
The Gamut of Bootstrapping Mechanisms
for Structured Overlay Networks

Anwitaman Datta

Abstract Structured overlays are an important primitive in building various peer-to-
peer (P2P) systems, and is used for various functions including address independent
end-to-end routing, managing multicast groups, indexing of content in a decentral-
ized environment and P2P storage, among others. While they operate in a decentral-
ized manner, and the self-stabilizing mechanisms to maintain the overlays are also
decentralized, bootstrapping structured overlays have traditionally assumed implicit
centralization and/or coordination. In this chapter, we provide a survey of different
flavors of structured overlay construction mechanisms – including quasi-sequential
mechanisms which are predominantly in use, followed by parallelized approaches,
and finally looking into how two isolated overlay can be merged, which is key to
decentralized bootstrapping.

1 Introduction

In recent years the concept of structured overlays1 has attracted a lot of attention be-
cause of its potential to become a generic substrate for internet scale applications –
used for applications as diverse as locating resources in a wide area network in a
decentralized manner, address independent robust and flexible (group) communi-
cation – e.g., application layer multicast and internet indirection infrastructure and
content distribution network to name a few.

The basic function of the structured overlay is to act as a decentralized index. To
that end, for each resource, a globally unique identifier (called the key) is generated
using some function suitable to the applications that are supposed to use the index.
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1 A special class of structured overlays are the distributed hash tables (DHTs), where the keys are
generated from the resources (name or content) using uniform hashing, e.g., SHA-1 (Secure Hash
Algorithm [17]).
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The codomain (loosely speaking, range) of this function is called the key-space.
For example, the key-space may be the unit interval [0,1] or an unit circle [0,1),
so that the keys can be any real number between 0 and 1. The key-value pair is
stored at peers responsible for the particular key. Efficient search of keys based on
decentralized routing helps the applications to access the resource itself in absence
of central coordination or global knowledge.

Definition 1. Structured overlay networks comprise of the following principal in-
gredients:
(i) Partitioning of the key-space (say an interval or circle representing the real num-
ber between the range [0,1]) among peers, so that each peer is responsible for a
specific key space partition. By being responsible, we mean that a peer responsible
for a particular key-space partition should have all the resources (or pointers) which
are mapped into keys which are in the respective key-space partition.2

(ii) A graph embedding/topology among these partitions (or peers) which ensures
full connectivity of the partitions, desirably even under churn (peer membership
dynamics), so that any partition can be reached from any partition to any other –
reliably and preferably, efficiently.
(iii) A routing algorithm which enables the traversal of messages (query forward-
ing), in order to complete specific search requests (for keys).

Definition 2. A structured overlay network thus needs to meet two goals to be func-
tionally correct:
(i) Correctness of routing: Starting from any peer, it should be possible to reach the
correct peer(s) which are responsible for a specific resource (key).
(ii) Correctness and completeness of keys-to-peers binding: Any and all peers re-
sponsible for a particular key-space partition should have all the corresponding
keys/values.

Various applications can use transparently the (dynamic) binding between peers
and their corresponding key-space partitions as provided by the overlay for resource
discovery and communication purposes in a wide area network.

One of the most important and distinguishing aspect of structured overlays is the
peers’ interconnection – the topology/geometry of the network.

How this topology is established in a dynamic setting, and whether it achieves
some other properties (like – proximity and low stretch exploiting information from
the underlying networking layer, load-balancing, security against various attacks,
etcetera.) and how the invariants of the topology maintained over time in presence
of membership dynamics and attacks are some of the most interesting questions that
have been investigated in the P2P research community in these last years.

2 It is also possible that keys are not strictly associated with a specific peer and instead have a looser
coupling. For example, in Freenet [9] and FuzzyNet[15], this association of keys to peers can be
thought to be in a best effort fashion, such that instead of choosing the peer which is globally the
closest to a key, the locally closest peer is delegated the responsibility of the key. Such systems are
also called semi-structured overlays.
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In this article, we focus on the issue of how these topologies can be established
(bootstrapped) in a dynamic setting while also meeting some other desirable prop-
erties like load-balancing. We will survey different kinds of bootstrapping mecha-
nisms, including traditional quasi-sequential approaches, as well as subsequent par-
allelized approaches, and also looking at how two isolated overlays can be merged
to build a larger network, paving way for decentralized boot strapping.

The existing literature presenting various bootstrapping mechanisms vary in rigor
and details. To keep the presentation uniform as well as accessible to the general
audience, we provide only a high level summary of the concepts.

2 A Taxonomy of Structured Overlay Topologies

The specific details of the topologies is crucial to the exposition of how these topolo-
gies can be achieved. We briefly look into some of the important structured overlay
topologies, particularly the ring and tree topologies. These are not necessarily op-
timal in the sense of achieving the smallest routing table size or smallest diameter,
however have proven to be practical because of their overall characteristics. They
have moderately small average routing table sizes which provide good resilience at
reasonable maintenance cost, small diameter, good degree-distribution (necessary
for congestion-free and load-balanced routing) and flexibility to deal with different
kind of workloads, and last but not the least, they are also relatively simple. The
complexity of the topology plays an important role in a peer-to-peer setting, where
the topology invariants need to be established and maintained without global knowl-
edge and coordination in presence of potentially large scale in terms of both peer
population as well as high membership dynamics.

2.1 Ring

The ring based topology was pioneered in the context of overlays in the Chord [27]
network. Chord uses SHA-1 based consistent hashing to generate an m-bit identifier
for each peer p, which is mapped onto a circular identifier space (key-space).

Irrespective of how the peers’ identifiers are generated in a ring based topology,
what is essential is that the peer identifiers are distinct. Similarly, unique keys are
generated corresponding to each resource. Each key on the key-space is mapped to
the peer with the least identifier greater or equal to the key, and this peer is called the
key’s successor. Thus to say, this peer is responsible for the corresponding resource.

What is relevant for our study is how keys from the key-space are associated
with some peer(s) and how the peers are interconnected (in a ring) and communicate
among themselves.

Definition 3. A ring network is (1) weakly stable if, for all nodes p, we have
predecessor(successor(p)) = p; (2.a) strongly stable if, in addition, there exists
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no peer s on the identifier space where p < s < q where successor(p) = q; and (2.b)
loopy if it is weakly but not strongly stable.

Condition (2.a) that there exists no peer s on the identifier space where p < s < q
if p and q know each other as mutual successor and predecessor determines the
correctness of the ring structure. Figure 1a shows one such consistent ring structure
(peer’s position in the ring and its routing table). The order-1 successor known also
just as “successor” of each peer is the peer closest (clock-wise) on the key-space.
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(a) A consistent ring (Chord) network

(b) A tree based (P-Grid) network. The actual topology has no
hierarchy as shown in Figure 2.

Fig. 1 Some structured overlay topologies

If at any time such a s joins the system, the successor and predecessor informa-
tion needs to be corrected at each of p, q and s. Maintaining the ring is basically to
maintain the correctness of successors for all peers – this in turn provides the func-
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tional correctness of the overlay routing – i.e., successor peer for any identifier key
can be reached from any other peer in the system (by traversing the ring). For redun-
dancy, fs consecutive successors of each peer are typically maintained, so that the
ring invariant is violated only when all fs consecutive peers of any peer depart the
system even before a ring maintenance mechanism like Chord’s self-stabilization
algorithm can react and repopulate with the correct successor entries.

In addition to the successor/predecessor information, each peer maintains routing
information to some other distant peers in order to reduce the communication cost
and latency.

It is the way these long ranges are chosen which differ in many ring topology
networks and has no critical impact on the functional correctness of the overlay.
Distance in such ring based topologies is generally measured in terms of the absolute
difference of the two concerned points on the key-space, but other metrics can as
well be used. For the real topology, devoid of the artificial distance metrics, the long
ranges are essentially to halve the number of peers (the “true” distance on a ring
traversed sequentially) between the current peer and the destination peer [14].

Explicitly or implicitly, most variants of the ring topology exploit this fact and
reduce the distance geometrically – either deterministically or probabilistically. The
original Chord proposal advocated the deterministic use of the successor of the iden-
tifier (p + 2k−1) modulo 2m as an order-k successor of peer p or a finger table en-
try. Many other variants for choosing the long range links exist – e.g., randomized
choice from the interval [p + 2k−1, p + 2k) or exploiting small-world [20] topology
or emulating skip graphs.

The maintenance of the ring (strong stability) is critical for functional correctness
of the routing process in ring based topologies. The self-stabilization mechanisms
proposed in the original Chord proposal [27] exhaustively deals with the mainte-
nance of the ring, and all other ring based topologies rely on similar mechanisms. It
has been shown that the ring topology has better static resilience than other topolo-
gies because of the greater flexibility to choose both routing table entries to instan-
tiate the overlay, as well as to choose from multiple routes to forward a query at run
time.

2.1.1 Ring Self-Stabilization Highlights

The ring invariant is typically violated when new peers join the network, or existing
ones leave it. If such events occur simultaneously at disjoint parts of the ring, the
ring invariant can easily be reestablished using local interactions among the affected
peers. Note that these events do not lead to a loopy state of the network.

Apart looking into the simple violations of the ring invariant which are relatively
easily solved, the original Chord proposal (technical report version) also provides
mechanisms to arrive at a strongly stable network starting from a loopy network
(whichsoever reason such a loopy state is reached). We summarize the results of
stabilizing a loopy network here.
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Any connected ring network with N peers becomes strongly stable within O(N2)
rounds of strong stabilization if no new membership changes occur in the system.
Starting from an arbitrary connected state with successor lists of length O(logN) if
the failures rate is such that at most N/2 nodes fail in Ω(logN) steps then, whp, in
O(N3) rounds, the network is strongly stable.

2.2 Tree

Arguably the earliest approach to locate objects in a distributed environment – the
PRR scheme proposed by Plaxton et al. [25] used a tree structure where searches
were forwarded based on longest prefix matching. Tapestry [28], Pastry [26] (also
uses the ring as a fall-back mechanism) and P-Grid [1] shown in Fig. 1b among oth-
ers uses similar prefix resolution in order to forward search operations, and has the
tree topology. The leaf-nodes of the tree represent the key-space partitions (peers).
The (maximum) distance between these partitions when the query is resolved based
on prefix is then the height of the common subtree. Kademlia [22] resembles the tree
structure and peers have the same routing choices as other tree-based networks. De-
spite having the same topology, Kademlia routing uses the XOR distance between
the peer identifiers (essentially the binary string representing the node’s path in the
tree) instead of resolving common prefix.

Note that this also exemplifies the essential orthogonality of the topology itself
from the routing strategy – the same graph connectivity may be explored based on
different routing schemes, and thus defined as separate ingredients of a structured
overlay network in Definition 1.

2.2.1 The P-Grid Overlay

Some of the concepts in this article will be illustrated using examples of the P-Grid
network, thus we next provide a formal description of P-Grid. Figure 1b shows the
tree abstraction and Fig. 2 shows one possible instance of peers’ connections.

P-Grid divides the key-space in mutually exclusive partitions so that the parti-
tions may be represented as a prefix-free set Π ⊆ {0,1}·. Stored data items are
identified by keys in K ⊆ {0,1}·. We assume that all keys have length that is at
least the maximal length of the elements in Π , i.e.,

min
k∈K

|k| ≥max
π∈Π

|π|= πmax

Each key belongs uniquely to one partition because of the fact that the partitions
are mutually exclusive, that is, different elements in Π are not in a prefix relation-
ship, and thus define a radix-exchange trie.

π,π ′ ∈Π ⇒ π �⊆ π ′ ∧π ′ �⊆ π
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Fig. 2 The actual P-Grid connectivity graph does not have any hierarchy. The routes are randomly
chosen from complimentary sub-trees of Fig. 1b. The basic P-Grid graph is directional, however
since each link establishment and maintenance cost is the same, and from the symmetry of the
routing choices, the actual P-Grid uses bidirectional routes

where π ⊆ π ′ denotes the prefix relationship. These partitions also exhaust the key-
space, so to say, the key-space is completely covered by these partitions so that each
key belongs to one and only one (because of exclusivity) partition.

In P-Grid each peer p ∈ P is associated with a leaf of the binary tree, and each
leaf has at-least one peer associated to itself. Each leaf corresponds to a binary string
π ∈ Π , also called the key-space partition. Thus each peer p is associated with a
path π(p). For search, the peer stores for each prefix π(p, l) of π(p) of length l
a set of references ρ(p, l) to peers q with property π(p, l) = π(q, l), where π is
the binary string π with the last bit inverted. This means that at each level of the
tree the peer has references to some other peers that do not pertain to the peer’s
subtree at that level which enables the implementation of prefix routing for efficient
search. The whole routing table at peer p is then represented as ρ(p) Moreover,
the actual instance of the P-Grid is determined by the randomized choices made at
each peer for each level out of a much larger combination of choices. The cost for
storing the references and the associated maintenance cost scale as they are bounded
by the depth of the underlying binary tree. This also bounds the search time and
communication cost.

Each peer stores a set of data items δ (p). For d ∈ δ (p) the binary key κ(d) is
calculated using an order-preserving hash function. κ(d) has π(p) as prefix but it
is not excluded that temporarily also other data items are stored at a peer, that is,
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the set δ (p,π(p)) of data items whose key matches π(p) can be a proper subset
of δ (p). Moreover, for fault-tolerance, query load-balancing and hot-spot handling,
multiple peers are associated with the same key-space partition (structural repli-
cation). ℜ(κ) represents the set of peers replicating the object corresponding to
key κ . Peers additionally also maintain references to peers with the same path, i.e.,
their replicas ℜ(π(p)), and use epidemic algorithms to maintain replica consistency.
Routing in P-Grid is greedy, and based on matching the longest prefix, similar to the
PRR scheme [25].

There are many other topologies derived from interconnection networks that have
been adapted for P2P settings, but the rest of the chapter will focus on overlays based
on the prevalent ring and tree topologies.

3 Quasi-Sequential Construction of Overlays

The construction of overlays, from the early days have focussed not only in estab-
lishing a logically correct topology, but also on how to ensure that load distribution
across the peers is uniform.

Fig. 3 A new node joining a Chord network. Nodes x and z which are originally neighbors (pre-
decessor and successor of each other) need to update their local information to register that y is the
new neighbor

The original approach to construct most structured overlays assumed an incre-
mental approach, investigating how new nodes can continuously join an existing
network, or how the network manages continuous but gradual departures of existing
nodes – called churn in the network.

Churn in the network requires reallocation of the part of the key space that a peer
is responsible for, as well as rewiring of the connections, for instance in the ring
based networks, ensuring that the ring integrity is maintained is most important.
Ring integrity is ensured by making sure that nodes maintain the right successor
(and predecessor) lists despite churn. To ensure this, it is important to allow only
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one node to join between a node and its immediate successor at any given time.
Figure 3 depicts such a scenario. Such a scheme makes an implicit assumption that
nodes join in the same part of the key-space in a sequence. Of-course nodes can join
mutually disjoint parts of the key-space simultaneously. Essentially such a model
can thus support quasi-sequential join of peers in the network.

Fig. 4 A new node y joining a P-Grid network by redividing the responsibility with existing peer z.
They also need to update their routing tables, so that, for example, if z receives a query with prefix
· · ·00 it can forward it to y. Other peers, for example x do not need to update any information, and
can continue to forward all queries with prefix · · ·0 still to z

In the case of an overlay like P-Grid abstracting the tree structure, the sequen-
tial overlay construction will require the newly joining peer to negotiate with an
existing peer to redivide key-space partition responsibility (as shown in Fig. 4) or
alternatively decide to become mutual replicas.3

3.1 Load-Balancing Considerations

In order to achieve load-balancing, randomized strategies are often used in such
a setting. Each new node joining the system picks a random point uniformly on
the key-space, and joins the network by splitting that part of the key-space with
whichever peer has been originally responsible for that part of the key-space. Uni-
formly choosing the part of the key-space to join the network was assumed to evenly
partition the key-space. While not highlighted as such, such a randomized strategy
coincidentally makes sure that different peers joining at the same time join different
parts of the network, doing so in an almost trivial way without any need for global
knowledge or coordination.

Uniform random choice of peer’s position in the key-space however leads to
a relatively high variation in the size of key-space partitions for which individual

3 Replication is necessary for both load-sharing and fault-tolerance, but has not been shown in this
specific example. Structurally replicated P-Grid networks will be shown later in Fig. 12.
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peers are responsible for. A lot of work has been done to reduce such variation, and
to make the load distribution among peers more uniform. Included among those ap-
proaches is a simple but very effective randomized strategy “power of two choices”,
where each node would choose two (or several) random points on the key-space,
and then join the network in the points with most load [12]. Such an approach is a
variation of the power of two choices originally proposed by Byers et al. [7] in the
context of peer-to-peer systems, where multiple hash values were used to generate
multiple keys for a resource, and then stored at the least loaded peer.

For various reasons, explained in the next section, it may be desirable or even
necessary to construct an overlay in a parallelized manner, a departure from the
original quasi-sequential approach.

4 Parallelized Construction of Overlays

Fast construction of structured overlays has been motivated by several reasons.
Building such a network rapidly from scratch enables fast recovery from catas-
trophic failures as well as easy deployment of such a network on demand, which
can be used to perform tasks required by more complex distributed systems, as
well as eliminate or at least complement complex and expensive overlay mainte-
nance algorithms, allowing for recreation of the whole network instead. From the
perspective of considering the structured overlay as a distributed index structure,
building an overlay from scratch can be considered to be analogous to (re-)indexing
content.

Further motivation: A data-management perspective

In standard database systems it is common practice to regularly (re-)index attributes
to meet changing requirements and optimize search performance. Structured peer-
to-peer overlay networks are increasingly used as an access structure for highly
distributed data-oriented applications, such as relational query processing, metadata
search or information retrieval [4, 24]. Structured overlays’ use was motivated by
the presence of certain features that are supported by their design such as scala-
bility, decentralized maintenance, and robustness under network churn. Compared
to unstructured overlay networks which are also being proposed for these applica-
tions [16, 21], structured overlay networks additionally exhibit much lower band-
width consumption for search as well as guarantee completeness4 for search results.

The standard maintenance model for peer-to-peer overlay networks assumes a
dynamic group of peers forming a network where peers can join and leave, es-
sentially in a sequential manner, as elaborated in the previous section. In addition
proactive or reactive maintenance schemes are used to repair inconsistencies result-
ing from node and network failures or to re-balance load in order to react to data

4 In terms of information retrieval terminology, recall = 1.
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updates. These approaches to maintenance, that have been extensively studied in the
literature, correspond essentially to updating database index structures in reaction to
updates.

In data-oriented applications resources may be identified by dynamically chang-
ing predicates. Multiple overlay networks can be needed simultaneously, each of
them supporting a specific addressing need. One can illustrate these requirements
by a typical application case of peer-to-peer information retrieval.

The standard application of structured overlay networks in peer-to-peer informa-
tion retrieval is the implementation of a distributed inverted file structure for efficient
keyword based search. In this scenario, several situations occur, in which the overlay
network has to be constructed from scratch:

• A set of documents that is distributed among (a potentially very large
number) of peers is identified as holding information pertaining to a com-
mon topic. To support efficient retrieval for this specific document collection,
a dedicated overlay network implementing inverted file access may have to be
set up.

• A new indexing method, for example, a new text extraction function for iden-
tifying semantically relevant keywords or phrases, is being used to search a set
of semantically related documents distributed among a large set of peers. Since
the index keys change as a result of changing the indexing method a new overlay
network needs to be constructed to support efficient access.

• Due to updates to a distributed document collection an existing distributed in-
verted file has become obsolete. This may either result from not maintaining the
inverted file during document updates or due to changing characteristics of the
global vocabulary and thus changing the indexing strategy (e.g., term selection
based on inverse document frequency). Thus a complete reconstruction of the
overlay network is required.

• Due to catastrophic network failures the standard maintenance mechanisms no
longer can reconstruct a consistent overlay network. Thus the overlay networks
needs to be constructed from scratch. Of course, this scenario applies generally
in any application, but becomes more probable when multiple overlay networks
are deployed in parallel.

In principle a (re-)construction of an overlay network in any of these scenarios
can be achieved by the standard maintenance model of sequential node joins and
leaves. However, this approach encounters two serious problems:

• The peer community will have to decide on a serialization of the process, e.g.,
electing a peer to initiate the process. Thus the peer community has to solve a
leader election problem, which might turn out to be unsolvable for very large
peer populations without making strong assumptions on coordination or limiting
peer autonomy.

• Since the process is performed essentially in a serialized manner, it incurs a sub-
stantial latency. In particular it does not take any advantage of potential paral-
lelization, which would be a natural approach.
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These motivate a fundamentally different approach, that of parallelized overlay
construction. Several such mechanisms including [2, 5, 18] have been proposed in
the literature, which we summarize next.

4.1 Sorting Peer-IDs as a Mechanism to Build a Ring

To achieve a strongly stable ring (Definition 3) it is necessary that all nodes know the
correct immediate neighbors (successor and predecessor). This leads to a sorting of
the peers according to their identifiers or responsibility of the parts of the key-space.
Achieving this without the global knowledge of which all peers are in the network,
and without any central coordination of peers to choose the correct neighbors is
a crucial challenge in constructing an overlay. So the problem of constructing a
ring based structured overlay essentially boils down to the problem of decentralized
sorting of the peers according to their identifiers. Now we discuss one rigorous and
one heuristic mechanism to sort peer-IDs.

4.1.1 Pairing and Merging Virtual Trees

Angluin et al. [5] considers the problem of constructing a structured overlay as that
of creating a linked list of nodes sorted according to their identifiers, which can
then be used as the basis for constructing the essential ring of the system. Long
range links useful for optimization can be wired subsequently to make the network
routing efficient.

They assume that any node in the system can communicate with any other node,
once the nodes become aware of each other, which defines a “knowledge graph”.
Initially, this knowledge graph is assumed to be a weakly connected degree bounded
directed (random) graph. That is to say, each node knows a fixed number of random
nodes.

The first step in this approach is to pair nodes using a randomized mechanism.
Based on the original knowledge graph connectivity, every node probes all potential
successors. The recipient of such a probe either accepts (the first received probe)
or rejects to be paired. Ideally, after a round of such pairing is finished, the paired
nodes can behave as a virtual “supernode” to conduct further pairing. Note that such
a pairing of virtual supernodes which are composite of previously paired nodes,
require a merging mechanism. The virtual supernodes are maintained as Patricia
trees, which facilitates the use of tree merging algorithms, and finally provides a
single supernode comprising of all the nodes sorted also as a list.

Figure 5 shows a step of their mechanism as a toy example. Nodes 1 and 7 pair up,
and act as a virtual node, as do nodes 5 and 9. Subsequently these two virtual nodes
(comprising two nodes each), merge to form a single virtual node. The implicit
tree representation allows both efficient mergers, as well as provides readily a tree
structure, apart from sorting the peer identifiers.
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Fig. 5 Sorting based on iterations of pairing and merging [5]. Once the peer identifiers are sorted,
a ring structure can readily be obtained. Essentially, what is necessary in a decentralized setting to
achieve such a sorted “linked list” is that all peers know the correct predecessors and successors
(multiple entries are useful for fault tolerance)

The main complexities of this approach in a real life scenario (asynchronous
setting) are in determining and phasing the pairing rounds and the merging process,
and avoiding live-locks. In its original form, the algorithm also could not tolerate
any node departure during the overlay construction.

4.1.2 Gossip Based Mechanism

Jelasity et al. [18, 19, 23] proposed a gossip based approach to bootstrap overlays.
They assume that each node can obtain a random subset of the participating peers.
This assumption is similar to the idea of knowledge graph assumed by Angluin
et al. [5].

Each node maintains a constant sized leaf-set, comprising of the nearest nodes
to itself in both direction – termed as predecessors and successors. Ideally, equal
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Fig. 6 Sorting based on iterations of gossips [18, 19, 23].

number of predecessors and successors are maintained, but if a node knows fewer
of one kind, then it fills the space with nodes of the other category. Such informa-
tion originally comes from the random subset of participating peers that each node
gets, and eventually is derived from the information that nodes gossip among each
other.

The essential idea is to gossip the leaf-set information, and refine it based on
the information obtained from other nodes. In the toy example shown in Fig. 6,
node 7 originally knows nodes {4,5,9,10}. Likewise 9 knows {6,8,12,14}. By
gossiping with all the nodes 7 knows, which includes 9, 7 gets to know about
6 and 8, its immediate neighbors in this example. In contrast to the rigorous ap-
proach of Angluin et al., the gossip based approach is more a heuristic, in that
while there is no formal proof of convergence, simulation based studies show it
performs pretty well, and nodes get to establish the ring information with few iter-
ations of the gossip mechanism. This mechanism can also be expected to be robust
against node departures and arrivals during the process, and hence may be more
practical.
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4.2 Recursive Proportional Partitioning

The approach to sort peer identifiers can be considered to be a bottom-up ap-
proach, where the peer identifiers are already chosen (often randomly) and thus
the way the key-space responsibility should be distributed is pre-determined. A log-
ically top-down approach introduced by Aberer et al. [2] proposes to autonomously
and recursively partition the key-space, but in a granularity adaptive to the load-
distribution on the key-space (which can be arbitrarily skewed for data-oriented
applications).

During the overlay construction process, two types of load balancing problems
are dealt with simultaneously – the balancing of storage load among peers under
skewed key distributions (i.e., number of keys per partition is balanced) and the
balancing of the number of replica peers across key space partitions. The first prob-
lem is important to balance workload among peers and is solved by adapting the
overlay network structure to the key distribution. The second one is important to
guarantee approximately uniform availability of keys in unreliable networks where
peers have potentially low availability. This is similar to a classical “balls into bins”
scenario, where the key-space partitions are the bins and the peers (replicas) the
balls. The extra twist, why existing solutions for balls into bins problems can’t
however be directly used is that the number of bins (key-space partitions) itself is
dynamic.

Similar to Angluin et al. [5] and Jelasity et al. [18, 19, 23], this approach also
assumes a (loosely) connected network, so that any node can communicate with any
other node, and particularly uses random walkers on this network to find random
peers with whom to interact. However in contrast to those approaches, where nodes
already have a particular identifier, which determines the part of the key-space parti-
tion that node is responsible for, and the task is to sort the nodes to establish a sorted
list, necessary to construct a ring, Aberer et al. [2] instead allows the nodes to ne-
gotiate among each other to refine the part of the key-space they will be responsible
for. It leads to construction of an overlay (P-Grid) which can support prefix based
routing.

The bilateral negotiations among the peers is illustrated in Fig. 7. Such interac-
tions can lead to three possible course of actions. Two peers may decide to reparti-
tion the part of the key-space they are responsible for, or decide to become mutual
replicas, or refer each other to other suitable peers to interact with. Notice that the
“repartition or replicate” actions are similar in spirit to the sequential approach de-
scribed earlier, but now these actions are happening in parallel for different peers,
and are iterated several times thanks to the “refer” actions.

The essential idea is that all peers are originally responsible for the whole key-
space. Then, they need to find a partner to decide and split responsibility – say,
for the prefixes 0 and 1 respectively. The peers also need to keep track to such a
peer which is responsible for the other half, so that in future a node responsible for
partition 1 can forward all queries for partition 0 to a relevant peer. Thus all peers
responsible for the partition 0 can repartition it for 00 and 01, and so on.
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Fig. 7 Network evolution based on pairwise peer interactions

There are several practical problems in realizing the scheme. This includes the
following.
What fraction of peers should choose a specific partition? Ideally this depends on
the load in the specific half of the key-space.

For example, for the example in Fig. 8, there is three times more load for the the
prefix 0 than the prefix 1, and twice the load for prefix 01 than for 00. So ideally,
the peers should evolve into a network, with the partitioning of the key-space and
its replication, as shown in the figure.

There are however two practical problems in realizing such an ideal partition-
ing. Its unrealistic to assume global knowledge like the load-skew. Even if this in-
formation were available, without global coordination, it is not possible to achieve
partitioning of the network among the peers according to the granularity of the load-
distribution.

Aberer et al. [2] provides some heuristics to address these problems. They pro-
pose random sampling of a subset of other peers to estimate the load-imbalance at
each level of repartitioning, and using this estimate to determine parameters of a ran-
domized algorithm to split the key-space which in expectation follows the desired
(estimated) load-skew. Experiments show, that while far from perfect, the heuristics
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Fig. 8 P-Grid structure: Key-space is partitioned in a granularity adaptive to load-skew. In this
example peers p1 and p7 are structural replicas for the partition for prefix 00. Peer p1 has reference
to peer p2 for prefix 1, and to peer p3 for prefix 01. Peer p7 stores the same keys as peer p1
(replicas), however they can and do have different routing table entries. In practice, for each level,
each peer will also maintain multiple references primarily in order to have some fault-tolerance.
Thus peer p1 would also refer to some of p3, p5 or p8 for the prefix 01

lead to a reasonably well load-balanced network construction. Other maintenance
mechanisms [3] are deployed to further improve the quality of the load-balancing,
but overall, this approach again achieves the primary objective, that of construct-
ing an overlay from scratch in a parallelized manner, more or less conforming to
load-skews to achieve moderate load-balance.
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5 The Need and Challenges of Merging Two Similar Structured
Overlays

All the parallelized construction approaches described above assumed (i) an origi-
nally connected network, and that (ii) there is one specific network to join.

Such assumptions implicitly introduces some degree of centralization. What hap-
pens if multiple isolated networks are originally constructed?

In the somewhat frantic rush to identify new cool topologies, or more practi-
cal problems like dealing with load-balancing and churn, the peer-to-peer research
community has until recently ignored a fundamental and realistic problem for struc-
tured overlays that any distributed system needs to deal with – that of making two
partitions of such a system merge to become one. One can speculate several reasons
for such omissions in early structured overlay network research. (i) Merger of iso-
lated overlays is trivially resolved in unstructured overlays, which is where most of
the empirical information of P2P research so far has been derived from. (ii) Until
recently, there has not been any real structured overlay implementations deployed
and hence the problem not identified. (iii) The recent deployments and experiments
have typically been under a controlled setting, where some central coordination like
the use of a common set of bootstrap nodes has been used with the intention and
sufficient coordination to construct only one overlay, making sure that independent
and distinct overlays are not created. Moreover, none of these experiments with real
implementations looked specifically for, or even accidentally, encounter network
partitioning problems.

Apart network partitioning which can lead to the creation of two disjoint overlay
networks there is a more likely scenario. It may so happen that disjoint overlay net-
works (using the same protocols) are formed over time by disjoint group of users.
One may imagine that an overlay P2P network caters to a specific interest group
from a particular geographic area who participate in an overlay network. At a later
time, upon discovering a hitherto unknown group of like-mind users from a differ-
ent part of the world, who use their own “private” network (using same protocols),
these two groups may want to merge their networks in order to benefit from their
mutual resources (like content or knowledge). In fact, such isolated overlay net-
works may result because of initial isolation of groups because of various reasons
including geographic, social or administrative – a large company or country, which
may originally restrict their users from interacting with outsiders in the overlay, and
changes the policy at a later time – or purely because of partitioning of the physical
infrastructure.

Structured overlays have often been touted as a generic substrate for other ap-
plications and services. Ideally, there will be one or few such universal overlays [8]
which will be used by a plethora of other P2P applications. Realizing such an uni-
versal service too will need the possibility to merge originally isolated networks.
Small overlays can be built independently, which may later be all merged together
incrementally into a single overlay network.
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One can thus imagine isolated islands of functional overlays catering to their
individual participants. Someday, some member from one of these overlays may
discover a member from another overlay. The natural thing to do then would be to
merge the two originally isolated overlays into a single overlay network. In simple
file-sharing networks, the motivation of doing so will be to make accessible content
from both the networks to all the users. Similar conclusions can be drawn for various
other conceivable applications of overlay networks.

In unstructured overlay networks (like Gnutella), merger of two originally iso-
lated overlays happens trivially. Whichever peers from two originally isolated net-
works come in contact with each other need to establish mutual neighborhood re-
lationship, and then onwards just need to forward/route messages to each other as
they do with all other neighbors (Fig. 9). That’s all! Likewise, hierarchical (super-
peer based) unstructured overlays also merge together trivially. This is because no
peer has any specific responsibility and can potentially be responsible for any and
all resources in the network.

One approach to deal with multiple structured overlay networks is to let them
continue to exist and operate autonomously, while allowing cross-network com-
munication. This is typically achieved in a hierarchical fashion, where the original

Fig. 9 Merger of two unstructured overlay networks (like Gnutella) is trivial. As soon as some
peers from each of the two originally isolated networks establish connections to each other, a
merged network is formed
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networks act as “sub-networks” which are glued together to form one integrated
network. Two addressing components are used to uniquely determine a peer’s role
in the integrated network – one to determine which autonomous sub-network it be-
longs to, and the other to identify it within the sub-network. The sub-networks can
be distinguished based on a domain name space [13] or by simply allocating a pre-
determined part of the key space for each potential sub-network [6]. Figure 10 shows
example instances of such hierarchically integrated overlays. Such hierarchy allows
nodes to retain communication traffic within a particular domain, or look for keys
available within specific sub-networks instead of the whole integrated network. On
the downside, each peer needs to keep track of more information, including keeping
track of which sub-network it belongs to, at different levels of the hierarchy. For
example, in a hierarchical Chord using the Canon approach each peer also needs to
maintain a list of successors (and hence a ring) at every level of the hierarchy. Thus
the simplicity of a completely flat address space which was a design goal in many
original distributed hash tables is lost.

X

X.a

X.a.i

The `Canon’approach where sub-networks are 
distinguished by domain names. A parent domain 
emulates a merged network of the children sub-
networks. Each individual subnetworkcan, in 
theory, use its own routing mechanism.
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orks
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The `Cyclone’approach where inter sub-network 
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traffic uses proprietary routing mechanism of the 
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X.a.i.1 X.a.i.2

subnetworks

Fig. 10 Hierarchically integrated networks based on Canon [13] and Cyclone [6] approaches

An alternative to the hierarchical approaches discussed above is to device mech-
anisms to merge the originally isolated networks, so that a single resulting net-
work is formed. That way peers do not need to keep track of the hierarchy, and
the original overlay (DHT) design of completely flat identifier space is achieved.
Some of the challenges of merging similar structured overlays, which is essen-
tial for decentralized bootstrapping of overlays [11], has been studied by Datta
et al. [10], which we summarize next along with tentative solutions and short-
comings. The discussion below is also pertinent, at least in part, to hierarchi-
cal approach like Canon [13], where the authors overlook the key management
issues.
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5.1 Merger of Two Ring Based Networks

Consider two originally isolated Chord networks N1 and N2 with N1 and N2 peers
respectively. An example of two such networks (superimposed) is shown in Fig. 11a.
Next we will explain how such isolated networks can merge into one, since such
an organic network growth is not only essential for decentralized bootstrapping,
but also such a merger is necessary to ensure that the overlays retain functionality.
When peers from the two different overlays meet each other (by whatsoever reason
– accidentally or deliberately), in a decentralized setting there is no way for them to
ascertain that they belong to two completely different systems. This is so because
overlay construction always relies on such peer meetings to start with. As a conse-
quence, if the peer pair that meets have identifiers such that they would replace their
respective successor and predecessor, then they will indeed do that.
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Fig. 11 When (peers from) two ring-based overlays meet

For our example from Fig. 11a lets say peer 1 from N1 meets peer 0 from N2.
Then peer 1 will treat 0 as its new predecessor, and 0 will treat 1 as its new suc-
cessor, instead of 12 and 3 respectively. However, if they only change their local
information, then the ring network will no more be strongly stable (may in-fact not
even be weakly stable). In-fact such a reconfiguration will need and lead to a cas-
cading effect, so that all members of both the original network try to discover the
appropriate immediate neighbors (successor/predecessor) – requiring coordination
among all the peers.

Estimation of the probability that a peer’s predecessor changes:

From the perspective of any peer in N1, the successor will change, if at least 1 out of
the N2 peers have identifier within the next 1/N1 stretch of the key-space (for which
its present successor is responsible, on an average). Any particular peer from N2 has
an identifier for this stretch with probability 1/N1. The number of peers falling in
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this stretch is thus distributed as Binomial(N2,1/N1), which approaches to a Poisson
distribution with expectation N2/N1 as N2 →∞. Hence, a peer from N1 will have its
successor unchanged with probability e−λ1 where λ1 = N2/N1. Thus each of the N1

peers will have their successor node changed with a probability 1−e−λ1 i.i.d. Peers
in N2 will be affected similarly with a parameter λ2 = N1/N2 (symmetry).

Estimate of the number of peer pairs which will have their immediate neighbors
(either successor and/or predecessor) changed:

The number of peers whose successor will change in Ni is then distributed binomi-
ally Binomial(Ni,1− e−λi) for i =1,2. Hence the expected number of nodes which
will need to correct their successor nodes (and predecessor nodes) is N1(1−e−λ1)+
N2(1− e−λ2).

The basic idea of how the ring can be reestablished is that when two peers from
different networks meet so that they replace each other’s successor and predeces-
sor (immediate neighbor), then this information needs to be communicated to the
original immediate neighbors, and the process continues.

There are several combinations of how the neighborhoods of the peers are af-
fected after their interaction, each of which needs to be accounted for the actual
network merger algorithm. Moreover, different combinations of faults (single or
multiple peers crashing or leaving) can happen during the ring merger, and these
too need to be dealt with. The specifics of such algorithms, and evaluation of the
actual ring network merger algorithm is currently underway.

Without proper and exhaustive evaluation of the exact algorithms for merging
two ring networks, it is difficult to see whether a strongly stable ring can be di-
rectly achieved, or whether a sequence of faults during the merger of two rings
can even lead to a loopy network, which would then require even more effort to
converge to a strongly stable state using Chord’s already existing self-stabilizing
mechanisms.

Thus the back of the envelope analysis above just provides the expected lower-
bound of the ring reestablishment process in terms of correction of successor/pre-
decessors. The latency of such a process started because of two peers from the two
networks will be O(N1 + N2) even if there is no membership changes during the
whole merger process – this is the time required to percolate the information that
the ring neighborhood has changed and to discover the correct neighbor when peers
from both the original networks are considered together.

5.1.1 Ring Loses Bearing During the Merge Process

Above we provided a sketch of how to only reestablish the ring topology – which
only guarantees the functional correctness of the routing process – i.e., the query
will be routed to the peer which is supposed to be responsible for the key-space to
which the queried key belongs.
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Reestablishing the ring will be necessary in order to be able to query and locate
even the objects which were accessible in the original network of any individual net-
work. Hence, such a merger operation of ring topology based overlay will typically
cause a complete interruption of the overlay’s functioning.5

5.1.2 Managing Keys on the Merged Ring

Establishing the ring in itself is however not sufficient in an overlay network based
index. In order to really find all keys (which originally existed in at least one of
the two networks) from any peer in the merged network, it will still be necessary
to transfer the corresponding key/value data to the “possibly” different peer which
has become responsible for the new overlay. To make things worse, in a ring based
network the queries will be routed to the new peer which is responsible for a key, so
that even after the reestablishment of the ring itself, some keys that could be found
in the original networks may also not be immediately accessible, and will need to
wait until the keys are moved to the new corresponding peer.

Lets consider that before the networks started merging, network Ni had key set
Di such that |Di| = Di. Furthermore, if we consider that α fraction of the keys in
the two networks is exclusive, that is |D1∩D2| = α|D1∪D2|, then on an average,
if a Ni node’s successor changes, it will be necessary to transfer on an average α
fraction of the data from network N j’s 1

N1+N2
stretch of the key-space. Thus, on an

average, the minimum6 required transfer of unique data from members of original
networks N j to Ni will be D j→i

tx = N1(1− e−λ1)α D2
N1+N2

.
Apart from assigning the data corresponding to a key on the key-space to the peer

which is the successor for that key, ring based topologies provide fault-tolerance by
replicating the same data at fs consecutive peers on the ring.7 Given the strict choice
of fs as neighborhood changes, the transferred data will in-fact have to be replicated
at the precise fs consecutive peers of the merged network, determining the actual
minimal bandwidth consumption. Similarly, some of the original fs replicas will
need to discard the originally replicated content.

5 Note that such a vulnerability may expose ring topologies to a new kind of “throwing rings into
the ring” distributed denial of service (DDoS) attack, though the implications of such an attack and
the amount of resources an adversary will require to make such a DDoS attack needs to be studied
in greater detail.
6 The actual implementation of such a data transfer will need to identify the distinct data in the two
networks and transfer only the non-intersecting one, in order to achieve this minimal effort. This is
an orthogonal but important practical issue that any implementation will need to look into.
7 The parameter fs is a predetermined global constant determined by the system designer.
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5.2 Merger of Two Structurally Replicated P-Grid Networks

In the P-Grid network, replication is achieved in a very different manner than in
a ring based overlay. Multiple peers are responsible for (by replicating) precisely
the same exclusive key-space partition. This is called structural replication, and is
in contrast to the ring based approach, where the replication is done along some-
thing like a sliding window, at the next fs peers on the ring. Effectively structural
replication can be thought of as multiple virtual instances of the same key-space
partitioned network superimposed with each other. For example, in Fig. 12a the net-
work N2 can be thought of composed itself of superimposition of two networks,
the first say comprising of nodes U , W and X , while the other nodes belonging to
the other virtual network. The routing reference maintained by the peers are inter-
twined, and does not need to discern the virtual networks, and is indeed desirable to
achieve greater interconnection of the routing network.

When peers from different overlays meet, similar to the situation in the ring net-
works, it will be desirable to achieve a merger of the two into a single intertwined
network. Figure 12 shows an example of such originally isolated overlays, and the
subsequent single merged overlay.

Notice that the originally isolated overlays N1 and N2 do not have identical
partitioning of the key-spaces, but the eventual merged overlay shown in Fig. 12b
should. Next we sketch how such a merger process will happen.

If peers from the two different networks meet, so that their paths are exactly
the same (for example peers A and U from networks N1 and N2 respectively in
Fig. 12a), then they will execute an anti-entropy algorithm to reconcile their content
and become mutual structural replicas. In fact, such an anti-entropy algorithm will
have to be run among all the other structural replicas of that part of the key-space
too, and eventually of the other parts as well. However, since the original members
of each network still retain the original routing links, routing functionality is not
affected – and whichever keys were originally accessible will continue to be acces-
sible. So to say, peer C will always be able to access all the keys/content available at
A before the merger process. The keys from the same key-space which were present
in the other network would however be available only after the background replica-
tion synchronization has completed. That is to say, a resource available originally
only in N2 at U and Z (but with the same prefix 00 as A) will be visible to C only
when A has synchronized its content with any one of U or Z.

Use of structural replication has an additional downside – by not limiting the
number of replicas nor having a proper structure among the replicas, it is difficult
to have knowledge of the full replica subnetwork at each peer, and hence updates
and replica synchronization is typically probabilistic. In contrast, once the ring is
reestablished, replica positions are deterministic and hence locating replica is trivial
in ring based topologies. Having discovered a replica, the anti-entropy algorithm
itself (is an orthogonal issue) and hence the cost of synchronization of a pair of
peers will be the same.

When two peers from N1 and N2 meet so that one’s path is strictly a prefix of
the other peer’ path, then the peer with shorter path can execute a normal network
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Fig. 12 When (peers from) two structurally replicated overlays meet

joining algorithm [2] – extending its path to replicate either the peer it met, or a peer
this peer refers it to. For example, Y may extend its path from 1 to 11. In order to
do so, Y will need to synchronize its content with one of the peers which originally
had the path 11, say G. Moreover Y will need to obtain routing reference to a peer
responsible for the path 10 (e.g., peer C) – information it can obtain from G itself.

Since new peers join as structural replica or existing peers, no other existing peer
need necessarily to update their routing table for routing functionality (unlike in a
ring based topology). Thus, peer Q referring to Y for prefix 1 continues to refer to it
as such, and any query 10 from Q is routed first to Y , which then forwards it to – say
C. Peers may however, over time add more routing entries, for instance, Q adding
a reference to D for redundancy in its routing table for the prefix 1. Such changes
however is a normal process in the P-Grid network and can be carried on in the
background, again without interrupting the functioning of the overlay (and in fact
instead making it more resilient to faults and churn).



306 Anwitaman Datta

Consequently, neither joining peers, nor merger of two existing overlay network
disrupt the available functionality of the network members.8

If peers with different paths meet each other, they need to do nothing, though they
can refer each other to peers which are most likely to have the same path (similar
to ring based topologies which can forward the peers closer to their respective key-
spaces).

5.2.1 Managing Keys in the Merged Network

The amount of data that needs to be transferred from each system to the other is
essentially the non-intersecting data. However, there is no need to transfer data from
one peer to another merely because the key-space partition a peer is responsible for
changes – because with structural replication, new peer joins or network mergers do
not in itself automatically change the network’s structure.9

The important thing to reemphasize is that a peer always finds the keys it could
find before the merger process began, irrespective of the state of the merger process.
Hence the replica synchronization can be done as a slow back-ground process –
hence the performance and network usage is also graceful – that is, merger of two
overlays does not suddenly overburden the physical network’s resources nor disrupt
the functioning of the overlay networks. Such a graceful merger of existing net-
works also facilitates highly parallelized overlay construction [2] in contrast to the
traditional sequential overlay construction approaches.

6 Summary and Conclusion

Research and development in structured overlays now spanning almost a decade,
has focused on diverse issues. Adaptation of different topologies in a peer-to-peer
environment characterized by large scale, peer autonomy and membership dynam-
ics, maintenance of these topologies – both in terms of ensuring that the topology
invariants such as the ring invariant are continuously satisfied, as well as that other
performance related concerns like load-balancing are addressed. These activities ac-
count for the first five-six years o structured overlay research, bringing it from the
drawing board of theoretical results and simulation based validations starting around
2000–2001 to the actual prototyping and benchmark experiments in moderate scale
in a controlled environment and with adequate coordination around 2005–2006. The
final essential ingredient for a large scale deployment of structured overlays is to al-
low merger of smaller overlays to form a larger one organically. These smaller over-

8 Note that the above discussion is true only for write once and then onwards read-only data, since
for read/write, it will be necessary to maintain the replicas more pro-actively.
9 Local view of the structure however changes when a peer with shorter path meets a peer with
longer path, and extends its own path according to the network construction algorithm [2], as
explained above.
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lays can be bootstrapped using any of all the possible manners – quasi-sequential,
parallelized, or by merger of even smaller networks. This chapter provides a high
level summary and survey of the various kinds of bootstrapping mechanisms for
some of the predominant classes of structured overlays.
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