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Foreword

As information technology becomes increasingly more sophisticated and capable,
repeated studies have demonstrated that this has been matched by an increasing cost
and complexity in configuring, managing and servicing such systems.

Despite the obvious benefits in performance & scalability that has been provided
by the ongoing evolution of faster CPUs, increased network bandwidth and storage
capacity, the cost of dynamically managing the hardware, software and infrastruc-
ture has continued to rise at an alarming rate.

Autonomic Computing emerged at the dawn of the 21st century out of cross-
industry and academic research and development in simplifying administration,
configuration, deployment and management of IT systems.

Driven by a need to address what many had seen as a growing crisis in the IT
industry for increased visibility, control and automation of complex IT systems,
autonomic computing focuses upon providing embedded and integrated manage-
ment systems that enable self-healing, self-configuration, self-optimization and self-
protection.

As we move into the era of energy-aware IT systems and cloud-computing, the
needs for autonomic systems have continue to evolve. Recently there has been an
increased awareness of the need for efficient utilization of data centers associated
with the changing economics of energy supply and the politics of climate change.
Optimal use of communications infrastructure and the associated middleware has
becoming increasingly critical. Embedded autonomic capabilities to provide self-
management has become critical in delivering new dynamic infrastructure in IT.

Increased use of the Internet has led to global-scale broad-band networking.
When coupled with adoption of wireless communications and mobile computing
by consumers and enterprises, the need for self-managing network services and au-
tonomic communications becomes more pressing. The same network infrastructure
is being shared across more and more services. Enterprises, consumers and govern-
ments expect to have communication systems that can autonomically recover from
failures or reconfigure themselves to cope with increased demand.

Those same network services are also being used to provide interfaces onto tradi-
tional physical infrastructure: Smart utility grids for efficient production and distri-
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vi Foreword

bution of gas, water and electricity, wireless home-metering, remote wireless track-
ing of parcels, shipping containers and wireless monitoring of the environment and
climate change. These are all expected to become the norm as we progress towards
the ’Smart Planet’.

This volume is a timely overview of the evolution of autonomic computing to
communications, networking and sensor systems, and provides detailed insights into
the multi-disciplinary research topics that comprise the field of Autonomic Comput-
ing and Communications.

April 2009 Dr. Matt Ellis
Vice President

Autonomic Computing, IBM



Preface

The emerging world is pervasive and strives towards integrating people, technology,
environment and knowledge. This emerging vision supports approaches that set the
user at the center of attention, while technology becomes invisible, hidden in the
natural surroundings, but still functional, autonomous, self-adaptive, available when
needed, and interactive.

Achieving this vision requires innovative communication architectures and ser-
vices. Communication/networking solutions should become task- and knowledge-
driven, enabling a service oriented, requirement and trust based development of
communication infrastructure. The growing complexity of control requires increas-
ingly distributed and self-organizing structures, relying on simple and dependable
elements that are able to collaborate to develop sophisticated behaviors, and that can
adapt to an evolving situation where new resources can become available, adminis-
trative domains can change and economic models can vary.

The networking and seamless integration of concepts, technologies and devices
in a dynamically changing environment poses many challenges to the research com-
munity. There remain such crucial issues as interoperability, programmability, man-
agement, openness, reliability, performance, context awareness, intelligence, auton-
omy, security, privacy, safety, semantics, etc. However, the overall scale, complex-
ity, heterogeneity and dynamics of these networked environments, together, result
in essential management challenges which clearly go beyond current paradigms and
practices, and need a fundamentally new approach.

Autonomic Communication is such an approach. It is inspired by biological sys-
tems and envisions communication systems that are large self-managing which can
organize, configure, optimize, protect and heal themselves with minimal involve-
ment of human administrators.

This edited volume explores conceptual models and associated technologies that
will help realize the vision of autonomic communication, where devices and appli-
cations seamlessly interconnect, intelligently cooperate and autonomously manage
themselves, and as a result, enable the borders of virtual and real world to vanish or
become significantly blurred. The chapters contributing to the edited volume are the
genuine testimony to the challenges and prospects of this rapidly growing area.
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viii Preface

The volume is composed of 14 chapters covering a wide range of issue related to
autonomic communication and are organized into 3 parts as listed below.

• Autonomic Communication Infrastructure
• Autonomic Communication Services and Middleware
• Applications to Ad-Hoc (Sensor) Networks and Pervasive Systems

Part I – Autonomic Communication Infrastructure: Part I focuses on various
aspects of autonomic communication infrastructure and contains 4 chapters. Chapter
1 titled “Bio-inspired Autonomic Structures: a middleware for Telecommunications
Ecosystems” investigates a bio-inspired autonomic middleware capable of leverag-
ing the assets of the underlying network infrastructure whilst, at the same time, sup-
porting the development of future Telecommunications and Internet Ecosystems.
Chapter 2 titled “Social-based autonomic routing in opportunistic networks” inves-
tigates contex-aware routing in opportunistic autonomic infrastructures under the
prism of peoples’ social behavior. Chapter 3 titled “A Collaborative Knowledge
Plane for Autonomic Networks” looks at a knowledge plane architecture aiming
at self-adaptation and self-organization. Chapter 4 titled “A Rate Feedback Predic-
tive Control Scheme Based on Neural Network and Control Theory for Autonomic
Communication” tackles the difficulty in designing an efficient congestion control
scheme by using back propagation neural networks.

Part II – Autonomic Communication Services and Middleware: Part II focuses
on specific autonomic communication services and middleware frameworks, and
contains 5 chapters. Chapter 5 titled “Hovering Information – Self-Organising Infor-
mation that Finds its Own Storage” investigates a hovering information model and
reports on simulations performed using replication and caching algorithms. Chap-
ter 6 titled “The CASCADAS Framework for Autonomic Communications” presents
a prototype distributed component-ware framework for autonomic and situation-
aware communication and demonstrates it via a Pervasive Behavioural Advertise-
ment scenario. Chapter 7 titled “Autonomic Middleware for Automotive Embed-
ded Systems” describes an advanced autonomic platform-independent middleware
framework focused on automotive embedded systems where high flexibility and au-
tomatic run-time reconfiguration is needed. Chapter 8 titled “Social Opportunistic
Computing: Design for Autonomic User-Centric Systems” focuses on the diffusion
of data in autonomic computing environments and the way the social attitudes of
mobile users impact their design. Chapter 9 titled “Programming and Validation
Techniques for Reliable Goal-driven Autonomic Software” investigates time and
concurrency which are the most critical notions of complex software interactions
in autonomous flight systems.

Part III – Applications to Ad-Hoc (Sensor) Networks and Pervasive Systems:
Part III focuses on the applications of autonomic communication to ad-hoc (sensor)
networks and pervasive systems, and contains 5 chapters. Chapter 10 titled “Au-
tonomic Communication in Pervasive Multimodal Multimedia Computing System”
focuses on autonomic communication protocols involved in the detection of inter-
action context and the multimodal computing system’s corresponding adaptation.
Chapter 11 titled “Self-healing for Autonomic Pervasive Computing” focuses on
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the self-healing aspects of autonomic pervasive computing and demonstrates it as a
service in the Middleware Adaptability for Resource discovery, Knowledge usabil-
ity, and Self-healing platform. Chapter 12 titled “Map-based Design for Autonomic
Wireless Sensor Networks” presents an approach that exploits the spatial correlation
of sensor readings and builds a model that abstracts from low-level communication
issues and supports general applications by allowing for efficient event detection,
prediction and queries. Chapter 13 titled “An Efficient, Scalable and Robust P2P
Overlay for Autonomic Communication” focuses on the applicability of P2P sys-
tems in autonomic communication domain. Chapter 14 titled “Autonomic and Co-
evolutionary Sensor Networking with BiSNET/e” proposes a biologically inspired
architecture that allows wireless sensor network applications to simultaneously sat-
isfy conflicting operational objectives by adapting to dynamic network conditions
(e.g., network traffic and node/link failures) through evolution.

Our sincere thanks go to the authors who have contributed to this edited volume
by sharing their most recent research findings and expertise. The anonymous re-
viewers deserve our thanks for their constructive criticism, helpful comments and
in-depth insights. Finally, we would like to express our gratitude to Springer for
agreeing to publish this volume and especially to Valerie Schofield and her editorial
team that we interacted with on a continuous basis. We do hope the community of
researchers and practitioners will find the content of this volume inspiring, insightful
and enjoyable.

April 2009 Athanasios Vasilakos
Manish Parashar

Stamatis Karnouskos
Witold Pedrycz
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Bio-inspired Autonomic Structures: a
middleware for Telecommunications Ecosystems

Antonio Manzalini, Roberto Minerva and Corrado Moiso

Abstract Today, people are making use of several devices for communications, for
accessing multi-media content services, for data/information retrieving, for process-
ing, computing, etc.: examples are laptops, PDAs, mobile phones, digital cameras,
mp3 players, smart cards and smart appliances. One of the most attracting service
scenarios for future Telecommunications and Internet is the one where people will
be able to browse any object in the environment they live: communications, sensing
and processing of data and services will be highly pervasive. In this vision, people,
machines, artifacts and the surrounding space will create a kind of computational en-
vironment and, at the same time, the interfaces to the network resources. A challeng-
ing technological issue will be interconnection and management of heterogeneous
systems and a huge amount of small devices tied together in networks of networks.
Moreover, future network and service infrastructures should be able to provide
Users and Application Developers (at different levels, e.g., residential Users but also
SMEs, LEs, ASPs/Web2.0 Service Providers, ISPs, Content Providers, etc.) with

Operators must be ready to manage such level of complication enabling their plat-
forms with technological advanced allowing network and services self-supervision
and self-adaptation capabilities. Autonomic software solutions, enhanced with in-
novative bio-inspired mechanisms and algorithms, are promising areas of long term
research to face such challenges. This chapter proposes a bio-inspired autonomic
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middleware capable of leveraging the assets of the underlying network infrastructure

the most appropriate "environment" according to their context and specific needs.
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whilst, at the same time, supporting the development of future Telecommunications
and Internet Ecosystems.

1 Introduction

Recent emergence of Web2.0 has introduced the innovative paradigm of using the
"web-as-a-platform" for mashing up and offering dynamic services. As a matter of
fact, the so-called "Architecture of participation" refers not only the engagement
of Customers in continuous improvement of service releases but also the adop-
tion of new innovative business models (e.g., value-chains also based on Adver-
tisement). On the other hand, Telecommunications industry has made efforts for
defining and building new services, for example on top of basic voice call. To-
day, the Telco2.0 paradigm is aiming at applying more or less the same Web2.0
paradigms to Telecommunications, (e.g., through SDK) for exposing and mashing
up Telecommunications, ICT network enablers, capabilities, service components,
data, etc. Also new business models and value-chains, beyond the walled-garden,
(e.g., broader federations of Players) are under evaluation by Telecommunication
Players.

Another important trend is represented by the decreasing of both size and cost of
physical systems and devices. On one side this is opening new opportunities, paving
the way to a pervasive use of digital devices for information and communication
services, on the other side it creates some serious technological challenges for future
networks, such as interconnection and management of heterogeneous systems and
a huge amount of small devices tied together in networks of networks.

One of the most attracting service scenarios for future Telecommunications and
Internet is the one where people will be able to browse any object in the environ-
ment they live: communications, sensing and processing of data and services will
be highly pervasive. In this vision, people, machines, artifacts and the surrounding
space will create a kind of computational environment and, at the same time, the
interfaces to the network resources.

Current Telecommunication service and network architectures do not support this
vision; moreover, they cannot provide people with personalized services whilst, at
the same time optimizing the use of network and data resources.

This chapter is elaborating innovative middleware architecture capable of ex-
ploiting a kind of pervasive self-adaptive computing environment optimizing, at
the same time, the use of the underneath network and the service infrastructures.
Middleware is autonomic, highly decentralized and composed by lightweight com-
ponents interacting with each other with bio-inspired mechanisms and algorithms.
Design philosophy has been considered a key factor: this should not be limited to
solving interoperability problems between different domains, but should cover de-
signing the rules with which different services are defined and composed thus al-
lowing the construction of a global environment (a kind of ecosystem) from the
composition of a set of simple unitary services.
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Chapter starts with a brief state of art on autonomic frameworks (based on dis-
tributed components) and the related algorithms for focus limitations and required
advances. Then the concept of Bio-inspired Autonomic Structures (BAS) is pre-
sented as a middleware in which with multiple levels, combining hierarchies, self-
organization, and emergence. Component is the basic element of the BAS: specifi-
cally coalesce of components are capable of abstracting specific functions and data
whist performing an autonomic behavior. Particular attention has been given to iden-
tify potential bio-inspired alternative for supporting the interactions of the compo-
nents. BAS middleware is a kind of ecology of components where novelty stands
in adopting communication primitives for the self-organization of pieces of data to
aggregate data patterns for distributed applications (see Fig. 1). This challenging
task can be approached viewing the interactions in terms of algorithms combining
primitive mechanisms available for organizing cooperation among the components.
On the other hand, coalesce of components abstracting functions and more com-
plex patterns of data should adopt more articulated communication algorithm and
mechanism.

The attention is then moved to identify some guidelines for design rules.
Chapter closes with some application scenarios: future exploitations are based

on the idea of "emergence" as defined by mathematician Nils Baas for complex nat-
ural systems and by sociologist Margaret Archer for social systems. These authors
have proposed similar frameworks which are unifying the essential requirements
for ecological economics: clear definition of sustainability; ways to link ecological
and economic trends; ways to understand stability and instability in dynamic social-
ecological systems, and ways to include human self-observation within dynamic
models of social-ecological systems.

Fig. 1 Bio-inspired Autonomic Structures (BAS) abstracting Networks of Networks
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2 State of Art

This section is presenting a brief state of art analysis: scope is elaborating about
the technological maturity of some of the key architectural elements for develop-
ing the BAS middleware. The first element is the conceptual framework of a dis-
tributed middleware of autonomic components. The second element concerns the
bio-inspired algorithms that can be adopted to allow components to interact with
each other. Specifically the bio-inspired metaphor lies in the envisaging of mature
capabilities as the cumulative outcome of a large number of small advances in ca-
pability. Each such advance is assumed to be associated with a particular generative
mechanism, so that the nervous system as a whole can be viewed as an organized
collection of such generative mechanisms, each specialized to some particular gen-
erative process.

2.1 Autonomic Frameworks

Increasing complexity of large-scale computing systems, computers and applica-
tions require learning how to manage themselves in accordance with high-level
policies from human operators. This vision, which has been referred to as auto-
nomic computing, is taking inspiration from the biological characteristics of the
human Autonomic Nervous Systems. In other words, autonomic computing refers
to the self-managing characteristics of distributed computing resources, adapting
to unpredictable changes whilst hiding intrinsic complexity to operators and users.
An autonomic system makes decisions on its own, using high-level policies; it will
constantly check and optimize its status and automatically adapt itself to changing
conditions.

As reported in literature (see Fig. 2), an autonomic computing framework might
be seen composed by Autonomic Components (AC) interacting with each other.
An AC can be modeled in terms of two main control loops with sensors (for self-
monitoring), effectors (for self-adjustment), knowledge and planer/adapter for ex-
ploiting the policies:

• Local (L) control loop for self-awareness, for internal management and recovery
from faults;

• Global (G) control loop for environment awareness, allowing changing behavior
and even environment (through communication with other elements).

In other words, an AC is an entity capable sensing and adapting to environment
changes whilst performing self-* capabilities (e.g., self-CHOP: configuration, heal-
ing, optimization, protection) through interaction with other similar components.

Fig. 3 shows an example of Autonomic Component as developed by the IST
Project CASCADAS [26]. This represents an example of autonomic component as
CASCADAS goal is to develop and demonstrate a prototype of Service Ecosystem
for dynamic composition and execution of autonomic services.



Bio-inspired Autonomic Structures: a middleware for Telecommunications Ecosystems 7

Fig. 2 Logical view of an Autonomic Component

Fig. 3 Autonomic Component implemented in the IST Project CASCADAS [26]

IBM, as part of its autonomic computing initiative [21], has outlined the need for
current service providers, to enforce adaptability and properties of self-configuration,
self-optimization, and self-healing, via service (and server) architectures revolving
around feedback loops and advanced adaptation/optimization techniques. Driven by
such vision, a variety of architectural frameworks based on "self-regulating" auto-
nomic components has been recently proposed, also with reference to the manage-
ment of large data centres. A very similar trend has recently characterized significant
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research work in the area of multi-agent systems [5], [39]. However, most of these
approaches are typically conceived with centralized or cluster-based server architec-
tures in mind and mostly address the need of reducing management costs rather than
the need of enabling complex software systems or providing innovative services.

In recent years, a variety of diverse algorithms and approaches have proved the
potential of bio-inspired distributed solutions to enforce purposeful functionalities
in a fully distributed, self-organizing and adaptive way [25], [11], [17], [12]. Exam-
ples are studies on: ant-inspired algorithms [33], distributed coordination based on
virtual force fields, socially-inspired communication mechanisms [33].

Most of these studies (with a few exceptions detailed below) are limited to simu-
lations and experiments, and do not propose a framework that is both theoretical and
practical (e.g., a toolkit). Furthermore, each of these proposals suggests specific so-
lutions for specific problems or classes of services, without adopting a more holistic
approach.

Concerning approaches to model and build self-organizing and self-adaptive
frameworks, a variety of heterogeneous proposals exists for both the basic com-
ponents (e.g., reactive agents rather than proactive and goal-oriented ones) and their
interactions (e.g., pheromones [33], or gossip [20]).

Beside more theoretical studies, some practical proposals exist for distributed
self-organized frameworks. Service Clouds [34] is a research distributed proto-
type designed to facilitate rapid prototyping and deployment of autonomic self-
organizing communication services. The Service Clouds infrastructure combines
dynamic software configuration methods with self-organizing algorithms for the es-
tablishment of communication link in order to support both cross-layer and cross-
platform cooperation. SwarmingNets [16] is a research framework for the manage-
ment of complex ubiquitous services implemented by groups of autonomic objects,
called TeleService Solons, which have the capabilities of fulfilling the complex tasks
relating to service discovery and service activation.

A specific trend of research in the area of self-organizing service frameworks
concerns those approaches that attempt to enforce self-organization and self-healing
features in services and data access by relying on a Peer-to-Peer (P2P) overlay net-
work substrate, with the goal of exploiting the self-organizing features of overlay
networks [2]. The Service Oriented Peer-to-Peer System (SOPPS) [19], defined in
the EU-funded Project MMAPPS [31] (Market Management of Peer-to-Peer Ser-
vices) investigates how to combine P2P with SOA, in order to allow the definition
of component-based P2P applications.

A similar approach was adopted in SESAM Project [36] aimed at the devel-
opment of a highly flexible, scalable and technology-independent architecture for
distributed service provisioning. In contrast to typical SOA, the architecture pro-
posed by SESAM offers mechanisms that allow multiple peers to cooperate in order
to provide a service, so having a positive impact on non-functional aspects, like
robustness, or availability.

The proposed framework is aiming at overcoming the need for a supporting P2P
layer, by trying to enforce its features via a much simpler architecture, in which data
and components will play an active role in self-building, via self-organization.
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Also in the area of Grid computing, scale, heterogeneity and dynamism of ap-
plications call for self-managing and autonomic properties for Grid services. The
Accord service architecture [24] addresses this by enabling service and applica-
tion behaviour and their interactions to be dynamically specified and adapted using
high-level rules, based on current application requirements, state and execution con-
text. Similar goals are shared by both NextGRID [32] and ASG [6] Projects, which
eventually aims at developing an architecture for Next Generation Grid services for
widespread use by research, industry and the ordinary citizen.

However, these approaches mostly focus on dynamic allocation, composition and
management at resource level, while current proposal is also addressing these as-
pects at service, data, and content levels. Moreover, current proposal emphasizes
the complete distributed nature of the algorithms and control solutions.

The related research work that more directly relates to current CASCADAS and
BIONETS Projects [13], [26], [15] funded under the FET Situated and Autonomic
Communication Initiatives. BIONETS explores innovative biologically-inspired al-
gorithms for autonomic communication services in challenged scenarios (e.g., Dig-
ital City [17]). CASCADAS aims to deliver a research demonstrator of an innova-
tive component-based framework for situated and autonomic communication frame-
work, integrating advance autonomic governance tools and advanced methods for
knowledge and data management. CASCADAS is providing a sort of foundational
work for developing highly distributed autonomic frameworks for Telco applica-
tions.

As a final note, we want to emphasize that several approaches for automatic
service composition based on semantic, goal-oriented, and pattern-matching, have
been recently proposed [29]. The basic idea, in these approaches, is that semantic
description can be attached to services, describing what a service can provide to
services and a service needs from other services.

2.2 Interaction Algorithms

Interaction algorithms play a fundamental role for designing autonomic framework
as they represent a mean through which components communicate to exploit self-
organization and self-adaptation.

Each component can communicate with a few nearby neighbors. Components
might interact via wired and wireless communications, whereas bio-engineered
components might communicate by chemical signals (e.g., applications for amor-
phous computing). Although the details of the communication model can vary, the
maximum distance over which two components can communicate effectively is as-
sumed to be small compared with the size of the entire framework.

Self-adaptive and self-organizing algorithms are being extensively studied [21].
Self-adaptive systems have a sort of semantic representation of their state, and can
evaluate their own behavior and change it when the evaluation indicates that they are
not accomplishing what they were intended to do, or when better functionality or
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performance is possible. On the other hand, self-organizing systems work bottom-up
without any high-level representation, based on a large number of components that
interact according to simple and local rules and in which a global adaptive behavior
of the system emerges from these local interactions.

Self-organization and the algorithms underlying the emergence of adaptive pat-
terns in complex systems have been deeply investigated in communications, e.g., in
P2P computing [14], social networks. Self-organization algorithms has the potential
to act as enablers for service composition and aggregation, employing proven tech-
niques to abstract from their implementation and derive design principles adapted to
the requirements of artificial systems. At the same time, the presence of self-adaptive
systems capable of understanding what is happening and proper reacting accord-
ingly (as in the canonical "autonomic computing perspective" [27]) can hardly be
disregarded to ensure proper reactions and adaptations to various situations.

Accordingly, a major advance with respect to most of the prior art is to provide a
way to exploit self-organization approaches and enrich self-organizing components
with more "semantic" and/or "cognitive" abilities, in the direction of self-adaptation.
This raises the important question of evaluating the amount of information that has
to be processed individually by system components, versus collectively by the self-
organizing group. A key goal to be considered in the implementation of the proposed
framework is to preserve the simplicity and robustness of self-organization phe-
nomena while simultaneously bringing the benefits of semantics self-adaptation and
situation-awareness, to achieve what can be defined as "semantic self-organization".

In synthesis, in order to provide self-adaptive behavior, a component-ware au-
tonomic system must be able to reason about both its environmental data and its
behavior relative to that environment. This does not necessarily imply a symbolic
structure, but suggests that the system must be able to reflect on environmental data
and behavior in some sense and generate feedbacks/actions as a result. Thus the
autonomic system must accept goals and constraints from, and petition for the at-
tention of, its operators using terms that are meaningful to their needs and cognitive
abilities. However, this must be balanced against the need for the autonomic sys-
tem to map these semantic terms deterministically to and from the self-managing
capabilities of its elements. This requires a high degree of semantic interoperabil-
ity between the expression of adaptive behavior and the changing of data that drives
such adaptation. Semantic-based reasoning for autonomic systems requires research
about models and languages for representing environmental data and components
behavior.

3 Bio-inpired Autonomic Structures

In synthesis, in order to provide self-adaptive behavior, a component-ware auto-
nomic system must be able to reason about both its environmental data and its
behavior relative to that environment. This does not necessarily imply a symbolic
structure, but suggests that the system must be able to reflect on environmental data
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and behavior in some sense and generate feedbacks/actions as a result. Thus the
autonomic system must accept goals and constraints from, and petition for the at-
tention of, its operators using terms that are meaningful to their needs and cognitive
abilities. However, this must be balanced against the need for the autonomic sys-
tem to map these semantic terms deterministically to and from the self-managing
capabilities of its elements. This requires a high degree of semantic interoperabil-
ity between the expression of adaptive behavior and the changing of data that drives
such adaptation. Semantic-based reasoning for autonomic systems requires research
about models and languages for representing environmental data and components
behavior.

3.1 Concept of Autonomic Structures

BAS architecture take inspiration from the concept of hyper-structure [7], [8], [9],
[10] as a middleware in which to study multiple levels, and in a fruitful way com-
bine hierarchies, self-organization, and emergence. As described in literature, hyper-
structure middleware has three fundamental components. The first is the primitive
objects or units, which can be of physical or abstract nature. The second component
is some kind of observational mechanism that observes, describes and evaluates the
objects. Thirdly, there are interactions among the objects. The interactions use the
properties detected by observational mechanisms.

A family of objects together with specified properties and interactions defines a
process or construction. The process may generate a family of second order objects.
In the reformulated version of hyper-structures [8], the interactions are bonds which
directly "bind" families of primitive objects to produce second order objects. The
resulting structure, consisting of objects on different levels together with their in-
teractions and properties, is called a hyper-structure in [8]. Objects at higher levels
obtain new properties, and the new interactions and observations at higher levels
may or may not be meaningful at lower levels. Furthermore, hyper-structures allow
for both "upwards" and "downwards" causation, in that interactions on higher levels
may cause changes in interactions on lower levels.

Fig. 4 BAS as an example of hyper-structures [7]
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Fig. 4 represents an example of hyper-structure [7]: circles represents objects
of increasing order and Figlined represent the interactions. Dashed and solid lines
represent different types of interactions.

BAS are based on three fundamental ingredients: components, supervision mech-
anism (that observes, evaluates and manage the components), and the interactions
among the components. In BAS middleware, components express some self-* au-
tonomic features. Moreover another aspect should be considered in modeling com-
ponents: middleware software architecture is assumed based on Nondeterministic
Finite Automata (NFA). From a software perspective, BAS middleware is based
on networks of concurrent components bound together by bio-inspired interaction
protocols and decentralized algorithms.

This architectural perspective shifts focus from source code to coarse-grained
components and their interconnections. Designers can concentrate on the compo-
nents structure, the assignment of components to pieces of functions and data, the
interactions among components and. Components are responsible for implementing
self-* behavior, maintaining state information and communicating with each other.
This approach tends moreover to separate (at a lower level) computing from com-
munication allowing a system’s computation and communication relationships to
evolve independently of one another, including rearranging and replacing the com-
ponents while the application executes as a necessary, but still insufficient, mech-
anism for self-adaptive software. Still all the infrastructure has be governed and
orchestrated with a top-down approach in order to control the expressiveness power
and the abstraction of each of its components maintaining its reflective properties.
On the other hand, this is supported and integrated by a bottom-up self-organization.

3.2 BAS middleware

As mentioned, BAS middleware has three fundamental ingredients: components,
supervision mechanisms, and the interactions among the components. In this sub-
section attention is focused on components.

BAS architecture is based on two main classes of components: High Level Com-
ponents (HLC) and Low Level Components (LLC). Fig. 5 shows conceptual block
diagram of a component.

HLCs (and aggregation of HLCs) include a deterministic Finite State Machine
(FSM) whilst performing an autonomic behavior. HLC can be logically intercon-
nected (with a goal-driven approach) to develop services and applications. HLC
may persist or disappear in relation to the purpose for which they have been created.

It should be noted that, in principle, in order to build a flexible middleware capa-
ble of adapting to network dynamics, components with NFA should be adopted.

Motivation of the choice of NFA is that a transition from a state to another of the
finite state machine is not deterministic as it depends on the conditions of the under-
lying networks (actually showing non deterministic behaviors). It is well-known that
through a powerset construction, it is possible to convert a NFA into a DFA through
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Fig. 5 Example of Component

increasing its number of states (from n states up to 2n states). Components have to
designed by identifying the minimum number of states, so that to avoid excessive
complications.

At the end the architecture should consist of a number of autonomic components
(with a manageable number of states) able to cope with the non deterministic be-
havior of underlying networks, but capable of a deterministic behavior and acting as
sharable resource for applications to use.

In order to self-adapt their behavior, HLCs could create/modify their internal
state machine, by updating transitions and assembling simpler NFAs according to
rules conditioned by external events and internal state [15].

Recursively, a HLC can be considered as a ensemble of LLCs, being latter ones
simpler components that includes data structures, business logic representations,
and automata; LLC can either self-organize (bottom-up aggregation) or making
groups upon top-down requests from other HLCs.

In addition to a syntactic description (e.g., in terms of types, and/or interface def-
inition), BAS components could be annotated with a kind of Semantic Description
(SD). For example tuples can be used to store the semantic description of the com-
ponents goal and/or behavior, for components discovery and/or goal matching. In
this sense, SD "matching", in addition to "syntactic" (e.g., according to some type
system) matching, could be adopted as one of the ways for composing and orches-
trating composite services starting from basic service components and pieces of data
and knowledge. Also approaches such as introduction of semantic-based mutation
in genetic algorithms could be considered for optimizing service composition.

Service execution can be seen as a "metabolic reaction" of components consum-
ing and producing tuples; so tuples, similarly to LINDA model [18], can also be
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seen as the means through which components exchange and share information, dis-
tribute tasks/goals, declare available components. The tuples are logically stored in a
shared tuple space and any component can add tuples and consume tuples belonging
to the types which it is able to process.

Fig. 6 BAS middleware

Fig. 6 shows conceptual view of the middleware. Computing nodes executing
the middleware use adaptive component-ware to support autonomic behavior; an
overlay network among these nodes serves as a vehicle to support cross-hardware
adaptation, [30] and to provide communication mechanisms across heterogeneous
connections. Nodes in the overlay provide an "execution canvas" on which service
components can be composed, instantiated and executed as needed, and later re-
configured in response to changing conditions. The middleware is designed to be
extensible in the sense that a suite of low-level services can be used to compose
higher-level services.

3.3 Data Components interactions: primitives

Data gathering and analysis, monitoring and assessment looking for potentially in-
teresting patterns in data is extremely valuable to make available the right data in
the proper form at the right time for distributed applications.

Given that BAS middleware is a kind of ecology of components abstracting both
functions and pieces of data, novelty of the approach is adopting communication
primitives for the self-organization of pieces of data to aggregate data patterns for
distributed applications. This challenging task can be approached viewing the inter-
actions in terms of algorithms combining primitive mechanisms available for orga-
nizing cooperation among the components.

On the other hand, coalesce of components abstracting functions and more com-
plex patterns of data should adopt more articulated communication algorithm and
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mechanism. For example, primitive mechanisms that are appropriate for specifying
such interactions include gossip, random choice, fields, and gradients [1].

Gossiping

Gossiping, also known as epidemic communication, is aiming at obtaining an agree-
ment about a certain value of some parameter. Each component broadcasts its belief
of value of the parameter to its neighbors, and computation is performed by each
component combining the values that it receives from its neighbors. a new value is
re-broadcasted. The process concludes when there are no further broadcasts.

Random choice

An example of application of random choice is for establish local identity of large
number of components: each component selects a random number to identify itself
and communicate it to its neighbors. If the number of choices is large enough, then
it is unlikely that components select the same number. Random choice can be com-
bined with gossip to elect super-peers: every component select a value, then gossips
to find the minimum. The component with the minimum value becomes the super
peer.

Fields

Every component of a certain pattern is considered as a value of field over the dis-
crete space occupied by that pattern. If the density of component is large enough this
field of values may be thought of as an approximation of a field on the continuous
space.

Gradients

Gradients represent an important primitive in amorphous computing: it implies the
estimation of the distance from each component to the nearest component des-
ignated as a source. The gradient primitive takes inspiration from the chemical-
gradient diffusion process that is crucial to biological development.

3.4 Components interactions: mechanisms and algorithms

In addition to achieving the "usual" communication patterns in distributed systems
(e.g., request-response, or subscribe-notify), interactions among BAS components
could have different objectives, including:

• negotiating for an optimal allocation of (local) resources to global task;
• influencing single components behavior (e.g., through tuning configuration pa-

rameters, or selecting execution plans);
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• setting-up and maintaining of a self-organized overlay networks

In the followings some mechanisms and algorithms that could be adopted in BAS
middleware are described and briefly elaborated.

Pull when idle

Tuples exchanges could be used for implementing an interaction model (between
HLC) fully based on an innovative "pull" semantic. This approach reflects in gen-
erating an altruistic component environment with intrinsic load-balancing capabil-
ities. In other words, each HLC is altruistic: if it is able to achieve a goal, and it is
available to do it, then HLC will volunteer in helping other HLCs [30].

Novelty of the approach is enabling self-organization by propagation of infor-
mation on specific capabilities (in terms of Goal Achievable) rather than what is
"needed" (in terms of Goal Needed). This information could be then used for dis-
covery and semantic self-aggregation of components.

In order to achieve this, it is necessary to ensure that the information about HLCs
capability (and availability) reaches proper HLCs in a proper time: this requires the
definition of a P2P overlay aimed to diffuse in a scalable way such information. This
underlying middleware should be able to implement the shared tuple space in a dis-
tributed/scalable way, as a means for efficiently distributing tuples from components
producing the tuples to the components able to consume them. This tuple-based ap-
proach makes it easy to associate semantic information with service execution re-
quests in order to allow HLCs to self-organize themselves taking into account such
information.

LLCs are aggregated by an executor of self-organization algorithms to let emerge
basic HLCs that in turn can be seen as a blackboard that incorporates and executes a
number of LLCs, i.e., a blackboard with execution (and self-adaptive) capabilities.
Equivalently, an HLC can interact recursively with other HLCs. A "Poll When Idle"
approach for a collaborative execution environment is adopted: each HLC executes
"take" operations in order to transfer tuples on to its blackboard from overloaded
HLCs.

In more detail, the HLC implements the above strategy in the following way:
given a set of HLCs containing in their blackboard tuples corresponding to goals to
be executed:

• each HLC calculates its own residual power (RP) or the RP of an aggregate of
HLCs which represents the ability to help others;

• when a HLC realizes that it has some RP available (a few tuples in its blackboard)
it offers its computational power to other HLCs, just sending them a notification
of availability;

• overloaded HLCs accept one of the possible computation power offers;
• when a HLC receives acknowledgment to its computation power offers, it begins

to take tuples from the HLC in trouble.

One of the main benefits of the approach described above is that when an HLC
is overloaded it does not need to do anything about it. It needs simply to check if
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it has received some help offers from other HLCs and accept them. The collabora-
tive behavior of the HLCs provides dynamic adaptation through self-organization,
improving high availability and low response times in the executed services.

It has been mentioned that HLCs are performing autonomic capabilities. The
middleware will leverage the emergence of such autonomic technologies, where
systems are designed to respond dynamically to changes in the environment with
only limited human guidance; in addition, the self-similar, modular, and recursive
structure of the components will enable the middleware and its "components" to
adapt and survive to changes in the environments (e.g., by enabling an easy replace-
ment of modified capabilities). Moreover autonomic computing [37] can be used to
support fault tolerance, enhance security and improve quality-of-service in the pres-
ence of dynamic environment conditions. Realizing autonomic behavior involves
cooperation of multiple software components.

Bio-inspired mechanism

In recent years, "bio-inspired" algorithms and approaches have been investigated
as potential solutions for improving the functional and non-functional characteris-
tics of distributed component-based systems; in particular, they could enforce the
implementation of fully distributed, self-organized and adaptive solutions. Several
sources of inspiration from "biological systems" have been explored, ranging from
swarm behaviors to genetic evolution, from social networks to epidemic spread,
from embryology to cellular engineering. An overview of some of them is provided
in [13].

In the following, we will sketch how some of them could be fruitfully applied.

Genetic evolution

The genetic evolution (and other forms of biological evolution, such as Embryology)
can be exploited in the definition of innovative service (or components) life-cycles,
by introducing steps that allow the services to evolve in order to adapt themselves
to new environmental conditions or to evolution of end-users needs; for instance,
"genetic" operators could be defined on component orchestration, in order to per-
form several transformations on composition flows [23]; fitness functions should be
defined in order to select the "best" mutations, i.e., the transformed composition that
optimize the new requirements of the system/environment; strategies for including
mutations, either at design time or at run time, in service/component life-cycle must
avoid anomalous behavior of on-line systems due to mutated components; alter-
natively, differentiation of components, e.g., through variation of the configuration
parameters, could improve the robustness of the systems, by allowing multiple ver-
sions of a components, with slightly different behavior able to cope with possible
unplanned situations, co-exist in the eco-system.
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Epidemic spread

The analysis of how epidermises expand in communities, through individual-to-
individual contacts, can be adapted to the autonomic components contexts, in order
to pass data among them in a distributed way, without any functions implemented in
a centralized way; for the mechanism ruling the epidemic diffusion can provide indi-
cation on the structure of connectivity among components (e.g., the optimal degree
of connections for an overlay). Analysis of epidemic spread can be used for instance
in order to provide to the system new configuration parameters to the components
or to spread information computed by single components (e.g., the value computed
by a network of sensors, or the load of nodes in a distributed server farm); in a sim-
ilar way could be exploited the propagation of information in social networks (e.g.,
through the so-called "gossiping"), by adoption "socially-inspired" communication
mechanisms.

Pheromone

Pheromone is one of the means used by ant swarm to achieve an intelligent behav-
ior1; pheromone is a techniques that allow ants to communicate each other with-
out a direct interaction, but leaving traces on their environments; analogous ap-
proaches can be adopted by components in order to allow an indirect communi-
cation; for instance, components can store information related to some interactions,
in order to allow other components to retrieve them in the following of system evo-
lution; as pheromone evaporates over the time, the relevance of these information
decreases progressively with time, so that only the most recent information are kept;
pheromone-inspired solutions can be used in order to coordinate groups of compo-
nents in performing some distributed task (for instance, it could be used to coor-
dinate components associated to rescue teams involved in an emergency [17]), or
alternatively, in improving the search of information in distributed storage (e.g., in
a P2P content sharing system).

4 Engineer self-organization

Design philosophy should not be limited to solving interoperability problems be-
tween different domains, but should cover designing the rules with which different
services are defined and composed thus allowing the construction of a global en-
vironment (a kind of ecosystem) from the composition of a set of simple unitary
services.

On one side there are traditional approaches aimed at engineering proper ISO-
OSI network protocols to face such challenges, on the other side there are innovative

1 When ants forage for food they release a trace of pheromone on their path on the ground: ants
searching for food tend to follow the highest concentration of pheromone, so to converge towards
the shortest path.
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investigations, as proposed in this chapter, based on distributed middleware with au-
tonomic self-organization features. BAS architectural model represents the tentative
integration of the concepts of Complex Adaptive Systems with the principles of dis-
tributed Autonomic Computing. Any kind of complex system or structure is build
up from elementary components and constructed layer by layer.

From an engineering viewpoint, it should be mentioned that a trade-off is re-
quired between Top-Down design (policies, high level rules, orchestration) and
Bottom-Up self-Organization of components (based on simple local rules and dis-
tributed algorithms).

Fig. 7 Example: top-down vs. bottom-up design

Instead of making a top-down "mapping of goals into agents" (as in Multi Agent
Systems approaches or in SOA orchestration with dynamic binding), engineering
self-organization should be carried out in three main steps:

• applying a traditional top-down design of the overall middleware mapping from
goals into (aggregation of) high level components interacting each other (accord-
ing to certain algorithms);

• modeling lower level component behaviors and controlling their aggregation
with self-organization algorithms (simple local rules) allowing bottom-up emer-
gence, for example, of data patterns;

• continuous matching top-down and bottom-up patterns (in order to achieve
global goals) thus "designing by variation" final local rules and component be-
haviors to achievable goals.

Let us consider two use cases as examples of engineering self-organization.
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An attracting scenario for future Telecommunications networks and Internet is
exploiting the opportunity for Users to browse any object in the environment they
live. In other words, considering the evolution of RFID tagging, let us think about
the possibility of using any object (we normally encounter in our day life) as a
pointer to pieces of data, information and services.

This scenario will see a dramatic increase of the data clouds already overlooking
our life. A tuple space of data and information might be queried to extract higher-
level information, knowledge and services.

In this scenario, a bottom-up self-organization of components (wrapping recur-
sively any pieces of data) will be able to provide a more effective way to aggregate
coherent data structures to be served to services and applications. On the other hand,
a top-down orchestration of service components will enable proper composition for
providing services and applications (using those structured data).

Another interesting application scenario, at infrastructural level, addresses the
possibility to exploit bottom-up aggregation for self-organizing "workers" offering
computing and storage capabilities, such as the ones described in [34], in order to
provide a scalable and robust distributed platform for execution of tasks generated
by the orchestrators. Self-organization algorithm can optimize the patterns and inter-
connections of such workers in a way to optimize the distribution of load according
to the deployment of task processing logic and data allocation.

4.1 Game Theory for cross-layer design

This sub-section is elaborating some examples about the applicability of game the-
ory among distributed BAS components for cross-layer design.

In ISO-OSI layered architecture each layer in the protocol stack hides the com-
plexity of the layer below and provides a service to the layer above. Different lay-
ers iterate on different subsets of the decision variables using local information to
achieve individual optimality. On the other hand, vertical cross layer design implies
optimizing the design of various protocol layers into a single coherent theory, thus
aiming at a global optimization of the network.

An adopted strategy [43] is splitting the optimization problem into two steps: first
considering each layer as a solver in isolation (iterating on a set of variables and us-
ing local information, thus implicitly assuming that also other layers are designed
optimally) and then studying the cross layer interactions to perform an overall ver-
tical optimization.

As a matter of fact, game theory has been widely applied to communications
problems in the literature [35], [44]. However, existing formulations tend to focus
on the physical layer exclusively.

An alternative game-theoretic approach can be played between Users and Opera-
tor(s). Idea is decomposing the overall optimization problem into two sub-problems
for optimizing certain utility functions for the Users and the Operator perspectives.
As an example, Users utility functions could be functions (or combinations) of bit-
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rate, reliability, delay, jitter, or power level; on the other hand, Operators utility
functions can be functions (or combination) of congestion level, traffic engineering,
network lifetime, or collective estimation error. Clearly, not every game has Nash
equilibrium, neither is the equilibrium necessarily stable; as such a set of sufficient
conditions should be identified for existence, uniqueness, and stability of the Nash
equilibrium for both games. Finally, primal-dual algorithms should be used itera-
tively for executing the two games and updating shadow prices to coordinate the
physical layer supply and the application services demand. This should assure that
the overall optimization process reaches a right balance between the two optimiza-
tion sub-problems.

An interesting example on how using the game theory for modeling an autonomic
WiMax network is reported in [4]; specifically it concerns the problems of feedback
suppression. Paper describes how self-configuring and self-optimizing procedures
of an autonomic manager component are modeled using game theory.

Let us consider also another example focused on policy control in telecommu-
nication network. A policy can be defined as a set of simple rules that determine
which action(s) to take given a set of conditions. These set of conditions define the
state. Hence, each policy rule is a simple "IF-THEN" statement which describes
the action(s) that will be taken when the condition holds. Therefore a policy can
be implemented as a state machine and as such in terms of autonomic components
(HLC).

Fig. 8 Policy as a state machine

A game theoretical approach can be played among components of PDPs (Policy
Decision Point, e.g., servers containing the policy decisions) in order to reach a
certain equilibrium concerning policy decisions that, in turn, will be enforced to
nodes via PEPs (Policy Enforcement Point, e.g., in a router). Moreover, given the
enforced policies, game theory can be applied to optimize lower networks layers.
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Fig. 9 PDP and PEP

4.2 Auctions for optimized resource allocation

Optimizing resource allocation in distributed network is a complex problem: a dif-
fuse approach is enriching application services with the capabilities of negotiating
for the network resources on which they are wishing to be executed [38]. A further
level of complexity is introduced when considering that even the network resources
may have competing goals. Auction is one of the most investigated approaches.

There are four main types of auction protocol identified by Vickrey [40]: En-
glish, Dutch, Sealed-Bid, and the Vickrey auction protocol. The English auction
is the conventional open forum, ascending price, multiple bid protocol. The Dutch
auction is an open forum, descending price, single bid protocol. The Sealed-Bid, or
tender, is a closed forum, single bid, best price protocol in which all bids are opened
simultaneously. The Vickrey auction is similar to the Sealed-Bid auction, except that
the winning (highest) bid then pays the amount of the second highest bid.

Most state-of-art solutions feature a common space (playing both the role of
resource discovery and allocation) in which multiple negotiations lead to contracts
for the allocation of overlay resources to applications services.

Let us consider a simple example: when an application service requires some
resources, it registers its requirements as an auction. This information is then dis-
tributed to the bidders (i.e., the entities able to provide the required resources) by
a sort of overlay manager/agent that in turn collects any bids. Clearly applications
services have the goal of obtaining maximum resources at the lowest price, whereas
the overlay manager/agent has the goals of maximize the return on its overlay re-
sources with the minimum usage. Different "pricing" policies and bidding criteria
could be used to express different policies, such as optimal/balanced allocation of
shared resources in a service infrastructure, or applying some power savings.

A challenge exercise might be selecting the best, w.r.t., the relevant policy, auc-
tion protocol leading to optimal equilibrium with minimal overhead messages ex-
change (overlay scalability requirements). Auction approach has the advantages to
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be fully distributed, with the possibility to dynamically and autonomously self-
organize the network between resource consumers and resource providers.

5 Application scenarios

In this section some application scenarios for the Bio-inspired Autonomic Structures
are briefly elaborated [28]. A first scenario concern the area of management and ad-
ministration of Telecommunications Networks: growing complexities are requiring
technologies and solutions for simplifying these tasks. A second scenario is consid-
ering the challenge of managing networks of networks linking together computing
and storage resources (e.g., cloud computing). Third scenario is home networking
environment, which is acquiring more and more relevance from the business and
technical perspectives.

5.1 Self-Management for Telecommunications Networks

Telecommunications networks are becoming more and more complex an as such
there is the need of technologies and solutions for simplifying these tasks. This sub-
section is elaborating how BAS concept can be exploited in this direction.

Local and Global control loops enable a component (or an aggregate of com-
ponents) to react in an autonomous way to changes of the internal state and to
events propagated by its external environment. These capabilities can be fruitfully
applied to implement supervision features for controlling the behavior of a compo-
nent, and for actuating corrective or optimization measures when a critical situation
is detected, such as a failure state, a performance problem, or a configuration error
or update. Such autonomic capabilities should be able to address several supervi-
sion areas, such as, Fault, Configuration, Accounting, Performance, and Security
(FCAPS), at different levels, from single HLCs to clusters of HLCs.

Systems implemented according to BAS middleware can be supervised through
complementary and co-operating approaches, at different level, such as at the level
of clusters of HLCs or of single HLCs.

Clusters of HLCs implementing specific services can be supervised, according to
service-specific management policies, through supervision services; as any services,
also supervision services can be implemented as an aggregation of HLCs, each of
them providing basic supervision functions for filtering, correlating, and elaborating
events provided by the supervised HLCs, and for autonomously elaborating correc-
tive or optimization measures. The global control loop of supervised HLCs should
send events to supervision services and collect and process the suggested corrective
or optimization measures. The structure of the cluster of the HLCs implementing the
supervisor services can be self-adapted according to the structure of the supervised
clusters.
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A complementary mechanism is used to supervise the basic functions of single
HLCs and the basic interaction with their neighbors. In order to supervise the huge
amount of HLCs in a BAS middleware, this mechanism performs the supervision
activities in a highly distributed way, by exploiting the self-adaptation characteris-
tics of HLCs. Each HLC executes a local supervision logic, e.g., associated to the
local control loop. In order to achieve a non-local supervision, the local supervision
logic co-operates in a peer-to-peer way with similar logic executed by other HCLs,
according to an overlay network set-up and maintained through self-organization al-
gorithms (e.g., for aggregating HCLs providing or using similar functions/services).
This approach can be used, for instance, in order to implement some FCAPS super-
vision functions without centralized/specialized systems.

The two mechanisms can co-operate; for instance, the supervision services must
be able to react to events produced by an HCL when its local supervision logic is
not able to properly react to some situation. A similar approach was elaborated in
the context of the IST CASCADAS Project.

The same supervision mechanisms could be adopted in order to supervise any
software system structured in a set of interacting components: each system compo-
nent can be associated to an HLC in charge of performing the local supervision logic
or to interact with the HLCs implementing the specific supervision services. For in-
stance, HLCs could be associated to servers in a highly distributed server farm; by
adopting the approach based on co-operating local supervision logic, it could be
possible to perform, in a full decentralized way, actions to improve the performance
of the system, e.g.: improving the response time through load balancing policies, for
redistributing the tasks and/or redirecting the requests from the clients or reducing
the energy consumption, by putting in stand-by mode some servers when there is a
reduction of the service request load.

5.2 Cloud Computing

Cloud Computing vision is based on the idea of providing Users wit computing and
storage services anywhere, appearing as a single point of access for all needs; most
of current solutions are based on distributed resources built on servers virtualization
technologies Cloud Computing encompasses many areas of tech, including software
as a service, a software distribution method pioneered by salesforce.com about
a decade ago; it also includes newer avenues such as hardware as a service, a way
to order storage and server capacity on demand from Amazon and others. What all
these cloud computing services have in common, though, is that they’re all delivered
over the Internet, on demand, from massive data centers [22].

In other words, cloud computing can be defined as infrastructures consisting of
reliable services delivered through next-generation data centers that are built on
compute and storage virtualization technologies [42]. Reliability and security are
big challenges [22]. The access to those services is strongly based on web mech-
anisms (e.g., xml and http). Applications are able to use resources made available
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by a processing or storage "cloud" (autonomous systems) in order to processing a
particular task.

In this case the Operators should compose their offering trading-off bandwidth,
storage and processing power for dynamically providing the best possible services
to users. Different functions can span over different clouds. It is up to the applica-
tion to coordinate the different execution results into something meaningful for the
application itself. Storage and processing can be "purchased" on demand from dif-
ferent providers at the best price. The network is becoming a sort of computer that
offers capabilities on demand. For example, solutions like Amazon’s "Elastic Com-
pute Cloud" [3] or IBM’s "Blue Cloud" technologies are based on open standards
and open source software which link together computers that are used to deliver
Web 2.0 capabilities like mash-ups [41].

Cloud Computing brings in a lot of innovation: the computing essential features
are now within the network (processing and storage), the communication bus is the
network itself, and the input/output devices are the end user terminals. It is possi-
ble to re-formulate the concept of the Network Computer. It should be done in a
smart way and used by the Operators as a means to compete with web actors: "if the
network is a commodity, then also the computer is a networked commoditized re-
source". The browser gets an even more prominent importance: it is really the means
for interacting with services and (virtualized) PCs scattered all over the network.

Bio-inspired Autonomic Structures can be used to support load balancing, dy-
namic configuration, fault tolerance, enhance security and improve quality-of-service
in the presence of the very dynamic conditions. Basic idea consists in adopting au-
tonomic components to manage the high dynamicity of the cloud nodes: not only
node reliability but also Users entering and exiting the cloud in an unpredictable
way.

For example, each peer computing machine should be equipped with autonomic
components capable of exchanging and managing events coming from other peers;
an important task, for example, is informing (e.g., a super peer) periodically about
execution check points in order to allow dynamic reconfiguration of the execution
power. Moreover, storage strategy should face also the problems of data synchro-
nization whilst providing the proper number of duplications for the requested per-
sistency. Also in this case, autonomic abstractions of clusters of data can provided
the required functionalities.

5.3 Home Networking

The Home Networking environment is acquiring more and more relevance from the
business and technical perspectives. There are many ecosystems trying to exploit the
market potential: operators bring to the home access gateways, software companies
bring in the home operating systems and applications (e.g., Microsoft and Apple),
and consumer electronic firms provide equipments and often entire integrated mul-
timedia suite. In any case the user is left alone in coping with the networking and
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integration intricacies of putting in place a really working home network solution.
Things seem to be even complicating due to the introduction in the homes of new
technologies like sensor networks and the like.

There is an urgent need to relief the customers from the burden to put in place
such a complex system. The needs of a typical customer in this environment are in
the field of configuration, tuning, recovery of systems and the entire home network.

The ideal situation is to be able to buy new equipment and to really plug it in the
home network without having to configure and tune all the system. In this context
the autonomic technologies are a fundamental help for customers and even for the
companies that are trying to take advantage from this potentially huge market.

Home networks could be empowered through the adoption of autonomic tech-
nologies: this means that each participating entity (e.g., the home computers, the
access gateway, the printers, the TV sets, but even the fridge and the washing ma-
chine!) has an autonomic behavior. They are able to adapt their behavior to the
current available context (i.e., the network capabilities, the availability of services
provided by networked resources, and so on). This would improve the current situ-
ation, where, in order for them to properly interact and work, there is the need of a
lot of configuration work, and after that there is the need to tune the entire network
depending on particular situation that can arise during the usage of resources (e.g.,
watching a movie from the IPTV can be compromised by the parallel activity of file
download from a computer). Also malfunctioning of one resource can have an im-
pact on other equipment and on the whole functioning of the whole home network.
Available resources need to be optimized and correctly shared and used.

An autonomic environment is put in place, for instance, by enhancing the home
network elements with BAS components, collaborating for providing self-CHOP
features in a distributed way. It means that, the behavior of the home network can
be optimized and the human intervention can minimized. But there is more, at least
two new features could improve the situation and being highly appreciated by the
customers: the ability of the networked resources to accommodate for malfunction-
ing providing at the same time warnings about what is going on the entire system,
and the ability to accommodate in advance for new resources to join the network.

In case one resource is degrading its services, it can inform the whole autonomic
network and it can try to fix the problem. Error messages can be collected and used
to re-balance the load of the home network and at the same time they can be passed
over the network to a monitoring center that can register the events and elaborate
a recovery strategy. For instance, a Network/Service Provider could use the access
gateway as a sort of supervisor of the autonomic home network. It collects the events
and stores a view on the topology and configuration of the whole home network. In
case of malfunctions (of the network or of the single equipment) it can forward the
right information to a monitoring center that could be involved in the solution of the
problem. For example, if the fridge has some problems, first the heating system of
the home can be asked to cooperate and then the relevant fault information can be
sent to the monitoring center for being studied. The monitoring center could be able
to find a solution via software. The new firmware could be downloaded in a secure
way from the monitoring center down to the home network and then to the faulty
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equipment, or, if the fault requires human intervention, the monitoring center can
provide a detailed log and possibly some hints for the solution of the problem.

On the other hand, the home network can be extended with new resources. The
users can be willing to add new multimedia capabilities to the network. Let us as-
sume that the user wants to add a new multimedia storage system. The autonomic
network can help the user in many ways: first it can provide a list of needed con-
figuration features to be available on the new resource in order to support a smooth
integration in the network; secondly, it could even suggest the set of needed pa-
rameters to be set on the new resource. Moreover, the user could rely on the home
networking capabilities and the monitoring center in order to get suggestion on the
specific resource that better fits with the whole networked environment, i.e., a sort
of suggestion about what kind of equipment to buy. If the user does not want to
follow the suggestion, still the autonomic network can help: the user could choose
the resources that he likes the most, and the autonomic network could provide the
list of needed parameters (and their values) for a correct and easy integration of the
resource. If this is not sufficient the autonomic network (together with the monitor-
ing center) could even suggest and made available to the user (and to the vendor of
the new resource) the most appropriated firmware to be used in that situation.

From this few examples it is clear the value that an autonomic approach to home
networking could bring to the users, but also to the entire ecosystems engaged in
supporting the market of home networking.

6 Conclusions

This chapter has presented the vision of a distributed bio-inspired autonomic mid-
dleware for the development of future Telecommunications Ecosystem. Middleware
is basically an ecology of components (interacting with communication primitives
for the self-adaptation and self-organization) virtualizing any devices, network re-
sources, service components and pieces of data. The bio-inspired metaphor lies in
the envisaging of mature capabilities as the cumulative outcome of a large number
of small advances in capability. Each such advance is assumed to be associated with
a particular generative mechanism, so that the nervous system as a whole can be
viewed as an organized collection of such generative mechanisms, each specialized
to some particular generative process.

It should be mentioned that the vision of developing a distributed autonomic
middleware for Telecommunications Ecosystems could benefit also from the activ-
ities of the so-called artificial society discipline: for example, those results coming
from understanding through simulation, emergent phenomena of large population
of agents (modeling people behaviors) are valuable for trying to explain the ob-
servable macro-level characteristics of societies and building future Telecommuni-
cations Ecosystems.

Ongoing activities concern enhancements of abstractions of autonomic compo-
nents and structures (with and their local proprieties), an improvement in the def-
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inition of bio-inspired primitives (fully connected, small world, random, small set
of neighbors, etc.) of components interactions whilst combining top-down policies
with a bottom-up self-organization emergence (based on proprieties feedbacks and
environment perturbations).
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Social-based autonomic routing in opportunistic
networks

Chiara Boldrini, Marco Conti, Andrea Passarella

Abstract In opportunistic networks end-to-end communication between users does
not require a continuous end-to-end path between source and destination. Network
protocols are designed to be extremely resilient to events such as long partitions,
node disconnections, etc, which are very features of this type of self-organizing
ad hoc networks. This is achieved by temporarily storing messages at intermediate
nodes, waiting for future opportunities to forward them towards the destination. The
mobility of users plays a key role in opportunistic networks. Thus, providing accu-
rate models of mobility patterns is one of the key research areas. In this chapter we
firstly focus on this issue, with special emphasis on a class of social-aware models.
These models are based on the observation that people move because they are at-
tracted towards other people they have social relationships with, or towards physical
places that have special meaning with respect to their social behavior. Another key
research area in opportunistic networks is clearly designing routing and forwarding
schemes. In this chapter we provide a survey of the main approaches to routing in
purely infrastructure-less opportunistic networks, by classifying protocols based on
the amount of context information they exploit. We then provide an extensive quan-
titative comparison between representatives of protocols that do not use any context
information, and protocols that manage and exploit a rich set of context information.
We mainly focus on the suitability of protocols to adapt to the dynamically chang-
ing network features, as resulting from the user movement patterns that are driven
by their social behavior. Our results show that context-aware routing is extremely
adaptive to dynamic networking scenarios, and, with respect to protocols that do
not use any context information, is able to provide similar performance in terms of
delay and loss rate, by using just a small fraction of the network resources.
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1 Introduction

The opportunistic networking idea stems from the critical review of the research
field on Mobile Ad hoc Networks (MANET). After more than ten years of research
in the MANET field, this promising technology still has not massively entered the
mass market. One of the main reasons of this is nowadays seen in the lack of a
practical approach to the design of infrastructure-less multi-hop ad hoc networks
[11, 12]. One of the main approaches of conventional MANET research is to design
protocols that mask the features of mobile networks via the routing (and transport)
layer, so as to expose to higher layers an Internet-like network abstraction. Wireless
networks’ peculiarities, such as mobility of users, disconnection of nodes, network
partitions, links’ instability, are seen – as in the legacy Internet – as exceptions. This
often results in the design of MANET network stacks that are significantly complex
and unstable [6].

Opportunistic networks [33] also aim at building networks out of mobile de-
vices carried by people, possibly without relying on any pre-existing infrastructure.
However, opportunistic networks look at mobility, disconnections, partitions, etc. as
features of the networks rather than exceptions. Actually, mobility is exploited as
a way to bridge disconnected “clouds” of nodes and enable communication, rather
than a drawback to be dealt with. More specifically, in opportunistic networking no
assumption is made on the existence of a complete path between two nodes wish-
ing to communicate. Source and destination nodes might never be connected to the
same network, at the same time. Nevertheless, opportunistic networking techniques
allow such nodes to exchange messages. By exploiting the store-carry-and-forward
paradigm [15], intermediate nodes (between source and destination) store messages
when no forwarding opportunity towards the final destination exists, and exploit any
future contact opportunity with other mobile devices to bring the messages closer
and closer to the destination. This approach to build self-organizing infrastructure-
less wireless networks turns out to be much more practical than the conventional
MANET paradigm. Indeed, despite the fact that opportunistic network research is
still in its early stages, the opportunistic networking concept is nowadays exploited
in a number of concrete applications (in Section 2 we provide a brief overview of
them).

It is clear that understanding the real mobility patterns of users is key in this
networking environment, as mobility of users is one of the enabler of end-to-end
communications. To this end, after describing in more details the main concepts of
opportunistic networks and their practical use cases in Section 2, the first part of this
chapter is devoted to analyzing mobility models suitable for opportunistic networks
(Section 3). Specifically, we consider a class of social-aware mobility models, in
which users movements are driven by their social relationships and behavior. These
models have shown to closely reproduce statistical features of real movement traces,
and are thus very good candidate tools for designing and evaluating opportunistic
networking systems. Actually, mobility modeling is one of the most active areas in
the opportunistic networking field.
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Another key area widely explored by researchers is clearly routing & forward-
ing1, due to the inherent complexity of the problem [33, 41]. Therefore, in Section 4
we provide a brief survey of the main routing approaches available in the litera-
ture. Specifically, we categorize protocols based on the amount of context infor-
mation they exploit, by identifying three main classes, i.e., context-oblivious, par-
tially context-aware and fully context-aware protocols. The main idea behind using
context information is to enable routing protocols to learn the network state, auto-
nomically adapt to its dynamic evolution, and thus optimize their operations. In the
final part of the chapter (Section 5) we provide performance results to evaluate the
suitability of this idea in real routing protocols. To replicate realistically the users’
behavior, we consider a mobility model (HCMM) that has shown to realistically
reproduce real human movement patterns as driven by users’ social relationships
and social behavior (fully described in Section 3.1). We exploit the model’s param-
eters to study how different routing approaches react to various levels of dynamism
and users’ sociability. We compare the performance of Epidemic Routing and Hi-
BOp, which are representatives of the opposite ends of the spectrum of possible
approaches, i.e. context-oblivious and fully context-aware protocols, respectively
(Section 5). By analyzing their sensitiveness with respect to a number of parame-
ters, we show that context-aware schemes are able to provide similar levels of QoS
(in terms of message delay and loss rate), by spending a small fraction of the re-
sources spent by context-oblivious protocols. Even more interestingly, we find that
context-aware systems are much more suitable to autonomically learn the features
of the network they are operating in, and the behavior of users as determined by their
social relationships. We show that, unlike context-oblivious systems, context-aware
protocols are able to correctly adapt their operations accordingly. This results in a
much more judicious use of the available resources, also when the network scenario
abruptly changes. We finally draw conclusions and identify research directions in
Section 6.

This chapter blends in a unique framework both mobility modeling and social-
based routing approaches that have been separately considered in [1–5]. In this chap-
ter we provide a unique line of reasoning and a systematic presentation of these
pieces of work.

2 The opportunistic networking concept and its applications

Opportunistic networks share several concepts with Delay Tolerant Networks (DTNs).
The DTN architectures defined by the DTN IRTF Research Group (http://www.
dtnrg.org/docs/specs) focus on a scenario in which independent internets, each
characterized by internal Internet-like connectivity, are interconnected through a
DTN overlay. In order to achieve end-to-end connectivity, the DTN overlay exploits

1 As will be clear in the following, in opportunistic networks the routing and forwarding tasks are
strictly intertwined and usually performed at the same time. Therefore, hereafter we use the terms
routing and forwarding interchangeably.
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occasional communication opportunities among the internets, which might either
be scheduled over time (e.g., due to the activation of a satellite link), or completely
random. In general, in conventional DTNs the points of possible disconnections are
known.

Opportunistic networks can be seen as a generalization of DTNs. Specifically, in
opportunistic networks no a-priori knowledge is assumed about the possible points
of disconnections, nor the existence of separate Internet-like sub-networks is as-
sumed. Opportunistic networks are formed by individual nodes, that are possibly
disconnected for long time intervals, and that opportunistically exploit any contact
with other nodes to forward messages. The routing approach between conventional
DTNs and opportunistic networks is therefore quite different. Since in DTNs the
points of disconnections (and, sometime, the duration of disconnections) are known,
routing can be performed along the same lines used for conventional Internet proto-
cols, by simply considering the duration of the disconnections as an additional cost
of the links [23]. Since opportunistic networks do not assume the same knowledge
about the network evolution, routes are computed dynamically while the messages
are being forwarded towards the destination. Each intermediate node evaluates the
suitability of encountered nodes to be a good next hop towards the destination.

Fig. 1 The opportunistic networking concept.

For example, as shown in Figure 1, the user at the desktop opportunistically trans-
fers, via a Wi-Fi ad hoc link, a message for a friend to a user passing nearby, “hop-
ing” that this user will carry the information closer to the destination. This user
passes close to a train station, and forwards the message to a traveler going to the
same city where the destination user works. At the train station of the destination
city a car driver is going in the same neighborhood of the destination’s working
place. The driver meets the destination user on his way, and the message is finally
delivered.



Social-based autonomic routing in opportunistic networks 35

2.1 Opportunistic networking case studies and applications

Despite the fact that research on opportunistic networks dates back to just a few
years ago, concrete applications and real case studies are already available (for a
more extensive discussion about this point please refer to [32]).

The Haggle Project (http://www.haggleproject.org) is a 4-year project,
started in January 2006, funded by the European Commission in the framework
of the FET-SAC initiative (http://cordis.europa.eu/ist/fet/comms-sy.
htm). It targets solutions for communication in autonomic opportunistic networks.
Among the various activities, the project is putting emphasis on measuring and mod-
eling pair-wise contacts between devices. Pair-wise contacts between users/devices
can be characterized by means of two parameters: contact durations and inter-
contact times. The statistical properties of these parameters are used to drive the
design of forwarding policies [10]. Furthermore, they are also the basis of the design
of concrete applications. For example, Haggle is working with epidemiologists to
experimentally study the correlation between human contact patterns and the spread
of diseases such as flu. The patterns of contacts between people (measured in real
experiments) are also the basis for designing “social-aware” applications. An initial
example of this approach is the design of a content distribution system in urban set-
ting [28]. Refined solutions for this type of applications are being designed in the
Haggle project (e.g., [40]) thanks to the autonomic tools for detecting user social
communities [22].

Opportunistic networks are also applied to interdisciplinary projects focusing
on wildlife monitoring. Usually, small monitoring devices are attached to animals,
and an opportunistic network is formed to gather information and carry it to a few
base stations possibly connected to the Internet. Contacts among animals are ex-
ploited to aggregate data, and carry them closer and closer to the base stations.
This is a reliable, cost-effective and non intrusive solution. Concrete applications
implementing these ideas have been used in the ZebraNet project [25]. ZebraNet
is an interdisciplinary project of the Princeton University performing novel stud-
ies of animal migrations and inter-species interactions, by deploying opportunistic
networks on zebras in the vast savanna area of the central Kenya under control of
the Mpala Research Centre (http://www.mpala.org/researchctr/research/
ongoing.html).

We finally mention the use of opportunistic networks to bring Internet connectiv-
ity to rural areas. In developing countries and rural areas deploying the infrastructure
required to enable conventional Internet connectivity is typically not cost-effective.
However, Internet connectivity is seen as one of the main booster to bridge the digi-
tal divide. Opportunistic networks represent an easy-to-deploy and extremely cheap
solution. Typically, rural villages are equipped with a few collection points that tem-
porarily store messages addressed to the Internet. Simple devices mounted on bus,
bicycles or motorbikes that periodically pass by the village collect these messages
and bring them in regions where conventional Internet connectivity is available (e.g.,
a nearby city), where they can be delivered through the Internet. The same concept
is exploited to enable communication in the opposite direction (from the Internet to



36 Chiara Boldrini, Marco Conti, Andrea Passarella

villages). Projects implementing these concepts are currently ongoing. For example,
the DakNet [35] and KioskNet [19] Projects focus on realising a very low-cost asyn-
chronous ICT infrastructure to provide connectivity to rural villages in India, while
the Saami Network Connectivity Project [14] provides connectivity to inhabitants
of Lapland.

3 Social-based mobility

Mobility modeling for opportunistic networks is a hot topic in the research com-
munity. Opportunistic networks actually exploit users’ mobility to bridge discon-
nections and partitions [17]. Therefore, it is of paramount importance to identify
realistic mobility models, both to drive the protocols’ design, and to provide sen-
sible performance results. In the last few years, there has been an increasing ef-
fort aimed at reconsidering the MANET mobility models [9] for opportunistic net-
working scenarios. There is general agreement on the fact that popular models used
in MANET research (e.g., the random waypoint model) generate quite unrealistic
users’ behavior (e.g., [37]). To address this issue, mobility models are reconsidered
or re-designed based on real users’ mobility traces available to the community (e.g.,
through CRAWDAD).

Several proposals [26, 29, 37] exploit WLAN association traces to derive users’
association profiles and, based on these, mobility models. The resulting models are
very good in capturing the fact that physical locations (WLAN hotspots in this case)
exert attraction on users. The work in [20] takes this idea one step further, and pro-
vides mobility models in which general physical locations (not necessarily WLAN
access points) exert attractions on users. Finally, authors of [16] explain WLAN
association traces with sociological-inspired concepts, noticing that periodic associ-
ation patterns follow sociological orbits, defined by the users’ social behavior. Ex-
ploiting this remark, they provide a user-centric model (rather than an “AP"-centric
one as in the previous works). This body of work is based on the fundamental ob-
servation that users are attracted by particular physical locations, in which they tend
to preferentially spend their time. The limit we see in this approach is the fact that it
does not explain the mechanisms resulting in the modelled mobility patterns. There-
fore, it is not clear if the resulting models are applicable to networking scenarios
other than the ones used for the initial observations (most notably, if they are appli-
cable to opportunistic networks too).

Exploiting the social behavior of users to define the basic mechanisms of users’
movements is a very interesting direction. To the best of our knowledge, the
most advanced proposals of this class are the Community-based and Home-cell
Community-based Mobility Models (CMM and HCMM), that have been compared
in [3]. The most interesting feature of CMM is the leveraging of social network the-
ories and models [13] to define users’ movements. Besides matching well real users’
mobility traces, this approach sheds light on the features of users’ social behavior
that result in the mobility features observed in real traces.
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Despite these nice properties, in [3] we have shown that the original CMM pro-
posal is not able to capture the attraction exerted on users by physical locations.
Specifically, we have found that CMM shows a gregarious behavior, such that all
users in a community tend to follow the first user that moves outside the physical
location where the community is located. The gregarious behavior does not repre-
sent significant scenarios (e.g., working places), where users roam around preferred
physical places, besides being influenced by social relationships between each other.
To address this issue, we propose the Home-cell Community-based Mobility Model
(HCMM), which joins the concepts of CMM (for modeling social relationships be-
tween users) with the concept of defining preferential locations in which users tend
to spend most of their time. Therefore, HCMM is a first step towards joining to-
gether the two promising mobility modeling approaches discussed above. HCMM
still matches characteristic features of real traces (see [3]). Furthermore, we high-
light that, unlike CMM, it provides very simple knobs to control the time spent by
users in their preferred physical locations (Section 3.2).

3.1 CMM and HCMM: functional description

The Home-cell Community-based Mobility Model (HCMM) (fully described in [3])
is an evolution of the Community-based Mobility Model. Community-based (or
group) mobility models are attracting interest of researches in the opportunistic net-
working area, because they are suitable to realistically model the influence of social
relationships between people on the user mobility patterns.

As in CMM, in HCMM every node belongs to a social community (group).
Nodes that are in the same social community are called friends, while nodes in
different communities are called non-friends. Relationships between nodes are mod-
eled through social links (each link has an associated weight). At the system start-up
all friends have a link to each other. Also two nodes that are not friends can have
a link, according to the rewiring probability (pr) parameter. Specifically, for each
node, each link towards a friend is rewired to a non-friend with pr probability.

Social links are then used to drive node movements. Nodes move in a grid, and
each community is initially randomly placed in a square of the grid. Nodes’ move-
ment is made up of two component: first, a node has to select the cell towards which
to move. Node selects the target cell according to the social attraction exerted by
each cell on the node. Attraction is measured as the sum of the links’ weights be-
tween the node and the nodes currently moving in or towards the cell. The target
cell is finally selected based on the probabilities defined by cells’ attraction (i.e., if
a j is the attraction of cell j, then the probability of selecting that cell is a j/

∑

j a j).
After selecting the target cell, node selects the “goal” within a cell (the precise point
towards which node will be heading) according to a uniform distribution. Finally,
speed is also selected accordingly to a uniform distribution within a user-specified
range. HCMM (and CMM) also allows for collective group movements. Specifi-
cally, once every reconfiguration period nodes of each group select a (different)
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cell and move to that cell. Reconfigurations are synchronous across groups, i.e., all
groups start moving to the new cell at the same time. Therefore, during reconfigu-
rations nodes of different groups may get in touch.

The difference between HCMM and CMM is the way of considering the social
relationships with nodes that are outside their starting cell (called “home cell" in
HCMM). Let’s focus on Figure 2. In CMM, when node A moves outside it’s home
cell, it “carries over” all its social relationships, i.e., nodes that have social relation-
ships with A are attracted towards the same cell towards which A is moving. In [3]
it is shown that this has an avalanche effect such that all nodes in A’s home cell
follow A. This behavior does not allow CMM to model relevant mobility patterns,
because nodes are basically not attracted by physical locations, but only by social
relationships between each other. In HCMM when A moves outside its home cell
it does not carry over its social links. Nodes having social relationships with A are
still attracted towards A’s home cell. Furthermore, once A is outside its home cell,
it selects its goal for the next movements outside the home cell with probability pe,
and goes back to the home cell with probability 1− pe. The rationale behind these
modifications is the fact that there are several scenarios in which also physical loca-
tions (besides social relationships) play a role in determining users’ movements. In
HCMM people wishing to meet with A (i.e., having social attraction towards A) are
attracted towards A’s home cell because that is the most likely physical place where
A can be met, or because their social relationship with A is conditioned to the fact
that A is in its home cell (e.g., if someone wants to meet an insurance agent, they
will go to the insurance office, not to the agent’s house).

In a nutshell, HCMM models the fact that humans are social (belongs to groups),
move towards other people they have relationships with (most likely within their
group, but also outside their group), and occasionally move collectively with their
group. Furthermore, results presented in [3] show that the duration of contact and
inter-contact times under HCMM are similar to those measured in real experiments,
which shows that HCMM provides realistic movement traces.

(a) CMM (b) HCMM

Fig. 2 CMM vs HCMM
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In [3] we have presented an analytical model to highlight a gregarious behavior
of CMM. To this end, we computed the remaining probability (Prem), defined as the
probability of no other member of node k’s community to move towards the destina-
tion cell. When Prem approaches 0, at least one node in the starting cell follows node
k. As will be clear from the following analysis, this may generate an avalanche ef-
fect such that all nodes in node k’s community follow node k in the destination cell,
thus revealing the gregarious behavior. We consider the case of a single node (k)
having links outside its community, because it represents the weaker condition for
the gregarious behavior to take place. Therefore, the Prem formula computed in [3]
is actually an upper bound of the remaining probability achieved in the general case.
Specifically, the final expression of Prem is:

Prem =
[

(1−Pout)
l
]n−1
=

[

(

1− wk/( f n+1)
wk/( f n+1)+w

)l
]n−1

, (1)

where l is the average number of times each node in the starting cell selects a new
destination while node k is associated with the destination cell, 1−Pout is the proba-
bility of each node to select the starting cell for the next step, and n−1 is the number
of nodes in the starting cell after node k departure. Furthermore, wk is the average
weight between node k and the other nodes of its community, f n+ 1 the number
of nodes in the cell towards which node k is traveling, and w is the average weight
between nodes of node k community.
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Fig. 3 Prem as a function of n and l.

This model (validated in [3] against simulation results) allows us to show that the
gregarious behavior occurs basically for all sensible ranges of the model parameters.
Just to show an example, Figure 3 illustrates the Prem dependence on n (the number
of the nodes of k’s community), and l (the ratio between the movements duration
outside and within a community).

For small values of l, the grid has few cells and the duration of k’s movement
outside the starting cell is not so different from the duration of nodes’ random move-
ment inside a cell. Thus, a generic node i has not many opportunities of going out-
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side the starting cell, because node k is associated with the destination cell only
for a relatively small amount of time. The trend highlighted in Figure 3 generally
holds true when considering the impact of l, irrespectively of the other parameters’
configurations. Therefore, we will not analyze the impact of l further on.

To better understand the behavior with respect to n, let us rewrite Equation 1, by

k rem=
[

(1−(1/n+2))l
]n−1

.
The remaining probability of a single node (1− (1/n+2)) increases with n, because
a large n corresponds to a “heavy” community, that exerts a strong attraction on its
members. However, as the number of nodes increases, it is more and more difficult
that all nodes remain in the starting cell. The joint effect (shown in Figure 3) is that
Prem is significantly greater than 0 only for small values of n.

3.2 HCMM vs. CMM: Controlling Node Positions

In this section we compare HCMM and CMM. Specifically, we highlight the fact
that HCMM allows for a fine control of the physical locations around which users’
roam, while CMM does not provide any simple control parameter on this. To this
end, we generalize the analytical model presented in Section 3.1. The goal of the
model we present hereafter is to provide closed formulas for the average time spent
by any node inside and outside the starting cell (home cell in HCMM). For ease
of presentation, we still assume to have just two cells, even though the destination
cell can jointly represent all cells other than the starting cell. We assume that all
links can be rewired at the system startup (with probability pr). Therefore, we don’t
assume any difference between a tagged node (node k) and the other nodes anymore.
We also don’t focus anymore on the event of a particular node exiting the starting
cell.

In HCMM and in CMM the status of each node can be represented with a 2-state
discrete Markov chain as in Figure 4, where “IN" means the node is in the starting
cell, and “OUT” means it is outside the starting cell. The difference between HCMM

OUT

out1−p pout

p in in1−p

IN

Fig. 4 Node’s status in HCMM and CMM.

and CMM lies in the expressions of pin and pout, that we will derive at the end of
this section. Otherwise, the analysis of the average time spent in the IN and OUT
states is common to CMM and HCMM.

recalling that w=w . It is easy to show that Equation1becomes P
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First of all, it is straightforward deriving the stationary distributions, πin =

pin/(pin + pout), and πout = pout/(pin+ pout). The average time spent in the IN and
OUT states can be computed via the conditioned probabilities, as follows:

{

E [Tin] = πout pin ·E [Tin|EIN]
E [Tout] = πin pout ·E [Tout|EOUT ]

(2)

where EIN and EOUT denote the events “the node enters the IN state” and “the node
enters the OUT state”, respectively, while πout pin and πin pout are the probabilities of
these events. By recalling that i) the number of steps spent in each state is distributed
according to a geometric law, ii) the duration of each step both in the IN and OUT

state can be approximated with T
(in)

, and iii) the duration of the transitions between

the states can be approximated with T
(out)

, we can compute closed form expressions
for E [Tin] and E [Tout] as follows:



















E [Tin] = pin(1−pout)
pin+pout

·T (in)

E [Tout] =
pout(1−pin)

pin+pout
·T (in)

+
pin pout

pin+pout
·2T

(out) (3)

To specialize Equation 3 to HCMM and CMM we have to compute the transition
probabilities of the corresponding Markov chains, hereafter referred to as p(H)

out and
p(H)

in , and p(C)
out and p(C)

in respectively. By definition, p(H)
in is equal to 1− pe. For the

other parameters, we can use the following line of reasoning, common to HCMM
and CMM. To compute pout, we should focus on a node inside the starting cell,
and compute the attractions of the starting and destination cells. To compute pin, we
should compute the attractions of the starting and destination cells on a node outside
the starting cell. Then, pin and pout can be computed as follows:



























pin =
S A(out)

start

S A(out)
dest +S A(out)

start

pout =
S A(in)

dest

S A(in)
dest+S A(in)

start

. (4)

Clearly, the difference between HCMM and CMM turns out in different expressions
for S Astart and S Adest.

The derivation is simpler in the case of HCMM. First of all, it is easy to realize
that the attractions of the starting and destination cells do not depend on the fact
that the node is inside or outside the starting cell. The attraction to the starting
(destination) cell depends only on the relationships with nodes having the starting
(destination) cell as home, and on the number of such nodes. Thus, the attractions
in HCMM are as follows:























S A(H)
start =

∑n−1
j=1 wi j

n ≃ w

S A(H)
dest =

∑pr(n−1)
j=1 wi j

f n ≃ pr(n−1)w
f n

. (5)
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Closed form expressions for the average time spent in the IN and OUT states in
HCMM can be derived by replacing Equations 5 and 4 in Equation 3.

In the case of CMM computing attractions is more involved. The attraction to
a cell dynamically depends on the number of nodes actually being in that cell. For
the sake of simplicity, we carry on the analysis under the hypothesis that q nodes of
the starting cell are roaming in the destination cell, and q′ nodes of the destination
cell are roaming in the starting cell. The attraction of the destination cell on a node
currently roaming in the starting cell (and belonging to the starting cell’s commu-
nity) are computed based on the following line of reasoning. The node is attracted
to the destination cell because nodes of its community are roaming there. Since
links have been rewired, the node has links just towards a fraction of these nodes,
i.e., towards (1− pr)q nodes, resulting in a contribution to the attraction equal to
∑q(1−pr)

j=1 wi j ≃ q(1− pr)w. The node is also attracted by nodes of the destination’s
community, to which it has been rewired. The probability of the node having been
rewired to a random node of the destination community is (n−1)pr

f n , and the number

of nodes exerting such attraction is (n−1)pr
f n ( f n−q′). Based on the above line of rea-

soning (applicable also to the attraction of the starting cell) it is possible to derive
the required attractions formulas for CMM, as follows:



























































S A(C,in)
start =

(n−1−q)(1−pr)+ (n−1)pr
f n q′

n−q+q′ ·w

S A(C,in)
dest =

q(1−pr)+ (n−1)pr
f n ( f n−q′)

f n−q′+q ·w

S A(C,out)
start =

(n−q)(1−pr)+ (n−1)pr
f n q′

n−q+q′ ·w

S A(C,out)
dest =

(q−1)(1−pr)+ (n−1)pr
f n ( f n−q′)

f n−q′+q ·w

(6)

In the case of CMM the closed form expression of E [Tin] and E [Tout] is not as
simple as in HCMM. The key point is the fact that in CMM these figures depend
on the dynamic evolution of the users’ movements. Specifically, they depend on q
and q′, which are not model parameter, but change based on the nodes movements.
Therefore, in CMM it is very hard to set model parameters to achieve a desired
nodes’ behavior as far as nodes’ physical positions. On the other hand, in HCMM
E [Tin] and E [Tout] do not depend on the dynamic evolution of the system, but de-
pend only on f , n, pr, and pe. This means that HCMM, while retaining the social
theoretical approach of CMM, also provides simple knobs to control the time spent
by nodes in the preferred physical locations. These remarks are confirmed by Fig-
ure 5, which plots E [Tin] and E [Tout] for CMM and HCMM as functions of q (time

is normalized with respect to T
(in)

).
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Fig. 5 Average time in the IN and OUT states as functions of q.

4 Routing in opportunistic networks

In all the case studies described in Section 2, routing is one of the most compelling
challenge. The design of efficient routing strategies for opportunistic networks is
generally a complicated task due to the absence of knowledge about the topologi-
cal evolution of the network. Routing performance improves when more knowledge
about the expected topology of the network can be exploited [23]. Unfortunately,
this kind of knowledge is not easily available, and a trade-off must be met between
performance and knowledge requirement. A key piece of knowledge to design effi-
cient routing protocols is information about the context in which the users commu-
nicate. Context information, such as the users’ working address and institution, the
probability of meeting with other users or visiting particular places, can be exploited
to identify suitable forwarders based on context information about the destination.
In the following of this section we classify the main routing approaches proposed
in the literature based on the amount of knowledge about the context of users they
exploit. We specifically identify three classes, corresponding to context-oblivious,
partially context-aware, and fully context-aware protocols.

4.1 Context-oblivious routing

Routing techniques in this class basically exploit some form of flooding. The heuris-
tic behind this policy is that, when there is no knowledge of a possible path towards
the destination nor of an appropriate next-hop node, a message should be dissemi-
nated as widely as possible. Protocols in this class might be the only solution when
no context information is available. Clearly, they generate a high overhead (as we
also highlight in the performance evaluation section), may suffer high contention
and potentially lead to network congestion [24]. To limit this overhead, the common
technique is to control flooding by either limiting the number of copies allowed to



44 Chiara Boldrini, Marco Conti, Andrea Passarella

exist in the network, or by limiting the maximum number of hops a message can
travel. In the latter case, when no relaying is further allowed, a node can only send
directly to the destination when (in case) it is met.

The most representative protocol of this type is Epidemic Routing (Epidemic
for short) [38]. Whenever two nodes come into communication range they ex-
change summary vectors that contain a compact unambiguous representation of the
messages currently stored in the local buffers. Then, each node requests from the
other the messages it is currently missing. The dissemination process is somehow
bounded because each message is assigned a hop count limit giving the maximum
number of hops it is allowed to traverse till the destination. When the hop count
limit is set to one, the message can only be sent directly to the destination node.

Dissemination-based algorithms also include network-coding-based routing [39],
which takes an original approach to limit message flooding. Just to give a classical
example, let A, B, and C, be the only three nodes of a string network, such as any
message traveling between A and C has to be relayed by B. Let node A generate
message a addressed to node C, and node C generate the message c addressed to
node A. In a conventional forwarding scheme node B has to relay message a to C
and message c to A. In network coding, node B broadcasts a single packet contain-
ing a⊕ c. Once received a⊕ c, both nodes A and C can decode the messages. In
general, network coding-based routing outperforms flooding, as it is able to deliver
the same amount of information with fewer messages injected into the network. A
more extended survey about network coding techniques can be found in [34].

An alternative, drastic way of reducing the overhead of Epidemic without relying
on network coding is implemented by Spray&Wait [36]. Message delivery is sub-
divided in two phases: the spray phase and the wait phase. During the spray phase
multiple copies of the same message are spread over the network both by the source
node and those nodes that have first received the message from the source node it-
self. This phase ends when a given number of copies, say L, have been disseminated
in the network. Then, in the wait phase each node holding a copy of the message
(i.e., each relay node) stores its copy and eventually delivers it to the destination
when (in case) it comes within reach. The analytical model derived in [36] shows
that L can be chosen based on a target average delay. The spray phase may be per-
formed in many ways. Under the assumption that nodes movements are i.i.d., the
Binary Spray and Wait policy is the best one in terms of delay. Any node (including
the sender) holding n copies (n > 1) of the message hands over

⌊

n
2

⌋

copies to the
first encountered node, and keeps the remaining copies for itself. When a node is
left with only one copy of the message, it switches to direct transmission and only
transmits the message to the final destination node when (if) it is met.

4.2 Partially context-aware routing

Partially context-aware protocols exploit some particular piece of context informa-
tion to optimize the forwarding task. The main difference with fully context-aware
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protocols is the fact that the latter usually provide a full-fledged set of algorithms to
gather and manage any type of context information, while the former are customized
for a specific type of context information.

Probabilistic Routing Protocol using History of Encounters and Transitivity
(PROPHET [30]) is one of the most popular examples of protocols falling in this
class. PROPHET is an evolution of Epidemic that introduces the concept of delivery
predictability. The delivery predictability is the probability for a node to encounter a
certain destination. The delivery predictability for a destination increases when the
node meets the destination, and decreases (according to an ageing function) between
meetings. A transitivity law is also included in the algorithm, such that if node A
frequently meets node B, and node B frequently meets node C, then nodes A and
C have high delivery predictability to each other. The PROPHET forwarding algo-
rithm is similar to Epidemic except that, during a contact, nodes also exchange their
delivery predictability to the destinations of the messages they store in their buffers,
and messages are requested only if the delivery predictability of the requesting node
is higher than that of the node currently storing the message.

The context information used by PROPHET is the frequency of meetings be-
tween nodes. The same type of context information is also used by MV [8] and
MaxProp [7], which, in addition, also exploit information about the frequency of
visits to specific physical places. Other protocols use the time lag from the last
meeting with a destination to estimate the probability of delivering the messages.
The bottom line idea (thoroughly investigated in [18]) is that the decreasing gradient
of the time lag identifies a suitable path towards the destination. Examples of pro-
tocols exploiting this piece of context information are Last Encounter Routing [18]
and Spray&Focus [36].

In MobySpace Routing [27] the mobility pattern of nodes is the context informa-
tion used for routing. The protocol builds up a high dimensional Euclidean space,
named MobySpace, where each axis represents a possible contact between a cou-
ple of nodes and the distance along an axis measures the probability of that contact
to occur. Two nodes that have similar sets of contacts, and that experience those
contacts with similar frequencies, are close in the MobySpace. The best forwarding
node for a message is the node that is as close as possible to the destination node
in this space. Obviously, in the virtual contact space just described, the knowledge
of all the axes of the space also requires the knowledge of all the nodes that are
circulating in the space. This full knowledge, however, might not be required for
successful routing.

The final example we mention is Bubble Rap [21] , in which the context infor-
mation is the social community users belong to. In Bubble Rap communities are
automatically detected via the patterns of contacts between nodes. It is assumed that
communities are labeled. Messages originating in a community different from the
destination’s one are forwarded as follows. Assume node A is carrying a message
addressed to D, and meets node B. The message is handed over to B if the com-
munity of B is the same as the community of D, or if B has a higher ranking with
respect to node A. The ranking is measured based on the set of peers a node is usu-
ally in touch with, and is thus a measure of the “sociability” of nodes. Basically,
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Bubble Rap looks for nodes belonging to the same community of the destination. If
such nodes are not found, it forwards the message to increasingly sociable nodes,
which have more chances to get in touch with the community of the destination.
Exploiting context information related to the social behavior of people is one of the
most promising research directions in the area.

4.3 Fully context-aware routing

Fully context-aware protocols not only exploit context information to optimize rout-
ing, but also provide general mechanisms to handle and use context information.
The advantage of this approach is to be much more general than the approaches
mentioned in Section 4.2. Indeed, these routing protocols can be used with any set
of context information, thus allowing the system to be customized to the particular
environment it has to operate in. To the best of our knowledge, two protocols only
fall in this category, i.e., Context-Aware Routing (CAR [31]) and History Based
Opportunistic Routing (HiBOp [1]).

CAR assumes an underlying MANET routing protocol that connects together
nodes in the same MANET cloud. To reach nodes outside the cloud, a sender looks
for the node in its current cloud with the highest probability of delivering the mes-
sage successfully to the destination. This node temporarily stores the message, wait-
ing either to get in touch with the destination itself, or to enter a cloud with other
nodes with higher probability of meeting the destination. Therefore, nodes in CAR
compute delivery probabilities proactively, and disseminate them in their ad hoc
cloud. Note that context information is exploited to evaluate probabilities just for
those destinations each node is aware of (i.e., that happen to have been co-located
in the same cloud at some time). The main focus of CAR is on defining algorithms
to combine context information (which is assumed available in some way) to com-
pute delivery probabilities. Specifically, a multi-attribute utility-based framework is
defined to this end. The framework is general enough to accommodate for different
types of context information. As an example, in [31] authors use residual battery
life, the rate of connectivity change and the probability of meeting between nodes
as context information.

With respect to CAR, HiBOp is more general, as it does not necessarily require
an underlying MANET routing protocol, and is able to exploit context information
also for those nodes that have never been within the same cloud. Furthermore, the
definition and management of context information is not addressed in CAR, while
it is a core part of HiBOp. Finally, and most importantly, CAR does not capture, in
the context definition, any information about the users social behavior, which results
in [1] demonstrate being a particularly valuable piece of information to design an
efficient routing scheme.

Since the performance analysis presented in this chapter focuses on the HiBOp
protocol, we describe its mechanisms in more details in the following section.
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4.4 The History-based Opportunistic Routing protocol

HiBOp is a fully context-aware routing protocol completely described in [1]. HiBOp
includes mechanisms to handle any type of context information. As a particular in-
stance, in [1] the context is assumed to be a collection of information that describes
the community in which the user lives, and the history of social relationships among
users. At each node, basic data used to build the context can be personal informa-
tion about the user (e.g. name), about her residence (e.g. address), about her work
(e.g. institution), etc. In HiBOp nodes share their own data during contacts, and
thus learn the context they are immersed in. Messages are forwarded through nodes
that share more and more context data with the message destination. Since users of
HiBOp have possibly to share personal information, privacy issues should be con-
sidered. Privacy management in opportunistic networks is – in general – a topic still
largely not addressed, and it is not the target of this chapter to provide complete
privacy solutions for HiBOp. It should be noted that the set of information that is
considered in [1] (and that we also consider hereafter) is equivalent to personal in-
formation people advertise on their public web pages (e.g., the working institution
and address) which are, therefore, not perceived as sensitive information from a pri-
vacy standpoint. Designing complete privacy solutions for HiBOp is one of the main
subjects of future work.

Table 1 Identity Table

Personal Information Residence

Name John Doe City Pisa
Email j.doe@iit.cnr.it Street Via Garibaldi, 2

. . . . . .

More in detail, HiBOp assumes that each node locally stores an Identity Table
(IT), that contains personal information on the user that owns the device (an example
is reported in Table 1). Nodes exchange ITs when getting in touch. At each node, its
own IT, and the set of current neighbours’ ITs, represent the Current Context, which
provides a snapshot of the context the node is currently in.

The current context is useful in order to evaluate the instantaneous fitness of a
node to be a forwarder. But even if a node is not a good forwarder because of its
current location/neighbors, it could be a valid carrier because of its habits and past
experiences. Under the assumption that humans are most of the time “predictable”,
it is important to collect information about the context data seen by each node in
the past, and the recurrence of these data in the node’s Current Context. To this end,
each context attribute seen in the Current Context (i.e., each row in neighbors’ ITs)
is recorded in a History Table (HT), together with a Continuity Probability index,
that represents the probability of encountering that attribute in the future (actually
more indices are used, as described in [1]).
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The main idea of HiBOp forwarding is looking for nodes that show increasing
match with known context attributes of the destination. High match means high sim-
ilarity between node’s and destination’s contexts and, therefore, high probability for
the node to bring the message in the destination’s community (possibly, to the desti-
nation). Therefore, a node wishing to send a message through HiBOp specifies (any
subset of) the destination’s Identity Table in the message header. Any node in the
path between the sender and the destination asks encountered nodes for their match
with the destination attributes, and hands over the message if an encountered node
shows a greater match than its own. The detailed algorithms to evaluate matches
are described in [1]. It is worth recalling here that matches are evaluated as delivery
probabilities, and distinct probabilities are computed based on the Current Context
(PCC) only, and on the History (PH) only. The final probability is evaluated via
standard smoothed average, as P = α ·PH + (1−α) ·PCC ,0 ≤ α ≤ 1. The α parameter
allows HiBOp to tune the relative importance of the Current Context and History.

In HiBOp just the source node is allowed to replicate the message, in order to
tightly control the trade-off between reliability and message spread. Specifically,
the source node replicates the message until the joint loss probability of nodes
used for replication is below a system-defined threshold (pmax

l ). Specifically, if
p(i) is the delivery probability of the i-th node used for replicating the message,
and k is the number of nodes used for replication, the following equation holds:

k =min
{

j|∏ j
i=0(1− p(i)) ≤ pmax

l

}

.

5 Performance of opportunistic routing approaches under social
mobility patterns

The goal of this section is to compare the different opportunistic routing approaches
in realistic human mobility scenarios. Specifically, we investigate the protocols’ be-
havior with respect to a number of parameters that describe user movement patterns.
The performance evaluation is carried out by considering the two opposite ends of
the spectrum presented in Section 4. Specifically, we compare a context-oblivious
routing protocol (Epidemic) with a fully context-aware routing protocol (HiBOp).

5.1 Performance evaluation strategy

In the following of the chapter we highlight how the different routing approaches
are able to autonomically react and adapt to the dynamically evolving conditions
of the operating scenario. To this end, we exploit several control knobs provided
by HCMM to highlight the different autonomic properties of Epidemic and Hi-
BOp. Specifically, we identify three main reference cases for our study. In the first
one (Section 5.2), we analyze the reactivity of routing protocols to sudden contacts
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among groups. Specifically, we focus on closed groups (i.e., pr = 0), and then we
force groups to collectively move with varying frequency. Messages addressed to
nodes outside the group can be delivered only during contacts between different
group members during collective movements2. This analysis allows us to under-
stand if routing protocols are able to exploit even those few chances to find good
routes. We analyze this aspect by varying the reconfiguration interval parameter.

In the second scenario, (Section 5.3), we analyze the effect of social relationships
between users. We want to understand how routing protocols react to different lev-
els of users’ sociability, measured as the probability of users having relationships
outside their reference group. We clearly achieve this by varying the rewiring pa-
rameter (pr). The higher pr, the more nodes are “social”, the lesser groups are closed
communities.

In the third scenario, we look at how protocols work in completely closed groups.
In this case no rewiring nor reconfigurations are allowed, and we place a different
group in each cell of the grid. Therefore, the only chance of delivering messages be-
tween groups is by exploiting contacts between nodes at the borders of the cells. We
study the routing protocols’ performance as a function of the nodes’ transmission
range. Basically, this scenario allows us to understand how protocols can exploit
contacts that are not related to social relationships, but just happen because of phys-
ical co-location (e.g., contacts between people working for different companies in
the same floor of a building).

We test routing performance in terms of QoS perceived by users, and resource
consumption. The user QoS is evaluated in terms of message delay and packet loss.
Message delay is evaluated based on the first replica reaching the destination, while
we count a packet loss if all replicas get lost. To highlight some specific different
behavior between Epidemic and HiBOp, in some cases we also show the average
number of hops required by messages to be delivered, and we separate the delay
for messages addressed to friend and non-friend nodes. Resource consumption is
evaluated in terms of buffer occupation and bandwidth overhead. Specifically, the
bandwidth overhead is computed as the ratio between the number of bytes generated
in the whole network during a simulation run, and the number of bytes generated by
the senders. Note that we count in all overheads related to routing and forwarding,
such as the exchanges of Identity Tables, requests for delivery probabilities, etc. To
highlight specific differences, in a few cases we also show the number of copies
spread in the network, and we separately highlight the bandwidth overhead related
to data and non-data messages.

To highlight the effect of human mobility patterns only, we assume i) infinite
buffers, ii) an ideal MAC level that completely avoids congestion impairments, iii)
an ideal physical channel where nodes experience 0% packet loss within a circu-
lar transmission range and 100% packet loss outside; and iv) “infinite” bandwidth
(in the sense that messages can be always exchanged when nodes get in touch). As
thoroughly discussed in [1], this setup tends to favour dissemination-based schemes
such as Epidemic. More specifically, in this configuration HiBOp best results would

2 The probability of contacts due to groups choosing adjacent cells is typically low due to the high
number of cells with respect to the number of groups.
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be to approach the delay and packet loss achieved by Epidemic, while significantly
reducing the resource consumption. Finally, unless otherwise stated, our setup con-
sists of 30 nodes evenly divided in three groups. We assume a square simulation
area 1250mx1250m large, divided in a 5x5 grid. The default transmission range is
125m. Unless otherwise stated 2 nodes in each group generate messages, with an
inter-generation time exponentially distributed (with average 300s). Each message
is addressed to a friend or to a non-friend node with 50% probability. Messages ex-
pire after 18000s. Each simulation run for 90000s (of simulated time). For particular
setups we increased the run lenghts so as to achieve a minimum amount of charac-
teristic events in each run (e.g. reconfiguration runs with reconfiguration interval
equal to 36000s last for 397000s). To make sure that messages still not delivered
at the end of a run will never be delivered (so as to achieve a correct measure of
the packet loss index), during the last 18000s senders do not generate any new mes-
sage. Furthermore, statistics are collected eliminating the initial and final transitory
regimes, i.e., using the steady-state phase of simulation runs only. Each setup was
replicated 50 times: statistics presented hereafter are averaged over the 50 replicas,
with confidence interval at 95% confidence level.

5.2 Impact of collective groups’ movements (reconfigurations)

It is worth recalling that in this scenario the rewiring probability is 0, and thus, ex-
cept for reconfigurations, nodes do not have chances to meet. The reconfiguration
interval varies between 2250s, 9000s, and 36000s. Table 2 shows the QoS perfor-
mance as a function of the reconfiguration interval. As expected, both packet loss
and delay increase with this parameter, because messages addressed outside the
group of the sender are forced to wait for a reconfiguration. The performance in
terms of delay can be better highlighted by separately focusing on delay towards
friend and non-friend nodes. Specifically, Figures 6, 7, and 8 show the delay distri-
bution towards friend nodes (left-hand-side plots) and non-friend nodes (right-hand-
side plots) for the three reconfiguration periods. First of all, delays towards friends
basically do not depend on the reconfiguration interval, since friends are always co-
located in the same group. While only a small amount of messages destined to friend
nodes experiences a delay greater than 10s, most (between 60% and 70% depending
on the reconfiguration interval) of the messages addressed to non-friend nodes expe-
rience a delay greater than 103. Furthermore, note that depending on the frequency
of reconfigurations, distributions’ tails are more or less “heavy”. The worst case is
clearly for a reconfiguration interval equal to 36000s, where about 50% of messages
towards non-friend destinations expire. Also note that, even though HiBOp provides
higher packet loss and delay, the difference with Epidemic is quite thin. Note that, as
buffers and bandwidth are not limited, Epidemic gives a reference upper bound on
the performance achievable by any routing protocol. These results clearly show that
HiBOp is able to identify very good paths even during sporadic, sudden contacts
during reconfigurations among nodes belonging to different groups.



Social-based autonomic routing in opportunistic networks 51

Table 2 Users QoS (focus on the reconfiguration parameter)

reconf (s) HiBOp Epidemic

2250 0 ± 0 0 ± 0
ploss (%) 9000 8.16 ± 1.68 5.52 ± 1.46

36000 25.64 ± 1.30 24.12 ± 1.31
2250 1202.52 ± 91.09 907.10 ± 67.08

delay (s) 9000 3651.68 ± 295.05 3204.58 ± 278.70
36000 5615.43 ± 225.93 5445.11 ± 161.53
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The good performance in terms of user QoS shown by HiBOp comes along with
a drastic reduction in resource usage. Figure 9 shows the buffer occupation over time
shown as a percentage of duration of a simulation run (points are average values over
the replicas). HiBOp is much less greedy in spreading messages, and therefore the
buffer occupation is drastically reduced. This is a general difference between Epi-
demic and HiBOp, which is confirmed in all scenarios we have tested. The extent of
this reduction depends on the scenario, and can be as high as an order of magnitude.

Figure 10 compares Epidemic and HiBOp with respect to the number of copies
generated (recall that the number of nodes in the network is 30, thus the maximum
number of copies is 29). High resource consumption for Epidemic is due to the
fact that each node copies all its messages to all nodes it encounters. Therefore, the
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Fig. 8 Delay distributions with reconfigurations every 36000s

more the contacts between nodes, the more the spreading of messages. Figure 10
shows that approximately 50% of messages (corresponding to the messages with
a non-friend destination) are spread by Epidemic across the whole network, when
the reconfiguration interval is equal to 2250s and 9000s. The performance in terms
of delay and packet loss shows that in this particular scenario flooding yields no
significant advantages. As contacts during reconfigurations involve entire groups,
a fully replication inside each group is not more convenient than replicating the
message on a single node of each group. HiBOp, due to its reliability rule, tends to
replicate the message inside the sender’s group, but does not flood the other groups
upon reconfigurations, thus resulting in lower number of copies.
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Finally, Figure 11 shows the bandwidth overhead of the two protocols. It allows
us to highlight a main difference between HiBOp and Epidemic, related to how they
react to movement patterns. Reducing the reconfiguration interval (from 36000s
down to 2250s) means increasing the forwarding opportunities, because nodes get
in touch with more peers more frequently. Epidemic does not use these additional
“connectivity resources” wisely, as it is based on flooding. Therefore, the bandwidth
overhead greatly increases. HiBOp behaves in a different way. When groups do not
mix (reconfiguration interval equal to 36000s) paths for messages going outside
the sender’s group are seldom available. HiBOp realizes this, because context in-
formation about nodes outside the group is rarely available, and avoids consuming
resources uselessly. As nodes mix more and more (reconfiguration intervals equal
to 9000s and 2250s), also HiBOp (as Epidemic) generates more overhead, because
more contacts become available, which may possibly lead to paths towards the desti-
nation. However, the rate of increase of the HiBOp’s overhead is significantly lower
than the one of Epidemic, thus showing a much more judicious use of the available
network resources. These results indicate that exploiting context information makes
HiBOp much more efficient than flooding-based protocols, despite the additional
resources needed for context management purposes.

5.3 Impact of User Sociability

To understand the impact of user sociability on routing performance we vary the
rewiring parameter (pr). When a node goes to a cell different from its home it shows
to nodes in the “foreign” cell context information related to its home cell, thus be-
coming a good next hop for messages destined to its friends. On the other hand,
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Fig. 10 Copies Distribution (focus on the reconfiguration parameter)

it roams in the foreign cell for a number of rounds and collects context data about
nodes in that cell. When it then comes back to the home cell, this knowledge can
effectively be used for sending messages to that particular foreign cell. Indeed, that
node is likely to go back to the same foreign cell after a while, because the social
links towards nodes in that cell are still active. Clearly, the routing performance
is sensitive to the user sociability, because users having social relationships with
other groups are the only possible way of getting messages out of the originating
group. This sensitiveness impacts differently on the resource usage of HiBOp and
Epidemic, as shown by Figure 12. Similar remarks drawn with respect to reconfigu-
ration intervals apply also here. The higher the users sociability (high pr), the higher
the mix between nodes and the forwarding opportunities. While Epidemic naively
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uses all these resources spreading messages, HiBOp leverages nodes’ mixing (and
the resulting spread of context information) to identify good paths more and more
accurately.
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Fig. 12 Bandwidth overhead (focus on the rewiring parameter)

Figure 13 shows how data and non-data traffic contributes to the bandwidth over-
head. As already said, Epidemic exploits all the possibilities of reaching the des-
tination by copying the messages on nodes as much as possible. This results in a
high overhead, which is useless particularly for highly connected scenarios where
there are a lot of forwarding opportunities. Note that the high Epidemic’s over-
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head essentially comes from the aggressive replication of messages (i.e., from data
traffic). Indeed, Figure 13(b) shows that the traffic related to forwarding (i.e., the
traffic related to the exchange of summary vectors) actually decreases when more
connectivity opportunities are available. The buffer occupation curves (Figure 14)
indicate that for higher rewiring, the buffers under Epidemic are less full, because
messages can be delivered more quickly to the destinations. Therefore, the size of
summary vectors decreases, and this explains the trend of Figure 13(b). However,
the reduction in terms of forwarding traffic is overwhelmed by the aggressive spread
of message, which results in an increase of the overhead related to the data traffic
(Figure 13(a)) and, ultimately, to the overall overhead increase Figure 12. Unlike
Epidemic, HiBOp “learns” the degree of connectivity of the network and uses this
knowledge for adjusting the load. More specifically, HiBOp learns the current state
of the network through the exchange of context messages. As context information
is spread more and more widely (rewiring equal to 0.1 and 0.5) paths become more
and more known, and HiBOp reduces the exchanges of both data and non-data mes-
sages.

Epidemic’s high resources consumption is confirmed by Figure 15. With Epi-
demic, between 50% and 70% of messages are spread through the whole network.
Epidemic tends to exploit all opportunities, regardless of the sociality of users.
Therefore, when nodes are more mixed (higher rewiring), Epidemic floods the net-
work more aggressively. As we will show when presenting the QoS performance
figures, this is basically useless and thus results in wasting memory and bandwidth
resources. HiBOp, instead, is aware of the current state of the network and adjusts
the number of replicas of each packet based on the sociality of the network. Note
that, even with the lowest sociality (rewiring = 0.03), only about 30% of messages
are copied to more than ten nodes. Note also that, unlike Epidemic, this percentage
decreases to zero with higher levels of sociality.

As far as the QoS performance figures (Table 3), again the packet loss is neg-
ligible (so we do not show it), while – as expected – the average delay decreases
as users become more social. The performance of HiBOp are still not far from the
bound represented by Epidemic. It is also interesting to note (Figure 16) that the
delay of messages towards friend nodes tends to slightly increase as users become
more social, because they spend (on average) more time outside their home group.
However, as shown by Table 3, the advantage of connecting more efficiently users
between groups as users become more social overwhelms the slight performance
reduction experienced by friends.

Table 3 Average delay (focus on the rewiring parameter)

pr HiBOp Epidemic

0.03 170.86 ± 25.86 130.28 ± 20.59
delay (s) 0.1 129.42 ± 12.51 83.20 ± 8.57

0.5 104.91 ± 8.87 73.69 ± 7.16
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Fig. 13 Bandwidth overhead (focus on the rewiring parameter)

Mobility affects also the number of hops a message passes through before reach-
ing its final destination (see Figure 17). As our setup simulates a social network,
nodes belonging to the same community are expected to meet more frequently and
for a longer time. This results in better QoS performances for messages destined
to friends. As the network becomes more mixed, nodes tend to spend more time
outside their community, thus becoming good forwarders for messages destined
outside. The proximity between friends reduces as rewiring increases and more for-
warding hops are needed in order to reach the destination (Figure 17(a)). On the
other hand, the proximity between non-friend nodes increases and the number of
hops a message passes through decreases (Figure 17(b)).
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5.4 Breaking Closed Groups

In this set of simulations we use a 3x3 grid with 9 groups of 5 nodes each. Just
one node, located in the upper left cell sends messages, destined to a node in the
lower right cell. Recall that the only way a message can reach its final destination
is through edge contacts with nodes between which no social relation exists. By
varying nodes’ transmission range we can analyse how this edge effect impacts on
forwarding. We use three values for the transmission range, i.e. 62.5m, 125m and
250m. Therefore, nodes cover – on average – less than half a cell, slightly less than
a cell, and one and a half cell.

The bottom line of the results is that HiBOp is not suitable for networks with no
sociability. At very small transmission ranges (62.5m) HiBOp is not able to deliver
acceptable QoS (Table 4). HiBOp needs a minimum number of contacts between
users to spread context information around. Indeed, at 125m HiBOp restores ac-
ceptable QoS at least in terms of packet loss, and is fully effective at 250m. Also
in this case Epidemic and HiBOp behave differently with respect to the bandwidth
overhead (Figure 18). At 62.5m HiBOp seldom forwards messages. As context data
is not circulating, nodes in the sender’s group are almost all equally fit to carry the
messages closer to the destination. At a high transmission range the context data is
circulating effectively, and therefore good paths can be identified soon. In the in-
termediate cases (e.g., transmission range equal to 125m) HiBOp is not (yet) able
to correctly learn the status of the network, and this results in a higher overhead
with respect to Epidemic. However, note that these results confirm that Epidemic is
not able to exploit rich connectivity scenarios without flooding the network, since it
increases its overhead at high transmission ranges.

Figure 19 shows the average number of hops (recall that in this configuration
statistics are related to non-friend nodes only). We can see that Epidemic generates
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Fig. 15 Copies distribution (focus on the rewiring parameter)

44 copies of each message, i.e. it replicates messages on all nodes, as it is not aware
of the current state of the network. In HiBOp, the number of copies increases as
context information spreads, i.e., for increasing transmission ranges. This is because
when the transmission range is low there is no reason to replicate messages, since
no good path can be found in a context-aware scheme if context information cannot
spread. As soon as context information can be exploited, paths can be found and
HiBOp starts replicating messages. Finally, Figure 20 shows the average number of
hops. In both cases this figure decreases with higher transmission ranges, as more
contact opportunities become available, and a single hop is able to bring messages
closer to the destination.
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Table 4 Users QoS (closed groups)

range (m) HiBOp Epidemic

62.5 61.41 ± 10.16 0 ± 0
ploss (%) 125 0 ± 0 0 ± 0

250 0 ± 0 0 ± 0

62.5 14732.57 ± 1242.74 535.50 ± 14.05
delay (s) 125 576.40 ± 177.56 102.83 ± 1.82

250 1.77 ± 0.55 23.58 ± 0.80
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6 Conclusions

In this chapter we have jointly presented results in two key research areas of the au-
tonomic opportunistic networking research field. Specifically, we have considered
mobility models based on users social relationships and behavior, and context-aware
routing. Mobility models are a cornerstone to design and evaluate routing protocols,
as users mobility is one of the key enabler of end-to-end communication in oppor-
tunistic networks.

We have discussed social-based mobility models in which users movements are
based on social ties between people. We have highlighted that this information alone
is not sufficient to model relevant scenarios, and that it should be complemented
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with information about the physical places where people spend their time due to
their social behavior. We have presented a mobility model exploiting both types of
information, and shown its advantages through an analytical model.

We have then considered routing issues, and how the social aspects of people
behavior impact on context-aware routing protocols. Specifically, we have high-
lighted how different approaches to routing in opportunistic networks are able to
autonomically adapt to the dynamic scenarios resulting from humans’ mobility pat-
terns. We have framed this work in the ongoing research on routing for opportunistic
networks, and we have compared the performance figures of two protocols at the op-
posite ends of the spectrum as far as the use of context information is concerned,
namely Epidemic and HiBOp.
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With respect to the routing aspects, the results we have presented can be sum-
marized as follows. Context-based routing actually provides an effective conges-
tion control mechanism, and, with respect to dissemination-based routing, provides
acceptable QoS with drastically lower overhead, unless in very adverse scenarios.
Indeed, HiBOp is able to automatically learn the connectivity opportunities deter-
mined by users movement patterns, and exploit them efficiently. This autonomic,
self-learning feature is completely absent in dissemination-based routing schemes.
The results also suggest a hybrid scheme for networks with varying levels of user so-
ciability. When groups are very isolated, context data cannot circulate, and cannot be
used for taking effective forwarding decisions. In such cases, dissemination-based
schemes seem the only way to enable communication between groups. As soon as
users become more social, context information spreads in the network, and context-
based routing becomes a preferable solution. An interesting follow-up of this work
is how to exploit context information to distinguish these different scenarios and
select the appropriate routing scheme.

From a complementary standpoint, our results show that in opportunistic net-
works user sociability helps routing: users’ relationships outside their “home” com-
munity allow context information to spread in the network, and make forwarding
more and more efficient. These results open interesting research directions. Actu-
ally, since opportunistic networks build the network by exploiting mobile devices
people carry with them, looking at social network theories to model users’ social
relationships and exploit these models for designing network protocols is a very in-
teresting research direction. Indeed, the EC FET-PERADA SOCIALNETS project
(started in February 2008) will be looking at these aspects. Other interesting re-
search directions include providing privacy and security support through distributed
and scalable systems in opportunistic networks. Also, another challenging research
direction is how to integrate purely infrastructure-less opportunistic networks (like
the ones we have considered in this chapter) with access points to the Internet infras-
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tructure. Finally, designing data-management systems (built on top of opportunistic
routing schemes) to improve data availability in opportunistic networks is another
direction we find extremely important.

Acknowledgements This work was partially funded by the European Commission under the
HAGGLE (027918) FET-SAC Project, and under the SOCIALNETS (217141) FET-PERADA
Project.
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A Collaborative Knowledge Plane for
Autonomic Networks

Maïssa Mbaye and Francine Krief

Abstract Autonomic networking aims to give network components self-managing
capabilities. Several autonomic architectures have been proposed. Each of these ar-
chitectures includes sort of a knowledge plane which is very important to mimic
an autonomic behavior. Knowledge plane has a central role for self-functions by
providing suitable knowledge to equipment and needs to learn new strategies for
more accuracy. However, defining knowledge plane’s architecture is still a challenge
for researchers. Specially, defining the way cognitive supports interact each other
in knowledge plane and implementing them. Decision making process depends on
these interactions between reasoning and learning parts of knowledge plane. In this
paper we propose a knowledge plane’s architecture based on machine learning (in-
ductive logic programming) paradigm and situated view to deal with distributed en-
vironment. This architecture is focused on two self-functions that include all other
self-functions: self-adaptation and self-organization. Study cases are given and im-
plemented.

1 Introduction

An autonomic element needs to know its internal state and the environment state.
This ability of being aware is known as self-awareness and implies an ability of
knowledge management. Building, using and managing network knowledge are
cognitive processes that are not trivial. Hence intelligent capabilities are concen-
trated in functions that permit to acquire and maintain knowledge.
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Knowledge plane has been proposed in [8] to provide an infrastructure for man-
aging, sharing and reasoning about network’s knowledge. It helps to close the "con-
trol loop" by giving autonomic element ability to automatically get experience and
reliability during its activity. In most of current proposed autonomic architectures,
knowledge plane is included because of its importance to achieve self-awareness and
to manage all aspects of network’s knowledge by using cognitive supports (learning
and reasoning). However, interactions between elements of knowledge plane and
the ones between two knowledge planes are somehow fuzzy or, sometimes, very
different from one architecture to another. This difficulty has, as a consequence, ap-
pearance of new planes (Inference Plane [30], Information Plane [32]. . .) as part of
(or out of) knowledge plane. A challenge in this topic is to design knowledge plane
architecture that could be integrated in autonomic architecture instead of consider-
ing it as a new autonomic architecture itself ( [1]).

This architecture should take into account important aspects:

• Distributed cognitive infrastructure: Machine learning and reasoning are tradi-
tionally centralized processes from AI 1 area and these processes are very impor-
tant in knowledge plane’s design. They need to be adapted to highly distributed
environment of networking.

• Knowledge representation: Some efforts have been made for information models
like CIM and MIBs. For knowledge plane context the problem is a little bit more
complex. For example a piece of knowledge should be created by a cognitive
process and evolved during activity to be more accurate. [12] and [27] identify a
lot of problems on this topic.

• Knowledge Enrichment: It consists in discovering new knowledge from the ex-
isting ones to improve equipment efficiency.

In this paper we propose a knowledge plane architecture based on Machine learning
tools and reasoning processes that can be integrated in most of existing autonomic
architectures rather than creating a new autonomic architecture. In this architecture,
knowledge plane element, learns strategies and enriches knowledge using induc-
tive logic programming paradigm. By the way, we propose a high level knowledge
representation considering it as state-strategy correspondences. Network knowledge
is distributed between knowledge plane’s elements and they share their knowledge
with their neighborhood through situated views.

The remainder of this paper is organized in three parts: the first section presents
autonomic networking’s paradigm. The second section presents in detail our pro-
posed knowledge plane architecture’s elements and an application context (Diff-
Serv) to show the self-adapting mechanisms (building blocks and interactions) and
its benefits. And the last section shows collaborative processes (self-organization)
of our architecture in details and our proposed knowledge sharing algorithm.

1 Artificial Intelligence
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Fig. 1 Autonomic computing
architecture

2 Autonomic Networking

2.1 Basic concepts

Autonomic networking is inspired from IBM’s initiative ACI (Autonomic Comput-
ing Initiative ) and aims to give network elements capacity to manage themselves
(Fig. 1). This management consists of adapting themselves to their environment
changing while achieving high-level goals given by administrators. This concept of
autonomic networking will decrease network management costs and time tuning, by
delegating management complexity to the equipment level. Basic concept of self-
functions necessary to achieve autonomy has been defined. The core self-functions,
as defined in IBM’s initiative, are: self-configuring, self-healing, self-optimizing,
and self-protecting. These core functions combined together enable an equipment
to achieve autonomic behavior.

IBM has been the first to design an autonomic architectures in 2001 [17, 19]
which is compound of a central element called autonomic element. Autonomic el-
ement is composed of an autonomic manager and one or more managed resources.
Since this first architecture some other architectures have been proposed ( [1, 2, 10]).

To manage knowledge, most of these architectures include cognitive supports
that, brought together, have the same role as knowledge plane.

2.2 Related Work

Designing knowledge plane architecture has been central to a large number of ar-
ticles. The first architecture is proposed by the knowledge plane inventor [8], but
it doesn’t define interactions between elements. It just defines what we need to
solve the problem. FOCALE [29] (Fig. 2) is another architecture defining multi-
ple control loops. But, model-based translation and combination of many control
mechanisms make this architecture complex. Context-aware system is another ap-
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proach for self-adapting architecture. But this architecture is highly oriented mobile
services management and does not use Machine learning tools.

Autonomic Internet project [1, 3] also defines an architecture with adaptive loop
[13]. Another work presents a knowledge plane combined with new planes such as
action plane and execute plane [20].

Self-organization function involves mechanisms to realize distributed intelli-
gence in autonomic networks [26]. Distributing intelligence has been studied since
several decades by the artificial intelligence researchers with the multi-agent sys-
tems (MAS) [33]. However, the problematic of the collaboration with sharing
knowledge still remains a challenge in spite of some propositions like [6, 22].
The network management researchers began to see in the MAS a means achiev-
ing the self-organization (example [23]) through a knowledge plane constituted by
autonomous agents.

But in most of articles, the agents are dedicated to a specific task with a limited
(or without in some cases) amount of exchanges among the agents [7, 22]. Then
MAS’s paradigm influences a lot the vision of the knowledge plane. Even besides
the notion of situatedness, an important notion in the knowledge plan seems to be
directly inspired from the definition of an autonomous agent. Situatedness in this
context means simply that an agent has the knowledge of its environment and in-
teracts with this last [14]. As we can notice the meaning of situatedness is a quite
different from the one given above in networking context. The modification is due
to the factor of scalability in networking. The ideal situation in a totally distributed
intelligence is to use any calculus power available in the network. One node should
construct its own knowledge and share it with its peers while propagating it to nodes
where its knowledge is useful (the other nodes may not be in the same context for
example).

Also some autonomic biologically-inspired architectures have been proposed
in [4]. However, the mapping between biological systems and autonomic networks
is still a challenge (because of complexity to determine best analogies between these
domains). In [6] authors propose a peer-to-peer solution for knowledge manage-
ment. The knowledge sharing also involves in some distributed knowledge manage-
ment that is principally explored by the AI researchers. That guaranties the coher-
ence of the knowledge. But there may be a difference (as in situatedness) of meaning
of coherent knowledge between the two domains. In networking environment if the
local knowledge is coherent the global knowledge could be considered as coher-
ent for example. This is due to the possible heterogeneity through the network and
that is the essence of the situatedness, which cares the context changing to limit the
knowledge propagation.

Our architecture is focused on two aspects. On one side it defines how autonomic
element infers and induces optimal strategies by learning from using information
feedback. On the other side it defines how elements are organized to share their
knowledge through situated views.
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3 Collaborative knowledge plane architecture

3.1 Architecture overview

Since IBM autonomic initiative, a large number of self-functions have been listed
among them: Self- and context-awareness, self-locating, self-negotiation and the list
is far away from being exhausted. This growing number of self-functions rather than
clarifying autonomic paradigm, makes its understanding more complex. We propose
at first to reflect about the kernel self-functions that involves all other autonomic
functions. Determining this kernel function simplifies number of self-functions to
achieve before realizing autonomic networking. We think that self-adaptation and
self-organization together embody all other self-functions. Self-adapting processes
include all processes and mechanisms to adapt local resources to environment
changes, and self-organizing includes all interactions between network element and
its environment (neighbors). We base our knowledge plane architecture on these two
self-functions and we represent them by two loops: Organization (or collaborative)
loop and adaptation loop. Fig. 2 describes these two loops.

Self-organization is the horizontal loop. Organization loop involves global knowl-
edge exchanges between elements composing knowledge plane. It is the knowledge
sharing process in order each element takes into account its neighbors in its decision
and having a situated view of their knowledge. Organization loop implements self-
organization of network elements. It refers to distributed knowledge management.
Self-adaptation is the process done by the vertical loop. Adaptation loop is the in-
teraction between autonomic manager and managed resources. Autonomic manager
gets information about managed resource state in order to analyze it and takes a
strategy to adapt (if necessary) its configuration and behavior to current state. This
vertical loop implements self-adaptation since locally each equipment manages it-

Fig. 2 FOCALE loops
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self to be efficient according to the current state. Then knowledge plane induces
best strategies for adapting equipment to the context. After this, feedback is used to
evaluate the efficiency of strategy. An "example" that will be used by the learning
algorithm is built from at the end of this loop (see section 4.1).

3.2 Basic Concepts

In this knowledge plane architecture (Fig. 3) many objects are manipulated by pro-
cesses: Monitoring element manipulates information about equipment state, Action
element manipulates strategies and other kinds of objects (facts, examples are ma-
nipulated by learning and reasoning processes). Defining these objects could clarify
a better knowledge representation. Fig. 4 summarizes treatment of all objects from
simple information to strategies (knowledge). During its activity, Machine learning
process needs to evaluate its learning actions to be efficient. To do this we use ob-
servations set O (or facts) to have a feedback memory of actions performance. We
propose a definition of observation for the context of the knowledge plane as a set
of a triplet <e1,a,e2> where e1 and e2 are equipment states and a an ordered set of
actions. This triplet means that the equipment was, at time t0 , in the state e1 and

Fig. 3 Management loops

Fig. 4 Objects processing in knowledge plane
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applied the set of actions a and its state moved to be e2. Now we can define notions
that will be useful for the remaining parts.

Definition 1. An elementary action of equipment is a predefined action that the
equipment can execute without needing for a translation into another script format.

Definition 2. Given E the set of the possible states of an equipment, A its set of
elementary actions. An observation is an element of the following set:
O = A×E×A. Where A∗ contains all elements of all Cartesian powers of A.

A∗ = A×A2×A3× . . . = a,∃n ∈ N/a ∈ An (1)

The set E (of equipment sates) is ordered to help appreciation if an action brings to
a better or a worst state. From this order we can define two kinds of observation:
positive observations (O+) and negative observations (O−).

Definition 3. Given O the set of observations in equipment’s knowledge plane. An
observation o = (e1,a,e2) is:

• a positive observation of fact if e2 is better that e1

• a negative observation otherwise

This partitioning is used to determine efficient (optimal) strategies for each in-
ternal state of equipment. We consider θ indicator which measures efficiency of an
action in a state. An "atomic" strategy could be seen as a correspondence between
a state and an elementary action. We give the following definition to fix these con-
cepts.

Definition 4. A strategy s is a correspondence between an equipment state (E) and
an ordered set of actions (A∗) to improve it. More formally, given S set of all strate-
gies of an equipment we have:

• s ∈ S ⇒ s ∈ E×A∗

• In a strategy an action cannot be executed more than a limited number of times.

Definition 5. A strategy s = (e,a) is called elementary. That means action part (a) is
compound of only one action.

Elementary strategies are evaluated by indicator θ:

θ(e,a) =

∥

∥

∥(e,a)+
∥

∥

∥+n(e,a)

‖(e,a)‖+me
(2)

• θ is probability law
•
∥

∥

∥(e,a)+
∥

∥

∥ is the number of positive observations concerning e and a, and
∥

∥

∥(e,a)−
∥

∥

∥

negative observations :
‖(e,a)‖ =

∥

∥

∥(e,a)+
∥

∥

∥+
∥

∥

∥(e,a)−
∥

∥

∥

• me is a Laplace regulator for initializing indicators, considering :

me =
∑

(e,a)∈S
(n(e,a))
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Machine learning process maintains θ indicators during activity. Then it builds
incrementally correspondence between states and optimal actions. A second learn-
ing process induces new strategies from background knowledge and examples. We
consider Inductive Logic Programming (ILP [25]) for doing this task. Examples are
strategies, examples are said to be positive (in E+) if θ < 1

2 and negative (in E−) oth-
erwise. For Inductive Logic Programming process positive examples are strategies
to be used when inducing new strategies and negative strategies are considered to
be inefficient (and not to be used at all).

At last it could be useful to remind the difference between data/information and
examples and knowledge. In the human being case information can be transformed
into knowledge by the simply keeping it in mind. However in the network domain
and notably in a dynamic environment, information is to notify an event, which
occurs internally or in the environment. Modifying a piece of information values
changes its reliability radically in term of accuracy. Also the fact to deduce a piece
of information from another is not always possible and in some cases has no sense.
At the opposite, knowledge is a perception of the reality, it can be modified to better
correspond to the reality. A fundamental difference also is genesis between informa-
tion and knowledge. Information is a result of an event in an environment whereas
knowledge is the result of a cognitive process such as Machine learning, generaliza-
tion, deduction, etc. We did not treat the information sharing because the informa-
tion plane [32] has been proposed intentionally to manage all the aspects related to
the collection of information in the network. We only use information to determine
equipment state.

3.3 Knowledge plane building blocks

Self-adaptation architecture needs knowledge plane in order to adapt efficiently. In
order to realize self-adaptation we define building blocks compounding knowledge
plane to better know how it works. In this section we present our vision of what
should be building blocks compounding knowledge plane. Knowledge plane archi-
tecture we propose includes four elements (Fig. 5) that work together to realize
self-adaptation and self-organization.

Reasoning engine

It enables to automatically enforce suitable actions and strategies. Decisions are
taken according to the current state of knowledge base, equipment state and even-
tually information from neighbors in order to optimize working. Reasoning engine
interacts out of knowledge plane with the Planning in IBM’s architecture.
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Knowledge base

It contains knowledge and information models, and represents experience gained by
knowledge plane. It includes two kinds of knowledge: knowledge built locally from
local experience and the knowledge from sharing process. All this knowledge needs
to be validated incrementally with during activity, what is combination of knowl-
edge exchange process and Machine learning engine. Defining knowledge form is
one of the most important challenges for researchers. Ontologies have been widely
studied and seem to be very complex to manage. We consider that all knowledge
is not useful for autonomic tasks. To realize control loop an autonomic component
only needs some strategies for acting and information about state of its state and
environment.

Machine learning algorithm

This is the most important part because it products knowledge in knowledge base
and makes the reasoning (which is related to learning process [11]) engine working
efficiently. A unique definition of Machine learning does not exist but in cognitive
sciences there is an accepted definition: "Learning is capacity to improve perfor-
mance during an activity" [9]. It gives autonomy by validating local knowledge and
discovering new knowledge by enrichment process (see section 4.1) and knowl-
edge sharing process. From managed resource activity and alarms, Machine learn-
ing algorithm builds knowledge about optimized built-in knowledge and discovers
another one. Machine learning updates knowledge base during its activity.

Knowledge sharing processes

They consist, in one side, of collaboration between knowledge plane elements and in
other side, of making the Machine learning algorithm to be distributed. Knowledge
sharing processes help equipments to cooperate in their knowledge validation and
strategies sharing. Autonomic elements need taking into account one to others to
have a coherent global behavior. This process is presented in section 5.2.

This Knowledge plane architecture interacts with autonomic entity’s elements
which are Monitoring, Analyzing, Planning and Executing to close the adaptation
and organization loops. When Monitoring gets information about the managed re-
source state it transmits it to Analyzing. Analyzing interacts with the Machine learn-
ing module to detect if it should plan a set of actions and chooses them if necessary.
The Machine learning uses the reasoning engine to extract the most pertinent strat-
egy for current situation.

This strategy is passed to Planning and enforced by Executing through effectors.
The feedback is treated by the Machine learning algorithm that evaluates the result
of the enforced strategy. From the past and current strategy it stores an example
and updates the knowledge base. In this architecture, Analyzing function is to map
information from monitoring to learning and reasoning tools. Planifier has reverse
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Fig. 5 Knowledge plane
building blocks

function. It maps strategies from reasoning tool to actions that can be executed by
managed resources.

4 Self-adaptation loop

4.1 Machine learning algorithm for self-adaptation

Machine learning in knowledge plane environment is a very important part because
it is in charge of maintaining experience of equipment during activity. This main-
tenance as we said earlier is twofold. On the one hand we have the maintenance
of knowledge by consolidating it or invalidating it. On the other hand, it consists
of generalizing specific knowledge, enriching knowledge. The first aspect of this
problem is to learn a classification that is a correspondence function from the set of
states to the set of strategies. Each strategy is efficient in a limited set of states. And
feedback of its past enforcement is used to update knowledge base. In this case in-
cremental Machine learning is combined with reinforcement one. The second aspect
is the knowledge enrichment. This knowledge enrichment is necessary to manage
foreign situation, for example a state with which knowledge plane has not a suitable
strategies. Inductive logic programming is very suitable for this task.
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Algorithm 1: Generic Machine Learning Algorithm
Data:
K : Knowledge base;
I :ILP engine ;
begin1

while True do2

E1← getState();3

S← K.getStrategy(E1);4

; /* strategy depends on the state */

; /* uses planning to plan action */

planifier.plan(S);5

; /* getting feedback */

E2← getFeedback();6

; /* example building and use of ILP system to create

new knowledge eventually */

example buildExample(E1,S,E2);7

H=I.assert(example);8

; /* update example and revise theory */

K.append_update(H);9

end10

end11

Algorithm 1 pseudo-code describes the generic Machine learning algorithm in
knowledge plane. General principle of this algorithm is to insert an experience gain-
ing process in the "control loop". The process of experience building is to memorize
the results of strategy enforcement in a knowledge base.

First, the Machine learning algorithm gets the state of the local managed equip-
ment. From this information it can extract suitable strategy from the knowledge base
and interacts with the Planning to enforce this strategy. After this step the efficiency
of this strategy is done with feedback and by comparing the two states before and
after the enforcement. An example is built and sent to the inductive logic program-
ming module which incrementally updates its positive and negative examples. As a
result it revises proposed theories (enriched strategies) before and returns them to
the Machine learning process. This last algorithm finally appends this knowledge if
it does not already exist in the knowledge base and updates it otherwise.

4.2 Study Case: self-adaptation of a DiffServ router

4.2.1 Context

This section presents a case of illustration of the Knowledge Plane in order to self-
optimize the configuration of a DiffServ [5] router. The main idea is to use the
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Machine Learning tools to automatically optimize the configuration of a DiffServ
router. It consists of self-optimizing router configuration according to its state. Char-
acteristics of the network selected to define the states of the network are: the loss
rate and the bandwidth use ratio. The states of the network can be divided into two
categories: state of crisis (packet loss for AF [15] traffics increases) and states of
optimization (no packet loss for AF traffics). Alarms give an indication about the
changes which occur and enable the learning module to react quickly and in the
best way. Two important aspects of alarms must be defined: their nature and their
frequency. Concerning their nature, alarms are n−tuples containing the following in-
formation: the DiffServ class concerned with alarm, the previous and current states,
and configuration policy rule that generated it. The frequency of alarms release is
also an important factor. An alarm is sent to the module each time the equipment
state changes. In this context, four states of equipment are considered: UnderUseBW,
NeedBW, SlightCongestion,Congestion, SevereCongestion. Each of them is
defined according to loss rate and self-adapting Machine learning algorithm takes
action considering DiffServ router state. Elementary actions are manipulations of
the Peer-Hop-Behavior [5]:

• ChangeQueuer helps changes current Queuer to the most adapted accordingly
to the current state

• QueueLength manipulation manipulates queue length to avoid sometimes loss
and decreases this length to its minimal size when queue is underused.

• ChangeScheduler is equivalent to changeQueuer for scheduler.

Self-adapting mechanisms tries to build a correspondence of most fit action for
each equipment state. This correspondence serves for reactive loop. In this con-
text, a strategy is a subset of this correspondence. Self-organization mechanisms
could share from time to time some part of their strategies. Fig. 6 shows inter-
actions between elements of the Machine learning module. Autonomic Manager
(AM) acquires information from managed resources and then checks its knowl-
edge base to decide if a reconfiguration is necessary. Each reconfiguration provides
a result and this reconfiguration feedback is sent as an example to Aleph which
induces new adaptation strategies from these examples and the background knowl-
edge. Aleph [28] is an ILP (Inductive Logic Programming tool [21, 24, 25]). This
knowledge plane architecture has been tested for an autonomic DiffServ network
and the next section describes this use case.

4.2.2 Testbed

The knowledge plane architecture has been implemented on J-Sim [16] using Diff-
Serv [5] network context as an example. We extends J-Sim framework with a num-
ber of classes represented in Fig. 7.

The AM class represents the autonomic manager, which coordinates interactions
between elements of the Machine learning . Knowledge and KB classes store expe-
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rience gained during this activity. Finally, AlephInterface is an API used to interact
with Aleph.

To do this, AM interacts with Aleph to enable the Diffserv network to have an
autonomic behavior. Test bed is composed of two edge routers and a core router
that has an autonomic manager (entity with Machine learning) in order to self-adapt
according to its state. Test bed (Fig. 8) involves four classes of traffic: AF11, AF12,
EF [18] and BE. EF has highest guaranties while BE has none. Principle of the
algorithm is to guaranty service for EF and AF classes.

The traffic model used is Poisson and the packet size is variable in order to simu-
late an unstable traffic. Fig. s 9, 10 and 11 describe comparison of throughput for
flows with and without autonomic manager. Fig. 9 and 10 show that adaptation,
with autonomic manager can improve throughput of AFxy classes.

Fig. 6 Machine learning module
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Fig. 7 Machine learning
module

We notice that traffic improvement consists of two phases: an initial phase during
which the autonomic manager learns action that improves the throughput. The two
graphics, with or without autonomic manager are almost the same. In the second
phase, the autonomic manager has found optimal action that allows an improve-
ment. Autonomic manager maintains that action until flows reach an optimal value
and then stabilizes the traffic flows by minimizing loss rate. Fig. 11 shows the
degradation of BE flow, with and without autonomic manager. We can see that this
degradation starts with enforcement of the optimal strategy. Autonomic manager
improves throughput of protected traffics (AFxy) by degrading BE traffic. At the
same time, it tries not to degrade too much the BE traffic by re-allocating to it a
portion of bandwidth when it can do.

Fig. 8 Testbed scenario



A Collaborative Knowledge Plane for Autonomic Networks 83

5 Collaborative loop

Collaboration between elements in knowledge plane is an important aspect for scal-
ability of communication mechanisms. Knowledge plane components should col-
laborate through situated views instead of using simple broadcasts. In this section
we present self-organization mechanisms of knowledge plane architecture. First we
present concept of situated view, then we describe algorithms and mechanisms for
knowledge sharing in knowledge plane. We finish by giving some theoretical guar-
anties of these mechanisms.

5.1 Situated View and Basic concepts

As we said earlier, collaboration between elements in an autonomic environment is
a very important aspect. This collaboration consists in information/data and knowl-
edge sharing through situated views.

This collaboration presents several interests:

• The initialization of new elements in the network: New elements initialize their
knowledge base by taking benefits in their neighbor’s experience.

• Equilibration of the examples distribution between the different learning ele-
ments: The autonomic elements may not learn all to the same rhythm. The el-
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ements situated in a very dynamic area should have more examples to validate
their experience than the remaining others.

• Distributed knowledge validation: The mutual critique of knowledge with the
peers will permit to validate distributed knowledge. Sharing knowledge among
elements will give all of them a comparison of their knowledge and neighbor’s
knowledge.

• Distributed knowledge management: In a network environment, the distribution
of tasks is important allowing scalability. Managing distributed knowledge by
keeping locally on the elements only the necessary knowledge and making some
exchanges if necessary are two necessary approaches for knowledge plane.

Beyond the above cited interests of sharing knowledge, there is an objective of each
autonomic system with knowledge plane, that is to be able to determine the domain
limits where a piece of knowledge is useful and then should be propagated. This
domain (area) is known as "situated view" or situatedness. Situated view is the limit
of the domain in which a node can have interest to share its knowledge. This limit
can be determined at a thin grain level of knowledge that consists of computing the
view for each piece of knowledge. Situatedness also can be calculated by aggrega-
tion consisting for each element to determine progressively nodes with which it has
interest to share its knowledge.

In this work we introduce the computation of view by the method of thin grain
and without conservation of any information about the situated view. It is created on
distributed way, implicitly and automatically. Expected result (with knowledge shar-
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ing) is a decision-making to adapt equipment’s behavior to environment’s changing.
This decision-making will help realizing dynamic adaptation according to the en-
vironment state changing by choosing best strategies and providing reactivity im-
provement by local reasoning. Then strategies are sharpened and validated with the
local learning and the knowledge sharing.

An important concept related to situatedness is the notion of neighborhood. In-
deed, the knowledge plane is a distributed structure whose elements essentially ex-
change knowledge with their neighbors. But it would be somewhat reducing to make
this notion corresponding exclusively to the physical (accessible media) neighbor-
hood notion. Several criteria can be used to characterize this notion such as role,
power of calculation, technologies implemented on the node, etc. We propose the
following definition:

Definition 6. Two nodes n0 and n1 are neighbors if only if there is a path between
them that did not pass by any of their neighbors.

The definition is deliberately recursive because according to neighborhood’s cri-
teria we can have two types of neighborhood: physical neighborhood and logical
neighborhood. In the first case, the criterion is the accessibility by the physical link
(Fig. 12.a) whereas the second case is rather a logical criterion (Fig. 12.b) based
on a consideration or a parameter (Example: the type of equipment, the role of the
equipment, etc.). We also can notice that the physical neighborhood can be consid-
ered as a particular case of logical neighborhood. Fig. 12.a and 12.b give examples
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of neighborhoods of a node. We can notice that between two logical neighbors we
can have one or several physical neighbors.

Elements in knowledge plane are supposed to share their knowledge (through
a situated view) to the limit of knowledge’s validity and relevance. Then elements
have to identify their direct neighbors. A process of logical neighborhood’s discov-
ery is described in the algorithm 2. In a real world situation this process must be
repeated periodically to update the neighborhood table in order to face the possible
topology changes during the time. We assume that the context change of the nodes
is not very fast. This hypothesis of stability is necessary because Machine learn-
ing and knowledge validation are processes that can take a more or less long time.
We can notice that knowledge sharing between nodes helps to reduce this time by
discovering the knowledge from neighbors.

a- b-

Fig. 12 The two kinds of neighborhoods : a- Physical neighborhood, b- logical neighborhood.

5.2 Situated Knowledge sharing algorithm

This section details principle of our knowledge sharing algorithm. The starting point
of this algorithm is the node that initiates the knowledge sharing. Each node partic-
ipating in this process has three knowledge bases (strategy bases):

• BL (For local Base) is the knowledge base keeping strategies learned locally;
• BS (For Share Base) contains the set of strategies resulting from knowledge shar-

ing process;
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• BT (for Temporary Base) is a temporary knowledge base. Knowledge sharing
algorithm is mainly founded on distributed algorithmic techniques. Algorithm 2
describes its global working principle.

The generic principle stresses on pro-activity of nodes that share their knowledge
with their environment (neighborhood).

Algorithm 2: Knowledge sharing algorithm with situated view

PROCEDURE 1 /* Initiation of propagation */1
begin2

Send < idi,k > to all neighbors ; /* k is a piece of knowledge */3
end4
PROCEDURE 2 /* Receiving at each node */5
begin6

When receive < idi,k >7
if idlocal , idi then8

if k ∈ BT ∪BS ∪BL then9
ignore k10

else if (k∪BT ) consistent then11
BT ← BT ∪ k ; /* Put it on a temporary knowledge base */12
if ACCEPT (k) then13

BS ← BS ∪ k ; /* Integrate it in the knowledge base */14
end15
Send < (idi ,k > to all neighbors except to the destination idi16

else17
Send < ê, (idi,k > to destination idi ; /* ê is a counter example */18

end19

end20
; /* If knowledge returns back to sender it ignores it */

end21
PROCEDURE 3 /* Initiation of propagation */22
begin23

When receive < ê, (idi,k >24
Store ê in counterexample knowledge base. ; /* will be used by a learning25
process */

end26

PROCEDURE 1 initiates knowledge sharing. It is executed by a node that wants
to share a piece of knowledge it has learned by itself (from BL). It sends this piece
of knowledge to all its neighbors. Knowledge sharing does not concern knowledge
bases BS and BT because knowledge in these bases are already known by neighbors.

PROCEDURE 2 is executed by all nodes which receive a piece of knowledge.
This procedure allows these nodes to propagate or not the piece of knowledge re-
ceived. At first each node verifies if it already has this knowledge in one of its bases.
If it is the case, it ignores this knowledge because it has already treated it. If knowl-
edge is not in its bases, it propagates it to all its neighbors after verifying that this
knowledge is coherent with its local knowledge (in BS ). By this way the situated
view is constructed progressively and no information about its borders is stored.
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Algorithm 3: ACCEPT trigger

On event : localstateChaged to ec1
begin2

s← EtractOptimalStrategy(BT ) ; /* which has biggest θ */3
a← getActions(s)4
enforce(a)5
e′c =newlocalstate()6
begin7

if e′c better then ec then8
return True9

else10
return False11

end12

end13

end14

PROCEDURE 3 treats counterexamples received by the node that initiates knowl-
edge sharing. We remind that a counterexample is a negative observation (see sec-
tion 3.2). The notion of acceptance that appears in PROCEDURE 2 (Algorithm 2
) is necessary to determine if knowledge is pertinent or not. It is the test done by
each node that receives knowledge to determine if it is relevant to keep in the share
knowledge base or not. Algorithm 3 describes the acceptance function that returns
true if the strategy succeeded in ameliorating the element state.

Fig. 13 is a snapshot of the execution of our algorithm with VISIDIA [31]. In
this picture, element that shares knowledge is the node with the label A. Elements
that are not concerned by the situated view are labelled N and X-labelled nodes are
at the bounderies of the situated view.

5.3 Performance and guarantees

The propagation problematic in a networked structure is a classic problem of the
distributed algorithmic. So we evaluate theoretical performances of our algorithm
by using the same constraints as in distributed algorithmic. Algorithm described
earlier is guaranteed to end after a certain time. This guarantee is given by the fact
that a piece of knowledge is treated only one time by a given node. In PROCEDURE
2 a node that receives twice a piece of knowledge ignores it the second time. So it
retransmits it to its neighbors only one time. The algorithm is finished when all
nodes have treated the piece of knowledge.

Now we focus on the number of messages needed for executing this knowledge
sharing algorithm. For a given node n0, having a finished number ei of states, that
propagates a piece of knowledge ci0 crossing the set Mi0 of links in the network. The
number of necessary messages to propagate ci0 is given by the following equation:
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δ(co) =
∑

lk∈Mi0

( f0(lk)+λ(e0)) (3)

Where f0(lk) is the number of messages that crosses the link lk during the prop-
agation of the piece of knowledge ci0 and λ(e0) is the number of counterexamples
received by n0.

This formula could be translated literally by: the sum of the total number of mes-
sages sent in the network is equal to the number of times when a piece of knowledge
ci0 is transmitted on each link lk plus, the number of counterexamples received by
the node n0. Knowing that each node treats (propagates, gives a counterexample) a
piece of knowledge only one time, the number of knowledge messages transmitted
on a link is less or equal than two. Considering that only the node that initiates the
knowledge sharing, receives the counterexamples we can bound by this inequation
( 4):

δ(co) ≤ (2m+deg(n0)) (4)

Where deg(n0) is the number of neighbors of n0 and mi is the number of links
crossed by ci0 . In summary, the algorithm of knowledge propagation ends at a rel-
atively short time because it has a linear complexity in term of total number of
messages depending on the number of links involved in the situated view.

The worst scenario we could have is when all the nodes are propagating their
knowledge in a completely meshed network. Considering that the number of links

Fig. 13 Visualization of knowledge sharing algorithm with Visidia
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in a network is bounded by a quadratic polynomial of the number of nodes and
considering formula ( 4): The total number of messages is bounded by the following
expression (formula 5)

∆(C) ≤ n2(n−1) (5)

Where n is the number of nodes in the network and C the set of all propagated
knowledge. The second term (deg(n0)) disappeared because in this scenario all the
nodes accept knowledge of their neighbors and no counterexample is sent. We can
conclude that we have a good complexity which is polynomial (cubical more pre-
cisely) related to the number of nodes. That means that this knowledge sharing algo-
rithm is scalable. If we consider consistency of knowledge bases, it is automatically
held by test process of acceptance (algorithme 2 PROCEDURE 2). The knowl-
edge bases considered separately are consistent (except for BT which is not really
a knowledge base). The local knowledge is privileged to the situated knowledge
because we think that it corresponds more to the local realities.

6 Conclusion

We presented in this paper a generic architecture for knowledge plane based on Ma-
chine learning tools. This architecture is composed of two loops: self-organization
(collaborative) loop and self-adaptation loop. Self-adaptation adapts managed re-
sources behavior to environment changes. Self-organization includes knowledge
sharing processes to construct situated views. By using this situated view, knowl-
edge is shared only where it is relevant and suitable. Then, we presented a generic
Machine learning algorithm and mechanisms for self-adaption and a knowledge
sharing distributed algorithm for self-organization. Finally, we show some results
in a specific study case for self-adaptation function of our architecture. In future
we intend to show how self-organization mechanisms in our architecture could be
applied to sensor network environment.
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1 Introduction

With the rapid development of computer networks, more and more severe autonomic
congestion problems have occurred. Designing efficient autonomic congestion con-
trol scheme is, therefore, a crucial issue to alleviate network congestion and to fulfill
data transmission effectively. The main difficulty in designing such scheme lies in
the large propagation delay in transmission that usually leads to a mismatch be-
tween the network resources and the amount of admitted traffic. The crucial issue of
the network control is that we should adapt the controllable flows to the changing
network environment, so as to achieve the goal of the data transfer and to alleviate
network congestion. Congestion is the result of a mismatch between the network
resources capacity and the amount of traffic for transmission.

Many research are provided on the autonomic communication [22-25, 27-28]
and the network autonomic congestion problems. The paper [1] reviews all kinds of
congestion control schemes having been proposed for computer networks. Among
these schemes, the representative one, which is in common use, is the rate-based
congestion control (see, e.g., [2-3]). The basic techniques include the Forward Ex-
plicit Congestion Notification (FECN) and the Backward Explicit Congestion Noti-
fication (BECN) [3-4].

The time delay in data transmission will result in slow transient behavior of buffer
occupancy. The responsiveness of the congestion control scheme is crucial to the
stability of the whole network system. The non-stability of dynamic network in-
fluences the network’s performance. To deal with this difficulty, the authors in [5]
suggest using the method of fuzzy control to realize the rate-based network conges-
tion control, and the application of heredity algorithm in queue strategy is presented
in [6-7]. Furthermore, the recent papers [8-9, 18-22, 26, 30] use a multi-step neural
predictive technique to predict the congestion situation in computer networks, but
the longer predictive steps has still existed and the effectiveness is greatly limited in
existed papers. And yet the responsiveness of the congestion control scheme is cru-
cial to the stability of the whole network system and the relevant performance, this
issue is, however, not considered in these works. So this chapter aims to improve
the predictive scheme. We implement the neural predictive controller at the sources
rather than at the switch. This is due to the fact the less prediction horizon usually
leads to better accuracy, whereas in the proposed scheme the predictive horizon is
linked with the network structure. Under the same circumstance, we use less pre-
dictive steps than that in [8-9], this then usually brings forth better performance in
terms of predictive accuracy and efficiency.

Our main contribution is the significant development of a multi-step neural net-
work predictive technique for the congestion control. Through simulations of actual
trace data from the real-time traffic, we demonstrate that the technique improves
the control performance. Compared with the methods discussed in [8-9], this chap-
ter introduces a BP neural network, analysis the neural network architectures and
evaluates control performance.

The rest of this chapter is organized as follows: In section 2, we introduce a novel
improved congestion control scheme based on neural networks. In section 3, we
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describe the predictive control scheme for resource management and in section 4,
we use simulation to validate and evaluate the performance of our scheme. Finally,
in section 5, we present the conclusions and the future work.

2 Congestion Control Model

The congestion control technique in this chapter provides such an approach for the
dynamic evaluation of the low priority traffic in the network: the evaluation and
distribution functions which compute the rate allocated to each individual source
are based on a neural network control strategy, and the functions control the filling
level of the low priority traffic buffer.

The chapter considers a general model as shown in Figures 1-2 with differ-
ent connections and with various traffic requirements being mapped into different
classes. The rate control algorithm computes the low priority bandwidth λL(t) left
by the sum of the highest priority traffic λH1 and the higher priority traffic λH2. xL(t)
is the number of λL packets waiting at time t in the queue, x0(t) is queue threshold
at time t, usually x0(t) is a constant [8-9].

Fig. 1 A simple model of one source,λL is controlled

2.1 The Predictive Control Model of a Bottleneck Buffer

It describes the control procedures for multiple sources transmitting data to the
buffer of a common bottleneck node. A control algorithm running at the source
node evaluates the resource need of each source and distributes the estimated avail-
able resources accordingly [8].
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In modeling the traffic through these nodes, one has to know the number of
source/destination pairs and the rates at which these sources send control packets
(CPs) to the network. It’s assumed to be N though the number of active sources de-
noted by M may vary with time t. The switching node has a finite buffer space K to
store the incoming CPs and has an output link to serve them at a constant data rate
of v.

Fig. 2 A model of multiple sources and a bottleneck with controller

The control procedure works in the following manner: each source sends data
to the bottleneck node at regular intervals. According to the current loading state,
the bottleneck node feedbacks the information to the source along the original route
[29-30]. According to this reception information, the sources can decide the most
suitable amount of resources that each source should be available. Thus, the sources
can adjust sent-out rates correspondingly. It is clear that the key point of this control
architecture lies in the control algorithm that is employed at the source node.

Under the above notations and assumptions, the dynamic system of a switching
node in a network can be described by the following non-linear time-variant and
time-delayed equation [10-11].

ẋ(t) = S atK{
N
∑

i=1

eiλi(t− τ
′
1i)− ν}, (1)

where K is the buffer size, ẋ(t) is the buffer occupancy at time t, and

ei =

{

1,activesource;
0,otherwise.

S atK{x} =



















K, x > K;
x,0 ≤ x ≤ K;
0, x < 0.
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If a feedback control is applied to the above system, we assume the signals get
sampled every T seconds. It is reasonable because one can always add a small delay
to the input delay so that it is a multiple of T when timing. So we can come to
the virtual connection (VC) delay di = the input delay τ1i from the ith source node
to the switching node + the feedback delay τ2i from the switching node to the ith

source node. λiL(n), λiH2(n) and λiH1(n) respectively denote the low priority traffic
rate, the higher priority traffic rate and the highest priority traffic rate from the ith

source, and λi(n) denotes the sending rate of source i, i.e., λi(n) = λiL(n)+λiH1(n)+
λiH2(n).The low priority traffic can only be transmitted when no congestion appears
in the network. Furthermore, we assume that the service is FCFS (first-come-first-
served) and the packet length is constant. The buffer occupancy x(n) is measured,
the CPs are sent back to the controlled sources every T seconds. The rate control
algorithm computes the low priority traffic rate λL(n), i.e., the rate left by the high
priority traffic λH1(n) and λH2(n).

When N sources transmit data towards a single bottleneck node, there is a
control-loop delay between each source and the bottleneck node. The round trip de-
lay (RTD), d, is set to be a single representative value d =min(d1,d2, ...,dN), and the
input representative delay, τ1, is set as τ1 = min(τ11, τ12, ..., τ1N). So d = τ1 + τ2(τ2
is the backward path delay). The best result in system performance is taken for
granted the minimum delay [11]. Let λi(n) = T ·λi(nT ) denote the total numbers of
data packets flowing into the destination node from the ith VC during the nth inter-
val of T . The component µ = Tν denotes the number of packets sent out from the
switching destination node during the nth interval of T . The equation can be written
into

x(n+1) = S atK{x(n)+ΣN
i=1eiλi(n− τ1i)−µ}. (2)

The control algorithm employs the following four steps [8-9]:
(i) Predict the buffer occupancy x̂(n+1) using the multi-step predictive technique.
(ii) Compute the total expected rate of the all sources λ(n) at the time n and

λ(n) = ΣN
i=1λi(n). This value varies dynamically with the buffer occupancy.

(iii) Compute the proportion of each source,δi(n), which is the most efficient
share of the available resources to be attributed to source number i, (1 ≤ i ≤ N,
∑N

i=1 δi(n) = 1), δi(n) = λi(n)/λ(n).
(iv) Compute the adjusted low priority traffic rate λiL(n). In this section, every

source equally shares the available network bottleneck bandwidth, λi(n) can be ex-
pressed as: λi(n) = δi(n) ·λ(n). Based on the equation (4), the source i regulates the
lowest priority traffic rate λiL(n).
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3 The Predictive Control Technique

3.1 The BP Neural Network Architecture

The BP neural network algorithm is introduced into this chapter as a predictive
mechanism. We assume the number of input neuron is N, and the number of sample
study group is M0. The sample study groups are independent from each other. We
further assume the output of the study sample group (teaching assigns) is R(k)

j ( j ∈
[0,N], k ∈ [1,M0]), and the actual output for output element j in the network is
O(k)

j . So E(k) is set to be the kth group input goal function. Therefore, we have

E(k) = Σ j(R
(k)
j −O(k)

j )2/2. The total goal function is J = ΣkE(k). If J ≤ ε0, ε0 is a
constant that is small enough and ε0 > 0, then the algorithm is terminated; Otherwise
adjust the weight W between the implicit layer and output layer until it satisfy the
expected difference value [12-15].

3.2 Multi-step Neural Predictive Technique

We apply a neural network technique to determine how a BP-based algorithm sat-
isfies its data transfer requirement by adjusting its data transfer rate in a network.
As shown in Figure 2, the BPNN predictive controller is located at the sources. In
order to predict the buffer occupancy efficiently, the neural model for the unknown
system above can be expressed as:

x̂(n+1) = f̂ [x(n), ..., x(n− l+1),λ(n−τ1−1),

...,λ(n− τ1−m− L)], (3)

where x(n− i) (1 ≤ i ≤ l− 1)is the history buffer occupancy and λ(n− j)(τ1 + 1 ≤
j ≤ τ1 +m+ L) is the history sending rate of the source j. L is predictive step,L =
τ1 + 1, and L, m are constant integers. f̂ [·] is the unknown function, which may be
expressed by the neural network. The explicit mechanism of BP neural network L-
step ahead prediction is shown in Figure 3, the value of buffer occupancy x(n) and
the history value (the past buffer occupancy: x(n− 1), ...x(n− l+ 1); the past source
sending rates:λ(n− τ1 − 1), ...,λ(n− τ1 −m− L)) are used as the known inputs of
neural network. Every layer denotes one-step forward predictive, so x̂(n+ L) in the
output layer is the L-step prediction of x(n).We can compute the expected total rate
λ̂(n) of the N sources using the following equation:

x̂(n+ L) = S atK{x̂(n+ L−1)+ λ̂(n)−µ}, (4)

Based on the rate λ̂(n) the source i adjusts the sending rate λiL(n) = λ̂(n)δi(n)−
λiH1(n)− λiH2(n), and δi(n) is a factor of share the available resources to source i
(1 ≤ i ≤ N). The specific algorithm is given in the following (Figure 4), At the next
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Fig. 3 The Back Propagation (BP) L-step ahead prediction, and x̂(n+ L) is the L-step predictions
of x(n).

instant n+1, we can get new real measured value x(n+1) and new history measure
values: x(n), ..., x(n− l+ 2); λ(n− τ1), ...,λ(n− τ1−m− L+ 1) which can be used as
the next instant inputs of neural network. Then the buffer occupancy x̂(n+L+1) can
be predicted.

4 The Simulation Results

To evaluate the performance of the proposed congestion control method based on
neural network, we focus upon the following simulation model with eleven sources
and one switch bottleneck node (Figure 5), and assume that the sources always have
data to transmit. The congestion controller is used to adjust sending rate over time
in sources. The higher priority traffic, i.e., the sum of λiH1 and λiH2 traffic in source
i with multiplexing of actual trace data, is acquired from the real time traffic.

As shown in Figure 6, the maximum sending rate of every source is λ0 =

15.5Mbps. We use a simple resource sharing policy, i.e., the network bottleneck
node equally shares the available bandwidth among every source. The sources start
to transmit data at time t = 1msec together. We assume the sending rate of the switch
node is ν = 155Mbps. The sampling time T is 1msec and the congestion threshold
is set as x0 = 1000Kb.

We propose to use a direct multi-step neural predictive architecture with 3 layer
neural network, wherein the number of the input data, the input neurons, the hidden
neurons and the output neurons are all (L+m+ l). There are l(l = 8)terms of buffer
occupancy x and (L+m)terms of the total input µ. The prediction horizon is L =
τ1 +1, and the control horizon is N = L− τ1+1 = 2.
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Fig. 4 Algorithm for on-line control and neural network training at sources

To investigate the performance of this model, we set the distance from sources to
switch node to be 300Km with the forward path delay and the feedback path delay
being τ1i = 3msec, τ2i = 3msec (i = 1,2, ...,11) respectively. Therefore the RTD is
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Fig. 5 A simulation model of multiple sources single buffer network

Fig. 6 High priority traffic rate sampled from the real time video traffic.

d = 6msec.We assume that the RTD is dominant compared to other delays such as
processing delays and queuing delay, etc.

For this case, the prediction horizon is L = 4, and m = 4. Figure 6 shows the rate
of higher priority (λH1 + λH2) traffic. The dynamic of buffer occupancy is shown
in Figure 7, where the predictive buffer occupancy and the actual buffer occupancy
are described with broken line and real line respectively. The predictive value of
the buffer occupancy is acquired beginning from the time (τ1 + L + 9). Figure 8
shows the transmitting rate of the lowest priority traffic, which is yielded on the



102 Xiong et al.

Fig. 7 The buffer occupancy for L = 4 step prediction.

Fig. 8 The lowest priority traffic rate for L = 4 step prediction, based on the predictive value in
Figure 7.

basis of the equation (1) and the predicted buffer occupancy from the time slot 12 to
(500− τ1− L) = 493, and Figure 9 shows the total input rates.

From Figure 7, one observes that buffer occupancy is acquired beginning from
the time slot n = 16 and that the queue size is maintained to be close to the thresh-
old of 1000Kb by the proposed neural networks predictive technique. The average
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Fig. 9 The total input rates of L = 4.

Fig. 10 The buffer occupancy for L = 14 step prediction.

relative error between the predictive buffer occupancy and actual buffer occupancy
is 1.5099e-002, which is excellent in terms of accuracy.

Figure 10-12 show the performance that we set the sources 2600Km away
from the switch node, and assume the forward delay and the feedback delay be-
ing τ1i = 13msec, τ2i = 12msec,(i = 1,2, ...,11) respectively. Therefore the RTD is
d = 25msec. We take the prediction horizon L= 14 and m = −6. Figure 10 shows the
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Fig. 11 The lowest priority traffic rate for L = 14 step prediction, based on the predictive value in
Figure 10.

Fig. 12 The total input rates of L = 14.

buffer occupancy has the value that begins from the time slot at n = 36. The neural
predictive congestion control technique is also able to maintain the queue size close
to the threshold of 1000Kb, and the average relative error between the predicted
buffer occupancy and the actual buffer occupancy is 3.7026e-002. Figure 11 shows
the lowest priority traffic rate for L= 14 step prediction, and it is yielded on the basis
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of the original flow equation (1) and the predicted buffer occupancy, and Figure 12
shows total input rate prediction.

The performance of the system is excellent for queue service rates. However, the
performance is found to be better in the 4-step prediction than in 14-step prediction
case. This is probably due to the fact that the less prediction horizon usually leads
to better accuracy, whereas in our scheme the predictive horizon is linked with the
forward path delay τ1 .

To compare our algorithm with the conventional approaches like in [8-9], the
following remarks can be given.

(i)This chapter introduces a new congestion control model based on neural net-
work. The BP network model and algorithm develop the ideas and methods in [8-9].

(ii)The quicker transient response of the source rates is acquired in our mecha-
nism. Under the same circumstance, we use less predictive steps than that in [8-9],
because in this chapter the neural predictive controller is located at the sources rather
than at the switch, this usually brings forth the better performance in terms of pre-
diction accuracy.

(iii)The authors of [14 -17] suggest that only one implicit layer is enough, and
it could be randomly mapped into Rm space. With the same number of the implicit
layer node, the algorithm will be more efficient if there are less layers. So the implicit
layer of BP algorithm in this chapter has just one layer and it could improve study
efficiency with reasonable study accuracy.

(iv)We have explored the relevant theory on BPNN multi-step predictive archi-
tecture and training algorithm, and give relevant simulation analysis.

5 Conclusion

This chapter has described a dynamic resource management mechanism for com-
puter communication networks on the basis of an adapting BP neural network con-
trol technique. Also we further explored the relevant theoretic foundations as well
as the detailed implementation procedure for congestion control. The simulation
results demonstrate that the proposed neural network architecture and training algo-
rithm are excellent from the point of view of the system response, predictive accu-
racy and efficiency, and that it well adapts the data flows to the dynamic conditions
in the data transfer process. We believe that the neural network predictive mecha-
nism provides a sound scheme for congestion control in communication networks.

Areas for further research would cover, for example, the issue of congestion con-
trol for multicast communication systems by using the neural network predictive
method to deal with the challenge of low responsiveness, which is due to the het-
erogeneous multicast tree structure.
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Hovering Information – Self-Organizing
Information that Finds its Own Storage

Alfredo A. Villalba Castro, Giovanna Di Marzo Serugendo, and Dimitri Konstantas

Abstract Hovering information is a mobile computing paradigm where pieces of
self-organizing information are responsible to find their own storage on top of a dy-
namic set of mobile devices. Once deployed, the hovering information service acts
as a location-based service for disseminating Geo-localized information generated
by and aimed at mobile users. It supports a wide range of pervasive applications,
from urban security to stigmergy-based systems. A piece of hovering information is
attached to a geographical point, called the anchor location, and to its vicinity area,
called the anchor area. A piece of hovering information is responsible for keeping it-
self alive, available and accessible to other devices within its anchor area. It does not
rely on any central server. This chapter presents the hovering information model and
results of simulations performed using replication and caching algorithms involving
up to 200 distinct pieces of hovering information in a small geographic area.

1 Introduction

User generated content is taking a large part of the Internet with social networking
web sites such as YouTube or MySpace. The equivalent of these sites for mobile
users, such as the GyPSii1 social networking web site, now combine both user-

Alfredo A. Villalba Castro
Centre Universitaire d’Informatique, University of Geneva, Battelle bâtiment A, 7 route de Drize,
CH-1227 Carouge, Switzerland, e-mail: alfredo.villalba@unige.ch

Giovanna Di Marzo Serugendo
School of Computer Science and Information Systems, Birkbeck, University of London, Malet
Street, London WC1E 7HX, UK, e-mail: dimarzo@dcs.bbk.ac.uk

Dimitri Konstantas
Centre Universitaire d’Informatique, University of Geneva, Battelle bâtiment A, 7 route de Drize,
CH-1227 Carouge, Switzerland, e-mail: dimitri.konstantas@unige.ch

1 www.gypsii.com

111
© Springer Science + Business Media, LLC 2009
A.V. Vasilakos et al. (eds.), Autonomic Communication, DOI: 10.1007/978-0-387-09753-4_5,



112 Villalba Castro et al.

generated content and location-based services. Among other, they allow groups of
mobile users to share dynamic real-time content or retrieve themselves on a map.

Location-based services usually rely on base stations and from there possibly to
the whole Internet to provide some requested information to a mobile user (e.g. what
is the nearby Chinese restaurant or where is my friend’s car for a user-generated con-
tent). This solution has clear advantages such as providing access to large computing
capabilities and broadband network access that go beyond those of mobile phones
or PDAs.

However, it is not always possible or desired to rely on a central server in partic-
ular for user-generated content: extra-terrestrial systems need local communication
infrastructures, they cannot communicate with an Earth-based server, or if in a hos-
tile environment cannot rely entirely on a single server; after a natural disaster, when
no more infrastructure is available, local communications among available devices
help coordination among emergency services; finally, for reliability reasons, it is not
always possible to rely on a centralized server representing a single point of failure.

Hovering Information [15] is a concept characterizing self-organizing informa-
tion responsible to find its own storage on top of a highly dynamic set of mobile
devices. This is a location-aware service for mobile users (people, cars, robots, etc.)
that supports dissemination of user-generated Geo-localized data among a highly
mobile set of devices. This service exploits the mobile devices themselves as a phys-
ical support and do not make use of a server. The main requirement of a single piece
of hovering information is to keep itself stored in the vicinity of some specified
location, which we call the anchor location, despite the unreliability of the device
on which it is stored. Whenever the mobile device, on which the hovering infor-
mation is currently stored, leaves the area around the specified anchor location, the
information has to hop - "hover" - to another device.

Current services supporting Geo-localized data, are deployed using one of the
following approaches: centralized servers, virtual structured overlay network offer-
ing a stable virtual infrastructure, or direct communication among the mobile nodes
themselves. In all these approaches, the mobile nodes decide when and to whom the
information is to be sent. Here we take the opposite view; it is the information that
decides upon its own storage and dissemination. This opens up other possibilities,
not available for traditional MANET services, such as different pieces of hovering
information all moving towards the same location and (re-)constructing there a co-
herent larger information for a user, e.g. TV or video streaming on mobile phones.

A piece of hovering information is a self-organizing user-defined piece of data
which does not need a central server to exist. Individual pieces of hovering infor-
mation each use local information, such as direction, position, power and storage
capabilities of nearby mobile devices, in order to select the next appropriate lo-
cation. Hovering information benefits from the storage space and communication
capacities of the underlying mobile devices.

Main dependability requirements of hovering information are survivability, avail-
ability and accessibility. Survivability means that the information is alive some-
where in the environment (i.e. it is stored in some device) but not necessarily close
to its anchor location. Availability means that the information has found storage
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in the vicinity of the anchor location. Accessibility combines both availability and
communication range of wireless mobile devices, and represents the possibility for a
user located in the anchor location to access hovering information stored on nearby
devices.

The hovering information service requires the following: mobile nodes with com-
puting capacity; direct wireless communications among mobile node such as Blue-
tooth or Wi-Fi; and a location tracking capability such as a GPS (mobile PDAs),
relative distances calculations or light-color tracking (robots).

This chapter presents the hovering information model as well as replication and
caching algorithms allowing multiple pieces of hovering information to get attracted
to their respective anchor locations.

Section 2 discusses potential applications of this concept. Section 3 presents
the hovering information concept and model. Section 4 discusses replication and
caching algorithms, in particular the Attractor Point Algorithm that we have de-
signed where the information is "attracted" by the anchor location and keeps coming
back to this location, and the Location Based Caching algorithm aiming at reducing
the number of hovering information stored in the different nodes, when memory is
limited. Section 5 reports on simulation results involving up to 200 distinct pieces
of hovering information. Finally Section 6 compares our approach to related works,
and Section 7 discusses some future works.

2 Applications

This section highlights some future applications in very different areas that could all
be developed from the concept of hovering information.

Urban Security The environment considered for this application is a dense ur-
ban area where each person carries a GPS enabled device. A hovering informa-
tion service is available on the device, which allows users to enter comments
or warnings related to dangers in the urban environment. Different types of in-
formation can be disseminated by the user: warnings about holes in the road or
about the existence of thieves (pick-pockets); or comments like "this corridor is
dark and I feel a danger". Each person entering the area where the information is
kept will potentially receive it. Each user has a "profile" and chooses what types
of dangers are relevant to her. For example a blind person will be interested in
holes on the road; a weight lifter is not really concerned to be attacked by a thief,
while an elderly will find these two pieces of information particularly relevant for
her. Similarly, policeman and security guards operating in the same local urban
area with high-rate crime could exchange information to each other. Each user
attracts different information depending on his profile as soon as it enters the re-
gion where the information is located. For such an application the trust/security
aspect becomes then crucial, since any GPS owner (including a criminal) may
enter fraudulent information. Although we are also working on trust and security
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issues related to hovering information, this discussion is beyond the scope of this
chapter.

Archaeological Sites The environment in this application is a real archaeologi-
cal site, most likely an outdoor site, rather large, where visitors just move freely
inside it. Users are the visitors of the site. Fixed sensors placed at several lo-
cations on the archaeological site provide either current information on actual
weather and temperature or historical information about the different locations in
the archaeological site. Users visiting the archaeological site wear mobile devices
carrying information specific to the user itself (e.g. adult, child, man, woman,
teacher, etc) or more likely about the virtual character they want to learn more
about. The user receives on his mobile device a virtual reconstructed version of
the site as it would be on the day they are visiting: with the same weather con-
ditions, targeted in content to the character they wanted to learn more about, and
populated with the other characters that are currently visiting the same location.
For instance, consider a group of 3 people (characters) visiting a house in an ar-
chaeological site: a cook, a child, and a house’s owner. All of them would have a
virtual view of how the house looked like at that time. If it is sunny then the view
shows a sunny area, if it is cold it could show heating aspects. Each visitor would
have a specific tailored explanation (cooking, playing, and ownerŠs information)
and could visualize the avatars of the others on his mobile device while moving
around. There are different types of hovering information going around: visitor-
dependent information, weather information, and archaeological/historical infor-
mation of a specific location in the archaeological site. Personalized information
is attracted by the corresponding user’s device, aggregates there and shows some
virtual view of the site (audio only or both audio/video).

Self-Generative Art Self-generative art [8] refers to art practice where inputs from
the creator of the piece of art are assembled together according to some rules
(algorithm), such that the resulting piece of art, generated by a computer, is a
real-time unfolding work which may display randomness, evolutionary aspects,
or self-organizing (swarm) behavior. The piece of art may be music, painting,
3D construction, writing, etc. In this case, the users/creators would then be the
multiple visitors of a "learning art experience center". A piece of art could be a
large scale 3D virtual shape produced by inputs provided by each visitor: location
in the experience area, weight/height and behavior (jumping/walking), preferred
color or shape. The virtual shape would have holes were people are currently
placed, and bumps where they have left; or heart beating bumps if they are jump-
ing. Rules for combining the different inputs could vary: assembling the virtual
surface according to actual or relative distances in the real world, summing up
the colors and weights according to different algorithms, keeping visitors input
for a random amount of time after they have left the experience area, etc. Sensors
are required to determine the weight/size of the person. This value will then have
an impact on the final virtual surface. Heavier people or groups of people will
provide heavier holes, etc. People moving across the surface create temporary
paths across it (that would dissolve completely after a certain time). People carry
mobile device through which they provide additional personalized information:
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preferred color and shape. Each input provided by the different visitors is a piece
of hovering information whose goal is to travel to the center of the experience
area and aggregate there with the others in order to provide a visual 3D shape.

Intravehicular Networks Virtual tags are inserted at specific locations on roads or
motorways either by cars’ drivers or traffic management staff. The purpose here
is to provide information to cars’ drivers about road conditions, accidents, etc.
In such a scenario, using the notion of hovering information, such tags will not
be stored on a specific server and made available to users when they reach the
zone of interest of the information. Instead the tags are locally stored in the cars
and made available through wireless channels to nearby cars. Since data have
a meaning for the specific location they have been attributed, data will have to
"change" car as soon as the car they are currently stored in leaves the area of the
anchor location. The data will then hop from one car to the next one.

Emergency Scenarios In an emergency scenario, virtual data present before a dis-
aster may want to "survive" by using emergency crew or survivors devices. This
data can also present useful information for emergency services. Additionally,
disaster’s survivors may want to indicate their position by placing the appropriate
hovering information attaching it to their own location. Emergency crew mem-
ber can place hovering information to areas where survivors have been found or
where there is a chance to find some survivors. In this case, the information will
hop from one emergency/survivor device to another one.

Stigmergy Stigmergy is an indirect communication mechanism among individual
components of a self-organizing system. Communication occurs through modi-
fication brought to local environment. The use of ant pheromone is a well known
example of stigmergy. Users that communicate by placing hovering information
at a Geo-referenced position, which is later on retrieved by other users is also an
example of stigmergy. The hovering information concept, using an infrastructure
free storage media, naturally supports stigmergy-based applications that need to
be deployed on an ad hoc manner (e.g. unmanned vehicles or robots). As pointed
out by [13] most stigmergy-based deployed systems use a server to support diffu-
sion of artificial pheromone, they do not actually attach the pheromone to phys-
ical supports. Hovering information provides a way to store digital pheromone
among a group of robots or unmanned vehicles using the robots themselves as
physical support for the pheromone. Robots, producing pheromone that needs to
be deposited at a certain geographical area, will deposit it under the form of a
piece of hovering information. It will then stay located where it has been pro-
duced by hovering among the robots present in this area making it available for
those robots wishing to retrieve it.
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3 Hovering Information Concept

This section formally defines the notion of hovering information system, as well as
the three main dependability requirements: survivability, availability and accessibil-
ity.

3.1 Coordinates, Distances and Areas

We denote by E the set of all pairs of geographic coordinates,

E = [−90,90]× [−180,180].

A geographic coordinate a is a pair:

a = (lat, long), and a ∈ E.

North latitude and East longitude are positive coordinates, while South latitude
and West longitudes are negative coordinates. We do not consider here depths and
heights.

An area A(a,r) is defined as the disk whose center is the geographic coordinate
a and has a positive radius r ∈ R+:

A(a,r) = {b ∈ E |dist(a,b) < r}.

We consider dist(a,b) to be the distance in meters between two locations on a
sphere, provided by any reliable method. See for instance2.

3.2 Mobile Nodes

Mobile nodes represent the storage and motion media exploited by pieces of hover-
ing information. They are defined as follows. A mobile node n is a tuple:

n = (id, loc, speed,dir,rcomm),

where:

2 http://www.fcc.gov/mb/audio/bickel/distance.html
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id ∈ I is a mobile node identifier,

loc ∈ E is a geographic coordinate location,

speed ∈ R+ is a speed in m/s

dir ∈ E is a relative geographic coordinate location,

rcomm ∈ R+ is the communication radius in meters.

We denote by I the set of all mobile nodes identifiers. When referring to the id,
loc or other field of a mobile node n, we will use the following notation id(n), loc(n),
etc. Field loc(n) represents the current location of node n, while dir(n) is a vector
representing the direction of its most recent movement. The range of communica-
tion rcomm is the maximum distance in meters within which the mobile node may
communicate wirelessly with another mobile node.

Let’s consider N a set of mobile nodes, we consider that identifiers of mobile
nodes are unique, and we will say thatN is well defined if:

∀n1,n2 ∈ N , (id(n1) = id(n2))⇒ (n1 = n2).

Given a mobile node n with location loc(n) and communication radius rcomm(n),
the communication area of n, AC(n), is the subset of E given by:

AC(n) = A(loc(n),rcomm(n)).

Figure 1 shows three mobiles nodes, m, n, and p. While the communication range
of m is enough to let it be in range of both n and p, the communication range of n
and p being much smaller prevents them to be directly in range.

Fig. 1 Mobile Nodes and Communication Range
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3.3 Hovering Information

LetN be a well defined set of mobile nodes. A piece of hovering information h is a
tuple:

h = (id,a,r,n,data, policies, size),

where:

id ∈ J is a hovering information identifier,

a ∈ E is the anchor location,

r ∈ R+ is the anchor radius,

n ∈ N is the mobile node where h is currently located,

data is the data carried by h,

policies are the hovering policies of h,

size ∈ N+ is the size of h in bytes.

We denote by J the set of all hovering information identifiers. When referring
to the id, a or other field of a hovering information h, we will use the following
notation id(h), a(h), etc. Policies stand for hovering policies stating how and when
a piece of hovering information has to hover. The size is an important element of a
single piece of hovering information; however the simulation algorithms presented
in this chapter are not yet using this notion.

A piece of hovering information h is a piece of data whose main goal is to remain
stored in an area centered at a specific location called the anchor location a(h), and
having a radius r(h), called the anchor radius.

The anchor area of h, AH(h), is the disk whose center is the anchor location a(h)
and whose radius is r(h):

AH(h) = A(a(h),r(h)).

Let H be a set of pieces of hovering information. We consider that identifiers
of pieces of hovering information are unique, but replicas (carrying same data and
anchor information) are allowed on different mobile nodes, and we will say thatH
is well defined if:

∀h1,h2 ∈ H , (h1 , h2)⇒
(id(h1) , id(h2))∨
((id(h1) = id(h2))∧ (a(h1) = a(h2))∧
(r(h1) = r(h2))∧ (data(h1) = data(h2))∧
(n(h1) , n(h2))).

Let H be a well defined set of pieces of hovering information. Let h ∈ H be a
hovering information, a replica hr of h is a piece of hovering information hr ∈ H
such that:
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id(h) = id(hr)∧n(h), n(hr).

From now on, we will consider only well defined sets H of pieces of hovering
information, where pieces of hovering information with the same id are either the
same or a replica of each other. We also consider that there is only one instance of a
hovering information in a given node n, any other replica resides in another node.

Figure 2 shows a piece of hovering information (blue hexagon) and two mobile
nodes (yellow circles). One of them hosts the hovering information whose anchor lo-
cation, radius and area are also represented (blue circle). The communication range
of the second mobile node is also showed.

Fig. 2 Mobile Nodes and Hovering Information

Definition 1 (Hovering Information System at time t). A hovering information
system at time t, HoverIn f ot, is a tuple:

HoverIn f ot = (Nt,Ht),

whereNt is a well defined set of mobile nodes,Ht is a well defined set of hovering
information overNt:

∀h ∈ Ht ⇒ n(h) ∈ Nt.

A hovering information system at time t is a snapshot (at time t) of the status of
the system. Mobile nodes can change location, new mobile nodes can join the sys-
tem, others can leave. New pieces of hovering information can appear (with new
identifiers), replicas may appear or disappear (same identifiers but located on other
nodes), hovering information may disappear or change node.

Figure 3 shows two different pieces of hovering information h1 (blue) and h2

(green), having each a different anchor location and area. Three replicas of h1 are
currently located in the anchor area (nodes n2, n3 and n4), while two replicas of h2

are present in the anchor area of h2 (nodes n2 and n5). It may happen that a mobile
device hosts replicas of different pieces of hovering information, as it is the case in
the figure for the mobile node n2 that is at the intersection of the two anchor areas.
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The arrows here also represent the communication range possibilities among the
nodes.

Fig. 3 Hovering Information System at time t

3.4 Notations

Before defining the notions of survivability, availability and accessibility, we will
define the following additional notations.

Let’s consider HoverIn f ot = (Nt,Ht), a Hovering Information System at time t,
let h be a piece of hovering information, and n ∈ Nt be a mobile node at time t, we
denote:

RH(h, t) = {k ∈Ht | id(h) = id(k)},
the set of replicas of a piece of hovering information h at time t;

RN(n, t) = {h ∈ Ht |n(h) = n},
the set of pieces of hovering information in node n at time t;

PN(n, t) = loc(n), the position of node n at time t;

NN(n, t) = {m ∈ Nt | (dist(loc(m), loc(n))< rcomm(n))∨
(dist(loc(m), loc(n))< rcomm(m)), }
the set of neighboring nodes of node n at time t;

S (X) = the surface area of a surface X.

Since Ht is well defined, there are no two different pieces of hovering informa-
tion (with different data) referred by the same identifier. It is also important to notice
that h does not necessarily belong to Ht, it may have disappeared from the system,
but some of its replicas are still located in some mobile nodes. We consider that
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RN(n, t) is actually a set (not a multi-set), i.e. there are no copies of the same hover-
ing information stored at the same location. The neighboring nodes in NN(n, t) are
those in range of communication to n.

3.5 Properties - Requirements

3.5.1 Survivability

A hovering information is alive at some time t if there is at least one node hosting a
replica of this information.

t

(Nt,Ht) be a Hovering Information System at time t. Let h be a piece of hovering
information, the survivability of h at time t is given by the boolean value:

svH(h, t) =















1 if∃n ∈ Nt,RH(h, t)∩RN(n, t) , ∅
0 otherwise.

The survivability along a period of time is defined as the ratio between the
amount of time during which the hovering information has been alive and the overall
duration of the observation.

Definition 3 (Rate of Survivability of Hovering Information h at time t). Let h
be a piece of hovering information, the survivability of h between time tc (creation
time of h) and time t is given by:

S VH(h, t) =
1

t− tc

t
∑

τ=tc

svH(h, τ).

3.5.2 Availability

A hovering information is available at some time t if there is at least a node in its
anchor area hosting a replica of this information.

Definition 4 (Availability of Hovering Information h at time t). Let HoverIn f ot =

(Nt,Ht) be a Hovering Information System at time t. Let h be a piece of hovering
information, the availability of h at time t is given by:

avH(h, t) =















1 if∃n ∈ Nt, (PN(n, t) ∈ AH(h))∧ (RH(h, t)∩RN(n, t) , ∅)
0 otherwise.

The availability of a piece of hovering information along a period of time is
defined as the rate between the amount of time along which this information has
been available during this period and the overall time.

Definition 2 (Survivability of Hovering Information h at time t). Let HoverIn f o =
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Definition 5 (Rate of Availability of Hovering Information h at time t). Let h be
a piece of hovering information, the availability of h between time tc (creation time
of h) and time t is given by:

AVH(h, t) =
1

t− tc

t
∑

τ=tc

avH(h, τ).

3.5.3 Accessibility

We distinguish availability from accessibility in the following way: a piece of hov-
ering information (or one of its replica) present on some node located in the anchor
area is said to be available. However, such a piece of hovering information may not
be accessible to a mobile which is far apart from the mobile node where the hovering
information (or its replica) is actually stored.

A hovering information is accessible by a node n at some time t if the node
is able to get this information. In other words, if it exists a node m being in the
communication range of the interested node n and which contains a replica of the
piece of hovering information.

Definition 6 (Accessibility of Hovering Information h for node n at time t). Let
HoverIn f ot = (Nt,Ht) be a Hovering Information System at time t. Let h be a piece
of hovering information, let n ∈ Nt be a mobile node, the accessibility of h for n at
time t is given by:

acH(h,n, t) =















1 if∃m ∈ Nt, (m ∈ NN(n, t))∧ (RH(h, t)∩RN(m, t) , ∅)
0 otherwise.

We also define the accessibility of a piece of hovering information as the rate
between the covered area by the hovering information’s replicas and its anchor area.

Definition 7 (Accessibility of Hovering Information h at time t). Let HoverIn f ot =

(Nt,Ht) be a Hovering Information System at time t. Let h be a piece of hovering
information, the accessibility of h at time t is given by:

acH(h, t) =
S (
⋃

r∈RH (h,t) AC(n(r))∩AH(h))

S (AH(h))
,

where S (X) denotes the surface of X.

The accessibility along a period of time is defined as the average of the accessi-
bility through that period of time.

Definition 8 (Rate of Accessibility of Hovering Information h at time t). Let h
be a piece of hovering information, the accessibility of h between time tc (creation
time of h) and time t is given by:
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ACH(h, t) =
1

t− tc

t
∑

τ=tc

acH(h, τ).

Let us notice that an available piece of hovering information is not necessarily
accessible and vice-versa, an accessible piece of hovering information is not nec-
essary available. Figure 4 shows different cases of survivability, availability and
accessibility. In Figure 4(a), hovering information h (blue) is not available, since it
is not physically present in the anchor area, however it is survival as there is a node
hosting it. In Figure 4(b), hovering information h is now available as it is within its
anchor area, however it is not accessible from node n1 because of the scope of the
communication range. Finally, in Figure 4(c), hovering information h is survival,
available and accessible from node n1.

(a) (b) (c)

Fig. 4 Survivability, Availability and Accessibility

It is thus important to distinguish availability from accessibility: a piece of hov-
ering information may be available (i.e. present) in the anchor area, but due to actual
communication ranges among the nodes, it is not necessarily accessible for all nodes
into the anchor area.

Similarly, it is interesting to note that in some situations a piece of hovering
information even though not available at its anchor location could be accessible for
some nodes provided there is a node in communications range hosting h.

4 Algorithms for Hovering Information

Survivability, availability, and accessibility are among the most fundamental issues
of hovering information as we discussed in [15] and [3]. Security and trust is-
sues are important issues when considering hovering information, however they go
beyond the scope of this chapter, and will not be discussed here. Survivability ad-
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dresses the problem of keeping a piece of hovering information alive as long as
defined by the information itself. Availability deals with the problem of keeping the
information present in its anchor area while accessibility relates to the possibility
for a user to access a piece of hovering information stored on a device which is in
communication range.

As mentioned in the previous section, these notions are closely related to each
other, but none of them necessarily implies the others.

This chapter focuses on the study of the survivability and availability of pieces
of hovering information. We propose an Attractor Point algorithm, whose aim is
to keep the hovering information alive and available in its anchor area as long as
possible. An anchor location a acts as an attractor point: all pieces of hovering in-
formation that have a as anchor location tend to converge towards a.

Besides the Attractor Point algorithm, we describe a Broadcast algorithm which
is expected to have better survivability and availability performances than the At-
tractor Point, but at the cost of being more memory and network greedy. We use
the Broadcast algorithm as a comparison threshold. Pieces of hovering information
periodically broadcast (replicate) themselves to all the nodes in the communication
range.

Mobile nodes have a limited memory and so cannot store an infinite number of
hovering information replicas. We study two different caching policies: Location-
Based Caching and Generation-Based Caching. The Location-Based Caching pol-
icy decides whether to remove or keep a replica on the basis of the current position of
the node (or the replica), its proximity to the anchor location, and the portion of the
anchor area covered by the communication area of the node. The Generation-Based
Caching policy takes the decision of removing a replica based on the generation of
the replica, removing those replicas that have been replicated most.

4.1 Assumptions

We make the following assumptions in order to keep the problem simple while fo-
cusing on measuring availability and resource consumption.

Limited memory All mobile nodes have a limited amount of memory able to store
hovering information replicas. The proposed algorithms take into account the
remaining memory space.

Uniform size All pieces of hovering information have the same size and the
caching algorithms do not take in consideration the size as a criteria when re-
moving a replica.

Unlimited energy All mobile nodes have an unlimited amount of energy. The pro-
posed algorithms do not consider failure of nodes or impossibility of sending
messages because of low level of energy.

Instantaneous processing Processing time of the algorithms in a mobile node is
zero. We do not consider performance problems related to overloaded processors
or execution time.
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In-built Geo-localization service Mobile nodes have an in-built geo-localization
service such as GPS which provides the current position. We assume that this
information is available to pieces of hovering information.

Velocity vector service Mobile nodes have an in-built velocity vector service pro-
viding the instantaneous speed and direction of the node. We assume that this
information is available to pieces of hovering information.

Neighbors discovering service Mobile nodes are able to get a list of their current
neighboring nodes at any time. This list contains the position, speed, and direc-
tion of the nodes. As for the other two services, this information is available to
pieces of hovering information.

4.2 Safe, Risk and Relevant Areas

Hovering policies are attached to pieces of hovering information. We consider here
that all pieces of hovering information have the same hovering policies: active repli-
cation and hovering in order to stay in the anchor area (for availability and acces-
sibility reasons), hovering and caching when too far from the anchor area (surviv-
ability), and cleaning when too far from the anchor area to be meaningful (i.e. dis-
appearance). The decision on whether to replicate itself or to hover depends on the
current position of the mobile device in which the hovering information is currently
stored.

Given an anchor area A(a,r), the safe area A(a,rsa f e) is the disk whose center
is the anchor location a and whose radius is the safe radius rsa f e, a positive radius
smaller than the anchor radius r, i.e. rsa f e < r and rsa f e ∈ R+:

A(a,rsa f e) = {b ∈ E |dist(a,b) < rsa f e}.

A piece of hovering information located in the safe area can safely stay in the cur-
rent mobile node, provided the conditions on the node permit this: power, memory,
etc.

Given an anchor area A(a,r), a risk area is a ring centered at the anchor location,
which overlaps with the anchor area and is limited by the safe area.

The risk area R(a,rsa f e,rrisk) is the ring given by;

R(a,rsa f e,rrisk) = A(a,rrisk)\A(a,rsa f e),

where rsa f e < r < rrisk and rrisk ,rsa f e ∈ R+.
A piece of hovering information located in the risk area should actively seek a

new location on a mobile node going into the direction of the safe area. It is in this
area that the hovering information actively replicates itself in order to stay available
and in the vicinity of the anchor location.

The relevant area limits the scope of survivability of a piece of hovering infor-
mation. The relevant area A(a,rrel) is the disk whose center is the anchor location a
and whose radius is the relevant radius rrel bigger than the risk radius:
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A(a,rrel) = {b ∈ E |dist(a,b) < rrel},

where rrisk < rrel, and rrel ∈ R+.
The ring area A(a,rrel)\A(a,rrisk) represents the area where the hovering informa-

tion seeks to survive but does not actively replicate itself (in order to avoid flooding).
It may come back to the anchor area through mobile devices going in the direction
of the anchor area.

The irrelevant area is all the area U(a,r), outside the relevant area, it is given by:

U(a,rrel) = E\A(a,rrel).

A piece of hovering information located in the irrelevant area can disappear; it is
relieved from survivability goals.

Figure 5 depicts the different types of radii and areas discussed above centered
at a specific anchor location a. The smallest disk represents the safe area, the blue
area is the anchor area, the ring limited by the risk radius and the safe radius is the
risk area, and finally the larger disk is the relevant area.

Fig. 5 Radii and Areas

The values of these different radii are different for each piece of hovering infor-
mation and are typically stored in the Policies field of the hovering information. In
the following algorithms we consider that all pieces of hovering information have
the same relevant, risk and safe radius.
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4.3 Replication

A piece of hovering information h has to replicate itself onto other nodes in order
to stay alive, available and accessible. We describe two such replication algorithms
for simulating two variants of these policies: the Attractor Point algorithm (AP)
and the Broadcast-Based algorithm (BB). Both algorithms are triggered periodically
each TR (replication time) seconds and only replicas of h being in the risk area are
replicated onto some neighboring nodes (nodes in communication range) which are
selected according to the replication algorithm.

4.3.1 Attractor Point Algorithm

The anchor location of a piece of hovering information acts constantly as an attractor
point to that piece of hovering information and to all its replicas. Replicas tend to
stay as close as possible to their anchor area by jumping from one mobile node to
the other.

Algorithm 4: Attractor Point Replication Algorithm

begin1
pos← NodePosition();2
N← NodeNeighbours();3
P← NeighboursPosition(N);4
foreach repl ∈ REPLICAS do5

a← AnchorLocation(repl);6
dist← Distance(pos,a);7
if (rsa f e ≤ dist ≤ rrisk) then8

D← Distance(P,a);9
M← S electKrClosests(N,D,kR);10
Multicast(repl,M);11

end12

Periodically and for each mobile node (see Algorithm 4), the position of the
mobile node (line 2) is retrieved together with the list and position of all mobile
nodes in communication range (lines 3 and 4). Hovering information replicas verify
whether they are in the risk area and need to be replicated (line 8). The number of
target nodes composing the multicast group is defined by the constant kR (replication
factor). The distance between each mobile node in range and the anchor location is
computed (line 9). The kR mobile nodes with the shortest distance are chosen as the
target nodes for the multicast (lines 10). A piece of hovering information in the risk
area multicasts itself to the kR mobile nodes that are in communication range and
closest to its anchor location (line 11).

Figure 6 illustrates the behavior of the Attractor Point algorithm. Consider a piece
of hovering information h in the risk area. It replicates itself onto the nodes in com-
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munication range that are the closest to its anchor location. For a replication factor
kR = 2, nodes n2 and n3 receive a replica, while all the other nodes in range do not
receive any replica.

Fig. 6 Attractor Point Algorithm

4.3.2 Broadcast-Based Algorithm

The Broadcast-based algorithm (see Algorithm 5) is triggered periodically (each
TR) for each mobile node. After checking the position of the mobile node (line
2); pieces of hovering information located in the risk area (line 6) are replicated
and broadcasted onto all the nodes in communication range (line 7). We expect this
algorithm to have the best performance in terms of availability but the worst in terms
of network and memory resource consumption.

Algorithm 5: Broadcast-Based Replication Algorithm

begin1
pos← NodePosition();2
foreach repl ∈ REPLICAS do3

a← AnchorLocation(repl);4
dist← Distance(pos,a);5
if (rsa f e ≤ dist ≤ rrisk) then6

Broadcast(repl);7

end8

Figure 7 illustrates the behavior of the Broadcast algorithm. Consider the piece
of hovering information h in the risk area, it replicates itself onto all the nodes in
communication range, nodes n1 to n5 (blue nodes).
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4.4 Caching

In this chapter we assume that nodes have a limited amount of memory to store
the pieces of hovering information (replicas). As the number of distinct hovering
information increases, so will be the total number of replicas. The buffer of nodes
will get full at some point and some replicas should have to be removed in order to
store new ones.

We present two different caching policies. The first one, called the Location-
Based Caching (LBC), decides whether to remove or keep a replica based on the
current position of the node (or the replica), its proximity to the anchor location, and
the portion of the anchor area covered by the communication area of the node. The
second one, called the Generation-Based Caching (GBC), is based on the generation
of replicas, the more a replica is old, the more it will have a tendency to disappear
as the priority is given to younger replicas.

We compare these caching techniques with a simpler one which only ignores the
incoming replicas as soon as there is no free space in the mobile device buffer.

Besides these caching algorithms, it is important to notice that we only con-
sider the position and the generation of replicas. We do not take into consideration
caching policies such as the priority, the time-to-live or the replicas size (since all
replicas considered in this paper have the same size).

4.4.1 Location-Based Caching

At each node, this caching policy decides to remove a previously stored replica
from the node’s full buffer, and to replace it by the new incoming replica based
on their respective location relevance value. We define the location relevance value
of a replica, being this replica already stored in the node’s buffer or being a new
incoming replica, to its anchor location and area as it follows:

relevance = α ∗area+β ∗ proximity,

Fig. 7 Broadcast-Based Algorithm
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where area is the normalized estimation of the overlapping area of the nodes’ com-
munication range area and the replica’s anchor area, proximity is the normalized
proximity value between the current position of the node and the anchor location of
the replica, α and β are real coefficients having values between 0 and 1 and α+β= 1.

Each time a new incoming replica arrives (see Algorithm 6), the least location
relevant replica is chosen from all the replicas stored in buffer of the node (lines 2
to 10). The location relevance of the incoming replica is computed and compared to
that of the least location relevant replica, whatever the original hovering information
they refer to (lines 11 and 12). The least location relevant replicas is removed from
the buffer and replaced by the incoming replica if the latter has a greater location
relevance value (lines 12 to 14). Otherwise, the incoming replica is just discarded
(line 16). In this way, the location-based caching algorithm will tend to remove
replicas being too far from their anchor location or being hosted in a node covering
only a small part of their anchor area.

The location relevance function (see Algorithm 7) computes the location rele-
vance of a replica hosted in a node sitting in the anchor area of the replica. The
distance between the location of the node and the anchor location of the replica are
computed (lines 2 to 5). The overlapping area of the node’s communication range
area and the replica’s anchor area is estimated (lines 6 to 13). Based on these two
values, distance and estimated overlapping area, a normalized overlapping area and
a normalized proximity values are computed (lines 14 and 15). Finally, the location
relevance of the replica hosted in the node is computed using the previous formula
with α = 0.8 and β = 0.2 (lines 16 and 17). Figure 8 illustrates the notion of location
relevance.

Fig. 8 Location-Based Caching Policy
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4.4.2 Generation-Based Caching

We define the generation of a replica in the following way: the first replica created
(normally by the user or user application) of a piece of hovering information has a
generation 0, when this replica replicates itself then it creates new replicas having
generation 1, and so on. The generation of a replica gives us an idea of the number
of replicas existing as the process of replication follows an exponential growth. The
generation-based caching algorithm tends to remove replicas having a high gener-
ation as there are likely more replicas leaving around than a replica having a lower
generation.

Each time a new incoming replica arrives (see Algorithm 8), the oldest replica
(the one having the highest generation value) is chosen from all the replicas stored
in the buffer of the node (lines 2 to 10). The generation of the incoming replica is
retrieved and compared to that of the oldest replica, whatever the original hovering
information they refer to (lines 11 and 12). The oldest replica is removed from the
buffer and replaced by the incoming replica if the latter has a smaller generation
value (lines 12 to 14). Otherwise, the incoming replica is just discarded (line 16).

4.5 Cleaning

The cleaning algorithm periodically - each TC (cleaning time) seconds - and for
each node, removes the replicas that are too far from their anchor location, i.e. those
replicas that are in the irrelevant area. This represents the cases where the replica

Algorithm 6: Location-Based Caching (LBC)
input: replica
begin1

replmin← null;2
relemin← maxRelevanceValue;3
foreach repl ∈ REPLICAS do4

rele← Relevance(repl);5
if (rele ≤ relemin) then6

replmin← repl;7
relemin← rele;8

rele← Relevance(replica);9
if (rele > relemin) then10

Remove(replmin ,REPLICAS );11
Insert(replica,REPLICAS );12

else13
Discard(replica)14

end15
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Algorithm 7: Location Relevance Function
input: replica
begin1

a← AnchorLocation(replica);2
r← AnchorRadius(replica);3
pos← NodePosition();4
dist← Distance(pos,a);5
area← 0;6
if (dist < (rcomm + r)) then7

if (dist > (rcomm − r)) then8

area← ((rcomm + r)−dist)2;9
else10

area← (2∗ r)2;11

area← area/(4∗ r2);12

proximity← (e(dist/100))−1;13
relevance← 0.8∗area+0.2∗ proximity;14
return relevance15

end16

considers itself too far from the anchor area and not able to come back anymore.
This avoids as well the situation were all nodes have a replica.

Algorithm 8: Generation-Based Caching (GBC)
input: replica
begin1

replmax ← null;2
genmax ← minGenerationValue;3

foreach repl ∈ REPLICAS do4
gen←Generation(repl);5
if (gen ≥ genmax) then6

replmax← repl;7
genmax ← gen;8

gen←Generation(replica);9
if (gen ≤ genmax) then10

Remove(replmax ,REPLICAS );11
Insert(replica,REPLICAS );12

else13
Discard(replica);14

end15
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5 Evaluation

We evaluated the behavior of the above described replication algorithms and caching
policies under different scenarios by varying the number of nodes and the number
of hovering informations.

For a single piece of hovering information, results reported in [16] show that the
Attractor Point algorithm reaches availability levels of 80% when the number of
nodes in the environment reaches 100 and 93% with 200 nodes. It is thus competi-
tive to the Broadcast-Based algorithm while using much less memory and network
traffic.

This Section reports results for multiple distinct pieces of hovering information
co-existing at the same time. We measured the average survivability (Definition 3)
and availability (Definition 5) as well as another performance metrics (cf. 5.2) such
as the messages complexity, replication complexity, overflows, erased replicas and
concentration .

We performed simulations using the OMNet++ network simulator (distribution
3.3) and its Mobility Framework 2.0p2 (mobility module) to simulate nodes hav-
ing a simplified WiFi-enabled communication interfaces (not dealing with channel
interferences) with a communication range of 121m.

5.1 Simulation Settings and Scenarios

The generic scenario consists of a surface of 500m x 500m with mobile nodes mov-
ing around following a Random Way Point mobility model with a speed varying
from 1m/s to 10m/s without pause time. In this kind of mobility model, a node
moves along a straight line with speed and direction changing randomly at some
random time intervals.

In the generic scenario, pieces of hovering information have an anchor radius (r)
of 50m, a safe radius (rsa f e) of 30m, a risk radius (rriks) of 70m, a relevance radius
(rrel) of 200m, and a replication factor of 4 (kR).

Each node triggers the replication algorithm every 10 seconds (TR) and the clean-
ing algorithm every 60 seconds (TC). Each node has a buffer having a capacity to
20 different replicas. The caching algorithm is constantly listening for the arrival of
new replicas. Table 1 summarizes these values.

Based on this generic scenario, we defined specific scenarios with varying num-
ber of nodes: from 20 to 200 nodes, increasing the number of nodes by 20; and
varying number of different pieces of hovering information existing in the system:
from 20 to 200 hoverinfos, increasing the number of pieces by 20. Each of this
scenarios has been investigated with different replication algorithms and caching
policies.

We have performed 20 runs for each of the above scenarios. One run lasts 3’600
simulated seconds. All the results presented here are the average of the 20 runs
for each scenario, and the errors bars represent a 95% confidence interval. All the
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simulations ran on a Linux cluster of 32 computation nodes (Sun V60x dual Intel
Xeon 2.8GHz, 2Gb RAM).

Blackboard 500mx500m
Mobility Model Random Way Point
Nodes speed 1m/s to 10 m/s
Communication range (rcomm) 121m
Buffer size 20 replicas
Replication time (TR) 10s
Cleaning time (TC ) 60s
Replication factor (kR) 4
Anchor radius (r) 50m
Safe radius (rsa f e) 30m
Risk radius (rrisk) 70m
Relevant radius (rrele) 200m

Table 1 Simulation Settings

5.2 Metrics

In addition to the survivability and availability properties of a hovering information
system, we also measured the performance metrics described below.

Messages Complexity. The messages complexity of a hovering information sys-
tem at a given time t is defined as the total number of messages exchanged by nodes
since the initial time. This metric provides as well a feasibility criterion and will
serve as a basis to extrapolate actual implementation results, such as latency and
overhead of a real system.

Replication Complexity. The replication complexity measures, for a given piece
of hovering information h, the maximum number of replicas having existed in the
whole system at the same time. In a real implementation this parameter will play an
important role since we will prefer algorithms minimizing the replication complex-
ity and maximizing the availability and survivability of hovering information.

Overflows. The overflows of a caching policy stands for the number of times
that new incoming replicas have not found enough storage space in a node to be
hosted. After an overflow happens, it is up to the caching policies to replace or not
an existing stored replica by the new incoming one. We expect that the Location-
Based Caching policy will generate less overflows than the other caching polcies.

Erased Replicas. The erased replicas of a caching policy represents the number
of times that a node has had to remove a replica from its buffer to store a new
incoming replica. The node takes this decision based on the caching policy. We also
expect that the Location-Based Caching policy will erase less replicas than the other
caching policies.
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Concentration. The concentration of a given piece of hovering information h is
defined as the rate between the number of replicas of h present in the anchor area and
the total number of replicas of this hovering information in the whole environment.
This metric shows how replicas are distributed around a geographical area.

5.3 Results
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Fig. 9 Availability - 40 Hoverinfos

Figures 9, 10 and 11 show the average availability for the two replication algo-
rithms: Broadcast-Based (BB) and Attractor Point (AP). Each algorithm uses three
different caching policies: no caching (None), Location-Based Caching (LBC) and
Generation-Based Caching (GBC). Each figure corresponds to a system containing
40, 120 and 200 pieces of hovering information. We observe that BB gets worse
results than AP as the number of pieces of hovering information increases. Indeed,
the BB tends to overload the system with an exponential growing number of repli-
cas. As each node has a limited buffer size, the latter tend to get full and not all
replicas can be accommodated within the buffer size and a large portion of them
is discarded. On the other hand, AP manages to better administrate the buffer size
producing less replicas which are stored in nodes closer to the anchor location of the
replicas. The combination of the AP and LBC keep the information in its anchoring
area in a much more optimal way than the other cases.

We also observe that algorithms using the LBC caching policy keep good levels
of availability despite the number of nodes or the number of pieces of hovering
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Fig. 10 Availability - 120 Hoverinfos
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Fig. 11 Availability - 200 Hoverinfos

information, whereas it gets gradually worse for algorithms using the GBC or no
caching policy.

Figure 12 depicts the average availability of the AP replication algorithm using
the LBC caching policy for different numbers of nodes. For a number of nodes above
120, we notice that the availability is high enough (above 85%) and it keeps quite
stable as the number of pieces of hovering information increases. We confirm from
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Fig. 12 Availability - Attractor Point with Location-Based Caching

this that the AP with LBC algorithms are scalable in terms of absorption of hover-
ing information (number of distinct pieces of hovering information), since during
the experiments with 120 nodes and more, up to 200 distinct hovering information
pieces have been accommodated into the system with an availability above 85%. In
the case when the number of nodes is 40, we can observe that the absorption limit,
for this configuration, has been reached as the availability starts decreasing after 80
pieces of hovering information.

Figure 13 compares the survivability and availability for the AP algorithm in a
system composed of 200 pieces of hovering information. As expected, the surviv-
ability is higher than the availability in all the cases. This proves the fact that an
available piece of hovering information is survival but a survival one is not neces-
sary available. We can also notice that these two metrics have the same shape (for
the same algorithm) meaning that they are strongly related and consequently a piece
of hovering information with a lot of chances to survive will have a lot of chances
to keep itself available as well.

Figure 14 depicts the average number of overflows for the BB and AP using the
three different caching policies: None, LBC and GC. We can observe that the BB
produces around 10 times more overflows than the AP because of its exponential
replication nature. We also see that the number of overflows for the AP tends to
stabilize as the number of nodes grows. This is due to the controlled behavior of the
AP algorithm that prevents exponential growth.

Figure 15 shows the average number of replicas erased from the nodesŠ buffer
of nodes in order to store new incoming replicas. We observe that the AP algorithm
erases much less replicas and in a more stabilized way than the BB algorithm. We
also notice that the BB with GBC tends to erase replicas in an exponential way
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Fig. 13 Survavibility vs Availability - Attractor Point - 200 Hoverinfos
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Fig. 14 Overflows - 200 Hoverinfos

which means that the generation-based caching policy combined with the expo-
nential replication behavior of BB is not a good differentiation factor for caching
replicas since this combination of algorithsm tends to insert and erase replicas per-
manently.

Figure 16 depicts the average number of messages sent by the different algo-
rithms using the different caching policies. We notice that the algorithms using the
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Fig. 15 Erased Replicas - 200 Hoverinfos
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Fig. 16 Messages Complexity - 200 Hoverinfos

LBC caching policy generate more messages than the other cases. The reason of this
behavior is the low availability performances for the algorithms not using the LBC
caching in the presence of many pieces of hovering information. For the LBC algo-
rithm, we can also observe that it tends to have slower growing gradient for the AP
algorithm compared to that of the BB, which let us suppose that the messages com-
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plexity will get smaller as the number of nodes increases. This shows the scalability
of AP with LBC algorithms in terms of network usage.
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Fig. 17 Replication Complexity - 200 Hoverinfos

Figure 17 shows the replication complexity for all pieces of hovering information
in the case of the AP with LBC. This confirms that the AP algorithm limits the
number of replicas by concentrating them around the anchor area and not spreading
them around all the system as the BB does. We also observe that the LBC caching
policy tends to improve the convergence of replicas towards their anchor area.

Figure 18 shows the average of the maximal number of replicas having existed
in the system for the AP using the LBC. It is interesting to see that it decreases
as the number of pieces of hovering information increases. It means that the buffer
resources are evenly shared among the different pieces of hovering information,
while the availability still remains at high levels (see Figure 12). We conclude from
this, that the AP with LBC succeeds to distribute the network resource in a fair
way among all the pieces of hovering information, and that we probably observe an
emergent load-balancing of the memory allocated to the different pieces of hovering
information.

Finally, Figure 19 shows the average concentration for both algorithms using the
different caching policies. We can observe that the LBC policy improves the concen-
tration factor of both algorithms compared to the other caching policies. Particularly,
the combination AP and LBC reaches a concentration factor of around 25%.
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6 Related Works

The Virtual Infrastructure project [4–7] defines virtual (fixed) nodes implemented
on top of a MANET. This project proposes first the notion of an atomic memory, im-
plemented on top of a MANET, using the notion of quorums or focal points where
a reasonable amount of mobiles nodes intersect. Quorums work as atomic memory
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cells and ensure their persistency by replicating their state in neighboring mobile
devices. This notion has been extended to the idea of virtual mobile nodes which
are state machines having a fixed location or a well-defined trajectory and whose
content is also replicated among the nearby mobile devices. Finally, this project
provided the notion of a timed I/O automaton mobile node where virtual mobile
nodes access a clock in order to perform real-time operations. The motivation be-
hind this project is the development of a virtual infrastructure on top of which it
will be easier to define or adapt distributed algorithms such as routing, leader elec-
tion, atomic memory, motion coordination, etc. Hovering information shares similar
characteristics, it tries to benefit from the mobility of the underlying nodes, but the
goal is different. We intend to provide a hovering information service on top of
which applications using self-organizing user-defined pieces of information can be
built.

(Vehicular Ad Hoc Networks). The algorithm selects appropriate cars for routing
some information from a point A to a point B. The choice of the next hop (i.e. the
next car) is based on the distance between that carŠs trajectory and the final desti-
nation of the information to route. The planned trajectory generated by a navigation
system of the car is used when estimating the relevance of a car to route some infor-
mation. This work focuses on routing information to some geographical location,
it does not consider the issue of keeping this information alive at the destination,
while this is the main characteristics of hovering information.

The work proposed by [11] aims to disseminate traffic information in a net-
work composed by infostations and cars. The system follows the publish/subscribe
paradigm. Once a publisher creates some information, a replica is created and prop-
agated all around where the information is relevant. Cars having a replica periodi-
cally poll their neighboring cars, using a broadcast message, to know whether they
are interested or not in the replica’s information. If some cars reply in an affirma-
tive way the information is sent to them. Based on these periodic polling, clusters
are composed and replicas are removed or propagated to clusters where more sub-
scribers and interested cars are situated. Replicas are also propagated to a randomly
chosen car part of the cluster driving in the opposite direction to that of the current
host in order to try to keep the information in its relevant area. Cars reply polling
with their interests and also their direction. While the idea is quite similar to that
of hovering information, keeping information alive in its relevant area, this study
does not consider the problem of having a limited amount of memory to be shared
by many pieces of information or the problem of fragmentation of information. It
also takes the view of the cars as the main active entities, and not the opposite view,
where it is the information that decides where to go.

The Ad-Loc project [1] proposes an annotation location-aware infrastructure-
free system. Notes stick to an area of relevance which can grow depending on the
location of interested nodes. Notes are kept in their relevance area is by periodically
broadcasting location-aware information to neighboring nodes. This work also pro-
poses to use this annotation system as a cache for Internet files in order to spare
bandwidth. In this case, URLs are used as note identifiers. Similarly to the previous

GeOpps [10] proposes a geographical opportunistic routing algorithm over VANETs
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work, nodes are the active entities. In addition, in this case the size of the area of rel-
evance grows as necessary in order to accommodate the needs of users potentially
far from the central location. The information then becomes eventually available
everywhere.

The ColBack system [2, 9] is part of the MoSAIC project and intends to set up a
collaborative backup system for mobile devices. The two main issues the authors in-
vestigate are: fault- and intrusion-tolerant collaborative backup; and the self-carried
reputation and rewards for collaboration. The environment consists of sporadically
interconnected and mutually suspicious peer devices having no fixed infrastructure
and access to trusted third parties. This system does not focus on Geo-localized in-
formation but replication strategies and replica scheduling and dissemination tech-
niques could be used as inspiration for hovering information replication algorithms.

PeopleNet [14] describes a mobile wireless virtual social network which mimics
the way people seek information via social networking. It uses the infrastructure to
propagate queries of a given type to users in specific geographical locations called
bazaars. Within each bazaar the query is further propagated between neighboring
nodes via peer-to-peer connectivity until it finds a matching query. The proposed
queries propagation inside bazaar techniques could be a source of inspiration when
we will develop query to retrieve specific hovering information.

7 Conclusion

In this chapter we have defined the notion of hovering information in a formal way
and we have defined and simulated the Attractor Point algorithm which intends to
keep the information alive and available in its anchor area. This algorithm multicasts
hovering information replicas to the nodes that are closer to the anchor location of
the information. The performances of this algorithm have been compared to those of
a Broadcast-Based algorithm which broadcasts replicas regardless of the proximity
or not to the anchor location.

We have also defined and simulated two different caching polices, the Location-
Based Caching and the Generation-Based Caching. Their performances have been
compared under a scenario containing multiple pieces of hovering information and
nodes having a limited amount of memory.

Results show that the Attractor Point algorithm with the Location-Based Caching
policy is scalable in terms of the number of pieces of hovering information that the
system can support (absorption limits). They also show the emergence of a load-
balancing property of the buffer usage which stores replicas in an equilibrated and
optimal way as the number of pieces of hovering information increases.
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7.1 Future Works

Real mobility patterns We have tested the algorithms under a Random Way Point
mobility model and under ideal wireless conditions. This is not characteristic of
real world behavior. We are currently applying the different algorithms to scenar-
ios following real mobility patterns (e.g. crowd mobility patterns in a shopping
mall or traffic mobility patterns in a city) with real wireless conditions (e.g. chan-
nel interferences or physical obstacles).

Real wireless conditions The simulations performed have been done in an envi-
ronment where there were neither wireless channel interferences nor physical
obstacles. In real world scenarios, these two factors are inherent to wireless com-
munications. It is thus very important to apply the Attractor Point algorithm in a
more realistic environment taking in consideration these factors in order to mea-
sure the negative drawbacks on the availability performances.

Spatial Memory Service We are currently defining and implementing a distributed
memory service, storing and retrieving pieces of hovering information, exploit-
ing available (stationary and mobile) devices as the main storage medium.

Fragmentation and recombination (swarm) In this chapter we have considered
atomic information only, but depending on the size of the hovering information
(e.g. an image or even a video) it could be fragmented into smaller pieces to fit in
multiple nodes’ memory. A query of this information will require a recombina-
tion mechanism that recovers the different pieces and gets them reassembled to
form the original information. We are currently considering this recombination
process as a swarm of self-assembling information particles.

Movement speed and direction The current attractor point algorithm takes in con-
sideration the position of the neighboring nodes only. A significant improvement
will be achieved by taking into consideration the speed and direction of the nodes
when choosing the nodes that will host replicas.

Coordinates precision The Attractor Point algorithm and the simulations per-
formed do not consider issues related to the precision of Geo-localization service.
Precision is an important factor in real world scenario, since it deeply affects the
ideal communication range. In order to cope with reality, it is thus important to
evaluate and adapt the algorithm in order to take into account problems related
to precision

Other simulation environments Results vary when simulation environments change.
In order to further validate and compare the results obtained using OMNet++, we
will use other simulation environments such as Swarm 3 or attraction fields [12].

3 http://www.swarm.org
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The CASCADAS Framework for Autonomic
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Abstract An interesting approach to the design and development of the future Inter-
net foresees a networked service eco-system capable of seamlessly offering services
for human-to-human, human-to-machine and machine-to-machine interactions.
This chapter builds in this direction by describing a distributed component-ware
framework for autonomic and situation-aware communication developed within the
CASCADAS project. The core of this framework is the Autonomic Communication
Element (ACE), an innovative software abstraction capable of providing dynami-
cally adaptable services that can be built, composed, and let evolve according to
autonomic principles. Services are capable of adapting their logic to the dynam-
ically changing context they operate in without human intervention. As a result,
whenever the need arises, ACEs can be federated autonomously and produce new
services on a situation-aware basis. Systems and, in particular, eco-systems can thus
be conceived as collections of ACEs.
The chapter introduces the concept of ACE and its different facets. It also presents
the architecture of a prototype ACE-based platform and exemplifies the different
concepts through a future Pervasive Behavioral Advertisement scenario.
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1 Introduction

Today’s Internet is rapidly evolving towards a collection of highly distributed, per-
vasive, communication-intensive services [26]. In the next future, such services will
be expected to (i) autonomously detect and organize the knowledge necessary to
understand the context in which they operate, and (ii) self-adapt and self-configure,
to exploit at their best any situation, to meet the needs of diverse users, in diverse
situations, without explicit human intervention. These features will enable a wide
range of new activities that are simply not possible or impractical now. However,
the achievement of such capabilities requires a deep re-thinking of the current way
of developing and deploying distributed systems and applications.
In this direction, a promising approach consists in conceiving services as part of
an “ecology” within which they can prosper and thrive at the service of users (i.e.,
an eco-system). This vision is attractive because would provide better services to
end-users while, at the same time, meeting the emerging economic urge for ser-
vice provision and system management deriving by the higher level of dynamism
and variability of communication systems. In addition, systems built in respect of
this view are characterized by a flatter architecture, where services at Network and
Transport level of the classical ISO OSI architecture (levels 3 and 4 respectively)
are provided at the same level of application-oriented services, that is levels 5 to 7,
and cross-layer interactions are a natural part of the ecology itself.
In this context, this chapter presents the CASCADAS Autonomic Service Frame-
work (or the Framework, for short), capable of enabling the conception outlined
above through the development of autonomic applications, that is, applications ca-
pable of dynamically adapting their plans to cope well with situations where the
environment changes in uncertain ways [22]. The Framework represents the major
outcome of the CASCADAS EU-IST project [1], and advances the field of auto-
nomic communications with at least the two contributions of (i) providing a novel
component model that facilitates the development of services as autonomic applica-
tions, and (ii) providing an environment that supports the evolution of such services
in an autonomous fashion.
The Framework is conceived around a set of complementary key enabling features,
namely situation-awareness, semantic self-organization and self-similarity, around
which we believe any future communication services infrastructure should be con-
ceived. The identification of these features, described in the following, starts from
key state-of-the-art concepts in the area of modern distributed computing and com-
munication systems, and tries to advance and generalize them to properly account
for the specific characteristics of autonomic and situation-aware communication ser-
vices. The features above are blended in a sound component model, which provides
a robust and dynamic modular conceptual framework for building autonomic se-
mantic services. This Autonomic Component-ware provides a high-level reference
model for the production of a new generation of programmable communication el-
ements that can be reused at different levels of the stack.
The Framework is centered around the fundamental abstraction of Autonomic Com-
munication Elements (ACEs), and supports the vision of advanced autonomic ser-
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vices as developed and deployed in the form of ACEs and networks of them. To this
extent, the Framework provides an environment where basic services can be created
and executed. This environment allows services to evolve autonomously, through
the enhancement of the enabling features mentioned above, and according the local
needs arising on a timely basis. Particular emphasis is put on the support for au-
tonomously organizing services to compose more sophisticated ones: through this
feature, in fact, it is possible to build systems (i.e. collections of ACEs) that “special-
ize” in a topic. Then, self-similarity allows these to be easily integrated into other
systems recursively. This enhances modular flexibility in the Framework, which can
be easily extended with components offering specific composite services.
The Framework is offered as a Java-oriented open source software development
toolkit for situated autonomic communications (hereafter, the Toolkit), under GNU
General Public License (GPL), and can be freely downloaded [34] through the
Sourceforge website [15]. The rest of the chapter is structured as follows. Section 2
frames the problem of a framework for autonomic communications to set the moti-
vations of our research. Section 3 introduces the CASCADAS Framework, its basic
self-organization, self-awareness and self-similarity features, and describes the ACE
component model. Sections 4 and 5 provide details on such basic features, while
Sections 6 and 7 describe the way they have been used to equip the Framework with
more sophisticated features. These sections exploit a Pervasive Behavioral Adver-
tisement as running case study to better illustrate and exemplify the features intro-
duced. Section 8 sketches the dynamics of a fully working ACE-based prototype
eco-system for the case study. Finally, Section 9 concludes the chapter and outlines
some future research directions.

2 Autonomic Communication Frameworks

In recent years, the body of research work in the area of autonomic systems has
been growing [22], and a number of frameworks have been proposed. Each of these
has different characteristics, with, for instance, some narrowing the target scenario
to clustered services [5] or grid environments [23, 25, 31], while others designing
containers through which non-functional properties can be injected and managed in
legacy systems [4, 17, 28]. All of these, however, originate from the view of au-
tonomic behaviour as a mean for reducing the management costs of complex IT
systems achieved, in turn, by enhancing autonomous reconfiguration, optimization
and management of network elements in the system [16].
This view, perfectly in line with IBMs autonomic computing initiative [24], implies
autonomic behavior to be supported only at the level of computing resources. As a
consequence, all of the frameworks above are (more or less) effective in enhancing
network resources with self-configuration and self-management capabilities. How-
ever, none of them targets, nor foresees, the provision of “smart” services to the
users, for which they all result ineffective. Quitadamo and Zambonelli [30] affirm
that the main reason for this is the lack of a broader support for autonomic behavior
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in the stack. This, in turn, motivates a broader approach known under the name of
autonomic communication.
Autonomic communication takes the key motivations of autonomic computing and
extends them to conceive the creation and provision of a new generation of au-
tonomic services that can be made available, and usable, by end users. Dobson
[16] define autonomic communication as “a more general thrust aimed at a deep
foundational rethinking of communication, networking and distributed computing
paradigms to face the increasing complexities and dynamics of modern network
scenarios”. Despite the evident similarities, the autonomic computing approach is
significantly different from the autonomic communication one. In fact, while the
former is more oriented towards the direct management of network resources, the
latter is concerned with the provision of services and the management of resources
at both infrastructure and user levels.
Let us take an example, in order to clarify. Let us consider a crowded venue, such
as a museum, an airport, or a rail/metro station, with a number of public screens
used to advertise events as well as third party commercial contents. As of today, the
advertisement policy typically consists in a cyclical, sequential, display of content.
This latter is typically preloaded, anticipately to the start of advertisement process,
in a static fashion so that any modification aimed at either modifying the content
itself or the sequence with which it is displayed is subject to explicit human inter-
vention. More importantly, the advertisement process is carried out independently
of the context it operates in, and therefore the content displayed on a screen remains
the same regardless of the differences among people passing by. Exceptions can
be eventually found in marginal cases, where the advertisement is based on timed
priorities (i.e., higher priority to food advertisements when the time for a meal ap-
proaches). We call this category of advertisement techniques audience-insensitive,
as they are insensitive to actual audience. Indeed, this highly static scenario results
ideal to show the advantages that the introduction of autonomic technology might
bring. However, as described below, these advantages change significantly accord-
ing to the approach used.
According to its manifesto [24], an autonomic computing approach “would aim at
facilitating configuration and management of the IT infrastructure to the extent of
limiting, or even avoiding, explicit human intervention while also reducing the costs
for its maintenance”. As a result, enhancement of autonomic technology through
the autonomic computing approach would produce an IT platform with interacting
software components capable of reconfiguring and managing themselves in an au-
tonomous fashion at runtime. However, no improvement would be seen at user level,
where the service offered would be exactly the same. In particular, no enhancement
would be observed in terms of autonomy of the service, which would still need ex-
plicit human intervention to, for instance, re-sequence and update contents to be
shown.
On the other hand, a smart service might consider the presence of infrastructures
such as wireless networks, RFID receptors, etc. These might enable access to per-
vasive services, such as for instance downloadable maps or events program for the
venue, which can be accessed by personal mobile devices carried by the audience in
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the venue. This might constitute an incentive for device holders to provide publicly
accessible information (e.g. age slot, interests, gender, etc), which might be used to
the extent of adapting the displayed contents on the basis of the peculiar interests
of people detected. This would enhance effectiveness of the advertisement process,
as the exposition of a product would be optimized towards people known to be in-
terested (and thus more receptive), while enhancing the validity of the advertisers’
business investment, since the system would be in the position to provide guarantees
on the impact of the content. We call the category of strategies allowing for such en-
hancement audience-sensitive, as they are sensitive to the audience they are shown
to. As a side remark, it is worth noting that audience-sensitive strategies would also
provide an effective way of avoiding the display of inappropriate content to partic-
ularly sensitive audience, such as children, without repercussions on the actual cost
of the infrastructure.
An autonomic communication approach would aim at providing all the necessary
support for the construction of such a smart audience-sensitive service, and therefore
its application has the capabilities to impact the scenario in such a way to provide
a service whose benefits can be immediately made available to all actors involved.
Unfortunately, to the best of our knowledge no framework fulfilling the characteris-
tics of the autonomic communication area can currently be found in literature.
The considerations above constitute the rationale and leading motivation behind our
work. The CASCADAS ACE Framework aims at filling the lack highlighted above
by providing an environment, and all necessary tools, to build complex and highly
dynamic applications in respect of the paradigms of situated autonomic commu-
nication. Central to the Framework is the concept of Autonomic Communication
Element (ACE), an innovate software engineering abstraction that allows the con-
struction, and supports, the provision of highly dynamic services through the devel-
opment of autonomic applications. In the remainder of this chapter, we will use the
terms ’application’ and ’service’ interchangeably.
With respect to our context, the scenario introduced above can be realized as a col-
lection of ACEs, each of which providing basic services, autonomously evolving in
the system according to changes in context they operate in, and the needs that arise
locally at each ACE, in a way similar to living organisms in natural eco-systems do.
A working prototype eco-system for such scenario, that we named Pervasive Be-
havioural Advertisement (PBA), has been fully developed. We will use its structure
to better explain the characteristics of the Framework throughout this document, and
finally detail the prototype.

3 CASCADAS Framework

The CASCADAS autonomic service framework foresees services to interact with
service users according to motivations driven by the context the former ones oper-
ate in. Services are developed and deployed as according to the component-ware
paradigm offered by the specifications of ACEs. Therefore, ACEs are effectively
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system components, and in the remainder of this document we will use the terms
’component’ and ’ACE’ interchangeably.
ACEs are capable of autonomously interacting to the extent of providing the de-
sired functionality in a situation-aware way with no, or very limited, configuration
efforts. Interactions may be aimed at forming more sophisticated services than the
ones currently available and, in this case, may involve the spontaneous formation
of new components in the system through aggregation of the original ones. Indeed,
enabling of these highly dynamic interactions requires the components to own a set
of features, which we retain of paramount importance to enable the vision of eco-
systems of services.
Self-organization is one of the key design principles underpinning the autonomic
management of large populations, and is therefore an essential property for the
Framework. Semantic self-organization aims at exploiting the potential of “classi-
cal” self-organization and self-aggregation as key enablers for service composition
and aggregation, and allows the identification of self-organization models of se-
mantic (i.e. cognitive) nature. In the Framework, semantic self-organization allows
ACEs to identify and document local rule-sets through which they can aggregate
and form more sophisticated services. This is achieved according to clustering, dif-
ferentiation, and synchronization techniques aimed at autonomously reinforcing or-
ganizational links, differentiating according to resource management strategies and
select ideal aggregation partners respectively. By doing so, the desired collective
behavior can be promoted in groups of ACEs.
Situation-awareness takes from context-awareness, that is, the capability of sens-
ing the environment and reacting accordingly [32, 33], and advances it with tech-
niques to organize the amount of distributed information in proper, strongly dis-
tributed “knowledge networks” to support situated and adaptive service provision-
ing. This enables services to autonomously adapt their logic to the context from
which they are requested and in which they execute.
In the Framework, this capability is offered through a dedicated service, accessi-
ble through aggregation, which allows components to obtain situation-aware in-
formation. Internally, this information is made available by a Knowledge Network
(KN) [8], which is in charge of correlating small bits of local context-aware informa-
tion, typically received through interaction with pervasive technology receptors, and
organizing it into global knowledge. Other ACEs can, then, become situation-aware
by aggregating to the KN façade ACE and observe the evolution of the system by
receiving and interpreting the information made available through the aggregation.
Internally, the KN ACE is itself an aggregate of a number of ACEs, each dealing
with isolated local views, which semantically self-organize in order to provide a
global snapshot on the present situation. Aggregation of the ACEs involved in the
KN service is made in full respect of self-similar constraints, and thus the ACE
resulting from aggregation exports standard communication interfaces that hide its
aggregate nature to the eyes of other ACEs, also facilitating further aggregations to
other ACEs in the eco-system.
Self-similarity refers to the capability of individual components to self-organize
and self-aggregate to reproduce nearly identical structures over multiple scales
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[2, 14]. Besides scalability, self-similarity is indeed a key enabler for the composi-
tion of complex communication-intensive services and for the structuring of the pos-
sibly enormous and multi-faceted items they will have to exploit in the knowledge
networks. The Framework supports self-similarity by imposing that ACEs formed
as aggregation of other ACEs provide the same set of interfaces as the original ones,
so that service invocations to aggregate ACEs do not need to be treated in a specific
way by the invoker. Properties above represent fundamental building blocks for the
Framework. These, in turn, have been used, combined and exploited in the process
of equipping the Framework with more sophisticated self-* features.

• Self-healing refers to special-purpose management techniques aimed at detect-
ing ACEs entering faulty states and finding corresponding reasons to restore
the correct operation of the element. This principle takes from semantic self-
organization and situation-awareness to build, configure, and drive a control in-
frastructure over interoperating ACEs. Again, self-healing materializes in the
Framework as (logically) dedicated ACEs responsible for monitoring one or
more ACEs to detect faulty states and undertake recovery actions, when needed.

• Self-Preservation is the natural instinct of preserving oneself from harm and de-
struction. In our context, this is translated into the capability of self-recognize the
emergence of anomalies, and self-repair them, in a scenario populated by hetero-
geneous entities and characterized by the lack of a centralized organization. The
approach towards these issues focuses on the provision of a framework for ba-
sic common security mechanisms, which can be aggregated in order to provide
more complex mechanisms. In doing so, the security elements effectively work
in synergy with the supervision structure above, which provides an ideal ground
for enhancing confidentiality, integrity, authentication, and non-repudiation fea-
tures in a distributed fashion. Then, more sophisticated services can be provided
through structured aggregation, semantic self-organization, of these simple com-
ponents.

3.1 ACE Component Model

The ACE (Autonomic Communication Element) forms the core of the Framework,
and its component model enables the design of applications in a self-similar manner.
Central to the component model is the concept of organ. An organ is an ACE in-
ternal operative component that, as the name suggests, behaves as an organ in the
human body. Specifically, organs are able to harmonize their own behavior to the
execution of other interacting organs and, more in general, to the context in which
the ACE is operating. Each organ is responsible for a specific type of tasks, and the
interaction among them allows the constitution of an ACE as a standalone compo-
nent. As example, Figure 1 depicts the assembly of an ACE from a set of organs
with clearly defined tasks that leads to a well-structured modularized component
model.
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Fig. 1 ACE Component Model.

The Gateway organ is in charge of handling interactions with the external world. To
this end, two different communication protocols are used: a connectionless protocol
is used for initial service discovery through a publish-subscribe paradigm [18], sup-
ported by the REconfigurable Dispatching System [9] (REDS), under the name of
GN-GA protocol [21]. On the other hand, a connection-oriented communication pro-
tocol is used for all other communications, where (one-to-one or one-to-many) com-
munication channels are established through a contracting technique. The DIET [27]
agent framework supports this communication.
The Manager organ is in charge of handling the internal communication among the
organs and is responsible for the ACEs lifecycle management. With respect to this
activity, any ACE must be in one of the four states of Figure 2: inactive, running,
prepared to move, and destroyed. Different lifecycle actions are possible from these
individual states.
The Facilitator is the organ that provides an ACE with capabilities for autonomously
adapting its behavior to changes detected in the context. Adaptation is achieved
through modification of the existing capabilities and/or addition of new ones. In
more detail, ACEs are provided an original behaviour through a self-model, which
defines the ACE’s behavior with a number of plans each containing a set of states
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along with rules to switch from one state to another. Plans can also include a set of
modification rules, which allow to change the original behavior by modifying states
and transitions in, or disabling, existing plans. In addition, modification rules might
enable plans originally disabled or even create new plans. It is worth noting that
modification rules are a major achievement in terms of situation-awareness, as in
fact modifications are typically based on events occurring in the context the ACE is
operative in. Semantic interpretation of plans, performed during initialization, leads
to the creation of the original ACE plan that, in turn, allows creation of the ACE’s
initial behavior. During its operation, the Facilitator continuously evaluates the en-
vironmental conditions and the operations the ACE performs. Based on the outcome
of the reasoning process, which are in turn influenced by the occurrence of contex-
tual events, it subsequently performs, if needed, the specified modification actions
on the basis of the peculiar events occurred. Changes made according to these, then,
are submitted to the executor, described below, where they are made effective.
The Executor organ governs the evolution of the ACE according to the actions taken
as per self-model. Its main role is to ensure that any reasoning and decision taken by
the Facilitator is put in place in an effective and efficient way by ensuring that con-
ditions are verified, actions are executed, and appropriate messages are exchanged.
Execution of plans may involve the use of specific capabilities provided by the

Fig. 2 State diagram of ACE’s lifecycle management.

ACE. To this extent, the Executor may query the Functionality Repository organ to
obtain them. The purpose of this repository is store the capabilities deployed.
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ACEs provide services in form of functionality. These are stored in the repository,
which is thus split into Common (i.e., guaranteed to be available in each ACE) and
Specific (i.e., peculiar to a specific ACE) functionality. Common functionality is a
major feature in terms of self-similarity. In fact, each and every ACE, regardless of
its simple or aggregated nature, is capable of offering this set of capabilities albeit
the set is strictly limited to the provision of basic operations. On the other hand,
a service developer may create any arbitrary service and store it into the Specific
Functionality Repository to equip the ACE the service is deployed in with more so-
phisticated and distinctive capabilities.
In addition to the organs described above, the original component model has been
extended towards the provision of self-healing features through a dedicated organ
aimed at interacting with a pervasive supervision framework. Activation of this or-
gan, named Supervision, determines the “supervisable” nature of the ACE, and trig-
gers monitoring activities at specific (configurable) points in the ACE aimed at veri-
fying its own operative state. The structure of the pervasive supervision framework,
as well as the description of ACEs self-healing features will be the subject of Section
6.

4 Semantic Self-Organization

The Framework supports semantic self-organization through algorithms for orga-
nized self-aggregation of ACEs in the form of autonomous clustering, differentia-
tion and synchronization. The red wire among all the three self-aggregation tech-
niques is that the choice of aggregation partners is subject to knowledge, and evalu-
ation, of the context they are operating in, and that the self-organization will impact.
This enables ACEs to conduct the aggregation according to a selection process of
cognitive (i.e., semantic) nature, as deriving from the consideration of situation-
aware information.
Clustering foresees an ACE initiating a “rewiring” procedure upon detection of a
discrepancy in its list of required/available functionality (resulting from many dif-
ferent events such as the breaking of an existing collaboration link or a change in the
local load due to a surge in demand). Depending on the circumstances, the initiator
of the algorithm can choose one or more of its (contracted) first ACE neighbors as
match-makers, and the constraint on the conservation of the total number of links
can be relaxed or not. Simulation results [29] show that successful self-organization
can take place, at a predictable rate, provided that well-identified conditions are met.
The resulting aggregate ACEs will reflect the presence of durable complementari-
ness between functions provided/encapsulated by individual ACEs (i.e., long-lasting
GN/GA matches) and their ability to collectively identify and realize these func-
tional clusters through local interactions. This can be generalized to any complex
web of interdependencies, with individual ACEs potentially belonging to more than
one functional cluster, and including “single type” aggregates designed for load-
balancing rather than complementariness.
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Differentiation allows ACEs to decide to “self-terminate” locally when facing an
inappropriate workload. This automates the transfer of resources, between applica-
tions and according to fluctuations in the demand for a variety of co-hosted services,
in a way that resources released can be re-assigned to other applications. The name
differentiation derives from biological morphogenesis with which it shares some
characteristics. Results from preliminary simulations [29] show that differentiation
can help maximize the throughput of a distributed processing infrastructure while
also making the system more responsive to heterogeneities in the workload when
combined with the above “on demand” clustering. At the same time, results also
emphasize that even the simplest set of rules tends to combine a large number of pa-
rameters to make interpretation difficult, therefore making selection of appropriate
values a non-trivial problem. The algorithms integrated in the Framework enhance
ACEs with capabilities to self-assess their own type according to the local observ-
able workload, along with means for locally deciding when to change type.
Synchronization aims at finding or creating partnerships that adequately take into
account the time activity pattern of individual constituting ACEs. This, in turn, in-
volves (i) establishing a collaborative overlay that aggregates components featuring
activity patterns that are a priori compatible starting from a random bootstrap con-
figuration, and (ii) seeking ways of adjusting individual time-cycles so as to create
opportunities for collaborations that would not exist if every individual activity pat-
tern were “frozen” from the onset.
When the “rewiring” algorithm is employed, simulations show that the use of ran-
dom time signatures allows the formation of a scale-free overlay when pruning from
a complete graph and trying to secure a target number of active neighbors at any
one time. In addition, they also show that distributed heuristics based on the “on-
demand” clustering algorithm can be found so that near-optimal configurations ob-
tained by pruning can be approximated.
In the economy of the Framework, and of the applications developed through it,
self-organization is used as key enabler for composition of more sophisticated ser-
vices, typically through aggregation of ACEs offering basic services. Furthermore,
the semantic nature of the self-organization process brings a number of added val-
ues such as, for instance, the reinforcement of collaboration links in the aggregation
process. As an example, consider the ACE that governs an advertisement screen in
the PBA application. In order to conduct the advertisement process appropriately,
it will have to aggregate to, among others, the ACE providing the multimedia con-
tents, the ACEs providing self-healing features and, for instance, an ACE providing
encryption services. Upon the rise of instabilities in the system, for instance due to
a hardware failure causing a reduction of the available resources, it might enter an
“emergency mode” whereby sensitive neighbors might be “clustered” to reinforce
collaboration links critical to the service provision (e.g. the ACE providing multi-
media content) while the self-healing infrastructure takes some action, also “syn-
chronizing” to the “clustered” neighbors so as to optimize the aggregation’s internal
configuration. At the same time, it might “differentiate” with non-critical aggrega-
tions (e.g. the ACE providing encryption), to reduce the workload, thus allocating
newly available resources to links retained critical. It is worth noting, finally, that
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the employment of these algorithms is not automatic, but rather triggered by the
situation-aware detection of well recognized instabilities.

5 Situation-Awareness

Situation-awareness refers to the ability of refining decisions according to the spe-
cific contextual situation. This capability requires models and tools for analyz-
ing and organising pieces of contextual information into structured collections. To
this end, the Framework offers a Knowledge Network (KN) [8] service, accessible,
through aggregation, by ACEs as a system-wide service.
The KN is in charge of gathering and processing information to form a collection
of Knowledge Atoms (KAs), which structure the latter in a data model conceived
around the consideration that any bit of contextual knowledge is produced as a con-
sequence of an event occurring in the context. Accordingly, a dedicated data model
was created to represent any such fact, in a simple and expressive way, by means of
a 4-tuple of the form (Who, What, Where, When). This 4-tuple represents the basic
unit of information in KAs and allows to account an entity (Who) involved in some
activity (What) at a certain location (Where) at a certain moment (When).
The use of the data model enhances knowledge networking so as to make it possi-
ble to identify relations between atoms on the basis of content similarity (e.g. two
atoms having the “who” field set to the same value corresponds to facts related to
the same entity). Once relationships between atoms are identified and organized, it
is possible to process them, to produce views, on the basis of equality of values in
the same fields for different 4-tuples. For instance, data from a sensor network in
an environment can be clustered according to the geographic closeness of sensors
so that a concise perspective on an activity occurring in region larger than the one
sensed by a single sensor can be generated.
Although it appears as a single ACE to the eyes of ACEs using it, the KN is in-
ternally composed by a collection of ACEs structurally organised in the architec-
ture depicted in Figure 3. ACEs at bottom-most layer realize the concept of KA
from heterogeneous data sources, from GPS devices to the Web. Data sources with
very limited power, or too dynamic and ephemeral, are represented within so-called
Knowledge Repositories. This might be the case, for instance, of data from RFID
readers and sensor networks, which can be accessed via a repository rather than via
individual KAs. It is worth noting that non-ACE applications may still be part of the
Atom Repository through a simple interface.
On top of this layer, a number of components organize the KA so as to verify the
concept of knowledge networks. The Knowledge Organization is in charge of or-
ganizing data in containers and exporting an interface for concept-based querying
(i.e., by keyword) enabling higher level ACEs to access concept-based information.
Knowledge aggregators allow establishing meaningful relationships among KAs,
also storing data in a very expressive format and processing upon request. Results
can thus be made available via a pattern-matching interface à la Linda [1]. The
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Fig. 3 Architecture of the KN.

idea behind the aggregator component is to provide specific information via pattern
matching to form knowledge views. The Context Verificator verifies consistency of
information in the KN according to (application- or user-) configurable parameters.
This is done by accessing the KA(s) under verification and/or querying knowledge
organization components to verify consistency in the knowledge. According to the
outcome of such verification, then, it can notify the application about problems. An
understanding of the advantages brought by the use of the KN can be obtained by
looking at the PBA scenario. There, situation-awareness is the real enabler for self-
adaptation in the advertisement process, as it allows the content allocation process
to be driven according to contextual views of the composition of the current audi-
ence. In more detail, the ACE that takes the decision on the type of content to show,
at a certain time, evaluates its appropriateness against the most recent view. Thus,
by doing so it can make sure that the decision respects, in the best possible way, the
nature of the interests that emerge as dominant from the view, and propose content
that meets such interests. This process is realized by ACEs, representing potential
content advertisers, aggregating to the KN in order to acquire situation-awareness
features. By doing so, the former ones can come acquainted of the “situation by the
screen”, that is, the dominant interests among the audience currently in front of the
screen, so as to ponder about relevance to own business, which would potentially
lead to notification of interest.
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6 Pervasive Supervision

Supervision refers to the ongoing observation of ACEs and the issuing of corrective
measures upon detection of hazardous situations. Figure 4 shows the basic pattern
for pervasive supervision, where all components are ACEs themselves. The Sen-

Fig. 4 ACEs for pervasive supervision

sor links the supervision system with the ACE (configuration) under supervision in
order for this pattern to be monitored internally. Each ACE exports, through the ded-
icated Supervision organ described in section 3.1. a management interface through
which internal state and session objects can be accessed and verified. Monitoring
data gathered in this way is aggregated by the Correlator, to extract meaningful in-
dicators of current health conditions of the system under supervision, and, in turn,
analyzed by Drift Analyzers that try to anticipate future problematic situations in the
system under supervision. Additionally, information from the environment may be
used to supplement the analytical process. The outcome of this analysis constitutes
the input for Assessors, which make predictions on the current (or future) system
health, on the basis of raw data or output of correlators and drift analyzers.
The above components are concerned with detection of potential health threats for
the configuration supervised. According to the outcome of this activity, a reaction
is eventually decided and put in place as follows. The Planner tries to compute a
solution plan for a detected problem, on the basis of the assessments generated by
the Assessor and the actions described in the self-model of the ACE (or ACEs) un-
der supervision. These are finally executed, through interception and modification
of internal processes of the supervised ACE(s), by Effectors. The actual state of
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the system under supervision, its potential future behaviors and countermeasures on
problem situations is derived from an analysis of the composition of the self-models
of the ACEs that constitute the supervised system itself through the use of a mathe-
matical framework for model composition, abstraction, and local refinement [11].
Automation of supervision functions to limit human intervention, referred to as Self-
management, can benefit of self-organization techniques, already employed in the
Framework, to enable highly distributed supervision of large collection of ACEs.
Thus, a higher-granularity supervision system accounts for the self-adaptive nature
of ACEs behavior, all of which implement the same supervision logic. Their co-
operation enables for highly distributed supervision logic. Clustering and differ-
entiation techniques are considered to foster information exchange and support of
application-specific logical neighborhood to the extent of detecting and reacting to
events related to ACE’s behavior and their interactions through contracts.
The use of the pervasive supervision framework in the PBA scenario has the main
purpose of enriching the prototype eco-system with capabilities of dynamic detec-
tion of ACEs entering faulty states. While, on one hand, this allows for a prompt
heal, as per definition of self-healing, on the other hand its utilization also allows
other operative ACEs to be notified of relevant anomalies as these occur. This, in
turn, facilitates the design of modification rules to allow ACEs to cope with uncer-
tain environments arising as a consequence of such anomalies. This is the case, for
instance, of the ACE governing a display, which might ask allocation of an adver-
tisement slot of time to other allocation ACEs upon notification, from the supervisor,
that the one currently employed has entered a faulty state. It is worth noting that by
doing so, the display ACE is also enhancing self-survivability of the display ser-
vice, as the reaction guarantees the continuation of the service even though part of
the aggregation is not in an operative state.

7 Security and Self-Preservation

The distinctive feature of a system built as a collection of ACEs is the absence of a
centralized authority. As a consequence, a-priori trust relationships between ACEs
belonging to different administrative domains cannot be assumed.
ACEs can show selfish, uncooperative or, in the worst-case, malicious behavior.
Therefore, it becomes of paramount importance to address security issues in two
distinct directions to cope with this wide range of attacks. Indeed, the behavior of
ACEs needs to be monitored, and it is necessary to provide mechanisms to secure
the communication infrastructure with confidentiality, integrity, and authentication.
The Framework approaches these through security elements enhancing hard- and
soft-security mechanisms, concerned with cryptographic mechanisms and behav-
ioral attacks respectively. In the course of its operations, the security elements ex-
ploit the supervision infrastructure and employs semantic self-organization tech-
niques to guarantee survivability of the system while ensuring self-preservation of
(both simple and aggregate) ACEs and resources.
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Hard security mechanisms aim at protecting the system from threats such as im-
personation, eavesdropping, spoofing, and data modification. However, deploying
cryptographic algorithms directly on ACEs would make them cumbersome, thus
potentially prejudicing execution on pervasive devices. For this reason, the Frame-
work exploits aggregation functionality and the GN/GA communication protocol to
provide security in an adaptive and flexible way. Security features are thus provided
through ACEs that can equip, through on demand aggregation, requesting ACEs
with self-preservation and security features.
These ACEs provide a set of libraries containing basic cryptographic algorithms
that can be combined on demand in order to compose more sophisticated security
features. As an example consider, in the PBA scenario, the moment when the ACE
governing the display communicates with the one governing the advertisement al-
location service. There, the requesting ACE can be instructed to evaluate the avail-
ability of bandwidth as a parameter for deciding the type of encryption algorithms
to use. The rational behind this check is that more complex algorithms will require
altogether longer transmission times, which contrasts with the real-time require-
ments of inter-ACE communication in the PBA scenario. Then, once decided which
encryption service to use, the requesting ACE might aggregate with the ACE pro-
viding the desired encryption algorithm in order to acquire the desired encryption
capabilities. If at a later time the availability changes, the same ACE might want
to employ a more complex encryption service, in which case the aggregation with
the previous encryption ACE might be untied and another one might be undertaken
with another ACE providing the service. This solution enables for flexible adapta-
tion of ACEs to the security requirements of the application and type of service by
implementing reusability of components for different purposes.
Giving ACEs responsibilities for the survivability of the system creates new chal-
lenges, whereby they are expected to react to eventual attacks, from malicious nodes
targeting disruption of the system, by autonomously reconfiguring so as to exclude
malicious ACEs. Social control, in the form of trust and reputation mechanisms, is
employed in the Framework to this extent. Heuristics, or aggregation functions, can
be injected so that ACEs’ behavior can be captured and exclusion of malicious (self-
ish, or rational) entities can be enabled. Social control enables analysis of system
evolution and interactions, and techniques borrowed from the game theory are used
to minimize uncertainty in service provision and composition. This allows deriving
conclusions on system performance in presence of selfish or uncooperative ACEs,
and the cooperation level when a reputation management scheme drives interaction
decisions [7]. System-wide self-preservation can also be enhanced, through a sim-
ilar analysis, by exploiting semantic self-organization through the use of policies
and strategies for the selection of specific partners on the basis of an evaluation of
the level of involvement of an ACE. For instance, the use of such polices might
enable an ACE to maximize its outcome in participating to system. This leads to
an enhancement of the system survivability when the structure so formed is used to
detect, and remove, malfunctioning components in order to keep the same service
level[18].
The Framework targets protection against Distributed Denial-of-Service (DDoS),
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perhaps the most difficult type of attack to deal with. Development of feasible
protection mechanisms involving both detection and reaction are under develop-
ment, where two possible response mechanisms derive from generic DoS detection
schemes. The first allows ACEs to self-protect by filtering detected unwanted traf-
fic, and it is applicable to DoS attacks within the ACE communication domain. The
second, exploits service migration (self-configuration) to escape malicious flows.

8 Pervasive Behavioral Advertisement Scenario

The case study scenario mentioned throughout the chapter has been fully devel-
oped as a prototype platform named Pervasive Behavioral Advertisement (PBA).
The platform is conceived as an eco-system of ACEs developed through the Toolkit,
and we believe it might represent a first step in the direction of an application with
a potentially immediate industrial spin-off.
The platform is populated by a number of originally disjoint ACEs, which self-
organize in Regions upon start as depicted in Figure 5,. Regions are formed as a
result of each ACE’s behavior as specified in its own self-model, and are charac-
terized by the diversity of the service(s) offered. In other words, each region offers
different services, which are made available to other regions so as to enhance on de-
mand cooperation to the extent of delivering the promised service in the promised
terms and conditions. Cooperation is then exploited through further inter-region ag-
gregation that, in turn, fosters a system-wide self-organization optimized towards
the behavioral pervasive advertisement service to be offered.
Referring to Figure 5, the Profiling Region makes available services for obtaining
user information. This region is composed by a collection of ACEs truly interacting
with badges equipped with RFID tags via RFID antennas positioned by the screen
in such a way to detect the presence (and gather information) of people appearing
and disappearing from the screen range. This activity is carried out on a continuous
basis, as the shape of arrow denotes in the figure. Bits of information so gathered
are exchanged with the Knowledge Network Region, whose ACEs give it the shape
of structurally organized knowledge in the way previously described. To the eyes of
other ones, this region appears as a single ACE providing a situation-aware infor-
mation provision service. In reality, as described in previous sections, the region is
composed by a number of aggregated ACEs that seamlessly provide the service in
full respect of the self-similar constraints highlighted previously.
This process outcomes availability of contextual information that other regions of

the system obtain and use in order to acquire high degrees of situation-awareness.
The Display Region provides the system with displaying capabilities for the adver-
tisement to be shown. Allocation of the actual content to be shown takes place by
invoking the slot allocation service provided by the Allocation Region. With this re-
spect, in the presence of a large number of screens and parties interested in buying
time slots on them, solutions for allocating time slots and generating added value
for interested parties must be identified. From this point of view, auctions appear
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Fig. 5 The Pervasive Behavioral Advertisement scenario

an excellent solution as they prioritize allocation to advertisers who value them the
most. Therefore, in our prototype the allocation of advertisement slots is decided by
employing an auction-based paradigm whereby advertisers compete in a situation-
aware fashion in order to acquire the rights of advertising on a specific screen at a
specific time. The allocation service exported by the Allocation Region (interaction
(1) in the figure) employs an iterative English auction, where ACE advertisers com-
pete to the extent of acquiring the rights to expose own products in the slot of time
under auction. Internally, the slot under auction is advertised by an Auction Center
(interaction (2) towards the AC-ACE in the figure) through which is made available
to advertisers (i.e. bidder-ACEs in figure) whose decisions on whether to submit a
bid or not make intrinsic use the querying services offered by the Knowledge Net-
work Region (interaction (3)). Thus, a bid is submitted if and only if the trends of
interests reported in the (situation-aware) result of the query show sensitive rele-
vance with the range of products the advertiser is competing to display. As in the
case of the Knowledge Network Region, the Allocation Region has a single-ACE
façade that, in turn, involves a number of aggregated, self-similar, ACEs to cooper-
ate.
Upon auction termination, communication of the auction winner is returned back
to the Display Region (interaction (4)), and is used by the ACEs there contained to
select the right advertisement to display. The selection is offered as a service by the
Database Region, which contains an advertisement database repository where ad-
vertisements are tagged based on owner and dominant relevance of interests. Thus,
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selection of the right advertisement is done by simply invoking the service with
auction winner and the interest the winning bid was submitted for, returned by the
Auction Region, as input (interaction (5) for the query, and (6) for the response).
Seamlessly from the interaction model just described, which ensures that the con-
tents advertised on the display evolve in the same way as the interests in the audi-
ence, the pervasive supervision framework enriches the platform with self-healing
features. In the current prototype, however, self-healing capabilities are used for
proof of concept, and therefore the only Auction Region is put under supervision.
Specifically, relevant ACEs aggregate with the supervisor, which starts its monitor-
ing activity towards all of them. If an ACE, say, the seller, enters a faulty state, a
notification is sent to all other supervised ACEs, which can thus escape the faulty
state by aggregating to other sellers, and a healing action aimed at reverting the ACE
back to an operational state is started.
The prototype platform has been deployed on a distributed testbed, and executions
show that ACEs developed are stable and capable of supporting the interaction
model described above in extensive long-term sessions. In addition, preliminary
performance evaluation tests have been conducted to the extent of evaluating ef-
fectiveness of the platform in terms of impact of the advertisement currently shown
on the current crowd as based on a matching of relevant interests. Results show that
our system enables high impact on the current crowd, as compared with the classical
“round-robin”. Analysis on such data allowed inferring that the effective investment
cost for the advertiser, intended as the cost per-matching-person, decreases even
though the price paid for advertising results many times increased (with a conse-
quent increase in the screen owner’s revenue).

9 Conclusions

This chapter describes the distributed component-ware framework for autonomic
and situation-aware communication designed and developed in the context of the
CASCADAS project. The use of the toolkit as a mean for creating computer net-
works enables the development of these latter ones as ecologies of services, or eco-
systems, according to a vision that many foresee as a natural future evolution of the
current Internet.
Eco-systems are characterized by a relatively flat architecture, which makes it easy
to inject new services without, or with very limited, configuration efforts, and pro-
vide an environment where services can thrive to satisfy users’ needs, while account-
ing for the actual operative context, as these both evolve. The framework embraces
this vision by enhancing the creation of dynamically adaptable services through
the innovative abstraction of Autonomic Communication Elements (ACEs), which
are made available through an open source development Toolkit. This latter is fully
usable and capable of exploiting highly innovative networking and application ser-
vices through provision of features such as situation-awareness, which enriches the
system with the ability to take into consideration the context evolution in local de-
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cisions by providing system-wide knowledge in a highly expressive and flexible
format, and semantic self-organization, which allows aggregating and organizing
ACEs on the basis of dynamic contextual changes. These features are federated into
a sound component model, which, among other things, ensures uniformity of the in-
terfaces exported by composite ACEs resulting after aggregation of ACEs offering
basic services. This results in a natural tendency to show self-similar behavior.
The above features have been used to equip the framework with other, composite,
features that enrich the framework itself. In detail, security and self-preservation
features are provided through a dedicated set of ACEs, where confidentiality, in-
tegrity, non-repudiation and authentication mechanisms are provided in form of
on-demand services. Similarly, another dedicated set of ACEs brings self-healing
features through a distributed approach towards detection of changes in the health
of one or more ACEs, while also anticipating reactions based on projections of the
way the state will evolve; A Pervasive Behavioral Advertisement application was
selected fully developed as proof of concept scenario. The structure and interactions
of the collection of ACEs that form it served as a way to better illustrate the features
above, and how these support such a highly dynamic application. The scenario an-
ticipates a potential future industrial scenario, and relies on the sole CASCADAS
framework in order to build a robust and effective platform in a fully distributed
fashion.
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Abstract This chapter describes DySCAS: an advanced autonomic platform-independent
middleware framework for automotive embedded systems. The concepts and architecture are
motivated and described in detail, focusing on the need for, and achievement of, high flex-
ibility and automatic run-time reconfiguration. The design of the middleware is positioned
with respect to the way it overcomes the specific technical, environmental, and performance
challenges of the automotive domain. Self-management is achieved in terms of automatic
configuration for context-aware behavior, resource-use efficiency, and self-healing to handle
run-time detected faults. The self-management is governed by the use of policies distributed
throughout the middleware components. The simulation techniques that have been used for
extensive validation are described and some key results presented. A reference implementa-
tion is presented, illustrating the way in which the various concepts and mechanisms can be
realized and orchestrated.

1 Introduction

This chapter describes the DySCAS middleware framework for automotive embedded sys-
tems.
DySCAS is motivated by the need to introduce flexible dynamic configuration into vehicular
control systems. These systems are increasingly complex and this complexity impacts on the
already long design and development cycles. The automotive industry needs the ability to defer
some design decisions so that time-to-market is reduced without compromising the level of
functionality achieved. Upgrades should be supported transparently throughout the lifetime of
the vehicle; this is especially needed for those sub-components with higher rates of innovation
(such as infotainment devices, GPS etc.). Vehicle owners’ expectations of technology are also
increasing and they demand the ability to make customization choices, and to change those
choices over the vehicle’s lifetime. The community also indirectly demands flexible vehicle
upgrades, because vehicular legislation concerning aspects such as safety, emissions, noise
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etc. are constantly updated and applied differently across Europe and the world; currently such
legislation only affects new vehicles as it can not be retrospectively applied. The deployment
of self-management into vehicular systems has the potential to improve robustness through
dynamic fault detection and handling and to improve efficiency, for example through dynamic
reconfiguration to reduce power consumption.
Based on the significant and wide-ranging technical challenges and expectations of the au-
tomotive application domain we derive the key requirements of DySCAS, which include:
real-time performance guarantees, flexibility, self-management, context-awareness, platform
independence, resource efficiency, high robustness, run-time configuration, extensibility, and
functional upgrade over the lifetime of deployed systems.
The resulting architecture specification is presented. The architecture follows a layered,
service-oriented model and is designed to be able to meet stringent real-time and reliabil-
ity QoS (Quality of Service) guarantees. The architecture supports autonomic behavior with
specialized planner and actuator components to achieve dynamic reconfiguration to improve
resource efficiency and to self-heal when faults are detected.
The component model is described; this specifies the interfaces and internal modules of mid-
dleware services, the means of execution of and interaction between services, and a strategy
for component deployment. The configuration logic is distributed throughout the middleware
and application components wherever deferred logic or run-time context-sensitive configura-
tion is required. Components can be internally configured by inserting Decision Points, which
are place holders for policies which can be loaded dynamically. The policies are intended to
operate at the strategic level. To support this, a dynamic context management scheme ensures
that the appropriate environment and state information is locally cached for each specific pol-
icy so that context-aware decisions can be made with very low latency. In addition to the policy
evaluator, Decision Points also encapsulate a policy supervisor which detects and handles any
problems arising from policy evaluation.
We go on to show how the DySCAS architecture specification can be turned into a realized
system through the steps of extensive simulation to validate concepts, and the development
of a reference implementation. One of the typical DySCAS use cases is described and the
associated implementation issues are discussed. Policy evaluation, and the interaction between
components in the reference implementation are detailed, as well as the techniques used for
checkpointing, versioning of components, and scheduling. An open-source Instantiation Layer
is provided to facilitate portability and to reduce the device-driver development effort. The
various simulation and validation tools and techniques used are discussed and some results
are presented.
Finally, open issues and on-going work areas are identified.

2 Automotive challenges and DySCAS

The general trend towards increasing use of electronics and communication technology is
continuing and will have a major impact on vehicle design and operation. In this trend, system
integration technologies to merge functions together, will play an important role [30].
Vehicles in series production today already contain the same amount of electronics as aircraft
did two decades ago. It is predicted that the share of automotive embedded systems in respect
to a vehicle’s total value will reach 40% by 2015 [53], bringing in innovations and new features
in vehicle control and driver assistance such as radar assisted cruise control, traffic information
services, improved navigation, fuel efficiency, and many more.
Like many embedded systems in other markets, e.g. medical technology or avionics, automo-
tive embedded systems are safety critical because of their potential effects on the environment
and humans. Many automotive products are targeted towards the consumer mass market and
are thus sensitive to cost, usability and reliability. Many automotive applications have real-time
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requirements, ranging over closed loop periodic controllers to multimedia and communication
functions.
The transition from today’s static system to dynamic configurations made in the DySCAS
project is a large step for the automotive industry. The introduction of adaptive aspects of
configuration and behaviors, and the ability to defer part of the configuration decisions, ver-
ification and validation efforts beyond the point of systems deployment, calls for enhanced
support for error detection, error handling, and recovery. The intended support by the oper-
ating system and middleware is related to supervision of operations such as monitoring the
system execution state of application software and devices, producing checkpoints for roll-
back, transferring component states, and re-flashing nodes.
A vehicle can be divided into domains, such as the chassis domain which comprises e.g.
brakes, and the infotainment or telematics domain physically located in the cabin for interac-
tion with the driver and passengers. A navigator is a typical example of an infotainment device
that can be nomadic or built-in. Information interchange with the vehicle and other infotain-
ment devices as well as a seamless human-machine interface integration into the vehicle, e.g.
using the built-in display and buttons on the dashboard to control the nomadic device, are both
necessary and valuable.
It is well known that technology advances drive business. The technology growth is currently
very high in the infotainment domain. The business opportunities of an embedded dynamic
middleware such as DySCAS, is based on the observation that the vehicle as a whole has a
lifecycle three to ten times longer than its more or less tightly connected infotainment de-
vices. This gap creates a tension and desire to upgrade both hardware and software of the
infotainment devices and have them seamlessly integrated into the vehicle.
Another technology emerging on the automotive mass market is the vehicle-to-vehicle and
vehicle-to-roadside communication, giving rise to a vast number of new opportunities for in-
novation in traffic safety and management and driving information such as road and weather
conditions, which must be integrated into the vehicle to aid but not distract the driver. The
external wireless communication has another deep impact – it also enables system upgrade.
This is exactly what buyers expect today of modern consumer electronics such as television
decoders, computer communication devices, console games, mobile telephones, etc., that reg-
ularly connect to a server, eventually performing software upgrade. To catch the business
opportunities and customer satisfaction out of these two technological changes, the computer
system coordinating the infotainment domain needs to be adaptable. The business prospective
will be proportional to the simplicity as perceived by the customer and inversely proportional
to the labor intensity of the vehicle manufacturer and service provider.
The increased use of embedded electronic systems in vehicles, however, also implies growth
and change in both application complexity and system development complexity. For many ad-
vanced applications, there are apparent needs of integration of interacting data and function-
alities and incorporation of behaviors with different criticalities and heterogeneous off-the-
shelf components, further characterized by real-time, resource and dependability constraints.
In system development, such product complexity is augmented by the involvement of multi-
ple stakeholders and organizations, heterogeneous technologies and components, and lifecycle
concerns in regards to maintenance, upgrade, variability and reuse. To cope with the techni-
cal and managerial challenges it becomes necessary to develop new technologies, tools, and
methodologies [71]. The dynamic self-configuration approach of DySCAS offers here an al-
ternative to handle the expected complexity.
On the automotive customer service side, the ability of allowing cost efficient and reliable
field-upgrades of software is also considered important besides vehicle customization, per-
sonalization, and incorporation of technology innovations.
It is expected that future vehicles will provide the ability of building ad-hoc networks between
vehicles and with road infrastructure access points to share information and functionality,
e.g. to resolve hazardous traffic situations. These information services are based on external
communication and a cornerstone is the ability of the vehicle internal architecture to handle
all conceivable future information services.
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The following is an example use case which we assume did not exist at the time the vehicle
rolled out from the factory. The wish is to attach a device that offers a new predefined func-
tionality to the vehicle and integrate into the vehicle the specific human machine interface: a
handheld navigation device becomes available inside the vehicle. Its functions will become
integrated into the vehicle’s infotainment system e.g. via wireless bluetooth communication.
Navigation directions shall be given out via the sound system of the vehicle while the current
entertainment source is muted. The transition when integrating and removing the handheld
navigation device must be seamless to the driver and passengers.
Current automotive embedded electronic systems adopt a static configuration scheme, in
which the design assumptions on environment, system functionalities and behaviors, compo-
nent compositions and resource deployment are defined during the development process and
subsequently kept unaltered over the complete lifetime of the vehicle. This is, as seen from
the above mentioned use cases, insufficient for many future scenarios of automotive vehicles.
Further, seen from an organization perspective, the inevitable early design assumptions which
cannot be withdrawn even when new information is revealed are a source of much agony and
hesitation hampering the business key time-to-market issue. In contrast and extension to stati-
cally configured architectures, DySCAS will, for the dynamic operations, achieve predictabil-
ity through on-line mechanisms that negotiate and reserve necessary resources in advance and
provide synchronization with application conditions. When design time testability is partially
lost in a dynamic self-configuring system, supervision of behavior takes over. For a networked
system, it is important that decisions are made based on a consistent global view and actuated
in a synchronized way. This in turn necessitates middleware support for consolidating dis-
tributed information in regards to vehicle conditions, application states, operation events, and
resource availability, as well as the support for disseminating the consolidation results. For
example, a software update may require re-allocation of components and thus a global view
of resource utilization.
Automotive systems are often highly resource-constrained because of cost considerations in
mass production. To introduce middleware solutions in automotive embedded systems, per-
formance overheads in time and in resource utilization (e.g., bus, CPU, and memory) need to
be properly handled. While overheads because of the middleware mechanisms are unavoid-
able, the DySCAS approach aims to keep the overhead as small as possible while making the
behaviors predictable. To this end, the choice of algorithms, the instantiation, mapping, and
allocation of middleware services, as well as the planning and controlling of its tasks, are all
of importance.
The support for load balancing, on-line supervisory verification, validation, and error handling
also in the future promise to enable a design trade-off between the costly development-time
and testing effort against overhead in terms of run-time CPU capability, processing, footprint,
and communication utilization. For the reasons of dependability, time-to-market and lifecycle
management efficiency, scenarios of future automotive embedded systems also call for en-
hanced QoS (quality of service) support. This will permit post-development time optimization
according to the actual resource utilizations and operating conditions.
DySCAS aims to advance today’s state-of-practice technology and introduce context-aware
and self-managing behaviors into automotive embedded electronic systems [24]. Targeting
the above mentioned future scenarios, the DySCAS approach explicitly addresses the automo-
tive needs in regards to configuration flexibility, quality assurance, and complexity control in
particular in the infotainment and telematics domains. DySCAS has developed and proposed
a middleware framework that allows automotive embedded systems to dynamically recon-
figure themselves according to the environmental conditions, application states and resource
deployment, to cope with unexpected events, emerging use cases and optimization needs, and
external devices not known at the deployment time. The DySCAS approach aims to provide
necessary run-time support for enabling a systematic and efficient implementation of QoS
and dynamic configuration behaviors in automotive systems. The core is a set of middleware
services that facilitate the sampling of system configuration and operation states, the compu-
tation for QoS and dynamic configuration decisions, and the actuations of such decisions. The
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DySCAS targeted use cases and the mapping of these onto system requirements are discussed
in [10].

3 Background and related work

3.1 Middleware for distributed computer systems

During the recent decade, many new middleware technologies for distributed computer sys-
tems have been developed and enhanced, targeting various application areas and hardware
platforms. Middleware technologies for distributed software focus on the deployment and in-
tegration of independently developed software components, thus emphasizing the support for
a scalable and dynamic configuration. Examples of such a middleware are the JavaBeans [67],
.NET [54], the CORBA Component Model [56], Jini [68] for the plug-and-play of soft real-
time services and devices, and RoSES [16] trying to achieve graceful degradation through
software reconfiguration using Jini communicating over a typical automotive bus - despite
nodes failing. However, not all the middleware solutions are suitable for embedded systems
due to their excessive memory usage and processing overheads or their lack of support for
real-time guarantees, data and state consistency, and fault-tolerance by redundancy. To im-
prove on these important aspects, many middleware solutions specifically targeting real-time
and embedded systems have been developed, including HADES [6], ARMADA [2], and the
RT-CORBA [57] implementations TAO [21] and ZEN [39]. In the domains of sensor net-
works, ubiquitous computing and networked embedded systems, there are also middleware
technologies such as RUNES [52] and 2K [42], to support advanced dynamic configuration
and automated software maintenance, applying meta-object protocols and reflection for run-
time adaptation of configuration and behavior [20], or QoS control for finding performance
objectives when the request and availability of processing, communication and other resources
change [65]. An interesting scheme is the Simplex architecture [66], designed for error recov-
ery of runtime upgrade of experimental automatic controllers. There are also many middleware
solutions aiming at particular aspects or application domains of dynamic configuration, such
as the HAVi [35] software architecture for configuration and interoperation of home local area
networks, and the OSGi architecture [60] for a life cycle perspective aid to coordinate devel-
opment and management of network services. A more formal approach for QoS management
is given by the component framework Lusceta [17], providing a QoS-aware middleware pre-
ceded by formalisms for specifying, simulating, analyzing, and run-time synthesizing QoS
management.
The above cited works provide together a reference source for the design of the DySCAS ar-
chitecture in regards to scalability, middleware structuring, QoS management, fault-tolerance,
and execution control. In addition to this reference source, the expected defacto standard in
the automotive industry AUTOSAR (AUTomotive Open System Architecture) [13], is a very
important reference and metric for the DySCAS architecture. AUTOSAR provides a domain-
specific approach to specification, management and integration of application software com-
ponents, system services, run-time environment, and system resources. The AUTOSAR con-
cept of a virtual functional bus provides flexibility at design time, but the runtime commu-
nication matrix is static and any adaptive behavior is confined to application level software
without support from the runtime environment or any middleware.
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3.2 Policy-based configuration

Autonomic behavior (self-management) in DySCAS is governed by policies which are placed
throughout the middleware components. Policies provide a powerful means of representing
the logic required to make decisions which is decoupled from the underlying deployed code.
Policies are flexible and can be formalized by using a closed grammar described in a formal
notation such as EBNF or a schema definition language. A suitably expressive language en-
ables a wide range of behaviour to be represented at the strategic level by a relatively simple
policy description. Policies can also be used at lower, mechanistic levels if required.
The simplest type of policy consists only of configuration settings that are loaded at application
initialization. Typically these are Boolean flags that allow selection / de-selection of provided
features. Internally there may be embedded policy logic comprising rules and actions etc., but
the actual logic is fixed. behavior is thus fixed for any particular execution instance. Behavior
can be modified between executions but the extent of the modification is limited to changes to
the parameters that constitute the policy. For example [15] embeds fixed rules into agents.
A greater level of flexibility is achieved when both the configuration parameters and the actual
decision rules are held externally to the embedded mechanism so it is possible to update the
actual logic of the policy as well as its initial parameterization. An example is provided by the
Policy Description Language (PDL) [48], which is an event-driven programming language.
Distributed Action Plans (DAP) are used to specify distributed network management tasks.
DAPs are executed by policy agents which are specified in PDL [41].
Some policy mechanisms indirectly support open-loop adaptation of the actual policy. This
support is in terms of identifying, or facilitating the identification of, inefficiencies in, or con-
flicts between, policies. The policy behaviour remains fixed during the current execution in-
stance. The user is notified and manually updates the policy between executions. IBM Re-
search’s Policy Management for Autonomic Computing (PMAC) [38] provides an automated
policy management and deployment application to assist with the manual policy updates.
Policy Schedule Advisor [49] is a utility that assists in the refining of a policy schedule to
ensure efficient execution on the PMAC middleware. The Unity policy environment ‘Poli-
cyscape’ [64] provides a set of ‘templates’ that can be used as building blocks to create more-
complex policies and supports automated policy creation.
The current state of the art in policy-based computing are schemes that have at least partial
support for closed-loop self-adaptation, in which the policy or its support mechanisms can
automatically adapt the policy’s own behavior to suit contextual or environmental circum-
stances. The dynamic adaptation is achieved in a variety of ways and to a wide variety of
extents. Ponder [22] uses meta-policies to define semantic constraints on the regular policies.
A security policy implementation described in [69] uses a meta-policy to dynamically select
between security policy versions, but policy updates are performed manually by administra-
tors (although this can occur during run-time). Further examples of short-term adaptation are
found in [51] in which event-trigger conditions are dynamic, and [5] in which conflicts be-
tween the obligations of security policies are automatically detected and resolved at run-time
by dynamically removing conflicting obligations under certain circumstances. Similarly, the
language described in [19] supports automatic detection and resolution of rule conflicts. The
AGILE policy technology [8] has been purposefully designed to be highly flexible in terms of
dynamic self-reconfiguration to facilitate context aware behavior in a wide variety of applica-
tion domains. It achieves dynamic self-adaptation in several ways.
The policy technology used in DySCAS is AGILE-Lite; a lightweight, embedded version
of AGILE [11]. A policy script can be loaded into an application at run-time to change the
behavior of the application at the place where the script is inserted.
The places at which decision logic can be changed, called Decision Points (DPs), are specified
at design time; [73] provides a detailed explanation of DPs and the supporting mechanisms.
Policy scripts can be loaded into these points (usually when the component containing the DP
is initialized) and can replaced with other policy scripts during run-time, yielding different
decisions (e.g. for customization) or more advanced decisions (e.g. for functional upgrade).
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The AGILE policy language has a level of flexibility more normally associated with a lower-
level programming language. For example, indirect addressing is supported at the policy script
level, so that all constructs can be dynamically configured by changing the parameter variables
supplied. Consider ‘rule’ constructs which can be used to implement Boolean logic as well as
simple conditional tests. It is possible to use the outcome of one rule to contextually change the
behavior of another rule by changing the actual parameters (not simply the values) compared
in the second rule. Further details of the language are provided in [8] and its application to the
DySCAS use cases is discussed in [9, 12].
Although powerful, AGILE policies at the same time can define functionality at a high level so
that developers can focus on the intended business logic and need not be experts in concepts
such as autonomics and policy-based configuration. At the strategic level a policy defines
desired behavior, without having to describe exactly how the behavior is achieved, (since the
lower-level mechanisms are pre-built). An AGILE policy editing tool further simplifies the
task of preparing policy scripts; making script editing less problematic and less error-prone,
see also [7].

4 The DYSCAS Middleware Architecture

The architecture constitutes a framework where various middleware services for the intended
features of dynamic architecture are defined and integrated. Figure 1 provides an outline of the
DySCAS middleware architecture, including the major middleware services and the external
interfaces towards the application software and target platform. The dashed blocks represent
optional services allocated at the DySCAS Instantiation Interface.
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Fig. 1 A schematic view of the DySCAS architecture

The assumed context of DySCAS middleware consists of application software programs,
legacy/proprietary solutions, and a target platform in terms of system software, hardware and
devices, and communication infrastructure. DySCAS distinguishes independent and legacy
solutions that are developed independent of the middleware, from solutions that are developed



176 Anthony et al.

with the middleware support in consideration. In general, the solutions that are developed or
adapted for DySCAS should allow middleware interactions for information exchange and be-
havior control. For practical and technical reasons, the independent and legacy solutions do
not need to be ported to the middleware but coexist with the middleware system and its appli-
cations. They are allowed to have direct interaction with the underlying target platform. The
target platform includes the RTOS and basic I/O,as well as infrastructures of various types,
such as CAN [63], LIN [47] and MOST [55]. The actual content and levels of features offered
by the target platforms may differ, such as among the platforms of different OEMs. Moreover,
there can also be various existing middleware solutions introduced on top of these system
layers for the reasons of portability and interoperability.
A DySCAS middleware system has a layered architecture consisting of two groups of runtime
services:

1. core services, providing the reasoning and decision-making support for the dynamic con-
figuration management and quality control, and

2. interface services, providing basic support for the interactions between the middleware
and its environment (i.e., the application programs and system platforms).

The core middleware services provide the support for consolidating the monitored runtime
state information and for maintaining a consistent view about the overall system status in
regards to configuration, resource utilization, and quality satisfaction. Such services thereby
analyze the impacts of any detected or requested changes, derive necessary dynamic change
tasks, and finally provide the planning and supervisory control support for performing such
change tasks. The overall concept design follows the paradigms of the IBM Autonomic Com-
puting Reference Model [37] and NASREM reference model for autonomous systems [4].
Table 1 provides an overview of the core services and their main responsibilities.

Table 1 An overview of DySCAS Core Services and some of their properties

DySCAS Core Service Overall System Roles Related Autonomic Features

Autonomic Configuration Manage-
ment Service

Analyzer for the overall impacts of
requested dynamic changes.
Planner of configuration tasks.

Self-configuring
(online configuration reasoning and
work planning support).
Self-healing
(error repair and fault removal).

Repository Service Repository proxy for saved files,
components, policies, and diagnos-
tics information.

Not applicable.

Dependability&Quality Management
Service

Dependability controller
Performance Optimizer

Self-healing
Self-optimizing
Self-protecting

Autonomic Configuration Handler Coordinator of distributed oper-
ations of dynamic configuration
work.

Self-configuring
(on synchronized execution of dy-
namic configuration work).

Resource Deployment Management
Service

Monitor of external status in re-
sources utilization, execution be-
haviors, and configuration.
Executor of dynamic configuration
operations.

Self-defining
Context awareness
Self-configuring

SW Load Management Service Executor of dynamic load opera-
tions.

Self-configuring

The interface services are responsible for enabling and facilitating the middleware interactions
with application software programs as well as the underlying system and platform support.
Such interactions are necessary for monitoring system states, performing the operations of
dynamic changes, and obtaining necessary support for start-up and transparent interactions.
An interface service can be optional as a DySCAS system can rely on external system and
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platform support for the same functionalities for the reasons of performance and resource
efficiency.
The fundamental benefit of a DySCAS middleware system is a layered data and control hier-
archy where the configuration management problems are stepwise consolidated. Through the
hierarchy, the monitored context information is handled and disseminated stepwise from low
to high with increasing level of abstraction, whereas the control actuation requests are refined
stepwise from high to low with more execution specific considerations.

• Task level. This is the highest level DySCAS service for the embedded configuration man-
agement. The main function is to process various requests for configuration changes by
verifying such requests (i.e., if a request is valid), assessing the overall impacts of requested
changes, and deriving a scheme of configuration tasks for performing such changes (e.g.,
updating a software component and other related components in sequence for a software
upgrade request).

• Elementary operation level. Services at this level provide support for assessing qualities of
the target system and for controlling the dispatches of dynamic configuration tasks. By as-
sessing the degree of quality satisfaction, such services can derive the corresponding needs
for reconfiguration, behavior change, and adaptation of effective configuration constraints.
At this level, the services also provide support for synchronizing related change activities
according to the status of such change activities as well as the status of the target system.

• Primitive operation level. The main functions at this level include the supports for consol-
idating monitored run-time status information and for controlling configuration setup and
the deployment of platform resources (e.g., CPU and memory). Services at this level inter-
act with the application programs and system services through the middleware interfaces.
For each dynamic configuration task, the services reserve necessary resources, generate
relative calls to the target platform and application programs, and perform the supervisory
control for the execution (e.g., receiving the platform feedbacks and raised exceptions).

As a prerequisite for self-managed architecture dynamism, a system needs to be aware of its
configuration, the contracts and constraints of its components, as well as the external con-
ditions and internal status of applications and resources. This understanding is established
through a priori available information of architectural design and variability of target systems
in combination with the run-time sensed and derived context information. As the architectural
information of target systems specifies how the configurations should be managed, it is re-
ferred to as the meta-information of configuration reasoning and management decisions by
middleware. In DySCAS, it is assumed that all meta-information is derived from the offline
specifications of system architecture, configuration setup, and lifecycle management. To this
end, DySCAS provides an information model for formalizing various architectural concerns
and status information of target systems for dynamic configuration management.
Across the architecture layers, there are three main paths of data and control, representing
the main interactions of middleware services in accomplishing configuration management and
QoS control. For a depiction of the basic cross-service interaction segments in these paths, see
figure 2.

• Context consolidation path. The context consolidation path provides support for monitor-
ing and consolidating different status information. Such status information is related to the
execution of vehicle and applications, the deployment of target and external resources, as
well as the satisfactions of qualities and the related effective configuration constraints. It
produces a consistent view of overall system status, which constitutes the run-time context
of middleware decisions. In figure 2, the basic interaction segments in this path are denoted
with the symbol 1.

• Decision path. The decision path starts either when a request for decision is received or
when a particular application or system event is detected (e.g., discovering an external de-
vice). It provides a system with the ability to reason about the correctness and efficiency of
its current state, and to plan for changes without eroding the architecture or violating the
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Fig. 2 The basic cross-service interaction segments in the 1. Context Consolidation Path, 2. Deci-
sion Path, and 3. Actuation Path

functionality and dependability (e.g., safety, security, and availability). The basic interac-
tion segments in this path are denoted with the symbol 2 in figure 2, and can involve both
local and global services.

• Actuation path. Of great importance to the DySCAS middleware system is the actuation
of dynamic configuration management tasks. This path provides support for a stepwise
refinement of the actuation requests and a synchronized dispatch of such requests based on
the status of target systems. The basic interaction segments in this path are denoted with
the symbol 3 in figure 2.

5 The Component Model for DySCAS Middleware Services

In order to achieve the intended control strategy and the desired maintainability and flexibility
of middleware itself, DySCAS adopts a component-based approach. For each middleware ser-
vice, there is an individual software component/process that interacts with other middleware
services with signal-based communication channels via its ports. The DySCAS component
model provides a common basis for packaging the middleware services, promoting the mod-
ularity, understandability, reusability, and distributed implementation. The component model
specifies the interfaces and internal modules of middleware services, the means of execution
and interaction, and a strategy for component deployment. The internal structuring adopts
the policy-based computation pattern introduced in section 5.1. below. See figure 3 for an
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overview of the concepts.
Each DySCAS service component is active (i.e. having its own thread-of-control implemented
by the virtual execution controller). The contained modules are passive with their behaviors
in regards to initialization, operation, and error handling controlled the execution controller.
The design is shown in figure 4. For the implementation, the core service components can be
partitioned/grouped and mapped to a real-time task/process in different styles (e.g., in one-to-
one, many-to-one. etc) according to certain performance and dependability constraints.
Each DySCAS middleware core service component has a set of signal-based external ports for
specifying its interaction points to/from other middleware service components. These external
ports are declared as behavior ports [58] as the conveyed signals are handled by the com-
ponent behavior (i.e., its virtual Execution Controller). Modules inside the component have
internal ports for the internal interactions. Each port is connected to an interface that spec-
ifies the provided or required information. DySCAS differentiates four types of ports cov-
ering signal-based communication between components and service-based communications
between modules.

1. senderPort - ports for sending signals.
2. receiverPort - ports for receiving signals.
3. clientPort - ports for forwarding calls to operations (e.g., function calls to an object).
4. serverPort - ports for accepting calls to offered operations.

For each software component that makes up the middleware, there is a virtual execution con-
troller defining its behaviors including the start-up process and necessary error handling. Each
execution controller is defined based on a hierarchically defined state machine and activity
behaviours that are triggered either by external signals received through the component ports
or by internal signals generated by the internal modules [58]. See figure 5.
The interfaces associated with a port specify the nature of the interactions that may occur over
that port [58]. For a DySCAS middleware core service component, interfaces are used to de-
clare the signals to be exchanged between its ports. Such messages are given either as signals
for the interactions with other middleware service component, or as operation invocations for
the interactions between the contained modules. A DySCAS signal is a specification of mes-
sages communicated between the service components in terms of active objects. By sending
a signal in a non-blocking way, a sender can trigger a reaction in the receiver asynchronously.
The attributes of the signal specify the carried data. The interfaces are shown in figure 4 and
are listed in table 2.
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Fig. 3 Key concepts in the DySCAS MW component model
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Table 2 definition of component interfaces

Interface Purpose

I_ContextInfoNotification Declaration of signals for notifying the decision context and
other data.

I_ContextInfoPubSub Declaration of signals for (un)publishing and/or
(un)subscribing the decision context and other data.

I_ServiceFeedback Declaration of signals for providing the feedbacks of re-
quested middleware services.

I_ServiceRequest Declaration of signals for requesting middleware services.
I_dyscasEvent Declaration of signals for disseminating synchronisation

events.

DySCAS service components communicate by asynchronous message passing with buffering
queues. Referring to the state machine model of the execution controller, a component always
reads and removes all the messages from all the input message queues, and carries out the com-
putation using these messages. After the computation, the component writes messages to its
output message queues if necessary. Mandatory attributes of these message queues are length
and data type. DySCAS provides some predefined attributes of middleware data for specifying
how multiple instances of such data should be handled during message sending and receiving,
and queue handling. It distinguishes the persistent data that should not be overwritten with
newly generated instances until it is used/read (e.g., for the requests of middleware services),
from the transient data that can be overwritten with newly generated instances (e.g., for the
monitored context data of internal states and external conditions). In the DySCAS component

Fig. 4 Composite description of the DySCAS core service component model
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Error

handleErrorentry / 

closeComponentdo / 

Shutdown

runComponentdo / 

Run

initComponentdo / 

Configuration

DYSCAS_SERVICE_RESTART

Wait

init

end

DYSCAS_SERVICE_RESTART

when (RTErrorCondition = TRUE)

when (CTErrorCondition = TRUE)

when (STErrorCondition = TRUE)

DYSCAS_SERVICE_HALT

DYSCAS_SERVICE_HALT

DYSCAS_SERVICE_RESUMEDYSCAS_SERVICE_WAIT

DYSCAS_SERVICE_RESTART DYSCAS_SERVICE_RUN

DYSCAS_SERVICE_HALT

Update_MW_Context_Management_Info

funcSignal_contextInfoPubSub / updateMWContextMngmInfo

Maintain_MW_Context_Data

funcSignal_contextInfoNotification / updateMWContextData

Treat_External_Service_Reply

funcSignal_mwServiceFeeback / readExtServiceReply

Treat_External_Service_Request

funcSignal_mwServiceRequest / readExtServiceRequest

Execute_Computation_Modules

invoke_computation_module

compute( request_in : funcParameter_mwServiceRequest [1..*] )

Handle_Overflow

at (timeSegement1_out)

at (timeSegement2_out)

at (timeSegement4_out)

at (timeSegement3_out)

when ( NO MORE QUEUED SERVCIE RESULT SIGNAL)

when ( NO MORE QUEUED CONTEXT NOTIFICATION SIGNAL)

when ( NO QUEUED CONTEXT MANAGEMENT SIGNAL)

when ( NO MORE QUEUED SERVCIE RESULT SIGNAL)

Fig. 5 Hierarchical state machine behavior description for middleware service components
through the execution controller

model, a message queue can be either nonblocking on both reading and writing, or nonblock-
ing on reading and blocking on writing. If a message queue is empty and a component attempts
to read it, the reading component is not blocked. It may either perform the remaining compu-
tation using the old values or abort the current job, depending on the algorithmic design of the
component. If a message queue is full and a component still wants to write into it, the writ-
ing component may be blocked if the content of the queue is history sensitive (i.e., with not
overwritable persistent data), like the requests to integrate a new device or the task migration
request. If these service requests were lost, a perceivable deterioration of system performance
could be noticed by the user. In such a case, the writing component should be synchronized
either through the events indicating the occurrence of a queue overflow situation or through
careful scheduling. If the content of the queue is not history sensitive, the writing component
may immediately receive a status report of the queue or overwrite the old messages in the
queue.

5.1 Policy-based configuration in the DySCAS component
model

The configurational flexibility in a DySCAS system is realized using techniques inspired
by the policy-based computing paradigm. In contrast to those approaches that only pro-
vide change from one entire system configuration to another, this method allows incremental
changes to occur independently at various points throughout the system. This enables future
proofing of vehicles at the point of development, facilitating upgrades throughout their life-
time.
Rather than a centralized, monolithic intelligence system; in a future vehicle control system,
the configuration ’intelligence’ needs to be distributed across components for reasons of flex-
ibility, maintainability and scalability. DySCAS achieves this at three levels:
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1. A flexible, designed-for-purpose middleware, which incorporates -
2. A versatile component model which supports dynamic mapping of components’ context

information requirements, and embeds -
3. Policy-based configuration, in which each component can include a number of policies

which can be easily upgraded without changes to the deployed code.

The DySCAS architecture has been designed with dynamic self-configuration as a core fea-
ture. The fundamental concept is that each software component that makes up the middleware
may embed one or more Decision Points (DP), which are place-holders for policies. Each DP
can be dynamically configured by loading a policy at initialization. Within a DP, the Policy
Manager is responsible for requesting the appropriate policy from the on-system repository,
whilst run-time evaluation of the policy is handled by the Policy Evaluation Module (see fig-
ure 3). If a component has multiple DPs, each operates independently having its own policy
and context requirements.
The DySCAS component model facilitates the use of policies in a robust run-time framework
comprising three main policy-related features: DPs; a dynamic wrapper (DW) which decou-
ples policies from their host components, handling faults and making the integration of poli-
cies transparent to the design of host components; and dynamic context management which
decouples context producers from context consumers and greatly enhances the flexibility of
configuration changes and the ease by which these change can be effected. The DP, DW and
dynamic context management are described in later sub-sections. The model also specifies the
following policy-related functions:

• A method for design-time embedding of DPs into software components;
• Run-time support for the operation of DPs;
• The ability to specify default behavior per DP, which is actioned if for example, a policy

is not loaded;
• A mechanism to dynamically load the appropriate policy into a DP from an on-system

repository;
• A mechanism to dynamically replace a policy with a new version;
• A mechanism to automatically map the required context information to each DP.

5.1.1 Decision Points

A basic characteristic of computing systems in the automotive domain is the difficulty in mak-
ing changes post-deployment during a long vehicle lifecycle. Under current practice this can
only be achieved by directly servicing each vehicle by suitability qualified personnel with spe-
cific equipment. In contrast DPs allow flexible run-time configuration of software components.
Policies are developed and validated off-line, and can then be loaded to the in-vehicle system
by a variety of means, depending on the circumstances requiring the new policy: at vehicle
commissioning; during routine service; on-line purchase of functionality upgrades; automat-
ically loaded to the vehicle from a manufacturer’s system via a wireless network hotspot,
perhaps to achieve a field upgrade remotely; or from an attached USB memory stick, enabling
driver / owner customization.
The software developer identifies, at design time, places in the software where dynamically
changeable behavior is appropriate. At each of such places a DP is embedded into the compiled
code, marking out the possibilities for reconfiguration after deployment. The way in which a
decision is made (the logic) is not statically compiled into the DP; it is specified in a policy
which is loaded (in the form of a data file, via an API method) into the DP at runtime. This
separation of decision logic from the compiled code is key to post-deployment incremental
upgrade in DySCAS.
When inserting a DP it is only necessary that the developer identify the number of possible
decision outcomes of the DP, and also that a special ’Default’ behavior is defined (which can
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coincide with one of the regular outputs). If any problem should occur during the evaluation
of the DP at run-time, the policy library mechanisms will sidestep the policy evaluation and
automatically return the default outcome. In this way dynamic policy logic collapses down
to statically defined, predictable behavior if any problems are detected. The DP acts as a
sandbox for policy evaluation. This behavior is discussed in more detail later in section 5.1.2
‘The Dynamic Wrapper’.
The actual program code that constitutes the software component is provided as static function
blocks and apart from policy logic a component can only be upgraded by recompilation and
redeployment. The use of DPs is illustrated in figure 6.

Fig. 6 A software component with a combination of multiple DPs and statically compiled func-
tional blocks

The DP concept also future-proofs systems. There are circumstances where a developer is
aware that future enhancements to behaviour will be necessary, but is not aware of the details
at the time of application deployment. In such cases DPs can be embedded at the appropriate
places in the logic and very simple policies can be provided initially which can be replaced
with more-sophisticated logic when necessary.

5.1.2 The Dynamic Wrapper

The AGILE policy library is encapsulated into the Decision Point and is referred to as the ’Pol-
icy Evaluation Module’ (see figure 3). The Dynamic Wrapper (DW) is actually implemented
as part of the Policy Evaluation Module but is logically separate as it oversees the evaluation
of policies. This provides DP-internal localized self-management which is transparent to the
rest of the system, providing dynamically configured interfacing and automatic fault-hiding.
The DW monitors the whole run-time policy lifecycle. This lifecycle includes the following
steps:

1. A policy is loaded into the Policy Evaluation Module.
2. The DW monitors the parsing of the policy scripts and from this extracts a list of ‘envi-

ronment variables’ used by the policy (each environment variable relates directly to one
item of context information needed during policy evaluation).
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3. The DW automatically requests subscription to the necessary context items identified
from the list of environment variables.

4. The DW monitors the provision of context items from the middleware resource manager
service.

5. When invoked, the DP initiates evaluation of its policy. The DW checks the outcome
of this evaluation, checking for internal errors which have to be handled transparently
(details of these errors are provided below).

6. If for any reason the policy cannot be correctly evaluated, the DW returns the design-time
developer selected ’default’ return value on behalf of the policy.

7. If any internal faults have occurred the DW sets internal error flags. The value of these
flags can be retrieved into the host component’s operating space via a call on the DP API.

By automatically and transparently handling any problems arising at run-time related to the
evaluation of policies, the DW ensures that robustness is not compromised by the addition
of the policy logic mechanism. The ’dynamic’ behavior aspects automatically downgrade to
statically-specified behavior when necessary.
Run-time errors that are detected and handled by the DW include: No Policy loaded; No
appropriate policy found in repository; Policy had parse errors, or was not referentially self-
consistent; Policy outcomes set does not match the DP configuration; and Required context
items not available.
Through its silent error handling (i.e. by trapping errors generated in the Policy Evaluation
Module, and returning a predefined ’legal’ return value to the component), the DW makes
a significant contribution to system robustness. The implementation of dynamically config-
urable components has been achieved in a manner which can be only advantageous in com-
parison to static components and will never decrease the system stability and integrity. From a
component developer point of view, the DW is entirely transparent, because it works silently
and cannot cause component failure. The only way to detect its intervention is to check
whether error flags were set or not. In general, a developer can simply use the decision re-
sult produced by the DP in their code.

5.1.3 Dynamic context management

The achievement of context-awareness depends on the ability to map the necessary context
information from context providers to context consumers. Any form of direct mapping in-
creases the complexity of the system, inhibits change because of inter-dependencies and also
impacts on scalability in terms of the number of components and the amount of context infor-
mation they use. Design-time mapping restricts the extent of dynamic configuration that can be
achieved, for example new polices could be added but would be limited by the predetermined
context information provided to the particular DP.
Thus DySCAS uses a dynamic context mapping, in which components subscribe to the par-
ticular context information they need, via a context manager service within the middleware.
Context providers and context consumers are de-coupled allowing flexibility for incremental
upgrade of individual components and dynamic upgrade of policies.
The dynamic context management operates on a publish-subscribe basis. When a policy is
loaded into a DP the associated DW automatically subscribes to the required context items
(using the Context Management Module shown in figure 3 as a local agent for the required
communication). The context management service then pushes out the context items to DPs
only when the value changes. The value is cached within the Policy Evaluation Module, in
the form of an ’environment variable’ within the policy logic. This approach has the following
key benefits:

1. Depending on the rate of change of context values, this method has the potential to keep
communication overheads low and likewise the number of context switches when com-
ponents have to handle received messages.
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2. The latest context value is already held in the policy logic at the point of policy evaluation.
There is no need to request a context update and suffer the latency of retrieving the value
from a different component.

3. Context requirements are policy specific. When a particular policy is upgraded the asso-
ciated DW simply changes its context subscriptions; no other components or policies are
affected.

4. A completely new policy-enabled component can be added to the system, which either
publishes or subscribes new context information. In both cases the addition of the new
component can be transparent to the rest of the system.

A further key benefit of dynamic context management is that it provides transparency to the
developers of software components in that a context-producing component does not need any
design time consideration of consumer components, and a consumer component does not need
any design time consideration of what context will be used or where it is generated.
Managing the context information in this way also supports reconfiguration of the location
of running software. For instance, an important software component may be shifted from
one node to another due to resource availability. The context information required by this
component’s DPs can be routed to the new location dynamically.

6 Autonomic reconfiguration

Automatic reconfiguration is triggered by the middleware itself or by external events. A con-
figuration change can for example cause reallocation of tasks to processing nodes, of which
addition or removal of tasks is a special case, and switching QoS modes for applications, re-
quiring other resource amounts for that specific application. Even though defining the exact
algorithms to be used for the reconfiguration is not the core aim of DySCAS, having a sub-
stantial understanding of them is vital to build interfaces and structures that make it possible
to incorporate different relevant approaches.
In this section we treat the following aspects of automatic reconfiguration:

• Task migration, where tasks are moved between ECUs, where one specific purpose in-
cludes dynamic load balancing where allocation is performed during runtime.

• Quality of Service techniques where parameters affecting the performance and resource
usage of an application are adjusted during runtime to control overall resource usage in the
system.

• Admission control, where some applications are denied to start execution due to an insuf-
ficient amount of available resources.

As briefly discussed in [62], there is an important trade-off between these reconfiguration
techniques and it is difficult to decide which will be most effective without taking application
characteristics into account. A further difficulty is that there do not exist unified frameworks
even when considering a single of these techniques [61]. This is illustrated by the large number
of different abstractions available for example in terms of task models, component models
and machine models. While, unification would be highly desirable and would have been of
great value in architecture design, this has not been within the scope of DySCAS. Instead
we have attempted to develop an architecture that will allow incorporation of a large class
of approaches. The following sections describe autonomic reconfiguration schemes that we
developed. These schemes show how reconfiguration algorithms can be integrated into the
architecture.
Two additional key concerns in developing an architecture that supports autonomic reconfig-
uration are algorithm complexity and system verification. As shown in e.g. [28], finding an
optimal solution to many of these problems is intractable. This is the case even for static sys-
tems [70]. It is however seldom necessary to find an optimal solution, hence the focus of the
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work has been on efficient and effective heuristic solutions which can be applied to resource-
constrained systems (in terms of both memory and computation power). System verification
is treated further in this section and also in section 8 (A Framework for modeling, designing
and analyzing dynamically configurable systems).

6.1 Task migration as an actuation mechanism

When a reconfiguration has been decided upon, it needs to be actuated. Reconfiguration might
imply task migration to another node during runtime, something which is further discussed
in [40]. This also implies that the new node will have to be able to start a new activity (e.g.
OS process) for the migrated application at runtime. This could be implemented using dy-
namic loading [45] or through pre-allocation of programs. Although most resource-efficient
OS implementations don’t have such capability, there exist a few examples of very compact
operating systems that do [23]. There is even an implementation of an automotive style sys-
tem, capable of performing task migration in the DySCAS sense, if given an external trigger
to do so [40].
Finally, to accomplish migration, one also has to consider the typical hardware heterogeneity
in an automotive environment. If tasks are to migrate between nodes with different types of
processors, they will have to be written in an interpreted language or run in a virtual machine
(like Java), or be provided in several compiled binaries. Also, checkpointing [34] is a technique
that can be used to provide hardware-independent storage of application state to be transferred
to the new node.

6.2 Using policies for flexible reconfiguration mechanisms

DySCAS reconfiguration is implicitly dynamic, but can be triggered in a variety of different
ways. As described above, there are a large number of possible approaches for reconfigura-
tion, and which one is best for each individual reconfiguration problem can in general only
be decided on a case-by-case basis. This means that an implementation of the DySCAS mid-
dleware will preferably need to be shipped with several of these mechanisms. Policies will
then be able to decide which mechanisms should be used for each individual task, and what
tuning parameters to use in utility functions etc. Using policies for this purpose also makes
it possible to improve the reconfiguration support “in-field” by downloading new policies for
the Autonomic Configuration Management Service, which is responsible for reconfiguration
planning, along with normal software upgrades.

6.3 Algorithms and an approach for Dependability and Quality
Management and Autonomic Configuration Management

This section describes developed algorithms and a concrete realization of configuration man-
agement, focusing on two DySCAS core services; the dependability and quality management
service (DQMS) and the autonomic configuration management service (ACMS). In the mod-
els we make the following assumptions:

• There are local DQMS services, allocated to each node of the embedded system, and a
central (coordinating) DQMS. The ACMS is only realized as a central service.
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• Applications have QoS levels that represent different qualities and re-source usages (e.g.
by providing different algorithms/programs).

• Three types of resources are considered: CPU execution, memory and network bandwidth.
• A major assumption in this implementation is that a task may execute only if all its required

input signals are available in the network.

Each node in a network thus hosts a local DQMS, which performs admission control and
optimizes the resource utilization at that node. If the admission control rejects certain tasks
from running at that node, the local DQMS submits a request for load balancing to the global
DQMS, located at a master node of the network. The global DQMS chooses other nodes, if
possible, to redeploy the tasks. The ACMS enforces the interdependency among tasks, such
as task communication and precedence constraints.
While the DQMS manages the physical resource constraints and ACMS maintains logic con-
straints, the two are closely coupled, as shown in Figure 7. The admission control algorithm
of DQM first determines a set of schedulable tasks according to the estimated resource usage
of tasks and the resource limit of the system. ACMS further chooses, from the schedulable
task set, the tasks that satisfy the logic dependency, namely the active task set. Only the active
tasks will run under the scheduling of RTOS. During the run-time, the actual resource usage of
tasks and the resource limit vary dynamically owing to the changing workload, the emergence
of new tasks, and the hardware failure. DQMS, therefore, dynamically allocates resources to
the tasks and maintains their minimal QoS. If some tasks must be rejected owing to resource
overload, or new tasks can be allowed owing to low resource utilization, DQMS invokes the
admission control to decide a new schedulable task set. These decisions form a loop and must
be carefully designed to avoid instability.

Adms. Ctrl.

Load Balanc.

ACMS LDQMS

All Tasks

Deployable

Task Set

Active Task Set

Perturbation of 

Deployable Task Set

Workload

Disturb.

Fig. 7 Interaction of dependability and quality manager and automatic configuration manager

The algorithm design of DQMS and ACMS aims to solve the following self-configuration
problem [27]: given an ECU network with limited resources and a group of dependent tasks
with estimated resource usage and benefits, find an optimal task set that maximizes the total
benefit. This problem is NP-hard [33]. Given the limited computational power of automobile
ECUs and the requirement for timely response, we opt for approximate answers rather than
optimal solutions, so that acceptable decisions can be decided quickly. The following two
sections briefly preview the design of DQMS and ACMS, respectively.

6.3.1 Dependability and Quality Management Service

The DQMS dynamically manages the physical resource constraint over the network and allo-
cates proper resources (CPU, memory and network bandwidth) to each application task during
runtime. To realize dynamic resource allocation, we assume that each task can run in discrete
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QoS levels. Each level is associated with the estimates on resource usage and the benefit to the
system. With this information and the given resource limitation, the example implementation
aims to (1) provide quick response on resource deployment, (2) maximize the overall benefit
of the system, and (3) support as many application tasks as possible.
Every node incorporates a local DQMS which realizes two services: local admission control
and QoS adjustment. The former service decides if a group of application tasks is schedulable
at an ECU without violating resource limitation. The latter contains a suite of algorithms
to maximize the system benefit by allocating more resource to more important tasks. These
algorithms provide not only a suboptimal solution based on resource estimates, but also reject
unknown disturbances using a feedback mechanism. The main functional modules of local
DQMS are shown in Figure 8.

Feedback

Adjustment

Admission

Control

Optimal

Allocation

Runtime

Measure
Unknown

Disturbances

Feed Forward: Predefined Event

Fig. 8 Functional Modules of Local DQMS

Following the DySCAS architecture, this implementation includes a global DQMS to increase
the number of deployable tasks in the system. The global DQMS decides how to migrate tasks
over the network when a node suffers re-source overload. When this happens, the local DQMS
selects the tasks to be relocated and reports the request to the global DQMS. Receiving the
request, the global DQMS tries to find a candidate node that could support the task and reaches
the highest system benefit. In the situation that no other node has enough idle resource to
accept the task, the global DQMS finds a node that is least influenced by the task migration,
i.e., receives the lowest rejection penalty.
The local DQM function has been realized in a Matlab/Simulink/TrueTime [59] environment
(See Section 8 for more details on DySCAS simulation environments). In one simulation, four
tasks running at one ECU are considered. Owing to the resource constraint, they cannot all
run at their highest possible QoS levels. The simulation shows the scenario that at 3 seconds,
a failure occurs and the CPU loses 50% of the processing power. At 7 seconds, the failure is
recovered and the CPU resumes its full power. Figure 9 shows the change of QoS levels of the
tasks in 12 seconds. In this graph, two tasks always keep the lowest QoS level 1, because they
provide small benefits to the system.

6.3.2 Autonomic Configuration Management Service

An acceptable configuration is a combination of middleware components and application pro-
grams satisfying logical dependencies. An application program requires certain preconditions
to run and provides services to others. If all pre-conditions are not satisfied in the network,
the task may not execute. This type of logical dependency also encompasses precedence con-
straints.
According to the DySCAS architecture, the configuration of the network is maintained by the
global ACMS. The ACMS takes as inputs from every node their intended application tasks,
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Fig. 9 Change of QoS Levels of four tasks in the example system

and their provided/required communications including preconditions. The ACMS dynami-
cally maintains these data for the entire network and decides the possible configuration. The
dependency of all application tasks is modeled as a bipartite graph and new configurations are
inferred based on this graph.
To find an acceptable configuration, the concept of a stable task set is defined. Each applica-
tion task in this set has all its preconditions satisfied by the services provided by other tasks in
the set or the sensor inputs. To respect the logical dependency, the output of ACMS is always
a stable task set. Under mild assumptions, in any set of networked applications, the great-
est stable task set always exists, which is the optimal configuration under the given logical
dependency and which can be computed in polynomial time.
Also this proposed method has been implemented in Matlab/Simulink/TrueTime and verified
via simulation [28]. A simulation assumes the simple imaginary distributed system depicted in
Figure 10. The system consists of two ECUs connected by a Controller Area Network (CAN).
The two big squares represent two ECUs and the small rounded squares represent application
tasks.
All tasks, except the highlighted task dev, are permanently allocated to the target ECUs. Task
dev serves for a new device that might be attached to ECU1 in the future; hence it is normally
absent in the system. The inputs of a task represent the preconditions and the outputs the
provided services. When the device is connected / disconnected to ECU1, it will trigger an
external interrupt, which loads / removes the application task associated to the device in the
ECU and calls upon a system configuration.
In the simulation the device is attached at 3 seconds and removed at 7 seconds. The two plots
in Figure 11 show the execution schedules of all tasks at the two ECUs. The simulation agrees
with the theoretical prediction.

6.4 An Approach for Load Balancing

The Load Balancer spreads tasks between the vehicle’s ECUs in order to get optimal re-
source utilization and decrease computing time. It evaluates possible migration of tasks based
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on different load balancing strategies. To guarantee a suitable migration the Load Balancer
considers the current resource situation on the ECUs with aid of the Resource Manager. If a
failure has occurred the Load Balancer tries to find a feasible migration, based on the charac-
teristics of the tasks and ECUs. If, after a migration has occurred, the host device is detached,
the migrated process will be re-started on the original ECU. In this case the Event Manager is
responsible to inform the Load Balancer to initiate this re-start.
The Resource Manager supervises the resources of the local ECU. To be aware of the complete
network resource situation all Resource Managers synchronize with each other. Thus the Load
Balancer gets the current resource situation of the complete vehicle infrastructure with aid of
its local Resource Manager.
In our approach, the middleware is located on each ECU in the vehicle. Every ECU has a
unique ID. The ECU with the lowest ID is the master. Thus it is responsible for the control
of the entire vehicle network. Newly connected devices are discovered by its Event Manager,
device information is registered by its Registry, and its Load Balancer is responsible for the
evaluation of the possible migration with the aid of the local Resource Manager. If the master
ECU fails a new master will be chosen with the aid of the Bully-Algorithm.
ECU failure detection will be handled by a hardware interrupt. It initiates an error correction
in our middleware. That means, to correct the error, tasks of the omitted node are migrated
to other ones, which are able to execute them. In this chapter we will not focus on the failure
detection but on error correction. Therefore, our middleware must be able to migrate tasks.
A detailed knowledge of the task characteristics is needed. It is important to know if it is a
real-time task or not.

Fig. 12 Failure correction handling - the task migration mechanism

Figure 12 presents our approach for task migration. We assume that each task has a priority
and we have a detailed knowledge about their hardware requirements. Additionally, the data
dependencies between the tasks are known. As we can see from figure 12 we start with a
priority scheduler. This will schedule the tasks according their priority in priority queues.
That means each priority has its own task queue. Within the queues the tasks are scheduled by
a simple earliest deadline first (EDF) scheduler to ensure a flexible schedule. Real-time (RT)
tasks have a high priority. The Load Balancer works on the priority queues beginning from
the queue with the highest down to the lowest priority. For each selected task a possible set of
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ECUs which are able to execute the task is evaluated. After that a data dependency check will
be done. That means, we look at those tasks that interact with the inspected one. In the case
that interaction is weak the Load Balancer selects an ECU from the previously evaluated set
of ECUs and finally migrates the task and deletes the task in the priority queue. In case of a
strong interaction the Load Balancer will try to avoid unnecessary bus load, by selecting an
ECU from the ECU set that is able to execute both tasks. Afterwards both tasks will be deleted
in the priority queue. If the Load Balancer could not find a possible ECU for migration the
task will be deleted from the queue with the outcome that a migration is not possible.
The previous paragraph gives an overview of the migration, but there are still some open issues
we will discuss in the following. If an ECU with more than one task running on it fails, we
will migrate the tasks to one or more ECUs according the classification of the tasks (see figure
12). That means tasks with high priority will migrate first, followed by the other ones. During
the migration phase, the timing of the tasks are taken into account. After a task migration, we
have to decide to start the task “from scratch” or from the state it had before the ECU failed,
but how is this state recognized? For this, we need the context of the task. Our solution is
the following; if we have a context available (e.g. stored in an external flash memory of the
ECU and still available) we will invoke the task with the context, otherwise not. This gives a
brief overview how our middleware migrate tasks. Finally the decision as to which tasks are
migrated is done by the Load Balancer.
Figure 13 shows a sequence diagram where a failure occurred in the radio system. We assume
the tasks from the radio system can migrated to the navigation system.
As we can see in Figure 13 the Event Manager detects the failure of the radio system,
this is done by the function failure_detection(error_code). Afterwards the Event
Manager triggers the Load Balancer with the initialize() function. The Load Bal-
ancer asks for all device information from the Registry req_loads(*device[0..n]).
Then the Resource Manager runs the schedule() function to calculate all possi-
ble schedules. The Load Balancer will get the device information back from the Re-
source Manager with ack_loads(*device[0..n]). Finally the Load Balancer runs
initiate_load_balancer() that calculates which tasks could be moved from the device
with the failure to another one based on the information of the schedules, the load of each
processing element in the car network, the communication costs and regarding the feasibility.
In our case it will decide to move tasks from the radio to the navigation system.
In the last paragraph we described the interactions between the four tasks, which are necessary
to support load balancing. Now we will discuss the internal data structure of our middleware.
The Event Manager triggers the Registry and initializes the Load Balancer. The Registry itself
interacts with the Resource Manager and the Load Balancer. The Resource Manager hands
over the actual status of the entire system to the Load Balancer.
To perform the scheduling in the Resource Manager, we can select between different schedul-
ing strategies. They are instantiated within the scheduling mechanism class of the internal data
structure.
The Registry, as well as the scheduling mechanism, needs information about all tasks and
devices. This is handled by the so called list class. It contains linked lists of devices and
tasks and offers functions to manage the lists. As described before list offers all functions to
manage the task list, but additional functions to set the status of the tasks are needed. The
status of the task can be running, waiting or sleeping. Besides this, the task manager is able
to create a new task. The information of a task is stored in the data structure provided by the
task control block. The parameters of the generated structure are set by the task manager with
functions from the list class. The list class uses the functions from the task control block to get
task information.
For the devices we have the same functions available as for the tasks. This is realized in the
device control block. Each device has a list containing the task-ids that are running on the
device. By setting the global variables of our middleware we can initialize the system and can
set it in running mode.
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Fig. 13 Failure detection of the radio system

6.4.1 Load Balancing Strategy

There are several possibilities to balance the load after an error happened inside the vehicle
infotainment network. Initiated by the Load Balancer component the new resources can be
used and applications or tasks can be migrated to the additional device.
In the following the cost-based load balancing strategy is briefly described. Within the cost
based strategy the Load Balancer evaluates possible migration of tasks from one ECU to
another. It evaluates a set of ECUs where the task could be migrated. Hence the migration is
only a useful option if:

• the cost of migrating is lower than the cost of keeping tasks with their original device and
• it is feasible to migrate a task or a set of tasks from one ECU to another one.

The cost benefit ratio for tasks of busy devices is computed which helps the Load Balancer to
form the decision of whether to migrate or not. The calculation of the migration costs of a task
is realized according to the priority list of the Most Loaded strategy. Most Loaded generates
a priority list which ranks the tasks from the busiest processor. In that way the tasks with the
highest priority will be migrated to the resources of the additional device.
Let us assume we have tasks ti with i = 1 to n, and the utilization of the task running on an
ECU is ui. Additionally, let U j the maximum utilization of ECU e j with j = 1 to m. Then the
upper bound for the utilization of an ECU e j is:

n
∑

i=1

ui ≤ U j

For the communication we can make the following assumptions. Let ck with k = 1 to r the
communication channels in the vehicle and Ck the maximum costs a channel ck supports. Fur-
thermore, let mi,k be the cost task ti produces on channel ck. Then we can define the following
bound for the communication cost of a channel ck:
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n
∑

i=1

mi,k ≤Ck

Now our Load Balancer has to find an optimal balancing for all tasks within in the vehicle
network regarding the utilization, communication cost and the feasibility. This can be done
with integer linear programming (ILP) or other optimization methods.

7 A reference implementation of DySCAS

The architecture description provides freedom for the system designer to optimize the mid-
dleware for specific deployments as it does not specify the actual implementation in detail.
Section 7.1 places the DySCAS concepts and architecture into the context of an example im-
plementation called SHAPE, highlighting many of the DySCAS features that contribute to the
dynamic self-management and high robustness.

7.1 Implementation of the DySCAS architecture

The application layer is the highest layer in the system. This is where the system developer
will deploy applications, using the many systems calls that are available via the SHAPE API.
The calls are normally only available as signals for inter process communication. Each call
enables middleware services of varying types. The application has to register and subscribe
system services. In addition, there is negotiation to decide which service characteristics are of
interest. The next section describes a typical DySCAS use scenario.

7.1.1 Attaching a new device - a use scenario

When a new device is available within the network (wireless or wired), the device announces
its presence. In addition, the system announces its existence. The device is registered and set
up in the system as a system member. The new device may offer service to selected parts or to
the entire network. In addition, the new device may also want subscribe to services offered by
the system.
Services are offered in terms of characteristics rather than physical requirements. It is now up
to the system to match the offered services with required services where possible.
Example: offered service = hardware device, type = data storage, size = 512kb. If the required
service’s minimum storage size constraint is 256kb, then this offered service is acceptable.
With this constraint satisfaction matching instead of hard matching the system is able to
choose and optimize during runtime for the current situation.

7.1.2 Application policy management

The application layer provides calls for applications to use policies to increase runtime flexi-
bility. It is possible to add Decision Points into an application and let the middleware execute
them. This implies that the application needs context information for decisions. Context may
include system-level state, and possibly some application-specific state, which can be option-
ally handled by the system context management. One reason for choosing this option is lack of
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local memory (e.g. on the new device where the application runs), another reason is to enable
sharing of the context among several applications.

Context Management

The Context Manager is an application-supporting tool for managing the application-local
context. Instead of storing the context within the application, the application is able to store
the context in a shared storage managed by the Context Manager within the middleware. This
storage is still local for fast access. All applications are now able to share the context as if it is
a system context. Besides the mentioned sharing, the Context Manager also is able to maintain
the storage. The application may then focus on its main mission. The context is made available
globally via the network of local Context Managers. An algorithm for optimal data managing,
data constancy and high performance is employed within the context management sub-system.

Application Policies

Every application is able to take advantage of the SHAPE built in policy management, thus
running the same policy engine as the system itself. The Policy Manager adds the policies the
application wants to use. The Policy Manager operates with both local and global scope, in
similar manner as the Context Management.

7.1.3 Checkpoints

Checkpointing saves the state of a defined set of processes at certain times or events. The
system may then be able to restart the set of processes with a corresponding state the processes
had at a certain event or time. Checkpointing also facilitates process migration, which is key
functionality necessary for load balancing or process re-configuration. This in turn enables
down-sizing the vehicle hardware requirements whilst still keeping the system robust.
Checkpointing also supports the possibility to run hibernation. In a vehicle, a device is per-
haps detached from the network and therefore loses power. When reattached, it will resume
relatively quickly and be in service. DySCAS incorporates QoS support. For instance, in the
case of power management, a signal starts the hibernation of a specific device. This may be a
controlled or non-controlled power down action.
Checkpointing is a useful tool for debugging running systems, reducing the development cycle
time. The built in test library is able to store debugging information that makes it possible to
load and run analyses in a simulator. Simple debugging is able to operate on line directly in
the running system. In SHAPE the system is a peer-to-peer system. This means that each node
and each process has to maintain its own checkpoints internally.

7.1.4 Versioning

In the case where some upgrade action failed and a roll-back is the best option, the system will
do this. This is a typical risk when updating and changing software. The newly loaded module
may be corrupt but passed all security checks; subsequently the system realizes the problem
and suggests the decision to remove the faulty module and roll-back to a previously working
configuration.
Versioning not only provides the possibility of loading new versions of software components
into the system; it also provides extended flexibility.
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It is possible load several more or less complete policy schemes for a given application into
the repository. During runtime the system may swap the version of policy schemes (i.e. load
different policies into the various DPs) and thereby change the application’s behavior.
Also it is possible to store sets of different versions of loadable software components, ready to
download to RAM or flash. A final example of versioning is the possibility to store different
sets of configurations, so that the configuration of a specific vehicle can be changed back
and forth very quickly. Also it is possible that only certain configurations are possible. The
complex part of is that the system has to keep track of dependencies, and prevent invalid
configurations.

7.1.5 Scheduling resource usage

Scheduling is a common issue in real-time systems. One task is that analysis is difficult with
growing systems and design work tends to increase complexity. For real-time systems there
is no other option than hard work, but for the kind of system that DySCAS represents the
boundaries are not set. Here the system does not have to be defined completely from the start.
Some processes will be added later and some may be removed. Similarly with other resources
like communication channels, memory, and system services etc. These have limited capacity
and their utilization changes during runtime, and during the lifetime of the system due to
configuration changes.
To build an event-based system is then a typical choice, but not optimal. A possibility is to
design the aperiodic activities as periodic, i.e. event triggered and time-triggered. Anyhow, to
ensure soft real-time behavior will require advanced design. The DySCAS project has consid-
ered these constraints, and created a mix of several methods to ensure optimal performance.
For instance, there are different schedulers for scheduling different resources. There is one
adaptive controller for scheduling processes and for load balancing. There are two other sched-
ulers for communication. It is possible that the scheduler will be improved and merged into
one in the future.
A communication system in automotive systems should support different configurations of
nodes that change over time. Adding or removing nodes during execution should not affect the
actual mission of operation of the specific network. Such flexibility is crucial in a DySCAS
system, the typical complexity is illustrated in figure 14.

Fig. 14 Real-Time communication architecture [46]
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Scheduling Communication in DySCAS

Optimal scheduling of communication in a distributed ad-hoc network is complex. There are
several aspects to handle. Nodes and processes are asynchronous; therefore the corresponding
IPC is also asynchronous. Without any control there is an obvious risk of overloading the net-
work media or starving a node. In the DySCAS concept it is necessary to balance the needs of
high responsiveness by handling dynamic changes as fast as possible, whilst on the other hand
not disturbing the ongoing activities. To guarantee these two opposing demands the schedul-
ing support is a difficult task. The SHAPE example implementation of DySCAS incorporates
a scheduler which addresses this issue. The scheduler depends on several preconditions avail-
able in SHAPE. The System has to provide features for controlling processes and a network
media such similar to Controller Area Network (CAN). It is also expected that the commu-
nication mechanism for IPC will use a link handler concept or similar, such as LINX [26].
Timing support is also required.

7.1.6 Communication Services in a distributed DySCAS system with
LINX

The DySCAS project is a distributed platform system providing mechanisms to configure
heterogeneous systems during run-time, with multi-vendor supplied hardware in the same
network. Also the running applications are probably as complex as the hardware. Of course the
system may be static and only accept the default configured system or it may take advantage
of part or all of the dynamics that the DySCAS system enables e.g. through policies.
Nevertheless, a system that changes its configuration during run-time because a new device
(or processing node) is attached to the system requires sophisticated communication support.
In addition to high performance and reliability there is also a need for full transparency and
support for distributed systems using potentially multiple operating systems (because of the
connection of heterogeneous devices). For this reason the SHAPE project adopted the ad-
vanced and open source protocol, LINX [1, 25, 26]. This is a transparent, system-wide inter-
process communications service with high performance because of its direct message passing
technology. LINX connects multiple operating systems in a seamless fashion and is suitable
for the complete range of processors including high-end CPUs, as well as DSPs, and scales
well to large systems with any system topology.
The DySCAS architecture has a strong advantage due its platform independent middleware
design. This implies that all fundamental code is non system dependant. It neither contains
any calls to the operating system nor calls to the hardware. Instead the platform depends on
an interface layer, the Instantiation Layer. This layer is divided into the System Level and
the portability level. This design ensures that porting is an easy task and the middleware will
always ensure the correct behavior irrespective of what platform it is running on. The Instan-
tiation Layer is open source, to encourage fast driver development.

8 A framework for modelling, designing and analysing
dynamically configurable systems

This section describes our work and results towards a methodology and tools supporting de-
sign and analysis of DySCAS systems.
In order to develop a system such as DySCAS, various types of tools are required covering a
wide range of design activities from architecture modeling and design, verification/validation
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through simulation and formal analysis, to prototype implementation. Clearly, when DySCAS-
type systems make it to the market, there will also be a need for tools supporting the entire
system life cycle including tasks such as configuration, deployment and maintenance, such
tools are however not treated here. Figure 15 illustrates currently available tools (solid line
boxes and connections) and future possible tools (dashed line boxes and connections) and their
interconnections. Current support for the design includes simulation, safety analysis using
FMEA and formal verification with the purpose of providing feedback to the architecture
modeling and specification work which is carried out using UML. In general, modeling and
analysis of these different aspects plays the important role of improving our understanding of
DySCAS systems, in communicating DySCAS concepts by means of models, and in verifying
and validating designs. In the following, current support tools and experiences are described
(solid line boxes). A reference implementation is described in section 7.
The architecture has been captured by UML models encompassing structural and behavioral
aspects. A main emphasis has been placed on defining architectural function blocks and their
interfaces (including signals and data). For this purpose UML composite structure and class
diagrams are used. As a prerequisite, a component model is defined with derived classes rep-
resenting different types of components (application services, core services and instantiation
services). With respect to behavior a generic execution controller for DySCAS core com-
ponents is captured with a state machine that describes execution modes (start-up, normal
operation and fault handling). Sequence diagrams are used to describe interactions (protocols)
between components.

Remote 

Configuration 
Implementation 

Safety Analysis 

(FMEA) 

Formal  

Verification 

Simulation Architecture frame-

work model 

Deployment tool 

(Configuration) 

User Interface

Policy 

tool/Simulations 

Fig. 15 Existing and desired design activities (methods/tools) used in the development of the
DySCAS architecture. The solid lines illustrate where information has been transferred by manual
model transformation. In the future we wish to automate these transformations. The dashed lines
illustrate desired new tools and connections, for example where a configuration tool can be used
as a basis for defining a concrete DySCAS implementation and for configuring simulations.
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8.1 Simulation

In developing dynamically configurable systems, it would clearly be useful to have a simula-
tion platform which is able to simulate structural and behavioral changes such as addition or
removal of devices, policy behavior, and system and application performance. In particular,
the dynamics part of a DySCAS system (structural changes, varying loads and partial failures)
constitute major concerns for modeling and simulating a DySCAS system. The choice of level
of abstraction is also based on these requirements. A very low level of abstraction is benefi-
cial for detailed analysis but at the same overly detailed and time-consuming for many of the
aspects of interest to evaluate. On the other hand, a very high level of abstraction will give rise
to results which are obvious and may not be useful.
Simulations in the DySCAS project are classified as logical, base and policy simulations.

• Logical simulations. The main purpose of these models and simulations is to verify struc-
tural/architectural properties (component model, interfaces and signals) and logical behav-
ioral properties (state-machines and activity diagrams). The modeling emphasizes platform
independent modeling and supports both interface verification as well as validation through
simulation of the system behavior. We have chosen Matlab/Simulink/SimEvents as tools
due to their ability to support simulation of discrete event and continuous time systems
simultaneously.

• Base simulations. The main purpose of these models and simulation is used to evaluate
system behaviors, including algorithms for configuration management, quality of service
and load balancing. The modeling has included explicit platforms abstractions in order
to incorporate aspects such as allocation to processors, platform performance as well as
application performance. For these simulations we have chosen the TrueTime [59] toolbox
due to its support for modeling logical as well as real-time operating systems and network
protocols.

• Policy simulation. For simulating the policy-based configuration aspects, a separate plat-
form i.e. AGILE is used [8].

The logical simulation models are directly based on the architecture design model, as captured
in UML. The UML model is mapped to SimEvents manually to test the logical correctness of
the DySCAS architecture. The table below summarizes the mapping from UML to Simulink.
For a detailed description reader is referred to [28]. The work on logical simulations has fo-
cused on capturing the specifications in more details. We have also explored the incorporation
of platform behavioral abstractions into the logical simulations.

Table 3 Transformation scheme between Architecture design model in UML and Mat-
lab/Simulink/Simevents

UML SimEvents/Simulink

Component model structure Subsystem
Ports SimEvents Connection port
External Signals Entities
Signal attributes Attributes
Decision functions Attribute function
Execution controller Stateflow
Computational modules Combination of gates, queues and servers
Activity diagrams Combination of Stateflow, gates, queues and servers

The base simulations emphasize behavioral aspects (with simplified architectural aspects).
The simulation set-up makes it possible to integrate and test various adaptive management
algorithms (see e.g. [3, 18, 43, 50, 72]) including our own algorithms for DQMS and ACM as
illustrated in Section 6.
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8.1.1 Policy simulation

The DySCAS architecture incorporates the AGILE policy technology [8]. An implementation
library, suitable for integration with the DySCAS middleware, and deployment on the embed-
ded platforms that DySCAS targets, has been developed within the project. There are many
functional and non-functional requirements of the policy library for which support has been
incrementally added and evaluated throughout the development process.
For pragmatic reasons the policy library was initially developed in parallel with the middle-
ware. This meant that the policy library functionality could not be tested on the real platform,
with real sensor data and real applications, during the early stages of the project.
To allow the policy development to proceed, a series of simulations were developed to stress-
test the policy grammar and the policy library mechanisms. The in-development policy library
was embedded into mocked-up middleware and application environments with simulated sen-
sor and system inputs (which provide context to the policy decisions).
The simulations have been carried out throughout the lifetime of the project and in addition
to feeding into continuous improvement of the policy library itself, the results and findings
have also helped drive the design of the middleware and the various mechanisms and services
within. Particular aspects of the middleware design and operation that have been influenced
by these outcomes including the policy-load path and the repository that stores the policies
within the system; and the dynamic context management service which provides the appro-
priate context information required for a particular policy to operate. In addition the policy
simulations have helped identify the requirements of meta-data attached to policies to guide
the policy loading and tracking.
As only the environment and middleware has been simulated, with the real policy library in-
place, the functionalities of the policy library mechanisms (including those of the Dynamic
Wrapper and the Decision Point API) have been tested; whilst a number of concepts relating
to the wider use of policies within the middleware and in the context of the DySCAS use cases
have been validated.
Concepts and functionalities validated and tested respectively, include: Policy load, Automatic
subscription to required context information, Run-time change of policy, Decision point con-
cept, Support for multiple decision points per component, Multiple policy evaluation (when
multiple decision points are used simultaneously, each with its own policy), and Error han-
dling behavior for the following fault conditions: no policy available in repository; policy not
loaded into decision point, or parse error occurred; and needed context information not avail-
able. Figure 16 illustrates the way in which existing and mocked up parts were combined to
enable validation of policy-related concepts, testing of policy-library functionalities and also
feasibility of DySCAS use cases.
The simulations have also helped to test the policy language grammar for completeness and
closed qualities. Various policies with collectively a wide-range of behaviors have been writ-
ten for test purposes. This policy-writing exercise in turn led to the design and development
of a custom policy editing tool to simplify the policy writing process and to ensure that syn-
tax errors are avoided (the editor supports visual development of policies and automatically
generates the policy script).

8.2 Safety analysis and formal verification

When introducing systems that include run-time configurations it is of utmost importance
that the autonomous computer is conceived as trustworthy and robust. While the DySCAS
architecture mainly addresses non safety critical domains such as infotainment and telemat-
ics, malfunctioning applications and middleware may still disturb users, thereby potentially
creating hazardous events. In addition, some of the scenarios also relate to more critical oper-
ations such as attaching a trailer to a truck and failures in a DySCAS system could in the worst
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Fig. 16 Combining real and mocked-up parts of the system to validate a wide range of policy-
related concepts

case propagate from non critical to critical parts. For these reasons, several means for address-
ing both validation and verification have been and are being addressed. In the following we
describe safety analysis and formal verification of component interactions.

8.2.1 Safety Analysis

A safety analysis has been performed iteratively involving three steps (constituting traditional
ingredients in safety analysis [44]:

• Hazard analysis. In hazard analysis it is studied what can go wrong at the system interfaces,
and more precisely to identify system states that under certain circumstances can lead
to system failure that may harm humans and cause financial loss. This is supported by
considering the use cases of DySCAS, defining central interactions across the interfaces.

• Functional failure analysis (FFA). In FFA, the possible failures of key functionalities and
their consequences are investigated together with means to avoid or handle such failures.
FFA could be seen as a failure mode effects analysis (FMEA) carried out at a very high
abstraction level.

• Architecture (re)design. Weak or vulnerable points of the architecture are re-visited in
order to avoid or mitigate critical failures.

In the following we give a brief overview of these steps (for more details see [29]).
The analysis concerns the DySCAS middleware software, which is interacting with appli-
cation components and the supporting embedded systems platform. The hazard analysis is
however performed at the level of the super-system since this is where hazards appear. The
DySCAS super-system includes the DySCAS middleware, applications and the underlying
platform. This system is thus delimited by human machine interfaces, internal communication
with other vehicle embedded systems (e.g. body electronics and dynamics control), external
communication with external devices, and by power supply interfaces.
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Failures at interfaces can occur in the time-, value- and energy domain, leading to special
classes of failures such as omission and commission. A DySCAS system together with its
applications may thus cause the following hazards:

(1) Driver distraction. A distracted driver may in the worst case result in accidents. An inter-
face causing various distractions will also reduce the confidence in the system and may
cause complaints (costs).

(2) Energy failure, leading to reduction or loss of power in the vehicle. Such a failure may
impact critical functions in the vehicle.

(3) Erroneous communication (in data and/or time) to other vehicle embedded systems. Such
a failure may lead to failure of critical functions.

(4) Erroneous communication (in data and/or time, input or output) to vehicle external em-
bedded systems. Such a failure may lead to disclosure of confidential information, erro-
neous charging, or intrusion. Intrusion may in turn lead to other failures and hazards.

In our investigation we have chosen not to treat (2). Power management has not so far been
included into DySCAS. When included, failures due to inappropriate power management also
have to be considered.
Potential causes of (1) include inappropriate or unexpected HMI outputs (e.g. sound, light
and misleading information on displays). While HMI interfaces are not part of the DySCAS
system, it is important in the DySCAS design to consider the degree of autonomy (for example
when a human should acknowledge a certain action such as to download software) and the
level at which error handling is carried out (DySCAS vs. application level). The goals are to
provide intuitive and robust behavior where individual tailoring is possible through the use of
policies.
It should be noted that hazards belonging to (3) are handled either by a DySCAS gateway or
through appropriate communication and security protocols which we assume to be in place.
A functional failure analysis (FFA) was carried out for the DySCAS middleware with the
purpose to identify the possible failures of key functionalities, their consequences, and ways
to avoid or handle such failures. The failures were classified as catastrophic, critical, marginal
and insignificant. A number of possible failures were detected and assessed. Many of these
were deemed as critical, for details see [28]. In general, critical functional failures are those
that involve faulty decisions, expose faulty information at the interfaces, and represent security
risks.
A general conclusion regarding the hazard and FFA analysis is that it is essential for DySCAS
(and similar) systems to consider and handle the following aspects:

- Address security for relevant functions/services.
- Ensure that critical data (internal sensors and state) can be provided reliably or detected as

faulty.
- Design robust interactions and verify these through formal verification, simulation and

testing.
- Pay special attention to robust decision making (sensing, decision algorithms and policies).

It is clear that especially decision making is critical.
A number of measures have accordingly been taken including specific features of the DySCAS
architecture and in verification and validation through simulation and formal verification. Nev-
ertheless it must be pointed out that further work is required, for example in managing the
transition from design to implementation.

8.2.2 Formal Verification

As part of the DySCAS project formal verification has been explored as one part of the veri-
fication work. Formal verification has been applied to algorithm development (verifying con-
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figuration algorithms - see [28] and [27]) and for verifying certain interactions between ar-
chitecture components. The work and experiences indicate the usefulness and relevance of
the approach in which simulation is combined with formal verification. Simulation is not ad-
equate alone for ensuring the correctness of the architecture model, as it cannot explore all
possible activity traces resulting from complicated communication, interaction, and resource
contention of multiple processes.
Formal methods have been applied to one of the DySCAS use cases, “Attach Device”. This use
case is in the following referred to as GUC1 (DySCAS General Use Case 1). The verification
concerns the communication as specified by the architecture model (in this case through a
UML sequence diagram).
The investigation improved a faulty design in the behavioral model of the localResourceMan-
ager, and confirmed the reversibility and responsiveness of the behavioral model.
A UML sequence diagram [31] describes a group of independent objects transmitting syn-
chronous and/or asynchronous messages. In this investigation, the dynamic behavior of each
participating object is modeled by a finite state automaton [36]. A synchronous message be-
tween objects represents a direct function call and is represented as a joint event shared by the
corresponding automata, forcing a rendezvous of the related automata. An asynchronous mes-
sage, however, is transmitted via a message queue, which is also modelled as an automaton.
Unlike the former case, the automata of objects participating in an asynchronous message call
need not synchronize for the message. Rather they each synchronize with the message queue.
From a system perspective, the message queues are limited resources used by participating
objects: They have limited capacities and cannot overflow or underflow.
Having obtained the corresponding automaton models of a sequence diagram, we also formal-
ize desired properties as automata and submit all them to a computation tool. These desired
properties typically include systemic requirements e.g., freedom of deadlock, reachability, re-
versibility, and user defined correctness specifications. The computation tool adopted in this
investigation is XPTCT1. While this software tool is intended for supervisory control design of
discrete-event systems modelled as finite automata, we use it only for automaton computation.
The remainder of the section shows a few snapshots of the verification process. Sequence
diagram “GUC1_deviceAttach” contains 11 independent objects, among which the automa-
ton model of localResourceManager is shown in Figure 17. The events are named after the
message calls in the sequence diagram. If the object sends out an asynchronous message, the
message name is immediately followed by “!”. If the object receives a message, the message
name is followed by “?”.

locResReq
?
 resReq
?


elmCfgActCmd2Res
 ?


resFdbk2
 !


resFdbk1
 !


Fig. 17 Model of the localResourceManager

Going through the sequence diagram “GUC1_deviceAttach” and the automata of objects, we
define a message queue for every pair of events with the same name but ending with the
complementary symbols “?” and “!”. Altogether there are 23 message queues. Message queues
have the similar properties: They have limited lengths. When full, senders cannot send more

1 Free to download from http://www.control.utoronto.ca/DES
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messages; when empty, receivers cannot receive. In one message call, one piece of message is
inserted into or taken out from the queues. The model of a generic queue is shown in Figure
18. The states are numbered from 0 to n ≥ 1, where the integer number at each state indicates
the number of messages in the queue and n the length of the queue. At state 0, the queue
is empty. So it can only receive a message from a sender via event fromSender! but cannot
provide any message to a receiver. At state n, the queue is full. So it can only be read by the
receiver via event 2Receiver? but cannot be written by the sender.

0

fromSender
 !


2Receiver
?


1
 n
......
fromSender
 !


2Receiver
?


fromSender
 !


2Receiver
?


Fig. 18 Generic Model of a Message Queue

Since XPTCT, as well as most other model checkers, e.g., SPIN and SMV, does not support
indeterminate parameter n, we, for conceptual evaluation, set the lengths n of most message
queues as 1. Therefore the models have 2 states. Events fromSender! and 2Receiver? are re-
placed by corresponding labels for each message queue.
We first check if the GUC1 process is reversible, namely the communication process can
repeat in the same way for ever. Evidently, this property is stronger than deadlock freeness.
The reversibility property is implied by the nonblocking property of the automaton model of
GUC1. An automaton is nonblocking if and only if every reachable state can further reach a
marker state via the state transition relation of the automaton. Note that we choose the marker
states identical to the initial states for all previous automata.
Computing the synchronous product (concurrent composition) [36] of the automaton models
of all objects and message queues, we obtain an automaton describing all possible activities
pertaining to GUC1. This automaton has a deadlock, which implies that the GUC1 process, as
modeled above, is not reversible.
The direct reason for this deadlock is the faulty design of the model of localResourceManager
of Figure 17. According to this model, localResourceManager periodically serves requests
locResReq? and resReq? in the given order. This model, however, overlooks the possibility
that in one cycle, the second request may not happen at all owing to decisions made between
the two requests. Thus the model of Figure 1 waits for request resReq? for ever and a deadlock
arises. To eliminate this deadlock, we change the model of localResourceManager to the new
automaton in Figure 19. Now the object can answer requests without any sequential constraint.

locResReq
?
resReq
?


elmCfgActCmd2Res
 ?


resFdbk2
 !
 resFdbk1
 !


Fig. 19 New Model of the localResourceManager



AC Middleware for Automotive 205

We repeat the previous computation with this new model. We obtain a new automaton with
4644 states and 16395 transitions, and it is nonblocking. Therefore the entire GUC1 process,
after the modification on a behavioral model, is reversible.
The other property that we verified is the responsiveness of the model. When there is a new
device attached, the system, in particular localDeviceManager, always generates a response.
Either the device is not recognized, or there is not sufficient resource, or the device is not
authorized, or the system receives a dynamic configuration feedback on the new device. Our
computation confirmed this property of GUC1.

9 Open issues and ongoing work

Several issues are still open in the DySCAS project. This is not strange since the DySCAS mid-
dleware touches upon several scientific challenges and involves extensive engineering work -
all of which are not possible to cover in one project.
Solving the DySCAS challenge requires competences and results from many scientific disci-
plines to be integrated and further developed, including scheduling, feedback control, artificial
intelligence, fault-tolerance and software engineering. Continued work is necessary in finding
common and suitable abstractions. Both theoretical combinations as well as clever engineering
will be required.
It can be noted that the configuration problem itself, even within traditional static design of
embedded real-time systems, is a big challenge. Extending it to do dynamic configurations
requires increased emphasis on design-time techniques as well as deployable run-time tech-
niques. Robustness and verification are treated in this chapter, integration with legacy systems
and implementation on resource-constrained systems are issues that are still subject to work.
The last two are further elaborated in the following.

9.1 Integration with a legacy statically reconfigurable platform

Statically configured systems play a key role in the automotive industry today. This is illus-
trated by the effort to develop a standardized middleware platform, the AUTOSAR initia-
tive [13]. DySCAS-type systems will probably first be introduced for less critical and quick
changing functions, represented by the infotainment and telematics domains. This means that
a DySCAS system must be able to interface to the other domains inside a vehicle. In addition,
a migration strategy from statically to dynamically configurable systems has to be considered.
The main approach taken within DySCAS has been to investigate the use of a gateway to
separate the two networks [32]. A gateway approach is a natural solution since gateways are
frequently used today to separate the existing domains. This approach has several advantages
and allows the two networks to coexist. Integrating the two types of middlewares into the same
domain would be a very difficult challenge.

9.2 Implementation on a resource-constrained platform

One of the main restrictions for automotive systems is that of resource-constrained platforms.
Practical deployment of DySCAS implies that all the used algorithms need to execute effi-
ciently, even on a constrained embedded platform. The automotive computing environment
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poses specific limitations in terms of cost-constraints (large series production), size and en-
ergy. Already today, the increasing power usage of automotive electric architectures is a design
challenge in itself.
As a way of approaching these issues, a minimalistic implementation of the DySCAS concepts
is under development. During the DySCAS project, a first proof-of-concept prototype imple-
mentation has been built for the Coldfire MCF5213 microcontroller and the Movimento Puma
ECU. This implementation has received the project name DyLite. The main aim is to further
evaluate the concepts for QoS and reconfiguration. Several delimitations of the work have been
decided upon; the implementation will only run on two previously well known hardware and
software platforms, it will use a lightweight protocol based on concepts and experiences from
both the SHAPE reference implementation as well as a previous project at KTH, SAINT [14].
The DySCAS-Lite/QoS implementation can also be seen as a design exploration in exactly
how small an implementation of a self-aware middleware can be made.

10 Conclusions

Vehicles are increasingly technology rich, which has an obvious benefit in terms of potential
functionality but also has a negative impact on the duration of the design phase with many
technical decisions to make; there is considerable risk of committing to a wrong approach or
missing opportunities through lack or foresight. A large fraction of the technology within a
modern vehicle is made up of embedded computing systems which form a distributed control
system. This implies the capability to support dynamic reconfiguration although current sys-
tems are static. The introduction of dynamic configuration and context-aware behavior into
vehicular control systems, as targeted by DySCAS, opens up whole new realms of future use
cases. However, to achieve the DySCAS goals there are a large number of very demanding
technical requirements which must be met.
This chapter has examined the DySCAS concept, putting the benefits and the technical re-
quirements and challenges into perspective, and has introduced the DySCAS architectural
specification for future vehicular systems.
The technical descriptions have focused on the achievement of autonomic behaviors within
the DySCAS architecture: self-configuration for responsiveness to resource requirements and
to optimize services, and self-healing to automatically detect, analyze and deal with run-time
hardware and software faults. Policies provide flexible configuration and customization, and
allow deferment of some design decisions potentially shortening the time-to-market and re-
ducing manufacturing cost and risk.
A dynamic context mapping service decouples components so that component upgrades can
be performed in isolation. The strong obligations of robustness, validation and verification
are met by wrapping the dynamic configuration mechanism with an automatic fault-handling
mechanism which silently downgrades a problem component to statically defined default be-
havior.
Extensive simulation and validation activities have been reported, as well as a reference imple-
mentation. Various partners in the project are also developing a range of demonstrators with a
view to disseminating and promoting the DySCAS concept within the automotive community.
Whilst very detailed, this chapter does not do full justice to the scope, sophistication and ca-
pabilities of DySCAS, or to the full extent of the design, development and validation effort
that have been necessary. However, the chapter does provide a valuable insight into the tech-
niques used, and the challenges and long-term benefits associated with developing a complete
autonomic system for automotive control systems.
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Social Opportunistic Computing: Design for
Autonomic User-Centric Systems

Iacopo Carreras1 , David Tacconi1 , and Arianna Bassoli2

Abstract The proliferation of mobile devices equipped with short-range wireless connectiv-
ity allows users to produce, access and share digital resources in a wide number of everyday
occasions. In this chapter, we consider a content distribution application scenario, aimed at
the diffusion of data in autonomic computing environments, and investigate the way the so-
cial attitudes of mobile users impact the design of an autonomic opportunistic communication
system. We analyze the results of a simulation which combines both a real-world pattern
of proximity-based encounters, as measured in an office environment, with a series of user-
defined preferences regarding content. Results show how the system design space varies ac-
cording to these social parameters, and the importance of designing systems which are build
taking into account the user and its social habits and preferences.

Key words: Mobile computing, opportunistic communication systems, user preferences

1 Introduction

The proliferation of mobile technologies (such as mobile phones, gaming consoles and
MP3 players) equipped with short-range wireless connectivity (such as Bluetooth and WiFi)
has encouraged the development of applications that allow users to produce, access and
share digital resources in a wide number of everyday occasions and without the support of
a fixed infrastructure [1, 2, 7]. The development of such applications presents challenges
in terms of both user interaction and technical feasibility, as users’ behaviors needs to be
taken into account, especially the mobility of users and the variability of contexts traversed,
and technological limitations, especially in terms of battery/processing power and wireless
bandwidth, cannot be underestimated.

From an user-interaction perspective, applications have addressed the possibility for users
to access data from certain locations (location-based) or to share data with other users in
proximity (mobile peer-to-peer).
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From a technical perspective, the use of opportunistic communication systems [10] to support
mobile peer-to-peer applications [12, 13], exploiting the proximity of mobile nodes for
exchanging personal or contextual information, is becoming an increasingly popular research
topic. Originally, such a paradigm emerged as a way to provide connectivity in intermittently
connected scenarios, such as the cases of Interplanetary Internet and developing regions [3].
In cases where connectivity could not be taken for granted, nodes were able to temporarily
buffer data, and forward it at the next communication opportunity. The paradigm applied
was therefore a “store-and-forward” one, where nodes were expected to first store, and then
forward any information destined outside the local network.

Recently, significant attention has been devoted to mobile application scenarios, where the
carriers of information are represented by people with their personal handheld devices. In this
case, the characteristics of the social network in which the data is being diffused is extremely
important and can significantly influence the performance of such systems. This considera-
tion has led to the studies on how to exploit social interactions in mobile systems. In [6], the
community structure behind the social interactions driving the data diffusion process has been
studied in order to improve the performance of forwarding algorithms. Starting from experi-
mental data sets collected in real-world experiments, it was shown that it is possible to identify
a limited set of nodes that were much more active than the others. Such nodes represent hubs
of the network. Further, the authors show how it is possible to divide the network into overlap-
ping communities of nodes, and how these communities depend on the social relations of the
nodes themselves. Finally, it was shown that by incorporating the knowledge of both the so-
cial activity of the nodes and the communities to which they belonged, an extremely efficient
trade-off between resources and performance could be achieved.
The relevance of users’ behavior in opportunistic networks was further assessed in [8], where
the impacts of different social-based forwarding schemes were evaluated in the case of a DTN
routing protocol scenario, a worm infection scenario, and a mobile P2P file-sharing system
application scenario. Also, in this case, the evaluation was based on real world mobility pat-
terns, obtained from bluetooth proximity measurements. In particular, by applying a threshold
on the periodicity of meetings it was possible to classify encounters in terms of strangers or
friends, and analyze the properties of these 2 classes of meetings separately. Starting from this
classification, the authors conducted a statistical analysis of these 2 categories of meetings,
concluding that (i) while most of the encounters were between strangers, meetings among
friends account for almost two-thirds of the overall meetings, (ii) networks of both strangers
and friends were scale-free and (iii) the network of friends had a very high-clustering coef-
ficient. Finally, the authors showed that incorporating this friend/strangers distinction in the
forwarding policies can be beneficial in different application scenarios, such as P2P file shar-
ing or in the prevention of the spreading of worms.
What appears to be missing from current studies on opportunistic communication systems is
the realization that while mobility and proximal encounters might provide opportunities for
improving the performance of the network, these mobile encounters are inherently wed to the
social world in which they take place. Therefore, opportunistic communication systems must
take into account the types of applications which they are meant to support, and to recognize
the significance of the users’ preferences regarding the data that they are interested in access-
ing and sharing through these systems. Further, with respect to real-world implementations
of such systems, we believe it is also important to acknowledge the effects of current tech-
nical limitations (such as the bandwidth provided by short-range wireless technologies like
bluetooth) on the potential performance of an opportunistic communication based application
scenario.
In this chapter we present a study which is a first step towards addressing such concerns; we
take into account both technical limitations of the specific technology adopted, as well as the
preferences expressed by users. We believe that a proper user-centric approach for opportunis-
tic communication research is one that assesses not only the opportunities that social behavior
presents, but also the constraints that it carries on for the success new technological advance-
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ments. Such approach has to begin with considering real world situations and the spontaneous
flow of people’s activities, behaviors, sociality patterns and everyday choices. From this start-
ing point, by better understanding the social context chosen for the analysis and conducting
experiments within this context, researchers have the opportunity to understand the potential,
the limitations and the applications of new opportunistic communication systems.
In order to test this user-centric approach, we have conducted a study within an office envi-
ronment, in which we have first analyzed the connectivity patterns emerging between people
working there; such patterns have been recorded by means of off-the-shelf technologies. This
initial step provided insights into the real-world performance level of opportunistic services
running over commercially available devices such as smartphones. Next, we have gathered
actual user-expressed preferences through the means of a questionnaire. Third, we have com-
bined these technical and social parameters to develop a simulator, capable of reproducing
the measured pattern of inter-user contact, and of emulating the content distribution network
based on the preferences of the users. This allowed us to see not only when data could be
distributed, but when it actually would be, and we were able, to investigate how the size and
format of different types of content significantly impacted the diffusion process. Finally, start-
ing from the assumption that people tend to share information within communities of similar
interests, we have develop the concept of affinity, which is a metric measuring the similarity
of users’ preferences. We have analyze how such an affinity metric influences the structure
of the network, and the circulation of the content. By combining user constraints and realis-
tic contact patterns, we were able to accurately simulate how content is distributes over the
network, thus providing valuable insights into the design and dimensioning of opportunistic
content distribution systems.

2 The Study

The aim of our study is to investigate the technological and user-defined constraints which
pertain to the design of an opportunistic content distribution application scenario, that allows
users to access and distribute digital content such as music, videos or news over Bluetooth-
based Smartphones in a given social environment. We have assumed that people always bring
with them their smartphone with Bluetooth always on. With a good approximation networking
interactions occurred through Bluetooth can be assumed as social interaction among people.
The methodology we applied in the study is briefly depicted in Fig. 1. First, we conducted
a real-world experiment within an office environment, monitoring the encounters between
co-workers equipped with Bluetooth-enabled mobile phones thanks to a simple Java applica-
tion. Such encounters were then analyzed in order to understand the network of interactions
generated by the encounters between co-workers. At the same time, we conducted a survey to
assess people’s preferences, in terms of preferred news topics and data formats.
In the second phase, we tested the performance of the network by taking into account both
user preferences and current technical limitations of the Smartphones, and ran a series of
simulations in which we measured the consequences of introducing different data formats
(such as text, audio and video) over a Bluetooth-based network. In addition to this, we
evaluated the impact of distributing content over the network depending on the preferences
selected by users.
In the last phase, we combined technical constraints and user preferences, looking at how the
performance of the network is affected by users transmitting heterogeneous data formats and
only accepting the data they might be interested in.

The social environment we have selected for our real-world investigation is a work environ-
ment, which has been chosen for several reasons. First, an office represents a relatively en-
closed environment where people are likely to interact with each other frequently. Within this
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Fig. 1 The methodology applied in the study consisted of 3 parts: in the first phase, we evaluated
a specific office environment in terms of opportunistic networking characteristics, and user pref-
erences; in the second phase, we evaluated how technological constraints and the user constraints
influence the design of opportunistic communication systems; in the third part, we evaluated the
combination of both constraints.

setting, then, we monitored people’s natural behavior without having to impose an artificial
set of rules for interactions. Second, this environment allowed us to monitor social interac-
tions between the same group of people occurring over an extended period of time. Finally, an
office represents a socially-rich environment where encounters often occur not only for work
but also for socializing purposes.

Environment
Office 

Research Research Research Research Admin.
Group 1 Group 2 Group 3 Group 4

Group

Leaders

Group

Members

Fig. 2 Working environment organizational structure.

Fig. 2 presents the organizational structure of the office environment under consideration. It is
comprised of 21 people organized into 5 groups, with each group composed by a group leader
and a variable number of staff members. The workers chosen for the study had different roles
within the organization and were working on different floors in the building. With respect to
the social characterization of the people involved in the experimentation, 23% were women,
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and the ages of participants ranged from 25 to 56, with 28% of the participants being younger
than 30.

3 First Phase: Understanding The Technological and User
constraints

3.1 Assessing contact opportunities of an office environment

Opportunistic communication systems are typically characterized by the contact patterns of
the nodes of the network [4, 5]. A “contact” is defined as the communication opportunity
deriving by the physical proximity of two nodes. Clearly, such contact patterns depend from
several technological aspects, i.e., the communication technology adopted, the noisiness of the
environment, the mobility of nodes, and represent an extremely relevant aspect to study. We
have then run a set of experiments to measure the connectivity pattern of nodes in the office
environment under consideration.
Similarly to the experiments conducted in [5, 11], people’s encounters have been monitored
by tracing their proximity for a 4 weeks period. During the experiment, 21 workers - with
different roles within the organization and working on different floors of the same building -
were equipped with a mobile phone running a Java application discovering and tracing neigh-
boring peers approximately every 60 seconds. Whenever the proximity of another device was
detected, its bluetooth address, together with the meeting timestamp 1, was saved in the perma-
nent storage of the device for a later processing. In order not to overload the devices memory,
a bluetooth enabled laptop acted as a gateway toward a centralized database, gathering the
stored information from any smartphone in proximity and transmitting such information to
a remote repository. The result of this experiment is a trace which includes a series of con-
tacts, with each contact fully characterized by a timestamp, the IDs of the met nodes and the
duration of the meeting. Tab. 1 presents a summary of the experimentation settings.

Table 1 Summary of the experimentation settings. Totally, 21 people were equipped with a
bluetooth-enabled phone searching for nearby peers once every 60 s. This resulted in 179332
meetings over a 4 weeks time period. The effective number of contacts is obtained by aggregating
consecutive contacts into a longer one.

Participants 21
Experiment Duration 4 weeks
Registered Contacts 179332
Effective Contacts 14100

The meetings duration is inferred from consecutive positive peer discovery inquiries per-
formed by nodes. In fact, the java application is simply tracing the proximity of nodes. This
means that a 5 minutes contact is identified by 5 consecutive mutual discoveries (nodes are
running a discovering phase approximately every 60 sec.). A post-processing routine has then
been applied to the collected raw data in order to aggregate multiple contacts into a single one,

1 Nodes are using the phone’s internal clock for determining the timestamp. Since SIM cards are
inserted in the phones, it possible to synchronize such clock to the GSM network. This ensures a
sufficient level of precision, especially when compared with the granularity of the peer discoveries.



216 Iacopo Carreras, David Tacconi, and Arianna Bassoli

with duration equals to the sum of consecutive peer discovery inquiries. The effective number
of contacts (Tab. 1) is the result of this operation.
Fig. 3 depicts the distribution of the contacts duration. It can be easily observed that most
of the meetings are relatively short in duration, lasting no more than 100 sec., although few
contacts persist for a very long time. This is due users not carrying the mobile phone with
them, and leaving it on their desk.
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Fig. 3 Contacts duration distribution.

As in any real socially environment, there are couple of nodes meeting very often (i.e., peo-
ple of the same research group), and people meeting rarely (i.e., people of different groups).
This behavior is captured by the intermeeting time among nodes, which measures the time
elapsed between the consecutive meeting of nodes couples. The statistical properties of the
intermeeting time is represented in Fig. 4.
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Fig. 4 Intermeeting time distribution.
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Tab. 2 summarizes the overall properties of contacts duration and intermeeting time.

Table 2 Intermeetings and contacts duration.

Metric Mean Variance Min. Max.
Inter- meet-
ings

24156 101588 90 1812085

Contacts
Duration

473 1047 45 55717

We have then considered the network’s Contact Graph (CG) [9], which is a graph-based rep-
resentation of the network of contacts, as obtained from the experimentation. In such graph,
vertexes represent the nodes of the network, and edges a contact (or a series of contacts) be-
tween a couple of nodes. The presence of each edge is regulated by some metric such as, e.g.,
the cumulative contact duration between nodes couples, or periodicity of such contact. In our
work, the edges of the CG are regulated by the cumulative contacts duration, which measures
the overall time that 2 nodes i and j have been in contact during the entire duration of the
experimentation. In other words, an edge exists between any 2 nodes if they have been close
to each other, over the entire duration of the experimentation, for a period of time longer than
a predefined threshold dthr. As such, the CG shows the stronger relations existing among the
people in the office environment.
Fig. 5 presents the CG in the case of a cumulative duration threshold dthr equals to 40000 s.,
which corresponds to nodes being in proximity for approximately 30 minutes per day. Given
this threshold, Fig. 5 shows strong relations among nodes such as, i.e., people working in the
same group or going regularly at lunch together. This is confirmed by the different shapes
of nodes 2 correspond to different groups within the office environment. As expected, peo-
ple working together tend to have stronger relations and to be somehow isolated with respect
to other colleagues. A few nodes (e.g. nodes 6 and 18) guarantees the connectedness of the
network, and represent those people working in collaboration with different groups.

3.2 Assessing users expectations

As in any socially-rich environment, people tend to behave differently, depending on their
specific role played in the work environment, their preferences, their attitude toward socializa-
tion, and many other factors. In order to assess realistic user preferences, we have conducted a
survey with the users involved in the experimentation. The questionnaire consisted of 10 ques-
tions addressing their preferences in terms of content (e.g.. music, cinema and news), formats
(e.g., text, audio and video) and granularity (i.e., more or less focused) of the information they
could access and distribute over such network.
The first part of the questionnaire regarded the users preferences in terms of content. In par-
ticular, we asked users to rank the different music, cinema and news categories according to
their preferences. Further, we asked them to provide a list of their favorite 5 music bands and
5 actors. This provides us a first feedback on common interests.
The second part of the questionnaire addressed the expectations of users in terms of content
potentially deriving from the proposed opportunistic content distribution application scenario.
As an example, users were asked to rank the information format they would expect to receive,
or the level of granularity of the information circulating over the network. A brief summary of

2 In Fig. 2 the different shapes are explained in correspondence of the office environment organi-
zational structure.
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Fig. 5 Graph-based representation of the network of contacts, as obtained from the real-world
experimentation. An edge exists between any 2 vertexes if the corresponding persons have been in
proximity for approximately 30 minutes per day.

Table 3 Users preferences expressed for the cinema and music question categories.

Cinema
Thriller Fiction Dramatic Romantic Comedy Horror Docum. Italian

19% 14% 14% 10% 15% 9% 11% 7%
Music

Etnic Rock Pop Disco Hip-Hop Jazz Classic
13% 18% 16% 12% 10% 15% 14%

News
Meteo Politics Chronicle Economy Sport Culture
11% 21% 18% 16% 14% 15%

Data Format Content Level of Detail
Video Audio Textual Focused Medium High Level

28.95% 36.85% 28.95% 45% 21% 34%

the questionnaires results is presented in Tab. 3. As it can be seen, there is a wide heterogene-
ity in the preferences expressed by users. As an example, for the music category, no specific
genre can be excluded a priori. Similar conclusions apply for the other categories.

4 Opportunistic Content Distribution Application

In an office environment people already use various digital technologies to communicate and
exchange data. Compared to established networked technologies, opportunistic communica-
tions and mobile peer-to-peer applications add to the richness of this environment as they
allow people to share resources only when in physical proximity and often without their full
awareness of any data sharing happening. Various applications can be supported by an oppor-
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tunistic communication paradigm, and - as we already claimed - these need to be taken into
account when assessing the potential performance of the network.
For this study we chose to consider a quite simple application scenario where users download
(from an unspecified destination that could be the Internet or a particular location) daily con-
tent such as, e.g., music, news, on their mobile phones depending on what they usually are
interested in. Such information can be then exchanged between users when they happen to be
in proximity. When an encounter occurs, from a networking perspective, users can exchange
all the data available on their phone, or keep only the one that matches their interests and for-
ward the other to other users that might be interested, or they can only exchange the data they
are interested in.
In order to fully understand the performance of such a content distribution network, we have
followed a two steps approach: first we analyzed the technological constraints imposed over
such network, initially abstracting users preferences and interests. To this extent, we have
developed a trace-based emulator of the diffusion process, able to replay the nodes contact
pattern measured during the real-world experimentation, and to simulate a data diffusion pro-
cess. Second, starting from the preferences expressed by users in the questionnaires, we have
reproduced a simplified behavior of users, taking into account their preferences, and the con-
tent they could be potentially be interested in. We introduced the concept of affinity, which is
is a measure of the likelihood they will exchange content of mutual interest, and we evaluated
the impact of affinity over the opportunistic diffusion of data.

4.1 The Technological Dimension

Given the described office environment, we have simulated an epidemic data diffusion process
over the collected contacts trace. Epidemic-style forwarding [14] is based on a “store-carry-
forward” paradigm: a node receiving a message buffers and carries that message as it moves,
passing it on to new nodes upon encounter. Alike the spread of infectious diseases, each time
a message-carrying node encounters a new node not having a copy thereof, the carrier may
decide to infect this new node by passing on a message copy; newly infected nodes, in turn,
behave similarly. Epidemic diffusion, while being far from optimal in terms of utilized re-
sources [15], is the only viable approach for those application scenarios where information is
not delivered from a source to a destination, but rather seamlessly diffused among users.
In order to evaluate the impact of different application constraints over the diffusion process,
we have build a simulator of the content distribution process. The simulator replays the con-
tacts trace gathered during the experiments, and integrates several realistic parameters such
as, e.g., bluetooth service discovery time, data transfer rate 3. With the simulator, we have
investigated how the content diffusion varies, depending on different system parameters, as
imposed by the opportunistic content distribution application scenario.
Since the aim of the considered application is to distribute heterogeneous content to the inter-
ested users, we assumed different content formats to be injected into the network. In particular,
as summarized in Tab. 4, we assumed three type of data: text, music and video. Each is char-
acterized by a specific size, and a corresponding transfer time, which is determined by the data
rate of the bluetooth.
As a first step, a randomly chosen node injecting a message at a random time in the network.
From that instant the epidemic diffusion starts, and is stopped when the 90% of the nodes have
been reached by that message. We assumed all nodes to be equally interested in the content

3 We have run separate measurements for evaluating the bluetooth performance that is possible
to experience through the JS R82 Java APIs for bluetooth. Measurements show that is possible
to obtain up to 600 Kb/sec for sufficiently long data transfers, and an average of 25 s. service
discovery time.
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Table 4 We assumed the opportunistic content distribution application to diffuse different formats
of contents: text, music and videos. Each format is characterized by a specific size, and by the time
needed for transferring it over the bluetooth communication medium.

Data Format Size Transfer Time
Text 100Kb 12s

Audio 5Mb 90s
Video 20Mb 300s

circulating in the network, and we measured the time that is needed in order to infect different
fraction of nodes (Network Infection Ratio). For each node we run a set of 150 simulations,
and we repeated the simulations for all the 21 nodes of the network. Fig. 6 presents the results
of this first experiment, together with the 98% confidence interval obtained over the 21×150
runs. As it can be observed, the infection proceeds fast up to the 80%, and slows down above
this value. This is due to few nodes missing, from time to time, for some days from the office.
Video diffusion is slower, since shorts contacts are not enough to exchange 20Mb of data over
bluetooth, but, in any case, is fast enough to reach most of the network nodes in 1 day (80000
s.).
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Fig. 6 Network Infection Ratio over time in the case of text and video content.

In the second experiment, we moved one step forward towards the addressed opportunistic
content distribution application scenario. We assumed that contents are regularly injected into
the system, as required by any content distribution application. Further, contents are fully
characterized by their format, e.g., text, music or video, and by the Time To Live TT L, which
represents the validity in time of the specific content. The TT L, while being useful for avoid-
ing users to exchange useless information, is also extremely important in mobile networks for
avoiding the system to collapse due to the exponential growth of data circulating in the net-
work. The specific format of contents is chosen in accordance with the preferences expressed
by the users in the questionnaires (Tab. 3).
Contents are sorted in the local storage of nodes according to their generation time, i.e. from
the freshest to the oldest, and this order is respected when selecting the data to be sent. At
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each meeting, two nodes merge the respective storage, avoiding duplication of data4 and with
respect to the contact duration time. In particular, we assume that the contact duration T is
equally shared between the 2 nodes meeting, and that each node disposes of T/2 seconds of
time for sending data to the encountered peer 5.
We have then run a second set of experiments, where a limited set of messages are injected
in the network according to a predefined Message Injection Rates (MIR). Each simulation is
stopped when all messages injected have expired, due to their TT L constraint. We measured
the NIR in the case of different and of different TT Ls, and different MIRs. In order to obtain
a sufficiently small confidence interval, for each setting considered we run 10 simulations,
varying the instant at which messages are injected in the network, and averaging results over
all the messages injected in the simulation. In Fig. 7, the results of this experiments are pre-
sented. Increasing the MIR corresponds to increase the network load, and this is reflected,
independently from the specific TT L considered, in a significant decrease of the experienced
NIR for high MIR values. Also the value of the contents TT L significantly impacts the diffu-
sion of contents in the network: the lower its value, the smaller the time available for a content
to diffuse. For the considered office environment, where the dynamism of nodes is relatively
small, it is necessary to adopt high TT L values, e.g., greater than 12 hours, in order to reach a
sufficiently large number of users.
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Fig. 7 Network Infection Ratio over time in the case of different Message Injection Rates, and
different TT Ls.

Finally, we investigated how well the different content formats diffuse, when varying the MIR.
Fig. 8 presents the NIR in the case of a TT L equals 24 hours, for a MIR spanning from 1 to
15 messages per hour. As it can be observed, textual information, due to the limited content
size, is insensitive to increases of the MIRs, and also in the case of 15 messages injected per

4 In reality, nodes can avoid duplication of data by first running an information discovery protocol.
This would introduce an additional overhead that is in any case negligible, with respect to the size
of the data being exchanged.
5 This assumption can be easily removed by assuming nodes to alternatively transmit predefined
chunks of data. If the size of the chunk is sufficiently small, this corresponds to equally share the
available contact duration T between the 2 nodes.
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hour is able to reach the 85% of the nodes. Differently, when a high number of video contents
are pushed into the system, the opportunistic network saturates, as the limited duration of the
contacts is not enough for the nodes to exchange all data. This is clear from Fig. 8, where the
video MIR decreases down to 50% very soon.
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Fig. 8 Number of users infected by the packet injected the network vs message generation rate in
the case of textual, audio and video data format, TT L = 24 hours, 10 runs for each point, 98%con-
fidence interval.

From this first analysis, we can easily conclude that, for the office environment under consider-
ation, the opportunistic content distribution application can safely support textual information,
but not video. Further, given the limited users dynamism, content TT L should be at least 24
hours in order not to expire before having reached a sufficiently high number of users.

4.2 Evaluating User Preferences

Starting from the assumption that people tend to share information within communities of
similar interests, we reproduced a simplified behavior of users, starting from the preferences
expressed by users in the questionnaires. We evaluated then how his impacts the considered
application scenario.

4.2.1 User Interests and Affinity Measure

We have assumed each user to be characterized by a set of interests, consisting of the union
of different content categories (i.e., music, cinema, news). More formally, to each user i we
associate the interests Ii

⋃{Ii,0, . . . , Ii,N }, where Ii,k is the kth interest of user i. Each content
category Ik is fully characterized by a finite hierarchical set of nested subcategories (i.e., rock,
pop, etc.). We have then associated a weighted tree data structure to each content category,
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with weights representing the relevance given by a specific user to that sub-category. Each
weight is relative to specific sub-categories level, and detail of each sub-category increases
while navigating the tree.
An example of such structure is reported in Fig. 9. In this case, the user is interested in three
distinct content categories: sport, cinema and music. For the case of music, the user is inter-
ested in rock music, and his favorite bands are U2 and Moby.

User

Sport Cinema Music
Content Category

2 Level

3 Level

(0.66) (0.66)(0.33) (0.33)

(1) (0.66) (0.33)

Football F1 Rock Pop

Alonso U2 Moby

(*) : relevance weight

Fig. 9 User interests tree representation.

For each content category, we have then defined the affinity between 2 users as the similar-
ity between the trees representing the corresponding interests for that specific category. The
affinity between 2 users i and j is then defined as follows:

ai, j =

N
∑

k=1

min(hIi,k ,hI j,k )
∑

l=1

wlrl(Ii,k , I j,k),

where rl(Ii,k , I j,k) is the Pearson coefficient 6 of the subset of elements of trees Ii,k and I j,k at
depth l, hIi,k represents the depth of the content tree k for user i, and wl is the weight given
by users to depth l of the content tree. Clearly, the affinity ranges from 0 to 1, and reflects the
similarity between the trees representing the preferences of two users.
Fig. 10 presents an example of how such affinity metric is evaluated. In this case:

a1,2 = 0.2r1(I1,1, I2,1)+0.8r2(I1,2, I2,2) = 0.50,

a2,1 = 0.8r1(I1,1 , I2,1)+0.2r2(I1,2, I2,2) = 0.15,

and the difference is due to the fact that user 1 retains more relevant less focused information,
for which there is a higher match.
Starting from the user preferences expressed in the questionnaires, we evaluated the affinity
among users for the different content categories considered. The results are summarized in
Tab. 5, where the last case is the total affinity between 2 users. As it can easily observed, users
interests are very close with respect to news, while the music content category leads to larger
differences.
We have then introduced the Affinity Graph (AG), in which an edge is drawn between two ver-
texes if the corresponding nodes presents an affinity above a given threshold λthr . Differently

6 Pearson’s product moment correlation coefficient is defined as r =
∑

(xi−xi)(yi−yi)√
∑

(xi−xi)2∑(yi−yi)2
, and mea-

sures the linear correlation between two variables.
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0.2

0.8 0.2

0.8

Sport Sport

User 1 User 2

MillerAlonso MassaAlonso Miller Riesch

F1
(.16)

Rugby
(.34) (.5)

Ski
(.5)
F1Ski

(.5)

Focus Weigth Focus Weigth

(.5)(.2) (.3) (.2) (.4) (.2)

Fig. 10 Example of evaluation of users affinity.

Table 5 The affinity among users, for the content categories considered, music, cinema and news,
and for the total category.

Content Cat. Min Mean Max Variance
Music 0.004 0.36 0.98 0.26

Cinema 0.003 0.39 1 0.23
News 0.003 0.54 1 0.23
Total 0.38 0.36 0.41 0.02

from Fig. 5, in this case constraints are derived solely by the affinity among users, and not
from the strength of the “contact” links.
Fig. 11 shows the AG for the different content categories, and an affinity threshold a f fthr =

0.75. As it can be easily observed, depending on the specific content category and affinity
threshold, the topology of the graph changes significantly. For an affinity of 0.75, all the graphs
are already partitioned, with many isolated nodes. This is particularly true for the Total case
where, a part for a subgraph of 3 nodes, the remaining ones are completely isolated from the
rest of the network. The reason for this is that the affinities for different categories tend to
compensate each other, and users showing similar preferences in terms of, e.g., music have
opposite ones with respect to cinema. This situation is mapped into a lower value of the total
affinity, and heavily influences the resulting network structure.

5 Phase 3: combining users and technological constraints

In this last part of the study, we have evaluated how the combination of both the technological
and user-defined constraints impact the opportunistic content distribution application.
Let us now assume users to exchange data only if they share common interests. At the system
level, this requirement is mapped to users exchanging data only if their affinity exceeds a
certain threshold a f fthr, otherwise not. Clearly, the higher the threshold, the closer must users
interests have to be for a data exchange to occur. We have then simulated the opportunistic
content diffusion over the collected traces taking into consideration the interests expressed
by users in the questionnaires. Differently from the previous evaluation, messages are now
injected in the system and tagged with a specific category (belonging to the set of those present
in questionnaires). When two nodes start an information exchange, data is organized in the
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(b) Cinema.
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Fig. 11 Affinity Graph for the music, cinema, news and total categories. The affinity graph is build
by drawing an edge between two vertexes if the corresponding nodes presents an affinity above a
given threshold a f fthr = 0.75.

storage from the most to the less relevant for the other node, so that in the available meeting
time the most interesting information are delivered first.
Fig.12 shows, for different TT Ls and for a fixed infection ratio of 1 message per hour, how
the node infection ratio varies in correspondence of different affinity thresholds. Again, each
point is evaluated as the average of 10 different runs and with a confidence interval of 98% and
simulations are stopped only when all the contents are expired. As intuitively clear, for lower
values of a f fthr a loose filter is applied to the data exchange and the information is influenced
by the technological dimension only. Results change when increasing a f fthr up to 0.7, above
which no sufficient match is present among users preferences for a data exchange to occur. We
can then conclude that the opportunistic content distribution performance consistently degrade
as the a f fthr increases. In fact, for high values of a f fthr (i.e. higher that 0.7) users collect only
content they are really interested in, without storing contents that could be of interest for other
nodes in the network, showing in such a way a selfish behaviour.
We have then evaluated the behavior of the network if data of a single content category are
injected and the affinity among users is evaluated only with regards to that single category.
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Fig. 12 Nodes infection ratio vs affinity threshold in the case of heterogeneous data formats, TT L
of 6, 12, 24 and 72 hours and injection rate of 1 message per hour.

The simulation settings are the same as before. Fig. 13 depicts network performance (i.e.
node infection ratio) for the three content categories we have assumed throughout this paper:
it can be observed that the behavior is the same independently from the specific category,
but that nodes still exchange some contents for the highest values of a f fthr. This is due to
the fact that, as shown in the previous section, the affinity among users regarding a single
content category is obviously higher than the total one, suggesting that opportunistic content
distribution applications performs better with more specific contents.
Finally, we have analyzed a particular case of content distribution in order to show the im-
portance of combining the technological and users constraints in the considered application.
We have preliminarily isolated 3 users in the network, whose interests were very close in the
content category “News” ( Fig. 11). These users correspond to nodes ‘2’, ‘4’ and ‘5’. As a
consequence, an information generated by ‘5’ will almost certainly interest also node ‘2’ and
‘4’. At the same time, we have observed that in Fig. 5 these nodes belong to different groups,
and with a high probability a message delivery among them would occur only if the content
distribution network performs well, e.g. all the nodes encountered by ‘5’ store the message
and forward it finally to ‘2’.
In a highly loaded network (i.e. injection rate of 10 messages per hour) with a TT L of 24
hours we have evaluated for increasing values of a f fthr the message delivery ratio for the
above mentioned nodes, i.e. the number of times one specific message injected by ‘5’ reaches
‘2’ and ‘4’. In particular, we have monitored a single message injected by ‘5’ and stopped the
simulation either when it reached both ‘2’ and ‘4’, or when it expires. The separated results for
each nodes couple (‘5’-‘2’ and ‘5’-‘4’) are reported in Fig. 14 for the text and video formats.
Each point in figure has been averaged over 50 different runs with a confidence interval of
98%. A value of 1 for the message delivery ratio means that all the messages generated by
‘5’ have been forwarded to ‘2’ or ‘4’, while a value of 0 means that none of the considered
information have been delivered before expiration. We can observe the different behaviour
between the two formats for each source-destination couple: it is interesting to notice how, for
the same simulation settings, a textual information can be easily delivered even for high values
of a f fthr (e.g. up to 0.7 for ‘2’) while a video not. At the same time we notice that two nodes
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Fig. 13 Nodes infection ratio vs. affinity threshold, for the three content categories considered,
TT L of 24 hours and injection rate of 1 message per hour.
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Fig. 14 Graph resulting from an affinity threshold of 0.6, in the case of music and news categories,
respectively.

that should apparently behave similarly, results with a different infection. This is due to the
fact that when the network is congested, contents diffusion paths differs significantly among
each other.

6 Discussion

Reflecting on these results, we begin to see that considering technical constraints in isolation
from expressed user preferences, or vice versa, does not paint a complete picture. When we
begin to consider not merely inter-user encounters, but the duration of these meetings, coupled
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with the format and size of data which the users might want to share, a network graph like that
of (insert ref) Figure 5 begins to emerge. The length of an encounter, then, becomes extremely
important when we consider not only if people were in proximity with one another, but how
regularly, or how briefly they met. In recognizing that data transmission is, as of yet, not in-
stantaneous, the graph of potential data exchange becomes less complete. Further, when we
incorporate user-expressed preferences about the types of data they might wish to exchange,
the graphs based on these affinities become even more fragmented. From these results we do
not mean to say that opportunistic content distribution systems are not feasible, but rather to
motivate the importance of both current technological limitations as well as user desires.
In future work we plan to investigate how these important factors might be effectively in-
corporated into the design of future systems. One interesting avenue for exploration we have
considered is to attempt to identify hubs of these social networks and to lower their level of
affinity in order to aid in the diffusion of data. Alternatively, we also propose to make the inner-
workings of the network more transparent to users, encouraging an awareness of the trade-off
between requesting only very specific types of data, or content which is of considerable size
(e.g. video), and the amount of data that user is likely to receive. By attempting to incorporate
social factors into the parameters of the applications performance, and, on the other hand, by
making users more aware of the technical implications of their expressed choices, we hope to
be able to create an opportunistic content distribution system which achieves an optimal level
of real-world performance.

7 Closing Remarks

In this paper we presented a study of an opportunistic content distribution system, which en-
ables users to seamlessly download and diffuse multi-media content such as music, videos
or news. We evaluated a specific use case in an office environment, taking into considera-
tion the realistic contact patterns of users, as measured in a 4 week period, as well as users’
preferences, as obtained from questionnaires. We then evaluated how data diffusion varies, de-
pending on these two system design dimensions. Results show how the design of such systems
is a complex, non-trivial tasks and needs to account for many factors, both technological and
user-defined, in order for the system to support the desired amount of traffic, and for users the
effectively receive the content they are interested in. Future work will be devoted to the imple-
mentation and evaluation of the entire system architecture, with the aim of understanding the
broader social impacts of the everyday use of such a system.
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Programming and Validation Techniques for
Reliable Goal-driven Autonomic Software

Damian Dechev, Nicolas Rouquette, Peter Pirkelbauer and Bjarne Stroustrup

Abstract Future space missions such as the Mars Science Laboratory demand the engineering
of some of the most complex man-rated autonomous software systems. According to some
recent estimates, the certification cost for mission-critical software exceeds its development
cost. The current process-oriented methodologies do not reach the level of detail of providing
guidelines for the development and validation of concurrent software. Time and concurrency
are the most critical notions in an autonomous space system. In this work we present the design
and implementation of a first concurrency and time centered framework for verification and
semantic parallelization of real-time C++ within the JPL Mission Data System Framework
(MDS). The end goal of the industrial project that motivated our work is to provide certifica-
tion artifacts and accelerated testing of the complex software interactions in autonomous flight
systems. As a case study we demonstrate the verification and semantic parallelization of the
MDS Goal Networks.

1 Introduction

In this work we describe the design, implementation, and application of a first concurrency
and time centered framework for verification and semantic parallelization of real-time C++
within the JPL Mission Data System Framework (MDS). MDS provides an experimental goal-
and state- based platform for testing and development of autonomous real-time flight applica-
tions [22]. The end goal of the industrial project that motivated our work is to provide certi-
fication artifacts and accelerated testing of the complex software interactions in autonomous
flight systems. The process of software certification establishes the level of confidence in a
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software system in the context of its functional and safety requirements. A software certifi-
cate contains the evidence required for the system’s independent assessment by an authority
having minimal knowledge and trust in the technology and tools employed [6]. Providing
such certification evidence may require the application of a number of software development,
analysis, verification, and validation techniques [20]. The dominant paradigms for software
development, assurance, and management at NASA rely on the principle "test-what-you-fly
and fly-what-you-test". This methodology had been applied in a large number of robotic space
missions at the Jet Propulsion Laboratory. For such missions, it has proven suitable in achiev-
ing adherence to some of the most stringent standards of man-rated certification such as the
DO-178B [25], the Federal Aviation Administration (FAA) software standard. Its Level A cer-
tification requirements demand 100% coverage of all high and low level assurance policies.
Some future space exploration projects such as the Mars Science Laboratory (MSL), Project
Constellation, and the development of the Crew Launch Vehicle (CLV) and the Crew Explo-
ration Vehicle (CEV) suggest the engineering of some of the most complex man-rated software
systems. As stated in the Columbia Accident Investigation Board Report [3], the inability to
thoroughly apply the required certification protocols had been determined to be a contributing
factor to the loss of STS-107, Space Shuttle Columbia.
Schumann and Visser’s discussion in [26] suggests that the current certification methodologies
are prohibitively expensive for systems of such complexity. A detailed analysis by Lowry [20]
indicates that at the present moment the certification cost of mission-critical space software
exceeds its development cost. The challenges of certifying and re-certifying avionics soft-
ware has led NASA to initiate a number of advanced experimental software development and
testing platforms, such as the Mission Data System (MDS) [22], as well as a number of pro-
gram synthesis, modeling, analysis, and verification techniques and tools, such as The Java-
PathFinder [2], the CLARAty project [29], Project Golden Gate [10], The New Millennium
Architecture Prototype (NewMAAP) [9]. The high cost and demands of man-rated certifica-
tion have motivated the experimental development of several accelerated testing platforms [1].
A great number of the experimental faster-than-real-time flight software simulators require the
parallelization of previously sequential real-time algorithms. In this work we present the de-
sign and implementation of a first concurrency and time centered framework for verification
and semantic parallelization of real-time C++ within the JPL Mission Data System Frame-
work. Our notion of semantic parallelization implies the thread-safe concurrent execution of
system algorithms that utilize shared data, based on the application’s semantics and invariants.
As a practical industrial-scale application, we demonstrate the parallelization and verification
of the MDS’ Goal Networks, a critical component of the JPL’s Mission Data System.

2 Challenges for Mission Critical Autonomous Software

In [21] Perrow studies the risk factors in the modern high technology systems. His work iden-
tifies two significant sources of complexity in modern systems: interactions and coupling. The
systems most prone to accidents are those with complex interactions and tight coupling. With
the increase of the size of a system, the number of functions it has to serve, as well as its inter-
dependence with other systems, its interactions become more incomprehensible to human and
machine analysis and this can cause unexpected and anomalous behavior. Tight coupling is
defined by the presence of time-dependent processes, strict resource constraints, and little or
no possible variance in the execution sequence. Perrow classifies space missions in the riski-
est category since both hazard factors are present. In this work, we argue that the notions of
concurrency and time are the most critical elements in the design and implementation of an
embedded autonomous space system. According to a study on concurrent models of compu-
tation for embedded software by Lee and Neuendorffer [18], the major contributing factors to
the development and design complexity of such systems are the underlying sequential mem-
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ory models and the lack of first class representation of the notions of time and concurrency in
the applied programming languages.

2.1 Parallelism and Complexity

The most commonly applied technique for controlling the interactions of concurrent processes
is the use of mutual exclusion locks. A mutual exclusion lock guarantees thread-safety of a
concurrent object by blocking all contending threads trying to access it except the one holding
the lock. In scenarios of high contention on the shared data, such an approach can seriously
affect the performance of the system and significantly diminish its parallelism. For the majority
of applications, the problem with locks is one of difficulty of providing correctness more
than one of performance. The application of mutually exclusive locks poses significant safety
hazards and incurs high complexity in the testing and validation of mission-critical software.
Mutual exclusion locks can be optimized in some scenarios by utilizing fine-grained locks
[15] or context-switching. Often due to the resource limitations of flight-qualified hardware,
optimized lock mechanisms are not a desirable alternative [20]. Even for efficient locks, the
interdependence of processes implied by the use of locks, introduces the dangers of deadlock,
livelock, and priority inversion. The incorrect application of locks is hard to determine with
the traditional testing procedures and a program can be deployed and used for a long period
of time before the flaws can become evident and eventually cause anomalous behavior.

2.1.1 Parallel Programming without Locks

To achieve higher safety and enhance the performance of our implementation, we consider
the application of lock-free synchronization. As defined by Herlihy [14], a concurrent object
is non-blocking (lock-free) if it guarantees that some process in the system will make progress
in a finite amount of steps. Non-blocking algorithms do not apply mutually exclusive locks
and instead rely on a set of atomic primitives supported by the hardware architecture. The
most ubiquitous and versatile data structure in the ISO C++ Standard Template Library [27]
is vector, offering a combination of dynamic memory management and constant-time random
access. In our framework for verification and semantic parallelization of real-time C++ we
utilize the design of the first lock-free design and implementation of a dynamically-resizable
array in ISO C++ (Section 5). It provides linearizable operations, disjoin-access parallelism
for random access reads and writes, lock-free memory allocation and management, and fast
execution.

2.2 Motivation and Contributions

As discussed by Lowry [20], in July 1997 The Mars Pathfinder mission experienced a num-
ber of anomalous system resets that caused an operational delay and loss of scientific data.
The follow-up study identified the presence of a priority inversion problem caused by the
low-priority meteorological process blocking the high-priority bus management process. It
has been determined that it would have been impossible to detect the problem with the black
box testing applied at the time to derive the certification artifacts. A more appropriate priority
inversion inheritance algorithm had been ignored due to its frequency of execution, the real-
time requirements imposed, and its high cost incurred on the slower flight-qualified computer
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hardware. The subtle interactions in the concurrent applications of the modern aerospace au-
tonomous software are of critical importance to the system’s safety and operation. Despite the
challenges in debugging and verification of the system’s concurrent components, the existing
certification process [25] does not provide guidelines at the level of detail reaching the devel-
opment, application, and testing of concurrent programs. This is largely due to the process-
oriented nature of the current certification protocols and the complexity and high level of
specialization of the aerospace autonomous embedded applications. In the near future, NASA
plans to deploy a number of diverse vehicles, habitats, and supporting facilities for its im-
minent missions to the Moon, Mars and beyond. The large array of complex tasks that these
systems would have to perform implies their high level of autonomy. In [22] Rasmussen et
al. suggest that the challenges for these systems’ control is one of the most demanding tasks
facing NASA’s Exploration Systems Mission Directorate. Some of the most significant chal-
lenges that the authors identify are managing a large number of tightly-coupled components,
performing operations in uncertain remote environments, enabling the agents to respond and
recover from anomalies, guaranteeing the system’s correctness and reliability, and ensuring ef-
fective communication across the system’s components. In the rest of the paper we describe the
definition, design, and implementation of a first concurrency and time centered framework for
verification and semantic parallelization of autonomous flight software within the JPL’s MDS
Framework. We integrate a nonblocking vector in our parallel implementation of the Mission
Data System’s Temporal Constraint Network Library (TCN) in order to achieve higher thread
safety and boost the performance of the MDS Goal Networks component. We demonstrate
how to specify, model, and formally verify the TCN algorithms and their semantic invariants.
Based on our formal models and the application’s semantics, we derive a technique for au-
tomatic and semantic parallelization of the TCN library’s constraint propagation algorithm.

3 Temporal Constraint Networks

A Temporal Constraint Network (TCN) defines the goal-oriented operation of a control system
in the context of a system under control. The Temporal Constraint Networks (TCN) applica-
tion is at the core of the Jet Propulsion Laboratory’s Mission Data System (MDS) [22] state-
based and goal-oriented unified architecture for testing and development of mission software.
The framework’s state- and model-based methodology and its associated systems engineering
processes and development tools have been successfully applied on a number of test applica-
tions including the physical rovers Rocky 7 and Rocky 8 and a simulated Entry, Descent, and
Landing (EDL) component for the Mars Science Laboratory mission. A TCN consists of a
set of temporal constraints (TCs) and a set of time points (TPs). In this model of goal-driven
operation, a time point is defined as an interval of time when the configuration of the system is
expected to satisfy a property predicate. The width of the interval corresponds to the temporal
uncertainty inherent in the satisfaction of the predicate. Similarly, temporal constraints have an
associated interval of time corresponding to the acceptable bounds on the interactions between
the control system and the system under control during the performance of a specific activity.
A TCN graph topology represents a snapshot at a given time of the known set of activities the
control system has performed so far, is currently engaged in, and will be performing in the
near future up to the horizon of the elaborated plan initially created as a solution for a set of
goals. The topology of a temporal constraint network must satisfy a number of invariants.

(a) A TCN is a directed acyclic graph where the edges represent the set of all time points
(S tps) and the vertices the set of all temporal constraints (S tcs)

(b) For each time point T Pi ∈ S tps, there is a set of temporal constraints that are immediate
successors (S succi ) of T Pi and a set, S predi , consisting of all of T Pi’s immediate prede-
cessors
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(c) Each temporal constraint TC j ∈ S tcs has exactly one successor T Psucc j and one prede-
cessor T Ppred j

(d) For each pair {T Pi,TC j}, where T Pi ≡ TCsucc j , TC j ∈ S predi must hold. The reciprocal
invariant must also be valid, namely for each pair of {T Pi ,TC j} such that T Pi ≡ TCpred j ,
TC j ∈ S succi

(e) The firing window of a time point T Pi ∈ S tps is represented by the pair of time instances
{T Pmini ,T Pmaxi }. Assuming that the current moment of time is represented by Tnow, then
T Pmini ≤ Tnow ≤ T Pmaxi , for every T Pi ∈ S tps.

General-purpose programming languages lack the capabilities to formally specify and check
domain-specific design constraints. Direct representation and verification of the TCN invari-
ants in the implementation source code would result in a slow and cumbersome solution.
However, any implementation (in C++, Java or another programming language) must operate
under the assumptions that the basic TCN invariants are satisfied. Thus, prior to implement-
ing a solution to the TCN constraint propagation problem, it is necessary to guarantee the
correctness and consistency of the topology of the goal network.

4 Verification and Automatic Parallelization Framework

In this section we describe the design, implementation, and practical application of our frame-
work for verification and semantic parallelization of real-time C++ within JPL’s MDS Frame-
work (Figure 1). The input to the framework is the MDS mission planning and execution
module that is based on the definition of temporal constraint networks. At the core of the most
recent implementations at JPL of this critical module is an optimized iterative algorithm for
the real-time propagation of temporal constraints, developed and described by Lou in [19].
Constraint propagation poses performance challenges and speed bottlenecks due to the algo-
rithm’s frequent execution and the necessary real-time update of the goal network’s topology.
The end goal of our work is, given the implementation of the optimized iterative propagation
scheme and the topology of a particular goal network, to establish the correctness of the core
TCN semantic invariants (see Section 3) and automatically derive an implementation that
can be executed concurrently on one of the JPL’s experimental testbeds for accelerated test-
ing [1]. Our approach for achieving concurrent execution is based on the idea of identifying
Time Phases within a goal network, which allow the semantic parallelization of the constraint
propagation algorithm. In this work, we define semantic parallelization as the thread-safe
concurrent execution of an algorithm (whose operation is dependent on shared data), derived
from the application’s semantics and invariants. In the following sections we describe how we
reach our goal of verification and semantic parallelization of the mission planning and control
module by constructing and executing a formal verification model in Alloy [16] that repre-
sents the implementation’s core semantics and functionality. We refine a formal modeling and
analysis methodology, initially suggested by Rouquette [24], that helps us analyze the logical
properties of the goal network model and automatically derive a meta-model for our parallel
solution.

4.1 The Problem of TCN Constraint Propagation

A classic solution to the problem of constraint propagation in TCN is the direct application of
Floyd-Warshall’s all-pairs-shortest-path algorithm [4], offering a complexity of O(N3), where
N is the number of time points in the TCN topology. Since, by definition, the goal of the TCN
propagation algorithm is to compute the real-time values of the network’s temporal constraints,
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Fig. 1 A Framework for Verification and Semantic Parallelization

the algorithm is frequently executed and, given the massive scale of a real world goal network,
can cause significant bottleneck for the overall system’s performance. In [19], Lou describes
an innovative and effective TCN propagation scheme with a complexity close to linear. Lou’s
TCN propagation is based on the concept of alternating forward and backward propagation
passes. A forward pass updates the time interval at each time point by considering only its
incoming temporal constraints (Algorithm 9). Similarly, a backward pass recomputes the time
windows at each time point by considering only its outgoing temporal constraints (Algorithm
10). The scheme utilizes a shared container, named a propagation queue, to keep track of
all time points whose successor time points’ windows are about to be updated next (during
a forward pass) and all time points whose predecessor time points’ windows are about to be
updated next (during a backward pass). A forward pass begins by selecting all time points
with no predecessors and inserts them into the propagation queue. A backward pass begins by
selecting all time points with no successors and inserts them into the propagation queue. Each
iteration is carried out until:

(a) An iteration completes without updating any temporal constraints (thus indicating that
there are no more updates to be performed during the pass). In this case, the TCN topol-
ogy is considered to be temporally consistent.

(b) The iteration has stumbled upon a time window of negative value and the algorithm
terminates with the outcome of having a temporally inconsistent network.

As stated by Lou [19], prior to the execution of the optimized propagation scheme, it is crit-
ical to guarantee the validity of the core TCN invariants for the topology of the particular
goal network. For example, the propagation scheme operates under the assumption that the
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goal network graph is cycle free. Should there be cycles, the propagation would enter into an
endless loop.

Algorithm 9: Forward Pass. Arguments: a reference to the time point about to
be updated (tp) and a reference to the global data structure recording the state
updates (vstate)

mintmp← tp.min;1

maxtmp← tp.max;2

for j = 0 to tp.preds_size do3

mintmp← std::max(mintmp, tp.preds[ j].pred.min+ tp.preds[ j].min);4

maxtmp← std::min(maxtmp, tp.preds[ j].pred.max+ tp.preds[ j].max);5

end6

if tp.min! = mintmp then7

ASSERT( tp.min < mintmp );8

tp.min← mintmp;9

vstate.aIncr(vstate.count);10

/* atomically increment the state vector’s counter */

end11

if tp.max! = maxtmp then12

ASSERT( tp.max > maxtmp );13

tp.max← maxtmp;14

vstate.aIncr(vstate.count);15

/* atomically increment the state vector’s counter */

end16

return !(mintmp > maxtmp);17
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Algorithm 10: Backward Pass. Arguments: a reference to the time point about
to be updated (tp) and a reference to the global data structure recording the state
updates (vstate)

mintmp← tp.min;1

maxtmp← tp.max;2

for j = 0 to tp.succs_size do3

mintmp← std::max(mintmp, tp.succs[ j].succ.min− tp.succs[ j].max);4

maxtmp← std::min(maxtmp, tp.succs[ j].succ.max− tp.succs[ j].min);5

end6

if tp.min! = mintmp then7

ASSERT( tp.min < mintmp );8

tp.min← mintmp;9

vstate.aIncr(vstate.count);10

/* atomically increment the state vector’s counter */

end11

if tp.max! = maxtmp then12

ASSERT( tp.max > maxtmp );13

tp.max← maxtmp;14

vstate.aIncr(vstate.count);15

/* atomically increment the state vector’s counter */

end16

return !(mintmp > maxtmp);17

4.2 Modeling, Formal Verification, and Automatic
Parallelization

Alloy [16] is a lightweight formal specification and verification tool for the automated analysis
of user-specified invariants on complete or partial models. The Alloy Analyzer is implemented
as a front-end, performing the role of a model-finder, to a boolean SAT-solver. Formal verifi-
cation and modeling of JPL’s flight software has been previously demonstrated to be effective
and successful by Holzmann [12]. We use the Alloy specification language [16] to formally
represent and check the semantics of the temporal constraint networks library (Algorithm 11)
and its main invariants (Algorithm 12). In our C++ goal networks implementation we have
applied generic programming techniques and concepts [23], so that we can maintain a higher
level of expressiveness. As a result we have achieved a significant similarity in the way the
main TCN notions and invariants are expressed in our actual implementation and the Al-
loy verification models. In the future, we intend to utilize a static analysis tool such as The
Pivot [28] in order to automate this transition (this is the last non-automated component of the
presented framework).
In addition, we utilize the Alloy Analyzer to implement our semantic parallelization approach.
Our method for semantic parallelization of the goal network is based on the observation that in
a topology we can identify groups of time points that would allow the concurrent execution of
the propagation passes. A possible criterion for identifying such groups would be to identify
the time points in a topology that allow disjoin-access to the shared data. Given the method
used to compute the time window [T Pmini ,T Pmaxi ] for each T Pi ∈ S tps, we have observed that
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the functionally-independent time points are the time points that are equidistant (with respect
to the longest path) from the root of the graph. Thus, in our methodology, we define a Time
Phase T phi as the set of the time points (S T phi ) in a topology that are equidistant, with respect
to the longest path, from the root of the graph. In such a way, by definition, the computations
of [T Pmina ,T Pmaxa ] and [T Pminb ,T Pmaxb ] for every pair of {T Pa,T Pb}, such that T Pa ∈ S T phi

and T Pb ∈ S T phi , are mutually independent and allow disjoin-access to the shared data. With
the support of Alloy Analyzer we define and identify the time phases in a goal network graph
(Algorithm 13 and Algorithm 14). Figure 2 provides an example of a goal network containing
15 time points and 6 time phases.

Algorithm 11: Definition of the notions of Temporal Constraint and Time Point

/* declaration of the Temporal Constraint signature */

sig TC { tc_pred: one TP, tc_succ: one TP} ;1

/* declaration of the Time Point signature */

sig TP { tp_preds: set TC, tp_succs: set TC} ;2

Algorithm 12: Main TCN invariants expressed in the Alloy Specification Lan-
guage

all tc:TC | tc in tc.tc_pred.tp_succs;1

all tc:TC | tc in tc.tc_succ.tp_preds;2

all tc:TP | some tp.tp_preds⇒ tp.tp_preds.tc_succ = tp;3

all tc:TP | some tp.tp_succs⇒ tp.tp_succs.tc_pred = tp;4

no ∧(tc_pred.tp_preds) & iden;5

no ∧(tc_succ.tp_succs) & iden;6

/* last two lines check for cycles */

Algorithm 13: Definition of the notions of Time Phase and Temporal Con-
straint Network (with time phases)

/* declaration of the Time Phase signature */

sig Tph{events: set TP, next: one Tph, tcn: one TCN};1

/* declaration of the TCN signature */

sig TCN{epoch : TP, tps: set TP, tcs: set TC, init: one Tph};2

Algorithm 14: Main Time Phase invariants expressed in the Alloy Specification
Language

forall p:Tph do1

p.events.tp_succs.tc_succ in p.∧next.events;2

p.events.tp_preds.tc_pred in p.∧∼next.events;3

p in p.tcn.init.*next;4

p.events in p.tcn.tps;5

no p.events & p.∧(next).events;6

end7

Having identified the time phases in our temporal constraint network specification in Alloy,
the aim of the rest of our tool-chain is to automatically derive the C++ implementation of the
parallel solution through a number of code transformation techniques. Following Rouquette’s
methodology [24] for model transformation through the application of the Object Constraint
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Language (OCL) and the Eclipse Modeling Framework (EMF), we are able to automatically
derive an intermediary XML and XSD representations of the graph’s topology and the TCN
semantic notions, respectively. We apply an XML parser (XercesC) and a CodeSynthesis XSD
transformation tool to deliver the C++ implementation of the goal network and our parallel
propagation method.
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Fig. 2 A Parallel TCN Topology with 15 Time Points and 6 Time Phases

To achieve higher safety and better performance, our parallel propagation scheme employs a
number of innovative multi-processor synchronization techniques. In our implementation we
have encountered and addressed the following challenges:

(1) Achieving low-overhead parallelization. Our experiments indicated that the wide-spread
Pthreads are computationally expensive when applied to the parallel propagation algo-
rithm. Given the frequent real-time changes in the graph topology, employing a thread
per iteration for the computations of each time phase comes at a prohibitive cost. To avoid
this problem, we have incorporated in our design the application of the Intel tasks from
the Threading Building Blocks Library [15]. Our experiments indicate that the Intel tasks
provide low-cost overhead when applied in the concurrent execution of the forward and
backward passes of the propagation scheme.

(2) Allowing fast and safe access to the shared data. The parallel algorithm requires the
safe and efficient concurrent synchronization of its shared data: the propagation queue
and the vector containing control data (reflecting the updates during an iteration). By
the definition of our algorithm, the propagation queue is synchronized by allowing only
disjoint-access writes. While the access to the shared vector is less frequent, its con-
current synchronization is more challenging since we do not have a guarantee that the
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concurrent writes would be disjoint. The application of mutual exclusion locks is a pos-
sible but likely an ineffective solution due to the risks of deadlock, livelock, and priority
inversion. Moreover, the interdependency of processes implied by the use of locks dimin-
ishes the parallelism of a concurrent system. A lock-free object guarantees that within a
set of contending processes, there is at least one process that will make progress within a
finite number of steps. We have employed the implementation of the lock-free vector de-
scribed in Section 5 in order to meet our goals for thread-safe and effective non-blocking
synchronization. The lock-free vector provides the functionality of the popular STL C++
vector as well as linearizable and safe operations with complexity of O(1) and fast exe-
cution (outperforming the STL vector protected by a mutex by a factor of 10 or more).

A number of graph properties, in a particular TCN topology, impact the application and per-
formance of the parallel propagation scheme. We expect better performance (with respect to
the sequential propagation scheme) when:

(1) The computational load per time point is high. This is the case of a real-world massive-
scale goal network. For instance, instructing the Mars Science Laboratory to au-
tonomously find its way in a Martian crater, probe the soil, capture images, and com-
municate to Mission Control will result in a goal network containing tens or hundreds
of thousands of time points. In a small experimental graph topology with a low com-
putational cost per time point (such as a few arithmetic operations), a single processor
computation will perform best (when we take into account the parallelization overhead).

(2) Time phases with large number of time points: a topology implying a sequential ordering
of the planned events will not benefit from a parallel propagation scheme. The paral-
lel propagation algorithm is beneficial to goal networks representing a large number of
highly interactive concurrent system processes.

5 Nonblocking Synchronization

The most common technique for controlling the interactions of concurrent processes is the use
of mutual exclusion locks. A mutual exclusion lock guarantees thread-safety of a concurrent
object by blocking all contending threads trying to access it except the one holding the lock.
In scenarios of high contention on the shared data, such an approach can seriously affect
the performance of the system and significantly diminish its parallelism. For the majority of
applications, the problem with locks is one of difficulty of providing correctness more than one
of performance. The application of mutually exclusive locks poses significant safety hazards
and incurs high complexity in the testing and validation of mission-critical software. Mutual
exclusion locks can be optimized in some scenarios by utilizing fine-grained locks [15]. Often
due to the resource limitations of flight-qualified hardware, optimized lock mechanisms are not
a desirable alternative [20]. Even for efficient locks, the interdependence of processes implied
by the use of locks, introduces the dangers of deadlock, livelock, and priority inversion.The
incorrect application of locks is hard to determine with the traditional testing procedures and
a program can be deployed and used for a long period of time before the flaws can become
evident and eventually cause anomalous behavior.
To achieve reliability, avoid the dangers of priority inversion, deadlock, and livelock, and at
the same time gain performance, we rely on the notion of lock-free synchronization. Lock-
free systems typically utilize CAS in order to implement a an optimistic speculation on the
shared data. A contending process attempts to make progress by applying one or more writes
on a local copy of the shared data. Afterwards, the process attempts to swap (CAS) the global
data with its updated copy. Such an approach guarantees that from within a set of contend-
ing processes, there is at least one that succeeds within a finite number of steps. The system
is non-blocking at the expense of some extra work performed by the contending processes.
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Linearizability is an important correctness condition for concurrent nonblocking objects: a
concurrent operation is linearizable if it appears to execute instantaneously in a given point
of time between the time t1 of its invocation and the time t2 of its completion. The consis-
tency model implied by the linearizability requirements is stronger than the widely applied
Lamport’s sequential consistency model [17]. According to Lamport’s definition, sequential
consistency requires that the results of a concurrent execution are equivalent to the results
yielded by some sequential execution (given the fact that the operations performed by each
individual processor appear in the sequential history in the order as defined by the program).
Our vector’s nonblocking algorithms are directly derived from the lock-free operations of the
first implementation of a lock-free dynamically resizable array presented by Dechev at el.
in [5]. The operations of our vector are lock-free and linearizable and in addition they provide
disjoin-access parallelism for random access reads and writes and fast execution (outperform-
ing the STL vector protected by a mutex by a factor of 10 or more [5]).

5.1 Practical Lock-Free Programming Techniques

The practical implementation of a hand-crafted lock-free container is notoriously difficult. A
nonblocking container’s design suggests the update (in a linearizable fashion) of several mem-
ory locations. The use of a double-compare-and-swap primitive (DCAS) has been suggest by
Detlefs et al. in [7], however such complex atomic operations are rarely supported by the
hardware architecture. Harris et al. propose in [13] a software implementation of a multiple-
compare-and-swap (MCAS) algorithm based on CAS. This software-based MCAS algorithm
has been applied by Fraser in the implementation of a number of lock-free containers such as
binary search trees and skip lists [11]. The cost of the MCAS operation is expensive requiring
2M + 1 CAS instructions. Consequently, the direct application of the MCAS scheme is not
an optimal approach for the design of lock-free algorithms. The vector’s random access, data
locality, and dynamic memory management pose serious challenges for its non-blocking im-
plementation. To illustrate the complexity of a CAS-based design of a dynamically resizable
array, Table 1 provides an analysis of the number of memory locations that need to be update
upon the execution of some of the vector’s basic operations.

Table 1 Vector - Operations

Operations Memory Locations

push_back Vector×Elem→ void 2: element and size
pop_back Vector→ Elem 1: size
reserve Vector× size_t→ Vector n: all elements
read Vector× size_t→ Elem none
write Vector× size_t×Elem→ Vector 1: element
size Vector→ size_t none

5.2 Overview of the Lock-free Operations

In this section we present a brief overview of the most critical vector’s lock-free algorithms
(see [5] for the full set of the nonblocking algorithms). To help tail operations update the
size and the tail of the vector (in a linearizable manner), the design presented in [5] suggests
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the application of of a helper object, named "Write Descriptor (WD)" that announces a
pending tail modifications and allows interrupting threads help the interrupted thread complete
its operations. A pointer to the WD object is stored in the "Descriptor" together with the
container’s size and a reference counter required by the applied memory management scheme
[5]. The approach requires that data types bigger than word size are indirectly stored through
pointers and avoids storage relocation and its synchronization hazards by utilizing a two-level
array. Whenever push_back exceeds the current capacity, a new memory block twice the size
of the previous one is added. The remaining part of this section presents the pseudo-code of the
tail operations (push_back and pop_back) and the random access operations (read and write
at a given location within the vector’s bounds). We use the symbols ^, &, and . to indicate
pointer dereferencing, obtaining an object’s address, and integrated pointer dereferencing and
field access respectively.

Algorithm 15: push_back vector,elem

repeat1

desccurrent ← vector.desc;2

CompleteWrite(vector,desccurrent .pending);3

if vector.memory[bucket] == NULL then4

AllocBucket(vector,bucket);5

end6

writeop← new WriteDesc(At(desccurrent .size),elem,desccurrent.size);7

descnext ← new Descriptor(desccurrent.size+1,writeop);8

until CAS (&vector.desc,desccurrent,descnext) ;9

CompleteWrite(vector,descnext .pending);10

Algorithm 16: Read vector, i

return At(vector, i);1

Algorithm 17: Write vector, i,elem

At(vector, i)^← elem;1

Algorithm 18: pop_back vector

repeat1

desccurrent ← vector.desc;2

CompleteWrite(vector,desccurrent .pending);3

elem← At(vector,desccurrent.size−1);4

descnext ← new Descriptor(desccurrent.size−1,NULL);5

until CAS (&vector.desc,desccurrent,descnext) ;6

return elem;7

Algorithm 19: CompleteWrite vector,writeop

if writeop.pending then1

CAS (At(vector,writeop.pos),writeop.valueold,writeop.valuenew);2

writeop.pending← f alse;3

Push_back (add one element to end) The first step is to complete a pending operation that the
current descriptor might hold. In case that the storage capacity has reached its limit, new mem-
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ory is allocated for the next memory bucket. Then, push_back defines a new "Descriptor"
object and announces the current write operation. Finally, push_back uses CAS to swap the
previous "Descriptor" object with the new one. Should CAS fail, the routine is re-executed.
After succeeding, push_back finishes by writing the element.
Pop_back (remove one element from end) Unlike push_back, pop_back does not utilize
a "Write Descriptor". It completes any pending operation of the current descriptor, reads
the last element, defines a new descriptor, and attempts a CAS on the descriptor object.
Non-bound checking Read and Write at position i The random access read and write do
not utilize the descriptor and their success is independent of the descriptor’s value.

6 Framework Application for Accelerated Testing

The presented design and implementation of our parallel propagation technique enable the
incorporation of the optimized propagation approach described by Lou [19] in an experimen-
tal framework for accelerated testing currently still under development at NASA. Accelerated
testing platforms suggest a paradigm shift in the certification process employed by NASA
from system testing with the actual flight hardware and software to accelerated cost-effective
certification using hardware simulators and distributed software implementations. Such frame-
works aim faster-than-real-time testing and analysis of the complex software interactions in
JPL’s autonomous flight systems. A number of these platforms require automated refactoring
of previously sequential code into modular parallel implementations. Preliminary results re-
ported in academic work [1] as well as experience reports from a number of commercial tools
(such as Simics by Virtutech and ADvantage BEACON by Applied Dynamics International)
suggest the possible speedup of the flight system testing by a significant factor. We have fol-
lowed Rouquette’s methodology [24] that suggests the application of formal modeling and
validation techniques that provide certification evidence for a number of functional dependen-
cies in order to compensate for the added hazards in establishing the fidelity of the simulators.
Due to the incomplete status of the accelerated testing framework as well as the lack of the
actual flight hardware, it is difficult to measure a priori the effect of our parallel propagation
scheme in achieving acceleration (with respect to the execution on the actual flight hardware)
in the process of flight software testing. To gain insight of the possible performance gains
and the algorithm’s behavior we ran performance tests on a conventional Intel IA-32 SMP
machine with two 2.0GHz processor cores with 1GB shared memory and 4 MB L2 shared
cache running the MAC OS 10.5.1 operating system. In our performance analysis we have
measured the execution time in seconds of two versions of our parallel propagation algorithm
(one applying mutually exclusive locks and the other relying on nonblocking synchronization)
and the original sequential scheme presented by Lou [19]. In the experiments (Figure 3), we
have generated a number of TCN graph topologies (each consisting of 4 to 8 Time Phases),
in a manner similar to the pseudo-random graph generation methodology described in [8]. In
the presented results on Figure 3 the x−axis represents the average measured execution time
(in seconds) of each propagation scheme and the y−axis represents the number of time points
in the exponentially increasing graph size (starting with a graph of 20000 TPs and reaching
a TCN having 160000 TPs). In the experimental setup we observed that the parallel propa-
gation algorithm offers effective execution and a considerable speedup in all scenarios on our
dual-core platform. We measured performance acceleration reaching 28% in the case of the
nonblocking implementation and 20% for our algorithm relying on mutually exclusive locks.
Lock-free algorithms deliver significant speedup in applications utilizing shared data under
high contention [5]. In a scenario like our parallel TCN propagation scheme with medium
or low contention on the shared data, besides safety and prevention of priority inversion and
deadlock, a lock-free implementation can guarantee better scalability. As our experimental re-
sults suggest, the gains from the lock-fee implementation gradually progress and we observe
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Fig. 3 Performance Analysis. x-axis represents the number of TPs in each experimental TCN
topology, y-axis represents the execution time in seconds of each of the three propagation algo-
rithms

better scalability with respect to the blocking propagation scheme. Based on the experimental
results, we expect that the integration of our parallel propagation algorithm in the acceler-
ated testing framework (consisting of several dozen processing units) will deliver significant
benefits in reaching cost-effective and reliable flight software certification of control modules
based on massive real-world goal networks.

7 Conclusion

The notions of time and concurrency are of critical importance for the design and develop-
ment of autonomous space systems. The current certification methodologies do not reach the
level of detail of providing guidelines for the development and validation of concurrent and
real-time software. The increasing number of complex interactions and tight coupling of the
future autonomous space systems pose significant challenges for their development and man-
rated certification. A number of platforms for accelerated testing suggest a paradigm shift
by applying a combination of modeling and verification methods, code generation tools, and
software parallelization for establishing a cost-effective and reliable certification process. In
the light of the challenges posed by the design and development of these highly experimental
approaches, we presented in this work a first time- and concurrency-centered framework for
validation and semantic parallelization of real-time C++ within JPL’s MDS Framework. We
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demonstrated the application of our framework in the validation of the semantic invariants
of the Temporal Constraint Network Library. Temporal constraint networks are at the core
of the mission planning and control architecture of the Mission Data System framework. In
addition, we presented an approach for automatic semantic parallelization of the propagation
scheme establishing the consistency of the temporal constraints in a goal network. Our parallel
propagation scheme is based on the identification of time phases within a goal network and is
implemented through the application of model transformation and formal analysis techniques
to the model specifications of the TCN semantics. We have relied on innovative lock-free
synchronization techniques to achieve better performance and higher safety of our parallel
implementation. Our preliminary tests indicate that our parallel propagation approach, upon
integration in the accelerated testing framework, can support cost-effective and reliable flight
software certification of control modules based on massive real-world goal networks. In our
future work we plan to focus on developing a component for automatic derivation of the
model specification directly from implementation source code. This can be accomplished by
utilizing the high-level internal program representation and the analysis tools provided by The
Pivot [28], a framework for static analysis and transformations in C++.
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1 Introduction

In autonomic communication, a system element learns, in every moment of its existence, about
other elements and the world where it belongs through sensing and perception. In the human-
machine aspect of autonomic communication, the system performs services autonomously. At
the same time, it adjusts the behaviour of its services based on its learned perception of what
the user might request, either implicitly or explicitly. We apply this principle in a specific ap-
plication domain - the pervasive multimodal multimedia (MM) computing system. In such a
system, various forms of modality for data input and output exist. Also, various media devices
may be selected to support these modalities. Multimodality is possible and can be imple-
mented if the mechanism for data input and output exists. Multimodality is essential because
it provides for increased usability and accessibility to users, including those with handicaps.
With multimodality, the strength or weakness of every media device is decided based on its
suitability to a given context1. For example, to a user in a moving car, an electronic pen and
speech are more appropriate input media than that of keyboard or a mouse. Multimodality
can be further enhanced if more media devices (other than the traditional mouse-keyboard-
screen combination) and their supporting software are made available. Offering basic services
using multimodality (e.g. a multimodal banking services) is not only socially wise but also
contributes to the creation of a more humane, inclusive society because the handicapped are
given participation in using the new technology.
Slowly, pervasive computing, also known as ubiquitous computing [1] [2] [3], which advo-
cates anytime, anywhere computing is no longer a luxury but is becoming a way of life. For
instance, healthcare [4] is adopting it. Soon, our personal and computing information would
“follow" us and become accessible wherever and whenever we want them. This promotes in-
creased productivity as we can continue working on an interrupted task as we please. This has
been made possible because the infrastructures for wired, wireless and mobile computing and
communications [5] [6] [7] do already exist.
Multimodality also involves the fusion of two distinct data or modalities. For instance, the fu-
sion of two or more temporal data, such as data from a mouse and speech as in simultaneously
clicking the mouse and uttering “Put that there" [8] [9], is full of promise, further advancing
multimodality. The fusion process, however, is still static - that is, the media and modality in
consideration are pre-defined rather than dynamically selected. Also, the fusion process is not
adaptive to the changes occurring in the environment (e.g. as in environment becomes noisy);
in this case, over time, the effectiveness of a modality (e.g. vocal input) in the fusion pro-
cess becomes unreliable. In general, it is unwise to predefine a chosen modality. A modality -
whatever it may be - should be chosen only based on its suitability to a given context.
Context changes over time. Hence, context should not be viewed as fixed nor should it be
pre-defined. Instead, it should be defined dynamically based on the needs and requirement
of a system. Our approach, hence, is to define context by considering one context parameter
at a time; such parameter may be added, deleted or modified as needed. This leads us to an
incremental context where context becomes an attribute that suits the needs and requirements
of a system. Context parameters may or may not be based on sensors data. For sensor-based
context, we propose the adoption of virtual machine (VM). In this approach, the real-time
interpretation of a context parameter is based on sampled data from sensor(s). The design of
our layered VM for incremental user context is robust that it can be adopted by almost any
system that takes in context that is based on sensors.
Machine learning (ML) [10] involves the acquisition of knowledge through training or past
experiences; this knowledge, when adopted, is ought to improve the system’s performance.
ML is the heart of this work. Our system’s ML component is given:

1 Here, the term context signifies a generic meaning. Later, context will evolve to become interac-
tion context. Unless explicitly specified, context and interaction context may be used interchange-
ably.



AC in pervarsive multimedia 253

1. Functions that (i) define the relationship between context and multimodality, and (ii)
define the relationships between modality and media group, and between media group
and media devices,

2. Rules and algorithms that (i) determines the media device(s) that replace the faulty one(s),
and (ii) re-adapts its knowledge database (KD) when a new media device is introduced
into the system. The acquired knowledge is then used to optimize configurations and for
the system to exhibit fault-tolerance characteristics,

3. Case-based reasoning and supervised learning to find the appropriate solution/adaptation
to a new situation, in consultation with the system’s stored knowledge.

The rest of this paper is structured as follows: Section 2 surveys related works and highlights
the novelty of this work. Section 3 essays on the technical challenges and our approach to ad-
dress them. Section 4 is all about context - its definition, representation, storage and dissemi-
nation. This is essential since adaptation to context is an important aspect of an autonomic and
pervasive system . Section 5 is about modalities, media devices and their context suitability.
Section 6 is about our system’s knowledge acquisition and the use of such knowledge to adapt
to a given interaction context (IC). The paper is concluded in Section 7.

2 Related Works

Recent research works on multimodality include the application on interface for wireless user
interface [11], the static user interface [12], text-to-speech synthesis [13], and a ubiquitous sys-
tem for visually-challenged user [14]. Related research works that empasize on multimodality
data fusion are the combined speech and pen inputs [15], the combined speech and gestures
inputs [12] and the combined speech and lips movements [16]. These are a few proofs that
multimodality is possible, doable, and feasible. When compared with them, our work, how-
ever, is one step further: it provides the infrastructure in which those above-mentioned works
can be invoked in, anytime and anywhere.
Context is a vital consideration in determining what modalities are appropriate for the user. In-
deed, “context is the key" [17]. The evolution of context definitions, including Rey’s definition
for context-aware computing in [18] [19] and that of contextor [20], is described in Section 4.
The federation of context-aware perceptions [17], and context-awareness in wearable comput-
ing [18] are some context-aware systems. Our contribution to the domain, however, is we take
user’s context and relate it to multimodality. While contextor is an interactive context-sensitive
system, it does not, however, provide the mechanism to realize an ever-changing context. Our
layered VM approach is more adaptable to an ever-changing environment. It has been proven
that a layered VM/object-oriented approach and design is an effective paradigm, as in Hughes
Aircraft Company [21].
The user profile constitutes an integral part of user’s context. Sample works on user profile
analysis include [22] and [23]. Our work, however, differs because we consider user handicap
as part of a user’s profile. This allows our work to cover a much wider spectrum of users.
Finally, our objective is to assemble all these beneficial concepts to form a package for ubiq-
uitous computing consumption. In Project Aura [24], the Prism model shows a user’s moving
aura (profile and task). In comparison, ours include not only the user’s ubiquitous profile and
task but also an acquired ML knowledge that goes with a mobile user. Such knowledge is used
in the detection of changes in IC and resources, and the system’s adaptation to these changes
by selecting the appropriate modalities and media devices.
This work is intended to contribute to designing paradigms that explores the challenges in
technologies that realize that vision wherein devices and applications seamlessly intercon-
nect, intelligently cooperate and autonomously manage themselves, also known as autonomic
communication.
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3 Contribution and Novel Approaches

Our vision is to enhance the use of multimodality through an infrastructure that realizes perva-
sive MM computing - intelligent, fault-tolerant, rich in media devices, and adaptive to a given
context and acting on behalf of the user. To realize this, a system solution must address the
key requirements given below.
Requirement 1: Determine the suitability of various modalities to a given context. First, it
is necessary to classify modalities, and afterwards determine what types of modalities will
allow a user to input data and receive output based on a given instance of IC. So, what are the
types of modality? What is the relationship between modalities and context?

Proposed Solution: Modality can be classified into two groups: the input modality and the
output modality. Within the input modality, there exists the visual input, the vocal input, and
the manual input. Similarly, within the output modality, the options are visual output, vocal
output and manual output. There must be a suitable input modality and also a suitable output
modality for multimodality to be implemented. Given a specific IC, a modality has some de-
gree of suitability to it. Such suitability is not just binary (that is, very suitable or not suitable
at all) but also includes something in between - medium and low suitabilities. Indeed, our ap-
proach takes in a wider spectrum of modalities’ suitability. Numerical value for suitability are
assigned as follows: High suitability = 100%, Inappropriate = 0. Medium and low suitabili-
ties should have value in between this range. To relate modality to the overall IC, then each
type of modality would get a suitability score for each individual context parameter. The final
suitability to the overall IC is the normalized product of suitability scores of the individual IC
parameters.
Requirement 2: Provide a relationship between modality and the media devices that are
invoked to implement modality. Given that various media devices do exist, then provide
a classification of media where all devices could fit. What should be a generic media
classification so that all media devices - those that we know at present and also those that
might come in the future - would fit in? What would be the basis of such classification? In
which category should, for example, a mouse belongs? What about the eye gaze, etc.?
Proposed Solution: Media devices may be grouped in the same way as modalities. Our
approach on media’s classification is based on man’s natural language processing; man
transmits and receives information through his five senses (e.g. hearing, tasting, etc.) and
voice. Therefore, the categorization of media needs to be based on the body part that uses the
media device to generate data input, as well as the body part that uses the data generated by
the media device. For example, a mouse is a manual input device, and so is the keyboard. A
Braille terminal, for the visually-impaired user, is an example of a touch output device. An
eye gaze is a visual input device.

Requirement 3: Determine the parameters that would constitute a context. Also, given
that context changes over time then provide a mechanism that allows user to modify (add,
change, delete) parameters on the fly. A mobile user who changes environment over time
does not have a fixed context; hence defining a fixed set of parameter that forms the context is
incorrect. How do we declare the parameters of a context? Also, if modification of parameters
is necessary, what mechanism should be used to effect such modification without producing a
ripple effect into the other components of the system?

Proposed Solution: An IC is the combined user, environment and system contexts, each
of which is composed of one or more parameters. Our layered VM for incremental IC is a
robust “machine" that can be adapted to suit application domain and in which parameter
modification can be done on the fly with minimum system ripple effect. Also, the context
parameter consideration in our layered VM is gradual or incremental. In effect, IC is defined
based on the needs of the user.
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Requirement 4: Provide a self-healing mechanism that provides replacement to a faulty
media device, and an orderly re-organization if a new device is introduced into the system
for the first time. If two or more media devices are classified as members of the same media
group, which one would be given priority in a specific context? What are the guidelines for
such priority ranking? If the chosen media device is faulty (missing or defective), how do we
determine its replacement? If a new media device is introduced for the first time, how would
it affect the priority ranking of other media devices in the same group?

Proposed Solution: Through training, our ML system acquires knowledge for context detec-
tion, determining the suitable modality, determining the appropriate media group and devices.
The same system includes knowledge on which devices could replace the defective ones. The
policy of replacement is based on the media devices availability and priority rankings. For
example, the devices that are used in usual configuration are given higher priority than those
that are not regularly used. The ML training includes user participation that guides the system
to recognize positive examples which form system knowledge.

4 The Interaction Context

This section discusses context - the evolution of its definition, its representation, capture, stor-
age and dissemination.

4.1 Context Definition and Representation

In chronological order, some early definitions of context include that of Schilit’s [25] in which
context is referred to the answer to the questions “Where are you?", “With whom are you?",
and “Which resources are in proximity with you?". Schilit defined context as the changes in
the physical, user and computational environments. This idea is taken by Pascoe [26] and later
on by Dey [27]. Brown considered context as “the user’s location, the identity of the people
surrounding the user, as well as the time, the season, the temperature, etc." [28]. Ryan defined
context as the environment, the identity and location of the user as well as the time [29]. Ward
viewed context as the possible environment states of an application [30]. In Pascoe’s defini-
tion, he added the pertinence to the notion of state, stating: “Context is a subset of physical
and conceptual states having an interest to a particular entity". Dey specified the notion of an
entity: “Context is any information that can be used to characterize the situation of an entity
in which an entity is a person, a place or an object that is considered relevant to the interac-
tion between a user and an application, including the user and application themselves" [19].
This definition became the basis for Rey and Coutaz to coin the term interaction context: “In-
teraction context is a combination of situations. Given a user U engaged in an activity A, then
the interaction context at time t is the composition of situations between time t0 and t in the
conduct of A by U" [31].
We adopted the notion of “interaction context", but define it in the following manner: An
interaction context, IC = {IC1, IC2, . . . , ICm}, is a set of all possible interaction contexts. At any
given time, a user has a specific interaction context i denoted as ICi, where 1 ≤ i≤max, that is
composed of variables that are present during the conduct of the user’s activity. Each variable
is a function of the application domain which, in this work, is multimodality. Formally, an
IC is a tuple composed of a specific user context (UC), environment context (EC) and system
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context (SC). An instance of IC is given as:

ICi =UCk

⊗

ECl

⊗

S Cm (1)

where 1 ≤ k ≤ maxk, 1 ≤ l ≤ maxl, and 1 ≤ m ≤ maxm, and that maxk , maxl and maxm =

maximum number of possible user contexts, environment contexts and system contexts, re-
spectively. The Cartesian product (symbol:

⊗

) denotes that IC yields a specific combination
of UC, EC and SC at any given time.
The user context UC is composed of application domain-related parameters describing the
state of the user during his activity. A specific user context k is given by:

UCk =

maxk
⊗

x=1

ICParamkx (2)

where ICParamkx = parameter of UCk, k = the number of UC parameters. Similarly, any
environment context ECl and system context S Cm are specified as follows:

ECl =

maxl
⊗

y=1

ICParamly (3)

S Cm =

maxm
⊗

z=1

ICParammz (4)

4.2 The Virtual Machine and the Incremental Interaction
Context

As stated, an instance of IC is composed of specific instances of UC, EC, and SC, which
themselves are composed of parameters. These parameters are introduced to the system, one
at a time. In our work, a virtual machine is designed to add, modify or delete one context
parameter, making the IC parameters reflective of the system’s dynamic needs.
A virtual machine (VM) is software that creates a virtualized environment on computer plat-
form so that the end user can operate the software. Virtualization is the process of presenting
a group or subset of computing resources so that they can be accessed collectively in a more
beneficial manner than their original configuration. In effect, a VM is an abstract computer; it
accepts input, has algorithms and steps to solve the problem related to the input, and yields an
output. The steps taken by the VM are its “instructions set" which is a collection of functions
that the machine is capable of undertaking. A layered VM is a group of VM’s in which the
interaction is only between layers that are adjacent to one another. The layering is a design
choice whose purpose is to limit any error from propagating to other components of the sys-
tem other than the adjacent layer(s). During program/design modification, a layer’s effect is
limited only within itself and the adjacent layers. Generally, in layered structure, the top layer
refers to the interface that interacts with end users while the bottom layer interacts with the
hardware. Hence, Layer 0 is a layer that represent the collection of sensors (or machines or
gadgets) that generate some raw data representing the value needed by the topmost VM layer.
Fig. 1 shows the functionality of such “machine". As shown, the transfer of instruction com-
mand is top-down (steps 1 to 4). At Layer 0, the raw data corresponding to IC are collected for
sampling purposes. The sampled data are then collated and interpreted, and the interpretation
is forwarded to different layers bottom-up (steps 5 to 8).
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The VM Layer 4 acts as the human-machine interface; its “instruction set" are the four func-
tions found in Layer 3 - the “Add Parameter", “Modify Parameter", and “Delete Parameter"
are basic commands that manipulate the sensor-based context parameters while “Determine
Context" yields the values of currently-defined parameters. VM Layer 2 is a “library of func-
tions" that collectively supports Layer 3 instructions while Layer 1 is another “library of
functions" that acts as a link between Layer 2 and Layer 0.

4.2.1 Adding a Context Parameter

Consider using the VM to add a specimen context parameter: the “Noise Level". See Fig. 2.
Upon invoking the VM user interface (i.e. Layer 4), the user chooses the “Add Parameter"
menu. A window opens up, transferring the execution control to Layer 3. To realize adding a
new context parameter, at least four functions must exist, namely: (i) getting context type of
the parameter, (ii) getting parameter name, (iii) getting number of parameter units, and (iv)
getting number of parameter values and conventions.

As shown, through Layer 3, the user inputs “Noise Level" as parameter name, itself an EC
parameter, “1" as parameter unit, and “3" as parameter values and conventions. When done,
two new windows open up, one window at a time, that brings up the functionalities of Layer
2. For each parameter’s unit, the VM receives inputs for the unit name and the sensor (or
hardware) that supplies its raw data. As shown, the unit of noise is specified as “decibel"
and the BAPPU noise measuring device [32] as the sensor supplying the data. When done,
another Layer 2 window opens up for data entry of “Parameter values and conventions". In
the diagram, the user specifies the value (range of decibels) that is equivalent to “Quiet",

Fig. 1 The design of a layered virtual machine for incremental user context
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“Moderate" and “Noisy" conventions. When done, a window for Layer 1 opens up to save the
newly-added parameter information. This function interacts directly with the hardware (i.e.
the context convention database).

4.2.2 Modifying and Deleting a Context Parameter

The VM layers interaction in “Modify Parameter" is almost identical to that of “Delete Param-
eter" function. The only thing extra is one that allows the user to select the context parameter
that should be modified. Other than that, everything else is the same. The processes involved
in “Delete Parameter" menu are shown in Fig. 3.

Upon menu selection, the execution control goes to Layer 3, demanding the user to specify
the parameter for deletion (i.e. “Noise level" is chosen for deletion). When confirmed, the
information on the parameter for deletion is extracted and read from database (transfer of
control from Layer 2 to Layer 1 to Layer 0). When the information has been obtained, the
control goes back to Layer 2 where the information is presented and a re-confirmation of its
deletion is required. When parameter deletion is done, the control goes back to Layer 3 which
presents the updated list of context parameters. A click to the “OK" button transfers the control
back to Layer 4.

Fig. 2 The interactions among layers to add new context parameter: “Noise Level"
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4.2.3 Capturing the User’s Context

The interactions of VM layers to “Determine Context" are shown in Fig. 4. This is simulated
using specimen context parameters, namely (1) the user location, (2) the safety level, and (3)
the workplace’s brightness.

When the user opts for this menu, the VM execution control goes to Layer 3. The function
“Get User Context" creates threads equal to the number of parameters currently under consid-
eration. This process produces the thread “Get Parameter 1", assigned to detect user location,
the thread “Get Parameter 2" assigned to get the user’s safety level, and the thread “Get Pa-
rameter 3" for the user’s workplace’s brightness (i.e. light intensity). The concepts involved
are identical for each thread. Consider the case of “User Location". The thread passes control
to Layer 1 wherein the function takes sample data from a sensor (i.e. global positioning system
(GPS) [33]) attached to the user computer’s USB port. In the VM design, user can specify the
number of raw data that need to be sampled and in what frequency (n samples per m unit of
time). These samples are then collated, normalized and interpreted.
For example, a specimen GPS data of 5 samples, taken 1 sample per minute, is shown in
Fig. 5. The data are then normalized (averaged). Hence, as shown in the diagram, the user’s
computer is located at 14 ◦11′ latitude and −120◦57′ longitude. Then, this value is interpreted
using the convention values for user location parameter. Tables 1, 2 and 3 show the format
of the convention values of the specimen parameters. (Recall that the convention value of a
parameter is created during the “Add Parameter" process.) Using Table 1, the interpretation
identifies if the user (who uses the computer equipped with a GPS) is at home, at work or on
the go.

Fig. 3 The VM layers interaction to realize “Deleting a Context Parameter"
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Fig. 4 The interactions among VM layers in detecting the current interaction context

Fig. 5 Sample GPS data gathered from Garmin GPSIII+

Table 1 Convention format for user location

Convention Longitude Latitude Meaning

1 < Longitude1 > < Latitude1 > At home
2 < Longitude2 > < Latitude2 > At work
3 !< Longitude1 > !< Latitude1 > On the go

&& !< Longitude2 > && !< Latitude2 >
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Table 2 Convention format for safety level in user’s workplace

Convention Person in User’s Other People in Meaning
Workplace User’s Workplace

2 User Image Sensitive
1 User No Image Safe
3 Empty Image Sensitive
1 Empty No Image Safe
3 Other Image Risky
3 Other No Image Risky

Table 3 Convention format for light intensity in user’s workplace

Convention Foot-Candle Meaning

1 < Value−Range1 > Bright
2 < Value−Range2 > Moderate
3 < Value−Range3 > Dark

Specimen parameter 2 (the workplace’s safety level) is a function of (i) the identity of the
person sitting in front of the computer, and (ii) the presence of other people in the user’s
workplace. For this context parameter, a camera with retinal recognition [34] may be used
to identify the person sitting in the user’s seat. The identification process would yield three
values: (1) User - if the legitimate user is detected, (2) Other - if another person is detected,
and (3) Empty - if no one is detected. Also, an infrared detector [35] may be used to identify the
presence of other person in front or in either side of the user. The identification process would
yield two values: (1) Image - if at least one person is detected, and (2) No Image - if nobody is
detected. (Note that the image and pattern recognition is not the subject of this work; hence,
the detection process is not elucidated.). The VM takes n = 5 samples, normalizes them and
compares the result against the convention values in Table 2. The interpretation yields a result
indicating if user’s workplace is safe, sensitive or risky. This specimen parameter is useful for
people working on sensitive data (e.g. bank manager) but can be irritating to a person working
with teammates (e.g. students working on a project). Hence, this specimen parameter can be
added or deleted on the user’s discretion.
The third specimen parameter in Table 3 (i.e. workplace’s brightness) detects the workplace’s
light intensity. Here, we can assume that a sensor measuring the light’s intensity [36] is at-
tached to the computer’s USB port. Its measurement unit, the foot-candle, is the number of
“lumens" falling on a square foot of an inch; lumen is a unit of light used to rate the output of
a bulb. For example, we may assume the following conventions in a user’s workplace: (i) 0 -
9 foot candles = dark, (ii) 10 - 20 foot-candles = moderate, and (iii) 21 - 100 foot-candles =
bright. The processes involved in sampling, collating and interpreting sensor data for param-
eter 3 is identical with the other 2 parameters just cited earlier. Indeed, given the specimen
parameters, when “determine context" is performed, the resulting output yield a result that in-
dicates (1) if the user is at home, at work or on the go, (2) if user’s workplace is safe, sensitive
or risky, and (3) if the workplace’s light intensity is bright, moderate or dark.
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4.3 Context Storage and Dissemination

In general, if a system must obtain an accurate representation of the user’s interaction context,
then the system must be introduced to the most number of possible context parameters. As
a context parameter is added to the system, the VM’s context convention database forms a
tree-like IC structure, as shown in generic format in Fig. 6. As shown, every new IC parameter
is first classified as if it is a UC or EC or SC parameter and then is accordingly appended as a
branch of UC or EC or SC. Then, the conventions of the new parameter are identified.

Fig. 6 The structure of stored IC parameters

For the IC information to be propagated in a pervasive system, the data representation used is
XML Schema which is based on XML [37]. Fig. 7(Left) illustrates the general XML format of
a context parameter (i.e. name, units, source of raw data, and conventions) and Fig. 7(Right)
shows the various snapshots of windows involved in adding a parameter in the VM as imple-
mented using Java programming language [38].
Context modeling as well as those of media devices and available services are necessary to
inter-relate the context, the services and the context-aware devices. This, however, is a com-
pletely broad subject by itself and is not discussed here. [39] is a paper that is related to this
area.
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5 Modalities, Media Devices and Context Suitability

Here, we formulate the relationships between IC and modalities and between modalities and
media group. This includes determining the suitability of a modality to a given IC.

5.1 Classification of Modalities

Here, modality refers to the logical interaction structure (i.e. the mode for data input and
output between a user and computer). Using natural language processing as basis, we
classify modalities into 6 different groups: (1) Visual Input(VIin), (2) Vocal Input(VOin),
(3) Manual Input(Min), (4) VisualOutput(VIout ), (5) VocalOutput(VOout ), and (6)
ManualOutput(Mout). To realize multi-modality, there should be at least one modality for
data input and at least one modality for data output, as denoted by the following relationship:

Modality = (VIin ∨ VOin ∨ Min)∧ (VIout ∨ VOout ∨ Mout) (5)

5.2 Classification of Media Devices

In this work, media are physical devices that are used to implement a modality. Regardless of
size, shape, colour and other attributes, all media - past, present or future - can be classified����� ����	
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Fig. 7 (Left) Sample context parameter in XML, (Right) snapshots of windows in “Add Parameter"
menu
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based on the human body part that uses the device to generate data input and the body part
that uses the device to consume the output data. Hence, the classifications are as follows:

1. Visual Input Media (VIM) - these devices take in inputs from user gaze and sight,
2. Visual Output Media (VOM) - these devices generate outputs that are meant to be read,
3. Oral Input Media (OIM) - devices that use user’s voice to generate input data,
4. Hearing Output Media (HOM) - devices that generate outputs that are meant to be heard

or listened to,
5. Touch Input Media (TIM) - these devices generate inputs through user’s touch,
6. Manual Input Media (MIM) - these devices generate inputs using hand strokes, and
7. Touch Output Media (TIM) - the user touches these devices to receive data output.

5.3 Relationship between Modalities and Media Devices

When a modality is found suitable to a given IC, then the media that support such modality
are chosen. Let there be a function g1 that maps a modality to a media group, given by
g1 : Modality→ MediaGroup. This relationship is shown in Fig. 8. Also, oftentimes, there
are many available devices that belong to the same media group. If such is the case then
instead of activating them all which is tantamount to redundancy in functionality, devices
activation is determined through their priority rankings. To support this scheme, let there be
a function g2 that maps a media group to a media device and its priority rank, and is denoted
g2 : MediaGroup→ (Media Device,Priority). Given below are sample elements that belong
to these functions:

• g1 = {(VIin,VIM ), (VIout ,VOM ), (VOin,OIM ), (VOout,HOM ), (Min, TIM ), (Min,MIM ),
(Mout,TOM)}

• g2 = {(VIM, (eye gaze, 1)), (VOM, (screen, 1)), (VOM, (printer, 1)), (OIM, (speech recog-
nition,1)), (OIM, (microphone, 1)), (HOM,(speech synthesis, 1)), (HOM, (speaker, 2)),
(HOM, (headphone, 1)), etc.}.

It should be noted, however, that although media technically refers to a hardware element,
we opted to include a few software elements without which VOin and VOout modalities could
not possibly be implemented. These are the speech recognition software and speech synthesis
software.

5.4 Measuring the Context Suitability of a Modality

A modality’s suitability to an IC is equal to its collective suitability to the IC’s individual pa-
rameters. Instead of binary suitability (i.e. suitable or not suitable), our measure of suitability
is that of high, medium, low or inappropriate. High suitability means that the modality being
considered is the preferred mode for computing; medium suitability means the modality is
simply an alternative mode, hence, its absence is not considered as an error but its presence
means added flexibility on the part of system adaptation to context and events. Low suitability
means the modality’s effectiveness is negligible and is the last recourse when everything else
fails. Inappropriateness recommends that the modality should not be used at all. If the collec-
tive IC is composed of n parameters, then a modality in consideration has n suitability scores,
one for each parameter. In this work, the following conventions are adopted:
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1. A modality’s level of suitability to any context parameter is one of the following: H
(high), M (medium), L (low), and I (inappropriate).

2. Mathematically, H = 100%, M = 75%, L = 50%, and I = 0%,
3. Given context parameter i ∈ interaction context, then a modality’s suitability score to the

overall context, and its final suitability score are given by:

S uitabilityS coremodality =
n

√

√

n
∏

i=1

(context parameteri ) (6)

FinalS uitabilitymodality =







































H i f S uitabilityS coremodality = 1.00
M i f 0.75 ≤ S uitabilityS coremodality < 1.00
L i f 0.50 ≤ S uitabilityS coremodality < 0.75

I i f S uitabilityS coremodality = 0.50
(7)

5.5 Optimal Modalities and Media Devices’ Priority Rankings

Figure 9 shows the algorithm for determining the suitability of modalities to a given IC. Also,
in Fig. 12, Algorithm 4 checks if multimodality is possible by checking that not all of input
modalities are scored “inappropriate". The same principle is applied for checking for output
modalities. The optimal input modality is chosen from a group of input modalities, and is one
with the highest IC suitability score. The same principle applies to the selection of optimal
output modality. Subject to the availability of media devices, an optimal modality is ought to
be implemented; all other modalities are considered optional. In the absence of supporting me-

Fig. 8 The relationship between modalities and media, and media group and media devices
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dia devices, the chosen optimal modality is a failure and cannot be implemented and hence an
alternative modality must be chosen and is that one with the next highest score. In its absence,
the process of selection is repeated until the system finds a replacement modality that can be
supported by currently available media devices. If multimodality is possible and the optimal
modalities are selected, then their supporting media devices are checked for availability.
Through function g1, the media group that support the chosen modality can be iden-
tified. Given that Modality = {VIin,VOin,Min,VIout ,VOout ,Mout} and MediaGroup =
{VIM,OIM,MIM,T IM,VOM,HOM,TOM} and that g1 : Modality → MediaGroup, then
formally, for all media group p, there exists a modality q such that the mapping between p
and q is in set g1, that is ∀p : Media Group,∃q : Modality | p→ q ∈ g1.
Using function g2, the top-ranked media devices that belong to such media group are also
identified. Given function g2, a media device d, priorities p1 and p2 where Priority : N1
(positive numbers excluding zero), then the specification for finding the top-ranked device
for a media group m is ∃m : MediaGroup, ∀d : Media Device, ∃p1 : Priority, ∀p2 : Priority
|d •m→ (d, p1) ∈ g2 ∧ (p1 < p2).

Fig. 9 Algorithm to determine modality’s suitability to IC

Let there be a media devices priority table (MDPT) (see Table 4) which tabulates all media
groups, and each media group’s set of supporting media devices, arranged by priority ranking.
Let T = {T1,T2, . . . ,Tmaxtable } be the set of MDPT’s. The elements of table Tn ∈ T , where n = 1
to maxtable, are similar to elements of function g2. It should be noted that every Tn is unique;
that no two MDPT’s are identical. To create a new table, at least one of its elements is different
from all other tables that have already been defined. The priority ranking of a specific media
device may be different in each MDPT. By principle, any given IC scenario and its suitable
modalities is mapped/assigned to a specific MDPT.
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Table 4 A sample media devices priority table (MDPT)

Media Media Devices
Group Priority = 1 Priority = 2 Priority = 3 :: Priority = n

Visual Input Eye Gaze
Oral Input Microphone,

Speech
Recognition

Touch Input Touch Screen Braille
Manual Input Mouse, Virtual Mouse, Electric Pen Stylus Braille

Keyboard Virtual KB
Visual Output Screen Printer Electronic

Projector
Hearing Output Speaker Headphone,

Speech
Synthesis

Touch Output Braille Overlay KB

5.6 Rules for Priority Ranking of Media Devices

Assuming that an optimal modality has been selected. To implement the modality, the top-
ranked media device(s) in the media group that supports the selected modality is/are activated.
The rules governing device activation are as follows:

1. If the optimal modality’s final suitability = ‘H’ then the activation of its supporting media
group is important. If there are no media devices belonging to such media group are
found, then the implementation of the optimal modality is not possible. In such a case,
the system searches for a replacement to the optimal modality.

2. A replacement modality (see algorithm in Fig. 9) with ‘M’ or ‘L’ suitability score means
that the activation of its supporting media group is the last recourse to implement multi-
modality. The absence of media devices for such media group means that multimodality
failed (due to absence of supporting media devices).

For two or more media devices that belong to the same media group, their priority rankings
are governed by the following rules:

1. If their functionalities are identical (e.g. a mouse and a virtual mouse), activating both is
incorrect because it is plain redundancy. Instead, one should be ranked higher in priority
than the other. The most-commonly-used device gets the higher priority.

2. If their functionalities are complementary (e.g. a mouse and a keyboard), activating both
is acceptable. However, if one is more commonly used than the other (i.e. they do not
always come in pair), then the more-commonly-used one gets the higher priority. If both
devices always come together as a pair, then both are ranked equal in priority.

In the early stage of knowledge acquisition, it is the end user that provides this ranking, which
depends on the concerned context. For example, in a quiet workplace, a speaker can be the
top-ranked hearing output device. In a noisy environment, however, the headphone gets the
top priority. This priority is reflected in every media devices priority table (MDPT) associated
with every scenario. Initially, there is only one MDPT, similar to Table 4. A second MDPT
can be created from the first one by re-organizing the priority order of different devices and
by inserting/adding devices into it, as deemed necessary in the scenario. So does follow for
the 3rd , the 4th, and the nth MDPT. A MDPT is not static; it can be modified by the user when
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needed. The MDPT shown in Table 4 is a specimen table and does not contain an exhaustive
list of devices. It is merely used for demonstration purposes.

6 Context Learning and Adaptation

After establishing the relationships involving IC, modalities and media devices, we put these
relationships to use by considering a specimen IC to which the pervasive MM computing
system will adapt and learn.

6.1 Specimen Interaction Context

Our specimen interaction context is based on the following parameters: (1) user location -
identifies if the user is at home, at work, or on the go, (2) noise level - identifies if the user’s
workplace is quiet, moderate or noisy, (3) the safety/risk factor - determines the one sitting in
user’s workplace and detects the presence of other people; the result identifies if the workplace
is safe, sensitive or risky, (4) the user’s handicap - determines if user is a regular user or is a
handicapped, and (5) the computing device - identifies if user is using a PC, a laptop or a PDA
or cell phone. As to be expected, for each parameter’s distinct value, the degree of modality’s
suitability varies accordingly.

6.1.1 The Context of User Location, Noise Level, and Workplace’s Safety

As Table 5 shows, the sample conventions, in generic format, are given for a user’s location.
The GPS is used as an instrument to detect user’s whereabout. Here, the GPS’ readings of
latitude and longitude provide a specific meaning (i.e. convention). Also, the degrees of suit-
ability of various modalities for each value of user location are also listed (see Table 6). In
Table 7, meanings are assigned to a specific range of decibels as observed from the user’s
workplace. Some sensors, such as [40], can be attached to the computer’s USB port to capture
the environment’s noise level. The table also shows how suitable a certain modality is based
on the level of noise in the workplace.

Table 5 User location convention table using GPS values

Convention Longitude Latitude Meaning

1 < Value11 > < Value12 > At home
2 < Value21 > < Value22 > At work
3 !< Value11 > !< Value12 > On the go

&& !< Value21 > && !< Value22 >

The context of safety level is already briefly discussed in section 4.2.3 - “Capturing the User’s
Current Context". It is based on two factors: (1) the person sitting in the user’s seat as detected
by a camera with retinal recognition, and (2) the presence of other people present in the user’s
workplace as detected by an infrared detector. [34] is one method by which a legitimate user
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Table 6 Suitability of modality based on user location

Type of User Location = User Location = User Location =
Modality At home At work On the go

Visual Input H H L
Visual Output H H H
Vocal Input H H H
Vocal Output H H H
Manual Input H H H
Manual Output H H H

Table 7 Sample conventions for noise level

Convention No. Decibel Meaning

1 Less than 41 Quiet
2 41 to 50 Moderate
3 Greater than 50 Noisy

Table 8 Suitability of modality based on noise level

Type of Noise Level = Noise Level = Noise Level =
Modality Quiet Moderate Noisy

Visual Input H H H
Visual Output H H H
Vocal Input H M I
Vocal Output H H M
Manual Input H H H
Manual Output H H H

can be differentiated from an intruder. Also, [35] provides a wide range of infrared detector
products. Fig. 10 shows the safety level detection process.

The combination of the results obtained from infrared detector and of camera indicates how
sensitive the user’s workplace is. Table 9 provides the workplace’s risk/safety convention.
Table 10, on the other hand, shows our perception of modalities’ suitability with respect to
safety level. Note that all modalities are rated inappropriate if safety level becomes bad (i.e.
risky), not because they are really inappropriate to the context but as a mean to protect the
user from unauthorized people’s intrusion. As per our view, in a risky setting, the system
automatically saves user’s information and then logs him out from the system.

6.1.2 The Context of User Handicap and Computing Device

Figure 11 shows the generic format of our user profile. For this paper, some information as
shown in the user profile diagram (i.e. user QoS and supplier preferences) are not discussed
here since they are not related to this chapter’s content. A user profile contains, among others,



270 Hina et al.

Fig. 10 The safety/risk factor detection using an infrared detector and a camera

Table 9 The safety/risk factor convention table

Convention Detected Person Detected People in Meaning
No. in User’s Seat User’s Workplace

2 User Image Sensitive
1 User No Image Safe
3 Empty Image Sensitive
1 Empty No Image Safe
3 Other Image Risky
3 Other No Image Risky

Table 10 Suitability of modality based on user workplace’s safety level

Type of Safety Level = Safety Level = Safety Level =
Modality Safe Sensitive Risky

Visual Input H M I
Visual Output H M I
Vocal Input H M I
Vocal Output H M I
Manual Input H M I
Manual Output H M I
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the user’s username, password and a list of the user’s computing devices and their corre-
sponding schedules. Since the user is mobile, his computing device is identified through this
component of user profile. In the special needs section, the user is identified as either a regular
user or a handicapped. If the user is indeed handicapped, the disability is specified, indicat-
ing if the user is a mute, a deaf, a visually impaired, or a manually handicapped. Here, the
importance of multimodality is obvious; it provides handicapped users the chance to access
informatics through modalities that suit their conditions.

Fig. 11 A sample user profile

Table 11 shows the user profile/handicap convention while Table 12 shows the modalities
suitability based on such profile. We also consider the user’s computing device as a context
parameter because the degree of modality’s suitability using a PC, a laptop or a PDA varies.
The PDA, for example, has very limited resources (memory, CPU, battery) as compared with
a PC or a laptop. Table 13 shows our computing device conventions while Table 14 shows the
modalities’ suitability based on these computing devices.

6.2 Scenarios and Case-Based Reasoning with Supervised
Learning

A scenario is an event that needs a corresponding system response. The stimulus that triggers a
scenario is called the pre-condition scenario. The system response and hence the desired result
to the event is called the post-condition scenario. In this work, the pre-condition scenario is
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Table 11 User profile/disability convention

Convention No. User Profile

1 Regular User
2 Deaf
3 Mute
4 Visually-Impaired
5 Manually-Impaired

Table 12 Suitability of modality based on user’s profile/handicap

Type of User = User = User = User = User =
Modality Regular

User
Deaf Mute Visually-

Impaired
Manually-
Impaired

Visual Input H H H I H
Visual Output H H H I H
Vocal Input H M I H H
Vocal Output H I M H H
Manual Input H H H H I
Manual Output H H H H I

Table 13 Computing device convention

Convention No. Computing Device

1 PC
2 Laptop
3 PDA
3 Cellular Phone

Table 14 Suitability of modality based on user’s computing device

Type of Computing Device = Computing Device = Computing Device =
Modality PC Laptop PDA/Cellular Phone

Visual Input H H L
Visual Output H H H
Vocal Input H H H
Vocal Output H H H
Manual Input H H H
Manual Output H H L
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a specific instance of interaction context ICi ∈ IC. The desired post-condition is the selection
and activation of suitable modalities and their supporting media devices.
Given that ICi =UCk

⊗

ECl
⊗

S Cm then the total number of possible scenarios, denoted as
scenTot, is the product of the number of convention values of each context parameter i, that
is,

sceneTot =
parammax
∏

i=1

card(ICi) (8)

where card(ICi) =cardinality/total number of conventions for interaction context parameter i.
scenTot can also be expressed as scenTot = card(UCk)× card(ECl)× card(S Cm). The sce-
nario number, scenNum, assigned to any specific instance of an interaction context is given
by:

sceneNum = ICparammax +

parammax−1
∑

i=1

(ICi −1) ·
parammax−1
∏

j= i+1

card(IC j) (9)

A scenario table is simply a table listing all possible scenarios. An entry in the scenario table
is implemented in two ways: (1) through expert intervention (i.e. user) or (2) on the fly as
the scenario is encountered. Each entry in the scenario table is composed of pre- and post-
condition scenarios. Here’s how an entry to the scenario table is performed: (i) the current
interaction context parameters and their conventions are listed in the pre-condition scenario,
see Fig. 12-Algorithm 2, (ii) the post-condition scenario part lists down the corresponding
suitability scores of each modality, calculated using Equations 6 and 7, see Fig. 12-Algorithm
3, (iii) the scenario number is calculated using Equation 9, and (iv) the pointer to MDPT is
initially pointed to the very first MDPT, unless it has already been rectified by the expert. A
sample snapshot of such table is shown in Table 15.

Table 15 Scenario table containing records of pre and post-conditions scenarios

Scenario | Pre-Condition | Post-Condition |Media
Devices

Number User Noise SafetyUser Comp. Visual Vocal Manual Visual Vocal Manual Priority
Loc. Level Level Profile Device Input Input Input Output Output Output Table

1 1 1 1 1 1 H H H H H H T1
2 1 1 1 1 2 H H H H H H T1
3 1 1 1 1 3 M H H H H M T2
4 1 1 1 2 1 H M H H I H Ta

:: :: :: :: :: :: :: :: :: :: :: :: ::
404 3 3 3 5 2 I I I I I I Tn−1
405 3 3 3 5 3 I I I I I I Tn

Once a scenario is stored in the scenario table, it becomes an exemplar and is considered as a
learned information. An exemplar is a stored knowledge. When the ML component encounters
a new scenario (i.e. new context), it converts the scenario into a case, specifying the problem
(i.e. the given context). The ML component searches for a match between the given case and
stored exemplars. When a new scenario is converted into a case to be considered, the resulting
case would be composed of three elements, namely: (1) the problem - the pre-condition sce-
nario in consideration, (2) the solution - the final and optimal modality, and (3) the evaluation
- the rate of relevance of the solution. Using the similarity algorithm, a comparison is made
between the problem in the new case against all the available problems in the database. The
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scenario of the closest match is selected and its solution is returned. The evaluation is the score
of how similar it is to the closest match.
Inspired by [41], we modify their similarity scoring scheme to reflect the needs of our system.
Hence, given a new case (NC) and an individual case stored in the knowledge database (MC),
the similarity of the problem between the two cases, that is NC against MC as designated by
corresponding subscripts, is equal to their similarity in the case’s UC, EC and SC and is given
by:

S im(NC,MC)=
1
3

S im(UCNC ,UCMC)+
1
3

S im(ECNC,ECMC)+
1
3

S im(S CNC ,S CMC) (10)

The similarity between the UC of NC against the UC of MC is given by:

S im(UCNC ,UCMC) =

∑maxNC
i=1 S im(UCiNC ,UCMC)

max(UCNC ,UCMC)
(11)

where UCi, i = 1 to max, is the individual UC parameter, max(UCNC ,UCMC) is the greater
between the number of UC parameters between NC and MC, and S im(UCiNC ,UCMC) =
maxmaxMC

j=1 S im(UCiNC ,UC jMC ) where UC jMC ∈UCMC and S im(UCiNC ,UC jMC ) ∈ [0,1] is the
similarity between a specific UC parameter i of NC and parameter j of MC.
For the similarity measures of EC of NC against EC of MC, and the SC of NC against SC of
MC, the same principle as Equation 11 must be applied, with the formula adjusted accordingly
to denote EC and SC, respectively, yielding:

Fig. 12 Algorithms related to knowledge acquisition, entry in scenario table and selection of opti-
mal modality
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S im(ECNC,ECMC) =

∑maxNC
i=1 S im(ECiNC ,ECMC)

max(ECNC ,ECMC)
(12)

S im(S CNC,S CMC) =

∑maxNC
i=1 S im(S CiNC ,S CMC)

max(S CNC ,S CMC)
(13)

Equation 10 assumes that the weights of UC, EC and SC are all equal (i.e. each is worth
33.3%). This figure is not fixed and can be adjusted to suit the need of the expert (e.g. UC
may be worth 40% and each of EC and SC may be worth 30%). Overall, after the comparison
has been done, the ideal case match is a perfect match. However, a score of 90% means that a
great deal of IC parameters is correctly considered and is therefore 90% accurate. The expert
himself, however, decides the acceptable threshold score.
If no match, however, is found (i.e. relevance score is lower than accepted threshold) then the
ML component takes the closest scenario as the initial solution of the new case. The user may
not accept it. In such a case, a new case with supervised learning is produced. If the new case’s
problem contains more context parameters than those of recorded cases, the expert may decide
to include the missing parameter(s) into the a priori knowledge (see Fig. 6). Thereafter, the
new case’s post-condition scenario is re-evaluated (see Fig. 12-Algorithm 3). The new case
in then added to the scenario table, and its scenario number calculated. This whole learning
mechanism is called case-based reasoning with supervised learning.
As an example, consider the following IC: user location = at home, noise level = quiet, safety
factor = safe, user profile = regular user and computing device = PDA. This IC condition
(ic1, ic2, ic3, ic4, ic5) =(1, 1, 1, 1, 3). It is scenario number 3. The calculated final suitability
scores of the modality types are given below and are also stored in scenario table (Table 8).

Visual Input = (H×H×H×H× L)
1
5 = (1×1×1×1×1×0.50)

1
5 = 0.87

Vocal Input = (H×H×H×H×H)
1
5 = (1×1×1×1×1×1)

1
5 = 1

Manual Input = (H×H×H×H×H)
1
5 = (1×1×1×1×1×1)

1
5 = 1

VisualOutput = (H×H×H×H×H)
1
5 = (1×1×1×1×1×1)

1
5 = 1

VocalOutput = (H×H×H×H×H)
1
5 = (1×1×1×1×1×1)

1
5 = 1

ManualOutput = (H×H×H×H× L)
1
5 = (1×1×1×1×1×0.50)

1
5 = 0.87

Indeed, given the specified context, the suitability scores of various modalities are: (i) Visual
Input = Medium suitability, (ii) Vocal Input = High suitability, (iii) Manual Input = High
suitability, (iv) Visual Output = High suitability, (v) Vocal Output = High suitability, and (vi)
Manual Output =Medium suitability.
For this specific case, modality is possible. The optimal input modality is both Vocal Input
and Manual Input. The optimal output modality is Visual Output and Vocal Output. All non-
optimal modalities are considered optional. If this same case reappears again in the future,
then using the similarity algorithm (Equation 10), there is an exact match (scenario 3) that can
be found in the database, hence, recalculation/decision making is evaded.
Also, Let M1,M2, . . . ,M6 be the set of modalities’ VIin, VOin, Min, VIout , VOout , and Mout

respective suitability scores. At any time, the suitability score of M1 is m1 = {H, M, L, I} =
{1, 0.75, 0.50, 0}. Such suitability scores also apply to M2,M3, . . . ,M6. Hence, the modalities
selections, Y, as a vectored output is equal to the Cartesian product of the individual modality’s
suitability score, that is, Y = M1

⊗

M2
⊗

M3
⊗

M4
⊗

M5
⊗

M6 = (m1,m2,m3,m4,m5,m6)
where m1 ∈ M1, m2 ∈ M2, . . . , m6 ∈ M6. In the specimen IC, there are 3× 3× 3× 5× 3 = 405
possible context scenario combinations in X and 46 = 4096 possible modality’s suitability
combinations in Y. Hence, the function f1 : X → Y that maps user context to appropriate
modalities is also expressed as f1 : (c1,c2,c3,c4,c5)→ (m1,m2,m3,m4,m5,m6).
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6.3 Assigning a Scenario’s MDPT

This process is shown in Fig. 13 using the specimen IC. At the start (step 1), the Context
Manager Agent (CMA) gets the current IC. In (step 2), this scenario becomes a case. Using
the pre-condition scenario, the case’s scenNum is calculated and is used as an index to the
scenario table. Assuming that a perfect match is found then the post-condition scenario (i.e.
the case’s solution) is adopted with relevance score = 100%). Since the present case is not new
to the system, then steps 3, 4, and 5 are skipped.

Fig. 13 ML training for choosing the appropriate devices priority table for a specific context

If the similarity/relevance score, however, is low (say, 40%), then no match is found. Hence,
the closest match is retrieved and presented to the user. Because the proposed solution is wrong
(i.e. 40% accurate vs. 60% erroneous), the new case is treated for adaptation maintenance. The
large amount of error is brought by the fact that most of the context parameters in the new case
cannot be found in the stored cases of scenario table. Hence, an update of a priori knowledge
and scenario table is made; the new context parameters are added and the new case is stored
in the scenario table. The new case’s corresponding post-condition scenario is recalculated.
Due to the newly added context parameter(s) in the scenario table, all scenario numbers of
previous entries’ are recalculated. In the scenario table, a MDPT for the new case has to be
established; hence the available MDPT’s are presented to the user, one table at time (step 6).
If the user accepts the proposed table (step 7), the table’s numerical identification is appended
onto the scenario table. The media groups corresponding to the selected modalities are noted
and their top-ranked media devices are selected for activation (step 9). If the user rejects such
MDPT, then each of the other remaining tables will be presented (step 8). Recall that there
is just one MDPT in the beginning. Hence, the user needs to modify the contents of the first
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table to create a second one. When this is done, the identification number of the newly-created
MDPT is appended into the scenario table. And step 9 is executed.
Figure 14 illustrates the format of a completely filled scenario table for specimen user context.
Note, however, that as long as new context parameters are being added, the scenario table will
keep on growing. This makes our system adaptive to an ever-changing user context.

Fig. 14 A sample snapshot of a completed scenario table, each entry with its assigned MDPT

6.4 Finding Replacement to a Missing or Failed Device

At any time, it is possible that a selected top-ranked media device may be missing or defective.
Some techniques for detecting device failures are available in [42]. Hence, a replacement
should be found for the system to remain running and operational. The replacement can be
found within the same MDPT assigned to the scenario. The algorithm of replacement to a
failed device is shown in Fig. 15. In (step 1), using scenario number (scenNum), the system
determines its assigned MDPT which identifies the media groups’ top-ranked devices. In (step
2), the environment profile is consulted to find out the currently available media devices. In
(step 3), the system merely activates the top-ranked media device, if available. Otherwise, in
(step 4) the second-ranked device is activated, also if available. If it is also missing or defective,
then the third-ranked device is searched. In general, the search goes on until a selected device is



278 Hina et al.

found. The worse-case event is when no device in a media group in the MDPT is activated due
to cascaded failure or collective absence of needed devices (step 5). In such case, the system
abandons the selected optimal modality (because it cannot be implemented) and attempts to
replace the optimal modality by available non-optimal modality. This process finds again the
available media devices, by priority, to support the non-optimal modality. In the worst case
that the non-optimal modalities cannot be supported, this simply means that multimodality
is impossible in the given computing environment. Given the failed device d of priority p1,
the specification for finding the replacement media device drep is ∃m : MediaGroup, ∀drep :
Media Device, ∃p1 : Priority, ∀p2 : Priority | (p1 = p1 +1)∧ (p1 < p2)∧m→ (drep , p1) ∈ g2 •
drep.

Fig. 15 The ML process of finding replacement to a failed or missing device

6.5 Media Devices’ Priority Re-ranking due to a
Newly-Installed Device

A newly-installed device affects the priority rankings of media devices in the media group
where the new device belongs. Fig. 16 illustrates the update process in a MDPT due to the
arrival of this newly-installed device. In (step 1), given that the system has already recognized
the new device via environment profile, the user provides the media group where it belongs.
In (step 2), the MDPT assigned to scenario number 1 is retrieved and becomes the first MDPT
to be updated. This priority table is edited (step 3). The new device’s name is inserted into the
table (step 4). In (step 5), the rankings of other devices in the same media group are updated
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by the user. When done, the second MDPT is searched. The update process is repeated on
other scenarios until the last of MDPT is also updated. The update process is quite long (i.e.
equal to the number of all MDPT’s).

Fig. 16 The ML process for update of devices priority tables due to a newly-installed device

6.6 Our Pervasive Multimodal Multimedia Computing System

Our proposed system is conceived for two purposes: (1) to contribute to MM computing and
(2) to further advance autonomic computing system. To achieve the first goal, we develop
the model that relates modality with user context, and associate media devices to support the
implementation of the chosen modality. For the second goal, we advocate the propagation
of knowledge, acquired through training, into the user’s computing environment so that such
knowledge can be used for system adaptation to user needs, and system restrictions. The major
components of our MM computing system are shown in Fig. 17.

The functionality of each component is given below:

1. The Task Manager Agent (TMA) - manages user’s profile, task and pertinent data and
their deployment from a server to the user’s computing device, and vice versa.

2. The Context Manager Agent (CMA) - detects user context from sensors and user profile,
and selects the modality and media apt for the context.
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3. The History and Knowledge-based Agent (HKA) - responsible for ML training and
knowledge acquisition.

4. The Layered Virtual Machine for Interaction Context (LVMIC) - detects sensor-based
context and allows the incremental definition of context parameters.

5. The Environmental Manager Agent (EMA) - detects available and functional media de-
vices in the user’s environment

In the diagram, the user (Manolo) can work at home, logs out, and still continue working on
the same task at anytime and any place. Due to user’s mobility, the variation in interaction
context and available resources is compensated by a corresponding variation in modality and
media devices selection. Further details of the infrastructure of our pervasive MM computing
system is available in [43].

7 Conclusion

In this work, we presented the communication protocols to realize autonomic communication
in a pervasive MM computing system. The system detects the current instance of interaction
context and accordingly selects the modalities that suit it. We define the relationship between
context and modality and between modality and media group. Media devices are identified
by their membership to a media group. When two or more media devices of the same group
are available, their selection is based on their priority ranking. We assert that defining context
through parameters should be incremental and based on the dynamic needs of the system.
Hence, we adopted a layered virtual machine to realize incremental interaction context. It
allows user to add, modify, and delete one context parameter at a time.

Fig. 17 The architecture of a context-aware ubiquitous multimodal computing system
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Using natural language processing as basis, we classify modality as either an input or an
output. Then, modalities are further classified based on the body part that uses the modality
to input data and the body part that uses the modality to receive output. The same principle is
used for media classification, with minor additions. In this work, media are physical devices
(and a few software) that support modality. We laid out rules for prioritizing media devices.
Device activation and replacement to a failed device depends on this priority ranking.
The system’s knowledge acquisition is presented using a specimen interaction context, com-
posed of specimen parameters, namely: user location, noise level, the safety factor, the user
profile and the user’s computing device. The ML’s progressive knowledge acquisition is also
applied on context parameters and interaction contexts. When a device failed, a replacement is
searched from a list of devices in the same media group within the MDPT. When a new device
is introduced onto the system for the first time, all the MDPT’s are updated, and the priority
rankings of media are updated in each possible scenario.
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Self-healing for Autonomic Pervasive
Computing

Shameem Ahmed1, Sheikh I. Ahamed2 , Moushumi Sharmin1, and Chowdhury S. Hasan2

Abstract To ensure smooth functioning of numerous handheld devices anywhere anytime,
the importance of a self-healing mechanism cannot be overlooked. This is one of the main
challenges to growing autonomic pervasive computing. Incorporation of efficient fault de-
tection and recovery in the device itself is the ultimate quest but there is no existing self-
healing scheme for devices running in autonomic pervasive computing environments that can
be claimed as the ultimate solution. Moreover, the highest degree of transparency, security and
privacy should also be maintained. In this book chapter, an approach to develop a self-healing
service for autonomic pervasive computing is presented. The self-healing service has been
developed and integrated into the middleware named MARKS+ (Middleware Adaptability for
Resource discovery, Knowledge usability, and Self-healing). The self-healing approach has
been evaluated on a test bed of PDAs. An application has been developed by using the service.
The evaluation results are also presented in this book chapter.

Key words: Autonomic computing, Pervasive computing, Autonomic pervasive computing,
self healing for pervasive computing

1 Introduction

Ubiquitous computing [1], also known as pervasive computing, has evolved during the last
few years due to the rapid developments in portable, low-cost, and lightweight devices. It ex-
tends human thought and activity as well as provides a pragmatic world augmented by the
behavioral context of its users [2]. Pervasive computing environments focus on integrating
computing and communications with the surrounding physical environment for making com-
puting and communication transparent to the users. It aims to design and develop models
for next generation computing. Remarkable increases in the number of mobile device users,
tremendous developments in wireless and mobile technologies, and low cost availability of
handheld devices have contributed to the rapid evolution of this computing platform. In this
environment things around us are expected to be able to communicate with each other and at
the same time have the capability to collect, process, and transport information [14].
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Systems that have the ability to manage themselves and dynamically adapt to change in accor-
dance with policies and objectives are termed as autonomic computing. This system enables
computers to identify and correct problems often before they are noticed by the user.
Autonomic systems have the capability to self-configure, self-optimize, self-protect, as well
as self-healing. Systems that have these characteristics are termed as self-managing systems.
Autonomic pervasive computing [3] maintains characteristics from both autonomic comput-
ing and pervasive computing environment. Like pervasive computing, devices running in this
area should be context and situation aware and these devices form an ad-hoc ephemeral net-
work. These devices are also expected to have the ability to self-optimize, self-protect, self-
configure, and self-heal.

Fig. 1 Scope of self-healing in autonomic pervasive computing

Self-healing describes devices or systems that have the ability to perceive those are not op-
erating correctly and, without human intervention, make the necessary adjustments to restore
them to normal operation. A system that continues its operation even in presence of faults is
termed as a fault tolerant system [4]. The concept of self-healing goes beyond fault tolerance
since it also provides the device with the capability of recovering from fault by itself or with
the assistance of other devices present in the network. Fig. 1 depicts the scope of self-healing
autonomic pervasive computing.
Considerable research has already been done for fault tolerance in distributed dependable real-
time system [5]. Some solutions along with prototype for pervasive computing fault tolerant
systems have been proposed [6]. Self-healing autonomous systems are also addressed in [7].
But no solution has been proposed for a self-healing system in autonomic pervasive computing
yet, let alone the implementation of such a system. Since the future technology trend lies in
pervasive computing, it is of the utmost importance to have an efficient, transparent, and secure
self-healing system. Currently, we are developing middleware named MARKS [8, 9, 10, 11]
which is suitable for embedded devices running in pervasive computing environments. The
Self-healing unit plays a vital role from the above perspectives.
In this chapter, we present an efficient, secure, and transparent self-healing model. Our model
is designed for the autonomic pervasive environment, where we assume that the mobile de-
vices would be able to handle necessary computations and communications by themselves
without any fixed infrastructure support. We developed its first prototype on a test bed of
PDAs, which are connected with short-range ad hoc wireless. Any healing approach will be in
vain without proper setup of fault detection and recovery. Efficiency should also not be over-
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looked. Our self-healing approach is unique from those perspectives too. A modified secret
sharing approach [12], not only to cope with the limited storage capacity of the embedded
devices but also to guarantee the security, is being used in our approach. This model provides
the third feature (transparency) by performing most of the healing process without users’ in-
terference. The contributions of this book chapter are as follows:

1. Classification of autonomic pervasive computing environment: We have classified this
environment into three categories from infrastructure perspective. Some environments
have fixed infrastructure, some environments don’t have any infrastructure and some en-
vironments follow the hybrid approach. We mainly concentrated on the infrastructure
less autonomic pervasive computing.

2. Classification of fault: Fault has been defined and classified in different ways in differ-
ent situation. We have classified from the light of autonomic pervasive computing. We
have classified into 4 categories: Hardware Fault, Software fault, Prioritized fault, and
Communication Fault.

3. Attributes of self-healing system for autonomic pervasive computing: We have proposed
some solutions for fault detection, fault notification and faulty device isolation. These
solutions have the following attributes:
a. Less Memory footprint: Our system doesn’t require much memory.
b. Less Time complexity: The overall time complexity of our system is O(n).
c. Transparent: Our system involves nominal user intervention to do fault detection, no-
tification, and faulty device isolation.
d. Solution for Infrastructure less system: Our system concentrates only at infrastructure
less system.
e. Scalable system: Even with the increase of the number of the devices in autonomic
pervasive computing environment, our solution works fine.

The outline of this book chapter is as follows: Section 2 contains the Motivation. Character-
istics of our model with motivations behind designing the system are presented in Section 3.
An overview of our proposed approach is illustrated in Section 4. The details of the models
are described in section 5. The attributes of our proposed model is presented in section 6. Sec-
tion 7 contains the current state of the art. The implementation details along with evaluation
are provided in section 8. We conclude with some novel research directions of future work in
section 9.

2 Motivation

The autonomic pervasive computing area is now strong and powerful as the use of handheld
and wearable devices is increasing in a rapid rate. These devices are capable of communicating
with other devices and run various applications like powerful devices. People are using these
tiny mobile devices all the time and everywhere. If these devices operate incorrectly or prompt
users for each little malfunctioning, then the usability of these devices will reduce. Hence,
self-healing comes into play as it helps to execute a system uninterruptedly. Self-healing is an
integral part of autonomic computing systems. Here, we consider some scenarios to show the
importance and applicability of self-healing in autonomic pervasive computing environment.
Scenario 1. A group of high school students appear in a wireless examination. After getting
the questions in their PDAs from their teacher Dr. John’s PDA (let X, the healing manager),
they start their tests. During the exam, all on a sudden, one student’s PDA (let Y) starts unusual
behavior.
Scenario 2. Returning from a visit of a museum, a group of high school kids want to share
their experience (stored in their PDAs) to enrich their knowledge. One device of the network
is having a high probability of going down and the device owner wants to store some of its
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important information for future use in other devices. The above scenarios present situations
where healing is needed. But these scenarios raise the question that do we need to inform the
user each time a device is having problem? Can we fix some of these problems transparently
and securely? Are we sacrificing security and efficiency issues?
The first scenario can occur in any classroom. This problem can be solved by calculating the
rate of changes of all of the status of the faulty device. If the device (Y) finds out that the fault
is due to the malfunction of a running application, then without any delay, it can send an SOS
message along with the answer files. The teachers’ device (X) can isolate Y from the entire
network by removing all entries of Y as a service provider. By this time, Y can inform the
device owner about the problem. By using the system interrupt, it can kill the problem causing
application.
In the second scenario, to avoid the loss of data stored in that device, the healing manager can
disseminate the stored information to the remaining devices in a secure manner. By consulting
the logbook, necessary measures can be taken to restore the device’s prior working state. The
disseminated information content can be used later to restore the device to help it to work to
its full extent.
A self-healing model can solve the issues of the above situations. To cope with the chal-
lenges presented by the pervasive ad-hoc network, we feel that a self-healing model should
be lightweight, energy-efficient, and infrastructure less. In this book chapter, we present a
self-healing model, which is efficient, secure, and works transparently.

3 Characteristics of Self-healing Model

A self-healing model targeted for autonomic pervasive computing should have the following
attributes:
1. Infrastructure less. No infrastructure support (powerful servers, proxies, etc.) should be
required. If the focus is on truly pervasive environments then the model should work indepen-
dently without any external support as in this environment infrastructure support is not always
available.
2. Lightweight. The model should be lightweight in terms of executable file size.
3. Non-degradable performance. The model should not put much overhead on the performance
of the device.
4. Energy efficient. Self-healing models should be energy efficient. It should not require much
battery power for computation or communication purposes.
5. Transparent. The main idea behind designing autonomic systems is transparency. Every
self-healing model should have some level of transparency. However, it should also inform the
user about critical system information.
6. Secure. Self-healing systems require information distribution and backups to recover from
faults. The information distribution and storage should be highly secure to maintain user pri-
vacy and security.

4 Design Overview

4.1 Self-healing System of Autonomic Pervasive Computing

Our self-healing service is an integral part of MARKS+, which is the extended version of
MARKS [3] (Middleware Adaptability for Resource Discovery, Knowledge Usability, and
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Self Healing) which is our developed middleware that incorporates different kind of services.
The fault detection, fault notification, and faulty device isolation are taken care of by the
healing manager of the self-healing service using system monitoring unit of MARKS+. It
uses the system monitoring unit. Fig. 2 shows the MARKS+ architecture along with the self-
healing service.

Fig. 2 MARKS+ architecture for autonomic pervasive computing

An effective self-healing service should address the following challenges:

• No regular functionality of the network will be hampered due to any fault of any device.
• All significant information of the faulty device should be preserved in secure fashion.
• The device will be facilitated to heal its fault by itself or at best with the assistance of other

devices of that network.
• After reviving, the faulty device should be able to regain its previous states in such a way

that it should feel there was no fault.

To address the above challenges in an apposite manner, our proposed self-healing pursues
quite a few steps:
1. Fault detection
2. Fault notification
3. Faulty device isolation
4. Fault healing
Fig. 3 shows the architecture of our proposed self-healing service. The fault-detection and
fault-notification unit is used by each device running MARKS+. The fault detection unit may
be utilized by both the healing manager and the device itself. But the other three units (faulty
device isolation, alteration, information distribution) should be handled by the healing man-
ager. In this book chapter, we only concentrate on three steps: fault detection, fault notification,
and faulty device isolation.
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Fig. 3 Architecture of our proposed self-healing service

4.2 Classification of Fault

Fault can be classified from different perspectives:

Hardware Fault

This fault is mainly caused by physical constraints of the devices running in autonomic per-
vasive computing environment. In our research, we include the following faults as hardware
faults:
a. Low battery power: Battery is the main power source for mobile devices. This fault occurs
due to insufficient battery power.
b. Limited signal strength: Wireless communication is one of the main communication
medium for mobile devices. While the signal strength is low, in most cases, the mobile devices
are not able to communicate with each other and the entire network starts malfunctioning.
c. Insufficient disk space: Sometimes mobile devices fail to work properly due to insufficient
disk space. We are considering this fault as a hardware fault.
d. Byzantine fault [13]: These faults encompass those faults that are commonly known as
“crash failures” and “send and omission failures.” A system may respond in an unpredictable
way, if there is any Byzantine fault.

Software Fault

It includes the following faults.
a. Application fault: Application fault occurs due to problem in any kind of software applica-
tion that is running in the mobile devices in autonomic pervasive computing environment.
b. Middleware Fault: Middleware is the software layer between the operating system and the
applications. It plays a very important role in autonomic pervasive computing environment.
Any fault that occurs due to problem in middleware is called middleware fault.
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c. OS fault: There are some faults that occur in OS level. These faults are named as OS fault.
Software fault follows the pyramid approach described in Fig. 4.

Fig. 4 Scope of software fault for autonomic pervasive computing

Prioritized Fault

According to priority, we have classified faults into the following categories:
a. Low priority fault
b. Medium priority fault
c. High priority fault
The healing manager has a queue for different kind of faults reported by devices. The priority
has been assigned to help the healing manager. High priority faults should be handled first,
then medium priority faults, and finally low priority faults.

Communication Fault

All types of fault related to wireless communication belong to this category. Network failure
is one kind of communication fault.

4.3 Fault Detection

High-quality fault detection, the first step of a self-healing process, not only prevents loss
of resources but also lessens healing time. To ensure supreme-quality, our proposed Self-
healing approach periodically monitors as well as assembles the status of all of the running
applications, memory, power, communication signal etc. Drastic changes in those values will
generate faults. By using the rate of change of these over time, it tries to figure out the existence
as well as the cause of a fault, if there is any.
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4.4 Fault Notification

How can a device inform the healing manager that it is in fault? If the device is in fault then
is it really possible to inform of the fault? In a distributed computing system, heart beat mes-
sage and absence of heartbeat massage are used to notify of the fault. In autonomic pervasive
computing, we have applied the similar concept but in a modified way. We have introduced
different kinds of message systems like OK message, SOS message etc. to inform the healing
manager not only of the presence of a fault but also the cause of the fault.

4.5 Faulty Device Isolation

The isolation of faulty devices from the remaining network, a grand challenge of fault tolerant
as well as self-healing system, can be achieved in self-healing in a very simple way. In case of
MARKS+, every device is mapped with another one by means of service availability in these
devices. It is adequate to remove the entry of the faulty device from that mapping to ensure its
isolation from the entire network. The detailed description of our approach is presented in the
following section.

5 Self Healing in Autonomic Pervasive Computing

Self-healing is the process of detecting faults, notifying those, and also to recover from the
faults without human intervention. This system makes necessary adjustments to restore the
devices’ normal operating condition. Fig. 5 portrays the high level view of a self-healing
system.
According to Fig. 5, all the faults reported from various devices will be compiled first and then
will be stored in the fault queue of the healing manager. According to the fault priority, the
healing manager decides which fault should be handled first. Then the healing manager will
do the analysis of the fault, isolate the faulty device from the existing network, and will also do
the service alteration and information distribution. In our approach, we mainly concentrate on
first three steps of self-healing: fault detection, fault notification, and faulty device isolation.

5.1 Fault Detection

Fault detection is the first step of any self-healing system. Detecting any kind of fault in a
device is normally known as fault detection. Here is the formal definition of fault detection:
Device Status: Let Zt(x) be the status of a device at time t, where x represents an arbitrary
input vector [e.g. rate of change (dy/dt) of power, memory, communicational signal etc. over
time]
Test: T = {v1,v2, . . . ,vn} where {v1,v2, . . . ,vn} are input vectors and Zt(vi) represents the status
of the device.
Fault Detection: T detects a fault in the device iff [(Zt(vi) ∼ Zt+1(vi)) >
prede f inedthresholdvalue]
For example, if the change of signal strength is 10% at time t and change of memory space
is 25% at time (t+ 1) and if the threshold value is 12% then as the rate of change of mem-
ory space is greater than the threshold value, according to our approach, there should be a fault.
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Fig. 5 Scope of self-healing in autonomic pervasive computing

Two Way Message Based Fault Detection. According to Fig. 6, each device (except
the healing manager) will send OK/SOS message after a specific time period. This period
is called the heartbeat period (Hp). For each device, it takes ∆ti time, where i is the device
number. So, the healing manager will get the OK/SOS message after (Hp+∆ti) time. Not only
that, the healing manager itself will periodically (∆T ) broadcast another message to inform
all the existing devices about its aliveness. If the healing manager doesn’t get any message
from any device within a specific time period then the healing manager will assume that the
device is faulty and it might need some help. On the contrary, if the healing manager doesn’t
broadcast its message, all the devices along with the service manager will understand that the
healing manager itself is in fault and the service manager will take the responsibility of the
healing manager.
K. Mills et al. [15] described two-way heart beat based failure detection technique for
distributed system. Our environment is different than pure distributed system. We concentrate
only on the autonomic pervasive computing environment.

Network Bandwidth Consumption. For a small network in autonomic pervasive com-
puting environment, there won’t be so many devices and hence the bandwidth consumption
might not be prominent for the network itself. However, if we consider a large network, we
should have such a system which would be able to utilize the full network bandwidth. If the
message size to send to healing manager is MD and the message size of the healing manager
to device is MH then the system consumes bandwidth, B which is

B = (N ×MD+MH)/Hp

To keep this consumption stable, the healing manager must process N/Hp messages. Since
the network is ad-hoc in nature and a device can join or leave at any time, the system should
adopt the size of the heartbeat period (Hp). The algorithm to adjust Hp is presented below.
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Fig. 6 Two way message based fault detection

5.2 Fault Notification

Not only to push any information but also to notify its aliveness or its fault, the device itself
needs to communicate with the healing manager periodically. In Gaia [6], a heart beat message
mechanism is used only to indicate the aliveness of any device. The absence of a heart beat
message implies the existence of a fault. Thinking ahead a little bit more, we have incorporated
a generic message passing scheme not only to facilitate the function of a heart beat message
but also the efficacy of an SOS message for helping the healing manager to be informed about
the faulty device’s current situation. In this scheme, each device will send any one of the
following messages to the healing manager:
1. OK message: It simply sends a packet containing “OK” string. It’s nothing but a heart beat
message.
2. SOS message: After identifying any fault in its own device, the self-healing unit of that
device sends SOS message which may include some file names along with that message. An
example of such type of message is: “SOS, exam3cosc060, log status”. This means that the
faulty device is requesting to save files named “exam3cosc060” and “logstatus”.
If the healing manager doesn’t get such a message for a pre-fixed threshold period of time,
right away it will commence the next steps (device isolation, information distribution, alter-
ation) assuming that the device is in fault. If the healing manager gets SOS message along
with some file names, then healing manager will initiate to get the files from the device and
will store those among other devices in a secured distributed manner. Fig. 7 shows the flow
diagram of fault detection and fault notification.
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5.3 Faulty Device Isolation

We have deployed a very simple approach to isolate a faulty device from the remaining net-
work. In our approach, each device is mapped with another device based on service availabil-
ity. So if we can remove the entry number from the mapping list, the faulty device can be
isolated from the entire network.
Table 1 shows the mapping of the service # and the service provider. We have followed a
standard for the service #. For example, service # 1 means “Internet service”, service # 2
means “office software”, service # 100 means “music software”, etc. Self-healing approach
incorporates a list named serviceList by which the service can easily be identified. For exam-
ple, serviceList (100) will return “music software”. Table 2 exemplifies the three-dimensional
mapping of service provider, service consumer, and service #. Here, D1 means Device 1, D2
means Device 2, etc. These mappings are implemented in our proposed self-healing by using
a hash table. By means of a standard “remove” function, our self-healing system can remove
the entry of a faulty device from the hash table as well as from the entire network.

5.4 An Illustrative Example

To make our proposed self-healing system more comprehensible, here we are giving an
illustrative example. In a wireless exam system, a teacher will conduct an exam. The students
will give the answers and will send the answers to the teacher’s PDA. The requirements for
teacher and students are as follows:

Requirements from Instructor point of view:
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Fig. 7 Flow diagram of self-healing for autonomic pervasive computing

Table 1 Mapping of Service # and ser-
vice provider

Table 2 Mapping of Service # , service provider and ser-
vice consumer

1. The system should enable the instructors to enter a certain number of questions. We
assume that the instructor will be teaching other courses as well and hence may plan to create
questions for the other courses concurrently. Hence, one set of questions should not overlap
with others. To ensure this, all the questions for a particular course should be grouped together
and stored in a data structure or database (whatever is efficient on a PDA).
2. The system should facilitate the creation of exams. It can have any number of multiple
choice questions, true/false, short answer (fill-in) and open ended response options.
3. The instructor should be able to create a suitable "answer key" for the questions. Ideally, an
instructor will view the question and type the answer so that the answer is visible whenever
the question is displayed. Teachers may want the correct answer to be sent to the student after
grading is complete.
4. The system should have the capability to do the auto grading (multiple choices, fill in
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blank, and true-false) and generate result (text, table and graphical output) of varying format.
5. The distribution of the entire exam should take place when the instructor selects the
designated action.
6. The system should also provide the facility to distribute the grades to the students.
7. The instructor would be the only authorized person to specify the time limit for the students
to submit their answers. The students can commit their answers to the instructor before the
expiration of the given time frame. Otherwise, the system should have necessary mechanisms
to deny access to the questions after the pre-defined time is over, and commit all the answers
to the instructors PDA identifying the students who answered questions.
8. The instructors PDA must be able to store the data received in an efficient way. The storage
constraint imposes the prime challenge in this issue.
9. The instructor will collect feedback from the students during and after any exam. The
instructor can exercise the option of filtering stored feedback for repeated use.
10. This system can be easily transformed into a survey instrument. The requirements for
designing, administering and collecting survey instruments are easily identifiable by the
instructor.

Requirements from Student point of view:
1. The system should facilitate answering of questions. They should be able to submit their
answers within a pre-specified time limit.
2. Normally students get tensed up during any exam. It is very reasonable from their
perspective to expect the PDAs to be reliable. The devices should not play any tantrums
(like denying the students access to network, resetting in the middle of an exam, partial
download of file because of unspecified reasons). An occurrence of a single event specified
above will undermine the students and instructors confidence in the entire process. All these
considerations obviously have to be taken care of.
3. The students should also able to submit their comments during and after the exam. While
they would not be able to submit the answer outside the time limit imposed by the instructor,
they can comment at any time at any topic related to the course and question.

Fault Detection in Wireless Exam. Each student’s device is running our self-healing
system. If a student’s device becomes faulty (e.g. hardware fault, software fault, communica-
tion fault, etc.), it will be detected through our proposed system.

Fault notification in wireless exam. As soon as the student’s device finds the prob-
lem, it will send OK or SOS message to the healing manager (here teacher’s PDA). The
healing manager will take necessary steps according to the message it gets from the faulty
device.

Faulty Device Isolation in Wireless Exam. After identifying the faulty device, the
healing manager will remove that faulty device from the current network temporarily so that
the other devices of that network can work perfectly.

6 Attributes of Our Proposed Model

6.1 Efficiency

Our system is efficient from both memory and speed points of view. One replica of the healing
manager is preserved in service manager. It does not consume much memory in this approach
since it does not need to keep a replica of all the devices, while this is a common scenario
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for most of other schemes. Moreover, MARKS-ORB and the fault detection and notification
system occupy a very little space in the PDA.
According to the flow diagram of a self-healing service, there is a loop for message queue
inside of which the fault detection and notification system lies. The overall time complexity
of this system is O(n). On the contrary, Device discovery and Communication, the two func-
tions of MARKS-ORB are independent of each other and that is why the time complexity for
MARKS-ORB is O(n). This low time complexity makes our approach efficient from the speed
perspective.

6.2 Transparency

Fault detection and notification tries to assure the nominal involvement of the user. In most
cases, without any kind of user interruption, the healing manager can detect a fault. It involves
the users only when decision largely depends upon the users’ preference.

6.3 Infrastructure less

Our system doesn’t require any fixed infrastructure to run. All the algorithms are running on
different mobile devices (e.g. PDA, cell phone, etc.) using wireless communication technol-
ogy.

6.4 Non degradable performance

Our system doesn’t create any adverse affect on the devices. We have proved those from the
perspective of different performance measurement metrics like battery power, memory space,
and signal strength. The details have been described in the evaluation section.

7 Related Work

Self-healing is an essential component of every computing system. It is an integral part of
devices running in autonomic pervasive environment, as the main focus of this area is to make
users free of operating details. It is a widely researched topic in the field of distributed com-
puting, grid computing, and autonomic computing. In each of these areas, many schemes are
proposed that attack this problem from various standpoints. Jean-Philippe Martin-Flatin pro-
posed a modified organizational model for e-business information systems which is capable
of self-management [16]. Distribution of event correlation in this self-managed system has
also mentioned. Researchers are working on several policies like architecture-based system
[17], [18], infrastructure based approach [19] for long. Most of these proposed models are
suitable for physically connected computers in distributed computing environment. There is
no established method that provides a solution for devices running in an autonomic pervasive
computing environment where it is assumed that the devices are connected to each other wire-
lessly. The autonomic computing field demands that devices should be able to self-configure,
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have self-healing, self-optimization, and self-protection capability. On the other hand, the main
attributes of pervasive computing are context-awareness, situation-awareness, and ad-hoc net-
working. The focus of this work is self-healing for autonomic pervasive computing environ-
ment that contains all the above-mentioned characteristics.
Soila and Priya [20] presented proactive recovery in Distributed CORBA applications. They
did not concentrate on fault-prediction technique; rather they focused on the exploitation of
fault prediction in systems that had real time deadlines. Our system deals with pervasive com-
puting and it can predict a fault by calculating different states of the system. To handle tran-
sient software failures, a proactive approach named software rejuvenation, was proposed by
Huang et al. [21]. According to this approach, if errors are accumulated beyond a threshold,
then it will kill and re-launch the application. A lot of works about rejuvenation policies, to
increase system availability and to reduce the cost of rejuvenation, were done by [22], [23],
[24]. However, to hand-off the existing state of the faulty device just after its re-launching was
overlooked here. Our approach preserves this state among other devices in a secured manner
so that the healing manager can help the faulty device to get its actual state after healing.
Garlan and Schmerl presented a system [17] that uses an architectural model for monitoring,
problem detection, and repair. In their model an executing system is monitored to observe
its run time behavior. Monitored values are compared with the properties of an architectural
model. The architectural model triggers constraint evaluation if the system is operating out-
side an envelope of acceptable ranges. These violations of constraints are handled by a repair
mechanism according to the architecture and these changes are propagated to the running sys-
tem. This architectural model is represented as a graph of interacting components where nodes
are termed as components. These nodes represent the principal computational elements and
data stores of the system: clients, servers, databases, user interfaces, etc. These nodes are in-
terconnected by connectors, which are complex bases of middleware and distributed systems.
These powerful device requirements make this model unusable in infrastructure-less pervasive
computing environment.
Eric et al. [18] describes a system based on software architecture that uses software compo-
nents and connectors for repair. To dynamically repair a system they concentrate on the current
architecture of the system; to express an arbitrary change to that architecture; to analyze the
result of the repair; and to execute the repair plan on a running system without restarting the
system. To follow this approach they need complete information about the devices and soft-
ware running in those devices. In a autonomic pervasive computing environment this type
of information is not available. Their system is targeted for connected distributed environ-
ment where system level information is available. They also use infrastructure support for
repair purposes. Gordon et al. [25] in their paper presented an analysis of the role of “Re-
flection” to support self-healing systems. They also suggested that middleware would be the
appropriate place for including self-healing unit. They offered their primary analysis based on
distributed systems. But they did not implement the middleware and also not the self-adaptive,
self-healing unit. AMUN (Autonomic Middleware for Ubiquitous Environment) [7] is a mid-
dleware that deals with self-healing for ubiquitous environment. The AMUN self-healing and
self-organizing unit consists of four main parts: the transport interface, the event dispatcher,
the service interface and service proxy, and the autonomic manager. The autonomic manager
is the principal unit for managing communication between other units. But the main concen-
tration of this project is an indoor environment like inside an office building. They use “Smart
Doorplates” that use and display situational information of the owner of the office. This idea
restricts its use only in a smart environment.
L. Kant [26] proposed a self-healing mechanism for wireless networks. He claimed that this
mechanism could provide seamless restoration of affected services due to random/sporadic
network facility failures. Also this model considers a fixed telecommunications system only
and concentrates on restoration of the faulty system in network layer. This approach is not
suitable for pervasive computing since the ad-hoc nature is totally overlooked here. Y. Tohma
in [27] described the challenges and proposed solutions to achieve fault tolerance in autonomic
computing environment. This solution creates groups of similar devices and the neighboring
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devices decide whether a particular device is faulty or not. He also proposed to keep three
copies of information to recover fault. This proposed method is expensive and not applicable
in an ad-hoc environment as in this environment the group formation is difficult and neighbors
are changing very frequently.
Mills et al. in [15] presented an algorithm for fault detection for autonomic systems. A two-
way heartbeat failure-detection technique is used. A monitor is used to receive periodic mes-
sages from a number of monitorables. The time length to receive a message is used as the
detection criteria for failure. This system is simple and is designed for connected distributed
systems where the devices will not change. Device mobility issues are also ignored here.
Brown and Redlin in [28] proposed a benchmarking system for measuring the effectiveness of
self-healing mechanism in autonomic systems. They concentrated on powerful systems that
are rarely present in pervasive ad-hoc networks.
In [29], Poladian et al. proposed a task-based adaptation technique for an ubiquitous comput-
ing environment. This system supports heterogeneity, resource variability, mobility, ubiquity,
and task-specific user requirements. This self-adaptation infrastructure has three distinctive
features that allow explicit representation of user tasks and provides an environment manage-
ment capability to translate user tasks and also provides a formal basis for understanding the
resource allocation, and support optimal allocation at run time. Though this system is targeted
for pervasive environments, it needs infrastructure support for fulfilling all the above activities
which makes it unusable for truly mobile pervasive environment.
In [6], Chetan et al. have classified faults, pointed out various research challenges, and have
also proposed solutions to some of the challenges in a pervasive environment. Their fault toler-
ant system uses context information to tolerate application and device faults. They considered
a fail-stop fault model consisting of device and application faults. In this approach, if an ap-
plication fails, it is restarted. The fault model only considers application failures caused by
device failures, network faults, and failures due to faulty usage. This system is designed for
active spaces.
Umesh Bellur and N. C. Narendra [1] presented a programming model named reconfigurable
programming for run time binding of system components. A middleware architecture has also
been designed. All together it gives self configuration capability for systems in distributed
computing.
Keller, A. and Badonnel, R. [2] proposed a provisioning system with BPEL4WS workflow lan-
guage that automates the deployment, installation and configuration of application services.
In systems like e-Commerce where the work load varies rapidly an automated system for han-
dling these issues is highly required. But this issue is not quite similar in pervasive computing
environment.
Most of the work in the self-healing area is done either for distributed systems or for ac-
tive/smart spaces. The area of autonomic pervasive computing is void of powerful device
support. The devices running in this environment are resource poor and these are expected
to handle the necessary computations and communications with limited battery and process-
ing power. These features make self-healing in autonomic pervasive computing a hard and
unique problem to solve. To the best of our knowledge, there is no work till now in the area of
self-healing for autonomic pervasive computing.
A comparison table of the existing self-healing and fault tolerance models is presented in Table
3.

8 Evaluation

We have evaluated the performance and usability of our self-healing model by implementing a
prototype, designing applications and using simulation tool. An application has been designed
that uses our self-healing model. We have also measured the battery power consumption and
the signal strength after using our model.
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Table 3 Comparison of Self-healing and Fault Tolerant Models

8.1 Prototype Implementation

A prototype including fault detection, fault notification, and faulty device isolation for auto-
nomic pervasive computing environment has been developed and integrated along with our
current developed middleware named MARKS+. WinCE running on a set of Dell Axim X30
pocket PCs (Process type is Intel@PXA270 and speed is 624 MHz), to demonstrate our ap-
proach, is used as platform. The .NeT Compact framework along with C# is used as imple-
mentation language. Bluetooth, as the underlying wireless protocol, has been used though it
is also suitable for IEEE 802.11.
To evaluate the performance of our self-healing model, several applications have been devel-
oped. Wireless exam is such an application by which one teacher can send questions to the
students (PDA to PDA communication) and also can collect the answers from the students.
There are some selected screen shots captured from the implemented prototype below.
Fig. 8 presents a log file stored in an embedded device (a pocket pc exploited in the application
which used the first prototype of fault detection, fault notification, and faulty device isolation).
Such a log file is really necessary for a self-healing system. Fig. 9 illustrates the nature of rate
of change of used memory space over time through which self-healing can determine the
possibility of a problem between time stamp 14 and 15 due to the sharp change of rate of used
memory space.
Fig. 10 presents the status of the battery power for five devices where the prototype of our pro-
posed system and MARKS+-ORB are running. The sharp change of the status of the battery
power for D4 indicates that there is some problem in that device and needs healing immedi-
ately. By using the “status changing rate” process, self-healing of the student’s device itself
tries to find out the fault as well as the reason if there is any. Fig. 11 shows a typical mes-
sage generated by the devices’ healing unit. This message is intended to inform the user about
the abrupt change of device status and action taken by the self-healing. By using the “status
changing rate” process, self-healing of the student’s device itself tries to find out the fault as
well as the reason if there is any. Fig. 11 shows a typical message generated by the devices’
healing unit. This message is intended to inform the user about the abrupt change of device
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Fig. 8 Status of a device Fig. 9 Rate of change of used memory

status and action taken by the self-healing. There are situations where all the devices operate
without any error. Then only the “OK” message is sent to the healing manager periodically.
Suppose device 2 has no problem and it periodically sends OK message to teacher, the healing
manager of this network. Within a specified period of time, it also sends all the answers to the
teacher’s PDA. This scenario is shown in Fig. 12.

Fig. 10 Status of the battery
power of five devices after using
proposed system

Fig. 11 Message to the user
regarding low processor
speed

Fig. 12 Device 2 is running
without any problem

Now device 9 finds some problem. It simply sends SOS message including file name
exam3cosc060. Without any delay, the healing manager will collect that file from this de-
vice. Fig. 13 portrays this event. Another case can occur where the device is unable to send
any message due to fault. If the healing manager does not get any message for a long period
of time from any device, it will take appropriate action assuming that the device is in fault.
Device 5 is unable to send any message for a long time. So, the healing manager takes rapid
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action regarding device 5. This incident is illustrated in Fig. 14. As both device 5 and 9 are
faulty now, the healing manager removes the entry of device 5 and 9 from hash table. It also
updates the table to reassign the services. Along with the SOS message, device 9 sends the
list of important file names (selected by the user of that device) that need to be saved. This is
shown in the above Fig. 15.

Fig. 13 Device 9 sends SOS
message

Fig. 14 No signal from de-
vice 5

Fig. 15 Important files se-
lected by user

Device 5 and 9 will try to be healed without the help of others. After healing, the healing
manager will resend the files that it got before their fault.
A simple yet powerful authentication scheme is provided in our prototype. A random com-
bination of 7 digits is used as the secret code to operate the self-healing unit. To break this
authentication system, even if one full secret code is entered within 1 second, it will take
approximately 9 years.

8.2 Performance Measurement

We have also developed the MARKS+-ORB, to provide the device discovery and communica-
tion functionality of the devices. Fig. 16 shows the battery power consumption with respect to
time while MARKS+-ORB is running in that device. Here, S1 indicates the battery power con-
sumption while the Pocket PC is on but the wireless mode is off (no wireless communication
via 802.11 or Bluetooth). S2 means that wireless mode is on. S3 indicates that wireless mode
is on and MARKS+-ORB is running in the device. It clearly indicates that MARKS+-ORB
consumes a very little battery power.
MARKS+-ORB itself transfers data mainly for device discovery. It broadcasts its own IP
address and receives the IP addresses of other devices reside in the same ad-hoc network. Fig.
17 shows the data transmission by MARKS+-ORB in every 5 seconds. It clearly shows that it
does not need to transmit so much data for device discovery.
Table 4 shows the line of code and the size of the executable file of Self-healing Service and
MARKS-ORB+.
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Fig. 16 Time (min) vs. battery power Fig. 17 Rate of change of used memory

Table 4 Memory Footprint for Our Proposed System and MARKS-ORB

8.3 Application that Uses Self-healing Model

We have developed some applications that use a self-healing model as a service. We have used
applications to check the practicality of using our proposed self-healing model. The overhead
of running this service is also tested by running these applications.

9 Conclusion and Future Work

We have proposed a solution for fault detection and notification and faulty device isolation
in autonomic pervasive computing. The fault detection process promises not only the least
possible time to detect the fault but also the lowest degree of user intervention and hence makes
our solution highly transparent. We have introduced the concept of healing manager in this
regard. Though some researchers have already proposed different solutions for fault-tolerance
from a distributed computing and autonomic computing perspective, no solution has been
proposed yet for autonomic pervasive computing. Researchers have just started addressing
self-healing issues in pervasive computing, let alone autonomic pervasive computing. Our
solution is a unique one in this regard. We have developed our fault detection, fault notification
and faulty device isolation system as a part of MARKS+. MARKS+ is a middleware and the
extended version of our previously developed MARKS. MARKS is for pervasive computing
and MARKS+ has been developed for autonomic pervasive computing.
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At present we are focusing on the last step which is fault healing. The main idea is to store all
the crucial information including log status file of the faulty device when the device falls into
trouble. After recuperating from a fault, the healing manager re-collects all information and
sends it to that device including so that the device can restore easily its previous condition.
Information Distribution and Alteration are the two other things under our consideration. In-
formation Distribution is the process of distributing the important information among other
existing devices to assist a faulty device for keeping all the important information safe and
secured. Secret sharing (N, t) approach [12] can be used in this aspect. Alteration or Respon-
sibility Re-assignment will be responsible for finding an alternate device that is available as
well as compatible with the faulty device [6]. This process is needed for smooth functionality.
Incorporation of some security features and finding benchmarks for selecting healing manager
are also being considered.
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Map-based Design for Autonomic Wireless
Sensor Networks

Abdelmajid Khelil, Faisal Karim Shaikh, Piotr Szczytowski, Brahim Ayari and Neeraj Suri

Abstract A prominent functionality of a Wireless Sensor Network (WSN) is environmental
monitoring. For this purpose the WSN creates a model for the real world by using abstractions
to parse the collected data. Being cross-layer and application-oriented, most of WSN research
does not allow for a widely accepted abstraction. A few approaches such as database-oriented
and publish/subscribe provide acceptable abstractions by reducing application dependency
and hiding communication details. Unfortunately, these approaches ignore the spatial correla-
tion of sensor readings and still address single sensor nodes. In this work we present a novel
approach based on a “world model” that exploits the spatial correlation of sensor readings and
represents them as a collection of regions called maps. Maps are a natural way for the presen-
tation of the physical world and its physical phenomena over space and time. Our Map-based
World Model (MWM) abstracts from low-level communication issues and supports general
applications by allowing for efficient event detection, prediction and queries. In addition our
MWM unifies the monitoring of physical phenomena with network monitoring which maxi-
mizes its generality. From our approach we deduce a general modeling and design methodol-
ogy for WSNs. Using a case study we highlight the simplicity of the proposed methodology.
We provide the necessary tools to use our architecture and to acquire valuable WSN insights
in the established OMNeT++ simulator.

1 Introduction and Chapter Structure

Wireless Sensor Networks (WSNs) represent networked autonomous embedded systems. With
diversity as a hallmark, WSNs often comprise computing nodes with heterogeneous commu-
nication, sensing, processing and storage capabilities. WSNs can be embedded in varied envi-
ronments with the desired goals of sensing, monitoring, predicting phenomena of interest in

Abdelmajid Khelil, Faisal Karim Shaikh, Piotr Szczytowski, Brahim Ayari, and Neeraj Suri
Technische Universität Darmstadt, Dependable, Embedded Systems and Software Group,
Hochschulstr. 10, 64289 Darmstadt, Germany
Tel. +49 6151 16{3414,3711,3414,7066,3513}, Fax. +49 6151 16 4310
e-mail: {khelil,fkarim,piotr,brahim,suri}@cs.tu-darmstadt.de

Research supported in part by DFG GRK 1362 (TUD GKmM), EC CoMiFin, EC INSPIRE
and MUET.

309
© Springer Science + Business Media, LLC 2009
A.V. Vasilakos et al. (eds.), Autonomic Communication, DOI: 10.1007/978-0-387-09753-4_12,



310 A. Khelil et al.

the physical world. The WSN is considered as a tool for observing states of the real physical
world [35] or as a bridge to the physical world [11].
The designer’s view on WSN augments this user-centric view with the technical details. From
the literature, three main system-level design paradigms arise, namely, considering a WSN as
a network, database or an event service. We detail these as:
(a) WSN as a network: WSN can be viewed as a self-organized communication platform. The
standard WSN communication architecture is layered in a similar way to the OSI layer model.
However, a modification of this architecture called a cross-layer model is commonly adopted.
The cross-layer design is an envelope of optimizations that benefit from the co-operation of
non-adjacent layers [41]. Furthermore, new communication patterns such as data-centric com-
munication have been proposed [17].
(b) WSN as a database: Major research issues are in designing efficient query dissemination
and in-network selection, projection, join and aggregation. An example being tinyDB [29]
that treats sensor data as a single table (sensors) with one column per sensor type. Research
focuses here on data-centric communication [5, 8, 28, 50, 53].
(c) WSN as an event service: A WSN is usually deployed for missions providing services such
as tracking targets or detecting events. The mission determines the overall operation of the
WSN including data generation, processing, filtering and transport. To support multiple mis-
sions and augment the service flexibility, the publish/subscribe (pub/sub) service architecture
has been advocated for WSNs [9, 14, 36, 40].
Most WSN research is application-oriented and relies on cross-layer approaches. Therefore,
current research does not allow for a widely accepted abstraction. While the design paradigms
mentioned above reduce application dependency and hide low-level communication details,
they still address single sensor nodes (although redundancy of nodes and consequently spatial
correlation of sensor readings are inherent in WSN). Subsequently, there is a strong need for
a holistic design methodology. Such a methodology should be flexible/abstract and system-
ize/simplify the design as well as the deployment phases and involve functional as well as
extra-functional attributes. Obviously, the holistic approach should retain the advantages of
the existing paradigms. Overall, rather than addressing single nodes, designers should address
spatially-correlated and appropriately-grouped nodes. We refer to such groups as regions.
A few efforts do exist to address regions instead of single nodes [13, 35, 49]. The map
paradigm builds on the region principle and therefore, provides excellent modeling primitives
for WSNs. Global maps are created for the sake of network monitoring (e.g., residual energy
map [54]) or of event detection (e.g., oxygen map [25, 51]). A promising direction consists in
using maps to optimize protocols [12, 27], detect [33] or track [55] event boundaries. These
papers highlight the map-based methodology as a powerful and promising abstraction. In [21],
we propose that maps are the natural step towards a holistic Map-based World Model (MWM)
and Map-based WSN design.
In this chapter we develop the MWM for generalized WSNs. We show how this model retains
the advantages of existing design methodologies while augmenting their efficiency and level
of abstraction. We also present a step-wise design methodology to build an appropriate MWM
and the process driving its usage. We demonstrate the MWM-based design through a case
study which highlights the benefits of the MWM approach in predicting a network event,
i.e., network partitioning. We further present an implementation of MWM in the OMNeT++
simulator [46] emphasizing its utility for the development of simulation models as well as
for network design and validation. In particular, we emphasize the following qualities of our
MWM: (1) MWM can appropriately reflect both physical and network worlds while being
aware of the strong constraints on network and node resources, and (2) the MWM holistic
approach provides a natural way to define, detect, query and predict arbitrarily complex real
world situations and events.
The remainder of this chapter is structured as follows. Section 2 provides an overview on mod-
els for sensing the real world, the system model that we consider and the main requirements
on the MWM. In Section 3, we present our novel MWM-based architecture for WSN and we
define essential primitives for MWM management. Subsequently, in Section 4 we highlight
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the utility of the MWM for enhancing the autonomicity of WSN, and provide a step-wise
MWM-based design methodology for WSN. We also validate our design approach using a
case study. Section 5 details our MWM implementation in OMNeT++ and sketches some of
its uses. In Section 6, we discuss related work. Section 7 concludes our work and gives future
research directions.

2 Models and Requirements

First we introduce key models used for sensing the real world through a WSN, while arguing
for the need of a holistic world model. We then present the system model and requirements
for the proposed world model.

2.1 Models for Sensing the Real World

Typically, the user is interested in observing and controlling a certain physical phenomenon or
generally the physical world through a WSN representing a dashboard for that physical world.
The WSN delivers the required high-level user information with the required Quality of Infor-
mation (QoI) [4]. Accordingly, a WSN has to create an appropriate model of the physical world
of interest, collect the required raw data, synthesize this data and provide the required infor-
mation to the user. Similarly, an administrator requires a dashboard for the “network world”,
e.g., to show where the energy is suffering more. We refer to both physical and network worlds
as the world. We also denote by the user all users of both world models. Therefore, we model
a WSN as a (physical/network) World Model. The user observes the world through this world
model.
Usually, the user (represented by the sink) and the WSN agree on one or more (information)
models that should be kept consistent during the deployment (Fig. 1). Common examples of
these models include the ambient temperature map and the notification of a certain event.
Upon deployment, these models are initialized. The WSN should report changes in the agreed
on model (model update). The user can query the implemented model or trigger a model
replacement if necessary. An adaptive negotiable model is desirable to allow for evolvable
WSN systems. The model update should be incremental in order to minimize the consequent
communication overhead. Prediction models allow for predictability while minimizing the
communication overhead.
Each sensor node (SN) measures the physical signals of interest at a given sampling rate (with
a certain noise level). The sampling rate should be tuned as a function of physical world dy-
namics (which impact the dynamics of world model data) and the QoI required by the user.
Subsequently, a SN produces a time series of the signal (temporal sampling of the world). Spa-
tial sampling of the world is completed by the set of SNs. Both temporal and spatial sampling
play an important role in the accuracy and consistency of the world model, and specifically
the achievable QoI. The physical world can be changed through deployed actuators and the
network world through network maintenance or reconfiguration.
The design paradigms discussed in the introduction (network, database and event service) are
the main existing approaches to realize the world model and its update or query. In order to
provide for more comprehensible abstractions, we provide, in Section 3, our Map-based World
Model (MWM).
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2.2 System Model

Our generalized WSN scenario consists of a network composed of stationary resource-
constraint SNs, a static resource-rich sink and mobile resource-moderate assist nodes (ANs).
The SNs generate the raw data necessary to create the desired world model. The ANs are usu-
ally involved in model management and to a lesser degree in its generation. Commonly, WSNs
are built utilizing hundreds to thousands of low-cost SNs. A data sample is characterized by
the ID and the location of the SN as well as the sensor reading and its timestamp. We assume
that SNs know their own geographic position. The clocks of SNs are synchronized, e.g., via
GPS or alternate synchronization protocols [42].

2.3 Requirements on the MWM

In order to develop a unified and adaptable model of the physical and network world, we
identify the following requirements on the MWM:
(a) The MWM should incorporate the “network world model” (the WSN) besides the “physical
world model” (the science) in a unified way. This unification would simplify the design of
monitoring techniques for both network and physical world, e.g., by allowing for generic
solutions that maximize data piggy-backing. To the best of our knowledge, we are the first to
elaborate a unified model for both the physical world and network world. The MWM needs to
be generic and independent from modeling of the physical or network world.
(b) The MWM should be frugal and lightweight, i.e., its creation, management and use require
minimal resources with respect to storage, bandwidth and energy. The management of the
MWM is crucial for its usability as it determines its efficiency. The more centralized (e.g., at
the sink) is the MWM, the cheaper is its use but the more expensive is its management.
(c) We require the MWM to support different levels of details (i.e., zoom as required), and
easy to customize to the mission. The modularity and composability of the model are impor-
tant instruments to reach these goals, and to support diversified, multi-purpose and evolvable
applications.
The quality of MWM can be indicated by means of the conventionally accepted metrics of:
Accuracy, consistency, efficiency and scalability. There is always a trade-off between accuracy
and scalability, and between consistency and efficiency. These tradeoffs need to be investigated
by the WSN designers while designing the MWM.
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3 The Map-based World Model

We now define the MWM and provide a generalized architecture for WSNs that retains exist-
ing architectures while building on MWM. Next, we define core primitives for MWM man-
agement and survey the existing map construction techniques.

3.1 MWM Definition

WSNs, on one hand, are inherently embedded in the real world, with their goal being to detect
the spatial and temporal world’s physical nature, such as temperature, air pressure and oxygen
density. On the other hand, maps present a powerful tool to model the spatial and temporal
behavior of the physical world being an intuitive aggregated view on it. Therefore, without
loss of generality, we model the world as a stack of user maps (uMAP) presenting the spatial
and temporal distributions of the sensed attributes of interest in the physical world (Fig. 2). We
additionally model the spatial and temporal behavior of system properties as a stack of network
maps (nMAP) such as residual energy and connectivity maps. MWM is the superposition of
all maps of interest. The unified modeling of both physical/network models maximizes the
reusability of concepts and techniques.
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Fig. 2 Map-based World Model (MWM)

A Map is an aggregated view on the spatial distribution of a chosen attribute at a specific
time. From cartography [34], we identify two main classes of maps, i.e., the choropleths (e.g.,
nMAP 1 in Fig. 2) and the isomaps (e.g., uMAP 2 in Fig. 2). The map construction groups
spatially correlated SNs with similar attribute’s values to regions. In MWM we define a region
by its border (a set of spatial points) and an aggregate (e.g., average) of the attribute’s values
obtained from all SNs located in the region’s area. A map is then the collection of all regions
of the WSN. In Section 3.4, we survey existing approaches to create maps for WSNs.
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The main benefit from MWM is to abstract from single SNs by addressing regions. While los-
ing sampling details, the map abstraction usually sustains an acceptable accuracy concerning
the spatial distribution of sensor readings. Accordingly, the map abstraction presents a natural
step to increase the communication efficiency in WSNs. The higher the number of SNs per re-
gion, the higher the benefit. The MWM abstraction level simplifies the design and deployment
of WSNs as it can be easily accepted by different parties ranging from the user to network
designer, programmer and administrator.

3.2 MWM Architecture

Fig. 3 illustrates the MWM architecture which retains established paradigms, builds on top of
standard communication protocols and provides valuable support for application design. Net-
work primitives such as unicast, geocast, broadcast and convergecast are essential for query
dissemination, event detection and MWM generation and management. The strength of the
MWM is to hide the communication and sensing details. This simplifies the design of queries
and event detection/prediction on resource-constraint nodes. The required clock synchroniza-
tion and location information services can easily be realized through existing protocols.
The application interests and requirements define the maps composing the MWM as well as
the parameters needed for the construction of these maps. The user may use predicate-based or
SQL-like language to specify, delete or modify interests and queries. An example of predicates
is “the observed temperature is higher than a certain threshold”. The event fire occurs if the
predicate value is equal true. Note that the event definition requires fixing the threshold value.
The query and event services (Fig. 3), provide powerful primitives for the application design
and implementation. These services interact as events can be realized through continuous
queries, and queries can be triggered by events. The query and event services then act on
MWM to answer the user’s queries or to notify events of interest. MWM allows for addressing
regions instead of single nodes, leading to the optimization of queries, event detection and
prediction as detailed in our prior work [21].
From the WSN literature, we identify tinyDB with its extensions as an established query
service. TinyDB [29] considers a single table (sensors) and addresses single nodes. TinyDB
queries are SQL-based and support selection, projection and aggregation. In MWM we con-
tinue using an SQL-like query language. However, we query maps and their regions instead
of querying single SNs unlike existing approaches [5, 8, 28, 50, 53]. This may significantly
reduce the number of SNs involved in query processing especially if the number of regions
constituting the map is very low as compared to the total number of SNs. MWM supports
physical world queries and the network world queries in a unified way.
In [21], we defined real-world situations/states as the collection of all relevant maps at the
considered time. The extraction of patterns from a given map presents a powerful and generic
approach to define simple events [26]. The matching of composed patterns across a stack
of maps allows to define composite events. Accordingly to presented unified abstraction, we
define simple and composite events in MWM, as situation transitions. Event operations can be
matched to comprehensible geometric operations on geometric patterns [21]. Most of existing
approaches on event detection [1, 15, 23, 48] are based on network topology and on defining
thresholds, and consequently complex and less expressive. MWM further allows for a simple
and lightweight prediction of event occurrence. The matching of patterns on a temporal stack
of the maps provides for prediction as we will discuss in Section 4.1.
Pub/sub has been proposed as event service for WSN [9, 14, 36, 40]. The main reasoning
behind pub/sub is the flexible grouping of nodes as publishers and subscribers by defining
interest channels. The grouping of nodes is not fixed and depends on local decisions of nodes.
The pub/sub architecture has been defined for WSN to support multiple sinks and to allow for
multi-mission systems. Therefore, this architecture is orthogonal to the MWM approach and
we propose to deploy it for the management of distributed and/or replicated MWMs.
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Unlike pub/sub and tinyDB the node grouping in MWM depends only on the spatial corre-
lation of the sensor readings, which is desired for most of WSN applications. In the MWM
architecture, we allow for the integration of tinyDB and pub/sub (Fig. 3), allowing for an easy
add-on of MWM in existing WSN deployments. MWM query service goes into tinyDB if each
region is formed by one single SN. TinyDB is mainly a reactive service while pub/sub princi-
pally operates pro-actively. Our MWM is hybrid as the map construction can be completed in
a pro-active way and the MWM query in a reactive way. There is always a tradeoff between
pro-activeness and reactiveness that should be considered depending on the query frequency
and MWM dynamics.

3.3 MWM Management

The core question for the MWM management is to address (a) how much pro-activeness is
needed in MWM, (b) where to build and optionally replicate it (on sink or elsewhere within
the network), and (c) how to maintain the required consistency level through updates. The
impetus for investigating these issues is to fix the sources of the MWM and its users.
The MWM layer (Fig. 3) customizes the MWM by specifying the needed maps and the map
knowledge needed by each node. This knowledge may range from simple local view to region
view (partial view) to the map view (global view). The management of the MWM can easily be
transformed into the management of a set of maps. The update of the MWM is completed by
the update of the different views on the maps/regions composing it. The MWM approach al-
lows for dynamically inserting and removing maps terming an MWM’s re- and pro-activeness
besides its reconfigurability and evolvability.
The underlying layer for map construction provides basic primitives for the region and map
management at different nodes, i.e., their generation and update (Fig. 3). The management
of the individual maps can be considered separately. This allows for a differentiated manage-
ment for different maps composing the MWM; Some maps can be managed centrally on the
sink, others fully distributed, etc. For building MWM, one should investigate opportunistic
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construction of maps (e.g., by maximizing message piggy-backing). Update of local views on
the map may trigger updates to external view on the map (e.g., at the sink). As mentioned
before, it is worth to investigate the pub/sub architecture for the management of the MWM
and especially in the presence of mobile ANs and if many nodes manage partial or global
MWM views. Here the MWM generators will be publishers, its users the subscribers, and its
managers the dispatchers.

3.4 Region and Map Construction Techniques

We now review the existing basic management functions that can be used independently for
the maps of interest. These consist in conducting the map construction at the sink. A naive
approach for this construction is if each SN reports its value to the sink using multi-hop com-
munication. This is obviously inefficient. Consequently, more efficient approaches have been
developed using techniques such as in-network aggregation [16, 52, 54]. Other approaches
use suppression mechanisms to reduce the number of SNs reporting their raw readings to the
sink [26, 30, 39]. A new approach exploits node mobility to further increase the efficiency of
data collection [20].
Aggregation-based Approaches:
eScan [54] and isobar [16] are based on polygon aggregation leading to a choropleth map.
First, the sink disseminates the interest/query for a certain map to all SNs (Fig. 3). The query
should fix: (a) The map of interest and (b) the update model, i.e., when to send an update and
to which node. For eScan [54] the query is on the residual energy of SNs. The query is dissem-
inated using flooding to create a tree having its root at the sink. This tree is used to aggregate
the attribute values while being reported. A leaf node sends its raw value to its parent node.
An internal node gathers the input of all its children, aggregate it with its value and forward
it to its parent node. The aggregation consists in grouping sensor readings that meet a certain
criteria (being geographically adjacent and in the same value range). The outcome of the ag-
gregation is a list of (spatial) regions. A region is a polygon that is defined by the line spanning
its border nodes. At the sink the aggregation results in a complete map. SNs reply with their
current values immediately on query and later only with necessary updates. The update model
is aggregation-tree based, i.e., a SN sends its updates to its parent node which aggregates the
updates of all its child nodes. INLR [52] is an aggregation-based approach similar to eScan but
focusing on small scale WSNs. A SN sends its reading or the calculated aggregate not only to
its parent node but to all its neighbors that are 1-hop closer to the sink. While using more than
one parent increases the accuracy of the map, the efficiency is sacrificed.
Fig. 4 (a) sketches how maps are created and managed in the network by eScan [54], iso-
bar [16] or INLR [52]. The approaches are incremental. Consequently, the closer a SN to the
sink, the more global is its view on the map. In Section 5, we show the benefits of the MWM
implementation in OMNeT++ to acquire more insights of the eScan approach.
Suppression-based Approaches:
Isoline [39] is an approach based on localized isocluster aggregation. The map building is
reduced to the detection of isolines. Neighboring nodes share their readings. A node compares
its reading with the readings of all its neighbors and detects an isoline, when the readings lie in
different sides of a globally defined isoline. The detection of an isoline needs to be reported to
the sink by the closest neighbor to the sink. The isocluster aggregation outperforms polygon
aggregation in terms of accuracy with minor energy savings. Meng et al. [30] motivate the
use of contour (isoline) maps for efficient continuous monitoring in WSN. The authors de-
sign a temporal and spatial local suppression mechanism that prohibits some nodes to report
their readings. The number of saved reports highly depends on the spatial correlation between
sensor readings. SNs report their readings using multi-hop routing without any in-network
processing. The map is constructed on the sink using interpolation and smoothing techniques.
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Fig. 4 MWM management examples

Iso-Map [26] also does not rely on in-network processing. It uses a suppression mechanism
to reduce the number of SNs that report their readings to the sink using multi-hop communi-
cation. This approach is very similar to that of Isoline [39]. However SNs need to report the
gradient direction of the isolines, which requires excessive processing on SNs.
If one of the suppression-based approaches (Isoline, Iso-Map or [30]) is implemented to create
regions, then SNs located on the isolines (filled points) know that they are isoline nodes (see
Fig. 4 (b)), and the rest of SNs know only their local views, i.e., own sensor readings (non-
filled points).
Mobility-assisted Approach:
In [20], we presented gMAP, an efficient mobility-assisted approach to construct global maps.
In gMAP (a) SNs do not need to process readings of other nodes and (b) require to commu-
nicate a minimal number of messages compared to the approaches above. This is achieved
by opportunistically exploiting the mobility of ANs to collect data of interest, keeping SNs
transmit only their own readings on-demand to an AN in their transmission area. Since the
data collection lasts long (depending on the mobility of the AN) the gMAP approach is valid
only for attributes with values of high time validity.
Abstract Regions Approach:
“Abstract Regions” [49] is a family of spatial operators that allow SNs to form regions in
the WSN. Abstract regions define a neighborhood relationship between a particular node and
other nodes in the network in terms of radio connectivity, geographic location, or other node
properties. Examples include creating regions of k-nearest or n-hop neighbors. Regions can be
constructed and maintained depending on the required quality allowing for energy/accuracy
trade-offs. The authors demonstrate the effectiveness of abstract regions for varied sensor net-
work applications such as finding spatial contours. Some of the presented operators as well as
the contour finding application provide elementary management primitives for MWM.

4 MWM-based WSN Design

In this section, we first emphasize the viability of MWM for enhancing the autonomicity of
WSNs. Next, we present a step-wise methodology to benefit from the MWM architecture for
design and deployment of WSNs. Consequently, we validate our design methodology through
a case study.
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4.1 Enhancement of WSN Autonomicity

We present some use scenarios showing how MWM can enhance the WSN’s level of auto-
nomicity by supporting pro-active reconfiguration and cooperative WSNs.

4.1.1 Predictive Monitoring for Proactive Reconfiguration

It is challenging to predictively monitor sensor fields over time, i.e., combining data from
both the spatial and temporal domains. Efficient long-term data collection from the WSN
can enable fine-grained trend analysis and event prediction. There is only limited existing
work on event prediction in WSNs [6, 24, 45]. They perform time series forecasting and use
autoregressive models for predictability. The main drawback of these techniques is that they
act on single SNs, which limits their efficiency in terms of number of messages and processing
complexity. However, most of these approaches can be easily integrated into our MWM model
acting on regions and maps instead of single nodes. Therefore, protocol designers should
manage relevant MWM snapshots in a MWM history for an appropriate time window w.
Future snapshots can then be predicted with a certain accuracy. The main benefit of MWM is
the appropriate abstraction level for prediction provided by the map without sacrificing much
the accuracy of predictability due to the sacrifice of time series accuracy. Especially, when
the average number of SNs per region is high, the processing complexity for prediction and
the storage overhead for the map history is minimized, allowing for an efficient in-network
predictability on resource-limited or resource-moderate devices such as ANs. We present our
preliminary work on map-based prediction in [3].
Sensing the physical or the network world constitutes a first step towards a reaction such as
actuation back to this world. The maps of the MWM allow for an optimized and goal-oriented
spatial intervention (e.g., network maintenance) and navigation (e.g., for ANs and users) in the
sensor field. In particular, the pro-active reconfiguration and maintenance are of high interest
for future WSN given the growing reconfigurability of entities with respect to hardware and
mobility. The MWM allows for an efficient event-driven triggering of reconfiguration and for
map-based assessment of reconfiguration options. Examples of MWM supported proactive
reconfiguration are: (a) Map-based sensor re-tasking and re-programming, and (b) reactive
and pro-active node placement to maximize data collection and to provide for self-healing
and graceful degradation (e.g., by delaying network partitioning). Obviously, pro-activeness
enhances the self-* capabilities of the WSN and therefore provides for valuable techniques to
enhance the autonomicity of WSN systems [19].

4.1.2 Map-based WSN Interoperation/Federation

MWM presents a widely accepted abstraction level as it converts less comprehensive sensor
data into understandable information. Furthermore, MWM can be implemented as a mid-
dleware which simplifies the integration of varied applications not only intra-WSN but also
inter-WSN. The map-based model is potentially a candidate to develop standards for coop-
erative WSNs. Such standardization will provide a generic interface simplifying the WSN
interoperability through the interconnection of heterogeneous and autonomous WSN systems,
which can play a major role in future WSN research (e.g., SensorGRID [43] and Sensor-
WEB [7]). This is conform with the trend to integrate sensor data (such as GPS tracking data
and webcams) into Geographical Information Systems (GIS) and online services such as earth
geographic maps and second life.
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4.2 Design Methodology

The main design benefits arise from the MWM being holistic and relying on an abstraction
level that is admitted by users as well as application and network designers. WSN designers
are usually overwhelmed by a vast number of low-level primitives such as node level commu-
nication. Thus, it is invariably left to the designer to implement the details of communication,
making it both complex and error-prone. However, the designers would benefit from a higher-
level generic view. An understandable higher-level view is given by the maps, which allow
for a simplified but holistic design of future WSNs. Maps also provide an intuitive abstraction
level for debugging WSNs. Protocol and system design for WSN normally include a heuristic
design phase that is followed by validation and optimization phase. Our MWM approach is
well-suited for these phases.
We now present top-down approach to benefit from MWM for system design and deployment.
We describe a set of five necessary steps for building and configuring a typical MWM in
general with the purpose to detect and predict events and situations in the physical and network
worlds as well as proactive reconfiguration. We show the application of this step-wise design
approach using a case study.
STEP 1: Identify the problem by specifying the situations and events of interest from the
physical world (this phase involves domain/sensor experts and users) or the network world
(involving network designers and administrators). This is also the appropriate time to fix the
user requirements such as on the quality of observation/information (e.g., the event detectabil-
ity, predictability and accuracy).
STEP 2: Identify the required maps and define events and their operations, queries etc accord-
ing to the MWM specification.
STEP 3: Sketch a solution for the identified problem assuming an MWM global view given
by all maps (e.g., at the sink). The general solution consists of event/situation specifications,
and detection/prediction techniques.
STEP 4: Determine the required MWM knowledge of each node in the network while mini-
mizing the needed global knowledge, the overhead for the MWM’s creation, distribution and
management. The globally sketched solution can now be designed for the fixed MWM speci-
fication. The main result is then a set of detection and prediction algorithms.
STEP 5: Select requisite primitives (broadcast, unicast etc.) for intra- and inter-region com-
munication.

4.3 Case Study: Designing a Network Partitioning Prediction
Technique

We illustrate some key aspects of the proposed MWM-based design for WSNs by presenting
a simple case study, i.e., predicting network partitioning. For simplicity, we consider a WSN
composed of static SNs and a single static sink. We assume that the WSN is connected at the
time of deployment. We consider that energy depletion leading to a node crash is the primary
reason for network partitioning. We deliberately suppress details since our objective is provide
a proof of concept.
STEP 1: The problem we consider here is network partitioning, i.e., if either a set of nodes run
out of energy, or a set of nodes can not reach the sink. Network partitioning limits the sensing
coverage of the WSN and implies the need of counter-measures. For safety and maintainability
reasons, we require the prediction of network partitioning.
STEP 2: The map of interest for detecting network partitioning is the connectivity map
(cMAP). In order to allow for prediction, the energy map (eMAP) as well as the cMAP are
required. For simplicity, we start with a connected WSN and focus only on the prediction of
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network partitioning. Subsequently, the MWM is composed of the eMAP. We observe the en-
ergy level of the different eMAP regions and as this level approaches a predefined low level
(Eth), an early warning is reported. A fine-grained strategy for early warning reports is also
possible. For instance we can adapt the reporting frequency to the energy level of the region.
STEP 3: We now sketch a solution assuming the knowledge of the eMAP at the sink. Record-
ing the different eMAP regions that run out of energy allows to predict the isolation of some
energy-rich regions. The key idea is to monitor the low energy regions of the eMAP and to
use a regression algorithm to predict the time the regions run out of energy, and also the time
when the “dead” regions isolate other energy-rich regions (Fig. 5).
STEP 4: For prediction we do not need global map knowledge at the sink (spatial suppres-
sion). We do not also need the map knowledge during the complete WSN lifetime (temporal
suppression). It would be sufficient if only the regions of low energy report this state to the
sink that predicts the network partitioning. Furthermore, only a few nodes of each region (e.g.,
border nodes) have to report their value to the sink . For eMAP, we suggest using the Isolines
approach [39] to construct the map and to consider the following global classes of residual
energy: 0-Eth% and Eth-100% (Fig. 5).

Sink


B
order nodes of

energy weak


regions


Isomap@sink


WSN


Fig. 5 Prediction of network partitioning

Having the incremental reports (locations and energy values) of border nodes (isoline nodes),
the sink can now depict the relevant isolines and predict the coverage drop of the correspond-
ing region. This also allows to predict if some other regions in the network will be isolated as
a result of the coverage drops of some regions.
STEP 5: In this step, the designers should fix the communication primitives needed to imple-
ment the algorithms sketched in Step 4. They include broadcast for neighbor discovery and
border node identification, and convergecast for sending information from border nodes to
the sink. Additionally, some existing suppression techniques can be deployed to reduce the
number of reporting border nodes.
From the literature, we identify approaches to detect [38] and suspect [37] network parti-
tioning though research for its prediction is lacking. [38] detects linear partitions ,i.e., cuts.
Partitioning is detected by monitoring a small subset of SNs, called sentinels. The position
of sentinels is calculated at the sink, given the position of all SNs. The sentinels periodically
send a heartbeat beacon. When a sentinel is not reachable, the sink concludes that the part of
the network where this sentinel is located is partitioned. The main drawbacks of this scheme
are (1) the frequent blind reports to the sink, (2) not all shapes of partitions can be detected by
this approach (only linear cuts but not holes (dead regions) nor islands (isolated regions)) (3)
the poor accuracy of this detection approach as if a sentinel crashes, it is not always a sign of
network partitioning. Furthermore, this approach does not provide information about the re-
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gion really affected by partitioning, which complicates the maintenance options. The Partition
Avoidance Lazy Movement (PALM) protocol for mobile sensor networks [37] is a decentral-
ized approach, where a SN can locally suspect network partitioning and move to avoid it. The
PALM scheme assumes that each SN knows its own position and the position of the sink. The
SN periodically collects the position of all its neighbors and checks if some neighbors are
located in a small angle towards the sink. If no neighbor is located in this "promising zone",
the SN suspects network partitioning. The main drawback of this scheme is that every SN
has to periodically broadcast its location and to blindly check if network partitioning is sus-
pected. The deficiencies of these approaches express builds the core of the effectiveness of our
proposed map-based design.

5 MWM Implementation in OMNeT++

Simulation is a commonly used validation approach for WSNs. Hence, an implementation of
the MWM on the established WSN simulators will provide valuable access to maps present-
ing an understandable, contextual and interactive simulation information representation. OM-
NeT++ [46] is a discrete event simulator that is getting increased attention in WSN community
given its scalability, efficiency and flexibility resulting from its high modularity (OMNeT++
modules are object oriented structures). As we target large scale WSN in MWM, considering
OMNeT++ properties and capabilities, we use it to provide the first implementation of MWM.

5.1 MWM Implementation Architecture

The MWM implementation in OMNeT++ consists of a tracing module and a visualization
tool. We follow a generic approach, where the tracing module is loosely coupled with OM-
NeT++ components ensuring its high (re)usability. The tracing module periodically collects
the attributes of the network modules and saves the values in XML format. The tracing mod-
ule can easily be started by including it in topology configuration file (.ned) with a set of
parameters such as the specification of attributes to be monitored, the frequency of tracing etc.
The generated trace is input to our visualization tool which creates two dimensional repre-
sentation showing the network topology and renders the desired maps. Next the sensor field is
fragmented according to Voronoi polygons, which brings additional benefit of reflecting nodes
density. Every polygon is filled by a color corresponding to the value of selected attribute. The
visualization tools offers also observation of developing phenomena along the time axis. For
every time sample, a separate map is rendered, and user can navigate the visualized trace back
and forward in time.

5.2 Uses of Simulator Extension

Our implementation provides a flexible generic aggregation of trace data, and delivers high
level information that is acceptable by variety of users involved in the design and simulation
of WSN. The major benefit consists of the geographical/contextual visualization of the infor-
mation hiding the tedious and less comprehensive trace data. In the following, we highlight
three main utilizations for our MWM implementation corresponding to three main succes-
sive simulation phases: (a) Simulation configuration, (b) design and implementation, and (c)
validation.
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5.2.1 Simulation Configuration

Like often open simulators OMNeT++ benefits from continuous extensions from the user
community. These extensions are usually the results of modeling efforts. In the following
we highlight, through the example of energy consumption modeling, how the MWM imple-
mentation simplifies the development of OMNeT++ models and the generation of simulation
scenarios. Generally the energy consumption within the WSN shows high spatial correlation.
This is mainly a result of the inherent node redundancy in WSN. Hence, neighboring nodes
participate in the processing of same physical world events as well as network operations.
For instance, the closer the SNs to the sink, the more communication traffic they forward, as
traffic is mainly directed to the sink. Subsequently, it is crucial to provide appropriate energy
consumption models for the simulator such as the hotspot model [54]. Unfortunately, there is
no systematic way to validate such models or the simulation scenarios generated according
to these models. Using our MWM implementation, it is easy to generate the energy maps for
arbitrary scenario settings, energy consumption model parameters and time instant (Fig. 6(a)).

5.2.2 Design and Implementation

We emphasize that the implementation in OMNeT++ simplifies the WSN designing method-
ology described in Section 4. The MWM implementation aids in understanding the design
problem by visualizing the maps of interest for different scenarios. The designer can then in-
teractively test tentative solutions and their preliminary performance. For our case study in
Section 4, the MWM implementation can give valuable insights on network partitioning (par-
tition shape, causes, frequency etc.) and the number of border nodes that will report to the
sink for different scenarios, e.g., varied energy consumption models. Similarly, the physical
world of interest can be modeled and validated using the MWM implementation. These in-
sights allow for an interactive design, for example in the form of manipulation of the map
visualization. After discovering regions of interest, the designer can zoom into the visualized
map (Fig. 6 (b)) and optionally trace data, only for selected regions.

(a) Support for modeling (b) Support for design

Fig. 6 Examples for modeling and design support



Map-based WSN Design 323

5.2.3 Validation

Design validation mainly consists of two activities: Debugging and comparison. Both are
strongly enhanced in OMNeT++ through our MWM implementation.
Debugging: Developed concepts and techniques require implementation, which always in-
volves much debugging efforts. The map perspective allows a primary high-level debugging
thus simplifying a secondary focused debugging. MWM makes the localization of the spa-
tially correlated problems and the understanding of their nature a straightforward task. For
example bugs regarding the implementation of a routing design could manifest in energy-
overconsumption in untypical regions. Data aggregation errors in the eScan implementation
can be discovered by comparing the map created by eScan to the perfect map, which can be
easily generated for arbitrary time points (Fig. 7). Debugging process is also enhanced by the
visualization of the maps of the physical world.

(a) Perfect map (b) eScan [54] map (c) Differential map

Fig. 7 Protocol comparison

Comparison: The MWM implementation actively supports solution comparison. Such a com-
parison is intuitive given the visualization of the perfect snapshot on one hand and the achieved
snapshots by the different solutions under test on the other hand producing a set of differen-
tial maps. The map perspective simplifies spatial observation and performance comparison of
different solutions, i.e., to identify parts of the sensor field, where solutions perform better.

6 Related Work

Modeling techniques from the GIS literature and from the spatial temporal databases can
provide important techniques such as modeling languages and standards for our MWM. The
several existing tools such as the Space Time Toolkit [47] can be used for map data analysis.
In particular, we cite the existing modeling languages such as SensorML, REACTIVEML and
LUSSENSOR, which simplify the specification of our MWM. In this work we do not focus
on the MWM specification and formalization and keep it for future work.
We are not the first to define world models. Such a modeling technique is well established for
Augmented Reality or Virtual Reality [32]. The most related models to us are those for ubiq-
uitous computing and sentient computing. The ubiquitous computing [31] [10] [18] models
are optimized for complex physical worlds and rely on powerful infrastructure that creates and
manages the model for mobile clients. Many related concepts can be adopted if our MWM is
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centrally stored and managed by the sink. However, in this chapter we argued for a distributed
MWM, i.e., only partially centralized at the sink, given the strong resource constraints for
the WSN prohibiting a full data collection at the sink. Sentient computing deploys sensors to
perceive the environment and react accordingly. One use of the sensors is to construct a world
model in the infrastructure, supporting location-aware or context-aware applications [44] [2].
Sentient computing focuses only on indoor scenarios and ambient intelligence applications.
All these world models are user-centric and do not fulfil vital requirements for a world model
for WSN. In particular, they are not frugal and do not support a unified network/physical world
model.

7 Conclusions

Maps provide a widely accepted abstraction. Circumventing the problem of addressing single
nodes in a WSN, we have developed a map-based system architecture. The proposed intuitive
and lightweight map-based world model (MWM) uniformly models both the physical and the
network world using maps. Besides predictive monitoring the MWM provides an important
decision base for pro-active WSN reconfiguration to enhance WSN functionality, dependabil-
ity or security. Our architecture is flexible and presents a powerful tool for both designing
and deploying WSNs. This has been elucidated by a case study and an implementation for
OMNeT++.
In future work, we are planing to refine MWM by formalizing the definition of the query-
ing language and developing efficient/frugal algorithms for replication and consistency of the
MWM on the sensor, assist and sink nodes. In order to simplify the access to MWM for
the community, we aim to develop extensions to further simulators such a Tossim and MM-
ulator [22], and platforms such as TinyOS.
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An Efficient, Scalable and Robust P2P
Overlay for Autonomic Communication

Deng Li and Hui Liu and Athanasios Vasilakos

Abstract The term Autonomic Communication (AC) refers to self-managing systems which
are capable of supporting self-configuration, self-healing and self-optimization. However, in-
formation reflection and collection, lack of centralized control, non-cooperation and so on
are just some of the challenges within AC systems. Since many self-* properties (e.g. self-
configuration, self-optimization, self-healing, and self-protecting) are achieved by a group of
autonomous entities that coordinate in a peer-to-peer (P2P) fashion, it has opened the door
to migrating research techniques from P2P systems. P2P’s meaning can be better understood
with a set of key characteristics similar to AC: Decentralized organization, Self-organizing na-
ture (i.e. adaptability), Resource sharing and aggregation, and Fault-tolerance. However, not
all P2P systems are compatible with AC. Unstructured systems are designed more specifically
than structured systems for the heterogeneous Internet environment, where the nodes’ persis-
tence and availability are not guaranteed. Motivated by the challenges in AC and based on
comprehensive analysis of popular P2P applications, three correlative standards for evaluating
the compatibility of a P2P system with AC are presented in this chapter. According to these
standards, a novel Efficient, Scalable and Robust (ESR) P2P overlay is proposed. Differing
from current structured and unstructured, or meshed and tree-like P2P overlay, the ESR is a
whole new three dimensional structure to improve the efficiency of routing, while information
exchanges take in immediate neighbors with local information to make the system scalable
and fault-tolerant. Furthermore, rather than a complex game theory or incentive mechanism, a
simple but effective punish mechanism has been presented based on a new ID structure which
can guarantee the continuity of each node’s record in order to discourage negative behavior on
an autonomous environment as AC.
A detailed measurement study of three popular unstructured P2P overlays and ESR is per-
formed. Our method is to analyze performances of classical searching algorithms in various
overlays. Key factors in content locations including scalability, query success rate, query mes-
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sages, cost, disturbed times and fault tolerance are considered carefully. The simulation results
show some characteristics in unstructured P2P overlay and prove that ESR is a highly efficient,
low cost and fault tolerant overlay and a good structure for applications in AC.

1 Introduction

The term Autonomic Communication (AC) [1] addresses such challenging issues as the con-
tinuous growth in ubiquitous and mobile network connectivity, together with the increasing
number of networked computational devices populating our everyday environments (e.g.,
PDAs, sensor networks, tags, etc.), by trying to identify novel flexible network architec-
tures, and by conceiving novel conceptual and practical tools for the design, development,
and execution of “autonomic”communication services. It is used to enable networks, associ-
ated devices and services to work in an unsupervised manner, to self-configure, self-monitor,
self-adapt and self-heal – the so-called self-* properties. For such a highly distributed and het-
erogeneous environment, the classical, centralized client-server communication model seems
to be inappropriate because of its inherent limitations in terms of scalability, fault-tolerance
and ability to handle highly dynamic environments.
Peer-to-peer (P2P) systems consisting of a dynamically changing set of nodes connected via
the Internet have gained tremendous popularity. While initially conceived and popularized for
the purpose of file sharing (e.g. Gnutella). P2P has emerged as a general paradigm for the
construction of resilient, large-scale, distributed services and applications in the Internet.
The lack of global or central control implies the need for new techniques to design and verify
self-* properties. Since many self-* properties (e.g. self-configuration, self-optimization, self-
healing, and self-protecting) are achieved by a group of autonomous entities that coordinate
in a peer-to-peer (P2P) fashion, thus, it has opened the door to migrating research techniques
from P2P systems. P2P’s meaning can be better understood with a set of key characteristics
similar to AC: Decentralized organization, Self-organizing nature (i.e. adaptability), Resource
sharing and aggregation, and Fault-tolerance. The common characteristics shared by P2P over-
lays and ACs also dictate that both networks are faced with the same fundamental challenges,
that is, to provide connectivity in a decentralized, dynamic environment. Thus, there exists a
synergy between these two types of networks in terms of the design goals and principles of
their routing protocols and applications built on top: both P2P and AC routing protocols and
applications have to deal with dynamic network topologies due to membership changes or
mobility. The common characteristics and design goals between P2P overlays and ACs point
to a new research direction in networking, that is, to exploit the synergy between P2P overlays
and ACs to design better protocols and applications.

2 Background on P2P Overlay Networks

The numerous P2P overlay networks for the Internet that have been proposed in the past few
years can be broadly classified into two categories:

1. Unstructured. Unstructured P2P overlay networks as exemplified by Gnutella [2] do not
have precise control over the overlay topology. The network is typically formed by nodes
joining the network following some loose rules, for example, a node joining a Gnutella
network starts by connecting to nodes in a host cache file which stores Gnutella nodes
learned from the last time the node was part of a Gnutella network, and a Gnutella node
typically specifies a default maximal number of neighbors in the Gnutella overlay. In
the resulting network topology, the placement of an object or a file is not based on any
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knowledge about the topology. Furthermore, the overlay is often not network proximity
aware; that is, neighboring nodes in the overlay may be far away from each other in the
underlying Internet topology. The typical way of locating an object in an unstructured
overlay is to flood the network in which a query is propagated to overlay neighbors within
a controlled radius. While the lack of proximity-awareness and flooding-based object
location are inefficient, the consequent advantage is that unstructured overlay networks
and the companion object location mechanisms that do not rely on any precise structure
of the topology are highly resilient to frequent node join and departure.

2. Structured. To overcome the inefficiency with object location in unstructured net-
works, structured overlay networks have been proposed to combine the inherent self-
organization, decentralization, and diversity of unstructured P2P overlays with a scalable
and efficient routing algorithm that can reliably locate objects in a bounded number of
routing hops, typically logarithmic in the network size, while exploiting proximity in the
underlying Internet topology. Numerous structured P2P overlays have been proposed,
such as Chord [3], Pastry [4] and CAN [5]. The routing of such structured P2P over-
lays effectively implements scalable and fault-tolerant distributed hash tables (DHTs):
each node in the network has a unique node identifier (nodeID) and each data item stored
in the network has a unique key, nodeIDs and keys live in the same namespace, and a
message with a key is routed (mapped) to a unique node in the overlay. Thus, DHTs
allow data to be inserted without knowing where it will be stored and requests for data
to be routed without requiring any knowledge of where the corresponding data items are
stored. To maintain efficient routing, nodes in a structured overlay must maintain neigh-
boring nodes that satisfy certain criteria in the namespace. As a result, structured overlays
are conceptually less resilient to frequent node join and departure. In the rest of the chap-
ter, we use DHTs and structured P2P overlays interchangeably whenever appropriate for
this reason.

3 Challenges and Requirements in Supporting P2P for AC

There are a number of critical challenges and problems which currently prevent the great
potential of AC from being revealed: such as information reflection and collection, lack of
centralized control, non-cooperation and so on [1]. These key challenges, which are currently
the focus of extensive research efforts in the P2P research community are going to be briefly
outlined below.

3.1 Information reflection and collection

Search and resource location mechanisms are necessary for information reflection and collec-
tion, and are a fundamental and crucial building block of most P2P systems and determine, to a
large degree, their efficiency and scalability. The large volume of query traffic generated by the
flooding of messages limits the scalability and efficiency of Gnutella-like approaches. There
have been a number of attempts like random walk [6, 7] seeking to improve the efficiency of
the search for unstructured pure P2P systems.
Currently, many researchers present P2P overlay based on Semantic-similarity [8], content-
similarity [9] or share interest [10]. There are, yet, two fundamental problems: (1) in overlay
networks the physical underlying infrastructure is not adequately taken into consideration with
regard to the construction of an overlay structure. This leads to an inefficient use of the under-
lying network resources and to a high end-to-end delay for applications; (2) present network
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distance estimation services require a certain level of external information for the setup of
landmarks. This makes the resulting systems non-self-organizing, and if the landmarks fail,
then the entire system is affected. Thus, there is a need for more structure and guidance in this
chaos of self-* properties for AC.

3.2 Lack of Centralized Control

Because lack of centralized control, the security requirements of AC differ from the require-
ments of distributed systems in general, and include traditional security goals such as confi-
dentiality, authentication, integrity and availability.
First of all, the nodes in an AC system are much more autonomous and powerful than in
conventionally distributed systems. For example, in numerous P2P fashions, the individual
nodes assign their own node identifiers. This makes establishing a level of trust extremely
hard for initially unknown entities, since identities can easily be altered. Furthermore, it is
possible for a malicious node to create multiple identities in order to gain control of a part of
the system. This is referred to as a Sybil Attack [11]. The security of the solution mechanism
[12] is based on the secure assignment of node identifiers via a trusted Certification Authority
to stop potential Sybil Attacks. Such a trusted entity is typically not available in AC systems.
On the contrary, in an open environment with mutually distrusting and potentially malicious
participants, the lack of a trusted entity makes it extremely difficult to establish a level of trust
mechanisms.

3.3 Non-Cooperation

In AC, open systems architectures allow agents to join networks dynamically and both offer
and consume services. The growth of peer-to-peer services and the withering of centralized
control make cooperative behavior essential to preventing free riding [13] and other selfish
behaviors, which is one of the key challenges of current P2P systems. A free rider is a node that
has access to services and consumes resources without participating in any of them. A recent
study shows that 85 percent of Gnutella users share no files [14]. We can no longer expect
that engineering a network properly can be independent of the economic realities concerning
the implementation of that network.
Incentive mechanisms penalizing free riders or rewarding users have been discussed [15–17].
More general reputation mechanisms [18] can be used to obtain a system of wide reputation
for each user. Using this information, each user will give priority to the users with a high
reputation. In BitTorrent [19], users download pieces of files and at the same time upload the
pieces they already have. Similarly, in [20] the users can directly exchange resources between
themselves. But BitTorrent can still suffer from free riding [21], because selfishness-proof
algorithms are difficult to be designed simply.
Another option is to use monetary incentives to solve the problem of free riding. In this case,
users must pay to download files from other peers. The payments may either be in monetary
terms where a price is assigned to each file and users exchange files only when they can afford
it [22], or in an internal non-monetary currency. In the latter, the budget of a user decreases
every time he downloads a file, and increases every time he uploads a file. Recent work [23]
studies the system performance as a function of the total amount of internal currency available.
The decision to cooperate or not in a P2P context can be modeled with the use of game
theory such as [24, 25] in wireless ad hoc networks which are characterized by a distributed,
dynamic, self-organizing architecture modeled as a game.
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A big problem in proposing an incentive mechanism lies in the ability to track past behaviors
in order to determine present service quality. Most of the existing work generally involves a
trusted third party for records and query responses, which would suffer from the failure of a
single point and in turn result in poor scalability.
That is to say, guaranteeing the history of nodes’ behaviors is an extremely challenging prob-
lem and an open research issue for AC. Thus, how to make the node ID unique and how
to make the records of nodes’ behavior consecutive in a highly dynamic and decentralized
environment such as AC is a key question.
According to the above, the challenges of AC are because of the high degree of autonomy.
This degree of autonomy also makes an incentive mechanism inefficient because there is no
trusted global server to secure the assignment and uniqueness of node identifiers. Thus, in AC,
it is difficult to deal with Sybil Attacks or the problem called whitewashing [16] – peers leave
the system and rejoin with new identities to avoid reputational penalties. In the final analysis,
we think that a good P2P system which is compatible with AC should consider and satisfy
three correlative requirements: (1) information can be located and routed at a high efficiency;
(2) the topology should be scalable and robust; (3) while negative (i.e. the selfish or malicious)
behaviors will be prevented. To get a high efficiency in communication, there should be no or
few negative users, and too many negative behaviors will lead to bad scalability. Meanwhile, if
information can be located and routed at a high efficiency, it will decrease the maintenance cost
of the topology so as to improve the robustness. Thus, the three requirements are necessary,
important and relative to each other when we evaluate the P2P overlays.
To our knowledge, no related work has addressed all those three requirements for P2P over-
lays, which are also necessary for AC. This chapter, however, complements many pieces of
recent work and firstly aims at satisfying all requirements, presents a novel Efficient, Scalable
and Robust (ESR) P2P overlay. The detailed key characteristics of our design are summarized
below:

• A 3D overlay with global view combined with limited state, and localized connection
and information exchange. That is to say, high efficiency and low cost are combined in our
overlay, even when there is a high amount of peer churn. Though there are many researches
used overlay construction algorithm in a much more generalized N-dimensional space,
rather than a 3-dimensional space described in this paper. They are either used in structured
P2P overlay [5, 26] with DHT, which can not suitable for highly dynamic environment
with frequent node joining and leaving, or without consideration of heterogeneity of peers
[27].To our knowledge, there is no similar research with our overlay.

• Information Center (IC) is presented by considering of physic location and peers’ activities
to give attention to both efficiency and prevention of the negatives. It differs from most
cluster head selection mechanisms only consider nodes’ capability such as the end-to-end
delay to other nodes [28] in one cluster or outbound bandwidth [29].

• The unique and successive of peers’ identities (IDs) without the need of global knowledge
or hashing, even though both dynamic and random events like joins, leaves and crashes take
place. It is very important for the overlay to be maintained effectively and autonomously
so that the corresponding mechanisms (e.g. game theory) could be applied conveniently.

4 The Description of ESR

4.1 The Formation of ESR

In the overlay, nodes are divided into many clusters called Autonomous System (AS). Inspired
by the idea of the prime meridian or longitude 0 used to describe longitude and latitude, we
propose using a normative node called the Origin Node (ON), in which ASs in the overlay
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Fig. 1 The perspective of the high efficiency and low cost overlay (H=4 and d=2)

calculate their approximate coordinates in the same virtual space. ON is not a permanent
node, since our overlay is a full self-organizing architecture; mainly, it is used to form the
overlay through consideration of the physical situation. Moreover, ON disappears when the
initial overlay becomes a stable overlay. When ASs can maintain the overlay structure by
themselves, the overlay is called stable. Our overlay consists of ASs, levels and layers. The
maximum AS size is d+3. That is to say, the maximum peer number in one AS is d+3. The
AS with the maximum peer number is called FULL AS (FAS). Before the overlay can become
a stable overlay, nodes in one AS are sorted out according to their distances from the ON and
the unique node ID is given. Nodes belonging to the same AS have an IP address sharing
the longest Common Prefix (CP). The ASs are positioned on a gradient which increases the
farther away they are from the ON, and each AS has a unique AS ID. Many grouped ASs are
constituent parts of a level, which has a threshold (ANi), where i is the number of the AS in
the level, to the AS number. When one AS is a FAS, a new AS will be created as the next AS
of the FAS in the same level. Let Lmax be the distance between the new node and the farthest
node in an AS. If there are many candidate ASs, the new node will choose an AS whose Lmax

is the minimum. Levels are sorted out according to their distance from the ON. A new level
(i+1) will be created above the primary level i to set new ASs while the number of ASs on the
primary level reaches the predefined threshold. Each level has a unique level ID. The planar
space has many levels called layer. Layers are further increasing gradients guided by their
distances from the ON. When the number of levels in a layer reaches the predefined threshold
(Li), where i is the number of the layer, the structure grows to a 3D space, i.e. a new (i+1)th

layer will be created above the ith layer to set new levels. Thus, new ASs will be initiated
in a new layer above the primary layer. At the end of this process, an overlay-structure that
matches the underlying network can be constructed based on the clusters of nodes that are
close together and in proximity to each other.
Fig. 1 is our logical overlay, where H is the number of levels and the number of layers. Every
layer includes many levels and ASs communicating to each other by cluster headers called
Information Centers (ICs) appearing in all ASs, levels and layers. The predefined bound d=2.
The blank dot, black dot and blank square denote IClevel, IClayer and IClocal, respectively,
which will be introduced in Sect. 4.3.
The edge between neighbor ASs (e.g. the edge between AS 9 and AS 20) is one of the long-
range contacts, and each edge in the AS is one of the local contacts. Long-range contacts and
local contacts are presented in [30] to build small world networks, while our contacts are not
randomly chosen. When the overlay-structure is a stable overlay, the ON ceases to exist. Let
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Dmax be the average distance between the new node and the ICs in an AS. If there are many
candidate ASs, the new node will choose an AS whose Dmax is the minimum. ICs in our work
cooperate with each other to provide this geographical partitioning feature.
Each node has the unique 128 bit node identifier in our system. The node ID is used to indicate
a node’s position in the overlay, which ranges from 0 to 2128 -1. The node ID is defined by
the layer number, the level number, the AS number and the node number immediately after a
node joins the system. The letters i, j, k and t respectively denote the layer number, the level
number, the AS number and the node number, which are shown as follows (i.e. Fig. 2):
Ni, j

k,t denotes the tth NN of the kth AS at the jth level in the ith layer. It is obvious that the node
ID is global unique.

4.2 The Source Ranking

For the selection of IC, we present a mechanism called Source Ranking where a peers’ group
is formed by the online queuing function SR. When the information exchange begins between
peer Pi and P j, it is assumed that query is sent from Pi to P j. Then E(Pi, P j) denotes the Pi’s
evaluation to P j about the completion of the query.

E(Pi,P j) =
∑

∀q answered by Pj

Qsim(qj,q)α∗N(Pi,P j)
/

T (Pi,P j) (1)

Parameter α improves the power of similarity of queries. Since α is bigger, queries that are
more satisfied are given a higher evaluation. That is, the more similar queries P j completes,
the larger evaluation Pi gives. In order to find the most likely peers to answer a given query
we need a function Qsim: Q2→ [0,1] (where Q is the query space), to compute the similarity
between different queries. N(Pi,P j) indicates the number of the communication times between
peer P j and P j. T (Pi ,P j) denotes the time of information exchange between peer P j and P j.
When the similarity between the different queries is the same, we can assume that the peer has
more communication times in unit information exchange rather than in time joining the AS in
order to decrease the percentage of the free riders.
The cosine similarity (formula 2) metric between 2 vectors (−→q and −→qi ) has been used exten-
sively in information retrieval, and we use this distance function in our setting. Let L be the
set of all requirements for resources or services that have appeared in queries. We define an |L|
-dimensional space where each query is a vector. For example, if the set L is the requirements
A, B, C, D and we have a query A, B, then the vector that corresponds to this query is (1, 1, 0,
0). Similarly, the vector that corresponds to query B, C is (0, 1, 1, 0). In the cosine similarity
model, the similarity sim of the two queries is simply the cosine of the angle between the two
vectors.

sim(qi,q) = cos(qi ,q) =
∑

(−→q ∗−→qi)
√

∑

(−→q )2 ∗
√

∑

(−→qi)2

(2)

Thus, the source ranking of P j is:

S R(P j) =
∑

∀i, j∈{thesameAS}
(E(Pi,P j)∗D(Pi,P j)) (3)

i j k t
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Fig. 2 The structure of node ID
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Where D(Pi,P j) = 1/dist(Pi ,P j) , dist(Pi,P j) denotes the distance between peer Pi and P j,.
That is to say, the closer peers lie in geography, the bigger the function D is. It improves the
power of peers adjacent geographically in order to avoid influence of network congestion.
We conducted a 10000-node random physical network topologies generated by using the
GT-TTM library [39] by which all simulations in the paper are run based on the different
topologies generated. In the topology network, about 10, 50 and 100 near nodes are randomly
grouped in one AS respectively (each topology is generated 10 times). Fig. 3 shows the effect
of node location on the SR in the AS with different size when the evaluation between any two
nodes is similar.
The shadow bar denotes the SR value of each node in the topology, while the solid bar on
the right side of the shadow bar denotes the location of the same node. In the simulation, we
consider the variance of the delay from the node x to all the other nodes in the same AS rather
than the average of the delay in order to more objectively show the relative location of each
node in the AS.

4.3 The selection and performance of ICs

There are three ICs called IClocal, IClevel and IClayer in each AS, and the three nodes are
connected to each other. The other nodes in the AS are called normal nodes (NN) and their
applications and resources are abstract as the information. In our paper we will define the
maximum number of NNs as d. The ICs have different functions but contain the same backup.
NN j

i denotes the jth NN and ICi
σ denotes the ICσ (σ ∈ {local, level, layer}) in AS i (i ∈ [1,26])

in Fig. 1.
IClocal: IClocal is connected by and receives information such as ID, IP, applications, resources,
activity histories (i.e. the values of SRs) and status from most d local NNs. For example, NNi

directly connect to and store their information in IClocal (ICi
local). IClocal also keeps the backup

of information and sends its own information (i.e. information of NNs) to local IClevel and
IClayer.
IClevel: One IClevel in the ith level communicates with at most d the (i− 1)th IClevel s. Each
IClevel is connected with only one IClevel in the upper neighbor level. A local IClevel submits
the application and resource information of its AS (i.e. information from local NNs aggregated
in local IClocal are backed up to IClevel) to the corresponding IClevel in the upper neighbor
level. E.g. IC9

level and IC10
level are two IClevel s connected to the upper neighbor level IClevel

IC13
level. IC13

level backs up information in IC13
local and IC13

layer , and sends information about local

NNs (e.g. NN j
13) to its upper neighbor level IC15

level. To recover from all ICs’ crash, IClevel also
stores upper neighbor level NNs’ IP addresses.
IClayer: One IClayer in the ith layer communicates with at most d IClayer s in the (i−1)th layer
while the AS which lies in the highest level has 1 extra subordinate from the highest level
AS in the lower neighbor layer. Each IClayer is connected with only one IClayer in the upper
neighbor layer. Because of characteristics of our overlay, IClayer in the upper layer only backs
up the ID and IP information and activity histories of the nodes of its lower neighbor layer
ASs. For example, IC20

layer stores the information such as ID, IP and values of SRs receives

from IC9
layer , including those information of IC9

local, IC9
level, and NN j

9 etc. Since the distance
across layers is longer than the distance between levels in the same layer, the possibility of a
fault in transferring large data increases. However, the amount of ID, IP and activity history
information is small and it is suitable to be transferred across layers in order to improve the
whole protocol’s robustness. The IClayer also keeps the backup of information and sends its
own information (i.e. ID, IP and value of SR about lower neighbor layer nodes) to local IClevel

and local IClocal. To recover from a tri-IC’s crash, the IClayer also stores its upper neighbor
layer NNs’ IP addresses.
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Judging from the condition described above, the load in IClevel is the heaviest. So we choose
the node with the highest value of SR in an AS as the IClevel in this AS. Then the nodes having
the ordinal highest (the 2nd highest and the 3rd highest) values of SR are named as IClocal and
IClayer respectively. The other nodes in this AS are NNs which don’t have to keep information
tables of each other but only information about the IP and ID of the IClocal IClevel and IClayer.

5 The maintenance of ESR

In this section, we propose the maintenance of the overlay, including joining, leaving and the
mechanism for preventing free riders. Peers in level j < H−1 are partitioned into ASs of size
in [δ,m] (The analysis assumed that each AS are connected by at least k lower neighbor ASs.
m ≥ δ ≥ 1 are two constant).

Lemma 1. it is assumed that k is a constant ( k ≥ 2 ), to ∀x > 0, kx ≥ kx.

Proof. Here we use epagoge.

1. To x=1, k=k is true.
2. To x=2, since k ≥ 2, k2 −2k = (k−1)2 −1 ≥ 0, thus k2 ≥ 2k.
3. To x > 2 , it is assumed that kx−1 ≥ k(x−1), then

kx
= k · kx−1 ≥ k · k(x−1) (4)

4. Since k ≥ 2, 1+ 1
k−1 ≤ 2 < x, that is,

k
x
< k−1 (5)

From inequation (5) we conclude

k2(x−1) > kx (6)

Combined inequation (4) and (6), kx ≥ kx, by the epagoge, lemma 1 is proven.
⊓⊔

Lemma 2. it is assumed that k is a constant and ( k ≥ 2 ), then kx > (k−1)x− k (x > 0) .

Proof. Since k ≥ 2, and x> 0, then (k−1)x−k < kx−k < kx, from lemma 1, lemma 2 is proven.
⊓⊔

Theorem 1. If one IClevel in the ith level communicates with at most d the (i−1)th IClevels, and
one IClayer in the ith layer communicates with at most d the (i−1)th IClayers. The height H of
levels or the layers in the overlay is less than logd M+1, where M is the number of ASs.

Proof. To level H−2, the group number is at most d, Thus, to layer 0 (the number of levels is

H−1), the number of all ASs is,
H
∑

n=1
dn−1 = 1−dH

1−d . Recursively, to layer 1, the number of levels

is H−2, thus the number of all ASs is,
H−1
∑

n=1
dn−1 = 1−dH−1

1−d . Then, to the overlay, the number of

ASs is,
(1−d)+(1−d2 )+(1−d3 )+...+(1−dH )

1−d =
H−d(1+d+...+dH−1)

1−d

=
H−d 1−dH

1−d
1−d = H−dH−d+dH+1

(1−d)2
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Then, H−d·H−d+dH+1

(1−d)2 = M. Combined lemma 2, we have

M =
H−dH−d+dH+1

(1−d)2
>

dH+1 −dH

(1−d)2
=

dH

d−1
> dH−1 (7)

From inequation (7), we have H < logd M+1 . Theorem 1 is proven. ⊓⊔

Theorem 2. The worst-cast node degree of the multicast overlay is at most d+4.

Proof. Consider a node X in one AS. There are four possibilities:

1. X is the NN: X only links to IClocal in the AS. Therefore, the degree of X is 1.
2. X is the IClevel: An AS has at most d lower neighbor level ASs and only at most 1 upper

neighbor level ASs, thus X has at most d+1 neighbor IClevels (the degree is at most d+3).
An exception holds for the highest level where the IClevel has no upper neighbor level
IClevel (the degree is at most d+2).

3. X is the IClocal: Each IClocal is linked by at most d NNs, thus the degree of X is at most
d+2.

4. X is the IClayer: An AS has at most d lower neighbor layer ASs and only at most 1 upper
neighbor layer ASs. Thus, X’s degree is d+3. The AS which lies in the highest level has
1 extra subordinate from the highest level AS in the lower neighbor layer(the degree is
at most d+4). An exception holds for the highest layer where the IClayer has no upper
neighbor layer IClayer (the degree is at most d+3). In any case, the degree of a node can
not exceed d+4, thus proving the theorem true.

⊓⊔

Theorem 1 and theorem 2 summarize two properties any P2P structure, such as a tree, should
desire. As clients join and leave, we must be able to adjust the 3D overlay without violating
the adaptive rules. Overheads incurred by this adjustment should be kept small to keep the
system scalable.

5.1 Two rules for maintenance

To prevent the selfish behavior, we present the rule 1 as following:
Rule 1: Each AS has a minimum value Min(E f )i, j

k of peers’ SR, where i, j, k denotes the AS’s

layer number, level number and its location in the level respectively. Min(E f )i, j
k is dynamically

decided by a number of nodes and the loads in an AS. If one node’s value of SR is less than
Min(E f )i, j

k , it is considered a selfish peer and will be dropped.
Many researchers have presented the node ID [31]. However, they do not deal with the mech-
anisms of how to guarantee the uniqueness of IDs in a highly dynamic and distributed envi-
ronment as AC, and the stability of the system. As analyzed in Sect. 4.1, every node ID is
unique. Moreover, from Sect. 4.2, we can see that each AS only knows the global unique IDs
of several neighboring ASs in ESR. In ASs communicating with each other by Peer-to-Peer
without a global IC, it is important to prevent nodes from registering in several ASs so that
one node has several IDs. Thus, we present the rule 2 to prevent malicious nodes.
Rule 2: a threshold distance (Tdist) between neighboring ASs in the same level as Tdist =
∑

σ∈{IC}
(pcri
σ ∗Distσ)

∑

σ∈{IC}
pcri
σ

, every new joiner must join the nearest AS. If a new node wants to join an

AS farther than Tdist, the AS will regard it as a malicious peer (e.g. a whitewasher) so that the
join request must be refused. In the formula, σ is one type of the three ICs, Distσ denotes the
distance between two neighboring ICσ at the same level. E.g., Distlocal denotes the distance
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procedure Joining

{ }( :r x i xS r CP C i r D R← ∧ ∃ ∈ <≃

q null←
'S S←
While ( 'S ≠ ∅ ){

'pick a random AS from Sjr ←
Calculate 

avgD ( , )jx r

{ }' 'S S jr= −
}

While (S q null≠ ∅ ∧ = ){

{ }avgselect (min(D ( , )) S)j jr x r r← ∀ ∈
S S { }r= −

if  _ 1 max_num r r+ ≤ /* have room*/

 q r←
else 

if  i,j
k: Min(Ef)ii r SR∃ ∈ <

drop node i

 q r←
else

if  : max( ( , )) ( , )avg avgi r D i r D x r∃ ∈ >
drop node i

 q r←
}

Fig. 4 The pseudocode of joining algorithm

between IClocals in two neighbor AS at the same level. pcri
σ denotes a parameter defined by the

position of ICσ in its AS. It should be noted that ICs are changed by the dynamic joining and
leaving, Thus, pcri

σ is necessary because the position of each IC is dynamic. The discussion
of pcri

σ could be found in our other article [32]. The rule 2 can limit peers in local situation
without the centralize controller as ON.

5.2 Node joining

There are many researches on bootstrapping. In this paper, we do not concentrate on how to
bootstrap in our protocol; we just assume that every new node can always satisfy the following
condition: For each new joiner, at least one close node existing in the overlay-structure can be
found. This assumption allows the new node to join the AS close to itself. It is rational. For
example, if the peers in City A are collected in one AS, there is a greater possibility for a new
joiner in City A to meet one of the peers in the same city and to become a member of that AS.

• Suppose the node is a new node which has never joined the system before. If the bootstrap-
ping node X is an IClocal, the new node submits its information to IClocal, and obtains a
unique ID from the AS that is also a unique global ID. If the bootstrapping node X is not
an IClocal, through the IP stored in X, the new node invites X’s local IClocal to join X’s AS
and submit all its information to local IClocal. Then the new node obtains a unique ID from
the AS that must be a unique global ID.

• Suppose that the node had joined the system before. It rejoins the system through its record
of the AS. If, upon accepting the new connection, the total number of nodes still is within
the preconfigured bound d+3, the connection is automatically accepted. Otherwise, the
AS must check if it can find an appropriate existing node to drop and replace the new
connection.

Let Davg(x, r) be the average distance between the new node x and the ICs in an AS r. Di

denotes the distance between node x and the node i in the overlay. Rx is the maximum delay
that this node x can be tolerable or acceptable. The joining algorithm is shown in Fig. 4.
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5.3 Node leaving

Normal leaving. There are two ways that the nodes can normally leave the system: ICs (i.e.
IClocal, IClevel and IClayer) leave; and NNs leave.

• Normal leaving of ICs. In our system, only one IC can normally leave at one time. If all
the three ICs want to leave the system, they have to leave one by one following a principle
called the first applying first leaving (FAFL). While an IC is preparing to leave the system,
it uses the backup information and chooses the NN that has the highest value of SR among
NNs as its substitute. (1) If IClevel at the jth level is the leaving node, it should broadcast
the information of its substitute to (a) local IClocal and local IClayer; (b) d the ( j−1)th level
neighbor IClevels; (c) and to the ( j+1)th level neighbor IClevel. (2) If IClocal is the leaving
node, it should broadcast information of its substitute (a) to the local IClevel and IClayer; (b)
and to d local NNs. (3) If IClayer in the ith layer is the leaving node, it should (a) broadcast
its information to local IClocal and IClevel; (b) and it should broadcast information to the
(i+1)th layer IClayer and to d the (i−1)th layer neighbor IClayers.

• Normal leaving of NNs. It is simple for NNs to leave because the only thing that the node
has to do is to submit its leaving request to a local IClocal and change its status in the local
IClocal to be ’offline’

Abnormal leaving. There are also two ways that the nodes abnormally leave the system: ICs
leave and NNs leave. In our system, one IC sends life signals to the other corresponding ICs
periodically. If, for a long time an IC does not receive life signals from another IC, this means
that it has abnormally left the system.

• ICs abnormal leaving. There are two situations as follows: (1) The tri-IC do not leave the
system simultaneously. The remaining IC will choose the node which has the highest value
of SR as the new IC, and its backup information will be copied to the new IC. Then the
new IC broadcasts its information to the corresponding ICs in the system. (2) All tri-ICs
leave the system abnormally. The upper level neighbor IClevel chooses the node x with the
highest value of SR as the new IClevel, and copies the backup information to the new IClevel.
Then the new IClevel chooses the new IClocal and IClayer following the method described
above. The tri-IC broadcast their information to the corresponding ICs in the system as
described in Sect. 4.2. For example, as shown in Fig. 1, if ICi

σ denotes one of ICs in AS i
where σ ∈ {local, level, layer} , and NNi denotes one of NNs in AS i. When all ICs in AS 20
crashed, (a)IC22

level chooses one NN20 whose SR value is the highest to be the new IC20
level;

(b)IC20
level receives information about AS 20 backed up in IC22

level from the latter; (c)IC20
level

chooses two NN20s whose SR value is the ordinal highest to be the new IC22
local and IC22

layer

respectively; (d)IC20
local receives information about NN20s from IC20

level and connect with
NN20s; (e) Simultaneously, IC16

level and IC17
level reconnected to IC20

level through inviting any
NN20 to get the address of the new IC20

level; IC9
layer , IC10

layer and IC25
layer reconnected to IC20

layer

through inviting any NN20.
• NNs abnormal leaving. The necessary information such as ID, IP and activity history are

still kept in ICs to distinguish them from the nodes which have never joined the system. In
the worst situation, several ASs will break down. Then the new nodes will have to reuse
the formation process to recreate ASs based on the existing AS.
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6 Evaluation and experimental results

6.1 Modeling and methodology

To evaluate the performance of ESR, we look at three aspects of a P2P system: P2P network
topology, query distribution and replication. By network topology, we mean the graph formed
by the P2P overlay network; each P2P member has a certain number of “neighbors”and the set
of neighbor connections forms the P2P overlay network. By query distribution, we mean the
distribution of frequency of queries for individual files. By replication, we mean the number
of nodes that have a particular file. During our study of search algorithms we assume static
replication distributions. We use four network topologies in our study:

• Random Topology with Power-Law characteristic (RTPL): This is a random graph with
different scales. The node degrees follow a power-law distribution: if one ranks all nodes
from the most connected to the least connected, then the ith most connected node has
ω/iα neighbors, where ω is a constant. Many real-life P2P networks including real Internet
network have topologies that are power-law random graphs [33].

• Super-node topology: We ran simulations using a standard super-node topology [34]. It
is a two-level hierarchy, consisting of a first level of interconnected peers called super-
peers and a second level of so-called leaf nodes or normal peers, which are only connected
to a single super-peer. In super-node topology, searches are flooded among super-peers.
In the paper, the term “node”is used interchangeably with “peer”. Each super-node has
two backup nodes. The peers including super-node, its backups and normal peers form a
cluster. We set the total number (csize) in any cluster is csize ∈ [5,15] .

• Square-root topology: Consider a peer-to-peer network with N peers. Each peer k in the
network has degree dk (that is, dk is the number of neighbors that k has). The total degree
in the network is D, where D =

∑N
k=1 dk . Each peer k maintains two counters: Qk

total ,
the total number of queries seen by k, and Qk

match , the number of queries that match k’s
content. gk denotes the proportion of searches submitted to the system that are satisfied by
content at peer k, that is, gk = Qk

match

/

Qk
total , then a square-root topology has dk ∝

√
gk for

all k. To construct a square-root topology, when peers join the network, they make random
connections to some number of other peers. The number of initial connections that peer k
makes is denoted d0

k . Then, as peer k is processing queries, it gathers information about
the popularity of its content. From this information, peer k calculates its first estimate of
its ideal degree, d1

k . If the ideal degree d1
k is more than d0

k , peer k adds d1
k −d0

k connections,
and if the ideal degree is less than d0

k , peer k drops d0
k − d1

k connections. Over time, peer
k continues to track the popularity of its content, and re-computes its ideal degree (d2

k ,
d3

k ,...).Whenever its ideal degree estimate is different from its actual degree, peer k adds or
drops connections.

• ESR

We use two types of popular searching algorithms:

• Flooding: When a peer receives a search message, it both processes the message and for-
wards it to all of its neighbors in the overlay network. Each message is given a time-to-live
value ttl, and search messages get flooded to every node within ttl hops of the source. There
are two flooding algorithms: (1)unrepeated flooding, in each query, the query message will
not sent to a node which has received that message; (2)repeated flooding, message can be
sent to the same node repeatedly.

• Random walk: When a peer receives a search message, it processes the message and then
forwards it to one or several randomly chosen neighbors (called walks). Messages continue
random walking until either a predefined number of results are found (again, predefined by
the user), or a ttl is reached. Random walk ttl values are high and exist mainly to prevent
searches from walking forever. In the paper, walks=4.
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Though there are many other unstructured searching algorithms, such as Biased high degree
[6], Iterative deepening [35], Most results and Fewest result hops [36] etc., the flooding
search method is very robust, flexible and easily supports partial-match and keyword queries.
[37] demonstrates analytically that random walks are useful to locate popular content when the
topology forms a super-peer network, and have better performance in topologies with power-
law characteristic. Moreover, it is proofed in [34] that a square-root topology is optimal for
random walk searches. Considering all four topologies being compared in our paper, it is
rational that we just use this two search algorithms to evaluate the performance of topologies.
Studies have shown that Gnutella, Media and Web queries tend to follow Zipf-like distribu-
tions [38]. Thus, in our simulations, the number of each file follows a Zipf-like distribution
according to its popular degree. It is assumed that there are m original files. And qi represents
the relative popularity, in terms of the number of queries issued for it, of the ith object. Then,
we can get qi ∝ 1/iα , where each file fi is replicated on ri nodes, and the total number of files

stored in the network is R and
m
∑

i=1
ri = R . In our simulations, α = 0.726 and m = 300, and the

replication of a file fi is proportional to the query probability of the file. If one assumes only
nodes requesting a file store the file, then the replication distribution is usually proportional to
query distribution (i.e. ri ∝ qi ).
We conducted our experiments on three types (i.e. RTPL, super-node topology and ESR) of
physical network topologies with different node-number (i.e. N=500, 1000, 1500 and 2000)
generated by using the GT-TTM library. For constructing square-root topology, we choose a
maximum degree dmax, representing the degree we want for a peer whose popularity gk = 1. Of
course, it is unlikely that any peer will have content matching all queries, so the actual largest
degree will almost certainly be less than dmax. Then, we can define D as D = dmax ·

∑N
i=1
√

gi .
If the popularity of a peer’s content is very low, then dk will be very small. If peer degrees are
too small, the network can become partitioned, which will prevent content at some peers from
being found at all. In the worst case, because dk must be an integer, so the ideal degree might
be zero. Therefore, we define a value dmin, which is the minimum degree a peer will have. The
degree a peer will aim for is:

dk =















round(dmax ·
√

Qk
match

/

Qk
total if greater than dmin

dmin otherwise
(8)

The square root constructing progress can be summarized as follows [34]: (1) We choose a
maximum degree dmax and minimum degree dmin, and fix them as part of the peer-to-peer pro-
tocol. (2) Peer k joins, and makes some number d0

k of initial connections (dmin ≤ d0
k ≤ dmax ).

(3) Peer k tracks Qk
match and Qk

total, and continually computes dk according to equation (8). (4)
When the computed dk differs from peer k’s actual degree, k adds or drops connections. We
ran 10000-time simulations to measure the performance of searches over time as the topol-
ogy adapted under the square root constructing progress, the parameters for the square-root-
construct algorithm are shown in Table. 1.

Table 1 Parameters for constructing square-root topology

Parameter N = 500 N = 1000 N = 1500 N = 2000

dmax 40 80 100 160
dmin 3 3 3 3
d0

k 4 4 4 4

We experimented with several parameter settings, and found that these settings worked well
in practice.
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6.2 Scalability

For simulations in this section, we generate every type of topologies 100 times respectively
under various system scales. Node degree information of the four graphs under various node
numbers are shown in Fig. 5. The number of layers and levels (are both H) in ESR are both 3.
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(b) Super-node topology
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(c) Square-root topology
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Fig. 5 Distribution of node degrees in the four network topology graph

From Fig. 5, we can see that the value of the most degree node’s degree respectively in
RTPL, super-node topology and square-root topology greatly increases as the system’s scale
increases. For example, in RTPL, the value of the node with the most degree is 18 when
N=500, while that is 36 when N=2000. In super-node topology, the value of the node with
the most degree is 25 when N=500, while that is 32 when N=2000. In square-root topology,
the former is 8 and the latter is 22. However, in ESR, the max degrees change from 11 to 18
when the N changes from 500 to 2000, that is, the value of the node with the most degree
does not change quickly (i.e. the change is limited in unit position). Moreover from Fig. 5, it
is clear that the node’s degrees in ESR almost do not change as the system scale increases, or
the number of layers increases (e.g. H=4). The theorem 1, 2 and Fig. 5 show that we are able
to adjust such a 3D structure as ESR without violating the adaptive rules as clients join and
leave. Overheads incurred by this adjustment could be kept small to keep the system scalable.
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6.3 Query success rate

We evaluate the query success rate of four topologies with different system scales by the
popular searching algorithms introduced in Sect. 6.1. In the simulation, there are total 4162
files including both original files and replications. For each experiment, the source is chosen
randomly while the requested file is chosen according to Zipf distribution. We report the mean
values of results obtained through 120000 runs. From simulation results (not shown in the
paper for space limitation), we find that whatever the system scale and topologies are, the
query success rate using repeated flooding algorithm is the highest, though the rate is very
near to the query success rate using unrepeated flooding algorithm, especially in super-node
topology and square-root topology. On the contrary, the rate using random walk algorithm
is the lowest. So we just use one middle algorithm (i.e. unrepeated flooding) to evaluate and
compare the query success rate in all four topologies when N=500 and N=2000, as shown in
Fig. 6.
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Fig. 6 Query success rate for various topologies

From Fig. 6, the query success rate in ESR is the highest when TTL is no more than 1, that is,
the satisfied query in one hop in ESR is more than others. We think that it because of the 3D
structure so that one AS has more neighbor-ASs.

6.4 Query messages and hops

The number of query messages in one query time is used to be one factor of the evaluation
of searching efficiency. The repeated messages across one node are less, the cost should be
less. We compute the number of query messages in RTPL, super-node topology and square-
root topology under four system scales. We also find a solid trend on the contrary of the trend
in query success rate. That is, the number of query messages produced by repeated flooding
algorithm is the largest whichever topology and system scale are, while that by random walk
algorithm is the lowest.
We just use one middle algorithm (i.e. unrepeated flooding) to evaluate and compare the num-
ber of query messages in all four topologies when N=500 and N=2000, as shown in Fig. 7.
When one query is satisfied (i.e. the curve is nearly aclinic), the number of query messages
in RTPL is much more than those in other three topologies. As shown in Fig. 6 (a) and (b),
the query success rata in super-node topology is little higher than that in ESR when TTL=2
at most TTL=3, however, the number of query messages in ESR is much less than that in
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Fig. 7 The number of query messages for various topologies

super-node topology. The searching hop when one query has been satisfied is other important
factor for evaluating the searching efficiency. If the hop when the query is satisfied is more,
the length of searching path is longer. That is, the cost of searching should be more, which
will be proved in Sect. 6.5. Being accordant to simulation results (not shown in the paper),
the trend is solid that the hop when one query is satisfied using repeated flooding algorithm is
the lowest whichever topology and system scale are, while that by random walk algorithm is
the largest. That is understandable considering each algorithm’s principle. Thus, we also use
unrepeated flooding to evaluate and compare the hop when the query is satisfied in all four
topologies when N=500 and N=2000, as shown in Fig. 8.
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Fig. 8 The average searching hop in various topologies

It is clear that the searching hop in ESR is very near that in super-node topology when the
query is satisfied. However, it is obvious that the searching hop in ESR is less than that in
super-node topology when the TTL is small.

6.5 Cost and load balancing

In such high dynamic environments as P2P systems, the requirement for system stability is
more important than for query success rate. By simulating, we find that there is the same
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regularity for the cost line distribution of each searching algorithm whichever the topology
is. Therefore, we compare the four topology cost using unrepeated flooding algorithm when
N=500 and N=2000, the results are shown in Fig. 9. The x-axis shows the upper bound of
hops permitted by every searching, the y-axis shows the average system cost. The unit is kbps.
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Fig. 9 The searching cost in various topologies

In Fig. 6, it is clear that the query success rates of super-node topology, square-root topology
and ESR are all near or equal 100% when TTL=4. However, we can find in Fig. 9 that the
searching cost in ESR is much less than that in super-node and square-root topology. And the
cost in ESR does not remarkably increase as the searching hops increasing, on the contrary,
the costs in other 3 topologies rapidly increase after the first hop. Using different searching
algorithms in various topologies, the situation of the disturbing to each node is different. The
average disturbing times are more, the load of the system is heavier. Thus, the possibility of
system crash is higher. Therefore, a good topology should have small disturbing rate in each
search for guaranteeing the stability of the system. Just evaluating the total system cost maybe
cover up the load unbalancing that some peers are disturbed too much. Accordingly, we give
the average disturbed times of every node in total 120000 querying times in four topologies
when N=500 and N=2000, as shown in Fig. 10.
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Fig. 10 Disturbed times of every peer

From Fig. 10, it is obvious that to each node in ESR, the average disturbed times are less than
other three topologies, some even equal to 0. Being similar to super-node topology, the average
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disturbed times of some peers are higher than others in ESR. It is understandable that they are
ICs which are detailedly described in Sect. 4.3. But it is clear that the average disturbed times
of the ICs whose loads are the most are farther less than super peers in super-node topology,
and near those of the normal node in the latter. It may be also one of the reasons that the cost
of ESR is less.

6.6 Fault-tolerance and robustness

In this section, we concentrate on discussing the performance of every topology using unre-
peated flooding algorithm when there are peers to leave system randomly. Fig. 11 shows the
performances of topologies, where the x-axis is the ratio of the number of randomly leaving
nodes to all nodes’ number in the system.
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Fig. 11 The performance when there is randomly leave

It can be seen from the Fig. 11 that the results are consistent with the conclusion in theory.
Fig. 11(a) shows that the query success rate in ESR is very high. Fig. 11(c) shows that the aver-
age hops in the RTPL, super-node topology and square-root topology all increase when there
are nodes randomly leaving. But the average hops in the ESR are almost unchanged and only
increase when the condition is very worse (e.g. 90% nodes leaving). In the worse condition,
there are too much nodes leaving the system so that the query hops increase when the query
is successful. In addition, it is clear in the Fig. 11(b), (c) and (d) that each performance in the
square-root worsens with the number of leaving nodes increasing. We think it is because that
the formation of square-root topology is based on the query frequency of the files. In square-
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root topology, the node whose degree is more is consequentially the node whose own files are
more popularity. So each aspect of performance in square-root topology is certainly affected
when the number of leaving nodes increases. The number of query message and system cost
in the ESR when the query is successful don’t greatly wave since the nodes leave. It shows
that the ESR topology structure has favorable stability.
It is defined that i is the query initiated by the ith node (i ∈ (N −N ∗ ratelose) ), ratelose is
the failure rate of the node, N is the system scale, ni is the number of the nodes visited by
the ith query. In the system which allows adequate query hops (i.e. the query can visit all
nodes connected with the source node directly or not), we define the most coverage rate of
nodes is CoverRate = Max(ni)/(N −N · ratelose) , while the connectivity rate of the system is
∑N−N·ratelose

i=1 ni

/

(N −N · ratelose) . Fig. 12 shows the changing of the most coverage rate and
the connectivity rate of the system along with the leaving node rate increasing.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

T
he

 m
os

t c
ov

er
ag

e 
ra

te
 o

f n
od

es
 (%

)

 RTPL  Super-node Square-root  ESR

The ratio of the leaving nodes

(a) The most coverage rate

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

T
he

 c
on

ne
ct

iv
ity

 r
at

e 
of

 th
e 

sy
st

em
%

The ratio of the leaving nodes ( )

 RTPL  Super-node Square-root  ESR
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Fig. 12 The most coverage and connectivity rate when there is randomly leave

It is clear in the Fig. 12 that the robustness of the ESR is far better than other topologies. Its
connectivity rate is still 100% even when there are 80% nodes leaving the system. The most
coverage rate and the system connectivity have remarkable decrease after 90% nodes leave the
system. Combined Fig. 11 and Fig. 12, it is the most different between the intuitive judgment
and the real performance of square-root topology. In Fig. 12, it is clear that the node’s most
coverage rate and the connectivity rate in the square-root topology are far higher than those
in the RTPL and super-node topology. To our intuitive judgment, the query success rate of
square-root topology should also be far higher than the two latter, while the number of query
messages, the query hops and cost should be less than those of the two latter. However, from
Fig. 11, we find it is so different from our intuition, e.g. the query success rate of square-root
topology is similar to the two latter. This is decided by the characteristic of the square-root
topology forming. The physical topology of the square-root is robust enough because of its
high average connected degree. But the files on the nodes whose degree are high have higher
popularity. When such nodes leave the system more and more, the query success rate will
decrease. It reflects that the square-root topology doesn’t consider the matching between the
physical topology and the logical structure. It is clear through the detailed analyzing that the
ESR is better than other three topologies in both the physical topology and logical structure.
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7 Conclusion and future directions

This chapter has presented various schemes in structured and unstructured P2P overlay net-
works that have been proposed by researchers. The P2P overlay network that is best suited de-
pends on the application and its required functionalities and performance metrics for example,
scalability, network routing performance, location service, file sharing, content distribution,
and so on.
In this chapter, we investigated the challenges facing autonomic communication, showed some
researches in P2P overlay to solve it and presented the key problems and requirements in order
to build an ideal system for ACs. Then, we presented three requirements for P2P overlay to
satisfy those challenges. ESR is the first P2P overlay that can be compatible with AC. And
ESR is (1) with global view combined with limited state, and localized connection and in-
formation exchange; (2) giving attention to both efficiency and prevention of selfishness; (3)
guaranteeing each ID’s uniqueness by the particular overlay structure with fault-tolerance and
robustness. Comprehensive simulation results show the advantages of the ESR from various
aspects. Base on ESR, more challenges for AC will be researched such as management of trust
and privacy of users, or information communication algorithms etc. The subject of exploiting
peer-to-peer overlays in ACs is relatively new. Many interesting problems require further re-
search, including:

• Given the high dynamics in ACs due to node mobility, which of the unstructured or struc-
tured overlay abstractions is more efficient in supporting common distributed applications?

• How can one efficiently integrate an unstructured P2P overlay for the Internet with AC
routing protocols other than DHT-like schemes in other applications such as MANETs or
Ad Hoc Networks?

• Can incentive techniques developed for P2P overlays in the Internet for encouraging peer-
ing nodes to cooperate be applied to ACs?

• Trust and reputation is also important for secured and trustworthy ACs among the peers.
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Autonomic and Coevolutionary Sensor
Networking

Pruet Boonma and Junichi Suzuki

Abstract (WSNs) applications are often required to balance the tradeoffs among conflict-
ing operational objectives (e.g., latency and power consumption) and operate at an optimal
tradeoff. This chapter proposes and evaluates a architecture, called BiSNET/e, which allows
WSN applications to overcome this issue. BiSNET/e is designed to support three major types
of WSN applications: , and hybrid applications. Each application is implemented as a de-
centralized group of , which is analogous to a bee colony (application) consisting of bees
(agents). Agents collect sensor data or detect an event (a significant change in sensor reading)
on individual nodes, and carry sensor data to base stations. They perform these data collec-
tion and event detection functionalities by sensing their surrounding network conditions and
adaptively invoking behaviors such as pheromone emission, reproduction, migration, swarm-
ing and death. Each agent has its own behavior policy, as a set of genes, which defines how to
invoke its behaviors. BiSNET/e allows agents to evolve their behavior policies (genes) across
generations and autonomously adapt their performance to given objectives. Simulation results
demonstrate that, in all three types of applications, agents evolve to find optimal tradeoffs
among conflicting objectives and adapt to dynamic network conditions such as traffic fluctua-
tions and node failures/additions. Simulation results also illustrate that, in hybrid applications,
data collection agents and event detection agents coevolve to augment their adaptability and
performance .

1 Introduction

Autonomous adaptability is a key challenge in wireless sensor networks (WSNs) [1, 2, 6, 28,
33]. With minimal intervention to/from human operators, WSN applications are required to
adapt their operations to dynamic changes in network conditions such as traffic fluctuations
and node failures/additions. A critical issue in this challenge is that WSN applications have
inherent tradeoffs among conflicting operational objectives [22]. For example, success rate
of data transmission from individual nodes to base stations is an important objective because
higher success rate ensures that base stations receive more sensor data for operators to better
understand the current situation in an observation area and make better informed decisions. At
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Fig. 1 BiSNET/e Runtime Architecture

the same time, latency of data transmission from individual nodes to base stations is another
important objective. Lower latency ensures that base stations can collect sensor data for oper-
ators to understand the situation of an observation area more quickly and make more timely
decisions. Success rate and latency conflict with each other. For improving success rate, hop-
by-hop recovery is often applied; however, this can degrade latency. For improving latency,
nodes may transmit data to base stations with the shortest paths; however, success rate can
degrade because of traffic congestion on the paths.
In order to address this issue, the authors of the chapter envision autonomic WSN applica-
tions that understand their operational objectives, sense dynamic network conditions and act
autonomously to satisfy conflicting objectives simultaneously. As inspiration for this vision,
the authors observe that various biological systems have developed the mechanisms to over-
come the above adaptability issue. For example, each bee colony autonomously satisfies con-
flicting objectives to maintain its well-being [34]. Those objectives include maximizing the
amount of collected honey, maintaining temperature inside a nest and minimizing the number
of dead drones. If bees focus only on foraging, they fail to ventilate their nest and remove dead
drones. Based on this observation, the proposed application architecture, called BiSNET/e
(Biologically-inspired architecture for Sensor NETworks, evolutionary edition), applies key
biological mechanisms to design adaptive WSN applications.
Figure 1 shows the BiSNET/e runtime architecture. The BiSNET/e runtime operates atop
TinyOS on each node. It consists of two software components: agents and middleware plat-
forms, which are modeled after bees and flowers, respectively. Each WSN application is de-
signed as a decentralized group of agents. This is analogous to a bee colony (application)
consisting of bees (agents). Agents collect sensor data and/or detect an event (a significant
change in sensor reading) on platforms (flowers) atop individual nodes. Then, they carry sen-
sor data to base stations, in turn, to the MONSOON server (Figure 1). The server is modeled
after a nest of bees. Agents perform these data collection and event detection functionalities by
autonomously sensing their surrounding network conditions and adaptively performing bio-
logical behaviors such as pheromone emission, reproduction, migration, swarming and death.
A middleware platform runs on each node, and hosts an arbitrary number of agents (Figure
1). It provides a series of runtime services that agents use to perform their functionalities and
behaviors.
This chapter describes a key component in BiSNET/e, called MONSOON1, which is an for
agents. Each agent has its own behavior policy, as a set of genes, which defines when to and

1 Multiobjective Optimization for Network of Sensors using a cO-evOlutionary mechaNism



Autonomic and Coevolutionary Sensor Networking 353

how to invoke its behaviors. MONSOON allows agents to evolve their behavior policies via
genetic operations (mutation and crossover) across generations and simultaneously adapt their
performance to given objectives. Currently, MONSOON considers four objectives: success
rate, latency, power consumption and the degree of data aggregation.
The evolution process in MONSOON frees application developers from anticipating all pos-
sible network conditions and tuning their agents’ behavior policies to the conditions at design
time. Instead, agents are designed to autonomously evolve and tune their behavior policies at
runtime. This can significantly simplify the implementation and maintenance of agents (i.e.,
WSN applications).
BiSNET/e supports three major types of WSN applications: data collection, event detection
and hybrid applications. Hybrid applications perform both data collection and event detection
in order to fulfill complex sensing requirements such as target tracking [25], contour/edge
detection [11] and spatiotemporal event detection/monitoring [39]. Different types of appli-
cations are implemented with different types of agents. Data collection and event detection
applications use data collection agents (DAs) and event detection agents (EAs), respectively.
Hybrid applications use both DAs and EAs. DAs and EAs are designed as different biological
species. In hybrid applications, the two types of agents are intended to coevolve and adapt
their behavior policies in a symbiotic manner. EAs help DAs improve their behavior policies,
and vice versa.
This chapter is organized as follows. Section 2 overviews the structure and behaviors of agents
in BiSNET/e. Section 3 describes the evolution and coevolution processes in MONSOON.
Section 4 evaluates MONSOON with a series of simulation results. Simulation results demon-
strate that, in all three types of applications, agents are robust and adaptive against various dy-
namic network conditions such as traffic fluctuations, node failures/additions and base station
failures. Agents successfully evolve their behavior policies to find optimal tradeoffs among
conflicting objectives. Simulation results also illustrate that, in hybrid applications, DAs and
EAs coevolve to augment their adaptability and performance with each other. Sections 5 and 6
conclude with some discussion on related work and future work.

2 BiSNET/e Agents

At the beginning of a WSN’s operation, one DA and one EA are deployed on each node.
They have randomly-generated behavior policies. A DA collects sensor data on each node
periodically (i.e., at each duty cycle) and carry the data to a base station on a hop-by-hop
basis. An EA collects sensor data on each node periodically, and if it detects an event—a
significant change in its sensor reading, carries the data to a base station on a hop-by-hop
basis. If an event is not detected, the EA discards the data. (It is not transmitted to a base
station.)
Agents are decentralized in a WSN. There are no centralized entities to control and coordinate
agents. Decentralization allows agents to be scalable and survivable by avoiding a single point
of performance bottlenecks and failures [3, 24].

2.1 Agent Structure and Behaviors

Each agent consists of attributes, body and behaviors. Attributes carry descriptive information
on an agent. They include agent type (DA or EA), behavior policy (genes), sensor data to
be reported to a base station, the data’s time stamp, and the ID of a node where the data is
collected.
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Body implements the functionalities of an agent: collecting, processing, discarding and pro-
cessing sensor data.
Behaviors implement actions inherent to all agents. Inspired by biological entities such as
bees, agents sense their surrounding network conditions and behave according to the sensed
conditions without any intervention from/to other agents, platforms, base stations and human
operators. This chapter focuses on the following seven behaviors.

1. Food gathering and consumption: Biological entities strive to seek food for living. For
example, bees gather nectar to produce honey. Similarly, in BiSNET/e, each agent peri-
odically reads sensor data (as nectar) to gain energy (as honey)2 and expends a constant
amount of energy for living.

2. Pheromone emission: Agents may emit different types of pheromones: migration and
alert pheromones. They emit migration pheromones on their local nodes when they mi-
grate to neighboring nodes. Each migration pheromone references the destination node
an agent has migrated to. Agents also emit alert pheromones when they fail migrations
within a timeout period. Migration failures may occur because of node failures due to
depleted battery and physical damages as well as link failures due to interference and
congestion. Each alert pheromone references the node that an agent could not migrate to.
Each of migration and alert pheromones has its own concentration, which decays by half
at every duty cycle. A pheromone disappears when its concentration becomes zero.

3. Replication: EAs may make a copy of themselves in response to the abundance of stored
energy, while DAs make a copy of themselves at each duty cycle. A replicated (child)
agent is placed on the node that its parent resides on, and it inherits the parent’s agent
type and behavior policy (a set of genes). Replicated agents are intended to move toward
base stations to report collected sensor data.

4. Migration: Agents may move from one node to another. Migration is used to transmit
agents (sensor data) toward base stations. On an intermediate node, each agent chooses
the next-hop node by sensing three types of available pheromones: base station, migration
and alert pheromones.
Each base station periodically propagates base station pheromones to individual nodes.
Their concentration decays on a hop-by-hop basis. Using base station pheromones, agents
can sense where base stations exist approximately, and they can move toward the base
stations by climbing a concentration gradient of base station pheromones3 .
An agent may move to a base station by following a migration pheromone trace on which
many other agents have traveled. The trace can be the shortest path to a base station.
Conversely, an agent may go off a migration pheromone trace and follows another path
to a base station when the concentration of migration pheromones is too high on the trace
(i.e., when too many agents have followed the trace). This avoids separating the network
into islands. The network can be separated with the migration paths that too many agents
follow, because the nodes on the paths run out of their battery earlier than the others4 .
An agent may also avoid moving to a node referenced by an alert pheromone. This allows
agents to reach base stations by bypassing failed nodes/links.

5. Swarming: Agents may swarm (or merge) with others at the nodes on their ways to base
stations. With this behavior, multiple agents become a single agent. (A DA can merge
with both DAs and EAs, and an EA can merge with both EAs and DAs.) The resulting
agent (swarm) aggregates sensor data contained in other agents, and uses the behavioral
policy of the best agent in the swarm in terms of given operational objectives.

2 In BiSNET/e, the concept of energy does not represent the amount of physical battery in a node.
It is a logical concept to affect agent behaviors.
3 Base station pheromones are designed after the Nasonov gland pheromone, which guides bees to
move toward their nest [14].
4 Data transmission imposes the highest power consumption among all the operations that each
node performs [26].
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In order to increase the chances of swarming, at each intermediate node toward a base
station, an agent may wait for other agents. If an agent(s) arrives at the node during
a waiting period, the waiting agent merges with the arriving agent(s). The swarming
behavior saves power consumption of nodes because in-node data aggregation requires
much less power consumption than data transmission does [26].

6. Reproduction: Once agents arrive at the MONSOON server (Figure 1), they are eval-
uated according to their four objectives. Then, MONSOON selects best-performing (or
elite) agents, and propagates them to individual nodes. An agent running on each node
performs reproduction with one of the propagated agents. A reproduced agent inherits
a behavior policy (gene) from its parents via crossover, and mutation may occur on the
inherited behavior policy. Reproduced agents trigger a generation change by taking over
existing agents running on individual nodes.
Reproduction is intended to evolve agents so that the agents that fit better to the environ-
ment become more abundant. It retains the agents whose fitness to the current network
conditions is high (i.e., the agents that have effective behavior policies, such as mov-
ing toward a base station in a short latency), and eliminates the agents whose fitness
is low (i.e., the agents that have ineffective behavior policies, such as consuming too
much power to reach a base station). Through successive generations, effective behavior
policies become abundant in agent population while ineffective ones become dormant or
extinct. This allows agents to adapt to dynamic network conditions.

7. Death: Agents periodically consume energy for living and expend energy to invoke their
behaviors. The energy costs to invoke behaviors are constant for all agents. Agents die
due to lack of energy when they cannot balance energy gain and expenditure. The death
behavior is intended to eliminate the agents that have ineffective behavior policies. For
example, an agent would die before arriving at a base station if it follows a too long
migration path. When an agent dies, the local platform removes the agent and releases all
resources allocated to it.

2.2 Behavior Sequence for DAs

Figures 2 shows the sequence of behaviors that each DA performs on a node at each duty
cycle. A DA reads sensor data with the underlying sensor device and gains a constant amount
of energy. Given the energy intake (EF ), each agent updates its energy level as follows.

E(t) = E(t−1)+EF (1)

E(t) and E(t−1) denote a DA’s energy level at the current and previous duty cycle. t is incre-
mented by one at each duty cycle.
If a DA’s energy level (E(t)) goes below the death threshold (TD), the DA dies due to starva-
tion5.
A DA replicates itself at each duty cycle. A replicating (parent) agent splits its energy units to
halves ( E(t)−ER

2 ), gives a half to its child agent, and keeps the other half. ER is the energy cost
for an agent to perform the replication behavior. A child agent contains the sensor data that its
parent collected, and carries it to a base station.
Each replicated DA migrates toward a base station on a hop by hop basis. On each intermediate
node, it decides whether it migrates to a next-hop node or wait for other agents to swarm (or
merge) with them. This decision is made based on a migration probability (pm). If the agent
decides to migrate, it examines Equation 2 to determine which next-hop node it migrates to.

5 If all agents are dying on a node at the same time, a randomly selected agent for each type (i.e.,
EA and DA) will survive. At least one agent of each type runs on each node.
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Read sensor data and gain energy (EF ).
Update energy level (E(t)).
if E(t) < the death threshold (TD)

then Invoke the death behavior.
Invoke the replication behavior to make a child agent.
Give the half of the current energy level to a replicated (child) agent.
for each migrating agent
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Determine the destination node of migration.
Emit a migration pheromone on the local node.
Migrate to a neighboring node.
if Migration fails

then
{

Emit an alert pheromone on the local node.
Propagate it to neighboring nodes.

Fig. 2 Sequence of DA Behaviors

WS j =

3
∑

t=1

wt
Pt, j −Ptmin

Ptmax −Ptmin

(2)

A DA calculates this weighted sum (WS j) for each neighboring node j, and moves to a node
that generates the highest weighted sum. t denotes pheromone type; P1 j, P2 j and P3 j represent
the concentrations of base station, migration and alert pheromones on the node j. Ptmax and
Ptmin denote the maximum and minimum concentrations of Pt among all neighboring nodes.
When a DA is migrating to a neighboring node, it emits a migration pheromone on the local
node. If the DA’s migration fails, it emits an alert pheromone, and it spreads to one-hop away
neighboring nodes.

2.3 Behavior Sequence for EAs

Figures 3 shows the sequence of behaviors that each EA performs on a node at each duty
cycle. When an EA reads sensor data (as nectar) with the underlying sensor device and gains
energy (as honey), its current energy level (E(t)) is updated with Equation 3.

E(t) = E(t−1)+S ·M (3)

S denotes the absolute difference between the current and previous sensor data. M is metabolic
rate, which is a constant between 0 and 1.
Each EA replicates itself if its energy level exceeds the replication threshold: TR(t). The repli-
cation threshold is continuously adjusted as an EWMA (Exponentially Weighted Moving Av-
erage) of energy level:

TR(t) = (1−α)TR(t−1)+αE(t) (4)

TR(t) and TR(t− 1) denote the replication thresholds at the current and previous duty cycle,
respectively. EWMA is used to smooth out short-term minor oscillations in the data series of
E. It places more emphasis on the long-term transition trend of E; only significant changes
in E have the effects to change TR. The α value is a constant to control the responsiveness of
EWMA against the changes of E.
A parent EA splits its energy units to halves, gives a half to its child agent, and keeps the
other half. The parent EA keeps replicating itself until its energy level becomes less than its
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TR. Each child agent contains the sensor data that its parent collected, and carries it to a base
station.
As DAs do, each migrating EA decides whether it performs the migration behavior or the
swarming behavior using its migration probability (pm). It performs the migration behavior
with Equation 2, followed by the pheromone emission behavior, in the same way as DAs do.
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if Migration fails

then
{

Emit an alert pheromone on the local node.
Propagate it to neighboring nodes.

Fig. 3 Sequence of EA Behaviors

2.4 Agent Behavior Policy

EAs and DAs have the same structure of behavior policies (genes). Each behavior policy con-
sists of two distinctive information: migration probability (pm) and a set of weight values in
Equation 2 (wt ,1 ≤ t ≤ 3). Migration probability is a non-negative value between zero and
one. With higher migration probability, an agent has a higher chance to perform the migration
behavior instead of the swarming behavior. With a lower migration probability, an agent has
a higher chance to perform the swarming behavior. Weight values govern how agents perform
the migration behavior. For example, if an agent has zero for w2 and w3, the agent ignores
migration and alert pheromones, and moves toward the base stations by climbing the concen-
tration gradient of base station pheromones. If an agent has a positive value for w2, it follows
a migration pheromone trace on which many other agents have traveled. A negative w2 value
allows an agent to go off a migration pheromone trace and follow another path toward a base
station. If an agent has a negative value for w3, it moves to a base station by bypassing failed
nodes/links.

3 MONSOON

In order to drive agent evolution and coevolution, MONSOON performs elite selection and
genetic operations. The elite selection process evaluates each type of agents (DAs and EAs)
that arrive at base stations, based on given objectives, and chooses the best (or elite) ones.
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Elite agents are propagated to individual nodes in the network. Through genetic operations
(crossover and mutation), an agent running on each node performs the reproduction behavior
with one of elite agents. A reproduced agent inherits a behavior policy (a set of genes) from its
parents via crossover, and mutation may occur on the inherited behavior policy. Reproduced
agents trigger a generation change by taking over parent agents. Elite selection is performed
in the MONSOON server (Figure 1), and genetic operations are performed in each node.
Reproduction is intended to evolve agents so that the agents that fit better to the current net-
work conditions become more abundant. It retains the agents that have effective behavior
policies, such as moving toward a base station in a short latency, and eliminates the agents
that have ineffective behavior policies, such as consuming too much power to reach a base
station. Through successive generations, effective behavior policies become abundant in agent
population while ineffective ones become dormant or extinct. This allows agents to adapt to
dynamic network conditions.

3.1 Operational Objectives

Each agent (DA or EA) considers four conflicting objectives: latency, cost, success rate and
data yield. MONSOON strives to minimize latency and cost and maximize success rate and
data yield.

1. Latency represents the time required for an agent (DA or EA) to travel to a base station
from a node where the agent is born (replicated). As depicted below, latency (L) is mea-
sured as a ratio of this agent travel time (t) to the physical distance (d) between a base
station and a node where the agent is born. The MONSOON server knows the location
of each node with a certain localization mechanism.

L =
t
d

(5)

2. Cost represents power consumption required for an agent (DA or EA) to travel to a base
station from a node where the agent is born. Cost (C) is measured with the total number
of node-to-node data transmissions required for an agent to arrive at a base station (ntran),
each node’s radio transmission range (rtran), and physical distance (d).

C =
ntran

d/rtran
(6)

The total number of data transmissions include successful and unsuccessful (failed) agent
migrations as well as the transmissions of migration or alert pheromones.

3. Success rate is measured differently for DAs and EAs. For DAs, it is measured as fol-
lows.

S DA =
narrive

N
(7)

narrive indicates the number of agents that arrive at base stations, and N indicates the total
number of nodes in the network.
For EAs, success rate is measured as follows.

S EA =
msuccess

mtotal
(8)

msuccess indicates the number of successful migrations that an EA performs until it arrives
at a base station. mtotal indicates the total number of migration attempts that an EA makes.
This includes the number of successful migrations (i.e., msuccess) and the number of failed
migrations.
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4. Data yield is measured as the number of sensor data that an agent (DA or EA) aggregates
and carries to a base station. Its initial value is one; however, it increases as the an agent
swarms with other agents.

3.2 Elite Selection

Figure 4 shows how elite selection occurs at the MONSOON server in each duty cycle. The
MONSOON server performs the same selection process for EAs and DAs separately. The
first step is to measure four objective values (i.e., latency, cost, success rate and data yield) of
each agent that reaches the MONSOON server via base stations. Then, each agent is evaluated
whether it is dominated by another one. MONSOON determines that agent A dominates agent
B iif:

• A’s objective values are better than, or equal to, B’s in all objectives, and
• A’s objective values are better than B’s in at least one objective.
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Propagate elite agents to the network.

Fig. 4 Elite Selection in MONSOON

In the next step, a subset of non-dominated agents are selected as elite agents. This is per-
formed with a four dimensional hypercube space whose axes represent four objectives. Each
axis of the hypercube space is divided so that the space contains small cubes. Non-nominated
agents are plotted in this hypercube space based on their objective values. If multiple non-
dominated agents are plotted in a cube, one of them is randomly selected as an elite agent. If
no non-dominated agents are plotted in a cube, no elite agent is selected from the cube. This
elite selection is designed to maintain the diversity of elite agents. Diversity of agents can
improve their adaptability to unanticipated network conditions.
Figure 5 shows an example hypercube space. For simplicity, it shows only three of four ob-
jectives (i.e., cost, latency and data yield). Each axis is divided into two ranges; therefore,
eight cubes exist in total. In this example, six non-dominated agents (A to F) are plotted in
the hypercube space. Three agents (B, C, and D) are plotted in a lower left cube, while the
other three agents (A, E, and F) are plotted in three different cubes. From the lower left cube,
only one agent is randomly selected as an elite agent. A, E, and F are selected as elite agents
because they exist in different cubes.
In addition to select elite agents, the MONSOON server adjusts the mutation rate of agents
based on performance improvement of non-dominated agents. The smaller improvement they
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Fig. 5 An Example Elite Selection

make in objective values, the higher mutation rage the MONSOON server assigns to agents,
thereby accelerating agent evolution/coevolution.
The performance of non-dominated agents is measured as a set of performance representative
points in different objectives. Equation 9 shows how to obtain a performance representative
point (ōi) in each objective i.

ōi =

∑

a∈A oi(a)
|A| (9)

A denotes the set of non-dominated agents. oi(a) denotes the objective value that agent a yields
in objective i. oi is a value that a performance representative point is projected on objective i.
It is normalized between 0 and 1.
The improvement of performance is measured as the Euclidean distance (d) between the per-
formance representative points at the current and previous duty cycles:

d =

√

∑

i∈O(ōi(t)− ōi(t−1))2

|O| (10)

O denotes the set of all objectives. ōi(t) and ōi(t− 1) denote the performance representative
points projected on objective i in the current and previous duty cycles, respectively.
Mutation rate (m) is adjusted with Equation 11 where k is a constant and less than one.

m = k(1−d) (11)

3.3 Genetic Operations

Once elite DAs and EAs are selected, the MONSOON server propagates them and adjusted
mutation rate to each node in the network. They are propagated with a base station pheromone.
Upon receiving a base station pheromone, an agent running on each node performs the repro-
duction behavior with a certain reproduction rate through genetic operations (crossover and
mutation). It selects one of propagated elite agents, as a mating partner, which has the most
similar behavior policy (genes). This similarity is measured with the Euclidean distance be-
tween the values of behavior policies. If two or more elite agents have the same similarity to
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the local agent, one of them is randomly selected. During reproduction, a child agent performs
one-point half-and-half crossover; it randomly inherits the half of its gene from its parent agent
and the other half from the parent’s mating partner.
DAs can mate with elite EAs, and EAs can mate with elite DAs. This cross-mating allows
DAs and EAs to coevolve their behavior policies; DAs can improve EAs’ genes, and vice
versa. This is particularly important when no events occur in a WSN. In this case, EAs have
no chance to evolve their genes because they do not migrate toward the MONSOON server.
Through cross-mating with DAs, EAs can reproduce offspring and coevolve their genes even
if no events occur.
Mutation occurs on a child agent’s gene with a certain mutation rate. Mutation randomly
changes gene values within a predefined value range. As discussed in Section 3.2, the MON-
SOON server periodically adjusts mutation rate. After reproduction, a child agent takes over
the local parent agent as the next generation agent.

4 Simulation Results

This section shows a set of simulation results to evaluate BiSNET/e and MONSOON. Sec-
tions 4.1, 4.2 and 4.3 discuss the simulation results obtained with a data collection application,
event detection application and hybrid application. Each application is used to monitor an oil
spill at the sea. The spill is simulated as 100 barrels (approximately 3,100 gallons) of crude oil
spreads at the middle of the Dorchester Bay of Massachusetts. Simulation data of this spill is
generated with an oil spill trajectory model implemented in the General NOAA Oil Modeling
Environment [5].
A simulated WSN consists of 100 nodes uniformly deployed in an observation area of
300x300 square meters. An oil spill starts at the middle of this observation area. Each node’s
communication range is 30 meters and equips a surface roughness sensor to detect spilled oil.
A base station is deployed on the observation area’s northwestern corner. The base station
links the MONSOON server via emulated serial port connection. All software components in
the BiSNET/e runtime are implemented in nesC, and the MONSOON server is implemented
in Java.
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Fig.6. Objective Values of DAs without EAs Fig.7. Objective Values of EAs without DAs
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Simulation time is counted with ticks. Each tick represents five minutes. For genetic operations
in MONSOON, reproduction probability and the maximum mutation rate are configured as
0.75 and 0.2, respectively.

4.1 Data Collection Application

A data collection application is implemented with DAs that perform the sequence of behaviors
shown in Figure 2. No EAs are used in this application. The duty cycle corresponds to a
simulation tick (five minutes).
Figure 6 (a) shows the average objective values produced by DAs at each simulation tick.
Each objective value gradually improves and converges at the 22nd tick. This simulation re-
sult shows that MONSOON allows DAs to simultaneously satisfy conflicting objectives by
evolving their behavior policies.
Figure 6 (b) shows how the performance of DAs changes against a dynamic node addition.
25 nodes are added at random locations at the 30th tick. Upon this change in the network
environment, objective values degrade dramatically because DAs have randomly-generated
behavior policies on the new nodes. Those DAs cannot migrate efficiently toward the base
station. Also, enough pheromones are not available on new nodes; DAs cannot make proper
migration decisions when they move to the new nodes. However, DAs gradually improve their
performance again, and objective values converge again at the 56th tick. Interestingly, after
50th tick, average data yield is greater than that before 30th tick. Because there are more DAs
from the additional nodes, so DAs have higher chance to swarm. MONSOON allows DAs
to autonomously recover application performance despite dynamic node addition by evolving
their behavior policies.
Figure 6 (c) shows how the performance of DAs changes against dynamic node failures. 25
nodes randomly fail at the 30th tick. Objective values degrade because some DAs try to mi-
grate to failed nodes referenced by migration pheromones. This increases the number of un-
successful agent migrations. However, DAs gradually improve their performance again, and
objective values converge again at the 56th tick. MONSOON allows DAs to autonomously
recover application performance despite dynamic node failures by evolving their behavior
policies.
Figure 6 (d) shows how the performance of DAs changes when nodes selectively fail in a
specific area. At the 30th tick, 20 nodes fail in the middle of WSN observation area. Hence, a
WSN has a hole in its middle area. Compared with Figure 6 (c), it takes longer time for DAs
to recover their performance. Objective values converge at 66th tick again. The converged cost
and latency are worse than the ones at the 30th tick because DAs have to detour a hole (i.e., a
set of failed nodes) and take longer migration paths to the base station. This simulation results
shows that MONSOON allows DAs to survive selective node failures through evolution.
Figure 6 (e) shows how the performance of DAs changes against base station failures. In
this simulation scenario, two base stations are deployed at the northwestern and southeastern
corners of WSN observation area. At the 30th tick, a base station at the southeastern corner
fails. Objective values degrade because some DAs try to migrate toward the failed base sta-
tion referenced by base station pheromones. This increases the number of unsuccessful agent
migrations. However, DAs gradually improve their performance again, and objective values
converge again at the 56th tick. MONSOON allows DAs to autonomously evolve and recover
application performance despite dynamic base station failures.
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4.2 Event Detection Application

An event detection application is implemented with EAs that perform the sequence of behav-
iors shown in Figure 3. No DAs are used in this application. This simulation study simulates
an oil spill, which occurs in the middle of WSN observation area at the 24th tick and radially
spreads over time.
Figure 7 (a) shows the average objective values at each simulation tick. Upon an event de-
tection, objective values are low because EAs use random behavior policies at first. However,
each objective value gradually improves and converges at the 52nd tick. This simulation re-
sult shows that MONSOON allows EAs to simultaneously satisfy conflicting objectives by
evolving their behavior policies.
Figure 7 (b) shows how the performance of EAs changes against a dynamic node addition.
25 nodes are added at random locations at the 60th tick. Upon this environmental change,
objective values degrade slightly because EAs have randomly-generated behavior policies on
the new nodes. Those EAs cannot migrate efficiently toward the base station. However, EAs
gradually improve their performance immediately, and objective values converge again at the
85th tick. MONSOON allows EAs to autonomously recover application performance despite
dynamic node addition by evolving their behavior policies.
Figure 7 (c) shows how the performance of EAs changes against dynamic node failures. 25
nodes randomly fail at the 60th tick. Objective values degrade slightly because some EAs try
to migrate to failed nodes referenced by migration pheromones. This increases the number of
unsuccessful agent migrations. However, EAs gradually improve their performance again, and
objective values converge again at the 85th tick. MONSOON allows EAs to autonomously
recover application performance despite dynamic node failures by evolving their behavior
policies.
Figure 7 (d) shows the result of a simulation when 20 sensor nodes are selected in selective
fashion, i.e. create a hole in the middle of network, to be deactivated at the 60th tick. Compared
with the result in Figure 7 (c), MONSOON takes longer time to improve the performance of
the WSN. The success rate converges at about the 100th tick to approximately 48%. The cost
and latency also show the similar trend. Particularly, after the 52nd tick, the average value of
cost and latency are higher than the values just before the 20th tick because agents have to
detour in a longer path to avoid the hole in the middle of the network.
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Fig.8. Objective Values of DAs with EAs Fig.9. Objective Values of EAs with DAs
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The simulation results shows that MONSOON allows WSN to survives a selective sensor
nodes failure by adjusting the operational parameters of WSN to be suitable to the changes in
network condition.
Figure 7 (e) shows the result of a simulation which initially has two base stations deployed
at the northwestern and southeastern corner of the observation area. Then, at the 60th tick,
the base station at the southeastern corner is deactivated. In this figure, at the 61st tick, the
success rate drops to about 40% from around 50%. However, the success rate is improved
successively and reach the same level as before the base station is deactivated at the 85th
tick. Cost and latency show the same trend. MOSOON allows WSN to survives a base station
failure by autonomously directing all agents to the remaining base station.

4.3 Hybrid Application

This section represents simulation results from a sensor network with two applications de-
ployed simultaneously. Figure 8 shows the average objective values from collected DAs, i.e.
for data collection application, in each simulation ticks. On the other hand, Figure 9 shows
the average objective values from collected EAs, i.e. for event collection application, in each
simulation ticks.
In Figure 9 (a), at the 24th simulation tick, oil spill happens and EAs start detecting and moving
to the base station. The impact of EAs on DAs can be observed from Figure 8 (a) with the drop
in success rate and the increase of cost and latency around 24th tick. However, within thirty
simulation ticks, MONOON allows DAs to adapt to the EAs and retain their performance.
The simulation results shows that MONSOON allows a WSN application to adapt to the other
application such that they can co-exist tranquilly in a same sensor network.
Figure 9 (b), (c), (d) and (e) show the similar scenario as in Figure 7 (b), (c), (d) and (e),
respectively. The simulation result in the former set of the figures also show the similar trend
as in the later set of the figures; therefore, MONSOON allows a WSN application to adapt to
network changes, i.e. partial node failure or the base station failure, even when it has to work
simultaneously with another application on the same network.
Figure 9 (a) portraits the same scenario as in Figure 7 (a). In Figure 9 (a), sensor network
hosts two applications, data collection and event detection. However, the objective values of
event detection application, i.e. EAs, in Figure 9 (a) are improved faster than in Figure 7 (a).
For example, the latency is reduced to lower than 0.5 at around the 44th tick in Figure 9 (a)
but it takes about the 58th tick in Figure 7 (a) to reduce to about 0.6. Thanks to cross-mating
(see section 3.3) , MONSOON allows event detection application, i.e., EAs, to improve its
objective values by using information from the other application. Figure 9 (b), (c), (d) and (e)
also show the similar results.

4.4 Adaptive Mutation

In the current implementation of BiSNET/e, mutation rate of EAs and DAs is adaptively ad-
justed by MONSOON server. Figure 10 and 11 show simulation result from the same simula-
tion setup as in Figure 6 (a) and 7 (a) respectively; however, in Figure 10 and 11, the BiSNET/e
does not use , a fix mutation rate of 0.05 is used instead. It is clear that, without adaptive muta-
tion, MONSOON has to take about two times longer to archive the same optimized objective
values. The simulation results shows that adaptive mutation in BiSNET/e allow MONSOON
to quickly adjust the WSN applications to suit to environment condition.
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Fig. 10 Objective Values of DAs without
EAs

Fig. 11 Objective Values of EAs without
DAs

4.5 Power Consumption

Figure 12 shows the impact of MONSOON and BiSNET/e on power consumption, and com-
pare between hybrid application and individual applications. The figure represents the power
consumption on each simulation tick for the sensor network with node addition scenario, e.g.
as in Figure 6 (b). In this figure, individual applications represents summation of the power
consumption of data collection and event detection application when they are implemented
separately, i.e. the summation of power consumption from sensor network in Figures 6 (b)
and 7 (b) in each simulation tick. On the other hand, hybrid application represents the power
consumption of a sensor network which implements both data collection and event detection
on the same application, i.e. from Figure 8 (b). In this figure, MONSOON and BiSNET/e can
reduce the power consumption of WSN by optimizing the agent’s behavior policy. Moreover,
by implementing hybrid application on a same framework, the power consumption can be fur-
ther reduced which can be seen when compare the power consumption of hybrid application
and individual applications.

Fig. 12 Average Power Consumption
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4.6 Memory Footprint

Table 1 shows the memory footprint of the BiSNET/e runtime in a MICA2 mote, and compares
it with the footprint of Blink (an example program in TinyOS), which periodically turns on
and off an LED, and Agilla, which is a mobile agent platform for WSNs [13]. The BiSNET/e
runtime is lightweight in its footprint thanks to the simplicity of the biologically-inspired
mechanisms in BiSNET/e. BiSNET/e can even run on a smaller-scale nodes, for example,
TelosB, which has 48KB ROM.

Table 1 Memory Footprint in a MICA2 Node

RAM (KB) ROM (KB)

BiSNET 2.8 31.2
Blink 0.04 1.6
Agilla 3.59 41.6

5 Related Work

This chapter extends the authors’ prior work [7–9]. In [7], the authors proposed a biologically-
inspired WSN architecture, called BiSNET. BiSNET does not investigate evolutionary adapta-
tion. Thus, agent behavior policies are manually configured through trial-and-errors and fixed
at runtime. Unlike BiSNET, BiSNET/e allows agents to dynamically adapt their behavior poli-
cies to unanticipated network conditions. In [8], MONSOON was proposed and studied with
data collection applications. This chapter considers event detection applications and hybrid
applications as well as data collection applications. Moreover, this chapter evaluates how co-
evolution between DAs and EAs augments agent adaptability. This is beyond the scope of [8].
Compared with [9], this chapter investigates new operational objective (the degree of data
aggregation) and new mechanisms in MONSOON (e.g., swarming behavior, migration prob-
ability and adaptive mutation).
Agilla proposes a programming language to implement mobile agents for WSNs, and provides
an interpreter to operate agents on TinyOS [13]. Similarly, BiSNET/e exploits mobile agents
(DAs and EAs); however, this chapter does not focus on investigating a new programming
language for those agents. While BiSNET/e and Agilla implement a similar set of agent be-
haviors such as migration and replication, BiSNET/e studies a wider range of agent behaviors.
For example, Agilla does not consider energy gain/expenditure, swarming and pheromone
emission. Moreover, Agilla does not consider evolutionary and coevolutionary adaptation of
agents to seek optimal tradeoffs among conflicting objectives. As shown in Table 1, BiSNET/e
is implemented more lightweight than Agilla.
Virtual pheromone (VP) is a biologically-inspired node-to-node communication primitive in
TinyOS-based WSNs [37]. It has a generic set of properties such as pheromone type, strength,
source and payload. Therefore, VP can be used to implement base station, migration and alert
pheromones in BiSNET/e. However, VP does not address a research issue that BiSNET/e
does: autonomous adaptability of WSN applications.
Quasar is similar to BiSNET/e in that it proposes a data collection protocol that balances the
tradeoff between data accuracy and power efficiency [16]. Although BiSNET/e does not focus
on data accuracy as its operational objective, it studies extra objectives in data transmission
such as success rate and latency. Also, it considers not only data collection applications but
also event detection and hybrid applications in dynamic WSNs. (Quasar is considered and
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evaluated for static WSNs.) Quasar and BiSNET/e employ different optimization/adaptation
processes; BiSNET performs a population-based evolutionary algorithm while Quasar em-
ploys time series data analysis.
[4] proposes a cost function (or fitness function) that comprises conflicting objectives regard-
ing data transmission cost, power consumption, latency, reliability (the time between node/link
failures) and link interference. These objectives are similar to the ones BiSNET/e considers.
However, in [4], the total cost (or fitness) is calculated as a weighted sum of objective val-
ues. This means that application designers need to manually configure every weight value in
a fitness function through trial-and-errors. In BiSNET/e, no manually-configured parameters
exist for elite selection because of a domination ranking mechanism. BiSNET/e minimizes the
number of manually-configured parameters to minimize configuration costs for application de-
signers. Moreover, BiSNET/e does not require each node to have global network information
as [4] does.
Genetic algorithms (GAs) have been investigated in various aspects in WSNs; for example,
routing [10, 12, 18, 20, 23], data processing [17], localization [38, 42], node placement [15, 43]
and object tracking [10]. All of these work use fitness functions, each of which combines
multiple objective values as a weighted sum and rank agents/genes in elite selection. As dis-
cussed above, it is always non-trivial to manually configure weight values in a fitness func-
tion through. In contrast, BiSNET/e eliminates parameters in elite selection by design. More-
over, [10, 12, 15, 18, 23, 38, 43] do not assume dynamic WSNs, but static WSNs.
Beyond these classical GAs, multiobjective GAs (MOGAs) have also been investigated in
WSNs; for example, for routing [30, 31, 35, 40], node placement [19, 21, 27, 29, 32] and
duty cycle management [41]. In all of these work except [35], a central server performs an
evolutionary optimization process. This can lead to scalability issue as network size increases.
In contrast, MONSOON is carefully designed to perform its optimization process in both the
MONSOON server and individual nodes. Moreover, all of these work do not assume dynamic
WSNs, but static WSNs.
[30, 31, 40] investigates MOGAs that optimize migration routes for mobile agents to travel

from a base station to cluster head nodes and collect sensor data from individual clusters. In
BiSNET/e, agents make their migration and other behavior decisions by themselves. MON-
SOON optimizes their behavior policies, not agents’ migration routes.
[35] is similar to BiSNET/e in that both follow the agent designs proposed in BiSNET and

exploit MOGAs to adapt agent behavior policies. Unlike [35], BiSNET/e studies coevolution
between DAs and EAs as well as their regular evolution (i.e., single-species evolution). [35]
considers data collection applications only in static WSNs. Also, BiSNET/e performs adaptive
mutation and crossover, which [35] does not consider.
Adaptive mutation was initially proposed in [36], and it has been used in WSNs [10, 23].
In [10, 23, 36], mutation rate is dynamically adjusted based on the current fitness that is a
weighted sum of objective values. In MONSOON, mutation rate is adjusted based on the
progress of performance improvement by the non-dominated individuals.

6 Conclusion

This chapter describes a coevolutionary multiobjective adaptation framework for WSNs,
called MONSOON. MONSOON allows WSN applications to simultaneously satisfy conflict-
ing operational objectives by adapting to dynamic network conditions (e.g., network traffic and
node/link failures) through evolution. Thanks to a set of simple biologically-inspired mecha-
nisms, the BiSNET/e runtime is implemented lightweight.
Some extensions to MONSOON and BiSNET/e are planed. The extensions include associ-
ating a constraint(s) with each operational objective. A constraint is defined as an upper or
lower bound for each objective. For example, a tolerable (upper) bound may be defined for
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the latency objective. Constraints allow agent designers to flexibly specify their specific re-
quirements (or priorities) on objectives. They can also improve evolution speed by dedicating
agents to satisfy those constraints.
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