T

' Task Graph Scheduling

YVES ROBERT
Ecole Normale Supérieure de Lyon, France

Synonyms
DAG scheduling; Workflow scheduling

Definition

Task Graph Scheduling is the activity that consists in
mapping a task graph onto a target platform. The task
graph represents the application: Nodes denote compu-
tational tasks, and edges model precedence constraints
between tasks. For each task, an assignment (choose
the processor that will execute the task) and a sched-
ule (decide when to start the execution) are determined.
The goal is to obtain an efficient execution of the appli-
cation, which translates into optimizing some objective
function, most usually the total execution time.

Discussion

Introduction

Task Graph Scheduling is the activity that consists in
mapping a task graph onto a target platform. The task
graph is given as input to the scheduler. Hence, schedul-
ing algorithms are completely independent of models
and methods used to derive task graphs. However, it is
insightful to start with a discussion on how these task
graphs are constructed.

Consider an application that is decomposed into a
set of computational entities, called tasks. These tasks
are linked by precedence constraints. For instance, if
some task T produces some data that is used (read) by
another tasks T’, then the execution of T’ cannot start
before the completion of T. It is therefore natural to rep-
resent the application as a task graph: The task graph is
a DAG (Directed Acyclic Graph), whose nodes are the

tasks and whose edges are the precedence constraints
between tasks.

The decomposition of the application into tasks is
given to the scheduler as input. Note that the task graph
may be directly provided by the user, but it can also
be determined by some parallelizing compiler from the
application program. Consider the following algorithm
to solve the linear system Ax = b, where Aisan n x n
nonsingular lower triangular matrix and b is a vector
with n components:

fori=1tondo
Task T,',,': Xi < b,-/a,»,,-
forj=i+1to N do
Task T,')j: bj < bj - aj,,- X Xi
end
end

For a given value of i, 1 < i < n, each task T,
represents some computations executed during the i-
th iteration of the external loop. The computation of
x; is performed first (task Tj;). Then, each compo-
nent b; of vector b such that j > i is updated (task
T;;). In the original sequential program, there is a total
precedence order between tasks. Write T <, T’ if
task T is executed before task T’ in the sequential
code. Then:

Tl,l <seq TI,Z <seq T1,3 <seq "'<seq Tl,n <seq

T2,2 <seq T2,3 <seq <seq Tn,n-

However, there are independent tasks that can be exe-
cuted in parallel. Intuitively, independent tasks are tasks
whose execution orders can be interchanged without
modifying the result of the program execution. A nec-
essary condition for tasks to be independent is that they
do not update the same variable. They can read the
same value, but they cannot write into the same mem-
ory location (otherwise there would be a race condition
and the result would be nondeterministic). For instance,

David Padua (ed.), Encyclopedia of Parallel Computing, DOI 10.1007/978-0-387-09766-4,

© Springer Science+Business Media, LLC 2011

http://dx.doi.org/10.1007/978-0-387-09766-4_2154
http://dx.doi.org/10.1007/978-0-387-09766-4_2155

2014

Task Graph Scheduling

tasks Ti, and T3 both read x; but modify distinct
components of b, hence they are independent.

This notion of independence can be expressed more
formally. Each task T has an input set In(T) (read val-
ues) and an output set Out(T) (written values). In the
example, In(T;;) = {b;,a;;} and Out(T;;) = {x;}. For
j > 1, IH(T,*,J') = {bj,aj)i,xi} and Out(Ti)j) = {bj} Two
tasks T and T’ are not independent (write T1T") if they
share some written variable:

In(T) nOut(T’) +9

TLT < or Out(T)nIn(T') +§

or Out(T)nOut(T") +¢

For instance, tasks Tj; and T;, are not independent
because Out(Ty,;) NIn(Ty,) = {x1}; therefore Ty ;1T .
Similarly, Out(T;3) N Out(T,3) = {bs}, and hence T} ;
and T3 are not independent; hence T 3175 3.

Given the dependence relation 1, a partial order <
can be extracted from the total order <, induced by
the sequential execution of the program. If two tasks T
and T’ are dependent, that is, TLT", they are ordered
according to the sequential execution: T < T” if both
TLT" and T <4 T'. The precedence relation < repre-
sents the dependences that must be satisfied to preserve
the semantics of the original program; if T < T’, then T
was executed before T” in the sequential code, and it has
to be executed before T’ even if there are infinitely many
resources, because T and T’ share a written variable.
In terms of order relations, < is defined more accu-
rately, as the transitive closure of the intersection of L
and <4, and captures the intrinsic sequentiality of the
original program. Note that transitive closure is needed
to track dependence chains. In the example, T 41T44
and Ty41T45, hence a path of dependences from T, 4
to Ty s, while T, 41 T4 5 does not hold.

A directed graph is drawn to represent the depen-
dence constraints that need to be enforced. The vertices
of the graph denote the tasks, while the edges express
the dependence constraints. An edge e : T — T in the
graph means that the execution of T’ must begin only
after the end of the execution of T, whatever the num-
ber of available processors. Transitivity edges are not
drawn, as they represent redundant information; only
predecessor edges are shown. T is a predecessor of T" if

Taa
\\\‘\
Tas Tap
|

Tss

Tse
|

Ts6

Task Graph Scheduling. Fig. 1 Task graph for the
triangular system (n = 6)

T < T' and if there is no task T” in between, that is, such
that T < T" and T” < T'. In the example, predecessor
relationships are as follows (see Fig. 1):

o Tii<Tijforl<i<j<n
(the computation of x; must be done before updating
bj at step i of the outer loop).

o Tij<Tiyjforl<i<j<n
(updating b; at step i of the outer loop is done before
reading it at step i + 1).

In summary, this example shows how an application
program can be decomposed into a task graph, either
manually by the user, or with the help of a parallelizing
compiler.

Traditional scheduling assumes that the target platform
is a set of p identical processors, and that no commu-
nication cost is paid. Fundamental results are presented
in this section, but only two proofs are provided, that of
Theorem 1, an easy result on the efficiency of a sched-
ule, and that of Theorem 4, Graham’s bound on list
scheduling.

Task Graph Scheduling

2015

Definitions

Definition 1 A task graph is a directed acyclic vertex-
weighted graph G = (V,E, w), where:

o The set V of vertices represents the tasks (note that V
is finite).

o The set E of edges represents precedence constraints
between tasks:
e=(u,v) € Eifand only if u < v.

o The weight function w : V. — N gives the weight
(or duration) of each task. Task weights are assumed
to be positive integers.

For the triangular system (Fig. 1), it can be assumed
that all tasks have equal weight: w(T;;) = 1for1 <
i <j < n.On a contrary, a division could be considered
as more costly than a multiply-add, leading to a larger
weight for diagonal tasks T ;.

A schedule o of a task graph is a function that assigns
a start time to each task.

Definition 2 A schedule of a task graph G = (V,E, w) is
a function o : V. — N* such that o (u) + w(u) < o(v)
whenever e = (u,v) € E.

In other words, a schedule must preserve the depen-
dence constraints induced by the precedence relation <
and embodied by the edges of the dependence graph;
if u < v, then the execution of u begins at time o(u)
and requires w(u) units of time, and the execution of
v at time o(v) must start after the end of the execution
of u. Obviously, if there was a cycle in the task graph,
no schedule could exist, hence the restriction to acyclic
graphs (DAGs).

There are other constraints that must be met by
schedules, namely, resource constraints. When there is
an infinite number of processors (in fact, when there are
as many processors as tasks), the problem is with unlim-
ited processors, and denoted Pb(o). When there is only
a fixed number p of available processors, the problem is
with limited processors, and denoted Pb(p). In the latter
case, an allocation function alloc : V. — P is required,
where P = {1,...,p} denotes the set of available pro-
cessors. This function assigns a target processor to each
task. The resource constraints simply specify that no

processor can be allocated more than one task at the
same time. This translates into the following conditions:

alloc(T) = alloe(y =] 7D T <o)
or o(T')+w(T') <o(T).

This condition expresses the fact that if two tasks T
and T’ are allocated to the same processor, then their
executions cannot overlap in time.

Definition 3 Let G = (V,E, w) be a task graph.

1. Let 0 bea schedule for G. Assume o uses at most p pro-
cessors (let p = oo ifthe processors are unlimited). The
makespan MS(o,p) of o is its total execution time:

MS(0,p) = max{a(v) + w(v)} - min{o(»)}.

2. Pb(p) is the problem of determining a schedule o
of minimal makespan MS(o,p) assuming p proces-
sors (let p = oo if the processors are unlimited). Let
MSopi(p) be the value of the makespan of an optimal
schedule with p processors:

MSopi(p) = min MS(o, p).

If the first task is scheduled at time 0, which is a com-
mon assumption, the expression of the makespan can be
reduced to MS(a,p) = max,ev{o(v) + w(v)}. Weights
extend to paths in G as usual; if ® = (T}, T5,...,T,)
denotes a path in G, then w(®) = YL, w(T).
Because schedules respect dependences, the following
easy bound on the makespan is readily obtained:

Proposition1 Let G = (V,E, w) be a task graph and o a
schedule for G with p processors. Then, MS(a,p) > w(®)
for all paths © in G.

Thelast definition introduces the notions of speedup
and efficiency for schedules.

Definition 4 Let G = (V,E, w) be a task graph and o a
schedule for G with p processors:

Seq

1. The speedup is the ratio s(o,p) = HCHE
Seq = ey w(v) is the sum of all task weights (Seq
is the optimal execution time MS,p; (1) of a schedule
with a single processor).

2. 'The efficiency is the ratio e(o,p) = 5((;17) = 1%'

where

2016

Task Graph Scheduling

Processors
A

Time

Task Graph Scheduling. Fig.2 Active and idle processors during execution

Theorem 1 Let G = (V,E,w) be a task graph. For any
schedule o with p processors,

0<e(o,p) <L

Proof Consider the execution of o as illustrated in Fig. 2
(this is a fictitious example, not related to the triangular
system example). At any time during execution, some
processors are active, and some are idle. At the end, all
tasks have been processed. Let Idle denote the cumu-
lated idle time of the p processors during the whole
execution. Because Seq is the sum of all task weights, the
quantity Seq+Idle is equal to the area of the rectangle in
Fig. 2, that s, the product of the number of processors by
the makespan of the schedule: Seq+Idle = pxMS(0,p).

Hence, e(a,p) = 1% <L O

Solving Pb(o)

Let G = (V,E,w) be a given task graph and assume
unlimited processors. Remember that a schedule o for
G is said to be optimal if its makespan MS(0,o0) is
minimal, that is, if MS(0, 00) = MS,;(00).

Definition 5 Let G = (V,E, w) be a task graph.

1. Forv € V, PRED(v) denotes the set of all immedi-
ate predecessors of v, and SUCC(v) the set of all its
immediate successors.

2. v € V is an entry (top) vertex if and only if
PRED(v) = §.

3. v € V is an exit (bottom) vertex if and only if
SUCC(v) = §.

4. Forv eV, the top level ti(v) is the largest weight of a
path from an entry vertex to v, excluding the weight
of v.

5. Forv eV, the bottom level bl(v) is the largest weight
of a path from v to an output vertex, including the
weight of v.

In the example of the triangular system, there is a
single entry vertex, Tj;, and a single exit vertex, T ,.
The top level of Ty, is 0, and #(Ty,) = #(Ty) +
w(Ty;) = 1. The value of T, 5 is

tl(T2,3) = max{w(TLl) + W(Tl,z)
+ W(Tz,z),W(TM) + W(T1,3)} =3

because there are two paths from the entry vertex
to Ty 5.

The top level of a vertex can be computed by a traver-
sal of the DAG; the top level of an entry vertex is 0, while
the top level of a non-entry vertex v is

H(v) = max{tl(u) + w(u);u € PRED(v)}.

Similarly, bl(v) = max{bl(u);u ¢ SUCC(v)} + w(v)
(and bl(v) = w(v) for an exit vertex v). The top level
of a vertex is the earliest possible time at which it can
be executed, while its bottom level represents a lower
bound of the remaining execution time once starting its
execution. This can be stated more formally as follows.

Theorem 2 Let G = (V,E, w) be a task graph and define
Ofrec as follows:

Vv eV, 0fe(v) = tl(v).

Then, Ofr, is an optimal schedule for G.

Task Graph Scheduling

2017

From Theorem 2:
MSpt(00) = MS(0free, 00) = me‘llx{tl(v) +w(v)}.

Hence, MS,;(c0) is simply the maximal weight of a
path in the graph. Note that oy, is not the only optimal
schedule.

Corollary 1 Let G = (V,E,w) be a directed acyclic
graph. Pb(co) can be solved in time O(|V| + |E|).

Going back to the triangular system (Fig. 1), because
all tasks have weight 1, the weight of a path is equal to
its length plus 1. The longest path is

Ty~ Tyo—>Typ = > Tyu1—> To1n > Thpns

whose weight is 21 — 1. Not as many processors as tasks
are needed to achieve execution within 2n—1 time units.
For example, only n — 1 processors can be used. Let 1 <
i < m; at time 2i — 2, processor P; starts the execution of
task T ;, while at time 2i — 1, the first n — i processors P;,
Py, ..., P,_; execute tasks T;j, i + 1 <j< n.

NP-completeness of Pb(p)

Definition 6 The decision problem Dec(p) associated
with Pb(p) is as follows. Given a task graph G =
(V,E,w), a number of processors p > 1, and an execution
bound K € N*, does there exist a schedule o for G using at
most p processors, such that MS(o,p) < K? The restric-
tion of Dec(p) to independent tasks (no dependence, that
is, when E = () is denoted Indep-tasks(p). In both prob-
lems, p is arbitrary (it is part of the problem instance).
When p is fixed a priori, say p = 2, problems are denoted
as Dec(2) and Indep-tasks(2).

Well-known complexity results are summarized in
the following theorem.

Theorem 3

o Indep-tasks(2) is NP-complete but can be solved by
a pseudo-polynomial algorithm. Moreover, V& > 0,
Indep-tasks(2) admits a (1+¢)-approximation whose
complexity is polynomial in L.

o Indep-tasks(p) is NP-complete in the strong sense.

e Dec(2) (and hence Dec(p)) is NP-complete in the
strong sense.

Because Pb(p) is NP-complete, heuristics are used to
schedule task graphs with limited processors. The most

natural idea is to use greedy strategies: At each instant,
try to schedule as many tasks as possible onto available
processors. Such strategies deciding not to deliberately
keep a processor idle are called list scheduling algo-
rithms. Of course, there are different possible strategies
to decide which tasks are given priority in the (frequent)
case where there are more free tasks than available pro-
cessors. But a key result due to Graham [10] is that any
list algorithm can be shown to achieve at most twice the
optimal makespan.

Definition 7 Let G = (V,E,w) be a task graph and let
o be a schedule for G. A task v € V is free at time t
(note v € FREE(0,t)) if and only if its execution has not
yet started (o(v) > t) but all its predecessors have been
executed (Y u € PRED(v), o(u) + w(u) < t).

A list schedule is a schedule such that no processor
is deliberately left idle; at each time ¢, if |[FREE(o,t)| =
r > 1, and if q processors are available, then min(r,q)
free tasks start executing.

Theorem 4 Let G = (V,E,w) be a task graph and
assume there are p available processors. Let o be any
list schedule of G. Let MS,p,(p) be the makespan of an
optimal schedule. Then,

AB(mp)s(Z—%)km@(p)

It is important to point out that Theorem 4 holds for
any list schedule, regardless of the strategy to choose
among free tasks when there are more free tasks than
available processors.

Lemmal There exists a dependence path ® in G whose
weight w(®) satisfies

Idle < (p—1) x w(®),

where Idle is the cumulated idle time of the p processors
during the whole execution of the list schedule.

Proof Define the ancestors of a task are its predecessors,
the predecessors of its predecessors, and so on. Let T,
be a task whose execution terminates at the end of the
schedule:

o(Ty) +w(Ty,) = MS(o,p).

Let t; be the largest time smaller than ¢(T}) and such
that there exists an idle processor during the time inter-
val [#,t +1] (let f; = 0 if such a time does not exist).

2018

Task Graph Scheduling

Why is this processor idle? Because o is a list schedule,
no task is free at ;, otherwise the idle processor would
start executing a free task. Therefore, there must be a
task T, that is an ancestor of T; and that is being exe-
cuted at time #;; otherwise T; would have been started
at time f; by the idle processor. Because of the definition
of #, it is known that all processors are active between
the end of the execution of Tj, and the beginning of the
execution of Tj .

Then, start the construction again from Tj, so
as to obtain a task Tj, such that all processors are
active between the end of T, and the beginning of
T;,. Iterating the process, one ends up with r tasks
Ti,,Ti ..., T; that belong to a dependence path ® of
G and such that all processors are active except perhaps
during their execution. In other words, the idleness of
some processors can only occur during the execution
of these r tasks, during which at least one processor is
active (the one that executes the task). Hence, Idle <

(p=1) x Zjs w(Tyy) < (p—1) x w(P). 0

Proof Going back to the proof of Theorem 4, recall that
p x MS(0,p) = Idle + Seq, where Seq = ¥,y w(v) is
the sequential time, that is, the sum of all task weights
(see Fig. 2). Now take the dependence path ® con-
structed in Lemma 1: w(®) < MS,,(p), because the
makespan of any schedule is greater than the weight of
all dependence paths in G (simply because dependence
constraints are met). Furthermore, Seq < p x MS,,(p)
(with equality only if all p processors are active all the
time). Putting this together:

pxMS(o,p) = Idle+Seq < (p-1)w(®) + Seq
< (p = DMSopi (p) + pMSope (p)
= (2p = D)MSou(p),
which proves the theorem. O

Fundamentally, Theorem 4 says that any list sched-
ule is within 50% of the optimum. Therefore, list
scheduling is guaranteed to achieve half the best pos-
sible performance, regardless of the strategy to choose
among free tasks.

Proposition 2 Let MSj(p) be the shortest possible
makespan produced by a list scheduling algorithm.

The bound
2p-1

MSiist (p) < MSopi(p)

is tight.

Note that implementing a list scheduling algorithm
is not difficult, but it is somewhat lengthy to describe in
full detail; see Casanova et al. [3].

A widely used list scheduling technique is critical path
scheduling. The selection criterion for free tasks is based
on the value of their bottom level. Intuitively, the larger
the bottom level, the more “urgent” the task. The critical
path of a task is defined as its bottom level and is used
to assign priority levels to tasks. Critical path schedul-
ing is list scheduling where the priority level of a task
is given by the value of its critical path. Ties are broken
arbitrarily.

Consider the task graph shown in Fig. 3. There are
eight tasks, whose weights and critical paths are listed
in Table 1. Assume there are p = 3 available processors
and let Q be the priority queue of free tasks. At t = 0, Q
is initialized as @ = (T3, Tz, T;). These three tasks are
executed. At t = 1, Tg is added to the queue: Q = (Tg).
There is one processor available, which starts the execu-
tion of Tg. At t = 2, the four successors of T, are added
to the queue: Q = (Ts, Ts, T4, T7). Note that ties have
been broken arbitrarily (using task indices in this case).
The available processor picks the first task Ts in Q.
Following this scheme, the execution goes on up to t =
10, as summarized in Fig. 4.

T1 T2 TS
T, Ts To T Ts

Task Graph Scheduling. Fig. 3 A small example

Task Graph Scheduling. Table 1 Weights and critical paths
for the task graph in Fig. 3

Weights 3 2 1 3 4 4 3
Critical paths | 3 6 7 3 4 4 3 6

Task Graph Scheduling

2019

T- T T
P, 3 8 7
T, T T,
P, 2 5 4
T T
P, 1 6
| | | | | | | | |
T T T T T T T T T

T
o 1t 2 3 4 5 6 7 8 9 10
Time steps

Task Graph Scheduling. Fig. 4 Critical path schedule for
the example in Fig. 3

P, T3 To T,
T. T: T,
P, 2 5 4
P, T, Ts
| | | | | | | | |
| —— R B E— E— —

T
o 1 2 3 4 5 6 7 8 9 10
Time steps

Task Graph Scheduling. Fig. 5 Optimal schedule for the
examplein Fig. 3

Note that it is possible to schedule the graph in only
9 time units, as shown in Fig. 5. The trick is to leave a
processor idle at time ¢ = 1 deliberately; although it has
the highest critical path, T can be delayed by two time
units. T5 and T are given preference to achieve a better
load balance between processors. The schedule shown
in Fig. 5 is optimal, because Seq = 26, so that three pro-
cessors require at least [%] = 9 time units. This small
example illustrates the difficulty of scheduling with a
limited number of processors.

The Macro-Dataflow Model

Thirty years ago, communication costs have been intro-
duced in the scheduling literature. Because the perfor-
mance of network communication is difficult to model
in a way that is both precise and conducive to under-
standing the performance of algorithms, the vast major-
ity of results hold for a very simple model, which is as
follows.

The target platform consists of p identical processors
that are part of of a fully connected clique. All inter-
connection links have same bandwidth. If a task T
communicates data to a successor task T’, the cost is
modeled as

0 ifalloc(T) = alloc(T")
cost(T, T') =

c(T,T") otherwise,
where alloc(T) denotes the processor that executes task
T, and ¢(T, T") is defined by the application specifica-
tion. The time for communication between two tasks
running on the same processor is negligible. This so-
called macro-dataflow model makes two main assump-
tions: (i) communication can occur as soon as data
are available and (ii) there is no contention for net-
work links. Assumption (i) is reasonable as communi-
cation can overlap with (independent) computations in
most modern computers. Assumption (ii) is much more
questionable. Indeed, there is no physical device capable
of sending, say, 1,000 messages to 1,000 distinct proces-
sors, at the same speed as if there were a single message.
In the worst case, it would take 1,000 times longer
(serializing all messages). In the best case, the output
bandwidth of the network card of the sender would
be a limiting factor. In other words, assumption (ii)
amounts to assuming infinite network resources. Nev-
ertheless, this assumption is omnipresent in the tradi-
tional scheduling literature.

Definition 8 A communication task graph (or
commTG) is a direct acyclic graph G = (V,E,w,c),
where vertices represent tasks and edges represent prece-
dence constraints. The computation weight function is
w: V. — N* and the communication cost function is
¢ : E — N*. A schedule o must preserve dependences,
which is written as

o(T) + w(T) < o(T')

Ve = (T) T/) ¢E, lfa”OC(T) = a“OC(T’)

a(T)+w(T) +c(T, T") < a(T)

otherwise.

The expression of resource constraints is the same as
in the no-communication case.

2020

Task Graph Scheduling

Complexity and List Heuristics with
Communications

Including communication costs in the model makes
everything difficult, including solving Pb(oc). The intu-
itive reason is that a trade-off must be found between
allocating tasks to either many processors (hence bal-
ancing the load but communicating intensively) or few
processors (leading to less communication but less par-
allelism as well). Here is a small example, borrowed
from [9].

Consider the commTG in Fig. 6. Task weights are
indicated close to the tasks within parentheses, and
communication costs are shown along the edges, under-
lined. For the sake of this example, two non-integer
communication costs are used: c¢(Ty, Ts) = ¢(Ts, Tg) =
1.5. Of course, every weight w and cost ¢ could be scaled
to have only integer values. Observe the following:

e On the one hand, if all tasks are assigned to the same
processor, the makespan will be equal to the sum of
all task weights, that is, 13.

e On the other hand, with unlimited processors (no
more than seven processors are needed because
there are seven tasks), each task can be assigned
to a different processor. Then, the makespan of the
ASAP schedule is equal to 14. To see this, it is impor-
tant to point out that once the allocation of tasks to
processors is given, the makespan is computed eas-
ily: For each edge e : T — T', add a virtual node
of weight ¢(T,T") if the edge links two different
processors (alloc(T) # alloc(T")), and do nothing

1
\‘Tm

3
o 2/ N\
2
T4() T5(2
1-&\ /-5
2
(1)

T
T 6
T7(1)

|on

)

Task Graph Scheduling. Fig. 6 An example commTG

otherwise. Then, consider the new graph as a DAG
(without communications) and traverse it to com-
pute the length of the longest path. Here, because
all tasks are allocated to different processors, a vir-
tual node is added on each edge. The longest path is
Ty — T, - T, whose length is w(T;) + ¢(Ty, Tz) +
w(Ty) +c(Ta, T;) + w(T7) = 14.

There is a difficult trade-oft between executing tasks
in parallel (hence with several distinct processors) and
minimizing communication costs. In the example, it
turns out that the best solution is to use two processors,
according to the schedule in Fig. 7, whose makespan is
equal to 9. Using more processors does not always lead
to a shorter execution time. Note that dependence con-
straints are satisfied in Fig. 7. For example, T can start at
time 1 on processor P; because this processor executes
T, hence there is no need to pay the communication
cost ¢(T, T>). By contrast, T is executed on processor
P,, hence it cannot be started before time 2 even though
Pyisidle: o(Ty) + w(Ty) + (T, T3) =0+1+1=2.

With unlimited processors, the optimization prob-
lem becomes difficult: Pb(oco) is NP-complete in the
strong sense. Even the problem in which all task weights
and communication costs have the same (unit) value,
the so-called UET-UCT problem (unit execution time-
unit communication time), is NP-hard [13].

With limited processors, list heuristics can be
extended to take communication costs into account, but
Graham’s bound does not hold any longer. For instance,
the Modified Critical Path (MCP) algorithm proceeds as
follows. First, bottom levels are computed using a pes-
simistic evaluation of the longest path, accounting for
each potential communication (this corresponds to the
allocation where there is a different processor per task).

Py

Time steps

Task Graph Scheduling. Fig. 7 An optimal schedule for
the example

Task Graph Scheduling

2021

These bottom levels are used to determine the priority of
free tasks. Then each free task is assigned to the proces-
sor that allows its earliest execution, given previous task
allocation decisions. It is important to explain further
what “previous task allocation decisions” means. Free
tasks from the queue are processed one after the other.
At any moment, it is known which processors are avail-
able and which ones are busy. Moreover, for the busy
processors, it is known when they will finish computing
their currently allocated tasks. Hence, it is always possi-
ble to select the processor that can begin executing the
task soonest. It may well be the case that a currently busy
processor is selected.

Extension to Heterogeneous Platforms
This section explains how to extend list scheduling tech-
niques to heterogeneous platforms, that is, to platforms
that consist of processors with different speeds and
interconnection links with different bandwidths. Key
differences with the homogeneous case are outlined.
Given a commTG with n tasks T1, . . ., T}, the goal is
to schedule it on a platform with p heterogeneous pro-
cessors Py, ..., P,. There are now many parameters to
instantiate:

Computation costs : The execution cost of T; on P, is
modeled as w;,. Therefore, an n x p matrix of val-
ues is needed to specify all computation costs. This
matrix comes directly for the specific scheduling
problem at hand. However, when attempting to eval-
uate competing scheduling heuristics over a large
number of synthetic scenarios, one must generate
this matrix. One can distinguish two approaches.
In the first approach one generates a consistent (or
uniform) matrix with w;; = w; x y,, where w; repre-
sents the number of operations required by T; and
yq is the inverse of the speed of P, (in operations
per second). With this definition the relative speed
of the processors does not depend on the particu-
lar task they execute. If instead some processors are
faster for some tasks than some other processors,
but slower for other tasks, one speaks of an incon-
sistent (or nonuniform) matrix. This corresponds to
the case in which some processors are specialized for
some tasks (e.g., specialized hardware or software).

Communication costs : Just as processors have differ-
ent speeds, communication links may have different

bandwidths. However, while the speed of a proces-
sor may depend upon the nature of the computation
it performs, the bandwidth of a link does not depend
on the nature of the bytes it transmits. It is there-
fore natural to assume consistent (or uniform) links.
If there is a dependence ¢; : T; — Tj, if T; is
executed on P, and T; executed on P,, then the
communication time is modeled as

comm(i,j,q,r) = data(i,j) x vy,

where data(i,j) is the data volume associated to e;;
and v, is the communication time for a unit-size
message from P, to P, (i.e., the inverse of the band-
width). Like in the homogeneous case, let v,, = 0
if g = r, that is, if both tasks are assigned the same
processor. If one wishes to generate synthetic scenar-
ios to evaluate competing scheduling heuristics, one
then must generate two matrices: one of size n x n
for data and one of size p x p for vg,.

The main list scheduling principle is unchanged.
As before, the priority of each task needs to be com-
puted, so as to decide which one to execute first when
there are more free tasks than available processors. The
most natural idea is to compute averages of computation
and communication times, and use these to compute
priority levels exactly as in the homogeneous case:

5w

o W= 1, the average execution time of T;.

— .. <q,r< rVar
e commy = data(i,j) x ZI\;’(};—"_”S'{, the average com-

munication cost for edge e;; : T; — T;.

The last (but important) modification concerns the way
in which tasks are assigned to processors: Instead of
assigning the current task to the processor that will start
its execution first (given all already taken decisions), one
should assign it to the processor that will complete its
execution first (given all already taken decisions). Both
choices are equivalent with homogeneous processors,
but intuitively the latter is likely to be more efficient in
the heterogeneous case. Altogether, this leads to the list
heuristic called HEFT, for Heterogeneous Earliest Finish
Time [19].

This section discusses workflow scheduling, that is, the
problem of scheduling a (large) collection of identical
task graphs rather than a single one. The main idea is
to pipeline the execution of successive instances. Think

2022

Task Graph Scheduling

of a sequence of video images that must be processed
in a pipelined fashion: Each image enters the platform
and follows the same processing chain, and a new image
can enter the system while previous ones are still being
executed. This section is intended to give a flavor of the
optimization problems to be solved in such a context. It
restricts to simpler problem instances.

Consider “chains,” that is, applications structured as
a sequence of stages. Each stage corresponds to a dif-
ferent computational task. The application must process
a large number of data sets, each of which must go
through all stages. Each stage has its own communica-
tion and computation requirements: It reads an input
from the previous stage, processes the data, and out-
puts a result to the next stage. Initial data are input
to the first stage and final results are obtained as the
output from the last stage. The pipeline operates in syn-
chronous mode: After some initialization delay, a new
task is completed every period. The period is defined as
the longest “cycle-time” to operate a stage, and it is the
inverse of the throughput that can be achieved.

For simplicity, it is assumed that each stage is
assigned to a single processor, that is in charge of pro-
cessing all instances (all data sets) for that stage. Each
pipeline stage can be viewed a sequential task that may
write some global data structure, to disk or to mem-
ory, for each processed data set. In this case, tasks must
always be processed in a sequential order within a stage.
Moreover, due to possible local updates, each stage must
be mapped onto a single processor. For a given stage,
one cannot process half of the tasks on one processor
and the remaining half on another without maintaining
global information, which might be costly and diffi-
cult to implement. In other words, a processor that is
assigned a stage will execute the operations required by
this stage (input, computation, and output) for all the
tasks fed into the pipeline.

Of course, other assumptions are possible: some
stages could be replicated, or even data-parallelized. The
reader is referred the bibliographical notes at the end of
the chapter for such extensions.

Objective Functions

An important metric for parallel applications that con-
sists of many individual computations is the throughput.
The throughput measures the aggregate rate of data
processing; it is the rate at which data sets can enter

the system. Equivalently, the inverse of the through-
put, defined as the period, is the time interval required
between the beginning of the execution of two consec-
utive data sets. The period minimization problem can
be stated informally as follows: Which stage to assign to
which processor so that the largest period of a processor
is kept minimal?

Another important metric is derived from makespan
minimization, but it must be adapted. With alarge num-
ber of data sets, the total execution time is less relevant,
but the execution time for each data set remains impor-
tant, in particular for real-time applications. One talks
of latency rather than of makespan, in order to avoid
confusion. The latency is the time elapsed between the
beginning and the end of the execution of a given data
set, hence it measures the response time of the system
to process the data set entirely.

Minimizing the latency is antagonistic to maximiz-
ing the throughput. In fact, assigning all application
stages to the fastest processor (thus working in a fully
sequential way) would suppress all communications
and accelerate computations, thereby minimizing the
latency, but achieving a very bad throughput. Con-
versely, mapping each stage to a different processor
is likely to decrease the period, hence increase the
throughput (work in a fully pipelined manner), but
the resulting latency will be high, because all interstage
communications must be accounted for in this latter
mapping. Trade-ofts will have to be found between these
criteria.

How to deal with several objective functions? In
traditional approaches, one would form a linear com-
bination of the different objectives and treat the result
as the new objective to optimize for. But it is not natu-
ral for the user to maximize a quantity like 0.7T + 0.3L,
where T is the throughput and L the latency. Instead,
one is more likely to fix a throughput T', and to search for
the best latency that can be achieved while enforcing T?
One single criterion is optimized, under the condition
that a threshold is enforced for the other one.

Period and Latency

Consider a pipeline with n stages Sk, 1 < k < n, as
illustrated in Fig. 8. Tasks are fed into the pipeline and
processed from stage to stage, until they exit the pipeline
after the last stage. The k-th stage Sk receives an input
from the previous stage, of size by_;, performs a num-
ber of wy operations, and outputs data of size by to the

Task Graph Scheduling 2023

bo by by by b,
Wy Wy Wy W,

Task Graph Scheduling. Fig. 8 The application pipeline

next stage. The first stage S; receives an initial input of
size by, while the last stage S, returns a final result of
size b,,.

The target platform is a clique with p processors P,,,
1 < u < p, that are fully interconnected (see Fig. 9). There
is a bidirectional link link,,, : P, <> P, with bandwidth
B, between each processor P, and P,, The literature
often enforces more realistic communication models
for workflow scheduling than for Task Graph Schedul-
ing. For the sake of simplicity, a very strict model is
enforced here: A given processor can be involved in a
single communication at any time unit, either a send
or a receive. Note that independent communications
between distinct processor pairs can take place simul-
taneously. Finally, there is no overlap between commu-
nications and computations, so that all the operations of
a given processor are fully sequentialized. The speed of
processor P, is denoted as W, and it takes X/ W, time
units for P, to execute X operations. It takes X/B,, , time
units to send (respectively, receive) a message of size X
to (respectively, from) P,.

The mapping problem consists in assigning applica-
tion stages to processors. For one-to-one mappings, it is
required that each stage Sy of the application pipeline
be mapped onto a distinct processor Pyjoc(xy (Which is
possible only if n < p). The function alloc associates a
processor index to each stage index. For convenience,
two fictitious stages Sp and S, are created, assigning
Sp to Py, and S,,41 to Poyt.

What is the period of Pyjjoc(k) that is, the minimum
delay between the processing of two consecutive tasks?
To answer this question, one needs to know to which
processors the previous and next stages are assigned. Let
t = alloc(k — 1), u = alloc(k), and v = alloc(k + 1).
P, needs by_;/B;, time units to receive the input data
from Py, wi/W, time units to process it, and by/B,,,
time units to send the result to P,, hence a cycle-time
of bx_1/Bt, + Wi/ W, + bi/B,,, time units for P,,. These
three steps are serialized (see Fig. 10 for an illustration).
The period achieved with the mapping is the maximum
of the cycle-times of the processors, which corresponds
to the rate at which the pipeline can be activated.

Task Graph Scheduling. Fig. 9 The target platform

In this simple instance, the optimization problem
can be stated as follows: Determine a one-to-one allo-
cation function alloc : [1,n] — [L,p] (augmented with
alloc(0) =in and alloc(n + 1) = out) such that

by Wi
Tperiod = mMax +
I<ksn Balloc(k—l),alloc(k) Walloc(k)

b }
4k
Balloc(k),alloc(kﬂ)
is minimized.

Natural extensions are interval mappings, in which
each participating processor is assigned an interval of
consecutive stages. Note that when p < n interval map-
pings are mandatory. Intuitively, assigning several con-
secutive tasks to the same processor will increase its
computational load, but will also decrease communica-
tion. The best interval mapping may turn out to be a
one-to-one mapping, or instead may utilize only a very
small number of fast computing processors intercon-
nected by high-speed links. The optimization problem
associated to interval mappings is formally expressed as
follows. The intervals achieve a partition of the original
set of stages S; to S,. One searches for a partition of
(1,...,n] into m intervals I; = [d;, ;] such that d; < ¢
forl<j<m,d =1dj; =¢+1for1<j<m—1and
em = n. Recall that the function alloc : [1,n] = [L,p]
associates a processor index to each stage index. In a
one-to-one mapping, this function was a one-to-one

2024

Task Graph Scheduling

Timeunit|] 1 2 83 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ---
P *HEAAEEAAEEAA ENE-
Py Ak B A A KB AA KXKEA A
Ps * x B A * ok B A * ke

Task Graph Scheduling. Fig. 10 An example of one-to-one mapping with three stages and processors. Each processor

periodically receives input data from its predecessor (¥), performs some computation (m), and outputs data to its

successor (A). Note that these operations are shifted in time from one processor to another. The cycle-time of Py and P, is

5 while that of Ps is 4, hence Tperiod = 5

assignment. In an interval mapping, for 1 < j < m,
the whole interval I; is mapped onto the same proces-
ST Pyjioc(d,)» that is, for d; < i < ¢j, alloc(i) = alloc(d).
Also, two intervals cannot be mapped to the same pro-
cessor, that is, for 1 < j,j’ < m, j # j, alloc(d;) +
alloc(d;/). The period is expressed as

e
ZiJ:dj Wi

Walloc(dj)

bd-—l
Tperiod = max{ B : +

Igjsm alloc(d;—1),alloc(d;)

b, }
+—
Balloc(dj),alloc(ejﬂ)

Note that alloc(d; — 1) = alloc(ej—;) = alloc(d;_;) for
j>1landd, -1 = 0. Also, ¢j + 1 = dj;; for j < m, and
em +1=n+ 1 Itis still assumed that alloc(0) = in and
alloc(n +1) = out. The optimization problem is then to
determine the mapping that minimizes Tperiod, Over all
possible partitions into intervals, and over all mappings
of these intervals to the processors.

The latency of an interval mapping is computed as
follows. Each data set traverses all stages, but only com-
munications between two stages mapped on the same
processors take zero time units. Overall, the latency is
expressed as

e
N Ziidj Wi
Walloc(dj)

bd-—l
Tlatency: Z { :

1Sj<m Balloc(djfl),alloc(dj)
by,

+ —
Balloc(n),alloc(nﬂ)

The latency for a one-to-one mapping obeys the
same formula (with the restriction that each interval
has length 1). Just as for the period, there are two mini-
mization problems for the latency, with one-to-one and
interval mappings.

It goes beyond the scope of this entry to assess
the complexity of these period/latency optimization
problems, and of their bi-criteria counterparts. The
aim was to provide the reader with a quick primer
on workflow scheduling, an activity that borrows sev-
eral concepts from Task Graph Scheduling, while using
more realistic platform models, and different objective
functions.

Related Entries

»Loop Pipelining

»Modulo Scheduling and Loop Pipelining
»Scheduling Algorithms

Recommended Reading

Without communication costs, pioneering work includes
the book by Coffman [5]. The book by El-Rewini

et al. [7] and the IEEE compilation of papers [15]

provide additional material. On the theoretical side,

Appendix A5 of Garey and Johnson [8] provides a list

of NP-complete scheduling problems. Also, the book by

Brucker [2] offers a comprehensive overview of many

complexity results.

The literature with communication costs is more
recent. See the survey paper by Chrétienne and
Picouleau [4]. See also the book by Darte et al. [6],
where many heuristics are surveyed. The book by
Sinnen [16] provides a thorough discussion on com-
munication models. In particular, it describes several
extensions for modeling and accounting for communi-
cation contention.

Workflow scheduling is quite a hot topic with the
advent of large-scale computing platforms. A few rep-
resentative papers are [1,11, 17, 18].

http://dx.doi.org/10.1007/978-0-387-09766-4_65
http://dx.doi.org/10.1007/978-0-387-09766-4_66

TAU

2025

Modern scheduling encompasses a wide spectrum
of techniques: divisible load scheduling, cyclic schedul-
ing, steady-state scheduling, online scheduling, job
scheduling, and so on. A comprehensive survey is avail-
able in the book [14]. See also the handbook [12].

Most of the material presented in this entry is
excerpted from the book by Casanova et al. [3].

Bibliography

1. Benoit A, Robert Y (2008) Mapping pipeline skeletons onto
heterogeneous platforms.] Parallel Distr Comput 68(6):
790-808

2. Brucker P (2004) Scheduling algorithms. Springer, New York

3. Casanova H, Legrand A, Robert Y (2008) Parallel algorithms.
Chapman & Hall/CRC Press, Beaumont, TX

4. Chrétienne P, Picouleau C (1995) Scheduling with communica-
tion delays: a survey. In: Chrétienne P, Coffman EG Jr, Lenstra
JK, Liu Z (eds) Scheduling theory and its applications. Wiley,
Hoboken, NJ, pp 65-89

5. Coffman EG (1976) Computer and job-shop scheduling theory.
Wiley, Hoboken, NJ

6. Darte A, Robert Y, Vivien F (2000) Scheduling and automatic
parallelization. Birkhatiser, Boston

7. El-Rewini H, Lewis TG, Ali HH (1994) Task scheduling in parallel
and distributed systems. Prentice Hall, Englewood Cliffs

8. Garey MR, Johnson DS (1991) Computers and intractability, a
guide to the theory of NP-completeness. WH Freeman and Com-
pany, New York

9. Gerasoulis A, Yang T (1992) A comparison of clustering heuristics
for scheduling DAGs on multiprocessors.] Parallel Distr Comput
16(4):276-291

10. Graham RL (1996) Bounds for certain multiprocessor anomalies.
Bell Syst Tech J 45:1563-1581

11. Hary SL, Ozguner F (1999) Precedence-constrained task alloca-
tion onto point-to-point networks for pipelined execution. IEEE
Trans Parallel Distr Syst 10(8):838-851

12. Leung JY-T (ed) (2004) Handbook of scheduling: algorithms,
models, and performance analysis. Chapman and Hall/CRC
Press, Boca Raton

13. Picouleau C (1995) Task scheduling with interprocessor commu-
nication delays. Discrete App Math 60(1-3):331-342

14. Robert Y, Vivien F (eds) (2009) Introduction to scheduling.
Chapman and Hall/CRC Press, Boca Raton

15. Shirazi BA, Hurson AR, Kavi KM (1995) Scheduling and load
balancing in parallel and distributed systems. IEEE Computer
Science Press, San Diego

16. Sinnen O (2007) Task scheduling for parallel systems. Wiley,
Hoboken

17. Spencer M, Ferreira R, Beynon M, Kurc T, Catalyurek U,
Sussman A, Saltz] (2002) Executing multiple pipelined data anal-
ysis operations in the grid. Proceedings of the ACM/IEEE super-
computing conference. ACM Press, Los Alamitos

18. Subhlok J, Vondran G (1995) Optimal mapping of sequences of
data parallel tasks. Proceedings of the 5th ACM SIGPLAN sym-
posium on principles and practice of parallel programming. ACM
Press, San Diego, pp 134-143

19. Topcuoglu H, Hariri S, Wu MY (2002) Performance-effective and
low-complexity task scheduling for heterogeneous computing.
IEEE Trans Parallel Distr Syst 13(3):260-274

' Task Mapping, Topology Aware

» Topology Aware Task Mapping

' Tasks

»Processes, Tasks, and Threads

" TAU

SAMEER SHENDE, ALLEN D. MALONY, ALAN MORRIS,
WYATT SPEAR, SCOTT BIERSDORFF
University of Oregon, Eugene, OR, USA

Synonyms
TAU performance system®; Tuning and analysis
utilities

Definition

The TAU Performance System® is an integrated suite
of tools for instrumentation, measurement, and analysis
of parallel programs with particular focus on large-
scale, high-performance computing (HPC) platforms.
TAU’s objectives are to provide a flexible and interop-
erable framework for performance tool research and
development, and robust, portable, and scalable set of
technologies for performance evaluation on high-end
computer systems.

Discussion

Scalable parallel systems have always evolved together
with the tools used to observe, understand, and opti-
mize their performance. Next-generation parallel com-
puting environments are guided to a significant degree

http://dx.doi.org/10.1007/978-0-387-09766-4_275
http://dx.doi.org/10.1007/978-0-387-09766-4_448
http://dx.doi.org/10.1007/978-0-387-09766-4_2165
http://dx.doi.org/10.1007/978-0-387-09766-4_2166
http://dx.doi.org/10.1007/978-0-387-09766-4_2166

2026

TAU

by what is known about application performance on
current machines and how performance factors might
be influenced by technological innovations. State-of-
the-art performance tools play an important role
in helping to understand application performance,
diagnose performance problems, and guide tuning
decisions on modern parallel platforms. However, per-
formance tool technology must also respond to the
growing complexity of next-generation parallel sys-
tems in order to help deliver the promises of high-end
computing (HEC).

The TAU project began in the early 1990s with the
goal of creating a performance instrumentation, mea-
surement, and analysis framework that could produce
robust, portable, and scalable performance tools for
use in all parallel programs and systems over several
technology generations. Today, the TAU Performance
System® is a ubiquitous performance tools suite for
shared-memory and message-passing parallel applica-
tions written in multiple programming languages (e.g.,
C, C++, Fortran, OpenMP, Java, Python, UPC, Chapel)
that can scale to the largest parallel machines available.

TAU Design

TAU is of a class of performance systems based on
the approach of direct performance observation, wherein
execution actions of performance interest are exposed as
events to the performance system through direct inser-
tion of instrumentation in the application, library, or

Instrumentation

Source Object Library Binary Virtual |
code code wrapper code machine
-t

Measurement]

Event
selection

Event
information

Event creation and management

Event
control |

Event
mapping

Event Entry/exit
identifier events

Profiling Tracing

. Atomic
Statistics
profiles

; == 1= =
|| Phase 78] Profile Timestamp! Trace Trace
profiles profiles sampling generation filtering merging

Performance data sources

Atomic | ‘
events | |

Entry/exit [Trace l

Record | Trace
profiles buffering

creation | Vo

0S and runtime system modules

I Timing |‘ Hardware Threading "\ Interrupts
| counters |
o = — -
System Runtime
N l ‘ Kernel ‘ . 1o
counters | | system | |

system code, at locations where the actions arise. In
general, the actions reflect an occurrence of some exe-
cution state, most commonly as a result of a code loca-
tion being reached (e.g., entry in a subroutine). How-
ever, it could also include a change in data. The key point
is that the observation mechanism is direct. Generated
events are made visible to the performance system in
this way and contain implicit meta information as to
their associated action. Thus, for any performance exper-
iment using direct observation, the performance events
of interest must be decided and necessary instrumenta-
tion done for their generation. Performance measure-
ments are made of the events during execution and
saved for analysis. Knowledge of the events is used to
process the performance data and interpret the analysis
results.

The TAU framework architecture, shown in Fig. 1,
separates the functional concerns of a direct perfor-
mance observation approach into three primary layers -
instrumentation, measurement, and analysis. Each layer
uses multiple modules which can be configured in a
flexible manner under user control. This design makes
it possible for TAU to target alternative models of paral-
lel computation, from shared-memory multi-threading
to distributed memory message passing to mixed-mode
parallelism [17]. TAU defines an abstract computation
model for parallel systems that captures general archi-
tecture and software execution features and can be
mapped to existing complex system types [16].

- N
soecion CRMRRRY T~ informaton
Other : -
profilers Measurement Symbol
Analysis Profiles Profiles Traces table

Profile Data Management (PerfDMF)

- s T S - = —n = .

Profile [[Motadatal Profile Trace ‘ ‘ Trace H
translators (XML) database translators. storage

) pPe—N L -

Profile Analysis (PerfProf)
[

Trace Data Management

Trace V li s

Trace A

‘ Expert

‘ Vampir

JumpShot ‘ ProfileGen

‘ Vampir

Paraver
Server

TAU. Fig.1 TAU architecture: instrumentation and measurement (left), analysis (right)

TAU

2027

TAU’s design has proven to be robust, sound, and
highly adaptable to generations of parallel systems. The
framework architecture has allowed new components
to be added that have extended the capabilities of the
TAU toolkit. This is especially true in areas concerning
kernel-level performance integration [l1, 14], perfor-
mance monitoring [10, 12, 13], performance data mining
[6], and GPU performance measurement [8].

The role of the instrumentation layer in direct perfor-
mance observation is to insert code (a.k.a. probes) to
make performance events visible to the measurement
layer. Performance events can be defined and instru-
mentation inserted in a program at several levels of the
program transformation process. In fact, it is impor-
tant to realize that a complete performance view may
require contribution of event information across code
levels [15]. For these reasons, TAU supports several
instrumentation mechanisms based on the code type
and transformation level: source (manual, preproces-
sor, library interposition), binary/dynamic, interpreter,
and virtual machine. There are multiple factors that
affect the choice of what level to instrument, including
accessibility, flexibility, portability, concern for intru-
sion, and functionality. It is not a question of what level
is “correct” because there are trade-offs for each and
different events are visible at different levels. TAU is
distinguished by its broad support for different instru-
mentation methods and their use together.

TAU supports two general classes of events for
instrumentation using any method: atomic events and
interval events. An atomic event denotes a single action.
Instrumentation is inserted at a point in the program
code to expose an atomic action, and the measurement
system obtains performance data associated with the
action where and when it occurs. An interval event
is a pair of events: begin and end. Instrumentation is
inserted at two points in the code, and the measurement
system uses data obtained from each event to deter-
mine performance for the interval between them (e.g.,
the time spent in a subroutine from entry (beginning
of the interval) to exit (end of the interval)). In addition
to the two general events classes, TAU allows events to
be selectively enabled / disabled for any instrumentation
method.

The TAU performance measurement system is a highly
robust, scalable infrastructure portable to all HPC plat-
forms. As shown in Fig. 1, TAU supports the two domi-
nant methods of measurement for direct performance
observation - parallel profiling and tracing - with
rich access to performance data through portable tim-
ing facilities, integration with hardware performance
counters, and user-level information. The choice of
measurement method and performance data is made
independently of the instrumentation decisions. This
allows multiple performance experiments to be con-
ducted to gain different performance views for the same
set of events. TAU also provides unique support for
novel performance mapping [15], runtime monitoring
[10, 12, 13], and kernel-level measurements [11, 14].
TAU’s measurement system has two core capabili-
ties. First, the event management handles the registra-
tion and encoding of events as they are created. New
events are represented in an event table by instantiating
a new event record, recording the event name, and link-
ing in storage allocated for the event performance data.
The event table is used for all atomic and interval events
regardless of their complexity. Event type and con-
text information are encoded in the event names. The
TAU event-management system hashes and maps these
names to determine if an event has already occurred
or needs to be created. Events are managed for every
thread of execution in the application. Second, a run-
time representation, called the event callstack, captures
the nesting relationship of interval performance events.
It is a powerful runtime measurement abstraction for
managing the TAU performance state for use in both
profiling and tracing. In particular, the event callstack
is key for managing execution context, allowing TAU
to associate this context to the events being measured.
Parallel profiling in TAU characterizes the behavior
of every application thread in terms of its aggregate per-
formance metrics. For interval events, TAU computes
exclusive and inclusive metrics for each event. The TAU
profiling system supports several profiling variants. The
standard type of profiling is called flat profiling, which
shows the exclusive and inclusive performance of each
event but provides no other performance information
about events occurring when an interval is active (i.e.,
nested events). In contrast, TAU’s event path profiling can
capture performance data with respect to event nesting

2028

TAU

relationships. It is also interesting to observe perfor-
mance data relative to an execution state. The structural,
logical, and numerical aspects of a computation can be
thought of as representing different execution phases.
TAU supports an interface to create (phase events) and
to mark their entry and exit. Internally in the TAU
measurement system, when a phase, P, is entered, all
subsequent performance will be measured with respect
to P until it exits. When phase profiles are recorded, a
separate parallel profile is generated for each phase.

TAU implements robust, portable, and scalable par-
allel tracing support to log events in time-ordered tuples
containing a time stamp, a location (e.g., node, thread),
an identifier that specifies the type of event, event-
specific information, and other performance-related
data (e.g., hardware counters). All performance events
are available for tracing. TAU will produce a trace for
every thread of execution in its modern trace format as
well as in OTF [7] and EPILOG [9] formats. TAU also
provides mechanisms for online and hierarchical trace
merging [3].

As the complexity of measuring parallel performance
increases, the burden falls on analysis and visualiza-
tion tools to interpret the performance information.
As shown in Fig. 1, TAU includes sophisticated tools
for parallel profile analysis and performance data min-
ing. In addition, TAU leverages advanced trace analysis
technologies from the performance tool community,
primarily the Vampir [2] and Scalasca [18] tools.
The following focuses on the features of the TAU
profiling tools.

TAU’s parallel profile analysis environment con-
sists of a framework for managing parallel profile
data, PerfDMF [5], and TAU’s parallel profile analy-
sis tool, ParaProf [1]. The complete environment is
implemented entirely in Java. The performance data
management framework (PerfDMF) in TAU provides
a common foundation for parsing, storing, and query-
ing parallel profiles from multiple performance exper-
iments. It builds on robust SQL relational database
engines and must be able to handle both large-scale
performance profiles, consisting of many events and
threads of execution, as well as many profiles from

multiple performance experiments. To facilitate perfor-
mance analysis development, the PerfDMF architecture
includes a well-documented data-management API to
abstract query and analysis operation into a more pro-
grammatic, non-SQL form.

TAU’s parallel profile analysis tool, ParaProf[1], is
capable of processing the richness of parallel profile
information produced by the measurement system,
both in terms of the profile types (flat, callpath, phase,
snapshots) as well as scale. ParaProf provides the users
with a highly graphical tool for viewing parallel profile
data with respect to different viewing scopes and pre-
sentation methods. Profile data can be input directly
from a PerfDMF database and multiple profiles can
be analyzed simultaneously. ParaProf can show parallel
profile information in the form of bargraphs, callgraphs,
scalable histograms, and cumulative plots. ParaProf is
also capable of integrating multiple performance pro-
files for the same performance experiment but using
different performance metrics for each. ParaProf uses
scalable histogram and three-dimensional displays for
larger datasets.

To provide more sophisticated performance analysis
capabilities, we developed support for parallel perfor-
mance data mining in TAU. PerfExplorer [4, 6] is a
framework for performance data mining motivated by
our interest in automatic parallel performance anal-
ysis and by our concern for extensible and reusable
performance tool technology. PerfExplorer is built on
PerfDMF and targets large-scale performance analy-
sis for single experiments on thousands of processors
and for multiple experiments from parametric stud-
ies. PerfExplorer uses techniques such as clustering and
dimensionality reduction to manage large-scale data
complexity.

The TAU Performance System® has undergone several
incarnations in pursuit of its primary objectives of flexi-
bility, portability, integration, interoperability, and scal-
ability. The outcome is a robust technology suite that has
significant coverage of the performance problem solv-
ing landscape for high-end computing. TAU follows a
direct performance observation methodology since it
is based on the observation of effects directly associ-
ated with the program’s exection, allowing performance

Tensilica

2029

data to be interpreted in the context of the computation.
Hard issues of instrumentation scope and measurement
intrusion have to be addressed, but these have been
aggressively pursued and the technology enhanced in
several ways during TAU's lifetime. TAU is still evolv-
ing, and new capabilities are being added to the tools
suite. Support for whole-system performance analysis,
model-based optimization using performance expecta-
tions and knowledge-based data mining, and heteroge-
neous performance measurement are being pursued.

Related Entries
»Metrics
»Performance Analysis Tools

Bibliography

L. Bell R, Malony A, Shende S (2003) A portable, extensible,
and scalable tool for parallel performance profile analysis. In:
European conference on parallel computing (EuroPar 2003),
Klagenfurt

2. Brunst H, Kranzlmiiller D, Nagel WE (2004) Tools for scalable
parallel program analysis — Vampir NG and DeWiz. In: Dis-
tributed and parallel systems, cluster and grid computing, vol 777.
Springer, New York

3. Brunst H, Nagel W, Malony A (2003) A distributed performance
analysis architecture for clusters. In: IEEE international con-
ference on cluster computing (Cluster 2003), pp 73-83. IEEE
Computer Society, Los Alamitos

4. Huck KA, Malony AD (2005) Perfexplorer: a performance data
mining framework for large-scale parallel computing. In: High
performance networking and computing conference (SC’05).
IEEE Computer Society, Los Alamitos

5. Huck K, Malony A, Bell R, Morris A (2005) Design and imple-
mentation of a parallel performance data management frame-
work. In: International conference on parallel processing (ICPP
2005). IEEE Computer Society, Los Alamitos

6. Huck K, Malony A, Shende S, Morris A (2008) Knowledge sup-
port and automation for performance analysis with PerfExplorer
2.0.] Sci Program 16(2-3):123-134 (Special issue on large-scale
programming tools and environments)

7. Kniipfer A, Brendel R, Brunst H, Mix H, Nagel WE (2006) Intro-
ducing the Open Trace Format (OTF). In: International confer-
ence on computational science (ICCS 2006). Lecture notes in
computer science, vol 3992. Springer, Berlin, pp 526-533

8. Mayanglambam S, Malony A, Sottile M (2009) Performance mea-
surement of applications with GPU acceleration using CUDA. In:
Parallel computing (ParCo), Lyon

9. Mohr B, Wolf F (2003) KOJAK - a tool set for automatic perfor-
mance analysis of parallel applications. In: European conference
on parallel computing (EuroPar 2003). Lecture notes in computer
science, vol 2790. Springer, Berlin, pp 1301-1304

10. Nataraj A, Sottile M, Morris A, Malony AD, Shende S (2007)
TAUoverSupermon: low-overhead online parallel performance
monitoring. In: European conference on parallel computing
(EuroPar 2007), Rennes

11. Nataraj A, Morris A, Malony AD, Sottile M, Beckman P (2007)
The ghost in the machine: observing the effects of kernel opera-
tion on parallel application performance. In: High performance
networking and computing conference (SC’07), Reno

12. Nataraj A, Malony A, Morris A, Arnold D, Miller B (2008) In
search of sweet-spots in parallel performance monitoring. In:
IEEE international conference on cluster computing (Cluster
2008), Tsukuba

13. Nataraj A, Malony A, Morris A, Arnold D, Miller B (2008)
TAUoverMRNet (ToM): a framework for scalable parallel perfor-
mance monitoring. In: International workshop on scalable tools
for high-end computing (STHEC ’08), Kos

14. Nataraj A, Malony AD, Shende S, Morris A (2008) Integrated
parallel performance views. Clust Comput 11(1):57-73

15. Shende S (2001) The role of instrumentation and mapping in
performance measurement. Ph.D. thesis, University of Oregon

16. Shende S, Malony A (2006) The TAU parallel performance
system. Int] Supercomput Appl High Speed Comput
20(2, Summer):287-311 (ACTS collection special issue)

17. Shende S, Malony AD, Cuny J, Lindlan K, Beckman P, Karmesin S
(1998) Portable profiling and tracing for parallel scientific appli-
cations using C++. In: SIGMETRICS symposium on parallel and
distributed tools, SPDT’98, Welches, pp 134-145

18. Wolf F et al (2008) Usage of the SCALASCA toolset for scalable
performance analysis of large-scale parallel applications. In: Pro-
ceedings of the second HLRS parallel tools workshop, Stuttgart.
Lecture notes in computer science. Springer, Berlin

' TAU Performance System®

»TAU

' TBB (Intel Threading Building

Blocks)

> Intel® Threading Building Blocks (TBB)

! Tensilica

»Green Flash: Climate Machine (LBNL)

http://dx.doi.org/10.1007/978-0-387-09766-4_69
http://dx.doi.org/10.1007/978-0-387-09766-4_267
http://dx.doi.org/10.1007/978-0-387-09766-4_59
http://dx.doi.org/10.1007/978-0-387-09766-4_51
http://dx.doi.org/10.1007/978-0-387-09766-4_184

2030

Tera MTA

" Tera MTA

BurTON SMITH
Microsoft Corporation, Redmond, WA, USA

Synonyms
Cray MTA; Cray XMT; Horizon

Definition

The MTA (for Multi-Threaded Architecture) is a highly
multithreaded scalar shared-memory multiprocessor
architecture developed by Tera Computer Company
(renamed Cray Inc. in 2000) in Seattle, Washington.
Work began in 1985 at The Institute for Defense Analy-
ses Center for Computing Sciences on a closely related
predecessor (Horizon), and development of both hard-
ware and software was continuing at Cray Inc. as of 2010.

Discussion

The Tera MTA [1] is in many respects a direct descen-
dant of the Denelcor HEP computer [2]. Like the HEP,
the MTA is a scalar shared-memory system equipped
with full/empty bits at every 64-bit memory location
and multiple protection domains to permit multipro-
gramming within a processor. However, the MTA intro-
duced a few innovations including VLIW instructions
without any register set partitioning, additional ILP
via dependence data encoded in each instruction, two-
phase blocking synchronization, unlimited data break-
points, speculative loads, division and square root to
full accuracy using iterative methods, operating sys-
tem entry via procedure calls, traps that never change
privilege, and no interrupts at all.

Software developed for the MTA introduced its
share of novel ideas as well, including a user-mode
runtime responsible for synchronization and work
scheduling, negotiated resource management between
the user-mode runtime and the operating system, an
operating system that returns control to the user-mode
runtime when the call blocks, a compiler for For-
tran and C++ that parallelizes and restructures a wide
variety of loops including those whose inter-iteration
dependences require a parallel prefix computation, and
dynamic scheduling of loop nests having mixed rectan-
gular, triangular, and skyline loop bounds.

While spending the summer of 1984 as an intern
at Denelcor, UC Berkeley graduate student Stephen
W. Melvin invented a scheme for organizing a reg-
ister file in a fine-grain multi-threaded processor to
let VLIW instructions enjoy multiple register accesses
per instruction while preserving a flat register address
space within each hardware thread. The idea was sim-
ple: organize the register file into multiple banks with
each bank containing all of the registers for an asso-
ciated subset of the hardware threads; let each issued
instruction use multiple cycles to read and write its
associated bank as many times as necessary to imple-
ment the instruction; and have the instruction issue
logic refrain from issuing from threads associated with
currently busy banks. From this beginning, an architec-
tural proposal emerged that was whimsically referred
to as “Vulture” and was later known as the “HEP array
processor”. Denelcor envisioned heterogeneous systems
with second-generation HEP processors sharing mem-
ory with processors based on this new VLIW idea.
Denelcor filed for Chapter 7 bankruptcy in mid-
1985 whereupon its CTO, Burton J. Smith, joined the
Supercomputing Research Center (now called the Cen-
ter for Computing Sciences) of the Institute for Defense
Analyses (IDA) in Maryland. His plan was to further
evaluate the merits of the multithreaded VLIW ideas.
It had already become clear that code generation and
optimization for such a processor was only slightly more
difficult than for the HEP but the resulting performance
was potentially much higher. The design that resulted
from collaborations on this topic at IDA over the years
1985-1987 was known as Horizon and was described in a
series of papers presented at Supercomputing’88 [3, 4].
Horizon instructions were 64 bits wide and typically
contained three operations: a memory reference (M)
operation, an arithmetic or logic (A) operation, and a
control (C) operation which did branches but could also
do some arithmetic and logic. As many as ten five-bit
register references might appear in any single instruc-
tion. The memory reference semantics were derived
from those of the HEP but added data trap bits to imple-
ment data break points (watchpoints) and possibly
other things. The A operations included fused multiply-
adds for both integer and floating point arithmetic and
a rich variety of operations on vectors and matrices of
bits. Branches were encoded compactly as an opcode,
an eight-bit condition mask, a two-bit condition code

http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_2273

Tera MTA

2031

number specifying one of the four most recently gen-
erated three-bit condition codes, and two bits naming
a branch target register that had been preloaded with
the branch address. Most A- and C-operations emitted
a condition code as an optional side-effect.

Horizon increased ILP beyond three with an idea
known as explicit-dependence lookahead, replacing the
usual register reservation scheme. Intel would later
employ a kindred concept for encoding dependence
information within instructions in the Itanium archi-
tecture, calling it explicitly parallel instruction computing
(EPIC). The Horizon version included in every instruc-
tion an explicit 3-bit unsigned integer, the lookahead
that bounded from below the number of instructions
separating this instruction from later ones that might
depend on it. Subsequent instructions within the bound
could overlap with the current instruction. To imple-
ment this scheme, every hardware thread was equipped
with a three-bit flag counter, incremented when the
thread is selected to issue its next instruction, and
an array of eight three-bit lock counters. On instruc-
tion issue, the lock counter subscripted by the looka-
head plus the flag (mod 8) is incremented; when the
instruction fully retires, that same lock is decremented.
A thread is permitted to issue its next instruction when
the lock subscripted by its flag is zero. Instruction
instances were thus treated very much like operations
in a static data flow machine. As a further refinement,
branches were available to terminate lookahead along
the unlikely control flow direction, potentially increas-
ing ILP along the likelier one.

Early in 1988, Smith and a colleague, James E. Rottsolk,
decided to start a company to build general-purpose
parallel computer systems based on the Horizon con-
cepts. They named the new company Tera, acquired
initial funding from private investors and from the
Defense Advanced Research Projects Agency (DARPA),
and began to search for a suitable home. In August 1988,
Seattle, Washington was chosen and Tera began recruit-
ing engineers. The University of Washington helped the
company in its early days.

The Tera language strategy [5] was to add directives
and pragmas to Fortran and C++ to guide compiler

loop parallelization and provide performance and com-
patibility with existing vector processors. A consis-
tency model strongly resembling release consistency
was adopted based on acquire and release synchro-
nization points to let the compiler cache values in
registers and restructure code aggressively. Basically,
memory references could not move backward over
acquires or forward over releases. Only the built-in syn-
chronization based on full/empty bits was permitted at
first; later, volatile variable references were made legal
(but deprecated) for synchronization. A future state-
ment borrowed from Multilisp [6] was introduced in
both Fortran and C++ to support task parallelism as
well as divide-and-conquer data parallelism. It uses
the full/empty bits to synchronize completion of the
future with its invoker. The body of the future appears
in-line and can reference variables in its enclosing
environment.

The MTA compilers can automatically parallelize a vari-
ety of loops [7]. Consider the example below:

void sort(int *src, int *dst, int nitems, int nvals) {
int i, j, t1[nvals], t2[nvals];
for (j = 0; j< nvals; j++) {
fjl = 03
for (i = 0; i< nitems; i++) {
tl{src[i]]++;}
t2[0] = 0;
for (j = 1; j<nvals; j++) {
t2[j] = t2[j-1] + t1[j-1];}
$t2 = (sync int *) t2;
#pragma tera assert parallel
for (i = 0; i<nitems; i++) {
dst[$t2[src[i]]++] = src[i];}

//atomic update

/Iparallel prefix

}

All four loops are parallelized by the MTA compiler.
Updates like the one in the second loop are automati-
cally made atomic using full/empty bits if and as nec-
essary. The third loop is an example of a parallel prefix
computation [8] (also called a parallel scan) which the
compiler can automatically parallelize as long as the
internal state of the accumulating prefix is bounded [9].
The fourth loop will not be parallelized automatically by
the compiler and requires a pragma and explicit use of
full/empty bits via the sync type qualifier.

2032

Tera MTA

To achieve as high alevel of ILP as the instruction set
can afford, software pipelining [10] is exploited by dis-
tributing loops based on estimates of register pressure
and then unrolling and packing to obtain a good sched-
ule. Experiments at both IDA and Tera led to a modifi-
cation of the lookahead scheme to overlap only memory
references. Software pipelining was further enabled by
implementing speculative loads. A poison bit is asso-
ciated with every register in the thread, and memory
protection violations can optionally be made to poison
the destination register instead of raising an excep-
tion. Any instruction that attempts to use a poisoned
value will trap instead. The speculative load feature
allows prefetching in a software pipeline without having
to “unpeel” final iterations to prevent accesses beyond
mapped memory. In any case the instruction can be
reattempted if the cause of the protection violation is
remediable.

Nests of parallelizable “for” loops may vary in iter-
ations per loop, sometimes dynamically, making them
hard to execute efficiently. The MTA compiler sched-
ules these nests as a whole, even when inner loops have
bounds that depend on outer iteration variables. First,
code is generated to compute the total number of (inner
loop) iterations of the whole nest. Functions are then
generated to compute the iteration number of each loop
from the total iteration count. Finally, code is generated
to dynamically schedule the loop nest by having each
worker thread acquire a “chunk” of total iterations using
a variant of guided self-scheduling [11], reconstruct the
iteration variable bindings, and then jump into the loop
nest to iterate until the chunk is consumed.

A user-level runtime environment was developed to
help implement the language features and schedule fine-
grain parallel tasks. The Horizon architecture was mod-
ified to make full/empty synchronization operations
lock the location and generate a user-level trap after a
programmable limit on the number of synchronization
retry attempts is exceeded. The runtime trap handler
saves the state of the blocked task, initializes a queue of
blocked tasks containing this one as its first element, and
places a pointer to this new queue in the still-locked ful-
1/empty location. It then sets a trap bit and unlocks the
location so that subsequent references of any kind will
trap immediately. In this way the tasks that arrive later

either block, joining the queue of waiting tasks right
away, or dequeue a waiting task immediately. The retry
limit is set to match the time needed to save and later
restore the task state, making this scheme within a factor
of two of optimal. When memory references are fre-
quent, the retry rate is throttled to be much less than that
for new memory references, and if the processor is not
starved for hardware threads the polling cost becomes
almost negligible and the retry limit can be increased
substantially.

When formerly blocked tasks are unblocked, they
are enqueued in a pool of runnable tasks. Since these
tasks are equipped with a stack and may have addi-
tional memory associated with them, they are run in
preference to tasks associated with future statements
that have not yet run. Still, the number of blocked tasks
can be substantial. To reduce memory waste, stacks are
organized as linked lists of fixed-size blocks. Automatic
arrays and other things that must be contiguously allo-
cated are stored in the heap. Interprocedural analysis is
used to avoid most stack bounds checks.

Another modification to the Horizon architecture
comprised instructions to allocate multiple hardware
threads. Each protection domain has an operating
system-imposed limit on the number of hardware
threads in the domain and a reservation which can be
increased (or decreased) by one of the new instructions
[12]. One of them reserves a variable number, from zero
up to a maximum specified as an argument, depending
on availability. The other instruction either reserves the
requested amount or none at all. In either case, the num-
ber of additional hardware threads actually allocated is
returned in a register so a loop can be used to initiate
them. The primary motivation for this reservation capa-
bility was to accommodate rapidly varying quantities
of parallelism found in short parallel loops. Hardware
threads can be materialized and put to work quickly
when such opportunities are encountered.

Since the MTA's operating system (OS) plays no role in
user-level thread synchronization and allocates but does
not micromanage the dynamic quantity of hardware
threads, the usual OS invocation machinery (trapping)
was rejected in favor of procedure calls. A protec-
tion ring-crossing instruction guarantees only valid OS

Tera MTA

2033

entry points are called. The operating system can allo-
cate its own stack space when and if necessary. If an OS
call ultimately blocks, the hardware thread is returned
to user level via a runtime entry point that associates
the continuation of the original user computation with
a “cookie” supplied by the OS. When the original OS call
completes, the appropriate cookie is passed to the user
runtime so it can unblock the user-level continuation.
As a result, the operating system executes in parallel
with the user-level program. This scheme was invented
independently [13] at the University of Washington and
is referred to as scheduler activations.

When an illegal operation is attempted, a trap to
the user-level trap handler occurs. If OS intervention
is required, the trap handler calls the OS to service the
trap. To evict a process from a protection domain, all of
its hardware threads are made to trap in response to an
OS-generated signal. The OS also has the ability to kill
all hardware threads in a protection domain.

The MTA has a large virtual data address space, making
high-performance memory address translation chal-
lenging. To address this issue, segmentation is used
instead of paging, with a 48-bit virtual address com-
prising a 20-bit segment number and a 28-bit offset.
Contiguous allocations of memory larger than 256 MB
can use multiple segments. Segment size granularity is
8 KB. Each protection domain has base and limit reg-
isters that define its own range of segment numbers.
A segment map entry specifies minimum privilege lev-
els for loads and stores, and whether physical addresses
are to be distributed across the multiple memory banks
of the system by “scrambling” the address bits [14].
When memory is distributed in this fashion there are
virtually no bank conflicts due to strided accesses. Pro-
gram memory, as addressed by the program counters,
is handled differently using a paging scheme with 4 KB
pages. The program space is mapped to data space via a
non-distributed (i.e., local) segment.

The instruction set supports the usual variety of two’s
complement and unsigned integers and both 32- and
64-bit IEEE 754 floating point. Division for signed and
unsigned integers [15] along with floating point division

and square root all use Newton’s method but never-
theless implement full accuracy and correct semantics.
Excepting these few operations, denormalized arith-
metic is fully supported in hardware. High-precision
integer arithmetic is abetted by a 128-bit unsigned inte-
ger multiply instruction and the ability to propagate
carry bits easily. There is also support for a 128-bit float-
ing point format using pairs of 64-bit floats; the smaller
value is insignificant with respect to the larger, thereby
yielding 106 bits of significand precision or more. The
existence of a fused multiply-add makes this format rel-
atively inexpensive to implement and use, but instruc-
tion modifications were needed to mitigate a variety of
pathologies. A true 128-bit IEEE format would doubt-
less be preferable.

The MTA-1 was a water-cooled system built from Gal-
lium Arsenide logic. To provide adequate memory
bandwidth, the processors sparsely populated a 3D
toroidal mesh interconnection network. As an example,
512 routing nodes were required for 64 processors. To
make network wiring implementable, one-third of the
mesh links were elided. The first and only MTA-1 system
was delivered to the San Diego Supercomputer Center
in June 1999.

The MTA-2 was a major improvement in manu-
facturability over the MTA-1. It used CMOS logic and
had an interconnection network based on notions from
group theory [16]. It was first delivered in 2002 to the
US Naval Research Laboratory in Washington, DC.
A few other MTA-2 systems were built before deliveries
of the Cray XMT (g.v.) began in 2007.

Related Entries

»Cray MTA

»Cray XMT

»Data Flow Computer Architecture
»Denelcor HEP

»EPIC Processors

» Futures

» Interconnection Networks
»Latency Hiding

»Little’s Law

»Memory Wall

»MIMD (Multiple Instruction, Multiple Data)
Machines

http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_512
http://dx.doi.org/10.1007/978-0-387-09766-4_220
http://dx.doi.org/10.1007/978-0-387-09766-4_6
http://dx.doi.org/10.1007/978-0-387-09766-4_482
http://dx.doi.org/10.1007/978-0-387-09766-4_484
http://dx.doi.org/10.1007/978-0-387-09766-4_415
http://dx.doi.org/10.1007/978-0-387-09766-4_79
http://dx.doi.org/10.1007/978-0-387-09766-4_234
http://dx.doi.org/10.1007/978-0-387-09766-4_216
http://dx.doi.org/10.1007/978-0-387-09766-4_216

2034

Terrestrial Ecosystem Carbon Modeling

»Modulo Scheduling and Loop Pipelining
» Multilisp

»Multi-Threaded Processors

» Networks, Direct

» Networks, Multistage
»Processes, Tasks, and Threads
»Processors-in-Memory
»Shared-Memory Multiprocessors
»SPMD Computational Model
»Synchronization

» Ultracomputer, NYU

»VLIW Processors

Bibliography
1. Alverson R, Callahan D, Cummings D, Koblenz B, Porterfield A,
Smith B (1990) The Tera computer system. In: Proceedings of the
1990 international conference on supercomputing, Amsterdam
2. Smith BJ (1981) Architecture and applications of the HEP multi-
processor computer system. Proc SPIE Real-Time Signal Process
IV 298:241-248
3. Kuehn JT, Smith BJ (1988) The Horizon supercomputing system:
architecture and software. In: Proceedings of the 1988 ACM/IEEE
conference on supercomputing, Orlando
4. Thistle MR, Smith BJ (1988) A processor architecture for Horizon.
In: Proceedings of the 1988 ACM/IEEE conference on supercom-
puting, Orlando
5. Callahan D, Smith B (1990) A future-based parallel language for
a general-purpose highly-parallel computer. In: Selected papers
of the second workshop on languages and compilers for parallel
computing, Irvine
6. Halstead RH (1985) MultiLisp: a language for concurrent sym-
bolic computation. ACM T Program Lang Syst 7(4):501-538
7. Alverson G, Briggs P, Coatney S, Kahan S, Korry R (1997) Tera
hardware-software cooperation. In: Proceedings of supercomput-
ing, San Jose
8. Ladner RE, Fischer MJ (1980) Parallel prefix computation.] ACM
27(4):831-838
9. Callahan D (1991) Recognizing and parallelizing bounded recur-
rences. In: Proceedings of the fourth workshop on languages and
compilers for parallel computing, Santa Clara
10. Lam M (1988) Software pipelining: an effective scheduling tech-
nique for VLIW machines. In: Proceedings of the ACM SIGPLAN
88 conference on programming language design and implemen-
tation, Atlanta
11. Polychronopoulos C, Kuck D (1987) Guided self-scheduling: a
practical scheduling scheme for parallel supercomputers. IEEE T
Comput C-36(12):1425-1439
12. Alverson G, Alverson R, Callahan D, Koblenz B, Porterfield A,
Smith B (1992) Exploiting heterogeneous parallelism on a mul-
tithreaded multiprocessor. In: Proceedings of the 1992 interna-
tional conference on supercomputing, Washington, DC

13. Anderson T, Bershad B, Lazowska E, Levy H (1992) Scheduler
activations: effective kernel support for the user-level manage-
ment of parallelism. ACM T Comput Syst 10(1):53-79

14. Norton A, Melton E (1987) A class of Boolean linear transfor-
mations for conflict-free power-of-two stride access. In: Pro-
ceedings of the international conference on parallel processing,
St. Charles, IL

15. Alverson R (1991) Integer division using reciprocals. In: Pro-
ceedings of the 10th IEEE symposium on computer arithmetic,
Grenoble

16. Akers S, Krishnamurthy B (1989) A group-theoretic model
for symmetric interconnection networks. IEEE T Comput C-
38(4):555-566

17. Alverson G, Kahan S, Korry R, McCann C, Smith B (1995)
Scheduling on the Tera MTA. In: Proceedings of the first work-
shop on job scheduling strategies for parallel processing, Santa
Barbara. Lecture Notes in Computer Science 949:19-44

' Terrestrial Ecosystem Carbon

Modeling

DALt WANG', DANIEL RiccruTo', WILFRED Post',
MicHAEL W. BERRY”

'Oak Ridge National Laboratory, Oak Ridge, TN, USA
*The University of Tennessee, Knoxville, TN, USA

Synonyms
Carbon cycle research; System integration; Terrestrial
ecosystem modeling; Uncertainty quantification

Definition

A Terrestrial Ecosystem Carbon Model (TECM) is
a category of process-based ecosystem models that
describe carbon dynamics of plants and soils within
global terrestrial ecosystems. A TECM generally uses
spatially explicit information on climate/weather, eleva-
tion, soils, vegetation, and water availability as well as
soil- and vegetation-specific parameters to make esti-
mates of important carbon fluxes and carbon pool sizes
in terrestrial ecosystems.

Discussion

Terrestrial ecosystems are a primary component of
research on global environmental change. Observa-
tional and modeling research on terrestrial ecosys-
tems at the global scale, however, has lagged behind

http://dx.doi.org/10.1007/978-0-387-09766-4_65
http://dx.doi.org/10.1007/978-0-387-09766-4_45
http://dx.doi.org/10.1007/978-0-387-09766-4_423
http://dx.doi.org/10.1007/978-0-387-09766-4_318
http://dx.doi.org/10.1007/978-0-387-09766-4_317
http://dx.doi.org/10.1007/978-0-387-09766-4_448
http://dx.doi.org/10.1007/978-0-387-09766-4_449
http://dx.doi.org/10.1007/978-0-387-09766-4_142
http://dx.doi.org/10.1007/978-0-387-09766-4_26
http://dx.doi.org/10.1007/978-0-387-09766-4_252
http://dx.doi.org/10.1007/978-0-387-09766-4_114
http://dx.doi.org/10.1007/978-0-387-09766-4_471
http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_2206
http://dx.doi.org/10.1007/978-0-387-09766-4_2399
http://dx.doi.org/10.1007/978-0-387-09766-4_2399
http://dx.doi.org/10.1007/978-0-387-09766-4_2400

Terrestrial Ecosystem Carbon Modeling

2035

their counterparts for oceanic and atmospheric systems,
largely because of the unique challenges associated with
the tremendous diversity and complexity of terrestrial
ecosystems. There are eight major types of terrestrial
ecosystem: tropical rain forest, savannas, deserts, tem-
perate grassland, deciduous forest, coniferous forest,
tundra, and chaparral. The carbon cycle is an impor-
tant mechanism in the coupling of terrestrial ecosys-
tems with climate through biological fluxes of CO,.
The influence of terrestrial ecosystems on atmospheric
CO; can be modeled via several means at different
timescales to incorporate several important processes,
such as plant dynamics, change in land use, as well as
ecosystem biogeography. Over the past several decades,
many terrestrial ecosystem models (see the “»>Model
Developments” section) have been developed to under-
stand the interactions between terrestrial carbon stor-
age and CO, concentration in the atmosphere, as well
as the consequences of these interactions. Early TECMs
generally adapted simple box-flow exchange models,
in which photosynthetic CO, uptake and respiratory
CO; release are simulated in an empirical manner with
a small number of vegetation and soil carbon pools.
Demands on kinds and amount of information required
from global TECMs have grown. Recently, along with
the rapid development of parallel computing, spatially
explicit TECMs with detailed process-based represen-
tations of carbon dynamics become attractive, because
those models can readily incorporate a variety of addi-
tional ecosystem processes (such as dispersal, estab-
lishment, growth, mortality, etc.) and environmental
factors (such as landscape position, pest populations,
disturbances, resource manipulations, etc.), and pro-
vide information to frame policy options for climate
change impact analysis.

1. Fundamental terrestrial carbon

dynamics

ecosystem

Terrestrial carbon processes can be described by an
exchange between four major compartments: (1) foliage
where photosynthesis occurs; (2) structural material,
including roots and wood; (3) surface detritus or litter;
and (4) soil organic matter (including peat). Nearly all
life on Earth depends (directly or indirectly) on photo-
synthesis, in which carbon dioxide and water are used,

and oxygen is released. The majority of the carbon in
the living vegetation of terrestrial ecosystems is found in
woody material, which constitutes a major carbon reser-
voir in the carbon cycle. Detritus refers to leaf litter and
other organic matter on or below the soil surface. Dead
woody material, often called coarse woody debris, is a
large component of the surface detritus in forest ecosys-
tems. Detritus is typically colonized by communities of
microorganisms which act to decompose (or reminer-
alize) the material. Transformation and translocation
of detritus is the source of soil organic matter, another
major component in the global carbon cycle. Globally
three times as much carbon is stored in soils as in the
atmosphere with peatlands contributing a third of this.
Thus even relatively small changes in soil C stocks might
contribute significantly to atmospheric CO, concentra-
tions and thus global climate change. The soil carbon
pool is vulnerable to impacts of human activity espe-
cially agriculture. A simplified scheme of carbon cycle
dynamics is shown in Fig. 1.

2. Terrestrial carbon observations and experiments

Early research generally focused on determining char-
acteristics of individual plants and small soil samples,
often in a laboratory setting. This type of research con-
tinues today and provides a wealth of information that is
used to develop and to parameterize TECMs. However,
successful modeling of the carbon cycle also requires
understanding the structure and response of entire
ecosystems. Observation networks involving ecosys-
tems have expanded greatly in the past two decades.
One important development for in situ monitoring of
ecosystem-level carbon exchange has been the estab-
lishment of flux towers that use the eddy covariance
method. Atmospheric CO, concentration measure-
ments using satellites, tall towers, and aircraft provide
information about carbon dioxide fluxes over a larger
scale. Finally, remote sensing products provide impor-
tant information about changes in land use and vegeta-
tion characteristics (e.g., total leaf area) that can be used
to either drive or validate TECMs. While these obser-
vations are important for characterizing the carbon
cycle at present, they do not provide information about
how the carbon cycle may change in the future as a
result of climate change. In order to address those chal-
lenging questions, several large-scale ecosystem-level
experiments have been conducted to mimic possible

2036

Terrestrial Ecosystem Carbon Modeling

Maintenance
respiration

Heterotrophic
respiration

Forest and
grassland-
photosynthesis

Detritus

Decomposition

Soil organic matter

Growth
respiration

Structural material
(Roots and wood)

Terrestrial Ecosystem Carbon Modeling. Fig.1 Simplified schematic of the carbon dynamics (photosynthesis,
autotrophic respiration, allocation, and heterotrophic respiration) within a typical TECM model

future conditions (such as rising CO, concentrations,
potential future precipitation patterns and the future
temperature scenarios) and associated impacts and
mitigation options for terrestrial ecosystems. Figure 2
illustrates some of these carbon observation systems
and experiments.

3. Terrestrial ecosystem carbon model developments

In the early 1970s, several process-based conceptual
models were developed to study the primary produc-
tivity of the biosphere and the uptake of anthropogenic
CO; emissions. Early box models were improved in the
1980s to include more spatially explicit ecological rep-
resentations of terrestrial ecosystems along with a sig-
nificant push to understand the relationships between
climatic measurements and properties of ecosystem
processes. The concept of biomes was used to cate-
gorize terrestrial ecosystems using several climatically
and geographically related factors (ie., plant struc-
ture, leaf types, and climate), instead of the tradi-
tional classification by taxonomic similarity. In the
1990s, rapid developments of general circulation mod-
els and scientific computing, along with the increas-
ing availability of remote sensing data (from satellites),
led to the development of land-surface models. These

models used satellite images to obtain information
about the spatial distribution of surface properties
(such as vegetation type, phenology, and density) along
with spatially explicit forcing from numerical weather
prediction reanalysis or coupled general circulation
models (e.g., temperature and precipitation) to improve
prediction and enhance the model representation of
land-atmosphere water and energy interactions within
global climate models. Recently, emphasis has been
focused on improving the predictive capacity of climate
models at the decadal to century scale through a better
characterization of carbon cycle feedbacks with climate.
For example, several TECMs are incorporating nutrient
cycles and shifts in vegetation distribution, in response
and a potential feedback to climate change.

The contributions of parallel computing to the TECM
can be classified into three separate categories: (1) model
construction, (2) model integration, and (3) model
behavior controls.

As more processes are incorporated into TECMs to
replace simple empirical relationships, computational
demands have increased. Since these processes are very

Terrestrial Ecosystem Carbon Modeling

2037

(gf Remote satellite sensing

Bottom-up CO, exchange I \ \
measurements (Flux towers) [|

Top-down CO, exchange
measurements
l (Carbontracker)

% al

Atmospheric CO, measurements
network

Process studies

Present scenarV \

~~ Plantand soil
M measurements

Future scenarios

~"CO,/Temperature
/Precipitation/Nutrient
—___Mmanipulation

/

Terrestrial Ecosystem Carbon Modeling. Fig.2 lllustrated carbon observations and experiments

sensitive to environmental heterogeneity inherent in
spatial patterns of temperature, radiation, precipitation,
soil characteristics, etc., increased spatial resolution
improved simulation accuracy. A new class of models
is becoming more widespread for global scale TECMs.
This class, instead of using a traditional system of differ-
ential equations, is agent-based and requires a fine grid
spatial representation to represent the competition for
resources among the coexisting agents. This approach
dramatically increases the computational demand, but
is more compatible with experimental and observa-
tional data and population scale vegetation change
processes. Parallel computing has enabled models to be
constructed with these additional complexities.

Over several decades of research, TECMs have dra-
matically changed in structure and in the amount and
kind of information required and produced making
model integration a challenge. In addition, these mod-
els are now being incorporated into climate models
to form Earth System Models (ESMs). From a paral-
lel computing perspective, there is huge demand from
the modeling community to develop a parallel model
coupling framework (Earth System Modeling Frame
(ESMF) is one of these kinds of efforts) to enable
further parallel model developments and validations.

Instead of rewriting a package wrapper for each com-
ponent, memory-based IO staging systems may provide
an alternative method for fast and seamless coupling.
There are two basic methods to provide climate forc-
ing information for a TECM, from observation data
or coupling to a global climate model simulation. Cur-
rently, model simulation can provide global data, but
only at low spatial resolutions. Observation datasets are
available at those fine resolutions, and can be used for
validation over observed time frames at those obser-
vation stations. However, further research and parallel
computing will be needed for gap-filling and down-
scaling those observation datasets for global terrestrial
ecosystem carbon modeling.

One consequence of TECM complexity is the
increasing demand for better methodologies that can
exploit ever-increasing rich datastreams and thereby
improve model behavior (e.g., the ecosystem model’s
sensitivity to the model parameters, and software struc-
ture). Quantitative methods need to be established to
determine model uncertainty and reduce uncertainty
through model-data analysis. As computers become
larger and larger in the number of CPU cores, not nec-
essarily faster and faster at the single CPU core level, we
envision that ultrascale software designs for systematic

2038

Terrestrial Ecosystem Carbon Modeling

uncertainty quantification for TECM will became one
research area which will require the full advantage of
parallel computing and statistics.

As our understanding of the global carbon cycle
improves, high fidelity, process-based models will con-
tinue to be developed, and the increasing complexity of
these ecosystem model systems will require that par-
allel computing play an increasingly important role.
We have explained several key components of terres-
trial ecosystem carbon modeling, and have classified
three categories that parallel computing can play sig-
nificant contributions to the TECM developments. It is
our view that parallel computing will increasingly be
an integral part of modern terrestrial ecosystem mod-
eling efforts, which require solid, strong partnerships
between the high-performance computing community
and the carbon cycle science community. Through such
partnerships these two communities can share a com-
mon mission to advance our understanding of global
change using computational sciences.

Related Entries
» Analytics, Massive-Scale
»Computational Sciences
»Exascale Computing

Bibliographic Notes and Further
Reading

As mentioned in the model development section, ter-
restrial carbon modeling started in the early 1970s [1, 2],
when beta-factor concept was developed to account
for CO, fertilization using a nonspatial representa-
tion of terrestrial carbon dynamics. In 1975, Lieth
described a model (MIAMYI, the first gridded model) [3]
to estimate the primary productivity of the biosphere.
A carbon accounting model was developed at Marine
Biological Laboratory (MBL) at Woods Hole to track
carbon fluxes associated with land-use change. Along
with the success of International Biological Program,
spatially distributed compartment models represent-
ing different ecosystem types responding to local envi-
ronmental conditions were developed. Widely used
examples include the Terrestrial Ecosystem Model
(www.mbl.edu/eco42/) at MBL, and CENTURY (www.
nrel.colostate.edu/projects/century/) at Colorado State
University. As satellite measurements of basic terrestrial

properties became available, several models were devel-
oped that utilized this information directly, including
the Ames-Stanford Approach (CASA) (geo.arc.nasa.
gov/sge/casa/bearth.html) and Biome-BGC (www.ntsg.
umt.edu/models/bgc/). In the 1990s, land surface com-
ponents of climate models incorporated an aspect of
terrestrial carbon cycling, namely photosynthesis, for
the purpose of providing a mechanistic model of latent
heat exchange with the atmosphere. The Simple Bio-
sphere (SiB) biophysical model [4] and Biosphere-
Atmosphere Transfer Scheme (BATS) [5] at National
Center for Atmospheric Research (NCAR), and STO-
MATE [6] at Laboratoire des Sciences du Climat
et de I'Environnement (LSCE) are examples. Later
at NCAR, additional components of terrestrial car-
bon cycle were included in the Land Surface Model
(LSM) (www.cgd.ucar.edu/tss/lsm/). The Community
Land Model (CLM-CN) (www.cgd.ucar.edu/tss/clm/)
is the successor of LSM and is being further developed
as a community-based model. Agent-based models at
the global scale, a class of what are called Dynamic
Global Vegetation Models (DGVM), have been devel-
oped independently because of their data and com-
putation demands. Developments in parallel computer
systems are making incorporation of such dynamics
plausible for earth system models. HYBRID [7] was
an early experimental model, and now prototypes exist
for the NCAR CCSM land surface CLM-CN which
is based on the Lund-Postdam-Jena (LPJ) model [8]
and called CLM-CN-DV. Evolved from the Ecosys-
tem Demography (ED) model [9, 10], ENT [11] is
another Dynamic Global Terrestrial Ecosystem Model
(DGTEM), being coupled with NASA's GEOS-5 Gen-
eral Circulation Models.

Observation networks involving ecosystems have
expanded greatly in the past two decades. AmeriFlux
(public.ornl.gov/ameriflux/) is an effort to use flux tow-
ers to monitor ecosystem-level carbon exchange with
atmosphere. Since 1990, more than 400 such flux tow-
ers have been established on six continents represent-
ing every major biome. First established in Mauna
Loa in 1958, the CO, measurements have become a
global operation. Inversion techniques are used to infer
the pattern of CO, fluxes required to produce the
observed CO; concentrations; one such product using
this technique is CarbonTracker (www.esrl.noaa.gov/
gmd/ccgg/carbontracker/), which provides weekly flux

http://dx.doi.org/10.1007/978-0-387-09766-4_2083
http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_284
www.mbl.edu/eco42/
www.nrel.colostate.edu/projects/century/
www.nrel.colostate.edu/projects/century/
geo.arc.nasa.gov/sge/casa/bearth.html
geo.arc.nasa.gov/sge/casa/bearth.html
www.ntsg.umt.edu/models/bgc/
www.ntsg.umt.edu/models/bgc/
www.cgd.ucar.edu/tss/lsm/
www.cgd.ucar.edu/tss/clm/
www.esrl.noaa.gov/gmd/ccgg/carbontracker/
www.esrl.noaa.gov/gmd/ccgg/carbontracker/

Thin Ethernet

2039

estimates that can be compared against output from
process-based TECMs. Currently, a variety of remote
sensing products (such as Moderate Resolution Imag-
ing Spectroradiometer (MODIS)) are available to either
drive or validate TECMs.

Several experiments have been conducted or initi-
ated to understand potential climate change impacts.
The Free-Air CO, Enrichment (FACE) (public.ornl.
gov/face/global_face.shtml) experiment has been run-
ning for over a decade at several sites in different
biomes to study the potential effects of higher CO,
concentration. The Throughfall Displacement Experi-
ment (TDE) (tde.ornl.gov/) used elaborate systems to
alter the amount of precipitation that is available to an
ecosystem. A new experiment has been initiated at Oak
Ridge National Laboratory to assess the responses of
northern peatland ecosystems to increased temperature
and exposures to elevated atmospheric CO; concentra-
tions (mnspruce.ornl.gov).

More information on terrestrial ecosystem carbon
modeling can be found in books devoted to this subject
[12,13].

Bibliography
1. Bacastow RB, Keeling CD (1973) Atmospheric carbon dioxide and
radiocarbon in the natural carbon cycle: II. Changes from AD
1700 to 2070 as deduced from a geochemical model. In: Woodwell
GM, Pecan EV (eds) Carbon and the biosphere. CONF-720510.
National Technical Information Service, Springfield, Virginia,
pp 86-135
2. Emanuel WR, Killough GG, Post WM, Shugart HH (1984) Mod-
eling terrestrial ecosystems in the global carbon cycle with shifts
in carbon storage capacity by land-use change. Ecology 65(3):
970-983
3. Lieth H (1975) Modeling the primary productivity of the world.
In: Lieth H, Wittaker RH (eds) Primary productivity of the bio-
sphere, ecological studies, vol 14. Springer-Verlag, New York,
pp 237-283
4. Sellers JP, Randell DA, Collatz GJ, BerryJA, Field CB, Dazlich DA,
Zhang C, Collelo GD, Bounua L (1996) A revised land surface
parametrization (SiB 2) for atmospheric GCMs. Part I: model
formulation.] Climate 9:676-705
5. Dickinson R, Henderson-sellers A, Kennedy P (1993) Biosphere-
atmosphere transfer scheme (BATS) version as coupled to the
NCAR community climate model. Technical report, National
Center for Atmospheric Research
6. Ducoudré N, Laval K, Perrier A (1993) SECHIBA, a new set
of parametrizations of the hydrologic exchanges at the land/
atmosphere interface within the LMD atmospheric general cir-
culation model.] Climate 6(2):248-273

10.

1L

12.

13.

Friend AD, Stevens AK, Knox RG, Cannell MGR (1997) A
process-based, terrestrial biosphere model of ecosystem dynam-
ics (Hybrid v3.0). Ecol Model 95:249-287

. Prentice IC, Heimann M, Sitch S (2000) The carbon balance

of the terrestrial biosphere: ecosystem models and atmospheric
observations. Ecol Appl 10:1553-1573

. Moorcroft P, Hurtt GC, Pacala SW (2001) A method for scal-

ing vegetation dynamics: the ecosystem demography model (ED).
Ecol Monogr 71(4):557-586

Govindarajan S, Dietze MC, Agarwal PK, Clark JS (2004) A
scalable simulator for forest dynamics. In: Proceedings of the
twentieth annual symposium on computational geometry SCG
04, Brooklyn, NY, pp 106-115, doi:10.1145/997817.997836

Yang W, Ni-Meister W, Kiang NY, Moorcroft P, Strahler AH,
Oliphant A (2010) A clumped-foliage canopy radiative transfer
model for a Global Dynamic Terrestrial Ecosystem Model II:
Comparison to measurements. Agricultural and Forest Meteorol-
ogy, 150(7):895-907, doi:10.1016/j.agrformet.2010.02.008
Trabalka JR, Reichle DE (ed) (1986) The changing carbon cycle: a
global analysis. Springer-Verlag, Berlin

Field CB, Raupach MR (ed) (2004) The global carbon cycle:
integrating human, climate, and the natural world. Island,
Washington, DC

' Terrestrial Ecosystem Modeling

» Terrestrial Ecosystem Carbon Modeling

The High Performance Substrate

»HPS Microarchitecture

! Theory of Mazurkiewicz-Traces

»Trace Theory

! Thick Ethernet

»Ethernet

' Thin Ethernet

»Ethernet

http://dx.doi.org/10.1007/978-0-387-09766-4_395
http://dx.doi.org/10.1007/978-0-387-09766-4_226
http://dx.doi.org/10.1007/978-0-387-09766-4_491
http://dx.doi.org/10.1007/978-0-387-09766-4_481
http://dx.doi.org/10.1007/978-0-387-09766-4_481

2040

Thread Level Speculation (TLS) Parallelization

' Thread Level Speculation (TLS)
Parallelization

»Speculation, Thread-Level

' Thread-Level Data Speculation
(TLDS)

»Speculative Parallelization of Loops
»Speculation, Thread-Level

' Thread-Level Speculation

»Speculative Parallelization of Loops
»Speculation, Thread-Level

" Threads

»Processes, Tasks, and Threads

! Tiling

FrANGOIS IRIGOIN
MINES ParisTech/CRI, Fontainebleau, France

Synonyms
Blocking; Hyperplane partitioning; Loop blocking;
Loop tiling; Supernode partitioning

Definition

Tiling is a program transformation used to improve
the spatial and/or temporal memory locality of a loop
nest by changing its iteration order, and/or to reduce its
synchronization or communication overhead by con-
trolling the granularity of its parallel execution. Tiling
adds some control overhead because the number of
loops is doubled, and reduces the amount of parallelism
available in the outermost loops. The # initial loops

are replaced by n outer loops used to enumerate the
tiles and » inner loops used to execute all the iterations
within a tile.

Discussion

Tiling is useful for most recent parallel computer archi-
tectures, with shared or distributed memory, since they
all rely on locality to exploit their memory hierar-
chies and on parallelism to exploit several cores. It is
also useful for heterogeneous architectures with hard-
ware accelerators, and for monoprocessors with caches.
Unlike many loop transformations, tiling is not a uni-
modular transformation. Iterations that are geometri-
cally close in the loop nest iteration set are grouped in
so-called tiles to be executed together atomically. Tiles
are also called blocks when their edges are parallel to the
axes or more generally when their facets are orthogonal
to the base vectors. For instance, the parallel stencil
written in C:
for(il=1;il<n;il++)
for(i2=1;1i2<m;i2++)
ali1l [i2] = 0.2*(b[il-1] [i2]

+b[i1] [1i2]

+b[11+1] [12]

+b[il] [i2-1]

+b[i1] [12+1])

can be transformed into:

#pragma omp parallel for
for(tl=1;tl<n;tl+=bl)
#pragma omp parallel for
for (t2=1;t2<m;t2+=b2)
// tile code
for(il=tl;il<min(tl+bl, n);il++)
for(i2=t2;1i2<min (t2+b2, m) ;i2++)
alil] [i2] = 0.2*(b[i1-1] [i2]
+b[i1] [i2]
+b[11+1] [12]
+b[i1] [12-1]
+b[i1] [i2+1])

where t1 and t2 are tile coordinates and b1 and b2
are the tile or block sizes.

Initially, this tiling transformation was called loop
blocking by Allen & Kennedy and tiling by Wolfe
[32, 33] before it was extended to slanted tiles under
the name of supernode partitioning by Irigoin and
Triolet [21]. Wolfe suggested to use systematically the

http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_35
http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_35
http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_448
http://dx.doi.org/10.1007/978-0-387-09766-4_2468
http://dx.doi.org/10.1007/978-0-387-09766-4_2469
http://dx.doi.org/10.1007/978-0-387-09766-4_2470
http://dx.doi.org/10.1007/978-0-387-09766-4_2471
http://dx.doi.org/10.1007/978-0-387-09766-4_2472

Tiling

2041

Tiling. Fig. 1 Iteration space with dependence vectors

name tiling as it is short and easy to understand. He uses
it in his textbook about program transformations [34].
But loop blocking is still used because it is a proper
subset of tiling: see, for instance, Allen and Kennedy [4].

Slanted tiles can be used with these sequential
Fortran loops taken from Xue [35]

do i1 =1, 9
do i2 =1, 5
a(il,i2) = a(il,i2-2)+a(i1-3,i2+1)
enddo
enddo

whose 2-D iteration set and dependence vectors are
shown in Fig. 1 (All figures are taken or derived from
Figure 4.1, page 103, of Xue [35] by courtesy of the pub-
lisher. Some were adapted or derived to fit the notations
used in this entry.). These two loops can be transformed
into
do t1 = 0, 2
do t2 = max(it-1,0), (it+4)/2
do il = 3*tl+1l, 3*tl1+3
do 12 = max(-tl+2*t2+1,1),
min((-tl+6*t2+9)/3,5)
a(i1,i2) = a(i1,i2-2)
+a(i1-3,1i2+1)
enddo
enddo
enddo
enddo

using slanted tiles with vectors (3, -1) and (0,2) shown
in Fig. 2. The sets of integer points in each tile are not
slanted in this case, but they are not horizontally aligned
as shown by the grey areas. The tile iteration set is shown
in Fig. 3. Note that Fortran allows negative array indices,

5--% o 0 O
4+ (@) O O (@)

3+ o O (@) O O
2+ (@) o O (@)

1+ o O (@) O O

0

Tiling. Fig. 2 Tiled iteration set

1)

3 —

1 Ef 5
11

0 M—=t—f 4
0 1 2

Tiling. Fig. 3 Iteration set for tiles, with tile dependence
vectors

which makes references to a(1,-1) and a(-2,2)
possibly legal.

Mathematically speaking, this grouping/blocking is
a partition of the loop iteration space that induces a
renumbering and a reordering of the iterations. This
reordering should not modify the program semantics.
Hence, several issues are linked to tiling as to any other
program transformations: Why should tiling be consid-
ered? What are the legal tilings for a given loop nest?
How is an optimal tiling chosen? How is the trans-
formed code generated?

Tiling has several positive impacts. Depending on
the target architecture, it reduces the synchroniza-
tion overhead, the communication overhead, the cache
coherency traffic, the number of external memory
accesses, and the amount of memory required to
execute a loop nest in an accelerator or a scratch pad
memory, or the number of cache misses. Thus, the exe-
cution time and/or the energy used to execute the loop

2042

Tiling

nest are reduced, or the execution with a small memory
is made possible.

Tiling also has two possibly negative impacts. The
control overhead is increased, if only because the num-
ber of loops is doubled, and the amount of parallelism
degree is smaller at the tile level because the initial
parallelism is partly transferred within each tile and
traded for locality and communication and synchro-
nization overheads. The control overhead depends on
the code generation phase, especially when partial tiles
are needed to cover the boundaries of the iteration set.

Tile selection depends on the target architecture. For
shared memory multiprocessors, including multicores,
the primary bottleneck is the memory bandwidth and
tiling is used to improve the cache hit ratio by reducing
the memory footprint, that is, the set of live variables
that should be kept in cache, and to reduce the cache
coherency traffic. Some array references in the initial
code must exhibit some spatial and/or temporal locality
for tiling to be beneficial.

Tiling can be applied again, recursively or hierar-
chically, to increase locality at the different cache levels
(L0, L1, L2,L3,...) and even at the register level by using
very small tiles compatible with the number of registers.
These register tiles are fully unrolled to exploit the regis-
ters. The tiling of tiles is also known as multilevel tiling.
Tiling can also be used to increase locality at the virtual
memory page level as shown in 1969 by McKeller and
Coffman in [24].

For vector multiprocessors, the size of the tiles must
be large enough to use the vector units efficiently, but
small enough for their memory footprint to fit in the
local cache, which is one of many trade-offs encoun-
tered in tile selection.

For distributed memory multiprocessors, tiling is
used to generate automatically distributed code. The
tiles are mapped on the processors and the processors
communicate data on or close to the tile boundaries. Let
p be the edge length of a n-dimensional tile. The idea
is to compute O(p") values and exchange only O(p" ™)
values so as to overlap the computation with communi-
cation although computations are faster than commu-
nications. The amount of memory on each processor is
supposed large enough not to be a constraint, but the
value of p is adjusted to trade parallelism against com-
munication and synchronization overheads. As men-
tioned above, these large tiles can be tiled again if

locality or parallelism is an issue at the elementary
processor level.

Heterogeneous processors using hardware accelera-
tors, FPGA- or GPGPU- based, require the same kind
of trade-offs. Either large tiles must be executed on the
accelerator to benefit from its parallel architecture, or
small tiles only are possible because of the limited local
memory, but in both cases communications between
the host and the accelerator must take place asyn-
chronously during the computation. Tiling is used to
meet the local memory or vector register size con-
straints, and to generate opportunities for asynchronous
transfers overlapped with the computation.

Multiprocessors System-on-Chip (MPSoC) designed
for embedded processing may combine some local
internal memories, a.k.a. scratchpad memories, and a
global external memory, which make them distributed
systems with a global memory. Tiling is used to meet
the local memory constraints, but communications
between the processors or between the processors and
the external global memory must be generated. Other
transformations, such as loop fusion and array contrac-
tion (see »Parallelization, Automatic), are used in com-
bination with tiling to reduce the communication and
the execution time. A combination of loop fusion and
loop distribution may give a better result than the tiling
of fused loops, at least when the scratchpad memory is
very small.

Tiling can also be applied to multidimensional
arrays instead of loop nests. This approach is used
by High-Performance Fortran (see »High Performance
Fortran (HPF)). The code generation is derived from
the initial code and from mapping constraints, based,
for instance, on the owner-computes rule: the computation
must be located where the result is stored. This idea may
also be applied to speed up array IOs and out-of-core
computations.

Finally, tiling can be applied to more general spaces
and sets. For instance, Griebl [15] use the »Polyhedron
Model to map larger pieces of code to a unique space
of large dimension. Sequences of loops can be mapped
onto such a space and be tiled globally.

Because of the many machine architectures that
can benefit from tiling, numerous papers have been
published on the subject. It is important to check
what kind of architecture is targeted before reading or
comparing them.

http://dx.doi.org/10.1007/978-0-387-09766-4_197
http://dx.doi.org/10.1007/978-0-387-09766-4_224
http://dx.doi.org/10.1007/978-0-387-09766-4_224
http://dx.doi.org/10.1007/978-0-387-09766-4_502
http://dx.doi.org/10.1007/978-0-387-09766-4_502

Tiling

2043

5+ o O o O O O

4+ o O O O O O

3+ o O o O o O

2+ o O O O o O

1+ o O O O o O

o —+—+—+——+—+—+—+—"+—"+—=i
01 2 3 45 6 7 8 9

Tiling. Fig. 4 First hyperplane partitioning with h = (1,0)
ando=(1,1)

The general definition and legality of tiling were intro-
duced by Irigoin and Triolet who gave sufficient legality
conditions in [21]. Necessary conditions were added
later by Xue [35].

The basic idea is to use parallel hyperplanes defined
by a normal vector h to slice the iteration space Z",
where 7 is the number of nested loops, to obtain a par-
tition. The partition of a set E is a set P of nonempty
subsets of E, whose two-by-two intersection is always
empty and whose union is equal to e. Each slice is math-
ematically speaking a part (there is no agreement about
the naming of elements of P: part, block or cell are used.
We chose to use part) and two iteration vectors j; and j,
belong to the same part if |h.(j; — 0)| = |h.(j2 — 0)],
where . denotes the scalar product, | | the floor func-
tion, and o is an offset vector. For instance, using the
normal vector h = (%,0) and the offset 0 = (1,1),
the iteration set of Fig. 1 is partitioned in three parts
shown in Fig. 4. Because of this definition, the slices, or
parts become larger when the norm of / decreases (see
Fig. 5). To make sure that the parts can be executed one
after the other, dependence cycles between two parts
must be avoided. For instance, the diagonal partition
in Fig. 6 creates a cycle between the two subsets. Iter-
ation (2,1) must be executed before iteration (2,3), so
the left subset must be executed before the right sub-
set, but iteration (1,2) must be executed before iteration
(4,1), which is incompatible.

Cycles between subsets are avoided if each depen-
dence vector d in the loop nest meets the condition
h.d > 0. This condition does depend neither on /]|,
the norm of A, nor on the iteration set, which makes

5+ 0 O O O O 0 O
4+ 0 O O O O 0 O
3+ 0 O 0 O O 0 O
2+ 0 O 0 O O 0 O
10 O O O O 0 O

0 —t——"t—"4—t—"t—t—d—t—i
0 1t 2 3 4 5 6 7 8 9

Tiling. Fig. 5 Same hyperplane partitioning with a smaller
h=(%0)

Tiling. Fig. 6 Dependence cycle between two parts

\S]

I

o
o4+ /O O /O O /O
O of0o o0

@)
O
@)
O
@)

I

o =
I

7_ O

~N -

@) Qo
Q O
O o
Q O
o (@)

I I

5 8

o
-

Tiling. Fig. 7 Second hyperplane partitioning with
hy=(%,1)ando=(1,1)

all such legal tilings scalable to meet the different needs
enumerated above.

Several hyperplane partitionings h;, h,,...can be
combined to increase the number of parts and reduce
their sizes (see Figs. 7 and 8). The vectors hy, h,...are
usually grouped (Xue [35] uses H to denote the trans-
posed matrix of H, that is, the h vectors are transformed
into affine forms) together in a matrix, H. When the

2044 Tiling

Ip

5+ o O O O o O

4 - O O o O O O

3 o O O O O O

2+ O O o O O O % %

1+ o O O O o O ol

0 1+t h 2
0o 1 2 3 4 5 6 8 9 Tiling. Fig. 10 Hyperplane matrix H

P=[5)= 29

Tiling. Fig. 9 Partitioning or clustering matrix

number of different hyperplane families 4; used is equal
to the number of nested loops n and when the #; are lin-
early independent vectors, the part sizes are bounded,
regardless of the iteration set, and all parts of the iter-
ation space are equal up to a translation if H™' is an
integer matrix. However, the parts of the iteration set
L may differ because of the loop boundaries. See, for
instance, tile (2,3), the upper right tile in Fig. 2, which
contains only three iterations.

The transpose of H™', the partitioning matrix P,
contains the edges of the tile and its determinant is the
number of iterations within each tile. So P (Fig. 9) is eas-
ier to visualize than H (Fig. 10). Note that det(P) = 6,
which is the maximum number of iterations within one
tile, as can be seen on Fig. 2.

A tiling H is defined by the number of hyperplane
sets used, by the directions of the normal vectors h;
and by their relative norms, that is, the tile shape, and
by the number of iterations within a tile, that is, the
tile size. The tile shape is defined when det(H) = 1.
The tile size is controlled by a scaling coefficient. The
tiling origin is another parameter impacting mostly the
code generation, but also the execution time. Often, a

tiling selection is decomposed into the selection of a
shape and the selection of a size and finally the choice
of an offset.

The legality conditions are summed up by HR > 0,
where R is a matrix made of the rays of a convex cone
containing all possible dependence vectors d, because
the condition h.d > 0is convex. The computation of R by
adependence test is explained by Irigoin and Triolet [21]
and the dependence cone is one of many approxima-
tions of the dependence vector set. When dependences
are uniform (see »Dependences), R can be built directly
with the dependence vectors. The valid hyperplanes h
belong to another cone, dual of R.

A necessary and sufficient condition, |Hd| > 0,
was introduced by Xue [35] in 1997, where > is the
lexicographic order, but it does not bring any prac-
tical improvement over the previous sufficient condi-
tion. Xue also provided an exact legality test based on
integer programming and using information about the
iteration set L(j), that is, the loop bounds of the initial
loop nest.

Note also that the subset of tilings such that
det(H) = 1is the set of unimodular transformations and
that H'd > 0 is their legality condition (see »Loop Nest
Parallelization).

Tile selection requires some choice criterion, and opti-
mal tile selection some cost function. The cost function
is obviously dependent on the target machine, which
makes many optimal tilings possible since many target
architectures can benefit from tiling. Also, if the cost
function is the execution time, the tiling per se is only
part of the compilation scheme. The execution time of
one tile depends on the scheduling of the local iter-
ations, for instance because each processor has some

http://dx.doi.org/10.1007/978-0-387-09766-4_172
http://dx.doi.org/10.1007/978-0-387-09766-4_228
http://dx.doi.org/10.1007/978-0-387-09766-4_228

Tiling

2045

vector capability. It also depends on the tiles previously
executed on the same processor, whether a cache or a
local memory is used, that is, it depends on the map-
ping of tiles on processor. And finally, the total execution
time of the tiled nest depends on the schedule and
on the mapping of the tiles on the logical or physical
resources, threads, or cores.

In other words, any optimal tiling is optimal with
respect to a cost function modeling the execution time
or the energy for a given target. Models used to derive
analytical optimal solutions often assume that the exe-
cution and the communication times are respectively
proportional to the computation and communication
volumes, which is not realistic, especially with multi-
cores, superword parallelism, and several levels of cache
memories. Models may also assume that the number of
processors available (because of multicore and multi-
threaded architectures, the definition of processor, vir-
tual or physical, is not well defined. Here, the processor
is not a chip, but rather the total number of physi-
cal threads in a multicore or the total number of user
processes running simultaneously in the machine) is
greater than the number of tiles that can be executed
simultaneously, which simplifies the mapping of tiles on
processors.

When the target architecture has some kind of
implicit vector capability, for instance when the cache
lines are loaded, a partial tiling with rank(H) < n,
that is, a set of hyperplane partitionings, may be more
effective than a full tiling. Tiles are not longer bounded
by the hyperplanes, but they remain bounded by the
initial loop nest iteration set.

Because the execution time of real machine becomes
more and more complex with the number of transistors
used, iterative compilation is used when performance
is key. The code is compiled and executed with different
tile sizes and the best tile size is retained. Symbolic tiling
is useful to speed up the process.

Some decisions can be made at run time. For
instance, Rastello et al. [25] use run-time scheduling to
speed-up the execution. Note that they overlap the com-
putations and the communications related to one tile,
which somehow breaks the tile atomicity constraint.

As for tiling optimality, tile code generation depends
on the target machine. A parallel machine requires the

mapping and the parallel execution of the tiles. A dis-
tributed memory machine also requires communica-
tion generation. A processor with a memory hierarchy
and/or a vector capability requires loop optimization at
the tile level. The minimal requirement is that all itera-
tions of the initial loop nest are performed by the tiled
nest.

Let vector jbe an iteration of loop nest L, t a tile coor-
dinate, and / the local coordinate of an iteration within
a tile . Since no redundant computations are added by
hyperplane partitioning, the relationship between j and
(¢,1) is a one-to-one mapping from the initial set of
iterations L(j) to the new iteration set T'(#,1). Ancourt
and Irigoin [5] show that an affine relationship can be
built between j and (t,1) and that the new loop bounds
for t and I can be derived from this relationship and
from L when the matrix H is numerically known and
when L is a parametric polyhedron, that is, when the
loop bounds are affine functions of loop indices and
parameters. To simplify array subscript expressions, the
code may be generated using t and j instead of ¢ and
I. This optimization is used in the code examples given
above.

This loop nest generation is sufficient for shared
memory machines, although it is better to generate
several versions of the tile code, one for the full tiles,
and several ones for the partial tiles on the iteration
set boundaries, in order to reduce the average control
overhead. Multilevel tiling is also used to reduce the
overhead due to partial tiles on the boundaries (see the
top left and top right tiles in Fig. 2).

This does not specify the mapping of tiles onto
threads or cores when the tile parallelism is greater than
the number of processors. But locality-aware schedul-
ing lets tiles inherit data from other tiles previously
executed on the same thread as suggested by Xue and
Huang in [37] who minimize the number of partition-
ing hyperplanes, that is, the rank of H.

Parametric tiling does not require H to be numeri-
cally known at compile time. The tile size, if not the tile
shape, can be adjusted at run time or optimized dynam-
ically. A technique is proposed by Renganarayanna
et al. [28] for multilevel tiling, and another one by
Hartono et al. [18, 23].

Note that parallelism within tiles or across tiles is
obtained by wavefronting, a unimodular loop transfor-
mation (see »Loop Nest Parallelization), unless the ini-
tial loop nest is fully parallel, in which case cone R is

http://dx.doi.org/10.1007/978-0-387-09766-4_228

2046

Tiling

empty or reduced to {0}. For instance, the tiles (1,0)
and (1,0) on Fig. 3 can be computed in parallel.

Tiling and hyperplane partitioning are defined for per-
fectly nested loops only, but many algorithms, including
matrix multiply, are made of non-perfectly nested loops.
It is possible to move all non-perfectly nested state-
ments into the loop nest body by adding guards (a.k.a.
statement sinking), but these guards must then be care-
fully moved or removed when the tile code is generated.
The issue is tackled directly by Ahmed et al. [3] and
Griebl [15, 16], who avoid statement sinking by mapping
all statement in another space (see » Polyhedron Model)
and by applying transformations, including tiling, on
this space before code generation, and by Hartono
et al. [18] who use a polyhedral representation of the
code to generate multilevel tilings of imperfectly nested
loops. See the Polyhedron Model entry for more infor-
mation about the mapping of a piece of code onto a
polyhedral space.

Tiling can also be applied to loop nests containing
commutative and associative reductions, but this does
not fit the general legality condition HR > 0.

Tiling can be applied by the programmer. For
instance, 3-D tiling improved with array padding has
been used to optimize 3-D PDE solvers and 3-D stencil
codes. Tiling has been used to optimize some instances
of dynamic programming, the resolution of the heat
equation, and even some sparse computations. Because
tiling is difficult to apply by hand, source-to-source
tilers have been developed.

Finally, Guo et al. suggest in [17] to support tiling
at the programming language level, using hierarchically
tiled arrays (HTA) to keep the code readable, while
letting the programmer be in control.

The partitioning matrix P = (H T)_l can be built step-
by-step by a combination of loop skewing, or more
generally any unimodular loop transformations, strip-
minings (1-D tiling), and loop interchanges. Loop skew-
ing is a unimodular transformation used to change the
iteration coordinates and to make loop blocking legal
because the new loop nest obtained is fully permutable.

In other words, the P matrix is replaced by the prod-
uct of a diagonal matrix A, which defines a rectangu-
lar tiling, a.k.a. loop blocking, and of #(P)P, and the
tiling by a sequence of easier transformations. This is
advocated by Allen & Kennedy in their textbook [4].
Reducing tiling to blocking via basis changes, for exam-
ple, using a Smith normal form of H, is also often used
to optimize the tile shape and size, but some of the
tile shape problem remains and the constraints of the
iteration set L usually become more complex.

Strip-mining is a 1-D tiling, a degenerated case of
hyperplane partitioning. It is used to adapt the paral-
lelism available to the hardware resources, for instance
vector registers.

Loop interchange is a unimodular transformation.
Like all unimodular transformations, it is an extreme
case of tiling with no tiling effect because det(H) = 1,
that is, each tile contains only one element. It is often
used to increase locality.

Loop unroll-and-jam first unrolls an outer loop by
some factor k, that is, it is a strip-mining followed by a
full unroll of the new loop. Then, the replicated inner-
most loops are fused (jammed). This is equivalent to a
rectangular hyperplane partitioning with blocking fac-
tors (k,1,1,...), followed by an unrolling of the tile
loop. Unroll-and-jam can be applied to several outer
loops with several factors, which again is equivalent to
a rectangular tiling with the same factors followed by
an unrolling of the tile loops. Unroll-and-jam is used
to increase locality and is effective like tiling if some
references exhibit temporal locality along outer loops.

Tiling is designed to forbid redundant computa-
tions. However, overlap between tiles can reduce com-
munications at the expense of additional computation.
Data overlaps are also used to compile »HPF (High-
Performance Fortran) using the owner compute rule.

Finally, tiling is also related to the partitioning of
»systolic arrays, used to fit a large parametric size
iteration set on a fixed-size chip.

Future Directions

Although tiling is a powerful transformation by itself,
and quite complex to use, it does not include some
other key transformations such as loop fusion or loop
peeling. Furthermore, the loop body is handled as a
unique statement although it may contain sequences,
tests, and loops.

http://dx.doi.org/10.1007/978-0-387-09766-4_502
http://dx.doi.org/10.1007/978-0-387-09766-4_224
http://dx.doi.org/10.1007/978-0-387-09766-4_224
http://dx.doi.org/10.1007/978-0-387-09766-4_467

Tiling

2047

So more complex code transformations were advo-
cated in 1991 by Wolf and Lam [31] to optimize par-
allelism and locality. More recently, Griebl [15] and
Bondhugula et al. [8] use the polyhedral framework (see
»Polyhedron Model) to handle each elementary state-
ment individually, at least within static control pieces of
code. This is also attempted within gcc with the Graphite
plug-in.

Otherwise, it is possible to move away from the
complexity of tiling by replacing it with sequences of
simpler transformations, including hyperplane parti-
tioning. The difficulty is then to decide which sequence
leads to an optimal or at least to a well-performing code.

In case the execution time of each iteration is dif-
ferent or even very different, the tile equality constraint
could be lifted up to obtain a nonuniform partition-
ing. This has already been done in the 1-D case. In
such cases, strip-mining is replaced by more complex
partitions to map the parallel iterations onto the proces-
sors. The larger partitions are executed first to reduce
the imbalance between processors at the end without
increasing the control overhead at the beginning (see
»Nested loops scheduling).

Related Entries

»Code Generation

»Dependences

»Dependence Abstractions
»Dependence Analysis

» Distributed-Memory Multiprocessor
»HPF (High Performance Fortran)
»Locality of Reference and Parallel Processing
»Loop Nest Parallelization

» Parallelization, Automatic
»Polyhedron Model
»Shared-Memory Multiprocessors
»Systolic Arrays

» Unimodular Transformations

Bibliographic Notes and Further
Reading

The best reference about tiling is the book written by
Xue [35]. It provides the necessary background on lin-
ear algebra and program transformations. It starts with
rectangular tilings before moving to slanted, that is,
parallelepiped, tilings. Code generation for distributed

memory machines and tiling optimizations are finally
addressed.

Tile size optimization is addressed explicitly by
Coleman and McKinley [12] to eliminate cache capac-
ity, self-interference, and cross-interference misses, that
is, for locality improvement.

For shared memory machines, Hogstedt et al. [20]
introduce the concepts of idle time and rise for a tiling,
and optimal tile shape for a multiprocessor with a mem-
ory hierarchy. They propose an algorithm to select an
non-rectangular optimal tile shape for a shared mem-
ory multiprocessor, with enough processors to use all
parallelism available. They assume that the tile execu-
tion time is proportional to its volume. Rastello and
Robert [26] provide a closed form for the tile shape that
minimizes the number of cache misses during the exe-
cution of a rectangular tile for a given cache size and
for parallel loops, that is, without tiling legality con-
straints. They also provide a heuristic to optimize the
same function for any shape of tiles.

For distributed memory machines, the contribu-
tions to the quest for analytic solutions are numerous.
Boulet et al. [10] carefully include a question mark
in their paper title, (Pen)-ultimate tiling?. Hodzic and
Shang give several closed forms for the size and the
relative side lengths [19]. Xue [36] uses communica-
tion/computation overlap and provides a closed form
for the optimal tile size.

Tile shapes are restrained to orthogonal shapes by
Andonov et al. [7] in order to find an optimal solution.
For 2-D iteration spaces, using the BSP model and an
unbounded number of processors, Andonov et al. [6]
provide closed forms for the optimal tiling parameters
and the optimal number of processors.

Agarwal et al. [1, 2] introduce a method for deriv-
ing an optimal hyperparallelepiped tiling of iteration
spaces for minimal communication in multiprocessors
with caches and for distributed shared-memory mul-
tiprocessors. More recently, Bondhugula et al. [9] tile
sequences of imperfectly nested loops for locality and
parallelism. They use an analytical model and integer
linear optimization.

Carter et al. introduce hierarchical tiling for super-
scalar machines [11], but the tuning is handmade.
Renganarayanna and Rajopadhye [27] determine opti-
mal tile sizes with a BSP-like model. Strzodka et al. [29]
use multilevel tiling to speed up stencil computations

http://dx.doi.org/10.1007/978-0-387-09766-4_502
http://dx.doi.org/10.1007/978-0-387-09766-4_2479
http://dx.doi.org/10.1007/978-0-387-09766-4_67
http://dx.doi.org/10.1007/978-0-387-09766-4_172
http://dx.doi.org/10.1007/978-0-387-09766-4_272
http://dx.doi.org/10.1007/978-0-387-09766-4_2014
http://dx.doi.org/10.1007/978-0-387-09766-4_223
http://dx.doi.org/10.1007/978-0-387-09766-4_224
http://dx.doi.org/10.1007/978-0-387-09766-4_206
http://dx.doi.org/10.1007/978-0-387-09766-4_228
http://dx.doi.org/10.1007/978-0-387-09766-4_197
http://dx.doi.org/10.1007/978-0-387-09766-4_502
http://dx.doi.org/10.1007/978-0-387-09766-4_142
http://dx.doi.org/10.1007/978-0-387-09766-4_467
http://dx.doi.org/10.1007/978-0-387-09766-4_196

2048

Tiling

by optimizing simultaneously locality, parallelism and
vectorization.

For distributed memory machines, communication

code must be generated too. See Ancourt [5], Tang [30],
Xue [35], Chapter 6 and 7, and finally Goumas et al. [14],
who generate MPI code automatically.

Goumas et al. propose [13] a tile code generation

algorithm for parallelepiped tiles. This can be used for
general tiles thanks to changes of basis.

Bibliography

1

10.

11

. Allen R, Kennedy K (2002)

Agarwal A, Kranz D, Natarajan V (1993) Automatic partition-
ing of parallel loops for cache-coherent multiprocessors. In:
International conference on parallel processing (ICPP), Syracuse
University, Syracuse, NY, 16-20 August 1993, vol 1, pp 2-11

. Agarwal A, Kranz DA, Natarajan V (September 1995) Auto-

matic partitioning of parallel loops and data arrays for distributed
shared-memory multiprocessors. IEEE Trans Parallel Distrib Syst
6(9):943-962

. Ahmed N, Mateev N, Pingali K (2000) Synthesizing transforma-

tions for locality enhancement of imperfectly-nested loop nests.
In: Proceedings of the 14th international conference on super-
computing, Santa Fe, 8-11 May 2000, pp 141-152

Optimizing compilers for
modern architectures: a

dependence-based approach.

Morgan-Kaufmann. San Francisco, pp 477-491

. Ancourt C, Irigoin F (1991) Scanning polyhedra with DO loops.

In: Third ACM symposium on principles and practice of parallel
programming, Williamsburg, VA, pp 39-50

. Andonov R, Balev S, Rajopadhye S, Yanev N (July 2001) Opti-

mal semi-oblique tiling. In: Proceedings of the 13th annual ACM
symposium on parallel algorithms and architectures, Crete Island,
pp 153-162

Andonov R, Rajopadhye SV, Yanev N (1998) Optimal orthogo-
nal tiling. In: Proceedings of the fourth international Euro-Par
conference on parallel processing, Southampton, 1-4 Sept 1998,
Pp 480-490

. Bondhugula U, Baskaran M, Krishnamoorthy S, Ramanujam J,

Rountev A, Sadayappan P (2008) Automatic transformations
for communication-minimized parallelization and locality opti-
mization in the polyhedral model. In: Proceedings of the joint
European conferences on theory and practice of software 17th
international conference on compiler construction, Budapest,
Hungary, 29 March-6 April 2008

. Bondhugula U, Hartono A, Ramanujam J, Sadayappan P (June

2008) A practical automatic polyhedral parallelizer and locality
optimizer. In: PLDI 2008. ACM SIGPLAN Not 43(6)

Boulet P, Darte A, Risset T, Robert Y (1996) (Pen)-ultimate tiling?
Integr: VLSI] 17:33-51

Carter L, Ferrante], Hummel SF (1995) Hierarchical tiling for
improved superscalar performance. In: Proceedings of the ninth
international symposium on parallel processing, Santa Barbara,
25-28 April 1995, pp 239-245

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Coleman S, McKinley KS (June 1995) Tile size selection using
cache organization and data layout. In: PLDI’'95; ACM SIGPLAN
Not 30(6):279-290

Goumas G, Athanasaki M, Koziris N (2002) Automatic code
generation for executing tiled nested loops onto parallel architec-
tures. In: Proceedings of the 2002 ACM symposium on applied
computing, Madrid, Spain, 11-14 March 2002

Goumas G, Drosinos N, Athanasaki M, Koziris N (Novem-
ber 2006) Message-passing code generation for non-rectangular
tiling transformations. Parallel Computing 32(10): 711-732
Griebl M (July 2001) On tiling space-time mapped loop nests.
In: Proceedings of the 13th annual ACM symposium on parallel
algorithms and architectures, Crete Island, pp 322-323

Griebl M (June 2004) Automatic parallelization of loop programs
for distributed memory architectures. Habilitation thesis, Depart-
ment of Informatics and Mathematics, University of Passau.
http://www.fim.uni- passau.de/cl/publications/docs/Gri04.pdf
Guo J, Bikshandi G, Fraguela BB, Garzaran M]J, Padua D (2008)
Programming with tiles. In: Proceedings of the 13th ACM SIG-
PLAN symposium on principles and practice of parallel program-
ming, Salt Lake City, UT, USA, 20-23 Feb 2008

Hartono A, Manikandan Baskaran M, Bastoul C, Cohen A, Krish-
namoorthy S, Norris B, Ramanujam J, Sadayappan P (2009)
Parametric multi-level tiling of imperfectly nested loops. In: Pro-
ceedings of the 23rd international conference on supercomput-
ing, Yorktown Heights, NY, USA, 8-12 June 2009

Hodzic E, Shang W (December 2002) On time optimal supernode
shape. IEEE Trans Parallel Distrib Syst 13(12):1220-1233
Hogstedt K, Carter L, Ferrante] (March 2003) On the parallel
execution time of tiled loops. IEEE Trans Parallel Distrib Syst
14(3):307-321

Irigoin E, Triolet R (1988) Supernode partitioning. In: Fifteenth
annual ACM symposium on principles of programming lan-
guages, San Diego, CA, pp 319-329

Jiménez M, Llaberia JM, Fernédndez A (July 2002) Register tiling
in nonrectangular iteration spaces. ACM Trans Program Lang
Syst 24(4):409-453

Manikandan Baskaran M, Hartono A, Tavarageri S, Henretty T,
Ramanujam J, Sadayappan P (2010) Parameterized tiling revis-
ited. In: CGO’10: proceedings of the eighth annual IEEE/ACM
international symposium on code generation and optimization,
pp 200-209

McKeller AC, Coffman EG (1969) The organization of matrices
and matrix operations in a paged multiprogramming environ-
ment. Commun ACM 12(3):153-165

Rastello F, Rao A, Pande S (February 2003) Optimal task schedul-
ing at run time to exploit intra-tile parallelism. Paralle] Comput
29(2):209-239

Rastello E Robert Y (May 2002) Automatic partitioning of par-
allel loops with parallelepiped-shaped tiles. IEEE Trans Parallel
Distrib Syst 13(5):460-470

Renganarayana L, Rajopadhye S (2004) A geometric program-
ming framework for optimal multi-level tiling. In: Proceedings of
the 2004 ACM/IEEE conference on supercomputing, Pittsburgh,
PA, 6-12 Nov 2004, p 18

http://www.fim.uni-passau.de/cl/publications/docs/Gri04.pdf

Titanium

2049

28. Renganarayanan L, Kim D, Rajopadhye S, Strout MM (June 2007)
Parameterized tiled loops for free. In: PLDI'07, ACM SIGPLAN
Not 42(6)

29. Strzodka R, Shaheen M, Pajak D, Seidel H-P (2010) Cache obliv-
ious parallelograms in iterative stencil computations. In: ICS’10:
proceedings of the 24th ACM international conference on super-
computing, Tsukuba, Japan, pp 49-59

30. TangP, Xue] (2000) Generating efficient tiled code for distributed
memory machines. Parallel Comput 26(11):1369-1410

31. Wolf ME, Lam MS (October 1991) A loop transformation theory
and an algorithm to maximize parallelism. IEEE Trans Parallel
Distrib Syst 2(4):452-471

32. Wolfe MJ (1987) Iteration space tiling for memory hierarchies.
In: Rodrigue G (ed) Parallel processing for scientific computing.
SIAM, Philadelphia, pp 357-361

33. Wolfe MJ (1989) More iteration space tiling. In: Proceedings of
the 1989 ACM/IEEE conference on supercomputing, Reno, NV,
12-17 Nov 1989, pp 655-664

34. Wolfe MJ (1995) High performance compilers for parallel com-
puting. Addison-Wesley Longman, Boston

35. Xue] (2000) Loop tiling for parallelism. Kluwer, Boston

36. Xue], Cai W (June 2002) Time-minimal tiling when rise is larger
than zero. Parallel Comput 28(6):915-939

37. Xue J, Huang C-H (December 1998) Reuse-driven tiling for
improving data locality. Int] Parallel Program 26(6):671-696

! Titanium

KATHERINE YELICK', SUSAN L. GRAHAM?, PaUL
HILFINGER?, DAN BONACHEA?, Jimmy Su?, AMIR Kamrr?,
KausHIK DaTTA®, PHILLIP COLELLA®, TONG WEN"
'University of California at Berkeley and Lawrence
Berkeley National Laboratory, Berkeley, CA, USA
?University of California, Berkeley, CA, USA

’Lawrence Berkeley National Laboratory, Berkeley,

CA, USA

Definition

Titanium is a parallel programming language designed
for high-performance scientific computing. It is based
on Java™ and uses a Single Program Multiple Data
(SPMD) parallelism model with a Partitioned Global
Address Space (PGAS).

Discussion

Titanium is an explicitly parallel dialect of Java™
designed for high-performance scientific programming

[14, 15]. The Titanium project started in 1995, at a
time when custom supercomputers were losing mar-
ket share to PC clusters. The motivation was to cre-
ate a language design and implementation that would
enable portable programming for a wide range of paral-
lel platforms by striking an appropriate balance between
expressiveness, user-provided information about con-
currency and memory locality, and compiler and run-
time support for parallelism. The goal was to design a
language that could be used for high performance on
some of the most challenging applications, such as those
with adaptivity in time and space, unpredictable depen-
dencies, and sparse, hierarchical, or pointer-based data
structures.

The strategy was to build on the experience of
several Partitioned Global Address Space (PGAS) lan-
guages, but to design a higher-level language offering
object orientation with strong typing and safe memory
management in the context of applications requiring
high performance and scalable parallelism. Titanium
uses Java as the underlying base language, but is nei-
ther a strict superset nor subset of that language.
Titanium adds general multidimensional arrays, sup-
port for extending the value types in the language,
and an unordered loop construct. In place of Java
threads, which are used for both program structuring
and concurrency, Titanium uses a static thread model
with a partitioned address space to allow for locality
optimizations.

Titanium uses a Single Program Multiple Data (SPMD)
parallelism model, which is familiar to users of
message-passing models. The following simple Tita-
nium program illustrates the use of built-in meth-
ods Ti.numProcs() and Ti.thisProc(), which query the
environment for the number of threads (or processes)
and the index within that set of the executing thread.
The example prints these indices in arbitrary order.
The number of Titanium threads need not be equal
to the number of physical processors, a feature that is
often useful when debugging parallel code on single-
processor machines. However, high-performance runs
typically use a one-to-one mapping between Titanium
threads and physical processors.

class HelloWorld {
public static void main (String [] argv) {

2050

Titanium

System.out.println("Hello from proc " +
Ti.thisProc() + " out of " + Ti.numProcs());

}

Titanium supports Javas synchronized blocks, which
are useful for protecting asynchronous accesses to
shared objects. Because many scientific applications use
a bulk-synchronous style, Titanium also has a barrier-
synchronization construct, Ti.barrier(), as well as a
set of collective communication operations to perform
broadcasts, reductions, and scans. A novel feature of
Ti- tanium’s parallel execution model is that barriers
must be textually aligned in the program - not only
must all threads reach a barrier before any one of them
may proceed, but they must all reach the same textual
barrier. For example, the following program is not legal
in Titanium:

if (Ti.thisProc() ==
//illegal barrier

0) Ti.barrier();

else Ti.barrier();//illegal barrier

Aiken and Gay developed the static analysis the com-
piler uses to enforce this alignment restriction, based on
two key concepts [1]:

e A single method is one that must be invoked by all
threads collectively. Only single methods can exe-
cute barriers.

o A single-valued expression is an expression that is
guaranteed to take on the same sequence of val-
ues on all processes. Only single-valued expressions
may be used in conditional expressions that affect
which barriers or single-method calls get executed.

The compiler automatically determines which meth-
ods are single by finding barriers or (transitively) calls
to other single methods. Single-valued expressions are
required in statements that determine the flow of con-
trol to barriers, ensuring that the barriers are executed
by all threads or by none. Titanium extends the Java
type system with the single qualifier. Variables of single-
qualified type may only be assigned values from single-
valued expressions. Literals and values that have been
broadcast are simple examples of single-valued expres-
sions. The following example illustrates these concepts.
Because the loop contains barriers, the expressions in
the for-loop header must be single-valued. The compiler
can check that property statically, since the variables

are declared single and are assigned from single-valued
expressions.

int single allTimestep = 0;

int single allEndTime = broadcast
inputTimeSteps from 0;

for (; allTimestep < allEndTime;
allTimestep) ++{
< read values belonging to other threads >
Ti.barrier();
< compute new local values >
Ti.barrier();

Barrier analysis is entirely static and provides compile-
time prevention of barrier-based deadlocks. It can also
be used to improve the quality of concurrency analysis
used in optimizations. Single qualification on variables
and methods is a useful form of program design docu-
mentation, improving readability by making replicated
quantities and collective methods explicitly visible in
the program source and subjecting these properties to
compiler enforcement.

The two basic mechanisms for communicating between
threads are accessing shared variables and sending
messages. Shared memory is generally considered eas-
ier to program, because communication is one-sided:
Threads can access shared data at any time without
interrupting other threads, and shared data structures
can be directly represented in memory. Titanium is
based on a Partitioned Global Address Space (PGAS)
model, which is similar to shared memory but with an
explicit recognition that access time is not uniform. As
shown in Fig. 1, memory is partitioned such that each
partition has affinity to one thread. Memory is also par-
titioned orthogonally into private and shared memory,
with stack variables living in private memory, and heap
objects, by default, living in the shared space. A thread
may access any variable that resides in shared space, but
has fast access to variables in its own partition. Objects
created by a given thread will reside in its own part of
the memory space.

Titanijum statically makes an explicit distinction
between local and global references: A local reference
must refer to an object within the same thread partition,
while a global reference may refer to either a remote or

Titanium

2051

v:1i v:5 v:7
==p nxt: nxt:

Shared space
contains most
heap objects

] e

E, Private space
contains program

stacks

t0 t1

tn

Titanium. Fig. 1 Titanium’s partitioned global address space memory model

local partition. In Fig. 1, instances of 1 are local refer-
ences, whereas g and nxt are global references and can
therefore cross partition boundaries. The motivation for
this distinction is performance. Global references are
more general than local ones, but they often incur a
space penalty to store affinity information and a time
penalty upon dereference to check whether communi-
cation is required. References in Titanium are global
by default, but may be designated local using the local
type qualifier. The compiler performs type inference to
automatically label variables as local [10].

The partitioned memory model is designed to scale
well on distributed memory platforms without the need
for caching of remote data and the associated coher-
ence protocols. Titanium also runs well on shared
memory multiprocessors and uniprocessors, where the
partitioned-memory model may not correspond to any
physical locality on the machine and the global ref-
erences generally incur no overhead relative to local
ones. Naively written Titanium programs may ignore
the partitioned-memory model and, for example, allo-
cate all data structures in one thread’s shared memory
partition or perform fine-grained accesses on remote
data. Such programs would run correctly on any plat-
form but would likely perform poorly on a distributed
memory platform. In contrast, a program that care-
fully manages its data-structure partitioning and access
behavior in order to scale well on distributed memory
hardware is likely to scale well on shared memory plat-
forms as well. The partitioned model provides the ability
to start with a functional, shared memory style code
and incrementally tune performance for distributed
memory hardware by reorganizing the affinity of key
data structures or adjusting access patterns in program
bottlenecks to improve communication performance.

Java arrays do not support sub-array objects that are
shared with larger arrays, nonzero base indices, or
true multidimensional arrays. Titanium retains Java
arrays for compatibility, but adds its own multidimen-
sional array support, which provides the same kinds of
sub-array operations available in Fortran 90. Titanium
arrays are indexed by integer tuples known as points and
built on sets of points, called domains. The design is
taken from that of a language for Finite Different Cal-
culations, FIDIL, designed by Colella and Hilfinger [7].
Points and domains are first-class entities in Titanium -
they can be stored in data structures, specified as liter-
als, passed as values to methods, and manipulated using
their own set of operations. For example, NAS multigrid
(MG) benchmark requires a 256° grid. The problem has
periodic boundaries, which are implemented using a
one-deep layer of surrounding ghost cells, resulting in
a 258’ grid. Such a grid can be constructed with the
following declaration:

double [3d] grida
= new double [[-1,-1,-1]:[256,256,256]11];
The 3D Titanium array gridA has a rectangular index
set that consists of all points [i, j, k] with integer coordi-
nates such that -1 < i,j, k < 256. Titanium calls such
an index set a rectangular domain of Titanium type
RectDomain, since all the points lie within a rectan-
gular box. Titanium also has a type Domain that rep-
resents an arbitrary set of points, but Titanium arrays
can only be built over RectDomains. Titanium arrays
may start at an arbitrary base point, as the example with
a [-1, -1, —1] base shows. In this example, the grid
was designed to have space for ghost regions, which are

2052

Titanium

all the points that have either —1 or 256 as a coordi-
nate. On machines with hierarchical memory systems,
gridA resides in memory with affinity to exactly one
process, namely the process that executes the above
statement. Similarly, objects reside in a single logical
memory space for their entire lifetime (there is no trans-
parent migration of data), though they are accessible
from any process in the parallel program.

The power of Titanium arrays stems from array
operators that can be used to create alternative
views of an array’s data, without an implied copy of
the data. While this is useful in many scientific codes,
it is especially valuable in hierarchical grid algorithms
like Multigrid and Adaptive Mesh Refinement (AMR).
In a Multigrid computation on a regular mesh, there is
a set of grids at various levels of refinement, and the
primary computations involve sweeping over a given
level of the mesh performing nearest neighbor com-
putations (called stencils) on each point. To simplify
programming, it is common to separate the interior
computation from computation at the boundary of the
mesh, whether those boundaries come from partition-
ing the mesh for parallelism or from special cases used
at the physical edges of the computational domain.
Since these algorithms typically deal with many kinds
of boundary operations, the ability to name and operate
on sub-arrays is useful.

Titanium’s domain calculus operators support sub-
arrays both syntactically and from a performance stand-
point. The tedious business of index calculations and
array offsets has been migrated from the application
code to the compiler and runtime system. For exam-
ple, the following Titanium code creates two blocks that
are logically adjacent, with a boundary of ghost cells
around each to hold values from the adjacent block. The
shrink operation creates a view of gridA by shrinking
its domain on all sides, but does not copy any of its
elements. Thus, gridAlInterior will have indices from
[0, 0, 0] to [255, 255, 255] and will share correspond-
ing elements with gridA. The copy operation in the last
line updates one plane of the ghost region in gridB by
copying only those elements in the intersection of the
two arrays. Operations on Titanium arrays such as copy
are not opaque method calls to the Titanium compiler.

The compiler recognizes and treats such operations spe-
cially, and thus can apply optimizations to them, such as
turning blocking operations into non-blocking ones.

double [3d] gridA =

new double [[-1,-1,-1]:[256,256,256]1];
double [3d] gridB =

new double [[-1,-1,256]:[256,256,512]1];
//define interior without creating a copy
double [3d] gridAInterior = gridA.shrink(1);
//update overlapping ghost cells

from neighboring block

//by copying values from gridA to gridB

gridB.copy(gridAInterior) ;

The above example appears in a NAS MG imple-
mentation in Titanium [4], except that gridA and gridB
are themselves elements of a higher-level array struc-
ture. The copy operation as it appears here performs
contiguous or noncontiguous memory copies, and may
perform interprocessor communication when the two
grids reside in different processor memory spaces. The
use of a global index space across distinct array objects
(made possible by the arbitrary index bounds of Tita-
nium arrays) makes it easy to select and copy the cells
in the ghost region, and is also used in the more general
case of adaptive meshes.

The foreach construct provides an unordered looping
construct designed for iterating through a multidimen-
sional space. In the foreach loop below, the point p plays
the role of a loop index variable.

foreach (p in gridAInterior.domain()) {
gridB[p] = applyStencil(gridAInterior, p);

}

The applyStencil method may safely refer to elements
that are one point away from p, since the loop is over
the interior of a larger array.

This one loop concisely expresses an iteration over
a multidimensional domain that would correspond to
a multi-level loop nest in other languages. A common
class of loop bounds and indexing errors is avoided
by having the compiler and runtime system automat-
ically manage the iteration boundaries for the mul-
tidimensional traversal. The foreach loop is a purely
serial iteration construct - it is not a data-parallel con-
struct. In addition, if the order of loop execution is
irrelevant to a computation, then using a foreach loop

Titanium

to traverse the points in a domain explicitly allows
the compiler to reorder loop iterations to maximize
performance - for instance, by performing automatic
cache blocking and tiling optimizations [12]. It also sim-
plifies bounds-checking elimination and array access
strength-reduction optimizations.

The Titanium immutable class feature provides lan-
guage support for defining application-specific primi-
tive types (often called “lightweight” or “value” classes),
allowing the creation of user-defined unboxed objects,
analogous to C structs. Immutables provide efficient
support for extending the language with new types
which are manipulated and passed by value, avoiding
pointer-chasing overheads which would otherwise be
associated with the use of tiny objects in Java.

One compelling example of the use of immutables is
for defining a Complex number class, which was used in
a Titanjum implementation of the NAS FT benchmark.

Titanium also allows for operator overloading, a fea-
ture that was strongly desired by application developers
on the team, and was used in the FT example to simplify
the expressions on complex values.

Titanium also supports the construction of distributed
array data structures, which are built from local pieces
rather than declared as distributed types. This reflects
the design emphasis on adaptive and sparse data struc-
tures in Titanium, rather than the simpler “regular
array” computations that could be supported with sim-
pler flat arrays. The general pointer-based distribution
mechanism combined with the use of arbitrary base
indices for arrays provides an elegant and powerful
mechanism for shared data.

The following code is a portion of the parallel Tita-
nium code for a multigrid computation. It is run on

every processor and creates the blocks3D distributed
array, which can access any processor’s portion of
the grid.
Point< 3 > startCell =
myBlockPos * numCellsPerBlockSide;
Point< 3 > endCell = startCell + (numCellsPerBlock
Side - [1,1,1]1);
double [3d] myBlock =
new double[startCell:endCell];
//"blocks" is used to create "blocks3D" array
double [1d] single [3d] blocks =
new double [0: (Ti.numProcs()-1)] single [3d];
blocks.exchange (myBlock) ;
//create local "blocks3D" array
double [3d] single [3d] blocks3D =
new double [[0,0,0] :numBlocksInGridSide -
[1,1,1]]1single [3d];
//map from "blocks" to "blocks3D" array
foreach (p in blocks3D.domain())

blocks3D[p] = blocks[procForBlockPosition(p)];

Each processor computes its start and end indices
by performing arithmetic operations on Points. These
indices are used to create a local myBlock array. Every
processor also allocates its own 1D array blocks. Then,
by combining the myBlock arrays using the exchange
operation, blocks becomes a distributed data structure.
As shown in Fig. 2, the exchange operation performs an
all-to-all broadcast and stores each processor’s contri-
bution in the corresponding element of its local blocks
array. To create a more natural mapping, a 3D processor
array is used, with each element containing a reference
to a particular local block. By using global indices in
the local block — meaning that each block has a differ-
ent set of indices that overlap only in the area of ghost
regions — the copy operations described above can be
used to update the ghost cells. The generality of Tita-
niuny’s distributed data structures is not fully utilized in
the example of a uniform mesh, but in an adaptive block
structured mesh, a union of rectangles can be used to

myBlocki myBlock myBlock: myBlock
: ‘ ;
t;_‘__; Lo /) | oy
Blocks 3D \\)/// Logical arrange-
- & ment of blocks
10 H 2 3 based on indices

Titanium. Fig. 2 Distributed 3D array in titanium’s PGAS address space. The pointers in the blocks3D array are shown only

for thread t1 for simplicity

2054

Titanium

fill a spatial area, and the global indexing and global
address space used to simplify much more complicated
ghost region updates.

The Titanium compiler translates Titanium code into C
code, and then hands that code off to a C compiler to be
compiled and linked with the Titanium runtime system
and, in the case of distributed memory back ends, with
the GASNet communication system [5]. The choice of
C as a target was made to achieve portability, and pro-
duces reasonable performance without the overhead of
a virtual machine. GASNet is a one-sided communi-
cation library that is used within a number of other
PGAS language implementations, including Co-Array
Fortran, Chapel, and multiple UPC implementations.
GASNet is itself designed for portability, and it runs on
top of Ethernet (UDP) and MPI, but there are optimized
implementations for most of the high-speed networks
that are used in clusters and supercomputers designs.
Titanium can also run on shared memory systems using
aruntime layer based on POSIX Threads, and on combi-
nations of shared and distributed memory by combin-
ing this with GASNet. Titanium, like Java, is designed
for memory safety, and the Titanium runtime system
includes the Boehm-Weiser garbage collector for shared
memory code. To handle distributed memory environ-
ments, the runtime system tracks references that leak
to remote nodes, but also adds a scalable region-based
memory management concept to the language along
with compiler analysis [5].

Aggressive program analysis is crucial for effective
optimization of parallel code. In addition to serial loop
optimizations [12] and some standard optimizations to
reduce the size and complexity of generate C code, the
compiler performs a number of novel analyses on paral-
lelism constructs. For example, information about what
sections of code may operate concurrently is useful for
many optimizations and program analyses. In combina-
tion with alias analysis, it allows the detection of poten-
tially erroneous race conditions, the removal of unnec-
essary synchronization operations, and the ability to
provide stronger memory consistency guarantees. Tita-
niun’s textually aligned barriers divide the code into
independent phases, which can be exploited to improve
the quality of concurrency analysis. The single-valued

expressions are also used to improve concurrency anal-
ysis on branches. These two features allow a simple
graph encoding of the concurrency in a program based
on its control-flow graph. We have developed quadratic-
time algorithms that can be applied to the graph in
order to determine all pairs of expressions that can run
concurrently.

Alias analysis identifies pointer variables that may,
must, or cannot reference the same object. The Tita-
nium compiler uses alias analysis to enable other anal-
yses (such as locality and sharing analysis), and to find
places where it is valid to introduce restrict qualifiers in
the generated C code, enabling the C compiler to apply
more aggressive optimizations. The Titanium compiler’s
alias analysis is a Java derivative of Andersen’s points-
to analysis with extensions to handle multiple threads.
The modified analysis is only a constant factor slower
than the sequential analysis, and its running time is
independent of the number of runtime threads.

A number of benchmarks and larger applications have
been written in Titanium, starting with some of the
NAS Benchmarks [4]. In addition, Yau developed a
distributed matrix library that supports blocked-cyclic
layouts and implemented Cannon’s Matrix Multiplica-
tion algorithm, Cholesky and LU factorization (without
pivoting). Balls and Colella built a 2D version of their
Method of Local Corrections algorithm for solving the
Poisson equation for constant coeflicients over an infi-
nite domain [2]. Bonachea, Chapman, and Putnam built
a Microarray Optimal Oligo Selection Engine for select-
ing optimal oligonucleotide sequences from an entire
genome of simple organisms, to be used in microarray
design. The most ambitious efforts have been appli-
cations frameworks for Adaptive Mesh Refinement
(AMR) algorithms and Immersed Boundary Method
simulations [6] by Tong Wen and Ed Givelberg, respec-
tively. In both cases, these application efforts have taken
a few years and were preceded by implementations
of Titanium codes for specific problem instances, e.g.,
AMR Poisson by Luigi Semenzato, AMR gas dynamics
[11] by Peter McCorquodale and Immersed Boundaries
for simulation of the heart by Armando Solar-Lezama
and cochlea by Ed Givelberg, with various optimization
and analysis efforts by Sabrina Merchant, Jimmy Su, and
Amir Kamil.

TOP500

2055

The performance results show good scalability on
the applications problems on up to hundreds of sepa-
rate distributed memory nodes, and performance that
is in some cases comparable to applications written in
C++ or FORTRAN with message passing. The compiler
is a research prototype and does not have all of the static
and dynamic optimizations one would expect from
a commercial compiler, but even serial running-time
comparisons show competitive performance. No for-
mal productivity studies involving humans have been
done, but a variety of case studies have shown that the
global address space combined with a powerful multi-
dimensional array abstraction and the data abstraction
support derived from Java leads to code that is elegant
and concise.

Related Entries

»Coarray Fortran

»PGAS (Partitioned Global Address Space) Languages
»UPC

Bibliography
1. Aiken A, Gay D (1998) Barrier inference. In: Principles of pro-
gramming languages, San Diego, CA
2. Balls GT, Colella P (2002) A finite difference domain decomposi-
tion method using local corrections for the solution of Poisson’s
equation.] Comput Phys 180(1):25-53
3. Bonachea D (2002) GASNet specification. Technical report CSD-
02-1207, University of California, Berkeley
4. Datta K, Bonachea D, Yelick K (2005) Titanium performance
and potential: an NPB experimental study. In: 18th international
workshop on languages and compilers for parallel computing
(LCPC). Hawthorne, NY, October 2005
5. Gay D, Aiken A (2001) Language support for regions. In: SIG-
PLAN conference on programming language design and imple-
mentation. Washington, DC, pp 70-80
6. GivelbergE, Yelick K Distributed immersed boundary simulation
in titanium. http://titanium.cs.berkeley.edu, 2003
7. Hilfinger PN, Colella P (1989) FIDIL: a language for scientific pro-
cessing. In: Grossman R (ed) Symbolic computation: applications
to scientific computing. SIAM, Philadelphia, pp 97-138
8. Kamil A, Yelick K (2007) Hierarchical pointer analysis for dis-
tributed programs. Static Analysis Symposium (SAS), Kongens
Lyngby, Denmark, August 22-24, 2007
9. Kamil A, Yelick K (2010) Enforcing textual alignment of collec-
tives using dynamic checks. In: 22nd international workshop on
languages and compilers for parallel computing (LCPC), October
2009. Also appears in Lecture notes in computer science, vol 5898.
Springer, Berlin, pp 368-382. DOI: 10.1007/978-3-642-13374-9

10. Liblit B, Aiken A (2000) Type systems for distributed data struc-
tures. In: The 27th ACM SIGPLAN-SIGACT symposium on prin-
ciples of programming languages (POPL), Boston, January 2000

11. McCorquodale P, Colella P (1999) Implementation of a multi-
level algorithm for gas dynamics in a high-performance Java
dialect. In: International parallel computational fluid dynamics
conference (CFD’99)

12. Pike G, Semenzato L, Colella P, Hilfinger PN (1999) Parallel 3D
adaptive mesh refinement in Titanium. In: 9th SIAM conference
on parallel processing for scientific computing, San Antonio, TX,
March 1999

13. Su J, Yelick K (2005) Automatic support for irregular computa-
tions in a high-level language. In: 19th International Parallel and
Distributed Processing Symposium (IPDPS)

14. Yelick K, Hilfinger P, Graham S, Bonachea D, Su J, Kamil A,
Datta K, Colella P, Wen T (2007) Parallel languages and compil-
ers: perspective from the titanium experience. Int] High Perform
Comput App 21:266-290

15. Yelick K, Semenzato L, Pike G, Miyamoto C, Liblit B, Krishna-
murthy A, Hilfinger P, Graham S, Gay D, Colella P, Aiken A (1998)
Titanium: a high-performance Java dialect. Concur: Pract Exp
10:825-836

Web Documentation

Bibliography

GASNet Home Page. http://gasnet.cs.berkeley.edu/

Titanium Project Home Page at http://titanium.cs.berkeley.edu.

"TLS

»Speculation, Thread-Level
»Speculative Parallelization of Loops

' TOP500

Jack DONGARRA, PIOTR LUszCZEK
University of Tennessee, Knoxville, TN, USA

Definition

TOP500 is a list of 500 fastest supercomputers in the
world ranked by their performance achieved from run-
ning the LINPACK Benchmark. The list is assembled
twice a year and officially presented at two supercom-
puting conferences: one in Europe and one in the USA.
This list has been put together since 1993.

http://dx.doi.org/10.1007/978-0-387-09766-4_477
http://dx.doi.org/10.1007/978-0-387-09766-4_210
http://dx.doi.org/10.1007/978-0-387-09766-4_271
http://titanium.cs.berkeley.edu
http://gasnet.cs.berkeley.edu/
http://titanium.cs.berkeley.edu
http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_35

2056

TOP500

Discussion

Statistics on high-performance computers are of major
interest to manufacturers, users, and potential users.
These people wish to know not only the number of
systems installed, but also the location of the vari-
ous supercomputers within the high-performance com-
puting community and the applications for which
a computer system is being used. Such statistics
can facilitate the establishment of collaborations, the
exchange of data and software, and provide a bet-
ter understanding of the high-performance computer
market.

Statistical lists of supercomputers are not new. Every
year since 1986, Hans Meuer has published system
counts of the major vector computer manufacturers,
based principally on those at the Mannheim Super-
computer Seminar. In the early 1990s, a new definition
of supercomputer was needed to produce meaning-
ful statistics. After experimenting with metrics based
on processor count in 1992, the idea was born at the
University of Mannheim to use a detailed listing of
installed systems as the basis. In early 1993, Jack Don-
garra was convinced to join the project with the LIN-
PACK benchmark. A first test version was produced
in May 1993. Today the TOP500 list is compiled by
Hans Meuer of the University of Mannheim, Ger-
many, Jack Dongarra of the University of Tennessee,
Knoxville, and Erich Strohmaier and Horst Simon of
NERSC/Lawrence Berkeley National Laboratory.

New statistics are required that reflect the diversifi-
cation of supercomputers, the enormous performance
difference between low-end and high-end models, the
increasing availability of massively parallel process-
ing (MPP) systems, and the strong increase in com-
puting power of the high-end models of workstation
suppliers (SMP).

To provide a new statistical foundation, the authors
of the TOP500 decided in 1993 to assemble and main-
tain a list of the 500 most powerful computer systems.
The list is updated twice a year. The first of these updates
always coincides with the International Supercomputer
Conference in June (submissions are accepted until
April 15), the second one is presented in November
at the IEEE Super Computer Conference in the USA
(submissions are accepted until October 1st). The list is
assembled with the help of high-performance computer
experts, computational scientists, and manufacturers.

In the present list (called the TOP500), comput-
ers are ranked by their performance on the LINPACK
Benchmark. The list is freely available at http://www.
top500.org/ where users can create additional sublists
and statistics out of the TOP500 database on their own.

The main objective of the TOP500 list is to provide a
ranked list of general-purpose systems that are in com-
mon use for high-end applications. A general-purpose
system is expected to be able to solve a range of scientific
problems.

The TOP500 list shows the 500 most powerful com-
mercially available computer systems known. To keep
the list as compact as possible, only a part of the infor-
mation is shown:

e Nworld - Position within the TOP500 ranking

e Manufacturer - Manufacturer or vendor

o Computer - Type indicated by manufacturer or
vendor

o Installation Site - Customer

e Location - Location and country

e Year - Year of installation/last major update

o Field of Application

e #Proc. - Number of processors (Cores)

e Rmax - Maximal LINPACK performance achieved

e Rpeak — Theoretical peak performance

e Nmax - Problem size for achieving Rmax

e N1/2 - Problem size for achieving half of Rmax

In the TOP500 List table, the computers are ordered
first by their Rmax value. In the case of equal perfor-
mances (Rmax value) for different computers, a choice
was made to order by Rpeak. For sites that have the
same computer, the order is by memory size and then
alphabetically.

In an attempt to obtain uniformity across all computers
in performance reporting, the algorithm used in solving
the system of equations (Ax = b, for a dense matrix A)
in the benchmark procedure must conform to LU fac-
torization with partial pivoting. In particular, the oper-
ation count for the algorithm must be 2/3 n* + O(n?)
double point floating point operations (Rmax value is
computed by dividing this count by the time taken to
solve). Here a floating point operation is an addition
or multiplication of 64-bit operands. This excludes the
use of a fast matrix multiply algorithm like “Strassen’s

http://www.top500.org/
http://www.top500.org/

Topology Aware Task Mapping

2057

Method” or algorithms which compute a solution in a
precision lower than full precision (64 bit floating point
arithmetic) and refine the solution using an iterative
approach. This is done to provide a comparable set of
performance numbers across all computers. Submitters
of the results are free to implement their own solution
as long as the above criteria are met. A reference imple-
mentation of the benchmark called HPL (High Per-
formance LINPACK) is provided at: http://www.netlib.
org/benchmark/hpl/. In addition to satisfying the rules,
HPL also verifies the result with a numerical check of
the obtained solution.

The main objective of the TOP500 list is to provide a
ranked list of general-purpose systems that are in com-
mon use for high-end applications. The authors of the
TOP500 reserve the right to independently verify sub-
mitted LINPACK Benchmark [1] results, and exclude
systems from the list, which are not valid or not gen-
eral purpose in nature. A system is considered to be of
general purpose if it is able to be used to solve a range
of scientific problems. Any system designed specifically
to solve the LINPACK benchmark problem or have as
its major purpose the goal of a high TOP500 ranking
will be disqualified. The systems in the TOP500 list are
expected to be persistent and available for use for an
extended period of time. In that period, it is allowed to
submit new results which will supersede any prior sub-
missions. Thus, an improvement over time is allowed.
The TOP500 authors will reserve the right to deny inclu-
sion in the list if it is suspected that the system violates
these conditions.

The TOP500 List keepers can be reached by sending
email to info at top500.org.

The TOP500 list can be found at www.top500.org.

Related Entries
»Benchmarks

»HPC Challenge Benchmark
» LINPACK Benchmark
»Livermore Loops

Bibliography
1. Dongarra JJ, Luszczek P, Petitet A (2003) The LINPACK bench-
mark: past, present, and future. Concurr Comput Pract Exp 15:1-18

! Topology Aware Task Mapping

ABHINAV BHATELE
University of Illinois at Urbana-Champaign, Urbana,
IL, USA

Synonyms
Graph embedding; MPI process mapping

Definition

Topology aware task mapping refers to the mapping of
communicating parallel objects, tasks, or processes in
a parallel application on nearby physical processors to
minimize network traffic, by considering the commu-
nication of the objects or tasks and the interconnect
topology of the machine.

Discussion

Processors in modern supercomputers are connected
together using a variety of interconnect topologies:
meshes, tori, fat-trees, and others. Increasing size of the
interconnect leads to an increased sharing of resources
(network links and switches) among messages and
hence network contention. This can potentially lead to
significant performance degradation for certain classes
of parallel applications. Sharing of links can be avoided
by minimizing the distance traveled by messages on the
network. This is achieved by mapping communicating
objects or tasks on nearby physical processors on the
network topology and is referred to as topology aware
task mapping. Topology aware mapping is a technique
to minimize communication traffic over the network
and hence optimize performance of parallel programs.
It is becoming increasingly relevant for obtaining good
performance on current supercomputers.

The general mapping problem is known to be NP-
hard [1, 2]. Apart from parallel computing, topol-
ogy aware mapping also has applications in graph
embedding in mathematics and VLSI circuit design.
The problem of embedding one graph on another while
minimizing some metric has been well studied in math-
ematics. Layout of VLSI circuits to minimize length of
the longest wire is another problem that requires map-
ping of one grid on to another. However, the problems

http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
www.top500.org
http://dx.doi.org/10.1007/978-0-387-09766-4_154
http://dx.doi.org/10.1007/978-0-387-09766-4_156
http://dx.doi.org/10.1007/978-0-387-09766-4_155
http://dx.doi.org/10.1007/978-0-387-09766-4_161

2058

Topology Aware Task Mapping

to be tackled are different in several aspects in paral-
lel computing from mathematics or circuit layout. For
example, in VLSI, the size of the host graph can be larger
than that of the guest graph whereas, in parallel comput-
ing, typically, the host graph is equal to or smaller than
the guest graph.

Research on topology aware mapping in paral-
lel computing began in the 1980s with a paper by
Bokhari [1]. Work in this area has primarily involved the
development of heuristics that target different mapping
scenarios. Heuristics typically provide close to optimal
solutions in a reasonable time. Arunkumar et al. [3]
categorize various heuristic techniques into — determin-
istic, randomized, and random start heuristics. Over the
years, specific techniques better suited for certain archi-
tectures were developed - for hypercubes and array
processors in the 1980s and meshes and tori in the
1990s. In the recent years, developers of certain paral-
lel applications have also developed application specific
mapping techniques to map their codes on to modern
supercomputers [4-6].

Prior to a survey of the various heuristic techniques
for task mapping, a brief description of the existing

interconnect topologies and the kinds of communica-
tion graphs that are prevalent in parallel applications is
essential.

Various common and radical topologies have been
deployed in supercomputers, ranging from hypercubes
to fat-trees to three-dimensional tori and meshes. They
can be divided into two categories:

1. Direct networks: In direct networks, each processor
is connected to a few other processors directly. A
message travels from source to destination by going
through several links connecting the processors.
Hypercubes, tori, meshes, etc., are all examples of
direct networks (see Figs. 1 and 2). Several modern
supercomputers currently have a three-dimensional
(3D) mesh or torus interconnect topology. IBM Blue
Gene/L and Blue Gene/P machines are 3D tori built
from blocks of a torus of size 8 x8 x8 nodes. Cray XT
machines (XT5 and XE6) are also 3D tori. The pri-
mary difference between IBM and Cray machines is
that on IBM machines, each allocated job partition

Topology Aware Task Mapping. Fig. 2 A four-dimensional hypercube and a three-level fat-tree network

Topology Aware Task Mapping

2059

is a contiguous mesh or torus. However, on Cray
machines, nodes are randomly selected for a job and
do not constitute a complete torus.

2. Indirect networks: Indirect networks have switches
which route the messages to the destination. No
two processors are connected directly and messages
always have to go through switches to reach their
destination. Fat-tree networks are examples of indi-
rect networks (see Fig. 2). Infiniband, IBM’s Fed-
eration interconnect and SGI Altix machines are
examples of fat-tree networks. LANLs RoadRunner
also has a fat-tree network.

Some of these networks benefit from topology aware
task mapping more than others. A significant percent-
age of the parallel machines in the 1980s had a hyper-
cube interconnect and hence, much of the research then
was directed toward such networks. More recent work
involves optimizing applications on 3D meshes and tori.

Tasks in parallel applications can interact in a variety
of ways in terms of the specific communication part-
ners, number of communicators, global versus localized
communication, etc. All applications can be classified
into a few different categories based on different param-
eters governing the communication patterns:

Static versus dynamic communication: Depending on
whether the communication graph of the application
changes at runtime, graph can be classified as static or
dynamic. If the communication graph is static, topol-
ogy aware mapping can be done offline and used for the
entirety of the run. If the communication is dynamic,
periodic remapping depending on the changes in the
communication graph are required. Several categories
of parallel applications such as Lattice QCD, Ocean
Simulations, and Weather Simulations have a stencil-
like communication pattern that does not change dur-
ing the run. On the other hand, molecular dynamics
and cosmological simulations have dynamic communi-
cation patterns.

Regular versus irregular communication: Communica-
tion in a parallel application can be regular (structured)
orirregular (unstructured). An example of regular com-
munication is a five-point stencil-like application where
every task communicates with four of its neighbors.

When no specific pattern can be attributed to the com-
munication graph, it is classified as irregular or unstruc-
tured. Unstructured grid computations are examples of
applications with irregular communication graphs.

Point-to-point versus collective communication: Some
applications primarily use point-to-point messages with
minimal global communication. Others, however use
collective operations such as broadcasts, reductions,
and all-to-alls between all or a subset of processors.
Different mapping algorithms are required to optimize
different types of communication patterns.

Parallel applications can also be classified into com-
putation bound or communication bound depending
on the relative amount of communication involved.
A large body of parallel applications spend a small
portion of their overall execution time doing commu-
nication. Such applications will typically be unaffected
by topology aware mapping. Communication-bound
latency-sensitive applications benefit most in terms of
performance from topology aware task mapping.

An algorithm for mapping of tasks in an application
requires two inputs — the communication graph of an
application and the machine topology of the allocated
job partition. Given these two inputs, the aim is to map
communicating objects or tasks close to one another
on nearby physical processors. The success of a map-
ping algorithm is evaluated in terms of minimizing or
maximizing some function which correlates well with
the contention on the network or actual application
performance.

Mapping algorithms aim at minimizing some metric
referred to as an objective function which should be
chosen carefully. A good objective function is one that
does an accurate evaluation of a mapping solution in
terms of yielding better performance. Objective func-
tions are also important to compare the optimality of
different mapping solutions. Several objective functions
which have been used for different mapping algorithms
are listed below:

e Opverlap between guest and host graph edges: One
metric to determine the quality of the mapping is

2060

Topology Aware Task Mapping

the number of edges in the guest graph which fall on
the host graph. This metric is referred to as the car-
dinality of the mapping by Bokhari [1]. The mapping
which yields the highest cardinality is the best.

e Maximum dilation: This metric is used for archi-
tectures and applications where the longest edge in
the communication graph determines the perfor-
mance. In other words, the message that travels the
maximum number of hops or links on the network
determines the overall performance [7, 8].

Maximum dilation = max, |d;| (1)

The mapping which leads to the smallest dila-
tion for any edge in the guest graph on the processor
interconnect is the best.

e Hop-bytes: This is the weighted sum of all edges in
the communication graph multiplied by their dila-
tion on the processor graph as per the mapping
algorithm [9, 10].

n
Hop-bytes = z d; x b; 2)
i=1
where d; is the number of hops or links traveled by
the message on the network and b; is the size of the
message in bytes.

Hop-bytes is a measure of the total communica-
tion traffic on the network and hence, an approxi-
mate indication of the contention. A smaller value
for hop-bytes indicates less contention on the net-
work. Average hops per byte is another way of
expressing the same metric,

Zn:d,'xbi

Average hops per byte = =2 (3)
bi

-

I
—_

The last two objective functions, maximum dilation
and hop-bytes, are typically used today and are appli-
cable in different scenarios. The choice of one over the
other depends upon the parallel application and the
architecture for which the mapping is being performed.

Owing to the general applicability of mapping in var-
ious fields, a huge body of work exists targeting this
problem. Many techniques used for solving combina-
torial optimization problems can be used for obtaining

solutions to the mapping problem. Simulated anneal-
ing, genetic algorithms, and neural network-based
heuristics are examples of such physical optimization
techniques. Other heuristic techniques are recursive
partitioning, pairwise exchanges, and clustering and
geometry-based mapping. Arunkumar et al. [3] catego-
rize various heuristic techniques into - deterministic,
randomized, and random start heuristics. The follow-
ing sections discuss some of the mapping techniques
classified into these categories.

Deterministic Heuristics

In this class, the choice of search path is determinis-
tic and typically a fixed search strategy is used tak-
ing the domain-specific knowledge about the parallel
application into account. Yu et al. [11] present fold-
ing and embedding techniques to obtain deterministic
solutions for mapping of two- and three-dimensional
grids on to 3D mesh topologies. Their topology map-
ping library provides support for MPI virtual topology
functions on IBM Blue Gene machines. Bhatele [12]
uses domain-specific knowledge and communication
patterns of parallel application for heuristic techniques
such as “affine transformation” inspired mapping and
guided graph traversals to map on to 3D tori. The
mapping library developed as a result can map appli-
cation graphs that are regular (n-dimensional grids)
as well as those that are irregular. Several applica-
tion developers such as those of Blue Matter [4],
Qbox [5], and OpenAtom [6] have developed appli-
cation specific mapping algorithms to map tasks on
to processor topologies. Recursive graph partitioning—
based strategies which partition both the applica-
tion and processor graph for mapping also fall under
this category [13]. Algorithms using deterministic
algorithms are typically the fastest among the three
categories.

Randomized Heuristics

This category of solutions does not depend on domain-
specific knowledge and uses search techniques that are
randomized, yielding different solutions in successive
executions. Neural networks, genetic algorithms, and
simulated annealing-based heuristics are example of
this class. Bokhari’s algorithm of pairwise exchanges
accompanied by probabilistic jumps also falls under this
category.

Topology Aware Task Mapping

2061

In genetic algorithm-based heuristics [3], possible
mapping solutions are first encoded in some manner
and a random population of such patterns is generated.
Then different genetic operators such as crossover and
mutation are applied to derive new generations from old
ones. Certain criteria are used to estimate the fitness of
a selection and unfit solutions are rejected. Given a ter-
mination rule, the best solution among the population
is taken to be the solution at termination.

Obtaining an exact solution to the mapping prob-
lem is difficult and iterative algorithms tend to produce
solutions that are not globally optimal. The technique
of simulated annealing provides a mechanism to escape
local optima and hence is a good fit for mapping prob-
lems. The most important considerations for a simu-
lated annealing algorithm are deciding a good objective
function and an annealing schedule. This technique has
been used for processor and link assignment by Midkiff
et al. [14] and Bhanot et al. [15].

Random Start Heuristics

In some algorithms, a random initial mapping is chosen
and then improved iteratively. Such solutions fall under
the category of random start heuristics. Techniques such
as pairwise exchanges and recursive partitioning fall
under this category.

The technique of pairwise exchanges that starts from
an initial assignment, is a simple brute force method
which has been used with different variations to tackle
the mapping problem [7]. The basic idea is simple: An
objective function or metric to be optimized is selected
and then an initial mapping of the guest graph on
the host graph is determined. Then, a pair of nodes is
chosen, either randomly or based on some selection
criteria and their mappings are interchanged. If the met-
ric or objective function becomes better, the exchange
is preserved and the process is repeated, until some
termination criterion is achieved.

Another technique in this class is task clustering
followed by cluster allocation. In the clustering phase,
tasks are clustered into groups equal to the number of
processors using recursive min-cut algorithms. Then
these clusters are allocated to the processors by starting
with a random assignment and iteratively improving it
by local exchanges. The first phase aims at minimizing
intercluster communication without comprising load
balancing while the second phase aims at minimizing

inter-processor communication. This is especially use-
ful for models such as Charm++ where the number of
tasks is much larger than the number of processors.

The emergence of new architectures and network
topologies requires modifying existing algorithms and
developing new ones to suit them. As an example, the
increase in number of cores per node adds another
dimension to the network topology and should be taken
into account. Algorithms also need to be developed for
new parallel applications. There is a growing need for
runtime support in the form of an automated mapping
framework that can map applications intelligently on to
the processor topology. This will reduce the burden on
application developers to map individual applications
and will also help reuse algorithms across similar com-
munication graphs. Bhatele et al. [16] are making some
efforts in this direction. There is an increasing demand
for support in the MPI runtime for mapping of MPI
virtual topology functions [11].

The increase in size of parallel machines and in the
number of threads in a parallel program requires paral-
lel and distributed techniques for mapping. Gathering
the entire communication graph on one processor and
applying sequential centralized techniques will not be
feasible in the future. Hence, an effort should be made
towards developing strategies which are distributed,
scalable, and can be run in parallel. Hierarchical mul-
tilevel graph partitioning techniques are one such effort
in this direction.

Related Entries

»Cray XT3 and Cray XT Series of Supercomputers
»Cray XT4 and Seastar 3-D Torus Interconnect
»Graph Partitioning

»Hypercubes and Meshes

»IBM Blue Gene Supercomputer

» Infiniband

» Interconnection Networks

»Load Balancing, Distributed Memory
»Locality of Reference and Parallel Processing
»Processes, Tasks, and Threads

»Routing (Including Deadlock Avoidance)
»Space-Filling Curves

»Task Graph Scheduling

http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_92
http://dx.doi.org/10.1007/978-0-387-09766-4_408
http://dx.doi.org/10.1007/978-0-387-09766-4_409
http://dx.doi.org/10.1007/978-0-387-09766-4_21
http://dx.doi.org/10.1007/978-0-387-09766-4_484
http://dx.doi.org/10.1007/978-0-387-09766-4_504
http://dx.doi.org/10.1007/978-0-387-09766-4_206
http://dx.doi.org/10.1007/978-0-387-09766-4_448
http://dx.doi.org/10.1007/978-0-387-09766-4_314
http://dx.doi.org/10.1007/978-0-387-09766-4_145
http://dx.doi.org/10.1007/978-0-387-09766-4_42

2062

Torus

Bibliographic Notes and Further
Reading
Bokhari [1] wrote one of the first papers on task map-
ping for parallel programs. A good discussion of the
various objective functions used for comparing map-
ping algorithms can be found in [7]. Fox et al. [17]
divide the various mapping algorithms into physi-
cal optimization and heuristic techniques. Arunkumar
et al. [3] provide another classification into determinis-
tic, randomized, and random start heuristics.
Application developers attempting to map their par-
allel codes can gain insights from mapping algorithms
developed by individual application groups [4-6].
Bhatele and Kale have been developing an automatic
mapping framework for mapping of Charm++ and MPI
applications to the processor topology [12]. They are
also developing techniques for parallel and distributed
topology aware mapping.

Bibliography
1. Bokhari SH (1981) On the mapping problem. IEEE Trans Comput
30(3):207-214
2. Kasahara H, Narita S (1984) Practical multiprocessor scheduling
algorithms for efficient parallel processing. IEEE Trans Comput
33:1023-1029
3. Arunkumar S, Chockalingam T (1992) Randomized heuristics
for the mapping problem. Int] High Speed Comput (IJHSC)
4(4):289-300
4. Fitch BG, Rayshubskiy A, Eleftheriou M, Ward TJC,
Giampapa M, Pitman MC (2006) Blue matter: approaching
the limits of concurrency for classical molecular dynamics.
In: SC’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, Tampa, ACM Press, New York, 11-17 Nov 2006
5. Gygi F, Draeger EW, Schulz M, Supinski BRD, Gunnels JA, Aus-
tel V, Sexton JC, Franchetti E, Kral S, Ueberhuber C, Lorenz
J (2006) Large-scale electronic structure calculations of high-Z
metals on the blue gene/L platform. In: SC’06: Proceedings of
the 2006 ACM/IEEE conference on Supercomputing, ACM Press,
New York
6. Bhatelé A, Bohm E, Kalé LV (2011) Optimizing communica-
tion for Charm++ applications by reducing network contention.
Concurr Comput 23(2):211-222
7. Lee S-Y, Aggarwal JK (1987) A mapping strategy for parallel
processing. IEEE Trans Comput 36(4):433-442
8. Berman F, Snyder L (1987) On mapping parallel algorithms into
parallel architectures.] Parallel Distrib Comput 4(5):439-458
9. Ercal E Ramanujam J, Sadayappan P (1988) Task allocation onto
a hypercube by recursive mincut bipartitioning. In: Proceedings
of the 3rd conference on Hypercube concurrent computers and
applications, ACM Press, New York, pp 210-221
10. Agarwal T, Sharma A, Kalé LV (2006) Topology-aware task map-
ping for reducing communication contention on large parallel

machines, In: Proceedings of IEEE International Parallel and Dis-
tributed Processing Symposium 2006, Rhodes Island, 25-29 Apr
2006. IEEE, Piscataway

1. Yu H, Chung I-H, Moreira J (2006) Topology mapping for
blue gene/L supercomputer. In: SC’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, Tampa, 11-17 Nov
2006. ACM, New York, p 116

12. Bhatele A (2010) Automating topology aware mapping for super-
computers. Ph.D. thesis, Dept. of Computer Science, University
of Illinois. http://hdl.handle.net/2142/16578 (August 2010)

13. Kernighan BW, Lin S (1970) An efficient heuristic procedure for
partitioning graphs. Bell Syst Tech J 49(1):291-307

14. Bollinger SW, Midkiff SF (1988) Processor and link assignment in
multicomputers using simulated annealing. In: 1988 ICPP, vol 1,
Aug 1988, pp 1-7

15. Bhanot G, Gara A, Heidelberger P, Lawless E, Sexton JC,
Walkup R (2005) Optimizing task layout on the blue gene/L
supercomputer. IBM] Res Dev 49(2/3):489-500

16. Bhatele A, Gupta G, Kale LV, Chung I-H (2010) Automated map-
ping of regular communication graphs on mesh interconnects. In:
Proceedings of International Conference on High Performance
Computing & Simulation (HiPCS) 2010, Caen, 28 June-2 July
2010. IEEE, Piscataway

17. Mansour N, Ponnusamy R, Choudhary A, Fox GC (1993) Graph
contraction for physical optimization methods: a quality-cost
tradeoff for mapping data on parallel computers. In: ICS’93: Pro-
ceedings of the 7th International Conference on Supercomputing,
Tokyo, 19-23 July 1993. ACM, New York, pp 1-10

! Torus

» Networks, Direct

' Total Exchange

» Allgather

' Trace Scheduling

STEFAN M. FREUDENBERGER
Ziirich, Switzerland

Definition
Trace scheduling is a global acyclic instruction schedul-
ing technique in which the scheduling region consists

http://hdl.handle.net/2142/16578
http://dx.doi.org/10.1007/978-0-387-09766-4_318
http://dx.doi.org/10.1007/978-0-387-09766-4_525

Trace Scheduling

2063

of a linear acyclic sequence of basic blocks embedded
in the control flow graph. Trace scheduling differs from
other global acyclic scheduling techniques by allow-
ing the scheduling region to be entered after the first
instruction.

Trace scheduling was the first global instruction
scheduling technique that was proposed and success-
fully implemented in both research and commercial
compilers. By demonstrating that simple microcode
operations could be statically compacted and scheduled
on multi-issue hardware, trace scheduling provided the
basis for making large amounts of instruction-level par-
allelism practical. Its first commercial implementation
demonstrated that commercial codes could be stati-
cally compiled for multi-issue architectures, and thus
greatly influenced and contributed to the performance
of superscalar architectures. Today, the ideas of trace
scheduling and its descendants are implemented in
most compilers.

Discussion

Global scheduling techniques are needed for proces-
sors that expose instruction-level parallelism (ILP), that
is, processors that allow multiple operations to exe-
cute simultaneously. This situation may independently
arise for two reasons: either because a processor issues
more than a single operation during each clock cycle, or
because a processor allows issuing independent opera-
tions while deeply pipelined operations are still execut-
ing. The number of independent operations that need
to be found for an ILP processor is a function of both
the number of operations issued per clock cycle, and the
latency of operations, whether computational or mem-
ory. The latency of computational operations depends
upon the design of the functional units. The latency
of memory operations depends upon the design and
latencies of caches and main memory, as well as on the
availability of prefetch and cache-bypassing operations.
Global scheduling techniques are needed for these pro-
cessors because the number of independent operations
available in a typical basic block is too small to fully uti-
lize their available hardware resources. By expanding
the scheduling region, more operations become avail-
able for scheduling. Global scheduling techniques dif-
fer from other global code motion techniques (such as

loop-invariant code motion or partial redundancy elim-
ination) because they take into account the available
hardware resources (such as available functional units
and operation issue slots).

Instruction scheduling techniques can be broadly
classified based on the region that they schedule, and
whether this region is cyclic or acyclic. Algorithms that
schedule only single basic blocks are known as local
scheduling algorithms; algorithms that schedule multi-
ple basic blocks at once are known as global scheduling
algorithms. Global scheduling algorithms that oper-
ate on entire loops of a program are known as cyclic
scheduling algorithms, while methods that impose a
scheduling barrier at the end of a loop body are known
as acyclic scheduling algorithms. Global scheduling
regions include regions consisting of a single basic block
as a “degenerate” form of region, and acyclic schedulers
may consider entire loops but, unlike cyclic schedulers,
stop at the loops’ back edges (a back edge points to an
ancestor in a depth-first traversal of the control flow
graph; it captures the flow from one iteration of the loop
to the start of the next iteration).

All scheduling algorithms can benefit from hard-
ware support. When control-dependent operations that
can cause side effects move above their controlling
branch, they need to be either executed conditionally so
that their effects only arise if the operation is executed
in the original program order, or any side effects must
be delayed until the point at which the operation would
have been executed originally.

Hardware techniques to support this include predi-
cation of operations, implicit or explicit register renam-
ing, and mechanisms to suppress or delay exceptions
in order to prevent an incorrect exception to be sig-
naled. Predication of operations controls whether the
side effects of the predicated operations become visi-
ble to the program state through an additional predicate
operand. The predicate operand can be implicit (such as
the conditional execution of operations in branch delay
slots depending on the outcome of the branch condi-
tion) or explicit (through an additional machine regis-
ter operand); in the latter case, the predicate operand
could simply be the same predicate that controls the
conditional branch on which the operation was control-
dependent in the original flow graph (in which case
the predicated operation could move just above a sin-
gle conditional branch). Register renaming refers to
the technique where additional machine registers are

2064

Trace Scheduling

used to hold the results of an operation until the point
where the operation would have occurred in the original
program order.

Global scheduling algorithms principally consist of
two phases: region formation and schedule construc-
tion. Algorithms differ in the shape of the region and
the global code motions permitted during schedul-
ing. Depending on the region and the allowed code
motions, compensation code needs to be inserted at
appropriate places in the control flow graph to main-
tain the original program semantics; depending on the
code motions allowed during scheduling, compensa-
tion code needs to be inserted during the scheduling
phase of the compiler.

Trace scheduling allows traces to be entered after
the first operation and before the last operation. This
complicates the determination of compensation code
because the location of rejoin points cannot be done
before a trace has been scheduled. This leads to the
following overall trace scheduling loop:

while

{

(unscheduled operations remain)

select trace T
construct schedule for T
bookkeeping -
determine rejoin points to T
generate compensation code

The remainder of this entry first discusses region
formation and schedule construction in general and
as it applies to trace scheduling, and then compares
trace scheduling to other acyclic global scheduling
techniques. Cyclic scheduling algorithms are discussed
elsewhere.

Traces were the first global scheduling region proposed,
and represent contiguous linear paths through the code
(Fig. 1). More formally, a trace consists of the opera-
tions of a sequence of basic blocks By, By, ..., B, with
the properties that:

e Each basic block is a predecessor of the next in the
sequence (i.e., for each k = 0, ..., n — 1, By is a pre-
decessor of By, and By, is a successor of By, in the
control flow graph).

Trace Scheduling. Fig.1 Trace selection. The left diagram
shows the selected trace. The right diagram illustrates the
mutual-most-likely trace picking heuristic: assume that A is
the last operation of the current trace, and that B is one of
A’s successors. Here B is the most likely successor of A, and
A'is the most likely predecessor of B

e For any j, k there is no path B; — By — B;j except
for those that include By (i.e., the code is cycle free,
except that the entire region can be part of some
encompassing loop).

Note that this definition does not exclude forward
branches within the region, nor control flow that leaves
the region and reenters it at a later point. This gen-
erality has been controversial in the research commu-
nity because many felt that the added complexity of its
implementation was not justified by its added benefit
and has led to several alternative approaches that are
discussed below.

Of the many ways in which one can form traces, the
most popular algorithm employs the following simple
trace formation algorithm:

e Pick the as-yet unscheduled operation with the
largest expected execution frequency as the seed
operation of the trace.

o Grow the trace both forward in the direction of the
flow graph as well as backward, picking the mutually
most-likely successor (predecessor) operation to the
currently last (first) operation on the trace.

e Stop growing a trace when either no mutually most-
likely successor (predecessor) exists, or when some
heuristic trace length limit has been reached.

Trace Scheduling

2065

The mutually most-likely successor S of an operation
P is the operation with the properties that:

o Sis the most likely successor of P;
e Disthe most likely predecessor of S.

For this definition, it is immaterial whether the like-
lihood that S follows P (P precedes S) is based on
available profile data collected during earlier runs of the
program, has been determined by a synthetic profile,
or is based on source annotations in the program. Of
course, the more benefit is derived from having picked
the correct trace, the greater is the penalty when picking
the wrong trace.

Trace picking is the region formation technique
used for trace scheduling. Other acyclic region forma-
tion techniques and their relationship to trace schedul-
ing are discussed below.

Region Enlargement

Trace selection alone typically does not expose enough
ILP for the instruction scheduler of a typical ILP pro-
cessor. Once the limit on the length of a “natural”
trace has been reached (e.g., the entire loop body),
region-enlargement techniques can be employed to fur-
ther increase the size of the region, albeit at the cost
of a larger code size for the program. Many enlarge-
ment techniques exploit the fact that programs iterate

and grow the size of a region by making extra copies
of highly iterated code, leading to a larger region that
contains more ILP.

These code-replicating techniques have been criti-
cized by advocates of other approaches, such as cyclic
scheduling and loop-level parallel processing, because
comparable benefits to larger schedule regions may
be found using other techniques. However, no study
appears to exist that quantifies such claims.

The simplest and oldest region-enlargement tech-
nique is loop unrolling (Fig. 2): to unroll aloop, duplicate
its body several times, change the targets of the back
edges of each copy but the last to point to the header
of the next copy (so that the back edges of the last copy
point back to the loop header of the first copy). Vari-
ants of loop unrolling include pre-/post-conditioning
of a loop by k for counted for loops with unknown
loop bounds (leading to two loops: a “fixup loop” that
executes up to k iterations; and a “main loop” that
is unrolled by k and has its internal exits removed;
the fixup loop can precede or follow the main loop),
and loop peeling by the expected small iteration count.
When the iteration count of the fixup loop of a p-
conditioned loop is small (which it typically is), the
fixup loop is completely unrolled.

Typically, loop unrolling is done before region for-
mation so that the enlarged region becomes available

Original loop Unrolled by 4 Pre-conditioned by 4 Post-conditioned by 4
L:if ... goto E L:if ... goto E if ... goto L L:if ... goto X
body body body body
goto L if ... goto E if ... gotoL body
E: body body body
if ... goto E if ... gotoL body
body body goto L
if ... goto E L:if ... goto E X:if ... goto E
body body body
goto L body if ... goto E
E: body body
body if ... goto E
goto L body
E: E:

Trace Scheduling. Fig. 2 Simplified illustration of variants of loop unrolling. “if”and “goto” represent the loop control
operations; “body” represents the part of the loop without loop-related control flow. In the general case (e.g., a while loop)
the loop exit tests remain inside the loop. This is shown in the second column (“unrolled by 4”). For counted loops (i.e., for
loops), the compiler can condition the unrolled loop so that the loop conditions can be removed from the main body of
the loop. Two variants of this are shown in the two rightmost columns. Modern compilers will typically precede the loop
with a zero trip count test and place the loop condition at the bottom of the loop. This removes the unconditional branch

from the loop

2066

Trace Scheduling

Unrolled by 4 After renaming After copy propagation
i=0 i=0 i=0
. L: if (i> N) goto E . L: if (i> N) goto E 4~ Lo if (i>N)goto E
{ body(i) - ‘ body(i) ."' body(i)
R R S R T =it i i1=i+1
{ if(i>N)goto E { if(i1>N)goto E if (i1 > N) goto E
\ body(i) - Y body(it) i body(i1)
R iziet DR =il 2=i+2
{ if(i>N)goto E { if(i2>N)goto E if (i2 > N) goto E
\ body(i) - Y body(i2) t body(i2)
S iziet - > i3=i2+ \ i3=i+3
{ if(i>N)goto E { if(i3>N)goto E if(i3 > N) goto E
\ body(i) - Y body(i3) N\, body(i3)
B R i=i3+ 1 JoT N]
* goto L S goto L S goto L
E: E: E:

Trace Scheduling. Fig. 3 Typical induction variable manipulations for loops. Downward arrows represent flow
dependences; upward arrows represent anti dependences. Only the critical dependences are shown

to the region selector. This is done to keep the region
selector simpler but may lead to phase-ordering issues,
as loop unrolling has to guess the “optimal” unroll
amount. At the same time, when loops are unrolled
before region formation then the resulting code can be
scalar optimized in the normal fashion; in particular
height-reducing transformations that remove depen-
dences between the individual copies of the unrolled
loop body can expose a larger amount of parallelism
between the individual iterations (Fig. 3). Needless to
say, if no parallelism between the iterations exists or can
be found, loop unrolling is ineffective.

Loop unrolling in many industrial compilers is often
rather effective because a heuristically determined small
amount of unrolling is sufficient to fill the resources of
the target machine.

Once the scheduling region has been selected, the
instruction scheduler assigns functional units of the tar-
get machine and time slots in the instruction schedule
to each operation of the region. In doing so, the sched-
uler attempts to minimize an objective cost function
while maintaining program semantics and obeying the
resource limitations of the target architecture. Often, the
objective cost function is the expected execution time,

but other objective functions are possible (for exam-
ple, code size and energy efficiency could be part of an
objective function).

The semantics of a program defines certain sequen-
tial constraints or dependences that must be maintained
by a valid execution. These dependences preclude some
reordering of operations within a program. The data
flow of a program imposes data dependences, and the
control flow of a program imposes control dependences.
(Note the difference between control flow and control
dependence: block B is control dependent on block A
if A precedes B along some path, but B does not post-
dominate A. In other words, the result of the control
decision made in A directly affects whether or not B is
executed.)

There are three types of data dependences: read-
after-write dependences (also called RAW, flow, or
true dependences), write-after-read dependences (also
called WAR or anti dependences), and write-after-write
dependences (also called WAW or output dependences).
The latter two types are also called false dependences
because they can be removed by renaming.

There are two types of control dependences: split
dependences may prevent operations from moving
below the exit of a basic block, and join depen-
dences may prevent operations from moving above the
entrance to a basic block. Control dependence does
not constrain the relative order of operations within a

Trace Scheduling

2067

basic block but rather expresses constraints on moving
operations between basic blocks.

Both data and control dependences represent order-
ing constraints on the program execution, and hence
induce a partial ordering on the operations. Any partial
ordering can be represented as a directed acyclic graph
(DAG), and DAGs are indeed often used by schedul-
ing algorithms. Variants to the simple DAG are the data
dependence graph (DDG), and the program dependence
graph (PDG). All these graphs represent operations as
nodes and dependences as edges (some graphs only
express data dependences, while others include both
data and control dependences).

Code Motion Between Adjacent Blocks

Two fundamental techniques, predication and specu-
lation, are employed by schedulers (or earlier phases)
to transform or remove control dependence. While it
is sometimes possible to employ either technique, they
represent independent techniques, and usually one is
more natural to employ in a given situation. Specula-
tion is used to move operations above a branch that is
highly weighted in one direction; predication is used to
collapse short sequences of alternative operations fol-
lowing a branch that is nearly equally likely in each
direction. Predication can also play an important role
in software pipelining.

Speculative code motion (or code hoisting and some-
times code sinking) moves operations above control-
dominating branches (or below joins for sinking). In
principle, this transformation does not always main-
tain the original program semantics, and in particular
it may change the exception behavior of the program.
If an operation may generate an exception and the
exception recovery model does not allow speculative
exceptions to be dismissed (ignored), then the compiler
must generate recovery code that raises the exception
at the original program point of the speculated opera-
tion. Unlike predication, speculation actually removes
control dependences, and thus potentially reduces the
length of the critical path of execution. Depending on
the shape and size of recovery code, and if multiple
operations are speculated, the addition of recovery code
can lead to a substantial amount of code.

Predication is a technique where with hardware
support operations have an additional input operand,
the predicate operand, which determines whether any

effects of executing the operations are seen by the pro-
gram execution. Thus, from an execution point of view,
the operation is conditionally executed under the con-
trol of the predicate input. Hence changing a control-
dependent operation to its predicated equivalent that
depends on a predicate that is equivalent to the con-
dition of the control dependence turns control depen-
dence into data dependence.

Trace Compaction

There are many different scheduling techniques, which
can broadly be classified by features into cycle versus
operation scheduling, linear versus graph-based, cyclic
versus acyclic, and greedy versus backtracking. How-
ever, for trace scheduling itself the scheduling tech-
nique employed is not of major concern; rather, trace
scheduling distinguishes itself from other global acyclic
scheduling techniques by the way the scheduling region
is formed, and by the kind of code motions permit-
ted during scheduling. Hence these techniques will
not be described here, and in the following, a greedy
graph-based technique, namely list scheduling, will
be used.

Compensation Code

During scheduling, typically only a very small num-
ber of operations can be moved freely between basic
blocks without changing program semantics. Other
operations may be moved only when additional com-
pensation code is inserted at an appropriate place in
order to maintain original program semantics. Trace
scheduling is quite general in this regard. Recall that
a trace may be entered after the first instruction, and
exited before the last instruction. In addition, trace
scheduling allows operations in the region (trace) to
move freely during scheduling relative to entries (join
points) to and exits (split points) from the current trace.
A separate bookkeeping step restores the original pro-
gram semantics after trace compaction through the
introduction of compensation code. It is this freedom
of code motion during scheduling, and the introduc-
tion of compensation code between the scheduling of
individual regions, that represents a major difference
between trace scheduling and other acyclic scheduling
techniques.

2068

Trace Scheduling

X
X
A
B
(8) A
C
()
Y
Y
a No compensation
X
X
(A)] 2 ’
B B’
(8) A
C
()
Y
Y
C Join compensation

W
v W
Y
b Split compensation
X
X z
(A} 2
8 || (B)
(8 A
N c] &)
O
v W
Y
d Join—Split compensation

Trace Scheduling. Fig. 4 Basic scenarios for compensation code. In each diagram, the left part shows the selected trace,
the right part shows the compacted code where operation B has moved above operation A

Since trace scheduling allows operations to move
above join points as well as below split points (con-
ditional branches) in the original program order, the
bookkeeping process includes the following kinds of
compensation. Note that a complete discussion of all
the intricacies of compensation code is well beyond the
scope of this entry; however, the following is a list of
the simple concepts that form the basis of many of the
compensation techniques used in compilers.

No compensation (Fig. 4a). If the global motion of
an operation on the trace does not change the relative
order of operations with respect to split and join points,
no compensation code is needed. This covers the situa-
tion when an operation moves above a split, in which
case the operation becomes speculative, and requires
compensation depending on the recovery model of
exceptions: in the case of dismissible speculation, no
compensation code is needed; in the case of recovery
speculation, the compiler has to emit a recovery block to
guarantee the timely delivery of exceptions for correctly
speculated operations.

Split compensation (Fig. 4b). When an operation
A moves below a split operation B (i.e., a conditional
branch), a copy of A (called A”) must be inserted on
the off-trace split edge. When multiple operations move
below a split operation, they are all copied on the oft-
trace edge in source order. These copies are unsched-
uled, and hence will be picked and scheduled later
during the trace scheduling of the program.

Join compensation (Fig. 4c). When an operation
B moves above a join point A, a copy of B (called B)
must be copied on the off-trace join edge. When mul-
tiple operations move above a join point, they are all
copied on the off-trace edge in source order.

Join-Split compensation (Fig. 4d). When splits
are allowed to move above join points, the situation
becomes more complicated: when the split is copied
on the rejoin edge, it must account for any split
compensation and therefore introduce additional con-
trol paths with additional split copies.

These rules define the compensation code required
to correctly maintain the semantics of the original

Trace Scheduling

2069

[

Y

Trace Scheduling. Fig. 5 Compensation copy suppression. The left diagram shows the selected trace. The middle diagram
shows the compacted code where operation C has moved above operation A together with the normal join
compensation. The right diagram shows the result of compensation copy suppression assuming that C is available at Y

program. The following observations can be used to
heuristically control the amount of compensation code
that is generated.

To limit split compensation, the Multiflow Trace
Scheduling compiler [12], the first commercial com-
piler to implement trace scheduling, required that all
operations that precede a split on the trace precede the
split on the schedule. While this limits the amount of
available parallelism, the intuitive explanation is that a
trace represents the most likely execution path; the on-
trace performance penalty of this restriction is small;
and off-trace the same operations would have to be
executed in the first place. Multiflow’s implementation
excluded memory-store operations from this heuristic
because in Multiflow’s Trace architecture stores were
unconditional and hence could not move above splits;
they were allowed to move below splits to avoid seri-
alization between stores and loop exits in unrolled
loops. The Multiflow compiler also restricted splits to
remain in source order. Not only did this reduce the
amount of compensation code, it also ensured that all
paths created by compensation code are subsets of paths
(possibly rearranged) in the flow graph before trace
scheduling.

Another observation concerns the possible suppres-
sion of compensation copies [8] (Fig. 5): sometimes an
operation C that moves above a join point following an
operation B actually moves to a position on the trace
that dominates the join point. When this happens, and
the result of C is still available at the join point, no
copy of C is needed. This situation often arises when

loops with internal branches are unrolled. Without copy
suppression, such loops can generate large amounts of
redundant compensation code.

Bibliographic Notes and Further
Reading

The simplest form of a scheduling region is a region
where all operations come from a single-entry single-exit
straight-line piece of code (i.e., a basic block). Since
these regions do not contain any internal control flow,
they can be scheduled using simple algorithms that
maintain the partial order given by data dependences.
(For simplicity, it is best to require that operations that
could incur an exception must end their basic block,
allowing the exception to be caught by an exception
handler.)

Traces and trace scheduling were the first region-
scheduling techniques proposed. They were introduced
by Fisher [6, 7] and described more carefully in Ellis’
thesis [4]. By demonstrating that simple microcode
operations could be statically compacted and sched-
uled on multi-issue hardware trace scheduling provided
the basis for making VLIW machines practical. Trace
scheduling was implemented in the Multiflow compiler
[12]; by demonstrating that commercial codes could
be statically compiled for multi-issue architectures, this
work also greatly influenced and contributed to the per-
formance of superscalar architectures. Today, ideas of
trace scheduling and its descendants are implemented
in most compilers (e.g., GCC, LLVM, Open64, Pro64,
as well as commercial compilers).

2070

Trace Scheduling

Trace scheduling inspired several other global
acyclic scheduling techniques. The most important
linear acyclic region-scheduling techniques are pre-
sented next.

Hwu and his colleagues on the IMPACT project
have developed a variant of trace scheduling called
superblock scheduling. Superblocks are traces with the
added restriction that the superblock must be entered
at the top [2, 3]. Hence superblocks can be joined
only before the first or after the last operation in
the superblock. As such, superblocks are single-entry,
multiple-exit traces.

Since superblocks do not contain join points,
scheduling a superblock cannot generate any join or
join-split compensation. By also prohibiting motion
below splits, superblock scheduling avoids the need
of generating compensation code outside the schedule
region, and hence does not require a separate bookkeep-
ing step. With these restrictions, superblock formation
can be completed before scheduling starts, simplifying
its implementation.

Superblock formation often includes a technique
called tail duplication to increase the size of the
superblock: tail duplication copies any operations that
follow a rejoin in the original control flow graph and
that are part of the superblock into the rejoin edge, thus
effectively lowering the rejoin point to the end of the
superblock. This is done at superblock formation time,
before any compaction takes place [11].

A variant of superblock scheduling that allows spec-
ulative code motion is sentinel scheduling [14].

A different approach to global acyclic scheduling also
originated with the IMPACT project. Hyperblocks are
superblocks that have eliminated internal control flow
using predication [13]. As such, hyperblocks are single-
entry, multiple-exit traces (superblocks) that use predi-
cation to eliminate internal control flow.

Treegions [9, 10] consist of the operations from a list of
basic blocks By, By, ..., B, with the properties that:

e For each j > 0, B; has exactly one predecessor.

e For each j > 0, the predecessor B; of B; is also on the
list, where i <.

Hence, treegions represent trees of basic blocks in
the control flow graph. Since treegions do not con-
tain any side entrances, each path through a treegion
yields a superblock. Like superblock compilers, treegion
compilers employ tail duplication and other region-
enlarging techniques. More recent work by Zhou and
Conte [16, 17] shows that treegions can be made quite
effective without significant code growth.

Nonlinear Regions

Nonlinear region approaches include percolation
scheduling [1] and DAG-based scheduling [15]. Trace
scheduling-2 [5] extends treegions by removing the
restriction on side entrances. However, its implementa-
tion proved so difficult that its proposer eventually gave
up on it, and no formal description or implementation
of it is known to exist.

Related Entries
»Modulo Scheduling and Loop Pipelining

Bibliography
1. Aiken A, Nicolau A (1988) Optimal loop parallelization. In: Pro-
ceedings of the SIGPLAN 1988 conference on programming
language design and implementation, June 1988, pp 308-317
2. Chang PP, Warter NJ, Mahlke SA, Chen WY, Hwu WW (1991)
Three superblock scheduling models for superscalar and super-
pipelined processors. Technical Report CRHC-91-29. Center for
Reliable and High-Performance Computing, University of Illinois
at Urbana-Champaign
3. Chang PP, Mahlke SA, Chen WY, Warter NJ, Hwu WW (1991)
IMPACT: an architectural framework for multiple-instruction-
issue processors. In: Proceedings of the 18th annual international
symposium on computer architecture, May 1991, pp 266-275
4. Ellis JR (1985) Bulldog: a compiler for VLIW architectures. PhD
thesis, Yale University
5. Fisher JA (1993) Global code generation for instruction-level
parallelism: trace scheduling-2. Technical Report HPL-93-43.
Hewlett-Packard Laboratories
6. Fisher JA (1981) Trace scheduling: a technique for global
microcode compaction, IEEE Trans July 1981,
30(7):478-490
7. Fisher JA (1979) The optimization of horizontal microcode
within and beyond basic blocks. PhD dissertation. Techni-
cal Report COO-3077-161. Courant Institute of Mathematical
Sciences, New York University, New York, NY

Comput,

http://dx.doi.org/10.1007/978-0-387-09766-4_65

Trace Theory

2071

8. Freudenberger SM, Gross TR, Lowney PG (1994) Avoidance and
suppression of compensation code in a trace scheduling compiler,
ACM Trans Program Lang Syst, July 1994, 16(4):1156-1214

9. Havanki WA (1997) Treegion scheduling for VLIW processors.
MS thesis. Department of Electrical and Computer Engineering,
North Carolina State University, Raleigh, NC

10. Havanki WA, Banerjia S, Conte TM (1998) Treegion scheduling
for wide issue processors. In: Proceedings of the fourth interna-
tional symposium on high-performance computer architecture,
February 1998, pp 266-276

11. Hwu WW, Mahlke SA, Chen WY, Chang PP, Warter NJ, Bring-
mann RA, Ouellette RG, Hank RE, Kiyohara T, Haab GE, Holm
JG, Lavery DM (May 1993) The superblock: an effective tech-
nique for VLIW and superscalar compilation.] Supercomput,
7(1-2):229-248

12. Lowney PG, Freudenberger SM, Karzes T], Lichtenstein WD,
Nix RP, O’Donnell JS, Ruttenberg JC (1993) The Multiflow trace
scheduling compiler,] Supercomput, May 1993, 7(1-2):51-142

13. Mahlke SA, Lin DC, Chen WY, Hank RE, Bringmann RA (1992)
Effective compiler support for predicated execution using the
hyperblock. In: Proceedings of the 25th annual international
symposium on microarchitecture, 1992, pp 45-54

14. Mahlke SA, Chen WY, Bringmann RA, Hank RE, Hwu WW,
Rau BR, Schlansker MS (1993) Sentinel scheduling: a model for
compiler-controlled speculative execution, ACM Trans Comput
Syst, November 1993, 11(4):376-408

15. Moon SM, Ebcioglu K (1997) Parallelizing nonnumerical code
with selective scheduling and software pipelining, ACM Trans
Program Lang Syst, November 1997, 19(6):853-898

16. Zhou H, Conte TM (2002) Code size efficiency in global schedul-
ing for ILP processors. In: Proceedings of the sixth annual work-
shop on the interaction between compilers and computer archi-
tectures, February 2002, pp 79-90

17. Zhou H, Jennings MD, Conte TM (2001) Tree traversal schedul-
ing: a global scheduling technique for VLIW/EPIC processors.
In: Proceedings of the 14th annual workshop on languages and
compilers for parallel computing, August 2001, pp 223-238

' Trace Theory

VOLKER DIEKERT', ANCA MuscHOLL?
'Universitit Stuttgart FMI, Stuttgart, Germany
2Université Bordeaux 1, Talence, France

Synonyms
Partial computation; Theory of Mazurkiewicz-traces

Definition
Trace Theory denotes a mathematical theory of free
partially commutative monoids from the perspective of

concurrent or parallel systems. Traces, or equivalently,
elements in a free partially commutative monoid, are
given by a sequence of letters (or atomic actions). Two
sequences are assumed to be equal if they can be trans-
formed into each other by equations of type ab = ba,
where the pair (a,b) belongs to a predefined relation
between letters. This relation is usually called partial
commutation or independence. With an empty inde-
pendence relation, that is, without independence, the
setting coincides with the classical theory of words or
strings.

Discussion

The analysis of sequential programs describes a run
of a program as a sequence of atomic actions. On an
abstract level such a sequence is simply a string in a
free monoid over some (finite) alphabet of letters. This
purely abstract viewpoint embeds program analysis into
arich theory of combinatorics on words and a theory of
automata and formal languages. The approach has been
very fruitful from the early days where the first compil-
ers have been written until now where research groups
in academia and industry develop formal methods for
verification.

Efficient compilers use autoparallelization, which
provides a natural example of independence of actions
resulting in a partial commutation relation. For exam-
ple, let a; b; c; a; d; e; f be a sequence of arithmetic oper-
ations where:

(@) x:=x+2y, (b)x:=x-2, (c)y:=y5z

(w:=2w, (e)z:=yz, (f)zi=x+yw.

A concurrent-read-exclusive-write protocol yields
a list of pairs of independent operations (a,d), (a,e),
(b,¢c), (b,d), (¢,d), and (d,e), which can be per-
formed concurrently or in any order. The sequence
can therefore be performed in four parallel steps
{a};{b,c};{a,d,e};{f} butasd commutes witha,b,c
the result of a;b;c;a;d;e;f is equal to a;d; b;c;a;e;f,
and two processors are actually enough to guarantee
minimal parallel execution time, since another possi-
ble schedule is {a,d};{b,c};{a,e};{f}. Trace theory
yields a tool to do such (data-independent) transforma-
tions automatically.

http://dx.doi.org/10.1007/978-0-387-09766-4_2453
http://dx.doi.org/10.1007/978-0-387-09766-4_2454

2072

Trace Theory

Parallelism and concurrency demand for specific
models, because a purely sequential description is nei-
ther accurate nor possible in all cases, for example, if
asynchronous algorithms are studied and implemented.
Several formalisms have been proposed in this con-
text. Among these models there are Petri nets, Hoare’s
CSP and Milner’s CCS, event structures, and branch-
ing temporal logics. The mathematical analysis of Petri
nets is however quite complicated and much of the suc-
cess of Hoare’s and Milner’s calculus is due to the fact
that it stays close to the traditional concept of sequen-
tial systems relying on a unified and classical theory
of words. Trace theory follows the same paradigm; it
enriches the theory of words by a very restricted, but
essential formalism to capture the main aspects of par-
allelism: In a static way a set I of independent letters
(a,b) is fixed, and sequences are identified if they can
be transformed into each other by using equations of
type ab = ba for (a,b) € I. In computer science this
approach appeared for the first time in the paper by
Keller on Parallel Program Schemata and Maximal Par-
allelism published in 1973. Based on the ideas of Keller
and the behavior of elementary net systems, Mazur-
kiewicz introduced in 1977 the notion of trace theory
and made its concept popular to a wider computer sci-
ence community. Mazurkiewicz’s approach relies on a
graphical representation for a trace. This is a node-
labeled directed acyclic graph, where arcs are defined
by the dependence relation, which is by definition the
complement of the independence relation I.

Thereby, a concurrent run has an immediate graph-
ical visualization, which is obviously convenient for
practice. The picture of the two parallel executions
{a};{b.cis{ade}s{fand{a,d};{b.c};{ae};{f}
can be depicted as follows, which represents (the Hasse
diagrams of) isomorphic labeled partial orders:

a—-b-a a—-b-a
NOX N NOX Y
c—e~f d c—oe~f

a” N

Moreover, the graphical representation yields imme-
diately a correct notion of infinite trace, which is not
clear when working with partial commutations. In the
following years it became evident that trace theory
indeed copes with some important phenomena such

as true concurrency. On the other hand it is still close
to the classical theory of word languages describing
sequential programs. In particular, it is possible to trans-
fer the notion of finite sequential state control to the
notion of asynchronous state control. This important
result is due to Zielonka; it is one of the highlights of
the theory. There is a satisfactory theory of recogniz-
able languages relating finite monoids, rational oper-
ations, asynchronous automata, and logic. This leads
to decidability results and various effective operations.
Moreover, it is possible to develop a theory of asyn-
chronous Biichi automata, which enables in trace the-
ory the classical automata theory-based approach to
automated verification.

Trace theory is founded on a rigorous mathemati-
cal approach. The underlying combinatorics for partial
commutation were studied in mathematics already in
1969 in the seminal Lecture Notes in Mathematics Prob-
lémes combinatoires de commutation et réarrangements
by Cartier and Foata. The mathematical setting uses a
finite alphabet X of letters and the specification of a sym-
metric and irreflexive relation I € X x 2, called the inde-
pendence relation. Conveniently, its complement D =
2 x X ¢ I is called the dependence relation. The depen-
dence relation has a direct interpretation as graph as
well. For the dependency used in the first example above

it looks as follows:
m
AN

e— f—d

IANIZ

D

The intended semantics is that independent letters
commute, but dependent letters must be ordered. Tak-
ing ab = ba with (a,b) € I as defining relations one
obtains a quotient monoid M(Z,I), which has been
called free partial commutative monoid or simply trace
monoid in the literature. The elements are finite (Mazur-
kiewicz-)traces. For I = §, traces are just words in £*; for
a full independence relation, that is, D = idy, traces are
vectors in some N¥, hence Parikh-images of words. The
general philosophy is that the extrema X* and N* are

Trace Theory

2073

well understood (which is far from being true), but the
interesting and difficult problems arise when M(Z, 1) is
neither free nor commutative.

For effective computations and the design of algo-
rithms appropriate normal forms can be used. For the
lexicographic normal form it is assumed that the alpha-
bet X is totally ordered, saya < b < ¢ < - < z
This defines a lexicographic ordering on X exactly the
same way words are ordered in a standard dictionary.
The lexicographic normal form of a trace is the mini-
mal word in X* representing it. For example, if I is given
by {(a,d),(d,a),(b,c),(c,a)}, then the trace defined
by the sequence badacb is the congruence class of six
words:

{baadbc, badabc, bdaabc, baadch, badacb, bdaacb} .

Its lexicographic normal form is the first word baadbc.
An important property of lexicographic normal forms
has been stated by Anisimov and Knuth. A word is in
lexicographic normal form if and only if it does not con-
tain a forbidden pattern, which is a factor bua where
a < b € X and the letter a commutes with all letters
appearing in bu € X*. As a consequence, the set of
lexicographic normal forms is a regular language.

The other main normal is due to Foata. It is a nor-
mal form that encodes a maximal parallel execution. Its
definition uses steps, where a step means here a sub-
set F ¢ X of pairwise independent letters. Thus, a
step requires only one parallel execution step. A step
F yields a trace by taking the product Il cra over all
its letters in any order. The Foata normal form is a
sequence of steps F; --- Fj such that F, ..., Fx are cho-
sen from left to right with maximal cardinality. The
sequence {a,d};{b,c};{a,e};{f} above has been the
Foata normal form of abcadef.

The graphical representation of a trace due to Ma-
zurkiewicz can be viewed as a third normal form. It
is called the dependence graph representation; and it is
closely related to the Foata normal form. Say a trace t is
specified by some sequence of letters t = a; - a,. Each
index i € V = {1,...,n} is labeled by the letter a;.
Finally, arcs (i,) € E are introduced if and only if both
(ai»a;) € Dand i < j. In this way an acyclic directed
graph G(t) is defined which is another unique repre-
sentation of t. The information about ¢ is also contained
in the induced partial order (i.e., the transitive closure

of G(¢)) or in its Hasse-diagram (i.e., removing all
transitive arcs from G(t)).

Computation of Normal Forms

There are efficient algorithms that compute normal
forms in polynomial time. A very simple method uses a
stack for each letter of the alphabet X. An input word is
scanned from right to left, so the last letter is read first.
When processing a letter a it is pushed on its stack and
a marker is pushed on the stack of all the letters b (b #
a), which do not commute with a. Once the word has
been processed its lexicographic normal form, the Foata
normal form, and the Hasse-diagram of the depen-
dence graph representation can be obtained straightfor-
wardly. For example, the sequence a; b; c;a;d; e;f (with
a dependence relation as depicted above) yields stacks
as follows:

*

*
a * * *
* b c * *
* * * * *
a * * d e *
* * * * * f
a b c d e f

A fundamental concept in formal languages is the
notion of a regular set. Kleene’s Theorem says that a reg-
ular set can be specified either by a finite deterministic
(resp. nondeterministic) automaton DFA (resp. NFA)
or, equivalently, by a regular expression. Regular expres-
sions are also called rational expressions. They are
defined inductively by saying that every finite set
denotes a rational expression and if R, § is rational, then
RuUS, R-S, and R are rational expressions, too. The
semantics of a rational expression is defined in any
monoid M since the semantics of RU S, R-S is obvious,
and R* can be viewed as the union Uyey R¥. For star-
free expressions one does not allow the star-operation,
but one adds complementation, denoted, for example,
by R with the semantics M \R.

In trace theory a direct translation of Kleene’s The-
orem fails, but it can be replaced by a generalization
due to Ochmanski. If (a,b) is a pair of independent
letters, then (ab)* is a rational expression, but due to
ab = ba it represents all strings with an equal number

2074

Trace Theory

of a’s and b’s which is clearly not regular. With three
pairwise independent letters (abc)* is not even context-
free. A general formal language theory distinguishes
between recognizable and rational sets. A subset L of a
trace monoid is called recognizable, if its closure is a reg-
ular word language. Here the closure refers to all words
in X*, which represent some trace in L. A subset L is
called rational, if L can be specified by some regular (and
hence rational) expression. Using the algebraic notion
of homomorphism this can be rephrased as follows. Let
¢ be the canonical homomorphism of =* onto M(Z, I),
which simply means the interpretation of a string as its
trace. Now, L is recognizable if and only if ¢'(L) is
a regular word language, and L is rational if and only
if L = ¢(K) for some regular word language K. As a
consequence of Kleene’s Theorem all recognizable trace
languages are rational, but the converse fails as soon as
there is a pair of independent letters, that is, the trace
monoid is not free.

Given a recognizable trace language L, the corre-
sponding word language ¢~'(L) is accepted by some
NFA (actually some DFA), which satisfies the so-called
I-diamond property. This means whenever it holds
(a,b) € I and a state p leads to a state g by reading the
word ab, then it is in state p also possible to read ba and
this leads to state g, too. NFAs satisfying the I-diamond
property accept closed languages only. Therefore they
capture exactly the notion of recognizability for traces.

It has been shown that the concatenation of two rec-
ognizable trace languages is recognizable, in particular
star-free languages (i.e., given by star-free expressions)
are recognizable. However, the example (ab)* above
shows that the star-operation leads to non-recognizable
sets as soon as the trace monoid is not free. Métivier
and Ochmanski have introduced a restricted version
where the star-operation is allowed only when applied
to languages L where all traces t € L are connected.
This means the dependence graph G(t) is connected or,
equivalently, there is no nontrivial factorization t = uv
where all letters in u are independent of all letters in v.
A theorem shows that L* is still recognizable, if L is con-
nected (i.e., all ¢ € L are connected) and recognizable.
Ochmanski’s Theorem yields also the converse: A trace
language L is recognizable if and only if it can be speci-
fied by a rational expression where the star-operation is
restricted to connected subsets. As word languages are
always connected this is a proper generalization of the

classical Kleene’s Theorem. Yet another characterization
of recognizable trace languages is as follows: They are in
one-to-one correspondence with regular subsets inside
the regular set LexNF < X* of lexicographic normal
forms. The correspondence associates with L € M(Z,I)
the set K = ¢7'(L) nLexNF. A rational expression for K
is a rational expression for L, where the star-operation
is restricted to connected languages.

The Star Mystery

The Star Problem is to decide for a given recognizable
trace language L € M(Z,) whether L* is recognizable.
It is not known whether the star problem is decidable,
even if it is restricted to finite languages L. The sur-
prising difficulty of this problem has been coined as
the star mystery by Ochmanski. It has been shown by
Richomme that the Star Problem is decidable, if (2, 1)
does not contain any C, (cycle of four letters) as an
induced subgraph.

Undecidability Results for Rational Sets

For rational languages (unlike as for recognizable lan-
guages) some very basic problems are known to be
undecidable. The following list contains undecidable
decision problems, where the input for each instance
consists of an independence alphabet (X,) and ratio-
nal trace languages R, T < M(Z, I specified by rational
expressions.

e Inclusion question: Does R € T hold?

o Equality question: Does R = T hold?

o Universality question: Does R = M[(Z,]) hold?

e Complementation question: Is M((Z,1)\R a ratio-
nal?

o Recognizability question: Is R recognizable?

o Intersection question: Does Rn T = P hold?

On the positive side, if I is transitive, then all six
problems above are decidable. This is also a necessary
condition for the first five problems in the list. Tran-
sitivity of the independence alphabet means in alge-
braic terms that the trace monoid is a free product
of free and free commutative monoids, like, for exam-
ple, {a,b}* » N°,

The intersection problem is simpler. It is known that
the problem Intersection is decidable if and only if (2, 1)

Trace Theory

2075

is a transitive forest. It is also well known that tran-
sitive forests are characterized by forbidden induced
subgraphs C4 and P4 (cycle and path, resp., of four
letters).

Whereas recognizable trace languages can be defined
as word languages accepted by DFAs or NFAs with
I-diamond property, there is an equivalent distributed
automaton model called asynchronous automata. Such
an automaton is a parallel composition of finite-state
processes synchronizing over shared variables, whereas
a DFA satisfying the I-diamond property is still a device
with a centralized control. An asynchronous automaton
A has, by definition, a distributed finite state control
such that independent actions may be performed in
parallel. The set of global states is modeled as a direct
product Q = [Tper Qp> where the Q, are states of the
local component p € P and P is some finite index set
(a set of processors). For each letter a € X there is a
read domain R(a) € P and a write domain W(a) C P
where for simplicity W(a) ¢ R(a). Processors p and g
share a variable a if and only if p,q € R(a). The transi-
tions are given by a family of partially defined functions
0p, where each processor p reads the status in the local
components of its read domain and changes states in
local components of its write domain. Accordingly to
the read-and-write-conflicts being allowed, four basic
types are distinguished:

e Concurrent-Read-Exclusive-Write (CREW),
if R(a) n W(b) = pforall (a,b) 1.

e Concurrent-Read-Owner-Write (CROW),
if R(a) n W(b) = pforall (a,b) € I and W(a) n
W(b) = fforalla +b.

e Exclusive-Read-Exclusive-Write (EREW),
if R(a) N R(b) = Pforall (a,b) 1.

e Exclusive-Read-Owner-Write (EROW),
if R(a) n R(b) = Pforall (a,b) € I and W(a) n
W(b) = pforall a + b.

The local transition functions (6P) give rise to a par-
peP

tially defined transition function on global states § :

(HPEP Qp) XX — HpeP Qp-

If Ajis of any of the four types above, then the action
of a trace t € M(Z,I) on global states is well defined.
This allows to see an asynchronous automaton as an
I-diamond DFA. There are effective translations from

one model to the other. The most compact versions can
be obtained by a CREW model, therefore it is of prior
practical interest.

Zielonka has shown in his thesis (published in 1987)
the following deep theorem in trace theory: Every rec-
ognizable trace language can be accepted by some finite
asynchronous automaton. The proof of this theorem is
very technical and complicated. Moreover, the original
construction was doubly exponential in the size of an
I-diamond automaton for the language L. Therefore, it
is part of ongoing research to simplify its construction,
in particular since efficient constructions are necessary
to make the result applicable in practice. The best result
to date is due to Genest et al. They provide a con-
struction where the size of the obtained asynchronous
automaton is polynomial in the size of a given DFA and
simply exponential in the number of processes. They
also show that the construction is optimal within the
class of automata produced by Zielonka-type construc-
tions, which yields a nontrivial lower bound on the size
of asynchronous automata.

A rather direct construction of asynchronous auto-
mata is known for triangulated dependence alphabets,
which means that all chordless cycles are of length 3. For
example, complete graphs and forests are triangulated.

The theory of infinite traces has its origins in the mid-
1980s when Flé and Roucairol considered the problem
of serializability of iterated transactions in data bases.
A suitable definition of an infinite trace uses the depen-
dence graph representation due to Mazurkiewicz. Just
as in the finite case an infinite sequence t = aja; -
of letters yields an infinite node-labeled acyclic directed
graph G(t), where now each i € V = N is labeled by the
letter a;, and again arcs (i,j) € E are introduced if and
only if both (a;,a;) € Dand i < j. It is useful to consider
finite and infinite objects simultaneously as an infinite
trace may split into connected components where some
of them might be finite. The notion of real trace has been
introduced to denote either a finite or an infinite trace.
If t1,1,, ... is (finite or infinite) sequence of finite traces,
then the product t;£, --- is a well-defined real trace. It is a
finite trace if almost all ¢; are empty and an infinite trace
otherwise. In particular, one can define the w-product
L® for every set L of finite traces and one enriches the
set of rational expressions by this operation.

2076

Trace Theory

The set R(Z, 1) of real traces can be embedded into
a monoid of complex traces where the imaginary com-
ponent is a subset of X. This alphabetic information is
necessary in order to define an associative operation of
concatenation. (Over complex traces L is defined for
all subsets L.)

Many results from the theory of finite traces transfer
to infinite traces according to the same scheme as for
finite and infinite words.

MSO and First-Order Logic

Formulae in monadic second-order logic (MSO) are
built up upon first-order variables x, y, . .. ranging over
vertices and second-order variables X,Y,... ranging
over subsets of vertices. There are Boolean constants
true and false, the logical connectives v, A, -, and quan-
tification 3, V for the first- and second-order variables.
In addition there are four types of atomic formulae:

xeX,x=y,(xy) €E and M(x) = a.

A first-order formula is a formula without any second-
order variable. A sentence is a closed formula, that is,
a formula without free variables. The semantics of an
MSO-sentence is defined for every node-labeled graph
[V,E,A] (here: V = set of vertices, E = set of edges,
A V. - ¥ = vertex labeling). Identifying a trace
t with its dependence graph G(t), the truth value of
t & y is therefore well defined for every sentence y. The
trace language defined by a sentence y is L(y) = {t €
R(Z,I) | t E y}. It follows a notion of first-order and
second-order definability of trace languages.

Temporal Logic

Linear temporal logic, LTL, can be inductively defined
inside first order as formulae with one free variable, as
soon as the transitive closure (x,y) € E* is express-
ible in first order (as it is the case for trace monoids).
There are no quantifiers, but all Boolean connectives.
The atomic formulae are A(x) = a. If ¢(x),y(x) are
LTL-formulae, then EX ¢(x) and (¢ U y)(x) are LTL-
formulae. In temporal logic (x,y) € E* means that y is
in the future of the node x. The semantics of EX ¢(x) is
exists next, thus ¢(y) holds for a direct successor of x.
The semantics of (¢ U y)(x) reflects an until operator,
it says that in the future of x there is some z that sat-
isfies ¥(z) and all y in the future of x but in the strict

past of z satisfy ¢(y). Hence, condition ¢ holds until v
becomes true. There are dual past-tense operators, but
they do not add expressivity.

For LTL one can also give a syntax without any free
variable and a global semantics where the evaluation is
based on the prefix relation of traces. The local seman-
tics as defined above is for traces a priori expressively
weaker, but it was shown that both, the global and local
LTL have the same expressive power as first-order logic.
This was done by Thiagarajan and Walukiewicz in 1998
for global LTL and by Diekert and Gastin in 2006 for
local LTL, respectively. Both results extend a famous
result of Kamp from words to traces. The complex-
ity of the satisfiability problem (or model checking) is
however quite different. In global semantics it is nonele-
mentary, whereas in local semantics it is in PSPACE
(= class of problems solvable on a Turing machine in
polynomial space.)

For various applications fragments of first-order logics
suffice. This has the advantage that simpler construc-
tions are possible and that the complexity of model
checking is possibly reduced. A prominent fragment
is first-order logic with at most two names for vari-
ables. Two-variable logics capture the core features of
XML navigational languages like XPath. Over words
and over traces two variable logic FO?[E] can be char-
acterized algebraically via the variety of monoids DA
(referring to the fact that regular D-classes are aperiodic
semigroups), in logic by Next-Future and Yesterday-
Past operators, and in terms of rational expressions via
unambiguous polynomials. It turns out that the satisfia-
bility problem for two-variable logic is NP-complete (if
the independence alphabet is not part of the input). The
extension of these results from words to traces is due to
Kufleitner.

The connection between logic and recognizability uses
algebraic tools from the theory of finite monoids. If
h:M(Z,I) - M isahomomorphism to a finite monoid
M and L € R(Z,1) is a set of real traces, then one says
that h recognizes L, if for all t € L and factorizations
t = tt,--- into finite traces t; the following inclusion
holds: h™!(t;)h™'(t;)--- ¢ L. This allows to speak of

Trace Theory

2077

aperiodic languages if some recognizing monoid is ape-
riodic. A monoid M is aperiodic, if for all x € M there
is some 7 € N such that x"*! = x". A deep result states
that a language is first-order definable if and only if it
is recognized by a homomorphism to a finite aperiodic
monoid. Algebraic characterizations lead to decidabil-
ity of fragments. For example, it is decidable whether a
recognizable language is aperiodic or whether it can be
expressed in two-variable first-order logic.

Another way to define recognizability is via Biichi
automata. A Biichi automaton for real traces is an
I-diamond NFA with a set of final states F and a set of
repeated states R. It accepts a trace if the run stops in F or
if repeated states are visited infinitely often. If its trans-
formation monoid is aperiodic it is called aperiodic,
too. There is also a notion of asynchronous (cellular)
Biichi automaton, and it is known that every I-diamond
Biichi automaton can be transformed into an equivalent
asynchronous cellular Biichi automaton.

The main result connecting logic, recognizability,
rational expressions, and algebra can be summarized by
saying that the following statements in the first block
(second block resp.) are equivalent for all trace lan-
guages L c R(Z,I):

MSO definability:

1. L is definable in monadic second-order logic.

2. Lis recognizable by some finite monoid.

3. Lis given as a rational expression where the star is
restricted to connected languages.

4. Lisaccepted by some asynchronous Biichi automa-
ton.

First-order definability:

1. L is definable in first-order logic.

2. L is definable in LTL (with global or local seman-
tics).

3. L is recognizable by some finite and aperiodic
monoid.

4. Lis star-free.

Automata-Based Verification

The automata theoretical approach to verification uses
the fact that systems and specifications are both mod-
eled with finite automata. More precisely, a system is
given as a finite transition system .A, which is typically
realized as an NFA without final states. So, the system

allows finite and infinite runs. The specification is writ-
ten in some logical formalism, say in the linear temporal
logic LTL. So the specification is given by some for-
mula ¢, and its semantics L(¢) defines the runs that
obey the specification. Model checking means to ver-
ify the inclusion L(.A) < L(¢). This is equivalent to
L(A)nL(-¢) = {. Once an automaton B with L(B) =
L(-¢) has been constructed, standard methods yield
a product automaton for L(.A) n L(B). The check for
emptiness becomes a reachability problem in directed
graphs.

A main obstacle is the combinatorial explosion
when constructing the automaton B. But this works
in practice nevertheless reasonable well, because typi-
cal specifications are simple enough to be understood
(hopefully) by the designer, so they are short. From a
theoretical viewpoint the complexity of model check-
ing for MSO and first order is nonelementary, but for
(local) LTL is still in PSPACE. This approach is mostly
applied and very successful where runs can be modeled
as sequences. Trace theory provides the necessary tools
to extend these methods to asynchronous systems. A
first step in this direction has been implemented in the
framework of partial order reduction. Another applica-
tion of trace theory is the analysis of communication
protocols.

Trace automata like asynchronous ones model concur-
rency in the same spirit as Petri nets, using shared vari-
ables. A more complex model arises when concurrent
processes cooperate over unbounded, fifo communica-
tion channels.

A communicating automaton is defined over a set P
of processes, together with point-to-point communica-
tion channels Ch ¢ {(p,q) € P* | p # q}. It consists of
a tuple of NFAs A, one for each process p € P. Each
NFA A, has a set of local states Q, and transition rela-
tion 8, € Q, x X, x Q,. The set X, of local actions of
process p consists of send-actions p!g(m) (of message
m to process g, (p,q) € Ch) and receive-actions p?r(m)
(of message m from process r, (r,p) € Ch), respectively.
The semantics of such an automaton is defined through
configurations consisting of a tuple of local states (one
for each process) and a tuple of word contents (one for
each channel). In terms of partial orders the seman-
tics of runs corresponds to message sequence charts

2078

Trace Theory

(MSCs), a graphical notation for fifo message exchange.
In contrast with asynchronous automata, communicat-
ing automata have an infinite state space and are actu-
ally Turing powerful; thus, most algorithmic questions
about them are undecidable.

The theory of recognizable trace languages enjoys
various nice results known from word languages, for
example, in terms of logics and automata. Since com-
municating automata are Turing powerful, one needs
restrictions in order to obtain, for example, logical char-
acterizations. A natural restriction consists in imposing
bounds on the size of the channels. Such bounds come
in two versions, namely, as universal and existential
bounds, respectively. The existential version of chan-
nel bounds is optimistic and considers all those runs
that can be rescheduled on bounded channels. The uni-
versal version is pessimistic and considers only those
runs that, independent of the scheduling, can be exe-
cuted with bounded channels. Thus, communicating
automata with an universal channel bound are finite
state, whereas with an existential channel bound they
are infinite state systems.

Kuske proposed an encoding of runs of commu-
nicating automata with bounded channels into trace
languages. Using this encoding, the set of runs (MSCs)
of a communicating automaton is the projection of a
recognizable trace language (for a universal bound),
respectively the set of MSCs generated by the projec-
tion of a recognizable trace language (for an existential
bound). This correspondence has the same flavor as
the distinction between recognizable and rational trace
languages, respectively.

The logic MSO over MSCs is defined with an
additional binary message-predicate relating match-
ing send and receive events. Henriksen et al. and
Genest et al., respectively, have shown that the equiv-
alence between MSO and automata extends to com-
municating automata with universal and existential
channel bound, respectively. Another equivalent char-
acterization exists in terms of MSC-graphs, similar to
star-connected expressions for trace languages. These
expressiveness results are complemented by decidable
instances of the model-checking problem.

Related Entries
» Asynchronous Iterative Algorithms
»CSP (Communicating Sequential Processes)

»Formal Methods-Based Tools for Race, Deadlock,
and Other Errors

» Multi-Threaded Processors

»Parallel Computing

» Parallelization, Automatic

» Peer-to-Peer

»Petri Nets

»Reordering

»Synchronization

»Trace Scheduling

» Verification of Parallel Shared-Memory Programs,
Owicki-Gries Method of Axiomatic

Bibliographic Notes and Further
Reading

Trace theory has its origin in enumerative combina-
torics when Cartier and Foata found a new proof of the
MacMahon Master Theorem in the framework of par-
tial commutation by combining algebraic and bijective
ideas [2]. The Foata normal form was defined in this
Lecture Note. In computer science the key idea to use
partial commutation as tool to investigate parallel sys-
tems was laid by Keller [10], but it was only by the influ-
ence of the technical report of Mazurkiewicz [11] when
these ideas were spread to a wider computer science
community, in particular to the Petri-net community.
It was also Mazurkiewicz who coined the notion Trace
theory and who introduced the notion of dependence
graphs as a visualization of traces. The characterization
of lexicographic normal forms by forbidden pattern is
due to Anisimov and Knuth [1].

The investigation of recognizable (regular, ratio-
nal resp.) languages is central in the theory of traces.
The characterization of recognizable languages in
terms of star-connected regular expressions is due to
Ochmanski [13]. The notion of asynchronous automa-
ton is due to Zielonka. The major theorem showing
that all recognizable languages can be accepted by
asynchronous automata is his work (built on his the-
sis) [15]. The research on asynchronous automata is still
an important and active area. The best constructions so
far are due to Genest et al., where also nontrivial lower
bounds were established [8].

The theory of infinite traces has its origin in the
mid-1980s. A definition of a real trace as a prefix-closed
and directed subset of real traces and its characteri-
zation by dependence graphs is given in a survey by

http://dx.doi.org/10.1007/978-0-387-09766-4_231
http://dx.doi.org/10.1007/978-0-387-09766-4_186
http://dx.doi.org/10.1007/978-0-387-09766-4_423
http://dx.doi.org/10.1007/978-0-387-09766-4_279
http://dx.doi.org/10.1007/978-0-387-09766-4_197
http://dx.doi.org/10.1007/978-0-387-09766-4_278
http://dx.doi.org/10.1007/978-0-387-09766-4_134
http://dx.doi.org/10.1007/978-0-387-09766-4_245
http://dx.doi.org/10.1007/978-0-387-09766-4_252
http://dx.doi.org/10.1007/978-0-387-09766-4_251
http://dx.doi.org/10.1007/978-0-387-09766-4_399
http://dx.doi.org/10.1007/978-0-387-09766-4_399
http://dx.doi.org/10.1007/978-0-387-09766-4_2090
http://dx.doi.org/10.1007/978-0-387-09766-4_2090

Transactional Memories

2079

Mazurkiewicz [12]. The theory of recognizable real trace
languages has been initiated by Gastin in 1990. The gen-
eralization of the Kleene-Biichi-Ochmanski Theorem
to real traces is due to Gastin, Petit, and Zielonka [7].
Diekert and Muscholl gave a construction for determin-
istic asynchronous Muller automata accepting a given
recognizable real trace language.

Ebinger initiated the study of LTL for traces in his
thesis in 1994. But it took quite an effort until Diek-
ert and Gastin were able to show that LTL (in local
semantics) has the same expressive power as first-oder
logic [3]. The advantage of a local LTL is that model
checking in PSPACE, whereas in its global semantics
it becomes nonelementary by a result of Walukiewicz
[14]. The PSPACE-containment has been shown for a
much wider class of logics by Gastin and Kuske [6].
Diekert, Horsch, and Kufleitner [4] give a survey on
fragments of first-order logic in trace theory. The Biichi-
like equivalence between automata and MSO for exis-
tentially bounded communicating automata has been
shown by Genest, Kuske, and Muscholl [9]. The transla-
tion from MSO into automata uses the equivalence for
trace languages, but needs some additional, quite tech-
nical construction specific to communicating automata.

Very much of the material used in the present dis-
cussion can be found in The Book of Traces, which was
edited by Diekert and Rozenberg [5]. The book sur-
veys also a notion of semi-commutation (introduced by
Clerbout and Latteux), and it provides many hints for
further reading. Current research efforts concentrate on
the topic of distributed games and controller synthesis
for asynchronous automata.

Bibliography

1. Anisimov AV, Knuth DE (1979) Inhomogeneous sorting. Int J
Comput Inf Sci 8:255-260

2. Cartier P, Foata D (1969) Problémes combinatoires de commu-
tation et réarrangements. Lecture notes in mathematics, vol 85.
Springer, Heidelberg

3. Diekert V, Gastin P (2006) Pure future local temporal logics
are expressively complete for Mazurkiewicz traces. Inf Comput
204:1597-1619. Conference version in LATIN 2004, LNCS 2976:
170-182, 2004

4. Diekert V, Horsch M, Kufleitner M (2007) On first-order
fragments for Mazurkiewicz traces. Fundamenta Informaticae
80:1-29

5. Diekert V, Rozenberg G (eds) (1995) The book of traces. World
Scientific, Singapore

6. Gastin P, Kuske D (2007) Uniform satisfiability in pspace for local
temporal logics over Mazurkiewicz traces. Fundam Inf 80(1-3):
169-197

7. Gastin P, Petit A, Zielonka WL (2007) An extension of Kleene’s
and Ochmanski’s theorems to infinite traces. Theoret Comput Sci
125:167-204, x

8. Genest B, Gimbert H, Muscholl A, Walukiewicz I (2010) Opti-
mal Zielonka-type construction of deterministic asynchronous
automata. In: Abramsky S, Gavoille C, Kirchner C, Meyer auf der
Heide F, Spirakis PG (eds) ICALP (2). Lecture notes in computer
science, vol 6199. Springer, pp 52-63

9. Genest B, Kuske D, Muscholl A (2006) A Kleene the-
orem and model checking algorithms for existentially

bounded communicating automata. Inf Comput 204:926-
956. http://dx.doi.org/10.1016/j.ic.2006.01.005DBLP, http://dblp.
uni-trier.de

10. Keller RM (1973) Parallel program schemata and maximal

parallelism I. Fundamental results. J Assoc Comput Mach
20(3):514-537

11. Mazurkiewicz A (1977) Concurrent program schemes and their

interpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus
12. Mazurkiewicz A (1987) Trace theory. In: Brauer W et al. (eds)
Petri nets, applications and relationship to other models of con-
currency. Lecture notes in computer science, vol 255. Springer,
Heidelberg, pp 279-324
13. Ochmanski E (Oct 1985) Regular behaviour of concurrent sys-
tems. Bull Eur Assoc Theor Comput Sci (EATCS) 27:56-67

14. Walukiewicz I (1998) Difficult configurations — on the complex-
ity of LTrL. In: Larsen KG, et al. (eds) Proceedings of the 25th
International Colloquium Automata, Languages and Program-
ming (ICALP’98), Aalborg (Denmark). Lecture notes in computer
science, vol 1443. Springer, Heidelberg, pp 140-151

15. Zielonka WL (1987) Notes on finite asynchronous automata.
R.A.IR.O. Informatique Théorique et Applications 21:99-135

! Tracing

» Performance Analysis Tools
»Scalasca
»TAU

I . .
Transactional Memories

MAURICE HERLIHY
Brown University, Providence, RI, USA

Synonyms
Locks; Monitors; Multiprocessor synchronization

Introduction

Transactional memory (TM) is an approach to struc-
turing concurrent programs that seeks to provide
better scalability and ease-of-use than conventional
approaches based on locks and conditions. The term is

http://dx.doi.org/10.1016/j.ic.2006.01.005;DBLP
http://dblp.uni-trier.de
http://dblp.uni-trier.de
http://dx.doi.org/10.1007/978-0-387-09766-4_267
http://dx.doi.org/10.1007/978-0-387-09766-4_61
http://dx.doi.org/10.1007/978-0-387-09766-4_59
http://dx.doi.org/10.1007/978-0-387-09766-4_2028
http://dx.doi.org/10.1007/978-0-387-09766-4_2032
http://dx.doi.org/10.1007/978-0-387-09766-4_2216

2080

Transactional Memories

commonly used to refer to ideas that range from pro-
gramming language constructs to hardware architec-
ture. This entry will survey how transactional memory
affects each of these domains.

The major chip manufacturers have, for the time
being, given up trying to make processors run faster.
Moore’s law has not been repealed: Each year, more
and more transistors fit into the same space, but their
clock speed cannot be increased without overheating.
Instead, attention has turned toward chip multiprocess-
ing (CMP), in which multiple computing cores are
included on each processor chip. In the medium term,
advances in technology will provide increased paral-
lelism, but not increased single-thread performance. As
a result, system designers and software engineers can no
longer rely on increasing clock speed to hide software
bloat. Instead, they must learn to make more effective
use of increasing parallelism.

This adaptation will not be easy. Conventional pro-
gramming practices typically rely on combinations of
locks and conditions, such as monitors [1], to prevent
threads from concurrently accessing shared data. Lock-
ing makes concurrent programming possible because it
allows programmers to reason about certain code sec-
tions as if they were executed atomically. Nevertheless,
the conventional approach suffers from a number of
shortcomings.

First, programmers must decide between coarse-
grained locking, in which a large data structure is pro-
tected by a single lock, and fine-grained locking, in
which a lock is associated with each component of the
data structure. Coarse-grained locking is relatively easy
to use, but permits little or no concurrency, thereby
preventing the program from exploiting multiple cores.
By contrast, fine-grained locking is substantially more
complicated because of the need to ensure that threads
acquire all necessary locks (and only those, for good
performance), and because of the need to avoid dead-
lock when acquiring multiple locks. Such designs are
further complicated because the most efficient engi-
neering solution may be platform dependent, varying
with different machine sizes, workloads, and so on,
making it difficult to write code that is both scalable and
portable.

Second, locking provides poor support for code
composition and reuse. For example, consider a
lock-based queue that provides atomic enq() and deq()

methods. Ideally, it should be easy to transfer an item
atomically from one queue to another, but such elemen-
tary composition simply does not work. It is necessary
to lock both queues at the same time to make the trans-
fer atomic. If the queue methods synchronize internally,
then there is no way to acquire and hold both locks
simultaneously. If the queues export their locks, then
modularity and safety are compromised, because the
integrity of the objects depends on whether their users
follow ad hoc conventions correctly.

Finally, such basic issues as the mapping from locks
to data, that is, which locks protect which data, and the
order in which locks must be acquired and released, are
all based on convention, and violations are notoriously
difficult to detect and debug. For these and other rea-
sons, today’s software practices make concurrent pro-
grams too difficult to develop, debug, understand, and
maintain.

The Transactional Model

A transaction is a sequence of steps executed by a single
thread. Transactions are atomic: Each transaction either
commits (it takes effect) or aborts (its effects are dis-
carded). Transactions are linearizable [2]: They appear
to take effect in a one-at-a-time order. Transactional
memory supports a computational model in which each
thread announces the start of a transaction, executes a
sequence of operations on shared objects, and then tries
to commit the transaction. If the commit succeeds, the
transaction’s operations take effect; otherwise, they are
discarded.

Sometimes we refer to these transactions as mem-
ory transactions. Memory transactions satisfy the same
formal serializability and atomicity properties as the
transactions used in conventional database systems, but
they are intended to address different problems.

Unlike database transactions, memory transactions
are short-lived activities that access a relatively small
number of objects in primary memory. Database trans-
actions are persistent: When a transaction commits, its
changes are backed up on a disk. Memory transactions
need not be persistent, and involve no explicit disk I/O.

To illustrate why memory transactions are attrac-
tive from a software engineering perspective, consider
the problem of constructing a concurrent FIFO queue
that permits one thread to enqueue items at the tail of

Transactional Memories

2081

the queue at the same time another thread dequeues
items from the head of the queue, at least while the
queue is non-empty. Any problem so easy to state,
and that arises so naturally in practice, should have an
easily devised, understandable solution. In fact, solv-
ing this problem with locks is quite difficult. In 1996,
Michael and Scott published a clever and subtle solu-
tion [3]. It speaks poorly for fine-grained locking as a
methodology that solutions to such simple problems are
challenging enough to be publishable.

By contrast, it is almost trivial to solve this prob-
lem using transactions. Figure 1 shows how the queue’s
enqueue method might look in a language that pro-
vides direct support for transactions. It consists of little
more than enclosing sequential code in a transaction

class Queue<T> {
QNode head;
Qnode tail ;
public void enq(T x) {
atomic {
Qnode q = new Qnode(x);
if (tail ==null) { // emptyqueue
head = tail =q;
} else {
tail .next = q;
tail =q;

}
public T deq() {
atomic {
if (head == null)
retry ;
T item = head.item;
head = head.next;
if (head == null)
tail = null;
return item;

Transactional Memories. Fig. 1 Transactional queue code
fragment

atomic {

x = q0.deq();
} orElse {

x =ql.deq();
}

Transactional Memories. Fig. 2 The orElse statement:
waiting on multiple conditions

block. In practice, of course, a complete implementa-
tion would include more details (such as how to respond
to an empty queue), but even so, this concurrent queue
implementation is a remarkable achievement: It is not,
by itself, a publishable result.

Conditional synchronization can be accomplished
in the transactional model by means of the retry con-
struct [4]. As illustrated in Fig. 1, if a thread attempts to
dequeue from an empty queue, it executes retry, which
rolls back the partial effects of the atomic block, and
re-executes that block later when the object’s state has
changed. The retry construct is attractive because it is
not subject to the lost wake-up bug that can arise using
monitor conditions.

Transactions also admit compositions that would
be impossible using locks and conditions. Waiting for
one of several conditions to become frue is impossible
using objects with internal monitor condition variables.
A novel aspect of retry is that such composition
becomes easy. Figure 2 shows a code snippet illustrat-
ing the orElse statement, which joins two or more
code blocks. Here, the thread executes the first block. If
that block calls retry, then that subtransaction is rolled
back, and the thread executes the second block. If that
block also calls retry, then the orElse as a whole pauses,
and later reruns each of the blocks (when something
changes) until one completes.

Motivation

TM is commonly used to address three distinct prob-
lems: first, a simple desire to make highly concurrent
data structures easy to implement; second, a more ambi-
tious desire to support well-structured large-scale con-
current programs; and third, a pragmatic desire to make
conventional locking more concurrent. Here is a survey
of each area.

2082

Transactional Memories

A data structure is lock-free if it guarantees that infinitely
often some method call finishes in a finite number of
steps, even if some subset of the threads halt in arbitrary
places. A data structure that relies on locking cannot
be lock-free because a thread that acquires a lock and
then halts can prevent non-faulty threads from making
progress.

Lock-free data structures are often awkward to
implement using today’s architectures which typically
rely on compare-and-swap for synchronization. The
compare-and-swap instruction takes three arguments,
and address a, an expected value e, and an update value u.
If the value stored at a is equal to e, then it is atomically
replaced with u, and otherwise it is unchanged. Either
way, the instruction sets a flag indicating whether the
value was changed.

Often, the most natural way to define a lock-free
data structure is to make an atomic change to several
fields. Unfortunately, because compare-and-swap allows
only one word (or perhaps a small number of con-
tiguous words) to be changed atomically, designers of
lock-free data structures are forced to introduce com-
plex multistep protocols or additional levels of indirec-
tion that create unwelcome overhead and conceptual
complexity. The original TM paper [5] was primarily
motivated by a desire to circumvent these restrictions.

TM is appealing as a way to help programmers structure
concurrent programs because it allows the programmer
to focus on what the program should be doing, rather
than on the detailed synchronization mechanisms
needed. For example, TM relieves the programmer of
tasks such as devising specialized locking protocols for
avoiding deadlocks, and conventions associating locks
with data.

A number of programming languages and libraries
have emerged to support TM. These include Clojure [6],
Net [7], Haskell [4]. Java [8, 9], C++ [10], and others.

Several groups have reported experiences convert-
ing programs from locks to TM. The TxLinux [11]
project replaced most of the locks in the Linux
kernel with transactions. Syntactically, each transaction
appears to be a lock-based critical section, but that code
is executed speculatively as a transaction (see Section
3.3). If an I/O call is detected, the transaction is rolled

back and restarted using locks. Using transactions pri-
marily as an alternative way to implement locks mini-
mized the need to rewrite and restructure the original
application.

Damron et al. [12] transactionalized the Berkeley DB
lock manager. They found the transformation more dif-
ficult than expected because simply changing critical
sections into atomic blocks often resulted in a disap-
pointing level of concurrency. Critical sections often
shared data unnecessarily, usually in the form of global
statistics or shared memory pools. Later on, we will
see other work that reinforces the notion the need to
avoid gratuitous conflicts means that concurrent trans-
actional programs must be structured differently than
concurrent lock-based programs.

Pankratius et al. [13] conducted a user study where
twelve students, working in pairs, wrote a parallel desk-
top search engine. Three randomly chosen groups used
a compiler supporting TM, and three used conventional
locks. The best TM group were much faster to produce
a prototype, the final program performed substantially
better, and they reported less time spent on debugging.
However, the TM teams found performance harder to
predict and to tune. Overall, the TM code was deemed
easier to understand, but the TM teams did still make
some synchronization errors.

Rossbach et al. [14] conducted a user study in which
147 undergraduates implemented the same programs
using coarse-grained and fine-grained locks, monitors,
and transactions. Many students reported they found
transactions harder to use than coarse-grain locks, but
slightly easier than fine-grained locks. Code inspection
showed that students using transactions made many
fewer synchronization errors: Over 70% of students
made errors with fine-grained locking, while less than
10% made errors using transactions.

Transactions can also be used as a way to implement
locking. In lock elision [15], when a thread requests a
lock, rather than waiting to acquire that lock, the thread
starts a speculative transaction. If the transaction com-
mits, then the critical section is complete. If the transac-
tion aborts because of a synchronization conflict, then
the thread can either retry the transaction, or it can
actually acquire the lock.

Transactional Memories

2083

Here is why lock elision is attractive. Locking is
conservative: A thread must acquire a lock if it might
conflict with another thread, even if such conflicts are
rare. Replacing lock acquisition with speculative execu-
tion enhances concurrency if actual conflicts are rare.
If conflicts persist, the thread can abandon speculative
execution and revert to using locks. Lock elision has
the added advantage that it does not require code to be
restructured. Indeed, it can often be made to work with
legacy code.

Azul Systems [16] has a JVM that uses (hardware)
lock elision for contended Java locks, with the goal of
accelerating “dusty deck” Java programs. The run-time
system keeps track of how well the hardware transac-
tional memory (HTM) is doing, and decides when to
use lock elision and when to use conventional locks.
The results work well for some applications, modestly
well for others, and poorly for a few. The principal lim-
itation seems to be the same as observed by Damron
et al. [12]: many critical sections are written in a way
that introduces gratuitous conflicts, usually by updat-
ing performance counters. Although these are not real
conflicts, the HTM has no way to tell. Rewriting such
code can be effective, but requires abandoning the goal
of speeding up “dusty deck” programs.

Hardware Transactional Memory

Most hardware transactional memory (HTM) propos-
als are based on straightforward modifications to stan-
dard multiprocessor cache-coherence protocols. When
a thread reads or writes a memory location on behalf of
a transaction, that cache entry is flagged as being trans-
actional. Transactional writes are accumulated in the
cache or write buffer, but are not written back to mem-
ory while the transaction is active. If another thread
invalidates a transactional entry, a data conflict has
occurred, that transaction is aborted and restarted. If a
transaction finishes without having had any of its entries
invalidated, then the transaction commits by marking
its transactional entries as valid or as dirty, and allow-
ing the dirty entries to be written back to memory in the
usual way.

One limitation of HTM is that in-cache transac-
tions are limited in size and scope. Most hardware
transactional memory proposals require programmers
to be aware of platform-specific resource limitations
such as cache and buffer sizes, scheduling quanta,

and the effects of context switches and process migra-
tions. Different platforms provide different cache sizes
and architectures, and cache sizes are likely to change
over time. Transactions that exceed resource limits or
are repeatedly interrupted will never commit. Ideally,
programmers should be shielded from such complex,
platform-specific details. Instead, TM systems should
provide full support even for transactions that cannot
execute directly in hardware.

Techniques that substantially increase the size of
hardware transactions include signatures [17] and
permissions-only caches [18]. Other proposals support
(effectively) unbounded transactions by allowing trans-
actional metadata to overflow caches, and for trans-
actions to migrate from one core to another. These
proposals include TCC [19], VIM [20], OneTM [18],
UTM [21], TxLinux [11], and LogTM [17].

Software Transactional Memory
Software transactional memory (STM) is an alternative
to direct hardware support for TM. STM is a software
system that provides programmers with a transactional
model through a library or compiler interface. In this
section, we describe some of the questions that arise
when designing an STM system. Some of these ques-
tions concern semantics, that is, how the STM behaves,
and other concern implementation, that is, how the STM
is structured internally.

How should threads that execute transactions interact
with threads executing non-transactional code? One
possibility is strong isolation [22] (sometimes called
strong atomicity), which guarantees that transactions
are atomic with respect to non-transactional accesses.
The alternative, weak isolation (or weak atomicity),
makes no such guarantees. HTM systems naturally
provide strong atomicity. For STM systems, however,
strong isolation may be too expensive.

The distinction between strong and weak isola-
tion leaves unanswered a number of other questions
about STM behavior. For example, what does it mean
for an unhandled exception to exit an atomic block?
What does I/O mean if executed inside a transaction?
One appealing approach is to say that transactions
behave as if they were protected by a single global lock
(SGL) [19, 23, 24].

2084

Transactional Memories

One limitation of the SGL semantics is that it does
not specify the behavior of zombie transactions: transac-
tions that are doomed to abort because of synchroniza-
tion conflicts, but continue to run for some duration
before the conflict is discovered. In some STM imple-
mentations, zombie transactions may see an inconsis-
tent state before aborting. When a zombie aborts, its
effects are rolled back, but while it runs, observed incon-
sistencies could provoke it to pathological behavior that
may be difficult for the STM system to protect against,
such as dereferencing a null pointer or entering an infi-
nite loop. Opacity [25] is a correctness condition that
guarantees that all uncommitted transactions, including
zombies, see consistent states.

What does it mean for a transaction to make a system
call (such as I/0) that may affect the outside world?
Recall that transactions are often executed speculatively,
and a transaction that encounters a synchronization
conflict may be rolled back and restarted. If a transac-
tion creates a file, opens a window, or has some other
external side effect, then it may be difficult or impossible
to roll everything back.

One approach is to allow irrevocable transactions [11,
18, 26] that are not executed speculatively, and so never
need to be undone. An irrevocable transaction cannot
explicitly abort itself, and only one such transaction
can run at a time, because of the danger that multiple
irrevocable transactions could deadlock.

An alternative approach is to provide a mecha-
nism to escape from the transactional system. Escape
actions [27] and open nested transactions citeNi07
allow a thread to execute statements outside the trans-
action system, scheduling application-specific commit
and abort handlers to be called if the enclosing transac-
tion commits or aborts. For example, an escape action
might create a file, and register a handler to abort that
file if the transaction aborts. Escape mechanisms can
be misused, and often their semantics are not clearly
defined. Using open nested transactions, for example,
care must be taken to ensure that abort handlers do not
deadlock.

STM systems typically synchronize on the basis of
read/write conflicts. As a transaction executes, it records

the data items it read in a read set, and the data items
it wrote in a write set. Two transactions conflict if
one transaction’s read or write set intersects the other’s
write set. Conflicting transactions cannot both com-
mit.Synchronizing via read/write conflicts has one sub-
stantial advantage: it can be done automatically without
programmer participation. It also has a substantial dis-
advantage: It can severely and unnecessarily restrict
concurrency for certain shared objects. If these objects
are subject to high levels of contention (that is, they are
“hot-spots”), then the performance of the system as a
whole may suffer.

This problem can be addressed by open nested
transactions, as described above in Section 5.2, but open
nested transactions are difficult to use correctly, and
lack the expressive power to deal with certain common
cases [28].

Another approach is to use type-specific synchro-
nization and recovery to exploit concurrency inherent
in an object’s high-level specification. One such mecha-
nism is transactional boosting [28], which allows thread-
safe (but non-transactional) object implementations to
be transformed into highly concurrent transactional
implementations by allowing method calls to proceed
in parallel as long as their high-level specifications are
commutative.

There are two basic ways to organize transactional data.
In an eager update system, data objects are modified
in place, and each transaction maintains an undo log
allowing it to undo its changes if it aborts. The dual
approach is lazy (or deferred) update, where each trans-
action computes optimistically on its local copy of the
data, installing the changes if it commits, and discarding
them if it aborts. An eager system makes committing a
transaction more efficient, but makes it harder to ensure
that zombie transactions see consistent states.

STM systems differ according to when they detect con-
flicts. In eager conflict detection schemes, conflicts are
detected before they arise. When one transaction is
about to create a conflict with another, it may consult a
contention manager, defined below, to decide whether
to pause, giving the other transaction a chance to finish,
or to proceed and cause the other to abort. By contrast,

Transactional Memories

2085

alazy conflict detection scheme detects conflicts when a
transaction tries to commit. Eager detection may abort
transactions that could have committed lazily, but lazy
detection discards more computation, because transac-
tions are aborted later.

In many STM proposals, conflict resolution is the
responsibility of a contention manager[29] module. Two
transactions conflict if they access the same object and
one access is a write. If one transaction discovers it is
about to conflict with another, then it can pause, giving
the other a chance to finish, or it can proceed, forcing
the other to abort. Faced with this decision, the trans-
action consults a contention management module that
encapsulates the STM’s conflict resolution policy.

The literature includes a number of contention
manager proposals [29-32], ranging from exponential
backoff to priority-based schemes. Empirical studies
have shown that the choice of a contention manager
algorithm can affect transaction throughput, sometimes
substantially.

Early STM systems [29] used either invisible reads, in
which each transaction maintains per-read metadata
to be revalidated after each subsequent read, or visible
reads, in which each reader registers its operations in
shared memory, allowing a conflicting writer to iden-
tify when it is about to create a conflict. Invisible read
schemes are expensive because of the need for repeated
validation, while visible read schemes were complex,
expensive, and not scalable.

More recent STM systems such as TL2 [33] or
SKYSTM [34] use a compromise solution, called semi-
visible reads, in which read operations are tracked
imprecisely. Semi-visible reads conservatively indicate
to the writer that a read-write conflict might exist,
avoiding expensive validation in the vast majority
of cases.

It is sometimes useful for a thread to privatize [35] a
shared data structure by making it inaccessible to other
threads. Once the data structure has been privatized, the
owning thread can work on the data structure directly,
without incurring synchronization costs. In principle,

privatization works correctly under SGL semantics, in
which every transaction executes as if it were holding
a “single global lock” Unfortunately, care is required to
ensure that privatization works correctly. Here are two
possible hazards. First, the thread that privatizes the
data structure must observe all changes made to that
data by previously committed transactions, which is not
necessarily guaranteed in an STM system where updates
are lazy. Second, a doomed (“zombie”) transaction must
not be allowed to perform updates to the data structure
after it has been privatized.

Bibliographic Notes and Further
Reading

The most comprehensive TM survey is the book Trans-
actional Memory by Larus and Rajwar [23]. Of course,
this area changes rapidly, and the best way to keep up
with current developments is to consult the the Transac-
tional Memory Online web page at: http://www.cs.wisc.
edu/trans-memory/.

Bibliography
1. Hoare CAR (1974) Monitors: an operating system structuring
concept. Commun ACM 17(10):549-557
2. Herlihy MP, Wing JM (1990) Linearizability: a correctness condi-
tion for concurrent objects. ACM T Progr Lang Sys 12(3):463-492
3. Michael MM, Scott ML (1996) Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In: PODC,
Philadelphia. ACM, New York, pp 267-275
4. Harris T, Marlow S, Peyton-Jones S, Herlihy M (2005) Compos-
able memory transactions. In: PPoPP’05: Proceedings of the tenth
ACM SIGPLAN symposium on principles and practice of parallel
programming, Chicago. ACM, New York, pp 48-60
5. Herlihy M, Moss JEB (May 1993) Transactional memory: archi-
tectural support for lock-free data structures. In: International
symposium on computer architecture, San Diego
6. Hickey R (2008) The clojure programming language. In: DLS *08:
Proceedings of the 2008 symposium on dynamic languages,
Paphos. ACM, New York, pp 1-1
7. Microsoft Corporation. Stm.net. http://msdn.microsoft.com/
en-us/devlabs/ee334183.aspx
8. Korland G Deuce STM. http://www.deucestm.org/
9. S. Microsystems. DSTM2.
products.xml?id=453fb28e
10. Intel Corporation. C++ STM compiler. http://software.intel.com/

http://www.sun.com/download/

en-us/articles/intel- c- stm- compiler- prototype-edition- 20/

11. Rossbach CJ, Hofmann OS, Porter DE, Ramadan HE, Aditya B,
Witchel E (2007) TxLinux: using and managing hardware transac-
tional memory in an operating system. In: SOSP ’07: Proceedings
of twenty-first ACM SIGOPS symposium on operating systems
principles, Stevenson. ACM, New York, pp 87-102

http://www.cs.wisc.edu/trans-memory/
http://www.cs.wisc.edu/trans-memory/
http://msdn.microsoft.com/en-us/devlabs/ee334183.aspx
http://msdn.microsoft.com/en-us/devlabs/ee334183.aspx
http://www.deucestm.org/
http://www.sun.com/download/products.xml?id=453fb28e
http://www.sun.com/download/products.xml?id=453fb28e
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edit ion-20/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edit ion-20/

2086

Transactions, Nested

13.

14.

15.

16.

17.

19.

20.

21

22.

23.

24.

25.

. Damron P, Fedorova A, Lev Y, Luchangco V, Moir M,

Nussbaum D (2006) Hybrid transactional memory. In: ASPLOS-
XII: Proceedings of the 12th international conference on
architectural support for programming languages and operating
systems, Boston. ACM, New York, pp 336-346

Pankratius V, Adl-Tabatabai A-R, Otto F (Sept 2009) Does trans-
actional memory keep its promises? Results from an empirical
study. Technical Report 2009-12, University of Karlsruhe
Rossbach CJ, Hofmann OS, Witchel E (Jun 2009) Is transactional
memory programming actually easier? In: Proceedings of the 8th
annual workshop on duplicating, deconstructing, and debunking
(WDDD), Austin

Rajwar R, Goodman JR (2001) Speculative lock elision: enabling
highly concurrent multithreaded execution. In: MICRO 34: Pro-
ceedings of the 34th annual ACM/IEEE international sympo-
sium on microarchitecture, Austin. IEEE Computer Society,
Washington, DC, pp 294-305

Click C (Feb 2009) Experiences with hardware transactional
memory. http://blogs.azulsystems.com/cliff/2009/02/and-now-
some-hardware-transactional-memory-comments.html

Yen L, Bobba J, Marty MR, Moore KE, Volos H, Hill MD,
Swift MM, Wood DA (2007) LogTM-SE: decoupling hardware
transactional memory from caches. In: HPCA ’07: Proceedings
of the 2007 IEEE 13th international symposium on high perfor-
mance computer architecture, Phoenix. IEEE Computer Society,
Washington, DC, pp 261-272

. Blundell C, Devietti J, Lewis EC, Martin M (Jun 2007) Making the

fast case common and the uncommon case simple in unbounded
transactional memory. In: International symposium on computer
architecture, San Diego

Hammond L, Carlstrom BD, Wong V, Hertzberg B, Chen M,
Kozyrakis C, Olukotun K (2004) Programming with transactional
coherence and consistency (TCC). ACM SIGOPS Oper Syst Rev
38(5):1-13

Rajwar R, Herlihy M, Lai K (Jun 2005) Virtualizing transactional
memory. In: International symposium on computer architecture,
Madison

Ananian CS, Asanovi¢ K, Kuszmaul BC, Leiserson CE, Lie S
(Feb 2005) Unbounded transactional memory. In: Proceedings of
the 11th international symposium on high-performance computer
architecture (HPCA05), San Franscisco, pp 316-327

Blundell C, Lewis EC, Martin MMK (Jun 2005) Deconstructing
transactions: the subtleties of atomicity. In: Fourth annual work-
shop on duplicating, deconstructing, and debunking, Wisconsin
Larus J, Rajwar R (2007) Transactional memory (Synthesis
lectures on computer architecture). Morgan & Claypool, San
Rafael

Menon V, Balensiefer S, Shpeisman T, Adl-Tabatabai A-R, Hudson
RL, Saha B, Welc A (2008) Single global lock semantics in a weakly
atomic STM. SIGPLAN Notices 43(5):15-26

Guerraoui R, Kapalka M (2008) On the correctness of trans-
actional memory. In: PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN symposium on principles and practice of parallel pro-
gramming, Salt Lake City. ACM, New York, pp 175-184

26.

27.

28.

29.

30.

3L

32.

33.

34.

35.

Welc A, Saha B, Adl-Tabatabai A-R (2008) Irrevocable transac-
tions and their applications. In: SPAA ’08: Proceedings of the
twentieth annual symposium on parallelism in algorithms and
architectures, Munich. ACM, New York, pp 285-296

Moravan M]J, Bobba J, Moore KE, Yen L, Hill MD, Liblit B,
Swift MM, Wood DA (2006) Supporting nested transactional
memory in logTM. SIGPLAN Notices 41(11):359-370

Herlihy M, Koskinen E (2008) Transactional boosting: a method-
ology for highly-concurrent transactional objects. In: PPoPP *08:
Proceedings of the 13th ACM SIGPLAN symposium on princi-
ples and practice of parallel programming, Salt Lake City. ACM,
New York, pp 207-216

Herlihy M, Luchangco V, Moir M, Scherer W (Jul 2003) Soft-
ware transactional memory for dynamic-sized data structures.
In: Symposium on principles of distributed computing, Boston
Guerraoui R, Herlihy M, Pochon B (2005) Toward a theory of
transactional contention managers. In: PODC ’05: Proceedings
of the twenty-fourth annual ACM symposium on principles of
distributed computing, Las Vegas. ACM, New York, pp 258-264
Scherer WN III, Scott ML (Jul 2004) Contention management in
dynamic software transactional memory. In: PODC workshop on
concurrency and synchronization in java programs, St. John’s
Attiya H, Epstein L, Shachnai H, Tamir T (2006) Transac-
tional contention management as a non-clairvoyant scheduling
problem. In: PODC ’06: Proceedings of the twenty-fifth annual
ACM symposium on principles of distributed computing, Denver.
ACM, New York, pp 308-315

Dice D, Shalev O, Shavit N (2006) Transactional locking II
In: Proceedings of the 20th international symposium on distri-
buted computing, Stockholm

Lev Y, Luchangco V, Marathe V, Moir M, Nussbaum D,
Olszewski M (2009) Anatomy of a scalable software transactional
memory. In: TRANSACT 2009, Raleigh

Spear ME, Marathe V7, Dalessandro L, Scott ML (2007) Privatiza-
tion techniques for software transactional memory. In: PODC ’07:
Proceedings of the twenty-sixth annual ACM symposium on
principles of distributed computing, Portland. ACM, New York,
pp 338-339

! Transactions, Nested

J. EL10T B. MOSs
University of Massachusetts, Amherst, MA, USA

Synonyms
Multi-level transactions; Nested spheres of control

Definition
Nested Transactions extend the traditional semantics of
transactions by allowing meaningful nesting of one or

http://dx.doi.org/10.1007/978-0-387-09766-4_2451
http://dx.doi.org/10.1007/978-0-387-09766-4_2452
http://blogs.azulsystems.com/cliff/2009/02/and-nowsome-hardware-transactional-memory-comments.html
http://blogs.azulsystems.com/cliff/2009/02/and-nowsome-hardware-transactional-memory-comments.html

Transactions, Nested

2087

more child transactions within a parent transaction.
Considering the traditional ACID properties of transac-
tions, atomicity, consistency, isolation, and durability, a
child transaction possesses these properties in a relative
way, such that a parent transaction effectively provides a
universe within which its children act similarly to ordi-
nary transactions in a non-nested system. In parallel
computation, the traditional property of durability in
the face of various kinds of system failures may not be
required.

Discussion

Transactions are a way of guaranteeing atomicity of
more or less arbitrary sequences of code in a paral-
lel computation. Unlike locks, which identify compu-
tations that may need serialization according to the
identity of held and requested locks, transaction seri-
alization is based on the specific data accessed by a
transaction while it runs. In some cases, it is possible
usefully to pre-declare the maximal set of data that a
transaction might access, but it is not possible in gen-
eral. Transactions specify semantics, while locks express
an implementation of serialization. The usual semantics
of transactions are that concurrent execution of a col-
lection of transactions must be equivalent to execution
of those transactions one at a time, in some order. This
property is called serializability.

The ACID properties capture transaction seman-
tics in a slightly different way. Atomicity requires that
transactions are all-or-nothing: Either all of a trans-
action’s effects occur, or the transaction fails and has
no effect. Consistency requires that each transaction
take the state of the world from one consistent state to
another. Isolation requires that no transaction perceive
any state in the middle of execution of another transac-
tion. Durability requires that the effects of any transac-
tion, once the transaction is accepted by the system, not
disappear.

In general, in parallel computing, as opposed to
database systems where transactions had their origins,
the consistency and durability properties are often less
important. Consistency may be ignored in that most
commonly there are no explicitly stated consistency

constraints and no mechanism to enforce them. How-
ever, a correct transaction system is still required not to
leave effects of partially executed or failed transactions.
Durability is often ignored in that a parallel comput-
ing system may have no permanent state. If the system
has distributed memory, then it may achieve significant
durability by keeping multiple copies of data in differ-
ent units of the distributed memory. Of course, parallel
systems can also use one or more nonvolatile copies
to achieve durability, according to a system’s durability
requirements.

It is important to distinguish transactions from
concurrency-safe data structures. A concurrency-safe
data structure generally offers a guarantee of lineariz-
ability: If two actions on the data structure by different
threads overlap in their execution, then the effect is as
if the actions are executed in one order or the other.
That is, a set of concurrent actions by different threads
appears to occur in some linear order. This is similar
to serializability, but what transactions and serializabil-
ity add is the possibility for a given thread to execute
a whole sequence of actions a,, a,, ..., a, without any
intervening actions of other threads. A concurrency-
safe data structure guarantees only that the individual
a; execute correctly as defined by the data type, but
permits actions of other threads to interleave between
the a;.

In discussing transactions and their nesting, some
additional terms will be useful. Transactions are said to
commit (succeed) or abort (fail). They may fail for many
reasons, one of them being serialization conflicts with
other transactions. Transactional concurrency control
may be pessimistic, also called early conflict detection,
or optimistic, also called late conflict detection. Pes-
simistic conflict detection usually employs some kind
of locks, while optimistic generally uses some kind of
version numbers or timestamps on data and transac-
tions to determine conflicts. It is even possible to main-
tain multiple versions so as to allow more transactions
to commit, while still enforcing serializability. In gen-
eral, locking schemes require some kind of deadlock
avoidance or detection protocol. However, if a set of
transactions is in deadlock, the system has a way out:
It can abort one of the transactions to break the dead-
lock. Thus, deadlock is not a fatal problem as it is when
using just locks for synchronization.

2088

Transactions, Nested

A system may update data in place, which requires
an undo log to support removing the effects of a failed
transaction. Alternatively, a system may create new
copies of data, and install them only if a transaction
commits, which in general requires a redo log. Updating
in-place requires early conflict detection if the system
guarantees that a transaction will not see effects of other
uncommitted transactions. It is possible to allow such
effects to be visible, but serializability then requires that
the observing transaction commit only if the transac-
tion it observed also commits. However, the system
must still prevent two transactions from observing each
other’s effects, since then they cannot be serialized.
More advanced models have also been explored but are
not discussed here.

The simplest motivation for nesting is to make it easy
to compose software components into larger systems.
If a library routine uses transactions, and the program-
mer wishes to use that routine within an application
transaction, then there will be nesting of transaction
begin/end pairs. One can simply treat this as one large
transaction, effectively ignoring the inner transaction
begin/end pairs. However, it is also possible to attribute
transactional semantics to them, as follows.

Consider a transaction T and a transaction U con-
tained with it, i.e., whose begin and end are between the
begin and end of T. T is a parent transaction and U a
child transaction or subtransaction of T. If T is not con-
tained within any enclosing transaction, it is top-level.
Only proper nesting of begin/end transaction pairs is
legal, so a top-level transaction and subtransactions at
all depths form a tree.

Conlflict semantics of non-nested transactions extend
to nested transactions straightforwardly in terms of
relationships in the forest of transaction trees. If action
A conflicts with action B when executed by two differ-
ent non-nested transactions T1and T2, then A conflicts
with B in the nested setting if neither of T1 and T2 is an
ancestor of the other. Why is there no conflictin the case
where, say, T1is an ancestor of T2? It is because T1 is pro-
viding an environment or universe within which addi-
tional transactions can run, compete, and be serialized.

It is simplest, however, to envision nesting where a par-
ent does not execute actions directly, but rather always
creates a child transaction to perform them. Alterna-
tively, a parent might perform actions directly, but only
when it has no active subtransactions. This model leads
to serializability among the subtransactions of any given
transaction T. However, as viewed from outside of the
transaction tree that includes T and its descendants,
T and its subtransactions form a single transac-
tion that must itself be serializable with transactions
outside of T.

As with non-nested transactions, a nested transac-
tion can fail (abort). In that case, it is as if the fail-
ing transaction, and all of its descendants, never ran.
Thus, commit of a child transaction is not final, but
only relative to its parent, while abort of the parent is
final and aborts all descendants, even those that have
(provisionally) committed.

Consider adding support for nesting to a non-nested
transaction implementation that employs in-place
update and early conflict detection based on locking.
As each transaction runs, it accumulates a set of locks
and a list of undos. If the transaction aborts, the sys-
tem applies the transaction’s undos (in reverse order)
and then discards the transactions locks. Note that a
transaction T can be granted a lock L provided that the
only conflicting holders of L are ancestors of T. Also
note that discarding a child’s lock does not discard any
ancestor’s lock on the same item. If a child transaction
commits, then the system adds the child’s locks to those
held by the parent, and appends the child’s undo list
to that of the parent. If a top-level transaction com-
mits, the system simply discards its held locks and its
undo list. Moss [5, 6] described this protocol. It is also
possible to devise timestamp-based approaches, pos-
sibly supporting late conflict detection, as articulated
by Reed [10].

Notice that these nesting schemes use the same set
of possible actions at each level of nesting. They pro-
vide temporal grouping of actions, and in a distributed

Transactions, Nested

2089

system can also be used for spatial grouping within
temporal groups.

There are two primary advantages of closed nesting.
One is that failure of a child does not require imme-
diate failure of its parent. Thus, if a transaction desires
to execute an action that has higher than usual likeli-
hood of causing failure, it can execute that action within
a child transaction and avoid immediate failure of itself
should the action cause an abort. In a centralized sys-
tem aborts might most likely be caused by conflicts with
other transactions, but in a decentralized system, failure
of a remote node or communication link is also possi-
ble. Thus, remote calls are natural candidates to execute
as subtransactions. If a child does fail, the parent can
retry it, which may often make sense, or the parent can
perform some alternate action. For example, in a dis-
tributed system, if one node of a replicated database is
down, the parent could try another one.

A possibly stronger motivation for closed nest-
ing is safe transaction execution when the application
desires to exploit concurrency within a transaction. It
is easy to see this by considering that if there is con-
currency within a transaction, then proper semantics
and synchronization or serialization within the trans-
action present the same issues that led to proposing
transaction mechanisms in the first place. Even if, at
first blush, it appears that the space of data that con-
current actions might update is disjoint, and thus that
there can be no conflict, that property can be a deli-
cate one, and difficult to enforce in complex software
systems having many layers. For example, transaction
T at node A might make apparently disjoint concur-
rent remote calls to nodes B and C. However, B and C,
unknown to T, use a common service at node D, and
should have their actions properly serialized there. If the
work at B and C is not performed in distinct concur-
rent child transactions of T, the work at D might not be
properly serialized.

While closed nested transactions indeed support safe
concurrency within transactions, and also offer limited

recoverability from partial failure, they have a signif-
icant limitation: Transactions that are “big,” either in
terms of how long they run or the volume of data they
access, tend to conflict with other transactions. While
this cannot always be avoided, many conflicts are false
conflicts at the level of application semantics. For exam-
ple, consider a transaction T that adds a number of new
records to a data structure organized as a B-tree. Logi-
cally speaking, if other transactions do not access these
records or otherwise inquire directly or indirectly about
their presence or absence in the data structure, then
they do not conflict with T. However, straightforward
mechanisms for guaranteeing safe transactional access
to the B-tree might acquire locks on B-tree nodes and
hold them until T commits. Thus, other transactions
could be locked out of whole nodes of the tree, even
though they are not (logically) affected by the changes
T is making.

The solution discovered in the context of databases
applies also to the case of parallel computing. It is to
make a distinction between different levels of seman-
tics, and requires recognizing certain data as being part
of a coherent and distinct data abstraction. For exam-
ple, in the case of a B-tree, each B-tree node is part
of a given B-tree, and should be visible and manipu-
lated only by actions on that B-tree. That is, the B-tree
nodes are encapsulated within their owning B-tree. This
allows B-tree actions to apply conflict management and
undo or redo to B-tree nodes, during execution of those
actions, and for the system to switch to abstract concur-
rency control and abstract undo or redo once a B-tree
action is complete.

How does this solve the problem? The concur-
rency control and undo/redo on B-tree nodes allows
safe concurrent (transactional) execution of B-tree
actions themselves. This could also be achieved by non-
transactional locking, lock-free or wait-free algorithms,
or any other means that guarantees linearizability, but
open nesting is generally taken to refer to the recursive
use of transaction-like mechanisms, while wrapping a
not necessarily transactional data type with abstract
concurrency control and recovery is called transactional
boosting [4]. More significantly, though, the conflicts
between full B-tree actions will be much fewer than the
(internal, temporary) conflicts on B-tree nodes during

2090

Transactions, Nested

those actions. For example, looking up record r; and
adding record r, do not conflict logically, but if they lie
in the same B-tree node, there will be a (physical) con-
flict on that node. While open nesting is by no means
restricted to use with such collection data types, it is
certainly very useful in allowing higher concurrency
for them.

A fleshed-out example protocol for open nesting may
be helpful to build understanding. This example uses
in-place update and employs locks for early con-
flict detection, but other protocols are possible for
other approaches to update and conflict detection.
For understanding the protocol, a specific example
data structure is instructive. Consider a Set abstrac-
tion implemented using a linked list. Suppose it sup-
ports actions add (x) and remove (x) to manipulate
whether x is in the set, size () to return the set’s car-
dinality, and contains (x) to test whether x is in
the set.

Suppose the items a, b, and ¢ have been added to
the set in that order, and that add appends new ele-
ments to the end (since it must scan to the end anyway
in order to avoid entering duplicates). Assume these
elements are committed and there are no transactions
pending against the set. Now suppose that a transaction
adds a new member d and continues with other work.
During the add operation, the transaction observes a,
b, and c and the list links, then it creates a new list
node containing d and modifies ¢’s link to refer to the
new node. Suppose that another transaction concur-
rently queries whether the set contains e. At the physical
level this contains query conflicts with the uncom-
mitted add, because the query will read the link value
in c’s list node, etc. Likewise a transaction that tries
to remove b will conflict with both the add and the
contains actions because it will try to modify the link
in a’s node, to unchain b’s node from the list. To guaran-
tee correct manipulation of the list each operation can
acquire transactional locks on list nodes, acquiring an
exclusive (X) mode lock when modifying a node and
a share (S) mode lock when only observing it. Two S
mode locks on the same object do not conflict, but all
other mode combinations conflict. The pointer to the
first node is likewise protected with the same kind of

locks. This locking protocol works fine for closed nest-
ing, but it is easy to see that it leads to many needless
conflicts.

Open nesting requires identifying the abstract con-
flicts between operations. This example protocol uses
abstract locks. These locks include an S and X mode lock
for each possible element of the set, and an additional
lock with modes Read (R) and Modity (M) for the car-
dinality of the set. Two R mode locks do not conflict,
and two M mode locks also do not conflict, but R and M
mode conflict with each other. Here is a table showing
the abstract locks acquired by each action on a Set:

add (x) X mode on x; M mode on

cardinality

X mode on x; M mode on
cardinality

remove (x)

contains (x) | Smode on x

size ()

R mode on cardinality

This can be refined to acquire only an S mode lock on x
if add or remove does not actually change the mem-
bership of the set, and in that case also not to acquire
the M mode lock on the cardinality.

Assuming that each action on the set is run as an
open nested transaction, then before an action com-
pletes it must acquire the specified abstract locks. If it
cannot do that, it is in conflict and some transaction
must be aborted. Once the action is complete and holds
the abstract locks, the nested transaction commits and
releases the lower-level locks on list nodes. The par-
ent transaction will hold the abstract locks until it itself
commits. Similar to closed nesting, if an uncommitted
open nested transaction aborts, it can simply unwind
back to where it started and try again. Often such cases
arise because of temporary conflicts on the physical
data structure. However, if the conflict is because of an
abstract lock, then retry is not likely to help - either
other transactions need to complete or abort to get out
of this transaction’s way, or this transaction needs to
abort higher up in the nested transaction tree.

Abstract locks are just one way of implement-
ing detection of abstract conflicts. In general what is
required is an encoding of abstract conflict predicates
into conflict checking code. These conflict predicates

Transactions, Nested

2091

indicate which actions on a data type conflict with other
actions. Here is an example table for Set:

size () |

add (y) | remove (y) | contains (y)
add (x) X=vy [x=YVY X =Yy true
remove (x) X =Yy |[x=vY X =Yy true
contains(x) [[x =y |x =¥y false false
size () true true false false

In this table, the left action is considered to have been
performed by one transaction, and the right action is
requested by another. The entry in the table indicates
the condition under which the new request conflicts
with the older, not yet committed, action. The table
above is expressed in terms of the operations and their
arguments. However, it is possible to refine these pred-
icates if they can refer to the state of the set. In general
this might include the state after the first operation as
well as the state before it. The refined table below uses
references to the state S before the first operation:

size () |

add (y) remove (y) contains (y)
add (x) X = YyAXES|x =y Xx = YAX¢S|x¢s
remove (x) X =Y X = YANXES|X = YAXES|xES
contains(x) [[x = yAx¢S|x = yAxeS|false false
size () y¢s ves false false

Open nesting involves more than just conflict detec-
tion. Until an open nested action commits, aborting
it works like aborting a closed nested action: Simply
apply its (lower level) undos in reverse order and release
its (lower level) locks. However, once an open nested
action commits, it does not work to undo it using the
list of lower level undos it accumulated while it ran. The
lower level undos are guaranteed to work properly only
if the lower level locks are still held. To undo a commit-
ted open nested action, the system applies an abstract
undo, also called an inverse or compensating action. Here
is a table of inverses for actions on the Set abstraction;
a — entry means that no inverse is needed (the action
did not change the state):

Action add (x) remove (x) contains (x) [size()
Inverse || if x ¢ Sthen [if x € S then — —
remove (x) | add (x)

Notice that the appropriate inverse can depend on
the state in which the original action ran. If add or
remove does not actually change the state, then they
can simply omit adding an inverse.

These inverses are added to the parent transaction’s
undo list, to apply if the parent transaction needs to
abort. The abstract concurrency control will guaran-
tee that these inverses still make sense when they are
applied. They should be run as open nested transac-
tions, and if they fail, it will only be because of tem-
porary conflicts on the physical data structure, so they
should simply be retried until they succeed.

Transactions at the more abstract level, employing
abstract concurrency control, and, if using in-place
update, abstract undos, can be more generally termed
coarse-grained transactions. As previously noted, the
individual actions need not be run as transactions
under a transaction mechanism - all that is required is
that they are linearizable. However, using a transaction
mechanism does offer the advantage of being able to
abort and retry an action in case of conflict, while other
approaches must guarantee absence of conflict. Thus, if
the system does not use nested transactions to imple-
ment the actions, then, if using in-place update, it will
need to acquire abstract locks before running the action.
This implies that it cannot base the lock acquisition
on the state of the data abstraction or on the result of
the action. However, if executing the action reveals that
the originally acquired abstract lock is stronger than
necessary, the implementation can then downgrade
the lock.

As noted before, the underlying implementation
might use non-transactional locks to synchronize (for
example, one mutual exclusion lock on the whole data
structure will work, at the cost of reduced concurrency),
or might use lock-free, obstruction-free, or wait-free
techniques to obtain linearizability.

Upon first consideration, in-place updates may
appear more complicated, since they require specify-
ing, implementing, tracking, and applying undos. How-
ever, providing new copies of an abstract data struc-
ture has its own problems. One difficulty is being clear
as to what needs to be copied. A second problem
is cost. To reduce cost, a coarse-grained transaction
implementation might use Bloom filters, which record

2092

Transactions, Nested

and examine an ongoing transaction’s changes in a
side data structure, private to the transaction. Trans-
actions must also record additional information even
for read-only actions, in order to check for conflicts
later.

The tables above gave conflict predicates without indi-
cating how to derive or verify them. A conflict predicate
is safe if the actions commute when the predicate is
false. [Some make a distinction between actions mov-
ing to the left and to the right, but in most practical
cases actions either commute (move both ways) or they
do not (neither way).] Two actions commute if exe-
cuting them in either order allows them to return the
same results, and also does not affect the outcome of
any future actions. Assuming that all relevant aspects
of the state are observable, then this can be rephrased
as: Actions commute if, when executed in either order,
they produce the same results and the same final
state.

There are some subtleties lurking in this definition.
First, the “same state” means the same abstract state. For
example, in the case of Set implemented as a linked
list, the abstract state consists in what elements are in,
and not in, the set. The order in which the members
occur on the linked list does not matter. Therefore,
even though add (x) and add (y) result in a differ-
ent linked list when executed in the opposite order,
abstractly there is no difference. Thus it is important to
have clarity about what the abstract state is.

Second, interfaces vary in what they reveal. For
example, add (x) might return nothing, not revealing
whether x was previously in the set. As far as concur-
rency control goes, the less revealing interface reduces
conflicts: two transactions could both do add (x)
without conflict as perceived via this interface.

Third, if the system uses undos, then the undo added
to a transaction’s undo list is part of the result to con-
sider when determining conflicts. So, if x is not ini-
tially in a set, and then two transactions each invoke
add (x), even if the add actions return no result,
the actions conflict since the undo for the first one
is remove (x) and the undo for the second is “do
nothing” In this respect, late conflict detection some-
times allows more concurrency. However, in general it

requires making a copy (at least an effective copy) of the
data structure, and if any transaction commits changes
to the data structure while transaction T is running, Ts
actions must be redone on the primary copy of the data
structure rather than directly installing the new state
that T constructed.

Fourth, certain non-mutating operations entail con-
currency control obligations that may at first seem
surprising. For example, if x is not in a set and trans-
action T runs the query contains (x), the set must
guarantee that any other transaction that adds x will
conflict with T. Thus, if the system uses abstract lock-
ing, contains (x) must in this case lock the absence
of x. Hence, an abstract lock is not necessarily a lock
attached to some piece of the original data structure.
(In some database implementations the locks are mixed
with the actual records, and the system creates a new
record for a lock like this, a record that goes away
at the end of the transaction. This is called a phan-
tom record.) A similar case occurs with an ordered
set abstraction when a call to getNextHigher (x)
returns y: The transaction must lock the fact that the
ordered set has no value between x and y. Thus, read-
only actions still require checking and recording, and
this applies equally to late conflict detection as to early
detection.

Another use for open nesting is to break out of strict
serializability (at the programmer’s risk, of course). It is
sometimes useful, even necessary, to keep some effects
of a transaction even if it is aborted. For example, in
processing a commercial transaction, a system might
discover that the credit card presented is on a list of
stolen cards. While most effects of the purchase should
be undone, information about the attempted use of the
card should go to alog that will definitely not be undone.
This is easy to do by giving the log action’s inverse as
“do nothing” (This is harder to do in a system that is
not doing in-place updates, and would require a spe-
cial notation.) In this way open nesting can be abused
to achieve irrevocable effects. Similarly, a programmer
can understate conflict predicates and allow communi-
cation between transactions. The “extended semantics”
of open nesting abused in these ways may depend on
the underlying implementation.

Transactions, Nested

2093

Both closed and open nesting have been proposed for
use with transactional memory (TM), for both software
(STM) and hardware (HTM) approaches. The primary
difficulty in implementing closed nesting for TM is
its more complex conflict rule. It no longer suffices to
check for equality or inequality of transaction identi-
fiers — the test must distinguish an ancestor transaction
from a non-ancestor. (This assumes that only transac-
tions that are currently leaves of the transaction tree
can execute.) HTM designs must also deal with the
reality that hardware resources are always limited, and
thus, there may be hard limits on the nesting depth, for
example. HTM will also not be aware of abstract locks
and abstract concurrency control; they will always be
implemented in software. However, the number of con-
flict checks required for abstract concurrency control
is strictly less than for physical units such as words or
cache lines.

It is particularly more complex to check for conflict
between concurrent subtransactions running under
nested TM. However, if a transaction has at most one
child at once, and only leaf transactions can execute,
then the implementation is only slightly more complex
than for non-nested transactions. Because the trans-
action tree in this case consists of a single line of
descent from a top-level transaction, it is called linear
nesting. Linear nesting admittedly forgoes one of the
strong advantages of nesting, namely concurrent sib-
ling subtransactions, but it retains partial rollback and
thus remains potentially more useful than non-nested
transactions.

Bibliographic Notes and Further
Reading

The early exposition of nested transactions is marked
by Davies [2], Reed [10], and Moss [5, 6]. Open nest-
ing (also called multi-level transactions) was articulated
by Beeri et al. [1], Moss et al. [8], and Weikum and
Schek [11]. Nested transactions for hardware transac-
tional memory are explored in Yen et al. [12] and Moss
and Hosking [7], and Ni et al. [9] describe a prototype
that supports open nesting in software transactional
memory. Transactional boosting was introduced by
Herlihy and Koskinen [4]. Gray and Reuter [3] provide

comprehensive coverage of transaction processing con-
cepts and techniques.

Bibliography

1. Beeri C, Bernstein PA, Goodman N (1983) A concurrency con-
trol theory for nested transactions. In: Proceedings of the ACM
Symposium on Principles of Distributed Computing. ACM Press,
New York, pp 45-62

2. Davies CT Jr (1973) Recovery semantics for a DB/DC system. In:
ACM ’73 Proceedings of the ACM Annual Conference. ACM,
New York, pp 136-141. doi: http://doi.acm.org/10.1145/800192.
805694

3. Gray], Reuter A (1993) Transaction processing: concepts and
techniques. Data Management Systems. Morgan Kaufmann,
Los Altos, CA

4. Herlihy M, Koskinen E (2008) Transactional boosting: a
methodology for highly-concurrent transactional objects. In:
Chatterjee S, Scott ML (eds) Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP 2008, Salt Lake City, UT, 20-23 Feb 2008.
ACM, New York, pp 207-216, ISBN 978-1-59593-795-7

5. Moss JEB (1985) Nested transactions: an approach to reliable
distributed computing. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA (Also published as MIT Laboratory
for Computer Science Technical Report 260)

6. Moss JEB (1985) Nested transactions: an approach to reliable
distributed computing. MIT Press, Cambridge, MA

7. Moss JEB, Hosking AL (2006) Nested transactional mem-
ory: model and architecture sketches. Sci Comput Progr 63:
186-201

8. Moss JEB, Griffeth ND, Graham MH (1986) Abstraction in recov-
ery management. In: Proceedings of the ACM Conference on
Management of Data. Washington, DC. ACM SIGMOD, ACM
Press, New York, pp 72-83

9. Ni Y, Menon V, Adl-Tabatabai AR, Hosking AL, Hudson RL,
Moss JEB, Saha B, and Shpeisman T (2007) Open nesting in soft-
ware transactional memory. In: ACM SIGPLAN 2007 Symposium
on Principles and Practice of Parallel Programming, San Jose,
CA. ACM, New York, pp 68-78

10. Reed DP (1978) Naming and synchronization in a decentralized
computer system. PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA (Also published as MIT Laboratory for
Computer Science Technical Report 205)

1. Weikum G, Schek HJ (1992) Concepts and applications of
multilevel transactions and open nested transactions. Morgan
Kaufmann, Los Altos, CA, pp 515-553, ISBN 1-55860-214-3

12. Yen L, Bobba J, Marty MR, Moore KE, Volos H, Hill MD,
Swift MM, Wood DA (2007) LogTM-SE: decoupling hard-
ware transactional memory from caches. In: Proceedings of the
13th International Conference on High-Performance Computer
Architecture (HPCA-132007), 1014 February 2007, Phoenix, Ari-
zona, USA, IEEE Computer Society, Washington, DC, pp 261-272

http://doi.acm.org/10.1145/800192.805694
http://doi.acm.org/10.1145/800192.805694

2094 Transpose

! Transpose

»All-to-All

! TStreams

»Concurrent Collections Programming Model

! Tuning and Analysis Utilities

»TAU

http://dx.doi.org/10.1007/978-0-387-09766-4_34
http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_59

	T
	Task Graph Scheduling
	Synonyms
	Definition
	Discussion
	Introduction
	Fundamental Results
	Definitions
	Solving Pb(&Infinity;)
	NP-completeness of Pb(p)

	List Scheduling Heuristics
	Critical Path Scheduling
	Taking Communication Costs into Account
	The Macro-Dataflow Model
	Complexity and List Heuristics with Communications
	Extension to Heterogeneous Platforms

	Workflow Scheduling
	Objective Functions
	Period and Latency

	Related Entries
	Recommended Reading
	Bibliography

	Task Mapping, Topology Aware
	Tasks
	TAU
	Synonyms
	Definition
	Discussion
	Introduction
	TAU Design
	TAU Instrumentation
	TAU Measurement
	TAU Analysis
	Summary

	Related Entries
	Bibliography

	TAU Performance System-5pt®
	TBB (Intel Threading Building Blocks)
	Tensilica
	Tera MTA
	Synonyms
	Definition
	Discussion
	Introduction
	Beginnings
	Tera
	Languages
	Compiler Optimization
	User-Level Runtime
	Operating System
	Memory Mapping
	Arithmetic
	MTA-1 and MTA-2

	Related Entries
	Bibliography

	Terrestrial Ecosystem Carbon Modeling
	Synonyms
	Definition
	Discussion
	Introduction
	Key Components of TECM
	The Contributions of Parallel Computing to TECM Developments

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Terrestrial Ecosystem Modeling
	The High Performance Substrate
	Theory of Mazurkiewicz-Traces
	Thick Ethernet
	Thin Ethernet
	Thread Level Speculation (TLS) Parallelization
	Thread-Level Data Speculation (TLDS)
	Thread-Level Speculation
	Threads
	Tiling
	Synonyms
	Definition
	Discussion
	Introduction
	Motivations for Tiling
	Legality of Tiling
	Tile Selection and Optimal Tiling
	Tiled Code Generation
	Applicability
	Related Loop Transformations

	Future Directions
	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Titanium
	Definition
	Discussion
	Introduction
	Titanium's Parallelism Model
	Titanium's Memory Model
	Titanium Arrays
	Domain Calculus
	Unordered Loops, Value Types, and Overloading
	Distributed Arrays
	Implementation Techniques and Research
	Application Experience

	Related Entries
	Bibliography
	Web DocumentationBibliography

	TLS
	TOP500
	Definition
	Discussion
	Method of Solution
	Restrictions

	Related Entries
	Bibliography

	Topology Aware Task Mapping
	Synonyms
	Definition
	Discussion
	Introduction
	Interconnect Topologies
	Communication Graphs
	The Mapping Process
	Objective Functions
	Heuristic Techniques for Mapping
	Deterministic Heuristics
	Randomized Heuristics
	Random Start Heuristics

	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Torus
	Total Exchange
	Trace Scheduling
	Definition
	Discussion
	Introduction
	Region Formation – Trace Picking
	Region Enlargement

	Region Compaction – Instruction Scheduler
	Code Motion Between Adjacent Blocks
	Trace Compaction
	Compensation Code

	Bibliographic Notes and Further Reading
	Superblocks
	Hyperblocks
	Treegions
	Nonlinear Regions

	Related Entries
	Bibliography

	Trace Theory
	Synonyms
	Definition
	Discussion
	Introduction
	Mathematical Definitions and Normal Forms
	Computation of Normal Forms

	Regular Sets
	Decidability Questions
	The Star Mystery
	Undecidability Results for Rational Sets

	Asynchronous Automata
	Infinite Traces
	Logics
	MSO and First-Order Logic
	Temporal Logic

	Fragments
	Logics, Algebra, and Automata
	Automata-Based Verification

	Traces and Asynchronous Communication

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Tracing
	Transactional Memories
	Synonyms
	Introduction
	The Transactional Model
	Motivation
	Lock-Free Data Structures
	Software Engineering
	Lock Elision

	Hardware Transactional Memory
	Software Transactional Memory
	Weak vs Strong Isolation
	I/O and System Calls
	Exploiting Object Semantics
	Eager vs Lazy Update
	Eager vs Lazy Conflict Detection
	Contention Managers
	Visible vs Invisible Reads
	Privatization

	Bibliographic Notes and Further Reading
	Bibliography

	Transactions, Nested
	Synonyms
	Definition
	Discussion
	Transactions
	Semantics of Nesting
	Example Closed Nesting Implementation Approach
	Motivations for Closed Nesting
	Open Nesting
	An Example Open Nesting Protocol
	Coarse-Grained Transactions
	Correct Abstract Concurrency Control
	Extended Semantics
	Nesting in Transactional Memory

	Bibliographic Notes and Further Reading
	Bibliography

	Transpose
	TStreams
	Tuning and Analysis Utilities

