DLARFBDLARFB

DTSQRT

DTSQRT

DTSQRT

DTSQRT

DTSQRT

DTSQRT

DTSQRT

DTSQRT

DTSQRT

DTSQRT

DLARFBDLARFBDLARFB

PLASMA. Fig. Task DAG for tile QR factorization

strongly on tunable execution parameters, the outer and
inner blocking sizes, that trade off utilization of differ-
ent system resources. The outer block size (NB) trades
off parallelization granularity and scheduling flexibil-
ity with single core utilization, while the inner block

size (IB) trades off memory load with extra flops due
to redundant calculations. Tuning PLASMA consists
of finding (NB, IB) pairs that maximize the perfor-
mance depending on the matrix size and the number
of cores.

 P PMPI Tools

In terms of numerical calculations, the Cholesky
factorization represents one case in which a well-known
LAPACK algorithm can be easily reformulated in a tiled
fashion. Each operation that defines an atomic step of
the LAPACK algorithm can be broken into a sequence
of tasks where the same algebraic operation is per-
formed on smaller portions of data, i.e., the tiles. Inmost
of the cases, however, the same approach cannot be
applied and novel algorithms must be introduced. For
the LUandQR [,] factorizations, algorithms based on
the updating factorizations are used to reformulate the
algorithms as was done for out-of-core solvers. Updat-
ing factorization methods can be used to derive tiled
algorithms for LU and QR factorizations that provide
very fine granularity of parallelism and the necessary
flexibility that is required to exploit dynamic schedul-
ing of the tasks. It is worth noting, however, that, as
in any case where such fundamental changes are made,
trade-offs have to be taken into account. For instance,
in the case of the LU factorization the tiled algorithm
replaces partial pivoting with block pairwise pivoting
which results in, on average, slightly worse numerical
stability. On the positive side, the current analysis of
PLASMA’s tile algorithms suggests that they are numer-
ically backward stable and the ongoing research aims to
determine if they are stable.

PLASMA provides routines to solve dense general
systems of linear equations, symmetric positive definite
systems of linear equations, and linear least squares
problems using LU, Cholesky, QR, and LQ factoriza-
tions. Real arithmetic and complex arithmetic are sup-
ported in both single precision and double precision.

Related Entries
�LAPACK
�Linear Algebra, Numeric
�ScaLAPACK

Bibliography
. Herb Sutter A () Fundamental turn toward concurrency in

software. Dr. Dobb’s J ():–
. Anderson E, Bai Z, Bischof C, Blackford LS, Demmel JW, Don-

garra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A,
Sorensen D () LAPACK Users’ guide. SIAM, Philadelphia

. Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I,
Dongarra J, Hammarling S,HenryG, Petitet A, StanleyK,Walke D,
Whaley RC () ScaLAPACK users’ guide. SIAM, Philadelphia

. Christofides N () Graph theory: an algorithmic approach.
Academic, New York

. Buttari A, Langou J, Kurzak J, Dongarra JJ () Parallel tiled
QR factorization formulticore architectures. In: PPAM’: Seventh
international conference on parallel processing and applied math-
ematics, Gdansk, Poland, pp –

. Buttari A, Langou J, Kurzak J, Dongarra JJ () Lapack work-
ing note : A class of parallel tiled linear algebra algorithms for
multicore architectures. Technical Report UT-CS--, Electri-
cal Engineering and Computer Sciences Department, University of
Tennessee

PMPI Tools

BerndMohr
Forschungszentrum Jülich GmbH, Jülich, Germany

Synonyms
MPI introspection interface; MPImonitoring interface;
MPI profiling interface; PMPI

Definition
MPI is the predominant parallel programming model
used in scientific computing which is demonstrated
to work on the largest computer systems available.
With PMPI there exists a standardized, and therefore
portable, MPI monitoring interface. Since it was part
of the MPI standard from the beginning, a multitude
of tools for MPI programming exist. In the MPI stan-
dard, PMPI is called the Profiling Interface, which is a
little bit misleading as it allows to intercept every MPI
call made in a parallel program and can be used for all
kind of tools, e.g., tracing or validation tools, and not
just profiling ones.

Discussion
Section of theMPI standard [] describes the so-called
Profiling Interface of MPI. The objective of this inter-
face is to ensure that it is relatively easy for authors of
MPI tools to interface their codes to MPI implemen-
tations on different machines. Since MPI is a machine
independent standard with many different implemen-
tations, it is unreasonable to expect that the authors of
profiling tools for MPI will have access to the source
code that implements MPI on any particular machine.
It was therefore necessary to provide a portable mech-
anism by which the implementers of such tools can

http://dx.doi.org/10.1007/978-0-387-09766-4_152
http://dx.doi.org/10.1007/978-0-387-09766-4_126
http://dx.doi.org/10.1007/978-0-387-09766-4_151
http://dx.doi.org/10.1007/978-0-387-09766-4_57

PMPI Tools P

P

collect whatever performance information they wish
without access to the underlying implementation. This
is accomplished by dictating that an implementation of
the MPI functions must provide a mechanism through
which all of the MPI-defined functions may be accessed
with a name shift.Thus, all of the MPI functions (which
normally start with the prefix “MPI”) should also be
accessible with the prefix “PMPI.” This can be done by
using weak symbols or simply by compiling each MPI
function twice but with the different name.

It is now possible for the implementer of anMPI tool
to intercept all of theMPI calls that are made by the user
programby implementing a library of so-calledwrapper
functions, which implement the same interface as the
MPI function they intercept. In the wrapper function
one can collect whatever information is required for the
tool’s task before or after calling the underlying MPI
implementation (through its name shifted entry points)
to achieve the needed effects. One also has access to all
parameter values passed to and returned from the MPI
function.

The MPI standard also requires that the standard
MPI library be built in such a way that the inclusion
of MPI functions can be achieved one at a time. This
is necessary so that the authors of the wrapper library
need only define those MPI functions which they wish
to intercept, references to any others being fulfilled by
the normal MPI library. So in order to use an MPI tool,
the program is first linked to the tool’s wrapper library
and only then to the MPI library, as shown in Fig. .

Simple Usage Example
The basic structures of any PMPI tool is a collection
of wrapper routines that collect the necessary data for
eachMPI call. At the end of the program execution, e.g.,
in the MPI_Finalize wrapper, the collected data is
potentially aggregated across all processes using MPI
communication and then written to disk or presented
to the user. Figure shows a very simplistic version of
an MPI performance tool that only counts the number
of messages sent via MPI_Send.

A more realistic version of this wrapper library
example would not only count messages, but much
more performance metrics, e.g., the time spent in exe-
cuting the function. Professional MPI performance
tools also determine the distribution of the recorded
metrics over the receiver rank or the amount of bytes
sent. Of course, to get a complete recording of MPI
messages all functions that send messages need to be
wrapped, i.e., all variants of MPI_Send (MPI_Bsend,
MPI_Ssend, MPI_Rsend, …) and some other func-
tions like MPI_Start. The latter function belongs to
the group of functions implementing MPI-persistent
communication. To monitor these messages, it is also
necessary to track all MPI requests in the tool (imple-
mented by wrapping all MPI calls that create, modify,
or delete the opaque MPI request objects). Finally, to
support all programming languages the MPI standard
supports, both the C and the Fortran version of the
wrappers need to be implemented. As theMPI standard
defines over functions, this means implementing

Call to MPI_Send MPI_Send MPI_Send

PMPI_Send

MPI_Bcast

PMPI_Bcast

Wrapper library MPI library

Call to MPI_Bcast

User program

PMPI Tools. Fig. Linking of user program, wrapper library, and MPI library. The user program calls MPI_Send and

MPI_Bcast. If the user program is first linked to the tool’s wrapper library and then to the MPI library, the tool only

intercepts MPI_Send calls which uses PMPI_Send to implement the actual sending of the message. Calls to unwrapped

functions (here MPI_Bcast) directly call the corresponding function of the MPI library

 P PMPI Tools

#inc lude <s t d i o . h>
#inc lude ”mpi . h”

s t a t i c i n t numsend = 0 ;

i n t MPI Send (void ∗buf , i n t count , MPI Datatype type ,
i n t dest , i n t tag , MPI Comm comm) {

numsend++;
return PMPI Send(buf , count , type , dest , tag , comm) ;

}

i n t MPI Final ize () {
i n t me ;
PMPI Comm rank(MPICOMMWORLD, &me) ;
p r i n t f (”%d sent %d messages . \n” , me, numsend) ;
r e turn PMPI Finalize () ;

PMPI Tools. Fig. Simplistic wrapper library example. The wrapper for MPI_Send increments a global variable which

was initialized to zero. The wrapper for MPI_Finalize prints how many messages this particular rank had sent. As

MPI_Finalize is executed by every rank of the program, each rank is reporting its own result. Inside the wrapper, the

rank is determined via PMPI_Comm_rank in order to avoid invoking the corresponding wrapper function

over wrapper functions; which is why, many MPI
tool projects use wrapper generation tools to simplify
the implementation of the wrapper library.

Performance Measurement Tools
Based on PMPI
Many MPI performance tools exist and all of them use
the PMPI interface to implement the tool. Two widely
accepted, portable, and scalable examples are FPMPI-
andmpiP.They are both open-source, so that the reader
can easily download them and study their implementa-
tion and usage.

FPMPI- is a portable, open-source, very
lightweight, and scalable MPI profiling library from
Argonne National Laboratory []. For each MPI func-
tion, it provides the average and the maximum of the
sum of metrics over all processes in a single textual
output file. The provided metrics are the number of
calls and the total execution time of each MPI func-
tion. FPMPI- has two special features that set it apart
from other MPI profiling libraries: For communica-
tion functions, it records not only the amount of data
transferred but also the distribution of the message
sizes (by using an adaptive bins histogram). Sec-
ondly, it optionally tries to determine the actual syn-
chronization time within blocking MPI calls by replac-
ing the actual MPI implementation with a logically

equivalent implementation using busy-wait on the user
level, allowing the blocking time to be estimated.

mpiP is also a portable,more complete, but still scal-
able MPI profiling library originating from Lawrence
Livermore National Laboratory but meanwhile main-
tained as an open-source project on sourceforge.net [].
It provides also the number of calls, total execution
time, bytes sent for each MPI function, and optionally
for each MPI call-site. Captured call-paths are deter-
mined by a user-specified traceback level. Also, it pro-
vides MPI I/O statistics where applicable. The collected
data is not aggregated across the processes but is col-
lected in a scalable manner into one single output file
which contains the complete data for all processes.

Besides these two MPI profiling libraries, there are
many more performance tools for MPI that utilize the
PMPI interface. Some other tools worth mentioning
are:

● Integrated Performance Monitoring (IPM) [,]
is a portable, open-source toolkit with a focus on
providing a low-overhead performance profile of
the performance aspects and resource utilization
in an MPI program. The level of provided detail
is selectable at runtime and presented through a
variety of text and web reports. Aside from overall
performance, reports are available for load balance,

PMPI Tools P

P

task topology, bottleneck detection, and message
size distributions.

● There are also many vendor-specific MPI tools that
are commercial products and typically only run on
the system sold by the vendor. Examples here are
Intel’s Trace Collector or Cray’s CrayPat.

● VampirTrace [,] is a portable, open-source tool
for collecting detailed traces of MPI programs in
the Open Trace Format (OTF), which can be ana-
lyzed and visualized by the commercial Vampir
trace browser. The latest version is also distributed
as part of OpenMPI.

● The TAU Parallel Performance System [,] is a
very portable and versatile, open-source toolkit for
performance analysis of parallel programs. Among
many things, it supports profiling and tracing of
MPI programs based on the PMPI interface.

● The Scalasca toolset [,] provides call-path pro-
filing and event tracing ofMPI,OpenMP, and hybrid
MPI/OpenMP programs. Its focus is on extreme
scalability: In summer , they reported the first
successful tracing experiments done on a ,,
core BlueGene/P system. It is, together with Vam-
pirTrace, the only MPI tools that does complete
MPI communicator tracking enabling a detailed col-
lective communication analysis. Finally, Scalasca is
currently the only tool supporting a detailed analysis
of MPI . RMA functions [].

Verification Tools Based on PMPI
While most of the PMPI tools measure and analyze
the performance of MPI programs, there are certainly
other uses for the PMPI interface. For example, it also
possible to verify the correct and portable use of the
MPI standard. MPI is widely used to write parallel pro-
grams, but it does not guarantee full portability between
different MPI implementations. When an application
runs without any problems on one platform but crashes
or gives wrong results on another platform, developers
tend to blame the compiler/architecture/MPI imple-
mentation. However, in some cases, the problem is
a subtle programming error in the application unde-
tected on the first platform. Finding this bug can be
a very strenuous and difficult task. The solution is to
use an automated tool designed to check the correct-
ness of MPI applications during runtime. Examples of

such violations are the introduction of irreproducibil-
ity, deadlocks, and incorrect management of resources
such as communicators, groups, datatypes, etc., or the
use of non-portable constructs.

A PMPI-based correctness checking tool has the
advantage that it can be used with any standard-
conforming MPI implementation and may thus be
deployed on any development platform available to the
programmer. Although high-quality MPI implementa-
tions detect some of these errors themselves, there are
many cases where they do not give any warnings. For
example, non-portable implementation-specific behav-
ior is not indicated by the implementation itself, nor are
checks performed that would decrease the performance
too much, such as consistency checks. What is worse
is that MPI implementations tolerate quite a few errors
without warnings or crashing, by simply giving wrong
results.

MARMOT [] is one example of a PMPI-based
tool designed to detect correctness and portability prob-
lems during runtime. For all tasks that require a global
view, e.g., deadlock detection or the control of the exe-
cution flow, MARMOT uses an additional process, the
so-called debug server. Each client registers at the debug
server, which in turn gives its clients the permission
for execution in a round robin way. In order to ensure
that this additional debug process is transparent to
the application, MARMOT maps MPI_COMM_WORLD
to a MARMOT communicator containing only the
application processes. Since all other communicators
are derived from MPI_COMM_WORLD they automat-
ically exclude the debug server process. Everything
that can be checked locally, e.g., verification of argu-
ments, such as tags, communicators, or ranks, is per-
formed by the clients. Additionally, the clients and
the debug server use MPI internally to transfer infor-
mation. Unfortunately, this server/client architecture
inflicts a bottleneck, thus affecting the scalability and
performance of the tool, especially for communication-
intensive applications.

UMPIRE [] is a second example for a PMPI-based
MPI correctness-checking tool. Like MARMOT, it per-
forms checks on a rank-local and global level. UMPIRE
uses time-out mechanism and dependency graphs to
detect deadlocks. Further errors detected by UMPIRE
include wrong ordering of collective communication

 P PMPI Tools

calls within a communicator, mismatching collective
call operations, or errant writes to send buffers before
non-blocking sends are completed. UMPIRE does
extensive resource tracking. Consequently it is able to
unearth resource leaks. For instance, applications can
repeatedly create opaque objects without freeing them,
leading to memory exhaustion, or there can be lost
requests due to overwriting of request handles.

Future Directions
While PMPI certainly has been successfully used for
many tools, it also comes with a few limitations: One
problem is that it requires users to relink their applica-
tion. More importantly, the PMPI interface only sup-
ports one tool at a time. The user cannot use multiple
tools in a single run of their application – a signifi-
cant limitation since not only application programmers
might want to perform multiple performance analyses
concurrently, but also tool builders cannot use existing
tools, such as an MPI profiler, to evaluate the quality of
the implementation of new tools, such as a correctness
checker. Further, tool builders cannot easily create tool
modules since functionality cannot be split into indi-
vidual PMPI-accessing layers that could be reused by
other tools. Thus, it discourages code reuse during tool
development.

To overcome these limitations, researchers at LLNL
propose a new infrastructure called PNMPI [,].
PNMPI allows users to dynamically load and execute
one or more PMPI-based tools concurrently. This is
accomplished by linking the PNMPI infrastructure into
applications by default. PNMPI then transforms the
wrapper libraries included in the PMPI tools into a
single tool stack. Once initialized, PNMPI redirects
any MPI routine executed by the application into this
dynamically created stack and independently calls each
tool that contains a wrapper for the routine. This elimi-
nates the need to create a separate executable for each
tool and to run each tool separately. Since PNMPI
is lightweight by design, it can be included in the
default build process thereby removing the need for
recompilation to include or remove a tool. PNMPI
also provides tool interaction functionality through ser-
vices in the PNMPI core. Thus, separate modules can
now implement common tool functionality to improve
code reuse, modularity, and flexibility as well as tool
interoperability. Possible usage scenarios for the PNMPI

infrastructure are the transparent use of tracing and
profiling tools together, or efficient MPI debugging by
combining deterministic reply mechanisms with MPI
checker libraries like UMPIRE.

Another proposal, the so-called Universal MPI Cor-
rectness Interface (UniMCI) [], specifically targets
the efficient integration of performance and verification
tools. Like PNMPI, it is based on the observation that
using multiple tools simultaneously can help pinpoint
issues faster, especially the combination of a tracing and
a correctness tool can provide the history that leads to a
correctness event and add further details to a detected
error. Thus, it simplifies the identification of the root
cause of an error. Unless PNMPI, it also provides a solu-
tion for a generic, portable coupling of any performance
host tool with a correctness guest tool provided they
both follow the UniMCI interface.

This interface provides two functions for each MPI
call: one to analyze the initial arguments of theMPI call,
called pre check, and one to analyze the results of the
MPI call, called post check. All runtime MPI checkers
will need an analysis of the initial MPI call arguments to
detect errors in the given arguments, which is invoked
with the pre check function of UniMCI. The post check
is usually needed for MPI calls that create resources,
e.g., MPI_Isend, which create new requests. MPI cor-
rectness tools have to add these new resources to their
internal data structures, in order to be aware of all valid
handles and their respective state. By splitting the anal-
ysis of theMPI call into two parts, it is possible to return
the result of the check to the host tool before the actual
MPI call is issued, which is important to guarantee that
errors are handled before the application might crash.
Results of checks are returned with additional interface
functions that have to be issued after each check func-
tion. A simple correctness message record is used to
return problems detected by the guest tool. Future ver-
sions of the interface will contain extensions and rules
to handle asynchronous correctness checking tools and
multi-threaded applications.

Related Entries
�Debugging
�Formal Methods–Based Tools for Race, Deadlock,
and Other Errors
�Metrics

http://dx.doi.org/10.1007/978-0-387-09766-4_135
http://dx.doi.org/10.1007/978-0-387-09766-4_399
http://dx.doi.org/10.1007/978-0-387-09766-4_399
http://dx.doi.org/10.1007/978-0-387-09766-4_69

Polaris P

P

�MPI (Message Passing Interface)
�Parallel Tools Platform
�Performance Analysis Tools
�Periscope
�Profiling
�Scalasca
�TAU
�Tracing
�Vampir

Bibliography
. Louis Turcotte () Message passing interface forum: MPI: a

message-passing interface standard. IJSA Special issue on MPI
(/)

. Accelerated strategic computing initiative: the ASC SMG
benchmark code () https://asc.llnl.gov/computing_
resources/purple/archive/benchmarks/smg/

. Argonne national laboratory: the FPMPI- MPI profiling library
() http://www-unix.mcs.anl.gov/fpmpi/

. Vetter J, Chambreau C () The mpiP MPI profiling library.
http://mpip.sourceforge.net/

. SkinnerD,Wright N, Fuerlinger K, Yelick K () Allan Snavely:
integrated performance monitoring. http://ipm-hpc.sourceforge.
net/

. Fürlinger K, Skinner D (August) Capturing and visualizing
event flow graphs of MPI applications. In: Workshop on pro-
ductivity and performance (PROPER) in conjunction with
Euro-Par

. Jurenz M, Knüpfer A, Brendel R, Lieber M, Doleschal J,
Mickler H, Hackenberg D, Heyde H, Müller M () Vampir-
Trace. http://www.tu-dresden.de/zih/vampirtrace/

. Knüpfer A, Brunst H, Doleschal J, Jurenz M, Lieber M, Mickler
H, Müller M, Nagel W () The vampir performance analy-
sis tool-set. In: Tools for high performance computing. Springer,
Stuttgart, pp –

. Shende S, Malony A () Tuning and analysis utilities. http://
tau.uoregon.edu/

. Shende S, Malony A () The TAU parallel performance sys-
tem. Int J High Perform Comput Appl :–, SAGE Publi-
cations

. Wolf F, Mohr B, Wylie B, Geimer M () Scalable performance
analysis of large-scale applications. http://www.scalasca.org/

. Geimer M, Wolf F, Wylie BJN, Mohr B () A scalable tool
architecture for diagnosing wait states in massively parallel appli-
cations. Parallel Comput :–

. Hermanns M-A, Geimer M, Mohr B, Wolf F () Scalable
detection of MPI- remote memory access inefficiency patterns.
In: Proc. of the th European PVM/MPI users’ group meeting
(EuroPVM/MPI), volume of Lecture Notes in Computer
Science, Springer, Espoo, Finland, pp –

. Krammer B, Bidmon K, Müller M, Resch M () MARMOT:
an MPI analysis and checking tool. In: Procedings of PARCO

, volume of Advances in Parallel Computing, Elsevier,
pp –

. Vetter J, de Supinski B () Dynamic software testing of MPI
applications with umpire. In: Proceedings of the ACM/IEEE
conference on supercomputing (CDROM), Article No.

. Schulz M, de Supinski B () PnMPI tools: a whole lot greater
than the sum of their parts. In: Proceedings of supercomputing,
ACM/IEEE conference

. Schulz M () A flexible and dynamic infrastructure for MPI
tool interoperability. International conference on parallel pro-
cessing (ICPP)

. Hilbrich T, Jurenz M, Mix H, Brunst H, Knüpfer A, Müller
M, Nagel W () An interface for integrated MPI correctness
checking. In: Chapman B et al (eds) Advances in parallel comput-
ing. Parallel computing: from multicores and GPU’s to petascale,
vol . IOS Press, pp –

Pnetcdf

�NetCDF I/O Library, Parallel

Point-to-Point Switch

�Buses and Crossbars

Polaris

Rudolf Eigenmann
Purdue University, West Lafayette, IN, USA

Synonyms
Parallelization

Definition
Polaris is the name of a parallelizing compiler and
research compiler infrastructure. Polaris performs
source-to-source translation; programs written in the
Fortran language are converted into restructured For-
tran programs – typically annotated with directives that
express parallelism. Polaris was created in the mid-
s at the University of Illinois and was one of the
most advanced freely available tools of its kind.

http://dx.doi.org/10.1007/978-0-387-09766-4_222
http://dx.doi.org/10.1007/978-0-387-09766-4_56
http://dx.doi.org/10.1007/978-0-387-09766-4_267
http://dx.doi.org/10.1007/978-0-387-09766-4_270
http://dx.doi.org/10.1007/978-0-387-09766-4_2038
http://dx.doi.org/10.1007/978-0-387-09766-4_61
http://dx.doi.org/10.1007/978-0-387-09766-4_59
http://dx.doi.org/10.1007/978-0-387-09766-4_2058
http://dx.doi.org/10.1007/978-0-387-09766-4_60
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/smg/
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/smg/
http://www-unix.mcs.anl.gov/fpmpi/
http://mpip.sourceforge.net/
http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/
http://www.tu-dresden.de/zih/vampirtrace/
http://tau.uoregon.edu/
http://tau.uoregon.edu/
http://www.scalasca.org/
http://dx.doi.org/10.1007/978-0-387-09766-4_235
http://dx.doi.org/10.1007/978-0-387-09766-4_476
http://dx.doi.org/10.1007/978-0-387-09766-4_2162

 P Polaris

Discussion

Introduction
Polaris aimed at pushing the forefront of automatic par-
allelization (see�Parallelization, Automatic) and, at the
same time, providing the research community with an
infrastructure for exploring programanalysis and trans-
formation techniques. Polaris followed several earlier
projects with similar goals, a key distinction being that
the development of this new compiler was driven by
real applications. While the benchmarks that prompted
earlier parallelizing compiler research were typically
small, challenging program kernels, the Polaris project
was preceded and motivated by an effort to manually
parallelize the most realistic application program suite
available at that time – the Perfect Benchmarks [].This
effort identified a number of beneficial transformation
techniques [], the automation of which constituted the
Polaris project.

Polaris was able to improve the state of the art in
automatic parallelization significantly. Earlier autopar-
allelizers were measured to parallelize to a significant
degree only of the Perfect Benchmarks. By contrast,
Polaris achieved success in six of them – increasing
the parallelization success rate in this class of science
and engineering applications from less than % to
nearly %.

Polaris was originally developed at the University of
Illinois from to [], with significant extensions
made at Purdue University and Texas A&M Univer-
sity, in later project phases. Among the examples and
predecessors were several parallelizers developed at the
University of Illinois and Rice University. An impor-
tant contemporary was the Stanford SUIF project [].
Among the more recent, related compiler infrastruc-
tures are Rose [], LLVM [], and Cetus [].

The architecture of Polaris exhibits the classical
structure of an autoparallelizer. A number of program
analysis and transformation passes detect parallelism
and map it to the target machine. The passes are sup-
ported by an internal program representation (IR) that
represents the source code being transformed and offers
a range of program manipulation functions.

Detecting Parallelism
Polaris includes the program analysis and transforma-
tion techniques that were found to be most important

in a prior manual parallelization project []. At the core
of any autoparallelizer is a data-dependence detection
mechanism. Data dependences prevent parallelism,
making dependence-removing techniques essential
parts of an autoparallelizer’s arsenal. To this end, Polaris
includes passes for data privatization, reduction recog-
nition, and induction variable substitution. The com-
piler focuses on detecting fully parallel loops, which
have independent iterations and can thus be exe-
cuted simultaneously by multiple processors. For the
basics of the following techniques, see �Parallelization,
Automatic.

Data-dependence test. Typical data-dependence tests
detect whether or not two accesses to a data array in two
different loop iterations could reference the same array
element. The detection works well where array sub-
scripts are linear – of the form a ∗ i + b ∗ j, where a,b are
integer constants and i,j are index variables of enclosing
loops. The Polaris project developed new dependence
analysis techniques that are able to detect parallelism in
the presence of symbolic and nonlinear array subscript
expressions. For example, in the above expression, if a
is a variable, the subscript is considered symbolic; if the
term i appears, the subscript is nonlinear. If the com-
piler cannot determine the value of a symbolic term, it
cannot assume it is linear. Hence, symbolic and non-
linear expressions are related. In real programs it is
common for expressions, including array subscripts, to
contain symbolic terms other than the loop indices.
Through nonlinear, symbolic data-dependence testing,
Polaris was able to parallelize several important pro-
grams that previous compilers could not.

Privatization. Data privatization [] is a key enabler
of improved parallelism detection. A privatization pat-
tern can be viewed as one where a variable, say t, is
being used as a temporary storage during a loop iter-
ation. The compiler recognizes this pattern in that t is
first defined (written) before used (read) in the loop iter-
ation. By giving each iteration a separate copy of the
storage space for t, accesses to t in multiple iterations
do not conflict. Polaris extended the basic technique so
that it could detect entire arrays that could be privatized.
For example, the following loop can be parallelized after
privatizing the array tmp. (the notation tmp(:m)means
“the array elements from index to m”)

DO i=1,n

http://dx.doi.org/10.1007/978-0-387-09766-4_197
http://dx.doi.org/10.1007/978-0-387-09766-4_197
http://dx.doi.org/10.1007/978-0-387-09766-4_197

Polaris P

P

tmp(1:m) = a(1:m)+b(1:m)
c(1:m) = tmp(1:m)+sqrt

(tmp(1:m))
ENDDO

Privatization gives each processor a separate
instance of tmp. Without this transformation, each loop
iteration would write to and read from the same tmp
variable, creating a data dependence and thus inhibiting
parallelization.

Implementing array privatization is substantially
more complex than the basic scalar privatization tech-
nique. The compiler must determine the sections of
each array that are being defined and used in a loop. If
each element of an array that is being used has previ-
ously been defined in the same loop iteration, the array
is privatizable. More sophisticated analysis may priva-
tize sections of arrays that fit this pattern. To do so,
the compiler analysis must be able to combine array
accesses into sections. As array subscript expressions
may contain symbolic terms, these operations must be
supported by advanced symbolic manipulation func-
tions, which is one of Polaris’ strengths.

Reduction recognition.This transformation is another
important enabler of parallelization. Similar to the
way Polaris extended the privatization technique from
scalars to arrays, it extended reduction recognition [].
The following loop shows an example array reduction
(sometimes referred to as irregular or histogram reduc-
tion). Different loop iterations modify different ele-
ments of the hist array. The pattern of modification is
not important; any two loop iterations may modify the
same or different array elements.

DO i=1,n
val = <some computation>
hist(tab(i)) = hist(tab(i))

+ val
ENDDO

Polaris recognizes array reductions by searching for
loops that contain statements with the following pat-
tern: An assignment statement has a right-hand-side
expression that is the sum of the left-hand-side plus a
termnot involving the reduction array. A loopmayhave
several such statements, but the reduction array must
not be used in any other statement of the loop.

Because two iterations may access the same ele-
ment, the compiler has to assume a possible depen-
dence. Reduction parallelization takes advantage of
the mathematical property that sum operations can
be reordered (even under limited-precision computer
arithmetic, reordering is usually valid, although not
always). A reduction loop can be executed in parallel
like this: Each processor performs the sum operations
over the assigned loop iteration space on a private copy
of the original reduction array (hist, in the above exam-
ple). At the end of the loop, the local reduction arrays
from all participating processors are summed into the
original reduction array.

Reduction patterns are common in science and
engineering applications. Array reduction paralleliza-
tion was a key enabler of parallel performance in a
number of important loops in the Perfect Benchmarks.

Induction variable substitution. Induction variable
substitution eliminates dependences by replacing an
arithmetic sequence by a closed-form computation. In
the following loop, the induction variable ind forms a
sequence.

ind = ind0
DO i=1,n

ind = ind + k
a(ind) = 0

ENDDO

In the basic form of an induction variable, the next
value in the sequence is generated by adding a con-
stant to the previous value. The term k could be an
integer constant or a loop-invariant expression. The
closed-form expression for the sequence is ind+i∗k.
By substituting this expression into the array subscript,
a(ind+i∗k), the induction statement can be removed
and the dependence on the previous value disappears.

Polaris extended this well-known transformation
to a more general form, where k can be nonconstant,
such as another induction variable. For example, if the
expression k is the loop index (ind = ind+ i), the closed
form becomes ind+i∗(i+)/.

The closed form of a generalized induction vari-
able usually contains nonlinear terms. Parallelization
in the presence of such terms requires the application
of nonlinear data-dependence tests. Further complica-
tion arises when the induction variable is used after the
loop. In this case, the compilermust compute and assign

 P Polaris

the last value. In the above example, it would insert the
statement ind = ind+n*k after the loop. Such last-value
assignmentwill be correct if assignment to the induction
variable is guaranteed in all iterations. Polarismakes use
of symbolic program analysis techniques to make this
guarantee where possible.

Advanced Program Analysis
Symbolic analysis. In addition to powerful transforma-
tions, key to Polaris’ performance is the availability of
advanced symbolic analysis and manipulation utilities.
For example, when performing generalized induction
variable substitution, the compiler needs to evaluate
sum expressions, such as∑n

 j = n(n +)/.
Polaris’ symbolic range analysis technique is able to

determine symbolic value ranges that programvariables
may assume during execution. The technique looks at
assignment statements, loop statements, and condition
statements to determine constraints on the value range
of variables. After an assignment, the left-hand-side
variable is known to have the newly given value or sym-
bolic expression. Within a loop, the loop variable is
guaranteed to be between the loop bounds. In the then
clause of an if statement, the if condition is guar-
anteed to hold (and not hold in the else clause). For
example, the analysis can determine that inside the fol-
lowing loop the inequality ≤ i ≤ n holds and the loop
accesses the array elements from position to n + .

DO i=1,n
a(i+1)=0

ENDDO

Polaris created powerful tools for compilation
passes to manipulate and reason with symbolic ranges,
including comparison, intersection, and union oper-
ations. All of the described parallelization techniques
depend on the availability of symbolic analysis.

Interprocedural analysis. Because structuring a pro-
gram into subroutines is an important software engi-
neering principle, the ability of compilers to analyze
programs across procedure calls is crucial. Advanced
parallelizers, such as Polaris, attempt to find parallelism
in outer loops. Larger parallel regions can better amor-
tize the overheads associated with parallel execution,
as will be discussed later. However, outer loops tend
to encompass subroutine calls, making the application
of the described techniques difficult. Furthermore,

interprocedural analysis is important even for code sec-
tions that do not contain subroutine calls. For many
optimization decisions, the compilation passes must
collect information from across the program. For exam-
ple, symbolic analysis will find the value ranges of pro-
gram variables in the entire program and propagate
them to the subroutines where needed.

The needs for interprocedural operation are dif-
ferent for each compiler technique. Creating special-
ized techniques for each optimization pass can be
prohibitively expensive. Instead, Polaris includes a
capability to expand subroutines inline. By default,
small (by a configurable threshold) subroutines are
expanded in place of their call statements. This capa-
bility obviates the need for specialized interprocedural
analysis in most common cases. The drawback of sub-
routine inline expansion is code growth. Depending
on the subroutine calling structure, a code expansion
of an order of magnitude is possible. While Polaris
has demonstrated that significant additional parallelism
can be found this way, the needed compilation time
can grow substantially. To address this issue, Polaris
also included an interprocedural data access analysis
framework [] as a basis for unified interprocedural
parallelism detection.

Mapping Parallel Computation to the
Target Machine
Mapping parallel computation to the target machine
has two objectives. First, the parallelism uncovered by
an autoparallelizer may not necessarily fit the model
of parallel execution by the eventual machine plat-
form. Additional transformations of the parallel exe-
cution or the program’s data space may be needed.
Second, almost all program transformations incur over-
heads. Privatization uses additional storage; reduction
parallelization adds computation (e.g., summing up
local reduction arrays); induction variable substitution
creates expressions of higher strength (e.g., addition
is replaced by multiplication); starting/ending parallel
loops incur fork/join overheads (e.g., communicating
to the participating processors what to do and warm-
ing up their cache). Advanced optimizing compilers
make use of a performance model to estimate the over-
heads and to decide which transformations best to
apply.

Polaris P

P

Scheduling parallel execution. Polaris detects loops
that are dependence-free and marks them as fully par-
allel loops. To express parallel execution, it inserts
OpenMP (openmp.org) directives, leaving the code
generation up to the target platform’s OpenMP com-
piler. A simple parallel loop in OpenMP looks like
this.

!$OMP PARALLEL DO PRIVATE(t)
DO i=1,n

t = a(i)+b(i)
c(i) = t + t*t

ENDDO

The “OMP” directive expresses that the loop is to
be scheduled for parallel execution and the data ele-
ment tmust be placed in private storage. By default, the
OpenMP compiler assigns the loop iteration space to
the available parallel threads (or cores) in chunks. For
example, on an eight-core platform, the first core would
usually execute the first n/ iterations, etc. Polaris can
influence this choice via OpenMP “Schedule” clauses.
For example, if the compiler detects that the amount
of computation per loop iteration is irregular, it may
choose a “dynamic” schedule, which maps iterations to
available processors at runtime.

To determine profitability of parallel execution,
Polaris applies a simple test. It estimates the size of a
loop by considering the number of statements and the
number of iterations. If the size can be determined and
is below a configurable threshold, the compiler leaves
the loop in its original, serial form.While the creation of
advanced performancemodels is an important research
area, this simple test worked well in practice.

Data placement. The data model is of further impor-
tance. Polaris assumes that all non-private variables are
shared. All processors simply refer to the data in the
same way the original, serial code does. In the above
example, all processors participating in the execution
of the parallel loop see the arrays a,b, and c in the
same way and have direct access.The variable t is stored
in processor-private memory. Depending on the archi-
tecture, private storage may be actual processor-local
memory or it may simply be a processor-private slice
of the global address space.

Current multicore architectures implement this
shared-memory model in hardware and are thus
suitable targets for Polaris. Another important class

of parallel computers is not: Many high-performance
computer platforms have a distributed memory model.
Data need to be partitioned and distributed onto the dif-
ferent memories. Processors do not have direct access
to data placed on other processors’ memories; explicit
communication must be inserted to read and write
such data. Autoparallelizers, including Polaris, have not
yet been successful in targeting this machine class.
Explicit parallel programming by the software engineer
is needed.

Internal Organization
Polaris is organized into a number of program analy-
sis and transformation passes, which make use of the
functionality for program manipulation offered by the
abstract internal program representation (IR). The IR
represents the Fortran source program in away that cor-
responds to the original code closely. The Syntax Tree
has a structure that reflects the program’s subroutines,
statements, and expressions. The compiler passes see
the IR in an abstract form – as a C++ class hierarchy;
they perform all operations, such as finding properties
of a statement or inserting an expression, via access
functions.

The objects of the IR class hierarchy are organized in
lists, which are traversable with several iteration meth-
ods. A typical compiler pass would begin by obtaining a
list of CompilationUnits (subroutines), traverse them to
the desired subroutine, and obtain a reference to the list
of statements of that subroutine. Next, the statement list
would be traversed to the desired point, where the state-
ment’s properties and expressions could be obtained.
Various “filters” are available that let pass writers iter-
ate over objects of a specific type, only. For example, for
some loop analysis pass, it may be desirable to skip from
loop to loop, ignoring the statements in between them.
Among the most advanced IR functions are those that
allow a pass to traverse the IR until a certain statement
or expression pattern is found.

Akey design principle of Polaris was that these func-
tions keep the IR consistent at all times. It would not
be possible to insert a statement without properly con-
necting it to the surrounding scope or rename a vari-
able without properly updating the symbol table. These
bookkeeping operations are performed internally to the
extent possible; they are not visible in the IR’s access
functions. This design offers the compiler researcher a

 P Polaris

convenient, high-level interface. It was one reason for
Polaris’ popularity as a compiler infrastructure.

The implementation of the compiler consists of
approximately , lines of C++ code. Forty-five
percent of the code represents the IR with its access and
manipulation functions; % implements the compila-
tion passes.

Uses of Polaris
The primary use of Polaris was as an autoparallelizer
and compiler infrastructure in the research community.
Many contributions to autoparallelization technology
have beenmade using Polaris as an implementation and
evaluation test bed. Polaris supported other applications
as well. Its ability to perform source-to-source transfor-
mations made it a good platform for writing program
instrumentation passes. A simple such passmight insert
calls to a timing subroutine at the beginning and end
of every loop, producing a tool that can create loop
profiles. Other uses of Polaris included the creation of
functionality that measures the maximum possible par-
allelism in a program, predicts the parallel performance
of application programs, and creates profiles of detected
dependences.

Eighteen years after it was first conceived, Polaris
continues to be distributed to the research community.
The last download was recorded in , in the same
month this entry was written.

Challenges and Future Directions
Polaris was able to advance autoparallelization tech-
nology to the point where one in two science and
engineering programs can be profitably executed in par-
allel on shared-memory machines. Nonnumerical pro-
grams and distributed-memory computer architectures
are not yet amenable to this technology and remains an
elusive research goal. In pursuing this goal, the increas-
ing complexity of the compiler is a challenge. Learning
the underlying theory and realizing its implementa-
tion is highly time-consuming for both the researchers
exploring new analysis and transformation passes and
the engineers developing production-strength compiler
products.

One of the severe limitations of Polaris – and
autoparallelization in general – is the lack of informa-
tion that can be gathered from a program at compile
time. Both the detection of parallelism and themapping

to the target architecture depend on knowledge of infor-
mation that may be available only from the program’s
input data set or the target platform. Therefore, many
optimization decisions cannot be made at compile-
time or can only be made by the compiler making
guesses. Guesses are only legal where they do not affect
the correctness of the transformed program.Therefore,
compilers often must make conservative assumptions,
which may limit the degree of optimization. Future
compilers will increasingly need to merge with runtime
techniques that gather information as the program exe-
cutes and perform or tune optimizations dynamically.
Polaris explored one aspect of this area with runtime
data-dependence techniques.These techniques detect at
runtime whether or not a loop is dependence-free and
choose between serial and parallel execution [].

Related Entries
�Banerjee’s Dependence Test
�Code Generation
�Dependence Analysis
�GCD Test
�HPF (High Performance Fortran)
�Loop Nest Parallelization
�Modulo Scheduling and Loop Pipelining
�Omega Test
�Parallelization, Automatic
�Parallelization, Basic Block
�Pipelining
�Speculative Parallelization of Loops
�Run Time Parallelization
�Scheduling Algorithms
�Semantic Independence
�Speculation, Thread-Level
�Trace Scheduling
�Unimodular Transformations

Bibliography
. BlumeW,Doallo R, EigenmannR,Grout J, Hoeflinger J, Lawrence

T, Lee J, Padua D, Paek Y, Pottenger B, Rauchwerger L, Tu P
(December) Parallel programming with Polaris. IEEE Com-
put ():–

. Dave C, Bae H, Min S-J, Lee S, Eigenmann R, Midkiff S ()
Cetus: a source-to-source compiler infrastructure for multicores.
IEEE Comput ():–

. Eigenmann R, Hoeflinger J, Padua D (January) On the
automatic parallelization of the perfect benchmarks. IEEE Trans
Parallel Distrib Syst ():–

http://dx.doi.org/10.1007/978-0-387-09766-4_195
http://dx.doi.org/10.1007/978-0-387-09766-4_67
http://dx.doi.org/10.1007/978-0-387-09766-4_2014
http://dx.doi.org/10.1007/978-0-387-09766-4_2018
http://dx.doi.org/10.1007/978-0-387-09766-4_224
http://dx.doi.org/10.1007/978-0-387-09766-4_228
http://dx.doi.org/10.1007/978-0-387-09766-4_65
http://dx.doi.org/10.1007/978-0-387-09766-4_266
http://dx.doi.org/10.1007/978-0-387-09766-4_197
http://dx.doi.org/10.1007/978-0-387-09766-4_227
http://dx.doi.org/10.1007/978-0-387-09766-4_335
http://dx.doi.org/10.1007/978-0-387-09766-4_35
http://dx.doi.org/10.1007/978-0-387-09766-4_164
http://dx.doi.org/10.1007/978-0-387-09766-4_66
http://dx.doi.org/10.1007/978-0-387-09766-4_288
http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_251
http://dx.doi.org/10.1007/978-0-387-09766-4_196

Polyhedron Model P

P

. Quinlan DJ et al Rose compiler project. http://www.rose-
compiler.org/

. Berry M et al () The perfect club benchmarks: effective per-
formance evaluation of supercomputers. Int J Supercomput Appl
():–

. Hall MW, Anderson JM, Amarasinghe SP, Murphy BR, Liao S-W,
Bugnion E, Lam MS (December) Maximizing multiproces-
sor performance with the SUIF compiler. Computer, pp –

. Hoeflinger J, Paek Y, Yi K () Unified interprocedural paral-
lelism detection. Int J Parallel Program ():–

. Lattner C, Adve V () Llvm: a compilation framework for
lifelong program analysis & transformation. In: CGO’: Pro-
ceedings of the international symposium on code generation and
optimization. IEEE Computer Society, Washington, DC, p

. Pottenger B, Eigenmann R () Idiom recognition in the polaris
parallelizing compiler. In: Proceedings of the th ACM interna-
tional conference on supercomputing, Barcelona

. Rauchwerger L, Padua D () The LRPD test: speculative run-
time parallelization of loops with privatization and reduction par-
allelization. In: PLDI’: Proceedings of the ACM SIGPLAN
conference on programming language design and implementa-
tion. ACM, New York, pp –

. Tu P, Padua D (August) Automatic array privatization. In:
Proceedings of the th workshop on languages and compilers for
parallel computing, vol , Lecture notes in computer science,
pp –

Polyhedra Scanning

�Code Generation

Polyhedron Model

Paul Feautrier, Christian Lengauer
CNRS École Normale Supérieure de Lyon,
Lyon Cedex , France
University of Passau, Passau, Germany

Synonyms
Polytope model

Definition
The polyhedron model (earlier known as the poly-
tope model [,]) is an abstract representation of a
loop program as a computation graph in which ques-
tions such as program equivalence or the possibility
and nature of parallel execution can be answered. The

nodes of the computation graph, each of which rep-
resents an iteration of a statement, are associated with
points of Z

n . These points belong to polyhedra, which
are inferred from the bounds of the surrounding loops.
In turn, these polyhedra can be analyzed and trans-
formed with the help of linear programming tools. This
enables the automatic exploration of the space of equiv-
alent programs; one may even formulate an objective
function (such as the minimum number of synchro-
nization points) and ask the linear programming tool
for an optimal solution. The polyhedron model has
stringent applicability constraints (mainly to FOR loop
programs acting on arrays), but extending its limits has
been an active field of research. Beyond autoparalleliza-
tion, the polyhedron model can be useful in many situ-
ations which call for a program transformation, such as
in memory or performance optimization.

Discussion

The Basic Model
Every compiler must have representations of the source
program in various stages of elaboration, as for instance
by character strings, abstract syntax trees, control
graphs, three-address codes, andmany others.The basic
component of all these representation is the statement,
be it a high-level language statement or a machine
instruction. Unfortunately, these representations do not
meet the needs of an autoparallelizer simply because
parallelism does not occur between statements, but
between statement executions or instances. Consider:

for i = to n− do
S : a[i] = .
od

It makes no sense to ask whether S can be executed in
parallel with itself; in this case, parallelismdepends both
on the way S accesses memory and on the way the loop
counter i is updated at each iteration.

A loop program must therefore be represented as a
set of instances, its iteration domain, here namedE. Each
instance has a distinct name and consists in the execu-
tion of the related statement or instruction, depending
on the granularity of the analysis. This set is finite, in the
case of a terminating program, or infinite, in the case of
a reactive or streaming system.

However, this is not sufficient to specify the object
program. One needs to know in which order the

http://dx.doi.org/10.1007/978-0-387-09766-4_67
http://dx.doi.org/10.1007/978-0-387-09766-4_2466
http://www.rose-compiler.org/
http://www.rose-compiler.org/

 P Polyhedron Model

instances are executed; Emust be ordered by some rela-
tion ≺. If u, v ∈ E, u≺ v means that u is executed before
v. Since an operation cannot be executed before itself,
≺ is a strict order. It is easy to see that the usual con-
trol constructs (sequences, loops, conditionals, jumps)
are compact ways of defining ≺. It is also easy to see
that, in a sequential program, two arbitrary instances
are always ordered: one says that, in this case, ≺ is a total
order. Consideration of an elementary parallel program
(in OpenMP notation):

#pragma omp parallel sections
S

#pragma omp section
S

#pragma omp end parallel sections

shows that S may be executed before or after or simul-
taneously with S, depending on the available resources
(processors) and the overall state of the target system. In
that case, neither S ≺S nor S≺S are true: one says that
≺ is a partial order. As an extreme case, an embarassingly
parallel program, in which instances can be executed
in any order, has the empty execution order. Therefore,
one may say that parallelization results in replacing the
total execution order of a sequential program by a par-
tial one, under the constraint that the outcome of the
program is not modified. This in turn raises the follow-
ing question: Under which conditions are two programs
with the same iteration domain but different execution
orders equivalent?

Since program equivalence is undecidable in gen-
eral, one must be content with conservative answers,
i.e., with sufficient but not necessary equivalence con-
ditions. The usual approach is based on the concept of
dependences (see also the �Dependences entry in this
encyclopedia). Assuming that, given the name of an
instanceu, one can characterize the sets (or supersets) of
read and written memory cells,R(u) andW(u), u and
v are in dependence, written u δ v, if both access some
memory cell shared by them and at least one of them
modifies it. In symbols: u δ v if at least one of the sets
R(u) ∩ W(v), W(u) ∩ R(v) or W(u) ∩ W(v) is not
empty. The concept of a dependence was first formu-
lated by Bernstein []. One can prove that two programs
are equivalent if dependent instances are executed in the
same order in both.

▸ Aside. Proving equivalence starts by showing that,

under Bernstein’s conditions, two independent consec-

utive instances can be interchanged without modifying

the final state of memory. In the case of a terminating

program, this is doneby specifying a successionof inter-

changes that convert one order into the other without

changing the final result. The proof is more complex

for nonterminating programs and depends on a fair-

ness hypothesis, namely, that every instance is to be

executed eventually. One can then prove that the suc-

cession of values assigned to each variable – its history

– is the same for both programs. One first shows that

the succession of assignments to a given variable is the

same for both programs since they are in dependence,

and, as a consequence, that the assigned values are

the same, provided all instances are deterministic, i.e.,

return the same value when executed with the same

arguments (see also the�Bernstein’s Conditions in this

encyclopedia).

To construct a parallel program, one wants to
remove all orderings between independent instances,
i.e., construct the relation δ ∩ ≺, and take its transitive
closure. This execution order may be too complex to
be represented by the available parallel constructs, like
the parallel sections or the parallel loops of OpenMP. In
this case, one has to trade some parallelism for a more
compact program.

It remains to explain how to name instances, how
to specify the index domain of a program and its exe-
cution order, and how to compute dependences. There
are many possibilities, but most of them ask for the res-
olution of undecidable problems, which is unsuitable
for a compiler. In the polyhedron model, sets are repre-
sented as polyhedra inZ

n , i.e., sets of (integer) solutions
of systems of affine inequalities (inequalities of the form
Ax ≤ b, where A is a constant matrix, x a variable vec-
tor, and b a constant vector). It so happens that these sets
are the subject of a well-developed theory, (integer) lin-
ear programming [], and that all the necessary tools
have efficient implementations.

The crucial observation is that the iterations of a
regular loop (a Fortran DO loop, or a Pascal FOR
loop, or restricted forms of C, C++ and Java FOR
loops) are represented by a segment (which is a one-
dimensional polyhedron), and that the iterations of
a regular loop nest are represented by a polyhedron

http://dx.doi.org/10.1007/978-0-387-09766-4_172
http://dx.doi.org/10.1007/978-0-387-09766-4_521

Polyhedron Model P

P

with as many dimensions as the nest has loops. Con-
sider, for instance, the first statement of the loop
program in Fig. a. It is enclosed in two loops.
The instances it generates can be named by stating the
values of i and j, and the iteration domain is defined by
the constraints:

 ≤ i ≤ n, ≤ j ≤ i +m

which are affine and therefore define a polyhedron. In
the same way, the iteration domain of the second state-
ment is ≤ i ≤ n. For better readability, the loop
counters are usually arranged from outside inward in a
vector, the iteration vector of the instance.

Observe that, in this representation, n and m are
parameters, and that the size of the representation is
independent of their values. Also, the upper bound of

the loop on j is not constant: iteration domains are not
limited to parallelepipeds.

The iteration domain of the program is the disjoint
union of these two polyhedra, as depicted in Fig. bwith
dependences. (The dependences and the right side of
the figure are discussed below.) To distiguish the several
components of the union, one can use statement labels,
as in:

E = {⟨S, i, j⟩ ∣ ≤ i ≤ n, ≤ j ≤ i+m}∪{⟨S, i⟩ ∣ ≤ i ≤ n}

The execution order can be deduced from two
observations:

● In a program without control constructs, the execu-
tion order is the textual order. Let u <txt v be true if
u occurs before v in the program text.

for i = 1 to n do

for j = 1 to i+m do

S1 : A(i,j) = A(i−1,j) + A(i,j−1)

od

S2 : A(i,i+m+1) = A(i−1,i+m) + A(i,i+m)

od

Source loop nesta

for t = 0 to m+2∗n−1 do

parfor p = max(0,t−n+1) to min(t, é(t+m)/2ù) do

if 2∗p = t+m+1 then

S2 : A(p−m,p+1) = A(p−m−1,p) + A(p−m,p)

else

S1 : A(t−p+1,p+1) = A(t−p,p+1) + A(t−p+1,p)

fi

od

od

Target loop nest

⇑⇓

j

i t

p

i

Source iteration domain Target iteration domainb

d

c

PolyhedronModel. Fig. Loop nest transformation in the basic polyhedron model

 P Polyhedron Model

● Loop iterations are executed according to the lexico-
graphic order of the iteration vectors. Let x <lex y be
true if the vector x is lexicographically less than y.

In more complex cases, these two observations may be
combined to give:

⟨R, x⟩ ≺ ⟨S, y⟩ ≡ x[: N] <lex y[: N] ∨

(x[: N] = y[: N] ∧ R <txt S),

whereR and S are two statements, x and y their iteration
vectors, N is the number of loops which encloses both
R and S, and x[: N] is the vector x restricted to its N
first components. Returning to Fig. , one has:

⟨S, i, j⟩ ≺ ⟨S, i′⟩ ≡ i < i′ ∨ (i = i′ ∧ true),

which simplifies to ⟨S, i, j⟩ ≺ ⟨S, i′⟩ ≡ i ≤ i′.
The assumption behind dependence analysis is that

the sets R(u) and W(u) above only depend on the
name of the instance u. This is obviously not true in
general. In the polyhedron model, one assumes that
all accesses are to scalars and arrays, and that, in the
latter case, subscripts are known functions of the sur-
rounding loop counters. One usually also assumes that
there is no aliasing – two arrays with different names do
not overlap – and that subscripts are always within the
array bounds. Techniques for detecting and correcting
violations of these assumptions are beyond the scope
of this entry. With these assumptions, two instances
⟨R, x⟩ and ⟨S, y⟩ are in dependence if both access the
same array A of dimension dA, and if the subscript
equations

fR(x) = fS(y)

have solutions within the iteration domains of R and S.
Here, fR and fS are the respective subscript functions of
A in R and S. Solving such equations is easy only if each
subscript is an affine function of the iteration vector:

fR(x) = FR x + gR,

where FR is a matrix of dimension dA×dR, with dR being
the number of loops surrounding R, and gR is a vector
of dimension dA. One may associate with each candi-
date dependence a system of constraints by gathering
the subscript equations, the constraints which define
the iteration domains of R and S, and the sequencing
predicate above. All of these constraints are affine, with
the exception of the sequencing predicate which is a
disjunction of affine constraints. Each disjunct can be

tested for solutions, either by ad hoc conservative meth-
ods – see the �Banerjee’s Dependence Test entry in this
encyclopedia – or by linear programming algorithms –
see the �Dependences entry.

In summary, a program can be handled in the poly-
hedron model – and is then called a regular or static
control program – if its only control constructs are (also
called regular) loops with affine bounds and its data
structures are either scalars or arrays with affine sub-
scripts in the surrounding loop counters. It should be
noted that these restrictions must not be taken syntac-
tically but semantically. For instance, in the program:

i = ; k = ;
while i < n do

a[k] = . ;
i = i + ;
k = k +

od
the loop is in fact regular with counter i, and the sub-
script of a is really i, which is affine. There are many
classical techniques – here, induction variable detec-
tion – for transforming such constructs into a more
“polyhedron-friendly” form.

Regular programs are mainly found in scientific
computing, linear algebra, and signal processing, where
unbounded iteration domains are frequent. Perhaps
more surprisingly, many variants of the Smith and
Waterman algorithm [], which is the basic tool
for genetic sequence analysis, are regular and can be
optimized with polyhedral tools []. Also, while large
programs rarely fit in the model, it is often possible to
extract regular kernels and to process them in isolation.

Transformations
Themain devices for program optimization in the poly-
hedron model are coordinate transformations of the
iteration domain.

An Example
Consider Fig. as an illustration of the use of transfor-
mations. Figure a presents a sequential source program
with two nested loops.The loop nest is imperfect: not all
statements belong to the innermost loop body.

Figure b depicts the iteration domain of the source
program, as explained in the previous section. The
arrows represent dependences and impose a partial

http://dx.doi.org/10.1007/978-0-387-09766-4_195
http://dx.doi.org/10.1007/978-0-387-09766-4_172

Polyhedron Model P

P

order on the loop steps. Apart from these ordering
constraints, steps can be executed in any order or in
parallel.

In the source iteration domain, parallelism is in
some sense hidden. The loop on j is sequential since the
value stored in A(i, j) at iteration j is used as A(i, j−)
in the next iteration. The same is true for the loop on i.
However, parallelism can be made visible by applying a
skewing transformation as in Fig. c. For a given value
of t, there are no dependences between iterations of the
p loop, which is therefore parallel.

The required transformation can be viewed as a
change of coordinates or a renaming:

S :
⎛

⎜

⎜

⎝

t

p

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

i

j

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

−

−

⎞

⎟

⎟

⎠

S :
⎛

⎜

⎜

⎝

t

p

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

⎞

⎟

⎟

⎠

(i) +
⎛

⎜

⎜

⎝

m −

m

⎞

⎟

⎟

⎠

Observe that the transformation for S has the non-

singular matrix
⎛

⎜

⎜

⎝

⎞

⎟

⎟

⎠

and, hence, is bijective. Fur-

thermore, the determinant of this matrix is (thematrix
is unimodular), which means that the transformation is
bijective in the integers.

A target loop nest which corresponds to the tar-
get iteration domain is depicted in Fig. d. The issue of
target code generation is addressed later. For now, just
note that the target loop nest is much more complex
than the source loop nest, and that it would be cum-
bersome and error-prone to derive it manually. On the
other hand, the fact that both transformation matrices
are unimodular simplifies the target code: both loops
have unit stride.

The Search for a Transformation
The fundamental constraint on a transformation in the
polyhedron model is affinity. As explained before, each
row of the transformation matrix corresponds to one
axis of the target coordinate system. Each axis repre-
sents either a sequential loop or a parallel loop. Iter-
ations of a sequential loop are executed successively;
hence, the loop counter can be interpreted as (logical)

time. Iterations of a parallel loop are executed simul-
taneously (available resources permitting) by different
processors; the values of their loop counters corre-
spond to processor names. Finding the coefficients for
the sequential axes constitutes a problem of scheduling,
finding the coefficients for the parallel axes one of place-
ment or allocation. Different methods exist for solving
these two problems.

The order in which sequential and parallel loops are
nested is important. One can show that it is always pos-
sible to move the parallel loops deeper inside the loop
nest, which generates lock-step parallelism, suitable for
vector or VLIW processors. For less tightly coupled
parallelism, suitable for multicores or message-passing
architectures, one would like to move the parallel loops
farther out, but this is not always possible.

Scheduling
A schedule maps each instance in the iteration
domain to a logical date. In contrast to what hap-
pens in (�task graph scheduling), the number of
instances is large, or unknown at compile time, or
even infinite, so that it is impossible to tabulate
this mapping. The schedule must be a closed-form
function of the iteration vector; it will become clear
presently that its determination is easy only if restricted
to affine functions.

Let θR(i) be the schedule of instance ⟨R, i⟩. Since
the source of a dependence must be executed before
its destination, the schedule must satisfy the following
causality constraint:

∀i, j : ⟨R, i⟩ δ ⟨S, j⟩ ⇒ θR(i) < θS(j).

There are as many such constraints as there are depen-
dences in the program. The unknowns are the coeffi-
cients of θR and θS. The first step in the solution is the
elimination of the quantifiers on i and j. There are gen-
eral methods of quantifier elimination [] but, due to
the affinity of the constraints in the polyhedron model,
more efficient methods can be applied. In fact, the form
of the causality constraint above asserts that the affine
delay θS(j)− θR(i) must be positive inside the depen-
dence polyhedron {i, j ∣ ⟨R, i⟩ δ ⟨S, j⟩}. To this end, it is
necessary and sufficient that the delay be positive at the
vertices of the dependence polyhedron, or that it be

http://dx.doi.org/10.1007/978-0-387-09766-4_42

 P Polyhedron Model

an affine positive combination of the dependence con-
straints (Farkas lemma). The result of quantifier elim-
ination is a linear system of inequalities which can be
solved by any linear programming tool.

This system of constraints may not be feasible, i.e.,
it may have no solution. This means simply that no
linear-time parallel execution exists for the source pro-
gram. The solution is to construct a multidimensional
schedule. In the target loop nest, there will be as many
sequential loops as the schedule has dimensions.

More information on scheduling can be found in the
�Scheduling Algorithms entry of this encyclopedia.

Placement
Aplacement maps each instance to a (virtual) processor
number. Again, this mapping must be in the form of a
closed affine function. In contrast to scheduling, there
is no legality constraint for placements: any placement
is valid, but may be inefficient.

For each dependence between instances that are
assigned to distinct processors, one must generate a
communication or a synchronization, depending on
whether the target architecture has distributed or shared
memory. These are costly operations, which must be
kept at a minimum. Hence, the aim of a placement
algorithm is to find a function:

π : E → [,P]

where P is the number of processors, such that the size
of the set:

C = {u, v ∈ E ∣ u δ v, π(u) /= π(v)}

is minimal. Since counting integer points inside a
polyhedron is difficult, one usually uses the following
heuristics: try to “cut” as many dependences as possi-
ble. A dependence from statement R to S can be cut if
the following constraint holds:

⟨R, i⟩ δ ⟨S, j⟩ ⇒ πR(i) = πS(j).

This condition can be transformed into a system of
homogeneous linear equations for the coefficients of π.
The problem is that, in most cases, if one tries to satisfy
all the cutting constraints, the only solution is π(u) = ,

which corresponds to execution on only one processor:
this, indeed, results in the minimal number of synchro-
nizations (namely zero)! A possible way out is to solve
the cutting constraints one at time, in order of decreas-
ing size of the dependence polyhedron, and to stop just
before generating the trivial solution. The uncut depen-
dences induce synchronization operations. If all depen-
dences can be cut, the program has communication-
free parallelism and can be rewritten with one or more
outermost parallel loops.

In the special case of a perfect loop nest with uni-
form dependences, one may approximate the depen-
dence graph by the translations of the lattice generated
by the dependence vectors. If the determinant of this
lattice is larger than , the program can be split into as
many independent parts [].

Lastly, instead of assigning a processor number to
each instance, one may assign all iterations of one state-
ment to the same processor [,]. This results in the
construction of a Kahn process network [].

Code Generation
In the polyhedronmodel, a transformation of the source
iteration domain which optimizes some objective func-
tion can be found automatically. The highest execution
speed (i.e., theminimumnumber of steps to be executed
in sequence) may be the first thing that comes to mind,
but many other functions are possible.

Unfortunately, it is not trivial to generate efficient
target code from the optimal solution in the model.
There are several factors that can degrade performance
seriously. The enumeration of the points in the target
iteration domain involves tests for the lower and upper
border. If the code is not chosen wisely, these tests will
often degrade scalability. For example, in Fig. , a maxi-
mum and a minimum is involved. The example of Fig.
also shows that additional control (the IF statement)
may be introduced, which degrades performance. Of
course, synchronizations and communications can also
degrade performance seriously.

For details on code generation in the polyhedron
model, see the �Code Generation.

Extensions
The following extensions have successively been made
to the basic polyhedron model.

http://dx.doi.org/10.1007/978-0-387-09766-4_66
http://dx.doi.org/10.1007/978-0-387-09766-4_67

Polyhedron Model P

P

WHILE Loops
The presence of a WHILE loop in the loop nest turns
the iteration domain from a finite set (a polytope) into
an infinite set (a polyhedron). If the control depen-
dence that the termination test of the loop imposes
is being respected, the iteration must necessarily be
sequential. However, the steps of a WHILE loop in a
nest with further (FOR or WHILE) loops may be dis-
tributed in space. There have been two approaches to
the parallelization of WHILE loops.

The conservative approach [,] respects the con-
trol dependence. One challenge here is the discovery
of global termination. The speculative approach []
does not respect the control dependence. Thus, sev-
eral loop steps may be executed in parallel if there is
no other dependence between them. The price paid is
the need for storage of intermediate results, in case a
rollback needs to be done when the point of termina-
tion has been discovered but further steps have already
been executed. In some cases, overshooting the termi-
nation point does not jeopardize the correctness of the
program and no rollback is needed. Discovering this
property is beyond the capability of present compilers.

Conditional Statements
The basic model permits only assignment statements in
the loop body. The challenge of conditionals is that a
dependence may hold only for certain executions, i.e.,
not for all branches. A static analysis can only reveal the
union of these dependences [].

Iteration Domain Splitting
In some cases, the schedule can be improved by orders
ofmagnitude if one splits the iteration domain in appro-
priate places []. One example is depicted in Fig. .
With the best affine schedule of ⌊i/⌋, each parallel

step contains two loop iterations, i.e., the execution is
sped up by a factor of . (The reason is that the short-
est dependence has length .) The domain split on the
right yields two partitions, each without dependences
between its iterations. Thus, all iterations of the upper
loop (enumerating the left partition) can be executed in
a first parallel step, and the iterations of the lower loop
(enumerating the right partition) in a second one, for a
speedup of n/.

Tiling
The technique of domain splitting has a further, larger
significance. The polyhedron model is prone to yield-
ing very fine-grained parallelism. To coarsen the grain
when not enough processors are available, one parti-
tions (parts of) the iteration domain in equally sized
and shaped tiles. Each tile covers a set of iterations
and the points in a tile are enumerated in time
rather than in space, i.e., the iteration over a tile is
resequentialized.

One can tile the source iteration domain or the tar-
get iteration domain. In the latter case, one can tile space
and also time. Tiling time corresponds to adding hands
to a clock and has the effect of coarsening the grain
of processor communications. The habilitation thesis of
Martin Griebl [] offers a comprehensive treatment of
this topic and an extensive bibliography. See also the
�Tiling entry of this encyclopedia.

Treatment of Expressions
In the basic model, expressions are considered atomic.
There is an extension of the polyhedron model to the
parallelization of the evaluation of expressions []. It
also permits the identification of common subexpres-
sions and provides a means to choose automatically the
suitable point in time and the suitable place at which to

for i = 0 to 2∗n − 1 do

A(i) = ... A(2∗n−i−1)

od

=⇒

for i = 0 to n − 1 do

A(i) = ... A(2∗n−i−1)

od

for i = n to 2∗n − 1 do

A(i) = ... A(2∗n−i−1)

od

PolyhedronModel. Fig. Iteration domain splitting

http://dx.doi.org/10.1007/978-0-387-09766-4_511

 P Polyhedron Model

evaluate it just once. Its value is then communicated to
other places.

Relaxations of Affinity
The requirement of affinity enters everywhere in the
polyhedron model: in the loop bounds, in the array
index expressions, in the transformations. Quickly, after
the polyhedron model had been developed, the desire
arose to transcend affinity in places. Iteration domain
splitting is one example.

Lately, amore encompassing effort has beenmade to
leave affinity behind. One circumstance that breaks the
affinity of index expressions is that the so-called struc-
ture parameters (e.g., variables n and m in the loops
of Figs. and) enter multiplicatively as unevaluated
variables, not as constants. For example, when a two-
dimensional array is linearized, array subscripts are of
the form n i + j, with i, j being the loop iterators. As a
consequence, subscript equations are nonlinear in the
structure parameters, too. An algorithm for computing
the solutions of equation systems with exactly one such
structure parameter exists [].

In transformations and code generation, nonlinear
structure parameters, as in expressions n i, n i, or nm i,
can be handled by generalizing existing algorithms (for
the case without nonlinear parameters) using quantifier
elimination []. Code generation can even be general-
ized to handle nonlinear loop indices, as in n i, n i,
or i j. To this end, cylindrical algebraic decomposition
(CAD) [], which corresponds to Fourier–Motzkin
elimination in the basic model, is used for computing
loops nests which enumerate the points in the trans-
formed domains efficiently. This extends the frontier of
code generation to arbitrary polynomial loop bounds.

Applications Other than Loop
Parallelization

Array Expansion
It is easy to see that, if a loop modifies a scalar, there is
a dependence between any two iterations, and the loop
must remain sequential. When the modification occurs
early in the loop body, before any use, the dependence
can be removed by expanding the scalar to a new array,
with the loop counter as its subscript. This idea can be
extended to all cases in which a memory cell – be it a

scalar or part of an array – is modified more than once.
The transformation proceeds in two steps:

● Replace the left side of each assignment by a fresh
array, subscripted by the counters of all enclosing
loops.

● Inspect all the right sides and replace each reference
by its source [].

The source of a use is the latest modification that pre-
cedes the use in the sequential execution order. It can
be computed by parametric integer programming. The
result of this transformation is a program in dynamic
single-assignment form. Each memory cell is written to
just once in the course of a programexecution. As a con-
sequence, the setsW(u) ∩W(v) are always empty: the
transformed program has far fewer dependences and,
occasionally, much more parallelism than the original.

Array Shrinking
A consequence of the previous transformation is a large
increase in the memory footprint of the program. In
many cases, the same degree of parallelism can be
achieved with less expansion, or the target architec-
ture cannot exploit all parallelism there is, and some
of the parallel loops have to be sequentialized. Another
situation, in a purely sequential context, is when a care-
less programmer has used more memory than strictly
necessary to implement an algorithm.

The aim of array shrinking is to detect these situ-
ations and to reduce the memory needs by inserting
modulo operators in subscripts. Suppose, for instance,
that in the following code:

for i = to n− do
a[i] = . . . ;

od
one replaces a[i] by a[i mod]. The dimension of a,
which is n in the first version, is reduced to in the sec-
ond version. Of course, this means that the value stored
in a[i] is destroyed after iterations of the loop. This
transformation may change the outcome of the pro-
gram, unless one can prove that the lifetime of a[i] does
not exceed iterations.

Finding an automatic solution to this problem has
been the subject of much work since (Darte []
offers a good discussion). The proposed solution is to
construct an interference polyhedron for the elements

Polyhedron Model P

P

of a fixed array and to cover it by a maximally tight
lattice such that only the lattice origin falls inside the
polyhedron. The basis vectors of the lattice are taken as
coordinate axes of the reduced array, and their lengths
are related to the modulus of the new subscripts.

Communication Generation
When constructing programs for distributed memory
architectures, be it with data distribution directives
in languages like High-Performance Fortran (HPF) or
under the direction of a placement function, one has to
generate communication code. It so happens that this is
also a problem of polyhedron scanning. It can be solved
by the same techniques and the same tools that are used
for code generation.

Locality Enhancement
Most modern processors have caches: small but fast
memories that retain a copy of recently accessed mem-
ory cells. A program has locality if memory accesses are
clustered such that there is a high likelihood of finding
a copy of the needed information in cache rather than
inmain memory. Improving the locality of a program is
highly beneficial for performance since caches are usu-
ally accessed in one cycle while memory latency may
range from ten to a hundred cycles.

Since the cache controller returns old copies to
memory in order to find room for new ones, locality is
enhanced by changing the execution order such that the
reuse distance between successive accesses to the same
cell is minimal. This can be achieved, for instance, by
moving all such accesses to the innermost loop of the
program [].

Another approach consists of dividing a program
into chunks whose memory footprints are smaller than
the cache size. Conceptually, the program is executed
by filling the cache with the necessary data for one
chunk, executing the chunk without any cache miss,
and emptying the cache for the next chunk. One can
show that the memory traffic will be minimal if each
datum belongs to the footprint of only one chunk. The
construction of chunks is somewhat similar to schedul-
ing []. It is enough to have asymptotic estimates of the
footprint sizes. One advantage of this method is that it
can be adapted easily to the management of scratchpad
memories, software-controlled caches as can be found
in embedded processors.

Dynamic Optimization
Dynamic optimization resulted from the observation
that modern processors and compilers are so com-
plex that building a realistic performance estimator is
nearly impossible. The only way of evaluating the qual-
ity of a transformed program is to run it and take
measurements.

In the polyhedronmodel, one can define the polyhe-
dron of all legal schedules (see the previous section on
�Scheduling). Usually, one selects one schedule in this
polyhedron according to some simple objective func-
tion. Another possibility is to generate one program
for each legal schedule, measure its performance, and
retain the best one. Experience shows that, in many
cases, the best program is unexpected, the proof of
its legality is not obvious, and the reasons for its effi-
ciency are difficult to fathom. As soon as the source
program has more than a few statements, the size of the
polyhedron of legal schedules explodes: sophisticated
techniques, including genetic algorithms and machine
learning are needed to restrict the exploration to “inter-
esting” solutions [,].

Tools
There is a variety of tools which support several phases
in the polyhedral parallelization process.

Mathematical Support
PIP [] is an all integer implementation of the Simplex
algorithm, augmented with Gomory cuts for integer
programming []. The most interesting feature of PIP
is that it can solve parametric problems, i.e., find the
lexicographically minimal x such that

Ax ≤ By + c

as a function of y.
Omega [] is an extension of the Fourier–Motzkin

elimination method to the case of integer variables.
It has been extended into a full-fledged tool for the
manipulation of Presburger formulas (logical formu-
las in which the atoms are affine constraints on integer
variables).

There are many so-called polyhedral libraries; the
oldest one is the PolyLib []. The core of these libraries
is a tool for converting a system of affine constraints into
the vertices of the polyhedron it defines, and back. The
PolyLib also includes a tool for counting the number

http://dx.doi.org/10.1007/978-0-387-09766-4_2104

 P Polyhedron Model

of integer points inside a parametric polyhedron, the
result being an Ehrhart polynomial []. More recent
implementations of these tools, occasionally using dif-
ferent algorithms, are the Parma Polyhedral Library [],
the Integer Set Library [], the Barvinok Library [],
and the Polka Library []. This list is probably not
exhaustive.

Code Generation
CLooG [] takes as input the description of an iteration
domain, in the form of a disjoint union of polyhedra,
and generates an efficient loop nest that scans all the
points in the iteration domain in the order given by
a set of scattering functions, which can be schedules,
placements, tiling functions, and more. For a detailed
description of CLooG, see the �Code Generation entry
in this encyclopedia.

Full-Fledged Loop Restructurers
LooPo [] was the first polyhedral loop restructurer.
Work on it was started at the University of Passau
in , and it was developed in steps over the years
and is still being extended. LooPo is meant to be a
research platform for trying out and comparing differ-
ent methods and techniques based on the polyhedron
model. It offers a number of schedulers and allocators
and generates code for shared-memory and distributed
memory architectures. All of the extensions mentioned
above have been implemented and almost all are being
maintained.

Pluto [] was developed at Ohio State University.
Its main objective is to use placement functions to
improve locality and to integrate tiling into the polyhe-
dron model. Its target architectures are multicores and
graphical processing units (GPUs).

GRAPHITE [] is an extension of the GCC com-
piler suite whose ultimate aim is to apply polyhedral
optimization and parallelization techniques, where pos-
sible, to run-of-the-mill programs. GRAPHITE looks
for static control parts (SCoPs) in theGCC intermediate
representation, generates their polyhedral representa-
tion, applies transformations, and generates target code
using CLooG. At the time of writing, the set of available
transformations is still rudimentary, but is supposed
to grow.

Related Entries
�Banerjee’s Dependence Test
�Code Generation
�Dependence Abstractions
�Dependence Analysis
�HPF (High Performance Fortran)
�Loop Nest Parallelization
�OpenMP
�Scheduling Algorithms
�Speculative Parallelization of Loops
�Task Graph Scheduling
�Tiling

Bibliographic Notes and Further
Reading
The development of the polytope model was driven by
two nearly disjoint communities. Hardware architects
wanted to take a set of recurrence equations, expressing,
for instance, a signal transformation, and derive a paral-
lel processor array from it. Compiler designers wanted
to take a sequential loop nest and derive parallel loop
code from it.

One can view the seed of the model for architec-
ture in the seminal paper by Karp, Miller, and Wino-
grad on analyzing recurrence equations [] and the
seed for software in the seminal paper by Lamport on
Fortran DO loop parallelization []. Lamport used
hyperplanes (the slices in the polyhedron that make up
the parallel steps), instead of polyhedra. In the early
s, Quinton drafted the components of the polyhe-
dron model [], still in the hardware context (at that
time: systolic arrays).

The two communities met around the end of the
s at various workshops and conferences, notably
the International Conference on Supercomputing and
CONPAR and PARLE, the predecessors of the Euro-Par
series. Two developments made the polyhedron model
ready for compilers: parametric integer programming,
worked out by Feautrier [], which is used for depen-
dence analysis, scheduling and code generation, and
seminal work on code generation by Irigoin et al. [,].
Finally, Lengauer [] gave the model its name.

The s saw the further development of the
theory underlying the model’s methods, particularly
for scheduling, placement, and tiling. Extensions and

http://dx.doi.org/10.1007/978-0-387-09766-4_67
http://dx.doi.org/10.1007/978-0-387-09766-4_195
http://dx.doi.org/10.1007/978-0-387-09766-4_67
http://dx.doi.org/10.1007/978-0-387-09766-4_272
http://dx.doi.org/10.1007/978-0-387-09766-4_2014
http://dx.doi.org/10.1007/978-0-387-09766-4_224
http://dx.doi.org/10.1007/978-0-387-09766-4_228
http://dx.doi.org/10.1007/978-0-387-09766-4_50
http://dx.doi.org/10.1007/978-0-387-09766-4_66
http://dx.doi.org/10.1007/978-0-387-09766-4_35
http://dx.doi.org/10.1007/978-0-387-09766-4_42
http://dx.doi.org/10.1007/978-0-387-09766-4_511

Polyhedron Model P

P

applications other than loop parallelization came
mainly in the latter part of the s and in the following
decade.

A number of textbooks focus on polyhedral meth-
ods. There is the three-part series of Banerjee [–], a
book on tiling by Xue [], and a comprehensive book
on scheduling by Darte et al. []. Collard [] applies
the model to the optimization of loop nests for sequen-
tial as well as parallel execution and studies a similar
model for recursive programs.

In the past several years, the polyhedron model has
become more mainstream. The seed of this develop-
ment was an advance in code generation methods [].
With the GCC community taking an interest, it is to be
expected that polyhedral methods will increasingly find
their way into production compilers.

Bibliography
. Ancourt C, Irigoin F () Scanning polyhedra with DO loops.

In: Proceedings of the Third ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), ACM,
pp –

. Bagnara R, Hill PM, Zaffanella E () The Parma polyhedra
library: toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems. Sci
Comput Program (–):–, http://www.cs.unipr.it/ppl

. Banerjee U () Loop transformations for restructuring com-
pilers: the foundations. Series on Loop Transformations for
Restructuring Compilers. Kluwer, Norwell

. Banerjee U () Loop parallelization. Series on Loop Transfor-
mations for Restructuring Compilers. Kluwer, Norwell

. Banerjee U () Dependence analysis. Series on LoopTransfor-
mations for Restructuring Compilers. Kluwer, Norwell

. Bastoul C () Code generation in the polyhedral model is
easier than you think. In: Proceedings of the th International
Conference onParallel Architecture andCompilationTechniques
(PACT), IEEE Computer Society Press, pp –, http://www.
cloog.org/

. Bastoul C, Feautrier P () Improving data locality by chunk-
ing. In: Compiler Construction (CC), Lecture Notes in Computer
Science, vol . Springer, Berlin, pp –

. Bernstein AJ () Analysis of programs for parallel processing.
In: IEEE Transactions on Electronic Computers, EC-:–

. Bondhugula U, HartonoA, Ramanujam J, Sadayappan P () A
practical automatic polyhedral parallelizer and locality optimizer.
SIGPLAN Notices, ():–, . http://pluto-compiler.
sourceforge.net/

. Clauss P () Counting solutions to linear and non-linear
constraints through Ehrhart polynomials. In: Proceedings of the
ACM/IEEE Conference on Supercomputing, ACM, pp –

. Clauss P, Loechner V () Parametric analysis of polyhe-
dral iteration spaces, extended version. J VLSI Signal Process
():–, http://icps.u-strasbg.fr/polylib/

. Collard J-F () Reasoning about program transformations –
imperative programming and flow of data. Springer, Berlin

. Collard J-F, Griebl M () A precise fixpoint reaching defini-
tion analysis for arrays. In: Carter L, Ferrante J (eds) Languages
and Compilers for Parallel Computing (LCPC), Lecture Notes in
Computer Science, vol , Springer, Berlin, pp –

. Collard J-F () Automatic parallelization of while-loops using
speculative execution. Int J Parallel Program ():–

. Darte A, Robert Y, Vivien F () Scheduling and automatic
parallelization. Birkhäuser, Boston

. Darte A, Schreiber R, Villard G () Lattice-based memory
allocation. IEEETransaction onComputers TC-():–

. D’Hollander EH () Partitioning and labeling of loops by
unimodular transformations. IEEE Trans Parallel Distrib Syst
():–

. Faber P () Code optimization in the polyhedron model –
improving the efficiency of parallel loop nests. PhD thesis,
Department of Informatics and Mathematics, University of
Passau, . http://www.fim.unipassau.de/cl/publications/docs/
Faber.pdf

. Feautrier P () Parametric integer programming. Oper Res
():–, http://www.piplib.org

. Feautrier P () Dataflow analysis of scalar and array references.
Parallel Program ():–

. Feautrier P () Automatic parallelization in the polytope
model. In: Perrin G-R, Darte A (eds) The data parallel pro-
gramming model. Lecture Notes in Computer Science, vol ,
Springer, Berlin, pp –

. GrieblM ()Themechanical parallelization of loop nests con-
taining WHILE loops. PhD thesis, Department of Mathematics
and Informatics, University of Passau, January . http://www.
fim.unipassau.de/cl/publications/docs/Gri.pdf

. Griebl M () Automatic parallelization of loop programs for
distributed memory architectures. Habilitation thesis, Depart-
ment of Informatics and Mathematics, University of Passau, June
. http://www.fim.unipassau.de/cl/publications/docs/Gri.
pdf

. Griebl M, Feautrier P, Lengauer C () Index set splitting.
Int J Parallel Process ():– Special Issue on the Inter-
national Conference on Parallel Architectures and Compilation
Techniques (PACT’)

. Griebl M, Lengauer C () On the space-time mapping of
WHILE loops. Parallel Process Lett ():–

. Griebl M, Lengauer C () The loop parallelizer LooPo –
announcement. In: Sehr D (ed) Languages and Compilers for
Parallel Computing (LCPC). Lecture Notes in Computer Science,
vol , pp –. Springer, Berlin, http://www.infosun.fim.
uni-passau.de/cl/loopo/

. Größlinger A () The challenges of non-linear parame-
ters and variables in automatic loop parallelisation. PhD the-
sis, Department of Informatics and Mathematics, University of

http://www.cs.unipr.it/ppl
http://www.cloog.org/
http://www.cloog.org/
http://pluto-compiler.sourceforge.net/
http://pluto-compiler.sourceforge.net/
http://icps.u-strasbg.fr/polylib/
http://www.fim.unipassau.de/cl/publications/docs/Faber07.pdf
http://www.fim.unipassau.de/cl/publications/docs/Faber07.pdf
http://www.piplib.org
http://www.fim.unipassau.de/cl/publications/docs/Gri96.pdf
http://www.fim.unipassau.de/cl/publications/docs/Gri96.pdf
http://www.fim.unipassau.de/cl/publications/docs/Gri04.pdf
http://www.fim.unipassau.de/cl/publications/docs/Gri04.pdf
http://www.infosun.fim.uni-passau.de/cl/loopo/
http://www.infosun.fim.uni-passau.de/cl/loopo/

 P Polytope Model

Passau, December . http://nbnresolving.de/urn:nbn:de:bvb:
-opus-

. Größlinger A, Griebl M, Lengauer C () Quantifier elimina-
tion in automatic loop parallelization. J Symbolic Computation
():–

. Größlinger A, Schuster S ()On computing solutions of linear
diophantine equations with one non-linear parameter. In: Pro-
ceedings of the th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), IEEE
Computer Society Press, pp –

. Guerdoux-Jamet P, Lavenier D () SAMBA: hardware accel-
erator for biological sequence comparison. Comput Appl Biosci
():–

. Irigoin F, Triolet R () Dependence approximation and
global parallel code generation for nested loops. In: Cosnard M,
Robert Y, Quinton P, Raynal M (eds) Parallel and distributed
algorithms. Bonas, North-Holland, pp –

. Jeannet B,MinéA () APRON: a library of numerical abstract
domains for static analysis. In: Computed Aided Verification
(CAV). Lecture Notes in Computer Science, vol , Springer,
pp –, http://apron.cri.ensmp.fr/library

. Kahn G () The semantics of simple language for parallel
programming. In: Proceedings of the IFIP Congress, Stockholm,
pp –

. Karp RM, Miller RE, Winograd S () The organization
of computations for uniform recurrence equations. J ACM
():–

. Kienhuis B, Rijpkema E, EdDeprettere F ()Compaan: deriv-
ing process networks from matlab for embedded signal process-
ing architectures. In: Vahid F, Madsen J (eds) Proceedings of the
Eighth International Workshop on Hardware/Software Codesign
(CODES), ACM pp –

. Lamport L () The parallel execution of DO loops. Comm
ACM ():–

. Lengauer C () Loop parallelization in the polytopemodel. In:
Best E (ed) CONCUR’. Lecture Notes in Computer Science, vol
, pp –, Springer,

. Loos R, Weispfenning V () Applying linear quantifier elimi-
nation. The Computer J ():–

. Pouchet L-N, Bastoul C, CohenA, Cavazos J () Iterative opti-
mization in the polyhedralmodel: Part II,multidimensional time.
SIGPLAN Notices ():–

. Pouchet L-N, Bastoul C, Cohen A, Vasilache N () Iterative
optimization in the polyhedral model: Part I, one-dimensional
time. In IEEE/ACM Fifth International Symposium on Code
Generation and Optimization (CGO’), IEEEComputer Society
Press, pp –

. Pugh W () The Omega test: a fast and practical integer pro-
gramming algorithm for dependence analysis. In: Proceedings
of the th International Conference on Supercomputing, ACM,
pp –. . http://www.cs.umd.edu/projects/omega

. Quinton P () The systematic design of systolic arrays. In:
Soulié FF, Robert Y, Tchuenté M (eds) Automata networks in
computer science, chapter , pp –. Manchester University

Press, . Also: Technical Reports and , IRISA (INRIA-
Rennes)

. Schrijver A () Theory of linear and integer programming.
Wiley, New York

. Smith TF, Waterman MS () Identification of common molec-
ular subsequences. J Molecular Biology ():–

. Trifunovic K, Cohen A, EdelsohnD, Feng L, Grosser T, Jagasia H,
Ladelsky R, Pop S, Sjödin J, Upadrasta R () GRAPHITE two
years after. In: Proceedings of the nd InternationalWorkshop on
GCC Research Opportunities (GROW), pp –, January .
http://gcc.gnu.org/wiki/GROW-

. Verdoolaege S () An integer set library for program analysis.
In: Advances in the theory of integer linear optimization and its
extensions. AMS Western Section, , http://freshmeat.
net/projects/isl/

. Verdoolaege S, Nikolov H, Todor N, Stefanov P () Improved
derivation of process networks. In Proceedings of the th
InternationalWorkshop onOptimization forDSP and Embedded
Systems (ODES), , http://www.ece.vill.edu/~deepu/odes/
odes-_digest.pdf

. Verdoolaege S, Seghir R, Beyls K, Loechner V, Bruynooghe M
() Counting integer points in parametric polytopes using
Barvinok’s rational functions. Algorithmica ():–, http://
freshmeat.net/projects/barvinok

. Wolf ME, Lam MS () A data locality optimizing algo-
rithm. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
ACM, pp –

. Xue J () Loop tiling for parallelism. Kluwer, Boston

PolytopeModel

�Polyhedron Model

Position Tree

�Suffix Trees

POSIX Threads (Pthreads)

POSIX Threads [] are those created, managed, and
synchronized following the POSIX standard API.
POSIX stands for “PortableOperating System Interface
[for Unix].”

http://nbnresolving.de/urn:nbn:de:bvb:739-opus-17893
http://nbnresolving.de/urn:nbn:de:bvb:739-opus-17893
http://apron.cri.ensmp.fr/library
http://www.cs.umd.edu/projects/omega
http://gcc.gnu.org/wiki/GROW-2010
http://freshmeat.net/projects/isl/
http://freshmeat.net/projects/isl/
http://www.ece.vill.edu/~deepu/odes/odes-4_digest.pdf
http://www.ece.vill.edu/~deepu/odes/odes-4_digest.pdf
http://freshmeat.net/projects/barvinok
http://freshmeat.net/projects/barvinok
http://dx.doi.org/10.1007/978-0-387-09766-4_502
http://dx.doi.org/10.1007/978-0-387-09766-4_464

Power Wall P

P

Bibliography
. Nichols B, Buttlar D, Farrell JP () Pthreads programming.

O’Reilly & Associates, Inc., Sebastopol

Power Wall

Pradip Bose
IBM Corp. T.J. Watson Research Center, Yorktown
Heights, NY, USA

Definition
The “Power Wall” refers to the difficulty of scaling the
performance of computing chips and systems at histor-
ical levels, because of fundamental constraints imposed
by affordable power delivery and dissipation. The single
biggest factor that has led the industry into encounter-
ing this wall in the past decade is the significant change
in traditional CMOS chip design evolution, which were
driven previously by Dennard scaling rules [,].

Discussion

Introduction
Power delivery and dissipation limits have emerged
as a key constraint in the design of microprocessors
and associated systems even for those targeted for the
high end server product space. At the low end of the
performance spectrum, power has always dominated
over performance as the primary design constraint.
However, while battery life expectancies have shown
modest increases, the larger demand for increased func-
tionality and speed has increased the severity of the
power constraint in the world of handheld and mobile
systems. At the high end, where performance was
always the primary driver, we are witnessing a trend
(dictated primarily by CMOS technology scaling con-
straints) where increasingly, energy and power limits
are dictating the high-level processing paradigms, as
well as the lower level issues related to clocking and cir-
cuit design. Thus, regardless of the application domain,
power consumption constitutes a primary barrier or
“wall” when it comes to achieving cost-effective perfor-
mance growth in future systems. In this entry, we will

examine the fundamental causes that have led us up to
this power wall, and discuss the key solution approaches
at hand to circumvent this barrier.

Power Trends
Figure shows the expected maximum chip power
(for high performance processors) through the year
. The data plotted is based on the (Fig. a)
and then updated projections (Fig. b) made by
the International Technology Roadmap for Semicon-
ductors (ITRS) []. The projection indicated that
beyond the continued growth period (through year
) for high-end microprocessors, there will be a
saturation in the maximum chip power (with a pro-
jected cap of around W from years all the
way through). This is due to thermal/packaging
and die size limits that had already started to kick in
by . Single-thread performance scaling had actu-
ally started to get limited by chip-level power density
since the latter part of the s, as depicted in Fig.
(adapted from a keynote speech byDavid Yen [],
who was then the executive VP of scalable systems at
SunMicrosystems). Beyond a certain power (and power
density) regime, air cooling is not sufficient to dissi-
pate the heat generated; on the other hand, use of liquid
cooling and refrigeration causes a sharp increase of
the cost–performance ratio. Thus, power-aware design
techniques, methodologies, and tools are of the essence
at all levels of design. The ITRS projection shows
that the long-term power cap for high-performance,
server-class microprocessors has been revised down-
ward to W. This has to do with factors like the
current delivery limits in typical blade server form fac-
tors that have dominated the midrange server products
since .

CMOS Technology Determinants
In this subsection, we present a summary of the tech-
nological trends that have caused chip-level power and
power density to reach the levels that have caused us
to identify the power wall as a fundamental barrier to
achieving cost-effective performance growth in future
computing systems.

At the elementary transistor gate (e.g., an inverter)
level, total power dissipation can be formulated as the

 P Power Wall

2005
2007

2009
2011

2006 roadmap 2009 roadmap

2013
2015

2017
2019

0

50

100

150

200

250
P

ow
er

 (
w

at
ts

)

2009
2011

2013
2015

2017
2019

2021
0

50

100

150

200

250

P
ow

er
 (

w
at

ts
)

a b

Power Wall. Fig. Maximum chip power projection – high performance with heatsink

100

10

S
pe

c
/(

W
/c

m
2)

1

0.1
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04

Power Wall. Fig. Performance/power-density (SPEC/[W/cm]) trends from to []

sum of three major components: switching loss, leakage
and short-circuit loss [, , ,].

Powerdevice = (/)C.Vdd.Vswing.a. f

+ Ileakage.Vdd + Isc.Vdd ()

where, C is the output capacitance, Vdd is the supply
voltage, f is the chip clock frequency, and a is the activ-
ity factor (⩽ a ⩽) which determines the device
switching frequency; Vswing is the maximum voltage
swing across the output capacitor, which in general can
be less than Vdd; Ileakage is the leakage current and Isc
is the short-circuit current. In the literature, Vswing is
often approximated to be equal to Vdd (or simply V

for short) making the switching loss ∼ (/)C.V.a. f .
Also, as discussed in [], for a prior generation range
of Vdd (say V– V) switching loss: (/)CVaf was
the dominant component, assuming the activity factor
to be above a reasonable minimum. So, as a first-order
approximation, for chips belonging to the previous gen-
eration (e.g., CMOS nm, and before), wemay ignore
the leakage and short-circuit components in Eq. . In
other words, in the context of switching power dom-
inated technology generations, we may formulate the
power dissipation to be:

Powerchip = (/) [∑Ci . V
i . ai . fi] ()

Power Wall P

P

. Where, Ci, Vi , ai, and fi are unit- or block-specific
average values in the most general case; the sum-
mation is taken over all blocks or units i, at the
microarchitecture level (e.g., icache, dcache, integer
unit, floating point unit, load-store unit, register files
and buses [if not included in individual units], etc).
Also, for the voltage range considered, the operat-
ing frequency is roughly proportional to the supply
voltage; and the capacitance C remains roughly the
same if we keep the same design but scale the volt-
age. If a single voltage and clock frequency are used
for the whole chip, the above reduces to:

Powerchip = V. (∑Kv
i .ai) = f .(∑Kf

i .ai) ()

. If we consider the very worst-case activity factor for
each unit i, i.e., if ai = for all i, then, an upper bound
on the maximum chip power may be formulated as:

MaxPowerchip = KV . V
= KF . f ()

where KV and KF are design-specific constants.
Note that an estimation of peak or maximum power
is important, for the purposes of determining the
packaging and cooling solution required. The larger
the maximum power, the more expensive is the net
cooling solution. Note that the formulation in Eq.
is overly conservative, as stated. In practice, it is
possible to estimate the worst-case achievable maxi-
mum for the activity factors.This allows the design-
ers to come up with a tighter bound on maximum
power before the packaging decision is made.

The last Eq. is what leads to the so-called cube-
root rule [], where redesigning a chip to operate at

/ the voltage (and frequency) results in the power
dissipation being lowered to (/) or / of the orig-
inal. This implies the single-most efficient method for
reducing power dissipation for a processor that has
already been designed to operate at high frequency,
namely, reduce the voltage (and hence the frequency).
There is a limit, however, of how low Vdd can be
reduced (for a given technology), which has to do
with manufacturability and circuit reliability issues.
Thus, a combination of microarchitecture and cir-
cuit techniques to reduce power consumption, with-
out necessarily employing multiple or variable supply
voltages is of special relevance in the design of robust
systems.

0.010.11
Lpoly (um)

1E-5

0.0001

0.001

0.01

0.1

1

10

100

1000

P
ow

er
 (

W
/c

m
2)

Pass
ive

 P
ower D

ensit
y (

25 C
)

Active Power Density

Gate-Leakage

Power Wall. Fig. Active and major leakage power

component trends []

Figure shows the analytically projected trend []
of escalation in three of themajor components ofmicro-
processor power consumption, namely, active or capac-
itive switching power, subthreshold leakage power and
gate leakage power. (The leakage current referred to
in Eq. above consists of two major components: sub-
threshold leakage and gate leakage. There are other
components of leakage as well, as discussed below.
The short-circuit loss referred to in Eq. is not a
technology-dependent component, and so is ignored
in this discussion). In post- nm technologies, static
(i.e., leakage or standby) power has increasingly become
a major (if not the dominating) component of chip
power. As discussed in [], the three major types of
leakage effects are (a) sub-threshold, (b) gate, and (c)
reverse-biased, drain- and source-substrate junction
band-to-band tunneling (BTBT).With technology scal-
ing, each of these leakage components tends to increase
drastically. For example, as technology scales down-
ward, the supply voltage (Vdd) must also scale down
to reduce dynamic power and maintain device relia-
bility. However, this requires the scaling down of the
threshold voltage (Vth) to maintain reasonable gate
overdrive (and therefore performance), which is a func-
tion of (Vdd − Vth). However, lowering the threshold
voltage causes substantial increases in leakage current,
and therefore standby power, inspite of the lower Vdd.
The subthreshold channel leakage current in an MOS

 P Power Wall

device is governed by an equation that looks like []:

Ileakage = Kw ∗W. −Vth/S ()

whereKw, measured in units of micro-amps permicron
(μA/μm) can be thought of as the width-sensitivity
coefficient;W is the device width and S is the subthresh-
old swing (measured in millivolts, like the threshold
voltage Vth). (In [], the value of Kw is quoted to
be). S is a parameter that is defined to characterize
the efficiency of a device in turning on or off. It can
be shown that the turn-off characteristic of a device
is proportional to the thermal voltage (kT/q) and
the ratio of junction capacitance (Cj) to oxide capaci-
tance (Cox) []. The parameter S can be formulated as:

S = . (kT/q). (+ Cj/Cox) ()

This parameter is usually specified in units of mil-
livolts per decade and it defines how many millivolts
(mV) the gate voltage must drop before the drain cur-
rent is reduced by one decade.The thermal voltage kT/q
is equal to mV at room temperature. Thus, at room
temperature, the minimum value of S is about mV
per decade. This means that an ideal device at room
temperature would experience a X reduction in drain
current for every mV reduction of the gate voltage
Vgs in the subthreshold region. In the deep submicron
era, a typical transistor device has an S value in the range
of –mV per decade.

Note also, that the threshold voltage Vth (Eq.) is
itself a function of temperature (T); in factVth decreases
by .mV/K as temperature increases. Also, Kw itself
is a strong function of temperature (∼ T). Thus, as T
increases, leakage current goes up dramatically, both
because of its dependence on T and because Vth goes
down. The delay of an inverter gate is given by the
alpha-power model [] as:

Tg ∼
Leff⋅Vdd

μ(T)⋅(Vdd −Vth)
α ()

where, α is typically around . and μ is the mobil-
ity of carriers (which is a function of temperature T,
μ(T) ∼ T−.). AsVth decreases, (Vdd−Vth) increases so
the inverter becomes faster. As T increases, (Vdd −Vth)
increases, but μ(T) decreases []. This latter effect
dominates; so, with higher temperatures, the logic gates
in a processor generally become slower.

Power-Performance Efficiency Metrics
The most common (and perhaps obvious) metric
to characterize the power-performance efficiency of
a microprocessor is a simple ratio, like mips/watt.
This attempts to quantify the efficiency by projecting
the performance achieved or gained (measured in mil-
lions of instructions per second) for every watt of power
consumed. Clearly, the higher the number, the “better”
the machine is. Dimensionally, mips/watt equates to the
inverse of the average energy consumed per instruction.
This seems a reasonable choice for some domains where
battery life is important.However, there are strong argu-
ments against it in many cases, especially when it comes
to characterizing higher end processors. Performance
has typically been the key driver of such server-class
designs and cost or efficiency issues have been of sec-
ondary importance. Specifically, a design teammaywell
choose a higher frequency design point (which meets
maximum power budget constraints) even if it operates
at a much lower mips/watt efficiency compared to one
that operates at better efficiency but at a lower perfor-
mance level. As such, (mips)/watt or even (mips)/watt
may be the metric of choice at the high end. On the
other hand, at the lowest end, where battery-life (or
energy consumption) is the primary driver, one may
want to put an even greater weight on the power aspect
than the simplest mips/watt metric, i.e., one may just be
interested in minimizing the watts for a given workload
run, irrespective of the execution time performance,
provided the latter does not exceed some specified
upper limit.

The “mips” metric for performance and the “watts”
value for power may refer to average or peak values,
derived from the chip specifications. For example, for
a GHz (= cycles/s) processor which can complete
up to instructions per cycle, the theoretical peak
performance is , mips. If the average completion
rate for a given workload mix is p instructions per
cycle, then the average mips would equal , times p.
However, when it comes to workload-driven evaluation
and characterization of processors, metrics are often
controversial. Apart from the problem of deciding on
a “representative” set of benchmark applications, there
are fundamental questions which persist about how to
boil down “performance” into a single (“average”) rat-
ing that is meaningful in comparing a set of machines.
Since power consumption varies, depending on the

Power Wall P

P

program being executed, the issue of benchmarking is
also relevant in assigning an average power rating. In
measuring power and performance together for a given
program execution, one may use a fused metric like
power-delay product (PDP) or energy-delay product
(EDP) [,]. In general, the PDP-based formulations
are more appropriate for low-power, portable systems,
where battery-life is the primary index of energy effi-
ciency. The mips/watt metric is an inverse PDP for-
mulation, where delay refers to average execution time
per instruction.Thepower-delay product, being dimen-
sionally equal to energy, is the natural metric for such
systems. For higher end systems (e.g., workstations) the
EDP-based formulations are deemed to be more appro-
priate, since the extra delay factor ensures a greater
emphasis on performance. The (mips)/watt metric is
an inverse EDP formulation. For the highest perfor-
mance, server-class machines, it may be appropriate to
weight the “delay” part even more. This would point
to the use of (mips)/watt, which is an inverse EDP
formulation. Alternatively, one may use (cpi).watt as
a direct EDP metric, applicable on a “per instruction”
basis (see []).

The energy*(delay) metric, or perf/power formula
is analogous to the cube-root rule [] which follows
from constant voltage scaling arguments (see Section
“CMOS Technology Determinants”, Eq.). Clearly, to
formulate a voltage-invariant power-performance char-
acterization metric, we need to think in terms of
perf/(power). When we are dealing with the SPEC
benchmarks, one may therefore evaluate efficiency as
(SPECrating)x/watt, or (SPEC)x/watt for short; where
the exponent value x (=, , or) may depend on the
class of processors being compared.

Brooks et al. [] discuss the power-performance
efficiency data for a range of commercial processors of
approximately the same generation (circa year).
SPEC/watt, SPEC/watt, and SPEC/watt are used as the
alternative metrics, where SPEC stands for the proces-
sor’s SPEC rating []. The data validates our assertion
that depending on the metric of choice, and the target
market (determined by workload class and/or the pow-
er/cost) the conclusion drawn about efficiency can be
quite different. For performance-optimized, high-end
processors, the SPEC/watt metric seems to be fairest.
For “power-first” processors, SPEC /watt seems to be the
fairest.

Recently, there has been a strong motivation made
for energy-proportional computing [], in the context
of future data centers and cloud computing. In this
style of measuring system-level energy efficiency, it is
not enough to assess the efficiency at the peak utiliza-
tion levels; rather, how well the system is able to adjust
the power level downward, as the workload demand
decreases, is also of interest. The recently announced
SPEC power benchmark [] is intended, in part, to
measure the degree to which a given server system is
energy proportional. The currently used workload in
SPECpower is the specjbb application, and the eval-
uation modality is to measure the power and perfor-
mance across a range of system-level utilizations, from
%, down through % (data points). The bench-
mark calls for adding up the corresponding power and
performance numbers at those data points and then
computing the ratio of the summed performance value
and the summed power number. The higher the num-
ber, the better is the energy proportional characteristic
of the measured system.

A Review of Key Ideas in Power-Aware
Architectures
In this section, a brief review of power-efficient design
concepts will be covered. The motivation, of course, is
to examine solution approaches for avoiding the power
wall, while preserving performance growth in next gen-
eration systems.The initial attention will be on dynamic
(also known as “active” or “switching”) power governed
by theCVaf formula. Recall that C refers to the switch-
ing capacitance, V is the supply voltage, a is the activity
factor (< a <), and f is the operating clock fre-
quency. Power reduction ideas must therefore focus on
one or more of these basic parameters. Reducing active
power generally results in reduction of on-chip tem-
peratures, and this indirectly causes leakage power to
go down as well. Similarly, any increase in efficiency
directed at lowering the latch count (e.g., by reducing
the basic pipeline depth, or by reducing the number
of back-end execution pipes within a given functional
unit) also results in area and leakage reduction as a
side benefit. However, later in this section, we also deal
with the problem of mitigating leakage power directly,
by providing microarchitectural support to what are
primarily circuit-level mechanisms.

 P Power Wall

Power Efficiency at the Processor
Core Level
In this sub-section, we examine the key ideas that have
been proposed in terms of (micro)architectural support
for power-efficiency, at the level of a single proces-
sor core. Early research ideas started being presented
since at a few key conference workshops (e.g.,
[–]); later the field of power-aware microarchitec-
tures matured to the point where all major computer
architecture conferences now all have specific sessions
devoted to ideas for performance growth in the current
power-constrained design era.

The effective (average) value of C can be reduced
by using: (a) area-efficient designs for various macros;
and (b) adaptive structures, that change in effective
size, latency, or communication bandwidth depending
on the needs of the input workload. The average value
of V can be reduced via dynamic voltage scaling, i.e.,
by reducing the voltage as and when required or pos-
sible. Microarchitectural support, in this case, is not
required, unless the mechanisms to detect “idle” peri-
ods or temperature overrunsmake use of counter-based
“proxies,” specially architected for this purpose. Note
again, however, that since reducing V also requires (or
results in) reduction of the operating frequency, f , net
power reduction has a cubic effect; thus, dynamic volt-
age and frequency scaling (DVFS) is one of the most
effective way of power reduction). Deciding when and
how to apply DVFS, as a function of the input work-
load characteristics and overall operating environment,
is very much a microarchitectural issue. It is a problem
that is increasingly relevant in the era of variability-
tolerant, power-efficient multi-core chip design, and we
will touch on it briefly in section “�Conclusions.”

The average value of the activity factor, a, can be
reduced by: (a) the use of clock-gating, where the nor-
mally free-running, synchronous clock is disabled in
selected units or sub-units within the system based
on information or predictions about current or future
activity in those regions; (b) reducing unnecessary
“speculative waste” resulting from executing instruc-
tions in mis-speculated branch paths or prefetching
useless instructions and data into caches, based on
wrong or ill-timed guesses; and (c) the use of data rep-
resentations and instruction schedules that result in
reduced switching.

Microarchitectural support is provided in the form
of added mechanisms to: detect, predict, and control
the generation of the applied gating signals; or aid in
power-efficient data and instruction encodings. Com-
piler support for generating power-efficient instruction
scheduling and data partitioning or special instructions
for “nap/doze/sleep” control, if applicable, must also
be considered under this category. Power-efficient task
scheduling at the system software (i.e., OS and hyper-
visor) level is also an example of dynamic load bal-
ancing that can make the activity distribution uniform
over a multi-core processor system, and thereby help
reduce power density (and hence temperature and over-
all power).

While clock-gating helps eliminate (or drastically
reduce) active or switching power when a given macro,
sub-unit or unit is idle, power-gating can be used to
also eliminate the residual leakage power of that idle
entity. In this case, as described in detail later on, the
power supply voltage V is itself gated off from the tar-
get circuit block, with the help of a header or footer
transistor. Here, the need for microarchitectural sup-
port in the form of predictive control of the gating
signal is even stronger because of the relatively large
performance overheads that would be incurred without
such support. There are other techniques, like adap-
tive body-biasing that are also targeted at leakage power
control; and these too require some degree of microar-
chitectural support.However, these techniques aremost
relevant to bulk-CMOS designs (as opposed to silicon-
on-insulator [SOI]-CMOS technology), and are pre-
dominantly device- and circuit-level methods. As such,
we do not dwell on them in this entry.

Lastly, the average value of the design frequency, f ,
can be controlled or reduced by using: (a) variable, mul-
tiple or locally asynchronous (self-timed) clocks – e.g.,
in GALS [] designs; (b) clock-throttling, where the
frequency is reduced dynamically in response to power
or temperature overrun indicators; (c) reduced pipeline
depths in the baseline microarchitecture definition.

Henceforth, the focus of consideration is: power-
aware microarchitectural constructs that use C, a, or
f as the primary lever for reducing active power; and
those that use the supply voltage V as the primary
lever for reducing leakage power. In any such proposed
processor architecture, the efficacy of the particular

http://dx.doi.org/10.1007/978-0-387-09766-4_9

Power Wall P

P

power reduction method that is used must be assessed
by understanding the net performance impact. Here,
depending on the application domain (or market), a
PDP, EDP or EDP metric for evaluating and com-
paring power-performance efficiciencies must be used.
(See earlier discussion in section “Power-Performance
Efficiency Metrics”).

Optimal Pipeline Depth

A fundamental question that is asked has to do with
pipeline depth. Is a deeply pipelined, high frequency
(“speed demon”) design better than an IPC-centric
lower frequency (“braniac”) design? In the context of
the topic of this entry, “better” must be judged in terms
of power-performance efficiency.

Let us consider, first, a simple, hazard-free, linear
pipeline flow process, with k stages. Let the time for
the total logic (without latches) to compute one answer
be T. Assuming that the k stages into which the logic
is partitioned are of equal delay, the time per stage
and thus the time per computation becomes (see [],
Chap.):

t = T/k +D ()

whereD is the delay added due to the staging latch. The
inverse of t determines the clocking rate or frequency of
operation. Similarly, if the energy spent (per cycle, per
second or over the duration of the program run) in the
logic isW and the corresponding energy spent per level
of staging latches is L, then the total energy equation for
the k-stage pipelined version is roughly,

E = L. k +W ()

The energy equation assumes that the clock is free-
running, i.e., on every cycle, each level of staging latches

is clocked to enable the advancement of operations
along the pipeline. (Later, we shall consider the effect
of clock-gating). Equations and , when plotted as a
function of k, are depicted in Fig. a and b respectively.

As the number of stages increases, the energy or
power consumed increases linearly; while, the perfor-
mance also increases, but not as fast. In order to con-
sider the PDP-based power-performance efficiency, we
compute the ratio:

Power
Performance

= (L. k +W) (T/k +D)

= L.T +W.D + (L.D. k +W.T) /k ()

Figure shows the general shape of this curve as a
function of k. Differentiating the right hand side expres-
sion in Eq. and setting it to zero, one can solve for the
optimum value of k for which the power-performance
efficiency is maximized, i.e., the minimum of the curve
in Fig. b can be shown to occur when

k (opt.) =
√

(W.T) /(L.D) ()

Larson [] first published the above analysis,
albeit from a cost/performance perspective. This anal-
ysis shows that, at least for the simplest, hazard-free
pipeline flow, the highest frequency operating point
achievable in a given technology may not be the most
energy-efficient! Rather, the optimal number of stages
(and hence operating frequency) is expected to be at a
point which increases for greaterW or T and decreases
for greaterL orD. For a prior generationPOWER-class
(∼. μ) super scalar processor operating at around
GHz, [,], the floating point arithmetic unit is
estimated to yield values of T = . ns, D = . ns,

Number of stages, k Number of stages, k

E
ne

rg
y,

 E
(p

er
 u

ni
t o

f t
im

e)

P
er

fo
rm

an
ce

(o
pe

ra
tio

ns
 p

er
 s

ec
on

d)

1/(T/k + D)

L.k + W

a b

Power Wall. Fig. Power and performance curves for idealized pipeline flow

 P Power Wall

minimum

k (opt)
Number of stages, k ----->

P
ow

er
/P

er
fo

rm
an

ce

Power Wall. Fig. Power–performance ratio curve for

idealized pipeline flow

W = .W, and L = .W. This yields a k(opt.) ∼
 (rounded down from .), if we use the idealized
formalism (Eq.) above.

For real super scalar machines, the number of
latches in the overall design tends to go up much more
sharply with k than the linear assumption in the above
model. This tends to make k (opt) even smaller. Also,
in real pipeline flow with hazards, e.g., in the presence
of branch-related stalls and disruptions, performance
actually peaks at a certain value of k before decreas-
ing [,] (instead of the asymptotically increasing
behavior shown in Fig. a). This effect would also lead
to decreasing the effective value of k (opt). (However,
k(opt) increases if we use EDP or EDP metrics instead
of the PDP metric used.). As the number of pipeline
stages (k) is increased for a given computation data
path, we say that the depth of the pipeline increases.
This also implies that the levels of combinational logic
within each pipeline stage decreases; so, the combina-
tional logic delay per stage decreases as k increases.
In detailed simulation-based analysis of a POWER-
class super scalar machine, it has been shown [,]
that the optimal pipeline depth using a EDP metric
like (BIPS)/W (where BIPS is the standard perfor-
mance metric of billions of instructions completed per
second) corresponds to around FO (Fan-out-of-
four (FO) delay is defined as the delay of one inverter
driving four copies of an equally sized inverter. The
amount of logic and latch overhead per pipeline stage is
often measured in terms of FO delay. Decreasing logic
FO delay per pipeline stage means deeper pipelines
(larger values of k) and vice versa.) per pipe stage for

SPEC workloads. For commercial workloads like
TPC-C, the optimal point is shown to shift to shallower
pipelines (– FO). In contrast, note that if one
considered a power-unaware performance-only metric,
like BIPS, the optimal pipeline depth for SPEC is
around FO per stage. For TPC-C, the performance-
only optimal point is reported to be [,] pretty flat
across the – FO points. For scientific workloads,
loop tuning for performance optimization [] can alter
measured power-performance efficiency metrics signif-
icantly in some cases. Compiler techniques for super
scalar efficiency enhancements are omitted for brevity
in this entry.

Exploiting Parallelism to Scale the Power Wall

As single-thread frequency and performance growth
stalls (driven by technology trends), multi-core paral-
lelism is the new trend. Figure is shown to explain
the fundamentals of why parallelism helps power effi-
ciency. If a single task, executed at a given voltage-
frequency point, can be split into two independent
tasks, each operating at half the voltage and frequency,
the net throughput performance remains the same, but
the active power density scales down by a factor of .
A particular application of this concept, even at the level
of a single processor core is that of SIMD acceleration as
described in the next sub-section. Figure depicts the
current trend [] of growth on number of cores over
technology generation in the current regime of power
density constrained microprocessor design.

Vector/SIMD Processing and Hybrid Architectures

Vector/SIMD modes of parallelism present in current
architectures afford a power-efficientmethod of extend-
ing performance for vectorizable codes. Fundamentally,
this is because: for doing the work of fetching and pro-
cessing a single (vector) instruction, a large amount
of data is processed in a parallel or pipelined man-
ner. If we consider a SIMD machine, with p k-stage
functional pipelines then looking at the pipelines alone,
one sees a p-fold increase of performance, with a
p-fold increase in power, assuming full utilization and
hazard-free flow, as before.Thus, an SIMD pipeline unit
offers the potential of scalable growth in performance,
with commensurate growth in power, i.e., at constant
power-performance efficiency. If, however, one includes
the front-end instruction cache and fetch/dispatch unit

Power Wall P

P

Logic
Block

Logic
Block

Freq =0.5

Throughtput = 1
Vdd =0.5

Power =0.125
Area = 2
Power Den = 0.125

Freq =1

Throughtput = 1
Vdd =1

Vdd
Vdd/2

Power =1
Area = 1
Power Den = 1

Logic
Block

Logic Block Level

Power Wall. Fig. The classic argument of how parallelism can be exploited to reduce power

20062004
Year

20022000
0.1

1C
or

e
C

ou
nt 10

100

2008 2010

Power Wall. Fig. Microprocessor core count over

time []

that are shared across the p SIMD pipelines, then
power-performance efficiency actually grows with p.
This is because, the power dissipation behavior of the
instruction cache (memory) and the fetch/decode path
remains essentially invariant with p, while net perfor-
mance grows linearly with p. In terms of net energy,
the front-end consumption actually decreases signifi-
cantly in SIMDmode, since the number of instructions
executed is much less than in scalar mode; and over-
all, since the execution time decreases, the net savings
in leakage energy usually results in a significant net
positive benefit for the full machine.

The SIMD extension is actually an example of the
general concept of using power-efficient specialized
hardware (or accelerators) as part of processor design.
Such accelerators can be turned off (e.g., power-gated
off) when not in use, while significant pieces of the gen-
eral purpose (“scalar”) core can be switched off when
the program encounters a long burst of a code that
can be offloaded to an active accelerator. Such accel-
erators can be fixed function, “table-lookup”-type logic
at one extreme, all the way through to programmable
sub-cores at the other end of the spectrum.The concept

of hybrid or heterogeneous core architectures [] is an
example of the latter extreme. In a super scalar machine
with a vector/SIMD (or other accelerator) extension,
the overall power-efficiency increase is limited by the
fraction of code that runs in vector/SIMD (or other
accelerator) mode (per Amdahl’s Law).

Clock-Gating andMicroarchitectural Support

Clock-gating refers to circuit-level control (e.g., see
[,]) for disabling the clock to a given set of latches,
a macro, a bus, to a cache or register file access path,
or an entire unit, on a particular machine cycle. In
current generation server-class microprocessors, about
–% of the active (switching) power is consumed
by the clock distribution network and its latch load
alone. As reported in [], the major part of the clock
power is dissipated close to the leaf nodes of the clock
tree that drive latch banks. Since a clock-gated latch
keeps its current data value stable, clock gating pre-
vents signal transitions of invalid data frompropagating
down the pipeline thereby reducing switching power in
the combinational logic between latches. In addition to
reducing dynamic power, clock gating can also reduce
static (leakage) power. As already explained, leakage
current in CMOS devices is exponentially dependent
on temperature. The temperature reduction brought on
by clock-gating can therefore significantly reduce the
leakage power as well.

(Micro)architectural support for conventional clock-
gating can be provided in at least three ways: (a)
dynamic detection of idle modes in various clocked
units or regions within a processor or system; (b) static
or dynamic prediction of such idle modes; (c) using
“data valid” bits within a pipeline flow path to selec-
tively enable/disable the clock applied to the pipeline
stage latches. If static prediction is used, the compiler
inserts special “nap/doze/sleep/wake” type instructions

 P Power Wall

where appropriate, to aid the hardware in generating the
necessary gating signals. Methods (a) and (b) result in
coarse-grain clock-gating, where entire units, macros or
regions can be gated off to save power; while, method
(c) results in fine-grain clock-gating, where unutilized
pipe segments can be gated off during normal execu-
tion within a particular unit, like the FPU. The detailed
circuit-level implementation of gated-clocks, the poten-
tial performance degradation, inductive noise prob-
lems, etc., are not discussed in this entry. However,
these are very important issues that must be dealt with
adequately in today’s power-constrained designs.

Referring back to section “A Review of Key Ideas
in Power-Aware Architectures” and Fig. , note that
since (fine-grain) clock-gating effectively causes a frac-
tion of the latches to be “gated off,” we may model
this by assuming that the effective value of L decreases
when such clock-gating is applied. This has the effect
of increasing k (opt.), i.e., the operating frequency
for the most power-efficient pipeline operation can be
increased in the presence of clock-gating. This is an
added benefit.

In recently reported work [], the limits of clock-
gating efficiency has been examined and then stretched
by adding a couple of new advances: transparent
pipeline clock-gating (TCG) [] and elastic pipeline
clock-gating (ECG) []. TCG introduces a new way
of clock-gating pipelines. In traditional clock-gating,
latches are held opaque to avoid data races between
adjacent latch stages; thus, N clock pulses are needed
to propagate a single data item through an N-stage
pipeline, even if at a given clock cycle all other
(i.e.,N −) stages have invalid input data. In a transpar-
ent clock-gated pipeline, latches are held transparent by
default. TCG is based on the concept of data separation.
Assume that a pair of data itemsA and B simultaneously
move through a TCG pipeline. A data race between A
and B is avoided by separating the two data items by
clocking or gating a latch stage opaque, such that the
opaque latch stage acts as a barrier separating the two
data items from each other. The number of clock pulses
required for a data item A to move through an N-stage
pipeline is no longer only dependent on N, but also on
the number of clock cycles that separateA from the clos-
est upstreamdata itemB. For anN-stage pipeline, where
B follows n clock cycles behindA, only floor (N/n) clock
pulses have to be generated to move A safely through

the pipeline. Elastic pipeline clock gating (ECG) is a
different technique that achieves further efficiency by
exploiting the inherent storage redundancy afforded by
a traditional master–slave latch pair. ECG allows the
designer to allow stall signals to propagate backward
in pipeline flow logic in a stage-by-stage fashion, with-
out incurring the leakage power and area overhead of
explicitly inserted stall buffers. Logic-level details of
TCG and ECG are available in the originally published
papers [–]. As reported there, TCG enables clock
power reduction to the tune of % over traditional
stage-level clock gating under commercial (TPC-C)
class workloads. Even under heavy floating point work-
loads where fewer bubbles are available in the pipeline,
the clock power in the floating point pipeline can be
reduced by %. The significant reduction in dynamic
stall power (%) and leakage power (%) afforded
by ECG in a floating point unit design have also been
reported in the published literature.

Predictive Power Gating

As previously indicated, leakage power is a major
(if not dominant) component of total power dissipa-
tion in current and future CMOSmicroprocessors. Cut-
ting off the power supply (Vdd) to major circuit blocks
to conserve idle power (“sleep mode”) is not a new
concept, especially for batter-powered mobile systems.
However, dynamically effecting such gating, on a unit-
by-unit basis as function of input workload demand
is not a design technique that has seen widespread
usage yet, especially in server-class microprocessors.
The main reasons have been the perceived risks or neg-
ative effects arising from: (a) performance and area
overheads; (b) inductive noise on the power supply grid;
and (c) potential design tools and verification concerns.
Advances in circuit design have minimized the area and
cycle-time delay overhead concerns in recent indus-
trial practices. Microarchitectural predictive techniques
(e.g., [, , ,]) have recently advanced to the point
where now they equip designers with the tools needed
to minimize any architectural performance overheads
as well. The inductive noise concerns do persist, but
there are known solution approaches in the realm of
power distribution networks and package design that
will no doubt mature to help mitigate those concerns.
The design tools and verification challenge, of course

Power Wall P

P

will prevail as a difficult roadblock – but again, solu-
tions will eventually emerge to get rid of that concern.
Per-core power gating, within a multi-core setting has
recently gained acceptance within the chip design com-
munity (e.g., see Intel’s Nehalem processor design []).
The power-efficiency benefits of per-core power gating
have been quantified recently for server and data center
class workloads [,].

Variable Bit-Width Operands

One of the techniques proposed for reducing dynamic
power consists of exploiting the behavior of data in
programs, which is characterized by the frequent pres-
ence of small values. Such values can be represented as
and operated upon as short bit-vectors. Thus, by using
only a small part of the processing datapath, power can
be reduced without loss of performance. Brooks and
Martonosi [] analyzed the potential of this approach
in the context of -bit processor implementations (e.g.,
the Compaq AlphaTM architecture). Their results show
that roughly % of the instructions executed had both
operands whose length was less than or equal to
bits. Brooks and Martonosi proposed an implemen-
tation that exploits this by dynamically detecting the
presence of narrow-width operands on a cycle-by-cycle
basis.

Adaptive Microarchitectures

Another method of reducing power is to adjust
the size of various storage resources within a
processor or system, with changing needs of the work-
load. Albonesi [] proposed a dynamically reconfig-
urable caching mechanism, that reduces the cache size
(and hence power) when the workload is in a phase
that exhibits reduced cache footprint. Such downsizing
also results in improved latency, which can be exploited
(fromaperformance viewpoint) by increasing the cache
cycling frequency on a local clocking or self-timed basis.
Maro et al. [] have suggested the use of adapting the
functional unit configuration within a processor in tune
with changingworkload requirements. Reconfiguration
is limited to “shutting down” certain functional pipes
or clusters, based on utilization history or IPC perfor-
mance. In that sense, the work by Maro et al. is not
too different from coarse-grain clock-gating support, as
discussed earlier. In early work done at IBM Watson,
Buyuktosunoglu et al. [] designed an adaptive issue

queue that can result in (up to) % power reduction
when the queue is sized down to its minimum size.
This is achieved with a very small IPC performance
hit. Another example is the idea of adaptive register
files (e.g., see []) where the size and configuration of
the active size of the storage is changed via a banked
design, or through hierarchical partitioning techniques.
A recent tutorial article byAlbonesi et al. [] provides an
excellent coverage of advances in the field of adaptive
architectures.

Dynamic Thermal Management

Most clock-gating techniques are geared toward the
goal of reducing average chip power. As such, these
methods do not guarantee that the worst-case (maxi-
mum) power consumption will not exceed safe limits.
The processor’s maximum power consumption dictates
the choice of its packaging and cooling solution. In
fact, as discussed in [], the net cooling solution cost
increases in a piecewise linear manner with respect to
the maximum power, and the cost gradient increases
rather sharply in the higher power regimes. This neces-
sitates the use of mechanisms to limit the maximum
power to a controllable ceiling, one defined by the cost
profile of the market for which the processor is tar-
geted. Most recently, in the high performance world,
Intel’s Pentium processor is reported to use an elab-
orate on-chip thermal management system to ensure
reliable operation []. At the lower end, the G and G
PowerPC microprocessors [,] include a Thermal
Assist Unit (TAU) to provide dynamic thermal man-
agement. In recently reported academic work, Brooks
and Martonosi [] discuss and analyze the potential
reduction in “maximum power” ratings without sig-
nificant loss of performance, by the use of specific
dynamic thermal management (DTM) schemes. The
use of DTM requires the inclusion of on-chip sensors
to monitor actual temperature, or proxies of temper-
ature [] estimated from on-chip counters of various
events and rates.

Dynamic Throttling of Communication Bandwidths

This idea has to do with reducing the width of
a communication bus dynamically, in response to
reduced needs or in response to temperature overruns.
Examples of on-chip buses that can be throttled are:

 P Power Wall

instruction fetch bandwidth, instruction dispatch/is-
sue bandwidths, register renaming bandwidth, instruc-
tion completion bandwidths, memory address band-
width, etc. In the G and G PowerPCmicroprocessors
[,], the TAU invokes a form of instruction cache
throttling as a means to lower the temperature when a
thermal emergency is encountered.

Speculation Control

In current generation, high performance micropro-
cessors, branch mispredictions and mis-speculative
prefetches end up wasting a lots of power. Manne et al.
[,] and Karkhanis et al. [] have described means
of detecting or anticipating an impending mispredict
and using that information to prevent mis-speculated
instructions from entering the pipeline.These methods
have been shown to reduce energy waste, with minimal
impact on performance.

Power-Efficient Microarchitecture Paradigms
Now that we have examined specific microarchitec-
tural constructs that aid power-efficient design, let us
briefly examine the inherent power-performance scal-
ability and efficiency of selected paradigms that are
currently established or are emerging in the high-end
processor roadmap. In particular, we consider: (a) wide-
issue, speculative super scalar processors; (b) multi-
cluster superscalars; (c) simultaneously multithreaded
(SMT) processors; and (d) chipmultiprocessors (CMP):
those that use single program speculative multithread-
ing, as well as those that are general multi-core SMP or
throughput engines.

Single-Core Superscalar Processor Paradigm

One school of thought anticipates a continued pro-
gression along the path of wider, aggressively super-
scalar paradigms. Researchers continue to innovate in
an attempt to extract the last “ounce” of IPC-level
performance from a single-thread instruction-level
parallelism (ILP) model. Value prediction advances
(pioneered by Lipasti et al. []) promise to break the
limits imposed by true data dependencies. Trace caches
(Smith et al. []) ease the fetch bandwidth bottle-
neck, which can otherwise impede scalability. However,
increasing the superscalar width beyond a certain limit
tends to yield diminishing gains in net performance. At

the same time, the power-performance efficiency met-
ric (e.g., performance per watt or (performance)/watt,
etc) tends to degrade beyond a certain complexity point
in the single-core superscalar design paradigm.

The microarchitectural trends beyond the current
superscalar regime are effectively targeted toward the
goal of extending the power-performance efficiency fac-
tors. Whenever we reach a maximum in the power-
performance efficiency curve, it is time to invoke the
next paradigm shift.

Next, we examine some of the promising new
trends in microarchitecture that can serve as the next
platform for designing power-performance scalable
machines.

Multicluster Superscalar Processors

Zyuban et al. [,] studied the class of multiclus-
ter superscalar processors as a means of extending
the power-efficient growth of the basic super scalar
paradigm. One way to address the energy growth prob-
lem at the microarchitectural level is to replace a clas-
sical superscalar CPU with a set of clusters, so that all
key energy consumers are split among clusters. Then,
instead of accessing centralized structures in the tradi-
tional superscalar design, instructions scheduled to an
individual cluster would access local structures most of
the time. The main advantage of accessing a collection
of local structures instead of a centralized one is that the
number of ports and entries in each local structure is
much smaller. This reduces the latency and energy per
access. If the non-accessed sub-structures of a resource
can be “gated off” (e.g., in terms of the clock), then, the
net energy savings can be substantial.

According to the results obtained in Zyuban’s work,
the energy dissipated per cycle in every unit or sub-
unit within a superscalar processor can be modeled to
vary (approximately) as IPCunit * (IW)g , where IW is
the issue width, IPCunit is the average IPC performance
at the level of the unit or structure under considera-
tion, and g is the energy growth parameter for that unit.
Then, the energy-delay product (EDP) for the particular
unit would vary as:

EDPunit
IPCunit ∗ (IW)g

IPCoverall
()

Power Wall P

P

Zyuban shows that for real machines, where the
overall IPC always increases with issue width in a sub-
linear manner, the overall EDP of the processor can be
bounded as:

(IPC)g- ≤ EDP ≤ (IPC)g ()

where g is the energy-growth factor of a given unit and
IPC refers to the overall IPC of the processor; and IPC is
assumed to vary as (IW).. Thus, according to this for-
mulation, superscalar implementations that minimize g
for each unit or structure will result in energy-efficient
designs. The eliot/elpaso tool does not model the effects
of multi-clustering in detail; however, from Zyuban’s
work, we can infer that a carefully designedmulticluster
architecture has the potential of extending the power-
performance efficiency scaling beyond what is possi-
ble using the classical superscalar paradigm. Of course,
such extended scalability is achieved at the expense
of reduced IPC performance for a given superscalar
machine width. This IPC degradation is caused by the
added inter-cluster communication delays and other
power management overhead in a real design. Some of
the IPC loss (if not all) can be offset by a clock frequency
boost whichmay be possible in such a design, due to the
reduced resource latencies and bandwidths.

High-performance processors (e.g., the Compaq
Alpha and the IBM POWER/) certainly have
elements of multi-clustering, especially in terms of
duplicated register files and distributed issue queues.
Zyuban proposed and modeled a specific multicluster
organization in his work. This simulation-based study
determined the optimal number of clusters and their
configurations, for the EDP metric.

SimultaneousMultithreading (SMT)

Let us examine the SMT paradigm [] to understand
how this may affect our notion of power-performance
efficiency.With SMT, assume thatwe can fetch from two
threads (simultaneously, if the icache is dual-ported, or
in alternate cycles if the icache remains single-ported).
The back-end execution engine is shared across the
two threads, although each thread has its own archi-
tected register space. This facility allows the utiliza-
tion factors, and the net throughput performance to go
up, without a commensurate increase in the maximum
clocked power. This is because, the issue width W is
not increased, but the execution and resource stages or

slots can be filled up simultaneously from both threads.
The added complexity in the front-end, of maintaining
two program counters (fetch streams) and the global
register space increase adds to the power a bit, but
the throughput gain is significantly higher. SMT is
clearly a very area-efficient (and hence leakage-efficient)
microarchitectural paradigm. IBM’s POWER proces-
sor family has progressed from -way SMT per core in
POWER [] to -way SMT per core in POWER [].

Seng and Tullsen [] presented analysis to show
that using a suitably architected SMTprocessor, the per-
thread speculative waste can be reduced, while increas-
ing the utilization of themachine resources by executing
simultaneously from multiple threads. This was shown
to reduce the average energy per instruction by %.

Chip Multiprocessing

In a multiscalar-like speculative-multi-threading mac-
hine [], different iterations of a single loop program
could be initiated as separate tasks or threads on differ-
ent core processors on the same chip. Iterations beyond
the first one are speculatively executed, assuming no
loop-carried dependencies. Register values set in one
task are forwarded in sequence to dependent instruc-
tions in subsequent tasks. Execution on each processor
proceeds speculatively, assuming the absence of load-
store address conflicts between tasks; dynamic memory
address disambiguation hardware is required to detect
violations and restart task executions as needed. In this
paradigm, if the performance can be shown to scale
well with the number of tasks, and if each processor
is designed as a limited-issue, limited-speculation (low
complexity) core, it is possible to achieve better overall
scalability of performance-power efficiency.

A key real trend in high-end microprocessors is
classical chip multiprocessing (CMP), where multi-
ple user programs (or sub-tasks of a single pro-
gram) execute separately (and non-speculatively) on
different processors on the same chip. A commonly
used paradigm in this case is that of (shared mem-
ory) symmetric multiprocessing (SMP) on a chip (see
Hammond et al. in []). Larger SMP server nodes can
be built from such chips. Server system vendors like
IBMhave relied on such CMPparadigms as the scalable
paradigm for the immediate future. IBM’s POWER
and POWER designs [, ,] were the first exam-
ples of this industry-wide trend; later examples being:

 P Power Wall

Intel’s Montecito [] and Sun’s Niagara []. Most
recent server-class multi-core/multi-threaded proces-
sors include Intel’s Nehalem [] and IBM’s POWER
[]. Such CMP designs offer the potential of con-
venient coarse-grain clock-gating and “power-down”
modes, where one or more processors on the chip may
be “turned off” or “slowed down” to save power when
needed.

In general, in a design era where technological con-
straints like power dissipation have caused a significant
slowdown in the growth of single-thread execution
clock frequency (and performance), parallelism via
multiple cores on a die, each operating at lower than
achievable single-core frequency (i.e., at larger FO per
stage than prior generation processors), is the natural
paradigm of choice for power-efficient, scalable perfor-
mance growth through the next several generations of
processor design. Heterogeneity in the form of different
types of cores, accelerators and mixed signal compo-
nents [, ,] or variable per-core frequency support
are already prevalent concepts. Such heterogeneity is
needed to support the diverse set of workloads that will
enable the next generation of computing systems in a
power-constrained design era.

Conclusions
In this entry, we first defined the “power wall” and
examined the root technological causes behind the
onset of the current power-constrained design era.
We then discussed issues related to power-performance
efficiency and metrics from an architect’s viewpoint.
We showed that depending on the application domain
(or market), it may be necessary to adopt one met-
ric over another in comparing processors within that
segment. Next, we described some of the promising
new ideas in power-aware microarchitecture design.
This discussion included circuit-centric solutions like
clock-gating, and power-gating where microarchitec-
tural support is needed to make the right decisions
at run time. We then looked at the trends in core-
and chip-level microarchitecture design paradigms at
a high-level, given the reality of the power wall. We
limited our focus to a few key ideas and paradigms of
interest in future power-aware processor design. Many
new ideas to address various aspects of power reduc-
tion have been presented in recent research papers. All
of these could not be discussed in this entry; but the

interested reader should certainly refer to the cited ref-
erences and recent conference publications for further
detailed study.

Bibliography
. Agrawal A, Mukhopadhyay S, Raychowdhury A, Roy K, Kim

CH () Leakage power analysis and reduction in nanoscale
circuits. IEEE Micro ():–

. Albonesi D () Dynamic IPC/clock rate optimization. In:
Proceedings of the th annual international symposium on
computer architecture (ISCA), ACM/IEEE Computer Society,
Barcelona, pp –

. Albonesi DH, Balasubramonian R, Dropsho SG, Dwarkadas S,
Friedman EG, Huang MC, Kursun V, Magklis G, Scott ML,
Semeraro G, Bose P, Buyuktosunoglu A, Cook PW, Schuster
SE () Dynamically tuning processor resources with adap-
tive processing. IEEE Comput ():–, Special Issue on
Power-Aware Computing

. Barroso L, Holzle U () The case for energy proportional
computing. IEEE Comput ():–

. Bohr M () A year retrospective on dennard’s MOSFET
scaling paper. P Solid St Circ Soc ():–

. Borkar S () Design challenges of technology scaling. P IEEE
Micro ():–

. Bose P, Kim S, O’Connell FP () Ciarfella WA Bounds mod-
eling and compiler optimizations for superscalar performance
tuning. J Syst Architect :–; Elsevier

. Brews JR () Subthreshold behavior of uniformly and non-
uniformly doped long-channel MOSFET. IEEE T Electron Dev
:–

. Brooks D, Bose P, Srinivasan V, Gschwind MK, Emma
PG, Rosenfield MG () New methodology for early-
stage, microarchitecture-level power-performance analysis of
microprocessors. IBM J Res Dev (/):–

. Brooks D, Martonosi M () Dynamically exploiting narrow
width operands to improve processor power and performance.
In: Proceedings of the th international symposium on high-
performance computer architecture (HPCA-), IEEE Computer
Society, Orlando

. Brooks D, Martonosi M () Dynamic thermal management
for high-performance microprocessors. In: Proceedings of the
th internatinal symposium On high performance computer
architecture, IEEE Computer Society, Nuevo Leone, pp –

. Brooks DM, Bose P, Schuster SE, Jacobson H, Kudva PN, Buyuk-
tosunoglu A,Wellman J-D, ZyubanV, GuptaM, CookPW ()
Power-aware microarchitecture: design and modeling challenges
for next-generation microprocessors. P IEEEMicro ():–

. Buyuktosunoglu A et al () An adaptive issue queue for
reduced power at high performance. In: Proceedings ISCAWork-
shop on complexity-effective design (WCED), Vancouver

. Cruz J-L, Gonzalez A, Valero M, Topham NP () Multiple-
banked register file architectures. In: Proceedings of the interna-
tional symposium on computer architecture (ISCA), Vancouver,
pp –

Power Wall P

P

. Dennard R et al () Design of ion-implanted MOSFETs
with very small physical dimensions. IEEE J Solid St Circ SC-
():–

. Diefendorff K () POWER focuses on memory bandwidth.
Microprocessor Report ():–

. Dubey PK, Flynn MJ () Optimal pipelining. J Parallel Distr
Com ():–

. Flautner K, Kim NS, Martin S, Blaauw D, Mudge T ()
Drowsy Caches: simple techniques for reducing leakage power.
In: Proceedings of the international symposium on computer
architecture (ISCA), IEEE Computer Society, Anchorage

. FlynnMJ, Hung P, Rudd K () Deep-submicron microproces-
sor design issues. P IEEEMicro ():–

. Gara A et al () Overview of the blue gene/L system architec-
ture. IBM J Res Dev (/):–

. Gonzalez R, Horowitz M () Energy dissipation in general
purpose microprocessors. IEEE J Solid-St Circ ():–

. Grunwald D, Klauser A,Manne S, Pleszkun, A () Confidence
estimation for speculation control. In: Proceedings th annual
international symposium on computer architecture (ISCA),
ACM/IEEE Computer Society, Barcelona, pp –

. Gunther SH, Binns F, Carmean DM, Hall JC () Managing
the impact of increasing microprocessor power consumption. In:
Proceedings of the Intel Technology Journal

. Hartstein A, Puzak TR () The optimum pipeline depth for
a microprocessor. Proceedings of the th international sym-
posium on computer architecture (ISCA-), IEEE Computer
Society, Anchorage

. http://www.specbench.org
. Hu C () Device and technology impact on low power elec-

tronics. In: Rabaey J (ed) Low power design methodologies.
Kluwer, Boston, pp –

. Hu Z, Buyuktosunoglu A, Srinivasan V, Zyuban V, Jacobson H,
Bose P () Microarchitectural techniques for power gating of
execution units. In: Proceedings of the international symposium
on low power electronics and design (ISLPED), ACM, Newport
Beach

. ISSCC (International Solid State Circuits Conference)
() Trends Report, http://isscc.org/doc//ISSCC_
TechTrends.pdf

. Iyer A, Marculescu D () Power-performance evaluation of
globally asynchronous, locally synchronous processors. In: Pro-
ceedings of the international symposium on computer architec-
ture (ISCA), IEEE Computer Society, Anchorage

. Jacobson H, Bose P, Hu Z, Eickemeyer R, Eisen L, Griswell J
() Stretching the limits of clock-gating efficiency in server-
class processors. In: Proceedngs of the international sympo-
sium on high performance computer architecture (HPCA), IEEE
Computer Society, San Francisco

. Jacobson HM () Improved clock-gating through transpar-
ent pipelining. In: Proceedings of the international symposium
on low Power electronics and design (ISLPED), ACM, California

. Jacobson HM et al () Synchronous interlocked pipelines.
In: Proceedings of the international symposium on advanced
research in asynchronous circuits and systems, IEEE Computer
Society, Manchester

. Kahle JA et al () Introduction to theCellmultiprocessor. IBM
J Res Dev (/):–

. Kalla R, Sinharoy B, Starke WJ, Floyd MJ () Power: IBM’s
next generation server processor. IEEE Micro ():–

. Kalla R, Sinharoy B, Tendler J () IBMPOWER chip: a dual-
core multithreaded processor, IEEE Micro ():–

. Kanda K et al () Design impact of positive temperature
dependence on drain current in sub--V CMOS VLSIs. IEEE
JSSC, ():–

. Karkhanis T, Bose P, Smith J () Saving energy with just
in time instruction delivery. In: Proceedings of the intenational
symposium on low power electronics and design (ISLPED),
ACM, Monterey

. Kaxiras S, Hu Z, Martonosi M () Cache Decay: exploiting
generational behavior to reduce cache leakage power. In: Pro-
ceedings of the international symposium on computer architec-
ture (ISCA), Goteborg

. Kogge PM ()The architecture of pipelined computers. Hemi-
sphere Publishing Corporation, New York

. Kongetira P () A -way multithreaded SPARC� processor.
Presented at Hot Chips

. Kumar R, Tullsen D, Jouppi N, Ranganathan P () Heteroge-
neous chip multiprocessors. IEEE Comput ():–

. Larson AG () Cost-effective processor design with an appli-
cation to fast fourier transform computers. Digital systems lab-
oratory report SU-SEL--, Stanford University, Stanford; see
also, Larson and Davidson () Cost-effective design of special
purpse processors: a fast fourier transform case study. In: Pro-
ceedings th annual allerton conference on circuits and system
theory. University of Illinois, Champaihn-Urbana, pp –

. Leverich J, Monchiero M, Talwar V, Ranganathan P, Kozyrakis C
() Power management of datacenter workloads using
per-core power gating. IEEE Comput Archit Lett ():
–

. Lungu A, Bose P, Buyuktosunoglu A, Sorin D () Dynamic
power gating with quality guarantees. In: Proceedings of the
international symposium on low power electronics and design
(ISLPED), ACM, New York

. Madan NS, Buyuktosunoglu A, Bose P, Annavaram M ()
Guarded power gating in a multi-core setting, presented at ISCA
workshop on energy-efficient design (WEED), June ; to
appear as a Lecture notes on computer science (LNCS) volume in
; see also full paper in Proceedings of the th international
Symposiumonhigh performance computer architecture (HPCA)

. Manne S, Klauser A, Grunwald D () Pipeline gating: spec-
ulation control for energy reduction. In: Proceedings of the
th annual international symposium on computer architecture
(ISCA), ACM/IEEE Computer Society, Barcelona, pp –

. Maro R, Bai Y, Bahar RI () Dynamically reconfiguring
processor resources to reduce power consumption in high-
performance processors. In: Proceedings of power aware com-
puter systems (PACS) Workshop, held in conjunction with
ASPLOS, Cambridge

. McNairy C, Bhatia R () Montecito: a dual-core, dual-thread
Itanium Processor. IEEE Micro ():– (see also, Hot Chips
)

http://www.specbench.org
http://isscc.org/doc/2010/ISSCC2010{_}TechTrends.pdf
http://isscc.org/doc/2010/ISSCC2010{_}TechTrends.pdf

 P PRAM (Parallel Random Access Machines)

. Oklobdzija VG () Architectural tradeoffs for low power. In:
Proceedings of the ISCA Workshop on Power-Driven Microar-
chitectures, Barcelona

. Reed P et al () MHz W RISC microprocessor with on-
chip L cache controller. DigTech Pap IEEE Int Solid St Circ Conf
:

. Sakurai T, Newton R () Alpha-power law MOSFET model
and its applications to CMOS inverter delay and other formulas.
IEEE JSSC ():–

. Sanchez H et al ()Thermal management system for high per-
formance PowerPC microprocessors. In: Digest of papers, IEEE
COMPCON, p

. Seng JS, Tullsen DM, Cai G () The power efficiency of
multithreaded architectures. In: Invited talk presented at: ISCA
Workshop on Complexity-Effective Design (WCED), Vancouver

. Singhal R () Inside intel core microarchitecture (Nehalem).
Presented at Hot Chips-, Stanford

. Sohi G, Breach SE, Vijaykumar TN () Multiscalar Processors.
In: Proceedings of the nd annual international symposium on
computer architecture, IEEE CS Press, Los Alamitos, pp –

. Srinivasan V, Brooks D, Gschwind M, Bose P, Zyuban V, Strenski
PN, Emma PG () Optimizing pipelines for power and per-
formance. In: Proceedings of the th annual IEEE/ACM sym-
posium onmicroarchitecture (MICRO-), ACM/IEEE, Istanbul

. Talks presented at the ISCA workshops on complexity effec-
tive design (WCED- throughWCED-), http://www.csl.
cornell.edu/~albonesi/wced.html

. Talks presented at the kool chips workshops () http://www.
cs.colorado.edu/~grunwald/LowPowerWorkshop

. Talks presented at the power aware computer systems (PACS)
Workshops; e.g. the offering: http://www.ece.cmu.edu/
~pacs/

. Tendler JM, Dodson JS, Fields JS Jr, Le H, Sinharoy B ()
POWER system microarchitecture. IBM J Res Dev :():–

. The International Technology Roadmap for Semiconductors.
http://www.itrs.net/reports.html

. Theme issue () The future of processors. IEEE Comput
():–

. Tiwari V et al () Reducing power in high-performance
microprocessors. In: Proceedings of the IEEE/ACM Design
Automation Conference. ACM, New York, pp –

. Tullsen DM, Eggers SJ, Levy HM () Simultaneous Multi-
threading: Maximizing On-Chip parallelism. In: Proceedings of
the nd annual internatonal symposium on computer architec-
ture, Santa Margherita Ligure, pp –

. YenD () Chipmultithreading processors enable reliable high
throughput computing. Keynote speech at international sympo-
sium on reliability physics (IRPS)

. Zyuban V () Inherently lower-power high performance
super scalar architectures. PhD thesis, Department of Computer
Science and Engineering, University of Notre Dame

. Papers in the special issue of IBM Journal of Research and Devel-
opment, March/May

. Zyuban V, Brooks D, Srinivasan V, Gschwind M, Bose P,
Strenski P, Emma P () Integrated analysis of power and

performance for pipelined microprocessors. IEEE T Comput
():–

. Zyuban V, Kogge P () Optimization of high-performance
superscalar architectures for energy efficiency. In: Proceedings of
the IEEE symposium on low power electronics and design, ACM,
New York

PRAM (Parallel Random Access
Machines)

Joseph F. JaJa
University of Maryland, College Park, MD, USA

Definition
The Parallel Random Access Machine (PRAM) is an
abstract model for parallel computation which assumes
that all the processors operate synchronously under a
single clock and are able to randomly access a large
shared memory. In particular, a processor can execute
an arithmetic, logic, or memory access operation within
a single clock cycle.

Discussion
Introduction
Parallel RandomAccessMachines (PRAMs)were intro-
duced in the late s as a natural generalization to
parallel computation of the Random Access Machine
(RAM) model. The RAM model is widely used as the
basis for designing and analyzing sequential algorithms.
The PRAMmodel assumes the presence of a number of
processors, each identified by a unique id, which have
access to a single unbounded shared memory. The pro-
cessors operate synchronously under a single clock such
that each processor can execute an arithmetic or logic
operation or a memory access operation within a sin-
gle clock cycle. In general, each processor under the
PRAM model can execute its own program, which can
be stored in some type of a private program memory.
However, almost all the known PRAM algorithms are
of the SPMD (Single Program Multiple Data) type in
which a single program is executed by all the proces-
sors such that an instruction can refer to the id of the
processor, which is responsible for executing the corre-
sponding instruction. A processor may or may not be
active during any given clock cycle. In fact, most of the

http://www.csl.cornell.edu/~albonesi/wced.html
http://www.csl.cornell.edu/~albonesi/wced.html
http://www.cs.colorado.edu/~grunwald/LowPowerWorkshop
http://www.cs.colorado.edu/~grunwald/LowPowerWorkshop
http://www.ece.cmu.edu/~pacs04/
http://www.ece.cmu.edu/~pacs04/
http://www.itrs.net/reports.html

PRAM (Parallel Random Access Machines) P

P

PRAM algorithms are of the SIMD (Single Instruction
Multiple Data) type in which, during each cycle, a pro-
cessor is either idle or executing the same operation as
the remaining active processors.

As a simple example of a PRAM algorithm, consider
the computation of the sum S of the elements of an array
A[: n] using an n-processor PRAM, where the proces-
sors are indexed by pid = , , . . . ,n. A PRAM algorithm
can be organized as a balanced binary tree with n leaves
such that each internal node represents the sum compu-
tation applied to the values available at the children.The
PRAM algorithm proceeds level by level, executing all
the computations at each level in a single parallel step.
Hence the processors complete the process in ⌈logn⌉
parallel steps. The algorithm is illustrated in Fig. .

The PRAM algorithm written in the SPMD style is
given next where for simplicity n = k for some pos-
itive integer k. The array B[: n] is used to store the
intermediate results.

Algorithm PRAM SUM Algorithm
Input: An array A of size n = k stored in shared
memory.
Output:The sum of the elements of A.
begin
B[pid] = A[pid]
d = n
for h = to k do
d = d

if pid ≤ d then
B[pid] = B[pid −] + B[pid]

end if
end for

return(B[])
end

Given that the processors can simultaneously access
the shared memory within the same clock cycle, sev-
eral variants of the PRAMmodel exist depending on the
assumptions made for simultaneous access to the same
memory location.

● Exclusive Read Exclusive Write (EREW) PRAM.
No simultaneous accesses to the same location are
allowed under the EREW PRAMmodel.

+

+ +

++++

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

PRAM (Parallel Random AccessMachines). Fig. A

Balanced Binary Tree for the Sum Computation. The PRAM

algorithm proceeds from the leaves to the root while

executing the operations at each level within a single clock

cycle

● ConcurrentReadExclusiveWrite (CREW)PRAM.
Simultaneous read accesses to the same location are
allowed but no concurrent write operations to the
same location are permitted.

● Concurrent Read Concurrent Write (CRCW)
PRAM. Simultaneous read or write operations to
the same memory location are allowed. This model
has several subversions depending on how the
concurrent write operations to the same location
are resolved. The Common CRCW PRAM model
assumes that the processors are writing the same
value, while the Arbitrary CRCW PRAM model
assumes that one of the processors attempting a
concurrent write into the same location succeeds.
The Priority CRCW assumes that the indices of the
processors are linearly ordered, and allows the pro-
cessor with the highest priority to succeed in case of
a concurrent write.

Thedifferent assumptions on the concurrent accesses
to a single location lead to parallel algorithms that can
differ significantly in performance. Consider, for exam-
ple, the problem of determining whether all the entries
of a binary arrayM[: n] are all equal to .The outputA
of this computation is in fact the logical AND of all the
entries inM. An n-processor Common CRCW PRAM
algorithm can perform this computation as follows. Ini-
tially, A is set equal to . For all ≤ pid ≤ n, processor
pid tests whether the entryM[pid] = , and in the affir-
mative, executes the operation A = . Clearly this algo-
rithm correctly computes the AND of the n elements

 P PRAM (Parallel Random Access Machines)

ofM in constant time on the Common CRCW PRAM.
However, it can be shown, under a very general model,
that a CREWPRAMwill require Ω(logn) parallel steps
regardless of the number of processors available. On the
other hand, the computational gap between the vari-
ous versions of the PRAMmodel is limited in the sense
that the strongest p-processor PRAMmodel, namely the
priority CRCW from our list above, can be simulated
by a p-processor EREW (weakest PRAMmodel) with a
slowdown of a factor of O(log p).

From a theoretical perspective, the design of a
PRAM algorithm amounts to the development of a
strategy that achieves the highest level of parallelism,
that is, the smallest number of parallel steps, using a
“reasonable” number of processors. Note that the num-
ber of processors can depend on the input size. In par-
ticular, the class of “well-parallelizable” problems under
the PRAMmodel can be defined as the class of the prob-
lems that can be solved in polylogarithmic number of
parallel steps (i.e.,O(logk n) for some fixed constant k),
using a polynomial number of processors. Such a class is
referred to as the NC complexity class, which has been
related to the circuits model used in traditional com-
putational complexity. See the bibliographic notes for
references to related work.

Complexity Measures andWork–Time
Framework
A PRAM algorithm can be evaluated by several com-
plexity measures, where a complexity measure is a
worst case asymptotic estimate of the performance as
a function of the input length n. Given a p-processor
PRAM algorithm to solve a problem with input size
n, let TP(p,n) be the number of parallel steps used
by the algorithm. The optimal (or often the best
known) sequential complexity is denoted by TS(n).The
speedup is defined to be

TS(n)
TP(p,n)

,

which represents the speedup of the parallel algorithm
relative to the best sequential algorithm. Clearly the best
possible speedup is Θ(p). On the other hand, the rela-
tive speedup is defined to be

TP(,n)
TP(p,n)

,

which refers to the speedup achieved by the algorithm
with p processors relative to the same algorithm run-
ning with one processor.

Another related measure is the relative efficiency of
a PRAM algorithm defined as the ratio

TP(,n)
pTP(p,n)

.

The two PRAMalgorithms presented earlier assume
the presence of n processors, where n is the input size.
To derive the complexity measures defined above, these
algorithms can be mapped into p-processor (p < n)
PRAM algorithms by distributing the concurrent oper-
ations carried out at each parallel step as evenly among
the p processors as possible. In particular, the SUM
algorithm can be executed in

⌈

n
p
⌉ + ⌈

n/
p
⌉ + ⋯+ = O(

n
p
+ logn)

parallel time on a p-processor PRAM algorithm. Hence
the speedup is Θ(p) whenever p = O(n/ logn).
However, writing the corresponding algorithm for each
processor (using processor ids) is in general a tedious
process that distracts from the simplicity of the PRAM
model.

An alternative is to describe a PRAM algorithm in
the so-called Work–Time or simply WT framework,
which is also related to the data parallel paradigm.
The algorithm does not assume any specific number
of processors, nor does it refer to any processor index,
but rather it is expressed as a sequence of steps, where
each step is either a typical sequential operation or a
set of concurrent operations that can be executed in
parallel. A set of parallel operations is specified by the
pseudo-instruction pardo or forall. For example, the
previous PRAM SUM algorithm can be expressed in
this framework as shown in Algorithm .

Under the WT framework, the complexity of a
PRAM algorithm can bemeasured by two parameters –
workW(n) and timeTP(n).TheworkW(n) is the total
number of operations required by the algorithm as a
function of n and the time TP(n) is defined as the num-
ber of parallel steps needed by the algorithm assuming
an unlimited number of processors. The corresponding
functions for the SUM algorithm areW(n) = O(n) and
TP(n) = O(logn), respectively.

PRAM (Parallel Random Access Machines) P

P

Algorithm Parallel SUM Algorithm in the WT
Framework
Input: An array A of size n = k residing in memory.
Output:The sum of the elements of A.
begin
d = n
for all ≤ i ≤ n pardo
B[i] = A[i]

end for
for h = to k do
d = d

for all ≤ i ≤ d pardo
B[i] = B[i −] + B[i]

end for
end for
return(B[])

end

In general, a WT-parallel algorithm with complex-
ityW(n) and TP(n) can be simulated on a p-processor
PRAM using Brent’s scheduling principle (see biblio-
graphic notes) in time

TP(p,n) = O(
W(n)
p

+ TP(n))

The algorithm is called work optimal if W(n) =

Θ(TS(n). In this case, the corresponding p-processor
PRAM algorithm achieves optimal speedup as long as
p = O(TS(n)

TP(n)
).

Under the WT framework, a typical goal is to
develop an algorithm that achieves the fastest parallel
time among the work-optimal algorithms. That is, the
main goal to develop a work-optimal algorithm that is
as fast as possible.

Basic PRAM Techniques
Basic PRAM techniques are illustrated through the
description of PRAM algorithms for the following com-
putations: matrix multiplication, prefix sums or scan,
list ranking, fractional independent set, and computing
the maximum. The WT framework is used to express
these algorithms.

Matrix Multiplication
Given two matrices A and B of dimensions m × n and
n × q, respectively, the product C = AB is a matrix of

dimension m × q such that

C[i, j] =
n

∑

k=
A[i, k]B[k, j], ≤ i ≤ m, ≤ j ≤ q.

Computing the matrix C on the PRAM model is quite
simple since bothmatricesA and B are initially stored in
shared memory, and their entries can each be accessed
randomly within a single clock cycle. The algorithm in
theWT framework amounts to computing in parallel all
the products A[i, k]B[k, j], for ≤ i ≤ m, ≤ k ≤ n, and
 ≤ j ≤ q.ThePRAMSUMalgorithmcan then be used to
compute all the entries C[i, j] in parallel, ≤ i ≤ m and
 ≤ j ≤ q. Thus, the parallel complexity of the resulting
algorithm is TP = O(logn) and the total work is W =

O(nmq).
This algorithm is based on the standard sequential

algorithm. Should the initial sequential algorithm be
one of the faster sequential matrix multiplication algo-
rithm, the corresponding PRAM algorithm will then
run in logarithmic parallel time using the same number
of operations as the initial algorithm.

Prefix Sums or Scan
Given a set of elements stored in an array A[: n] and
a binary associative operation ⊗, the prefix sums of A
consist of the n partial sums defined by

PS[i] = A[] ⊗A[] ⊗⋯⊗A[i], ≤ i ≤ n

The straightforward sequential algorithm computes
PS[i] = PS[i −] ⊗ A[i] for ≤ i ≤ n starting with
PS[] = A[], and hence the sequential complexity is
TS(n) = Θ(n).

A simple fast PRAM algorithm can be designed
using a balanced binary tree built on top of the n ele-
ments of A. The algorithm consists of a forward sweep
through the tree in a way similar to that carried out
by the SUM algorithm. A backward sweep will then
compute the prefix sums of the set of elements avail-
able at each level. A recursive version is described in
Algorithm .

The algorithm is illustrated in Fig. , where the left
part illustrates the forward sweep and the right part
illustrates the backward sweep.

Since the algorithm involves a forward and a back-
ward sweep through a balanced binary tree of height
O(logn), the parallel complexity of the algorithm
satisfies TP(n) = O(logn). Also, since the number of

 P PRAM (Parallel Random Access Machines)

1 2 3 4 5

Forward Sweep of Prefix Sums
Algorithm

Backward Sweep that Completes
the Prefix Sums Computation

6 7 8 1 Σ1,2 31,3 Σ1,4 51,5 Σ1,6 71,7 Σ1,8

1 Σ1,2 3 Σ1,4 5 Σ5,6 7 Σ1,8

1 Σ1,2 3 Σ1,4 5 Σ5,6 7 Σ1,8

1 Σ1,2 3 Σ1,4 5 Σ1,6 7 Σ1,8

1 Σ1,2 3 Σ1,4 5 Σ5,6 7 Σ1,8

1 Σ1,2 3 Σ1,4 5 Σ5,6 7 Σ5,8

1 Σ1,2 3 Σ3,4 5 Σ5,6 7 Σ7,8

a b

PRAM (Parallel RandomAccess Machines). Fig. Computation of prefix sums through a forward sweep and a backward

sweep of the balanced binary tree algorithm. The notation∑i,j represents the sum of elements from A[i] through A[j],

and at each level an entry with two arrows pointing to it represent a sum operation

Algorithm Prefix Sums Algorithm
Input: An array A of size n = k stored in shared
memory.
Output:The prefix sums of A stored in the array PS.
begin
if n = then
return(PS[] = A[])

end if
for all ≤ i ≤ n/ pardo
Y[i] = A[i −] ⊗ A[i]

end for
Recursively compute the prefix sums of Y[: n/] in
place
for all ≤ i ≤ n pardo
i even: set PS[i] = Y[i/]
i = : set PS[] = A[]
else: set PS[i] = Y[(i −)/] ⊗A[i]

end for
end

internal nodes of a binary tree on n leaves is n − ,
the total work is clearly W(n) = O(n), and hence this
algorithm is work optimal. It follows that a p processor
PRAM can compute the prefix sums of n elements in
time TP(p,n) = O(n

p + logn).

List Ranking
Consider a linked list L of n nodes whose successor rela-
tionship is represented by an array S[: n] such that
S[i] is equal to the index of the successor node of i.

For the last node k, its successor is denoted by S[k] = .
The list ranking problem is to determine for each node
i the distance R[i] of the node i to the end of the
list. While an optimal sequential algorithm is relatively
straightforward – start by inverting the list and proceed
to compute the ranks incrementally following the pre-
decessor links – the problem may seem at first sight to
be quite difficult to parallelize. It turns out that a fast
PRAM algorithm can be developed through the intro-
duction of the pointer jumping technique as illustrated
in Algorithm . Note that T is used for the intermediate
manipulation of the pointers, while the initial pointers
stored in S remain intact.

The list ranking algorithm is illustrated in Fig. ,
where the pointer jumping technique is applied on each
node i satisfying T[i] ≠ and T[T[i]] ≠ .

Since the execution of the last parallel loop involves
replacing the successor by its successor, the distance
between a node and its successor doubles after each iter-
ation and hence the T pointer of each node will point
to the last node after ⌈logn⌉ iterations. Therefore, the
algorithm terminates correctly afterO(logn) iterations,
and each iteration involves O(n) operations. The algo-
rithm has parallel complexityO(logn) usingO(n logn)
total number of operations. Thework can bemade opti-
mal but the corresponding PRAM algorithm is more
complex.

Fractional Independent Set
Thepurpose of introducing the next problem is to illus-
trate the use of randomization in the design of PRAM

PRAM (Parallel Random Access Machines) P

P

1 01 1 1 1
T T T T T T T

1 1

2 02 2 2 2 2 1

4 04 4 4 3 2 1

7 06 5 4 3 2 1

PRAM (Parallel Random AccessMachines). Fig. Application of the list ranking algorithm on a list with eight elements

Algorithm List Ranking Algorithm
Input: An array S of size n representing the successor
relationship of a linked list.
Output: The distance R[i] of node i to the end of the
list, ≤ i ≤ n.
begin
for all ≤ i ≤ n pardo
if S[i] ≠ then R[i] = else R[i] =

end for
for all ≤ i ≤ n pardo
T[i] = S[i]

end for
repeat ⌈logn⌉ times do
{
for all ≤ i ≤ n pardo
if T[i] ≠ and T[T[i]] ≠ then
{ R[i] = R[i] + R[T[i]]; T[i] = T[T[i]] }

end for
}

end

algorithms to break symmetry. Given a directed cycle
C =< v , v, . . . vn >, a fractional independent set is a
subset U of the vertices such that: (i) U is an indepen-
dent set, that is, no two vertices in U are connected by a
directed edge; and (ii) the size ofU is a constant fraction
of the size ofV .The fractional independent set problem
is to determine such a set.

It is trivial to develop a sequential algorithm to solve
this problem. Starting fromany vertex, place every other
vertex in U. A simple and fast PRAM algorithm can be
designed using randomization as follows. Each vertex,
in parallel, is randomly assigned a label or with equal
probability. Clearly, the expected number of vertices of
each label is n/. However, this does not necessarily
solve the problem since there is no guarantee that the
vertices with the same label form an independent set.
To ensure that this is indeed the case, another parallel
step is carried out which involve changing the label of
a vertex to if the labels of this vertex and its succes-
sor are both equal to . The remaining vertices of label
are now guaranteed to form an independent set. It can
be shown that, with high probability, the size of such an
independent set is a constant fraction of the size of the
original vertex set V .

On the PRAM model, this algorithm runs in O()
parallel time usingO(n) operations. It is worth noticing
that this algorithm can in particular be used tomake the
list ranking algorithm more efficient (i.e., using a total
number of operations which is asymptotically less than
n logn).

Superfast MaximumAlgorithm
The algorithm presented in this section illustrates an
important PRAM technique, called accelerated cascad-
ing, in combining two strategies. The first amounts
to a work optimal algorithm (possibly a sequential

 P PRAM (Parallel Random Access Machines)

Algorithm Randomized Fractional Independent
Set Algorithm
Input: A directed cycle with a vertex set V whose arcs
are specified by an array S[: n], i.e., < i, S[i] > is an arc.
Output: A fractional independent set U ⊂ V .
begin
for all v ∈ V pardo
Randomly assign label(v) = or with equal proba-

bility
if label(v) = and lavel(S[v]) = then label(v) =

end for
return(U = {v∣label(v) = })

end

algorithm) to reduce the size of the problem below a
certain threshold. The second strategy uses a very fast
PRAM algorithm that involves a nonoptimal number
of operations. The maximum algorithm will be used to
illustrate such a technique and to also demonstrate the
extra power of the PRAMmodel when concurrent write
operations are allowed.

The PRAM strategy introduced earlier to compute
the sum of n elements can be used to compute the
maximum of n elements, resulting in the parallel time
complexity TP(n) = O(logn) and total work ofW(n) =
O(n). However, it is possible to develop a constant time
algorithm on the Common CRCW PRAM model as
illustrated in Algorithm .

Algorithm Constant Time Maximum Algorithm
Input: An array A[: n] consisting of n distinct ele-
ments
Output: A Boolean arrayM[: n] such thatM[i] = if,
and only if, A[i] is the maximum element
begin
for all ≤ i, j ≤ n pardo
ifA[i] ≥ A[j] then B[i, j] = else B[i, j] =

end for
for all ≤ i ≤ n pardo
M[i] = ⋀n

j= B[i, j]
end for
end

The Boolean AND of n binary variables can be per-
formed in O() parallel steps using O(n) operations on

the CommonCRCWPRAM.Therefore, the above algo-
rithm achieves constant parallel time but uses O(n)
operations, and thus it is extremely inefficient. To rem-
edy this problem, and still achieve faster than O(logn)
parallel time, a doubly logarithmic depth tree is used
instead of the balanced binary tree. Essentially, the root
of a doubly logarithmic depth tree has Ω(

√

n) chil-
dren, and each subtree is defined similarly. It is not hard
to see that such a tree has height O(log logn), where n
is the number of leaves. Using the doubly logarithmic
depth tree and the constant time maximum algorithm
at each node of the tree, the maximum can be computed
in O(log logn) time using O(n log logn) operations.

The accelerated cascading strategy is now used to
turn this fast but nonoptimal work algorithm into a fast
and work optimal algorithm as follows:

● Partition the array A into n/ log logn blocks, such
that each block contains approximately log logn ele-
ments and use the sequential algorithm to compute
the maximum element in each block.

● Use the doubly logarithmic depth tree on the max-
ima computed in the first step.

The resulting algorithm has a parallel time com-
plexity of O(log logn) using only O(n) operations, and
hence is work optimal. Therefore, the maximum can
be computed in O(log logn) parallel time using a work
optimal strategy on the Common CRCW PRAM.

Bibliographic Notes and Further
Reading
The PRAM model was initially introduced through
a number of papers, most notably in the papers by
Fortune and Wyllie [], Goldschlager [], and Ladner
and Fisher []. The Work–Time framework, which ties
Brent’s scheduling principle [] and the PRAM model,
was first observed by Shiloach andVishkin [] and used
extensively in the book by JaJa []. Related data paral-
lel algorithms were introduced by Hillis and Steele [].
Substantial work dealing with the design and analysis of
PRAM algorithms and the theoretical underpinnings of
the model has been carried out in the s and s.
An early survey is the paper by Karp and Ramachan-
dran [], and an extensive coverage of the topic can be
found in JaJa’s book [].

Preconditioners for Sparse Iterative Methods P

P

An intriguing relationship exists between the PRAM
model and the circuits model used in traditional com-
putational complexity.The NC class was formally intro-
duced by Pippenger [] for circuits. An important
related theoretical direction is based on the notion of
P-completness, which tries to shed light on problems
that do not seem to be highly parallelizable under the
PRAM model with polynomial numbers of processors.
Interested reader can consult the reference [] for a
good overview of this topic.

Some recent efforts have been devoted to advocate
the PRAM as a practical parallel computation model,
both in terms of developing prototype hardware that
supports the model and software that enables the writ-
ing of PRAMprograms.The book of Keller, Kessler, and
Traff [] and the recent paper by Wen and Vishkin []
are illustrative of such efforts.

Bibliography
. Brent R () The parallel evaluation of general arithmetic

expressions. JACM ():–
. Fortune S,Wyllie J () Parallelism in random accessmachines.

In: Proceedings of the tenth ACM symposium on theory of com-
puting. San Diego, CA, pp –

. Goldschlager L () A unified approach to models of syn-
chronous parallel machines. In: Proceedings of the tenth
ACM symposium on theory of computing. San Diego, CA,
pp –

. Greenlaw R, Hoover HJ, Ruzzo WL () Limits to Parallel
Computation: P-Completeness Theory. In: Topics in parallel
computation. Oxford University Press, Oxford

. Hillis WD, Steele GL () Data parallel algorithms. Commun
ACM ():–

. JaJa J () An introduction to parallel algorithms. Addison
Wesley Publishing Co., Reading, MA

. Karp RM, Ramachandran V () Parallel algorithms for
shared-memory machines. In: van Leeuwen J (ed) Handbook of
theoretical computer science, North Holland, Amsterdam, The
Netherlands, Chapter , pp –

. Keller J, Kessler C, Traff J () Practical PRAM programming.
Wiley, New York

. Ladner R, Fisher M () Parallel prefix computations. JACM
():–

. Pippenger N () On simultaneous resource bounds. In:
Proceedings twentieth annual IEEE symposium on foundations
of computer science. San Juan, Puerto Rico, pp –

. Shiloach Y, Vishkin U () An O(n log n) parallel max-flow
algorithm. J Algorithms ():–

. Wen X, Vishkin U () FPGA-based prototype of a PRAM-on-
chip processor. In: Proceedings of the ACM conference on
computing frontiers. Ischia, Italy, pp –

Preconditioners for Sparse
Iterative Methods

Anshul Gupta
IBM T.J. Watson Research Center, Yorktown Heights,
NY, USA

Synonyms
Linear equations solvers

Definition
Iterative methods for solving sparse systems of linear
equations are potentially less memory and computa-
tion intensive than direct methods, but often experience
slow convergence or fail to converge at all. The robust-
ness and the speed of Krylov subspace iterative methods
is improved, often dramatically, by preconditioning. Pre-
conditioning is a technique for transforming the orig-
inal system of equations into one with an improved
distribution (clustering) of eigenvalues so that the trans-
formed system can be solved in fewer iterations. A key
step in preconditioning a linear system Ax = b is to find
a nonsingular preconditioner matrix M such that the
inverse ofM is as close to the inverse ofA as possible and
solving a system of the formMz = r is significantly less
expensive than solvingAx = b.The system is then solved
by solving (M−A)x = M−b. This particular example
shows what is known as left preconditioning. There are
two other formulations, known as right preconditioning
and split preconditioning. The basic concept, however, is
the same. Other practical requirements for successful
preconditioning are that the cost of computing M itself
must be low and the memory required to compute and
applyM must be significantly less than that for solving
Ax = b via direct factorization.

Discussion
Preconditioning methods are being actively researched
and have been for a number of years. There are sev-
eral classes of preconditioners; some aremore amenable
to being computed and applied in parallel than others.
This chapter gives an overview of the generation (i.e.,
computing M in parallel) and application (i.e., solving
a system of the form Mz = r in parallel) of the most
commonly used parallel preconditioners.

http://dx.doi.org/10.1007/978-0-387-09766-4_2222

 P Preconditioners for Sparse Iterative Methods

While solving a sparse linear system Ax = b in par-
allel, the matrix A and the vectors x and b are typically
partitioned. The partitions are assigned to tasks that are
executed by individual processes or threads in a paral-
lel processing environment. Both the creation and the
application of a preconditioner in parallel is affected by
the underlying partitioning of the data. A commonly
used effective and natural way of partitioning the data
involves partitioning the graph, of which the coefficient
matrix is an adjacency matrix. Other than partitioning
the problem for parallelization, the graph view of the
matrix plays a useful role in many aspects of solving
sparse linear systems. Figure illustrates a partitioning
of the rows of a matrix among four tasks based on a
four-way partitioning of its graph.

Simple Preconditioners Based on
Stationary Methods
Stationary iterative methods are relatively simple algo-
rithms that startwith an initial guess of the solution (like
all iterative methods) and attempt to converge toward
the actual solution by repeated application of a correc-
tion equation. The correction equation uses the current
residual and a fixed (stationary) operator or matrix,

which is an approximation of the original coefficient
matrix. While stationary iterative methods themselves
have poor convergence properties, the approximating
matrix can serve as a preconditioner for Krylov sub-
space methods.

Jacobi and Block-Jacobi Preconditioners
One of the simplest preconditioners is the point-Jacobi
preconditioner, which is nothing but the diagonal D
of the matrix A of coefficients. Applying the precondi-
tioner in parallel is straightforward. It simply involves
division with the entries (or multiplication with their
inverses) of the part of the diagonal corresponding to
the portion of the matrix that each thread or process is
responsible for. In fact, scaling the coefficient matrix by
the diagonal so that the scaled matrix has all ’s on the
diagonal is equivalent to Jacobi preconditioning.

A block-Jacobi preconditioner is made up of
nonoverlapping square diagonal blocks of the coef-
ficient matrix. These blocks may be of the same or
different sizes. These blocks are usually factored or
inverted (independently, in parallel) during the precon-
ditioner construction phase so that the preconditioner
can be applied inexpensively during the Krylov solver’s
iterations.

P0

P1

P2

P3

P0

P1

P2

P3

P1

P2

P0

P0

P1

P2

P3

P3

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X X

XX

X

X

X

XX

X

X

X

X

X

X

The associated graph and its four partitions

X

X

X

X

X

X

X

X

X

X X

X X

X X

X X X

X X

X X

XX

X X X

X X

X

X

X

10

11

12

13

14

15

1

2

3

4

5

6

7

9

8

1 2 3 4 5 6 7 8 9 10 1211 13 14 15

0

0

P0

P3

P1

P2

4
8

11

15

6

0

12

5

1

2

13

3

10

14

7

9
A 16 � 16 symmetric sparse matrixa b

Preconditioners for Sparse IterativeMethods. Fig. A × sparse matrix with symmetric structure and its associated

graph partitioned among four tasks

Preconditioners for Sparse Iterative Methods P

P

Gauss–Seidel Preconditioner
Let the coefficient matrix A be represented by a three-
way splitting as L +D +U, where L is the strictly lower
triangular part of A,D is a diagonal matrix that consists
of the principal diagonal ofA, andU is the strictly upper
triangular part ofA.TheGauss–Seidel preconditioner is
defined by

M = (D + L)D−(D +U). ()

A system Mz = r is then trivially solved as y =

(D+L)−r, w = Dy, and z = (D + U)−w. Thus, apply-
ing the Gauss–Seidel preconditioner in parallel involves
solving a lower and an upper triangular system in par-
allel. In general, equation i of a lower triangular system
can be solved for the i-th unknown when equations
 . . . i − have been solved. Similarly, equation i of an
N×N upper triangular system can be solved after equa-
tions i + . . .N have been solved. Since the matrices L
and U in our case are sparse, the i-th equation while
computing y = (D + L)−r depends only on those
unknowns that have nonzero coefficients in the i-th row
of L. Similarly, the i-th equation while computing x =

(D+U)−w depends only on those unknowns that have
nonzero coefficients in the i-th row of U. As a result,
while solving both these systems, multiple unknowns
may be computed simultaneously – those that do not
depend on any unsolved unknowns. This is an obvious
source of parallelism. This parallelism can be maxi-
mized by reordering the rows and columns of A (and
hence those of L and U) in a way that maximizes the
number of independent equations at each stage of the
solution process.

Figure illustrates one such ordering, known as red-
black ordering, that can be used to parallelize the appli-
cation of the Gauss–Seidel preconditioner for a matrix
arising from a finite-difference discretization. The ver-
tices of the graph corresponding to the matrix are
assigned colors such that no two neighboring vertices
have the same color. All vertices and the correspond-
ing rows and columns of the matrix are numbered first,
followed by those of the other color. Assignment of
matrix rows to tasks is based on a partitioning of the
graph. With red-black ordering, each triangular solve
is performed in two phases. During the lower trian-
gular solve, first, all red unknowns are computed in
parallel because they are all independent. After this
step, all black unknowns can be computed. The order

is reversed during the upper triangular solve. On a dis-
tributed memory platform, each computation phase is
followed by a communication phase. During a commu-
nication phase, each process communicates the values
of the unknowns corresponding to graph vertices on the
partition boundaries with its neighboring processes.

The idea of red-black ordering can be extended to
general sparse matrices and their graphs, for which
more than two colors may be required to ensure that no
neighboring vertices have the same color.The triangular
solves are then performed in as many parallel phases as
the number of colors. Amulticolored orderingwith four
colors is illustrated in Fig. . For improved cache perfor-
mance, block variants of multicolored ordering can be
constructed by assigning colors to clusters of graph ver-
tices and ensuring that no two clusters that have an edge
connecting them are assigned the same color.

The reader is cautioned that often the convergence
of a Krylov subspace method is sensitive to the order-
ing of matrix rows and columns. While red-black and
multicolor orderings enhance parallelism, they may
result in a deterioration of the convergence rate in some
cases.

SOR Preconditioner
A significant increase in convergence rate may be
obtained by a modification of Eq. as follows, with
 < ω < :

M = (

D
ω
+ L)

ωD−

 − ω
(

D
ω
+U) , ()

although determining an optimal value of ω can be
expensive. The preconditioner specified by Eq. is
known as successive overrelaxtion or SOR precondi-
tioner. Its symmetric formulation, when L = U, is
known as symmetric SOR or SSOR preconditioner.
The issues in parallel application of the SOR pre-
conditioner are identical to those for the Gauss–Seidel
preconditioner.

Preconditioners Based on Incomplete
Factorization
A class of highly effective but conceptually simple
preconditioners is based on incomplete factorization
methods. Recall that iterativemethods are used in appli-
cations where a factorization of the form A = LU is not
feasible because the triangular factor matrices L and U

 P Preconditioners for Sparse Iterative Methods

P1

P0

P2

P3

P2

P0

P3

P2

P3

P0

P1

P3

P2

P1

P0

P1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

10

11

12

13

14

15

1

2

3

4

5

6

7

9

8

10 1211 13 14 15

0

0 6

Corresponding coefficient matrix

X

X

X

X

X

X X X

X

X

X

X

X

X

X

X

X

X

X

P3

512 13

14 15

4

Red points

10

10 11

P0 P1

Black
points

P2

6 7

2 3

8 9

1 2 3 4 5 7 8 9

X X

X X

X X X

X X X

X X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

A 4 � 4 grid with red-black orderinga b

Preconditioners for Sparse IterativeMethods. Fig. The sparse matrix corresponding to a × finite-difference grid

with red-black ordering, partitioned among four parallel tasks

31

4 5 6 7

0 1 2 38 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30

Preconditioners for Sparse IterativeMethods. Fig. Multicolored ordering of a hypothetical finite-element graph using

four colors

are much denser than A, and therefore, too expensive to
compute and store. The idea behind incomplete factor-
ization is to perform a factorization of A along the lines
of a regular Gaussian elimination or Cholesky factoriza-
tion, but dropping a large proportion of nonzero entries
from the triangular factors along the way. Depend-
ing on the underlying factorization method, incom-
plete factorization is referred to as ILU (incomplete
LU) or IC (incomplete Cholesky) factorization. Due to

dropping, the resulting triangular factors ̃L and ̃U are
much sparser than L and U and are computed with
significantly less computing effort. Entries are chosen
for dropping using some criteria that strive to keep
the inverse of M =

̃L̃U as close to the inverse of
A as possible. Devising effective dropping criteria has
been an active area of research. Incomplete factorization
methods can be broadly classified as follows based on
the dropping criteria.

Preconditioners for Sparse Iterative Methods P

P

Static-Pattern Incomplete Factorization
A static-pattern incomplete factorization method is one
in which the locations of the entries that are kept in the
factors and those that are dropped are determined a pri-
ori, based only on the structure of A. The simplest form
of incomplete factorizations are ILU() and IC(), in
which the structure of̃L+̃U is identical to structure ofA;
i.e., only those factor entries whose locations coincide
with those of nonzero entries in the original matrix are
saved. A generalization of static-pattern incomplete fac-
torization is a level-κ incomplete factorization, referred
to as ILU(κ) or IC(κ) factorization in the literature. The
structure of a level-κ incomplete factorization is com-
puted symbolically as follows. Initially, level(i, j) = if
aij ≠ ; otherwise, level(i, j) = ∞. This is followed by an
emulation of factorizationwhere eachnumerical update
step of the form aij = aij − aik .akj is replaced by updat-
ing level(i, j) = min(level(i, j), level(i, k) + level(k, j)
+). During the subsequent numerical factorization
phases, entries in locations with a level greater than κ
are dropped.

In graph terms, upon the completion of symbolic
factorization, level(i, j) is the length of the shortest path
between vertices i and j − . During the computation
and application of an ILU(κ) or IC(κ) preconditioner,
the computation corresponding to a vertex in the graph
requires data associated with vertices that are up to
κ + edges away from it. For example, in the graph
shown in Fig. , data exchange is required among ver-
tex pairs (p, q) and (q, r) for κ = . For κ = , additional
exchanges among vertex pairs such as (s, t) and (u, v)
are required. The figure also illustrates that in a parallel
environment, data associated with κ+ layers of vertices
adjacent to a partition boundary needs to be exchanged
with a neighboring task.

Both the computation per vertex of the graph and
the data exchange overhead per task in each iteration
of a Krylov solver using a level-κ incomplete factor-
ization preconditioner increase as κ increases. On the
other hand, the overall number of iterations typically
declines.The optimumvalue of κ is problemdependent.

Threshold-Based Incomplete Factorization
Although it permits a relatively easy and fast parallel
implementation, static-pattern incomplete factoriza-
tion is robust for a few classes of problems only,
including those with diagonally dominant coefficient

Task boundary

Level 1
interactions

Level 0 interactions

p

q

r

s

t

u

v

Preconditioners for Sparse IterativeMethods. Fig.

Illustration of data exchange across a task boundary when

level and level fill is permitted in incomplete

factorization

matrices. It can, and often does delete fill entries of large
magnitudes that do not happen to be located in the
predetermined locations. The resulting large error can
make the preconditioner ineffective. Threshold-based
incomplete factorization rectifies this problem by drop-
ping entries from the factors as they are computed.
Regardless of their locations, entries greater in magni-
tude than a user-defined threshold τ are kept and the
others are dropped. Typically, a second threshold γ is
also used to limit the factors to a predetermined size.
If ni is the number of nonzeros in row (or column) i of
the coefficient matrix, then at most γni entries (those
with the largest magnitudes) are permitted in row (or
column) i of the incomplete factor.

Successful and scalable parallel implementations
of threshold-based incomplete factorization precondi-
tioning use graph partitioning and graph coloring for
balancing computation andminimizing communication

 P Preconditioners for Sparse Iterative Methods

among parallel tasks.The use of these two techniques in
the context of sparse matrix computations has already
been discussed earlier. Graph partitioning enables par-
allel tasks to independently compute and apply (i.e.,
perform forward and back substitution) the precon-
ditioner independently for matrix rows and columns
corresponding to the internal vertices of the graph.
An internal vertex and all its neighbors belong to the
same partition. Graph coloring permits parallel incom-
plete factorization and forward and back substitution of
matrix rows and columns corresponding to the bound-
ary vertices. In the context of incomplete factorization,
coloring is applied to a graph that includes only the
boundary vertices (i.e., after the internal vertices have
been eliminated) but includes the additional edges (fill-
in) created as a result of the elimination of the internal
vertices. The reason is that the dependencies among the
rows and columns of the matrix are determined by all
the nonzeros in the incomplete factors, both original
and those created as a result of fill-in.

Incomplete Factorization Based on
Inverse-Norm Estimate
This is a relatively new class of incomplete factoriza-
tion preconditioners in which the dropping criterion
takes into account and seeks to minimize the growth
of the norm of the inverse of the factors. These pre-
conditioners have been shown to be more robust and
effective than incomplete factorization with dropping
based solely on the position or absolute value of the
entries. The issues in the parallel generation and appli-
cation of these preconditioners are very similar to those
in threshold-based incomplete factorization – in both
cases, the location of nonzeros in the factors cannot be
determined a priori.

Sparse Approximate Inverse
Preconditioners
While the incomplete factorization preconditioners
seek to compute ̃L and ̃U as approximations of the
actual factors L andU of the coefficient matrix A, sparse
approximate preconditioners seek to computeM− as an
approximation to its inverse A−. The problem of com-
puting M− is framed as the problem of minimizing
the norm ∥I − AM∥ or ∥I − MA∥. To support paral-
lelism, these minimization problems can be reduced to

independent subproblems for computing the rows and
columns ofM−. Note that the actual inverse of a sparse
A is dense, in general. It is therefore imperative that
a number of entries be dropped in order to keep M−

sparse. Just like incomplete factorization, the dropping
can be structural (static), or based on values (dynamic),
or both. In graph terms, while computing the rows or
columns ofM− in parallel, dropping is typically orches-
trated in a way that confines the interaction to pairs
of vertices that are either immediate neighbors or have
short paths connecting them in the graph of A. Graph
partitioning is used to facilitate load balance and mini-
mize interaction among parallel tasks – both during the
computation and the application of the preconditioner.

There are some important advantages to explicitly
using an approximation of A− for preconditioning,
rather than using A’s approximate factors. First, the
preconditioner computation avoids the kind of break-
downs that are possible in incomplete factorization due
to small or zero (or negative, in case of incomplete
Cholesky) diagonals. Secondly, the application of the
preconditioners involves a straightforward multiplica-
tion of a vector with the sparse matrixM−, which may
be simpler and more easily parallelizable than the for-
ward and back substitutions with ̃L and ̃U. However,
just like ̃L and ̃U , M− may be denser than A. There-
fore, the graph ofM− may have many more edges than
the graph of A and multiplying a vector with M− may
require more communication than multiplying a vector
with A.

Multigrid Preconditioners
Multigrid methods are a class of iterative algorithms for
solving partial differential equations (PDEs) efficiently,
often by exploiting more problem-specific information
than a typical Krylov subspace method. Each iteration
of a multigrid solver is a somewhat complex recursive
procedure. In many applications, the effectiveness of
a multigrid algorithm can be substantially enhanced
by using it to precondition a Krylov subspace method
rather than using it as the solver. This is done by replac-
ing the preconditioning step of the Krylov subspace
solver with one iteration of the multigrid algorithm; i.e.,
treating the approximate solution obtained by an iter-
ation of the multigrid algorithm as the solution with
respect to a hypothetical preconditioner matrix.

Preconditioners for Sparse Iterative Methods P

P

Geometric Multigrid
Multigrid methods were originally designed for solv-
ing elliptic PDEs by discretizing them using a hierarchy
of regular grids of varying degrees of fineness over the
same domain. For example, consider a domain D and a
sequence of successively finer discretizations G,G, . . .,
Gm. HereG is the coarsest discretization and Gm is the
finest discretization over which the eventual solution to
the PDE is desired. Figure shows a square domainwith
m = . As the figure shows, the grid points in Gi are a
subset of the grid points in Gi+. A simple formulation
of multigrid would work as follows:

. First, the linear system corresponding to discretiza-
tion G is solved. Since G has a small number of
points, the associated linear system is small and can
be solved inexpensively by an appropriate direct or
iterative method.

. The solution atG is interpolated to obtain an initial
guess of the solution of the system corresponding
to G, which is four times larger. Among various
ways of interpolation (also known as prolongation),

a simple one involves approximating the value of the
solution at a point that is in G but not in G by the
average of the values of its neighbors.

. Starting with the initial guess obtained by interpo-
lation, a few steps of relaxation (also referred to
as smoothing) are used to refine the solution at G.
Often, the relaxation steps are simply a few iterations
of a relatively inexpensive stationarymethod such as
Jacobi or Gauss–Siedel.

. The process of relaxation and interpolation contin-
ues from Gi to Gi+, until i + = m. After the
relaxation at Gm, a first approximation xm to the
solution xm of the linear system Amxm = bm cor-
responding to Gm is obtained. Successively more
accurate approximations xm , xm , . . . are obtained by
xmi+ = xmi + dmi , where dmi is obtained by solving
Admi = rmi ≡ (bm −Axmi).

. The system Admi = rmi in the i-th multigrid iteration
is solved by a recursive process, in which the resid-
ual rmi corresponding to Gm is projected on to Gm−

and so on. The process of projection (also known as
restriction) is the reverse of interpolation. At the end

Discretization G0a Discretization G1

Discretization G2 Discretization G3

b

c d

Preconditioners for Sparse IterativeMethods. Fig. Successively finer discretizations of a domain

 P Preconditioners for Sparse Iterative Methods

of the recursive projection steps, a relatively small
system of equations Adi = ri corresponding to G

is obtained, which is readily solved by an appropriate
iterative or direct method.

. The cycle of interpolation and relaxation is then
repeated to obtain dmi .

. The process is stopped after kmultigrid iterations if
rmk is smaller than a user-defined threshold.

When the multigrid method is used as a precon-
ditioner, then instead of repeating the multigrid cycle
k times to solve the problem, the approximate solu-
tion after one cycle is substituted as the solution with
respect to the preconditioner inside a Krylov subspace
algorithm. Whether multigrid is used as a solver or a
preconditioner, the parallelization process is the same.

The first step in implementing a parallel multigrid
procedure is to partition the domain among the tasks
such that each task is assigned roughly the samenumber
of points of the finest grid. For example, Fig. shows the
partitioning of the domain of Fig. and its discretiza-
tionsG–G into four parallel tasks.Unlike Figs. and ,
the domain in a real problem may be irregular and
the partitioning may not be trivial. The partitioning
of the domain implicitly defines a partitioning of the
grids at all levels of discretization. It is easily seen that

P1

P3

P0

P2

Preconditioners for Sparse IterativeMethods. Fig. The

domain and discretizations G–G of Fig. mapped onto

four parallel tasks

the parallel interpolation, relaxation, and projection at
any grid level require a task to exchange information
corresponding to the grid points along the partition
boundary with its neighboring tasks. All computations
corresponding to each partition’s interior points can be
performed independently.

Algebraic Multigrid
The algebraic multigrid (AMG) method is a general-
ization of the hierarchical approach of the geometric
multigrid method so that it is not dependent on the
availability of the meshes used for discretizing a PDE,
but can be used as a black-box solver for a given lin-
ear system of equations. In the geometric multigrid
method, successively finer meshes are constructed by a
geometric refining of the coarser meshes. On the other
hand, the starting point for AMG is the final system
of equations (analogous to the finest grid), from which
successively smaller (coarser) systems are constructed.
The coefficients of a coarse system in AMG are only
algebraically related to the coefficients of the finer sys-
tems, which is in contrast to the geometric relationship
between successive grids in geometric multigrid.

Just like geometric multigrid, an AMG method can
be used either as a solver or a preconditioner. In either
case, the method involves two phases. In the first set-
up phase, the hierarchy of coarse systems is constructed
from the original linear system and the prolongation
and restriction operators are defined. The second solu-
tion phase consists of the prolongation, relaxation, and
restriction cycles.

Efficient parallelization of AMG is much harder
than that of geometric multigrid. As usual, the basis
of parallelization is a good partitioning of the graph
corresponding to the coefficient matrix and assigning
the partitions to individual tasks. The solution phase,
in principle, can then be parallelized with computa-
tion corresponding to the interior nodes remaining
independent and that involving the nodes at or close to
the boundary involving exchange of data with neigh-
boring partitions. The boundary communication can
be more involved than in the case of geometric multi-
grid because of the irregularity of the graph and the
fact that the sets of interacting boundary nodes and the
interaction pattern can be different for prolongation,
relaxation, and restriction. However, the main difficulty
in parallelizing AMG is in the set-up phase.

Preconditioners for Sparse Iterative Methods P

P

Effective parallelization of the set-up phase is essen-
tial for the overall scalability of parallel AMG because
this phase can account for up to one-fourth of the total
execution time.The process of construction of a coarser
linear system in the classical AMG approach relies on a
notion of the “strength” of dependencies among coef-
ficients. This process is not only sequential in nature,
but also involves a highly nonlocal pattern of interac-
tion between the vertices of the graph of the coefficient
matrix. Therefore, the algorithm must be adapted for
parallelization, which can make the convergence rate
and per iteration cost of AMG dependent on the num-
ber of parallel tasks. Care must be taken to ensure
that parallelization does not adversely affect the conver-
gence rate or the iteration complexity of AMG. Typical
approaches to parallelizing coarsening in AMG rely on
decoupling the partitions, using parallel independent
sets (similar to multicoloring described earlier), or per-
forming subdomain blocking, which starts the coars-
ening at the partition boundaries and then proceeds
to the interior nodes. Note that the coarsening scheme
has an impact on the inter-task interaction during the
prolongation and restriction steps of the solution phase.

WhenparallelizingAMGon large parallelmachines,
the number of parallel tasks may exceed the number
of points in some of the grids at the coarsest levels.
This situation requires special treatment. A commonly
used work-around to this problem is agglomeration,
in which neighboring domains are coalesced leaving
some tasks idle during the processing of the coars-
est levels. Another approach is to stop the coarsening
when the number of coefficients per task becomes too
small, which makes the behavior of the overall algo-
rithm dependent on the number of parallel tasks.

Stochastic Preconditioners
There has been a fair amount of research on algorithms
for approximating the solution of linear systems based
on random sampling of the coefficient matrix or on
random walks in the graph corresponding to it. Most
of these methods have been proven to work on limited
classes of linear systems only, such as symmetric diag-
onally dominant systems. A few practical solvers have
been developed recently by using some of these tech-
niques for preconditioning Krylov subspace methods.
An attractive property of these methods is that they
are usually trivially parallelizable. The quest for scal-
able massively parallel sparse linear solvers may prompt

more active research into statistical techniques for
preconditioning.

Matrix-Free Methods and Physics-Based
Preconditioners
Note that this chapter discusses preconditioners derived
explicitly from the coefficient matrix A of the system
Ax = b that needs to be solved. In some applica-
tions, A is never constructed explicitly to save time
and storage. Instead, it is applied implicitly to com-
pute the matrix-vector products required in the Krylov
subspace solver. In some of these cases, precondition-
ing is also applied implicitly, or the knowledge of the
physics of the application is utilized to construct the
preconditioner, which cannot be derived from the coef-
ficient matrix in a matrix-free method. Such precondi-
tioners are called physics-based preconditioners. Due
to the highly application-specific nature of matrix-free
methods and physics-based preconditioners, these top-
ics are not covered in further detail in this chapter.

Related Entries
�Graph Partitioning
�Linear Algebra Software
�Rapid Elliptic Solvers

Bibliographic Notes
The readers are referred to Saad’s book [] and the
survey by Benzi [] for a fairly comprehensive intro-
duction to various preconditioning techniques. These
do not cover parallel preconditioners and may not
included some of the most recent work in precondition-
ing. However, these are excellent resources for gaining
an insight into the state of the art of preconditioning
circa .

Hysom and Pothen [] and Karypis and Kumar []
cover the fundamentals of scalable parallelization of
incomplete factorization–based preconditioners. The
work of Grote and Huckle [] and Edmond Chow
[,] is the basis of modern parallel sparse approximate
inverse preconditioners. Chow et al.’s survey [] should
give the readers a good overview of parallelization tech-
niques for geometric and algebraic multigrid methods.

Last, but not the least, almost all parallel precondi-
tioning techniques rely on effective parallel heuristics
for two critical combinatorial problems – graph par-
titioning and graph coloring. The readers are referred

http://dx.doi.org/10.1007/978-0-387-09766-4_92
http://dx.doi.org/10.1007/978-0-387-09766-4_150
http://dx.doi.org/10.1007/978-0-387-09766-4_496

 P Prefix

to papers by Karypis and Kumar [,] and Bozdag
et al. [] for an overview of these.

Bibliography
. Benzi M () Preconditioning techniques for large linear

systems: a survey. J Computat Phys ():–
. Bozdag D, Gebremedhin AH, Manne F, Boman EG,

Catalyurek UV () A framework for scalable greedy
coloring on distributed memory parallel computers. J Parallel
Distrib Comput ():–

. Chow E () A priori sparsity patterns for parallel sparse
approximate inverse preconditioners. SIAM J Sci Comput ():
–

. Chow E () Parallel implementation and practical use of
sparse approximate inverse preconditioners with a priori sparsity
patterns. Int J High Perform Comput appl ():–

. Chow E, Falgout RD, Hu JJ, Tuminaro RS, Yang UM ()
A survey of parallelization techniques for multigrid solvers. In
Heroux MA, Raghavan P, Simon HD (eds) Parallel processing
for scientific computing. SIAM, Philadelphia

. Grote MJ, Huckle T () Parallel preconditioning with sparse
approximate inverses. SIAM J Sci Comput (): –

. Hysom D, Pothen A () A scalable parallel algorithm for
incomplete factor preconditioning. SIAM J Sci Comput ():
–

. Karypis G, Kumar V () Parallel threshold-based ILU factor-
ization. Technical report TR -, Department of Computer
Science, University of Minnesota, Minnesota

. Karypis G, Kumar V () ParMETIS: parallel graph partition-
ing and sparse matrix ordering library. Technical report TR -
, Department of Computer Science, University of Minnesota,
Minnesota

. Karypis G, Kumar V () Parallel algorithms for multilevel
graph partitioning and sparse matrix ordering. J Parallel Distrib
Comput :–

. Saad Y () Iterative methods for sparse linear systems,
nd edn. SIAM, Philadelphia

Prefix

�Reduce and Scan
�Scan for Distributed Memory, Message-Passing Sys-
tems

Prefix Reduction

�Reduce and Scan
�Scan for Distributed Memory, Message-Passing
Systems

ProblemArchitectures

�Computational sciences

Process Algebras

Rocco De Nicola
Universita’ di Firenze, Firenze, Italy

Synonyms
Process calculi; Process description languages

Definition
ProcessAlgebras aremathematically rigorous languages
with well-defined semantics that permit describing and
verifying properties of concurrent communicating sys-
tems.They can be seen as models of processes, regarded
as agents that act and interact continuously with other
similar agents and with their common environment.
The agents may be real-world objects (even people),
or they may be artifacts, embodied perhaps in com-
puter hardware or software systems. Many different
approaches (operational, denotational, algebraic) are
taken for describing the meaning of processes. How-
ever, the operational approach is the reference one.
By relying on the so-called Structural Operational
Semantics (SOS), labeled transition systems are built
and composed by using the different operators of the
many different process algebras. Behavioral equiva-
lences are used to abstract from unwanted details and
identify those systems that react similarly to external
experiments.

Introduction
The goal of software verification is to assure that devel-
oped programs fully satisfy all the expected require-
ments. Providing a formal semantics of programming
languages is an essential step toward program verifica-
tion.This activity has receivedmuch attention in the last
 years. At the beginning the interest was mainly on
sequential programs, then it turned also on concurrent
program that can lead to subtle errors in very critical
activities. Indeed, most computing systems today are
concurrent and interactive.

Classically, the semantics of a sequential pro-
gram has been defined as a function specifying the

http://dx.doi.org/10.1007/978-0-387-09766-4_120
http://dx.doi.org/10.1007/978-0-387-09766-4_518
http://dx.doi.org/10.1007/978-0-387-09766-4_518
http://dx.doi.org/10.1007/978-0-387-09766-4_120
http://dx.doi.org/10.1007/978-0-387-09766-4_518
http://dx.doi.org/10.1007/978-0-387-09766-4_518
http://dx.doi.org/10.1007/978-0-387-09766-4_274
http://dx.doi.org/10.1007/978-0-387-09766-4_2424
http://dx.doi.org/10.1007/978-0-387-09766-4_2425

Process Algebras P

P

induced input–output transformations. This setting
becomes, however, much more complex when concur-
rent programs are considered because they exhibit non-
deterministic behaviors. Nondeterminism arises from
programs interaction and cannot be avoided. At least,
not without sacrificing expressive power. Failures do
matter, and choosing the wrong branch might result
in an “undesirable situation.” Backtracking is usually
not applicable because the control might be distributed.
Controlling nondeterminism is very important. In
sequential programming, it is just a matter of efficiency,
in concurrent programming it is a matter of avoiding
getting stuck in a wrong situation.

The approach based on process algebras has been
very successful in providing formal semantics of con-
current systems and proving their properties. The suc-
cess is witnessed by the Turing Award given to two of
their pioneers and founding fathers: Tony Hoare and
Robin Milner. Process algebras are mathematical mod-
els of processes, regarded as agents that act and inter-
act continuously with other similar agents and with
their common environment. Process algebras provide a
number of constructors for system descriptions and are
equipped with an operational semantics that describes
systems evolution in terms of labeled transitions. Mod-
els and semantics are built by taking a compositional
approach that permits describing the “meaning” of
composite systems in terms of the meaning of their
components.

Moreover, process algebras often come equipped
with observational mechanisms that permit identifying
(through behavioral equivalences) those systems that
cannot be taken apart by external observations (experi-
ments or tests). In some cases, process algebras have also
algebraic characterizations in terms of equational axiom
systems that exactly capture the relevant identifications
induced by the behavioral operational semantics.

The basic component of a process algebra is its
syntax as determined by the well-formed combination
of operators and more elementary terms. The syntax
of a process algebra is the set of rules that define the
combinations of symbols that are considered to be cor-
rectly structured programs in that language. There are
many approaches to providing a rigorous mathematical
understanding of the semantics of syntactically correct
process terms. The main ones are those also used for
describing the semantics of sequential systems, namely,
operational, denotational, and algebraic semantics.

An operational semantics models a program as a
labeled transition system (LTS) that consists of a set of
states, a set of transition labels and a transition rela-
tion. The states of the transition system are just pro-
cess algebra terms, while the labels of the transitions
between states represent the actions or the interactions
that are possible from a given state and the state that is
reached after the action is performed bymeans of visible
and invisible actions. The operational semantics, as the
name suggests, is relatively close to an abstractmachine-
based view of computation and might be considered as
a mathematical formalization of some implementation
strategy.

A denotational semantics maps a language to some
abstract model such that the meaning/denotation (in
the model) of any composite program is determinable
directly from the meanings/denotations of its subcom-
ponents. Usually, denotational semantics attempt to
distance themselves from any specific implementation
strategy, describing the language at a level intended to
capture the “essential meaning” of a term.

An algebraic semantics is defined by a set of algebraic
laws which implicitly capture the intended semantics
of the constructs of the language under consideration.
Instead of being derived theorems (as they would be
in a denotational semantics or operational semantics),
the laws are the basic axioms of an equational system,
and process equivalence is defined in terms of what
equalities can be proved using them. In some ways it
is reasonable to regard an algebraic semantics as the
most abstract kind of description of the semantics of a
language.

There has been a huge amount of research work on
process algebras carried out during the last years
that started with the introduction of CCS [,], CSP
[], and ACP []. In spite of the many conceptual
similarities, these process algebras have been devel-
oped starting from quite different viewpoints and have
given rise to different approaches (for an overview
see, e.g., []).

CCS takes the operational viewpoint as its corner-
stone and abstracts from unwanted details introduced
by the operational description by taking advantage
of behavioral equivalences that allow one to identify
those systems that are indistinguishable according to
some observation criteria. The meaning of a CCS term
is a labeled transition system factored by a notion
of observational equivalence. CSP originated as the

 P Process Algebras

theoretical version of a practical language for concur-
rency and is still based on an operational intuition
which, however, is interpreted w.r.t. amore abstract the-
ory of decorated traces that model how systems react to
external stimuli. The meaning of a CSP term is the set
of possible runs enriched with information about the
interactions that could be refused at intermediate steps
of each run. ACP started from a completely different
viewpoint and provided a purely algebraic view of con-
current systems: processes are the solutions of systems
of equations (axioms) over the signature of the con-
sidered algebra. Operational semantics and behavioral
equivalences are seen as possible models over which the
algebra can be defined and the axioms can be applied.
The meaning of a term is given via a predefined set of
equations and is the collection of terms that are provably
equal to it.

At first, the different algebras have been devel-
oped independently. Slowly, however, their close rela-
tionships have been understood and appreciated, and
now a general theory can be provided and the differ-
ent formalisms (CCS, CSP, ACP, etc.) can be seen just
as instances of the general approach. In this general
approach, the main ingredients of a specific process
algebra are:

. A minimal set of carefully chosen operators captur-
ing the relevant aspect of systems behavior and the
way systems are composed in building process terms

. A transition system associated with each term via
structural operational semantics to describe the evo-
lution of all processes that can be built from the
operators

. An equivalence notion that allow one to abstract
from irrelevant details of systems descriptions

Verification of concurrent system within the process
algebraic approach is carried out either by resorting
to behavioral equivalences for proving conformance of
processes to specifications or by checking that processes
enjoy properties described by some temporal logic for-
mulae [,]. In the former case, two descriptions of a
given system, one very detailed and close to the actual
concurrent implementation, the other more abstract
(describing the sequences or trees of relevant actions
the system has to perform) are provided and tested for
equivalence. In the latter case, concurrent systems are
specified as process terms, while properties are specified

as temporal logic formulae, and model checking is used
to determine whether the transition systems associated
with terms enjoy the property specified by the formulae.

In the next section, many of the different operators
used in process algebras will be described. By relying
on the so-called structural operational semantic (SOS)
approach [], it will be shown how labeled transition
systems can be built and composed by using the differ-
ent operators. Afterward,many behavioral equivalences
will be introduced together with a discussion on the
induced identifications and distinctions. Next, the three
most popular process algebras will be described; for
each of them a different approach (operational, deno-
tational, algebraic) will be used. It will, however, be
argued that in all cases, the operational semantics plays
a central rôle.

Process Operators and Operational
Semantics
To define a process calculus, one starts with a set of
uninterpreted action names (that might represent com-
munication channels, synchronization actions, etc.) and
with a set of basic processes that together with the
actions are the building blocks for forming newer
processes from existing ones. The operators are used
for describing sequential, nondeterministic, or parallel
compositions of processes, for abstracting from internal
details of process behaviors and, finally, for defining
infinite behaviors starting from finite presentations.
The operational semantics of the different operators is
inductively specified through SOS rules: for each oper-
ator, there is a set of rules describing the behavior of a
system in terms of the behaviors of its components. As
a result, each process term is seen as a component that
can interact with other components or with the external
environment.

In the rest of this section, most of the operators
that have been used in some of the best-known pro-
cess algebras will be presented with the aim of showing
the wealth of choices that one has when deciding how
to describe a concurrent system or even when defin-
ing one’s “personal” process algebra. Anew calculus can,
indeed, be obtained by a careful selection of the opera-
tors while taking into account their interrelationships
with respect to the chosen abstract view of pro-
cess and thus of the behavioral equivalence one has
in mind.

Process Algebras P

P

A set of operators is the basis for building process
terms. A labeled transition system (LTS) is associated to
each term by relying on structural induction by provid-
ing specific rules in for each operator. Formally speak-
ing, an LTS is a set of nodes (corresponding to process
terms) and (for each action a in some set) a relation
a

:→ between nodes, corresponding to processes tran-
sitions. Often LTSs have a distinguished node n from
which computations start; when defining the semantics
of a process term, the state corresponding to that term
is considered as the initial state. To associate an LTS to
a process term, inference systems are used, where the
collection of transitions is specified by means of a set of
syntax-driven inference rules.

Inference systems: An inference system is a set of infer-
ence rule of the form:

p, . . . ,pn
q

where p, . . . ,pn are the premises and q is the conclu-
sion. Each rule is interpreted as an implication: if all
premises are true, then also the conclusion is true.
Sometimes, rules are decorated with predicates and/or
negative premises that specify when the rule is actually
applicable.

A rule with an empty set of premises is called axiom
and written as:

q

Transition rules: In the case of an operational semantics,
the premises and the conclusions will be triples of the
form (P, α,Q), often rendered as P α

:→Q, and thus the
rules for each operator op of the process algebras will be
of the following form, where {i,⋯, im} ⊆ {,⋯,n} and
E′i = Ei when i /∈ {i, . . . , im}:

Ei
α
:→E′i ⋯ Eim

αm
:→E′im

op(E , . . . ,En)
α

:→C[E′ , . . . ,E′n]

In the rule above, the target term C[] indicates the new
context in which the new subterms will be operating
after the reduction and α represents the action per-
formed by the composite systemwhen some of the com-
ponents perform actions α, . . . , αm . Sometimes, these
rules are enriched with side conditions that determine
their applicability. By imposing syntactic constraints on
the form of the allowed rules, rule formats are obtained

that can be used to establish results that hold for all pro-
cess calculi whose transition rules respect the specific
rule format.

A small number of SOS inference rules is sufficient
to associate an LTS to each term of any process alge-
bra. The set of rules is fixed once and for all. Given any
process, the rules are used to derive its transitions. The
transition relation of the LTS is the least one satisfying
the inference rules. It is worth remarking that struc-
tural induction allows one to define the LTS of complex
systems in terms of the behavior of their components.

Basic actions: An elementary action of a system rep-
resents the atomic (non-interruptible) abstract step of
a computation that is performed by a system to move
from one state to the next. Actions represent various
activities of concurrent systems, like sending or receiv-
ing amessage, updating amemory cell, and synchroniz-
ing with other processes. In process algebras two main
types of atomic actions are considered, namely, visible
or external actions and invisible or internal actions. In
the sequel, visible actions will be denoted by Latin let-
ters a,b, c, . . . , invisible actions will be denoted by the
Greek letter τ. Generic actions will be denoted by μ or
other, possibly indexed, Greek letters. In the following,
A will be used to denote the set of visible actions while
Aτ will denote the collection of generic actions.

Basic processes: Process algebras generally also include
a null process (variously denoted as nil, , stop) which
has no transition. It is inactive, and its sole purpose is to
act as the inductive anchor on top of which more inter-
esting processes can be generated. The semantics of this
process is characterized by the fact that there is no rule
to define its transition: it has no transition.

Other basic processes are also used: stop denotes
a deadlocked state,

√

denotes, instead, successful
termination.

√

√

:→ stop
Sometimes, uninterpreted actions μ are considered

basic processes themselves:

μ
μ

:→

√

Sequential composition: Operators for sequential com-
position are used to temporally order processes exe-
cution and interaction. There are two main operators

 P Process Algebras

for this purpose. The first one is action prefixing, μ.-,
that denotes a process that executes action μ and then
behaves like the following process.

μ.E
μ

:→E

The alternative form of sequential composition is
obtained by explicitly requiring process sequencing , - ; -,
that requires that the first operand process be fully
executed before the second one.

E
μ

:→E′

E;F
μ

:→E′;F
(μ ≠

√

)

E
√

:→E′ F
μ

:→F′

E;F
μ

:→F′

Nondeterministic composition: The operators for non-
deterministic choice are used to express alternatives
among possible behaviors. This choice can be left to the
environment (external choice) or performed by the pro-
cess (internal choice) or can bemainly external, but leav-
ing the possibility to the process to perform an internal
move to prevent someof the choices by the environment
(mixed choice).

The rules for mixed choice are the ones below.
They offer both visible and invisible actions to the
environment; however, only the former kind of actions
can be actually controlled.

E
μ

:→E′

E + F
μ

:→E′
F

μ
:→F′

E + F
μ

:→F′

Therules for internal choice are very simple, they are
just two axioms stating that a process E⊕ F can silently
evolve into one of its subcomponents.

E⊕ F τ
:→E E ⊕ F τ

:→F

The rules for external choice are more articulate.
This operator behaves exactly like the mixed choice in
case one of the components executes a visible action;
however, it does not discard any alternative upon
execution of an invisible action.

E α
:→E′

E ◻ F α
:→E′

(α ≠ τ)
F α
:→F′

E ◻ F α
:→F′

(α ≠ τ)

E τ
:→E′

E ◻ F τ
:→E′ ◻ F

F τ
:→F′

E ◻ F τ
:→E ◻ F′

Parallel composition: Parallel composition of two pro-
cesses, say E and F, is the key primitive distinguishing

process algebras from sequential models of computa-
tion. Parallel composition allows computation in E and
F to proceed simultaneously and independently. But it
also allows interaction, that is synchronization and flow
of information between E and F on a shared channel.
Channels may be synchronous or asynchronous. In the
case of synchronous channels, the agent sending a mes-
sage waits until another agent has received the message.
Asynchronous channels do not force the sender to wait.
Here, only synchronous channels will be considered.

The simplest operator for parallel composition is
interleaving, - ∣∣∣ -, that aims at modeling the fact that
two parallel processes can progress by alternating at any
rate the execution of their actions.

E
μ

:→E′

E ∣∣∣F
μ

:→E′ ∣∣∣F

F
μ

:→F′

E ∣∣∣F
μ

:→E ∣∣∣F′

Another parallel operator is binary parallel com-
position, - ∣ -, that not only models the interleaved
execution of the actions of two parallel processes, but
also the possibility that the two partners synchronize
whenever they are willing to perform complementary
visible actions (below represented as a and a). In this
case, the visible outcome is a τ-action that cannot be
seen by other processes that are acting in parallel with
the two communication partners. This is the parallel
composition used in CCS.

E
μ

:→E′

E∣F
μ

:→E′∣F

F
μ

:→F′

E∣F
μ

:→E∣F′

E α
:→E′ F α

:→F′

E∣F τ
:→E′∣F′

(α ≠ τ)

Instead of binary synchronization, some process
algebras, like CSP, make use of operators that permit
multiparty synchronization, - ∣[L]∣ -. Some actions, those
in L, are deemed to be synchronization actions and
can be performed by a process only if all its parallel
components can execute those actions at the same time.

E
μ

:→E′

E ∣[L]∣ F
μ

:→E′ ∣[L]∣ F
(μ /∈ L)

F
μ

:→F′

E ∣[L]∣ F
μ

:→E ∣[L]∣ F′
(μ /∈ L)

Process Algebras P

P

E a
:→E′ F a

:→F′

E ∣[L]∣ F a
:→E′ ∣[L]∣ F′

(a ∈ L)

It is worth noting that the result of a synchronization,
in this case, yields a visible action, and that by setting
the synchronization alphabet to / the multiparty syn-
chronization operator ∣/∣ can be used to obtain pure
interleaving, ∣∣∣.

A more general composition is the merge operator,
− ∥ − that is used in ACP. It permits executing two
process terms in parallel (thus freely interleaving their
actions), but also allows for communication between
its process arguments according to a communication
function γ : A × A:→A, that, for each pair of atomic
actions a and b, produces the outcome of their com-
munication γ(a,b), a partial function that states which
actions can be synchronized and the outcome of such a
synchronization.

E
μ

:→E′

E ∥ F
μ

:→E′ ∥ F

F
μ

:→F′

E ∥ F
μ

:→E ∥ F′

E a
:→E′ F b

:→F′

E ∥ F
γ(a,b)
:→ E′ ∥ F′

ACPhas also another operator called leftmerge, -� -,
that is similar to ∥ but requires that the first process to
perform an (independent) action be the left operand.

E
μ

:→E′

E�F
μ

:→E′ ∥ F

The ACP communication merge, - ∣c -, requires
instead that the first action be a synchronization action.

E a
:→E′ F b

:→F′

E∣cF
γ(a,b)
:→ E′ ∥ F′

Disruption: An operator that is between parallel and
nondeterministic composition is the so-called disabling
operator, −[> −, that permits interrupting the evolution
of a process. Intuitively, E [> F behaves like E, but can
be interrupted at any time by F, once E terminates F is
discarded.

E
μ

:→E′

E [> F
μ

:→E′ [> F
(μ ≠

√

)

E
√

:→E′

E [> F τ
:→E′

F
μ

:→F′

E [> F
μ

:→F′

Value passing: The above parallel combinators can be
generalized tomodel not only synchronization, but also
exchange of values. As an example, below, the general-
ization of binary communication is presented.

There are complementary rules for sending and
receiving values. The first axiom models a process will-
ing to input a value and to base its future evolutions on
it. The second axiom models a process that evaluates
an expression (via the valuation function val(e)) and
outputs the result.

a(x).E
a(v)
:→E{v/x}

(v is a value)
a e.E

a val(e)
::::→ E

The next rule, instead, models synchronization
between processes. If two processes, one willing to out-
put and the other willing to input, are running in paral-
lel, a synchronization can take place and the perceived
action will just be a τ-action.

E a v
:→E′ F

a(v)
:→F′

E∣F τ
:→E′∣F′

E
a(v)
:→E′ F a v

:→F′

E∣F τ
:→E′∣F′

In case the exchanged values are channels, this approach
can be used to provide also models for mobile systems.

Abstraction: Processes do not limit the number of con-
nections that can be made at a given interaction point.
But interaction points allow interference. For the syn-
thesis of compact, minimal, and compositional systems,
the ability to restrict interference is crucial.

The hiding operator, −/L, hides (i.e., transforms into
τ-actions) all actions in L to forbid synchronization on
them. However, it allows the system to perform the
transitions labeled by hidden actions.

E
μ

:→E′

E/L
μ

:→E′/L
(μ /∈ L)

E
μ

:→E′

E/L τ
:→E′/L

(μ ∈ L)

The restriction operator, −/L is a unary operator that
restricts the set of visible actions a process can perform.
Thus, process E/L can perform only actions not in L.
Obviously, invisible actions cannot be restricted.

E
μ

:→E′

E /L
μ

:→E′ /L
(μ , μ /∈ L)

The operator [f], where f is a relabeling function
from A to A, can be used to rename some of the actions

 P Process Algebras

a process can perform to make it compatible with new
environments.

E a
:→E′

E[f]
f (a)
:→ E′[f]

Modeling infinite behaviors: The operations presented
so far describe only finite interaction and are conse-
quently insufficient for providing full computational
power, in the sense of being able to model all com-
putable functions. In order to reach full power, one cer-
tainly needs operators for modeling non-terminating
behavior. Many operators have been introduced that
allow finite descriptions of infinite behavior. However, it
is important to remark that most of them do not fit the
formats used so far and cannot be defined by structural
induction.

One of the most used is the construct rec x. -, well-
known from the sequential world. If E is a process that
contains the variable x, then rec x. E represents the pro-
cess that behaves like E once all occurrences of x in E are
replaced by rec x. E. In the rule below, that models the
operational behavior of a recursively defined process,
the term E[f /x] denotes exactly the above mentioned
substitutions.

E[rec x. E/x]
μ

:→E′

rec x. E
μ

:→E′

Thenotation rec x.E for recursion sometimes makes
the process expressions more difficult to parse and less
pleasant to read. A suitable alternative is to allow for the
(recursive) definition of some fixed set of constants, that
can then be used as some sort of procedure calls inside
processes. Assuming the existence of an environment
(a set of process definitions)

Γ = {X ≜ E ,X ≜ E, . . . ,Xn ≜ En}

the operational semantics rule for a process variable
becomes:

X ≜ E ∈ Γ E
μ

:→E′

X
μ

:→E′
Another operator used to describe infinite behaviors

is the so-called bang operator, ! −, or replication. Intu-
itively, !E represents an unlimited number of instances
of E running in parallel. Thus, its semantics is rendered
by the following inference rule:

E∣!E
μ

:→E′

!E
μ

:→E′

Three Process Algebras: CCS,
CSP and ACP
A process algebra consists of a set of terms, an oper-
ational semantics associating LTS to terms, and an
equivalence relation equating terms exhibiting “similar”
behavior. The operators for most process algebras are
those described above. The equivalences can be traces,
testing, bisimulation equivalences, or variants thereof,
possibly ignoring invisible actions.

Below, three of the most popular process algebras
are presented. First the syntax, i.e., the selected oper-
ators, will be introduced, then their semantics will be
provided by following the three different approaches
outlined before: operational (for CCS), denotational
(for CSP), and algebraic (for ACP). For CSP and ACP,
the relationships between the proposed semantics and
the operational one, to be used as a yardstick, will be
mentioned. To denote the LTS associated to a generic
CSP or ACP process p via the operational semantics, the
notation LTS(p) will be used.

Reference will be made to specific behavioral equiv-
alences over LTSs that consider as equivalent those sys-
tems that rely on different standing about which states
of an LTS have to be considered equivalent. Three main
criteria have been used to decide when two systems can
be considered equivalent:

. The two systems perform the same sequences of
actions.

. The two systems perform the same sequences of
actions and after each sequence are ready to accept
the same sets of actions.

. The two systems perform the same sequences of
actions and after each sequence exhibit, recursively,
the same behavior.

These three different criteria lead to three groups
of equivalences that are known as traces equiva-
lences, decorated-traces equivalences (testing and fail-
ure equivalence), and bisimulation-based equivalences
(strong bisimulation, weak bisimulation, branching
bisimulation).

CCS: Calculus of Communicating Systems
The Calculus of Communicating Systems (CCS) is a
process algebra introduced by Robin Milner around
. Its actions model indivisible communications

Process Algebras P

P

between exactly two participants, and the set of opera-
tors includes primitives for describing parallel composi-
tion, choice between actions, and scope restriction. The
basic semantics is operational and permits associating
an LTS to each CCS term.

The set A of basic actions used in CCS consists of a
set Λ, of labels and of a set Λ of complementary labels.
Aτ denotesA∪{τ}.The syntax of CCS, used to generate
all terms of the algebra, is the following:

P ::= nil ∣ x ∣ μ.P ∣ P/L ∣ P[f] ∣ P+P ∣ P∣P ∣ rec x. P

where μ ∈ Aτ ; L ⊆ Λ; f : Aτ → Aτ ; f (ᾱ) = f (α) and
f (τ) = τ. The above operators are taken from those
presented in Section :

– The atomic process (nil)
– Action prefixing (μ.P)
– Mixed choice (+)
– Binary parallel composition (∣)
– Restriction (P/L)
– Relabeling (P[f])
– Recursive definitions (rec x. E)

The operational semantics of the above operators
is exactly the same as the one of those operators with
the same name described before, and it is thus not
repeated here. CCS has been studied with bisimulation
and testing semantics that are used to abstract from
unnecessary details of the LTS associated to a term. Also
denotational and axiomatic semantics for the calculus
have been extensively studied. Adenotational semantics
in terms of so-called acceptance trees has been proved
to be in full agreement with the operational semantics
abstracted according to testing equivalences. Different
algebraic semantics have been provided that are based
on sound and complete axiomatizations of bisimilarity,
testing equivalence, weak bisimilarity, and branching
bisimilarity.

CSP: A Theory of Communicating
Sequential Processes
Thefirst denotational semantics proposed for CSP asso-
ciates to each term just the set of the sequences of
actions the term could induce. However, while suitable
to model the sequences of interactions a process could
have with its environment, this semantics is unable to
model situations that could lead to deadlock. A new
approach, basically denotational but with a strong oper-
ational intuition, was proposed next. In this approach,

the semantics is given by associating a so-called refusal
set to each process. A refusal set is a set of failure pairs
⟨s,F⟩, where s is a finite sequence of visible actions in
which the process might have been engaged, and F is
a set of action the process is able to reject on the next
step. The semantics of the various operators is defined
by describing the transformation they induce on the
domain of refusal sets.

The meaning of processes is then obtained by pos-
tulating that two processes are equivalent if and only
if they cannot be distinguished when their behaviors
are observed and their reactions to a finite number
of alternative possible synchronization is considered.
Indeed, the association of processes to refusal sets is not
one-to-one; the same refusal set can be associated to
more than one process. A congruence is then obtained
that equates processes with the same denotation.

The set of actions is a finite set of labels, denoted
by Λ ∪ {τ} . There is no notion of complementary
action. The syntax of CSP is reported below, and for the
sake of simplicity, only finite terms (no recursion) are
considered:

E ::= Stop ∣skip ∣a → E ∣E ⊓E ∣E ◻ E ∣E ∣[L]∣ E ∣E/a

– Two basic processes: successful termination (skip),
null process (Stop)

– Action prefixing here denoted by a→ E
– Internal choice (⊕) here denoted by ⊓ and external

choice (◻)
– Parallel composition with synchronization on a

fixed alphabet (∣[L]∣, L ⊆ Λ)
– Hiding (/a, an instance of the more general operator

/L with L ⊆ Λ)

Parallel combinators representing pure interleaving and
parallelism with synchronization on the full alphabet
can be obtained by setting the synchronization alphabet
to / or to Λ, respectively.

The denotational semantics of CSP compositionally
associates a set of failure pairs to each CSP term gen-
erated by the above syntax. A function F[[−]] maps
each CSP process (say P) to set of pairs (s,F), where s
is one of the sequences of actions P may perform, and
F represents the set of actions that P can refuse after
performing s. As anticipated, there is a strong corre-
spondence between the denotational semantics of CSP
and the operational semantics that one could define by

 P Process Algebras

relying on the one presented in the previous section for
the specific operators.

– F[[P]] = F[[Q]] if and only if LTS(P)≃test LTS(Q).

ACP: An Algebra of Communicating
Processes
The methodological concern of ACP was to present
“first a system of axioms for communicating pro-
cesses … and next study its models” ([], p.). The
equations are just a means to realize the real desidera-
tum of abstract algebra, which is to abstract from the
nature of the objects under consideration. In the same
way as the mathematical theory of rings is about arith-
metic without relying on a mathematical definition of
number, ACP deals with process theory without relying
on a mathematical definition of process.

In ACP, a process algebra is any mathematical struc-
ture, consisting of a set of objects and a set of opera-
tors, like, e.g., sequential, nondeterministic, or parallel
composition, that enjoys a specific set of properties as
specified by given axioms.

The set of actions Λτ consists of a finite set of
labels Λ ∪ {τ} . There is no notion of complementary
action. The syntax of ACP is reported below, and for the
sake of simplicity, only finite terms (no recursion) are
considered:

P ::=
√

∣δ∣a∣P + P∣P⋅P ∣P∥P ∣P�P ∣P∣cP ∣∂H(p)

– Three basic processes: successful termination (
√

),
null process, here denoted by δ, and atomic
action (a)

– Mixed choice
– Sequential composition (;), here denoted by ⋅
– Hiding (/H with H ⊆ Λ), here denoted by ∂H(−)
– Three parallel combinators: merge (∥), leftmerge (�)

and communication merge (∣c)

The system of axioms of ACP is presented as a set
of formal equations, and some of the operators, e.g., left
merge (�) have been introduced exactly for providing
finite equational presentations. Below, the axioms rel-
ative to the terms generated by the above syntax are
presented. Within the axioms, x and y denote generic
ACP processes.

(A) x + y = y + x (A) (x + y) + z = x + (y + z)

(A) x + x = x (A) (x + y)⋅z = x⋅z + y⋅z

(A) (x⋅y)⋅z = x⋅(y⋅z) (A) x + δ = x

(A) δ⋅x = δ
The set of axioms considered above induces an

equality relation, denoted by =. A model for an axiom-
atization is a pair ⟨M, ϕ⟩, where M is a set and ϕ is
a function (the unique isomorphism) that associates
elements ofM toACP terms.This leads to the following
definitions:

. A set of equations is sound for ⟨M, ϕ⟩ if s = t implies
ϕ(s) = ϕ(t).

. A set of equations is complete for ⟨M, ϕ⟩ if ϕ(s) =
ϕ(t) implies s = t.

Any model of the axioms seen above is an ACP
process algebra. The simplest model for ACP has as
elements the equivalence classes induced by =, i.e.,
all ACP terms obtained starting from atomic actions,
sequentialization and nondeterministic composition
and mapping each term t to its equivalence class [[t]]
as determined by =. This model is correct and complete
and is known as the initialmodel for the axiomatization.

Different, more complex, models can be obtained by
first using the SOS rules to give the operational seman-
tics of the operators, building an LTS in correspondence
of each ACP term and then using bisimulation to iden-
tify some of them. This construction leads to estab-
lishing a strong correspondence between the axiomatic
and the operational semantics of ACP. Indeed, if we
consider the language with the null process, sequential
composition and mixed choice we have:

– Equality = as induced by (A)-(A) is sound relative
to bisimilarity ∼, i.e., if p = q then LTS(p) ∼ LTS(q);

– Equality = as induced by (A)-(A) is complete rel-
ative to bisimilarity ∼, i.e., if LTS(p) ∼ LTS(q) then
p = q.

Similar results can be obtainedwhennew axioms are
added and weak bisimilarity or branching bisimilarity
are used to factorize the LTSs.

Process Algebras P

P

Future Directions
The theory of process algebra is by now well developed.
The reader is referred to [] to learn about its develop-
ments since its inception in the late s to the early
. Currently, in parallel with the exploitation of the
developed theories in classic areas such as protocol ver-
ification and in new ones such as biological systems,
there is much work going on concerning:

– Extensions to modelmobile, network aware systems
– Theories for assessing quantitative properties
– Techniques for controlling state explosion

In parallel with this, much attention is dedicated to
the development of software tools to support specifi-
cation and verification of very large systems and to
the development of techniques that permit controlling
the state explosion phenomenon that arise as soon as
one considers the possible configurations resulting from
the interleaved execution of (even a small number of)
processes.
Mobility and network awareness: Much of the ongo-
ing work is relative to the definition of theories and
formalisms to naturally deal with richer classes of sys-
tems, like, e.g., mobile systems and network aware
applications. The π-calculus [] the successor of CCS,
developed by Milner and coworkers with the aim
of describing concurrent systems whose configuration
may change during the computation has attracted much
attention. It has laid the basis for research on process
networks whose processes are mobile and the configu-
ration of communication links is dynamic. It has also
lead to the development of other calculi to support net-
work aware programming: Ambient [], Distributed π
[], Join [], Spi [], Klaim [], etc.There is still no uni-
fying theory and the name process calculi is preferred to
process algebras because the algebraic theories are not
yet well assessed. Richer theories than LTS (Bi-graph
[], Tiles [], etc.) have been developed and are still
under development to deal with the new dimensions
considered with the new formalisms.

Quantitative extensions: Formalisms are being enriched
to consider not only qualitative properties, like cor-
rectness, liveness, or safety, but also properties related
to performance and quality of service. There has been
much research to extend process algebra to deal with
a quantitative notion of time and probabilities and

integrated theories have been considered. Actions are
enriched with information about their duration, and
formalisms extended in this way are used to compare
systems relatively to their speed. For a comprehensive
description of this approach, the reader is referred to
[]. Extensions have been considered also to deal with
systems that in their behavior depend on continuously
changing variables other than time (hybrid systems). In
this case, systems descriptions involve differential alge-
braic equations, and connections with dynamic con-
trol theory are very important. Finally, again with the
aim of capturing quantitative properties of systems and
of combining functional verification with performance
analysis, there have been extensions to enrich actions
with rates representing the frequency of specific events
and the new theories are being (successfully) used to
reason about system performance and system quality.

Tools: To deal with non-toy examples and apply the
theory of process algebras to the specification and ver-
ification of real systems, tool support is essential. In
the development of tools, LTSs play a central role. Pro-
cess algebra terms are used to obtain LTSs by exploit-
ing operational semantics and these structures are
then minimized, tested for equivalence, model checked
against formulae of temporal logics, etc. One of the
most known tools for process algebras is CADP (Con-
struction and Analysis of Distributed Processes) []:
together with minimizers and equivalence and model
checkers, it offers many others functionalities rang-
ing from step-by-step simulation to massively paral-
lel model checking. CADP has been employed in an
impressive number of industrial projects. CWB (Con-
currency Workbench) [] and CWB-NC (Concur-
rency Workbench New Century) [] are other tools
that are centered on CCS, bisimulation equivalence,
andmodel checking. FDR (Failures/Divergence Refine-
ment) [] is a commercial tool for CSP that has played
a major role in driving the evolution of CSP from a
blackboard notation to a concrete language. It allows
the checking of a wide range of correctness condi-
tions, including deadlock and livelock freedom as well
as general safety and liveness properties. TAPAs (Tool
for the Analysis of Process Algebras) [] is a recently
developed software to support teaching of the theory
of process algebras; it maintains a consistent double
representation as term and as graph of each system.

 P Process Algebras

Moreover, it offers tools for the verification of many
behavioral equivalences, possibly with counterexam-
ples, minimization, step-by-step execution, and model
checking. TwoTowers is instead a versatile tool for the
functional verification, security analysis, and perfor-
mance evaluation of computer, communication, and
software systems modeled with the stochastic process
algebra EMPA []. μCRL [] is a toolset that offers an
appropriate treatment of data and relies also on theorem
proving.Moreover, itmake use of interesting techniques
for visualizing large LTSs.

Relationships to Other Models
of Concurrency
In a private communication, in , RobinMilner, one
of the founding fathers of process algebras, wrote:

▸ The concept of process has become increasingly impor-

tant in computer science in the last three decades and

more. Yet we still don’t agree on what a process is.

We probably agree that it should be an equivalence

class of interactive agents, perhaps concurrent, perhaps

non-deterministic.

This quote summarizes the debate on possiblemodels of
concurrency that has taken place during the last thirty
years and has been centered on three main issues:

– Interleaving vs true concurrency
– Linear-time vs branching-time
– Synchrony vs asynchrony

Interleaving vs True Concurrency

The starting point of the theory of process algebras
has been automata theory and regular expressions, and
the work on the algebraic theory of regular expres-
sions as terms representing finite state automata []
has significantly influenced its developments. Given
this starting point, the underlying models of all pro-
cess algebras represent possible concurrent executions
of different programs in terms of the nondeterminis-
tic interleaving of their sequential behaviors. The fact
that a system is composed by independently comput-
ing agents is ignored and behaviors are modeled in
terms of purely sequential patterns of actions. It has
been demonstrated that many interesting and impor-
tant properties of distributed systems may be expressed

and proved by relying on interleaving models. How-
ever, there are situations in which it is important to
keep the information that a system is composed of
the independently computing components. This pos-
sibility is offered by the so-called non-interleaving or
true-concurrency models, with Petri nets [] as the
prime example. These models describe not only tem-
poral ordering of actions, but also their causal depen-
dences. Non-interleaving semantics of process algebras
have also been provided, see, e.g., [].

Linear-time vs Branching-time

Another issue, again ignored in the initial formalization
of regular expressions, is how the concept of nonde-
terminism in computations is captured. Two possible
views regarding the nature of nondeterministic choice
induce two types ofmodels giving rise to the linear-time
and branching-time dichotomy. A linear-time model
expresses the full nondeterministic behavior of a system
in terms of the set of possible runs; time is treated as if
each moment there is a unique possible future. Major
examples of structures used to model sets of runs are
Hoare traces (captured also by traces equivalence) for
interleaving models [], and Mazurkiewicz traces []
and Pratt’s pomsets [] for non-interleaving models.
The branching-time model is the main one considered
in process algebras and considers the set of runs struc-
tured as a computation tree. Each moment in time may
split into various possible futures, and semantic mod-
els are computation trees. For non-interleaving models,
event structures [] are one of the best-known mod-
els taking into account both nondeterminism and true
concurrency.

Synchrony vs Asynchrony

There are twobasic approaches to describing interaction
between a sender and a receiver of a message (signal),
namely, synchronous and asynchronous interaction. In
the former case, before proceeding, the sender has to
make sure that a receiver is ready. In the latter case,
the sender leaves track of its action but proceeds with-
out any further waiting. The receiver has to wait in
both cases. Process algebras are mainly synchronous,
but asynchronous variants have been recently proposed
and are receiving increasing attention. However, many
other successful asynchronous models have been devel-
oped. Among these, it is important to mention Esterel

Process Algebras P

P

[], a full-fledged programming language that allows
the simple expression of parallelism and preemption
and is very well suited for control-dominated model
designs; Actors [], a formalism that does not necessar-
ily records messages in buffers and puts no requirement
on the ordering ofmessage delivery; Linda [], amodel
of coordination and communication among several par-
allel processes operating upon objects stored in and
retrieved from shared, virtual, associativememory; and,
to conclude, Klaim [], a distributed variant of Linda
with a strong process algebraic flavor.

Related Entries
�Actors
�Behavioral Equivalences
�Bisimulation
�CSP (Communicating Sequential Processes)
�Pi-Calculus

Bibliographic Notes and Further
Reading
A number of books describing the different process
algebras can be consulted to obtain deeper knowledge
of the topics sketched here. Unfortunately most of them
are concentrating only on one of the formalisms rather
than on illustrating the unifying theories.

CCS: The seminal book on CCS is [], in which sets
of operators equipped with an operational semantics
and the notion of observational equivalence have been
presented for the first time. The, by now, classical text
book on CCS and bisimulation is []. A very nice,
more recent, book on CCS and the associated Hen-
nessy Milner Modal Logic is []; it also presents timed
variants of process algebras and introduces models and
tools for verifying properties also of this new class of
systems.

CSP: The seminal book on CSP is [], where all the
basic theory of failure sets is presented together with
many operators for processes composition and basic
examples. In [], the theory introduced in [] is devel-
oped in full detail, and a discussion on the different
possibilities to deal with anomalous infinite behaviors
is considered together with a number of well-thought
examples. Moreover the relationships between opera-
tional and denotational semantics are fully investigated.

Another excellent text book on CSP is [] that also
considers timed extensions of the calculus.

ACP: The first published book on ACP is [], where the
foundations of algebraic theories are presented and the
correspondence between families of axioms, and strong
and branching bisimulation are thoroughly studied.
This is a book intended mainly for researchers and
advanced students, a gentle introduction to ACP can be
found in [].

Other approaches: Apart from these books, dealing with
the three process algebras presented in these notes, it
is also worth mentioning a few more books. LOTOS,
a process algebra that was developed and standard-
ized within ISO for specifying and verifying commu-
nication protocols, is the central calculus of a recently
published book [] that discusses also the possibility
of using different equivalences and finer semantics for
the calculus. A very simple and elegant introduction to
algebraic, denotational, and operational semantics of
processes, which studies in detail the impact of the
testing approach on a calculus obtained from a careful
selection of operators from CCS and CSP, can be found
in []. The text [] is the book on the π-calculus. For
studying this calculus, the reader is, however, encour-
aged to consider first reading [].

Bibliography
. Abadi M, Gordon AD () A calculus for cryptographic proto-

cols: the spi calculus. Inform Comput ():–
. Aceto L, Gordon AD (eds) () Proceedings of the workshop

“Essays on algebraic process calculi” (APC), Bertinoro, Italy.
Electronic notes in theoretical computer science vol . Elsevier,
Amsterdam

. Agha G () Actors: a model of concurrent computing in dis-
tributed systems. MIT Press, Cambridge

. Aldini A, Bernardo M, Corradini F () A process algebraic
approach to software architecture design. Springer, New York

. Baeten JCM, Weijland WP () Process algebra. Cambridge
University Press, Cambridge

. Bergstra JA, Klop JW () Process algebra for synchronous
communication. Inform Control (–):–

. Bergstra JA, Ponse A, Smolka SA (eds) () Handbook of pro-
cess algebra. Elsevier, Amsterdam

. Berry G, Gonthier G () The esterel synchronous program-
ming language: design, semantics, implementation. Sci Comput
Program ():–

http://dx.doi.org/10.1007/978-0-387-09766-4_125
http://dx.doi.org/10.1007/978-0-387-09766-4_517
http://dx.doi.org/10.1007/978-0-387-09766-4_149
http://dx.doi.org/10.1007/978-0-387-09766-4_186
http://dx.doi.org/10.1007/978-0-387-09766-4_202

 P Process Calculi

. Bettini L, BonoV,Nicola R, Ferrari G,GorlaD, LoretiM,Moggi E,
Pugliese R, Tuosto E, Venneri B () The klaim project: the-
ory and practice. In: Global computing: programming envi-
ronments, languages, security and analysis of systems, Lecture
notes in computer science, vol . Springer-Verlag, Heidelberg,
pp –

. Bowman H, Gomez R () Concurrency theory: calculi and
automata for modelling untimed and timed concurrent systems.
Springer, London

. Brookes SD, Hoare CAR, Roscoe AW () A theory of commu-
nicating sequential processes. J ACM ():–

. Calzolai F, De Nicola R, Loreti M, Tiezzi F () Tapas: a tool for
the analysis of process algebras. In: Transactions on Petri nets and
other models of concurrency, vol , pp –

. Cardelli L, Gordon AD () Mobile ambients. Theor Comput
Sci ():–

. Clarke EM, Emerson EA () Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In: Pro-
ceedings of logic of programs, Lecture notes in computer science,
vol . Springer-Verlag, Heidelberg, pp –

. CleavelandR, Sims S ()Thencsu concurrencyworkbench. In:
CAV, Lecture notes in computer science, vol . Springer-Verlag,
Heidelberg, pp –

. Conway JH () Regular algebra and finite machines. Chapman
and Hall, London

. De Nicola R, Ferrari GL, Pugliese R () Klaim: a kernel lan-
guage for agents interaction and mobility. IEEE Trans Software
Eng ():–

. Fokkink W () Introduction to process algebra. Springer-
Verlag, Heidelberg

. Fournet C, Gonthier G () The join calculus: a language for
distributed mobile programming. In: Barthe G, Dybjer P, Pinto L,
and Saraiva J (eds) APPSEM, Lecture notes in computer science,
vol , Springer, Heidelberg, pp –

. Gadducci F, Montanari U () The tile model. In: Plotkin
G, Stirling C, Tofte M (eds) Proof, language and interaction:
essays in honour of Robin Milner. MIT Press, Cambridge,
pp –

. Garavel H, Lang F,MateescuR () An overview of CADP.
In: European Association for Software Science and Technology
(EASST), vol . Newsletter, pp –

. Gelernter D, Carriero N () Coordination languages and their
significance. Commun ACM ():–

. Groote JF, Mathijssen AHJ, Reniers MA, Usenko YS, van
Weerdenburg MJ () Analysis of distributed systems with
mcrl. In: Alexander M, GardnerW (eds) Process algebra for par-
allel and distributed processing. Chapman Hall, Boca Raton, FL,
pp –

. Hennessy M () Algebraic theory of processes.TheMIT Press,
Cambridge

. Hennessy M () A distributed pi-calculus. Cambridge Univer-
sity Press, Cambridge

. Hoare CAR () A calculus of total correctness for communi-
cating processes. Sci Comput Program (–):–

. Hoare CAR () Communicating sequential processes.
Prentice-Hall, Upper Saddle River

. Kozen D () Results on the propositional -calculus. Theor
Comput Sci :–

. Larsen KG, Aceto L, Ingolfsdottir A, Srba J () Reactive sys-
tems: modelling, specification and verification. Cambridge Uni-
versity Press, Cambridge

. Mazurkiewicz A () Introduction to trace theory. In:
Rozenberg G, Diekert V (ed)The book of traces. World Scientific,
Singapore, pp –

. Milner R () A calculus of communicating systems. Lecture
notes in computer science, vol . Springer-Verlag, Heidelberg

. Milner R () Communication and concurrency. Prentice-Hall,
Upper Saddle River

. Milner R () Communicating and mobile systems: the pi-
calculus. Cambridge University Press, Cambridge

. Milner R ()The space and motion of communicating agents.
Cambridge University Press, Cambridge

. Moller F, Stevens P () Edinburgh Concurrency Work-
bench user manual. Available from http://homepages.inf.ed.ac.
uk/perdita/cwb/. Accessed January

. Olderog ER () Nets, terms and formulas. Cambridge Univer-
sity Press, Cambridge

. Plotkin GD () A structural approach to operational seman-
tics. J Log Algebr Program –:–

. Pratt V () Modeling concurrency with partial orders. Int J
Parallel Process :

. Reisig W () Petri nets: an introduction. Monographs in theo-
retical computer science.AnEATCSSeries, vol . Springer-Verlag,
Berlin

. Roscoe AW () Model-checking csp. In: A classical mind:
essays in honour of C.A.R. Hoare. Prentice-Hall, Upper Saddle
River

. Roscoe AW () The theory and practice of concurrency.
Prentice-Hall, Upper Saddle River

. Sangiorgi D, Walker D () The π-Calculus: a theory of mobile
processes. Cambridge University Press, Cambridge

. Schneider SA () Concurrent and real time systems: the CSP
approach. JohnWiley, Chichester

. Winskel G () An introduction to event structures. In: de
Bakker JW, de Roever WP, Rozenberg G (eds) Linear time,
branching time and partial order in logics and models for con-
currency – Rex workshop, Lecture notes in computer science, vol
. Springer, Heidelberg, pp –

Process Calculi

�Process Algebras

Process Description Languages

�Process Algebras

http://homepages.inf.ed.ac.uk/perdita/cwb/
http://homepages.inf.ed.ac.uk/perdita/cwb/
http://dx.doi.org/10.1007/978-0-387-09766-4_450
http://dx.doi.org/10.1007/978-0-387-09766-4_450

Programming Languages P

P

Process Synchronization

�Path Expressions
�Synchronization

Processes, Tasks, and Threads

Processes, Tasks, and Threads are programs or parts
of programs under execution. A program does not
define a process, task, or thread since the same code
may underlay different processes, tasks, or threads. At
any given time, the state of a process, task, or thread
includes the location of the instruction being executed
and the value stored in all memory locations accessible
to the program. An important characteristic of pro-
cesses, tasks, and threads is that they must execute their
instructions at a speed greater than zero when they are
not explicitly blocked by synchronization operations.

Although the notion of process, tasks, and threads
differs across systems, typically a process may contain
multiple threads, and threads share memory while pro-
cesses communicate via messages.

Processor Allocation

�Job Scheduling

Processor Arrays

�Systolic Arrays

Processors-in-Memory

Processors-in-memory (PIM) are devices that tightly
integrate, for example, on a single chip, both processing
logic and memory with the objective of reducing mem-
ory latency and increasing memory bandwidth at a low
cost in terms of power, complexity, and space.

Bibliography
. Patterson D, Anderson T, Cardwell N, Fromm R, Keeton K,

Kozyrakis C,ThomasR, Yelick K () A case for intelligent RAM.
IEEEMicro ():–

. Kogge PM, Brockman JB, Sterling T, Gao GProcessing inmemory:
chips to petaflops. In:Workshop onmixing logic andDRAM: chips
that compute and remember at ISCA‘

Profiling

�Intel� Thread Profiler
�OpenMP Profiling with ompP
�Performance Analysis Tools
�Scalasca
�TAU

Profiling with OmpP, OpenMP

�OpenMP Profiling with OmpP

Program Graphs

�Data Flow Graphs

Programmable Interconnect
Computer

�Blue CHiP

Programming Languages

�Array Languages
�C*
�Chapel (Cray Inc. HPCS Language)
�Cilk
�CoArray Fortran
�Concurrent ML

http://dx.doi.org/10.1007/978-0-387-09766-4_283
http://dx.doi.org/10.1007/978-0-387-09766-4_252
http://dx.doi.org/10.1007/978-0-387-09766-4_212
http://dx.doi.org/10.1007/978-0-387-09766-4_467
http://dx.doi.org/10.1007/978-0-387-09766-4_58
http://dx.doi.org/10.1007/978-0-387-09766-4_267
http://dx.doi.org/10.1007/978-0-387-09766-4_61
http://dx.doi.org/10.1007/978-0-387-09766-4_59
http://dx.doi.org/10.1007/978-0-387-09766-4_58
http://dx.doi.org/10.1007/978-0-387-09766-4_294
http://dx.doi.org/10.1007/978-0-387-09766-4_237
http://dx.doi.org/10.1007/978-0-387-09766-4_25
http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_54
http://dx.doi.org/10.1007/978-0-387-09766-4_289
http://dx.doi.org/10.1007/978-0-387-09766-4_477
http://dx.doi.org/10.1007/978-0-387-09766-4_47
http://dx.doi.org/10.1007/978-0-387-09766-4_113

 P Programming Models

�Connection Machine Fortran
�Connection Machine Lisp
�Deterministic Parallel Java
�Fortran and Its Successors
�Fortress (Sun HPCS Language)
�Glasgow Parallel Haskell (GpH)
�HPF (High Performance Fortran)
�Linda
�*Lisp
�Multilisp
�NESL
�OpenMP
�Functional Languages
�Logic Languages
�PGAS (Partitioned Global Address Space) Languages
�Sisal
�Stream Programming Languages
�Titanium
�UPC
�ZPL

ProgrammingModels

�Actors
�BSP (Bulk Synchronous Parallelism)
�Concurrent Collections Programming Model
�CSP (Communicating Sequential Processes)
�SPMD Computational Model

Prolog

�Logic Languages

PrologMachines

Prolog machines [,] include instructions and devices
for the efficient implementation of Prolog programs.
During the years of Japan’s fifth generation project,
several data flowmachines were designed to implement
KL, a parallel variant of Prolog.

Related Entries
�Data Flow Computer Architecture
�Logic Languages

Bibliography
. Warren DH () A view of the fifth generation and its impact. AI

Mag ():–
. Holmer BK, Sano B, Carlton M, Van Roy P, Despain AM ()

Design and analysis of hardware for high performance prolog.
J Logic Program ():–

Promises

�Futures

Protein Docking

Roger S. Armen, Eric R. May, Michela Taufer
Thomas Jefferson University, Philadelphia, PA, USA
University of Michigan, Ann Arbor, MI, USA
University of Delaware, Newark, DE, USA

Definition
Predict the final atomic resolution structure of a
protein–protein complex starting from the coordi-
nates of the unbound conformation of each component
protein.

Discussion

Introduction
Most successful approaches to protein–protein docking
use multistage hierarchical methods typically consist-
ing of an initial global rigid body search (or a simplified
reduced search based on known information) to iden-
tify a number of candidate protein–protein complexes
followed by amore sophisticated refinement procedure.
After searching, filtering, and refining, the predicted
complexes are rescored based on a sophisticated scor-
ing function for selecting the lowest energy complex.
The native protein–protein complex is at the global free
energy minimum; therefore those models with the low-
est (free) energy should be the most similar to the native
complex.

Approaches to Conformational Searching

Exhaustive Rigid Body Searching
The first step in docking two known protein structures
is to generate configurations of protein–protein com-
plexes. Traditionally, the generation of conformations

http://dx.doi.org/10.1007/978-0-387-09766-4_522
http://dx.doi.org/10.1007/978-0-387-09766-4_381
http://dx.doi.org/10.1007/978-0-387-09766-4_119
http://dx.doi.org/10.1007/978-0-387-09766-4_264
http://dx.doi.org/10.1007/978-0-387-09766-4_190
http://dx.doi.org/10.1007/978-0-387-09766-4_46
http://dx.doi.org/10.1007/978-0-387-09766-4_224
http://dx.doi.org/10.1007/978-0-387-09766-4_233
http://dx.doi.org/10.1007/978-0-387-09766-4_45
http://dx.doi.org/10.1007/978-0-387-09766-4_45
http://dx.doi.org/10.1007/978-0-387-09766-4_225
http://dx.doi.org/10.1007/978-0-387-09766-4_50
http://dx.doi.org/10.1007/978-0-387-09766-4_201
http://dx.doi.org/10.1007/978-0-387-09766-4_116
http://dx.doi.org/10.1007/978-0-387-09766-4_210
http://dx.doi.org/10.1007/978-0-387-09766-4_118
http://dx.doi.org/10.1007/978-0-387-09766-4_520
http://dx.doi.org/10.1007/978-0-387-09766-4_516
http://dx.doi.org/10.1007/978-0-387-09766-4_271
http://dx.doi.org/10.1007/978-0-387-09766-4_510
http://dx.doi.org/10.1007/978-0-387-09766-4_125
http://dx.doi.org/10.1007/978-0-387-09766-4_311
http://dx.doi.org/10.1007/978-0-387-09766-4_238
http://dx.doi.org/10.1007/978-0-387-09766-4_186
http://dx.doi.org/10.1007/978-0-387-09766-4_26
http://dx.doi.org/10.1007/978-0-387-09766-4_116
http://dx.doi.org/10.1007/978-0-387-09766-4_512
http://dx.doi.org/10.1007/978-0-387-09766-4_116
http://dx.doi.org/10.1007/978-0-387-09766-4_482

Protein Docking P

P

consists of large-scale simulations of independent jobs
and thus can be performed in parallel on parallel or dis-
tributed systems such as clusters, volunteer computing
systems, grid computing systems, or cloud computing
platforms. Treating the proteins as rigid bodies is the
most computationally efficient method and will be dis-
cussed in this section (incorporation of increasing levels
of protein flexibility will be covered later). There are six
degrees of freedom (three rotation and three transla-
tion) that must be explored for an exhaustive search of
complex geometries.

The interactions that dominate the favorable bind-
ing energy of a protein–protein complex are inter-
actions between the surface residues of the proteins.
Therefore, one can naively assume that the most favor-
able complex geometries are those that bury the largest
amount of surface area at the interface. This concept
leads to the notion of surface complementarity (i.e.,
bulges on the surface of Protein A align with a valley
on the surface of the Protein B), which is a phenomena
observed in many experimentally determined protein
complexes. To identify those complexes that maximize
the interfacial surface area, a method of describing the
individual protein surfaces must first be addressed. An
effective method is to project each protein onto a D
grid and identify which grid points lie at the protein
surface and which in the protein interior, as was first
described by Katchalski-Katzir et al. [].The grid can be
represented by a function a when Protein A is placed in
the grid, and function b when Protein B is placed in the
grid, where

al,m,n =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

 surface points

<< interior points

 exterior points

and

bl,m,n =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

 surface points

> interior points

 exterior points,

where l, m, and n are the grid indices. With these defini-
tions, a correlation function can be calculated between
the functions a and b as follows:

cα,β ,γ =∑
l
∑

m
∑

n
al,m,n ⋅bl+α,m+β ,n+γ ()

where {α, β, γ} is a shift vector applied to Protein B.
The value of c is zero when there is no contact between
the proteins, is negative when there is overlap of protein
interior regions, and is positivewhen the surface regions
overlap. Complexes with strong positive values have the
largest surface complementarity and are retained for
further assessment.

The evaluation of c for a given configuration,
requires O(N

) computations (for a grid with dimen-
sions N ×N ×N); searching all translations of Protein B
(all shift vectors) requires O(N

) computations. A dis-
crete Fourier transform (DFT) of Eq. can be performed
and the inverse transform allows c to be reexpressed as

cα,β ,γ =

N

N

∑

o=

N

∑

p=

N

∑

q=
exp[

πi(oα + pβ + qγ)
N

]⋅Co,p,q

()
where C is the DFT of c, defined by

Co,p,q = A∗o,p,q ⋅Bo,p,q ,

where B is the DFT of b and A∗ is the complex con-
jugate of the DFT of a. Using a fast Fourier transform
algorithm (FFT) reduces the O(N

) computations to
O(N

● ln[N
]). Calculating c for all values of the

shift vector on Protein B only accounts for translational
degrees of freedom for a given relative rotation. To fully
search the D space, Protein B must be incrementally
rotated through the three Euler angles that define its
relative rotation. Therefore the calculation in Eq. is
performed (× ×)/D times, where D is the
angle increment.

Another method for finding surface complementar-
ity uses spherical harmonics as the basis functions for
describing the protein surfaces, instead of a Cartesian
D grid, and was introduced by Ritchie and Kemp [].
In this representation, the natural degrees of freedom
are five Euler angles (two for ProteinA, three for Protein
B) and the center ofmass separation of the two proteins.
The shape complementarity can be computed via spher-
ical polar Fourier correlations. Thismethod exploits the
property of spherical harmonics that they transform
among themselves under rotation, which results in a
more computationally efficient algorithm than the D
Cartesian grid FFT method.

The correlation function above only accounts for the
surface complementarity and does not account for the
chemical nature of the interaction. However, one can
use a more complex function that takes into account

 P Protein Docking

electrostatics, van derWaals, and/or desolvation effects,
which can be mapped onto the grid as well. The details
of these different “scoring functions” are covered in the
subsequent sections.

Reduced Search Space Methods
Both the FFT and the spherical polar Fourier method
are designed for an exhaustive search of the D space
defined by the rigid body rotations and translations
of one protein about the other fixed protein. In many
instances, additional information about the systemmay
be available which can narrow the search space. For
example, when the binding site region of one protein
is known, a targeted search can be performed about
that site, significantly reducing the search space. A
rigid body search is still performed in the initial phase,
but the reduced space makes methods such as Monte
Carlo and genetic algorithms (GA) viable options. In
the Monte Carlo methods, an interaction potential is
used to calculate an interaction energy; trial moves
are accepted or rejected based on the Metropolis crite-
rion. The programs RosettaDock [] and ICM-DISCO
[] utilize Monte Carlo in their docking procedures.
Neither RosettaDock nor ICM-DISCO use a GA, but
in other approaches either a traditional GA or varia-
tions (e.g., Lamarckian GA) have been used to drive
the search for new low-energy conformations in which
the “chromosomes” of the GA consist of the relative
positions, rotations, and orientations of one or both
proteins. For example, GA can be used to move the sur-
face of one protein relative to the other and locate the
area of greatest surface complementarity between the
two. Search methods using GA have been widely eval-
uated in several protein–ligand docking programs, e.g.,
AutoDock and DOCK.

The incorporation of NMR Nuclear Overhauser
Effect (NOE) data, which indicates which residues
are interacting, makes solving the docking problem
muchmore tractable. Othermore ambiguous data, such
as chemical shift perturbations, residual dipolar cou-
plings, and mutagenesis (i.e., alanine scanning), can
also be incorporated. The program HADDOCK []
uses these data sets in the form of Ambiguous Interac-
tion Restraints (AIR)s. An AIR restraint is satisfied if
an interface residue on one protein interacts with any
interface residue on the other protein.The HADDOCK
search method generates random orientations and does

a rigid bodyminimization, followed by a torsion angle–
simulated annealing protocol that introduces both side
chain and backbone flexibility. Cartesian space molec-
ular dynamics are then conducted in explicit solvent.
A newer approach toward reducing the search space is
the prediction of protein active sites using bioinformat-
ics techniques. While it is still difficult to reliably pre-
dict a protein “hot spot,” further development of these
techniques provides a promising avenue of future study.

Side-Chain Refinement
In someprotein–protein complexation events, the inter-
protein contacts can induce large-scale conformation
changes in the individual protein configurations. These
complexes are the most difficult to predict through
docking methods and require the proteins to be fully
flexible, greatly increasing the configurational search
space that must be sufficiently sampled, all of which
comes at a great computational cost. In most com-
plexes, just small local deviations from the individual
protein crystal structures occur. The majority of these
small configurational changes occur in the residue side
chains, while the protein backbone remains (nearly)
rigid. In multistage docking methods, after a favorable
binding geometry is determined from rigid docking, the
residue side chains can be (re)built and optimized. The
side-chain configurations can be limited to a discrete set
of states, derived from known protein structures. From
this precalculated rotamer library of low-energy states,
the global minimum of side-chain configurations is
sought. A combinatorial approach can be used to sam-
ple all states, or more efficient algorithms can be used.
Dead end elimination is one such algorithm, which
removes possible rotamer states that are determined
as not being present in the global energy minimum
state. Full flexibility of the side chains can be introduced
after rotamer optimization, via a molecular mechanics
method, to sample deviations from the rotamer library
configuration.

Incorporation of Protein Flexibility in
Protein–Protein Docking
Under physiological solution conditions, it is well
known that proteins are dynamic rather than being
entirely static and exhibit flexible motions that are
thermally accessible within their thermodynamically
favorable native-state topology. The range of accessible

Protein Docking P

P

motions scales from minor side-chain rearrangements
and minor flexible loop backbone motions to more
substantial backbone deviations (usually within .–.
Å Ca-RMSD) including larger-scale “shear motions”
and “hinge motions.” The most significant and compli-
cated rearrangements upon complex formation seem to
involve partial unfolding and refolding of flexible seg-
ments of the protein (usually termini). Although many
protein–protein complexes exhibit minor deviations in
the unbound to bound conformation of the component
proteins, it appears that a modest number of protein–
protein complexes undergo significant rearrangement
upon complex formation. Therefore, incorporation of
protein flexibility for each protein in a given complex
is an important aspect required for accurate predictions
of these challenging complexes.

Incorporating protein flexibility into the docking
search is a significant computational challenge; many
different approaches and algorithms are currently being
explored and evaluated. Most successful approaches
incorporate some level of backbone flexibility at the
level of the global search. This is because even modest
backbone rearrangements have been shown to have a
significant outcome on the identification of the native
protein–protein interface. Therefore, most approaches
first generate an ensemble of discrete flexible confor-
mations, use this ensemble for the global search phase,
and identify themost likely solutions beforemoving for-
ward tomore detailedmodel refinements and final scor-
ing of complexes. One way of reducing the search space
is to consider only one of the two binding partners to be
flexible and only a small ensemble of the more flexible
binding partner docking to a representative structure of
the other binding partner.

There are numerous approaches to generate an
ensemble of structures for ensemble docking that incor-
porate backbone deviations. The ensemble can be taken
from an experimental NMR ensemble or from multi-
ple diverse conformations from X-ray crystallography.
In many cases, where there is experimental structural
information, there remains insufficient structural diver-
sity in the known structures. If some conformational
diversity does exist in experimental structures, it is
then possible to use sophisticated tools (e.g., DynDom,
HingeFind, FlexProt) to compare the known structure
for the identification of flexible loops, as well as shear
and hinge motions. It is also possible to use methods

like targeted molecular dynamics to generate a continu-
ous trajectory of conformations that connect the known
experimental conformations.

In the more generic case, where only one unbound
conformational state is known, it is necessary to gener-
ate an ensemble of discrete flexible conformations using
computationalmethods that aim to accurately represent
the assessable states of the flexible protein. To this end, it
is possible to predict flexible segments using molecular
framework approach algorithms (FIRST) and hinge-
detection algorithms. Following this approach, con-
formers can then be generated by sampling a limited
set of flexible degrees of freedom to reduce the search
space. Alternatively, diverse conformations can be gen-
erated directly fromphysical approaches that more fully
sample the available degrees of freedom to the entire
protein.These approaches includeMolecular Dynamics
(MD), MD methods that employ advanced conforma-
tional sampling techniques, Essential Dynamics (Prin-
ciple Component Analysis), and variations of Normal
Mode Analysis (NMA).

Standard MD techniques are based on describ-
ing the all-atom structure of the system with a
detailed force field and modeling dynamics by numer-
ical integration of Newton’s equations of motion. MD-
simulated annealing conformational searches have been
shown to be quite effective in protein–ligand dock-
ing (CDOCKER). However, using MD in this way for
protein–protein docking is not feasible due to the huge
differences in the search-space (geometry of a protein-
ligand binding site vs. protein-protein interface) and
the number of flexible degrees of freedom. Standard
MD methods can explore local minor conformational
changes of a protein including side-chain rearrange-
ments and minor backbone relaxations on the picosec-
onds to nanosecond timescale. However, large-scale
changes in protein conformational space occur on
longer experimental timescales (microseconds andmil-
liseconds to seconds) and are separated by large energy
barriers. Other advanced sampling techniques (simu-
lated annealing, biased methods, torsion angle dynam-
ics, replica exchange) can be coupled with MD to allow
formore rapid crossing of energy barriers and sampling
alternative low-energy stable conformations. The con-
formational space sampled by these MD methods can
be clustered in Cartesian space to identify low-energy
representative conformations.

 P Protein Docking

Alternatively, any given set of generated conforma-
tions (such as the conformational space explored by
MD) can also be analyzed using Essential Dynamics
that is also known as Principle Component Analysis
(PCA). In PCA, a square covariance matrix is con-
structed from the conformational space describing the
deviation of each atom coordinate from the average
position. When this matrix is diagonalized, the largest
eigenvalues represent the “principle components” of
the proteins flexibility, where the direction of motion
is described by the eigenvector and the amplitude of
motion by the eigenvalue. Linear combinations of a sub-
set of the most important eigenvectors can be used to
generate an ensemble of “eigenstructures” for docking
(CONCORD and Dynamite).

Normal Mode Analysis (NMA) is a method for ana-
lytically describing the thermally available deviations
from a given equilibrium reference structure within the
harmonic approximation. For a given potential energy
function describing the system around a minimum
energy conformation, a Hessian matrix can be con-
structed from the mass-weighted second derivatives of
the potential energy. When this matrix is diagonalized,
the eigenvectors of the matrix are the “normal modes”
of the proteins flexibility, where the direction of motion
is described by the eigenvector and the amplitude of
motion by the eigenvalue. Linear combinations of a sub-
set of the most important eigenvectors can be used to
generate “eigenstructures” for docking. Several studies
with both normal mode analysis and elastic network
normal mode analysis have demonstrated that a few
of the low-frequency modes are able to successfully
describe experimentally observed large-scale motions
of proteins.The set of low-frequency normal modes can
also be used for predicting hinge motions (HingeProt)
and for estimating the conformational energy penalty
that should be associated with a given conformational
change. Tama and Sanejouand have pointed out one
potential issue which is that in some cases, the normal
modes calculated from open conformations of proteins
correlate better with observed conformational changes
than those calculated from closed and compact confor-
mations []. To avoid this problem, May and Zacharias
calculate normal modes from the starting structure,
generate new initial conformations along deformations
of normal mode eigenvectors, and then recalculate
the normal modes assuming the new structure is in

equilibrium in an iterative fashion []. Another poten-
tial issue is that conformational changes involving loop
movements are associated with high-frequency rather
than low-frequency modes, so new approaches aim to
explore and identify conformationally relevant “nor-
mal modes” following the observations of Abagyan and
coworkers [].

Scoring Functions for Protein–Protein
Docking
As most protein–protein docking approaches use mul-
tistage hierarchical methods, scoring and ranking of
putative conformations also typically occur at different
steps, and have different requirements for accuracy and
speed. The first step of scoring is usually simultaneous
with a global or reduced rigid body search where a spec-
ified number of favorable complexes are selected for
additional refinement. Following this refinement, the
most accurate scoring functions are applied to select
the most favorable complexes for the final prediction. If
there is insufficient accuracy in the first step of discrimi-
nation, then native-like complexes are never refined and
are missed in the final step of more accurate scoring of
refined complexes. On the other hand, if the first step of
scoring is too computationally expensive, it limits the
amount of conformational space that can be searched
in the initial phases.

In the global rigid body search phase (D search
of translational/rotational space), experience has shown
that allowing some steric overlap between the surfaces
of the two proteins is necessary for success; thus some
minor or significant rearrangement of the binding part-
ners may be required. This is handled differently in
geometric complementarity–based searching strategies
like geometric hashing depending on how the sur-
faces match or geometric complementarity is calcu-
lated. Although not all of the most common search
strategies employ surface-matching/geometric com-
plementarity as the primary scoring metric during
the sampling phase, many successful protocols (BIG-
GER, ClusPro, D-Dock, DOT, Molfit, PatchDock,
SKE-DOCK, SmoothDock, and ZDOCK) use various
surface-matching/geometric complementarity metrics
in combination with other metrics such as electro-
statics and desolvation to determine which complexes
should move into the refinement phase. For molecu-
lar mechanics–based force fields, allowing some steric

Protein Docking P

P

overlap is usually accomplished by using a “soft”
or smoothed force field with reduced vdW repul-
sion. In small-molecule protein–ligand docking, it is
extremely common to use a soft vdW potential early
in the conformational search, and then in the refine-
ment procedure introduce a more “hard” or standard
Lennard–Jones potential. This practice has also been
incorporated in some variations of protein–protein
docking (ROTAFIT).

Although it is true that exposed hydrophobic
patches of residues on a protein surface often indicate
a protein–protein interaction surface, several studies
that have analyzed experimental protein–protein inter-
faces show that there is no one single determining fea-
ture for prediction of the correct native-like interface.
Although some propensities for certain residues can be
detected at a sequence level, there is no single inter-
face property (i.e., total buried surface area, number of
hydrogen bonds, hydrophobicity, electrostatic comple-
mentarity, predicted desolvation energy, residue side-
chain rotamers) that is a strong predictor of the native
interface over a variety of protein complexes. For this
reason, most successful scoring functions designed for
correct identification of native protein–protein inter-
faces are increasingly complex and sophisticated, and
involve a combination of these types of interface prop-
erties (e.g., shape complementarity, hydrophobic inter-
actions and electrostatics). In general, there are three
generic categories of scoring functions: () molecu-
lar mechanics, () knowledge-based, and () empirical
scoring functions. Research groups have demonstrated
success and improvements in native-like geometry dis-
crimination using various flavors and combinations of
all three of these types of scoring functions.

Mostmolecularmechanics force fields are quite sim-
ilar in their overall generic form. The total potential
energy of the system is the pair-wise sum of van der
Waal interactions modeled from the Lennard–Jones
potential, electrostatic interactions, and the sum of all
the internal degrees of freedom (bonds, angles, and
torsions) that describe the molecular geometry of the
bonded atoms:

V = ∑

bonds
kb(b − b) + ∑

angles
kθ(θ − θ)

+ ∑

dihedrals
kϕ[+ cos(nϕ − δ)]

+ ∑

nonbonded
εvdW

⎡

⎢

⎢

⎢

⎢

⎣

(

Rminij

rij
)

− (

Rminij

rij
)

⎤
⎥

⎥

⎥

⎥

⎦

+

qiqj
εelecrij

()

The most common molecular mechanics force field in
the protein–protein docking field is CHARMM. Sev-
eral forms of implicit solvation potential energy can
also be included in the CHARMM potential, which
are based on continuum electrostatics theories includ-
ing Poisson–Boltzmann, generalized Born, and more
simplified representations that are analytical approx-
imations of these. Including these terms can allow
for a more rigorous calculation of the desolvation
energy upon formation of a protein–protein interface.
The electrostatics of a protein–protein interface is a
complicated balance between favorable and unfavor-
able electrostatic complementarity (e.g., H-bonds) and
(un)favorable desolvation energy. Vajda and cowork-
ers have determined that at the interface it is more
important to put a larger weight on the vdW terms [].

The field of knowledge-based scoring functions has
its origin in the protein-folding field (for the correct
identification of native-like folds), and is based on
forming statistical potentials from inverse Boltzmann
weighting of what is statistically observed in native-
like structures. One of the most basic forms of a
knowledge-based potential for protein–protein dock-
ing is a potential based on the statistical preference
of certain residue–residue pairs across the interface.
Additional variations of this include a wide range of
sophisticated atom–atom contact potentials and also
distance-dependent atom pair potentials. One widely
used knowledge-based potential of this type is the
“atomic contact potential” (ACP) []which is an atom–
atom extension of the widely used Miyazawa and Jerni-
gan potential []. Delisi and coworkers develop the
ACP by considering protein atom types and a con-
tact radii of . Å where the total contact energy of the
interface Ec is defined as

Ec =

∑

i=

∑

j=
Eijnij ()

where Eij is the absolute contact energy between atoms
i and j shown in Eq. :

Eij = eij + Ei + Ej − E. ()

 P Protein Docking

The effective contact energies eij can be written in terms
of the observed contact numbers in a database where
n̄ij is the number of i–j contacts in the most probable
distribution in an unbiased sample:

eij = − ln(
n̄ij n̄
n̄in̄j

) . ()

It has also been possible to express variations of such
atomic contact potentials and variations of distance-
dependent pair potentials into functional forms that
allow their incorporation into FFT methods such as
ZDOCK and PIPER. Incorporation of such poten-
tials has been shown to improve the discrimination of
native-like geometries over decoys.

Empirical scoring functions attempt to approximate
the relative statistical weights from various parame-
ters to optimize performance from regression-based
training and validation studies. One of the best exam-
ples of these in protein–protein docking is the compli-
cated scoring function employed in RosettaDock. As
outlined in Gray et al. [], the same functional form
has different optimized weights during three phases
of the algorithm, i.e., packing, minimization, and final
discrimination. In the potential for the discrimina-
tion phase, there are terms that all have optimized
weights (repulsive vdW, attractive vdW, surface area sol-
vation, Gaussian solvent-exclusion, rotamer probabil-
ity, hydrogen bonding, residue pair probability, electro-
static short-range repulsion, electrostatic short-range
attraction, electrostatic long-range repulsion, and elec-
trostatic long-range attraction) so the final version of
the functional form is

score =Wvdw−atrSvdw−atr +Wvdw−repSvdw−rep +WsolS sol

+WsasaSsasa +WhbShb +WrotamerSrotamer

+WpairSpair +Welec sr−repSelec sr−rep

+Welec sr−atrSelec sr−atr +Welec lr−repSelec lr−rep

+Welec lr−atrSelec lr−atr ()

In the RosettaDock algorithm, this empirical func-
tional form is accurate enough to successfully repack
the side chains on the protein–protein interface dur-
ing the refinement and discrimination phases. Many
other empirical scoring functions are employed at the
final discrimination step in other docking approaches.
Another example is FastContact that rapidly estimates
the vdW, electrostatic, and desolvation components of

the free energy using an empirical contact potential for
the desolvation contribution.

Critical Assessments of Protein–Protein
DockingMethods
The protein–protein docking field has significantly
benefited from the Critical Assessment of Predicted
Interactions (CAPRI) experiment. CAPRI is a comm
unity-wide blind prediction experiment, where experi-
mentalists provide newly solved protein–protein com-
plexes and withhold the coordinates. CAPRI partici-
pants are given the D coordinates of each unbound
subunit and predictions are due – weeks later. Using
available experimental data in the literature (e.g., muta-
tions that may indicate the location of the binding site)
is also allowed, so some targets offer assessments of
protein–protein docking where some information is
known which can limit the search space, while for most
of the targets no information is available. Each partici-
pating group is allowed to submit top-ranked models
of the protein–protein complex. The accuracies of the
predictions are categorized as: () high, () medium, ()
acceptable, and () incorrect according to several evalu-
ation metrics that are summarized in Table . The three
primary metrics are: () Ca RMSD of the ligand (smaller
protein) from the native complex structure after the
superposition of the receptor (larger protein), () Ca

RMSD of the backbone of the interface residues, and
() the percentage of native contacts on the interaction
interface.

The initial rounds – of CAPRI occurred from
to and the results have been published in the liter-
ature [,].The next rounds – occurred from
to and these results have also been published [].
Themost recent rounds –were recently evaluated in
a CAPRI meeting held in Barcelona, Spain, in Decem-
ber . Over the rounds of CAPRI so far, targets

Protein Docking. Table CAPRI evaluation metrics for

predicted protein–protein complexes

Ligand Interface Interface
Rank (Cα RMSD) (Cα RMSD) fNat. Cont.

High∗∗∗ ≤ . ≤ . ≥ .
Medium∗∗ .–. .–. ≥ .
Acceptable∗ .–. .–. ≥ .
Incorrect < .

Protein Docking P

P

have been released and predicted by various groups,
although some of the targets were canceled during the
evaluation period. Over rounds –, the best perform-
ing methods were: ICM-DISCO, SmoothDock, Molfit,
D-Dock, andDOT [].Over rounds – the best over-
all performance was from ICM-DICSO, PatchDock,
ZDOCK, FT-Dock, RosettaDock, and SmoothDock
[]. Over rounds –, the best overall performance
was from ZDOCK, HADDOCK, Molfit, D-Dock,
ClusProt, RosettaDock, and ICM-DISCO []. From
the most recent rounds –, which were evaluated
at the Barcelona meeting, it was shown that some of
the Web servers are also now performing as well as
some of the other participating groups. The best per-
formingWeb servers were ClusPro and PatchDock over
rounds –. The performance of the best performing
Web servers that participated in rounds – is shown
in Table , along with some of the other most popu-
lar Web servers. The improved performance of some of
the Web servers is very important to the experimen-
tal community, as many groups use these servers to
predict likely binding modes of protein complexes of
interest.These top-ranked bindingmodes are then often
used by experimental groups to design experiments
aimed at validating the complex interface using exper-
imental methods such as site-directed mutagenesis,
enzymatic proteolysis, mass spectrometry, crosslinking,
and FRET.

The most recent CAPRI rounds have shown that
some of the more easy targets that did not involve
significant conformational changes could be predicted
by many groups and Web servers using a variety of
methods. This suggests that there is an emerging con-
sensus among the various docking methods for ade-
quate predictions for the easiest of the test cases. The
most challenging targets were clearly those where back-
bone flexibility was very important, as well as targets
where one of the protein complex components needed
to be predicted by homology modeling. Another clear
lesson is that some limited knowledge from biochem-
ical information, when used to limit the search to a
certain space area, dramatically improves predictions
for several of the methods. The greatest challenge in
the field is clearly the issue of incorporating backbone
flexibility into the predictions. One reason why this is
challenging is that incorporation of backbone flexibil-
ity can further increase the number of false positives by
nonnative complexes that score better than the native
interface.

Applications of Protein–Protein Docking
and Large-Scale Predictions
Due to the importance of protein–protein interac-
tions in understanding the connections and regulations
between biochemical pathways, many high-throughput

Protein Docking. Table Protein–protein docking Web servers and performance in CAPRI rounds – (CAPRI meeting

Barcelona Dec)

Web Servers (CAPRI rounds –) Total High Medium

 CLUSPRO (Vajda group, Boston University, Boston MA) http://cluspro.bu.edu ∗∗∗ ∗∗

 HADDOCK (Bonvin group, Utrecht University, the Netherlands) http://haddock.chem.uu.nl ∗∗∗ ∗∗

 GRAMM-X (Vakser group, U. of Kansas, Lawrence, KS) http://vakser.bioinformatics.ku.edu/
resources/gramm/grammx

 ∗∗∗ -

 SKE-DOCK (Takeda-Shitaka group, Kitasato U., Japan) http://www.pharm.kitasato-u.ac.jp/bmd/
files/SKE_DOCK.html

 ∗∗∗ -

 PatchDock, FiberDock, FireDock (Wofson group, Tel Aviv U.) http://bioinfod.cs.tau.ac.il/PatchDock/ ∗∗∗ -

 TOP DOWN (Nakamura group, Inst. for Prot. Res. Osaka Japan) http://pdbjs.pdbj.org/TopDown/ ∗∗ -

Other Web Servers:

ZDOCK (Z. Weng group U. of Massachusetts, Worcester, MA) http://zdock.bu.edu/

RossettaDock (J. Gray group John Hopkins U., Baltimore, MD) http://rosettadock.graylab.jhu.edu/

HEX (Ritchie group, Nancy, France) http://www.loria.fr/~ritchied/hex/

FiberDock (Wofson group, Tel Aviv U.) http://bioinfod.cs.tau.ac.il/FiberDock

D-Garden (Sternberg group, Imperial College, London, UK) http://www.sbg.bio.ic.ac.uk/~dgarden/

http://cluspro.bu.edu
http://haddock.chem.uu.nl
http://vakser.bioinformatics.ku.edu/resources/gramm/grammx
http://vakser.bioinformatics.ku.edu/resources/gramm/grammx
http://www.pharm.kitasato-u.ac.jp/bmd/files/SKE_DOCK.html
http://www.pharm.kitasato-u.ac.jp/bmd/files/SKE_DOCK.html
http://bioinfo3d.cs.tau.ac.il/PatchDock/
http://pdbjs6.pdbj.org/TopDown/
http://zdock.bu.edu/
http://rosettadock.graylab.jhu.edu/
http://www.loria.fr/~ritchied/hex/
http://bioinfo3d.cs.tau.ac.il/FiberDock
http://www.sbg.bio.ic.ac.uk/~3dgarden/

 P Protein Docking

proteomics efforts have also been aimed at creating
large-scale comprehensive catalogues (an Interactome)
of experimentally verified protein–protein interactions.
Significant progress has been made in this area in the
model organism yeast, and similar efforts are underway
in many other areas, including important pathogenic
organisms and human cancer cell types. Experimental
studies of these protein–protein interaction networks in
cells have shown that some proteins may interact with
up to other proteins. Despite these ongoing experi-
mental efforts, it is clear that structural genomics efforts
alone (which systematically determine the experimen-
tal D structures of high interest proteins) will not be
able to determine the structures of all of the detected
and important protein–protein interactions and reli-
able computational prediction of these complexes will
be more and more important in the future. To success-
fully perform large-scale protein–protein docking pre-
dictions, it will be necessary to employ homology-based
modeling methods. The necessity to rely on homology
models as the initial input to protein–protein dock-
ing, increases the need for improved accuracy both for
the initial homology modeling steps and for the reli-
able incorporation of flexibility in the protein–protein
docking steps.

The European D-Repertoire project (http://www.
drepertoire.org) aims to experimentally determine
the D structures of some high–interest protein–
protein complexes from yeast that are amenable to
X-ray crystallography, NMR spectroscopy, and cryo-
electron microscopy methods. Still a large number of
the total number of yeast protein–protein interactions
(, high confidence complexes from a total of ,
genes) will be predicted by computational methods.
It is also true that for some fraction of the protein–
protein targets, the entire complex itself including the
interface may be modeled reliably based on homol-
ogy to other known complexes that are sufficiently
similar in sequence. However, for the vast majority
of the targets, this approach is not possible and it
becomes necessary to perform protein–protein docking
of homology models for each individual component of
the complex (given that sufficient templates are available
for each component of the complex). The first publica-
tion describing this effort came out in , describ-
ing the prediction of , protein–protein complexes
starting from experimental structures and ,

homology models []. The authors used both ZDOCK
. along with the pyDOCK scoring scheme and pro-
vided results for both a widely used protein–protein
docking benchmark dataset []. Despite the fact that
the accuracy of the benchmark is only in the range of
–% (depending on if the top , , or complexes are
considered), these predictions of , complexes from
the yeast Interactome are still a very exciting prelimi-
nary step towardmore large-scale prediction efforts like
this in the future.These preliminary efforts highlight the
ongoing need for improved accuracy in protein–protein
docking methods.

Bibliographic Notes and Further
Reading
More on genetic algorithms and protein–protein dock-
ing: () Morris GM, Goodsell DS, Halliday RS, Huey R,
Hart WE, Belew RK, Olson AJ () Automated dock-
ing using a Lamarckian genetic algorithm and an empir-
ical binding free energy function. J Comput Chem
():–. () Taylor JS, Burnett RM ()
DARWIN: A program for docking flexible molecules.
Proteins :–. () Gardiner EJ,Willett P, Artymiuk
PJ () Protein docking using a genetic algorithm.
Proteins :–.

Introduction in molecular dynamics: () Leach A
() Molecular modelling: principles and applica-
tions, nd edn. Prentice Hall, Englewood Cliffs. ()
Rapaport DC () The art of dynamics simulation,
nd edn. Cambridge University Press, Cambridge.

Key recent reviews onprotein docking: () Zacharias
M () Accounting for conformational changes dur-
ing protein-protein docking. Curr Opin Struct Biol
:–. ()Vajda S, KozakovD ()Convergence
and combination of methods in protein-protein dock-
ing. Curr Opin Struct Biol :–. () Andrusier N,
Mashinach E, Nussinov R, Wolfson HJ () Prin-
ciples of flexible protein-protein docking. Proteins
:–.

Bibliography
. Katchalski-Katzir E, Shariv I, EisensteinM, FriesemAA, Aflalo C,

Vakser IA () Molecular surface recognition: determination of
geometric fit between proteins and their ligands by correlation
techniques. Proc Natl Acad Sci :–

. Ritchie DW, Kemp GJL () Protein docking using spherical
polar Fourier correlations. Proteins :–

http://www.3drepertoire.org
http://www.3drepertoire.org

PVM (Parallel Virtual Machine) P

P

. Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B,
Rohl CA, Baker D () Protein-protein docking with simul-
taneous optimization of rigid-body displacement and side-chain
conformations. J Mol Biol :–

. Fernandez-Recio J, Totrov M, Abagyan R () ICM-DISCO
Docking by global energy optimization with fully flexible side-
chains. Proteins :–

. Dominguez C, Boelens R, Bonvin MJJ () HADDOCK: a
protein-protein docking approach based on biochemical or bio-
physical information. J Am Chem Soc :–

. Tama F, Sanejouand YH () Conformational change of pro-
teins arising from normal mode calculations. Protein Eng :–

. May A, Zacharias M () Energy minimization in low-
frequency normal modes to efficiently allow for global flexibility
during systematic protein-protein docking. Proteins :–

. Cavasotto CN, Kovacs JA, Abagyan RA () Representing
receptor flexibility in ligand docking through relevant normal
modes. J Am Chem Soc :–

. Camacho CJ, Vajda S () Protein docking along smooth asso-
ciation pathways. Proc Natl Acad Sci :–

. Zhang C, Vasmatzis G, Cornette JL, DeLisi C () Free energy
landscapes of encounter complexes in protein-protein associa-
tion. Biophys J ():–

. Miyazawa S, Jernigan RL () Estimation of effective inter-
residue contact energies from protein crystal structures: quasi-
chemical approximation. Macromolecules :–

. Mendez R, Leplae R, DeMaria L,Wodak SJ () Assessment of
blind predictions of protein–protein interactions: current status
of docking methods. Proteins :–

. Mendez R, Leplae R, Lensink MF, Wodak SJ () Assessment
of CAPRI predictions in rounds – shows progress in docking
procedures. Proteins :–

. Lensink MF, Wodak SJ, Mendez R () Docking and scoring
protein complexes: CAPRI rd edition. Proteins :–

. Mosca R, Pons C, Fernandez-Recio J, Aloy P () Push-
ing structural information into the yeast interactome by high-
throughput protein docking experiments. PLOS Comp Biol
():–

Pthreads (POSIX Threads)

�POSIXThreads (Pthreads)

PVM (Parallel Virtual Machine)

Al Geist
Oak Ridge National Laboratory, Oak Ridge, TN, USA

Synonyms
Message passing

Definition
Parallel Virtual Machine (PVM) is a software pack-
age that permits a heterogeneous collection of Unix
and/or Windows computers hooked together by a net-
work to be used as a single large parallel computer.Thus
large computational problems can be solved more cost-
effectively by using the aggregate power and memory
of many computers. The software is very robust and
portable. The source, which is available free from the
PVM website, has been compiled on everything from
laptops to CRAYs. Because PVM supports fault toler-
ance and dynamic adaptability, hundreds of sites around
the world continue using PVM to solve important sci-
entific, industrial, and medical problems. PVM has also
been popular as an educational tool to teach paral-
lel programming because of its simple intuitive user
interface.

Discussion
Introduction
PVM (Parallel Virtual Machine) is often lumped
together with theMessage Passing Interface (MPI) stan-
dard, because PVM was the precursor to MPI and the
PVM developers, most notably, Jack Dongarra started
and lead the initial MPI forum that defined the MPI .
standard. But message passing is only a small part of
the PVM package. PVM is an integrated set of software
tools and libraries that emulates a general-purpose,
fault-tolerant, heterogeneous parallel computing frame-
work on interconnected computers of varied architec-
tures and operating systems. As a demonstration at the
 Supercomputing conference, PVM was used to
hook together all the supercomputers on the exhibit
floor into one giant parallel virtual machine. PVM is
a byproduct of the heterogeneous-distributed comput-
ing research project at Oak Ridge National Laboratory,
Emory University, and the University of Tennessee. The
programming model upon which PVM is based dif-
fers substantially from MPI. The PVM programming
model has:

● Dynamic, user configured, host pool. The set of com-
puters that make up the virtual machine may them-
selves be parallel or serial computers and PVM can
add or delete machines while programs are run-
ning. For example, to add more computing power,
or delete hosts that have failed.

http://dx.doi.org/10.1007/978-0-387-09766-4_447
http://dx.doi.org/10.1007/978-0-387-09766-4_2426

 P PVM (Parallel Virtual Machine)

● PVM tasks are dynamic and asynchronous. The tasks
that make up a parallel program do not have to
start all together. New tasks can be spawned off in
the middle of a computation, tasks can be killed
and programs started outside the parallel virtual
machine can join PVM and become another task in
the dynamic set of tasks that make up the parallel
program.

● Dynamic groups. Users can define any number of
subgroups of PVM tasks that can then perform col-
lective operations such as broadcast data to all mem-
bers of the group or set a barrier.Themembers of the
groups can change dynamically during a computa-
tion (an important feature for fault tolerance). PVM
provides calls to manage dynamic groups.

● Translucent access to hardware. Application pro-
grams may view the hardware environment as an
attributeless collection of hosts or may choose to
exploit the capabilities of specific machines in the
host pool by positioning certain computational tasks
on the most appropriate computers. PVM pro-
vides calls to convey host attributes to a running
application.

● Transparent heterogeneity support. A single PVM
job can run across a collection of Linux, Windows,
and Unix computers, that themselves can be multi-
core, serial or parallel computers. PVM transpar-
ently takes care when transferring data between
computers that have different data representations,
for example, big Endian and little Endian and differ-
ent word lengths.

● Explicitmessage-passing. Data is transferred between
PVM tasks using a small number of point-to-point
and collective message-passing calls. When a sender
or receiver is detected to be dead, PVM automati-
cally deletes it from the virtual machine and notifies
the application.

The PVM system is composed of two parts. The first
part is a daemon, called pvmd, that resides on all com-
putersmaking up the virtual machine. PVM is designed
so that anyone with a valid login can install this dae-
mon on a machine. When a user wishes to run a PVM
application, he first creates a parallel virtual machine by
starting PVM with a list of hosts upon which he has
already installed pvmd. Multiple users can configure
overlapping virtual machines and each user can execute

several PVM applications simultaneously on the same
parallel virtual machine. The second part of the sys-
tem is a library of PVM interface routines that is linked
with the users PVM application. The library contains
routines for resource management (modifying the pool
of hosts), process control (spawning and killing tasks),
managing dynamic task groups, passing messages, and
fault tolerance.The basic PVM system supports C, C++,
and Fortran languages, but the PVM user community
has extended PVM so it can be used with Java, Python,
Perl, Lisp, S-lang, R, tk/tcl, and IDL languages.

Resource Management
The underlying set of hosts that make up a partic-
ular PVM instantiation is a dynamic resource. Typ-
ically, a host list is just fed into the PVM startup
routine to create a custom parallel virtual machine tai-
lored to the problem being solved, but PVM provides
much more resource management flexibility. PVM pro-
vides pvm_addhosts and pvm_delhosts routines that
allow any PVM task to add or delete a set of hosts
in the parallel virtual machine at any time. These
routines are sometimes used to set up a virtual machine,
but more often they are used to increase the flexibil-
ity and fault tolerance of a large scientific simulation.
These routines allow a simulation to increase the avail-
able computing power (adding hosts) if it determines
that the problem is getting harder to solve, then to
shrink back in size when the problem does not need all
the extra resources. Another use of these routines is to
increase the fault tolerance of a simulation by having it
detect the failure of a host and replacing the failed host
on-the-fly with pvm_addhosts.

PVM provides routines to return information about
the present set of hosts in the parallel virtual machine.
The information includes the host names, their architec-
ture types (from which the individual data representa-
tions can be determined), and their relative CPU speed
(which can be useful to an intelligent load balancing
program). A PVM task can also find out what host it is
running on and use this architectural awareness to run
algorithms tuned for that architecture.

ThePVMresourcemanagement system also includes
a way to set/get various options that determines how
the underlying PVM system works. For example, if the
user prefers speed to flexibility, the communication can
be set so that it is as fast as MPI. Similarly, if the user

PVM (Parallel Virtual Machine) P

P

knows that the task groups are going to be static then
the underlying system can be told and it will utilize local
cache information to speed up all the group routines.
If tracing or debugging are desired there are options in
PVM to set which tasks to trace, and where to send the
trace output. PVM has over a dozen options that can
be set and the list is extensible to add additional system
hints or options in the future.

Process Control
PVM provides routines to dynamically spawn and kill
tasks and allows tasks to join a running PVM system
and to exit a PVM system. The pvm_spawn routine is
the central function in the PVM process control. The
pvm_spawn routine starts up one or more copies of an
executable file. The executable is usually a PVM pro-
gram, but it does not have to be. Spawn can launch any
command or executable program that the user has per-
mission to execute on the hosts. The spawn routine can
pass an argument list to the launched executable(s) and
can specify where the tasks should be started. If unspec-
ified, then PVM will spread the tasks evenly across the
entire virtual machine. Pvm_spawn can be called mul-
tiple times to start many different types of tasks, which
is needed to support functional parallelism. It can be
called anytime during program execution to add addi-
tional computation tasks, or to replace a failed task,
or to add a different type of task in order to create a
program that adapts on-the-fly to the problem being
solved. Besides being able to place tasks on specific
hosts, PVM has a plug-in interface that allows users to
plug-in their own task placement/load balancing rou-
tines into the parallel virtual machine. The flexibility of
the pvm_spawn routine allowsPVMto support all types
of programming methodologies, not just SPMD.

To complement the ability to create new tasks
dynamically, PVM provides a routine that allows any
task to kill any other task, and a routine to allow a task to
exit the PVM system, i.e., to cleanly kill itself. The key
to these routines is to be sure that all pending parallel
virtual machine operations that involve the particular
tasks are taken care of before they are killed.

The PVM process control system has a routine that
returns information about the tasks running on PVM
at any given moment. The routine, called pvm_tasks,
has three options: it allows a user’s PVM program to

determine information about all tasks in the parallel vir-
tual machine, information about all tasks running on a
specific host (useful if there is a fault or a load balance
issue), or information about a particular task.

Message Passing
The PVM communication model provides point-
to-point, and collective message-passing routines. It
also provides the concept of persistent messages and
message handlers. The number of communication rou-
tines is quite small compared to the MPI standard,
which has over functions. For point-to-point com-
munication PVMonly provides asynchronous blocking
send, asynchronous blocking receive, and nonblocking
receive functions. There is also a nonblocking probe
routine to check if a particular message has arrived. For
collective communication PVM provides multicast to a
set of tasks, broadcast to a user-defined group of tasks,
reduce operation across a group, i.e., global max, min,
sum, etc., and barrier across a group.

There is a four-step process in sending a PVMmes-
sage. First the message is “packed.” Each message can
contain an arbitrary structure of data types and arrays.
For example, a message may have an integer defin-
ing how long a vector is, a vector of integers defining
the indices of a sparse array, and a vector of double-
precision floating point numbers. Each of these data
types could be packed into a single message. In the sec-
ond step the message is sent to its destination. In the
third step the message is received by one or more PVM
tasks. In the fourth step the message is unpacked. PVM
supplies a pack and unpack routine for every data type
supplied by computer manufacturers.

Persistent messages were added to the PVM inter-
face in version .. Persistent messages are packed as
usual with an arbitrarily complex or simple data struc-
ture, but instead of being sent to a destination, they are
stored and retrieved by “name.” The sender of the mes-
sage can specify if other tasks are allowed to update the
message, or delete it. The sender also specifies if the
message should persist beyond the sender exiting PVM
or if it should be cleaned up on exit. Persistent mes-
sages have many powerful uses in the dynamic, fault-
tolerant environment of PVM’s programming model.
It allows a message to be sent to a task that does not
exist yet. An example of this use is rendezvous – the
first task leaves a persistent message defining where it

 P PVM (Parallel Virtual Machine)

can be found and how to attach, another example of this
use case is in-memory checkpointing. The feature also
allows a message to be stored persistently and retrieved
by a set of tasks that will not be defined until some-
time in the future. An example of this is a fault in the
system affects a set of tasks and they need the stored
information to recover. Persistent messages provide a
distributed informationdatabase for dynamic programs
inside PVM. For example, a monitoring or computa-
tional steering application can attach to a PVMprogram
and leave information in a named space without having
to know anything about the tasks in the PVM program,
which will retrieve and act on the information. The
concept is similar to tuple space used by the Linda sys-
tem []. Persistent messages are implemented in PVM
. using only four additional routines: pvm_putinfo(),
pvm_recvinfo(), pvm_delinfo() to delete a persistent
message, and lastly, pvm_getmboxinfo() that allows a
user to search the persistent message namespace with
a regular expression.

User-defined message handlers were also added to
PVM in version .. There are no restrictions on the
handler function that can be set up.The handler is trig-
gered whenever a message arrives matching the speci-
fied context, message tag, and source. This feature has
many uses. For examples, it allows users to define new
control features inside a parallel virtual machine and
it provides the ability to implement active messages to
increase communication performance.

Dynamic Task Groups
The dynamic process group functions are built on top
of the core PVM routines. There was some debate about
how groups should be handled in PVM. The issues
include efficiency, fault tolerance, and robustness.There
are tradeoffs between static versus dynamic groups and
tradeoffs if use of the function calls is restricted to
only tasks in a group. In keeping with the PVM phi-
losophy, the group functions are designed to be very
general and transparent to the user, at some cost in effi-
ciency. Any PVM task can join or leave any group at
any time without having to inform any other task in the
affected groups. Tasks can broadcast messages to groups
of which they are not members. Tasks can be members
of multiple groups. In general, any PVM task can call
any of the group functions at any time with only two
exceptions: pvm_lvgroup() and pvm_barrier() which

by their nature require the calling task to be a mem-
ber of the specified group. To boost performance, PVM
provides a user function to freeze a group, which allows
the underlying PVM system to treat that group as static
from that point forward and exploiting all the efficiency
gains afforded by having a static group structure.

Dynamic group functions in PVM include joining
a group, leaving a group, getting information about a
group such as size and members, broadcasting to all
members of a group, doing a reduce across all members
of a group with predefined or arbitrary functions, and
lastly setting a barrier across a group where tasks in the
group wait until all tasks in the group have called the
barrier routine.

Fault Tolerance
The parallel virtual machine constantly monitors itself
evenwhen no PVMapplications are running. If a fault is
detected the set of pvmd coordinate with each other and
automatically reconfigure the parallel virtual machine
to remove the fault and keep running. The PVM inter-
face also has a notify function that allows a running
PVM task to request to be notified of changes in the
system including where and what type of fault was
detected. Typical notifications are for task exit, host
deletion, and a host being added. Note that the lat-
ter notification is useful during a recovery phase when
replacement resources are being brought into the virtual
machine. A fault-tolerant PVM application has many
choices about how to utilize the notification function in
PVM. The application may have all the tasks notified if
a fault occurs (SPMD style), it could have one specially
written task dedicated to monitoring and recovery of
the application if a fault occurs anywhere (MIMD). It
could have a set of tasks that get spawned dynamically
with a recovery expertise specific to the notification.
It could have a set of monitoring and recovery tasks
that back each other up. The flexibility of PVM and its
dynamic programming model make it very attractive to
groups who need fault-tolerant applications. One real
life example – PVM was used to create a monitoring
system across a hospital’s operating rooms with infor-
mation from individual patient monitors being fed to
a central observation/control room, the system needed
to be tolerant as patients were constantly being plugged
and unplugged from various resources as they went
from prep to operating room to recovery room, etc.

PVM (Parallel Virtual Machine) P

P

The PVM notification feature is not limited to fault
recovery. It can also be used by load-balancing pro-
grams that increase and decrease the host pool to meet
the changing load of the application over time. It can be
used by logging and accounting tasks to keep track of
system usage by PVM users. As with many of the PVM
functions they are design to provide the maximum use
and flexibility to the user.

Related Entries
�Broadcast
�Clusters
�Collective Communication
�Distributed-Memory Multiprocessor
�Fault Tolerance
�MPI (Message Passing Interface)
�Parallel Computing

Bibliographic Notes and Further
Reading
The PVM project began in the summer of at Oak
Ridge National Laboratory when Vaidy Sunderam, a
visiting faculty from Emory University, and Al Geist
designed and built the prototype PVM . to explore
the concept of heterogeneous parallel computing. This
prototype was only used internally at the lab and was
not released. Jack Dongarra joined the project in
and saw the value of PVM for the larger community. A
robust and hardened version of the prototype was writ-
ten at the University of Tennessee and publicly released

as PVM . in March . During the next years
PVM rapidly grew in popularity. After user feedback
and a number of evolutionary changes (PVM .–.),
a complete rewrite was undertaken, and PVM . was
released in February . PVM . continued to evolve
and incorporate new features and capabilities to meet
the needs of the exponentially growing number of users
and applications. In , years after its inception,
the PVM feature set was frozen at PVM .. Since then
PVM has continued to be supported and new versions
released to port to new architectures and operating sys-
tems, for example, in , years after PVM started,
PVM .. was released and distributed freely as has
every other version of PVM. For further reading the
PVMwebsite (http://www.csm.ornl.gov) contains tuto-
rials, tools, and information about the PVM develop-
ment team. For the past years there has been an
annual European conference dedicated to advances to
PVM and MPI. The topics and papers from all these
conferences can be found at http://pvmmpi.ucd.ie/
previous.

Bibliography
. Bjornson R, Carriero N, Gelernter D, Leichter J (January)

Linda, the portable parallel. Research Report Yale/DCS/RR-
. Geist A, Beguelin A, Dongarra J, JiangW,Manchek R, Sunderam V

() PVM: parallel virtual machine. MIT Press, Cambridge,
Massachusetts

. Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J
() MPI: the complete reference. MIT Press, Cambridge,
Massachusetts

http://dx.doi.org/10.1007/978-0-387-09766-4_29
http://dx.doi.org/10.1007/978-0-387-09766-4_18
http://dx.doi.org/10.1007/978-0-387-09766-4_28
http://dx.doi.org/10.1007/978-0-387-09766-4_223
http://dx.doi.org/10.1007/978-0-387-09766-4_63
http://dx.doi.org/10.1007/978-0-387-09766-4_222
http://dx.doi.org/10.1007/978-0-387-09766-4_279
http://www.csm.ornl.gov
http://pvmmpi08.ucd.ie/previous
http://pvmmpi08.ucd.ie/previous

	P
	Parafrase
	Synonyms
	Discussion

	Parallel Communication Models
	Parallel Computing
	Definition
	Discussion
	Introduction and History
	Parallel Architectures

	Parallel Software Concepts
	Application Software Development
	Parallelization Methods

	Parallelization Impediments
	Unexploited Parallelism in ``Well-Parallelized'' Applications

	System Architecture Performance Criteria
	Parallel Performance

	Parallel Program Correctness
	Future
	Bibliography

	Parallel I/O Library (PIO)
	Parallel Ocean Program (POP)
	Parallel Operating System
	Parallel Prefix Algorithms
	Parallel Prefix Sums
	Parallel Random Access Machines (PRAM)
	Parallel Skeletons
	Synonyms
	Definition
	Discussion
	Programming with Skeletons
	Data-Parallel Skeletons and Transformational Programming
	Task- and Algorithm-Oriented Skeletons
	Skeleton-Based Systems

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Parallel Tools Platform
	Synonyms
	Definition
	Discussion
	Challenges
	Productivity
	Productive Parallel Programming
	C, C++, Fortran, and UPC Programming in Eclipse
	Code and Static Analysis for Parallel Programs
	Launching and Monitoring Parallel Programs
	Parallel Debugging
	Utilizing External Tools
	Remote Development
	The Parallel Tools Platform Today
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Parallelism Detection in Nested Loops, Optimal
	Synonyms
	Definition
	Discussion
	Optimal Parallelism Detection in Loops
	The Organization of Computations in a System of Uniform Recurrence Equations
	Definition of a SURE
	Computability: Definition and Properties
	The case of a single equation
	The case of several equations

	Loop Transformations and AutomaticLoop Parallelization
	Representation of DO Loops
	Approximations of Distances: Dependence Level and Direction Vector
	Uniformization Principle: From Dependence Polyhedra to SUREs
	Going Beyond, with the Affine Form of Farkas Lemma

	Multi-dimensional Affine Ranking Functions and Program Termination
	Integer Interpreted Automata and Invariants
	Termination and Ranking Functions
	A Greedy Complete Polynomial-Time Procedure

	Conclusion
	Related Entries
	Bibliography

	Parallelization
	Parallelization, Automatic
	Synonyms
	Definition
	Discussion
	Introduction
	Requirements for Autoparallelization
	Dependence Analysis
	Semantic Analysis
	Program Transformations
	Transformations for Reducing the Number of Dependences
	Transformations for Runtime Resolution
	Scheduling Transformations

	Autoparallelization Today

	Future Directions
	Related Entries
	Bibliographic Notes And Further Reading
	Bibliography

	Parallelization, Basic Block
	Synonyms
	Definition
	Discussion
	Introduction
	Basic Concepts
	Unlimited Resources
	ASAP Algorithm
	ALAP Algorithm

	Limited Resources
	List Scheduling
	Linear Analysis
	An Example

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Parallelization, Loop Nest
	ParaMETIS
	PARDISO
	Definition
	Discussion
	Introduction
	Sparse Gaussian Elimination in PARDISO
	Reordering Algorithms and Software in PARDISO
	Parallelization Strategies in PARDISO
	Approximate Sparse Gaussian Factorization in PARDISO
	General Software Issues in PARDISO
	Example
	Future Research Directions

	Related Entries
	Further Reading
	Bibliography

	PARSEC Benchmarks
	Partial Computation
	Particle Dynamics
	Particle Methods
	Partitioned Global Address Space (PGAS) Languages
	PASM Parallel Processing System
	Definition
	Discussion
	Introduction
	The Overall PASM Organization
	The Parallel Computation Unit
	The Memory Storage and Management Systems
	Using the PASM System

	Conclusions
	Related Entries
	Acknowledgments
	Bibliographic Notes and Further Reading
	Bibliography

	Path Expressions
	Synonyms
	Definition
	Discussion
	Implementation
	Uses of Path Expressions

	Summary
	Bibliographic Notes and Further Reading
	Bibliography

	PaToH (Partitioning Tool for Hypergraphs)
	Synonyms
	Definition
	Discussion
	Introduction
	Preliminaries
	Using PaToH
	PaToH Library Interface
	Stand-Alone Program

	Customizing PaToH's Hypergraph Partitioning

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Partitioning Tool for Hypergraphs (PaToH)
	PC Clusters
	PCI Express
	Synonyms
	Definition
	Discussion
	Introduction – A Brief History of PCIe
	Technology Overview
	Basic Elements and Concepts
	Link and Lane
	Signaling, Speed, and Bandwidth

	Link Configuration
	Packet-Based Protocol

	PCI Express Layering Overview
	Transaction Layer
	Data Link Layer
	Physical Layer
	Packet Flow Through the Layers

	PCI Express Platform Examples
	Architecture Features
	Scalable Protocol
	PCI Compatible Software Model
	Scalable Performance
	Advanced Power Management
	Reliability, Availabilty, Serviceability (RAS) Support
	Differentiated Quality of Service (Qos) Support
	IO Virtualization and Device Sharing Support
	Support for Heterogeneous Processing and Application Acceleration

	Form-Factors
	PCI Express Today
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	PCIe
	PCI-E
	PCI-Express
	Peer-to-Peer
	Synonyms
	Definition
	Discussion
	The Paradigm
	Implications
	Applications
	Architecture Variants
	Scientific Origins
	Hypercubic Overlays and Consistent Hashing
	Dealing with Churn
	Fostering Cooperation
	Current Trends and Outlook

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Pentium
	PERCS System Architecture
	Definition
	Discussion
	Introduction

	Key Elements of the PERCS Design
	Compute Node Design
	PERCS Interconnect
	Routing Between Nodes
	Novel Features of the PERCS Hub Chip
	Collective Accelerator Unit (CAU)
	Power Bus Interface
	Host Fabric Interface
	Integrated Switch Router (ISR)

	POWER7 Processor Overview
	Processor Core
	Processor Cache Hierarchy
	On-chip Integrated Fabric and Chip Interconnect

	Memory Subsystem
	Blue Waters: The First PERCS Installation
	Bibliography

	Perfect Benchmarks
	Performance Analysis Tools
	Synonyms
	Definition
	Discussion
	Introduction
	Event Model
	Monitoring
	Hardware Monitoring
	Sampling
	Instrumentation

	Analysis
	Level of Detail
	Performance Aspects
	Perturbation
	Automation
	Scalability

	Representative Tools

	Related Entries
	Bibliography

	Performance Measurement
	Performance Metrics
	Periscope
	Definition
	Discussion
	Introduction
	Performance Properties
	Search Strategies
	Architecture
	Summary

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Personalized All-to-All Exchange
	Petaflop Barrier
	Petascale Computer
	Related Entries

	Petri Nets
	Synonyms
	Definition
	Discussion
	Introduction
	Definition and Examples
	Example: A Barber Shop
	Petri Nets and Finite State Machines
	Conflict and Determinacy
	The Petri Net Hierarchy
	Extensions
	Coloured Petri Nets
	Timed Petri Nets
	Continuous and Hybrid Petri Nets

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	PETSc (Portable, Extensible Toolkit for Scientific Computation)
	Definition
	Discussion
	Library Design
	Applications

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	PGAS (Partitioned Global Address Space) Languages
	Definition
	Discussion
	Introduction
	Local Versus Shared Memory
	Computation and Address Spaces
	Messaging
	References to Remote Memory
	Array Programming and Implicit Parallelism
	Parallel Loops and Explicit Data Parallelism
	Collectives, Teams, and Synchronization
	Memory Consistency

	Future Trends
	Related Entries
	Bibliography

	Phylogenetic Inference
	Phylogenetics
	Synonyms
	Definition
	Discussion
	Introduction
	Input
	Output
	Combinatorial Optimization
	Optimality Criteria

	Vectorization
	Fine-Grain Parallelization
	Medium-Grain Parallelization
	Coarse-Grain Parallelization
	Coarse-Grain Parallelism in Distance-Based Analyses
	Coarse-Grain Parallelism in Maximum Likelihood Analyses
	Coarse-Grain Parallelism in Bayesian Analyses

	Phylogenetics Today
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Pi-Calculus
	Synonyms
	Definition
	Discussion
	Introduction
	Mobility
	Syntax
	Examples
	Names
	Types
	Theory
	Variants and Extensions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Pipelining
	Related Entries
	Bibliography

	Place-Transition Nets
	PLAPACK
	Definition
	Discussion
	Introduction
	The PLAPACK Project
	Objects and Communications
	Referencing (Sub)Objects
	Distributing and Interfacing with Parallel Operands
	An Illustrative Example

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	PLASMA
	Definition
	Discussion
	Related Entries
	Bibliography

	PMPI Tools
	Synonyms
	Definition
	Discussion
	Simple Usage Example
	Performance Measurement ToolsBased on PMPI
	Verification Tools Based on PMPI
	Future Directions

	Related Entries
	Bibliography

	Pnetcdf
	Point-to-Point Switch
	Polaris
	Synonyms
	Definition
	Discussion
	Introduction
	Detecting Parallelism
	Advanced Program Analysis

	Mapping Parallel Computation to the Target Machine
	Internal Organization
	Uses of Polaris
	Challenges and Future Directions

	Related Entries
	Bibliography

	Polyhedra Scanning
	Polyhedron Model
	Synonyms
	Definition
	Discussion
	The Basic Model
	Transformations
	An Example
	The Search for a Transformation
	Scheduling
	Placement

	Code Generation
	Extensions
	WHILE Loops
	Conditional Statements
	Iteration Domain Splitting
	Tiling
	Treatment of Expressions
	Relaxations of Affinity

	Applications Other than Loop Parallelization
	Array Expansion
	Array Shrinking
	Communication Generation
	Locality Enhancement
	Dynamic Optimization

	Tools
	Mathematical Support
	Code Generation
	Full-Fledged Loop Restructurers

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Polytope Model
	Position Tree
	POSIX Threads (Pthreads)
	Power Wall
	Definition
	Discussion
	Introduction
	Power Trends
	CMOS Technology Determinants

	Power-Performance Efficiency Metrics
	A Review of Key Ideas in Power-Aware Architectures
	Power Efficiency at the ProcessorCore Level
	Power-Efficient Microarchitecture Paradigms

	Conclusions
	Bibliography

	PRAM (Parallel Random Access Machines)
	Definition
	Discussion
	Introduction
	Complexity Measures and Work–Time Framework
	Basic PRAM Techniques
	Matrix Multiplication
	Prefix Sums or Scan
	List Ranking
	Fractional Independent Set
	Superfast Maximum Algorithm

	Bibliographic Notes and Further Reading
	Bibliography

	Preconditioners for Sparse Iterative Methods
	Synonyms
	Definition
	Discussion
	Simple Preconditioners Based on Stationary Methods
	Jacobi and Block-Jacobi Preconditioners
	Gauss–Seidel Preconditioner
	SOR Preconditioner

	Preconditioners Based on Incomplete Factorization
	Static-Pattern Incomplete Factorization
	Threshold-Based Incomplete Factorization
	Incomplete Factorization Based on Inverse-Norm Estimate

	Sparse Approximate Inverse Preconditioners
	Multigrid Preconditioners
	Geometric Multigrid
	Algebraic Multigrid

	Stochastic Preconditioners
	Matrix-Free Methods and Physics-Based Preconditioners

	Related Entries
	Bibliographic Notes
	Bibliography

	Prefix
	Prefix Reduction
	Problem Architectures
	Process Algebras
	Synonyms
	Definition
	Introduction
	Process Operators and Operational Semantics
	Three Process Algebras: CCS, CSP and ACP
	CCS: Calculus of Communicating Systems
	CSP: A Theory of Communicating Sequential Processes
	ACP: An Algebra of Communicating Processes

	Future Directions
	Relationships to Other Modelsof Concurrency
	Interleaving vs True Concurrency
	Linear-time vs Branching-time
	Synchrony vs Asynchrony

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Process Calculi
	Process Description Languages
	Process Synchronization
	Processes, Tasks, and Threads
	Processor Allocation
	Processor Arrays
	Processors-in-Memory
	Profiling
	Profiling with OmpP, OpenMP
	Program Graphs
	Programmable Interconnect Computer
	Programming Languages
	Programming Models
	Prolog
	Prolog Machines
	Related Entries
	Bibliography

	Promises
	Protein Docking
	Definition
	Discussion
	Introduction
	Approaches to Conformational Searching
	Exhaustive Rigid Body Searching
	Reduced Search Space Methods
	Side-Chain Refinement

	Incorporation of Protein Flexibility in Protein–Protein Docking
	Scoring Functions for Protein–Protein Docking
	Critical Assessments of Protein–Protein Docking Methods
	Applications of Protein–Protein Docking and Large-Scale Predictions

	Bibliographic Notes and Further Reading
	Bibliography

	Pthreads (POSIX Threads)
	PVM (Parallel Virtual Machine)
	Synonyms
	Definition
	Discussion
	Introduction
	Resource Management
	Process Control
	Message Passing
	Dynamic Task Groups
	Fault Tolerance

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

