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Abstract With the rapid growth of the Internet, peer-to-peer (P2P) networks have
been widely studied and deployed. According to CacheLogic Research, P2P traf-
fic has dominated the Internet traffic in 2006, by accounting for over 72% Internet
traffic. In this chapter, we focus on unstructured P2P networks, one key type of P2P
networks. We first present several unstructured P2P networks for the file sharing
application, and then investigate some advanced issues in the network design. We
also study two other important applications, i.e., media streaming and voice over In-
ternet Protocol (VoIP). Finally, we discuss unstructured P2P networks over wireless
networks.

1 Introduction

In the recent years, P2P networks have seen enormous successes and rich develop-
ments over the Internet. When Napster first emerged in 1999 as a P2P file sharing
system, the Internet traffic was dominated by web and ftp (accounting for 65 and
10% total traffic, respectively, according to CacheLogic Research). But in 2006,
50–65% of downstream traffic and 75–90% of upstream traffic was already P2P
traffic (according to CacheLogic Research). In total, P2P traffic has accounted for
72% Internet traffic in the year, while that of web and ftp has decreased to 24 and
2%, respectively.
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In P2P systems, cooperative peers self-organize themselves into overlay net-
works and store or relay data for each other. The major challenge is how to achieve
efficient resource search in a large scale distributed-storage network. Currently pop-
ular P2P search systems can be classified as unstructured and structured, depend-
ing on the overlay structures. Unstructured systems do not impose any structure
on the overlay networks [1–3]. These systems are usually resilient to peer dynam-
ics, and support complex queries with meta information. But they are not effi-
cient for locating unpopular files. Structured systems impose particular structures
on the overlay networks, which are commonly referred to as distributed hash ta-
bles (DHTs) [38, 42]. In a structured system, any file can be located in a small
number of overlay hops, which significantly reduces the search cost as compared
to unstructured systems. However, DHT only supports single-keyword exact-match
lookups.

In this chapter, we focus on unstructured P2P networks. We first study the file
sharing application, which is the original and one of the most important applica-
tions for P2P networks. Depending on system decentralization level, we classify
unstructured P2P networks into centralized, distributed, hybrid and some other ap-
proaches. We select representative examples from each category and analyze their
search mechanisms. Then we discuss some advanced issues in system design, i.e.,
content replication and system security.

We also study other important applications for unstructured P2P networks, in-
cluding media streaming and VoIP. One of the pioneering P2P streaming softwares,
CoolStreaming, has reported to attract more than 25,000 concurrent peers for one
streaming channel [50]. Another streaming software PPLive reported more than
400,000 concurrent peers for its over 300 channels [25]. As for P2P VoIP, the lead-
ing software Skype has shown to attract over 8 million concurrent users in 2008
(from its client software interface), and has reported to accumulate 276 million user
accounts at the end of 2007. Clearly, these applications have evolved into influential
network applications over the Internet. We hence select CoolStreaming and Skype
as two typical examples. We study the challenges in these applications and their
corresponding approaches.

Finally, we study the implementation issue of unstructured P2P networks over
wireless networks. Wireless networks are going through quick development nowa-
days. As they share many similar features with P2P networks (such as decentraliza-
tion and dynamic topology), there has been an increasing interest in integrating them
together. We compare P2P networks and wireless networks, highlight the challenges
in integrating them, and discuss several state-of-the-art approaches.

The rest of the chapter is organized as follows. In Section 2, we present the gen-
eral design considerations in unstructured P2P networks. In Section 3, we discuss
representative examples of unstructured P2P networks for file sharing. In Section 4,
we explore some advanced issues in P2P file sharing. In Section 5, we discuss the
media streaming and VoIP applications for unstructured P2P networks. In Section 6,
we investigate how to implement unstructured P2P networks over wireless networks.
Finally, we conclude in Section 7.
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2 Design Considerations

When designing an unstructured P2P network, several issues need to be carefully
considered:

• Search efficiency and replication cost: In unstructured P2P networks, data are
distributedly stored at peers and each peer only holds limited information about
the system. Hence, it is important to design efficient search mechanisms. Usu-
ally, with more data replications in the network, a data file can be located more
quickly. It is hence a tradeoff between storage cost and search time.

• Scalability: A P2P system may consist of hundreds of thousands of peers. This
often requires a fully distributed system, where peers form a self-organized net-
work and each peer communicates with only a few other peers.

• Resilience to peer dynamics: In P2P systems, a peer may arbitrarily join, leave
or fail. A good P2P system should be resilient to such peer dynamics.

• Load balancing: Peers often have heterogeneous resource (e.g., bandwidth, com-
putational capability, storage space). A good system should be able to achieve
balanced loads among peers. This can avoid overloading hot peers, and hence
improve system scalability.

• Security: In the open environment of the Internet, some participating peers may
be selfish and unwilling to upload data to others, or some may launch attacks
to disrupt the service. A practical P2P system should be well protected to tar-
geted attacks or free-riders (i.e., peers only downloading data without uploading).
Other considerations include peers’ privacy and confidentiality.

3 Unstructured P2P Networks for File Sharing

In this chapter, we describe several unstructured P2P networks for the file shar-
ing application. We classified the approaches into four categories: centralized, dis-
tributed, hybrid and others. We select one representative example from each cate-
gory and discuss its system design.

3.1 A Centralized Approach: Napster

In 1999, Napster appeared as the first P2P file sharing system [4]. A Napster system
consists of a central directory server and a set of registered users (or peers). The
server maintains information of all files in the system, including an index with meta-
data (such as file name and size) of all files in the system, a list of all registered peers,
and a list showing the files that each peer holds and shares.

When a new peer joins the system, it contacts the server and reports a list of files
it maintains and shares. When a peer wants to search for a file, it sends a request
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to the server. The server will return a list of peers that hold the matching file. The
searching peer then contacts the returned peers to download the file.

Figure 1(a) shows the search process in Napster. When peer A wants to search
for some file, it contacts the central server. The server returns some peers that hold
the file, say, peer B. Peer A then starts to download the file from peer B.
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Fig. 1 Search process in unstructured P2P networks. (a) Napster. (b) Gnutella. (c) Kazaa. (d)
BitTorrent.

The advantage of Napster is its ease of implementation and simplicity of deploy-
ment. The system administrator only needs to deploy and maintain a central server.
Furthermore, the system is highly adaptive to peer joining and leaving. The major
disadvantage is that such a centralized system is not scalable. The server needs to
have much resource (such as computational capability and bandwidth) to support a
large number of peers. In addition, the server forms a single point of failure. If the
server is down, the whole system is broken. It is hence vulnerable to targeted attacks
against the server (e.g., DDos).

3.2 A Distributed Approach: Gnutella

Gnutella is a fully distributed P2P system for file sharing [1]. It first appeared in
2000 and got quick development in a few years. According to Slyck news report, as
of June 2005, Gnutella’s population was 1.81 million computers. Gnutella’s source
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code is publicly available in the Internet. This enables the development of different
client softwares by different groups (e.g., LimeWire developed by the LimeWire
group, or Gnucleus developed by the Morpheus group).

In the basic Gnutella protocol, when a new peer joins the system, it first con-
nects to some public peers. For example, a list of public peers are available at
http://gnutellahosts.com. A new peer then sends a PING message to any peer it
is connected to. The message announces the existence of the new peer. Upon receiv-
ing a PING message, a Gnutella peer returns a PONG message and propagates the
PING message to its neighbors. A PONG message contains IP address and port of
the responding peer, and information of files being shared by the responding peer.
In a dynamic network with frequent peer joining and leaving, a peer periodically
sends PING messages its neighbors.

Search in Gnutella is based on flooding, which is broadcasting in the overlay. A
search query is propagated to all neighbors from the original requesting peer. The
query is replicated and forwarded by each intermediate peer to all its neighbors.
Each intermediate peer also examines its local contents and responds to the query
source on a match. The query responses are routed back along the opposite path
towards the original requesting peer. To reduce the amount of query messages in the
network, each query message contains a time-to-live (TTL) field. The TTL value
will be decremented by one at each peer. When it reaches zero, the message is
dropped.

Figure 1(b) shows the search process in Gnutella. Suppose peer A wants to search
for some file. It floods its search query to its neighbors, i.e., peers B and D in the
figure. When peer B receives the query, it checks whether itself holds the matching
file. If not, it forwards the query to its neighbors. As in the example, peer B forwards
the query to its neighbor C. Suppose C holds the file that A wants. C returns a
response to the peer that sends it the query, which is B in the figure. B then continues
forwarding the response to the query sender A. Finally, A contacts C to download
the file.

Different from Napster, Gnutella is a dynamic, self-organized network. Each peer
independently connects to and communicates with a few other peers in the system.
The system is hence able to contain an unlimited number of peers, if no constraint on
search efficiency. Meanwhile, the system is highly robust to peer dynamics. If a peer
leaves the system, its neighbors can connect to other peers through the exchange of
PING and PONG messages.

A limitation of Gnutella is its relatively low search efficiency. In flooding
search, the number of query messages exponentially increases with the number
of overlay hops. Then a query may generate many messages, especially for un-
popular files, where a query has to go through many overlay hops and many
peers before reaching a matching peer. Given the huge number of peers in the
system, the traffic load for queries could be significantly high. The use of TTL
can reduce the number of query messages. However, choosing an appropriate TTL
is not easy. If the TTL is too high, peers unnecessarily burden the network. If
the TTL is too low, a peer might not find the file even though a copy exists
somewhere.
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In addition, there are many duplicate messages in flooding search, particularly
in heavily connected networks. This is because multiple copies of a query may be
sent to a peer by its multiple neighbors. These duplicate queries consume extra
processing power at peers and network bandwidth. Hence, it is necessary to develop
some duplication detection mechanisms. However, even with duplicate suppression,
the number of duplicate messages in flooding can be excessive, and the problem gets
worse as the TTL increases.

Therefore, many new search methods have been proposed to improve or re-
place flooding search. Expanding ring is a method that addresses the TTL selection
problem in flooding [34]. That is, a peer starts flooding with a small TTL. If the
search does not succeed, the peer increases the TTL and starts another flooding.
The process repeats until the search succeeds. This method is efficient for locating
hot files. Hot files are widely replicated in the network, and a small TTL value is
enough to locate them. But this method leads to higher search time due to repeated
flooding.

Expanding ring does not address the message duplication problem. Another
method uses multiple parallel random walks to address this issue [34]. In standard
random walk, when receiving a search query, a peer randomly chooses one neighbor
and propagates the query to it. To reduce the search time, the method uses multiple
random walks. This method, together with proactive file replication (discussed in
Section 4.1), can significantly improve the search performance in terms of search
time, per-peer query load, and message traffic.

3.3 A Hybrid Approach: FastTrack/Kazaa

Given the limitations of purely centralized networks and purely distributed net-
works, there is a third approach which combines these two types of networks.
FastTrack is a typical example as a partially centralized P2P protocol. In FastTrack,
peers with the fastest Internet connections and the most powerful computers are
automatically designated as supernodes. A supernode maintains information about
some resource as well as connections with other supernodes. When a peer performs
a search, it first searches for the closest supernode, which returns immediate results
if any and refers the search to other supernodes if needed. Two practical softwares
based on FastTrack are Kazaa [2] and Grokster [5]. But the latter closed its service
in 2005 due to the copyright issue.

Figure 1(c) shows the search process in Kazaa. When peer A wants to search for
some file, it sends the search query to the closest supernode. The supernode either
returns some matching peers, or forwards the query to other supernodes. Finally, A
will obtain some matching peers from the supernode (say, peer B in the figure) and
download the file from these peers.

Therefore, an ordinary peer (e.g., peer A in the figure) communicates with a su-
pernode as if communicating with the server in Napster. Then, Gnutella like search
is performed in a highly pruned overlay network of supernodes.
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As compared with purely distributed networks like Gnutella, Kazaa achieves
much lower search time. Search among supernodes is much faster than search
among all peers, because the number of supernodes is much smaller than the to-
tal number of peers. As supernodes have high bandwidth and large storage space,
they can efficiently process a large amount of queries from ordinary peers. The sys-
tem hence makes good use of peer heterogeneity. In addition, unlike Napster, it does
not form a single point of failure. If some supernodes go down, the peers connecting
to them can connect to other supernodes.

In view of the success of Kazaa, Gnutella also considers adopting a hybrid struc-
ture. Chawathe et al. propose the Gia system to improve Gnutella [12]. It uses a
dynamic topology adaptation protocol to put most peers within a short distance of
a few supernodes. Supernodes will receive a large proportion of the queries. To-
gether with a few other improvements (e.g., active flow control and biased random
walk), Gia increases the system capacity by three to five orders of magnitude. Later,
Gnutella version 0.6 formally incorporates the idea of “ultrapeers”. In detail, peers
entering into the network are kept at the edge of the network as leaves, not respon-
sible for any routing. Peers which are capable of routing messages are promoted
to ultrapeers, which will accept leaf connections and route searches and network
maintenance messages. Normally, a leaf peer is connected to 3 ultrapeers, and each
ultrapeer is connected to more than 32 other ultrapeers. Within this network, the
maximum number of hops a query can travel is reduced to around 4. The search
efficiency and the whole system scalability are then greatly improved.

3.4 Other Approach: BitTorrent

BitTorrent is a P2P system that does not belong to any of the above categories [3]. As
an important P2P file sharing application, it is estimated by CacheLogic to represent
35% of all Internet traffic in 2004.

BitTorrent uses a central location to coordinate data upload and download among
peers. To share a file f , a peer first creates a small torrent file, which contains meta-
data about f , e.g., its length, name and hashing information. Usually, BitTorrent cuts
a file into pieces of fixed size, typically between 64 KB and 4 MB each. Each piece
has a checksum from the SHA1 hashing algorithm, which is also recorded in the
torrent file. Most importantly, the torrent file contains the URL of a tracker, which
keeps track of all the peers who have file f (either partially or completely) and the
lookup peers.

A peer that wants to download the file first obtains the corresponding torrent file,
and then connects to the specified tracker. The tracker responds with a random list
of peers which are downloading the same file. The requesting peer then connects to
these peers for downloading.

Figure 1(d) shows the search process in BitTorrent. When peer A wants to search
for some file, it first needs to obtain the corresponding torrent for the file. From the
torrent, A knows the address of the tracker and connects to the tracker. The tracker
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then returns a list of peers who are downloading or sharing the file. A then exchanges
data with these peers.

In BitTorrent systems, torrent files are often published on large websites, which
also serve as trackers. Clearly, the centralization of trackers brings some barriers
in the system. If a tracker is down, peers will not be able to start their sharing (by
uploading their torrents to the tracker), and new incoming peers cannot start their
downloading. In order to remove the need of central trackers, the latest BitTorrent
clients implement a decentralized tracking mechanism (e.g., μTorrent, BitComet,
KTorrent). In the mechanism, every peer acts as a mini-tracker. Peers first join a
DHT network, which is inherently implemented in the BitTorrent client. A torrent
is then stored at a certain peer according to the DHT storage method. All peers in
the DHT network can search for the torrent through DHT search. Therefore, this
mechanism eliminates central trackers from the system.

3.5 Comparison and Discussion

The main characteristic of unstructured P2P networks is that the storage of files
is completely unrelated to overlay topology. As a result, file search mechanism in
such networks essentially amounts to random search. As compared to structured
P2P networks, unstructured P2P networks have the following advantages:

• Resilient to peer dynamics: Because there is no specified requirement on the
overlay structure, unstructured P2P networks are often formed in a random way.
In case of peer joining and leaving, an unstructured P2P network can easily re-
construct the overlay. As a comparison, overlay reconstruction in DHT networks
is much more complex and expensive, especially in a highly dynamic network
with frequent peer joining and leaving.

• Supporting complex search: In unstructured P2P networks, peers eventually
check their local resource to answer a query. Hence, unstructured P2P networks
inherently support complex search based on file meta-data. On the contrary, in
DHT networks, each file has a single keyword. File storage and search are all
based on this keyword. DHT hence only supports single-keyword search.

Unstructured P2P networks have their own limitations. Its major problem is the
low search efficiency, especially for unpopular files. Unpopular files have few copies
in the system. Search for such a file may lead to large-scale flooding. Different from
it, DHT networks guarantee a certain number of overlay hops for any search, which
is very helpful for unpopular file search. In view of the advantages of structured
and unstructured networks, some researchers have taken effort to integrate them
together [11]. Clearly, there are many challenges in the integration due to their fun-
damental difference on network structures.

We now give a quick comparison of the above unstructured P2P networks. The
centralized approach requires a central server for file management and search, and
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the supernode-based approach relies on elected or pre-deployed supernodes. Dif-
ferent from them, the fully distributed approach relies on peers for file storage and
search, which does not require additional facilities. BitTorrent, a second generation
P2P system, requires central trackers to initiate the file sharing process.

According to the system architecture, the approaches have different search meth-
ods. In the centralized approach, a query is directly sent to the server. In the
supernode-based approach, a query is first sent to a supernode, which forwards
the query to other supernodes if needed. In the fully distributed approach, blind
or informed flooding is used to answer a query, which may consume much network
bandwidth. In BitTorrent, a peer can directly obtain a list of peers sharing the file
from the tracker. It hence eliminates the search process for matching peers as in
other systems. This is a fundamental difference between BitTorrent and other un-
structured P2P systems.

In practice, the supernode-based approach and BitTorrent are the most success-
ful applications. Both the centralized and fully distributed approaches have serious
limitations. The centralized approach has poor scalability. It cannot accommodate a
large number of peers. But the huge number of peers, and hence huge resource in
total, is exactly an attractive aspect of P2P systems. The fully distributed approach
does not need any central component, however, it is not highly scalable due to its
inefficiency and high bandwidth consumption in search.

As a comparison, the supernode-based approach has shown high scalability and
high search efficiency given enough supernodes. It makes practical use of peer het-
erogeneity. BitTorrent requires central trackers. But the responsibility of a tracker
is much lighter than the server in a centralized approach. A tracker only needs to
track the peers sharing and downloading the specific file. And torrent files could be
put at different trackers. Hence, the scalability of BitTorrent is not an issue in prac-
tice. In addition, the newly proposed decentralized tracking mechanism completely
eliminates central trackers from the system.

4 Advanced Issues in File Sharing

In this chapter, we discuss two advanced issues in unstructured P2P file sharing
systems, i.e,, content replication and system security.

4.1 Content Replication

Search in unstructured P2P networks is essentially random search. Content repli-
cation is hence a fundamental issue for search performance. Intuitively, with more
replications in the network, it is easier (or faster) to locate a file. On the other side
of the coin, more replications take up more storage space. We hence need to explore
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efficient replication mechanisms to achieve good tradeoff between search efficiency
and storage cost.

In the original Gnutella, peers requesting a file make copies of the file. Other
systems like FastTrack allow for more proactive replications of files, where a file
may be replicated at a peer even though the peer has not requested the file.

Cohen et al. have proposed a network model for proactive replication in unstruc-
tured P2P networks [13]. Suppose there are in total m files and n peers in an unstruc-
tured P2P network. Each file i (1 ≤ i ≤ m) is replicated at ri (1 ≤ ri ≤ n) random
distinct peers. Clearly, if there is not any limitation on storage space, a straight-
forward strategy would be to replicate everything everywhere, and search becomes
trivial. Hence, we assume that the total amount of storage space over all peers is
fixed. If we further assume that each file has a unit size, the total amount of storage
space can be computed as R = ∑m

i=1 ri.
Suppose that file i is requested with the query rate qi. Here qi is normalized so

that ∑m
i=1 qi = 1. We consider search of randomly probing peers until the specific

file is found. Then, the probability that file i is found on the k’th probe is given by

Pri(k) =
ri

n

(
1− ri

n

)k−1
.

Define search size of a query as the number of probes to locate the matching file
for the query. For a certain file i, its average search size Ai is simply n/ri. Hence,
the average search size over all files is

A =
m

∑
i=1

qiAi = n
m

∑
i=1

qi

ri
. (1)

Given the above network model, we can analyze the performance of several dif-
ferent replication mechanisms.

• Uniform replication: This replication mechanism equally replicates all files re-
gardless of their popularities. In other words, ri = R/m, ∀i ∈ [1,m]. Hence, the
average search size Auni f orm is given by

Auni f orm = n
m

∑
i=1

(
qi

m
R

)
=

nm
R

.

Clearly, Auni f orm is independent of the query distribution.
• Proportional replication: This replication mechanism replicates more copies for

more popular files. In other words, ri = Rqi, ∀i ∈ [1,m]. Hence, the average
search size Aproportional is given by

Aproportional = n
m

∑
i=1

qi

Rqi
=

nm
R

.

Therefore, the proportional and uniform replication mechanisms yield the same
average search size, and that average search size is independent of the query
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distribution. On the other side, the distribution of average search size for a certain
file is different for these two mechanisms. In uniform replication, all files have
the same average search size (which is nm/R). In proportional replication, Ai =
n/(Rqi). Hence, a popular file with a high query rate will have a small average
search size, since it has many replicated copies in the network.

• Square-root replication: Given the formula of A as in Equation (1), Cohen et al.
prove in [13] that A is minimized when

ri =
R
√

qi

∑m
j=1
√

q j
.

The resulting average search size is

Aoptimal =
n
R

(
m

∑
i=1

√
qi

)2

.

This result is later confirmed by Lv et al. through simulations [34].

Given the above replication mechanisms, an immediate question is how to
achieve them via a distributed protocol in a decentralized unstructured P2P network.
This is easy for uniform and proportional replications. For uniform replication, the
system creates a fixed number of copies when the file first enters the system. For
proportional replication, the system creates a fixed number of copies every time the
file is queried. But the case for square-root replication is much more difficult. The
major challenge is that no individual peer sees enough queries to estimate the query
rate for a certain file.

Cohen et al. study several ways to achieve square-root replication [13]. Generally,
when a query succeeds, the requesting peer creates some number of copies (denoted
the number as C) at randomly selected peers. There is also some deletion mechanism
to guarantee that in the steady state the creation rate equals the deletion rate. There
are various ways to determine C. The first one is called path replication, which
sets C to the search size (i.e., the number of peers probed). Another method further
improves path replication by requiring a peer to record the value C with each copy.
This is called replication with sibling-number memory. A third method is called
replication with probe memory. Each peer records the number and the combined
search size of probes it sees for each file. It then determines C by collecting this
information from a certain number of peers. Clearly, this method needs extra inter-
host communication. For more details of these methods and their comparison, please
refer to [13].

4.2 Security and Reputation System

Most P2P systems work on the assumption of truthful cooperation among peers.
However, in the open environment of the Internet, some participating peers may not
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cooperate as desired. They may be selfish and unwilling to upload data to others, or
they may have abnormal actions such as frequent rebooting which adversely affect
their neighbors. More seriously, some peers may launch attacks to disrupt the service
or distribute viruses in the overlay network. We call these uncooperative, abnormal
or attacking behavior malicious actions and the associated peers malicious peers.

To detect malicious peers or reward well-behaved ones, a reputation system is
often used. In a typical reputation system, each peer is assigned a reputation value
according to its history performance. Differentiated services are then provided to
peers according to their reputation. We now study two key issues in P2P reputation
systems, namely, reputation computing and storage.

4.2.1 Reputation Computing

There are mainly three reputation computing techniques in current P2P networks.
We elaborate them as follows.

• Social Networks In this approach, all feedbacks available in the network are
aggregated to compute peer reputation. It can be further classified into two
categories: separated reputation model and correlated reputation model. In a
separated reputation model, only the direct transaction partners (e.g., resource
provider/downloader or streaming neighbor) of a peer can express their opinion
on the reputation of the peer [14, 16, 21, 27, 28, 35, 41]. A practical exam-
ple is eBay reputation system (although eBay is not a P2P network) [6]. After
each transaction at eBay, the buyer and the seller rate each other with a positive,
negative and neutral feedback. The reputation is calculated at a central server
by assigning 1 point for each positive feedback, 0 point for each neutral feed-
back and −1 point for each negative feedback. The reputation of a participant is
computed as the sum of its points over a certain period. Considering that peers
may lie in their feedbacks, Mekouar et al. propose to monitor suspicious feed-
backs [35]. The more suspicious feedbacks a peer generates, the smaller weight
in reputation computing its feedback has. Xiong et al. develop a general reputa-
tion model, which considers, for example, feedbacks from other peers, credibility
factor for the feedback sources, and transaction context factor for discriminating
the importance of transactions [46]. In fact, almost all the separated reputation
models can be expressed by this generalized model.
In a correlated reputation model, the reputation of a peer is computed based
on the opinion of its direct transaction partners as well as some third-party
peers [29, 40]. In this model, a peer A who wishes to know the reputation of
another peer B, can ask some peers (e.g., its neighbors) to provide their opin-
ion on B (although some of the peers may not have conducted any transaction
with B). A then combines the opinion from the peers to calculate B’s reputation.
Clearly, this model is more like our real social networks, where third-party peers
besides transaction partners can express their opinion on a peer. But it takes more
cost to collect and aggregate third-party opinion.
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• Probabilistic Estimation This approach uses sampling of the globally available
feedbacks to compute peer reputation. It often has some assumptions on peer
behavior. For instance, it may assume that a peer is trustworthy with a certain, but
unknown probability. And when sharing its own experience with others, a peer
may lie with some, again unknown, probability [17]. It then uses well known
probabilistic estimation techniques to estimate all unknown parameters.
Many estimation methods may be used. Despotovic et al. use maximum likeli-
hood estimation [17]. However, it assumes that peers do not collude, which may
not be practical in real networks. Mui et al. use Bayesian estimation to assess
the future performance of peers based on their history performance, but it uses
only direct interaction among peers and does not use third-party opinion [36].
Buchegger et al. take into account third-party opinion, but the approach is empir-
ical rather than theoretically solid [10].
By using a small portion of the globally available feedbacks, the probabilistic
model spends a lower cost in feedback collection than the social network ap-
proach. On the other hand, the social network approach can use a complicated
reputation model, and is robust to a wide range of malicious actions. But the
probabilistic model can be applied to only simple reputation models (due to
the difficulties in probabilistic estimation) and is effective to only a few mali-
cious actions. The performance of the two models has been compared in [18].
It has been shown that the probabilistic model performs better for small mali-
cious population, while the social network approach is better when most peers are
malicious.

• Game-Theoretic Model Different from the above two approaches, the game-
theoretic model assumes that peers have rational behavior and uses game theory
to build a reputation system. Rational behavior implies that there is an underly-
ing economic model in which utilities are associated with various choices of the
peers and that peers act so as to maximize their utilities. Li et al. present a game-
theoretic framework for analyzing reputation [30], and Fudenberg et al. offers
certain characterizations of the equilibria payoffs in the presence of reputation
effects [22].

4.3 Reputation Storage and Retrieval

A basic principle in reputation storage is that the reputation of a peer cannot be
locally stored at the peer. Because this has no protection against dishonest peers. A
dishonest peer may misreport its reputation value in order to gain rewards or avoid
punishments. We summarize several techniques for reputation storage and retrieval
in unstructured P2P networks as follows.

• Centralized This method uses a powerful server to keep the reputation of all
peers. For example, eBay uses a central server to collect and keep all users’ rep-
utation [6]. Feedbacks from users are sent to and stored at the server. A query of
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a user’s reputation is also sent to and replied by the server. Similar approaches
have been used in [21, 27, 28].
This approach is easy to implement and deploy. Security of a central server is
much easier to achieve than that of distributed components in a distributed ap-
proach. Furthermore, centralization makes reputation management independent
of peer joining and leaving, which greatly simplifies reputation retrieval. How-
ever, as discussed in Section 3.1, a centralized approach is not scalable to large
P2P networks. And the server forms a single point of failure, making the system
vulnerable.

• Supernode-Based Mekouar et al. propose a malicious detector algorithm to de-
tect malicious peers in Kazaa-like systems [35]. They assume that supernodes
are all trustworthy and maintain reputation information for ordinary peers. Each
peer is attached to a unique supernode. All the evaluation results about a peer are
maintained at its attached supernode. Supernodes can then enforce differentiated
services according to peers’ reputation. Note that supernodes in Kazaa are elected
according to peers’ computational power and edge bandwidth. A supernode may
not always be trustworthy. A possible improvement is to deploy some proxies
(e.g., a content distribution network) to replace unauthenticated supernodes.
The security and trustworthiness of pre-deployed proxies are much better than
self-elected supernodes.
The supernode-based approach is an extension of the centralized approach. In the
approach, a set of supernodes instead of a single server serve peers. However, to
serve a large P2P network, a large number of supernodes are needed, which leads
to high implementation and maintenance costs. In addition, the search and load
balancing mechanisms among supernodes need to carefully designed.

• Unstructured Overlay XREP uses a polling algorithm to help peers choose reli-
able resource in Gnutella-like networks [14, 16]. It consists of four operations:
resource searching, vote polling, vote evaluation and resource downloading (as
shown in Figure 2). The first operation is similar to searching in Gnutella. A
peer broadcasts to all its neighbors a Query message. If a peer receiving a Query
message has the matching file, it responds with a QueryHit message (as shown in
Figure 2(a)). In the next operation, upon receiving QueryHit messages, the origi-
nal searching peer selects the best matching resource among all possible choices.
It then polls other peers using an encrypted Poll message to enquire their opin-
ion on the resource or the resource provider. To achieve that, each XREP peer
maintains information for its own experience on resource and other peers. Upon
receiving a Poll message, each peer checks its experience data. If there is any
information about the resource or the provider indicated by the Poll message, the
peer sends its vote to the polling peer with an encrypted PollReply message (as
shown in Figure 2(b)).
In the third operation, the polling peer collects a set of votes and evaluates the
votes. It first decrypts the votes and discards corrupt ones. Then it analyzes vot-
ers’ IPs and detects cliques of dummy or controlled votes. After that, it randomly
selects a set of votes and directly contacts them with a TrustVote message. Each
contacted voter is required to send a VoteReply message for vote confirmation.
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Fig. 2 Operations in XREP. (a) Resource searching. (b) Vote polling. (c) Vote evaluation. (d)
Resource downloading.

This forces potential attackers to pay the cost of using real IPs as false witness
(e.g., shilling attack). After this checking process, the polling peer can obtain
the reputation of the resource or the provider, and finally decides to download it
(as shown in Figure 2(d)). If the polling peer decides not to download from the
current provider, it can repeat the voting process on another resource.
More examples of using unstructured overlays include NICE reputation model [40]
and TrustMe [41]. All the approaches based on unstructured overlays have the
security concern. Messages may be intercepted or blocked during transmission,
and voting is vulnerable to collusion among peers. Therefore, no secure reputa-
tion computing or delivery can be guaranteed. Furthermore, searching or voting
on an unstructured overlay is based on flooding, which incurs heavy traffic in the
network. For example, in XREP, Poll messages are broadcast throughout the net-
work each time a peer needs to find out the reputation of a resource or a provider.
This in turn affects the scalability of the system because an increase in the num-
ber of peers can potentially lead to an exponential increase in the number of Poll
messages and responses.
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5 Other Applications of Unstructured P2P Networks

Besides file sharing, unstructured P2P networks have been widely used in other
network applications. In this chapter, we discuss two example applications based on
unstructured P2P networks: media streaming and VoIP.

5.1 Media Streaming: CoolStreaming

With the popularity of broadband Internet access and P2P technologies, media
streaming has gone through rapid growth. Typical services include on-demand video
streaming that allows users to choose and watch favorite movies anytime, Internet
Protocol television (IPTV) and live streaming that provide live TV service.

In a P2P streaming system, one or multiple supplying peers who have all or part
of the requested media can forward the data to the requesting peers. In turn, the re-
questing peers can become supplying peers for other requesting peers. Because each
peer contributes its own resource (storage and network bandwidth) to the system, the
whole system’s capacity is vastly amplified compared to the traditional client-server
architecture. The major challenges in P2P streaming include [47]:

• Peer dynamics: In P2P networks, peers do not always stay online in the system.
Supplying peers might unexpectedly crash or leave. In this case, the requesting
peers need to find new supplying peers to replace the failed ones. Therefore, the
system should be highly robust to withstand such peer dynamics.

• Limited and dynamic peer bandwidth: Unlike powerful video servers, peers have
limited bandwidth capacities. Each supplying peer might only be able to support
a few requesting peers (or multiple supplying peers are required to support one
requesting peer). Also, the available bandwidth of supplying peers might fluctu-
ate. Hence, the system should be able to adaptively adjust each supplying peer’s
sending rate to keep the streaming quality at requesting peers unaffected.

CoolStreaming is one of the popular softwares that provide live streaming ser-
vice through P2P networks [32, 51]. As the first P2P-based streaming system that
attracts a remarkable amount of users, CoolStreaming has several notable features:
(1) Intelligent scheduling algorithm that copes well with the bandwidth heterogene-
ity of peers; (2) Swarm-style architecture that builds a gossip overlay to distribute
contents.

In CoolStreaming, a peer needs to search for some other peers called partners,
with which the peer collaborates to download streaming contents. To construct the
overlay network among partners, the system employs the Scalable Gossip Member-
ship protocol (SCAM) [23]. The SCAM protocol is fully distributed and scalable,
and can provide a uniform partial view of the whole system at each peer. Based on it,
CoolStreaming forms an unstructured overlay among partners, which achieves ex-
cellent resilience against random failure and enables decentralized operation. Such
an overlay is similar to the BitTorrent network [37].
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In detail, a newly joined peer first contacts the boot-strap server, which responds
with a randomized list of the currently active peers. The newly joined peer stores this
list in its cache and randomly selects a few peers from the cache to establish TCP
connections, i.e., partnership. Once the partnership is established between a pair
of peers, they exchange and update their cache contents. The maximum number of
peers in the cache is usually on the order of logN, where N is the total number of
peers in the system.

Content delivery in CoolStreaming is achieved as follows. The video stream is
divided into segments of uniform length, and the availability of the segments in a
peer’s buffer is represented by a buffer map (BM). Note that the aforementioned
cache is used to store system management data and the buffer here is used to store
media content. Each peer periodically exchanges its BM with its partners. Upon
receiving the BM from a peer x, a peer y chooses the data segments it does not
possess and sends a request indicating the demanded data segments to x. Then, x
delivers the requested data segments to y. Clearly, if a peer has multiple partners,
the peer has to select one partner for each of its missing segments. This selection
problem is called packet scheduling. Interested readers may refer to [48, 51] for
more details.

Figure 3 shows an example of the CoolStreaming network. The system consists
of a video source, a boot-strap server and four peers (labeled from A to D). The video
source provides the complete video content for the system. In the figure, it delivers
video content to peers B and D. The boot-strap server helps peers join the system.
The real lines with double-ended arrows show the partnership between peers. For
example, peer C has three partners A,B and D.

video source

boot-strap server

peer A

peer B

peer C

peer D

• • •26252423

• • •272524 • • •27×2524

22 • • •2321 22 • • •2321

22

23

24 , 26

25 ,
27

× × × ×

Fig. 3 An example of the CoolStreaming network
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The square table along a peer shows part of the peer’s BM. For example, peer B
possesses segments 24, 25 and 27 in its buffer. But it does not possess segment 26.
Missing of a segment is denoted as “×” in the BM. The subsequent segments after
the 27th are not shown in B’s BM, which is denoted as “. . .”. Note that peers have
different starting segments in their BMs. This is because they have different play
points (due to, for example, different end-to-end delay, or different downloading
bandwidth).

The figure also shows an example of packet scheduling at peer C. Suppose C
has known the BMs of its partners. It then uses the packet scheduling algorithm to
decide to fetch which missing segment from which partner. In the figure, it requests
segment 23 from peer A, segments 25 and 27 from peer B, and segments 24 and
26 from peer D, respectively. This scheduling imposes similar uploading load on its
partners.

In summary, the advantages of CoolStreaming include:

• Fully distributed and scalable: Each peer distributedly joins the system and se-
lects partners. During content delivery, a peer exchanges information with only
a few partners. The whole system is hence highly scalable. This allows Cool-
Streaming to accommodate a large number of peers. As reported in [31, 45], it
recorded over 80,000 concurrent users with an average bit rate of 400 Kbps.

• Highly resilient to peer dynamics: The use of multiple partners and the corre-
sponding multiple path delivery at peers provide high system resilience. If some
partners of a peer unexpectedly leave, the peer can still retrieve data from other
partners.

On the other side of the coin, CoolStreaming has some limitations due to its
design.

• High control overhead: CoolStreaming has high control overhead for the gossip
mesh maintenance and data distribution. A peer has to frequently communicate
with its current and potential partners to keep a highly refreshed overlay. Oth-
erwise, a peer cannot quickly find new partners in case of partner leaving. Fur-
thermore, a peer has to periodically exchange BM with its partners. This further
increases the control overhead.

• High end-to-end delay: Peers in CoolStreaming often encounter high end-to-end
delay. This is sometimes fatal to the quality of service, for example, for people
gambling during a live soccer play. The reason is two-fold. Firstly, the gossip
mesh is randomly formed without considering peer locality. The mesh often con-
tains long connections between faraway peers. Secondly, the procedure of BM
exchange increases the delay. Before a peer can download a segment, it has to
first obtain some valid BMs and then send a transmission request to the selected
partner.

There has been much effort to improve CoolStreaming and study new streaming
systems. For example, Ren et al. explore how to build a low-delay overlay mesh
among peers by considering peer locality [39]. Zhang et al. propose new data deliv-
ery mechanism to reduce delay due to BM exchange [49]. Meanwhile, many other
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P2P streaming systems are proposed and evaluated, for example, AnySee [33] and
GridMedia [43] for live streaming, P2VoD [20] and oStream [15] for video-on-
demand.

5.2 VoIP: Skype

VoIP service (also referred to as IP telephony, Internet telephony, or voice over
broadband) allows for the transmission of voice through the Internet. Traditional
telephone lines use the Public Switched Telephone Network (PSTN), which works
on circuit switching and connects callers to receivers through electrical circuits.
VoIP is based on packet switching, where data packets are carried across the Inter-
net, from one computer to either another computer or a PSTN telephone. There
have been many VoIP softwares in the market, for example, Skype [7], Google
talk and AOL Instant Messenger. VoIP operates in different forms. Here are a few
examples.

• Computer to computer: This is the most frequently used way of VoIP. Each com-
puter should be equipped with a sound card, a headset consisting of earphones
and microphone, and some VoIP software. Most VoIP softwares provide free
service for one computer to connect to any other computer running the same
software.

• Computer to phone: Some VoIP softwares allow users to call regular telephone
landlines and mobile phones from a computer. This service is usually not free,
but its cost is often lower than traditional telephone charges.

• Phone to phone: There are two ways to make a phone-to-phone connection: (1)
Use a regular phone plugged into an Analog Terminal Adaptor (ATA), which in
turn connects to the Internet. (2) Use a VoIP phone that connects to the Internet.

Figure 4 shows the above three forms of VoIP systems. Current VoIP softwares
also provide many other features such as instant messaging, file transfer and video
conferencing.

We now study Skype as an example VoIP system. Skype launched its service in
2003 and experienced rapid growth after that. In October 2005, it was purchased
by eBay. According to eBay quarterly report, as of December 31, 2007, Skype had
accumulated 276 million user accounts.

Skype uses a proprietary and closed-source protocol. Numerous attempts have
been undertaken to study and reverse engineer the protocol [9, 24, 44]. It is believed
that Skype uses a Kazaa-like P2P network. Both companies were founded by the
same individuals and much of the technology in Skype was originally developed
for Kazaa. This is further confirmed by comparing Skype and Kazaa traffic on the
packet level [9].

The Skype system consists of three main entities: supernodes, ordinary peers
and login servers. Supernodes are elected from ordinary peers which have high
bandwidth, adequate processing power and no firewall. There are also a number of
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Fig. 4 Different forms of VoIP systems. (a) Computer-to-computer. (b) Computer-to-phone. (c)
Phone-to-phone.

pre-deployed supernodes in the system, which keep staying online.Supernodes
maintain an overlay network among themselves.

When login, a peer first connects to the Skype network. This is achieved by
establishing a TCP connection and exchanging information with a supernode. To
do that, the new peer contacts a default supernode to obtain a list of supernodes.
The peer then caches the supernode list and regularly refreshes it. If the TCP
connection fails, the peer tries to connect to some bootstrap IP addresses hard-
coded in the client software (in version 1.2), or simply generates a login failure
report (in version 0.97) [9]. After connecting to the Skype network, the peer au-
thenticates the username and password with the Skype login server. An obfus-
cated list of servers has been hardcoded in the client software. Then the peer
advertises its presence to other peers, determines the type of network address
translator (NAT) and firewall it is behind and discovers peers that have public IP
addresses.

When a peer A wants to call another peer B, A first queries some supernodes for
B’s address. Through a search among supernodes, A can obtain B’s address. If both
A and B are publicly reachable, A sets up a connection to B and directly exchanges
voice traffic with B. If any participating peer is behind firewall or NAT, it sets up a
connection to a supernode. The transmission of voice traffic is then relayed by the
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supernode. Sometimes Skype also routes calls through ordinary peers to ease the
crossing of Symmetric NATs and firewalls.

The use of supernodes for communication has many advantages. Firstly, peers
behind NATs or firewalls are not publicly reachable. Through public supernodes,
such peers can be reached and called. Secondly, supernodes can manage multi-user
sessions such as conferencing. They can store messages from different users and
accordingly forward them. On the other hand, this network structure puts heavy
burden on supernodes, leading to unfair work loads among peers.

6 Mobile Unstructured P2P Networks

With the advance of mobile devices and technologies, data distribution among hand-
helds has become a reality. Wireless networks share many similar features with P2P
networks, e.g., distributed network structure and dynamic network topology. In this
chapter, we discuss how to implement unstructured P2P networks over wireless net-
works.

6.1 Characteristics of Mobile Wireless Networks

There are different types of wireless networks. We list a few as examples.

• Mobile ad-hoc networks (MANETs): MANETs do not have any infrastructure
support (such as base stations, access points or remote servers). All network
functions are performed by the nodes forming the network, which often have
high mobility and low processing power. The resulting topology is then dynamic
and unstable. An example of MANET is a vehicular ad-hoc network, where wire-
less devices in vehicles interact with each other while moving at high speed.

• Wireless sensor networks (WSNs): A WSN uses spatially distributed autonomous
sensors to monitor physical or environmental conditions (such as temperature,
pressure and pollutants). The sensors are low-profile devices with very limited
processing power, memory and battery. The primary concern of a sensor net-
work is its lifetime, therefore protocols for sensor nodes often focus on power
conservation.

• Wireless mesh networks (WMNs): A WMN consists of gateways, mesh points
and wireless end-users. Gateways provide access to the Internet. Mesh points
are small devices with limited processing power and memory, which are often
mounted on lamp posts or rooftops. Each mesh point is associated with a cer-
tain gateway, and forwards Internet-bound traffic from associated users to the
gateway. Mesh points hence extend the network coverage of gateways. While
end-users are mobile and may switch their associated mesh points at any time,
gateways and mesh points are generally stationary. A WMN is reliable and offers
redundancy. If some mesh points fail, the rest mesh points can self-form a new
mesh to continue communications.



138 Xing Jin and S.-H. Gary Chan

While these wireless networks have different forms and usage, they have some
common characteristics, which differentiate them from the wired Internet.

• Wireless transmission: Packet transmission on wireless channels is based on
broadcast. And the wireless communication medium is accessible to any entity
with the appropriate equipment and adequate resource. As a comparison, Internet
transmission is mainly based on unicast, and sometimes multicast. In addition,
wireless channels have limited bandwidth and each hop has a certain transmis-
sion range.

• Lack of routing infrastructure: In the wired network, routing is readily available.
But in wireless networks, routing is a non-trivial issue. Two important issues in
wireless routing are high maintenance overhead of routes and inefficient band-
width utility due to long routes.

• Low processing capability, memory capacity and energy power: Wireless devices
are often small handheld devices. They are normally low in processing capability
and limited in memory capacity and energy power.

6.2 Approaches for Mobile Unstructured P2P Networks

We select MANET as an example of wireless networks. A MANET is similar to a
P2P network in the following aspects.

• Both systems are distributed. In MANETs, nodes usually have low local resource
and cannot serve as servers. A scalable P2P network should also be fully dis-
tributed in order to accommodate a large number of peers.

• Their topologies frequently change because of peer on/off or mobility.
• Nodes or peers in the systems have similar functionalities. They cooperate to

route queries and rely messages. In both systems, flooding or broadcasting is
employed to some extent for data exchange or routing among peers/nodes.

There are also some differences between P2P and MANET. For example, P2P
works on the application layer in the protocol stack, while MANET focuses on the
network and lower layers. As mentioned above, peers in MANET are mobile and
constrained by limited energy, bandwidth and computational power, which is not a
big concern in P2P systems over the Internet. And MANET uses physical broadcast
but P2P uses physical unicast.

When deploying P2P networks over MANETs, the major problem is how to
quickly find the requested data in spite of the mobility and the scarcity of power
and bandwidth in the underlying MANET. Ding et al. propose several ways for such
purpose [19]. A straightforward approach is to simply implement the P2P flooding
mechanism over MANET on-demand routing protocols. That is, a query message is
flooded to every virtual neighboring peer in the P2P overlay. As two virtual neigh-
boring peers may be multiple hops away in the MANET, we need to obtain the
underlying route between them. Then the network routing request is also broadcast
at the network layer.
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We show an example in Figure 5(a). Circles in the figure represent mobile nodes
in a MANET. Two mobile nodes connected by a real line are within the transmis-
sion range of each other in the MANET. Shadowed rectangles (labeled as A, E
and F) represent peers in an unstructured P2P network. Two peers connected by
a dashed line are neighboring peers in the P2P network. From the figure, A and
E are neighboring peers in the P2P network. So are E and F . In this example,
if E wants to search for some file, it floods its query to its neighboring peers in
the P2P network, i.e., A and F . Different from the wired Internet, the route from
E to A (or to F) is not readily available and needs to be discovered through the
MANET routing protocol. A broadcast for routing on the network layer is then
necessary.
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Fig. 5 Two examples of unstructured P2P network over MANET. Circles represent mobile nodes
in a MANET. Two mobile nodes connected by a real line are within the transmission range of each
other in the MANET. Shadowed rectangles represent peers in an unstructured P2P network. Two
peers connected by a dashed line are neighboring peers in the P2P network

This approach is easy to implement. But it is not scalable due to the double-
layer broadcasts. Two neighboring peers in the P2P network might be physically far
away from each other. Hence, flooding in the P2P network might be expensive and
inefficient. Therefore, this approach is only applicable to small MANETs.

Another approach is to map the MANET network to a P2P overlay network.
Each MANET mobile node can be regarded as a peer in the P2P network. A pair of
neighboring nodes in MANETs (within the transmission range of each other) cor-
respond to a pair of neighboring peers in P2P. As wireless networks always employ
broadcast to transmit data, the MANET routing protocol and the P2P flooding pro-
tocol can be implemented by one-pass broadcast.

For example, in Figure 5(b), if E wants to search for some file, it broadcasts a
query to its neighboring mobile nodes B and G, which are also its neighboring peers
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in the P2P network. Upon receiving the query message, B and G check their local
file resource and continue broadcasting the message if needed.

Clearly, this method is more efficient than the first one. It directly finds the short-
est path between the file source and the original requester. But the whole network
is still flooded by query messages, which imposes heavy burden on communica-
tion bandwidth and power supply for mobile nodes. So it still cannot work for large
MANETs.

There are many other approaches for building P2P networks over wireless net-
works. For example, Hora et al. study how to reduce energy consumption and delay
in mobile P2P networks [26]. Akon et al. propose a novel gossip protocol to build
and maintain a P2P network over a mobile wireless network [8]. Interested readers
can refer to these papers for more details.

7 Conclusion

We discuss in this chapter unstructured P2P networks, one type of widely used P2P
networks. In an unstructured P2P network, peers form an overlay (often in a random
way) to exchange or relay data. Different from structured P2P networks, unstruc-
tured P2P networks do not impose any structure on the overlays. As a result, data
storage is unrelated to the overlay, and file search essentially amounts to random
search.

We discuss several applications of unstructured P2P networks, including file
sharing, media streaming and VoIP. For the first one, we classify existing approaches
into four categories and explore representative examples from each category. We
also discuss two advanced issues in file sharing, i.e., content replication and reputa-
tion system. For the other two applications, we study their key challenges. We select
one state-of-the-art approach for each application and analyze its system design.

We also investigate how to implement unstructured P2P networks over wireless
networks. The characteristics of wireless networks (such as limited bandwidth and
transmission range) impose new challenges for building P2P networks. We study
the state-of-the-art approaches and discuss their advantages and limitations.
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