
Distributed Hash Tables: Design
and Applications

C.-F. Michael Chan and S.-H. Gary Chan

Abstract The tremendous growth of the Internet and large-scale applications such
as file sharing and multimedia streaming require the support of efficient search on
objects. Peer-to-peer approaches have been proposed to provide this search mech-
anism scalably. One such approach is the distributed hash table (DHT), a scalable,
efficient, robust and self-organizing routing overlay suitable for Internet-size de-
ployment. In this chapter, we discuss how scalable routing is achieved under node
dynamics in DHTs. We also present several applications which illustrate the power
of DHTs in enabling large-scale peer-to-peer applications. Since wireless networks
are becoming increasingly popular, we also discuss the issues of deploying DHTs
and various solutions in such networks.

1 Introduction

The Internet has grown to an enormous size, with nearly 600 million hosts as of
early 2008 [1]. Coupled with this intense growth in network size is the proliferation
of large-scale applications such as file sharing and multimedia streaming. These ap-
plications require the support of fast search on objects. Since traditional server-client
model is no longer scalable to large group of hosts, peer-to-peer approaches have
been proposed. One of such approaches is the distributed hash table (DHT), a scal-
able, efficient, robust and self-organizing overlay routing infrastructure for millions
of hosts. DHTs have the potential to enable large-scale peer-to-peer applications,
such as distributed file systems and on-demand video streaming. This chapter intro-
duces DHTs and discusses their design issues and applications.

C.-F. Michael Chan
Stanford University, Stanford, CA, USA, e-mail: mcfchan@stanford.edu

S.-H. Gary Chan
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,
e-mail: gchan@cse.ust.hk

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 257
DOI 10.1007/978-0-387-09751-0 10, © Springer Science+Business Media, LLC 2010

mcfchan@stanford.edu
gchan@cse.ust.hk

258 C.-F. Michael Chan and S.-H. Gary Chan

DHT provides a unified platform for managing application data. Due to the spe-
cific nature of application data, traditionally a protocol designed for one type of
application may not work well for other types of applications. DHTs break this bar-
rier by providing a flat identifier-based routing and location framework, and a very
simple API to applications.

DHT maps application data to keys, which are m-bit identifiers drawn from the
identifier space. Nodes participating in the DHT are distinguished by unique identi-
fiers drawn also from the same identifier space. Each node is responsible for a subset
of the space, i.e. stores a subset of keys. Typically, a value is associated with a key,
and is also stored at the node responsible for the key. Depending on the specific
application, the value could be the address of the node storing the data or the data
itself.

A DHT scheme defines how the overlay is structured, how node state is main-
tained and how routing is carried out. Regardless of the details, DHTs provide a
two-method interface for applications:

• insert(k, v): Insert a data item with key-value pair (k,v) into the DHT.
• lookup(k): Retrieve the value v associated with key k. Return null if k is not

found.

In contrast to IP routing, DHT routing is identifier-based. Each node stores about
O(logn) overlay neighbors and employs a deterministic algorithm to route queries
from requestor to the node storing the target key in O(logn) overlay hops. In Sec-
tion 3, we discuss various DHT schemes. In particular, we shall see how the overlay
is structured for efficient and scalable routing. We also outline techniques used to
improve a DHT’s query response time and robustness.

There are many applications making use of DHT. We present several examples
that demonstrate how DHTs enable large-scale peer-to-peer services.

Another interesting DHT topic is its deployment in wireless networks which are
becoming increasingly popular nowadays. Applications are being developed for mo-
bile ad-hoc networks (MANETs), wireless sensor networks (WSNs) and wireless
mesh networks (WMNs). It is desirable to have a DHT-like framework for wireless
networks to support object location. We describe some major challenges in deploy-
ing DHT in wireless networks, and outline some solutions.

This chapter is organized as follows. We present the performance characteris-
tics and design considerations of DHTs in Section 2. We discuss some examples
of DHTs and how DHT is used in large-scale applications in Sections 3 and 5 re-
spectively. In Section 6, we highlight the challenges of applying DHTs in wireless
networks and present some solutions. We conclude in Section 7.

2 Performance Characteristics and Design Considerations

In this section, we describe some common performance characteristics of DHTs,
and discuss some design issues (Section 2.1), followed by design considerations of
DHT (Section 2.2).

Distributed Hash Tables: Design and Applications 259

2.1 Common Performance Characteristics

A DHT usually has the following desirable properties:

1. Efficiency in routing: A DHT overlay is structured so that queries for keys may
be resolved quickly. Typical DHT schemes have a O(logn) bound on the length
of search path (in overlay hops). To reduce routing delay, in recent years, locality-
aware DHTs have been proposed so that routing hops are of short Internet length
by taking advantage of locality information.

2. Scalability: Node storage and maintenance overhead grows only logarithmically
with the number of nodes in DHT. This leads to its high scalability to large num-
ber of users.

3. Self-organization: A DHT protocol is fully distributed. Node joins, departures
and failures are handled automatically without the need of any central coordina-
tion.

4. Incremental deployability: A DHT overlay works for arbitrary number of nodes
and adapts itself as the number of nodes changes. It is functional even with one
node. This is a highly desirable feature as it enables deployment without inter-
rupting normal operations when new nodes join the overlay.

5. Robustness against node dynamics: Queries are resolved with high probability
even under node dynamics. Further optimizations may further increase system
robustness.

2.2 Design Considerations

In designing a DHT to achieve the above desirable properties, several issues need to
be considered:

1. Node dynamics: Peers may join and leave at any rate. Since it is not possible for
a central server to record the status of each peer, a DHT must be able to dynamic
node departure or failure. In other words, the DHT structure must be maintained
to ensure correct and efficient routing in the presence of node dynamics.

2. Overlay path stretch: Compared with IP routing, overlay routing to a certain
node has in general higher latency, since overlapping traversals of some physical
links is inevitable. The path stretch is defined as the ratio of the overlay route’s
latency to the underlying IP route’s latency. In order to avoid large path stretch,
DHT routes need to be optimized for low response time and such optimization
techniques should be scalable to large groups.

3. Hotspots: Application data is generally skewed in terms of access probability.
For instance, in video streaming, some segment of a video may be more popular
than the other. A DHT scheme needs to consider the high lookups for a particular
key (i.e., popular segment) by load balancing request processing among many
nodes. The load balancing algorithm should be scalable.

260 C.-F. Michael Chan and S.-H. Gary Chan

3 DHT Schemes

We describe several DHT schemes in this section. Note that keys and node IDs are
drawn from the same m-bit identifier space and that keys are typically obtained by
hashing meta-data, while node IDs are hashes of IP addresses or public keys. For
a good hashing functions, nodes and keys are uniformly distributed in the overlay.
Consequently, each node stores a similar share of keys. In our discussion below, we
focus on operations including how keys are inserted, stored and looked up, and how
the overlay is constructed and maintained. We assume m-bit identifiers are used, i.e.
the identifier space is [0,2m− 1]. We denote a node with ID i as Ni and a key with
ID j as Kj.1

3.1 Chord

The Chord DHT places nodes and keys in an identifier ring [23]. It is a simple DHT
with great flexibility, which allows optimizations such as load balancing to be read-
ily added as extensions to the basic scheme. We first describe the basic Chord, and
then briefly discuss some simple but important extensions. The basic components
and operations of Chord are as follows:

• Key placement: A key Kj is stored by the node Ni immediately following j in the
identifier ring. In other words, Ni is chosen such that there is no node Ni′ where
j ≤ i′ < i. We also call Ni the successor of j, denoted by successor(j). Note that
key and node IDs may coincide, in which case the key (Ki) is stored at the node
with the same ID (Ni).

• Successor Links: Each node Ni maintains a link to its successor, the node Nj

immediately following it. Such definition of successors for keys is also applica-
ble to nodes. Denote Nj as successor(i). As long as successor links are correct,
a lookup is guaranteed to reach the key’s successor, albeit via a long path going
around the identifier ring one node at a time. A node achieves this by periodically
running the following stabilize() procedure. It asks its successor Ns for Ns’s pre-
decessor Nj. If Nj �= Ni, Ni sets Nj as its successor. This happens if Nj is a newly
joined node. Suppose i < j < s and Ni and Ns are existing nodes in the DHT.
When Nj first joins the overlay, it looks up j and gets Ns’s address. It then sets Ns

as its successor. Finally, Ns transfers keys in (i, j] to Nj. It is shown in [24] that
all successor links always converge correctly for any sequence of node joins and
stabilizations.

• Fingers: A node Ni also maintains a finger table, which contains m entries, where
m is the identifier length. The j-th finger stores the address of successor(i+2 j−1).
An example of finger tables with 6-bit identifiers is shown in Fig. 1. Nodes pe-
riodically run a f ix f ingers() procedure to refresh the finger table entries. The

1 For simplicity, we also use i in place of Ni and j in place of Kj when there is no ambiguity.

Distributed Hash Tables: Design and Applications 261

16+20

16+21

16+22

16+23

N16

N26

N53

N4

16+24

16+25

N0 N1N63

N33

N47

N49

i f [i]

1 N26

2 N26

3 N26

4 N26

5 N33

6 N49

N16’s finger table

Fig. 1 Example of Chord fingers

N0 N1N63

N16

N53

N4

N33

N47

N49

f [6]

f [5]

succ.

lookup(K3)

K3

Fig. 2 Example of Chord routing with fingers. Each search hop is labeled with the finger table
entry used in forwarding the lookup message. succ means the key lies within the segment between
the current node and its successor

table is iterated in a round-robin fashion, where each call to the procedure re-
freshes the next finger. A refresh is achieved by looking up the finger’s successor.

262 C.-F. Michael Chan and S.-H. Gary Chan

• Key lookup: The simple lookup algorithm forwards the request hop by hop us-
ing successor links until the key’s successor is reached. The search path’s length
is O(n) hops. Fingers drastically shorten the lookup path to O(logn) hops. In
general, to look up key k, node i does the following. First, it checks if k is in
(i,successor(i)]. If so, simply forward the request to the successor. Otherwise,
forward the request to the largest finger i + 2 j−1 immediately preceding k. The
same procedure is carried out at each intermediate node. Figure 2 shows an exam-
ple of Chord routing with fingers. Notice that each hop (via a finger) reduces the
distance to the key’s successor by approximately half, thus giving the O(logn)
path length. A more formal proof is given in [23].

The basic Chord is extended for greater robustness and load balancing. Two main
ideas are key replication and employing virtual nodes. For key replication, instead
of storing key k at only successor(k), it is replicated on the r successors of k. This
way, even if j = successor(k) fails, the successor(j) is still available for answering
lookups for k. Setting r = O(logn) allows for robustness against very high degrees
of node dynamics [23]. A node may also run multiple virtual nodes depending on
its processing power and bandwidth. This way, heterogeneous peers may fully con-
tribute their spare and varied resources to enhance the DHT’s quality.

3.2 Pastry

In Pastry, an identifier is made of D digits. For example, a 128-bit identifier is broken
up into 32 4-bit digits. To simplify the exposition, we assume 2bD-bit identifiers,
where b is the number of bits per digit. The components of Pastry are as follows:

• Key placement: A key k is placed at the node whose ID i is numerically closest
to k.

• Leafset: Each node i keeps a list of L neighbors, where L is an even number. L/2
of those have IDs numerically closest to and smaller than i. The other L/2 have
IDs numerically closest to and larger than i. This is similar to Chord’s successor
links in that a node may employ correct leafset information to resolve lookups in
O(n) hops.

• Routing table: A Pastry routing table consists of D rows, one for each digit. A
row consists of 2b entries. The j-th entry of the i-th row stores the address of a
neighbor whose ID shares the same i significant digits with the current node’s
ID, but with the i + 1-th digit equal j. Note there may be no node matching the
requirements of some entries. In this case, the entry is left empty (Fig. 3).

• Key lookup: To look up a key k, a node i first checks its leafset. If a neighbor
is numerically closest to k, the request is forwarded to that neighbor, and the
lookup is complete. Otherwise, the routing table is checked for a node whose ID
shares one more digit with k than i. If there is no such node (i.e., the route entry
is empty), the message is forwarded to the node j matching as many digits with

Distributed Hash Tables: Design and Applications 263

i +1 digitLevel i

0 1 2 3

0 0xxx 1xxx 2xxx –

1 30xx – 32xx 33xx

2 310x 311x – 313x

3 3120 3121 3122 –

Routing table of node 3123

Fig. 3 Pastry routing table of node 3123. 8-bit identifiers are divided into 4 2-bit digits. All num-
bers are in base 4. “xxx” is an arbitrary string of base-4 numbers

k as i does, but is numerically closer to k. As shown in [22], node j exists with
high probability given that L is reasonably large. A lookup fails, however, if L/2
nodes with consecutive IDs fail at the same time. Note that each hop effectively
brings the lookup one-digit closer to the target key, thus the O(logn) bound on
the search path length.

• Node dynamics: Node joins are handled similarly as in Chord. A new node looks
up its own ID i. Suppose node j is responsible for the key i. Node i asks node j
for its leafset and turns it into its own leafset by adding j and removing the node
farthest away in terms of ID distance. Up to L nodes in j’s leafset will need to
be contacted so that they could update their leafsets to include i. j also updates
its leafset to include i. The two adjacent neighbors in i’s leafset then transfer
keys to i.

Node i’s routing tables are populated by route entries from intermediate
nodes along the search path it initiated when it looked up its own identifier. For
each route entry, there may be multiple candidates. The entry with the lowest
distance is chosen. The distance metric reflects the end-to-end delay between i
and the neighbor. Once the route entries are filled, i asks for those neighbors for
their routing tables, and updates the route entries again by replacing route entries
with lower-distance entries. This way, locality-awareness is built-in during over-
lay construction. Reference [22] gives a formal proof that locality is preserved
by using routing entries from physically close nodes.

A node handles neighbor departures and failures lazily. Replacement of a
failed neighbor occurs when the node forwards a message in vain to the neighbor.
A failed leafset neighbor is replaced as follows. The node contacts the live leafset
neighbor P with the smallest ID or the largest ID depending on which side of the
node the failed neighbor resides in the leafset. P returns its leafset to the node,
which then updates its own leafset by removing the failed neighbor and adding
a new neighbor from P’s leafset. The j-th entry of the i-th row is handled as
follows. The node successively asks neighbors in the other i-th row entries for
their j-th route entry. This way, a number of candidates for this particular entry
is found for replacing the failed neighbor. The one closest in terms of the distance
metric is chosen.

264 C.-F. Michael Chan and S.-H. Gary Chan

3.3 Kademlia

Kademlia is a widely implemented DHT [12, 16, 25]. It stands out among other
DHTs by using an uncommon metric – the XOR metric. The distance between two
nodes is defined as the bit-wise XOR of their identifiers. For instance, the distance
between nodes with IDs 1100 and 0010 is 1110.

The following description of the Kademlia protocol is facilitated by a binary-tree
view of the network. Each node is a leaf and the (labeled) path from the root to
the leaf is the unique prefix of the node’s ID. Figure 4 shows an example of this
binary-tree representation of a Kademlia network.

Fig. 4 Binary tree abstraction of a Kademlia network

• Node state: As in Chord and Pastry, Kademlia nodes keep track of peers in
certain ID ranges. Peers are put into k-buckets, where bucket i is for peers at a
distance between 2i and 2i+1. Each node must know of at least one node in each
bucket, if there is some node in that ID range. For example, node E in Fig. 4
needs information of at least one node from each circled group. The size of a
bucket is limited by the system parameter k. If a bucket is full, a new node will
not be added unless the least-recently-used node in the bucket fails to respond.
This modified LRU replacement scheme has the benefit of defending against
malicious attempts to flush node state with new (and bogus) information.

• Key placement: A key is placed at the k nodes whose IDs are closest to the key.
• Key lookup: A key x is looked up as follows. The querying node n first scans

stored information to locate the k nodes closest to x. It then sends the query to α
(< k) nodes from the set. Upon receiving replies, n chooses again the k closest
nodes to x, and then sends queries to α of them. The formal analysis of this
algorithm is involved, but the idea is like walking down the binary tree from the
root, where at each internal node, n queries some node it knows about in that
subtree, receives information about a node further down the subtree and closer

Distributed Hash Tables: Design and Applications 265

to the destination, and repeats the process by moving down the correct edge. The
algorithm is also similar to that of Pastry’s prefix-based routing, where with each
step, n gets closer to peers storing x by “correcting” significant bits in the nodes
queried. The system parameter α governs the degree of parallelism in lookups.
By employing parallel look ups, Kademlia sacrifices some (constant) increase in
bandwidth for flexibility in selecting low-latency paths.

• Node dynamics: Unlike other DHTs, nodes in Kademlia learn about each other
through queries. When a node joins the network, it looks up its own ID, so that
peers along the query paths know about it. Similarly, there is no explicit mes-
saging when a node leaves. The departure is only discovered when other nodes
attempt to ascertain the node’s presence before evicting it from a bucket. There
is also the need for republishing keys to ensure that they are stored at the k clos-
est nodes. Periodically, a key is republished (by a lookup for the key and data
transfer to new holders). To reduce overhead, a node receiving this republication
will not republish the key in the next period. This way, as long as some node first
republishes the key, other nodes who were also obliged to do so would not need
to waste the bandwidth to perform the same operations.

In practice, further optimizations are employed to speed up the protocol. When a
bucket is full, new information for that bucket is cached. If some node in the bucket
fails afterwards, the cached information can be used to fill in the gap immediately.
Lookups are sped up by expanding the routing table so that multiple bits may be
matched in each step. This is similar to setting b > 1 in Pastry.

3.4 Other DHTs

Several DHTs based on other types of overlay structures. The Content Addressable
Network (CAN) constructs a d-dimensional hypercube [20]. Identifiers are divided
into d digits. Each node owns a subset of the coordinate space and maintains a set
of d− 1 neighbors. A neighbor shares the same range of values with the node in
d − 1 dimensions, but not in the remaining dimension. Lookups are resolved by
forwarding along the correct dimensions such that each hop matches one more digit
in the key. A lookup is thus resolved in O(d) hops. Note that by setting d = logn,
we get the O(logn) bound as in Chord and Pastry.

Tapestry is similar to Pastry in that it constructs a prefix-based routing table [29].
The main difference is that there is no leafset.

Viceroy maintains a butterfly structure [15]. Key management is similar to that
in Chord. Nodes are distributed on an identifier ring. The difference is in the overlay
neighbor selection. A node joins one of logn level rings. Each level ring is connected
by level-ring links between nodes with adjacent identifiers on the same level. A node
at level i maintains some pointers to neighbors at levels i−1 and i+1 in a way that
lookups are resolved in O(logn) hops. Viceroy is most characteristic in its constant
node state.

266 C.-F. Michael Chan and S.-H. Gary Chan

4 Design Fundamentals

In this section, we discuss some fundamental design issues. With so many DHT
protocols, it is natural to ask how they fair against one another in various scenar-
ios. A detailed comparison between the various DHT schemes is presented in [9],
which studies the effect of the overlay’s structure on system performance in terms
of static resilience, path latency and local convergence. We also briefly discuss in-
teresting findings concerning tradeoffs between the network diameter of a DHT and
the amount of routing information a node stores [26].

4.1 Static Resilience

The robustness of a DHT depends on both its recovery mechanisms and structural
properties. The study of static resilience reveals how well a DHT’s structure copes
with node failures without any recovery operations, and sheds light on how such
mechanisms should be provisioned. For instance, if the structure is inherently re-
silient against node failures, then recovery mechanisms need not be frequently car-
ried out.

Intuitively, a DHT is more robust when there are more alternative routes a query
can take to the key holder. If some nodes fail, it is still possible to route around
the failures to the destination. Clearly, the DHT’s routing algorithm dictates how
flexible queries may be forwarded. The more flexible the DHT’s structure, the more
robust the system.

Take Chord and Pastry as examples. In the original Chord proposal, a query is
resolved by halving by the distance to the destination at each step. However, this
is really a restricted version of the more general algorithm in which the distances
covered by each step need not be in decreasing order. In other words, we may take
the steps in any order, as long as there is one step for each distance (2i) to be covered.
The prefix-based phase of Pastry’s routing algorithm is vastly different. At each step,
we must fix the most significant unmatched bit. This means only one route entry can
be used. If the node in that entry has failed, the query has to be redirected to leafset
neighbors. Clearly, if not for the leaf sets, Pastry’s routing algorithm results in little
flexibility in routing, and hence lower static resilience.

4.2 Path Latency

The structure’s flexibility also affects the latency of query paths. Once the routing ta-
ble is fixed, there is limited choice in a query’s next hop. A flexible structure enables
selection of neighbors with better latency, and hence better choices in choosing next
hops. As a result, the overall path latency can be reduced.

Distributed Hash Tables: Design and Applications 267

In Chord, a node n’s i-th finger is originally defined to be the successor of n+2i.
However, this requirement can be relaxed to include nodes between [n+2i,n+2i+1),
making neighbor selection very flexible. In Pastry, a route entry in the i-th row can
be chosen from a maximum of 2b(D−i−1) peers. A Kademlia node also has great
flexibility in filling its k-buckets. For the i-th bucket, there are up to 2i choices.
On the other hand, CAN requires a neighbor to only differ by a single-bit, thereby
restricting the selection to one neighbor.

4.3 Local Convergence

Consider two queries from two nodes that are nearby in the physical network. A
DHT exhibits good local convergence properties if the queries converge at a com-
mon peer that is also close to the two nodes. The most significant advantage of a
high degree of local convergence is that caching can be made more effective. Fre-
quently, an application on top of DHT caches lookup results along the query path
in hopes that future queries would hit the cached entries early in their lookup paths.
The Cooperative File Storage (CFS) to be discussed in Section 5.1 is an example of
such an application.

It is discovered that a structure with flexible neighbor selection exhibits good lo-
cal convergence properties. Chord, Pastry and Kademlia with low-latency neighbor
preference are desirable designs in this regard.

4.4 Network Diameter and Node State Tradeoffs

Another interesting observation is that for most of the DHTs we have discussed, the
size of a node’s routing table is either O(logn) (Chord, Pastry, Kademlia, Tapestry)
or O(d) (e.g. CAN), with network diameters of O(logn) and O(n1/d) respectively.
(The exception is Viceroy, which has constant node state with high probability and
O(logn) diameter). The question asked in [26] is whether these are actually lower
bounds on the network diameter, i.e. Ω(logn) and Ω(n1/d). The answer will give us
an idea of whether the tradeoff has been optimized by existing DHTs, and whether
there is room for improvement.

It is, in fact, possible to go beyond the Ω(logn) lower bound. The idea is to
construct a (directed) logn-ary tree. Each node except the root has a edge pointing
back to the root. This way, all nodes are reachable from one another (thus satisfy-
ing routing correctness) and any path between two nodes is at most h + 1, where
h = loglogn n = logn

log logn is the height of the tree. Obviously the longest path (i.e.,

the network diameter) is O(logn
log logn), which is asymptotically smaller than O(logn).

Also, each node only maintains O(logn) neighbors. Unfortunately, this structure
puts the root under heavy congestion, an unacceptable state of affairs in peer-to-
peer systems.

268 C.-F. Michael Chan and S.-H. Gary Chan

Another discovery is that DHT routing algorithms can be classified into two ma-
jor categories – uniform and others. Uniform routing algorithms treat every query
without discrimination against the source of the query and the location of the pro-
cessing node. For instance, a Chord node would process a query by looking up its
finger table no matter where the query came from or where the node resides in the
identifier ring. In this case, where nodes have O(logn) state, Ω(logn) is indeed the
lower bound on the network diameter. The reason is that the DHTs aim to provide a
uniform load across nodes (i.e., to avoid congestion), therefore they cannot achieve
the lower bound of the logn-ary tree for network diameter, but only the larger lower
bound of Ω(logn).

It turns out that a butterfly network can be (deterministically) designed to achieve
a O(logn

log logn) diameter with O(logn) node state and a non-uniform routing algorithm
such that no extra load is imposed on any node. However, this bound is known so far
to be possible with static nodes, and that some links would still have O(logn) extra
load. It remains unknown whether the bound can be achieved deterministically in
the presence of node dynamics.

5 Applications

In this section, we present several applications of DHTs. We first describe the appli-
cation briefly, and then discuss their properties with reference to those of DHTs.

5.1 Cooperative File Storage (CFS)

CFS is a large-scale distributed storage system supporting multiple file systems [7].
Files are divided into blocks, which are stored in CFS servers. Blocks are distin-
guished by unique IDs obtained by hashing block contents and public keys of block
publishers. Clients read a file by looking up and retrieving blocks that make up the
file. File publishers insert and periodically refresh files so that the blocks do not get
deleted by CFS servers after a fixed expiry time. Each file system is a tree rooted at
a root block, which is signed by the publisher with its private key. The root block’s
ID is the publisher’s public key. Clients then name a file system according to the
system publisher’s public key.

CFS consists of three layers. The (lowest) Chord layer is responsible for look-
ing up blocks given their IDs. A DHash layer is built on top of the Chord layer.
It manages block storage, replication and caching. The file system layer converts
blocks obtained from the DHash layer to files and provides users and applications a
file system interface. We focus on how the Chord and DHash layers collaboratively
gives CFS various desirable performance qualities:

• Highly scalable: CFS inherits scalability from the underlying Chord layer.
Node state and control overhead in searching and routing table maintenance

Distributed Hash Tables: Design and Applications 269

grows logarithmically with the number of CFS servers. Since files are broken
into blocks, a large file will not exhaust a particular server’s storage, as will
be the case in file-based storage systems. Also, since block IDs are hashes of
block contents, and servers are distributed approximately uniformly around the
Chord ring, it is expected that each server stores around the average number of
blocks.

• Robust to massive server failures: With the original Chord protocol, a block
is stored at the successor of its ID. The DHash layer improves robustness by
replicating the block in the k successors of the ID. Since consecutive servers
on the overlay are likely to be distributed in the physical network, their fail-
ure rates are likely to be indepedent. If a server fails with probability p, then a
block is inaccessible (removed from CFS due to failure of servers storing it) with
probability approximately equal to pk, which could be made small with modest
values of k.

• Effective load balancing: A popular file may put excessive load on its server.
CFS proposes two approaches to balance the load for popular files. First, for large
popular files, CFS inherently balances the load by breaking them into blocks.
Furthermore, block replication allows lookups to be directed to a number of
servers instead of the immediate successor of the block ID. Second, for small
popular files (and blocks), caching is employed to reduce the load on the block
successors. In a nutshell, the queried blocks are cached at intermediate nodes
along the overlay search path. Since the Chord lookup algorithm halves the dis-
tance to the target node every hop, cached copies near the target node tend to
overlap, thereby boosting the cache hit rate.

• Fast file access: The Chord searching algorithm is improved to provide server
selection in CFS. At every hop during lookup, a node may choose among the
set of successors and fingers to forward the query to. Two potentially conflict-
ing considerations are latency to the next hop and the ID space covered by this
forwarding. A hybrid metric balances the latency and overlay progress (see Sec-
tion 4.3 of [7] for details.) With server selection enabled, CFS retrieval rates are
comparable to and has lower variance than that of direct TCP-based transfers
such as FTP.

• Secure against data change and flooding attacks: Two major security concerns
of distributed file systems are unauthorized data modification and flooding at-
tacks. CFS servers mandates node ID to be the SHA-1 hash of the node’s IP ad-
dress, which is in turn authenticated via challenges with random nounces sent to
the claimed address. An attacker wishing to modify a specific data block would
have to control a large set of IP addresses to be able to store the target block.
However, entities owning many IP addresses are more easily identified (such as
big organizations) than individual attackers owning a small number of addresses.
This way, the system is quite secure against intentional deletion of data. CFS
also limits the amount of data publishers can put into the system to guard against
flooding attacks. Suppose the quota is f , a (small) fraction of the total storage
space in the CFS system, then an attack would have to employ 1/ f hosts to ex-
haust the system’s storage.

270 C.-F. Michael Chan and S.-H. Gary Chan

5.2 Scribe

Enabling large-scale multicast in the Internet is an important topic of research. Tra-
ditional (IP) multicast has been proposed long ago, but has seen limited deployment
on a large scale due to network management issues and other deployment concerns.
To support large-scale multicast, all networks involved must have multicast support
enabled, which is often not possible. There are also issues of assigning (unique)
multicast addresses to groups and authorization of operations such as group cre-
ation, sending messages to a group and receiving messages. The lack of multicast
support has stirred interest in application-layer multicast (ALM) where end-hosts
provide multicast by relaying messages at the application layer.

Scribe is an ALM scheme based on the Pastry DHT and solves several important
issues with IP multicast [5]. While ALM is in general less efficient in terms of packet
delivery time and link stress, Scribe provides scalable multicast with acceptable
delay penalty and link stress as compared to IP multicast. In Scribe, a group ID
(multicast addresses) is generated by hashing the creator address and group name.
The creator then sends a create message to the node responsible for the group ID via
Pastry routing. This node is the rendezvous point (RP) for node joins and message
sending for the group. A joining node sends a join message with the target group
ID to the RP. Intermediate nodes on the path become forwarders in the resultant
multicast tree. They store a children list so that future multicast messages may be
forwarded to the downstream. Senders forward packets to the root for dissemination
throughout the tree. We focus our discussion on Scribe’s scalability, efficiency in
propagating multicast messages and fault tolerance.

• Scalability in group size: An important hurdle in scaling multicast to large
groups is the node joining process. In particular, it is essential to enable nodes to
join with low control overhead. This is obviously not possible with a centralized
server storing a (sub)set of existing nodes in the group. Scribe enables efficient
node joins by exploiting Pastry’s properties. First, Pastry’s routing mechanism
allows the join overhead to be distributed evenly among nodes. Second, the RP
need not handle all joins, as join messages may hit an existing node (either a for-
warder or receiver) along the path and processed there locally. Third, the uniform
distribution of nodes in Pastry ensures a balanced multicast tree. Furthermore,
since Pastry employs prefix-based routing, the multicast structure is guaranteed
to be loop-free.

• Scalability in number of groups: Two problems that hinder scalability in sup-
porting many multicast groups are the assignment of group addresses and load
balancing control information of groups among participating nodes. The address
assignment problem is solved by employing DHT keys as group IDs, which are
obtained by hashing the group creator and group’s name. With a suitable hash
function, the probability of group ID collision is low. This way, group IDs can be
assigned in a totally distributed manner. Hashing also distributes the group roots
uniformly in the Pastry overlay. Since nodes are also distributed uniformly in the
overlay, the control information for all groups, i.e. parent and children pointers,

Distributed Hash Tables: Design and Applications 271

is likely to be distributed uniformly among the nodes. Indeed, for fairly large
networks (100000 nodes and 1500 groups), Scribe nodes have on average less
than 10 children pointers. Additionally, nodes may offload children connections
by asking some of them to connect to their siblings instead. This so-called bot-
tleneck remover algorithm dynamically adapts node stress to network conditions,
and effectively reduces the maximum number of children connections under the
same network conditions.

• Multicast efficiency: Scribe achieves low delay penalty compared to IP multicast
for two reasons. First, the paths from receivers to the RP are short – with DHT
routing, the path length is logarithmic in number of nodes in the network. Second,
since Pastry enforces locality in choosing overlay neighbors, each overlay hop
in the multicast tree is likely to be short in terms of latency. These two factors
contribute to an overall low delay in disseminating messages in the multicast
trees.

• Fault tolerance: Scribe exploits efficient DHT routing to localize repairs of the
multicast trees in case of node failures. If a node fails, its children can simply
route a join message to the group ID to discover a new parent. Failure of the
RP has a more detrimental effect on the multicast group since it stores, apart
from children points, other control information such as authorization credentials,
identity of the group creator and senders. Scribe replicates the state at the RP to
its k closest nodes in the Pastry overlay. If the RP fails, its children use Pastry
to find the new root, which is the closest overlay node of the failed RP. Since
this new root already possesses the group state, normal operation may resume
quickly.

5.3 VMesh

Multimedia streaming is one of the most popular services in the Internet. A partic-
ular type of multimedia streaming is video-on-demand (VoD), in which users may
request for any video at any time. An important feature of VoD is user interactivity,
i.e. users should be able to start viewing the video at any point, and may jump for-
ward and backwards as they wish. VMesh provides scalable and efficient VoD with
rich user interactivity based on DHT [27].

In VMesh, a video is divided into segments initially stored at the video server.
A peer downloads some segments from the server to its local storage and searches
for segments it does not own via a DHT and a video mesh. The stored segments are
not removed even if the peer is not viewing them. Instead, the peer streams these
segments to other peers.

A DHT is constructed to facilitate segment location. Each peer registers the seg-
ments they store by inserting keys into the DHT. A segment’s key comprises three
parts – the video ID, segment ID and segment owner’s network location, in decreas-
ing order of significance. The network location field encodes the node’s location
in the network via space filling curves, which provide a one-dimensional proximity

272 C.-F. Michael Chan and S.-H. Gary Chan

metric for parent selection during segment location streaming. Since the video and
segment IDs occupy more significant bits, keys for the same segment from different
peers are stored in the same region in the overlay (e.g., in a (small) arc of the Chord
ring). With key replication, a node may answer segment queries with a list of parents
owning the segment. Once the requesting peer receives this list, it could ask nearby
parents to stream the segment.

Peers maintain in addition to the DHT a video mesh. In a nutshell, peers storing
segment i maintains pointers to peers storing the next (i + 1-th), previous (i−1-th)
and the same (i-th) segments. These pointers are obtained by locating the segments
using DHT and storing the addresses returned. Whenever a peer is about to exhaust
its current segment, it asks its parents for the addresses of the peers holding the next
segment and starts buffering it for better video continuity. When a peer wants to
jump to a new (far-away) segment, it queries the DHT for the segment’s owners. If
the segment ID is close to the current segment’s ID, the parent pointers are followed
instead.

VMesh also addresses non-uniform segment popularity. Typically, certain seg-
ments of a movie are more popular and thus accessed more frequently. It is desirable
to have more replica of popular segments for load balancing purposes. VMesh peers
employ a distributed averaging algorithm to estimate the popularity and number of
segment replica in the network, and adjust the segments they store accordingly [17].

The following are desirable properties of VMesh:

• Scalability: VMesh scales well to large number of peers. By having peers store
and stream segments to other peers, the video server’s workload is greatly re-
duced. The peer-to-peer segment location algorithm is locality-aware. This al-
lows peers to find physically nearby parents, thereby reducing streaming over-
head and latency. Popularity-aware adjustment in segment storage balances
streaming load among a suitable number of peers, thereby avoiding hotspots for
popular segments.

• Robustness to parent failure: Since a peer receives a list of parents as an answer
to a DHT query, it may stream the segment in parallel from multiple (nearby)
parents. If a parent fails, the other parents may share the failed parent’s load
while the peer searches for a new parent.

• Efficient bootstrap and jumping: VMesh provides low startup delay for newly
joined peers and low delay in jumping to arbitrary positions in the video. Since
segment location is performed as a DHT search, queries are resolved efficiently.
Also, a new peer is given a list of parents with their location in the network. Such
locality awareness allows the peer to choose nearby parents to reduce streaming
delay. The same principle applies for jumping peers.

5.4 Internet Indirection Infrastructure (i3)

Unicast routing has been the main service provided by the network layer in the
Internet. The need for large-scale multicast, anycast and host mobility services

Distributed Hash Tables: Design and Applications 273

has sparked much interest in the research community. The Internet Indirection In-
frastructure (i3) is an overlay framework supporting very general routing services.
While it does not require any particular structure in its implementation, a DHT is a
natural and desirable candidate.

Routing in i3 is entirely identified-based. Instead of an address, peers send mes-
sages to identifiers. Receivers interested in those messages place triggers in the
overlay. Basic triggers are the ordered pair < id,addr >, where id is the identi-
fier messages are sent to, and addr is the receiver’s IP address. Triggers with the
same id are stored in the same DHT node. Messages from the sender are routed to
the node storing the triggers with the given id, who then forwards it to each regis-
tered address. Such indirection allows for natural multicast, anycast, host mobility
and service composition.

• Multicast: A multicast group is identified by a group id G. Nodes join the group
by inserting triggers < G,addr > into the DHT. Senders simply have to send
messages to the id G. A scalable multicast scheme which extends this basic idea
is presented in [13].

• Anycast: Servers insert triggers of the form < S,addr >. Nodes then locate a
server by sending a request to id S. The service id S is separated into a prefix and
the suffix. The latter is used for load balancing or locality-awareness in selecting
servers. For instance, location information may be enocded into the ID suffix and
the suffix of the requested ID to achieve locality-awareness. On the other hand,
servers could insert multiple triggers with random suffixes proportional to their
capacity to achieve load-balancing.

• Host mobility: When a node moves, it inserts a trigger < IDold , addrnew >,
where IDold is the ID of its previous address and addrnew is its new address.
One may consider them as the home address and foreign address respectively in
IP mobility. Changes in the node’s address is reflected by inserting new triggers
with updated addrnew. The reader is referred to [30] for details.

• Service composition: In certain applications, messages may need to be processed
in between the server and service requestor. i3 achieves this by making triggers
more flexible. In its more powerful form, triggers allows the addr field to be
an ordered list of identifiers (we may consider an address an identifier as well).
This list behaves like a stack, with the top of the stack on the left end of the list.
Suppose a packet from server S to requestor R needs to pass through a process-
ing node P. Figure 5 shows how data is redirected to the processing node before
reaching R. The advantage of this approach is that processing is receiver-driven.
The server need only send one format of the application data, while different re-
ceivers may process the data individually for compatibility. Numerous examples
of this redirection mechanism is given in [14].

From the above, we see the need to organize a large number of triggers and
route messages to triggers efficiently. Thus, DHTs are a good choice for the overlay.
DHTs can also provide robustness through trigger replication and reduce latency
by locality-aware techniques. Given this scalable, efficient and robust overlay, the
above routing services can be provisioned in large scale with desirable performance.

274 C.-F. Michael Chan and S.-H. Gary Chan

<id, <idproc,addrR>>

<idproc,addrP>

S

R

P

1. <id, data>

2. <<idproc, addrR>, data>

3. <addrR, data>

4. Processed data

i3

Fig. 5 Example of service composition in i3. The receiver R inserts the trigger < id,<
idproc,addrR >> and the processing node P inserts the trigger < idproc,addrP >>. The server
S sends the data to id without knowing the data will be processed by P. The message is redirected
to the trigger < idproc,addrP > and then forwarded to P for processing. P obtains R’s address from
the message and finally sends the processed data to R

6 DHTs in Wireless Networks

Recent advances in mobile technology, such as mobile computing power and wire-
less communications capabilities, has sparked great interest in building scalable ap-
plications for large-scale wireless networks. In this section, we highlight the char-
acteristics of wireless networks, how such characteristics hinder the deployment of
DHTs and various approaches to adapt DHTs to such environments.

6.1 Characteristics of Wireless Networks

There are three major types of wireless networks:

• Mobile ad-hoc networks (MANETs) are characterized by high node mobility
and lack of infrastructure support. Nodes of low processing power and move in
random directions at random speeds, thereby making the topology unstable. An

Distributed Hash Tables: Design and Applications 275

example of MANETs is the vehicular ad-hoc network, where wireless devices in
vehicles interact with each other while moving at high speeds.

• In wireless sensor networks (WSNs), thousands of sensor nodes are scattered
onto a large geographical area. The sensors are very low-profile devices with very
limited processing power, memory and battery. The primary concern of a sensor
network is its lifetime, therefore protocols for sensor nodes focus on power con-
servation. The network serves as a repository of sensed data, such as temperature
and humidity. Queries are not directed towards a specific node. Instead, multiple
nodes cooperate to reply with aggregated data that is sensible to the application.

• Wireless mesh networks provide an alternative way for network access in ar-
eas where infrastructure is difficult and/or costly to install. In its most general
form, a wireless mesh network consists of a number of gateways, mesh points
and end-hosts. The gatways provide access to the wired Internet. Mesh points
are typically small devices with limited processing power and memory mounted
on lamp posts or rooftops. They extend the network coverage of the gateway
wirelessly. By associating with a default gateway, they forward Internet-bound
traffic from associated users to the gateway. Routing is also conducted between
different mesh points. While users are mobile and may switch their associated
mesh points at any time, the gateway and mesh points are generally stationary.

While these wireless networks have different uses and greatly diversified node
capabilities, they share some characteristics which are of paramount importance in
considering the design of DHTs in such environments:

• Limited shared bandwidth: The (broadcast) wireless channel is shared by all
nodes and has limited bandwidth. A DHT scheme has to be light-weight in terms
of bandwidth consumption.

• Lack of routing infrastructure: Unlike the wired network, where routing is read-
ily available at low cost, routing in wireless networks is non-trivial. The two
problems associated with routing in this case are high maintenance overhead of
routes and inefficient bandwidth utility due to long routes.

• Low processing power and memory capacity: Wireless devices are usually low
in processing power and limited in memory capacity. A desirable DHT scheme
should be light-weight in terms of node processing and storage.

In the following sections, we discuss two main issues with wired DHTs in wire-
less networks and outline solutions proposed in the literature.

6.2 Challenges of Using DHTs in Wireless Networks

It is argued that DHTs designed for the wired network are not directly applicable to
wireless networks. The two main issues are as follows.

1. Overlay mismatch problem: In the DHT overlay, any pair of nodes is consid-
ered to be “one-hop” apart. While this abstraction is somewhat valid in the wired
network where routing is efficient and low-cost, it is definitely not the case in

276 C.-F. Michael Chan and S.-H. Gary Chan

wireless networks. In particular, a single overlay hop may map to multiple phys-
ical links, resulting in inefficient bandwidth utility [19, 21, 28].
Figure 6 shows an example of the overlay mismatch problem. The overlay path
from node A to node D is 3 hops, as perceived by the application. However,
it actually spans 8 physical links, one of which is traversed twice. Notice that
the shortest path via nodes F and G cannot be obtained by the overlay lookup
algorithm since the algorithm is fixed with routing on identifiers only and with
no consideration of physical proximity of nodes.

A

B

C

D

E

F

G

A

B

C

D

E

F

G

(a) Overlay path node A to node D as seen by
the application.

(b) Actual path traversed in the physical network. This
path is much longer than the perceived length of the overlay
path and may traverse a link multiple times, e.g. the
link between nodes C and E.

Fig. 6 Illustration of the overlay mismatch problem. The overlay path from node A to node D
spans 8 links, whereas the shortest path is only 3 hops. It is impossible to tell by considering the
overlay alone that the shortest path is A→ F → G→ D

Distributed Hash Tables: Design and Applications 277

2. High maintenance overhead: DHT maintenance procedures ensure routing con-
vergence and efficient routing (in terms of number of overlay hops). While the
overhead incurred by such procedures is acceptable in the wired network, the
same procedures are demanding for bandwidth-limited wireless networks. For
example, in Chord, a node periodically run the stabilize(·) and fix fingers(·) meth-
ods to ensure that its successor and finger table entries are up to date. Each of
these operations may require a route discovery. For reactive routing protocols,
this incurs up to O(n) overhead, where n is the number of nodes [10, 18]. Proac-
tive routing requires periodic flooding of topology control, which is particularly
costly in wireless sensor networks where power is of utmost importance [6]. It
is also difficult to achieve convergence in MANETs as the topology changes
quickly. Multiple route discoveries may be needed in the presence of mobility.
Furthermore, overlay mismatch exacerbates this issue, since much bandwidth is
spent obtaining routes that are unnecessarily long. The situation could be even
worse than simple flooding in resolving requests for data items [19, 28].

6.3 Search Approaches for Wireless Networks

The overlay mismatch problem and high maintenance overhead incurred by tradi-
tional DHTs must be resolved in order to make DHTs feasible for wireless networks.
In this section, we discuss optimizations and alternate approaches that aim to resolve
these two issues.

• Adding location awareness: The overlay mismatch problem is caused by blindly
layering the DHT layer directly on top of the routing protocol. An intuitive idea is
to let nodes choose overlay neighbors that are physically close. This is achieved
by cross-layering the two overlay routing and underlay routing. Several methods
have been proposed.
In Ekta, Pastry nodes collect DSR routes by overhearing control packets [19].
A node only maintains routes to physically close overlay neighbors as indicated
by hop counts in DSR routes. The correctness of overlay routing is maintained
because in prefix-based routing that Pastry employs, choosing any one of the
possible nodes for a given bit position would ensure route convergence. The key
idea here then is to choose the node that is closest in the underlay.
MADPastry employs clustering to enforce physical proximity of overlay neigh-
bors [28]. The identifier space is divided into m (equal) partitions, where m is
the number of clusters. Each cluster’s identifier space starts with a different pre-
fix. A landmark heads a cluster and floods beacons throughout the cluster so that
new nodes may join the appropriate cluster. A node identifiers is composed of its
cluster’s prefix and a suffix obtained via hashing its address or public key. The
Pastry routing table is stripped down to contain only m entries, one for each clus-
ter. When resolving a query, the first overlay hop is taken to the cluster housing
the target key. After that, leaf-set routing is used to reach the reference node. As

278 C.-F. Michael Chan and S.-H. Gary Chan

long as clusters are relatively small, the search path is confined within a small
geographical region, thus solving the overlay mismatch problem.
If nodes know about their geographical locations, e.g. by means of GPS, it is
possible to structure their identifiers to match the underlay topology. A common
technique is to apply a specialized hash function to map node positions (in 2D)
to a 1D identifier space. For instance, the hash function employed by Georoy and
MeshChord maps node locations to identifiers on a unit ring in a way that nodes
in the same geographical region will also be in the nearby each other (in the same
segment) in the unit ring [3, 8]. An illustrative example is given in Eq. (3.1) and
Fig. 3 of [8]. The concept of cell-addressing in Cell Hash Routing is of similar
spirit to Georoy and MeshChord [2].
Another technique is to replace traditional DHT overlay routing with geographi-
cal routing. The Geographic Hash Table (GHT) and CHR use Greedy Perimeter
Stateless Routing (GPSR) to route queries to reference nodes [21]. GPSR greed-
ily forwards queries to the target location in the physical network [11]. There is
no need for overlay routing, thereby solving the mismatch problem.

• Reducing maintenance overhead: Various approaches have been proposed to
curb maintenance overhead. One method is to reduce the amount of overlay rout-
ing information. This may involve reducing the number of overlay neighbors
and/or lowering the frequency of refreshing overlay connections. Ekta tries to re-
duce route discoveries by overhearing DSR routes to overlay neighbors. MAD-
Pastry achieves low overhead by storing a degenerate Pastry routing table with
only as many entries as there are clusters. Virtual Ring Routing (VRR) takes this
approach one step further by only storing routes to successors and predecessors
in a Chord-like identifier ring [4].
Another method is to eliminate the need for overlay routing. For example, GHT
and CHR employ geographical routing (GPSR), which requires local exchange
of node locations only. No flooding for route discovery (as in reactive routing) or
of topology information (as in proactive routing) is needed.

7 Conclusions

We introduced in this chapter the distributed hash table (DHT), a scalable, efficient,
self-organizing and robust peer-to-peer routing infrastructure. Data is inserted into
the DHT in the form of key-value pairs, where the key is an identifier uniquely
distinguishing the data. DHT nodes store these key-value pairs and conduct effi-
cient data lookup using a fully distributed algorithm. Scalable routing is realized by
limiting lookups to O(logN) hops, where N is the number of nodes in the DHT.
Important extensions such as locality-aware neighbor selection and key replication
reduces response time, improves robustness against node dynamics and provides
load balancing.

Several applications based on DHTs are presented, such as distributed storage
systems (CFS), application-layer multicast (Scribe), peer-to-peer video-on-demand

Distributed Hash Tables: Design and Applications 279

with rich user interactivity (VMesh) and a framework for general routing services
(i3). These applications exploit the benefits provided by the underlying DHT for
large-scale operation in the Internet.

DHT deployment in wireless networks is also discussed. The characteristics of
wireless networks, such as bandwidth scarcity and limited node processing capac-
ity, make it difficult to apply DHT schemes directly. Two main issues, namely the
overlay mismatch problem and excessive maintenance overhead, hinder DHT de-
ployment in such networks. Various approaches have been highlighted to address
theses issues.

The role of DHTs in future networks is an open issue. While we have focused
on DHT design on wired networks and wireless networks, the future of networking
is most probably a hybrid of both. With millions of mobile devices participating in
networked applications across the Internet, it is interesting to see how DHTs can
be employed to achieve the required scalability and communications latency, while
keeping up with high degrees of node dynamics.

References

1. Internet Domain Survey. www.isc.org/ds
2. Araujo, F., Rodrigues, L., Kaiser, J., Liu, C., Mitidieri, C.: CHR: A distributed hash table

for wireless ad hoc networks. In: Proc. of IEEE Distributed Computing Systems Workshops
(ICDCSW), pp. 407–413 (2005)

3. Burresi, S., Canali, C., Renda, M.E., Santi, P.: MeshChord: A location-aware, cross-layer spe-
cialization of Chord for wireless mesh networks (concise contribution). Pervasive Computing
and Communications, 2008. PerCom 2008. Sixth Annual IEEE International Conference on
pp. 206–212 (2008)

4. Caesar, M., Castro, M., Nightingale, E.B., O’Shea, G., Rowstron, A.: Virtual ring routing:
Network routing inspired by DHTs. SIGCOMM Computer Communication Review 36(4),
351–362 (2006)

5. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: Scribe: a large-scale and decen-
tralized application-level multicast infrastructure. Selected Areas in Communications, IEEE
Journal 20(8), 1489–1499 (2002)

6. Clausen, T., Jacquet, P.: Optimized link state routing protocol. In: IETF RFC 3626 (2003)
7. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative storage

with CFS. In: SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating sys-
tems principles, pp. 202–215. ACM, New York, NY, USA (2001)

8. Galluccio, L., Morabito, G., Palazzo, S., Pellegrini, M., Renda, M.E., Santi, P.: Georoy: A
location-aware enhancement to Viceroy peer-to-peer algorithm. Computer Network 51(8),
1998–2014 (2007)

9. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact
of dht routing geometry on resilience and proximity. In: SIGCOMM ’03: Proceedings of
the 2003 conference on Applications, technologies, architectures, and protocols for computer
communications, pp. 381–394. ACM, New York, NY, USA (2003)

10. Johnson, D., Hu, Y., Maltz, D.: The dynamic source routing protocol (dsr) for mobile ad hoc
networks for ipv4. In: IETF RFC 4728 (2007)

11. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In:
MobiCom ’00: Proceedings of the 6th annual international conference on Mobile computing
and networking, pp. 243–254. ACM, New York, NY, USA (2000)

280 C.-F. Michael Chan and S.-H. Gary Chan

12. Khashmir: http://khashmir.sourceforge.net
13. Lakshminarayanan, K., Rao, A., Stoica, I., Shenker, S.: Flexible and robust large scale multi-

cast using i3. Tech. Rep. CS-02, University of California, Berkeley (2002)
14. Lakshminarayanan, K., Stoica, I., Wehrle, K.: Support for service composition in i3. In: MUL-

TIMEDIA ’04: Proceedings of the 12th annual ACM international conference on Multimedia,
pp. 108–111. ACM, New York, NY, USA (2004)

15. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the but-
terfly. In: Proceedings of the 21st annual ACM symposium on Principles of distributed com-
puting (2002)

16. Maymounkov, P., Mazires, D.: Kademlia: A peer-to-peer information system based on the
xor metric. In: Proceedings of 1st International Workshop on Peer-to-Peer Systems (IPTPS),
pp. 53–65 (2002)

17. Mehyar, M., Spanos, D., Pongsajapan, J., Low, S.H., Murray, R.M.: Asynchronous distributed
averaging on communication networks. IEEE/ACM Transactions on Networking 15(3),
512–520 (2007)

18. Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. Mobile Computing
Systems and Applications, 1999. Proceedings. WMCSA ’99. Second IEEE Workshop on
pp. 90–100 (1999)

19. Pucha, H., Das, S.M., Hu, Y.: Ekta: An efficient DHT substrate for distributed applications
in mobile ad hoc networks. In: Proc. of IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA), pp. 163–173. IEEE (2004)

20. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable
network. In: SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, pp. 161–172. ACM, New
York, NY, USA (2001)

21. Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R., Yin, L., Yu, F.: Data-centric
storage in sensornets with GHT, a geographic hash table. Mobile Networks and Applications
8(4), 427–442 (2003)

22. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Middleware ’01: Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms Heidelberg, pp. 329–350. Springer-
Verlag (2001)

23. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer commu-
nications, pp. 149–160. ACM, New York, NY, USA (2001)

24. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrish-
nan, H.C.: Chord: A scalable peer-to-peer lookup service for internet applications. Tech. Rep.
TR819, Laboratory for Compuer Science, Massachuseets Institute of Technology (2001)

25. Vuze: http://wiki.vuze.com/index.php/distributed hash table
26. Xu, J.: On the fundamental tradeoffs between routing table size and network diameter in peer-

to-peer networks. INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies. IEEE 3, 2177–2187 (2003)

27. Yiu, W.P., Jin, X., Chan, S.H.: VMesh: Distributed segment storage for peer-to-peer interac-
tive video streaming. Selected Areas in Communications, IEEE Journal 25(9), 1717–1731
(2007)

28. Zahn, T., Schiller, J.: MADPastry: A DHT substrate for practicably sized MANETs. In:
Proc. of IEEE Workshop on Applications and Services in Wireless Networks (ASWN)
(2005)

29. Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A., Kubiatowicz, J.: Tapestry: a resilient
global-scale overlay for service deployment. Selected Areas in Communications, IEEE Jour-
nal 22(1), 41–53 (2004)

30. Zhuang, S., Lai, K., Stoica, I., Katz, R., Shenker, S.: Host mobility using an internet indirection
infrastructure. Wireless Networks 11(6), 741–756 (2005)

	Distributed Hash Tables: Design and Applications
	C.-F. Michael Chan and S.-H. Gary Chan
	1 Introduction
	2 Performance Characteristics and Design Considerations
	2.1 Common Performance Characteristics
	2.2 Design Considerations

	3 DHT Schemes
	3.1 Chord
	3.2 Pastry
	3.3 Kademlia
	3.4 Other DHTs

	4 Design Fundamentals
	4.1 Static Resilience
	4.2 Path Latency
	4.3 Local Convergence
	4.4 Network Diameter and Node State Tradeoffs

	5 Applications
	5.1 Cooperative File Storage (CFS)
	5.2 Scribe
	5.3 VMesh
	5.4 Internet Indirection Infrastructure (i3)

	6 DHTs in Wireless Networks
	6.1 Characteristics of Wireless Networks
	6.2 Challenges of Using DHTs in Wireless Networks
	6.3 Search Approaches for Wireless Networks

	7 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

