
Supporting Collaboration and Creativity
Through Mobile P2P Computing

Adam Wierzbicki, Anwitaman Datta, Łukasz Żaczek, and Krzysztof Rzadca

1 Introduction

Among many potential applications of mobile P2P systems, collaboration appli-
cations are among the most prominent. Examples of applications such as Groove
(although not intended for mobile networks), collaboration tools for disaster re-
covery (the WORKPAD project), and Skype’s collaboration extensions, all demon-
strate the potential of P2P collaborative applications. Yet, the development of
such applications for mobile P2P systems is still difficult because of the lack of
middleware.

The largest potential for mobile P2P applications today lies in the use of mo-
bile phone platforms, especially of phones for the 3G (UMTS) network, or general-
purpose platforms like Ultra-Mobile PCs (UMPCs). The recent increase in the ca-
pabilities of these devices has been dramatic. Today, it is possible to develop a va-
riety of applications for mobile phones or other devices that would share resources
of their users’, including information that is available to the particular users only.
However, in mobile P2P environments, not only is it impossible to used advanced

The work presented in this article is partially supported by A*Star SERC GRANT NO: 072 134
0055.

Adam Wierzbicki
Polish Japanese Institute of Information Technology, Warsaw, Poland,
e-mail: adamw@pjwstk.edu.pl

Anwitaman Datta
Nanyang Technological University, Nanyang Avenue, Singapore,
e-mail: anwitaman@ntu.edu.sg

Łukasz Żaczek
Polish Japanese Institute of Information Technology, Warsaw, Poland,
e-mail: lzaczek@pjwstk.edu.pl

Krzysztof Rzadca
NanyangTechnologicalUniversity, NanyangAvenue, Singapore,e-mail: krz@pjwstk.edu.pl

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1367
DOI 10.1007/978-0-387-09751-0 50, © Springer Science+Business Media, LLC 2010

adamw@pjwstk.edu.pl
anwitaman@ntu.edu.sg
lzaczek@pjwstk.edu.pl
krz@pjwstk.edu.pl

1368 Adam Wierzbicki, Anwitaman Datta et al.

middleware based on the Service Oriented Architecture, but it becomes difficult to
reuse the most developed platforms for P2P systems, such as JXTA or the Microsoft
P2P framework.

P2P applications for mobile devices can be developed today with the support of
the 3G network’s infrastructure. Such applications are not using a pure Peer-to-Peer
computing model, as they require specialized servers of the 3G infrastructure to per-
form user and resource location. Yet, the sharing of resources by such applications
can be done in a purely P2P manner. For 3G mobile phones, the use of SIP and the
IP Multimedia Subsystem (IMS) can enable the development of such hybrid P2P
applications. Petri Pöyhönen, Vice President of Nokia Networks, has chosen the
following words to describe the purpose of IMS: “we have no practical mechanism
to engage another application-rich terminal in a peer-to-peer session. (. . .) there
is immense value in sharing with peers. (. . .) We will be sharing real-time video
(see what I can see), an MP3-coded music stream, a whiteboard to present objects,
and we will be exchanging real-time data.” This quote indicates that like SIP, IMS
is seen as a middleware to develop P2P applications. Yet, a fully distributed P2P
application would be independent of the operator’s IMS infrastructure, and would
consequently be able to operate also in an environment where the UMTS network is
not available. The challenge therefore is not just in the support of P2P services in a
mobile environment, but rather to support them in a heterogeneous mobile and fixed
environment, enabling collaborative work for nomadic teams with or without infras-
tructure support, preferably without significant disruption of services or decrease of
service capabilities.

The developing P2PSIP standard is a candidate for supporting such P2P applica-
tions for mobile devices. Pure P2P applications that are used for collaboration can
be modeled using three layers: the application layer which implements application-
specific logic, the collaboration middleware layer that provides several supporting
functions for the application layer and may use P2PSIP, and the P2P overlay layer
that implements the most basic function required by the collaboration middleware
layer, including reliability and security functions.

Assuming such a layered decomposition, the question remains what are the cru-
cial services that should be included in a collaboration middleware that would sup-
port a wide range of collaborative applications? A second question could be: is the
decomposition between the collaboration middleware and P2P overlay layers? This
decomposition is, after all, purely logical, since all of the logic would be imple-
mented in the application layer of the OSI protocol stack. In this chapter, we shall
demonstrate that a vertical integration of the two layers could result in several ad-
vantages. These advantages are mostly due to the fact that the collaboration middle-
ware layer can supply the P2P overlay layer with important information: the implicit
social network created by mining the metadata and statistics produced by the col-
laboration applications (or by the function calls of the collaborative middleware).
Using social network information in routing and network management can not only
enhance the performance of routing in mobile P2P environments (particularly in De-
lay Tolerant Networks), but also allows to satisfy additional constraints on routing

Supporting Collaboration and Creativity Through Mobile P2P Computing 1369

(such as trust requirements). Other P2P overlay functions, such as publish-subscribe
operations, can also be supported by social network information.

The first contribution of this chapter lies in a systematic design of a middleware
for P2P collaborative application in a heterogeneous, mobile/fixed environment. We
show that the SIP protocol could be an important substrate in the implementation of
such a middleware, and analyze which middleware functions could be supported
by SIP (and which must be implemented separately). We give a comprehensive
overview of the emerging standard of P2PSIP. Another contribution bases on the
concept of vertical integration of the collaborative middleware and P2P overlay lay-
ers. We review related work that proposed solutions that were vertically integrated
to some extent; then, we describe a new concept of SocialCircle, a P2P overlay that
is much more closely integrated with the implicit social network provided by the
collaboration middleware layer. We give preliminary results of experiments with a
prototype of SocialCircle.

The chapter is organized as follows: the first section discusses the functionality
of the collaboration middleware, with an emphasis on the most challenging perfor-
mance and security problems that can require new research. This section also de-
scribes the information that can be provided by the collaboration middleware to the
underlying P2P overlay layer for cross-layer optimization. The section includes an
overview of related work on P2P middleware for mobile collaborative applications.

In the next section, we describe protocols and frameworks that can be used to
implement the desired collaboration middleware functions: SIP and P2PSIP. The
section discusses the current state-of-the-art in this area, identifying the most diffi-
cult research problems.

The last section concerns how the P2P overlay layer can use information pro-
vided by a vertically integrated collaboration middleware layer in order to optimize
its operation, and how the overlay can be specially designed to better support collab-
orative applications. This section gives an overview of some recent relevant devel-
opments the area, and indicating the way ahead and open research issues to realize
a P2P infrastructure tailor-made to support collaborative work in a mobile environ-
ment, and also using meta-information from the upper layers in order to make the
P2P infrastructure more resilient and efficient.

2 Applications for Collaboration and Creativity Support

Research and development on Computer Supported Collaborative Work (CSCW)
is an old area (there exist mature, commercial technologies such as LotusNotes
and Microsoft Outlook) that has recently accelerated due to the use of the Internet.
Wikipedia, SourceForge, CVS and SVN, iGoogle are examples of successful appli-
cations of Internet-based CSCW. Use of the P2P computing model in this area is yet
in its infancy. Still, applications such as Groove, Skype and many others show high
potential. In 2005, the first International Workshop on Collaborative Peer-to-Peer

1370 Adam Wierzbicki, Anwitaman Datta et al.

Information Systems (COPS 2005) has taken place in Linkoping, Sweden. Since
then, the workshop is held yearly.

Creativity support is a younger research area that has been developed mostly
by psychologists and management scientists. Computer science has been applied
to creativity support since the beginning of the XXI-st century. The first applica-
tions, like Oasen, Serious Creativity, Mindmanager, Maxthink, Axon, Groupsys-
tems&Groupintelligence, focus on using knowledge management for idea genera-
tion and recording, as well as on enhancing creativity through computer-supported
collaboration [17, 19, 33]. Many of these applications apply advanced visualiza-
tion and human-computer interaction technology, and do not have a collaborative
character, but focus on the individual creative process. On the other hand, creativ-
ity support is strongly connected to CSCW, since it requires support for debating,
brainstorming, and group decision making.

A step towards the development of Peer-to-peer groupware has been the technol-
ogy of Groove Networks [1]. It concentrates on providing support for collaboration
of a team on a project. Groove offers workspaces for aggregation of documents,
messages, and application-specific data, that are synchronized among all peers in a
workspace; Groove also offers chat sessions, notepads, a calendar, and a file archive.
Groove also has a comprehensive security model. Yet, Groove does not offer knowl-
edge management, semantic social networks and functions for creativity support;
also, while it uses the P2P computing model, it has not been designed for a mobile
environment. Groove users must have access to an infrastructure of “relay servers”,
which means that the system is not well suited to nomadic use.

There has not been much research on collaboration and creativity support on
mobile devices. Shark [32] supports management, synchronization and exchange of
knowledge in mobile user groups. Shark uses a semantic meta-data hierarchy for
routing of messages in its P2P overlay network. However, Shark does not posses
features that support creative processes; Shark is also not suitable for teamwork.
The reason why Shark does not have these capabilities is that it has been designed
for a low-bandwidth mobile ad-hoc network (Bluetooth).

Two interesting examples of creativity support software that could be ported to
the P2P model and, in the process, extended with collaboration capabilities, are
Freemind and JabRef. Freemind is an open-source application that enables visual
mindmapping. JabRef enables the management of bibliographic references using
the BibTex standard, as well as searches and automatic acquisition from popular
Web-based bibliographic databases such as CiteSeer or DBLP. Both FreeMind and
JabRef are really useful for support of the individual creative process; the applica-
tions are opensource (written in Java), and could be used on mobile devices (because
of low resource requirements). Yet, both applications would benefit from an exten-
sion that would enable collaborative work. FreeMind could enable co-authoring of
mindmaps, and JabRef could support sharing, searching and recommendation of ref-
erences. Both of these functions could be simply supported through a central server
(like the popular service of Bibsonomy), but supporting them in a heterogeneous,
fixed/mobile environment for nomadic teams of users requires the use of the P2P

Supporting Collaboration and Creativity Through Mobile P2P Computing 1371

computing model. The development of both extensions is underway in the mTeam
project [3].

We believe that the development of applications for collaboration and creativity
support on mobile P2P systems is still difficult because of the lack of middleware.
While recent advances in technology of mobile devices and wireless networks en-
able the use of such technology for collaboration and creativity support, little is
known about supporting such applications without centralized servers. For this rea-
son, development of P2P middleware capable of working on mobile devices is a
crucial technological and research challenge.

3 Collaboration Middleware Functionality

3.1 General-Purpose Mobile P2P Middleware

Several research and development projects have proposed general-purpose middle-
ware for developing arbitrary applications on mobile devices using the P2P model.
Most of these efforts aim to provide a common framework for the rapid development
of applications.

Mobile Chedar [5] is an extension to the Chedar framework that provides an
API to application developers. Mobile Chedar uses Bluetooth and J2ME, and uses
a superpeer model. A special gateway node (a PC with fixed Internet connectivity)
manages the other Mobile Chedar nodes and provides Internet access.

The oldest and best-known open-source P2P middleware is JXTA [25]. JXME [23]
is a lightweight implementation of JXTA for mobile devices using the J2ME plat-
form. JXME is aimed at devices that are too resource-constrained in order to support
the full JXTA protocol; rather, JXME relies on a relay proxy to provide full JXTA
functionality.

JMobiPeer [7] is a middleware for J2ME that offers interoperability with JXTA.
It provides support for discovery and group management.

Proem [24] aims to support collaborative applications, but is in fact a general-
purpose P2P middleware for mobile devices in an ad-hoc network. Proem is imple-
mented in Java Standard Edition, and can therefore be run only on powerful PDAs
or UMPCs.

MOBY [20] enables P2P exchange of services and data, dynamic service location
and client mapping to achieve higher performance and reliability. MOBY relies on
JINI (which is not compatible with J2ME).

While all of the general-purpose middleware discussed above can be used to sup-
port collaborative applications, these proposals do not address the specific problems
of collaboration and creativity support. Another drawback of the proposed generic
approaches is that most of them are tightly integrated with a specific P2P overlay
network. This makes it impossible to port the generic middleware to various types of

1372 Adam Wierzbicki, Anwitaman Datta et al.

overlay networks. Only JXTA supports, to some extent, different overlay variants,
although it mostly relies on a hybrid superpeer architecture.

In this part of the chapter, we shall describe functional requirements for a middle-
ware that would be dedicated to the support of collaborative work. We shall assume
that these functions are independent of the specific P2P overlay network, although
their operation could influence how the overlay works through vertical integration.
Later, we shall discuss how elements of this middleware could be implemented.

Fig. 1 Vertically integrated collaboration middleware

3.2 Overview of Middleware Functions

The purpose of developing middleware is the support of application development.
In the process of middleware design, it is therefore necessary to identify and de-
scribe functionality that should be useful for supported applications – in our case,
collaborative applications. We have based the functions presented below on a re-
view of the functionality of collaborative applications. It is usually hard to become
convinced that the chosen middleware functions are indeed comprehensive, until the
middleware has been used to create several applications. Therefore, a larger set of
functions must be chosen that can support a variety of applications. However, at the
design stage it is possible to reduce certain middleware functions to others, and to
choose the most generic versions of required functionality.

An important problem is that the chosen functions of a middleware should sat-
isfy several requirements of efficiency or security. For the purpose of vertically in-
tegrated middleware, it also becomes significant what information can be obtained
from middleware function execution for the purpose of optimizing lower layers and
how this information can be stored, updated, and communicated.

An abstract design of the collaborative middleware is presented on Fig. 1. The
interface between the P2P Overlay and the Collaboration Middleware layers should
be generic and will be discussed in the next sections. Functions of the Collaboration
Middleware include:

Supporting Collaboration and Creativity Through Mobile P2P Computing 1373

3.2.1 Session Management

This function enables the initiating, modifying, and ending of sessions of multiple
users. Session management requires discovery of the participants, and therefore the
use of the P2P overlay layer routing function. A session describes the communicated
media, including information about the encoding and transport method, between all
participants of the session (each participant can receive a different set of media
streams). Therefore, session establishment and modification requires signaling.

3.2.2 Conference Management

This function enables the establishing and updating of conference state. The state
can include the conference membership. Also, the conference state can include floor
control (allowing only one user to speak at a time), or another form of control (for
example, moderation). Conferences can have several modes of establishment: for
example, dial-out mode, where a single user invites all other conference participants,
or join-in mode, were new users join the conference whenever they want.

The conference management function requires use of the event management
function (an event is that a user has joined a conference). The conference itself uses
the P2P overlay layer multicasting function for the delivery of conference media.

The session and conference management functions can be the source of usage
statistics that can determine the level of acquaintance between persons to be used
in a social network. Each user could maintain these statistics about his own com-
munication, enabling the creation of an egocentric social network; on request, users
could share their egocentric networks with other, authorized or trusted users. In this
way, a global view of the social network could be constructed by trusted superpeers.

3.2.3 Data Synchronization

Data used by arbitrary other services, or by the application layer, will need to be
synchronized among a group of authorized devices (that can belong to a single or
multiple users). This synchronization can have several models – from a strong syn-
chronization (all changes are propagated to all devices, WYSIWIS – What You See
Is What I See), to a relaxed synchronization that allows different versions of the data
to exist at the same time on different devices (concurrent work). Two special cases
of data synchronization are: document synchronization and workspace synchroniza-
tion.

3.2.4 Data Sharing

Unlike in data synchronization were the data is intended to produce a single version
from all participants (in relaxed synchronization, data could have different versions,

1374 Adam Wierzbicki, Anwitaman Datta et al.

but the intention is to produce a single version in the end), some forms of data should
be shared only with some (authorized and interested) users and are not intended to
produce a single version. Furthermore, the data itself could be controlled by an
authorization policy that governs their distribution. Using this function, a user of a
collaborative application can make certain information available to other, interested
users who can copy and distribute this information without needing to synchronize
it with the original version.

3.2.5 Presence

State and profiles of users in the system should be made available to other, autho-
rized users. The user (or device) profile can include available services or resources.
Overall, the presence service would be responsible for the maintenance of all avail-
able context information about the user, including location information (if avail-
able). For example, consider a context that describes what kind of device is currently
in use by the participant; this kind of information would be part of the service pro-
file maintained by the presence service, and could be obtained automatically. The
presence service requires the use of the overlay layer publish-subscribe service.

Presence information can be the source of important statistics. Users who have
a high availability (are nearly always present) are good candidates for superpeers,
and can be considered more reliable for various other functions (network manage-
ment, storage). The availability statistics can be maintained by the peer who stores
presence information about another peer in the overlay and communicated to trusted
superpeers on demand.

3.2.6 Workspace Awareness

When users form a group that works in a shared workspace (or on one docu-
ment), other users must be aware (to the extent possible) of what the others are
doing, in order to enable coordination and planning of work (for example, who is
currently editing a certain document). This function is a specialized form of data
synchronization.

3.2.7 Group Management

Group management is the function of creating, modifying, deleting of groups of
users, including the possibility of establishing hierarchical groups. The group can
be working in a shared workspace. Groups can be of many kinds: they can be open
(anyone can join), closed (only the group owner can join new members).

3.2.8 Access Control

This function is crucial for the enforcement of authorization policies in a collabo-
rative environment that allows users to share information. The policies can be in-
tended to protect sensitive information, a user's privacy, or business policies. An

Supporting Collaboration and Creativity Through Mobile P2P Computing 1375

access control method for the collaborative application would have to support not
only the first access to shared information, but all subsequent sharing of the provided
information. Access control can be based on various models, but all of them require
the use of an authentication service that should be provided by the P2P overlay
layer.

3.2.9 Trust Management

The function of trust management is required in open environments, were the users
must depend on the actions of others and are uncertain about the outcome of such
interactions. The purpose of trust management is decision support in such circum-
stances. For example, consider dynamic teams that include participants who do not
know each other. In this case, participants can rely on information from trust man-
agement for making decisions that require dependence on unknown team members.
In return, after gaining knowledge about the new team members, participants will
give feedback to the trust management system that can be used to update trust or
distrust. Note that trust or distrust need to be maintained in a context that can, in the
simplest form, be represented by a value out of a finite set of contexts.

3.2.10 Event Management

This service allows the subscription to events, notification of subscribed users about
events, and publishing of events. It uses the P2P overlay layer publish-subscribe
service. In particular, the event management service should also include an ordering
of events (especially important for synchronization).

3.2.11 End-to-End Security Functions

While overlays may provide some hop-by-hop security functions, these may not be
sufficient for the purposes of the collaborative application. For that reason, end-to-
end confidentiality should be provided by the middleware. In addition, authentica-
tion between the communicating peers (session participants) is required.

3.3 Required P2P Overlay Functions

3.3.1 Routing

Routing of information to a destination (a key that can be a user or service identifier).

3.3.2 Publish-Subscribe

This service allows the subscription to an arbitrary topic, notification of subscribed
users about changes to the topic, and publishing changes to a topic.

1376 Adam Wierzbicki, Anwitaman Datta et al.

3.3.3 Multicast

A special case of the publish-subscribe service where a user subscribes to a group.
Notifications are any messages from the group, and publishing changes means send-
ing a message.

3.3.4 Overlay Adaptation Functions

These functions enable vertical integration by receiving data from the collaboration
middleware layer and adapting overlay structure using the received information.
Mostly, this means adapting the local view of the social network that is used to
support the P2P overlay network.

3.4 Research Issues Related to Middleware Function Design

The proposed middleware functions should satisfy strong requirements of perfor-
mance, scalability and security. Furthermore, in a mobile P2P environment their
design will have to differ from designs used in fixed P2P networks. These consid-
erations point to the conclusion that new research issues will need to be solved in
the middleware design and implementation. It is not the purpose of this chapter to
present solutions of the described problems, but merely to identify the most difficult
and important issues for future research.

The session management service, and therefore the routing service, should have
a low call setup latency. This is especially difficult in a mobile P2P environment.
Therefore, this requirement poses new research challenges; a special kind of routing
may be required for session setup messages. Another requirement is the reliability of
session management; how often would a session establishment fail because routing
failures due to churn?

The event management and presence service, and consequently the overlay
publish-subscribe service will be required to optimize the load on the notifier, net-
work traffic for notification, and delay of notification delivery. In addition, the re-
quirement of delay tolerance or reliability can be imposed on these services; for
example, if a peer departs from the network, it may need to receive all missed noti-
fications after it joins the network again.

In a mobile P2P environment, the data synchronization service would have to
operate in the concurrent work mode. A question arises how this service should
implement a distributed transaction that would produce a single version out of the
existing, concurrent versions. This may be achieved through a pre-commit stage (a
“code freeze”), but the duration of this pre-commit stage during high churn and long
peer disconnections may need to be high. Also, the data synchronization function
may need to implement work scheduling decisions that have been made by the team,
allowing only certain changes to be made by particular users.

Supporting Collaboration and Creativity Through Mobile P2P Computing 1377

The data sharing function bases on the information delivery mechanism of the
P2P network. The multicast or publish-subscribe service may be used for that pur-
pose. These services would have to satisfy efficiency and reliability requirements.
Also, the associated function of access control would have ensure that the data is
sharing in agreement with a specified policy. The fundamental problem here is that
when a user shares data with another, authorized user, the receiving user could share
the data with unauthorized users. How to control this second (and further) degree of
sharing is a difficult research problem.

The trust management service will need to use some expression of trust context,
which may be based on a semantic description of the problem that the collaboration
is trying to solve. Also, the kind of feedback information used by the trust manage-
ment system, and the algorithms used to calculate trust or distrust measures are the
subject of ongoing research. For example, the feedback information could be based
on edit history or on an explicit evaluation of team partners.

4 SIP and P2PSIP

The Session Initiation Protocol (SIP) and its extensions already implement a number
of the functions required by the collaboration middleware (although not all). More-
over, SIP is implemented and available to programmers on most modern mobile
phones, and SIP is specially treated by many firewalls and NATs. Since many P2P
protocols today are implemented on top of an application layer protocol (such as
HTTP), these observations can lead to the conclusion that the collaboration middle-
ware for mobile P2P environments should be implemented using SIP. The question
remains how, and to what extent, SIP can be used to implement all required middle-
ware services.

In this section, SIP is briefly introduced (with a focus on its relevant services).
In the next part of the section we discuss how the dependence on server infras-
tructure can be removed through the use of P2PSIP. Research and standardization
of this extension is continually advancing. Yet, for the purpose of a collaboration
middleware, all required middleware services would have to be implemented in a
distributed, P2P environment. This requires a new design effort, and raises issues of
security and performance.

4.1 The Session Initiation Protocol

The Session Initiation Protocol (SIP) [30] is an application-layer control (signaling)
protocol for creating, modifying and terminating sessions with one or more partic-
ipants. SIP sessions can be used for any kind of application data, and SIP does not
standardize or attempt to control session contents. Thus, the first required service
of the collaboration middleware that can be implemented using SIP is the Session
Management service.

1378 Adam Wierzbicki, Anwitaman Datta et al.

Fig. 2 SIP signaling using proxy and registrar servers

SIP introduces its own addressing of users (or services), with the intension of
achieving independence of the user's location in the network (IP address). More-
over, SIP session management services allow to search for users at several locations
during session initiation, and to specify redirection policies that can depend on the
user's current state and will redirect a session to another location.

SIP can use either TCP or UDP for message transport; due to the possibility of
using UDP, acknowledgement messages are required and a three-way handshake is
used during session initiation. SIP uses an infrastructure of servers for the resolution
of its addresses and for the control of the session. SIP servers can be of four kinds
(the proposed distinctions are logical, and server roles can be combined): registrar
servers, proxy server, redirect servers and location servers. Another type of SIP
server is a gateway proxy server. Proxy servers can be thought of as analogous to
local DNS servers that take over responsibility for SIP address resolution. Proxies
can also work as gateways to other networks or domains, and SIP signaling can
be forwarded by arbitrary chains of proxies. Proxy servers can also implement a
variety of services, such as lists of missed calls, call forwarding or screening. Proxy
servers may also implement call admission control and report usage. For the purpose
of some service, proxy servers may operate in a stateful model and maintain state
information for the duration of session initiation (not during the session).

The registrar server is analogous to an authoritative DNS server that contains the
definite information required for SIP address resolution. A SIP user must register
with a registrar server in order to be able to receive sessions.

Figure 2 shows the SIP signaling flow between two user agents, two proxy servers
and a registrar server. Note that the user agents exchange signaling messages only

Supporting Collaboration and Creativity Through Mobile P2P Computing 1379

1. INVITE
2. 100 Trying

5. ACK

3. 180 Ringing

4. 200 OK

6. Media
Alice@A.net Bob@B.net7. Bye

8. 200 OK

Fig. 3 SIP message flow for simple session

Table 1 SIP methods

Basic methods Extended methods

INVITE INFO
ACK NOTIFY
BYE PRACK
REGISTER PUBLISH
OPTIONS SUBSCRIBE

UPDATE
MESSAGE

with their local proxies. Note also that when the roles of a proxy server, registrar
server and location server are distinct, the proxy server does not signal the registrar
server directly using SIP; rather, both of them interact with the location server using
a non-standardized protocol. The signaling flow is simplified when proxy, registrar
and location servers are integrated.

The SIP protocol is a text-based protocol that resembles HTTP. It can use several
methods, which form two sets. Table 1 summarizes the basic and extended methods
of SIP. SIP messages use mandatory headers that resemble mail messages, and can
include a MIME body and Session Description Protocol (SDP) information [18]
(Fig. 4).

Figure 3 shows a basic SIP message flow during a simple session initiation. Note
that the response codes of message exchanges resemble HTTP. Figure 2 shows the
signaling message flow during a SIP registration procedure.

For the implementation of the Session Management service of the collaborative
middleware, SIP provides comprehensive negotiation functions that allow users to
agree on received media formats and transport, as well as updating session state
by adding or removing participants, or changing their session parameters. Such

1380 Adam Wierzbicki, Anwitaman Datta et al.

Fig. 4 SIP registration

Fig. 5 SIP presence service

functionality is essential for session management and using SIP seems the easiest
way to implement a comprehensive Session Management service.

SIP has been extended with several functions that allow to implement various
services of the collaboration middleware. To a limited extent, the Conference Con-
trol service can be implemented using SIP; however, SIP does not have features for
floor control in a conference. The Data Sharing service can also be partially imple-
mented, since SIP has an extension for file sharing (SIPPING) [15]. SIP has further
extensions that support challenge-response authentication based on a shared secret
(although a SIP proxy can also implement RADIUS authentication).

SIP provides the most comprehensive support for the Presence and Event No-
tification services [27]. Figure 5 shows the SIP message flow that implements a
presence services. Note that the implementation is based on a server and uses three
new SIP methods: SUBSCRIBE that allows an agent to indicate that it is interested
in receiving information about an event (in this case, the presence of another user),
PUBLISH that is used to inform the server about new information, and NOTIFY
that is used by the server to notify a client. The figure is simplified because it does
not show a notification message that automatically follows the response to the SUB-
SCRIBE message.

Presence in SIP can be extended to include information about changes in buddy
lists, by adding authorization policies that control who can receive presence

Supporting Collaboration and Creativity Through Mobile P2P Computing 1381

information (using the XCAP standard) [28]. Another extension concerns presence
data; using the Presence Information Data Format (PIDF) or the Rich Presence Ex-
tensions to PIDF (RPID) [31, 36] it is possible to express detailed status of users,
using information that could be automatically extracted from calendars. PIDF and
RPID are XML dialects. The SIP extensions for presence and instant messaging [11]
are developed by the SIMPLE IETF working group [29].

Fig. 6 The SIP event notification

Presence is a special case of SIP's event notification framework that is shown
on Fig. 6. SIP allows the subscription to arbitrary events, and the notification about
these events will be sent to all subscribed users. This design of the event notification
service can create severe performance and scalability problems.

4.2 P2PSIP

SIP can be considered today as a stable and mature technology that has seen wide
adoption in Internet-based application. Additionally, the choice of SIP as a signal-
ing protocol for IMS and its consequent implementation by 3G mobile phones has
further increased the importance of SIP as a signaling protocol. In the previous sec-
tions, we have shown how SIP can be used to implement several services of the
collaboration middleware. Additionally, IMS is a powerful middleware that facili-
tates easier development of many types of applications, although it is not specially
designed for collaboration services. On the other hand, applications developed us-
ing IMS will depend on the operator’s 3G network. In an environment that does not
have access to the 3G network, IMS applications cannot function.

1382 Adam Wierzbicki, Anwitaman Datta et al.

The developing P2PSIP standard aims to enable the use of SIP without the de-
pendence on a server infrastructure. The first step in this effort is to distribute the
SIP registrar servers using a P2P overlay. Following this, other SIP functions such
as publish-subscribe for event management and presence can also be distributed,
aiming to create a P2P framework that would support full SIP functionality (a kind
of P2P-IMS). The full set of requirements for a P2PSIP system would include [34]:

1. Zero configuration. The system should be able to automatically configure it-
self, e.g., detecting NAT and firewall settings, discovering neighboring peers and
performing initial registration.

2. Heterogeneous nodes: It should be able to adapt to available resources and dis-
tinguish between peers with different capacity and availability constraints. This
favors the distinction between nodes and super-nodes as in Kazaa.

3. Efficient lookup: The system should be able to execute a lookup of a SIP iden-
tifier efficiently, which can be achieved using a structured P2P network.

4. Advanced services: The system should support advanced telephony services
such as offline voice messaging, multi-party conferencing, call transfer and call
forwarding as well as advanced Internet services such as presence and instant
messaging. For the support of collaboration, the system should support all col-
laboration middleware functions described in the first section.

5. Interoperability: It should easily integrate with existing protocols and IP tele-
phony infrastructure.

The conceptual model of a P2PSIP system [8] consists of peers that are coupled
with SIP agents such as user agents, proxies, redirect or gateway servers. In other
words, it is possible to think of peers as executing a separate functionality but being
coupled with ordinary SIP entities. All peers should be able to participate in the P2P
overlay network using the P2PSIP peer protocol. However, there may exist SIP user
agents that wish to use the P2PSIP system, but are not coupled with a peer capable
of participating in the overlay. These peers can use the P2PSIP client protocol to
contact proxy peers that participate in the overlay. Finally, it is also possible for a
SIP agent that does not understand the P2PSIP protocols to communicate with the
P2PSIP system directly using SIP.

A high-level overview of the steps that a peer has to carry out in a P2PSIP system
is as follows:

1. In order to join an existing overlay, the peer needs to locate a P2PSIP peer that
already participates in the overlay, which is referred to as a bootstrap node. IP
addresses of bootstrap nodes can be obtained in many ways: from a cached list,
using multicast discovery, using manual configuration or public bootstrap nodes.

2. After bootstrapping, the peer should authenticate itself, traverse NAT and fire-
walls, and register itself in the overlay (or register as a P2PSIP client to some
P2PSIP proxy peer). Authentication methods or NAT traversal are not defined
yet.

3. After joining, the peer uses the P2PSIP peer protocol to search for other peers
or resources, share own resources or insert new resources in the system. Re-
sources can be SIP identifier-IP address mappings, context information, meta-

Supporting Collaboration and Creativity Through Mobile P2P Computing 1383

data, or files. There are several candidates for a P2PSIP peer protocol, all of
them are structured P2P overlay networks.

4. After P2PSIP peers discover other peers, they can initiate SIP sessions or send
other SIP messages independently of the P2PSIP peer protocol, but possibly us-
ing resources of the P2PSIP system such as proxy or gateway peers (also needed
for NAT traversal).

At a first glance, the task of distributing the functions of SIP registrar servers that
implement a simple directory function seems easy. Structured P2P overlays are ca-
pable of providing directory functions. Yet, there is to date no standard of a P2P
overlay. Also, P2P traffic often struggles to pass NATs and firewalls, often hiding
using another application layer protocol. These considerations raise the first ques-
tion concerning the design of P2PSIP. Should P2PSIP use a P2P overlay as an ex-
ternal component (requiring SIP clients to implement another protocol and raising
issues of choosing the best overlay and of firewall traversal), or can a P2P overlay
be designed to form part of SIP? In other words, can a P2P overlay be created and
maintained using the SIP protocol itself?

For these reasons, one of the first proposals of a P2PSIP system advocated the use
of the SIP protocol as a signaling protocol for overlay setup and management [8, 9].
This proposal specified the mechanism for user registration and location in a P2PSIP
overlay. The overlay was created using a modified SIP REGISTER message that
could be used to join the overlay and to update overlay neighbors. The proposed ap-
proach was implemented using Chord as the P2PSIP overlay. Special SIP identifiers
were used to identify peer nodes (a SIP identifier included a Chord node identifier
and could specify whether the nodes’ IP address was known).

4.2.1 P2PP

The other approach to developing a P2PSIP system requires the use of an additional
protocol for overlay management. A current proposal of the P2PSIP working group
advocates the development of a new standard for a general-purpose protocol for
P2P overlay network management that would also offer the basic services required
by P2PSIP [6]. This protocol, called simply the P2P Protocol (P2PP), is independent
of the overlay routing and allows the construction of arbitrary overlays (structured
or unstructured).

Figure 7 shows the reference architecture of P2PP [6]. The protocol provides an
API to the SIP user agent or other applications. The API consists of three sepa-
rate interfaces: the service interface provides functions to join or leave the overlay,
functions for routing table maintenance and updates. The data interface provides
functions to insert, lookup or delete an object by its key. The diagnostic interface
provides functions for gathering statistics, like response time or relay bandwidth of
a peer.

The P2PP protocol does not specify how the routing and network management
of the overlay works. In fact, it is possible for the overlay to be structured or un-
structured, and for the structured overlay to use any routing scheme. However, this

1384 Adam Wierzbicki, Anwitaman Datta et al.

Fig. 7 P2PP reference architecture

does not imply that P2PP specifies just the interface part of the overlay. The proto-
col specifies how peers maintain state. The P2PP node state contains the following
information:

• The P2P overlay routing algorithm (can be any)
• Overlay ID
• Hash algorithm (if any)
• Routing type (iterative or recursive)
• Routing table (table of other peers in overlay)
• Neighbor table (table of immediate neighbors)
• Both tables include for any peer: Peer ID, IP address, RTT, Uptime
• Number of neighbors (sum of routing and neighbor table sizes)
• Resource table (objects the peer is responsible for)
• Replicated resource table (replicated objects)

Overlay routing can be iterative or recursive, which needs to be decided at the time
of overlay creation. Peers can issue parallel iterative routing requests; then, one
copy of the request needs to be designated as primary. Requests use TTLs. The
protocol also supports request transactions, which can add reliability to requests if
UDP is used for transport. Reliability is provided as a hop-by-hop mechanism. An
interesting feature of P2PP is that it can combine the use of TCP and UDP within
one overlay. With recursive routing, TCP and UDP can be combined using hop-by-
hop reliability for UDP.

P2PP supports the use of security using hop-by-hop TLS or DTLS. An authen-
tication server can be used that issues certificates to users. The P2PP specification
describes adversary models and the protocol is protected against some routing and
storage threats, as well as replay attacks.

Supporting Collaboration and Creativity Through Mobile P2P Computing 1385

P2PP is a candidate for the generic interface between the Collaboration Mid-
dleware and P2P Overlay layers, described on Fig. 1. The reason for this choice
is that P2PP is by itself generic, allowing the implementation of arbitrary over-
lays while keeping the same protocol and service interfaces. However, P2PP does
not support all of the functions of the P2P Overlay layer, described in the previ-
ous section. In particular, P2PP does not support publish-subscribe or multicast. Of
course, the P2PP interfaces do not include overlay adaptation functions. Research
on an adaptation of P2PP to support all of the required functions is continuing in
the mTeam project [3]. The P2PP interface has already been extended to support
publish-subscribe and multicast – a proposal of revision of the standard is forth-
coming.

4.3 A Case Study: SharedMind

SharedMind is a collaborative version of FreeMind [2], the most popular open-
source mind mapping software. Our motivation is to enable the group to work on a
shared mind map. Each member of the group can interactively add, delete or mod-
ify nodes in the mind map. These modifications are seen almost in real time by
the whole group. If the network connection between groups’ members is broken,
the members can continue to work independently (or in subgroups, that have con-
nectivity). After the connection is restored, the files are merged. SharedMind is an
ongoing work that prototypes and tests the design assumptions of the collaborative
middleware.

The original FreeMind follows a standard, model-view-controller architecture.
The mind map is represented internally as a tree. Nodes of the tree correspond to
the nodes of the mind-map. The text of a node and its style information are stored
as properties of the node. The persistent version of the tree is stored as an xml
file. User’s modifications (such as adding a node, editing node’s description or its
attributes) are represented as “commands”. These commands are executed on the
model by the controller.

In our implementation, each member of the group has a local copy of the shared
data (the mind map edited by the group). The main issue in SharedMind is to provide
seamless data synchronization of changes made to local copies. Other functions de-
fined in Section 3.2, especially those related to the security and group management,
will be implemented by the middleware and do not require substantial modifica-
tions to the FreeMind code. We use P2PP as a generic interface to a P2P overlay.
All the members subscribe to a common publish-subscribe topic. Whenever one of
the members modify her local copy, a message containing the description of the
modification (an xml string containing the marshalled action) is published on (sent
to) this shared topic. The middleware propagates the modifications, by the standard
subscribe mechanism, to the other members of the group. A member, after having
received such a remote modification, unmarshalls it, checks for possible conflicts
and, in case there are no, applies it on her local copy.

1386 Adam Wierzbicki, Anwitaman Datta et al.

In this collaborative editing scenario, two main types of conflicts may occur.
Firstly, a remote modification may concern a node that is currently edited by the
local user. Secondly, modifications may be concurrent. In this case, local editing
has finished and the notification message is sent, but the message has not reached
the author of the remote modification, before she sent her message. Both types of
conflicts are easy to detect. The first one by a simple state variable that stores the
currently edited node. The second one, by using logical vector clocks for messages.
However, both conflicts have to be resolved by the user, on the level of the UI.

We also plan to support delay-tolerant editing, in which group members continue
to work on shared data, even if they do not have any network connection. Delay-
tolerant editing relies on presence (provided by the middleware), versioning and
checkpointing (specific to FreeMind’s data structures, thus implemented over Free-
Mind’s code). The group chooses a random number (using a bully selection algo-
rithm) that becomes the current version number of the data. The presence function of
the collaboration middleware periodically checks whether all the group’s members
are reachable. Group composition changes when a member disconnects, or when
a persistent network failure divides the group into subgroups. In such event, each
member locally reverts to the last common version of the shared data (at the mo-
ment of the last successful presence protocol invocation), and checkpoints this ver-
sion with the previously elected version number. Afterwards, a member re-applies
the modifications that followed and continues to work with the reachable part of
the group (electing the new version number). After the connection is restored, the
re-united group should produce a common version of the data from the modifica-
tions done in each subgroup. The presence mechanism notifies group’s members.
Then, each subgroup elects a member responsible for merging the data into a one,
common version (a merger). Mergers exchange lists of version numbers. Then, each
merger determines the last common version number (the last number that appears on
both lists). Each merger produces a list of modifications its subgroup made over the
common version, using the previously checkpointed revision. These lists of modifi-
cations are then send to the other merger. Next, mergers merge all the non-conficting
changes and resolve conflicts (on the level of the UI). Then, an elected merger ap-
plies changes that were made by other, non-merger group’s members during the
process of merging. This process may also involve possible conflict resolution. Fi-
nally, the elected merger’s data is considered as the common group’s data.

To conclude, the complete version of SharedMind will use most of the middle-
ware functions (Section 3.2). Security-related functions are mainly independent of
the original code, and thus do not require substantial modifications. Data synchro-
nization turns out to be most complex to implement, as the data structure is tightly
coupled with the original code. Currently, data is synchronized on the application
layer (and not by the middleware), using functions provided by the collaboration
middleware and the P2PP protocol, such as presence, publish-subscribe and event
management. In future, we plan to provide generic synchronizing data structures at
the middleware layer, such as a tree or a table (a collection of records). These data
structures will be extended by application developers to host application-specific
data.

Supporting Collaboration and Creativity Through Mobile P2P Computing 1387

4.4 Research Issues Related to SIP and P2PSIP

SIP and IMS are both client-server systems that have performance and scalability
problems. In particular, the presence and event management services of SIP are
prone to severe performance problems when they have many users. Another problem
is the intolerance of the service to network connection loss, and the general problem
of coping with event loss. In the publish-subscribe framework, event delivery is not
guaranteed in the case when the intended receiver is not available, and there is no
mechanism to obtain the lost events.

The P2PSIP protocol is currently in the early design stage and there is no agree-
ment on how it would operate. However, most of the challenging research problems
described in the section on collaboration middleware that concern the session man-
agement, presence and event management service would also apply to P2PSIP, since
this protocol should support the full functionality of SIP over a P2P overlay network.
Another challenging problem would be the transparent integration of P2PSIP with
Internet-based SIP infrastructures or IMS.

The performance of P2PSIP will depend on the operation of the underlying over-
lay. The overlay will also support all other functions of the collaboration middle-
ware. Therefore, a good overlay design is crucial for the support of collaboration
functions. Here, the opportunity for using information from the collaboration mid-
dleware layer to optimize overlay operation becomes important, as will be shown in
the next section.

5 Vertically Integrated Overlay

Structured overlays are touted to play the role of an application layer internet, po-
tentially bridging the gap among heterogeneous networks by providing a standard
API based interface for applications, and managing the underlying operations such
as routing, transparently. However, in mobile (either logical or physical) environ-
ments structured overlays are harder to realize and maintain. A simple approach –
called the layered design – is to assume that the networking layer takes care of any
and all intricacies arising from mobility, and thus just deploy an overlay on top,
treating the underlying layer as a black box. Such a layered design risks losing out
on cross-layer optimization opportunities, which affect performance, besides poten-
tially jeopardizing the feasibility of such a system to start with. Experiments in mo-
bile ad-hoc environments do confirm this intuition, demonstrating that a cross-layer
approach performs better, where the underlay’s routing mechanisms are integrated
with the overlay’s routing mechanisms. A good summary comparing layered and in-
tegrated overlay designs can be found in [21]. Recent efforts have pushed this idea
even further, using overlay like approach to infact perform the underlay’s routing
itself [10], simultaneously realizing a DHT by default.

In this part of the chapter we will first review some recent standalone ideas,
and then propose a speculative mechanism of how these apparently different ideas

1388 Adam Wierzbicki, Anwitaman Datta et al.

together potentially can help realizing a structured overlay in a highly dynamic en-
vironment as is witnessed in mobile environments. The standalone ideas have been
tested in isolation. While the proposed speculative mechanism is one of the best bets
given current understanding of overlay networks, it nevertheless currently lies in the
realms of future work.

We next provide a summarized survey of these stand alone mechanisms, fol-
lowed by our vision of how several of these can be combined together to provide
the basic routing and indexing infrastructure for the upper layer middleware. We
also will point out how information from the upper layer can be exploited to make
the underlying overlay more robust and reliable.

5.1 In the Realm of Ringless Routing

Structured overlays, e.g., Distributed Hash Tables (DHTs) provide essential index-
ing and resource discovering in distributed information systems. Typically, struc-
tured overlays are based on enhanced rings, meshes, hypercubes, etc., leveraging
on the topological properties of such geometric structures. The ring topology is ar-
guably the simplest and most popular structure used in various overlays. In a ring
based overlay network (like Chord [35]), nodes are assigned to distinct points over
a circular key-space, and the ring invariant is said to be hold if each node correctly
knows the currently online node which succeeds it (and the one which precedes it)
in the ring. The ring is both a blessing and a curse. On the one hand, an intact ring
is sufficient to guarantee correct routing. Hence, historically, all existing structured
overlays have de facto considered it necessary.

Traditionally DHTs implicitly assume that any pair of nodes can interact directly
with each other. Under such an assumption, the ring is relatively straightforward to
realize. However, in some networking environments, particularly mobile, wireless
and ad-hoc, assuming that a network layer routing mechanism provides such pair-
wise connectivity and then realizing the structured overlay on top of the network
is at least an inefficient approach since it ignores cross-layer optimization oppor-
tunities. Moreover, even on the internet infrastructure and over even a moderately
small and dedicated infrastructure like PlanetLab researchers have observed non-
transitive connections [14], which violates the all-pair connectivity assumption. To
make things worse, large scale networks are prone to failure of individual partici-
pants, and in peer-to-peer networks, peers often go offline and come back online,
leading to churn in the network. Each and all of these factors make it harder to
maintain the ring invariant, becoming a performance bottleneck in the best case,
and jeopardizing the functionality altogether in the worst. There are of-course many
self-stabilization mechanisms which try to ensure ring integrity, with varying de-
gree of success, but these do not fundamentally change the fact that traditional DHT
routing strategies require the ring integrity as a necessary condition, even while ac-
tually it is just a sufficient condition. Next, we describe some recent works which
try a different approach, investigating whether the routing strategy can be changed

Supporting Collaboration and Creativity Through Mobile P2P Computing 1389

so that the DHT works even when the ring invariant is not or can not be met. In
some sense, these approaches complement self-stabilization mechanisms, reduc-
ing the DHTs reliance on the ring-invariant on the one end, even while of-course
the performance of the system improves if and whenever the ring invariant is actu-
ally met.

5.2 Virtual Ring Routing

Virtual ring routing (VRR)[10] is a DHT style “overlay” layer approach used to
define the underlying network’s routing mechanism. It is implemented directly on
top of the link layer and provides both traditional point-to-point network routing and
DHT routing to the node responsible for a hash table key, without either flooding
the network or using location dependent addresses. While traditional DHTs take
for granted point-to-point communication between any pair of participating nodes,
VRR extends the idea, using only link layer connectivity. Essentially this means that
the VRR scheme relaxes the traditional DHT assumption of a completely connected
underlying graph.

Each node in VRR has an unique address and location independent fixed iden-
tifier, organized in a virtual ring, emulating Chord style network. Each node also
keeps a list of r/2 closest clockwise and counter-clockwise neighbors for the node
on the virtual ring. Such a set of neighbours is called the node’s virtual neighbour set
(vset). Typically, members in a node’s vset won’t be directly accessible to it through
the link layer. Thus each node also maintains a second set called the physical neigh-
bour set (pset), comprising nodes physically reachable to it through the link layer.
Quality of the link is taken into consideration in choosing members of pset, and is
updated regularly with changing conditions.

VRR sets up and proactively maintains routing paths called vset paths to each
member in its vset, and these paths are typically multi-hop using pset nodes. This
provides a routing table at each node, comprising of routes to its own vset nodes,
as well as vset paths that pass through it. This is enough to support point-to-point
communication between any two nodes in the system, since one can follow the
vset neighbors to reach the destination along the ring. In practice, VRR performs
significantly better, because a node can exploit the routing entries from other vset
paths that pass through it. Figure 8 shows an example virtual ring, and illustrates
how VRR works.

While proposed originally for network routing, where pset is determined by link
layer connectivity, the idea of a VRR is potentially applicable even for other kinds
of connections, including of-course hybrid physical networks, but also abstract ones
like social network graphs. For routing and indexing services for a collaboration
middleware, using such a social network to determine pset is particularly alluring,
given that social network links can inherently provide security and robustness, as
will be briefly explained later when we describe how ideas from VRR, Fuzzynet and

1390 Adam Wierzbicki, Anwitaman Datta et al.

Fig. 8 The actual pair-wise connectivity of peers is used to establish route to the virtual ring
predecessors and successors. For example, 8F6 has neighbors 8F0, 8E2, 90E and 910 in the virtual
ring, though it is has actual connections with some nodes which are located in other arbitrary points
on the virtual ring. As per the original VRR paper link state connections are used to determine pair-
wise connectivity, however any other kind of abstract connections like social acquaintance may
also be used instead. Now if 8FC wants to communicate with 7C0, it will choose to forward the
messages greedily towards 8E2, however on the way, this message will go through a node which
has direct connection to 7C0, and hence the message will be forwarded to its destination. This
figure is reproduction the virtual ring example provided in the original paper (Caesar et al., 2006)

social networks can all be put together to realize a new vertically integrated overlay
which we tentatively call SocialCircle.

5.2.1 Fuzzynet

Traditional DHT designs rely on the existence of a ring in order to deterministically
guarantee that any node can be reached from any other node by traversing the ring
sequentially. While the ring ensures connectivity among any pair of nodes, ensuring
the ring itself is challenging and expensive. In a system with large number of nodes
and under continuous churn, guaranteeing the ring invariance continuously is unre-
alistic. Thus, even though it is true that if the ring exists then it guarantees routing,

Supporting Collaboration and Creativity Through Mobile P2P Computing 1391

in practice since the ring invariance itself is often not met, routing failures are also
relatively frequent. Fuzzynet [16] is a recent approach which uses a probabilistic ap-
proach for both routing and data placement in the DHT, but manages to successfully
perform DHT operations even when the ring invariant is not met.

The essential idea in Fuzzynet is as follows. As in ring based DHTs, Fuzzynet
assigns nodes unique identifiers on a ring. However Fuzzynet drops the requirement
for every peer having a predefined deterministic responsibility range on the iden-
tifier space. Instead, it uses a probabilistic responsibility “fuzzy” approach, where
a data item will most likely be stored on a peer whose key in the identifier space
is close to the hash value of that data item (data key). Secondly, each peers need
to know some other peers in its neighborhood in the ring. This is however differ-
ent from knowing the precise successors or predecessors on the ring, but just some
nodes in the vicinity, and hence there is no need to actively maintain this informa-
tion. Data is replicated in Fuzzynet, by gossiping the data replicas in the vicinity of
the data position on the identifier space. Such dissemination of data replicas does
not significantly increase the overheads of Fuzzynet, since all the realistic systems
(which use the ring structure) employ replication for fault tolerance and persistence
anyway. An useful consequence of such data replication in Fuzzynet is the fact that
a simple greedy routing query will find one of the replicas w.h.p. given sufficient
network connectivity, even if the ring invariance is violated.

5.2.2 Lookup (Read) Operations on Fuzzynet

Lookup routing employs a greedy routing algorithm, where messages are forwarded
everytime minimizing the distance to the target. The routing terminates if a data
item D, which was looked-up is found. However, since there are no ring links and
no predefined responsibility ranges, a peer might end up in a situation where it does
not have any links which would lead the query closer to the target, nor does the
node hold the requested data locally. In such a case the lookup query terminates

(a) Greedy-Approach (b) Write-Burst

Fig. 9 Schematic example of the two phases for publish (write) in Fuzzynet: (a) Greedy-Approach
to reach in the vicinity where the data should be stored and (b) Write-Burst to disseminate the data
in that region in a fuzzy manner

1392 Adam Wierzbicki, Anwitaman Datta et al.

unsuccessfully. Nevertheless, analysis proves and experiments demonstrate and val-
idate that with realistic parameters (e.g., in the networks with O(log N) degree and
typical peer replication cost), data is found w.h.p. if it was published before.

5.2.3 Publish (Write) Operations on Fuzzynet

The high guarantees for Fuzzynet lookups lie in the exploitation of a particular
Small-World property, namely the clusterization property, during the data writing
phase. The write operation is performed in two stages and stores data D on r peers
(replicas) in the vicinity of the data key D(key). The first stage is similar to the
lookup (read) phase and uses greedy routing to find one of the peers which are close
enough to the data key D(key). Once the write operation reaches the vicinity of the
targeted key location, the data is seeded in the nearby peers by the self-avoiding
multicast (a controlled “Write-Burst”. The underlying idea is to use the clusteriza-
tion property of the network and to reach as many peers as possible in the D(key)
vicinity. The multicast has two parameters – f n fanout and depth. A peer contacts
its fn closest neighbors to D(key) and requests to store the data item D as well as to
continue the multicast process with reduced depth. The multicast avoids the peers
which have been visited (already store data D) and terminates when depth reaches
zero. Data D is seeded (stored) on all the peers reached by the multicast-burst. The
two phases of the write process are shown on Fig. 9.

Experimental results show Fuzzynet to provide routing success which is upto an
order of magnitude better than ring based routing (as in Chord). Fuzzynet’s abil-
ity to realize DHT’s indexing service and data retrieval without requiring the ring
invariant makes it particularly suitable for systems not only with high churn, but
also potentially in systems incurring mobility. Realizing the Fuzzynet rather than
ring based DHTs on top of a social network is again relatively simpler since so-
cial network links need not be sufficient to guarantee connections to establish and
maintain a DHT ring. Thus, we speculate that a hybrid approach using Fuzzynet and
VRR can potentially be a good underlay for supporting collaboration middlewares,
since they can explicitly take into account the nuances of social networks (implicitly
present in collaboration activities) and mobility. This motivates us to explore a new
DHT style overlay network which we will call Social Circle, the design of which
and associated research issues will be elaborated at the end of this chapter.

Before doing so, we will first take a brief detour to explore some other identity
related issues relevant in realizing a decentralized collaboration middleware.

5.3 Identity Crisis in a Large-Scale Decentralized World

In large-scale decentralized systems, there are two distinct identity related issues
that may arise. Firstly, because of node mobility and dynamic IP address assign-
ments, nodes’ physical/IP address change over time. Many peer-to-peer networks

Supporting Collaboration and Creativity Through Mobile P2P Computing 1393

and applications do not care about the specific peers, as long as they are connected
to some peers. However other applications can benefit or even need to relocate an
existing peer. For example, in a peer-to-peer storage system, if a peer goes offline
temporarily and returns back, it is useful to be able to access the content stored in it,
allowing for more efficient storage system redundancy maintenance algorithms. In
other situations, being able to locate back a specific peer may be even more crucial,
because of shared past interactions, and the trust and social relations established
among the peers. This is particularly important in supporting a collaboration mid-
dleware. A simple solution to this issue can be to use a logically centralized directory
service storing the up-to-date peer-to-address mappings. However, given that many
of the peer-to-peer networks themselves work as decentralized directory services,
one can also imagine using the peer-to-peer network itself as a self-referential self-
contained directory service to store meta-information about the participants, includ-
ing their current physical address. This basic idea has been proposed independently
(and varying in details) in several academic as well as deployed peer-to-peer net-
works, including P-Grid [4], Microsoft’s Peer Name Resolution Protocol (PNRP)
and Skype. A similar self-referential directory can of-course in turn also be used to
support presence, particularly in conjunction with a publish-subscribe mechanism!

Another aspect of identity in decentralized settings is that users can create bogus
identifiers. A major security threat in such systems is if a resource rich adversary
creates many bogus identifiers (Sybil attack [13]), then it can disrupt the functionali-
ties of the system (denial-of-service), as well as more actively hurt the other genuine
users. While this is a serious concern in general, in a social network context (which
is inherently present – explicitly or implicitly – among collaborating individuals),
this is easier to thwart, because social links are established based on either pre-
existing real life interactions or referrals, or even if the link is established virtually,
still it is sustained and rated based on real interactions among the players. Thus, so-
cial links can be a good mechanism to thwart multiple bogus identifiers. Notice that
a limited number of identifiers for the same individual is not a threat of the same
scale as a Sybil attack. Also, it really does not matter in many situations as to who is
the real person behind the virtual persona, but what matters more is how this persona
behaves. Trust and reputation based on the social network can thus further limit the
effect of spurious as well as misbehaving peers. For example, SybilGuard [38] is
one recently proposed approach which uses the social network to limit the effects of
Sybil attacks in a decentralized system.

5.4 DHT Based on a SocialCircle

The social network can be useful both to improve the performance of normal rout-
ing, and to provide new functionality. Imagine that a user wishes to find a new team
member with certain desired knowledge or experience. Ordinarily, the social net-
work would be used in such a case as a medium for a broadcast query. In this work,
we show how this function can be achieved much more efficiently.

1394 Adam Wierzbicki, Anwitaman Datta et al.

Previous attempts have used social network links to bolster DHTs [26], prefering
social links whenever possible, but nevertheless using the “normal” random DHT
links otherwise. Such an approach still relies on using the “untrusted” links most
of the time, but was perhaps as good as it gets under the older regime of DHT
designs, where a completely connected underlying graph and ring invariance were
considered necessary. Since then, VRR and Fuzzynet have respectively demonstrated
overlay designs which work even otherwise. A hybrid of these two overlays has the
potential to be a suitable substrate for collaboration middlewares in a decentralized
setting. Another attempt to use social networks for routing in mobile ad-hoc net-
works [12] used centrally located “bridge nodes” that exchanged information about
their egocentric social networks. However, in this approach, routing was still done
using a network-layer ad-hoc routing protocol that just benefited from the infor-
mation from the social network. In our approach, the social network itself is the
basis of routing decisions, eliminating the need to exchange summary information.
We would like to highlight that unlike the previous portion which was a summary of
current state of the art, the following material in this chapter is currently speculative,
and comprises mainly of open research issues.

5.4.1 VRR Adaptation for SocialCircle

Besides the pset and vset in VRR, we need another metalayer in SocialCircle, which
comprises of all the social network links of a node, and call this the node’s sset. In
a wired network, one can assume that the sset of SocialCircle is used the same way
as the pset in original VRR proposal. In a mobile or heterogeneous environment,
whenever sset nodes can not be reached efficiently and directly using network level
routing, the pset can be used for multi-hop routing in a manner similar to the original
VRR. The sset will define a multi-hop route to the next vset node. Corresponding
to each such point-to-point routes to vset members, a routing table entry will be
maintained at each node. And similar to VRR, SocialCircle will also use the routing
entries of other routing paths that go through a node to avoid navigating the virtual
ring sequentially.

SocialCircle is developed as part of the mTeam project[3]. We present results
of preliminary evaluation of the proposed system. The purpose of our experiment
was to examine the VRR functioning in social networks. We have made tests on
real social network graphs and randomly generated social network graphs. We have
measured average stretch, which is an average ratio between the number of hops
traversed by a message from a source to a destination and the length of the short-
est path between this source and destination in the social network [10]. Stretch is a
measure of how well the overlay network uses the underlying social network topol-
ogy. A broadcast query would be wasteful in terms of overall messages used, but
could discover a shortest path between the querying node and the intended receiver.
SocialCircle routing is much more efficient, but can increase the length of the end-
to-end path.

Supporting Collaboration and Creativity Through Mobile P2P Computing 1395

In the experiment we run VRR on a social graph. When the network gains a stable
state, each node starts sending messages to 3 random nodes. This scenario assures
that every node will be used and also ensures that even distant nodes will be on end-
to-end paths, which are usually longer than average network shortest paths. The
test results show the impact of increasing the number of nodes on average stretch
and a comparison of stretch for shortest paths of different length. Each test was
performed 3 times and average results were calculated. Random social networks
were generated with the same parameters, using the “Scale Free” algorithm in the
Pajek software (Pajek).

5.4.2 Average Stretch of SocialCircle

Figure 10 shows the average stretch for different network sizes. Stretch in Social-
Circle on random social networks increases with the number of nodes. However, it
does not exceed 1.7 up to 200 nodes, and stays below 1.5 for network sizes up to
170 nodes.

Fig. 10 Average stretch. Unconnected points show results for real social networks

Points connected with a line are test results on random social networks. The three
remaining points that are not connected with lines are results of tests on real social
networks. Results are quite similar at a small number of nodes (test on a sample
network of 34 nodes). For real social networks with a higher number of nodes,
stretch is much smaller than for random social networks.

To conclude, SocialCircle works well overall, with stretch below 70%; the ap-
proach works even better on real social network graphs, where stretch has been
calculated as: 21% for a 34 nodes network, 5% for 130 nodes and 12% for 168
nodes. The reasons for these differences are discussed below.

1396 Adam Wierzbicki, Anwitaman Datta et al.

5.4.3 Average Stretch Distribution

Figure 11a presents a distribution of average stretch for shortest paths of different
length, for two different network sizes: 100 and 200 nodes.

(a) average stretch (b) minimum distances

Fig. 11 Results of experiments. (a) presents average stretch per minimum distance. (b) presents
distribution of minimum distances on real and random graphs

In both examples, there stretch is equal to 1 for shortest paths of one or two hops.
These results prove that SocialCircle does not make mistakes for reaching close
nodes. Stretch begins to increase at 3 hops. In the 100 nodes network, stretch is
about 1.6, whereas for the 200 nodes network it is almost 2.1. For the 100 nodes
network, the highest stretch is at 4 hops. In the 200 nodes network, stretch is highest
at 3 and 4 hops.

For longer shortest paths, stretch is decreasing, and the differences between
both networks are constant. These results are quite similar to results obtained for
VRR [10].

5.4.4 Distribution of Minimum Distances

Figure 11b presents a distribution of minimum distances for a real and random social
network. In the real network, most paths are up to 4 hops distance, and shortest
paths of 2, 3 and 4 hops make up 94% of all paths. In the random social network,
the distribution of paths is shifted towards higher distances, mainly on 3 and 4 hops.
However, there are also relatively many shortest paths of 5 hops. This difference,
together with the results presented on Figure 9, explains why SocialCircle performs
better for real social networks. Since paths in real social networks are shorter, and
stretch of SocialCircle for shortest paths of 1 and 2 hops is equal to 1, the results
of SocialCircle routing on real social networks will be much better than for random
social networks.

The presented preliminary results of the evaluation of SocialCircle indicate that
for real social networks, the stretch of SocialCircle is likely to remain very low.
This means that SocialCircle is able to route queries quickly, which would be of a

Supporting Collaboration and Creativity Through Mobile P2P Computing 1397

special significance for session establishment and event notification in collaborative
applications.

5.5 The Outlook for Future Works

5.5.1 Fuzzynet Adaptation of SocialCircle

The SocialCircle can be made further robust by reusing the ideas from Fuzzynet.
Specifically, the vset need not comprise of precise predecessor/successors on the
virtual ring, but instead use just a random set of neighbors from the vicinity and a
fuzzy data placement based on gossiping over the vset. Such extensions are part of
our future work, and has not been done yet.

5.6 Good and Better Peers

Using cooperative applications in a heterogeneous environment of mobile and fixed
devices imposes a natural requirement for the diversification of peers. In fact, even
P2PSIP foresees that possibility, as some SIP user agents may connect to P2PSIP
peers using the P2PSIP client protocol. This solution is highly similar to a superpeer
architecture. Some mobile peer may become superpeers just because they have In-
ternet connectivity and are willing to share it with others. On the other hand, these
peers may not be capable of running all superpeer functions that could be handled
by a fixed node. For that reason, a three-tier hierarchy is a natural choice for the
stratification of the peers according to their capabilities.

On the other hand, the question remains “how should different kinds of peers
communicate?”. A typical solution is to let superpeers communicate using a struc-
tured overlay, and peers communicate only with superpeers. However, such an ar-
chitecture may be unsuitable in a mobile environment, where it is easy for a peer
to lose contact with his superpeer. A higher connectivity among ordinary peers may
be more desirable. In a different solution, all peers would use SocialCircle for com-
munication without superpeer services, or for superpeer discovery (at the first or
second tier). Third-tier superpeers receive service requests from their children in the
superpeer hierarchy and serve this requests using SocialCircle routing.

An issue that remains is to determine which peers are capable to serve as third-tier
superpeers. Based on information from the presence or trust management service,
the overlay can automatically choose best candidates for superpeers or for peers
needed for a special function (such as trusted routing). Note that this choice is not
simple, since the overlay contains information about the availability and trust of
individual peers, but does not contain an ordering of all peers. Obtaining all values
and ordering them is not scalable. To solve this problem, it is possible to apply
distributed sorting based on gossiping in the SocialCircle [22].

1398 Adam Wierzbicki, Anwitaman Datta et al.

Another method of selecting superpeers would be to choose peers from the centre
of community clusters in the social network. This method would have the advantage
of supporting efficient message delivery for services such as publish-subscribe, as
the superpeer could be used to receive publications and issue notifications to all
peers in the cluster. The clustering would ensure that few messages would have to
be sent to distant peers. To create community clusters and select appropriate super-
peers, distributed clustering (community detection) protocols based on gossiping
may be applicable [37].

6 Conclusions

Collaboration is one of the most promising applications of mobile network tech-
nology. The very nature of collaborative applications makes them suitable for a
Peer-to-peer model, since many of these applications rely on sharing of information
(expert knowledge, work results, new ideas) by people. Such sharing is inherently
peer-to-peer.

Yet, in order to enable sharing, collaborative applications must have a number of
functions that may require support of an infrastructure. The functional requirements
for most collaborative applications have been described in this chapter. The required
functions can be partially implemented using the Session Initiation Protocol and its
P2P extension, P2PSIP. The emerging standard of P2PSIP points out a direction of
enabling collaboration in mobile P2P environments. However, the full support of
collaborative P2P applications requires further research work in the area of overlay
design. In this chapter, we have explored a particular dimension of overlay design:
the use of additional social network information from the collaborative middleware
layer by a vertically integrated P2P overlay.

We outline how several currently stand-alone innovations can be put together
to realize a peer-to-peer overlay for mobile environments, and also identify the out-
standing research challenges to achieve the same. A common theme of the discussed
innovations is the use of information from the collaboration middleware for the opti-
mization of overlay operation. We have presented SocialCircle, with early results of
a speculative approach that integrates these research ideas by using only the social
network directly to create a structured overlay, which is incidentally also a first of
its kind in terms of realizing the idea, even though many researchers in the commu-
nity have speculated the need and possibility of such an approach [38], and devised
partial solutions [26]. Preliminary results indicate that SocialCircle is likely to route
messages very efficiently on real social networks, enabling efficient session estab-
lishment and event notification. These results prove the optimization potential of a
vertical integration. Research that will further validate SocialCircle is already under-
way, together with several projects worldwide that attempt to exploit the powerful
trends that bring ubiquitous, nomadic collaborative applications almost within our
reach.

Supporting Collaboration and Creativity Through Mobile P2P Computing 1399

Acknowledgements

Most of the SharedMind implementation was carried out by Sally Ang and Michał
Karwowski. The work on FuzzyNet [16] was carried out in collaboration with
Sarunas Girdzijauskas, Wojciech Galuba, Vasilios Darlagiannis and Karl Aberer.

References

1. Groove networks. http://www.groove.net/ (2004)
2. Freemind. http://freemind.sourceforge.net/ (2008)
3. mteam: A creative environment for mobile knowledge workers. Research project supported

by the Polish-Singaporean research program, http://mTeam.pjwstk.edu.pl/ (2008)
4. Aberer, K., Datta, A., Hauswirth, M.: Efficient, self-contained handling of identity in peer-to-

peer systems. IEEE Transactions on Knowledge and Data Engineering 16(7), 858–869 (2004).
DOI 10.1109/TKDE.2004.1318567

5. Auvinen, A., Vapa, M., Weber, M., Kotilainen, N., Vuori, J.: Chedar: Peer-to-peer middleware.
In: Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium
(IPDPS) (2006)

6. Baset, S., Schulzrinne, H., Matuszewski, M.: Peer-to-peer protocol (p2pp). Internet Draft,
draft-baset-p2psip-p2pp-01 (work in progress) (2007)

7. Bisignano, M., Di Modica, G., Tomarchio, O.: Jmobipeer: a middleware for mobile peer-to-
peer computing in manets. In: Proc. of the 25th IEEE Int’l Conf. on Distributed Computing
Systems Workshops (ICDCSW 2005), vol. 791 (2005)

8. Bryan, D., Jennings, C.: A p2p approach to sip registration and resource location. draft-bryan-
sipping-p2p-01 (work in progress) (2005)

9. Bryan, D., Lowekamp, B., Jennings, C.: Sosimple: A serverless, standards-based, p2p sip
communication system. In: Proceedings of the 2005 International Workshop on Advanced Ar-
chitectures and Algorithms for Internet Delivery and Applications (AAA-IDEA 2005) (2005)

10. Caesar, M., Castro, M., Nightingale, E., O’Shea, G., Rowstron, A.: Virtual ring routing: net-
work routing inspired by dhts. In: SIGCOMM, Proceedings, vol. 36, pp. 351–362. ACM New
York, NY, USA (2006)

11. Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., Gurle, D.: Session initiation pro-
tocol (sip) extension for instant messaging. IETF RFC 3428 (2002)

12. Daly, E., Haahr, M.: Social network analysis for routing in disconnected delay-tolerant manets.
In: MobiHoc, Proceedings, pp. 32–40. ACM Press New York, NY, USA (2007)

13. Douceur, J.: The sybil attack. In: Peer-To-Peer Systems: First International Workshop, IPTPS,
Revised Papers. Springer (2002)

14. Freedman, M., Lakshminarayanan, K., Rhea, S., Stoica, I.: Non-transitive connectivity and
dhts. In: WORLDS, Proceedings (2005)

15. Garcia-Martin, M., Matuszewski, M., Beijar, N., Lehtinen, J.: Sharing files with the session
initiation protocol (sip). Internet Draft, draft-garciasipping-file-sharing-framework-00 (work
in progress) (2007)

16. Girdzijauskas, S., Galuba, W., Darlagiannis, V., Datta, A., Aberer, K.: Fuzzynet: Zero-
maintenance ringless overlay. Tech. Rep. LSIR-REPORT-2008-006, EPFL (2008)

17. Greene, S.: Characteristics of applications that support creativity. Communications of the
ACM 45(10), 100–104 (2002)

18. Handley, M., Jacobson, V., Perkins, C.: Sdp: Session description protocol. IETF RFC 2327
(1998)

http://www.groove.net/
http://freemind.sourceforge.net/
http://mTeam.pjwstk.edu.pl/

1400 Adam Wierzbicki, Anwitaman Datta et al.

19. Herbjornsen, S.: Software support for creativity. Tech. Rep. TDT 4735, System Engineer-
ing, Department of Computer and Information Science, Norwegian University of Science and
Technology (2003)

20. Horozov, T., Grama, A., Vasudevan, V., Landis, S.: Moby-a mobile peer-to-peer service and
data network. In: International Conference on Parallel Processing, Proceedings, pp. 437–444
(2002)

21. Hu, Y., Das, S., Pucha, H.: Peer-to-peer overlay abstractions in manets. In: J. Wu (ed.) Theo-
retical and Algorithmic Aspects of Sensor, Ad Hoc Wireless and Peer-to-Peer Networks, pp.
845–864. Auerbach Publications (2005)

22. Jelasity, M., Kermarrec, A.M.: Ordered slicing of very large-scale overlay networks. In:
Proc. Sixth IEEE International Conference on Peer-to-Peer Computing P2P 2006, pp. 117–
124 (2006). DOI 10.1109/P2P.2006.25

23. Kawulok, L., Zielinski, K., Jaeschke, M.: Trusted group membership service for jxme
(jxta4j2me). In: Proc. IEEE International Conference on Wireless And Mobile Comput-
ing, Networking And Communications (WiMob’2005), vol. 4, pp. 116–121 (2005). DOI
10.1109/WIMOB.2005.1512958

24. Kortuem, G.: Proem: a middleware platform for mobile peer-to-peer computing. ACM SIG-
MOBILE Mobile Computing and Communications Review 6(4), 62–64 (2002)

25. Maibaum, N., Mundt, T.: Jxta: a technology facilitating mobile peer-to-peer networks. In:
Proc. International Mobility and Wireless Access Workshop MobiWac 2002, pp. 7–13 (2002).
DOI 10.1109/MOBWAC.2002.1166946

26. Marti, S., Ganesan, P., Garcia-Molina, H.: Dht routing using social links. In: The 3rd Interna-
tional Workshop on Peer-to-Peer Systems. Springer (2004)

27. Roach, A.: Session initiation protocol (sip) – specific event notification. IETF RFC 3265
(2002)

28. Rosenberg, J.: The extensible markup language (xml) configuration access protocol (xcap).
IETF RFC 4825 (2007)

29. Rosenberg, J.: Simple made simple: An overview of the ietf specifications for instant mes-
saging and presence using the session initiation protocol (sip). IETF draft draft-ietf-simple-
simple-02 (work in progress) (2008)

30. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley,
M., Schooler, E.: Sip: session initiation protocol. IETF RFC 3261 (2002)

31. Schulzrinne, H., Gurbani, V., Kyzivat, P.: Rpid: Rich presence extensions to the presence in-
formation data format (pidf). IETF RFC 4480 (2006)

32. Schwotzer, T., Geihs, K.: Shark-a System for Management, Synchronization and Exchange of
Knowledge in Mobile User Groups. Journal of Universal Computer Science 8(6), 644–651
(2002)

33. Shneiderman, B.: Creativity support tools. Communications of the ACM 45(10), 116–120
(2002)

34. Singh, K., Schulzrinne, H.: Peer-to-peer internet telephony using sip. In: NOSSDAV, Proceed-
ings, pp. 63–68. ACM New York, NY, USA (2005)

35. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M., Dabek, F., Balakrishnan,
H.: Chord: a scalable peer-to-peer lookup protocol for internet applications. Networking,
IEEE/ACM Transactions on 11(1), 17–32 (2003)

36. Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., Peterson, J.: Presence information
data format (pidf). IETF RFC 3863 (2004)

37. Yoneki, E., Hui, P., Chan, S., Crowcroft, J.: A socio-aware overlay for publish/subscribe com-
munication in delay tolerant networks. In: MSWiM, Proceedings, pp. 225–234. ACM New
York, NY, USA (2007)

38. Yu, H., Kaminsky, M., Gibbons, P., Flaxman, A.: Sybilguard: defending against sybil attacks
via social networks. In: SIGCOMM, Proceedings, pp. 267–278. ACM New York, NY, USA
(2006)

	Supporting Collaboration and Creativity Through Mobile P2P Computing
	Adam Wierzbicki, Anwitaman Datta, Łukasz Zaczek, and Krzysztof Rzadca
	1 Introduction
	2 Applications for Collaboration and Creativity Support
	3 Collaboration Middleware Functionality
	3.1 General-Purpose Mobile P2P Middleware
	3.2 Overview of Middleware Functions
	3.2.1 Session Management
	3.2.2 Conference Management
	3.2.3 Data Synchronization
	3.2.4 Data Sharing
	3.2.5 Presence
	3.2.6 Workspace Awareness
	3.2.7 Group Management
	3.2.8 Access Control
	3.2.9 Trust Management
	3.2.10 Event Management
	3.2.11 End-to-End Security Functions

	3.3 Required P2P Overlay Functions
	3.3.1 Routing
	3.3.2 Publish-Subscribe
	3.3.3 Multicast
	3.3.4 Overlay Adaptation Functions

	3.4 Research Issues Related to Middleware Function Design

	4 SIP and P2PSIP
	4.1 The Session Initiation Protocol
	4.2 P2PSIP
	4.2.1 P2PP

	4.3 A Case Study: SharedMind
	4.4 Research Issues Related to SIP and P2PSIP

	5 Vertically Integrated Overlay
	5.1 In the Realm of Ringless Routing
	5.2 Virtual Ring Routing
	5.2.1 Fuzzynet
	5.2.2 Lookup (Read) Operations on Fuzzynet
	5.2.3 Publish (Write) Operations on Fuzzynet

	5.3 Identity Crisis in a Large-Scale Decentralized World
	5.4 DHT Based on a SocialCircle
	5.4.1 VRR Adaptation for SocialCircle
	5.4.2 Average Stretch of SocialCircle
	5.4.3 Average Stretch Distribution
	5.4.4 Distribution of Minimum Distances

	5.5 The Outlook for Future Works
	5.5.1 Fuzzynet Adaptation of SocialCircle

	5.6 Good and Better Peers

	6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

