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Abstract Although most Distributed Hash Table (DHT) overlays are structurally
similar to the “small-world” navigation model of Kleinberg – architectural and al-
gorithmic details of different DHT variants differ significantly. Lookup performance
of DHTs depends on a sets of different and often incompatible parameters, which
makes analytical comparison rather difficult. The objective of this chapter is to re-
view existing analytical models for DHT routing performance and to introduce a
novel framework for the per-hop routing progress analysis of long-range DHT con-
nections based on a logarithmic transformation. With the logarithmic transformation
of the DHT metric space we analyze the distribution of the per-hop routing progress
in general and also for the special cases of the deterministic and probabilistic power-
law routing overlays. Based on the proposed analytical framework routing perfor-
mance of DHTs can be described by a triple: the long-range connection density, its
coefficient of variation and the number of short-range connections. Finally, we de-
rive upper bound on the expected number of routing hops as a function of network
size and the parameter triple.

1 Introduction

A plethora of Distributed Hash Table (DHT) concepts have been proposed and an-
alyzed in the past 6–7 years to provide scalable and robust distributed storage and
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lookup systems [6, 12, 14, 16, 17, 19–22], etc. Although architectural and algo-
rithmic details of these DHT proposals can differ significantly, the foundations of
lookup mechanisms are very similar for most of them. There are several empirical
studies (based on simulations) comparing static and dynamic performance of differ-
ent DHT routing mechanisms using various parameter settings [5, 13]. There exist
also detailed analytical models for some DHTs, however these models are usually
restricted to one specific DHT implementation. Finally, some aspects of DHT rout-
ing are covered by generic models, e.g., static resilience of DHT routing against
failure [10] or the impact of lookup strategy, lookup parallelism and replication on
DHT routing performance under churn [23]. However, to the best of our knowledge,
there exist no generic analytical models capturing the relationship between overlay
structure and routing performance of DHTs in static networks. In this chapter, we
try to fill this gap proposing a generic stochastic model of DHT overlays and overlay
routing covering a large family of DHTs.

The proposed analytical model builds on the fact that most DHT overlays are
structurally similar to the “small-world” model of Kleinberg [8] and the sequence
of long-range connections of a DHT node becomes linear after logarithmic transfor-
mation of distances in the DHT metric space. More specifically, we have identified
a large subclass of DHT overlays (regular power-law routing overlays) where this
transformed sequence can be described for each node as independently selected ran-
dom samples from an infinite renewal process. Using this renewal process model,
we analyze the distribution of the per-hop routing progress in general and also for
the special cases of the deterministic and probabilistic power-law routing overlays.
Furthermore, we introduce the λ long-range connection density and the cv long-
range connection density coefficient of variation parameters to characterize long-
range connection distribution of an overlay. Finally, using renewal theory, we derive
upper bounds on the expected number of routing hops as a function of network size
and the above overlay parameters.

The rest of this chapter is structured as follows. First, we give a brief overview of
DHTs in general. Then, in Section 2, we discuss challenges of modeling DHT rout-
ing, revisit applied mathematical tools from renewal theory and introduce modeling
assumptions and notations used in the upcoming sections. In Section 3, we present
the concept of logarithmically transformed view for long-range connections. Finally,
in Section 4, we describe the proposed stochastic model based on this transformed
view and tools from renewal theory.

1.1 DHTs Revisited

From the point of view of an application, Distributed Hash Tables provide similar
functionality than ordinary “in memory” hash tables. An application can insert and
remove key-value mappings, and given a key, it can retrieve the associated value (in
the context of a peer-to-peer system, a key is an identifier used to refer to a shared
resource while the associated value is the resource itself or the locator of the re-
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source). All of these operations are performed quickly and efficiently and scale well
for large amounts of data in both “in memory” and distributed hash tables. However,
as opposed to ordinary hash tables, storage of key-value pairs is distributed over all
nodes of the DHT and all hash table methods can be issued from any of these nodes
(see Fig. 1). Consequently, internal operation of a DHT differs significantly from the
operation of ordinary “in memory” hash tables. To present the architecture and op-
eration of distributed hash tables, we used the terminology and formalism proposed
in [1].

One of the key conceptual components of a DHT is the common metric space
into which nodes and resources are mapped to. All distributed hash tables use a
virtual identifier space I which possesses a closeness metric d : I ×I →R so that
(I ,d) is a metric space or a quasi-metric space1 Both the group of peers forming
the DHT and the set of all shared resources are mapped to this ID space I (see
Fig. 1). Mapping of peers can be described by a function FP : P → I where P
is the set of peers forming the DHT. FP is usually implemented by either drawing
a random identifier according to uniform distribution over I or by applying a hash
function to the public key of the peer. Resources are mapped to I using a function
FK : K →I where K is the set of keys used to refer to shared resources. FK is most
often implemented by applying a hash function to the keys.

resources

peers

virtual identifier space

key value

FK

FP

buckets

elbaT hsaH detubirtsiDelbaT hsaH”yromem nI“

FH

M

Fig. 1 Comparison of “in memory” hash tables and DHTs

Peers responsible for a given resource are determined based on the above map-
pings to the common metric space (I ,d). A key-value pair describing a resource
is usually stored by the peer (or the set of peers) whose image in (I ,d) is the clos-
est to the image of the given resource in (I ,d). Formally, this can be described
using a function M : I → 2P and a constraint ∀i ∈I : ∀p ∈M (i),∀q /∈M (i) :

1 A quasi-metric space does not satisfy the symmetry requirement of metric spaces.
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d(FP(p), i) ≤ d(FP(q), i) on this function. As a result, locating a key-value pair
(which describes a shared resource in a DHT) corresponds to finding one of the
closest peers to the image of the resource in (I ,d).

The function M is usually complete, which means that each identifier of I is
under the responsibility of at least one peer. To provide fault tolerance M typically
contains more than one element and the cardinality of M is typically constant,
which means that each key-value pair is replicated to the same number of peers
(Fig. 1 shows the simplest case when each key-value pair is stored by only one
peer).

Comparing distributed hash tables to ordinary hash tables, peers correspond to
buckets and the function M corresponds to the hash function FH in ordinary hash
tables. Changing the number of buckets in an ordinary hash table implies changing
the hash function FH and this usually requires relocation of most key-value pairs.
For “in memory” hash tables, bucket size is usually constant (or changes only rarely
when reaching a capacity threshold), hence this is not a problem. In contrast, a peer-
to-peer network is inherently dynamic and the set of peers in a DHT might change
continuously, implying changes in the mapping of key-value pairs to nodes (M ).
Continuous relocation of key-value pairs in a DHT would generate a huge com-
munication overhead, hence changes in these mappings should be minimized when
peers join and leave the network. DHTs address this problem by selecting responsi-
ble peers based on proximity in the metric space (I ,d) as mentioned above. Con-
sequently, changes in key-value pair → responsible peers mappings are restricted
to the neighborhood of the joining or leaving peer in (I ,d). (This concept is also
called consistent hashing [7] and had been proposed for distributed web caching
before the era of distributed hash tables.)

Another benefit of selecting responsible peers by proximity in (I ,d) is that all
DHT operations can be easily implemented on top of a routing algorithm which
locates the closest peers to a given point in I . To realize this routing process, DHTs
create and maintain an overlay network. An overlay network can be modeled by a
directed graph G = (P,E ) where P denotes the set of vertices (peers) while E
denotes the set of edges (overlay connections2). Routing in the overlay is typically
based on a simple greedy algorithm: a request for a given point in I is forwarded
via the connection pointing to the peer which is the closest to this given point in
(I ,d).

Overlay topology depends heavily on distances between the images of peers in
the metric space (I ,d). In most DHT overlays, connections can be categorized into
short-range (local) and long-range connections. Each node has short-range connec-
tions to some specific subset of the closest peers in (I ,d). Additionally, they have
long-range connections to some distant nodes so that the distribution of these con-
nections is structurally similar to the family of small-worlds graphs introduced by
Kleinberg in [8]. In this small-worlds graph family, the probability of having a long-

2 A connection from node v1 to a peer node v2 means that node v1 knows the address of node v2
(this is usually in the form of a pair of ID + IP address / port number). Different algorithms use
different names for connections, e.g., Chord [22] calls them successors, predecessors and finger
pointers, while in Pastry [21], they are called leaf set and routing table entries, etc.
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range connection between to nodes is inversely proportional to the Dth power of
their distance (where D is the dimension of the metric space), and Kleinberg has
shown that this is necessary to provide efficient distributed search based solely on
local information.

The role of short-range and long-range connections in the overlay is complemen-
tary. Short-range connections guarantee success of greedy forwarding: since each
node is connected to its closest neighbors in (I ,d), it is always possible to forward
requests at least a small step closer to the target. In contrast, long-range connec-
tions are not critical for successful routing but they expedite the lookup process and
usually provide O(logn) bounds on the average number of lookup hops. This is
achieved by ensuring that the distance from the target decreases by a constant factor
in expected value after each routing step.

2 Modeling DHT Routing

Defining models and metrics to describe performance of different DHT routing ar-
chitectures is not a trivial task. An application using the DHT lookup service is
mostly interested in lookup latencies and in the ratio of successful lookups. A user
running DHT implementations might also be concerned by resource usage (CPU,
memory, storage, bandwidth, etc...) while a network operator is only interested in
the overall traffic (lookup + control) generated in the network. Since most of these
describe conflicting objectives, comparison only makes sense if conflicting perfor-
mance metrics are analyzed together describing fundamental trade-offs.

Some of the commonly used performance metrics (e.g., overlay network diam-
eter, node state) are not directly relevant for neither applications nor users nor net-
work operators. In [25], the author investigates the trade off between node state and
overlay network diameter. Loguinov et al. also use network diameter as the primary
metric for routing in [15].

Node state affects primarily memory usage at nodes. However, the amount of
memory required to keep track of connections is typically far from being a bottle-
neck in current systems. Node state can also influence the maintenance bandwidth
(e.g., in DHTs using per connection periodic keep-alive messages to detect con-
nection failures). However, it cannot be used as a general metric to characterize
maintenance traffic.

Overlay network diameter can be used to derive only lower bounds on the worst-
case number of routing hops for a lookup in a given overlay structure. Short paths
between nodes do not guarantee that a distributed routing algorithm is also able
to find them [8]. Hence, the distribution or the average number of routing hops is
a more informative performance metric which also allows to derive [23] lookup
latency – a key performance metric from a user perspective.

Analytical comparison of a performance metric (e.g., the number of routing hops)
of different DHTs is usually described by asymptotic notation, commonly used to
characterize algorithm complexity. E.g., CAN [19] with a D dimensional identifier
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space provides lookups in O(D
2 n

1
D ) hops in a network of n nodes. Although this is

a useful and simple way to determine scalability of a particular algorithm, it has its
limitations. Due to potentially different unknown constants hidden within the nota-
tion, it is not possible to compare two different algorithms with the same asymptotic
behavior (e.g., O(logn) hop count is typical for many DHTs). Furthermore, it is also
possible that an algorithm with better asymptotic behavior performs worse for prac-
tical network sizes.

Asymptotic notation may even be misleading when not used carefully. The pa-
per presenting Koorde [6] (a DHT based on de Bruijn graphs) is a good example
of such a misuse. Using a base-k de Bruijn graph, Koorde completes routing in
O(logk n) hops. Based on this, the authors claim that choosing k = logn, routing
cost is O(logn/ logk) = O(logn/ log logn). However, the base of the underlying de
Bruijn graph cannot be changed on the fly as the network grows since this would re-
quire rebuilding the whole DHT from the scratch. Therefore the parameter k should
not be treated as a function of network size. (Similarly, the dimension D of a CAN
[19] network is not expressed as a function of network size because this is also a
parameter that cannot be changed without rebuilding the whole system.) As a con-
sequence, the number of routing hops for Koorde using base-k de Bruijn graphs is
in fact O(logn/ logk).

For a few DHT architectures, there are some exact analytical results: e.g., the
average number of routing hops for Chord [22] is 1

2 log2n. [23] is one of the few pa-
pers which provide a generic analytical framework for the performance comparison
of different DHTs. Given the average number of routing hops in static networks,
the authors analyze the influence of three key factors on routing performance under
churn: lookup strategy, lookup parallelism and replication. Our results on the ex-
pected number of routing hops in static networks can be potentially used as an input
for this analytical framework to derive these additional performance metrics.

Finally – although not directly related to distributed hash tables – the “small-
world” navigation model of Kleinberg [8] is a fundamental contribution to theory
of routing in distributed systems. A network is said to be “small-world” when there
exists a short path between any two nodes, although most nodes are not directly
connected. This low network diameter is a necessary but not sufficient property for
efficient distributed routing. In [8], Kleinberg investigates requirements on overlay
topology for efficient distributed routing based solely on local information in small-
world networks. Similarly to DHT overlays, he defines a graph (embedded into a
metric space) with short-range connections to the closest nodes and long-range con-
nection(s) to some distant nodes. As in DHTs, Kleinberg’s routing is greedy: re-
quests are forwarded via the peer node being the closest to the target node in the
metric space. As the main finding of the paper, Kleinberg shows that distributed
routing will achieve the best asymptotical performance when the probability of hav-
ing a long-range connection to another node is inversely proportional to the Dth

power of distance of the two nodes (where D is the dimension of the metric space
embedding the small-world graph).

Most DHT routing architectures – although not inspired by Kleinberg’s work –
can be related to the one dimensional Kleinberg small-world model.
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2.1 Renewal Processes Revisited

Renewal processes are a special class of stochastic processes used to model indepen-
dent identically distributed occurrences. Let X1, X2, X3, ... be independent identically
distributed (i.i.d) and positive random variables defined by the distribution function
P(X < x) = F(x). Furthermore, let Tn be defined as Tn =∑n

i=1 Xi. Then the counting
process Y (t) = max{n : Tn ≤ t} is a renewal process (t ≥ 0).

Renewal processes are usually defined in the time domain. In the time domain,
Y (t) denotes the number of events until time t, Tn corresponds to the occurrence
time of the nth event and the random variables Xi correspond to inter-arrival times
between subsequent events. The name renewal process is motivated by the fact that
every time there is an occurrence, the process “starts all over again”; it renews itself
(since the variables Xi are i.i.d).

In contrast to the general usage, renewal processes in my dissertation are not de-
fined in the time domain but in the distance domain of a one dimensional metric
space. Furthermore occurrences are not events but the images of long-range con-
nections in this metric space and the random variables Xi correspond to distances
between the images of subsequent long-range connections.

In the followings, I briefly list the results of renewal theory that I use in the
upcoming sections (for further reading, see [4, 9, 11]). Note that the vocabulary of
renewal theory traditionally assumes a time domain for renewal processes. However,
all results are equally valid for the distance domain too.

Renewal function The expected value of the number of arrivals in function of the
elapsed time is called renewal function: m(t) = E [Y (t)].

Residual life Picking a random point in time (t), the random variable correspond-
ing to the time from this point until the next event (at time TY (t)+1) in a renewal
process is called residual life:

V (t) = TY (t)+1− t (1)

Residual life is also called residual lifetime, residual time or forward recurrence
time.

Expected value of asymptotic residual life The expected value of asymptotic resid-
ual life in a renewal process can be expressed as

lim
t→∞

E[v] =
μ2

2μ
. (2)

where μ = E[x] is the expected value of inter-arrival times and μ2 = E[x2] is the
second moment of inter-arrival times.

Distribution of asymptotic residual life Considering a renewal process with an
inter-arrival time distribution F(x), the probability density function of asymp-
totic residual life can be expressed as

lim
t→∞

g(v) =
1−F(v)

μ
, (3)
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where μ = E[x] is the expected value of inter-arrival times.
Length of a randomly selected renewal period Picking a random point in time (t)

in a renewal process, the pdf of the length of the renewal period marked by this
point (TY (t)+1 - TY (t)) is asymptotically:

lim
t→∞

h(x′) =
f (x′)x′

μ
, (4)

where f (x) is the pdf of inter-arrival times and μ = E[x] is the expected value of
inter-arrival times in the renewal process. It is important to note that the distribu-
tion of x′ and x are not the same since a random point in time will select longer
periods at higher probability than shorter periods.

Note that considering a random sample from a renewal process, the above for-
mulas are also valid in general, not only for the asymptotic case.

Lorden bound The renewal function of a renewal process is upper bounded by

m(t)≤ t
μ

+
μ2

μ2 +1, (5)

where μ is the expected value of inter-arrival times and μ2 is the second moment
of inter-arrival times in the renewal process (see [4], page 110.)

Poisson processes are a special class of renewal processes. Inter-arrival times in
a Poisson process are exponentially distributed. A Poisson process can be charac-
terized by the λ parameter of this exponential distribution which is also called the
intensity of the process.

A Poisson process of intensity λ can also be defined as a pure birth process:
the probability that an arrival occurs during an infinitesimally small interval dt is
λdt (independent of arrivals outside this interval) and the probability that more than
one arrival occurs is o(dt). This definition is equivalent with the renewal process
definition.

Random sampling Random and independent sampling of events with probability
p from a Poisson process of rate λ results into a Poisson process of rate pλ .

Superposition Superposition of two Poisson process of rate λ1 and λ2 respectively
results into a Poisson process of rate λ1 +λ2.

2.2 Assumptions and Notations

To describe the routing overlay of distributed hash tables, we reuse the terminology
and reference model defined in [1]. Let’s consider a one dimensional Euclidean
metric space within the interval [0,1) that wraps around (this can be represented
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as a ring, see Fig. 2). Distance between two nodes in this metric space is defined as
their distance along the ring in clockwise direction,3 formally: d(x,y) = y−x+ Ix>y.

Fig. 2 Model of unidi-
rectional DHT overlays
(example)

S2

S3

S1

L3

L2

L1

L0

dS

0

1

A

Each node has two different types of connections to other nodes: short-range
connections (called “local” connection in [1]) to a fixed number (NS) of closest
nodes (in clockwise direction) and long-range connections to some distant nodes.
These nodes are called short-range and long-range peers of the node, respectively.
Fig. 2 shows short-range connections (S1, S2, S3) and long-range connections (L0,
L1, L2, L3) of node (A). The distance of the node and its farthest short-range peer is
denoted by dS.

Routing is assumed to be greedy: a node forwards a lookup request to its peer be-
ing the closest to the target node in the metric space of the DHT (without overshoot-
ing it). This greedy routing process can be described by the following pseudo-code
algorithm:

3 This definition implies that the metric space is in fact only a quasi-metric space, since it does not
satisfy the symmetry requirements. Extending the model to bidirectional routing where distance is
defined as the shortest path along the ring (in any of the two directions), a real metric space can be
obtained.
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while node �= target do1

proxy ← GetClosestPeer(node,target);2

if Distance(proxy,target) < Distance(node,target) then3

node ← proxy;4

else5

error6

end7

end8

Algorithm 15: Greedy overlay routing

Routing overlay of many DHT implementations (Chord [22], Pastry [21], Sym-
phony [16], Accordion [12] etc.) can be described (or approximated) using the above
system model (e.g., routing in Pastry is more complex but is based on the same
greedy algorithm). However, there are a few exceptions, for example DHTs using
multidimensional metric spaces (e.g., CAN [19]) or non-Euclidean metric spaces
(e.g., Kademlia [17]).

2.2.1 Degree of Randomness

Since randomness and flexibility in the choice of long-range connections plays an
important role in both analysis and maintenance of overlays, let us first define two
extreme DHT overlay categories:

Definition 1 (Probabilistic power-law routing overlay (PPLRO)). A routing over-
lay is called probabilistic power-law routing overlay when the choice of long-range
connections is not deterministic and they only have to satisfy the following require-
ments: the probability of having a long-range connection to another overlay node is
inversely proportional to the Dth power of the distance between the two nodes in
the D dimensional metric space (I ,d) where the DHT maps node identifiers [8].
Join algorithm of probabilistic power-law routing overlays create initial long-range
connections of joining nodes according to this distance distribution and the choice
of long-range connections is mutually independent of each other.

Definition 2 (Deterministic power-law routing overlay (DPLRO)). A routing
overlay over a one-dimensional metric space4 is called deterministic power-law
routing overlay if long-range connections are determined by the power series of
the distances di = q

ci where c and q are constant so that c > 1 and 0 < q ≤ 1. For
unidirectional overlays, the ith long-range connection is chosen as the first node,
whose distance exceeds di while for bidirectional overlays, the ith connection is the
node closest to the point at distance di.

4 Extending this definition to multidimensional metric spaces on the analogy of probabilistic
power-law routing overlays is not trivial.
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Symphony [16], Accordion [12] and the routing scheme proposed in [2] are using
probabilistic routing overlays while a deterministic power-law routing overlay can
be thought of as a generalization of the Chord [22] overlay (for Chord, c = 2).

It is important to note that the term “power-law” is also used to denote the over-
lay of unstructured P2P systems structurally similar to scale-free random graphs
[3]. In that context, it refers to distribution of node degree. However, in Defini-
tions 1 and 2, the term “power-law” refers to distance distribution of long-range
connections.

2.2.2 Bidirectional Overlay Model

The unidirectional overlay and routing model presented above can be easily ex-
tended to bidirectional overlays with bidirectional routing. In a bidirectional over-
lay, both short-range and long-range connections are bidirectional. Another impor-
tant difference is the distance metric of the space (I ,d). Using the ring represen-
tation, distance of two nodes is defined as their shortest distance along the ring,
formally: db(x,y) = +min [d(x,y),d(y,x)]. Hence in contrast to unidirectional over-
lays, this is a real metric space also satisfying the symmetry requirements. As a re-
sult, from the point of view of distances, each node can split the DHT metric space
(I ,d) into two symmetrical partitions. Connections of a node are created indepen-
dently in both of these partitions. Figure 3 shows short-range and long-range con-
nections of node A in both partitions of the metric space for an example bidirectional
overlay.

Fig. 3 Model of bidirectional
DHT overlays (example)
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Setting the circumference of the ring to 2 units for bidirectional overlays, it is
easy to derive the bidirectional equivalent of any unidirectional overlay (where the
circumference of the ring is set to 1 unit). Connections of the bidirectional overlay
obey the distance distribution of the corresponding unidirectional overlay separately
in both partitions of the metric space (I ,d). Hence, the definition of probabilis-
tic and deterministic power-law routing overlay can be extended for bidirectional
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connections by applying either Defintions 1 or 2 separately for both partitions of
the metric space.

As a consequence of the definition of distance metric for bidirectional overlays,
greedy routing also becomes bidirectional; requests can be forwarded in both direc-
tions depending on the position of the peer node being closest to the target.

2.2.3 Node ID Distribution

The distribution of node identifiers in the metric space (I ,d) also affects mathe-
matical analysis of routing in the overlay. The ID space of node identifiers is discrete
and finite for most real systems, hence nodes can only be mapped to a finite subset
of points in the Euclidean metric space (I ,d). However, the granularity of this fi-
nite ID space is so fine (the size of the ID space varies between 2128 − 2256), that
node ID mapping can be considered continuous in (I ,d).

Furthermore, we assumed that given a network of n nodes, node identifiers are
drawn independently at random according to a uniform distribution over the range
[0,1) in (I ,d) (this is a reasonable assumption in most cases). This implies that
distances between adjacent IDs on the ring will be exponentially distributed. In a
few cases (explicitly noted), we assumed that peer identifiers partition the metric
space (I ,d) deterministically in equal partitions. This is not a realistic scenario, but
simplifies considerably mathematical analysis. In these later cases, we have always
compared analytical results using deterministic identifier assignment to simulation
results using random uniform distribution of peer identifiers.

Finally, for long-range connection selection in probabilistic power-law routing
overlays, we assume that it is possible to find a peer node at any given distance
(drawn according to a given distribution) in the metric space. This is not realistic in
a real system composed of a finite number of nodes. In practice, the closest existing
node to the given point is used instead. However, the resulting error between these
theoretical and real distances is inversely proportional to the size of the network,
hence this is negligible for large networks (which are in the main scope of this
analysis).

3 Transformed View of Long-Range Connections

Transformation is a widely used mathematical concept in many disciplines to re-
veal, analyze and exploit hidden system characteristics. One of the best known
examples of the application of a transformation method is JPEG encoding where
discrete cosine transform maps a 8x8 pixel area into spatial frequency components
[18]. In this example, transformation is used to exploit “hidden characteristic” of
human vision being much more sensitive to small variations in color and in bright-
ness for lower spatial frequencies than for higher frequencies. Hence higher spatial
frequency components can be encoded at smaller resolutions. In our analysis, we ap-



Mathematical Modeling of Routing in DHTs 379

ply a logarithmic transformation to distances between node identifiers in the metric
space of a DHT to reveal “hidden characteristics” of DHT routing.

Definition 3 (Logarithmically transformed view). Let (I ,d) be the metric space
of a DHT (see Section 1.1) where the distance between the image x0 = FP(p0) of a
node p0 and the image xi = FP(pi) of another node pi is defined as d(x0,xi). Then,
using the transformation function ft(u) = − lnu, the distance of p0 and pi in the
logarithmically transformed view of p0 is defined as:

d′(x0,xi) = ft [d(x0,xi)] =− ln [d(x0,xi)] . (6)

It is important to note that d′(x0,x1) is not a distance metric since it does not
obey the three metric space properties. However, d′(x0,x1) is not used as a distance
metric; transformation of distances is only a mathematical tool within the concept
of logarithmically transformed view.

The transformed view of a base node p0 can be used to characterize distances
between p0 and a set of other nodes in a DHT. This transformed view can be
represented along a half-line as follows: the base node p0 itself is at the end of
the half-line while other DHT nodes pi (e.g., peers of the base node, or the target
node of a lookup process) are represented along this half-line at distance d′(x0,xi)
from p0.

3.1 Long-Range Connection Density

Figure 4 represents long-range connections of a Chord [22], Pastry [21] and Kademlia
[17] node as well as long-range connections of a node in a probabilistic power-law
routing overlay (e.g., Symphony [16] or Accordion [12]). For Pastry, the parame-
ter b is the bit length of numbers in the routing table, for Kademlia, the parameter
k is the maximum size of buckets and for Chord, the parameter c is the parameter
used in the definition of deterministic power-law routing overlays (see Definition 2).
For each of these DHTs, the upper line shows long-range peers of the node in the
real metric space5 (to ease graphical representation, the ring geometry of the metric
space has been straightened) while the lower line shows these peers in the logarith-
mically transformed view of the node. In the real metric space, the represented node
is in point 0. In the transformed view, this point corresponds to +∞. Finally, long-
range connections in the transformed view span within the range [0,− lndS), where
dS is the distance from the farthest short-range peer of the node (represented by grey
circle in Fig. 4).

Consider now the segment (dS,1) covered by long-range connections in the real
metric space which corresponds to the segment (0,− lndS) in the transformed view

5 Since Kademlia uses a XOR metric, long-range peers of the Kademlia node are represented based
on their XOR distance from the node. Note that this is different from ID-based placement along
the ring.
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Fig. 4 Comparison of the routing table of some well known DHTs

of the node. Although long-range connection distribution differs for each of the
above DHT implementations, Fig. 4 shows that it is possible to partition this segment
in the transformed view into equally sized partitions of length Δx so that the number
of long-range connections NL(Δx) be the same inside each of these partitions (either
deterministically or in expected value). Based on this observation, one can define a
λΔx long-range connection density parameter as

λΔx =
E [NL(Δx)]

Δx
. (7)

In general, the choice of Δx is not arbitrary. In order to obtain constant long-range
connection density in the entire long-range connection domain of the transformed
view, Δx might need to be set to a DHT specific value (see again Fig. 4). However,
for a large subclass of DHTs (including regular power-law routing overlays defined
in the next subsection), long-range connection density can be defined independent
of the size Δx of partitions as:

λ = lim
Δx→0

E [NL(Δx)]
Δx

. (8)
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The main advantage of the proposed λ (or λΔx) parameter is that it provides a
simple and generic way to characterize long-range connection distribution. Further-
more, in O(logn) node state DHTs, λ characterizes the overlay independent of net-
work size. For DHTs with constant node degree (e.g., Symphony [16]), λ depends
on the size of the network (λ ∼

1
lnn ).

Many DHT implementations have one or more tunable system parameter which
affects long-range connection distribution, e.g., the bucket size k for Kademlia or
the bit length b of numbers in the routing table for Pastry. The λ long-range con-
nection density parameter allows easy comparison of overlay structure for these
DHT implementations despite their mutually incompatible sets of system parame-
ters. Figure 4 shows the λ parameter for each DHT as a function of their tunable
system parameters. Note that in many cases (e.g., Chord, Pastry or Kademlia), the
theoretical long-range connection values are only upper bounds of the actual long-
range connection density since some routing table entries may be empty (especially
for shorter distances).

3.2 Regular Power-Law Routing Overlays

Definition 4 (Regular power-law routing overlays (RPLRO)). A power-law rout-
ing overlay is called regular if the sequence of long-range connections of a node in
its transformed view correspond to a randomly chosen sample of length− lndS from
an infinite renewal process and these random samples are chosen independently for
each node.

Hence, from the definition of renewal processes, distances between subsequent
long-range connections of a node in its transformed view are i.i.d in a RPLRO.
Furthermore, the distribution function F(x) of these i.i.d random variables identi-
fies unambiguously a regular power-law routing overlay. Random sampling from
an infinite process (instead of defining long-range connections as a renewal process
starting from point 0 in the transformed view) ensures uniformity of long-range con-
nection density in the whole long-range connection range (also including the first
part of this range).

Theorem 1. Long-range connection density of a regular power-law routing overlay
is uniformly λ = 1

μ , where μ is the mean distance between subsequent long-range
connections of a node in its transformed view.

Proof. Let f (x) be the pdf and F(x) be the cdf of renewal intervals (correspond-
ing to the distances between subsequent long-range connections of a node in its
transformed view). As a result of the random sampling property of RPLROs, the
starting point of each partition of length Δx → 0 can be considered as a randomly
chosen point in the corresponding infinite renewal process. Hence this interval of
length Δx → 0 contains at least one renewal point (long-range connection) either
when the corresponding renewal interval (selected by this randomly chosen point)
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is smaller than Δx or when this interval is larger than Δx but the distance between
the randomly selected point and the next renewal is less than Δx. Since the pdf of
the length of the renewal period selected by a random point is f (x)x

μ , the probability
that such an interval contains at least one renewal (long-range connection) can be
written as:

p1 =
∫ Δx

0

f (x)x
μ

dx+
∫ ∞

Δx

f (x)x
μ

Δx
x

dx. (9)

The probability that this interval contains k or more arrivals (where k > 1) can be
upper bounded as follows:

pk ≤ p1Fk−1(Δx). (10)

The expected number of renewals (long-range connections) within a randomly se-
lected period of length Δx can be written as:

E[NL(Δx)] =
∞

∑
i=1

pi. (11)

Hence, combining (10) and (11):

p1 ≤ E[NL(Δx)] ≤ p1

[
1+

∞

∑
i=1

Fi(Δx)

]
. (12)

Dividing by Δx and applying Equation( 7):

p1

Δx
≤ λΔx ≤ p1

Δx

[
1+

∞

∑
i=1

Fi(Δx)

]
. (13)

Applying Δx → 0 to Equation (9) and the (reasonable) assumptions6 that
limΔx→0 F(Δx) = 0 and limΔx→0 f (Δx) < ∞:

lim
Δx→0

p1

Δx
=

f (0)Δx
2μ

+
1−F(Δx)

μ
= 0+

1
μ

. (14)

Finally, substituting Equation( 14) into the Inequality (13):

1
μ
≤ λ ≤ 1

μ
→ λ =

1
μ

. (15)

Probabilistic power-law routing overlays are regular (see Section 3.3). Pastry and
Kademlia are not regular but are close to being regular with only small distortions.
Finally, Chord and deterministic power-law routing overlays in general are not reg-
ular, but, they can be made regular: Considering the transformed view of a node in a

6 These assumptions can be made because 0 distance between subsequent long-range connections
does not make sense in an overlay.
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DPLRO, its first long-range peer is always located at lnc. Substituting the constant
q in Defition 2 by a random variable so that this first long-range peer be evenly
distributed in the range [0, lnc], the overlay becomes regular.

To characterize regular power-law routing overlays, we also introduce a cv long-
range connection coefficient of variance parameter describing the relative variance
of distances between long-range connections in the transformed view. cv = σ

μ , where
σ is the standard deviation while μ is the mean of distances between consecutive
long-range connections in the transformed view of a node. In Section 4.1, we show
that using the λ and cv parameters it is possible to derive a lower bound on routing
performance.

3.3 Probabilistic Power-Law Routing Overlays

It is interesting to compare the degree of randomness in the choice of long-range
connection for different DHT implementations in Fig. 4. In Chord, each connection
is deterministic. Pastry is somewhat more flexible, each routing table entry may
contain any node of the network from a given ID range, increasing the degree of
randomness. Kademlia goes one small step further in flexibility and randomness
and allows the choice of any nodes (up to a maximum number of k) from a given
range.

However, the choice of long-range connections can be made “even more random”
within the family of routing overlays for which long-range connection density can
be defined. For the “most random” routing overlays out of this family, long-range
connections of a node in its transformed view correspond to a random and indepen-
dent placement of points in the range (0,− lndS) according to a uniform distribu-
tion, which is equivalent to a truncated (spatial) Poisson process. In the following,
we show that this family of “most random” routing overlays is equivalent to the
family of probabilistic power-law routing overlays over a one dimensional metric
space (see Definition 1).

Theorem 2. Consider a truncated Poisson process of rate λ in the range (0,− lndS).
Furthermore consider a routing overlay where the sequence of long-range connec-
tions in the transformed view of each node is defined as a random realization of
this Poisson process. Then this routing overlay is a probabilistic power-law routing
overlay of long-range connection density λ .

Proof. Consider a small range [x,x +Δx] in the transformed view. Inverse trans-
forming this range back to the real metric space using y = f−1

t (x) = e−x results into
the range [e−x−Δx,e−x] = [y−Δy,y] in the real metric space.

Using the birth process definition of Poisson processes, the probability of having
an arrival (long-range connection) in the range [x,x +Δx] of the transformed view
is λΔx when Δx → 0. Since the inverse transformation function f−1

t (x) is strictly
monotone decreasing, the probability of having a long-range connection in the cor-
responding range [y−Δy,y] of the real metric space is the same.
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Using the derivative of the transformation function ft(y) =− lny, it is possible to
express the relationship between the length of these ranges when they are infinitesi-
mally small:

lim
Δy→0

Δx =− f ′t (y)Δy =
Δy
y

. (16)

Hence the probability of having a long-range connection in an infinitesimally
small range of length Δy→ 0 at a distance y from this node is λ Δy

y . This is equiva-
lent to the long-range connection distribution requirement of Definition 1 for one
dimensional metric spaces. Being generated from a Poisson process, long-range
connections also satisfy the independence requirement of Definition 1, hence the
generated overlay is a probabilistic power-law routing overlay.

Finally, the expected number of arrivals in a Poisson process of rate λ for an in-
terval of length Δx is λΔx, hence substituting into Equation( 7) any positive value of
Δx interval length, the obtained long-range connection density value for this overlay
equals to the λ rate of the generating Poisson process.

Theorem 3. Consider a probabilistic power-law routing overlay in a one dimen-
sional metric space with a long-range connection density λ . Then the sequence of
long-range connections of any node in its transformed view correspond to a random
realization of a truncated Poisson of rate λ in the range (0,− lndS).

Proof. According to Definition 1, the probability of having a long-range connection
in an small range [y−Δy,y] of a one dimensional metric space is cΔy

y when Δy→ 0
(c is a positive constant).

Transforming this range into the transformed view using x = ft(y) =− lny results
into the range [− lny,− ln(y−Δy)] = [x,x +Δx]. Since the transformation ft(y) is
strictly monotone decreasing, the probability of having a long-range connection in
the corresponding range [x,x+Δx] of the transformed view is the same.

Using the derivative of the inverse transformation function f−1
t (x) = e−x, it is

possible to express the relationship between the length of these ranges when they
are infinitesimally small:

lim
Δx→0

Δy =− f−1
t

′
(x)Δx = e−xΔx = yΔx. (17)

Hence the probability of having a long-range connection in an infinitesimally
small range of length Δx→ 0 in the transformed view is cΔy

y = cΔx, independent of
the value of x within the range (0,− lndS). Since long-range connections of a prob-
abilistic power law routing overlay are also independent of each other according to
Definition 1, the sequence of long-range connections of any node in its transformed
view correspond to a random realization of a truncated Poisson of rate c in the range
(0,− lndS).

Finally, using the definition of long-range connection density and the assumption
that the long-range connection density of the given overlay is λ , it is deducible that
c = λ .
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Since a Poisson process is a special renewal process, from Theorem 2, it fol-
lows that probabilistic power-law routing overlays belong to the subclass of regular
power-law routing overlays.

3.4 Distortions in the Transformed View

In Section 3.3, we assumed that a node can find (and create a connection to) a peer
node at any given point of the metric space (I ,d). In reality, given a network of
n nodes, a connection can be created only to n− 1 points in (I ,d) corresponding
to the images of all the other nodes in (I ,d). Hence in real systems, a connec-
tion is established to the peer node whose images is the closest to the “theoretical”
point in (I ,d) drawn according to the required distribution. This introduces small
distortions to theoretical distance distribution.

Similar distortions exist for deterministic power-law routing overlays. E.g., in
Chord, long-range connections (fingers) point to the first node whose distance is not
smaller than 1

2 , 1
4 , 1

8 , .... This results into a sequence of distances 1
2 + ε1,

1
4 + ε2,

1
8 +

ε3, .... In a network of n nodes uniformly distributed in the range [0,1) of the metric
space (I ,d), ε will be a random variable with exponential distribution of para-
meter n.

While the distribution of this small offset is the same for all distances in the real
metric space, it depends strongly on the distance in the transformed view of a node.
For large real distances, this offset is negligible, however, it increases exponentially
and can be considerable for small real distances in the transformed view.

4 Stochastic Analysis of Routing

The role of short-range and long-range connections in the routing process is com-
plementary. While short-range contacts ensure the success of greedy forwarding,
long-range contacts expedite routing and provide O(logn) bounds on the number
of routing hops. For deterministic routing geometries, the routing process can be
clearly separated into a first phase using only long-range contacts and a second
phase using only short-range contacts. For non-deterministic routing geometries,
the first routing hops usually take place via long-range connections while the last
hops usually take place via short-range connections and the probability of routing
via a short-range peer increases monotonously approaching to the target. Neverthe-
less, for non-deterministic routing geometries, it is not possible to separate routing
process into distinct long-range and short-range routing phases.

Analytical study of this dual routing process is rather complicated. Analysis be-
comes much easier if forwarding is restricted to either only short-range or only
long-range connections.
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Restricting forwarding to short-range connections, progress toward the target be-
comes linear. Assuming that node identifiers are drawn independently and at ran-
dom according to a uniform distribution from the interval [0,1) of the metric space
(I ,d) (see Section 2.2), each routing hop has the same length in expected value in-
dependent of the current distance from the target.7 The length of consecutive routing
hops can be described by a series of independent Erlang distributed random variable
with rate n (number of nodes in the network) and shape parameter NS (number of
short-range connections per node). Obviously, routing via only short-range contacts
degrades routing performance from O(logn) to O(n).

In Section 4.1, we show that using logarithmic transformation, analysis is also
possible when restricting forwarding to long-range connections; progress toward
the target will be linear in the transformed view of the target. However, simply for-
bidding forwarding via short-range contacts may cause routing failures. Therefore,
to analyze long-range only forwarding, we use an imaginary routing overlay where
the sequence of long-range connections in the transformed view of a node is infinite
instead of being truncated after reaching the short-range connection domain. For
regular power-law routing overlays, this means that long-range connections corre-
spond to infinite random samples from a renewal process instead of random samples
of length − lndS.

In the real routing overlay, forwarding takes place via a short-range peer only
when the target is closer than the closest long-range peer of the forwarding node.
When the real routing overlay is forwarding via a short-range peer, the modified
long-range only model is forwarding through an imaginary long-range peer at a
smaller distance

Figure 5 demonstrates the difference between real forwarding (via a short-range
connection) and long-range only forwarding via an imaginary long-range connec-
tion. The upper line in the figure represent the real metric space while the lower line
shows the transformed view of the forwarding node. For a real overlay, forwarding
occurs via a short-range peer. However, when restricting forwarding to long-range
connections in order to simplify analysis, forwarding takes place via the imaginary
long-range peer being the closest to the target node.

0

10

short-range peer
imaginary long-range pee
real long-range peer
target node

Fig. 5 Forwarding through imaginary long-range connections

Forwarding via an imaginary long-range connection always results in less progress
than the real forwarding would result in via a short-range connection. Therefore

7 If NS > 1, the expected value of the last hop reaching the target is smaller.
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results on routing progress obtained from analysis restricted to long-range forward-
ing can be used as a lower bound on real routing progress.

Modeling long-range only forwarding, a routing process is terminated when the
distance of the current forwarding node from the target decreases below dS (the
distance between the target node and the node whose farthest short-range peer is
the target node8). Let Ml be the number of routing hops for long-range only routing
until the termination and let M be the number of routing hops for the real routing
process. Since routing progress of long-range only forwarding is always equal to or
less than routing progress of real forwarding, the real routing process will always
reach a peer with direct short-range connection to the target node in Ml or less
hops. Hence Ml + 1 can be used as an upper bound on the real number of routing
hops:

M ≤Ml +1. (18)

The rest of this section is structured as follows: Section 4.1 analyzes progress
of the routing process in the transformed view of the target using this long-range
only forwarding model. Then Section 4.2 uses the obtained long-range only results
to derive upper bounds on the number of routing hops for the real routing process
(using both short-range and long-range connections).

4.1 Analysis of Routing in the Transformed view

Analysis of routing in the transformed view can be best introduced through an ex-
ample. Figure 6a shows one hop of an example routing process: a request reaches
forwarding node Fk in step k and node Fk forwards this request to its long-range peer
Fk+1 being the closest to the target node T without overshooting it. Figure 6b shows
distances in the real metric space (upper line) and the transformed view (lower line)
of node Fk while Fig. 6c shows the same distances as seen in the real and trans-
formed view of the target. Note that the default direction of the ring is reversed in
Fig. 6c in order to represent remaining distances from the perspective of the target
node.

dk and dk+1 is the distance from the target in step k and k +1 respectively, while
d′k and d′k+1 are the same distances in the transformed view of the target. To analyze
per hop routing progress in the transformed view of the target node, let’s express the
progress uk = d′k+1− d′k toward the target after step k as a function of the distance
vk from the next-hop node in the transformed view of forwarding node Fk. Applying
transformation to distances in Fig. 6c:

8 Assuming uniform distribution of node identifers in the DHT metric space, dS will be a random
variable with Erlang distribution of rate n and shape parameter NS (where n is the number of nodes
in the DHT and NS is the number of short-range connections per node.)
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Fig. 6 Routing from hop k to hop k +1

uk =− lndk+1−d′k. (19)

Inverse transforming distances in Fig. 6/b:

dk+1 = e−d′k − e−d′k−vk = e−d′k(1− e−vk). (20)

Finally, substituting Equation(20) into (19):

uk =− ln
[
e−d′k

(
1− e−vk

)]−d′k =− ln
(
1− e−vk

)
. (21)

Hence the progress uk after routing hop k in the transformed view of the target can be
expressed as a function of the distance vk from the next-hop node in the transformed
view of forwarding node Fk:

u = h(v) =− ln
(
1− e−v) . (22)

Note: as Section 2.2 mentions, routing in DHTs with non-Euclidean metric
spaces cannot be analyzed using this model. The reason is that Equation(20) uses
the assumption that d(x,z) = d(x,y)+ d(y,z) which holds only for the one dimen-
sional Euclidean metric space. For any other metric spaces: d(x,z)≤ d(x,y)+d(y,z)
(triangle inequality).

In the followings, we analyze routing in regular power-law routing overlays in
general. Using the above transformation results, we derive a lower bound on routing
performance as a function of λ and cv. Then we analyze two special cases of regular
power-law routing overlays in more details: the probabilistic and “regularized” de-
terministic overlays. We derive exact analytical results on their routing performance
and compare these results to the generic lower bound.
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4.1.1 Regular Power-Law Routing Overlays

Theorem 4. Considering the routing process via long-range connections in a reg-
ular power law routing overlay, the length of the per-hop progress uk in the trans-
formed view of the target is i.i.d for subsequent hops. Furthermore, the expected
value of this per-hop routing progress is lower bounded by

E[uk]≥− ln

[
1− e−

1+c2
v

2λ

]
. (23)

where λ is the long-range connection density and cv is the long-range connections
density coefficient of variation in the overlay.

Proof. In regular power-law routing overlays, the sequence of long-range connec-
tions of different nodes in their transformed view correspond to independently se-
lected random samples from an infinite renewal process. Therefore, the target node
can be considered as a uniformly distributed random point in the transformed view
of a forwarding node (see Fig. 6b). As a consequence, the random variable vk cor-
responds to the distance of a random point from the next renewal (long-range con-
nection) in the renewal process of long-range connection (residual life). Hence, the
series of the random variables vk will be i.i.d, and applying Equation (22), the series
of the random variables uk will be also i.i.d.

Let μ = E[x] be the expected value and μ2 = E[x2] be the second moment of
the length of renewal periods (corresponding to distances between subsequent long-
range connection in the transformed view of a node). Then, from renewal theory, the
mean residual life in this renewal process (corresponding to E[v]) can be expressed
as:

E[v] =
E[x2]
2E[x]

=
Var(x)+E2[x]

2E[x]
=

E[x]
2

(1+ c2
v). (24)

Using Theorem 1, E[x] = 1
λ for any RPLRO, hence:

E[v] =
1+ c2

v

2λ
. (25)

Using Equation 22, the distribution of the per-hop routing progress in the trans-
formed view of the target (u) can be expressed as a convex function h(v) of the
random variable v. Therefore the Jensen inequality can be applied as follows:

E[u] = E[h(v)]≥ h(E[v]) =− ln

[
1− e−

1+c2
v

2λ

]
. (26)

4.1.2 Probabilistic Power-Law Routing Overlays

According to Theorem 3 on PPLROs, the sequence of long-range connections in
the transformed view of a node can be described as a realization of a stationary
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Poisson process of rate λ , where λ is the long-range connection density of this
overlay. Hence, in the transformed view of the forwarding node Fk, the target of
the lookup process corresponds to an arbitrary point while the image of the next-
hop node Fk+1 corresponds to the next arrival in this Poisson process. The random
variable vk describes the distance between these two points in the transformed view
of Fk (see Fig. 6b).

As a consequence of the memoryless property of Poisson processes, picking an
arbitrary point in the process, the distance to the next arrival will always be expo-
nentially distributed with parameter λ . Hence the distribution of vk is the same for
each step of the routing process (via long-range connections) and the pdf of v vk is:

gprob(v) = λe−λv. (27)

Another consequence of the memoryless property of Poisson processes is that the
random variables vk and vk+1 are independent, hence the series vk are i.i.d random
variables. Since uk (the progress toward the target in the kth routing hop) can be
derived from vk using Equation (22), uk is also a series of i.i.d random variables
(since PPLROs are regular, this could be derived also applying Theorem 4). The pdf
of u can be obtain by transforming the pdf of v using the function h(v):

fprob(u) = gprob
(
h−1(u)

)∣∣∣∣
dh−1(u)

du

∣∣∣∣ = λ (1− e−u)(λ−1)e−u. (28)

Hence:

Fprob(u) =
∫ u

0
fprob(t)dt = (1− e−u)λ . (29)

Finally, the expected value of the length of one routing hop in the transformed
view of the target9:

Eprob[u] =
∫ ∞

0
fprob(u)u du = Hλ , (30)

where Hx is the harmonic number [24] (generalized for real numbers) of x. For
practical λ values, the following approximation can be used10:

Hλ ≈ ln [(e−1)λ +1] . (31)

The above results can be transformed back from the transformed view of the
target node to the real metric space of the DHT as follows.

Theorem 5. Consider the routing process in a probabilistic power-law routing
overlay of long-range connectiondensity λ . Then the series of random variables

9 Calculated using the Mathematica software from Wolfram Research Inc.
(http://www.wolfram.com)
10 This approximation provides less than ±1% relative error if λ > 0.5 and less than +5% relative
error if 0 < λ < 0.5. Note that λ is typically larger than 1

ln2 ≈ 1.41 for most DHTs (see Section 3.1)
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wk = dk+1
dk

describing the ratio of distances from the target after and before a rout-
ing hop via a long-range connection are i.i.d and the pdf and expected value of wk

are:
f w
prob(w) = λ (1−w)(λ−1) if 0 < w < 1 and0otherwise (32)

and

E[w] =
1

1+λ
. (33)

Proof. Since uk = d′k+1− d′k in the transformed view of the target and since trans-
formed distances can be obtained as d′k = − lndk and d′k+1 = − lndk+1 from dis-
tances in the real metric space, uk can be expressed as:

uk =− lndk+1− (− lndk) =− ln
dk+1

dk
. (34)

Hence defining, the random variable wk = dk+1
dk

as the ratio of distances after and
before a routing hop via a long-range connection, this random variable wk can be
expressed as a function wk =Φ(uk) = e−uk of the random variable uk. According to
Theorem 4, uk is a series of i.i.d random variables, therefore wk will be also a series
of i.i.d random variables (to simplify notation, uk and wk are denoted simply by u
and v hereafter). Φ(u) = e−u is a strictly monotone decreasing function. Hence the
cdf of w can be expressed from the cdf of u as:

Fw
prob(w) = 1−Fprob

(
Φ−1(w)

)
= 1−

[
1− e−(− lnw)

]λ
= 1− (1−w)λ . (35)

The pdf of w can be obtained as the derivative of Fw
prob(w):

f w
prob(w) =

dFw
prob

dw
= λ (1−w)(λ−1). (36)

As a result of greedy routing, dk+1 < dk holds for each routing step, hence 0 < wk <
1 and the expected value of the random variable w is:

E[w] =
∫ 1

0
f w
prob(w)wdw =

[
(1−w)λ (1+λw)

1+λ

]1

0

=
1

1+λ
. (37)

Hence the distance to the target decreases in expected value by a factor of
1 + λ after each routing hop via a long-range connection. Since these distance
decrease ratios in subsequent routing hops are independent, the expected value
of distance decrease after i routing hops via long-range connections can be exp-
ressed as:

E

[
dk+i

dk

]
=

(
1

1+λ

)i

. (38)
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4.1.3 Deterministic Power-Law Routing Overlays

Definition 2 introduces deterministic power-law overlays which can be considered
as a generalization of the Chord overlay. These overlays are not regular because the
sequence of long-range connections in the transformed view of nodes correspond
to the same renewal process for each node and lacks the random sampling prop-
erty of regular power law routing overlays. However, DPLROs can be made regular
substituting the constant q in Definition 2 with a random variable so that the first
long-range peer is evenly distributed over the range [0, lnc] in the transformed view
of the node. In this subsection, we analyze these “regularized” deterministic power-
law routing overlays.

To ease comparison with PPLROs and regular power-law routing overlays in gen-
eral, the generic λ long-range connection density is used during the analysis instead
of the parameter c in the definition of deterministic power law routing overlays. The
relationship between these two parameters can easily be determined from Fig. 4:

λ =
1

lnc
⇔ c = e

1
λ . (39)

As for any regular power-law routing overlay, target nodes in the transformed
view of forwarding nodes can be considered as uniformly distributed random points.
Hence the pdf of the random variable vk for DPLRO:

gdet(v) =

⎧
⎨
⎩
λ if 0 < v <

1
λ

0 otherwise
(40)

Transforming this distribution using Equation( 22), the pdf of the random variable
uk:

fdet(u) = gdet
(
h−1(u)

)∣∣∣∣
dh−1(u)

du

∣∣∣∣ =

⎧
⎨
⎩
λ

e−u

1− e−u if u >− ln
[
1− e

1
λ

]

0 otherwise
(41)

Hence the expected value of the per-hop routing progress in the transformed view
of the target node can be obtained as11:

Edet [u] =
∫ ∞

− ln

[
1−e

− 1
λ
]λ

e−u

1− e−u udu. (42)

4.1.4 Comparison of Per-Hop Routing Progress in the Transformed View

In the previous subsections, we analyzed routing via long-range connections in reg-
ular power-law routing overlays. In Theorem 4, we show that the length of the

11 The analytical form of this integral is too complicated, Fig. 7 represents the results numerically
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per-hop progress in the transformed view of the target (distance between the images
of subsequent forwarding nodes in this transformed view) is i.i.d. In other words,
lookup approaches toward the target in its transformed view at constant “speed” in
expected value for any regular power-law routing overlay.

Furthermore, knowing the λ long-range connection density and the cv long-range
connection density coefficient of variation parameters of the overlay, it is possible
to derive a lower bound on the expected value of the length of this per-hop progress
in the transformed view of the target (see Equation (23)).

We have also derived analytically the expected value of this per hops progress
for two special cases, namely the probabilistic and the “regularized” deterministic
power-law routing overlays. Figure 7 compares these expected values as well as their
generic lower bounds (derived using Inequality 23) as a function of the long-range
connection density. The result shows that deterministic overlays provide better per-
hop progress than probabilistic overlays for all values of λ . This is a consequence
of different coefficients of variation (cv) for distances between subsequent long-
range connections. According to Equation (23), the lower bound on E[u] decreases
monotonically with increasing cv values. For DPLROs, where the distance between
subsequent long-range connections is constant in the transformed view of a node:

cdet
v = 0, (43)

while for PPLROs, where these distances are exponentially distributed:

cprob
v =

σ
μ

=
1
λ
1
λ

= 1. (44)

Although Equation (23) can be used to express lower bounds on the expected
value for any regular power-law routing overlay, the distribution of per-hop rout-
ing progress can differ significantly for different overlays. Figure 8 compares the
pdf f (u) for different long-range connection density values both for probabilistic
and deterministic power-law routing overlays. As it can be expected, the deter-
ministic routing overlay guarantees a minimum progress for each routing hop. In
probabilistic routing overlays, there is no such lower bound on the length of one
single hop.

Equation (29) reveals another interesting property of the distribution of u for
probabilistic power-law routing overlays: Fprob(u) can be obtained by raising the
cdf of an exponential distribution to the power λ . As a result, λ = 1 is a very spe-
cial long-range connections density value where the length of one routing hop in
the transformed view of the target node is exponentially distributed with parame-
ter 1. This means that the sequence of routing hops in the transformed view of the
target node corresponds to the same stochastic process as the sequence of long-
range connections in the transformed view of any nodes; both can be described by
a Poisson process of rate 1. For any other λ values, the length of routing hops is
not exponentially distributed. Figure (8) shows well the difference in the shape of
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the probability density function for long-range connection density values λ = 1,
λ < 1 and λ > 1.

The sequence of long-range connections in the transformed view of a node can
also be approximated by a renewal process for many “non-regular” DHTs (see
Section 3.1). However, irregularities in the distribution of distances between
successive long-range connections induces distortions to the “constant speed” pro-
gress in the transformed view of the target and make mathematical analysis
difficult.

For example, in Pastry, long-range connection density have a slight periodic vari-
ation. The length of this period is b ln2 in the transformed view (where b is the bit
length of numbers in the routing table). This slight periodic fluctuation is visible on
the graph showing the expected number of routing hops as a function of network
size (see Fig. 4 in paper [21]).
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4.2 Upper Bound on the Expected Number of Routing Hops

In the previous subsections, we have analyzed routing via long-range connections
in the transformed view of target nodes. We have shown that the per-hop routing
progress uk is i.i.d for regular power-law routing overlays, hence the images of for-
warding nodes in the transformed view of the target can be described as a renewal
process. Furthermore, we proposed a lower bound on the expected value of this
per-hop progress as a function of the λ and cv overlay parameters (see Theorem 4).

Although these results cannot be used directly to characterize overlay perfor-
mance, the proposed renewal process model allows analytical derivation of an im-
portant overlay performance metric: an upper bound on the expected number of
routing hops as a function of network size and the overlay parameters (λ , cv and
NS). The computation of this overlay performance metric is based on the upper
bound of Lorden for renewal processes (see [4], page 110):

UL(t)≤ t
μ

+
μ2

μ2 −1, (45)

where UL(t) is the renewal function (the expected value of renewals until time t), μ
is the mean of renewal periods and μ2 is the second moment of renewal periods. Ap-
plying this bound to the renewal process corresponding to the sequence of forward-
ing nodes in the transformed view of the target node, the variables in Inequality(45)
correspond to the followings:

• UL(t) corresponds to the expected value of the number of routing hops for long-
range only routing;

• t corresponds to the length of the long-range routing path in the transformed view
of the target node (from the image of the initiator node to the image of the first
node having a direct short-range connection to the target node);

• μ corresponds to E[u], for which, Theorem 4 gives a lower bound as a function
of the overlay parameters λ and cv;

• μ2 corresponds to E[u2] =
∫ ∞

0 u2 f (u)du.

Lemma 1. Considering the routing process via long-range connections in a regular
power law routing overlay, the second moment of the length of the per-hop progress
u in the transformed view of the target node is upper bounded by

E[u2]≤ 2.41λ , (46)

where λ is the long-range connection density of the overlay

Proof. The random variable u can be obtained from the random variable v using
Equation (22) while the variable v itself corresponds to the residual life in the re-
newal process corresponding to the sequence of long-range connections in the trans-
formed view of a node (see proof of Theorem 4). From renewal theory, the pdf of
the residual life v can be expressed as follows:
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g(v) =
1−F(v)

E(x)
= λ (1−F(v)), (47)

where F(x) is the cdf of renewal intervals (corresponding to the distances between
subsequent long-range connections of a node in its transformed view), E[x] is the
expected length of these intervals and we have used 1

E[x] = λ from Theorem 1.

Since a cdf is always a non-decreasing function and 0 ≤ F(x)≤ 1, the pdf g(v)
is a non-increasing function upper bounded by g(v)≤ g(0) = λ .

This upper bound can be used to derive an upper bound on f (u). Using Equa-
tion( 22) to transform v to u:

f (u) = g(− ln(1− e−u))
e−u

1− e−u ≤ λ
e−u

1− e−u . (48)

Hence

E[u2] =
∫ ∞

0
u2 f (u)du ≤

∫ ∞

0
λ

e−u

1− e−u u2du ≤ 2.41λ . (49)

Lemma 2. Assuming uniform distribution of node identifiers in the metric space of
the DHT and uniform selection of target nodes for the routing process, the expected
length of the routing path in the transformed view of the target is:

E[t] = lnn+ γ−1−HNS−1 + ε, (50)

where NS is the number of short-range connections per node, n is the number of
nodes in the overlay, Hk is the kth harmonic number, γ is the Euler-Mascheroni
constant 12 and ε is a small positive error term

ε ∈ o

(
nNS

en

)
(51)

negligible except for very small network sizes.

Proof. When using the long-range only forwarding model, a routing process (as
seen in the transformed view of the target) starts from the image of the initiator
node and ends at the image of the first node having a direct short-range connection
to this target node. The expected length E[t] of this routing path can be obtained as
the difference between the expected location of these start and end points.

Assuming that nodes of the overlay are uniformly distributed in the range [0,1)
of the DHT metric space and target nodes are selected also uniformly by initiator
nodes, the distance between initiator and target nodes will be uniformly distributed
over the interval (0,1). Applying logarithmic transformation to this distribution ac-
cording to Equation (6) results into exponentially distributed distances in the trans-
formed view of the target with the pdf : f ′(x) = e−x. Hence the expected value of the
distance between the target and initiator nodes in the transformed view of the target

12 The Euler-Mascheroni constant is defined as γ = limk→∞(Hk− lnk) ≈ 0.5772.
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will be
E[Lstart ] =

∫ ∞

0
e−xxdx = 1. (52)

Assuming again that nodes of the overlay are uniformly distributed in the metric
space of the DHT, the distance between a node and its farthest short-range peer will
be Erlang distributed with rate n and shape parameter NS, where n is the number
of nodes in the overlay and NS is the number of short-range connections per node.
Hence the pdf of this distance distribution will be:

fErl(y) =
nNS yNS−1e−ny

(NS−1)!
. (53)

Transforming the pdf of this Erlang distribution according to Equation (6), the pdf
in the transformed view will be:

f ′Erl(x) = fErl
(

f−1
t (x)

) d f−1
Erl

dx
=

e−[ne−x+x(NS−1)]nNS

(NS−1)!
. (54)

Hence the expected value of the distance between a node and its farthest short-range
peer in its transformed view13:

E[Lend ] =
∫ ∞

0
f ′Erl(x)xdx = lnn+ γ−HNS−1 + ε, (55)

where Hk is the kth harmonic number, γ is the Euler-Mascheroni constant and ε is a
small positive error term upper bounded by

ε < e−n
[

1+
(n+NS)NS−2

(NS−1)!

]
. (56)

Hence ε can be expressed using the following asymptotic bound:

ε ∈ o

(
nNS

en

)
. (57)

Typically, NS is a small number, hence – except for very small network sizes – ε is
negligibly small.

Theorem 6. The expected number of routing hops U in a regular power-law routing
overlay is upper bounded by:

U(n,λ ,cv,NS) ≤ lnn−HNS−1−0.42

− ln

[
1− e−

1+c2
v

2λ

] +
2.41λ

ln2
[

1− e−
1+c2

v
2λ

] + ε, (58)

13 Calculated using the Mathematica software from Wolfram Research Inc.
(http://www.wolfram.com)
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where n is the number of nodes in the overlay, λ is the long-range connection den-
sity, cv is the long-range connection density coefficient of variation, NS is the number
of short-range connections per node and ε is a small positive error term

ε ∈ o

(
nNS

en

)
(59)

negligible except for very small network sizes.

Proof. Substituting the results of Lemma 1, Lemma 2 and Theorem 4 into the Lor-
den bound (Inequality 45), an upper bound can be obtained on the expected number
of routing hops for long-range only forwarding:

UL(t) ≤ lnn−HNS−1−0.42+ ε

− ln

[
1− e−

1+c2
v

2λ

] +
2.41λ

ln2
[

1− e−
1+c2

v
2λ

] −1. (60)

Then, the upper bound on the number of routing hops for real routing (via both
short-range and long-range connections) can be obtained using U(t) < UL(t) + 1
from Inequality (18).

When the first and second moments of the per-hop progress u in the transformed
view of the target are known, the upper bound of Theorem 6 can be further tightened:

Theorem 7. The expected number of routing hops U in a probabilistic power-law
routing overlay is upper bounded by:

U(n,λ ,NS) ≤ lnn−HNS−1−0.42
Hλ

+
1.645−ψ ′(1+λ )

H2
λ

+1+ ε, (61)

where n is the number of nodes in the overlay, λ is the long-range connection den-
sity, and NS is the number of short-range connections per node, ψ ′(x) is the first
derivative of the digamma function and ε is a small positive error term

ε ∈ o

(
nNS

en

)
(62)

negligible except for very small network sizes.

Proof. Using Equation (30), the first moment of u is μ = Hλ , where Hx is the har-
monic number generalized for real numbers. The second moment of u can be derived
from the pdf of u given by Equation (28):

μ2 =
∫ ∞

0
fprob(u)u2du =

π2

6
+H2

λ −ψ ′(1+λ ). (63)

Substituting μ , μ2 and the result of Lemma 2 into the Lorden bound (Inequality 45)
an upper bound can be obtained on the expected number of routing hops for long-
range only forwarding:
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UL(t) ≤ lnn−HNS−1−0.42+ ε
Hλ

+
π2

6 +H2
λ −ψ ′(1+λ )

H2
λ

−1. (64)

Performing simplifications, the upper bound on the number of routing hops for real
routing (using both short-range and long-range connection) can be obtained using
U(t) < UL(t)+1 from Inequality (18).

5 Summary

Although most DHT overlays are structurally similar to the “small-world” naviga-
tion model of Kleinberg [8] – architectural and algorithmic details of different DHT
variants differ significantly. Furthermore, lookup performance depends on a sets
of different and often incompatible parameters which makes analytical comparison
rather difficult. The objective of this chapter was to propose a general analytical
model that can be used to investigate and compare static routing performance of
most DHT implementations as a function of their overlay structure.

To capture the above mentioned common foundations of overlay structure, we
have introduced the concept of logarithmically transformed view, where distances
between a reference node and other nodes are represented after a logarithmic trans-
formation. We have shown that long-range peers of a node form a linear sequence
in this transformed view for most DHTs. Furthermore, we have identified an impor-
tant subclass of DHT overlays – regular power-law routing overlays – where this
sequence can be described as a random sample from an infinite renewal process.
Based on this stochastic model, we have introduced the λ long-range connection
density and cv long-range connection density coefficient of variation parameters.
For O(logn) node state, these parameters characterize long-range connection distri-
bution independent of network size.

Using the renewal process model of long-connections, we have analyzed stochas-
tically the progress of lookup process via long-range connections. We have shown
that the sequence of intermediate forwarding nodes in the transformed view of
the target node can be also described as a renewal process. Additionally, we have
derived (i) the distribution of this per-hop routing progress for the spacial cases
of probabilistic and “regularized” deterministic power-law routing overlays (ii)
a generic upper bound on the per-hop routing progress in the transformed view
of the target as a function of the λ and cv long-range connection distribution
parameters.

Finally, using the renewal process model of the routing process, we have derived
closed form upper bounds on the expected number of routing hops as a function of
network size and the overlay parameters λ , cv and NS.

The above model and results can be applied directly to any DHT using prob-
abilistic power-law routing overlays (e.g., Symphony [16], Accordion [12], etc.).
Additionally, overlay structure and static routing performance of any DHT using a
one-dimensional metric space and being structurally similar to the “small-world”
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navigation model of Kleinberg can be approximated applying this model (e.g.,
Chord [22] and its variants, Pastry [21], Bamboo [20], Kademlia [17], etc.)
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