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Abstract This chapter provides an overview of structured Peer-to-Peer overlay al-
gorithms. The chapter introduces basic concepts including geometries, routing algo-
rithms, routing table maintenance, node join/leave behaviour, and bootstrapping of
structured Peer-to-Peer overlay algorithms. Based on these key concepts, a number
of key overlay algorithms are classified into categories and a brief over-view of these
algorithms is presented. Finally, the chapter presents an “on-a-glance” comparison
of the presented algorithms and provides an outlook on open research issues.

1 Overview

Large scale peer-to-peer systems have been deployed for file, music, and other data
sharing applications over the internet. The core of these systems is a peer-to-peer
network overlay that could connect millions of users or systems and a network that
could dynamically discover data stored at any node. Early versions of such peer-
to-peer systems mainly consisted of unstructured overlays that organize nodes into
random data structures. These unstructured overlays use techniques such as walk-
ing or flooding the nodes in the system for lookup, and are often optimized for some
common lookup queries. But, in general, these unstructured overlays are quite un-
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predictable for finding rare items and for some real-time applications such as voice,
video sharing etc.

To overcome these issues, structured overlays are developed to provide deter-
ministic bounds on the data discovery. Structured overlays provide scalable network
overlays based on a distributed data structure that supports deterministic behaviour
for data lookup. Structured P2P overlays impose restrictions on node placement in
the overlay and hence, improve the efficiency of data lookup. In this chapter we take
a closer look at these structured peer-to-peer overlays. Earlier surveys of structured
overlays can be found in [1–4]. Here, we present different geometries and their ef-
fect on the performance of structured P2P systems. We categorize structured P2P
systems in terms of the bound on numbers of hops required for data lookup and
present issues such as node lookup, finger table maintenance, and join/leave prop-
erties of the overlays. First we define various terms used in structured P2P systems
and present the basic notions of a structured peer-to-peer system. We then introduce
various classes of structured overlays and discuss their relative merits in the last
section.

Some terms and notions are often used when describing P2P overlay algorithms.
The most common ones are described briefly below.

Structured P2P overlay: A network overlay that connects nodes using a partic-
ular data structure or protocol to ensure that node lookup or data discovery is
deterministic.

Distributed hash table (DHT): A decentralized or distributed hash table that stores
(key, value) pairs and is used for data lookups using a key.

Key-based routing: The principle by which a message is routed to the owner of a
key k from a node n following the principle that either the node n owns the key
or points to a node that is closer to a node that owns k in terms of some key space
defined by the DHT.

Routing table (Finger table): Data structure, usually a table, at nodes that main-
tain links to other nodes in the structure.

Churn: Rate of node joins and leaves in a peer-to-peer network.

2 Basic Features of Structured P2P Overlays/Networks

One way to understand structured P2P overlays/networks and to compare various
such systems is to study their defining aspects. These aspects include the geome-
tries or data structures used in overlays, the routing algorithms that are enabled by
these data structures, the affects of churn on various geometries, the maintenance
of the data structure, and the bootstrapping mechanism. These aspects collectively
describe the behaviour of structured P2P overlays. In this section, we present what
each of these aspects are and how they impact P2P performance in terms of lookup
speed, space consumption, and bandwidth requirement. Notations introduced herein
are used in later sections to describe various representative structured P2P overlays.
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2.1 Geometries

Structured P2P overlays use a number of different geometries to accommodate par-
ticipating nodes in P2P overlays. The term geometry is referred to as a structure to
organize nodes in a P2P overlay. The primary goal of these geometries is to enable
the deterministic lookup. The cost or performance of lookups in a structured P2P
overlay is directly related to how nodes are arranged and how the geometry is main-
tained when new nodes arrive and when old nodes leave. Further, these geometries
have a direct impact on the space requirements and on the churn performance of the
P2P overlay.

Fig. 1 Examples of structured P2P overlay geometries

Figure 1 shows a few examples of P2P geometries. As depicted in the figure,
nodes can be organized in various ways. There are two ways of looking at these
structures. One is how the nodes are mapped. In other words how a search of this
space proceeds. Another way, though closely related but distinct, is to look at the
connectivity of these nodes. For example in Fig. 1a nodes are organized in a way
such that the lookups proceed clock-wise in powers of 2. Each node knows only
about a certain number of other nodes in the network. In Fig. 1b lookups proceed
in powers of 2 but in a geometric space. Figure 1c shows a node organisation with
a high connectivity among nodes. Here the lookups are relatively simple and often
only take a single overlay hop.

While structured peer-to-peer overlays offer a uniform distribution of nodes that
help in the lookup, the costs associated with the distribution and lookups need to
be balanced with the performance under churn, network latency, and space. The
scale of peer-to-peer overlays requires significant efforts in maintaining membership
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changes in overlays. This aspect is further enhanced by the churn of nodes. One
way to mitigate this problem is to maintain small tables that do not require high
maintenance. However, small routing tables increase the lookup latency, which is
often O(log N). If the size of routing tables is increased, then structured overlays can
reduce the lookup latency as fewer overlay hops are required to reach the destination
node. The latency cost can vary between O(log N) to O(1). There are some variations
to the O(1) latency overlay algorithms that minimize peer dynamics.

Logarithmic Overlays: Structured overlays use different approaches to route ob-
jects. A class of overlays reduce the lookup space by half in each step resulting
in a logarithmic number of hops (based on the number of nodes in the overlay).
Such overlays are referred to as logarithmic overlays and they guarantee on average
O(logN) hops for lookups. Examples of such logarithmic overlays are Chord, Pas-
try, Tapestry. While Chord uniformly distributes a node across the search space,
overlay algorithms like Pastry and Tapestry exploit inter-node proximity while
choosing the node’s routing table entries. While the average number of hops re-
mains in the same order of complexity with this approach, lower network latency
reduces the routing and maintenance costs.

O(1) Overlays and Constant Overlays: In cases where the peer churn is low, the
size of the overlay is relatively small, or network latencies for high bandwidth
nodes make the routing table maintenance less expensive, constant or O(1) over-
lays become practical. There are studies that shows that for overlays with millions
nodes or more the bandwidth requirements become large and the O(1) overlays
become expensive [5] and multi-hop approaches might be preferable. After initial
studies on O(log N) overlays, currently there is extensive research on minimizing
lookup latency and optimizing the table maintenance costs using constant overlays
[6, 7].

2.2 Routing Algorithm

Structured P2P overlays use routing algorithms to locate node(s) in an overlay and
retrieve data items from them. The routing algorithm defines how a target node is
located in the overlay network. This lookup is closely associated with the geometries
of the P2P overlay and the connectivity or information stored at each node.

DHT-based routing algorithms use the hash of a node ID to form a node ID space,
which typically is uniformly distributed (however some overlays purposefully break
this to achieve a closer relation between the underlying physical network and the
overlay). A commonly used hashing function is SHA-1.

The identifier for data items (file name etc) is created by applying the same hash-
ing function. Hence the node IDs and data IDs fall into the same ID space. Data
items are typically stored on the closest node with node ID greater than or equal
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to the data ID. Using this approach each node can find a particular data item using
its name. If the node with the closest node ID does not store the data item, it is not
available in the network. Using this approach any existing data item can be found
by any node in the overlay.

Based on these characteristics a number of different routing algorithms have been
defined by various overlays. Major approaches are logarithmic routing (e.g. used by
Chord [8]), One-hop routing (EpiChord [9]), XOR routing (e.g. used by Kademlia
[10]), and the Content Addressable Network (CAN) [11].

Logarithmic routing means that it takes O (log N) steps to route a message from
source to destination node. N is the maximum number of nodes in the overlay. Each
node will route a message closer to the destination node by selecting the entry in its
routing table whose node ID is closest but smaller or equal to the destination node
ID. Logarithmic routing guarantees that with high probability that it does not take
more than log N steps to reach a destination node. Overlays described in Section 3
belong to this category.

Clearly, the more accurate and the larger routing tables are, the fewer hops are
required to route a message from source to destination. Constant degree overlays
guarantee that routing from source to destination is achieved in a certain number of
hops, independent of the size of the overlay. Overlays discussed in Section 4 belong
to this category. This approach is pushed to the extreme in one-hop overlay networks
which have almost complete routing tables in each node and hence can transmit
messages in (almost) a single hop from source to destination. Overlay algorithms
described in Section 5 belong to this category.

2.3 Join/Leave Mechanisms

In the previous sections, we discussed the P2P overlay geometies and the routing
mechanisms. P2P systems are highly dynamic in nature. They need robust mech-
anisms for nodes to join or leave the system at any time with minimal impact to
the functioning of the P2P overlay. However, the need for a geometry that leads
to a deterministic routing behaviour and the need for autonomous nodes provide
a dichotomy for P2P systems. Structured P2P systems use specific join and leave
mechanisms for nodes to resolve this dichotomy. These mechanisms provide a bal-
ance between high dynamism of P2P systems and a predictable or deterministic P2P
overlay behavior.

Peers join an overlay network by connecting themselves to any of the existing
peers. But in structured P2P systems, a peer cannot randomly pick exiting peers
to join. Instead, it must connect itself to well-defined peers based on its logical
identifier and on the geometry of the P2P overlay. Because of this controlled manner,
the join and leave mechanisms can greatly affect the performance of structured P2P
systems.
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Peer Join: Typically, there are three steps for a node to join a structured P2P overlay.

1. The first step is to get a unique identifier for the node. As discussed above, the
hashing scheme is based on unique properties of the node. For example, MAC/IP
addresses could be used to obtain such an identifier.

2. The second step is to position itself into the overlay structure. This positioning is
based on the node’s id and the geometry of the P2P overlay. During this step, the
node needs to know the entry point or the identity of an existing node to insert
itself into the overlay. This process is called bootstrapping, which is discussed
later in this section.

3. Finally, in the third step, the new joining peer and all the affected peers update
their routing tables to stabilize the overall P2P overlay. By stability we mean the
predictable behaviour of the P2P overlay. This step is often referred to as routing
table maintenance.

Routing table maintenance is discussed in the following sections, so we focus on
the second step where a node, after finding an existing peer, inserts itself into an
overlay. The joining node contacts a peer in the overlay to find out its appropriate
position in the overlay. The existing peer uses techniques that are associated with
the overlay geometry to find out the new node’s neighbours. For example, in Chord,
the existing node will issue a lookup to find the successor of the new node based on
the new node’s identifier. The new peer will then connect to its successor and join
the overlay.

Once a new node joins a structured P2P system, the new node and affected peers
need to update their properties, usually routing tables, to keep the invariants of the
overall system. The number of peers being affected varies for different systems. For
example, a new node in Chord affects O(logN) nodes, where N is the number of
peers in the system. A new node in CAN affects O(d) nodes, where d is the dimen-
sion of the system. However, in O(1) systems, all other nodes in the overlay may
need notifications. Clearly, the complexity is dependent on the particular overlay
geometry.

Peer Leave: When a node leaves or becomes unreachable in a structured P2P over-
lay, nodes that point to that node are affected. Their routing table entries will be
stale and have to be updated. A timely update results in preserving the invariant of
the overlay and guarantees the deterministic lookup in the overlay.

A gracefully departing peer may notify its neighbours about its departure and
transfer necessary information to its neighbours for updating their routing tables.
Its neighbours then propagate the changes if needed until the invariants of the sys-
tem are preserved. For example, in Chord, after the update, each node’s successor
should be correctly maintained and for every key k, node successor (k) should be
responsible for k.

In some cases, a node may leave the system unexpectedly, e.g., due to net-
work failure or power outage. Under these circumstances, the node will not no-
tify its neighbours and cannot send necessary information for routing table updates.
Hence the system must have a failure detection and stabilization mechanism. Failure
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detection is usually handled by heartbeat messages or periodic checking. For exam-
ple, CAN nodes send periodic update messages to their neighbours. The prolonged
absence of an update message from a neighbour signals its failure. Chord nodes
periodically do random checking on its finger tables to detect failures. Once the
failure of a node is detected, usually by its neighbours, the neighbours will start the
stabilization process to update routing tables.

2.4 Routing Table Maintenance

As discussed in the previous sections, in structured P2P overlays, each node main-
tains a routing table to find other peers in the network. Routing table sizes depend
heavily on the overlay geometry. In Multi-hop overlays (that is a lookup takes mul-
tiple overlay hops from source to destination) generally use smaller routing tables
than one-hop overlays. In one-hop overlays, ideally every node is aware of every
other node, hence routing tables need to include references to every other node in
the system. This requirement results in large routing tables and poses an additional
problem in maintaining the routing tables. Hence, the improved latency behaviour
of one-hop overlays comes at a cost of increased maintenance traffic.

Routing table entries need updating if new nodes join or existing nodes leave the
network. Usually a join and a graceful leave are propagated through the network by
a defined algorithm. However, ungraceful leave events are harder to detect. Gener-
ally, two main approaches have been defined for keeping routing tables up-to-date:
opportunistic maintenance and active maintenance.

With opportunistic maintenance, an overlay uses lookup messages and responses
to distribute routing table entries. For example, a node will attach entries from its
routing table to a response message. The receiver of this response can then augment
its routing table with these nodes. This is efficient in terms of number of dedicated
maintenance messages required, however, the accuracy of the routing tables is de-
pendent on the number of lookup messages sent. During periods of high churn there
is an increased demand for routing table updates. During such periods, opportunistic
maintenance may not be sufficient on its own and hence nodes may insert additional
lookup messages to receive more routing table updates. As an example, EpiChord
[9] discussed in Section 5.3 employs opportunistic routing table maintenance.

With active maintenance, there is a specific algorithm and dedicated messages
to propagate routing table entries between nodes. Typically these messages are dis-
tributed when a node-join or node-leave event is detected. Usually, neighbouring
nodes pick up these events and then distribute these events to all the other nodes
in the overlay. Alternatively, update requests are sent after a time interval has ex-
pired. Clearly, active maintenance requires a higher bandwidth for distributing node
join/leave events, but achieves better routing table accuracy than with opportunistic
maintenance schemes. D1HT [46] as discussed in Section 5.4 uses active routing
table maintenance.
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2.5 Bootstrapping

Bootstrapping is a key operation in structured peer-to-peer overlay network. Boot-
strapping operation is executed when a peer joins the P2P system for the first time. It
enables the initial discovery of other nodes/peers participating in the P2P network.
Nascent peers perform such an operation to join the P2P network. Bootstrapping
include the period from peer arrival to the point when the nascent peer becomes a
functioning peer of P2P overlay.

One common approach for bootstrapping is through a bootstrapping server. The
bootstrapping server maintains a list of participating peers. When contacted by a
nascent peer the bootstrapping server returns a partial list of existing peers. The
nascent peer connects to the peers in the returned list to join the P2P network. The
address of the bootstrap server is usually obtained out-of-band.

Another common approach for bootstrapping is to let nascent peers know in ad-
vance an entry point into the network. The entry point can be a list of known peers
of a P2P overlay, or a list of non-public bootstrapping servers.

Once a nascent peer gets in touch with some existing peers in the network, it
starts the joining process. Different P2P networks employ different strategies, and
typically, the joining process is closely related to P2P overlay’s routing strategy. The
bootstrap server can look at the requesting node’s hashed identity and can return the
list of existing peers so that the joining process could be optimized. The key issue
in designing a good bootstrapping strategy is how to support peers to connect into
the network quickly.

3 Logarithmic Degree Overlays

In this section as well as Sections 4 (Constant Degree Overlays) and 5 (O(1)-hop
overlays), we use the key mechanisms described in the previous section to describe
various structured overlays. That is, for each overlay we describe its address space
along with its geometry, its routing table and lookup algorithm, and its join and
leave mechanisms. In terms of bootstrapping, not all overlays specify a particular
approach, however, it appears that all overlays require that a new node knows about
at least one peer in the overlay. Common approaches to find an overlay node are IP
multicast, using a well-known bootstrap node or using the DNS. Here the overlay
service is associated with a DNS domain name. IP addresses of one or more overlay
bootstrap nodes are retrieved using the DNS lookup service.

3.1 Chord

Chord [8], developed by a group of researchers at MIT, is one of the first P2P overlay
system based on distributed hashing table (DHT).
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Address space: Chord uses the so-called consistent hashing to assign each node and
each key an m-bit identifier (Id), where m is a pre-defined system parameter. Ids fall
into the range from 0 to 2m− 1. Nodes are ordered on an identifier circle modulo
2m, as shown in Fig. 2. A key is cached at its successor node, defined to be the
next node in the identifier circle in the clockwise direction. The predecessor node
to a node or key is the next node in the identifier circle in the counter-clockwise
direction.

Routing table and key lookup: The routing table of Chord nodes consists of two
parts. The first part includes a finger table with m entries, and the predecessor of this
node. Assume the node Id is n. The i-th entry in the finger table, where , points to
the node whose Id is the closest to n+2i−1 in the clock wise direction at identifier
circle. Notice that the first entry in the finger table is the successor node of the
current node. Predecessor node plus the finger table guarantees the correctness of
key lookup service, as described below.

The second part of the routing table is a successor list of size r. In addition
to the immediate successor node maintained in the finger table, other closest (r−
1) success nodes are also recorded. The successor list improves the robustness of
Chord protocol, and allow Chord to perform correctly in the face of peer churn, i.e.,
dynamic peer arrivals and departures.

A key lookup request is routed along the identifier. Upon receiving a lookup
request, the node first checks if the lookup key Id falls between this node’s Id and
its successor’s Id. If it does then it, returns the successor node as the destination
node and terminates the lookup service. On the other hand, if the lookup key Id
does not belong to the current node, the node relays the lookup request to the node
in its finger table with Id closest to, but preceding, the lookup key Id. The relaying
process proceeds recursively (or iteratively) until the destination node is found. A
key lookup example is depicted in Fig. 2. In the figure, the left-hand side shows the
finger table of Node 8 (N8). Node 16 (N16) appears in four entries in the finger table,
while Node 32 (N32) and Node 43 (N43) are also in the finger table. The right-hand
side figure depicts the stages for the lookup of key 53 starting from Node 8. It has
been shown that the number of routing steps is at the order of O(logN), where N is
the total number of Chord nodes. Refer to [8] for more detailed treatment on Chord
routing algorithm.

Node join and leave: The newly arrived node in Chord first uses consistent hashing
to generate its Id. It then contacts the bootstrapping node, the node already in the
Chord, to lookup the successor of its Id. This successor node becomes new node’s
successor node. The new node uses the stabilization protocol, which is described
below, to have a fully correct routing table.

Stabilization protocol is designed to maintain routing tables’ correctness in the
face of peer churns. It is executed periodically at the background of individual nodes.
The stabilization protocol includes following two major functions:

Stabilize( ): allows nodes to learn about newly joined nodes and to update their
successor(s) and predecessor.

Fix fingers( ): ensures finger tables are current and correct.
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Fig. 2 Example scenario for key lookup in Chord

Node failure/departure creates another challenge to the Chord protocol. The de-
parture of a node leaves its predecessor node’s successor pointer invalid, which
could affect the routing correctness. To address this issue, Chord maintains a suc-
cessor list of size r. The successor list can be stabilized using slightly changed stabi-
lization protocol. It’s proven that with size r = S(logN), where N is the total number
of nodes in Chord, the lookup can still succeed with high probability even if every
node fails with probability of 1/2. A study of Chord’s behavior under churn can be
found in [12].

3.2 Pastry

Pastry [13–17] is developed by researches from Microsoft Labs Research, Rice Uni-
versity, Purdue University, and University of Washington. There are several appli-
cations built on Pastry for different purposes, such as SCRIBE [18–21] for group
communication/event notification, PAST [22, 23] for archival storage, SQUIRREL
[24] for co-operative web caching, SplitStream [25, 26] for high-bandwidth con-
tent distribution, POST [27] for co-operative messaging, and Scrivener [28] for fair
sharing of resources. Two implementations of Pastry are available for download:
FreePastry [29] from Rice University and SimPastry and VisPastry [30] from Mi-
crosoft Research.

Address space: Each Pastry node has a unique, 128-bit nodeId. Node IDs are chosen
randomly and uniformly. One way of generating nodeIds is by hashing nodes’ IP
addresses.

Routing table and key lookup: Pastry uses prefix matching to route messages. Each
Pastry node keeps a routing table with �logb

2 N� rows and 2b−1 columns. The entries
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in row n share the first n digits with the present node. In addition to the routing table,
each node also maintains a leaf set that contains the IP addresses of nodes with l/2
numerically closest larger nodeIds, and 1/2 nodes with numerically closest smaller
nodeIds, relative to the present node’s nodeId.

Given a message with its key, the node first checks its leaf set. If there is a node
whose nodeId is closest to the key, the message is forwarded directly to the node.
If the key is not covered by the leaf set, then the node checks the routing table and
the message is forwarded to a node that shares a common prefix with the key by
at least one more digit. This way, with �log2bN� steps, the message can reach its
destination node.

Figure 3 shows an example lookup scenario. The left-hand side table shows the
routing table and the right-hand diagram shows the route. The node 859fdc looks
up a key d57b2d. From its routing table, it gets d13a14, which shares one digit
common prefix with the key. d13a14 then checks its routing table and get d52acd,
which shares two digit common prefix with the key. This step keeps on until the key
is covered by the node d57b0c.
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Fig. 3 Example lookup scenario in Pastry

Node join and leave: In order to join a Pastry network, a new node must know an
existing node. The new node can initialize its state by contacting the existing node
by sending a join message with its nodeId as the key. The message is routed to an-
other existing node with nodeId numerically closest to new node’s nodeId. Then all
nodes encountered on the routing path send their state tables to X . The new node X
then initializes its own state tables based on the new information. Finally, the new
node informs any nodes that need to be aware of its arrival. Routing table mainte-
nance is handled by periodically exchanging keep-alive messages among neighbor
nodes. Upon detecting node failure, all members of the failed node’s leaf set are
then notified and they update their leaf sets.
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3.3 Kademlia

The basic principle of Kademlia [10] is to successively find nodes that are half the
distance to the target node. Kademlia differs from Pasty and other such overlays in
mainly two different aspects. One difference is a new notion of node closeness based
on XOR of the node identities. The other difference is Kademlia nodes contain lists
of entries, referred to as buckets, which are used to send parallel requests.

Address Space: Kademlia system assigns 160-bit node IDs. The lookup algorithm
uses a XOR-based closeness to reduce the lookup space. The intuition behind the
XOR based closeness is that node IDs that are different at higher order bits matter
more than node IDs that are different in lower order bits and hence, the XOR dis-
tance would be higher. Using this XOR metric, Kademlia’s topology orders nodes
as a tree where subtree nodes are closer together than other subtrees.

Routing table and key lookup: Routing tables contain separate lists for each bit in
the node ID. Hence if a network uses 128 bits for node IDs each node will have
128 lists (called buckets in Kademlia). Each list corresponds to a particular distance
to nodes. Distance is measured in matching bits in the node IDs. Nodes in the nth
list have a differing nth bit from the current node’s ID whereas the first n− 1 bits
match those of the current node’s ID. To define distance between nodes, Kademlia
uses XOR metrics. Here the result of the XOR operation applied to two node IDs
(returning 0 for identical bits and 1 for differing bits) is the distance between two
nodes. Like Chord, Kademlia nodes know about more nodes near to them and fewer
nodes further away.

Fig. 4 Kademlia routing table data source

Figure 4 shows a routing table for a node with ID 000..00. Note that there are
k-buckets, each of which covers an address space based on the XOR metric of node
IDs. Each of these buckets is a list that may contain multiple contacts for a given
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subtree. Maintenance of these buckets is straightforward though highly unbalanced
trees are handled separately. Maintenance of the nodes in the lists could be depen-
dent on the applications.

A Kademlia lookup node first finds the k-closest nodes to the given node ID.
Kademlia recursively picks a subset, l, of these k-closest nodes and sends a request
to all the l nodes. In the next recursive step, the Kademlia lookup node again picks
a subset of nodes from the nodes it learned about from the previous request. Intu-
itively, each of these recursive reduces the XOR metric distance by 1/2 and results
in the smaller size k-buckets. The concurrent lookup provides a trade off between
bandwidth and lookup latency.

Node join and leave: Node joins mirror node lookups. That is, a node, u, that wishes
to join adds a previously known contact, w, to its bucket and performs a node lookup.
It fills up its routing table based on the responses and inserts itself into the k-buckets
of the other nodes in the system. There is no specific mechanism for node departures
as other nodes may discover through the PING mechanism.

3.4 Tapestry

Tapestry [31] was developed by a team of researchers from University of California,
Berkeley, and MIT. Tapestry has close links with Pastry in that both offer a prefix-
based routing of messages. Tapestry aims at providing high-performance, scalable
and location-independent routing of messages to near-by endpoints. Tapestry ex-
ploits locality when routing messages, including object replicas. Especially, Tapestry
allows applications to place object replicas according to the application’s need.
Bayeux [32] as a Application Lay Multicast approach has been implemented on
Tapestry. Chimera [33] is a more recent and updated Java-based implementation
which uses Tapestry concepts.

Address Space: Tapestry nodes are assigned node IDs uniformly at random from a
large identifier space. Typically a 160 bit values are used together with a globally
defined radix. Usually the radix is defined as hexadecimal resulting in 40-digit iden-
tifiers. The SHA-1 hashing algorithm may be used to create node IDs. Data items
(or Application specific endpoints) are assigned unique identifiers from the same ID
space.

Routing table and key lookup: Each node maintains a routing table whose entries
consists of node IDs and the corresponding IP addresses. All nodes represented in a
routing table are called ‘neighbours’ of that node. Routing corresponds to forward-
ing messages across neighbour links to nodes which are closer, i.e. matching more
digits of the prefix, to the key of the endpoint. An example routing table is shown in
Fig. 1. This routing table belongs to node 3176 in an overlay which uses 4-digit oc-
tal IDs. Each routing tables has a number of levels corresponding to the number of
digits used in the IDs. For the example shown in Fig. 5 this corresponds to 4 levels.
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Each level contains links to nodes matching a prefix up to a digit position in the
ID. Each level contains a number of entries equal to the radix used (in Figs. 5, 8 as
octal). Further, the primary ith entry in the jth level corresponds to the closest node
whose ID begins with the corresponding prefix. Using this ‘closest node’ approach
provides the locality properties of Tapestry.

Fig. 5 Routing table example for Node ID 3176

Each hop in the routing of a message takes the message closer to its destination.
Specifically, the node for the nth hop shares a prefix of at least n digits with the
destination ID. This approach guarantees that any node in the system can be reached
in at most log ·N overlay hops, where N is the size of the namespace and · is the radix
used.

Node Join and Leave: Inserting a new node N starts at the node that is responsible
for the ID of N in the overlay. This surrogate node S determines p, the number
of digits its ID shares with N’s ID. S then sends a multicast message to all nodes
which share the same prefix. These nodes will add N to their routing table and in
turn contact N, so N can add these nodes to its own routing table. N then carries
out an iterative nearest neighbour search starting at level p. N may trim the list to
the closest k nodes. N then requests these p nodes to send their backpointers at that
level. This results in a set of all nodes that point to any of the k nodes at the previous
routing level. Next N decrements p and repeats the process for all remaining levels.

If a node N decides to leave the network, it notifies all nodes in N’s backpointers
about it leaving. With each notification N provides a replacement node from its own
routing table. Any object references stored on N are rooted to their new hosts. Nodes
that left the network ungracefully are detected using periodic beacons. Such leaving
events trigger repair of the overlay and initiate redistribution of object references.

3.5 P-Grid

P-Grid [34–36] uses a virtual binary tree to form an overlay. The virtual tree is used
to distribute the data items to be stored in the overlay to one or more peers. P-grid
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achieves O(log n) performance for search operations where n is the number of data
items in the overlay.

Address Space: P-Grid is similar to Kademlia in that it also uses tree-based routing.
However, in P-Grid the node IDs are disentangled from the key IDs. In fact, there is
no requirement to hash node IDs in P-Grid. Due to the nature of the construction of
key IDs, P-Grid supports substring queries. This is probably one of the most distin-
guishing features of P-Grid when compared with other DHT based overlays. Like
some other DHTs Pastry, Tapestry), P-Grid uses a prefixed based search algorithm.

Routing table and key lookup: Each peer in P-Grid contains a routing table which
contains an entry for every bit in the binary tree. The example shown in Fig. 6 uses a
3-bit binary tree. Hence each routing table has 3 entries. Each entry corresponds to
a bit in the path towards that node and stores at least one peer that is responsible for
the other side of the binary tree at that level. As an example Node 6 is linked to 011
in the binary tree. Hence it has entries for the other side of the tree at the topmost
level, in this case 1 (Node 5), the second level, in this case 00 (Node 4), and the
bottom level of the tree, here 010 (Node 2).

The binary search tree can be constructed for any set of strings. To construct a
tree a sample search string database is used. Firstly, the length of the common prefix
of the strings in the database is calculated. This database is lexicographically sorted,
and the string at the middle position in the sorted database is selected. The prefix
of this string (length is the common prefix + 1) is determined and used to split the
database in two equally sized parts. The prefix is then stored at the root of the tree.
This splitting proceeds until the desired depth of the tree is achieved. The binary
key of a string is then calculated by comparing the string to the tree’s root value.
If the string is smaller than this then 0 is appended to the key and the left subtree
is considered next, and if it is greater then 1 is appended to the key and the right
subtree is considered next. This algorithm is carried out for every level in the tree.

In P-Grid a number of nodes might be responsible for the same part of the tree.
For instance in Fig. 6, Nodes 1 and 6 are responsible for data with the prefix 000,
Nodes 9 and 2 are responsible for data with the prefix 010, Nodes 13, 20, and 5 are
responsible for data with the prefix 101 and Nodes 11 and 15 are responsible for
data with the prefix 110. If a peer receives a query it cannot directly satisfy it will
forward the query to a node closer to the destination. For instance, in Fig. 6, if Node
4 receives a query for 101, it will forward the query to Node 3 as the query starts
with 1. Node 3 will forward the query to Node 5 which is responsible for this data
and will return it to the original requesting node.

Node Join and Leave: P-Grid construction is carried out by local interactions be-
tween peers only. It is assumed that by some mechanism peers will meet and in-
teract. Initially, all peers are responsible for the entire search space, i.e. all keys.
As two peers meet, they divide the search space into two halves, with each node
taking responsibility for one half. This approach is carried out whenever two peers
meet which have responsibility for the same address space. If peers meet, which
are responsible for data items whose keys have a common prefix, they can initiate
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Fig. 6 Example P-Grid with a 3-bit binary tree

additional meetings by forwarding each other to peers in their respective routing ta-
bles. If the meeting peers have a different path length the peer with the shorter path
can specialise by extending its path in the opposite direction from the other peer at
that level. This algorithm is uniform and self-stabilising.

4 Constant Degree Overlays

4.1 CAN

CAN, or Content Addressable Network [11], is one of the first DHTs (distributed
hashing table) proposed.

Address Space: CAN utilizes a virtual d-dimensional Cartesian coordinate space
to host both keys and nodes. Keys and nodes are mapped to corresponding points/-
coordinates in this d-dimensional space using a uniform hash function. Hence the
address of a node is its location within the logical coordinate system. As with all
DHT based algorithms, the location of a node is calculated using a hash function.
Then, the entire coordinate space is divided into “zones” where each node owns one
zone. Node that owns the zone is responsible for the keys sitting in the same zone.

Routing table and key lookup: A CAN node’s routing table contains coordinates
and IP addresses of each of its neighbours in the coordinate space. Neighboring
nodes are the nodes whose zones adjoin each other. In a d-dimensional space, two
zones adjoin if their coordinate spans overlap along d−1 dimensions.

The key lookup starts with hashing the search key to a coordinate in d-dimensional
space. A CAN message is then formed carrying the destination coordinates. The
lookup message is forwarded toward the destination zone in a greedy fashion:
the node always forward the message to its neighbor node that is closer to the
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destination. A tie is broken arbitrarily. Figure 7 illustrates such an example in a
2-dimension CAN space.

For a d-dimensional CAN space with n nodes, the average routing path length
is (d/4)(n1/d) hops. The routing table size is 2d. Hence the routing table size is
independent of number of available CAN nodes, and the routing path length grows
in the order of O(n1/d).

Fig. 7 A 2-dimension CAN space with 14 zones. Node 3 initiates a lookup for key (X,Y) using
greedy algorithm

The routing table in CAN is maintained through periodic update messages. As
long as the routing table contains the right neighbors, the lookup service will suc-
ceed. In case a node loses multiple entries in the routing table simultaneously, or the
rebuilding process has not fully recovered the routing table, a node may use state-
less, controlled flooding to locate a node closer to the destination. The closer node
then takes over the lookup and uses greedy forwarding thereafter.

Node join and leave: A newly arrived node knows at least one existing node in
CAN. It randomly generates its coordinate, P, in the virtual space. A JOIN request
with destination P is sent through the known CAN node. Once the destination CAN
node receives the JOIN request, it will split its zone into half and assign one half to
the new node.

The new node builds up its routing table through learning previous owner node’s
routing table. The routing table comprises of the subset of retrieved routing table
plus the occupant node as neighbor. The routing tables of neighboring nodes also
need to be updated. The new and previous occupant nodes send out update messages
to neighboring nodes. In fact, the zone information of a node is periodically sent to
a node’s neighbors, which ensures the correctness of routing table.

When a node leaves the system gracefully, its zone and associated (key, value)
database is handed over to one of it neighbors. The new zone owner merges the
handed over zone with its original zone.
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In case a node fails or departs unexpectedly, the periodical update message will
discover such departure/failure. The takeover mechanism is automatically trigged
at nodes that discover the failure. The takeover timer is started. When the takeover
timer expires, the node sends a TAKEOVER message with its own zone information
to all of the failed node’s neighbors. The receiving node either cancels its own timer
if the zone volume in the message is smaller than its own zone volume, or it replies
with its own TAKEOVER message. The goal is to have the neighbor node that has
the smallest zone to take over the orphan zone.

4.2 Ulysses

Ulysses [37] can achieve tries to achieve log2 log2 n end-to-end routing latency with
a routing table size of about log(n).

Address space: The structure of Ulysses is based on the butterfly topology [38], but
it improved the static butterfly topology by accommodating the dynamics of peer-
to-peer networks. In addition, it solves the problem of high edge stress of static
butterfly topology by adding shortcut links.

Figure 8 shows a Ulysses network with 2 levels and 11 nodes. In a Ulysses net-
work, a node is identified by a tuple (P, l), where l is the level number and P is a
binary string uniquely identifying the node in the level. P can be mapped to a k-
dimensional row identifier (x0,x1, . . . ,xk−1) in a static butterfly is as follows : The
bits at location i, i+k, i+2k, . . . in P represent xi in (x0,x1, . . . ,xk−1). The length of
P in a Ulysses network with n nodes and k levels is expected to be log2(n/k). But
the length of P for individual nodes changes due to dynamic arrival and departure
of nodes.

Routing table and key lookup: In a Ulysses network with k levels, a query for
the key (a, i) originates at a random node. The query keeps getting forwarded to
next level. In each forwarding step, the forwarded node can match one additional
dimension of the key. After the k steps the query reaches a node (Q, l) such that
a lies within the zone Q in all the k dimensions. If the level l is the same as the
level i of the key that is being searched, then Q must contain a, and the routing is
complete. Otherwise the node (Q, l) forwards the query on its shortcut link to node
(Q, i), which must be responsible for the key (a, i).

Node join and departure: A new node must know an existing node to join a Ulysses
network. It then generates a random key and sends a query for this key through the
existing node. This query will eventually reach the node O(Q, l) responsible for the
key. Node O then splits its zone of responsibility in two and assigns one half to the
new node. The identifiers of node O and the new node will then be Q0 and Q1,
respectively. Both nodes remain in level l. The node O informs the new node N
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Fig. 8 A Ulysses butterfly with 2 levels and 11 nodes

about its original neighbors. When a node with identifier (P, l) leaves the network,
it needs to hand over its keys to another node at the same level.

4.3 Cycloid

Cycloid [39] presents an overlay that combines hypercube routing with overlay rout-
ing that reduces the lookup path by key matching as in Pastry. Cycloid uses Cube-
Connected-Cycles graph as its geometry. The geometry and the routing algorithm
ensure that the lookup time is O(d), where ‘d’ is the network dimension.

Fig. 9 Various linkages of a full 3-dimensional cycloid

Address Space: A cycloid can be viewed as a d-dimensional cube where each ver-
tex is replaced by a cycle of d-nodes, with n = d.2d , where n is the number of



242 Krishna Dhara et al.

nodes in the network. The connectivity of each node is constant and the finger table
size (discussed later) is constant. Each node in a cycloid is represented as a tuple
(k,xd−1,xd−2, . . . ,x0) with k as the cyclic index and xd−1,xd−2, . . . ,x0 as the cubical
index. The cyclical index is an index between 0 to d− 1 and the cubical index is
binary number between 0 and 2d−1.

Figure 9 shows various linkages of a 3-dimensional cycloid. The cube shows
how cycles at different levels are connected. Each cycle connects nodes that have
the same cubical index but with different cyclical index. Finally, nodes with different
indices are connected as a large ring that enables nodes on cycle to reach nodes in
another cycle directly or indirectly.

To minimize the finger table size and maintenance, each node in a ring is
connected only to a primary node with highest cyclical index in its preceding
cycle and succeeding cycle. The predecessor and the successor of a node, say
(k,xd−1,xd−2, . . . ,x0), in such a ring are chosen such that the most significant differ-
ent bit (MSDB) with the current node is no larger than k− 1. The predecessor and
successor are chosen such that they are the first such largest and first such smallest
nodes. Note that this arrangement of nodes with different cubic indices as a ring
gives cycloid a lookup ability to select a cubical index that is closest to its destina-
tion from different cycles. Within each cycle, a node is connected to its predecessor
and successor nodes. Hence the finger table of a node has seven entries and has the
following entries.

Node ID (k, xd−1, xd−2, . . . , x0)

1 Cubical Neighbor – (k−1, xd−1, xd−2, . . . , xk , x, x, x, x)

2 Cyclic Neighbor – node at k−1 with max cyclical index less than xd−1, xd−2, . . . , xk, x, x, x, x

3 Cyclic Neighbor – node at k−1 with min cyclical index greater than xd−1, xd−2, . . . , xk, x, x, x, x

4 Inside leaf set predecessor

5 Inside leaf set successor

6 Outside leaf set predecessor – primary node of preceding cycle

7 Outside leaf set successor – primary node of succeeding cycle

Table 1 Routing table of a cycloid node

Cycloid key assignment consists of generating a pair of cyclic and cubic indices.
For a give key, the cyclic index is its hashed value modulated by d and the cubic
index is the hash value divided by d.

Routing table and key lookup: The routing algorithm of a cycloid DHT consists of
three steps. The first step uses the outside ring or the outside leaf sets of the finger
table to find out the closest cubical neighbour or the closest cyclical neighbour.
Then the inside leaf sets are used to find appropriate node. The following steps are
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performed by a source node (k,xd−1,xd−2, . . . ,x0) to route to a destination node
(l,yd−1,yd−2, . . .y0). MSDB represents the most significant different bit between
the source and the destination nodes.

1. Ascending: If k <MSDB then it forwards request to a node in the outside leaf set
until k >=MSDB. This step helps in either finding the closest cubical neighbour
or closest cyclical neighbour.

2. Descending: If k =MSDB, then request is forwarded to the inside cubical neigh-
bour else if k >MSDB then the request is forwarded to the closest cyclical neigh-
bour.

3. Traverse Cycle: If the target ID is within the inner leaf set, then inside leaf set
entries from the finger table are used for lookup.

Node Join and Leave: A joining node X will route the joining message through a
bootstrapping node to a node Y whose ID is numerically closest to X . The finger
table of X forms its leaf sets based on the finger table of Y .

1. If X and Y are in the same inside leaf set then the outer leaf set values of X are
the same as Y . The inside leaf set values of X and Y are modified according to
the position of X with respect to Y and others in the inner leaf set.

2. If X is the first in its cycle, then it has to form the links to the outside leaf sets.
If Y ’s cycle is the succeeding remote cycle of X , then Y ’s left outside leaf node
and primary node are the left and right nodes in X’s outside leaf set. Otherwise
the right outside leaf and the primary node are used. Since X is the only node in
its cycle, its inside leaf sets point to itself.

Once a node joins, it propagates the join information to its entries which up-
date themselves. Inner leaf sets update themselves while the outer leaf sets update
themselves and propagate the join to their inner leaf sets.

When a node is leaving, it notifies inside leaf set nodes. If it is a primary node
then the leaving node has to update its outside leaf sets. Upon receiving such mes-
sage, the outside leaf set nodes update themselves and transfer the leave notification
to its inside leaf set. The cycloid DHT leaves the updating of cubical and cycli-
cal neighbours of leaving nodes and of failed nodes as the responsibility of system
stabilization.

5 O(1)-Hop Overlays

5.1 Kelips

Kelips [40] is based on a DHT overlay that uses increased memory and increased
background overhead for efficient O(1) lookup. Kelips overlay is simple and dif
fers from other structured P2P overlays in mainly two ways. One difference is that
it is loosely structured and the other is that the loose structure does not preserve
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any invariant. However, Kelips uses increased memory and sophisticated broadcast
mechanism to achieve a reliable O(1) lookup. Hence, though Kelips lookup, join,
and leave mechanisms are quite simple they rely on sophisticated broadcast mecha-
nisms among its members.

Address Space: Kelips consists of k virtual affinity groups that are formed by hash-
ing a node’s identifier. Each node’s finger table consists of a set of other nodes in its
affinity group, a set of nodes in all the foreign groups, and a set of file tuples that
give details of a file and the id of the node storing the file. Hence the total storage
requirements of Kelips could be of the order n/k + cX(k−1)+F/n, where n is the
number of nodes, k is the number of affinity groups, c is the contact size, and F is
the file size.

There is no geometry to the address space and each node knows about a larger
set of nodes. Kelips relies on a gossip-style epidemic [41, 42] protocol to ensure
that with high probability the finger table information is transmitted to all nodes. To
ensure this, nodes in Kelips overlay use a light weight protocol to transmit limited
information, such as keep alive packets and filetuple information, to nodes in their
affinity group and contacts group. These nodes in turn chose other nodes from their
finger tables to propagate such information. There are studies that show that such a
gossip protocol is quite robust against packet losses and node failures [43, 44].

Routing table and key lookup: A querying node maps a file name to appropriate
affinity group and sends a look up request to the topologically closest node in that
affinity group. The receiving node looks up its table and returns to the querying node
the filetuple with the address of the homenode storing the file. The querying node
then requests the homenode directly for the file.

Nodes that wish to insert a file follow the same procedure. They send the request
to the topologically closest node from the hashed affinity group. The receiving node
randomly picks one node from its affinity group and assigns the file to it and desig-
nates it as the homenode. The homenode then inserts the file, creates a new filetuple
and inserts that information into the gossip stream.

Node Join and Leave: A bootstrapping node allows the joining node to create a
soft finger table and allows it to join the gossip stream. Since there is no structure
or invariant that Kelips has to preserve, join is complete with the node participating
in the gossip stream. Node leaving or failures are updated through out the system
through the gossip mechanism. If other nodes notice the lack of updates from the
failed node, they update their entries accordingly.

5.2 OneHop

OneHop [45] was developed by a team at MIT. Some members were also involved
in the development of Chord and EpiChord. So in many aspects OneHop relates to
these two overlay algorithms.
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Address Space: OneHop nodes are assigned a 128-bit random node ID. These IDs
are ordered in a ring modulo 2128. Identifiers are uniformly distributed as can be
achieved by using hash functions such as SHA-1. Like in Chord, every node has
a predecessor and a successor in the identifier ring. Each node periodically sends
keep-alive messages to its predecessor and successor. Data items are assigned an ID
in the same ID space. The node which should store a data is the successor, i.e. the
first node in the ring clock-wise from the key.

Routing table and key lookup: In OneHop, every node maintains a full routing
table, that is a routing tabe contains references to all other nodes in the network.
This is to allow sending a lookup request from the source node to the destination
node in a single hop. The source node will look up the successor node of the data
key is requires, and send a lookup message to this node. Key to this scheme is
that the routing tables are up-to-date. Hence node leave and join events need to be
propagated to all nodes.

Node Join and Leave: Join and leave events need to be send to local nodes, but
also to all the other nodes in the overlay. Local updates include updates to successor
and predecessor nodes. Every node n runs a stabilisation routine periodically, which
involves sending keep-alive messages to its successor s and predecessor p nodes.
Node s checks if n is indeed its predecessor. If not, it informs n that there is another
node between them. Similarly, p checks if n is its successor, and if not it notifies
n. If either s or p do not respond, n will ping them repeatedly and after a timeout
interval conclude that the node is dead.

A joining node contacts any other node in the overlay and gets its routing table,
similarly to the approach in Chord. With this information the new node can establish
its successor and predecessor and inform them of its existence.

Both join and leave events also need to be forwarded to all the other node in
the system within a certain time. This is achieved by imposing a hierarchy on the
system, forming a tree. This hierarchy is introduced by dividing the 128-bit identi-
fier space into k equal contiguous intervals (slices). All slices will have roughly the
same number of nodes as nodes have uniformly distributed random identifiers. Each
slice has a slice leader which is the successor of the mid-point of the slice identifier
space. New nodes learn about their slice leader from one of its neighbours. Slices
are again divided into equal-sized intervals (units). Each unit has also a unit leader
which is the successor of the mid-point of the unit identifier space. As a node detects
a change in the membership of the overlay it informs its slice leader. The slice leader
aggregates notifications from its members for a certain interval before sending them
out to other slice leaders. The slice leaders again aggregate notification messages for
a certain interval before sending them on to the unit leaders within their slice. Unit
leaders piggy back these update information on keep-alive messages to their succes-
sor and predecessor nodes. Other nodes propagate this information also via keep-
alive messages – if they receive the information from their predecessor they forward
it on to their successor and vice versa, but not beyond unit boundaries preventing
duplicate messages. If a slice leader fails, this will be detected by its successor, and
this node will become the new slice leader.



246 Krishna Dhara et al.

5.3 EpiChord

EpiChord [9] is a variation of Chord that intends to speed up the lookup process.
The speedup is achieved using parallel queries and by allowing nodes to cache more
routing entries than O(logN) entries in original Chord protocol. EpiChord is able
to achieve O(1)-hop lookup performance under lookup-intensive workloads, and
at least O(logN)-hop lookup performance under churn-intensive workloads in the
worst case.

Same as in Chord, the nodes and keys are mapped to m-bit identifiers using
consistent hashing. Nodes are ordered on an identifier circle modulo 2m. A key
is cached at its successor node. The successor node to a node or key is the next
node in the identifier circle in the clockwise direction; while the predecessor node
to a node or key is the next node in the identifier circle in the counter-clockwise
direction.

Routing table and key lookup: To guarantee the routing correctness in the face
of peer churn, each EpiChord node maintains a list of k successor nodes and k
predecessor nodes, respectively. Furthermore, EpiChord divides the address space
into two half circles, with each half circle being further divided into a set of ex-
ponentially smaller slices (see Fig. 10). It is required that at least j/1− q en-
tries are maintained in the routing table for individual slices, where j is pre-
determined number of entries per slice, and q is the probability that a entry is
out-of-date. Since EpiChord node maintains k successor nodes and k predeces-
sor nodes and both should fit in two smallest slices, the number of slices can
be estimated. Further, the parameters j and k satisfy the following relationship,
k = 2 j.

The key lookup process utilizes p parallel queries. For a given key k, the node
selects one node immediately succeeding k and p− 1 nodes preceding k from its
routing table. Upon receiving the search query, if the probed node owns the key, it
responds as the destination node and the searching process finishes. If the probed
node is not the destination node, it returns l best next hops from its routing table.
In addition, the probed node returns its immediate successor if it is a predecessor
of key k, or its immediate predecessor if it is a successor of key k. Both p and l
are configuration parameters. When these replies are received by the original node,
further queries are dispatched if returned nodes are closer to the key k than the nodes
that have already responded. Notice that only original node issues queries and the
lookup proceeds in an iterative fashion.

In EpiChord, each entry in the routing table is associated with a lifetime. Rout-
ing entries are flushed whenever lifetime expires. In addition, the routing entry as-
sociated with a node is purged if the node does not respond to some number of
queries.

EpiChord nodes also monitor the number of entries available at each slice.
Should a slice be found not to have sufficient routing entries, a node makes a
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Fig. 10 Division of address space into exponentially smaller slices with respect to node x

lookup to the midpoint of that slice, and increases routing entries from the lookup
responses.

Node join and leave: A new node knows at least one node already in EpiChord.
It sends queries to this node. Since EpiChord nodes constantly update their routing
tables by observing lookup traffic, other nodes learn about this node eventually.
Besides, the new node obtains a full cache transfer from one of its two immediate
neighbors.

EpiChord employs stabilization strategy to resolve the routing table inconsis-
tency problem when multiple nodes join EpiChord at about the same location, or
nodes leave the system unexpectedly. The stabilization strategy comprise of weak
stabilization protocol and strong stabilization protocol.

Weak stabilization protocol: Weak stabilization protocol maintains weak stable
relationship among nodes, i.e., predecessor(successor(n))=n. To achieve this,
nodes periodically probe their immediate neighbors to check if they are alive.
It is individual node’s responsibility to maintain its successor and predecessor.
When a node with closer Id than a node’s successor or predecessor is discovered,
either through observing lookup traffic, or through active probing neighbors, the
node update its successor or predecessor, correspondingly.

Strong stabilization protocol: for a weak stable EpiChord ring, it is still possible
the ring is loopy. Strong stabilization protocol ensures that the loop will be de-
tected and fixed. The basic idea of loop detection is to let a query traverse the
entire ring. If a loop exists, the traversal allows EpiChord nodes to know nodes



248 Krishna Dhara et al.

whose Ids are closer than its successor or predecessor, thus break the loop by
updating successor/predecessor nodes.

5.4 D1HT

D1HT [46] was first introduced in 2005 by researchers from Federal University of
Rio de Janeiro, Brazil. The design goal of the overlay is to maximize performance
with reasonable maintenance traffic overhead even for huge and dynamic peer-to-
peer (P2P) systems. The philosophy of D1HT design is that the tradeoff between
latency and bandwidth usage should favor latency because speed and information
are critical while network bandwidth improves over time.

Address space: A D1HT system is composed of a set D of n peers and maps items
(or keys) to peers based on consistent hashing, where both peers and keys are hashed
to integer identifiers (IDs) in the same ID space [0..N],N >> n. Typically a key
ID is the cryptographic hash SHA-1 of the key value, a peer ID is based on the
SHA-1 hash of it’s IP address (or the SHA-1 hash of the user name), and N =
2160−1. As in Chord, D1HT uses a ring topology where ID 0 succeeds ID N, and the
successor and predecessor of an ID i are respectively the first living peers clockwise
and counterclockwise from i in the ring.

Routing table and key lookup: Each peer in a D1HT system maintains a routing
table with the IP addresses of all peers in the system, and so any lookup is trivially
solved with just one hop, provided that the local routing table is up to date. As
each peer in a D1HT system should know the IP address of every other peer, any
join/leave events should be acknowledged by all peers in the system in a timely
fashion in order to avoid stale entries in routing tables.

Node join and departure: A new node must know an existing D1HT node to join a
D1HT system. The joining peer hashes its IP address (or some other unique value)
to get its ID p and asks the existing node to issue a lookup for its ID. The query will
return p’s successor. The joining peer then contacts its successor to join the network
and get the information about the keys it will be responsible for. The successor will
also send the IP addresses of a number of peers to the new node. The new node will
then ping those peers and choose the nearest ones to get the routing table. D1HT also
uses a Quarantine mechanism to handle highly dynamic nodes, where a joining peer
will not be granted to immediately take part of the D1HT overlay network, though
it will be allowed to perform lookups at any moment. When a node leaves, instead
of sending the leaving event to all the other peers, D1HT uses the EDRA (Event
Detection and Reporting Algorithm) algorithm to propagate the event. The details
of EDRA algorithm can be found at [46]. A study [47] found some shortcomings
with the EDRA algorithm and termed the updated version EDRA*.
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6 Comparison and Analysis

In this section we compare and contrast different structured P2P overlay tech-
nologies from the geometries used, the routing algorithms, routing performance,
join/leave efficiency, routing table maintenance, and bootstrapping strategy. The re-
sults are summarized in the Tables below.

Table 2 Summary of Chord, Pastry and Kademlia overlays

Chord Pastry Kademlia

Geometry Circular Node-ID
space, logarithmic
degree mesh

Plaxton-style mesh
network, prefix
routing

XOR metric for
distance between
points in the key space

Routing
algorithm

Search query
forwarded to “closer”
node

Matching Key and
prefix of Node-ID

(XOR) Matching Key
and Node-ID based
routing done parallely

Routing
performance

O(logN), where N is
the number of peers

O(logBN), where N is
number of peers, and
B = 2b, b is number
of bits of NodeID

O(logBN)+ c, Where
N is number of peers,
B = 2b,b is number of
bits of Node-ID, and c
is a small constant

Join/leave
performance

(logN)2 logB N logB N + c

Routing
table
maintenance

Periodic stabilization
protocol at nodes to
learn about newly
joined nodes, update
successor and
predecessor, and fix
finger tables

Neighboring nodes
periodically exchange
keep-alive messages.
The leaf sets of nodes
with adjacent Node-Id
overlap

Failure of peers will
not cause
network-wide failure.
Replicate data across
multiple peers

Bootstrapping A new node knows an
existing Chord node

A new node knows a
nearby Pastry node

A new node knows an
existing Kademlia
node
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Table 3 Summary of Tapestry, P-Grid and CAN overlays

Tapestry P-Grid CAN

Geometry Uniformly at random
from a large identifier
space (typically
160bit with a globally
defined radix)

Binary tree d-dimensional
Cartesian coordinate
space

Routing
algorithm

Matching Key and
prefix in Node-ID

Binary tree search and
prefix matching

Forward the search
message to neighbour
node closer to the
destination

Routing
performance

logβ N, where N is the
size of the identifier
space, and β is the
radix used

O(logN), where N is
number of data items
in the overlay)

(d/4)(N1/d), N is
number of nodes, and
d is dimension

Join/Leave
performance

O(logN) 2d

Routing table
maintenance

Through periodic
update messages.
Controlled flooding is
used in case a node
loses multiple entries
simultaneously

Bootstrapping A new node knows a
nearby Tapestry node

Know at least one
node

Know at least one
node. May get this
node through DNS
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Table 4 Summary of Ulysses, Cycloid and Kelips overlays

Ulysses Cycloid Kelips

Geometry Butterfly topology
with shortcut links

Cube-Connected-
Cycles
graph

No geometry to the
address space, each
node knows about
other nodes

Routing
algorithm

For a Ulysses network
with k levels and n
nodes. to search a key
a, in each step, the
query gets locked in
one additional
dimension, after the
first k steps the query
reaches a node (Q, l)
such that a lies within
the zone Q in all the k
dimensions

Uses the outside leaf
sets of the finger table
to find closest cubical
neighbour or the
closest cyclical
neighbour. Inside leaf
sets are used to find
appropriate node.
Routing table includes
nodes in the affinity
group, nodes in all the
foreign groups, and
filetuples

Querying node maps
file name to affinity
group and sends
lookup request to
topologically closest
node in affinity group

Routing
performance

log2 log2n O(d), where d is net-
work dimension, n is
number of nodes, n =
d.2d

O(1)

Join/Leave
performance

Find corresponding
node with a randomly
generated key, then
split the zone.
log2log2n

O(d) No structure or invari-
ant. Join is complete
with node participat-
ing in gossip stream.
Node leaving are up-
dated through the gos-
sip system

Routing
table
maintenance

Leaving nodes notify
nodes inside leaf set.
If primary node then
need also update
outside leaf sets.
Stabilization process
detects failed nodes

Kelips routing tables
are maintained
through a low
bandwidth gossip
style mechanism

Bootstrapping A joining node needs
to know an existing
node in Ulysses
network

No specific
bootstrapping
mechanism discussed

Bootstrapping node
allowing joining node
to join gossip stream
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Table 5 Summary of OneHop, EpiChord and D1HT overlays

OneHop EpiChord D1HT

Geometry 128-bit random node
ID ordered in a ring
modulo 2128.

Circular node ID
space, logarithmic
degree mesh

Hashing keys and
peers into an ID space
[0,N], N >> n

Routing
algorithm

Every node maintains
a full routing table

Use multiple parallel
queries to locate node
that owns the key

Every node maintains
a full routing table

Routing
performance

O(1) O(1) under lookup
intensive workloads,
and O(logN) in the
worst case

O(1)

Join/Leave
performance

�log2n�, where n is
number of nodes

Routing
table
maintenance

Nodes run
stabilisation routine
sending keep-alive
messages to successor
and predecessor

Routing entries are
flushed whenever
lifetime expires, or
the corresponding
node does not respond
to queries. If slice
entries are
insufficient, lookup to
midpoint of slice, add
routing entries from
the lookup response

Propagate join/leave
messages with TTL
values. Use a
Quarantine
mechanism to handle
highly dynamic nodes

Bootstrapping A new node knows an
existing OneHop node

Knows at least one
existing node

The new node must
know an existing
D1HT peer already in
the system
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7 Conclusions

7.1 Open Research Issues

We see the future research of structured P2P overlays focussing on the following
three aspects, namely algorithms, frameworks, and applications.

1. Algorithms: As discussed in this chapter, many structured P2P algorithms ex-
ist. Each of these structured overlays carries its own advantages and disadvan-
tages. The following are key issues that needs to be properly addressed for
successful structured P2P algorithms:

a. Scalability and performance: In general, the structured P2P overlays can help
overcome the scalability and performance problems faced by unstructured
ones. However, for some real-time applications there are additional perfor-
mance requirements that need to be addressed, such as Voice over IP (VoIP)
and IPTV. Therefore, how to ensure guaranteed performance required by cer-
tain applications while keeping the overall system scalable and balanced is an
important issue for structured P2P algorithms.

b. Security, privacy, trust and reputation: Trust and reputation are important to
support secured and trustworthy P2P overlay communications among peers.
There are many research topics in this area for P2P overlays such as anonymity,
denial-of-service attacks, malicious node behavior, reputation and incentives.

c. Convergence of Peer-to-Peer systems and other established field of distributed
computing such as Grid computing.

2. Frameworks: Algorithms theoretically define P2P overlays. In practice, there
are many practical issues to be dealt with:

a. Protocols and interoperability: Peers need to talk to each other. In some sce-
narios, peers belonging to different P2P overlays may also need to talk to
each other. This requires well-defined protocols/interface, and careful study
of interoperability among P2P nodes.

b. Heterogeneity: In reality, many aspects can affect the performance of P2P
overlays, such as network availability/bandwidth, latency, peers’ computa-
tional power and storage space, etc. Therefore, supporting heterogeneity is
an important issue from a practical point of view.

c. Handle general Internet services: general Internet services, such as spam han-
dling and directory services, are also important to P2P overlays.

3. Applications: Many overlay algorithms and frameworks are developed are with
the intention to build novel and useful applications. P2P applications can be in
many fields. We just name a few below.

a. Content sharing/distribution: this category of P2P applications may be the
most popularly one so far. There is still plenty of ongoing research work in
this area, such as providing better performance, good scalability, fairness, or
strong security.
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b. Enterprise applications: P2P applications in enterprise environment typically
need to meet more stringent security and performance requirement. It also
faces other issues such deployment easiness and monitoring capability.

c. Communication: For P2P communication applications, the real time con-
straint (both signaling and media transmission) requires special consideration
in P2P algorithm and framework design. In addition, issues such as lawful
interception, enabling communication features, and interop with the existing
communication networks also demand special attention.

d. P2P applications in mobile and ad-hoc wireless networks: application of P2P
overlay approaches would allow mobile peers to have optimized flow control,
load balancing mechanism, and proximity awareness.

e. The semantic grouping of information in peer-to-peer networks: This direc-
tion shares many commonalities with efforts in the semantic Web domain.

7.2 Summary

Existing products and research projects demonstrate that structured P2P network is
an important technology of practical value. It helps overcome the scalability and
performance problems faced by many unstructured P2P technologies. This chapter
provides an overview of several representative structured P2P overlays, and analyzes
and examines key aspects that affect a P2P overlay’s performance.

We believe that structured P2P overlay remains to be a viable solution to many
problems in distributed computing. There are still many open research questions in
this field, such as new algorithms, practical frameworks, and novel applications.
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