
From Client-Server to P2P Networking

Lu Liu and Nick Antonopoulos

Abstract Peer-to-peer (P2P) networks attract attentions worldwide with their great
success in file sharing networks (such as Napster, Gnutella, Freenet, BitTorrent,
Kazaa, and JXTA). An explosive increase in the popularity of P2P networks has
been witnessed by millions of Internet users. In this chapter, an investigation of
network architecture evolution, from client-server to P2P networking, will be given,
underlining the benefits and the potential problems of existing approaches, which
provides essential theoretical base to drive future generation of distributed systems.

1 Introduction

As a new design pattern, peer-to-peer (P2P) has been widely used in the design of
large-scale distributed applications. An explosive increase in the popularity of P2P
file sharing applications has been witnessed by millions of Internet users.

As an emerging technology, P2P networks attract attention worldwide, ranging
from casual Internet users to venture capitalists. At the same time, the innovations
of P2P networks also offer many interesting avenues of research for scientific com-
munities. In the last few years, great research achievements have been made on P2P
resource sharing and data transfer. Network architectures are starting to evolve from
centralised client-server architectures to distributed P2P architectures or hybrid ar-
chitectures between client-server and P2P.

Lu Liu
School of Computing, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom,
e-mail: luliu@comp.leeds.ac.uk

Nick Antonopoulos
Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom,
e-mail: n.antonopoulos@surrey.ac.uk

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 71
DOI 10.1007/978-0-387-09751-0 3, © Springer Science+Business Media, LLC 2010

luliu@comp.leeds.ac.uk
n.antonopoulos@surrey.ac.uk

72 Lu Liu and Nick Antonopoulos

In this chapter, the network architecture evolution is discussed from client-server
to P2P. A summary of recent solutions for resource discovery in P2P networks is
also given underlining the benefits and the potential problems of these solutions.

2 Network Architecture Evolution

2.1 Client-Server Architecture

Many today’s Internet applications, such as WWW, FTP, email, are distributed by
using the client-server architecture (Fig. 1). In the client-server architecture, many
clients request and receive services from the server(s). All the contents and services
are stored and provided by a server(s). Content and services can be discovered and
utilised efficiently by querying the centralised server(s), if the server(s) is available
and capable of serving all clients at the same time.

Fig. 1 Client-server architecture

However, such centralisation of the client-server architecture raises a series of
issues which are caused by the limitation of resources at the server side, such as
network bandwidth, CPU capability, Input/Output (I/O) speed and storage space. A
server could be overloaded if too many requests are received. In order to cope with
these limitations, the centralised server(s) needs to bear the high costs of providing
sufficient resources. For instance, Google clusters more than 200,000 machines to
give successful Web indexing services [1].

Moreover, the centralisation of the client-server architecture also leads to the
problem of single-point-of-failure. If the centralised server(s) is removed or is not
available for use, no alternative in the architecture can take its place and all services
on the server(s) will be lost.

2.2 Grid Architecture

“Grid Computing” is rapidly emerging from the scientific and academic area to the
industrial and commercial world. Current Grid computing systems are prominent
implementations of client-server architecture for distributed computing.

From Client-Server to P2P Networking 73

The vision of the Grid Computing is to provide high performance computing
and data infrastructure supporting flexible, secure and coordinated resource sharing
among dynamic collections of individuals and institutions known as “virtual orga-
nizations” (VO) [2, 3]. The main focus of Grid architecture is on interoperability
among resource providers and users in order to establish the sharing relationship,
which needs common protocols at each layer of architecture. It is intended to of-
fer seamless and uniform access to substantial resources without having to consider
their geographical locations. Resources in the Grid can be high performance super-
computers, massive storage space, sensors, satellites, software applications, and data
belonging to different institutions and connected through the Internet. The Grid pro-
vides the infrastructure that enables dispersed institutions (commercial companies,
universities, government institutions, and laboratories) to form virtual organisations
(VOs) that share resources and collaborate for the sake of solving common problems
[2, 3].

2.3 Peer-to-Peer Architecture

P2P networks are decentralised distributed systems and enable computers to share
and integrate their computing resources, data and services. Although concepts of
P2P and Grids have a significant amount of overlap, they were originally proposed
to address different domains. Whereas P2P is generally applied to a wide range of
technologies that can greatly increase the utilization of collective natural resources
at the edge of the Internet, such as information, bandwidth and computing resources,
Grids are intended to promote interoperability and extensibility among various ap-
plications, platforms and frameworks [4].

In contrast to the existing Grid paradigms, P2P architecture does not rely on a
centralised server to provide services (Fig. 2), which offers an appealing alterna-
tive to the existing Grid models especially for large-scale distributed applications.
In the P2P model, each peer node (also known as servent) acts as both client and
server, requesting resources from as well as routing queries and serving resources
for other peer nodes. A P2P network is a logical overlay network over a physical
infrastructure as illustrated in Fig. 2, which provides a virtual environment for P2P

Fig. 2 Peer-to-peer architecture

74 Lu Liu and Nick Antonopoulos

developers to easily design and implement their own communication environment
and protocols on the top of existing networks.

In recent years P2P networks have grown seemingly exponentially in popular-
ity and utilisation. P2P file sharing has become one of the most popular Inter-
net activities. Today’s popular P2P file-sharing applications, such as Kazaa and
Gnutella, have more than one million users each at any point of time [5]. Ac-
cording to research results from Cachelogic [6], about 50–65% of “downstream
traffic” (i.e. from ISPs to endpoint devices) and 75–90% of “upstream traffic”
(i.e. from endpoint devices to ISPs) on the Internet are the results of P2P file-sharing
applications.

The popularity of P2P is motivated by the benefits it offers to end users. Com-
pared to the client-server architecture, the advantages of P2P are listed below:

• P2P frees users from the traditional dependence on central servers, which en-
ables end users to easily share resources (e.g. music, movies, games and other
software). End users can share or retrieve resources directly from their connected
machines without any further need to upload them to a centralised server.

• P2P applications are more resilient than those built on the client-server architec-
ture by removing the single-point-of-failure.

• P2P distributes the responsibility of providing services from centralised servers
to each individual peer node in the network.

• P2P exploits available bandwidth, processor, storage and other resources across
the entire network. P2P interactions are only between individual peers which
eliminate the bottleneck of centralised servers.

• Most P2P applications use virtual channels for communication which break the
obstacles of corporate private networks, such as firewalls and Network Address
Translation (NAT).

• P2P has better availability as each peer node can obtain content from multiple
peer nodes. If one peer node is overloaded or experiences a hardware failure,
other peer nodes in the network can still handle requests.

3 Evolution of Peer-to-Peer Networks

There are many interesting types of P2P applications, including file sharing, instant
messaging, VoIP, Streaming media, High Performance Computing, search engine.
Among them, file sharing, one of the most popular on-line activities [7], is the initial
motivation behind many of successful P2P networks. P2P file sharing has become
one of the most popular Internet activities. Today’s popular P2P file-sharing appli-
cations, such as Kazaa and Gnutella, have more than one million users each at any
point of time [5]. In this section, the history of the P2P file sharing networks is
discussed along with the most popular file sharing applications.

Existing P2P file sharing networks can be divided into three categories [8] ac-
cording to the degree of network centralisation: centralised P2P networks, decen-
tralised P2P networks and hybrid P2P networks.

From Client-Server to P2P Networking 75

3.1 Centralised Peer-to-Peer Networks

Although P2P is often seen as an opposite model to the centralised client-server
paradigm, the first generation P2P systems (e.g. Napster) started with the concept of
centralisation. However, in contrast to traditional client-server systems, the server(s)
in centralised P2P networks only keeps the meta-information about shared content
(e.g. addresses or ID of peer nodes where the shared content is available) rather than
storing content on its own.

• Napster
Napster was the first widely-used P2P music sharing service. Before Napster

came along, Internet users only passively operated their connected computers, such
as browsing news or checking email. With the increased popularity of Napster, or-
dinary Internet users started opening their PCs to actively contribute resources and
played more important roles for the Internet.

Compared to follow-up P2P applications, Napster utilises a simple but highly
efficient mechanism to share and search files in the network. To participate in the
Napster network, new users need to register to the Napster server and publish a list
of files they are willing to share. To search for a shared file in the network, users
can request the Napster server and retrieve a list of providers hosting the files which
match the query. File transfer takes place without the Napster server participating.
The requested file is transferred directly between the requester and the provider as
shown in Fig. 3.

Fig. 3 Example of Napster network

• BitTorrent
BitTorrent is designed to distribute large amounts of data without incurring the

corresponding consumption in server and bandwidth resources. The original Bit-
Torrent (before version 4.2.0) can be looked at as a Napster-like centralised P2P
system. In order to share a file or a group of files, users need to create a small

76 Lu Liu and Nick Antonopoulos

.torrent file that contains the address of the tracker machine that launches the file
distribution. The .torrent file is published on well-known web-sites, so that other
users can find and download the .torrent file of interest using web search engines.
The .torrent file is opened by the BitTorrent client software. The client software
connects to the tracker machine and receives a list of peer nodes that are partici-
pating in transferring the file. In order to distribute a file efficiently, a file is broken
into smaller fragments (typically 256 KB each) for transmission. The client, at-
tempting to download the file, simultaneously connects to these peer nodes that are
participating in file transfer, and downloads different pieces of the file from different
peer nodes. In the meantime, the client can also upload downloaded pieces to other
participants.

3.2 Decentralised Peer-to-Peer Networks

To address the problems of centralised P2P networks (such as scalability, single-
point-of-failure and legal issues), decentralised peer-to-peer networks become widely
used, which do not rely on any central server.

• Gnutella
The Gnutella network is a decentralised file-sharing P2P network, which is built

on an open protocol developed to enable peer node discovery, distributed search,
and file transfer.

Each Gnutella user needs a Gnutella client software to join the Gnutella network.
The Gnutella client software on initial use can bootstrap and find a number of possi-
ble working peer nodes in the network and try to connect to them. If some attempts
succeed, these working peer nodes will then become the new node’s neighbours and
give the new node their own lists of working nodes. The new node continues to
connect to these working peer nodes, until it reaches a certain quota (usually user-
specified). The new node keeps the peer nodes it has not yet tried as backup. When a
peer node leaves the P2P network and then wants to re-connect to the network again,
the peer node will try to connect to the nodes whose addresses it has stored. Once
the peer node re-connects into the network, it will periodically ping the network
connections and update its list of node addresses.

In contrast to Napster, the Gnutella network is a decentralised P2P file-sharing
network not only for file storage, but also for content lookup and query rout-
ing. Gnutella nodes take over routing functionalities initially performed by the
Napster server. Figure gives an example of query propagation over the Gnutella
network. In the Gnutella network, each peer node uses a Breadth-First Search
(BFS) mechanism to search the network by broadcasting the query with a Time-
to-Live (TTL) to all connected peer nodes. TTL represents the number of times
a message can be forwarded before it is discarded. Each peer node receiving the
query will process it, check the local file storage, and respond to the query if at
least one matched file is found. Each peer node then decreases TTL by one and

From Client-Server to P2P Networking 77

Fig. 4 Query propagation over the Gnutella network

forwards the query to all of its neighbours. This process continues until TTL de-
creases to zero.

The Gnutella network does not rely on a central server to index files, which
avoids the single-point-of-failure issue and the performance bottleneck at the server
side. Instead, many peer nodes are visited by flooding queries to see whether they
have a requested file. The obvious drawback of Gnutella is that it generates poten-
tially huge network traffic by flooding queries.

• Freenet
Freenet is a decentralised P2P data storage system designed to provide electronic

document exchange through strong anonymity. In contrast to Gnutella, Freenet acts
as a P2P storage system by enabling users to share unused local storage space for
popular file replication and caching. The stored information is encrypted and repli-
cated across the participating computers.

In Freenet, a file is shared with an ID generated from the hash value of the name
and description of the file. Each peer node forms a dynamic routing table to avoid
network flooding. A routing table includes a set of other peers associated with the
keys they are expected to hold. To search a required file, the query is forwarded to
the peer node holding the nearest key to the key requested. If the query is successful,
the reply is passed back along the route the query comes in through. Each peer node
that forwards the request will cache the reply and update the routing table by a new
entry associating the data source with the requested key.

3.3 Hybrid Peer-to-Peer Networks

To avoid the observed problems of the centralised and decentralised P2P networks
discussed above, hybrid P2P networks are emerging recently to provide trade-off
solutions with a hierarchical architecture.

78 Lu Liu and Nick Antonopoulos

• Kazaa
Kazaa reorganises peer nodes into a two-level hierarchy with supernodes and

leaves. Supernodes are capable and reliable peer nodes that take more responsibil-
ity for providing services in the network. A supernode is a temporary index server
for other peer nodes. The peer nodes with high computing power and fast network
connection automatically become supernodes.

Similarly to the bootstrapping method used in the Gnutella network, a newly
joined node will attempt to contact an active supernode from a list of supernodes
offered by Kazaa client software. The newly joined node will send a list of files
it shares to the connected supernodes and further retrieve more active supernodes
from the connected supernodes for future connection attempts.

In Kazaa, each leave node begins a lookup by sending a lookup request to its
connected supernode as shown in Fig. 5. The supernode not only checks the local
index for the file requested, but also communicates with other supernodes for a list
of addresses of peer nodes sharing the files. When a supernode discovers the re-
quested file from its local index, it will respond to the original supernode. The file is
transferred directly between the query originator and the target peer node that shares
the file as shown in Fig. 5.

Fig. 5 Example of Kazaa network

• Gnutella2
Similarly to Kazaa, the peer nodes in the Gnutella2 network are classified into

two categories: hubs and leaves. A leaf keeps only one or two connections to hubs. A
hub acts as a proxy to the Gnutella2 network for the leaves connected to it. Queries
are propagated among the hubs and only forwarded to a leaf if a hub believes it can
answer the query.

From Client-Server to P2P Networking 79

• JXTA
JXTA is an open source P2P platform developed by Sun Micro-systems. The

JXTA Application Programming Interface (API) hides many programming details,
which makes a JXTA application writing much easier than developing a P2P appli-
cation from scratch.

Similarly to Kazaa and Gnutella2, JXTA maintains a hierarchical network struc-
ture with rendezvous peers and edge peers. Different from Kazaa, the rendezvous
peers in the JXTA network call the Shared Resource Distributed Index (SRDI) ser-
vice to distribute indices to other rendezvous peers in the network. When a peer node
searches for a file, it will send the query to the connected rendezvous peer and also
multicast the query to other peers on the same subnet. If the rendezvous peer finds
the information about the requested resources on its local cache, it will notify the
peers that publish the resources and these peers will respond directly to the query
originator. If the rendezvous peer cannot find the requested information locally, a
default algorithm is used to go through a set of rendezvous peers for a rendezvous
peer that caches the requested information [9].

As discussed above, hybrid P2P networks combine the techniques of both the
centralised Napster and the decentralised Gnutella. However, since only a limited
number of peer nodes are responsible for the query processing and routing, existing
hybrid P2P networks still have the capability bottlenecks of the supernodes, which
are also vulnerable to planned attacks [10].

4 Peer-to-Peer Search Systems

Since resource and service discovery in Grids involves a lot of elements in common
with resource discovery in P2P networks, P2P search approaches are applicable
for service discovery in large-scale Grid systems, which could help to ensure Grid
scalability [11]. In this section, existing P2P search systems are investigated by clas-
sifying them into two broad categories: structured and unstructured P2P systems.

4.1 Structured P2P Systems

Structured P2P systems have a dedicated network structure on the overlay network
which establishes a link between stored content and the IP address of a node. Dis-
tributed Hash Tables (DHTs) are widely used for resource discovery in the struc-
tured P2P systems like Chord [12], ROME [13], Pastry [14], CAN [15], and Kadem-
lia [16].

In DHT-based P2P systems, each file is associated with a key generated by hash-
ing the file name or content. Each peer node in these systems is responsible for

80 Lu Liu and Nick Antonopoulos

storing a certain range of keys. The network structure is sorted by routing tables (or
finger tables) stored on individual peer nodes. Each peer node only needs a small
amount of “routing” information about other nodes (e.g. nodes’ addresses and the
range of keys the node is responsible for). With routing tables and uniform hash
functions, peer nodes can conveniently put and get files to and from other peer nodes
according to the keys of files.

• Chord
Chord [12] is a well-known DHT-based distributed protocol aimed to efficiently

locate the peer node that stores a particular data item. Peer nodes are arranged in a
ring that keeps the keys ranging from zero to 2m− 1. A consistent hashing is used
to assign items to nodes, which provides load balancing and only requires a small
number of keys to move when nodes join or leave the network [12]. The consistent
hash function assigns each node and each key an ID using SHA-1.

In Chord, each peer node maintains a finger table pointing to O(logN) other
nodes on the ring. Given a ring with 2m peer nodes, a finger table has a maximum of
m entries. The Chord routing algorithm utilizes the information stored in the finger
table of each node to direct query propagation. For example, a node sends a query
for a given key k to the closest predecessor of k on the Chord ring according to its
finger table, and then asks the predecessor for the node it knows whose ID is the
closest to k. By repeating this process, the algorithm can find the peer nodes with
IDs closer and closer to k. A lookup only requires O(logN) messages in a N-node
Chord network and 1

2 log2 N hops on average [12].
Unlike some other P2P models (e.g. Gnutella and JXTA) that provide a set of pro-

tocols to support P2P applications, Chord provides support for just one operation:
given a key, it maps the key onto a node. In Chord, peer nodes are automatically
allowed to participate in the network using the standard Chord protocol, no mat-
ter whether the nodes are useful and capable or not. Chord needs monitoring and
selection functions in order to support and optimise its deployment over the real
networks.

• ROME
ROME (Reactive Overlay Monitoring and Expansion) [13, 17] is an additional

layer built upon the standard Chord protocol allowing control over the size of
the network overlay via the selection and placement of peer nodes on the Chord
ring.

Figure [18] shows the ROME architecture running on the top of Chord. ROME
includes a set of processes (ellipses) and data structures (rectangles) [18]. Processes
are comprised of a traffic analyser to monitor network traffic without changing the
underlying Chord protocol, and operations to add, replace and remove nodes from
the ring. Data structures of ROME store monitoring data, a copy of Chord data and
ROME specific data (e.g. bootstrap server’s address). ROME can provide an optimal
size of Chord ring by monitoring the workload on each node to solve the problems
of under-load or over-load nodes by adding, replacing and removing nodes. ROME
provides more efficient and fault-tolerant resource discovery with message cost sav-
ing than the standard Chord [18].

From Client-Server to P2P Networking 81

Fig. 6 ROME architecture

• Accordion
Accordion [19] is a DHT protocol extended from Chord, which bounds its com-

munication overhead according to a user specified bandwidth budget. Accordion
borrows Chord’s protocols for maintaining a linked list in which the ID space is
organized as a ring as in Chord. Different from Chord using a fixed routing table,
Accordion can automatically adapt itself to achieve the best lookup latency across
a wide range of network sizes and churn rates. Accordion maintains a large rout-
ing table when the system is small and relatively stable. When the system grows
too large or suffers from high churns, Accordion shrinks its routing table on each
peer node for lower communication overhead. By remaining flexible in the choice
of routing table size, Accordion can operate efficiently in a wide range of operating
environments.

• Pastry
Pastry [14] is a prefix-based routing system using a proximity metric. Similarly

to Chord, Pastry organizes peer nodes in a 128-bit circular node ID space. At each
step, a query message is forwarded to a numerically closer node to a given key. In a
network consisting of N nodes, the message can be routed to the numerically closest
node within log2b N hops, where b is a configurable parameter.

In contrast to Chord which uses one-dimensional tables, a node’s routing table is
organized into two dimensions with log2b N rows and 2b− 1 entries per row. Each
entry in row n of the routing table points to a node whose node ID shares the present
node’s ID in the first n digits, but whose (n+1)th digit is different from the (n+1)th
digit in the present node’s ID. The routing procedure involves two main steps. Given
a message, the node first checks whether the key is within the range of its leaf set.
If so, the message is sent directly to the destination node. Otherwise, the message
is forwarded to the node that shares a common prefix with the key by at least one
more digit.

82 Lu Liu and Nick Antonopoulos

• CAN
Content-Addressable Network (CAN) [15] generalizes the DHT methods used

in Chord and Pastry. A CAN identifier space can be looked at as a d-dimensional
version of Chord (which is one-dimensional) and Pastry (which is two-dimensional)
identifier space. For a d-dimensional space partitioned into n equal zones, each node

maintains 2d neighbours and the average routing path length is 1
4 (n

1
d). Higher di-

mensions in the identifier space reduce the number of routing hops and only slightly
increase the size of routing table saved in each node. Meanwhile, fault tolerance of
routing is improved by higher dimensionality of CAN, since each node has a larger
set of neighbours to select as alternatives to a failed node.

• Kademlia
Kademlia [16] not only uses the basic DHT methods (e.g. unique ID, routing

table with < key,value > pairs), but also provides a number of desirable features
superseding other previous DHTs (e.g. Chord, CAN and Pastry).

Kademlia is based on the calculation of the “distance” between two nodes on
the overlay with an XOR metric. Each Kademlia node stores contact information
about other peer nodes in the local routing tables. When a Kademlia node receives
a message from another node, it will update the appropriate entry for the sender’s
node ID. Thus, the peer nodes which issue or reply to a large number of queries will
become widely known, which enables more capable nodes to take on more workload
in the network.

To lookup a specific key, the query originator searches the local routing tables for
α nodes with the closest distance to the query originator and then contacts them in
parallel. Each recipient node replies with the information about the peer node which
is closer to the key. The query originator resends the lookup to nodes it has learned
about from previous RPCs.

4.2 Unstructured P2P Systems

In contrast to structured P2P systems, unstructured P2P systems do not maintain
network structure, where address and content stored on a given peer node are un-
related. Although existing search methods in unstructured P2P systems are hetero-
geneous, most of them are dedicated to solving observed issues of flooding mecha-
nisms which can be classified into two broad categories: blind search and informed
search, according to whether the algorithm needs additional indices about the loca-
tions of resources.

4.2.1 Blind Search

In a network with a blind search method, peer nodes do not maintain additional
information about resource locations. The advantages of blind search methods are

From Client-Server to P2P Networking 83

that they do not need any communication overhead to maintain the additional indices
about resource locations and are extremely resilient in the highly dynamic networks.
Flooding is the fundamental approach of blind search where queries are forwarded
to all connected peer node to see whether they have a requested file. In order to solve
the massive traffic problem caused by flooding, several improved search methods
have been presented recently [20–22].

Random walker [20, 21] is a well-known blind search method, which enables
peer nodes to forward a query to a randomly chosen neighbour rather than broadcast
the query to all of their neighbours. Each neighbour repeats this process until the
required file is discovered. The random walkers can find targets more efficiently
while significantly reducing the traffic compared to Gnutella’s flooding method [20].
In order to increase the probability of resource discovery, pro-active replications are
used to increase the density of copies of each object. The study in [20] shows that
the square-root replication distribution is optimal in terms of minimizing overall
search traffic, which replicates files in proportion to the square-root of their query
probability.

Yang and Garcia-Molina [22] presented an iterative deepening technique for re-
source discovery in unstructured P2P networks. Iterative deepening enables query
originators to use successive BFS (Breadth-First Search) queries with increasing
depths, until the request is satisfied or the maximum depth is reached.

4.2.2 Informed Search

In contrast to blind search, informed search methods enable peer nodes to maintain
additional information about other peer nodes in the network, e.g. network topology
and resource locations. Existing informed search solutions can be classified in two
groups: mechanisms with specialised index nodes and mechanisms with indices at
each node.

The search mechanisms with specialised index nodes have been used in current
P2P applications. For example, Napster employs a centralized server to maintain
such additional information. Kazaa and JXTA utilize a set of semi-centralized su-
pernodes to maintain the extra information about their leaves and other supernodes.

However, systems with specialised index nodes are vulnerable to attack by cen-
tralizing indices in a small subset of peer nodes. New methods have emerged in
recent years by distributing indices to each individual peer node in the network.
Such methods can be further classified into the following three approaches accord-
ing to their design principles.

• Topology optimisation
In many P2P applications, topology significantly affects the performance of re-

source discovery. The first approach intends to reduce search cost by adapting and
optimising the overlay topology of network. Each peer node is expected to keep
topology information about its neighbours or neighbours’ neighbours.

A topology optimisation method used in Gia [23] puts most of the peer nodes in
the network within a short reach of high capacity nodes, which leads to the situation

84 Lu Liu and Nick Antonopoulos

that the high capacity nodes are also the nodes with a high node degree of connec-
tivity (a large number of links). This protocol ensures that the well-connected nodes
which receive a large proportion of queries actually have the capability to handle
these queries.

Gia enables each peer node to connect high capacity nodes as neighbours. Al-
ternatively, the studies in [24, 25] present topology optimisation methods by pref-
erentially selecting low-cost and low-latency connections. These methods address
the topology mismatch problem between P2P logical overlay networks and physi-
cal under-lying networks (which incurs a large volume of redundant traffic on P2P
networks) by deleting inefficient overlay links and adding efficient ones.

• Statistical information about neighbours
The second approach enables peer nodes to route queries to the neighbours that

are likely to have the requested files in accordance with the maintained statistical
information about neighbours.

Tsoumakos et al. [26] introduced an adaptive and bandwidth-efficient algorithm
for searching in unstructured P2P networks, called Adaptive Probabilistic Search
(APS). Different from the above topology optimisation methods, the search algo-
rithm of APS is not allowed to alter the overlay topology. In APS, each peer node
keeps an index describing which objects were requested by each neighbour with a
success ratio of previous searches. The probability of choosing a neighbour to find
a particular file is dependent on the success ratio. In APS, searching is based on
the simultaneous deployment of k walkers and probabilistic forwarding. The query
originator sends queries to k of its N neighbours. If each of these nodes can find a
matched object in its local repository, the walker terminates, otherwise it gets for-
warded to one of neighbours. The procedure continues until all k walkers have com-
pleted. The update takes a reverse path back to the query originator to adjust prob-
ability accordingly either with success or failure. According to the results shown
in [26], APS can discover many more objects with much higher success rates than
random walkers [20, 21] algorithm.

Adamic et al. [21] showed that many peer nodes can be reached by forwarding
queries to peer nodes with the highest degree (number of links) in the neighbourhood
and thus it can get many results back. Yang and Garcia-Molina [22] tested this model
by forwarding queries to the peer node which had the largest number of neighbours.
Yang and Garcia-Molina also designed and simulated several other heuristics to
help in selecting the best peer nodes to send a query, for example, the peer node that
returned the highest number of results from previous searches or the peer node that
had the shortest latency.

The study in [27] evaluated a similar heuristic that the peer nodes with more
files are more likely to be able to answer the query, called Most File Shared on
Neighbourhood (MFSN) which forwards the query to the neighbouring node shar-
ing the largest number of files. In accordance with these previous studies above,
these heuristic-based methods can generally achieve better performance than ran-
dom walkers.

In contrast to the above studies using only one heuristic parameter, DSearch
method in [28] puts two heuristics in consideration. In order to achieve a high

From Client-Server to P2P Networking 85

success rate and efficiency, queries are forwarded to the “good” nodes that are more
likely to have the requested files or can find the requested files with a high probabil-
ity in future hops. Two heuristics are considered to determine the “goodness” of a
neighbour: the number of shared files on the neighbour and the expected number of
accessible files in future hops via the neighbour. DSearch utilizes high-degree nodes
to find a wider range of accessible nodes, while using the neighbouring nodes that
shares a large number of files to discover the requested files. From the simulation
results, DSearch achieves a better performance when compared to the methods with
only one heuristic.

The principle behind these heuristic-based methods is to forward queries to more
capable peer nodes, for example, the peer nodes with the highest success rate of
searches, the peer nodes with the highest degree, or the peer nodes with most shared
files. However, such capable nodes may be over-loaded and become the victims of
their own success. Traffic unbalance is a significant limitation to these methods.

• Cached semantic information
In contrast to the second approach of maintaining simple statistical information,

the third approach enables each peer node to keep a routing index which contains
detailed semantic information about content of shared files. This information can
be collected by exchanging indices regularly with other peer nodes or caching the
historic record regarding the results of previous queries.

Routing Indices
Routing Indices (RI) [29] enable peer nodes to create query routing tables by

hashing file keywords and regularly exchanging those with their neighbours. Peer
nodes normally maintain additional indices of files offered by their overlay neigh-
bours and neighbours’ neighbours. In the RI system, shared documents are classified
into different categories of topics. Each peer node maintains the RI indicating how
many documents of which categories could be found through that neighbour. When
a new connection is established in the RI system, two peer nodes will aggregate
and exchange their own RI to each other. In order to keep data in RI up-to-date,
peer nodes will notify neighbours about the changes in the local RI caused by addi-
tion/removal of shared documents or joining/leaving of other neighbours.

When a peer node receives a query, the peer node needs to compute the goodness
of each neighbour for a query. The number of documents that may be found in a path
is used as a measure of goodness. If more documents are found through a particular
neighbour, this neighbour will be selected to forward a query.

Sripanidkulchai’s model
The idea of constructing “friend lists” has also been used in the Sripanidkulchai’s

model [30], which presents a content location solution in which peer nodes loosely
organize themselves into an interest-based structure. When a node joins the system,
it first searches the network by flooding to locate content. The lookup returns a set
of nodes that store the content. These nodes are potential candidates to be added to a
“shortcut list ”. One node is selected at random from the set and added. Subsequent

86 Lu Liu and Nick Antonopoulos

queries will go through the nodes in the shortcut list. If a peer node cannot find
content from the list, it will generate a lookup with Gnutella protocol. From their
results, a significant amount of flooding can be avoided which makes Gnutella a
more competitive solution.

NeuroGrid
NeuroGrid [31] is an adaptive decentralized search system. NeuroGrid utilizes

the historic record of previous searches to help peer nodes make routing decisions.
In NeuroGrid, peer nodes support distributed searches through semantic routing by
maintaining routing tables at each node [31]. In the local routing tables, each peer
node is associated with keywords regarding the content it stores. When a peer node
forwards a query, it will search for the peer nodes that are associated with the query
keywords. In each hop, NeuroGrid intends to find M matched peer nodes and then
forwards the query to these peer nodes. If there are not M matches found, the al-
gorithm will randomly select peer nodes in the routing table until M peer nodes are
selected.

In NeuroGrid, users’ responses to search results are stored and used to update
the meta-data describing the content of remote peer nodes. NeuroGrid can learn the
results from previous searches to make future searches more focused and seman-
tically routes queries according to the cached knowledge. However, NeuroGrid is
only effective for previously queried keywords and not suitable for networks where
peer nodes come and go rapidly [32].

5 Future Trends

Some potential future trends are outlined in this section.

5.1 Self-organising Systems

P2P is beneficial when removing a centralised server. On the other hand, new mech-
anisms are required to compensate for the server, especially for resource discovery
and network maintenance. However, owing to the lack of a centralised server, any
attempts of additional control could be difficult to achieve in the distributed P2P
architecture. In contrast, self-organisation could be a good way to solve the control
issues in the decentralised P2P architecture. Self-organisation is a process where
the organisation of a system spontaneously increases without being managed by an
outside source.

Human society is a self-organising system. Social networks are formed naturally
by daily social interactions. A social community is a group of people with com-
mon interests, goals or responsibilities which is formed spontaneously. By using
social networks, people can find some acquaintances that potentially have knowl-
edge about the resources they are looking for.

From Client-Server to P2P Networking 87

Similarly to social networks, where people are connected by their social rela-
tionships, two autonomous peer nodes can be connected if users in those nodes are
interested in each other’s data. If peer nodes can self-organise themselves like so-
cial networks, a large communication cost for peer group construction, maintenance
and discovery can be saved, which will significantly improve overall performance
of P2P networks.

5.2 Hybrid Systems

Since large-scale resource sharing is one goal of Grids, P2P networks and Grid
systems are starting to converge to a common structure, leading to application of
P2P techniques to Grid systems [33]. Some research has been done to try connect-
ing Grid Services and P2P networks (e.g., [4, 31, 32]). Unfortunately, there is still
not a good solution to seamlessly pull the two domains together. There are many
boundaries to connect Grids and P2P networks because of different architectures,
standards and protocols between them. Current Grid service standards need to be
extended, especially for service descriptions and annotations, by including addi-
tional attributes for peer’s specifications.

6 Conclusions

In this chapter, the evolution of the network architecture has been investigated from
client-server to P2P networking. P2P is beneficial when removing a centralised
server. On the other hand, new mechanisms are required to compensate for the
server. The main advantage of P2P architecture lies in its good scalability, agility,
resilience and availability. On the contrary, its major challenges lie in its efficiency,
dependability and security.

To address these challenges, hybrid systems combining the techniques of both
Grid and P2P computing could be potential solutions for the design of next genera-
tion distributed systems. By introducing P2P techniques into Grid computing, Grid
systems could be more scalable and resilient, removing the sing-point-of-failure.
With the cooperation of Grid computing environments, the usage of P2P networks
could be also broadened from simple file provision to more advanced services, such
as sharing redundant computing power for complicated scientific calculation and
sharing extra bandwidth for real-time video transmission.

References

1. Vance, A.: Google goes gaga for Opteron. Available from:
http://www.theregister.co.uk/2006/03/04/goog_opteron_sun/

2. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann (1999)

http://www.theregister.co.uk/2006/03/04/goog_opteron_sun/

88 Lu Liu and Nick Antonopoulos

3. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer Applications 15 (2001) 200–222

4. Qu, C., Nejdl, W.: Interacting the Edutella/JXTA Peer-to-Peer Network with Web Services.
Second International Conference on Peer-to-Peer Computing (2002)

5. Zhao, S., Stutzbach, D., Rejaie, R.: Characterizing Files in the Modern Gnutella Network:
a Measurement Study. SPIE/ACM. Multimedia Computing and Networking, San Jose, CA
(2006)

6. Cachelogic.: Trends and Statistics in Peer-to-Peer. (2005) Available from: http://
creativecommons.nl/nieuws/wp-content/uploads/2006/04/
CacheLogic_AmsterdamWorkshop_Presentation_v1.0.ppt.

7. Oberholzer, F., Strumpf, K.: The Effect of File Sharing on Record Sales: An Empirical Anal-
ysis. Journal of Political Economy 115 (2006) 1–42

8. Risson, J., Moors, T.: Survey of Research towards Robust Peer-to-Peer Networks: Search
Methods. Computer Networks 50 (2006) 3485–3521

9. Traversat, B., Abdelaziz, M., Pouyoul, E.: Project JXTA: A Loosely-Consistent DHT Ren-
dezvous Walker. Sun Microsystems, Inc (2003)

10. Lo, V., Zhou, D., Liu, Y., GauthierDickey, C., Li, J.: Scalable Supernode Selection in Peer-
to-Peer Overlay Networks. Second International Workshop on Hot Topics in Peer-to-Peer
Systems, La Jolla, California (2005)

11. Mastroianni, C., Talia, D., Verta, O.: A P2P Approach for Membership Management and
Resource Discovery in Grids. 2005 International Symposium on Information Technology:
Coding and Computing, Las Vegas, NV (2005)

12. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable Peer-
to-Peer Lookup Service for Internet Applications. ACM SIGCOMM, San Diego, CA (2001)

13. Salter, J., Antonopoulos, N.: ROME: Optimising DHT-based Peer-to-Peer Networks. 5th In-
ternational Network Conference, Samos, Greece (2005)

14. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and Routing for
Large-scale Peer-to-Peer Systems. IFIP/ACM International Conference on Distributed Sys-
tems Platforms, Heidelberg, Germany (2001)

15. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. ACM SIGCOMM, San Diego, CA (2001)

16. Maymounkov, P., Mazi‘eres, D.: Kademlia: A Peer to Peer Information System Based on the
XOR Metric. Internation Workshop on Peer-to-Peer Systems, Cambridge, MA (2002)

17. Antonopoulos, N., Exarchakos, G.: G-ROME: A Semantic Driven Model for Capacity Shar-
ing Among P2P Networks. Journal of Internet Research 17 (2007) 7–20

18. Salter, J.: An Efficient Reactive Model for Resource Discovery in DHT-Based Peer-to-peer
Networks. Department of Computing, Vol. PhD. University of Surrey, Guildford, Surrey
(2006)

19. Li, J., Stribling, J., Morris, R., Kaashoek, M.F.: Bandwidth-Efficient Management of DHT
Routing Tables. 2nd Symposium on Networked Systems Design and Implementation, Boston,
MA (2005)

20. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstructured Peer-
to-Peer Networks. ACM SIGMETRICS, Marina Del Rey, CA (2002)

21. Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in Power Law Net-
works. Physical Review 64 (2001) 046135-046131–046135-046138

22. Yang, B., Garcia-Molina, H.: Efficient Search in Peer-to-Peer Networks. International Con-
ference on Distributed Computing Systems, Vienna, Austria (2002)

23. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making Gnutella-Like
P2P System Scalable. ACM SIGCOMM, Karlsruhe, Germany (2003)

24. Xiao, L., Liu, Y., Ni, L.M.: Improving Unstructured Peer-to-Peer Systems by Adaptive Con-
nection Establishment. IEEE Transactions on Computers 54 (2005) 176–184

25. Liu, Y., Xiao, L., Liu, X., Ni, L.M., Zhang, X.: Location Awareness in Unstructured Peer-to-
Peer Systems. IEEE Transactions on Parallel and Distributed Systems 16 (2005) 163–174

http://creativecommons.nl/nieuws/wp-content/uploads/2006/04/
http://creativecommons.nl/nieuws/wp-content/uploads/2006/04/
CacheLogic_AmsterdamWorkshop_Presentation_v1.0.ppt.

From Client-Server to P2P Networking 89

26. Tsoumakos, D., Roussopoulos, N.: Adaptive Probabilistic Search for Peer-to-Peer Networks.
Third International Conference on Peer-to-Peer Computing, Linkoping, Sweden (2003)

27. Li, X., Wu, J.: A Hybrid Searching Scheme in Unstructured P2P Networks. International
Conference on Parallel Processing, Oslo, Norway (2005)

28. Liu, L., Antonopoulos, N., Mackin, S.: Directed Information Search and Retrieval over
Unstructured Peer-to-Peer Networks. the International Computer Engineering Conference,
Cairo, Egypt (2006)

29. Crespo, A., Garcia-Molina, H.: Routing Indices for Peer-to-Peer Systems. International Con-
ference on Distributed Computing Systems, Vienna, Austria (2002)

30. Sripanidkulchai, K., Maggs, B., Zhang, H.: Efficient Content Location Using Interest-Based
Locality in Peer-to-Peer Systems. IEEE Infocom, San Francisco (2003)

31. Joseph, S.: NeuroGrid: Semantically Routing Queries in Peer-to-Peer Networks. International
Workshop on Peer-to-Peer Computing, Pisa, Italy (2002)

32. Joseph, S.: P2P MetaData Search Layers. International Workshop on Agents and Peer-to-Peer
Computing, Melbourne, Australia (2003)

33. Marzolla, M., Mordacchini, M., Orlando, S.: Peer-to-peer Systems for Discovering Resources
in a Dynamic Gridstar, Open. Parallel Computing 33 (2007) 339–358

34. Wang, M., Fox, G., Pallickara, S.: A Demonstration of Collaborative Web Services and Peer-
to-Peer Grids. International Conference on Information Technology: Coding and Computing
(2004)

35. Prasad, V., Lee, Y.: A Scalable Infrastructure for Peer-to-Peer Networks Using Web Service
Registries and Intelligent Peer Locators. 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (2003)

	From Client-Server to P2P Networking
	Lu Liu and Nick Antonopoulos
	1 Introduction
	2 Network Architecture Evolution
	2.1 Client-Server Architecture
	2.2 Grid Architecture
	2.3 Peer-to-Peer Architecture

	3 Evolution of Peer-to-Peer Networks
	3.1 Centralised Peer-to-Peer Networks
	3.2 Decentralised Peer-to-Peer Networks
	3.3 Hybrid Peer-to-Peer Networks

	4 Peer-to-Peer Search Systems
	4.1 Structured P2P Systems
	4.2 Unstructured P2P Systems
	4.2.1 Blind Search
	4.2.2 Informed Search

	5 Future Trends
	5.1 Self-organising Systems
	5.2 Hybrid Systems

	6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

