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Preface

Peer-to-peer networking is a disruptive technology for large scale distributed appli-
cations that has recently gained wide interest due to the successes of peer-to-peer
(P2P) content sharing, media streaming, and telephony applications. There are a
large range of other applications under development or being proposed. The un-
derlying architectures share features such as decentralizaton, sharing of end system
resources, autonomy, virtualization, and self-organization. These features constitute
the P2P paradigm. This handbook broadly addresses a large cross-section of cur-
rent research and state-of-the-art reports on the nature of this paradigm from a large
number of experts in the field.

Several trends in information and network technology such as increased perfor-
mance and deployment of broadband networking, wireless networking, and mobile
devices are synergistic with and reinforcing the capabilities of the P2P paradigm.
There is general expectation in the technical community that P2P networking will
continue to be an important tool for networked applications and impact the evolu-
tion of the Internet. A large amount of research activity has resulted in a relatively
short time, and a growing community of researchers has developed.

The Handbook of Peer-to-Peer Networking is dedicated to discussions on P2P
networks and their applications. This is a comprehensive book on P2P computing.
It addresses all issues currently developed as well as under development including
P2P architectures, search and queries, incentive mechanisms, multimedia streaming,
service oriented architectures, collaboration to share non-storage resources, mobile
P2P, theory and analysis, and P2P databases. In addition, it covers rather practical
perspectives such as traffic characteristics and trends of P2P applications, the E-
business model in P2P applications, and software characteristics. Finally, the book
contains chapters on emerging P2P concepts and applications.

The goal of this handbook is to provide an exhaustive view of the state-of-the-art
of the P2P networking field. In organizing the book, the following objectives were
followed:

* Provide an overview of the fundamentals of P2P networks
* Describe the current practice in P2P applications and industries
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viii Preface

» Comprehensively cover the areas of interest
¢ Give the most recent perspective from the P2P research community

This book is written for researchers, professionals, and computer science and en-
gineering students at the advanced undergraduate level and higher who are familiar
with networking and network protocol concepts and basic ideas about algorithms.
For the more advanced parts of the book, the reader should have general familiarity
with Internet protocols such as TCP and IP routing. For some sections of the book
such as discussions of mobility or multicasting, familiarity with mobility in IP and
IP multicasting will be helpful but is not required.

The Handbook of Peer-to-Peer Networking is intended to provide readers with
a comprehensive reference for the most current developments in the field. It offers
broad coverage P2P networking with fifty chapters written by international experts.
In addition, we hope the book becomes an important reference to those who are
active in the field. The fifty chapters of the Handbook of Peer-to-Peer Networking
are organized into the following sections:

¢ An Introduction to Peer-to-Peer Networking — This section contains back-
ground chapters accessible to the general reader, and covers the basic models,
applications, and usage.

* Unstructured P2P Overlay Architectures — The majority of deployed P2P
applications use unstructured overlays. These chapters cover the organizational
principles and discuss a variety of examples, including overlays using social and
semantic relationships.

e Structured P2P Overlay Architectures — Structured overlays have been a
widely studied alternative approach, with over fifty different designs having been
proposed. These chapters describe some of the leading models and their algo-
rithms, as well as dynamics, bootstrapping, formalization, and stabilization.

e Search and Query Processing — Search is perhaps the most fundamental ser-
vice in an overlay. A wide range of techniques are discussed, from basic keyword
search to semantic search, and database query processing and indexing mecha-
nisms applied to the P2P architecture.

¢ Incentive Mechanisms — In practice, peers are not altruistic, so techniques to
ensure fair and mutual resource sharing have been proposed. An important cat-
egory is incentive mechanisms which allows peers to participate proportional to
their resource contribution to other peers.

* Trust, Anonymity, and Privacy — In most P2P overlays, peers are in au-
tonomous security domains, and have no a priori basis for safe cooperation. Peer
reputation management is an important category of enabling trust, and is dis-
cussed here in three chapters. In addition, work on anonymity in P2P networks
and private P2P networks are presented in two chapters.

* Broadcast and Multicast Services — Multicast services are some of the earliest
use of overlays and are often described as application layer or end system mul-
ticast to distinguish them from network layer multicast. This section has a rich
coverage of work in both multicast and broadcast mechanisms, include gossip-
based approaches and hybrid designs.
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e Multimedia Content Delivery — The inherent scalability of the P2P paradigm
makes it an attractive choice for large scale media streaming. The first chapter
in this section examines key business models for P2P content delivery. The re-
maining chapters address recent work in IPTV and Video-on-Demand in P2P
networks.

e Mobile P2P — When peers roam or are operating in ad hoc networks, the effi-
ciency and stability of the overlay is effected. The growing importance of mobile
and ad hoc networking for many applications has attracted research on the use of
P2P overlays in MANETS, which is discussed in three chapters in this section.

* Fault Tolerance in P2P Networks — Uneven workloads and instability due to
churn are some of the practical issues in operating large-scale P2P systems. Var-
ious load balancing techniques have been studied for adapting to uneven work-
loads, and are surveyed in one chapter in this section. Stabilization of the overlay
and automatically correcting network partitions are topics of two other chapters.

* Measurement and P2P Traffic Characteristics — Another topic of great prac-
tical interest is the network traffic of P2P applications, which has become the
dominant flow on the Internet. This issue affects both network operators, as dis-
cussed in one chapter, and the design of the overlay, as described in three other
chapters.

* Advanced P2P Computing and Networking — Four special topics represent
areas of P2P research that will gain more attention in future years are discussed
in this section: formal models of P2P software, the use of web services in the
P2P architecture; support for publish-subscribe and event-driven processing; and
enabling collaborative applications in a P2P overlay.
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Introduction to Peer-to-Peer Networking



Peer-to-Peer Networking and Applications:
Synopsis and Research Directions

John F. Buford and Heather Yu

Abstract Peer-to-peer computing and networking are important developments for
large-scale distributed systems design and the evolution of Internet architecture.
Widely used applications have demonstrated their feasibility and economic poten-
tial for services involving millions of users. A great deal of research has followed to
formalize and improve on the empirical results. This introductory chapter surveys
the key results of the field, introduces terminology, and identifies open issues which
are likely to be important research directions.

1 Introduction

1.1 Significance and Emergence

Several important desktop computing applications have emerged in recent years that
use an Internet-scale decentralized architecture to simultaneously connect millions
of users to share content, form social groups and communicate with their con-
tacts. These applications are classified as peer-to-peer because of the elimination
of servers to mediate between end systems on which the applications run, and their
network behavior is described as an overlay network because the peer protocols
form a virtualized network over the physical network.

While peer-to-peer (P2P) applications have had a rapid ascent and wide impact,
in the future P2P overlays are likely to enable important new applications following
from these technology trends:

John E. Buford
Avaya Labs Research, Basking Ridge, NJ 07920, USA, e-mail: buford@samrg.org
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— Continued improvements in the fidelity of the consumer entertainment experi-
ence and network and computing capacity of the associated entertainment de-
vices

— The development of dense and ubiquitous sensing grids with real-time data col-
lection of all types of phenomena

— The wide deployment of broadband wireless networks (WiMax, 802.11n, UWB,
LTE)

— The proliferation of mobile smart phones and other broadband-enabled mobile
devices

— The use of personal networks, body-area networks, and vehicle networks, to con-
nect both real-time sensors and embedded computing devices.

The wide adoption of these technologies will enable high-fidelity and pervasive
information collection, content publishing and distribution, and sharing of envi-
ronmental and personal real-time sensed data and information on a global scale.
The benefits of this include increased awareness of one’s personal environment,
more precise context-awareness in interactions with others, and enhanced situation-
awareness for applications ranging from immersive entertainment and recreation,
environment management, homeland security, and disaster recovery. Peer-to-peer
overlays are an important component of this future vision, due to their high scal-
ability, flexibility for different types of applications, and low barrier of entry. The
evolution of contemporary P2P overlays to enable this future vision is an important
research direction.

The use of application layer protocols to form overlays to deliver Internet ser-
vices has a long history (Table 1). However until relatively recently, these types
of overlays used specifically designed protocols, and were used to interconnect in-
frastructure servers rather than end systems. In addition, the address space of the
overlay was typically not virtualized, and dealing with churn was not a primary de-
sign point. Nevertheless, such service overlays continue to be an important part of
the Internet architecture [1-3], and there is growing interest in using the end-to-end
and resource virtualization capabilities of overlays in the evolution of the Internet
architecture. Example research efforts in this direction include SpoVNet [4] and
SATO [5].

Table 1 Specialized overlay networks for internet services

Type Example First use or definition
Email SMTP 1970s
Internet news NNTP 1986
Multicast MBone 1992
Web caching Internet cache protocol 1995
Content delivery network Akamai 1999
Anonymous communication FreeNet 1999
Application layer multicast Narada 2000

Routing RON 2001
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The well-known popularization of P2P file sharing systems beginning with the
hybrid Napster and followed by other content dowloading P2P systems such as
Gnutella, FastTrack, KaZaa, and BitTorrent invigorated the interest of the research
community to develop solutions to the perceived deficiences of these systems. The
subsequent availability of P2PTV and VoP2P applications discussed in the next sec-
tion were further catalysts for research in real-time media streaming over P2P over-
lay networks.

Notable underpinnings of the research in improving P2P overlays was the early
work on distributed hash tables by Devine [6] as well as Litwin et al. [7, 8]. Plax-
ton, Rajaraman, and Richa (PRR) [9] presented the first algorithms for distributed
object location and routing, using a suffix forwarding scheme. PRR was the basis
for subsequent influential designs such as Tapestry and Pastry. Karger, et al. [10]
formalized consistent hashing which is the basis for many DHT designs.

1.2 Key Applications

The first widely used file sharing system, Napster, featured a hybrid architecture
in which the directory was stored on a server, but peers directly transferred files
between them. Napster became the first legal test case for file sharing of licensed
content, and was subsequently forced to change to protect such content. A num-
ber of peer-to-peer file sharing systems were developed (Table 2) to avoid the legal
challenges faced by Napster. The majority of these second-generation file sharing
systems were based on unstructured overlays. While these systems had no mecha-
nisms for protecting the rights of content owners, in some cases the P2P application
developers obtained revenue by either selling their applications or by embedding

Table 2 Example file sharing applications

Client Protocol Description

application(s)

KaZaA FastTrack Proprietary unstructured overlay with encrypted proto-

grokster col, high capacity peers become superpeers; features con-

imesh nection shuffling

Limewire Gnutella Superpeer unstructured overlay with flooding query
propagation

eDonkey Overnet Structured overlay based on Kademlia

eMule Kad Structured overlay based on Kademlia

BitTorrent BitTorrent An unstructured overlay used for distributing large files

in pieces using mutual distribution of the pieces between
a set of peers called a swarm. Uses a server to store the
torrent and another server called a tracker to identify the
swarm members
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spyware in the clients. Recent research studies of P2P file sharing systems include
[11-16].

Several new ventures such as QTrax, SpiralFrog, and TurnltUp have proposed
incorporating DRM in to the file sharing applications or ad-based revenue models
in which advertisements are delivered during media playback.

The founders of KaZaA subsequently launched the first widely used voice-over
P2P (VoP2P) application, Skype. Currently Skype connects around 15 M concurrent
users and provides a variety of services including P2P voice and video calls, voice
calls to PSTN endpoints, presence, and instant messaging. Like KaZaA, the Skype
protocol is encrypted and the definition of the protocol has not been released. Some
studies have shown that Skype uses a superpeer model, and the superpeers support
NAT traversal for connecting peers behind NATS. In addition, superpeers also act as
media relays. Recent research studies of Skype include [17-21, 101].

In contrast to file sharing systems which exhibit the free rider behavior, in P2P
telephony users are motivated to stay connected both to be able to receive calls and
view the current status of their buddies. Long application lifetimes mean a low churn
rate, which makes the operation of the overlay more stable. Experimental studies of
Skype have shown a significantly higher node lifetime compared to P2P file sharing
sytems.

The distribution of streaming video referred to as P2PTV has also become an
important application of P2P. Various models are used, including torrent-style dis-
tribution, application layer multicasting, and hybrid CDNs (content delivery net-
works). Example PPTV applications include Babelgum, Joost, PPLive, PPStream,
SopCast, TVants, TVUPlayer, Veoh TV, and Zattoo. P2PTV is expected to play an
important role in future IPTV deployments. A summary of P2PTV related research
is discussed later in this chapter.

1.3 Definition and Properties of P2P Systems

Peer-to-peer systems have been defined in many papers. Here are two definitions
that cover the concepts of resource sharing, self-organization, decentralization, and
interconnection:

“A distributed network architecture may be called a peer-to-peer network, if the participants
share a part of their own hardware resources (processing power, storage capacity, network
link capacity, printers). These shared resources are necessary to provide the Service and
content offered by the network (e.g. file sharing or shared workspaces for collaboration).
They are accessible by other peers.”[22]

“Peer-to-peer systems are distributed systems consisting of interconnected nodes able to
self-organize into network topologies with the purpose of sharing resources such as content,
CPU cycles, storage and bandwidth, capable of adapting to failures and accommodating
transient populations of nodes while maintaining acceptable connectivity and performance,
without requiring the intermediation or support of a global centralized server or authority.”
[23]
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We have also defined an overlay network [26]:

“An application layer virtual or logical network in which end points are addressable and
that provides connectivity, routing, and messaging between end points. Overlay networks
are frequently used as a substrate for deploying new network services, or for providing a
routing topology not available from the underlying physical network. Many peer-to-peer
systems are overlay networks that run on top of the Internet.”

The following properties are characteristics found in most P2P systems.

Resource sharing  each peer contributes system resources to the operation of the
P2P system. Ideally this resource sharing is proportional to the peer’s use of the
P2P system, but many systems suffer from the free rider problem.

Networked  all nodes are interconnected with other nodes in the P2P system, and
the full set of nodes are members of a connected graph. When the graph is no
longer connected, the overlay is said to be partitioned.

Decentralization  the behavior of the P2P system is determined by the collective
actions of peer nodes, and there is no central control point. Some systems how-
ever secure the P2P system using a central login server. The ability to manage
the overlay [24] and monetize its operation may require centralized elements.

Symmetry nodes assume equal roles in the operation of the P2P system. In many
designs this property is relaxed by the use of special peer roles such as super
peers or relay peers.

Autonomy  participation of the peer in the P2P system is determined locally, and
there is no single administrative context for the P2P system.

Self-organization  the organization of the P2P system increases over time using
local knowledge and local operations at each peer, and no peer dominates the
system. Biskupski, Dowling, and Sacha [25] argue that existing P2P systems do
not exhibit most of the properties of self-organization.

Scalable  This is a pre-requisite of operating P2P systems with millions of si-
multaneous nodes, and means that the resources used at each peer exhibit
a growth rate as a function of overlay size that is less than linear. It also
means that the response time doesn’t grow more than linearly as a function of
overlay size.

Stability Within a maximum churn rate, the P2P system should be stable, i.e., it
should maintain its connected graph and be able to route deterministically within
a practical hop-count bounds.

1.4 Business Models

P2P file sharing applications have been monetized by their operators by sales of the
P2P client software or by embedding spyware into the application. Content licens-
ing has not been as successful to date. The leading VoP2P application, Skype, pro-
vides basic P2P telephony for free, and receives revenue for add-on services such
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as voice mail or peer-to-PSTN calls. The primary model for P2PTV operators is
similar to existing cable and broadcast TV — embedded advertising with measurable
viewership.

The advertising mechanisms used in web search (impressions, cost-per-click, and
placements) are more difficult to implement in P2P applications since verification
can not rely on a centralized collection point. Figure 1a shows a simplified model
for impression and click counting in web search. The search results are produced by
the search engine, and in parallel the search keywords and other criteria are used to
select ads which will be composed with the search results, resulting in an impression
for each displayed ad. Each time an impression occurs, a counter is updated in the
advertisement analytics database. If the user clicks on the ad, the embedded url leads
to the advertiser’s web page. A click counter must be updated in the advertisement
analytics databse. Two ways to obtain this are to indirectly forward the ad url via a
specific search engine web server (e.g., www.searchengine.com?advertiser.com), or
to embed a script in the advertiser’s web page which invokes the search engine’s url
when loaded. The advertiser can also use third party services to track web site hits
with analytics reports produced by the search vendor.

In the P2P case, assume ads are selected for display on the P2P application
user interface by association with searches initiated through the application user
interface. (Of course, the P2P application developer could sell banner ad space on
the P2P applications that would point to advertiser’s web sites, but these would
not be specifically targeted according to the user’s activities or application use).
Figure 1b shows the basic flow. A search request is propagated through the P2P
network, returning one or more search results from various peers. Ads which
match the search criteria are returned with the search results. There are sev-
eral ways this could be done, using the P2P network or using a separate in-
dex, and monetization could be obtained by both the overlay operator and the
operators of the peers that return the search results. For this discussion, serv-
ing advertisements through peers raises the question of how to validate impres-
sion counts maintained at the peers, as well as click-through counts at the peer
application.

1.5 Technology Drivers

The P2P value proposition [26] “...for the user is to exchange excess computa-
tional, storage, and network resources for something else of value to the user, such
as access to other resources, services, content, or participation in a social network.”
The rapid gains in computer capacity and wide adoption of broadband access have
thus fueled the growth of P2P applications. As these trends are expected to continue,
we raise the following questions:

— Given the limited ability of search engines to index all of the web, can P2P search
compete with or augment web search, and at what scale and cost?
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Fig. 1 Click through and impression tracking

— Currently the largest online peer populations are in the range of 10-20 M. Can
P2P networks support continued growth to say 10x or 100x peer population in-
crease? What are the limits?

— Given the emergence of broadband wireless and the likely domination of peer
population by mobile wireless devices versus fixed desktop devices, how will the
stability and operation of P2P networks be effected?

— Will HDTV and high-definition video lead to new P2P applications?

— Will deployment of large-scale sensor grids create new applications for P2P net-
works, and what are appropriate architectures for interconnecting such networks
in a global overlay?



10 John F. Buford and Heather Yu

1.6 Structure of the Chapter

The remainder of the chapter is organized as follows. First we survey overlay de-
sign, and provide a taxonomy for understanding the many different overlays that
have been proposed. This survey includes unstructured, structured, hierarchical, ser-
vice, semantic, and sensor overlays. The next section summarizes results on overlay
dynamics, including mobility and overlays for MANETS, and variable hop overlays.
Search, overlay multicast, content delivery, and security are summarized in subse-
quent sections.

2 Overlay Basics

2.1 Classification and Taxonomy

The many different designs for P2P networks have led to various proposals for clas-
sification. For example, file sharing systems have been divided in to generations.
First generation are hybrid designs that combine servers with P2P routing, and sec-
ond generation are decentralized architectures. Anonymized P2P systems such as
Freenet and 12P are sometimes referred to as third generation. Categorization by
generations has several shortcomings. It leaves out many other important dimen-
sions and doesn’t explain what subsequent generations are likely to provide. Further,
systems of all three generations were in use at the same time.

Another common distinction is to divide P2P overlays into unstructured and
structured types. Unstructured overlays are usually further distinguished by how
search requests are propagated, distribution of node degree in the peer population,
and by differences in link formation with neighbor peers. Structured overlays are
differentiated according to a variety of dimensions such as:

— maximum number of hops for routing a request (e.g., multi-hop, one-hop, vari-
able hop)

— routing algorithm (e.g., prefix, XOR, geometric distance, address space differ-
ence, semantic distance)

— node degree with size of overlay (e.g., constant degree, logarithmic degree)

— overlay geometry

— lookup type (iterative vs recursive, and serial vs parallel)

Beyond the unstructured and structured categories, we find other categories, such
as hierarchical overlays, federated overlays, overlays for deploying network services
called service overlays, overlays for sensor grids called sensor overlays, overlays
which route queries by semantic relationships called semantic overlays, and over-
lays providing support for mobile nodes in IP and ad hoc networks. We describe
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these categories in more detail in the following sections. Figure 2 shows a classifi-
cation tree for many of these categories of P2P overlays. Classifications for mobile-
enabled overlays, services overlays, and sensor overlays will be discussed in later
sections.

P2P Overlays
|
Unstructured Hybrid Structured Hierarchical
T-DHT | | | HiPeer
UDHT i ioble- TOPLUS
P Multi-hop Va:able O(1)-hop HIERAS
Yappers |—I—| op Cyclone
Logarithmic Constant Canon
| | I | | degree degree ZRing
Accordion QneHop DLG
Flooding Random Hill Social Semantic Tork EpiChord
Walk Climbing Overlays Overlays Prefix Ring Chameleon Pflglllps
: < ulip
l | ' , Rnultlng | DIHT
Gnutella Gia  Freenet  Tribble INGA PRR chord Gemini
FastTrack LMS FastFreenst Prosa SPRR DKS

Tapestry Tango
Pastry Symphony
P-Grid Chord#

Bamboo  Kademlia

Butterfly De Bruijn cce Fautz  Hypercube  p_Torus

Ullyses Koorde Cycloid  FissionE  HyperCup CAN
Viceroy Broose Cactus Moore
SKY

DH

Fig. 2 Classification of P2P overlays

2.2 Unstructured Overlays

An unstructured overlay is “an overlay in which a node relies only on its adjacent
nodes for delivery of messages to other nodes in the overlay. Example message prop-
agation strategies are flooding and random walk” [26]. The graph structure formed
by unstructured overlays can be compared to that of random graphs, scale-free or
power law random graphs, graphs exhibiting small world phenomena, and other so-
cial networks. An important research focus for unstructured overlays has been the
design of efficient search, including query propagation, object placement, and query
processing. More details about search are discussed in a later section.

Another important research focus has been the optimal graph structure for un-
structured overlays, and decentralized algorithms to form and maintain these graphs
structures under changing peer and object populations. Influential unstructured over-
lay designs are listed in Table 3.
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Table 3 Example unstructured overlays

John F. Buford and Heather Yu

Type Design Features References
Hill climbing Freenet Routing using hill climbing with back- [27, 28]
backtracking ing, and providing security, anonymity,
and deniability
Hill climbing Fast freenet Extension to Freenet in which objects [29]
backtracking stored at each peer are summarized and
summaries are shared with neighbors
Hill climbing Small world freenet Freenet augmented with links emulat- [30]
backtracking ing small world model
Flooding Gnutella Superpeers use flooding of requests on  [31, 32]
behalf of regular peers
Random Gia Uses techniques such as dynamic [33]
Walk topology adaptation, active flow con-
trol, one-hop index replication, and bi-
ased random walk to improve perfor-
mance
Flooding FastTrack Proprietary protocol with superpeer ar- [34]
chitecture that uses connection shuf-
fling
Random LMS Local minima search proactively repli- [35]
Walk cates objects using consistent hashing
of object identifiers to place objects at
close node identifiers
Hybrid SWOP Structured overlay with additional clus- [36]
ter and long links to emulate small-
world properties
Semantic INGA Semantic overlay in which each peer [37]
routing organizes a semantic index for its con-
tent, and queries are routed according
to the associated topic, and evaluated
using a semantic matching function
Preference Tribler Social-based overlay in which peers ex- [38]
directed change preference lists to exploit so-
queries cial affinity between peers with similar
preferences
Relevance PROSA P2P resource organization by social ac- [39]
directed quaintances manages peer links accord-
queries ing to semantic strength of the relation-
ship of the respective peer interests
Hybrid Yappers Combines local nodes in to small [40]

DHTs, and routes between DHT's using
unstructured links
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2.3 Structured Overlays

A structured overlay is: “an overlay in which nodes cooperatively maintain rout-
ing information about how to reach all nodes in the overlay” [26]. Compared to
unstructured overlays, structured overlays provide a limit on the number of mes-
sages needed to find any object in the overlay. This is particularly important when
searching for infrequently occurring or low popularity objects. In order to provide
deterministic routing, peers are placed into a virtualized address space, the over-
lay is organized into a specific geometry, and a converging distance function over
the combined object and node identifier space is defined for the routing forwarding
algorithm.

Each peer has a local routing table which is used by the forwarding algorithm.
The peer’s routing table is initialized when the peer joins the overlay, using a
specified bootstrap procedure. Peers periodically exchange routing table changes
as part of overlay maintenance. Overlay maintenance is discussed in a later sec-
tion.

The majority of structured overlays use key-based routing in which “a set
of keys is associated with addresses in the address space such that the near-
est peer to an address stores the values for the associated keys, and the rout-
ing algorithm treats keys as addresses” [26]. A distributed hash table (DHT) is
a structured overlay that uses key-based routing for put and get index opera-
tions and in which each peer is assigned to maintain a portion of the DHT in-
dex.

Because the address space is virtualized and peer addresses are typically ran-
domly assigned, peers which are neighbors in the overlay can be distant in the un-
derlying network. While this improves the fault tolerance of the overlay, it causes
significant performance loss. Consequently, topology-aware overlays use measure-
ments of proximity of peers in the underlying network to create neighbor peers in
the overlay.

There has been some interest in the efficient support of broadcast in structured
overlays. Broadcast can be used for group communication, blind search, and overlay
configuration. Example approaches are defined in [41-44].

Table 4 summarizes many of the designs for structured overlays.
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Table 4 Structured overlays by category

Type Design Features References
Prefix routing PRR First DOLR algorithm, used suffix based routing [45]
SPRR Added join/leave and maintenance to PRR [46]

Tapestry  Based on PRR with an added join/leave and mainte- [47]
nance mechanism

Pastry Prefix routing with last hop using neighbor table [48]
P-Grid Prefix routing [49]
Bamboo  Variation of Pastry used in OpenDHT [50]

Z-Ring Hierarchical address space with large base to reduce [51]
latency

Logarithmic Chord Logarithmic spaced links to neighbors around [52]
degree predecessor-successor ring, consistent hashing, uni-
directional requests

DKS(n,k,f) Distributed k-ary search with routing region at each [53]
hop divided into k regions. k = 2 similar to Chord

Tango Variation of DKS which reduces links to increasing [54]
scalability

Chord #  Modification of Chord which replaces consistent hash- [55]
ing with key-order preserving indexing

Symphony Bi-directional routing with added long-links to shorten [56]
lookup hop count

Kademlia XOR distance function, parallel requests [57]
Fixed degree =~ CAN D-torus with cartesian coordinate system [58]
Viceroy  Butterfly [59]
Ulysses  Butterfly [60]
Cycloid  Cube connected cycle, prefix-style routing [61]
Cactus 2 trees combined with cube connected cycle [62]
Koorde de Bruijn, based on Chord [63]
Broose de Bruijn [64]
D2B de Bruijn [65]
DH de Bruijn [66]
Hi-Peer ~ Multi-ring de Bruijn [67]
Hypercup Hypercube [68]
FissionE  Kautz graph [69]
Moore Kautz graph [70]
SKY Kautz graph [71]
DLG A universal framework for building DHTs based on ar- [72]
bitrary constant-degree graphs, using distributed line
graphs

(continued on following page)
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Table 4 (continued) Structured overlays by category

Type Design Features References
O(1)-hop EpiChord Iterative parallel lookup with opportunistic main- [73]
tenance
OneHop Peers organized into slices and units, requests [74]
routed through slice and unit leaders, with active
maintenance
Kelips Epidemic multicast protocol for overlay mainte- [75]
nance
Tulip 2-hop overlay similar to Kelips which adds local- [76]
ity awareness
Gemini 2-hop with high probability, combines suffix and [77]
prefix routing
DIHT Uses active maintenance algorithm EDRA where [78]
all join/leave events are forwarded to all other
peers in logarithmic time
Variable Hop  Accordion Recursive parallel lookup with bandwidth adap- [79]
tive maintenance
Chameleon  Hybrid of EpiChord and DIHT [80]
Tork Hybrid of EpiChord and DIHT [81]
Hierarchical ~ Multiple rings Multiple overlays connect to a super-ring over- [82]
lay, and use hierarchical routing to route requests
between overlays
TOPLUS Peers organized into groups, each with own over- [83]
lay; higher-level overlay is defined among the
groups; intra-group routing used to route between
overlays
HIERAS Overlay divided into several rings, with peers in [84]
low level rings selected according to locality
Cyclone Leaf overlays are connected in one horizontal [85]
overlay
Z-Ring Prefix routing with base = 4096, overlay orga- [86]
nized in to groups for reduced maintenance
Canon At each successive level an overlay is formed [87]
which contains all peers in the subsumed over-
lays in the lower levels
Coral Peers are members of successive clusters of over- [88]

lays, and lookups use distributed sloppy hash ta-
bles (DSHTS)

15
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2.4 Hierarchical and Federated Overlays

A hierarchical overlay is an overlay architecture that uses multiple overlays ar-
ranged in a nested fashion, and the nested overlays are interconnected in a tree. A
message to a peer in a different overlay is forwarded to the nearest common parent
overlay in the hierarchy. When large scale distributed systems exhibit locality in
their operation, hierarchical structure can increase overall performance. Hierarchi-
cal overlays exhibit hierarchical organization in addressing and routing. Different
overlay regions in the hierarchy may use different routing algorithms. Important
requirements for efficient operation of hierarchical overlays include avoiding bot-
tlenecks and keeping the hierarchical structure balanced. Examples of hierarchical
overlays include [82-88].

A federated overlay [89] is an overlay that is formed from a collection of inde-
pendent overlays, each implemented by a separate administrative domain, and which
may use different routing algorithms and addressing mechanisms in each domain.
Each overlay is autonomous, and messaging operations between overlays require
peering arrangements. Each domain manages the authentication, authorization and
other management tasks for its overlay. Federation offers one mechanism by which
overlay operators can offer specialized services to their customers while still pro-
viding the benefits of scale. An important requirement for federation is the trust
relationship between each domain. Similar to the peering relationships between ser-
vice providers for the Internet backbone, security breaches in one network have the
potential to cascade to other overlays through the peering points. Thus the least se-
cure overlay in the federation becomes a vulnerability for the remaining overlays.

P2P Gateway

Domain

=)

Domain

&)

Domain
|=1)

Fig. 3 Example of a federated overlay [89]

Individual overlays operate as usual according to the specific overlay algorithm.
Pairs of overlays connect through gateway peers (Fig. 3). Gateway peers can dis-
cover other gateway peers for other overlays by different means such as a lookup
in an interconnecting overlay or by DNS. A peer sending a message to a remote
overlay first discovers a gateway peer and sends the message to it for forwarding.
A multipart address scheme is used to distinguish objects and peers in separate
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overlays. Figure 4 shows an example message forwarding in a federated overlay
using different types of overlays. Let’s compare the routing in a federated overlay,
each of size n peers, with that where all peers belong to a single overlay of size
N=3Yn.

Case 1: A look-up within the same overlay will perform better than in the global
overlay due to the smaller number of hops.

Case 2: A look-up crossing multiple federated overlays will perform worse as the
number of overlays increases due to the overhead of address resolution and rout-
ing at each peering point. Increasing the number of direct peering relationships
improves performance at the cost of additional complexity in forming and man-
aging each peering point.

1-hop Oflog n)-hop Oflog n)-hop Variable-hop
A ’_/—\ | D Ordinary peer
\-U | . Relay
Proxy
Small enterprise Domain 1 Domain n Mobile network
network

Fig. 4 Example multi-overlay messaging in a federated overlay

2.5 Service Overlays

As the Internet has grown, the need for new network services has also increased.
However there is usually a long delay in developing and deploying any new service
or extension to an existing service if it requires changes to network layer protocols,
routers or other network infrastructure. This is due to the need to insure interoper-
ability and avoid the introduction of new security vulnerabilities. To accelerate the
deployment of new services and avoid changing the network infrastructure, many
network services have been implemented as application layer protocols using end
systems attached to the network. This includes multicasting, VoIP, and content de-
livery networks (CDNs). When an overlay is used as the basis for such application
layer services, it is referred to as a service overlay.

In addition, service orientation is a new paradigm for architecting web applica-
tions and distributed enterprise systems. One of the shortcomings of P2P applica-
tions to date is that each application has had a dedicated overlay designed specifi-
cally for it. The idea of applying service orientation to P2P overlays is also referred
as a service overlay. From this perspective, P2P applications are modularized as ser-
vices which operate at a layer above the overlay, each service interface is defined
using a service description, and the overlay provides a generic service discovery and
advertisement mechanism. As the number of P2P applications increases, this has the
advantage of enabling the reuse of the same P2P infrastructure for a collection of
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Fig. 5 Types of service overlays [26]

applications. In an open P2P platform, it could also lead to the delivery of many new
3rd party applications.

Figure 5 shows examples of these two categories of service overlays. Further
information on service overlays for routing, called resilient overlays, can be found
in [90-94], and research on using overlays for DNS is discussed in [95-98].

2.6 Semantic Overlays

A semantic overlay is an overlay network in which routing topology is organized
according to the semantic associations and relationship of information being stored
in the overlay. Similar to the semantic web, content can be stored and accessed using
a semantic model that is more convenient for the user. Several semantic overlays
have been proposed such as Inga [37]. Challenges facing semantic overlays include:

— Agreeing on common ontologies within a community of peers

— Updating the ontology across the distributed set of peers when new concepts and
relationships become important.

— Efficient semantic matching for object placement and search

— Implementing semantic behavior directly in the overlay routing mechanism ver-
sus layering it on top of an existing DHT or unstructured overlay query mecha-
nism
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2.7 Sensor Overlays

A sensor overlay is an overlay network that connects elements of a sensor infras-
tructure or grid. The purpose of a sensor overlay is to hide physical layer network
constraints from applications, and to make data collection and infrastructure control
logically separate from the physical layer routing. In addition, in a large sensor grid,
there may be multiple planes, each with different physical routing layers and data
collection. The sensor overlay can potentially unify these and make integration with
conventional overlays simpler. An example sensor overlay is PIAX [99].

2.8 Research Directions

Many variations of overlays have been studied to date. Efforts continue to reduce
latency, better adapt the overlay routing to the semantics of the applications, improve
load balancing and response to flash crowds and similar dynamics, adapt to changing
network conditions, and increase the ability of the overlay to self-organize.

3 Overlay Dynamics, Heterogeneity and Mobility

3.1 Churn and Overlay Maintenance

Peers may join or leave the overlay at any time. Overlays use join and leave pro-
tocols so that neighbors can update their routing state, and so that newly joined
peers can quickly make connections with active neighbors. A candidate peer needs
to discover an existing peer by which to join the overlay. The process of discovering
and contacting an existing peer is called peer bootstrap, and involves mechanisms
outside of the overlay such as contacting a well-known bootstrap server or making
local broadcast announcements. When a peer joins the overlay, it typically receives
its initial routing and object state from one or more peers designated by the boot-
strap peer. After that, the peer modifies its state based on the operation of the overlay
protocols. When a peer leaves the overlay it may signal its neighbors using a leave
protocol. The neighbors then make changes to their routing state, and object state
may be migrated or replicated as well. If a peer is disconnected without notifica-
tion, neighbors use a heartbeat mechanism to detect the departure and trigger the
corresponding routing and object state updates.

Churn is the arrival and departure of peers to and from the overlay, which changes
the peer population of the overlay. Overlay maintenance is the operation of the over-
lay to repair and stabilize the overlay routing state in response to churn. The over-
head for overlay maintenance increases as the churn rate increases. It also increases
proportional to the routing state maintained by each peer, which is in turn propor-
tional to the size of the overlay and the degree of each peer. There are techniques to
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reduce churn itself, such as incentives for peers to stay connected to the overlay. In
addition, newly joined nodes can be quarantined, treated as client-only nodes, either
due to limited capacity or until the peer reaches a lifetime threshold. This relies on
the peer lifetime distribution being heavy tailed, which has been found to occur in
practice.

Empirical data on churn in operational P2P applications has been gathered by
deploying overlay crawlers. Crawlers connect to many other peers in the overlay
in order to gather a snapshot of overlay membership. By continuing the process,
information about membership changes and peer connectivity can be gathered. For
P2P file sharing systems, measurements show a median peer lifetime of less than 1
hour and as little as 3 minutes, while as many as 2% of the peers will have a lifetime
as long as one day [100]. On the other hand, peer lifetime measurements for Skype
superpeers show a much longer median lifetime of about 5.5 hours [100].

Overlay maintenance can be classified as active or opportunistic. In active main-
tenance, routing table maintenance operations are triggered on peer join and leave
events. An example active maintenance algorithm is EDRA (Event Detection and
Recording Algorithm) used in D1HT [78]. As the churn rate changes, the rout-
ing state updates change proportionally. In opportunistic maintenance, routing table
maintenance is performed as part of peer request routing or if the routing state falls
below a minimum threshold. If peer request rates are high, for example for object
lookups or inserts, then the routing state will be updated more frequently. An exam-
ple opportunistic maintenance algorithm is that used in EpiChord [73].

While most analysis of overlays assume steady state is reached in which overlay
maintenance matches the churn rate and the routing state enables the desired over-
lay geometry, there is growing thought that such an overlay state is not reached in
practice, particularly for large overlays, due to the continuous changes to peer mem-
bership and time needed to propagate membership changes throughout the overlay.
More likely, peers are not only out of sync with respect to the actual membership of
the overlay but also have inconsistent routing state with other peers. To more accu-
rately reflect the dynamics of the overlay, stochastic models of overlay membership
have been developed for specific overlays, for example, [102, 103].

3.2 Mobility in P2P Overlays

While mobile nodes represent a small percentage of overlay peers today, in the fu-
ture as the capability and network bandwidth increases and the population of such
devices grows, this situation may be reversed. Thus the impact of mobility on the
performance of the overlay is an important question [119].

Mobile devices have four properties that affect their interaction with the overlay
in ways different from conventional desktop computers: roaming, energy limita-
tions, node heterogeneity, and multi-homed interfaces. Network roaming causes IP
address changes, and in conventional overlays, re-binding the overlay address to the
IP address is effectively a leave-join sequence, leading to mobility-induced churn.
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Approaches to mitigating mobility-induced churn include use of Mobile IP at the
native layer, treating mobile nodes as stealth nodes [104], and designating a non-
mobile node as virtual home agents for a mobile node [105]. Energy limitations
of nodes increase the likelihood of a node going into a stand-by state. In today’s
overlays, this is likely to cause a node disconnect from the overlay.

Node heterogeneity means that nodes will not have equal capacity to store ob-
jects, participate in overlay maintenance, relay traffic from other nodes, and so forth.
Variable hop overlays are one way to address these variations, and are discussed later
in this section.

Multi-homed nodes are nodes that can connect to two or more different network
interfaces at the same time. This could be used to provide redundant paths for peers
to send and receive messages, which might reduce the impact of mobility induced
churn.

3.3 Overlays for MANETs and Ad Hoc Networks

A mobile ad hoc network (MANET) is a set of mobile nodes which act as both
routers and hosts in an ad hoc wireless network. The nodes route messages to other
nodes without using a network infrastructure. Because of their limited power and
capacity, MANET nodes transmit in range-limited broadcast messages which reach
only nearby nodes. The MANET topology may change rapidly and in unpredictable
ways.

As discussed in the introduction section of this chapter, integration of sensor
grids, personal area networks, vehicular networks, and other ad hoc networks with
Internet-based overlays is an important requirement for future global overlay based
applications. Due to similarities between MANETSs and the P2P model at both the
application and network layer, there has been significant interest in adapting P2P
overlays to work efficiency with MANET routing protocols. For example, many re-
search systems have integrated flooding style unstructured overlays with MANETS.
A summary of research activities is given in Table 5.

3.4 Heterogeneity and Variable Hop Overlays

A variable-hop structured overlay is a structured overlay that adapts the hop-count
performance of the overlay according to the peer’s network bandwidth budget so that
at higher bandwidth budget the average hop count decreases and at lower bandwidth
budget the average hop count increases. The performance of structured overlays de-
pends on the accuracy and completeness of peers’ routing tables, but more accurate
and larger routing tables require more maintenance traffic. In addition, maintenance
traffic grows with the churn rate and with the size of the overlay. Due to differences
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in nodes’ network and computational capacity, different approaches have been pro-
posed to avoid having all nodes operate at the least common denominator level. The
superpeer architecture which elevates the more capable and more reliable nodes to
full status is a common approach. Variable hop overlays as demonstrated in [115]
are another important direction.

Variable hop overlays take advantage of the ability of the overlay protocol to
adapt its bandwidth utilization through changing configuration parameters. Each
peer adjusts its routing table size and accuracy according to the available band-
width at that peer. During periods where the nodes have low bandwidth capabilities,
overlay routing performance may reach that of multi-hop overlays while for higher
bandwidth, routing performance reaches one-hop.

In addition to Accordion [115], other proposals for variable hop overlays include
Tork [116] and Chameleon [117, 118].

Table 5 Features of P2P overlays for MANETS [26]

System MANET P2P Lookups Evaluation Node speed
routing overlay size (m/s)
algorithm (nodes) and range

MHT [106] GPSR None Key maps to 1000 to 10-15 m/s

node’s path 100,000 2000 x 2000 m?

Ekta [107] DSR Pastry Prefix key-based 50 1-19 m/s

1500 x 300 m?

MPP [108] Extended Gnutella Flooding 50...200 0-5m/s
DSR <2000 x 2000 m?

XL-Gnutella OLSR Gnutella Flooding 50 < 15m/s

[109] with superpeers not stated

MADPastry AODV Pastry Prefix key-based 100 and 250 1.4 m/s

[110] with clustering 1000 x 1000 m?

around land-
marks

FastTrack AODV FastTrack Flooding with 50 0-20 m/s

over superpeers 1500 x 320 m?

AODV [111]

ORION [112] Neutral, Unstructured Flooding 40 0-2 m/s
AODV and 1000 x 1000 m?
SMB

ISPRP [113] DSR Chord Key-based 1000 NA

Dynamic P2P DSR Pastry DP2PSR 800 9-19 m/s

source NA

routing
[114]
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3.5 Research Directions

Understanding the dynamics of large overlays in the face of changing peer popula-
tions, peer heterogeneity, peer mobility involves many challenging problems. While
designing for heterogeneous peer populations involves relatively static peer distinc-
tions, the ability to efficiently adapt peers to changing capacity and network condi-
tions will involve considerations at a much smaller time scale. In addition, it remains
an open question as to the practicality of large overlays if the majority of the devices
are mobile. Finally, different models of node heterogeneity in terms of distribution
and density in the overlay may become important in the design of overlay adaptation
mechanisms.

4 P2P Content Access and Delivery

In recent years, the number of digital content, such as music and video, available
on the Internet, the number of users accessing digital content through the Internet,
and the number of digital video being streamed over the Internet each day are all
growing exponentially. This obviously is placing an intense demand on the network
bandwidth at the Internet backbone as well as on the servers that are offering the
digital video and audio services. To improve content accessing scalability, Content
Delivery Network (CDN) was invented and widely deployed in the last ten years.
The evolution of CDN where a single sited content server is replaced by a set of dis-
tributed content servers placed strategically to provide not only better distribution of
files but also better streaming of real-time media has many advantages. First of all,
network congestion can be significantly reduced since servers are geographically
distributed to better serve clients in given regions with low latency. Second, with
servers placed at the edge of the network and closer to users, better quality of expe-
riences can be expected for real time media streaming. The advantages of pushing
content closer to end users suggest a natural extension of conventional CDN, P2P
content delivery where contents are moved all the way to end users. It can poten-
tially offer more advantages over traditional CDN, although it must be balanced
with security, resource contention, and DRM issues.

Multicast is an effective content delivery method with reduced network band-
width requirement. Due to cost issues, IP multicast has not been widely deployed.
The explosion of streaming media applications thus offers another fertile ground for
P2P based content delivery to blossom.

Taking advantage of the high scalability and the low cost in implementation prop-
erties of P2P networks, today P2P content access and delivery has become one of the
most popular P2P applications. This includes P2P music sharing, P2P video sharing,
P2PTV, P2P radio, P2P video streaming, etc. Just like in centralized content deliv-
ery systems, content can be delivered via downloading or steaming to the end users
in P2P networks. At delivery, a media stream is segmented into data blocks that
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are delivered via flooding, random walk, or via a topology defined specific route in
the P2P overlay network. Depending on the network topology, content blocks may
be forwarded along a distribution tree rooted at the source peer or flown through a
mesh network. And differentiated by the initiator of the content delivery, the content
blocks may be pulled or pushed from the source peer to the destination peer.

Although many P2P content delivery applications are seen today, many funda-
mental technical issues are still not fully resolved, for instance in content search,
content streaming, and content caching and replication.

4.1 Content Search

Searching is a key step in data access. It is certainly the case in P2P content access
as well. P2P networks take advantage of the distributed resources at peer nodes.
Contents are scattered and duplicated in the P2P network in a distributed fashion.
Hence, content retrieval in a P2P network needs to contemplate the specific network
model as well as the characteristics of the content being accessed. Ideally, a P2P
content search algorithm should comprise support of complex queries, low cost in
implementation, and fast and high accuracy query return capabilities. Today, most
structured P2P networks support static key and ID based object lookups while un-
structured P2P networks can handle certain complex type of queries, such as range
queries. Although semantic query and content based query can enrich user expe-
riences in content search, they are hardly supported by any P2P content delivery
systems today. This is because those types of queries are still posing significant
technical challenges.

Content search schemes and capabilities are largely dependent on the content
indexing and management schemes as well as the P2P network topology. Table 6
summarizes P2P indexing schemes. In a centralized indexing system where the in-
dex is kept at a centralized location in the P2P system, content searching is generally
done by forwarding the query message to the centralized indexing server to facilitate
object lookup. The server returns the lookup result which contains the location of
the desired content object. Content is transmitted then in a P2P fashion. Localized,
distributed, and hybrid indexing schemes can effectively reduce the risk of network
disruption owing to their distributed nature. Care must be taken when designing
the query scheme to reduce the cost associated with query message forwarding and
flooding.

Many people associate DHT with P2P search. This is because DHT based ob-
ject lookup is a widely adopted search scheme in structured P2P networks. Most
DHT based schemes rely on numerical keys to index and query objects in the P2P
network. Object searching is accomplished using key distance and routing towards
the peer that has the closest key to the querying object key. It offers efficient key
or ID based exact match lookups with guaranteed query returns. However, manag-
ing a consistent DHT requires considerable effort due to the dynamics of the net-
work topology. Another drawback of DHT-based system is its inability to support
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complex queries. In most applications, obviously, keyword, range, and semantic
queries are more useful than key or ID-based exact match search.

Table 6 P2P indexing schemes

Index
location

Indexing
schemes

Query
propagation

Content object delivery

Key limita-
tions

Centralized Central Query is sent to the Querying peer obtains the ~ Vulnerability
indexing  server central server directly and  content object location, to attacks on
resolved at central server i.e. the address of the the server
source peer who has the and the pos-
content object; it then sibility of
sends a request for bottleneck
delivery to the source effect at the
peer directly; content server
object can now be
delivered from the source
peer to the destination
peer directly
Localized Local peers Query is propagated from  Content object may be High cost
indexing peer to peer until the delivered directly from associated
desired content object the source peer to the with query
index is found query peer upon flooding and
localization of the object low object
retrieval
efficiency
Distributed Distributed Query is forwarded to Querying peer obtains the  Possible

indexing  among neighborhood peers based  location of the content delay at peer
peers on peer routing table until  object, sends a request to  joining due
the target object index is the source peer, and then to index
found receives the content set up
object from the source
peer
Hybrid Super nodes; Query is first searched Querying peer obtains the = Powerful
indexing super nodes locally at the local peer location of the content super nodes
and local and the super node thatis  object, sends a request to  to sustain
peer nodes  connected to the local the source peer, and then  frequent
peer directly. If content receives the content query
object is not found in object from the source flooding are
local indices, query is peer needed

propagated to other super
nodes according to the
routing table until it is
found or a predefined
Time-To-Live (TTL)
threshold is reached
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Keyword search may be realized in P2P networks using the popular vector space
model and/or inverted indexing based approaches. High cost associated with query
flooding is one of the key drawbacks of those approaches if a non-centralized in-
dexing scheme is employed. When the indices are distributed over peers, a simple
query may cause a large amount of data being transmitted over the network. To re-
duce cost, one might take advantage of conventional information retrieval schemes.
For instance, content summary based inverted indexing was proposed in [120]. Since
a query can be processed by transmitting a much smaller candidate list, bandwidth
demand for query flooding can be significantly reduced. The trade off is the addi-
tional storage space requirement and most importantly the reduction in recall rate in
DHT based structured overlay. Today, how to implement efficient keyword search
remains a challenge problem in P2P.

Compared to structured overlay, unstructured overlay has more freedom in im-
plementing complex queries. Flooding, iterative depending, and random walk are
commonly adopted searching approaches in unstructured P2P. Table 7 list the prop-
erties of these types of searching schemes in unstructured P2P networks.

Table 7 A comparison of searching schemes in unstructured P2P

Search Characteristics Cost

scheme

Flooding  Query requests are flooded through the P2P  High. Massive amount of query mes-
network with the querying peer being the sages are being transmitted for a sin-
center of the flood gle query

Iterative A growing ring is used to iteratively deepen  High but lower than flooding based

deepening the query flooding range until the target ob- approach. Massive amount of query
ject is found [121] messages are being transmitted for a

single query

Random  The querying node forwards (walk) the query ~ Low to medium. In a K-random walk

walk message (walker) to one randomly selected scheme, the cost is proportional to
neighbor which randomly selects its neighbor K while the delay is inverse propor-
to forward the query message until the target tional to K
object is located

Guided “Guidance” on where the query message Low. Though recall rate can be sig-

search should be forwarded is employed to improve  nificantly reduced if the “guidance”

query efficiency. Keyword vector, query simi-
larity function, peer ranking and profile [122]
may be used to guide the query forwarding

function is flawed

A query that retrieves all objects between an upper and a lower bound, i.e., an

exclusive range, is called a range query. Likewise, a query that retrieves all objects
within a multi-dimensional range is called a multi-dimensional range query. Meth-
ods to resolve range queries in classical database problems can be easily imported
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into unstructured P2P networks. However, it is relatively harder to achieve in struc-
tured P2P due to the “clear-cut” nature of a DHT. If range attuned numerical keys
can be generated, range query could be supported in DHT based system. Locality
Sensitive Hashing (LSH) [123] is one such approach to hash similar data partitions
to nearby identifiers and similar ranges to the same peer with high probability. No-
ticeably, LSH has poor scalability. SkipIndex [124], another partition based scheme
that offers a solution to range query also demonstrated impressive results in small
scale P2P networks. How to design a scalable range query scheme and how to de-
sign a scheme that can offer scalable and efficient multi-dimensional range query
support for DHT based P2P remain challenges.

In a traditional information system, the most challenging types of searches are
semantic search and content based search. This is certainly true in P2P networks as
well. How to support efficient semantic search and content based search for multi-
media content access will need considerable effort and continuous investigation.

4.2 P2P Streaming and Multicasting

Content delivery, based on the way the content is transported and consumed, can be
categorized into downloading and streaming modes. Streaming refers to the delivery
method where content is being consumed while it is being transported. Compared
to download based delivery, streaming poses significant challenge due to the time
bounded requirement.

One-to-one, one-to-many, and many-to-many are possible configurations in dif-
ferent P2P streaming applications. For instance, a live remote personal video shar-
ing could be one-to-one or one-to-many, an Internet video application often takes
advantage of a one-to-many configuration, and a video conferencing application is
likely to involve many-to-many communications. Consequently, unicast, broadcast,
or multicast protocols may be employed in different streaming applications.

In a P2P network, content can be streamed via a tree based or a mesh based
overlay. In tree based approach, content, rooted at the source node, is pushed along
the tree to the destination peers. Mesh-based overlays implement mesh distribution
graphs for content streaming. In the mesh distribution graph, each new node first
obtains a content block availability map where a set of randomly selected peers who
have the desired content blocks are listed, it then contacts a subset of those ‘good’
peers to request for streaming, and obtains the content blocks from those peers based
on a predefined protocol. PPLive and Coolstreaming, for example, both take advan-
tage of mesh based streaming. While the mesh based pull model offers better load
balancing capability, it often introduces additional delays due to the exchange of
buffer maps.

Tree based schemes on the other hand entail considerable control overhead at
peer churns. If any interior member leaves the group (the tree,) the tree is broken
and the children of the failure or departure node need to be reconnected to the tree.
These entail additional group management cost. Tree based system is also inherently
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unbalanced. It does not utilize the bandwidth of the leaf nodes, causing a burden of
duplicating and forwarding multicast traffic carried by a small subset of peers that
are interior nodes of the multicast tree. This violates the fairness in resource and
load sharing requirement in a P2P system. To improve fairness in resource sharing,
multiple trees may be built to deliver different sub-streams. Splitstream [125], for
instance, is one such scheme. Often this type of algorithms can work beautifully for
a small scale P2P video streaming application. However, in a large scale P2P system,
considerable complexity in building multiple balanced trees and tree reconnection
at peer churns may significantly affect the system performance.

When there are multiple clients (receivers) simultaneously requesting/receiving
the same media stream in a streaming application, multicast can be implemented.
Multicast is a special type of streaming where protocols are defined to delivery a
packet to a group of destinations at the same time using efficient strategies. Mul-
ticast can be deployed at different network layers. IP multicast which implements
multicast at the IP routing level is generally high in implementation cost. P2P over-
lay multicast was invented to reduce deployment cost and improve scalability. A
P2P overlay multicast system should implement [26]:

— Session identification

— Session initiation/creation

— Session subscription/join

— Session leave/graceful departure

— Session message dissemination/data forwarding

— Session fault tolerance/tree reformation at peer failure
— Session termination

— Session admission control

— Content access control and security

A comparison between P2P overlay multicast and IP multicast is given in Table 8.
Obviously P2P networks offer considerable advantages, such as high scalability and
low cost in implementation, for content streaming applications. The most consider-
able drawbacks in many commercially available P2P streaming and multicast video
application systems such as PPLive include long startup delay and playback jit-
tering. Quality of Experience (QoE), which indicates user experience and satisfac-
tion, is a popular way today to measure the success of a content delivery service.
Start-up delay and playback jittering are two important factors affecting user ex-
periences. To reduce join and reconnection latencies in overlay multicast services,
proximity based routing which improves arbitrarily long distances in routing hops
is introduced [126]. Another approach [26] utilizes proactive step-parent selection
to reduce the reconnection time in tree based multicast systems. That is, each peer
locates its potential step-parent in advance. At tree reformation, a node that is a can-
didate parent immediately takes over the role of parenting. This cuts down real-time
messaging needed for tree reconstruction, thus reducing the probability of playback
jittering at the affected end hosts.
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It was also shown that implicit protocols [127] where the control and data paths
are defined simultaneously can support both latency-sensitive and high-bandwidth
applications as well as very large group sizes.

Today, video streaming, one of the most popular means for content distribution,
still suffer from several drawbacks when built on top of a fully distributed P2P over-
lay. These include high stress on the ISP links, dependency on high bandwidth peers,
uneven quality distribution, lack of content security mechanisms and authentication
capability, and long startup delay and channel switching delay. As a result, hybrid
approaches are gaining considerable attention in the industry lately. Will hybrid so-
lutions be able to offer reduced ISP stress and improved security as well as perfor-
mance for large scale P2P streaming applications? Will hybrid systems ultimately
solve the billing and accounting problem? These along with many other questions
need to be resolved before P2P streaming takes on a full spin in commercial content
delivery applications.

Table 8 Characteristics comparison: P2P overlay multicast and IP multicast

Metric P2P overlay multicast IP multicast
Efficiency Relatively low High
Stress on ISP Relatively high Low
Server bandwidth requirement Significantly lower High
Control overhead Considerably higher Low
Robustness Generally lower High
Lag between customers Can be high Low
Deployment cost Usually very low High

4.3 Caching and Replication

In P2P networks, data objects may be duplicated and saved temporarily or perma-
nently on multiple peers. Caching and replication play key roles in reducing net-
work bandwidth usage and origin server load and bandwidth requirement, reducing
client side latency, and improving load balance, data availability, system reliability,
and data access latency in a P2P network. Nevertheless, data consistency and syn-
chronization issues need to be handled properly to reduce miss rate without high
cost. The number of requests issued to peers for a particular content blocks and
the frequency of cache replacement for instance, can affect the number of messages
and network traffic pattern. Intuitively, flooding could guarantee object synchroniza-
tion with the cost on additional communication messages and bandwidth require-
ment. Synchronization on demand could effectively reduce the communication cost,
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however, it may only offer a weak guarantee. Can a joint flooding and on demand
approach offer reasonable guarantee with acceptable overhead? This still awaits in-
vestigation.

Tables 9 and 10 compare several different replication schemes and caching
schemes respectively.

Caching and replication in structured P2P could be tricky. Some of the struc-
tured P2P systems associate an object to the object identifier which is also the
key to discover the location of the object. Effectivecaching and replication of

Table 9 P2P replication schemes

Replication scheme Characteristics

Full replication Data are replicated on all peers in a P2P network. All data are
available to read locally. The cost to maintain the replicas is high

Partial replication A portion of the content is replicated at some peers. Relatively
lower maintenance cost with longer seek time

Synchronous replication All replicas are simultaneously changed. Higher hit rate with
high cost in replication synchronization is expected

Asynchronous replication ~ Delay in change at a remote replica is allowed. Cost in replica-
tion synchronization is reduced with reduced hit rate

Static replication Replicas are fixed at all times

Dynamic replication Location and number of replicas change by time, system condi-
tion, transactional status, etc.

Active replication Locations of replica are predefined. Query request is sent to all
replica servers

Passive replication Peer nodes request and copy content from one and another. Pas-
sive replication processes query request sequentially and syn-
chronizes the replicated copies of objects periodically

Random replication Replicas are placed randomly at peers

Query path based replication Content (data) object is replicated on all peer nodes on the path
from the query destination back to the query source

Adaptive query Object shall not be uniformly replicated on all peer nodes on

path based replication the path. Instead, the object popularity, peer resources, etc. shall
be taken into consideration to decide where the object will be
replicated

Neighborhood replication Data objects are replicated at some or all neighbor peers of a
peer that holds the objects

Object location replication ~ The location of data objects are replicated in the neighbors of
the peer that holds the data object whereas the data objects are
not replicated
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Table 10 P2P caching schemes

Caching scheme Characteristics

Just-in-Time (JiT) caching  Immediately after a request is received from the client, the cache
pulls the content from the server with the content sent to the
cache and the requesting client simultaneously

Pre-Caching (PreC) Contents are often cached before a request is received at the
proxy

objects requires additional mechanisms. In Tapestry [47], replica roots identified
with random keys which are generated using a replication function are used for ob-
ject replication.

4.4 Summary of Design Issues

Cost, implementation complexity, efficiency, robustness, scalability, and quality of
services and experiences are some of the key design criteria for P2P content delivery
services. For instance, in a video conferencing service, the system has to meet the
delay bound constraint to offer acceptable customer experience. Video applications
are often resource demanding. Thus, system control overhead may have direct im-
pact on a video application system’s performance. Furthermore, system capability
to cope with churn and network dynamics is imperative in any P2P content delivery
systems. An efficient system that can take advantage of the P2P network resources
in a fair and balanced way can have a strong impact on system scalability and
performance.

4.5 Research Issues

Noticeably, many popular P2P related brand names are associated with content de-
livery. For instance, Kazaa offers music sharing, PPLive provides P2P based TV
service, and Pando presents video downloading, streaming, and sharing capabilities
to its customers. Although tens of similar P2P based content delivery services are
available today, major content providers, network service providers, or telco com-
panies have not been deploying P2P based content delivery systems. Why? From
technology point of view, there are many technical issues still need to be resolved
before P2P network takes on a full spin in content delivery. Security, efficiency in
searching and delivery, fairness in resource sharing, and billing and accounting, for
instance, are some popular issues.
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5 Security

5.1 The P2P Security Concern

Security is not just an issue in P2P content delivery, but also an important issue in al-
most all types of P2P applications. In fact, information security has been a daunting
subject area in today’s networked world. Information security aims at safeguarding
information and information systems through a range of policies, strategies, secu-
rity products, technologies and procedures. It includes the protection of information
and system’s availability, confidentiality, privacy, and integrity. Today, relying on
personal computer and the Internet for information storage, retrieval and asset man-
agement is becoming an everyday practice for many individuals; whereas for many
organizations, the network is a primary and mission critical components whose day-
to-day operation must be fully warranted. Hence network vulnerabilities have sig-
nificant impact on enterprise as well as personal information security today. With
the growing frequency and types of threats, from viruses to Trojan horses, from ad-
ware to spyware, from denial of service to distributed denial of service, from fraud
to identity theft, ...people are more and more aware of the security threats and
more and more concerned with various security threats that are presented to them
via different networks and applications.

Classification Classification Classification by
by motivations by outcomes effect on victims
—Availability —Interruption
Accidental o )
—¢Confidentiality —Interception
Deliberate ) o
—Integrity —Modification
—Authenticity —Fabrication

Fig. 6 Sample categories of attacks

With no central authority governing the authenticity and integrity of the sharing
content and peers and with limited mechanisms for protecting the rights of content
owners or the security of the client systems, P2P overlay network and applications
add another dimension of security concern. Obviously, sharing files or computing
resources on one’s device with unknown peers over the Internet goes against many
of the basic principles of securing your information. It could open up new doors for
cyber criminals to steal confidential information, to damage personal or enterprise
properties, and to poison the network for criminal intents.
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5.2 Basic Classifications of P2P Network Security Threats

Through the years, many terms describing the security threats of networks or infor-
mation systems were used. Some may be widely adopted and some may be confus-
ing. Figure 6 and Table 11 list several popular categories and sample types of threats
[26, 128-130].

Attacks on P2P network and systems may target at the overlay or the applica-
tion layers [26]. Content theft, confidential information theft, service attacks, and
computing and network resource theft and attacks are just some of the many types
of threats P2P networks and application users are facing. Table 12 shows several
unique P2P overlay security attacks defined in [131]. Those attacks could potentially

Table 11 Sample types of attacks

Category Description Sample attacks
Accidental Security leakage caused by accidents Accidental bandwidth
clogging
Deliberate Attacks are deliberate for criminal intent Theft
Availability Attacks that compromise the availability of Denial of service, bandwidth
the system or information, i.e. attacks that clogging, worm (e.g., using
cause system or data unavailability to up the computer’s resources
authorized or normal usage and possibly shutting the
system down)
Confidentiality =~ Attacks that compromise the confidentiality of Theft, Trojan (e.g., one that
the system or information, i.e. unauthorized logs keystrokes to steal
disclosure of information information, RAT(Remote
Access Trojan)) Spyware
Integrity Attacks that compromise the integrity of the Virus
system or information, i.e. attacks that modify
data without authorization
Authenticity Attacks that compromise the authenticity of ID attacks, password attacks
the system or information, i.e. attacks that
target at or affect the genuineness of the
information or the system
Interruption Unauthorized disruption Distributed denial of service,
bandwidth
clogging
Interception Unauthorized access Theft, password attack, IP
spoofing, nodeld attacks,
Sybil attack
Modification Unauthorized tampering Reverse engineering
Fabrication Unauthorized creation Content/email spoofing
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Table 12 Sample types of P2P overlay attacks [26, 131]

Category Description
Nodeld attack Nodes obtain specific nodeld(s) (node identification) for malicious intent
Sybil attack A small number of entities counterfeiting multiple peer identities so as to

compromise a disproportionate share of the system

Message forwarding  Attacks that alter the route or the content of the message being forwarded
attack for malicious intent

Routing table attack  Attacks that manipulate routing table entries for malicious intent

DDoS attack Nodes work together to prevent a system from performing its task

jeopardize the availability, confidentiality, integrity, and/or authenticity of content,
data, a system, a network, or a peer.

A P2P network is a particularly attractive platform for attackers to steal confi-
dential information and to spread viruses. It often opens up a back door for hackers
to easily gain access to devices and information that normally can not be accessed.
For instance, a hacker can use a software tool, such as Wrapster, to disguise a confi-
dential document. The confidential document, now appear to be a legitimate media
content, such as an MP3 file, bypasses the enterprise security mechanisms and poli-
cies and is shared and transmitted through a P2P file sharing system. The receiver
outside of the enterprise network can now unwrap the file and convert it into its
original format. A piece of code, the virus, could also appear to be a popular file-
sharing program and subsequently when downloaded, the virus gains access to the
peers’ data, information, and software on the device. Modifying data and files and
destroying the file system are just two of the many damages a virus could cause.
P2P networks also provided a fertile ground for attacks to cash in on a collection of
peer resources to achieve malicious means. Distributed Denial of Service (DDoS)
attack and Sybil attack are two most representative ones in this category. Denial of
Service (DoS) attacks could cause service breakdown through disruption of phys-
ical network components; consumption of resources such as storage, computation,
or bandwidth resources; obstruction of communications; and interference with con-
figuration and state information. For example, a DoS attacker may use malware to
max out a user’s CPU time or crash a system by triggering errors in instructions.

5.3 Counter Measures

Leaking confidential information through P2P networks and applications is a pri-
mary concern at many organizations. In addition, bandwidth clogging, viruses,
copyright infringement, etc. are also serious threats at the enterprise network level.
Detecting and stopping P2P applications at the enterprise network level is a

straightforward practice and is implemented by many organizations today. Notice
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though if a laptop is used in a P2P application while disconnected from the enter-
prise network, it may still introduce security breaches when it is reconnected into
the enterprise network. For instance, P2P software vendors or application service
providers may offer free P2P file sharing or other services. In order to generate rev-
enue, they may bundle advertiser applications or activity trackers to its P2P applica-
tion and services. The advertisement or activity tracking application software maybe
piggybacked in its application program, much like an adware or spyware could be.
Obviously, other types of adware and spyware may also be piggybacked. They are
often downloaded without users’ knowledge and may run in the background even
when the peer machine is disconnected from the P2P network. This opens up a win-
dow for hackers and introduces various potential risks. For instance, the adware or
spyware may bypass the enterprise network firewall when the machine enters the
enterprise network. It may contain viruses or worms that will spread around the
enterprise network once the machine is reconnected. It may contain other security
flaws and it certainly will use additional resources including computational, stor-
age, and even bandwidth resources. To better address security concerns from P2P,
one must be able to stop P2P activities on their networked systems and every com-
ponent of the systems completely. To do this, strong policies should be implemented
to allow automated protection on each and every component of the network. It in-
cludes protecting all components from becoming nodes in P2P networks while they
are on and off the enterprise network.

While banning P2P maybe an easy solution to protect ones network from attacks
caused by P2P networks and applications, it’s certainly not a viable solution for
all networks. To fight against P2P attacks while maintaining the privilege to em-
ploy some P2P applications, specific counter measures may be designed and imple-
mented. A semi-decentralized P2P system, for instance, may help to reduce many
types of P2P security risks. In a semi-decentralized P2P system, a centralized trust
entity maybe utilized for security administration. Noticeably, the centralized au-
thority can also become the victim of P2P attacks, such as a DDoS attack, if proper
counter measure is not taken. Similarly, hybrid P2P can effectively reduce some
P2P security risks while the super peers in the hybrid P2P network may become the
victim of DDoS attacks if proper counter measure is not employed.

Obviously, fully distributed security mechanisms are needed in fully decentral-
ized P2P systems. Castro [132] introduced secure routing table maintenance, secure
nodeld assignment, and secure message forward as several primitives for secure
message routing in structured overlay. By imposing strong constraints on routing
table, binding nodelds to node IP address, message authentication, and some other
mechanisms, improved security at message routing in structured overlay is expected.

Studies on P2P DDoS attacks show that pattern detection and advanced filter-
ing mechanism may be helpful in detecting DDoS attacks, the explosion of new
types of DDoS attacks making it one of the toughest to defend [133, 134]. In [133],
Mirkovic suggests to deploy comprehensive protocol, system security mechanisms
and abundant resources to improve the system resilience to DDoS attacks.
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5.4 Fairness, Trust and Privacy Issues

Adar [135] reported a 70% free rider testing result in Gnutella. Gnutella is certainly
not alone in experiencing P2P free riding where peers are consuming resources with-
out fair contribution of their resources. To improve fairness in P2P resource sharing,
auditing, incentive, and micro-payment based mechanisms are proposed.

A P2P system relies heavily on a set of distributed peers working properly and
fairly together. Today, a large scale P2P system can be thousands to millions in size
with peers interacting with unknown peers. How can peers establish and maintain
trust between one and another in a P2P system especially a large P2P system? How
to perform peer authentication? A centralized trust management entity could solve
the problem and yet it tends to be a single point of attack. A hybrid system although
does not suggest a single point of attack, could still become impaired when attacks
are targeted on several super peers at the same time. Distributed trust management,
on the other hand, could impose high cost and overhead for pair-wise peer authenti-
cation.

Privacy in P2P networks is another constantly raised issue today. Most P2P net-
works do not implement appropriate privacy governance mechanisms. While anony-
mous communication offer means to protect privacy, it is offset by the risks in trust
and reduction in communication efficiency.

5.5 More on P2P Security

Due to the autonomous and distributed nature and the wide availability of repli-
cated objects, making a P2P network secure is a big challenge. Exposure to theft,
distributed viruses, worms, Trojan horses, spyware, or DDoS attacks are just some
of the many types of P2P attacks we are facing today. With decentralized security
mechanisms not fully in place and traditional server-based security schemes not of-
fering suitable means for fully decentralized P2P network protection, P2P security
remains a daunting subject in the P2P research field.

As introduced earlier in this chapter, many P2P systems are designed for a spe-
cific application. A systematic counter measure with clearly defined security goals
and security schemes that are application and system driven and carefully designed
protocols and systems based on appropriate security policies, coupled with security
educated P2P system and application users, perhaps can be expected to improve
P2P system security and defend against various attacks. To further understand the
security risks and counter measures in P2P networks, additional discussions and
references can be found in Chapter 14 of [26].
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6 Summary

There has been a great deal of research to devise and improve on a large range
of overlay-related design dimensions. Also the number of applications of overlays
is increasing due to growing capacity of wireless networks and end devices, and
the popularity of P2P applications among end users. We have attempted here to
summarize and highlight the key results to date. Nevertheless there are certain major
questions about the P2P paradigm and its use that remain including:

— What is the significance of the P2P paradigm as a general distributed systems
architecture, and how will it evolve in practice with respect to the client-server
paradigm?

— What are the barriers to adoption of the many research results by deployed sys-
tems, and how can these be avoided?

— Is the first mover advantage in P2P applications surmountable, and can balka-
nization of the P2P landscape be avoided?

— Whatis the likely long-term impact on internet architecture and service providers?

Further sources of surveys on the field of P2P networks include [136-139] as
well as the books [1, 140].
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The Social Impact of P2P Systems

Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

Abstract The chapter deals with the social impact of P2P systems in light of a
bidirectional connection by which technological developments influence, in a com-
plex and often unpredictable way, the social environment whereas the dynamic evo-
lution of the latter does affect technological progress. From this perspective, the aim
is to deepen legal issues, sociological trends, economical aspects, and political di-
mensions of P2P technology, along with some of its next possible outputs, in order
to assess one of the most compelling alternatives to the traditional frame of highly
centralized human interaction.

1 Introduction

Although known to computer scientists and networking professionals for decades,
peer-to-peer (P2P) systems only became widely popular in the late 1990s with the
Napster case and, then, with the U.S. Court’s decision in MGM v. Grokster in 2005.
These developments, of course, affected legal scholars, who have paid increasing
attention to P2P systems in recent years. However, their impact goes beyond the law
and also raises issues of relevance for economics, sociology, and political science.
This is particularly true if we understand P2P systems not only as simple “sharing
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networks”, but also, at a more abstract level, as massively distributed platforms for
information storage and retrieval.

Therefore, the aim of the chapter is to highlight, in a necessarily non-exhaustive
manner, the main research developments in the above-mentioned fields. We suggest
that there is a clear bidirectional connection between the technological features of
P2P systems and their various social effects. Technological developments influence,
in a complex and often unpredictable way, the social environment (i.e., economics,
sociology, politics, and law) whereas a dynamic situation in a given social envi-
ronment also shapes the way in which technological evolution proceeds, favoring
certain architectural choices over others. In short, each affects or gives feedback to
the other in a continuous cycle. For example, a strongly decentralized and encrypted
P2P architecture providing plausible anonymity for its participants will have differ-
ent social ramifications and effects than those flowing from a weakly decentralized
system in which the origin and destination of information can be traced with rela-
tive ease. At the same time, the technological developments that make one system
rather than another possible will also be affected by the social environment, that is
legal frameworks, economic decisions (including public funding), political orienta-
tions, and the sociological and cultural perceptions found in the society where the
technological research is taking place and its results are diffused.

These inter-related developments are examined in five sections, each of which
focuses on a specific field, namely legal issues (Section 2), sociological trends
(Section 3), economic analyses (Section 4), political dimensions (Section 5), and,
last but not least, some new horizons and perspectives that our society will be forced
to cope with in the future (Section 6).

Of course, this overview does not purport to exhaustively discuss all the possible
influences of P2P systems over the fields of human action, nor all the ways in which
the complex composition of such different elements as law, economics, politics,
sociology, and culture, tends to encourage, steer or limit the rate of development
of certain P2P architectures over others (or, if one is pessimistic, the development
of P2P architectures altogether, as opposed to centralized, one-way communication
systems [67]).

Rather, our attempt should be taken for what it is: a humble, but hopefully stimu-
lating, contribution to a better understanding of P2P systems as technological prod-
ucts that cannot actually exist in a vacuum, but in a complex environment with its
own set of rules, constraints and possibilities.

2 Legal Issues

Among the most traumatic impacts of P2P systems on the legal field since the late
1990s, copyright issues have undoubtedly taken the forefront for a while. Technol-
ogy has in fact changed societal behaviors of copying, distributing and, in gen-
eral, handling information and information-based goods and services, according
to a transformation that has deeply influenced legislative initiatives and scholarly
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discussions on the topic. Digital copyright is mostly a matter of access and con-
trol over information in electronic environments, so that legislators and courts have
been obliged to rethink the traditional relationship between creators, producers, and
consumers of informational goods. For instance, the U.S. Congress approved both
the Digital Millennium Copyright Act (DMCA) [39] and the so called Sonny Bono
Act in 1998 [37]; three years later, the European Parliament and the Council enacted
the directive on “copyright and related rights in the information society” [36]. Then,
in the U.S., the Congress passed the Consumer Broadband and Digital Television
Promotion Act (2002), the Family Entertainment Copyright Act (2005), and the Net
Neutrality Bill (2006), while, in Europe, the IPRED saga has been ruling: the first
directive on the enforcement of intellectual propriety rights is from 2004 (n. 48),
and later the European Parliament supported a new version (IPRED-2) on April 25,
2007.

Courts have been very active, too: the first important decision on copyright and
P2P systems was in July 2000, when the U.S. District Judge Marilyn Patel granted
the Recording Industry Association of America (RIAA)’s request to stop making
copyrighted recordings available for download thanks to the Napster services. Even
if the San Mateo company did not store any information such as the recordings on
its own computers, it was considered against the law to provide the information of
the songs available on the computers of the community logged on [39]. It is not
enough, in other words, to affirm that the DMCA grants immunity to ISP providers
for what their customers do, because this kind of protection does not include “con-
tributory infringers” (as the District Court of Appeals determined in its own decision
on Napster, in February 2001).

Four years later, it was the turn of the U.S. Supreme Court in MGM v. Grokster
to consider P2P systems, such as Streamcast or Grokster, as a form of technol-
ogy promoting the “ease of infringing on copyrights,” so that its producers “can
be sued for inducing copyright infringement committed by their users.” Notwith-
standing this unanimous holding by the Court, the legal consequences on further
developments of P2P technology remained unclear. The Supreme Court justices
were indeed divided in their arguments, between the need to protect every tech-
nology “capable of substantial non infringing uses” as they declared in Sony v. Uni-
versal City Studios from 1984, and the necessity to provide remedies against new
ways of copyright infringement. So far, in the U.S., the problem is to determine
whether software is creating “shared files folders” to make “available for distribu-
tion” that very information protected by copyright that would be shared via those
folders [40].

In Elektra v. Barker, (see [33]), for example, Judge Kenneth Karas from the
Manhattan federal court rejected the RIAA’s “making available” theory in January
2008, even if he admitted the sufficiency of the allegations of “downloading” and
“distributing”, giving accordingly RIAA an opportunity to reformulate pleadings.
Whereas Karas’ idea is to represent the issue with the legal hypothesis of “offering
to distribute for purposes of redistribution,” it seems more fruitful to remark that the
suit, in Elektra v. Baker, was based upon a report of an Internet investigator who
claimed to have detected the “illegal files folder” we presented above.
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In fact, the process of investigating alleged copyright infringements by P2P net-
works raises another central legal issue besides copyright, that is privacy. In the
quest for new tools to help their fight against illegal file sharing, both the movie and
music industry have posed serious dilemmas to Internet users, as it occurred some
years ago with a highly controversial decision involving an American ISP, Verizon,
and, again, the RIAA. The reason is that “the privacy of Internet users participat-
ing in P2P file-sharing practices is threatened under certain interpretations of the
DMCA [as] a new form of panoptic surveillance that can be carried out by organi-
zations such as the RIAA.” [26]

Again, this privacy deadlock took place in summer 2007, when the Motion
Picture Association of America (MPAA) asked and, according to federal judge
Florence-Marie Cooper, it should have obtained the IP addresses of those connect-
ing to TorrentSpy files via their service in the U.S. Forced to enable server logging
against its own privacy policy, it is noteworthy, however, the different conclusion
of the case: TorrentSpy, which servers are physically located in the Netherlands,
announced its decision to stop doing business in the U.S. on August 27, 2007.

Despite the general tendency to reach harmonization in copyright law, there is in-
deed a clear difference of approach to P2P-related privacy issues between the U.S.
and the European Union [49]. If a property standpoint prevails in the former legal
system, privacy is widely considered as a fundamental right in the latter, as pro-
claimed by both the European Convention from 1950 and the EU Charter of Nice
in 2000, let aside the specific constitutional traditions of each Member State. Con-
ceived as a matter of protection, access and control over personal data, the traditional
concept of privacy as the “right to be let alone” has evolved due to the same techno-
logical revolution that has conducted from traditional copyright to digital copyright.
Thus, digital privacy has become one of the most relevant legal issues debated in
recent cases, insofar as, at least in Europe, access and control over information al-
legedly reserved to copyright holders must respect P2P users’ personal data.

For example, this is what took place in Italy in 2007 with the so-called “Pepper-
mint” case. Although the legal reasoning of the court is rather complex [11-13] it is
possible to summarize some key elements of its decisions in order to show the cen-
tral role played by data protection laws. The facts are technically (but not legally)
simple. A German record company (Peppermint Jam Records GmbH) suspected a
large number of Italian users were downloading, without proper authorization, mu-
sic from its catalogue via P2P networks. Hence, the copyright holder commissioned
a Swiss company (Logistep AG) to monitor the activities of all the computers con-
nected to those P2P networks. Logistep used a “crawler” which was able to connect
to any P2P network as a normal client; but rather than simply exchanging digital files
with other clients, Logistep’s program recorded in its database additional data — in-
cluding the IP addresses as well as date and time of the connection — of all the users
who were sharing a file. Consequently, we have a twofold problem.

First, it is not entirely clear whether Logistep has been monitoring only users who
were uploading (or rather, making available) Peppermint’s songs on the Internet, or
whether it was checking those who were downloading as well.
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Secondly, it is likely that the database created by Logistep was, and still is, hosted
in Switzerland, which raises a set of major legal issues insofar as the data “travelled”
outside Italy and, so, outside the European Union.

In any case, the story went on partially as in the aforementioned TorrentSpy case.
The plaintiff had indeed required before a section of the Tribunal in Rome to get
from the Internet Service Providers responsible for collecting the IP addresses, the
identity of the subscriber(s) using a specific IP address at a particular time and date.
The tribunal of Rome accepted the request twice, therefore forcing the relevant ISPs
to disclose such identities. So that, in spring 2007, a Bozen law firm representing
Peppermint could send to every of the 3000 identified subscribers a “personalized”
letter in which it was required a sum of EUR 330 for settling the case as a “partial
compensation for damages, legal and technical expenses.”

Nevertheless, a subsequent decision by another section of the same Court changed
the whole picture on June 16, 2007. In a nutshell, the court affirmed that claims of
the plaintiff, i.e., of the copyright owner of the songs being exchanged on P2P net-
works, should be duly balanced against the rights of P2P users, namely by protect-
ing personal data as a fundamental right. Again, legal technicalities of the court’s
reasoning remain complex as they involve an analysis of the legislation on data pro-
tection, copyright and telecommunications, both at the Italian and European Union
levels, along with various considerations on procedural safeguards which were not
respected by allowing a private company to perform what amounts to be a full-blown
police investigation. Still, the core element of this new decision seems evident: while
personal data protection has been recognized by the Italian Constitutional Court’s
jurisprudence as a fundamental right, it is not admissible to conceive copyright pro-
tection as a justification for extremely invasive monitoring techniques.

In order to confirm how data protection laws are extremely relevant when defin-
ing cases on P2P file sharing systems, let us finally recall a recent decision made
by the European Court of Justice in the “Promusicae” case (C-275/06) on January
29, 2008. In fact, the court was asked by a Spanish tribunal to clarify whether na-
tional law was compatible with the law of the European Union, because it did not
seem to oblige ISPs to disclose identities of their subscribers for alleged violations
of copyright law (as Promusicae, an association of Spanish music producers, was
claiming). Indeed, the Spanish court was not asking the European Court of Justice
to take a decision on the specific facts of the case, for it would simply have gone
beyond the ECJ jurisdiction. Rather, it demanded the correct interpretation of EU
law on this matter, pursuant to article 234 of the EC Treaty.

Put it shortly, the decision has been a double one: on one hand, it states that it
is not required for any legal system of EU Member States, such as Spain, to make
such disclosure compulsory. But, on the other hand, such a compulsory disclosure
would not be incompatible with the law of the European Union. As the European
Court of Justice affirmed, “when transposing those directives, the Member States
[must] take care to rely on an interpretation of them which allows a fair balance to
be struck between the various fundamental rights protected by the Community legal
order. Further, when implementing the measures transposing those directives, the
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authorities and courts of the Member States must not only interpret their national
law in a manner consistent with those directives but also make sure that they do not
rely on an interpretation of them which would be in conflict with those fundamental
rights or with the other general principles of Community law, such as the principle
of proportionality.”

So, the conclusion is that a delicate balance must be found here, insofar as
P2P systems do not only involve private claims about possible copyright infringe-
ments, but also privacy concerns about data protection in digital environments. If we
stressed how legal scholars still discuss, in the U.S., on the possibility to ascertain
whether P2Ps are a technology capable of substantial non infringing uses, it is thus
clear that, at least in Europe, such a copyright protection must go along with the fair
respect of P2P user’s personal data. A different constitutional approach to the in-
formational nature of human beings and their relationships in digital environments
leads in fact to a divergent way of understanding the most relevant legal issues cre-
ated by this technology. As a first striking example of that bidirectional connection
remarked since the introduction, the social impact of P2P systems involves different
legal outputs that shape the very evolution of this technology.

3 Sociological Aspects

The legal misadventures of Napster and its ruin in 2002 are a good standpoint to
introduce the sociological aspects of the analysis on P2P systems. Indeed, Napster
was a centralized P2P network with a number of servers keeping information on
the peers — namely, the files that each peer made available for distribution over the
Napster network which answered to clients’ searches for a particular file.

As we saw in the previous section, it was in fact this architecture to be considered
illegal by the Courts: The operators of the central server(s) used to index each peer’s
files so that they could have intervened to stop copyright infringements. Of course,
it can be questioned that the simple exchange of a file would automatically imply
copyright infringements, therefore ignoring all of the defenses afforded by “fair
use” and other similar doctrines. However, the point is to remark how the following
generation of P2P systems has moved toward a more massively distributed way of
sharing and exchanging information on the Internet.

Instead of a hierarchical network in which one central hub still represents its
vertex, the horizontal nature of post-Napster P2P systems makes it difficult to im-
pose centralized controls over the dissemination of information, reflecting, in some
ways, the original design for the Internet. Besides, this horizontal architecture cre-
ates wider opportunities, both in scope and quantity, for the production of infor-
mation on the Web. Yochai Benkler calls this process “commons-based peer pro-
duction” to define collaborative projects such as free software [§—10], while Michel
Bauwens proposes to interpret it as “the relational dynamic of distributed networks”
where hubs may exist but are not obligatory as it happens with the Internet [7].
From a sociological viewpoint, however, it is important to stress, first of all, that
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several scientific papers have demonstrated the existence of so-called “small world”
networks at various levels of any P2P system.

This new research relies on and deepens previous sociological work by such
luminaries as Stanley Milgram [44] and Mark Granovetter [24, 25] on small world-
social networks, or Friedrich Hayek’s research [29] on spontaneous evolution of
social systems. In fact, as in Milgram’s “small world problem,” the degrees of sep-
aration between nodes are significantly reduced in P2P systems, so the diameter of
the network is quite shorter than that of a typical regular system. The reason was
anticipated by Granovetter’s seminal work on “the strength of weak ties,” insofar as
a small number of random links reduces exponentially the diameter of the network.
If you consider for example a regular network with twenty nodes, each of which
has four links, nodes would require an average of five steps in order to reach each
other. But, it is sufficient to randomly rewire three nodes to decrease the degree
of separation from five to three. This means that in a system of six billion people
as contemporary world can be represented, it is enough to have only two random
links out of ten thousand regular connections to determine the degree of separation
in the network as small as eight. When random links increase from two to three,
the degree of separation reduces from eight to five, i.e., something very close to
Milgram’s first approximation more than forty years ago!

This paradoxical property of small world-systems with clustering coefficients
higher than those of random networks, and diameters shorter than those of regular
ones, characterizes the spontaneous evolution of many complex networks. Let aside
biological corroborations, as in the case of the C-Elegans’ neural network studied
by Duncan Watts and Steven Strogatz in 1998 [62], this occurs with the Internet as
shown by Albert Lazslo Barabdsi in 2002 [6], or with both the jurisprudence and
the majority opinions of the U.S. Supreme Court analyzed by Seth Chandler [14],
James Fowler, and Sangick Jeon in 2005 [21], or, last but not least, with contempo-
rary research that has found significant evidence of spontaneous clustering of users
according to content that is distributed in P2P systems such as Gnutella or KaZaA
[46, 47].

Furthermore, this latter research on P2P systems proposes several methods that
can be used to detect the small world-phenomenon in various networks, including
“data-sharing graphs” as in [31] or “affinity networks” as in [54]. The reason why
lots of real complex social networks are spontaneously developing this way, can
thus be understood according to Hayek’s ideas on cosmos [29] with the dynamics
and evolution of spontaneous orders, for high clustering coefficients and short diam-
eters are the key parameters to understand how the distribution of the information is
optimized in complex social systems (see [45]).

Yet, we are still missing a fundamental point. In Barabdési’s terms [6], real net-
works like the Web present a power law distribution that goes along with its char-
acteristic “long tail” of information. It is in fact a tiny fraction of nodes extremely
connected in the network, namely its hubs, that produces a peculiar scale-free effect
dubbed as the “rich gets richer’-phenomenon, or, in Barabasi’s jargon, the “anti-
democratic” nature of the hubs. This way of distributing information in a network
has partly been confirmed by the aforementioned work on the U.S. Supreme Court
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jurisprudence, and on P2P systems as well. As the topological research of all the
papers published in the history of U.S. legal journals confirms, most of the articles
are scarcely consulted even by their authors, and only a very small percentage of
essays is massively quoted by scholars! So, as it occurs with the phenomenon of
globalization, the legitimacy of the hubs depends on the clustering coefficients of
the network. What P2P systems obtain, most of the times, spontaneously on the In-
ternet, is precisely what contemporary globalization lacks: shortening the diameter
of the network via its hubs does not mean you have got higher clustering coefficients
in the system [48].

However, some other scholars claim that proper P2P systems do not need any
“subcenter,” hub, or Super-peer, as it occurs with decentralized P2P networks, index
authorum, or the jurisprudence of the U.S. Supreme Court. The idea is that only the
relational dynamic that arises in distributed networks can properly be called “peer-
to-peer” (see [7] 2.1.A). This is not, of course, a simple matter of definition or of
fantasy, in a world with no “authoritative” nodes anymore. Rather, it is entwined
with the evolution of collective intelligence [41, 63], cognitive capitalism [16, 60],
and even netarchy [7].

So, after “spontaneous evolution” of P2P systems with their legal problems, be-
tween cosmos and taxis in Hayek’s phrasing, it is time to shed further light on such
a topic of classical philosophy via the economic analysis of P2P systems. The idea
is in fact to deepen both the impact of this technology in contemporary society and
the dynamic situation through which social environment shapes the way technology
evolves, insofar as it was just economics, after all, the first field in which Hayek de-
veloped his analysis on cosmos and taxis, namely on the very connection between
spontaneous orders and human planning.

4 Economic Trends

Let us start our economic section on P2P systems as we did with its legal issues,
that is by focusing, first of all, on copyright topics: in fact, the impact of recent
technology on society and economy can be introduced with current debate on DRM
(Digital Rights Management [42]) vs. DRM-free systems. In particular, some time
ago, Steve Jobs [32], in his public speech “Thoughts on Music,” criticized DRM
systems that Apple has been imposing in order to protect its music against piracy.
This approach brings however to a paradox: while DRM-protected digital music is
prevented from being played by devices of different producers, DRM-free content,
which uses open formats (e.g., MP3 for music and MPEG4 for movies), can con-
versely be downloaded, distributed, copied and played on different devices. This
diversity involves an implicit disincentive to legally buy copy-protected digital con-
tent, because only DRM-free files are mostly interoperable: after all, 97% of the
music filling iPods is unprotected and of unclear origins.

Jobs’ conclusions — echoing theses already expressed elsewhere [20] — are thus
surprising, inasmuch as they suggest both to abolish DRM systems and to sell music



The Social Impact of P2P Systems 55

encoded in open formats. Yet, even if the dream of a “DRM-free” world would
finally occur, there is no obvious reason to believe that copyright infringement, one
of the main reasons that has been alleged for the introduction of DRM systems,
would decrease as such. Rather, it is likely that future legal market-models will have
to consider serious, scalable, efficient, secure, and reliable alternatives to DRM-
based centralized on-line stores.

The P2P paradigm seems to provide a technologically mature framework for this
domain, possibly making digital content-sharing applications a valid solution even
for small vendors and emerging artists. In fact, small-medium actors in the market-
place could hardly afford production and maintenance costs that can be very high
when distribution is provided by means of a resilient Content Delivery Network
(CDN) architecture (as used, for example, by iTunes, Yahoo!, or Microsoft Media
Shop).

Furthermore, the combination of DRM technologies with centralized systems
might arise several problems. It suffices to stress the complicated procedures that
users of Yahoo! Music Store will have to go through just to get either a reimburse-
ment or a DRM-free copy of the songs they have purchased, due to the announced
(at the time of this writing) closing down of the service and specifically of the related
DRM servers [65]. While it is hard to say whether this represents either the failure of
DRM technology as implemented in the market or simply of Yahoo! Music Industry,
it urges to rethink both the media market and the role of P2P systems.

Despite their huge potentials, we already explained why P2P systems have be-
come infamous as file sharing applications that make particularly easy for users to
access copy-protected files for free. Indeed, it is very difficult to trace peers’ activ-
ity, and identification of abuses cannot be easily performed, given the absence of a
central authority. Moreover, a business model is hard to find. It is questionable who
should be involved as a provider in the transaction: should it be only the owner of a
given object or also other actors? In the same way, P2P distribution frameworks lead
to technical advantages, but their economical benefits are far from clear. Consider
the case of the purchaser who becomes distributor of that good later on: why should
he/she provide properly the content if the owner wants to be reimbursed?

Another general perspective opens up by considering that P2P networks offer the
ideal scenario to exploiting the Long Tail business [3, 4]. The reason is that they
promote a perfect infrastructure to sell a large number of unique items in relatively
small quantities. Up till now, it is well known that centralized architectures are ef-
ficient and dependable, when servers are replicated and content is fairly cached.
Therefore, even if CDNs are still expensive and hard to maintain, they are preferred
by (dominant) content providers for enabling a resilient market that can be eas-
ily controlled and managed. On the contrary, P2P systems are scalable in principle
and they can largely help providers reduce administrative costs, the problem being
to determine whether this technology is mature enough for a dependable, fair and
profitable market place infrastructure.

Besides, the economic and technological convenience of P2P systems seems
to depend on selfish or altruistic users’ behaviors (as illustrated by the notorious
free-riding phenomenon [1]). Of course, the introduction of some mechanisms that
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provide incentives (e.g., the BitTorrent’s tic-tac-toe strategy [15]) can stimulate co-
operative behavior between users in order to fight the negative outcomes of free-
riding, like degradation of the system performance, unpredictable availability of
resources, or, under the most unfavorable circumstances, the complete collapse of
the system. But, again, it is far from clear how a P2P based-economic model could
be certain to prevent all of these flaws.

In any case, when discussing on the economic role of P2P systems in the real
world, we need to keep in mind that the entire product’s value-chain has really been
upset. This is the main reason why “P2P economics” is a very active field nowadays,
with many attempts to define the human interaction which occurs in the digital en-
vironment, according to the theory of informational goods, the Internet distribution
chain with its variable and marginal costs of production and distribution, along with
network externalities [55], cognitive capitalism, and the very value of the “network
information economy” [10]. Some scholars [7] have even claimed that their work
on P2P systems shows that a new paradigm is emerging, thanks to the superiority of
the “free software/open sources” model as key of a new P2P economics.

Within this context, let us grasp here some peculiarities of the P2P business
model by focusing on roles and interactions identified in [30], and referring to the
Oslo’s tutorial on “Peer-to-Peer Market Places” [53]. Although different applica-
tion/service styles can be taken into account for a generic discussion, for the sake of
simplicity (and also for the relevance of the topic) we will focus mainly on digital
content-sharing and distribution.

First of all, we need to compare the digital domain with the traditional value-
chain of a media object (e.g., a movie, or a music album) that is characterized by
five distinct services or phases: authoring, production, distribution, delivery, and
consumption. Authoring is related to the creation of the artifact, and may include
a pre-production phase, for example with the preparation of a demo tape to be pre-
sented to a content producer. Production starts with a contract between the content
author and a business organization, like a record company, adding a relevant value to
the object. In this phase, the artifact is usually refined by a team of professionals, and
finally copied on a given physical support, like an audio CD. The record company
starts the distribution of produced objects, according to a given marketing strategy.
Physical objects are shipped all around the country (and, sometimes, the world),
increasing the cost of the artifact by means of transportation service-suppliers that
would be using airplanes, trains, and so on. All the objects are delivered to the dis-
tributed network of malls and shopping centers that provide the final link to the
customers, fixing the ultimate price for each single object. Finally, the client con-
sumes the product, ideally closing the chain by paying a fee that covers all of the
costs augmented after every step of the cycle.

Digital technology literally disrupts this value-chain. In fact, distribution and de-
livery collapse in one single service that is provided by a fully integrated information
system implemented by means of complex server architecture, such as a CDN. This
is the case of popular on-line stores, like iTune or Amazon that connect customers
and content owners more rapidly through the Internet. In order to understand roles
and interactions between market’s actors, we report in Fig. 1 the model presented
in [30].
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Fig. 1 Roles and interactions

The main problem with P2P markets is that peers in the network can inter-
change all these roles. Quite trivially, a receiver can become a provider of a pre-
viously retrieved digital content in further interactions, due to the servent (both
client and server) nature of a node. Nevertheless, in principle every user can ac-
cess the P2P system to insert a digital object, and as a consequence the owner
of the object can have the role of a provider, with or without third parties me-
diating between the authors and the market. Finally, a mediating service, such as
a search engine, can be executed on a central server (e.g., Napster’s search di-
rectory), or a decentralized one by using flooding strategies or other scalable and
more sophisticated models (e.g., Gnutella [23], Kademlia [43], and so on). Hence,
P2P disrupts the remaining traditional aspects that still survive in centralized dig-
ital market: distribution and delivery are provided by whomever manages the on
line store, by subscribing a contract with the technology provider (e.g., Akamai
for CDN infrastructures). If P2P is used instead, both services rely on contribution
of the users, who may advocate their rights as authors, consumers, providers, and
distributors.

From both an economic and a technological point of view, mediators are still
necessary. Of course, production is a complicated process, and an artwork may
sometimes be professionally arranged or refined. But if a revenue model is to be
planned, other trusted third parties should be considered in the overall process, such
as a bank, a credit card company, a payment broker when financial transactions may
occur, or, finally, a certification authority when authenticated communications are
needed.

In particular, users need a platform that has to be implemented and updated.
Above all, they need a community where it is possible to exchange information,
receive feedbacks, suggestions, comments, and so on. Such a community can also
provide other mediating services, like a search engine or a financial broker (e.g.,
PayPal). Whereas we noted in Section 3 how often P2P systems spontaneously
evolve in small world ways, it must be added that such a community may also plan a
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peculiar revenue model that can include membership or submission fees for sharing
content, as well as mechanisms for enabling receivers to pay providers and/or medi-
ators. However, all of these solutions may legally be problematic, because the legal
owner is not (always) identical with the provider, let aside the hypotheses on who
is responsible for the community to pay license fees, or to undersign an agreement
with owners.

In conclusion, new mediators can release an open platform, represent the com-
munity, purchase licenses, digitalize content and insert items in the network (or
enabling the users to insert items by their own). But the following points must be
kept in mind, if the Grokster ’s lesson has been learned:

First, the revenue for owners must be clear.

Second, the profit should be shared with providers and/or mediators, if the commu-
nity owner wants to save both in terms of distribution and of delivery costs.
Finally, a dependable and scalable technical solution shall be adopted.

5 Political Aspects

The political dimensions of P2P systems play an obvious role in the further de-
velopment of this technology, both at economical and legal levels. However, it is
crucial, above all, to clarify what is meant by “political” in this context as well as
the interpretation that should be given to the very term of “P2P systems.”

Regarding the first point, we interpret the concept of “politics” rather broadly, in
order to cope with all the ways in which people make decisions to get certain goals.
This is certainly a wider definition than the one referred to the activities of civil
governments, and in a certain sense it tends to include what is currently understood
under the conceptual framework of “governance” [5].

Concerning the second point, we should distinguish between “P2P systems” as
“technological systems” (according to the meaning which is usually given in en-
gineering circles) and “P2P systems” as a metaphor for supposedly new emerging
forms of human organization and participation [7, 10]. Although this latter interpre-
tation is intellectually fascinating, it deserves a more thorough discussion than the
one that can be offered here. Therefore, the focus will be on P2P as “technological
systems” in order to highlight their relevance for political activities (in the broader
sense specified above).

Indeed, the political role of “P2P systems” becomes a significant one as soon as
we couple the technical definition of P2P networks as massively distributed plat-
forms for information storage and retrieval, with a rather uncontroversial statement
in politics. Namely, control of information and, hence, the possibility to obtain such
information and to act upon it, are crucial issues for people making decisions to
achieve definite ends.

This very possibility of sharing growing amounts of information via P2P net-
works empowers individuals with the information they need in order to “do
politics”; such empowerment has a profoundly different nature as it regards
mono-directional media such as TV, radio or traditional printed press, which are
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representatives of the “industrial information economy” [10]. In these one-to-many
systems, in fact, it is much easier for a limited number of people to act as informa-
tional gatekeepers, effectively deciding what information should be distributed.

It is not possible to analyze in detail how control over information influences the
sphere of political action. It is nonetheless rather intuitive that a large set of political
decisions and of decisions with political implications is taken on the basis of cer-
tain information being available — or, much more importantly, being unavailable — to
stakeholders concerned with the results of those decisions. Let aside particular well-
defined circumstances, usually when a major threat to the wellbeing of the members
of a political community is looming (as in time of war), modern democracies rest
on the assumption that the availability of information to all citizens is a basic pre-
condition for meaningful participation to decision-making processes and, therefore,
to political life in the widest implication of the word.

So, P2P systems should be understood according to their capability to facilitate
flow of information, particularly when such information is withheld by entities —
including, but not necessarily limited to, the State or related entities — which intend
to profit (economically or otherwise) from such control.

Obviously, it is not particularly useful to treat “P2P systems” as a single mono-
lith when assessing their relevance — positive or negative — for political action. As
we stressed in previous sections, it makes a real difference whether P2P systems
are strongly centralized (e.g., Napster) or decentralized (e.g., Gnutella, Pastry [51],
Kademlia [43]). In the same way, it is important to distinguish P2P systems which
allow anonymous communications (e.g., Freenet [38] or Publius [61]); plausible
deniability (e.g., Publius [61]); confidential communications, and so on.

For example, the presence of single points of failure in a centralized P2P system
explains why it is likely that these networks suffer from disruption to their relevant
information-sharing functions more easily than decentralized systems. This might
happen when such a network is used by its participants to share information that
is regarded by others as politically sensitive and/or damaging. The capability to
clearly identify and target a limited number of nodes, either via legal means (e.g.,
court injunctions) or through other, less legal, ways (e.g., denial of service attacks),
is obviously a strong advantage for the entity that considers such an information
as damaging. Vice versa, a decentralized P2P system helps counter this threat, but
it might render more difficult to clearly identify an authoritative source in sharing
information, which is an important element in political activities. Besides, it may
raise difficulties in coordinating such political relationships, notwithstanding the
fact that information technologies themselves might provide tools, such as filtering,
tagging and recommendation systems, for more effective coordination [10, 56].

Similar considerations can be applied to P2P systems that allow anonymous com-
munication, that is making extremely difficult for an entity to stop spreading of sen-
sitive information via identification and action upon the participants of the network.
Anonymous P2P systems make the sharing of information, and possible political
action based upon such a sharing, available (or less risky) even in those political
regimes that have developed extensive monitoring infrastructures [17]. Neverthe-
less, full anonymity might also encourage irresponsible acts (in the strict sense of
the word, i.e., acts whose responsible cannot be identified) or be used for criminal
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purposes. This hypothesis raises a lot of difficult questions, most of them related to
the possible use of technologies allowing anonymous communications to criminal
organizations. The usage of pseudonymous systems, such as OpenlD (see on-line
documentation at http://openid.net) might be a feasible partial solution to this com-
plex challenge.

In the context of their usefulness for political action, the same debate would apply
when examining P2P systems that provide both plausible deniability and high de-
gree of confidentiality, usually by encrypting communication between peers. These
characteristics are, strictly speaking, very different from the capability of a system to
provide anonymity. In particular, the possibility to offer plausible deniability is very
important in those political environments where the mere usage of tools allowing
confidential communication might create serious issues to their participants. By the
way, this is becoming familiar even in democratic regimes under the fallacious as-
sumption that those who have “nothing to hide” will not want confidentiality in their
communications [58] . In any case, it is hard to draw a precise line between the ne-
cessity of providing a venue for political information-sharing activities in countries
where the surveillance of citizens is routine, and the possibility that such systems
protect or even encourage criminal activities [18].

Another point that must be clearly stressed is that sharing information in a
more efficient and/or effective way does not necessarily mean any action based
upon that information would be taken. P2P systems can, as mentioned above,
help lowering the transaction costs of group coordination, by easing the shar-
ing of the specific information which is necessary, whether directly or indirectly,
for such coordination [10, 56]. However, there are many other factors that play
a role in facilitating or inhibiting political activities: let us mention here three of
them.

First, the very distributed nature of P2P systems can represent a formidable ob-
stacle to the information sharing which turns into real action. Indeed, geographical
distances between persons who might share a common goal, are not, up to today, re-
flected in the topology of P2P systems (although, there are proposals of P2P systems
that organize their topology on the basis of geographical proximity [34, 66]).

Secondly, the sheer amount of information to be transferred in P2P systems can
turn into an obstacle to practical action, insofar as human peers may suffer from
information overloading [57].

Finally, there is another possible problem that, to be fair, is not necessarily pecu-
liar to P2P systems, but generally to decision-making processes in large or weakly
connected social groups (which characterize some, but not all of, P2P systems.) In
a nutshell, the suspicion is that participants will tend to coalesce around positions
which are not necessarily the best ones, but rather the most widely accepted and/or
least controversial ones [35].

The actual relevance of these issues is still widely debated, one central point of
discussion being that P2P networks should not be compared to an utopian picture
of both information sharing and political action, but rather to the current framework
of highly centralized mass-media environment [10, 56]. In this way it is clear what
remains to be assessed in terms of the political practices allowed by existing and
emerging P2P systems along with their social impact.
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Indeed, it is not necessary to insist, once again, on the political significance of any
particular architecture, i.e., the bidirectional connection by which policy-making
processes constrain or stimulate certain kinds of P2P architectures over others (as
we saw in Sections 3 and 4), while digital architecture influences different kind of
political actions (as we mention in this section).

Rather, it is crucial to analyse whether and how far information sharing, which is
allowed by forthcoming P2P systems, actually turns into real action. Therefore, in
order to enrich that bidirectional connection with which we are dealing throughout
this chapter, a fruitful perspective is given by some technical details on the threefold
levels of P2P services that are the subject of the next section.

6 Turning Forthcoming P2P Systems into Reality

The aim of this section is to let the P2P paradigm suit (some of) the legal, social, eco-
nomic, and political issues underlined in previous parts of the chapter. We partially
refer to the P2P Service Model defined in the Service Oriented Peer-to-Peer Service
(SOPPS) [22], which comes from the Market Management of Peer-to-Peer Services
(MMAPPS) European research project. In such scenario, the Service Model outlines
the different types of services a peer can offer to other peers as well as the interfaces
through which they can be accessed.

In particular, we present the service model introduced in [52] which shows a
structure that can logically be divided in three different levels, that we present in a
bottom-up order: (1) the Overlay Level, (2) the Accounting Level, and (3) the Mar-
ket Level. These modules give different services to other modules, and even if we
can think of them, at this present degree of abstraction, as a pile of protocols, ap-
plications can use functions and operations offered at different levels. Each module
is defined in terms of the functions they export to the other parts of the framework
(see Fig. 2):

Market Level

Rights Management || Trust || Reputation | Community

Pricing|| Auctioning | Fairness || Content Distribution

Accounting Level

pay(id,,id,,v)

Overlay Level

route(m,id,) || search(id )|| insert(l) | delete(l)

Fig. 2 Logical layers of a P2P
service model
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6.1 Overlay Level

The overlay network can be unstructured (e.g., Gnutella, Kazaa, and so on) or struc-
tured (e.g., Pastry [51], Chord [59] and Kademlia [43]). Scalable overlays are con-
sidered more scalable than the others. Very roughly, structured overlays are defined
in terms of a topology (i.e., a forest, a ring, and so on), a routing mechanism, and
an identifier space, which is used to uniquely locate nodes and resources in the net-
work. The key idea of a Distributed Hash Table (DHT) system is that each node N is
responsible for a set of resources whose identifiers are “closer” to N’s identifier than
to the others; in fact, a distance metric is defined for each different system. Usually,
a distributed storage service is defined over this basic layer. It is possible to insert
a new resource in the network that will be assigned to the node of responsibility.
Hence, given a generic node N and a resource R, respectively identified by idy and
idg, the overlay layer should be able to export the following functions:

route(m, idy ): it routes message m to node N,

search(idg): it looks for R, and returns a pointer to the node (or the set of nodes)
that is responsible (or that caches) the searched resource.

insert(R) and delete(R): these functions are used to store and to remove a given re-
source to a node. Some systems implement basic authentication mechanisms: for
example, only a node with given credentials can access or modify a resource from
the network (e.g., the Likir system defined on a Kademlia-like structure [2]).

The reader should observe that searches could be managed in a centralized (and
largely efficient) manner. Napster is an example; however, as reminded in Sections 2
and 4, it might be considered illegal to centralize the provisioning of a directory ser-
vice, even when the objects are stored on the computers of the community logged
on. No one can implement a technology that prevents every kind of misuses. But,
of course, a service provider (or a community owner) should avoid legal prosecu-
tion, through denying the accountability for other users’ actions. On the contrary,
decentralized searches in unstructured systems are not efficient (e.g., the flooding
search strategy in Gnutella) or transfer the potential legal liability of this type on
few super-peers (e.g., Kazaa-like policies). Additionally, a centralized system has a
single point of failure presenting technical as well as political drawbacks, as we have
shown in Section 5. This brings us to the first learned lesson that must be considered
during the implementation of the given P2P service model:

Lesson Learned No. 1 Structured overlays are to be preferred to unstructured P2P
systems in order to let the community owners and/or the developers decline their
responsibilities on users’ actions. Moreover, such a system is free of single points of
failure.

Another important issue is given by anonymity and confidentiality, that should
be granted as (optional) services to P2P users, as discussed in Section 5. It is critical
that the solution is given at a lower level of the technological platform, because
when using an overlay network, it is possible in principle to trace back to the content
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source (i.e., the user or the node that inserted a given object) and/or to the content
provider (i.e., the user or the node that is storing/caching a given object). Secondly,
the node identifier should not be coupled with the real identity of the user, in order
to grant a given level of anonymity with the adoption of user generated pseudonyms.
Other forms of identity management must be preferred instead (e.g., Openld.)

Lesson Learned No. 2 The Overlay level should integrate an authentication proto-
col and an identity verification policy that could accept pseudonyms instead of real
generalities of users.

The reader should observe that if peers communicate each other using authen-
ticated channels, then they can easily cipher content before transmitting as well as
storing and sharing it (for example using a Diffie-Hellman key exchange protocol).
As a consequence, objects stored in the overlay system can be protected against
not authorized access, without any responsibility of the content provider (when the
latter is different from the source and/or the owner of the object).

6.2 Accounting Level

In order to satisfy economic constraints discussed in Section 4, security concerns
at this level should be considered very seriously.We have to manage both macro-
payment and micro-payment transactions; frauds are common; services and re-
sources consumption must be accounted as well. The most part of actual markets
adopts a central authority that manages economic transactions (e.g., PayPal) when
services are provided or items are sold. At the resource level, many credit-based
incentive mechanisms have been proposed over the last years. However, the ac-
counting level must provide functions for crediting or debiting users (considering a
currency with or without legal value). For the sake of simplicity, we define only the
following function:

pay(idy ,idy,v): it invokes all the measures in order to securely provide a payment
of value v from user X to user Y.

The pay method can be implemented by way of a central authority (very com-
mon, and maybe preferable, for managing macro-payments) or of a distributed sys-
tem. In the latter class of proposals, many strategies can be further classified as
Local Accounting, Token-Based Accounting, and Remote Accounting. For a more
thorough discussion on different accounting strategies, see [30]

Let us stress that this accounting level is not necessarily related to the revenue
policy that the community owner has decided to adopt, and that should be consid-
ered at the Market Level of the given model. In fact, several economic studies have
sharpened how the flat-fee economic model can generate greater profits per good
on respect to the pay-per-use model depicted in monetary systems (see for exam-
ple [19]). Nevertheless, it has been clearly discussed how free-riding can be easily
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reduced if incentives for contributing are managed. Hence, crediting and debiting
users introduce the need of a dependable business support, which must be scalable
in terms of the many transactions that may occur in a P2P system.

Lesson Learned No. 3 Crediting and debiting users can reduce the free-riding
phenomenon, but they introduce the needing of an economic support. The execution
of (many) pay(idy ,idy,v) calls must be dependable, not repudiable, and scalable in
terms of the number of transactions in a large community of users.

Let us observe that commonly used Local Accounting strategies are trivially ab-
stracted by the pay method: Indeed, both an eMule-like crediting system and a Tic-
TacToe strategy (used in BitTorrent) can be seen in terms of a peer paying a fee
to another peer, even if it results in a differentiated service (e.g., high priority in
waiting queue of debtors) instead of real money transfers. Otherwise, other more
reliable micro-payment systems must be used if the virtual coins correspond to real
currency (see, for example, the Rivest’s lottery scheme [50] and PPay proposed by
Yang and Garcia-Molina [64]).

6.3 Market Level

This level includes most of the services as perceived by the final user. We list here a
set of properties and functions that a framework could implement, in order to solve
many of the issues we stressed in the previous sections of this chapter.

Pricing: We may define a pricing function that maps a service onto a tariff function
or a scalar value that basically represents the price of the service consumption.
It can be fixed or competitive; in the second case, each provider of the same ser-
vice can offer it at different prices. For example, in a storage application, some
peers can offer slices of its own disk space at a lower price than a competi-
tor. PeerMint [27] gives an interesting approach to pricing mechanism in a P2P
market.

Auctioning: When the good under sale is in limited number, the merchant can take
different bids into consideration. In virtual markets that deal only with electronic
sources (different replica can easily be produced), auctioning is less important.
See PeerMart [28] as the state-of-the-art approach for enabling auctioning in a
P2P system.

Intellectual Property Management: Even if there is no definitive solution to the
DRM vs. DRM-free debate, we cannot underestimate the importance of intellec-
tual property management, as discussed in Section 2. Although a flat-fee strategy
is adopted, the community manager can be asked to account the content owner
accordingly to the popularity of his/her own artifact.

Fairness: When the owner is credited under a given revenue model, then also the
provider, who contributes to the system with her own bandwidth, cpu cycles,
and disk space, should be (at least partially) credited as well. We think that this
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property has been deeply underestimated and a proper implementation of fair
mechanisms can strongly incentive users to behave legally and bring success to
a market place. The reader interested in such a topic, can refer to FairPeers [52].

Content Distribution: No electronic item must be delivered by traditional shipping
methods (e.g., air mail). On the contrary, electronic content can alternatively be
distributed depending on the kind of service. In fact, delay-tolerant (DT) connec-
tions (e.g., TCP based) can be used for file sharing applications, but time-sensitive
(TS) mechanisms are needed when audio/video (e.g., a soccer match) is streamed
to a set of paying users. If the task of content distribution is fairly shared by the
participants, systems performance can optimize bandwidth available at the host
side.

Trust and Reputation: When a transaction is completed (or even maliciously
aborted), involved participants can be asked to submit a (positive or negative)
feedback. Reputation management can be critical if pseudonyms are used in-
stead of real identities: community owners may benefit from the users’ ac-
tive participation to isolate fraudulent users and to reduce misuses of the given
platform.

Community Services: This higher level of abstraction can include some other ser-
vices and functions (as a recommendation engine, social networking facilities,
and so on), which can harness small world properties that characterize P2P com-
munity (see Section 3). A deeper discussion on such issues is out of the scope
of this chapter. However, the reader can refer to DeHinter, a recommendation
system for Gnutella network [54], that provides an example of a practical ex-
ploitation of spontaneous topological properties.

Therefore, a developer of a future P2P system must take care of each item in the
given list, as it is stressed in the following learned lessons.

Lesson Learned No. 4 In a P2P system every peer can be a merchant. The incre-
mental exploitation of the P2P paradigm must include no trivial negotiation mech-
anisms, such as pricing and auctioning that are very strategic practices in the long
tail business scenario (e.g., eBay.)

Lesson Learned No. 5 The U.S. Supreme Court decision in MGM v. Grokster case
shows that in some parts of the world, developers can legally be prosecuted for in-
ducing copyright infringement committed by their users. Intellectual property man-
agement must seriously be considered, and developers must provide a method for
enabling legal sharing of copy-protected or otherwise governed information.

Lesson Learned No. 6 There are technological and political drawbacks in single
points of failure. The needing of a distributed control over content and user’s be-
havior makes mandatory the adoption of reputation and trust schemas.

Lesson Learned No. 7 The exploitation of the long tail scenario shows that the
more the users are stimulated to contribute to the system, the more resources are
available in the community. Fairness strategies can potentially expand the market
as well as content distribution can benefit of user’s enthusiastic participation.



66 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

Lesson Learned No. 8 Several scientific analyses have demonstrated the existence
of small world networks at various levels of any P2P system (as well as other in-
teresting patterns, such as power law distributions of nodes’ degree). Spontaneous
structures in network and community topologies can be exploited to enhance the
performance of the given system (e.g. reducing the number of hops during searches)
and to introduce new challenging social networking services (e.g., recommendation
systems, lookup of neighbors of neighbors, and so on).

7 Conclusions

Our analysis on the social impact of P2P systems has dealt with a work that ob-
viously is still in progress. In Section 2, we mentioned the difficulties to precisely
define the legal boundaries of a technology capable of substantial non infringing
uses, along with the necessity to find out a fair (but difficult) balance between copy-
right and privacy issues. In Section 3, we referred to the spontaneous orders of P2P
systems and their complex interaction, say, with the reality of taxis and legislation.
In Section 4, we stressed how the potentialities of this technology do not have yet
dissolved many doubts about its use as a dependable, fair and profitable market-
place infrastructure. In Section 5, it was the turn for political uncertainties which
depend on geographical distances, overloading issues, or conformist risks, let aside
the very possibility that such systems protect or even encourage criminal activities.
Whereas, in Section 6, we depicted a plausible scenario for further developments of
P2P systems, we were conscious that a key problem consists in turning forthcoming
systems into reality (as the title of that section clearly warns).

Of course, all those open questions do not mean to forget merits and advantages
of such a technology which has led many scholars to present it as a sort of new
paradigm in social interaction. Rather, these issues prevent us from conceiving P2P
systems as a form of panacea or utopia, insomuch as they invite to highlight the
bidirectional connection stressed since the introduction and that has represented our
personal thread of Ariadne throughout this chapter.

Indeed, we observed that legal networks, economical trends, and political de-
bates are influencing P2P evolution, whereas, at the same time, those very systems
have been transforming some key terms of our legal, economic, and political dis-
course. Hence, the picture we gave about a work that is still in progress should
be also interpreted the other way around. In Section 2, we explained why initial
apprehensions for copyright issues have left room to growing data protection con-
cerns and, likely, new legal cases will arise in defense of freedom of research. In
Section 3, we presented empirical work which proves P2P systems are part of a far
more complex framework, i.e., Hayek’s cosmos, irreducible as such to simple hu-
man programming as in the case of spontaneous affinity networks. In Section 4, it
was the turn of classical political economics and how many of its central concepts
have been upset, as it occurs with the value-chain of goods with their variable and
marginal costs of production and distribution, networks externalities, or the very
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idea of informational goods. Then, in Section 5, we insisted on the new horizons
opened up by P2P networks in politics, once properly understood in terms of infor-
mation and, more precisely, in terms of control, access, and distribution for people
making decisions to achieve definite ends. So, when we illustrated further develop-
ments of the technology as with the P2P service model in Section 6, the aim was not
only to properly take into account the complex social environment with its own set
of rules, constraints and possibilities, within which any technology has to be con-
ceived. Rather, the aim was also to emphasize the way in which social interaction
has already changed because of the introduction and functioning of P2P systems.

Finally, our analysis is obviously open to scientific debate and attempts of fal-
sification; yet, our effort has been to ground it upon a historical balance of that
continuous cycle in which each of its terms, namely technology and the social envi-
ronment, affects or gives feedback to the other. While such a perspective means to
take into proper consideration the social constraints within which any further devel-
opment of P2P systems should be assessed, it also allows to ponder the consistency
of some legal crusades, political queries, or economical misconceptions, still popu-
lar in current debate. After all, this is another good reason why it is so important to
stress “the social impact of P2P systems”.
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From Client-Server to P2P Networking

Lu Liu and Nick Antonopoulos

Abstract Peer-to-peer (P2P) networks attract attentions worldwide with their great
success in file sharing networks (such as Napster, Gnutella, Freenet, BitTorrent,
Kazaa, and JXTA). An explosive increase in the popularity of P2P networks has
been witnessed by millions of Internet users. In this chapter, an investigation of
network architecture evolution, from client-server to P2P networking, will be given,
underlining the benefits and the potential problems of existing approaches, which
provides essential theoretical base to drive future generation of distributed systems.

1 Introduction

As a new design pattern, peer-to-peer (P2P) has been widely used in the design of
large-scale distributed applications. An explosive increase in the popularity of P2P
file sharing applications has been witnessed by millions of Internet users.

As an emerging technology, P2P networks attract attention worldwide, ranging
from casual Internet users to venture capitalists. At the same time, the innovations
of P2P networks also offer many interesting avenues of research for scientific com-
munities. In the last few years, great research achievements have been made on P2P
resource sharing and data transfer. Network architectures are starting to evolve from
centralised client-server architectures to distributed P2P architectures or hybrid ar-
chitectures between client-server and P2P.
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In this chapter, the network architecture evolution is discussed from client-server
to P2P. A summary of recent solutions for resource discovery in P2P networks is
also given underlining the benefits and the potential problems of these solutions.

2 Network Architecture Evolution

2.1 Client-Server Architecture

Many today’s Internet applications, such as WWW, FTP, email, are distributed by
using the client-server architecture (Fig. 1). In the client-server architecture, many
clients request and receive services from the server(s). All the contents and services
are stored and provided by a server(s). Content and services can be discovered and
utilised efficiently by querying the centralised server(s), if the server(s) is available
and capable of serving all clients at the same time.

]

LAN or WAN
or Internet

Server Client

Fig. 1 Client-server architecture

However, such centralisation of the client-server architecture raises a series of
issues which are caused by the limitation of resources at the server side, such as
network bandwidth, CPU capability, Input/Output (I/O) speed and storage space. A
server could be overloaded if too many requests are received. In order to cope with
these limitations, the centralised server(s) needs to bear the high costs of providing
sufficient resources. For instance, Google clusters more than 200,000 machines to
give successful Web indexing services [1].

Moreover, the centralisation of the client-server architecture also leads to the
problem of single-point-of-failure. If the centralised server(s) is removed or is not
available for use, no alternative in the architecture can take its place and all services
on the server(s) will be lost.

2.2 Grid Architecture

“Grid Computing” is rapidly emerging from the scientific and academic area to the
industrial and commercial world. Current Grid computing systems are prominent
implementations of client-server architecture for distributed computing.
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The vision of the Grid Computing is to provide high performance computing
and data infrastructure supporting flexible, secure and coordinated resource sharing
among dynamic collections of individuals and institutions known as “virtual orga-
nizations” (VO) [2, 3]. The main focus of Grid architecture is on interoperability
among resource providers and users in order to establish the sharing relationship,
which needs common protocols at each layer of architecture. It is intended to of-
fer seamless and uniform access to substantial resources without having to consider
their geographical locations. Resources in the Grid can be high performance super-
computers, massive storage space, sensors, satellites, software applications, and data
belonging to different institutions and connected through the Internet. The Grid pro-
vides the infrastructure that enables dispersed institutions (commercial companies,
universities, government institutions, and laboratories) to form virtual organisations
(VOs) that share resources and collaborate for the sake of solving common problems
[2,3].

2.3 Peer-to-Peer Architecture

P2P networks are decentralised distributed systems and enable computers to share
and integrate their computing resources, data and services. Although concepts of
P2P and Grids have a significant amount of overlap, they were originally proposed
to address different domains. Whereas P2P is generally applied to a wide range of
technologies that can greatly increase the utilization of collective natural resources
at the edge of the Internet, such as information, bandwidth and computing resources,
Grids are intended to promote interoperability and extensibility among various ap-
plications, platforms and frameworks [4].

In contrast to the existing Grid paradigms, P2P architecture does not rely on a
centralised server to provide services (Fig. 2), which offers an appealing alterna-
tive to the existing Grid models especially for large-scale distributed applications.
In the P2P model, each peer node (also known as servent) acts as both client and
server, requesting resources from as well as routing queries and serving resources
for other peer nodes. A P2P network is a logical overlay network over a physical
infrastructure as illustrated in Fig. 2, which provides a virtual environment for P2P

P2P Overlay ;
Network @ @

Physical
Network

Fig. 2 Peer-to-peer architecture
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developers to easily design and implement their own communication environment
and protocols on the top of existing networks.

In recent years P2P networks have grown seemingly exponentially in popular-
ity and utilisation. P2P file sharing has become one of the most popular Inter-
net activities. Today’s popular P2P file-sharing applications, such as Kazaa and
Gnutella, have more than one million users each at any point of time [5]. Ac-
cording to research results from Cachelogic [6], about 50-65% of “downstream
traffic” (i.e. from ISPs to endpoint devices) and 75-90% of “upstream traffic”
(i.e. from endpoint devices to ISPs) on the Internet are the results of P2P file-sharing
applications.

The popularity of P2P is motivated by the benefits it offers to end users. Com-
pared to the client-server architecture, the advantages of P2P are listed below:

* P2P frees users from the traditional dependence on central servers, which en-
ables end users to easily share resources (e.g. music, movies, games and other
software). End users can share or retrieve resources directly from their connected
machines without any further need to upload them to a centralised server.

» P2P applications are more resilient than those built on the client-server architec-
ture by removing the single-point-of-failure.

e P2P distributes the responsibility of providing services from centralised servers
to each individual peer node in the network.

* P2P exploits available bandwidth, processor, storage and other resources across
the entire network. P2P interactions are only between individual peers which
eliminate the bottleneck of centralised servers.

* Most P2P applications use virtual channels for communication which break the
obstacles of corporate private networks, such as firewalls and Network Address
Translation (NAT).

e P2P has better availability as each peer node can obtain content from multiple
peer nodes. If one peer node is overloaded or experiences a hardware failure,
other peer nodes in the network can still handle requests.

3 Evolution of Peer-to-Peer Networks

There are many interesting types of P2P applications, including file sharing, instant
messaging, VoIP, Streaming media, High Performance Computing, search engine.
Among them, file sharing, one of the most popular on-line activities [7], is the initial
motivation behind many of successful P2P networks. P2P file sharing has become
one of the most popular Internet activities. Today’s popular P2P file-sharing appli-
cations, such as Kazaa and Gnutella, have more than one million users each at any
point of time [5]. In this section, the history of the P2P file sharing networks is
discussed along with the most popular file sharing applications.

Existing P2P file sharing networks can be divided into three categories [8] ac-
cording to the degree of network centralisation: centralised P2P networks, decen-
tralised P2P networks and hybrid P2P networks.
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3.1 Centralised Peer-to-Peer Networks

Although P2P is often seen as an opposite model to the centralised client-server
paradigm, the first generation P2P systems (e.g. Napster) started with the concept of
centralisation. However, in contrast to traditional client-server systems, the server(s)
in centralised P2P networks only keeps the meta-information about shared content
(e.g. addresses or ID of peer nodes where the shared content is available) rather than
storing content on its own.

e Napster

Napster was the first widely-used P2P music sharing service. Before Napster
came along, Internet users only passively operated their connected computers, such
as browsing news or checking email. With the increased popularity of Napster, or-
dinary Internet users started opening their PCs to actively contribute resources and
played more important roles for the Internet.

Compared to follow-up P2P applications, Napster utilises a simple but highly
efficient mechanism to share and search files in the network. To participate in the
Napster network, new users need to register to the Napster server and publish a list
of files they are willing to share. To search for a shared file in the network, users
can request the Napster server and retrieve a list of providers hosting the files which
match the query. File transfer takes place without the Napster server participating.
The requested file is transferred directly between the requester and the provider as
shown in Fig. 3.

e | —
Server
Request
Response
— * _________________ _’ —
' : Transfer '
Provider Requester

Fig. 3 Example of Napster network

e BitTorrent

BitTorrent is designed to distribute large amounts of data without incurring the
corresponding consumption in server and bandwidth resources. The original Bit-
Torrent (before version 4.2.0) can be looked at as a Napster-like centralised P2P
system. In order to share a file or a group of files, users need to create a small
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.torrent file that contains the address of the tracker machine that launches the file
distribution. The .torrent file is published on well-known web-sites, so that other
users can find and download the .torrent file of interest using web search engines.
The .torrent file is opened by the BitTorrent client software. The client software
connects to the tracker machine and receives a list of peer nodes that are partici-
pating in transferring the file. In order to distribute a file efficiently, a file is broken
into smaller fragments (typically 256 KB each) for transmission. The client, at-
tempting to download the file, simultaneously connects to these peer nodes that are
participating in file transfer, and downloads different pieces of the file from different
peer nodes. In the meantime, the client can also upload downloaded pieces to other
participants.

3.2 Decentralised Peer-to-Peer Networks

To address the problems of centralised P2P networks (such as scalability, single-
point-of-failure and legal issues), decentralised peer-to-peer networks become widely
used, which do not rely on any central server.

e Gnutella

The Gnutella network is a decentralised file-sharing P2P network, which is built
on an open protocol developed to enable peer node discovery, distributed search,
and file transfer.

Each Gnutella user needs a Gnutella client software to join the Gnutella network.
The Gnutella client software on initial use can bootstrap and find a number of possi-
ble working peer nodes in the network and try to connect to them. If some attempts
succeed, these working peer nodes will then become the new node’s neighbours and
give the new node their own lists of working nodes. The new node continues to
connect to these working peer nodes, until it reaches a certain quota (usually user-
specified). The new node keeps the peer nodes it has not yet tried as backup. When a
peer node leaves the P2P network and then wants to re-connect to the network again,
the peer node will try to connect to the nodes whose addresses it has stored. Once
the peer node re-connects into the network, it will periodically ping the network
connections and update its list of node addresses.

In contrast to Napster, the Gnutella network is a decentralised P2P file-sharing
network not only for file storage, but also for content lookup and query rout-
ing. Gnutella nodes take over routing functionalities initially performed by the
Napster server. Figure gives an example of query propagation over the Gnutella
network. In the Gnutella network, each peer node uses a Breadth-First Search
(BFS) mechanism to search the network by broadcasting the query with a Time-
to-Live (TTL) to all connected peer nodes. TTL represents the number of times
a message can be forwarded before it is discarded. Each peer node receiving the
query will process it, check the local file storage, and respond to the query if at
least one matched file is found. Each peer node then decreases TTL by one and
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Fig. 4 Query propagation over the Gnutella network

forwards the query to all of its neighbours. This process continues until TTL de-
creases to zero.

The Gnutella network does not rely on a central server to index files, which
avoids the single-point-of-failure issue and the performance bottleneck at the server
side. Instead, many peer nodes are visited by flooding queries to see whether they
have a requested file. The obvious drawback of Gnutella is that it generates poten-
tially huge network traffic by flooding queries.

e Freenet

Freenet is a decentralised P2P data storage system designed to provide electronic
document exchange through strong anonymity. In contrast to Gnutella, Freenet acts
as a P2P storage system by enabling users to share unused local storage space for
popular file replication and caching. The stored information is encrypted and repli-
cated across the participating computers.

In Freenet, a file is shared with an ID generated from the hash value of the name
and description of the file. Each peer node forms a dynamic routing table to avoid
network flooding. A routing table includes a set of other peers associated with the
keys they are expected to hold. To search a required file, the query is forwarded to
the peer node holding the nearest key to the key requested. If the query is successful,
the reply is passed back along the route the query comes in through. Each peer node
that forwards the request will cache the reply and update the routing table by a new
entry associating the data source with the requested key.

3.3 Hybrid Peer-to-Peer Networks

To avoid the observed problems of the centralised and decentralised P2P networks
discussed above, hybrid P2P networks are emerging recently to provide trade-off
solutions with a hierarchical architecture.
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o Kazaa

Kazaa reorganises peer nodes into a two-level hierarchy with supernodes and
leaves. Supernodes are capable and reliable peer nodes that take more responsibil-
ity for providing services in the network. A supernode is a temporary index server
for other peer nodes. The peer nodes with high computing power and fast network
connection automatically become supernodes.

Similarly to the bootstrapping method used in the Gnutella network, a newly
joined node will attempt to contact an active supernode from a list of supernodes
offered by Kazaa client software. The newly joined node will send a list of files
it shares to the connected supernodes and further retrieve more active supernodes
from the connected supernodes for future connection attempts.

In Kazaa, each leave node begins a lookup by sending a lookup request to its
connected supernode as shown in Fig. 5. The supernode not only checks the local
index for the file requested, but also communicates with other supernodes for a list
of addresses of peer nodes sharing the files. When a supernode discovers the re-
quested file from its local index, it will respond to the original supernode. The file is
transferred directly between the query originator and the target peer node that shares
the file as shown in Fig. 5.

————— > Request
------- ¥ Response
----- »  File transfer

Fig. 5 Example of Kazaa network

e Gnutella2

Similarly to Kazaa, the peer nodes in the Gnutella2 network are classified into
two categories: hubs and leaves. A leaf keeps only one or two connections to hubs. A
hub acts as a proxy to the Gnutella2 network for the leaves connected to it. Queries
are propagated among the hubs and only forwarded to a leaf if a hub believes it can
answer the query.
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e JXTA

JXTA is an open source P2P platform developed by Sun Micro-systems. The
JXTA Application Programming Interface (API) hides many programming details,
which makes a JXTA application writing much easier than developing a P2P appli-
cation from scratch.

Similarly to Kazaa and Gnutella2, JXTA maintains a hierarchical network struc-
ture with rendezvous peers and edge peers. Different from Kazaa, the rendezvous
peers in the JXTA network call the Shared Resource Distributed Index (SRDI) ser-
vice to distribute indices to other rendezvous peers in the network. When a peer node
searches for a file, it will send the query to the connected rendezvous peer and also
multicast the query to other peers on the same subnet. If the rendezvous peer finds
the information about the requested resources on its local cache, it will notify the
peers that publish the resources and these peers will respond directly to the query
originator. If the rendezvous peer cannot find the requested information locally, a
default algorithm is used to go through a set of rendezvous peers for a rendezvous
peer that caches the requested information [9].

As discussed above, hybrid P2P networks combine the techniques of both the
centralised Napster and the decentralised Gnutella. However, since only a limited
number of peer nodes are responsible for the query processing and routing, existing
hybrid P2P networks still have the capability bottlenecks of the supernodes, which
are also vulnerable to planned attacks [10].

4 Peer-to-Peer Search Systems

Since resource and service discovery in Grids involves a lot of elements in common
with resource discovery in P2P networks, P2P search approaches are applicable
for service discovery in large-scale Grid systems, which could help to ensure Grid
scalability [11]. In this section, existing P2P search systems are investigated by clas-
sifying them into two broad categories: structured and unstructured P2P systems.

4.1 Structured P2P Systems

Structured P2P systems have a dedicated network structure on the overlay network
which establishes a link between stored content and the IP address of a node. Dis-
tributed Hash Tables (DHTs) are widely used for resource discovery in the struc-
tured P2P systems like Chord [12], ROME [13], Pastry [14], CAN [15], and Kadem-
lia [16].

In DHT-based P2P systems, each file is associated with a key generated by hash-
ing the file name or content. Each peer node in these systems is responsible for
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storing a certain range of keys. The network structure is sorted by routing tables (or
finger tables) stored on individual peer nodes. Each peer node only needs a small
amount of “routing” information about other nodes (e.g. nodes’ addresses and the
range of keys the node is responsible for). With routing tables and uniform hash
functions, peer nodes can conveniently put and get files to and from other peer nodes
according to the keys of files.

e Chord

Chord [12] is a well-known DHT-based distributed protocol aimed to efficiently
locate the peer node that stores a particular data item. Peer nodes are arranged in a
ring that keeps the keys ranging from zero to 2" — 1. A consistent hashing is used
to assign items to nodes, which provides load balancing and only requires a small
number of keys to move when nodes join or leave the network [12]. The consistent
hash function assigns each node and each key an ID using SHA-1.

In Chord, each peer node maintains a finger table pointing to O(logN) other
nodes on the ring. Given a ring with 2" peer nodes, a finger table has a maximum of
m entries. The Chord routing algorithm utilizes the information stored in the finger
table of each node to direct query propagation. For example, a node sends a query
for a given key k to the closest predecessor of k on the Chord ring according to its
finger table, and then asks the predecessor for the node it knows whose ID is the
closest to k. By repeating this process, the algorithm can find the peer nodes with
IDs closer and closer to k. A lookup only requires O(/ogN) messages in a N-node
Chord network and %logzN hops on average [12].

Unlike some other P2P models (e.g. Gnutella and JXTA) that provide a set of pro-
tocols to support P2P applications, Chord provides support for just one operation:
given a key, it maps the key onto a node. In Chord, peer nodes are automatically
allowed to participate in the network using the standard Chord protocol, no mat-
ter whether the nodes are useful and capable or not. Chord needs monitoring and
selection functions in order to support and optimise its deployment over the real
networks.

e ROME

ROME (Reactive Overlay Monitoring and Expansion) [13, 17] is an additional
layer built upon the standard Chord protocol allowing control over the size of
the network overlay via the selection and placement of peer nodes on the Chord
ring.

Figure [18] shows the ROME architecture running on the top of Chord. ROME
includes a set of processes (ellipses) and data structures (rectangles) [18]. Processes
are comprised of a traffic analyser to monitor network traffic without changing the
underlying Chord protocol, and operations to add, replace and remove nodes from
the ring. Data structures of ROME store monitoring data, a copy of Chord data and
ROME specific data (e.g. bootstrap server’s address). ROME can provide an optimal
size of Chord ring by monitoring the workload on each node to solve the problems
of under-load or over-load nodes by adding, replacing and removing nodes. ROME
provides more efficient and fault-tolerant resource discovery with message cost sav-
ing than the standard Chord [18].
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Fig. 6 ROME architecture

e Accordion

Accordion [19] is a DHT protocol extended from Chord, which bounds its com-
munication overhead according to a user specified bandwidth budget. Accordion
borrows Chord’s protocols for maintaining a linked list in which the ID space is
organized as a ring as in Chord. Different from Chord using a fixed routing table,
Accordion can automatically adapt itself to achieve the best lookup latency across
a wide range of network sizes and churn rates. Accordion maintains a large rout-
ing table when the system is small and relatively stable. When the system grows
too large or suffers from high churns, Accordion shrinks its routing table on each
peer node for lower communication overhead. By remaining flexible in the choice
of routing table size, Accordion can operate efficiently in a wide range of operating
environments.

e Pastry

Pastry [14] is a prefix-based routing system using a proximity metric. Similarly
to Chord, Pastry organizes peer nodes in a 128-bit circular node ID space. At each
step, a query message is forwarded to a numerically closer node to a given key. In a
network consisting of N nodes, the message can be routed to the numerically closest
node within log,, N hops, where b is a configurable parameter.

In contrast to Chord which uses one-dimensional tables, a node’s routing table is
organized into two dimensions with log,, N rows and 2> — 1 entries per row. Each
entry in row n of the routing table points to a node whose node ID shares the present
node’s ID in the first n digits, but whose (n+ 1)¢h digit is different from the (n+ 1)th
digit in the present node’s ID. The routing procedure involves two main steps. Given
a message, the node first checks whether the key is within the range of its leaf set.
If so, the message is sent directly to the destination node. Otherwise, the message
is forwarded to the node that shares a common prefix with the key by at least one
more digit.
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e CAN

Content-Addressable Network (CAN) [15] generalizes the DHT methods used
in Chord and Pastry. A CAN identifier space can be looked at as a d-dimensional
version of Chord (which is one-dimensional) and Pastry (which is two-dimensional)
identifier space. For a d-dimensional space partitioned into n equal zones, each node
maintains 2d neighbours and the average routing path length is %(né) Higher di-
mensions in the identifier space reduce the number of routing hops and only slightly
increase the size of routing table saved in each node. Meanwhile, fault tolerance of
routing is improved by higher dimensionality of CAN, since each node has a larger
set of neighbours to select as alternatives to a failed node.

o Kademlia

Kademlia [16] not only uses the basic DHT methods (e.g. unique ID, routing
table with < key,value > pairs), but also provides a number of desirable features
superseding other previous DHTs (e.g. Chord, CAN and Pastry).

Kademlia is based on the calculation of the “distance” between two nodes on
the overlay with an XOR metric. Each Kademlia node stores contact information
about other peer nodes in the local routing tables. When a Kademlia node receives
a message from another node, it will update the appropriate entry for the sender’s
node ID. Thus, the peer nodes which issue or reply to a large number of queries will
become widely known, which enables more capable nodes to take on more workload
in the network.

To lookup a specific key, the query originator searches the local routing tables for
a nodes with the closest distance to the query originator and then contacts them in
parallel. Each recipient node replies with the information about the peer node which
is closer to the key. The query originator resends the lookup to nodes it has learned
about from previous RPCs.

4.2 Unstructured P2P Systems

In contrast to structured P2P systems, unstructured P2P systems do not maintain
network structure, where address and content stored on a given peer node are un-
related. Although existing search methods in unstructured P2P systems are hetero-
geneous, most of them are dedicated to solving observed issues of flooding mecha-
nisms which can be classified into two broad categories: blind search and informed
search, according to whether the algorithm needs additional indices about the loca-
tions of resources.

4.2.1 Blind Search

In a network with a blind search method, peer nodes do not maintain additional
information about resource locations. The advantages of blind search methods are
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that they do not need any communication overhead to maintain the additional indices
about resource locations and are extremely resilient in the highly dynamic networks.
Flooding is the fundamental approach of blind search where queries are forwarded
to all connected peer node to see whether they have a requested file. In order to solve
the massive traffic problem caused by flooding, several improved search methods
have been presented recently [20-22].

Random walker [20, 21] is a well-known blind search method, which enables
peer nodes to forward a query to a randomly chosen neighbour rather than broadcast
the query to all of their neighbours. Each neighbour repeats this process until the
required file is discovered. The random walkers can find targets more efficiently
while significantly reducing the traffic compared to Gnutella’s flooding method [20].
In order to increase the probability of resource discovery, pro-active replications are
used to increase the density of copies of each object. The study in [20] shows that
the square-root replication distribution is optimal in terms of minimizing overall
search traffic, which replicates files in proportion to the square-root of their query
probability.

Yang and Garcia-Molina [22] presented an iterative deepening technique for re-
source discovery in unstructured P2P networks. Iterative deepening enables query
originators to use successive BFS (Breadth-First Search) queries with increasing
depths, until the request is satisfied or the maximum depth is reached.

4.2.2 Informed Search

In contrast to blind search, informed search methods enable peer nodes to maintain
additional information about other peer nodes in the network, e.g. network topology
and resource locations. Existing informed search solutions can be classified in two
groups: mechanisms with specialised index nodes and mechanisms with indices at
each node.

The search mechanisms with specialised index nodes have been used in current
P2P applications. For example, Napster employs a centralized server to maintain
such additional information. Kazaa and JXTA utilize a set of semi-centralized su-
pernodes to maintain the extra information about their leaves and other supernodes.

However, systems with specialised index nodes are vulnerable to attack by cen-
tralizing indices in a small subset of peer nodes. New methods have emerged in
recent years by distributing indices to each individual peer node in the network.
Such methods can be further classified into the following three approaches accord-
ing to their design principles.

e Topology optimisation

In many P2P applications, topology significantly affects the performance of re-
source discovery. The first approach intends to reduce search cost by adapting and
optimising the overlay topology of network. Each peer node is expected to keep
topology information about its neighbours or neighbours’ neighbours.

A topology optimisation method used in Gia [23] puts most of the peer nodes in
the network within a short reach of high capacity nodes, which leads to the situation
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that the high capacity nodes are also the nodes with a high node degree of connec-
tivity (a large number of links). This protocol ensures that the well-connected nodes
which receive a large proportion of queries actually have the capability to handle
these queries.

Gia enables each peer node to connect high capacity nodes as neighbours. Al-
ternatively, the studies in [24, 25] present topology optimisation methods by pref-
erentially selecting low-cost and low-latency connections. These methods address
the topology mismatch problem between P2P logical overlay networks and physi-
cal under-lying networks (which incurs a large volume of redundant traffic on P2P
networks) by deleting inefficient overlay links and adding efficient ones.

e Statistical information about neighbours

The second approach enables peer nodes to route queries to the neighbours that
are likely to have the requested files in accordance with the maintained statistical
information about neighbours.

Tsoumakos et al. [26] introduced an adaptive and bandwidth-efficient algorithm
for searching in unstructured P2P networks, called Adaptive Probabilistic Search
(APS). Different from the above topology optimisation methods, the search algo-
rithm of APS is not allowed to alter the overlay topology. In APS, each peer node
keeps an index describing which objects were requested by each neighbour with a
success ratio of previous searches. The probability of choosing a neighbour to find
a particular file is dependent on the success ratio. In APS, searching is based on
the simultaneous deployment of k walkers and probabilistic forwarding. The query
originator sends queries to k of its N neighbours. If each of these nodes can find a
matched object in its local repository, the walker terminates, otherwise it gets for-
warded to one of neighbours. The procedure continues until all £ walkers have com-
pleted. The update takes a reverse path back to the query originator to adjust prob-
ability accordingly either with success or failure. According to the results shown
in [26], APS can discover many more objects with much higher success rates than
random walkers [20, 21] algorithm.

Adamic et al. [21] showed that many peer nodes can be reached by forwarding
queries to peer nodes with the highest degree (number of links) in the neighbourhood
and thus it can get many results back. Yang and Garcia-Molina [22] tested this model
by forwarding queries to the peer node which had the largest number of neighbours.
Yang and Garcia-Molina also designed and simulated several other heuristics to
help in selecting the best peer nodes to send a query, for example, the peer node that
returned the highest number of results from previous searches or the peer node that
had the shortest latency.

The study in [27] evaluated a similar heuristic that the peer nodes with more
files are more likely to be able to answer the query, called Most File Shared on
Neighbourhood (MFSN) which forwards the query to the neighbouring node shar-
ing the largest number of files. In accordance with these previous studies above,
these heuristic-based methods can generally achieve better performance than ran-
dom walkers.

In contrast to the above studies using only one heuristic parameter, DSearch
method in [28] puts two heuristics in consideration. In order to achieve a high
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success rate and efficiency, queries are forwarded to the “good” nodes that are more
likely to have the requested files or can find the requested files with a high probabil-
ity in future hops. Two heuristics are considered to determine the “goodness” of a
neighbour: the number of shared files on the neighbour and the expected number of
accessible files in future hops via the neighbour. DSearch utilizes high-degree nodes
to find a wider range of accessible nodes, while using the neighbouring nodes that
shares a large number of files to discover the requested files. From the simulation
results, DSearch achieves a better performance when compared to the methods with
only one heuristic.

The principle behind these heuristic-based methods is to forward queries to more
capable peer nodes, for example, the peer nodes with the highest success rate of
searches, the peer nodes with the highest degree, or the peer nodes with most shared
files. However, such capable nodes may be over-loaded and become the victims of
their own success. Traffic unbalance is a significant limitation to these methods.

e Cached semantic information

In contrast to the second approach of maintaining simple statistical information,
the third approach enables each peer node to keep a routing index which contains
detailed semantic information about content of shared files. This information can
be collected by exchanging indices regularly with other peer nodes or caching the
historic record regarding the results of previous queries.

Routing Indices

Routing Indices (RI) [29] enable peer nodes to create query routing tables by
hashing file keywords and regularly exchanging those with their neighbours. Peer
nodes normally maintain additional indices of files offered by their overlay neigh-
bours and neighbours’ neighbours. In the RI system, shared documents are classified
into different categories of topics. Each peer node maintains the RI indicating how
many documents of which categories could be found through that neighbour. When
a new connection is established in the RI system, two peer nodes will aggregate
and exchange their own RI to each other. In order to keep data in RI up-to-date,
peer nodes will notify neighbours about the changes in the local RI caused by addi-
tion/removal of shared documents or joining/leaving of other neighbours.

When a peer node receives a query, the peer node needs to compute the goodness
of each neighbour for a query. The number of documents that may be found in a path
is used as a measure of goodness. If more documents are found through a particular
neighbour, this neighbour will be selected to forward a query.

Sripanidkulchai’s model

The idea of constructing “friend lists” has also been used in the Sripanidkulchai’s
model [30], which presents a content location solution in which peer nodes loosely
organize themselves into an interest-based structure. When a node joins the system,
it first searches the network by flooding to locate content. The lookup returns a set
of nodes that store the content. These nodes are potential candidates to be added to a
“shortcut list ”. One node is selected at random from the set and added. Subsequent
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queries will go through the nodes in the shortcut list. If a peer node cannot find
content from the list, it will generate a lookup with Gnutella protocol. From their
results, a significant amount of flooding can be avoided which makes Gnutella a
more competitive solution.

NeuroGrid

NeuroGrid [31] is an adaptive decentralized search system. NeuroGrid utilizes
the historic record of previous searches to help peer nodes make routing decisions.
In NeuroGrid, peer nodes support distributed searches through semantic routing by
maintaining routing tables at each node [31]. In the local routing tables, each peer
node is associated with keywords regarding the content it stores. When a peer node
forwards a query, it will search for the peer nodes that are associated with the query
keywords. In each hop, NeuroGrid intends to find M matched peer nodes and then
forwards the query to these peer nodes. If there are not M matches found, the al-
gorithm will randomly select peer nodes in the routing table until M peer nodes are
selected.

In NeuroGrid, users’ responses to search results are stored and used to update
the meta-data describing the content of remote peer nodes. NeuroGrid can learn the
results from previous searches to make future searches more focused and seman-
tically routes queries according to the cached knowledge. However, NeuroGrid is
only effective for previously queried keywords and not suitable for networks where
peer nodes come and go rapidly [32].

5 Future Trends

Some potential future trends are outlined in this section.

5.1 Self-organising Systems

P2P is beneficial when removing a centralised server. On the other hand, new mech-
anisms are required to compensate for the server, especially for resource discovery
and network maintenance. However, owing to the lack of a centralised server, any
attempts of additional control could be difficult to achieve in the distributed P2P
architecture. In contrast, self-organisation could be a good way to solve the control
issues in the decentralised P2P architecture. Self-organisation is a process where
the organisation of a system spontaneously increases without being managed by an
outside source.

Human society is a self-organising system. Social networks are formed naturally
by daily social interactions. A social community is a group of people with com-
mon interests, goals or responsibilities which is formed spontaneously. By using
social networks, people can find some acquaintances that potentially have knowl-
edge about the resources they are looking for.
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Similarly to social networks, where people are connected by their social rela-
tionships, two autonomous peer nodes can be connected if users in those nodes are
interested in each other’s data. If peer nodes can self-organise themselves like so-
cial networks, a large communication cost for peer group construction, maintenance
and discovery can be saved, which will significantly improve overall performance
of P2P networks.

5.2 Hybrid Systems

Since large-scale resource sharing is one goal of Grids, P2P networks and Grid
systems are starting to converge to a common structure, leading to application of
P2P techniques to Grid systems [33]. Some research has been done to try connect-
ing Grid Services and P2P networks (e.g., [4, 31, 32]). Unfortunately, there is still
not a good solution to seamlessly pull the two domains together. There are many
boundaries to connect Grids and P2P networks because of different architectures,
standards and protocols between them. Current Grid service standards need to be
extended, especially for service descriptions and annotations, by including addi-
tional attributes for peer’s specifications.

6 Conclusions

In this chapter, the evolution of the network architecture has been investigated from
client-server to P2P networking. P2P is beneficial when removing a centralised
server. On the other hand, new mechanisms are required to compensate for the
server. The main advantage of P2P architecture lies in its good scalability, agility,
resilience and availability. On the contrary, its major challenges lie in its efficiency,
dependability and security.

To address these challenges, hybrid systems combining the techniques of both
Grid and P2P computing could be potential solutions for the design of next genera-
tion distributed systems. By introducing P2P techniques into Grid computing, Grid
systems could be more scalable and resilient, removing the sing-point-of-failure.
With the cooperation of Grid computing environments, the usage of P2P networks
could be also broadened from simple file provision to more advanced services, such
as sharing redundant computing power for complicated scientific calculation and
sharing extra bandwidth for real-time video transmission.
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Examining the Use of Peer-to-Peer Networks
from an Activity Perspective

Jorn De Boever and Dirk De Grooff

Abstract Since the introduction of Napster in 1999, millions of Internet users have
exchanged massive amounts of files via P2P (Peer-to-Peer) file-sharing networks.
Notwithstanding the widespread penetration of these systems among Internet con-
sumers, little is known about the usage process. Therefore, the aim of this chapter is
to examine the usage of “illegal” P2P networks by means of an exploratory, quali-
tative study. The main findings revealed significant differences between the uses of
various systems. Bittorrent clients were mainly used to download large files such
as video, movies, and complete albums, while Gnutella clients were particularly
utilized for small files such as single songs. The results indicate that the type of con-
tent, the characteristics of the client, the omnipresence of fake files and malware,
the users’ motivations, the users’ lifestyles and the presence of bandwidth caps had
an impact on how the participants utilized P2P systems.

Key words: Behavior, Activity theory, Motivations, Trust, Quality, Context

1 Introduction

It is widely recognized that end users play an important role in the success or failure
of P2P networks as users have to share their resources and files with other peers.
Therefore, it is remarkable that user studies — such as [17, 27] — are still underrep-
resented in the P2P technology research domain.

Jorn De Boever
Centre for UX Research / IBBT, K.U.Leuven, Parkstraat 45 Bus 3605 - 3000 Leuven - Belgium,
e-mail: jorn.deboever@soc.kuleuven.be

Dirk De Grooff
Centre for UX Research / IBBT, K.U.Leuven, Parkstraat 45 Bus 3605 - 3000 Leuven - Belgium,
e-mail: dirk.degrooff@soc.kuleuven.be

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 91
DOI 10.1007/978-0-387-09751-0_4, © Springer Science+Business Media, LLC 2010



92 Jorn De Boever and Dirk De Grooff

Up to now, most research in this area has focused on what types of files users
download from P2P systems, leaving questions open so as to what motivates users
to employ these systems or the contexts in which such actions take place. Motivated
by this gap in the literature, we will endeavor to examine the usage process of P2P
networks, which can be summarized in the following key questions: what do in-
dividuals use P2P systems for, what motivates their usage, how do they use these
different systems in order to gratify their needs, and what is the relationship between
the motifs/objects, behavior and context. This study investigates these issues, with
specific attention to comparing the use of bittorrent and Gnutella clients. These two
systems were compared as we found that both types of P2P clients were used in dif-
ferent ways and for different purposes. It should be noted that bittorrent is written
in lower-case letters as we refer to all bittorrent clients — e.g. Azureus, BitComet —
which is not limited to the BitTorrent client.

This chapter has been organized in the following way. The first section depicts the
theoretical framework that was used throughout the analysis. In the second section,
we elaborate on the methods that were adopted to carry out this research. Subse-
quent sections describe and compare the usage process of two cases, i.e. the use of
bittorrent and Gnutella clients.

2 Theoretical Framework: Activity Theory

This section describes activity theory as the theoretical framework for this study.
First, we will outline the introduction of activity theory in Human-Computer Inter-
action (HCI) research. Next, we will discuss the importance of context in activity
theory. Finally, we will explain several concepts of the activity system.

2.1 Activity Theory and Human-Computer Interaction

Activity theory has its foundations in Russian cultural-historical psychology, since
it was developed by Vygotsky and Leontiev [4, 23, 24, 28]. Bgdker [5, 6] introduced
activity theory as a theoretical framework in HCI research which inspired many aca-
demics, e.g. [25, 31, 36]. Since then, Information Systems researchers have adopted
this theory as well, e.g. [14].

During the 80s/90s, activity theory had been introduced in HCI research in re-
sponse to some flaws of cognitive psychology which considered users to be passive
information processing subjects whose actions seemed to be isolated from contex-
tual influences. In contrast with this former cognitive psychology perspective, activ-
ity theory stresses the importance of considering technologies as mediating artifacts
that should be examined within the meaningful context of use. However, this does
not imply that activity theory rejects cognitive psychology, but that it should be
regarded as an expansion of existing knowledge.
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Gay and Hembrooke [19] consider the following aspects to be central to activ-
ity theory: “The emphasis on meaning through action, the connection between the
individual and the social, and the role of mediating tools provide the kernel around
which activity theory has developed” (p. 2). Activity, which puts a meaning on our
actions, has been defined as follows: “Activity (...) is understood as a purposeful
interaction of the subject with the world. (...) The very concept of activity includes
its orientation toward an object, an object that both motivates and directs the ac-
tivity” [23]. These quotes stress that the meaning of users’ actions result from a
meaningful interaction between the motifs/goals/intentions of users, the context and
behavior.

Mediation is considered to be one of the most important concepts within activity
theory, as users’ purposeful interaction with the world is mediated by artifacts. The
concept of mediation is not limited to physical artifacts, as for instance a language
is considered to be an artifact as well [2, 21]. Users are looked upon as active,
intentional subjects that act within specific contexts and utilize artifacts that mediate
their actions with the environment [23]. For instance, P2P file-sharing networks
should be considered as mediating artifacts with which users try to achieve certain
goals and gratify specific needs. Although we focus on the use of P2P systems, these
P2P networks are not the only mediating artifacts in the activity, as e.g.: bandwidth
is needed to be able to exchange files; users must have e.g. media players or an iPod
to consume the content; etc. [10].

It should be noted that activity theory is not an explanatory theory, but it pro-
vides conceptual tools that allow researchers to study the complex context in which
artifacts are used so as to be able to reflect, compare and discuss results [31].

Besides the strengths of activity theory, it has some flaws as well. One of the
major drawbacks of this theory is that it has not been made fully operational in HCI
research [21]. Although several authors have attempted to generate methods based
on activity theory, there is still much work to be done. For a comparative analysis of
these methods we refer to [33].

Finally, we have to mention that, whereas most papers about activity theory in
HCI are related to designing new systems and interfaces, we will focus on evaluation
of the use of P2P systems as we want to examine existing practices of the use of P2P
systems.

2.2 Importance of Context

Because of the unpredictable, circumstantial “situatedness” of every action, a state-
ment only regarding the motivations or intentionality of users is insufficient, as it
reveals little information about how purposeful action eventually occurs: “every
course of action depends in essential ways upon its material and social circum-
stances. (...) The significance of actions, and their intelligibility, resides (...) in
a contingently constructed relationship between observable behavior, embedding
circumstances and intent” [35]. For this reason, although the actions are guided
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by initial motivations, users’ behavior should be considered in their specific con-
texts. Therefore, Kaptelinin and Nardi [23] argue that HCI research should take
“the meaningful context of a subject’s interaction with the world” (p. 34) as the cen-
tral point of interest and that the activity system should be studied in real situations
instead of in artificial environments with artificial tasks. In other words, the use of
artifacts — in this case, P2P systems — should be studied in their real-life context.

This reasoning implies that the question — how people use P2P file-sharing sys-
tems — will depend in important ways on contextual factors such as the presence
of fake or corrupted files, the fact that file-sharing is often illegal, the availability
of bandwidth, the lifestyle of users, etc. As we will illustrate in the following para-
graphs, reviewing the literature is important to gain a first insight in different context
aspects that might be of significance.

A recent study points out that media usage patterns are to a large extent being
influenced by users’ lifestyle [10]. Younger people, aged 18 to 34, often have the
following characteristics:

e They have irregular schedules.

* They possess different kinds of media: TV, DVD-players, computers, MP3 play-
er/iPod, mobile phones, video game consoles, etc.

* They expect unrestricted accessibility and portability of content.

In addition, Condry [12] studied the culture of file-sharing in the US and Japan,
and found that people retrieve files from P2P networks because: it is free of charge,
they are dissatisfied with the medium CD (consumers have to pay the entire album
whereas they mostly like only a few songs), it is a kind of protest against the pow-
erful media industry, it allows them to control the files themselves.

LaRose et al. [26] reminds us that many students love to listen to music, have a
lot of leisure time, but they often dispose of a limited budget. These authors exam-
ined several aspects that might determine the levels of file-sharing among college
students. They found for instance that that the expectation of obtaining new and
rare content motivated the usage of P2P systems in important ways. The chances of
downloading content of poor quality and the moral unacceptability of illegal down-
loading discouraged the use of P2P networks. The fear of downloading corrupted
content is a reasonable fear as different studies demonstrated the presence of mal-
ware [20, 34] and fake content [11].

Several studies have been conducted to analyze users’ motivations to utilize P2P
networks [9, 15]. These studies have found that people use P2P file-sharing systems
for instance because they want to: have control over the content, have instant grat-
ification, find rare or unreleased content, sample content before buying it, promote
the content they like and save money.

2.3 Activity System

Applications, such as P2P systems, are cultural artifacts that mediate certain ac-
tions in order to obtain a certain object. The link between the subject and the object
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is bridged by one or several mediating components. The importance of mediating
artifacts is especially crucial for HCI studies as computers, applications and their in-
terfaces are tools that mediate the relation of people with the environment [19, 25].

The subject, who might consist of an individual or a group, utilizes mediating
artifacts to reach a certain object. The transformation of an object into certain out-
comes motivates the activities [25]. The following example illustrates this model: a
user (subject) will adopt a P2P client (mediating artifact) that allows him to down-
load music (object) which he wants to consume to make working on his computer
a more pleasant experience (desired outcome). This model represents an activity
system at an individual level.

The model, mentioned in the previous paragraph, was extended by
Engestrom [16] who had primarily work environments in mind when developing
his model. In the previous model, which represents the activity system at an indi-
vidual level, the relation between the subject and object was mediated by artifacts,
whereas in the activity system of Engestrom, the subject-object relationship was
enlarged with a third component, i.e. community. This led to two additional re-
lationships: (1) the relationship between the subject and the community which is
mediated by rules and (2) the relationship between the community and the object
which is mediated by the division of labor. We argue that Engestrom’s model has
been build from the perspective of a work setting where people have to obtain a
collective objective, which is the reason why we do not adopt this model as the use
of P2P systems primarily turned out to be an individual practice where peers cannot
interact in a direct way.

In Leontiev’s activity theory approach, the structure of an activity consists of
three layers, which includes activities, actions and operations [4, 23, 24]. This hier-
archy is displayed in Table 1. Each activity has a certain, often unconscious, object,
which users try to attain. Kaptelinin [22] suggests that an object might be consid-
ered as a collection or a set of motives. In addition, activities do not take place in
isolation, but they are part of a web of activities that strive for the same or connected
objects which put a meaning on users’ behavior [7].

Table 1 Hierarchy of an activity system

Hierarchy Orientation Characteristics
Activity — Why? Object/set of motives Individual/collective
Actions — What? Goals Individual, conscious
Operations — How? Conditions Individual, unconscious

Next, an activity is performed by a number of actions which are guided by spe-
cific conscious goals. The execution of all the actions might result in the completion
of the activity or the attainment of the motive. Finally, the actions in their turn are
carried out by several unconscious, routine operations which are oriented toward
the conditions of a specific context.
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This hierarchy should not be considered as a static entity in that for instance
actions can evolve into operations and vice versa. The concepts activity, actions and
operations can be made operational by asking respectively the following questions:
“why something takes place? what takes place? and how is it carried out” [7].

In practice, the distinction between actions and operations is difficult to retrieve
from analysis, which results from the fact that during observations it is practically
impossible to discover what is (not) automated as we ask the respondents to explain
what they are doing. For this reason, we will make no distinction between actions
and operations. By letting users think out loud, we turn their operations into actions
as these users have to reflect on their behavior. This movement from operations
to actions by reflection is called conceptualization [4-6]. The other way around,
actions can turn into operations by a process of automation.

3 Methods

Activity theory does not suggest specific methods for examination as this should
depend on the research object/questions [31]. In our research of the use of P2P
systems, we have therefore combined three methods that served best to gather the
right data in order to answer our research questions. In chronological order, these
methods included: (1) incident diaries or logbooks, (2) observations and (3) semi-
structured in-depth interviews.

We sampled 25 participants (aged 15-35 years) that utilized existing P2P file-
sharing software such as BitComet, Azureus, Limewire, KaZaA, etc. We have cho-
sen this age category for several reasons. First, several studies demonstrated that the
penetration of P2P network usage is the largest in this age group [1, 18]. Second, as
we are conducting qualitative research, we assumed that elder age categories would
use P2P systems differently, with other motivations and needs in comparison with
younger users. Because qualitative inquiries only allow gathering information from
small samples, diverging the sample further would probably harm the validity of
this research.

Before the commencement of the actual research, users that were willing to par-
ticipate had to fill in an online registration form in which general context information
was gathered, e.g.: which P2P system was used, frequency of use, personal infor-
mation, etc. This information allowed us to recruit a representative sample of users
for our research. After the recruitment phase, the selected users were asked to regis-
ter their behavior on P2P networks by means of an online incident diary or logbook.
The participants had to complete the online incident logbook each time they used the
P2P system, without changing their natural behavior. In this sense, the participants
were observers themselves as they had to register their own behavior. The diary
method has proven to be especially useful in situations where users do not utilize an
application frequently [13, 37]. For instance, most people utilize P2P systems only a
couple of times a week or month, which makes it difficult for researchers to observe
users’ behavior. Another reason to use incident diaries is the problem that users have
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difficulties in recalling their actions which might cause inaccurate and unreliable re-
sults [29]. In other words, diaries as an observational technique decrease the danger
of biased anticipatory self-reporting from the respondents. Furthermore, incident
logbooks allow us to gather information without interrupting the natural behavior
of the participants. The information from this diary method allowed us to create a
profile of each person’s use of his/her P2P system [30]. The information gathered
via the incident logbook related for instance to: (1) how users came across certain
content, (2) which files they downloaded/uploaded/injected, (3) which problems and
experiences they had while using P2P networks and (4) what users were intending
to do with the files after they had downloaded them.

Next, after having completed their incident logbooks several times, the partici-
pants were contacted for an observation/in-depth interview. The respondents were
asked to contact us the next time they wanted to download a session in order to allow
us to observe them while they were using their P2P software in their natural environ-
ment. We decided to observe the participants as observations have already proven to
be “(...) excellent for collecting rich, detailed data and for obtaining a holistic view
of the process or domain” [13]. During the observations, the participants were asked
to tell us what they were doing and why they were using the application in such a
way. By letting participants think aloud, we were able to turn unconscious opera-
tions into conscious actions, i.e. conceptualization, which allowed us to gain a more
elaborate understanding of the users’ behavior. These observations were videotaped,
by focusing a video camera on the participant’s screen, so as to be able to analyze the
observations afterwards. These observations allowed us to gain insight in the pro-
cess of using P2P file-sharing systems: the sequence of actions, the artifacts used to
support the actions, the different focuses, etc.

Further, information, collected via incident logbooks and observations, were un-
raveled in semi-structured in-depth interviews. Additionally, during the interview,
data was gathered as well which cannot be collected during observations or inci-
dent diaries, e.g. data regarding motivations. The value of interview data has been
questioned in the HCI domain in terms of its reliability as it is often claimed that
users cannot accurately tell what they have been doing. Although we agree with
this view, we argue that interview data are quite reliable when it comes to gathering
data about motives and goals. This view is supported by Nardi [32] who posed that
although the use of interviews is problematic on the level of operations, it still has
a reliable function on the level of actions and objects. For the previously mentioned
reasons, we argue that the diary-observation-interview approach provided the most
appropriate combination of methods to explore P2P network usage in its context.

Finally, the data analysis was performed using NVivo [3]. First, the information
was coded in a detailed way so as to be able to distinguish different categories or
themes. Next, a tree of codes was generated where some of the codes were merged
and others split into new codes. Finally, we explored which of the variables were
associated with each other. The results of this analysis are treated in the following
sections. Based on this analysis, we were able to explore the process of using two
different types of file-sharing systems, namely bittorrent and Gnutella clients.
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4 Understanding the Use of P2P Networks

The aim of this chapter is to examine the following research questions: what do in-
dividuals use P2P networks for (object), what motivates the participants’ usage of
these systems (motivations), how do they use these file-sharing networks in their
environment (behavior), and what is the relationship between motives/objects, be-
havior and context. In this section we will present the results of two cases, i.e. the
use of bittorrent and the use of Gnutella clients. The findings will be illustrated by
some quotes from the participants. In these quotes, we use for instance “R 22” to
refer to the participant with that number. Each participant is named with a number
to guarantee anonymity. In addition, “I” refers to the interviewer.

4.1 Process of Using Bittorrent Clients

Before continuing, some bittorrent terminology will be explained first to help read-
ers, unfamiliar with bittorrent related terms, better understand this section.

Users that want to download content via bittorrent first have to download a torrent
file from a website (i.e. a torrent site). A torrent file is a meta-data file that contains
information concerning the location of the tracker of specific content. A tracker
keeps track of which peers have or download which parts of the desired file. By
loading a torrent file in their bittorrent client, a tracker is contacted which gives the
bittorrent client all the information needed to start downloading the desired file.

The bittorrent case is organized as follows. The first section will present the dif-
ferent levels of motivations, and the subsequent section will deal with the usage
process of bittorrent clients.

4.1.1 Different Levels of Motivations

In our analysis, we found different levels of motivations related to different aspects
of the use of P2P file-sharing systems: the object, the desired outcome and the mo-
tivations for using certain artifacts, i.e. artifact motivations.

Users’ Objects and Desired Outcomes

The object and the outcome are related as the transformation of the object in desired
outcomes motivates and directs activity [25]. As described in the theoretical part of
this chapter, the object of users can be captured by exploring what users actually
want to download. Table 2 presents the types of content that our bittorrent partic-
ipants attempted to download. The numbers in Table 2 have been gathered from
17 bittorrent users their incident logbooks. We distinguished the following types of
content: audio, books, video/movie/TV series, photos, maps, games and software.
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The largest share of content, downloaded via the bittorrent network, consisted of
video content (57%), followed by music content (35%). In other words, the object
is to download primarily video and audio files which users want to possess. The
object is rather similar in all the activity systems of the participants, as they all want
to download certain files. It should be noted that the share of video files would have
been even larger if we would consider the file sizes instead of the amount.

Table 2 Types of content — bittorrent

Type N % N failed % Failed
Audio 57 35 15 26

Books 3 2 1 33

Video 91 57 34 37

Photos 0 0 - -

Maps 4 2 0 0

Games 3 2 2 67
Software 3 2 0 0

Total 161 100 52 32

Interestingly, there are a lot of files that have failed to download. Of all the files in
the incident logbook, 32% of the files were not found or downloaded. Users failed
to find or download 26% of audio files and 37% of video content. It should be
noted that, in the case of video content, the share of 37% has to be nuanced, as
many participants indicated that some files did not succeed downloading during that
particular session, but it did download in the course of several subsequent sessions.
It is hard to predict, but 37% is definitely an overestimation of the amount of video
files that did not download. In the case of the audio files, we have to notice that
many of the audio files were entire albums, which were wrapped up in archive files
such as RAR files. In sum, the bittorrent network is mainly used to download large
files such as movies, TV series and entire music albums.

If a person attains an object, this person will hope that the object will result in
the desired outcome. The desired outcomes of the participants turned out to be very
diverging because it concerns different types of files and different personal prefer-
ences. For instance: the desired outcome of playing games is fun and amusement;
the outcome of downloading games for someone else is to maintain good social rela-
tionships; the outcome of watching movies and series is entertainment and pastime;
the outcome of downloading GPS maps is to enjoy mountain bike trips; the outcome
of downloading software is to be able to study; university students download movies
to drive away boredom during evenings; etc.

In other words, every subject downloads files with a fairly similar object — i.e.
possessing files — whereas the outcomes of downloading these files are varying from
case to case, depending on the particular circumstances. Most users have multiple
outcomes in mind as they try to gratify different needs, e.g. on one moment they
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want entertainment by watching a movie, whereas on another moment, they will
download software to practice for college. In other words, one artifact, in this case
P2P networks, can be used in different activities to reach different outcomes. This
stresses the role of P2P systems as mediating artifacts that are utilized to aid reach-
ing desired outcomes, which implies that the use of P2P systems is not a motive in
itself.

Artifact Motivations

In addition, a topic, which could not be discerned in activity theory, came to the fore
in our data collection, namely “artifact motivations”. This relates to the character-
istics of the artifact, the service and the content which explain why end users have
chosen a certain artifact, in this case P2P systems. We found that artifact motivations
guide and direct behavior in important ways as will be illustrated in the following
examination.

Some of the users download via bittorrent clients as they want to have the files
physically on their own computer as this allows them to have control over how they
consume content:

R 11: But, if you want to watch a movie. .. I think it’s easier to have movies on your com-
puter. You can invite your friends. You can arrange a time when you want to watch it. You
can stop it, you can watch it again.

Peers want to gain full control over the content they want to consume, which
relates to the time and space of consumption. In other words, some of the users
want to decide themselves when and where they are going to watch certain con-
tent. This attitude primarily emanates from dissatisfaction with how the traditional
television industry has organized itself: linear television, commercials, different re-
lease moments in different countries, etc. Some of the series are not available in
some countries whereas they are available via P2P systems. One of the participants
expressed this view as follows:

R 22: Actually, it’s a lot more practical compared to TV. On TV, you have commercials and
it’s on fixed points in time. Whereas, with P2P, you can watch it anywhere, you can take it
anywhere, you can save it on your hard drive. You don’t have to wait long; you can do it
whenever you want to. (...). For instance, other movies, such as Japanese movies, that are
hard to get, that is something that I actually download quite a lot. That isn’t broadcasted on
TV here, and if it’s on TV, then it mostly has voice-overs and that kind of stuff. (...). I like
that it’s really fast. For example, for a Japanese video, if they broadcast it on Wednesday,
it’s online on Thursday. “Lost” for example is already available one hour later on bittorrent.
So, it’s really fast. Sometimes, there are movies available that haven’t been in the movie
theatre yet.

In a nutshell, users want to gain control of the content. First, users do not want
to be limited by what their TV channels offer them, as they downloaded series that
were not available on local TV channels. Second, end users want to consume the
content as soon as it has been released somewhere in the world. Most popular series
and movies are first released in the USA, and then in other parts of the world. This
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entices many curious users to download these series via P2P networks as there are
always peers that make this content available on torrent sites. Third, it is important to
end users to have the content stored on their computer as this allows them to watch
the content whenever and where they want to. In this sense, they escape the strict
TV schedules and they are able to watch at their own pace, which is more tuned to
their own time schedule. Fourth, a lot of peers hate commercials that interrupt their
viewing experience, which motivates them to download it illegally via P2P systems.
Some of the participants were real fans as: they wanted to watch their favorite TV
programs as soon as possible, they watched it repeatedly; they often bought the
content afterwards; and they wanted their friends to see these series as well. All
these “fan” aspects stimulated these users to download content via P2P networks.

It should be mentioned that the choice of artifacts might be influenced by the lack
of other artifacts as well, namely the lack of a TV or a TV-subscription. As many
participants only had a computer and an Internet subscription, they turned to P2P
systems to download and consume content.

Another (obvious) reason for downloading via P2P systems, which is very preva-
lent, is the fact that it is free of charge. Users save money as they do not have to pay
a DVD (rental) shop, or a cinema. However, as already mentioned, some of the par-
ticipants buy some of the content afterwards, which can be described as sampling:
they consume the content first, and if it meets their needs in terms of quality, they
purchase it. Finally, two other reasons for utilizing P2P systems relate to the fact
that it is time-saving and there is a lot of content available that is difficult to retrieve
elsewhere on the Internet. In addition, using P2P networks to download movies is
time-saving as people do not need to leave their house e.g. to rent a DVD. Finally,
the availability of the desired content, without P2P systems, is rather limited on the
Internet and on TV.

4.1.2 Bittorrent Peers’ Behavior

In this section, we will describe the usage process of bittorrent clients starting from
how users search for content till how they will consume the content.

Search Process

The search process of bittorrent users proved to be very complex as users want to
check whether (1) certain content will fit their taste, (2) they can trust the content,
(3) the content has adequate QoC (Quality of Content), and (4) the content can be
downloaded in a fast way. These aspects can be considered as goals that guide users’
actions. QoC refers to the quality of sound and images of certain content.

First, the content users search for originates from different sources of inspira-
tion. Most users do not search precipitately for content as, in most cases, users
know what they are willing to download in advance. They encounter content for
instance because of recommendations of friends or acquaintances. Other sources of
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inspiration are e.g. movie reviews in newspapers, commercials on TV, websites that
recommend artists that might suit the users’ music taste, posters in movie theatres,
DVD covers in stores, information on the Internet in general (blogs, forums, spe-
cialized websites, chat boxes, etc.). For instance, Internet Movie Database proved
to be a popular source to search for new content. However, sometimes, users do not
utilize these artifacts, and they try to remember content — e.g. a song — when they
hear it on the radio and they download it later on. Fans of series sometimes even re-
member on which days a new episode is going to be released, and on that day, they
search for the new released episode. Finally, several users browse through titles and
download content arbitrarily if it seems interesting to them. In these actions, users
are primarily concerned with whether the content they search for will fit their taste.
To achieve this goal (i.e. fit between the content and personal preferences) they use
one or several of the above mentioned artifacts.

Further, trust emerged to be a major issue on bittorrent as every participant of this
research had already encountered fake or malicious content. As we will demonstrate,
some users spend a lot of time checking whether certain content is reliable or not.
This fear has been expressed by one of the participants in the following way:

R 1: There’s a high level of uncertainty with P2P. And that’s no good. There are so many
spoofs, there are so many people with bad intentions that are seeding that kind of stuff. For
me, that’s to much insecurity.

Some users first surf to release websites — such as NFOrce and VCDquality — that
publish which files have been released by which groups. As these are solely release
websites, torrent files cannot be downloaded from these kinds of websites. People
use these release websites for several reasons. First, they want to make sure that it
is possible that an episode or a movie has been released. In this way, they know that
when they encounter a certain file in search results whether this file might be real
or not. In addition, users can verify the QoC on sites such as VCDquality, as it pro-
vides ratings of video/audio/movie, type of release, comments and jpeg-previews.
Type of release has been valued to be important as this reveals much information
about the QoC. For instance, in comparison with DVDRips, “CAM” versions are
less appreciated as these are rips that have been generated by filming a movie with
a video camera in movie theatres. Further, the trustworthiness of releases can be
verified by controlling which groups have released it and the comments that other
users have provided. Groups are persons that release content on for instance torrent
sites. The above mentioned practices, mediated by release sites, can be regarded as
actions to guarantee QoC and reliability. The information, users find on these re-
lease sites, is then utilized to generate search strings on torrent sites. Next, torrent
sites, such as Mininova and The Pirate Bay, are websites where users can search and
download torrent files. Or translated in bittorrent language, these websites contain
trackers that allow users to download torrent files. Torrent files keep track of which
peers make pieces of a specific file available so other users are able to download the
requested file. To increase the range of their search, users often visit meta-search en-
gines, such as Torrentz and TorrentPond, which search for torrent files on different
torrent sites simultaneously to increase the chances for satisfactory search results.
On torrent sites and meta-torrent-search engines, users have the following goals:
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(1) to find the right torrent files in the search results, (2) to guarantee QoC, (3) to
ensure the trustworthiness of content and (4) to increase the download speed.

It is interesting to note that some users have acquired specific search strategies
in order to limit the amount of useless search results and to ensure that they have
the right, most qualitative and most reliable file. To refine the search results, con-
sumers of series often add the number of the season and the number of the episode,
e.g. “s02e9”, in the search string to assure that they have the right file. Further-
more, while searching, users often include the release type, e.g. “DVDRip”, and the
name of a trusted group, e.g. “aXXo”, in their search strings. With regard to the re-
lease type, the QoC of DVDRIips is perceived to be superior in comparison with e.g.
“CAM” versions. Concerning the release groups, aXXo is a renowned and trusted
group that regularly releases DVDRips. Peers enter these kinds of terms, such as
“aXXo” and “DVDRip”, with the aim of guaranteeing the trustworthiness and QoC.

R 11: aXXo, I don’t know what it is, but I’ve heard from a friend that, when you open that,
that it always has good quality and that it’s the right movie. Because it might happen that
it’s another title. (...).

I: Are there other things that you pay attention to, to see whether it is reliable or not?
R 11: Yeah, mostly aXXo. I never had trouble with that. So I trust that.

Next, users press the search button and a search result of torrent files appears.
In the search results, users pay attention to several things. Some users take a look
at the file name to make sure that it is the right version as the file name often con-
tains information such as: the group, type of release, title, language of subtitles,
etc. Moreover, several users pay attention to the comments, which accompany most
of the search results, with the aim of verifying the trustworthiness of the file and
sometimes the QoC. The following quote illustrates this point:

R 13: Yeah, certainly in the case of movies. I almost always take a look at the comments.
Not only to see whether there is a virus on it, or that it’s real or fake, but also because it says
whether the quality is good and whether it’s a real DVDRip. Because, it often turns out that
it was videotaped in a cinema with bad sound and bad images. And I don’t want that, so I
check it a lot.

In addition, some users take a look to the more detailed descriptions of the torrent
so as to make sure that it is the right file in the right format and that it does not
contain files that are redundant.

Further, the file size is also important in terms of trustworthiness, QoC and speed.
We have to remark that the size is an issue as well as the participants in our re-
search had a monthly restricted amount of bandwidth. Because of these bandwidth
limitations, most users do not download High Definition (HD) versions of content.
Smaller versions of content download faster as well in comparison with the HD
versions.

R 22: (...) And you can always choose between HDTV...It’s actually always... Well, it’s
always HDTYV, but you can choose between an HD or a Standard Definition (SD) version.
An HD, that’s about 1 GB or so, so that weighs. In most cases, I take SD versions because
it’s better to run your computer and it’s also better for your (bandwidth) limits.
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However, when a file is too small, several users said that it is a sign to them
that the content is either fake or that it has poor quality. Other reasons for paying
attention to the content size are: limited storage capacity and being able to burn it
ona CD.

R 24: I try to have content that’s about 700 MB, then its quality is good enough. That’s one
CD. If it’s, as here for instance (shows on computer), 1,37 GB, then it’s actually way too
much. You don’t need that. It takes longer to download and it consumes more storage space.

Another aspect that turned out to be important is the number of seeders and
leechers. A seeder refers to a user who offers an entire file, and a leecher is a user
who offers one or several parts of a file. The primary goal of checking the number
of seeders and leechers is the download speed. The more people sharing the content,
the faster the file will be downloaded. Moreover, the number of seeders/leechers is
important as some users reason that if there are a lot of people who possess the
content, then there is a good chance that it is not a fake file. The other way around,
if a file has only a limited amount of seeders, the file is considered to be suspicious.

R 14: It mainly depends on the number of seeds. If there are 24.000 people who have that
file, then it’s like: “24.000 people, they won’t all do it to fool me”.

In summary, on the release sites and torrent sites, all the above mentioned tools —
e.g. comments, search engines, file name, ratings, groups, number of seeds, file size,
etc. — can be considered as artifacts that aid users in their actions to achieve goals
such as: finding the right torrent files, ensuring QoC and reliability, and guaranteeing
fast downloads. Some of the users utilize most of the mentioned artifacts, whereas
others only use a few of them.

Download and Post-Download Actions

After finishing this rather lengthy part of the usage process, users decide which of
the files meet their goals, in terms of e.g. QoC and reliability, and they download
the torrent file. In most cases the torrent file opens automatically in the bittorrent
client and starts downloading the requested file. What users do while the file is
downloading is very diverging. Some users let their P2P client download the content,
while doing other things in the meanwhile. Other users check once in a while how
the download is progressing and whether the download is completed or not. The
latter check the progress of the download by looking at for instance the speed, ETA
(Estimated Time of Arrival), number of seeders/peers, the amount of connections,
the amount of downloaded files, etc.

In some cases, users download archive files, such as RAR files, which contain
several separate files. When users do not need all these files, they select the files they
need so as to make sure that only these files are downloaded. This happens quite a
lot in cases where for instance users download torrent files of entire music albums
whereas they only need a few songs of it. In the case of TV series, where whole
seasons are compressed in one RAR file, several users often indicate priorities so as
to the first episodes are downloaded first (highest priority), and the last episodes are
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downloaded later on (less priority). Obviously, it is of little use to download the last
episode of a season first, while you did not watch the previous episodes yet.

Further, several users pay attention to the amount of uploads as they only have a
limited amount of bandwidth capacity. Most of these users limit uploading as much
as possible to save bandwidth. Some of the participants utilize schedule tools of
their P2P software as some Internet providers charge bandwidth consumption with
50% discount during nights:

R 30: I mostly use it at night, because the Internet provider charges the hours only half
during nights.
I: You mostly use it just before going to sleep?

R 30: Yeah, or you have a plug-in to schedule it. ... Here you can program when you want
to download. So red means not downloading’, and here 2h at night till 7h in the morning.
And then it downloads automatically.

Finally, users consume the content, with the aim of gratifying their desires. Users
do not utilize P2P networks because they like P2P networks, but they use it be-
cause this technology allows them to retrieve the content (object) with which they
hope to achieve their desired outcome. In other words, P2P technology is neither
the object, nor the outcome for the end users, but solely a mediating artifact that
gets them closer to their objects. After having downloaded their content, users do
very various things with their content as they: use it as samples for future pur-
chases; store and listen to the music on their iPod; burn music on a CD to lis-
ten to it in the car; store music on computer so they can listen to it when they
are using the computer; watch series/movies on the television or computer; watch
series/movies together with friends; etc. It is remarkable as well that many users
share this content with their friends afterwards. Either they watch the content to-
gether, or they exchange content for instance by swapping memory sticks or external
hard drives.

4.2 Process of Using Gnutella Clients

Most of the participants in this section utilized Gnutella clients such as Limewire.
There were a few exceptions of users that utilized Soulseek or Kazaa Lite. We as-
sembled the Gnutella, Kazaa Lite and Soulseek users as these systems were utilized
for the same purposes. Therefore, to avoid laborious phrasings, we will talk about
Gnutella clients.

4.2.1 Different Levels of Motivations

In this section, we will dilate upon the different levels of motivations, i.e. the objects,
the desired outcomes and the artifact motivations.
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Users’ Objects and Desired Outcomes

By achieving certain objects, users might obtain desired outcomes. In other words,
people use Gnutella clients as these systems permit them to retrieve the con-
tent (object) with which they can gratify their needs (desired outcomes). Whereas
the users’ objects in the bittorrent case were very divergent, the object of using
Gnutella clients is primarily to download audio content. As indicated in Table 3,
90% of the content consists of audio files, whereas video files only have a share
of 8%. Whereas many users on bittorrent clients mainly download entire albums,
users on Gnutella networks download many single songs which require less band-
width capacity in comparison with the larger files that users retrieve on bittorrent
networks.

Table 3 Types of content — Gnutella

Type N % N failed % Failed
Audio 231 90 17 7

Books 0 0 - -

Video 21 8 15 71

Photos 0 0 - -

Maps 0 0 - -

Games 0 0 - -
Software 6 2 6 33

Total 257 100 38 15

10 out of 25 participants utilized Gnutella clients as their primary source to down-
load content. In addition, 4 bittorrent users made use of Gnutella clients as well to
download primarily music. Two of the participants did not have to complete the in-
cident logbook as they only utilized their P2P client a couple of times a year. For
this reason, the numbers in Table 3 originate from 12 users. These numbers indicate
that the availability of music files is excellent on these networks as only 7% of the
files were not found or were fake files. On the other hand, Gnutella networks seem
to be inappropriate for video content as 71% of the files were not found, did not
complete their download or were corrupted.

The desired outcomes that can be achieved after attaining the object vary as peo-
ple have different preferences. According to the participants, the outcome of listen-
ing to music might be: avoiding emptiness when you are alone; enjoying background
music when friends come over; to make work/studying a more pleasant experience;
for entertainment; to disrupt the silence; to kill time; to be able to be a DJ; etc. One
of the participants sometimes even downloaded video files to possess illustrations
when he had to teach courses.
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Artifact Motivations

In comparison with the bittorrent case, the artifact motivations for using Gnutella
networks are partly similar as we will demonstrate in the following paragraphs. A
first artifact motivation consists of the fact that Gnutella networks allow users to
store songs directly on their computer without having to rip a CD. It seems to be
important for users to have control of the files so they are able to create a collection,
to listen to the music the way they want to, to be able to listen offline, to exchange
files with their friends. In comparison with listening to the radio, users of P2P sys-
tems can download content that fits their taste so they do not have to listen to music
they dislike. In other words, users attach great importance to having music stored
on their computer.

Another important reason for many participants to utilize Gnutella systems is the
fact that it is free of charge. Many participants were students that dispose of limited
means, as the following quote exemplifies:

R 25: Also because it’s for free...because I don’t know how I should pay for CDs. Or

iTunes, 99ct for one song. If I should download it with that, what I download today with

P2P networks, then I should find a job just to listen to music. And I don’t think that’s worth

it... And I also think that there’s nothing wrong with it. (...). On average, I download about
100 songs in one month. I really can’t spend 100EUR a month on music.

In addition, some participants disliked the idea of buying CDs as they reasoned
that when you buy a CD, you are mostly only interested in a few songs of that
particular album, whereas you have to pay for the songs that you are not interested
in as well. On the other hand, some participants purchased some of the content after
having downloaded them, which implies that they utilize P2P systems to sample
music.

Moreover, the speed with which users are able to retrieve music via P2P systems
appears to be important as well:

R 19: You hear a song, you enter the title or a part of the title and a couple of minutes later,

you have the song. (...). The possibility to hear a song on the radio and to have it a couple
of minutes later with a minimum effort. . . that’s the most important reason.

Additionally, speed refers also to the fact that users do not need to go to the music
shop and search for a CD on the shelves. The content available on P2P networks
does not need to be ripped as is the case with CDs. Furthermore, alternatives such as
music streaming sites consume too much bandwidth as users have to use bandwidth
each time they want to consume their music, whereas with P2P systems, they only
have to download their desired songs once. It should be noted that bandwidth issues
turned out to be especially relevant in the case of users that download video content
with P2P systems because this type of content consumes more bandwidth.

4.2.2 Gnutella Peers’ Behavior

In comparison with the bittorrent case, the usage process of Gnutella clients is far
less complex as we will illustrate in this section.
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Search Process

The content, that participants download, originates from different encounters, which
inspired users to search for this content. Sometimes, users get recommendations
from friends to listen to certain music. Other users browse through playlists and
charts — e.g. websites of radio stations, billboard.com — to check whether there
might be something interesting to download. Users have not always heard a song
before downloading it. In such cases, a song was often recommended by friends,
or a song seemed to be interesting because it fits their music style and it did well
in charts. However most users do know the content which they want to download,
they often forget the title or the name of the band, which forces them to surf sev-
eral websites — e.g. Google, Wikipedia, etc. — to find this information so they can
search it in Limewire. Sometimes, when users are not sure about the title or band,
they search on Youtube and watch it to verify the information so they do not down-
load the wrong files. Several users utilize their mobile phones in order not to forget
the name of a song so as to be able to formulate accurate search strings in their
P2P client. Other sources of inspiration are listening to the radio, watching music
TV channels, browsing through Youtube videos, hearing music in movies, and so
on. Several users do not aim to download specific songs, but they regularly check
whether they can find new songs of their favorite artists on Gnutella networks. In
such cases they only enter the name of the band, and they take a look whether there
is new content from this specific band available on Gnutella networks. While brows-
ing through search results, it often happens that users download other songs from an
artist than originally intended.

After knowing what kind of content users want (object), they open their P2P
client and start searching for the desired files. Most users first choose which type of
content they want to download in order to filter the search results from inadequate
content types. Another reason for choosing the content type is to limit the amount
of advertisements. Next, they have to enter a search string — artist or title — which
must allow them to achieve the most accurate search results. Sometimes, peers enter
only the artist name because they want to check whether their favorite bands have
released new songs.

Further, most of the participants focused on the search results in order to dis-
tinguish the most reliable files with good QoC from the fake or corrupted files. It
is interesting to note that several users have developed certain search strategies in
order to increase reliability, quality and speed of the search results. Several users
indicated that search results that are exactly the same as the search string are less re-
liable compared to files that have additional characters in their title such as a number
or a hyphen. In other words, some users perceive it to be a good sign if a file name
does not exactly match the search string. Therefore, although some users know the
exact entire name of the file they intend to download, they sometimes enter incom-
plete information in the search field. As the search results are shown, these users
will only trust the file names that contain the missing information:
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R 19: This, for example, I would trust (points to a file in Limewire), because I only entered
the title of the song...and here, the name of the performer appears which makes me feel
that it’s the right one. (...). For me, that’s a reason to trust it.

In sum, irregularities in file names are perceived to be good signs in some cases,
whereas in other cases this leads to distrust. Distrust might occur for instance when
a file name has words that are not related to what one is willing to download.

Another strategy to decrease the chances for downloading fake files is to check
whether it is the only file of a certain size. Several users do not trust files if they have
exactly the same size as other files in search results. Research [20] has demonstrated
that this strategy appears to be very efficient to filter out malware.

Some of the participants combined several of the above mentioned search strate-
gies as illustrated by the following user:

R 19: I'm looking for a file that’s the only one of that size, or that’s the only one with that
kind of notation. Some of them use interspaces, others use an underscore, others use dots,
others use normal hyphens between words, or with a number in the end or in the beginning.
Then you know that there’s a good chance that it has good quality, and second, that it’s
going to work as well.

Many users pay attention to the file size to make judgments about the QoC. The
reasoning goes that if a file is too small, it would probably have poor quality:

R 25: In Limewire, I always take a look at the size and how much there are with the same
size. And I always pay attention that it’s not a file of for example 59 kB for an MP3 file. In
such a case, you know that it can’t be right.

Only a few users paid attention to the bitrate of a file to figure out the quality.
Another important way of controlling quality and reliability is by previewing the file
in Limewire itself via its media player while the file is still downloading. In this way,
users can listen for themselves whether the sound meets the users’ requirements and
whether it is the right file:

R 12: And I do a preview so I can see whether it’s what I’m looking for. If it turns out to be
a version with a lot of impurities, then I delete that and try to look for another version.

A number of participants selected several files of the same song to download and
to “postview” these. The primary reason to download several versions of the same
file is to compare the QoC of these different files and delete the least satisfactory
ones:

R 7: 1T often download 3 or 4 versions of a song and then I listen to it... mostly in iTunes. I
mostly don’t work with this (points to the media player in Limewire). And then I choose one
of them and I delete the rest. Sometimes I download quite a lot of the same version. .. about
5 versions. But I delete some of them. There are sometimes poor files in it and I delete those.

Another aspect that appeared to be important to users is the download speed.
Many users focused on the amount of uploaders in order to be sure that the file can
be downloaded in a fast way. Indeed, it is often the case that the more peers make
certain content available the faster it might download. Some users even perceived
this to be a criterion for the reliability and QoC as they reasoned that if a lot of
people have it, it is probably reliable and has good quality:
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R 12: I also take a look at the number of hits in advance. If there are 20, then you know that
it’s going to be fast in comparison with when there are only two hits. In that case I take the
one with 20 users. In such case, you have more chance to have the right file, because if there
are 20 participants on one file, it must be a better file. (...). If it’s a bad file, then everyone
deletes that. So, in this sense, it’s a good file because those people keep using it. And that’s
why. .. quality is already guaranteed in a certain way because you know that a lot of people
are using it, so it probably won’t be bad.

Speed is also being derived from the “Speed” column which indicates what type
of connection the uploader has. This column displays whether a user has for instance
a T1, T3, modem or cable/DSL connection. For instance, a T3 connection is faster
in comparison with a modem or cable/DSL connection.

It should be mentioned that most participants did not utilize all of these attributes
to verify the reliability or QoC. For instance, one participant even clicked around in
a random way, not fearing to download corrupted content.

In sum, in contrast with the usage of bittorrent clients — where the QoC and
reliability were verified before downloading files — users of Gnutella clients mainly
checked the QoC and reliability afterwards by listening to the files in their media
players.

Download and Post-Download Actions

In most cases, downloading files goes rather fast, leaving little time for users to do
other things while their P2P application is downloading songs. For this reason, most
users keep an eye on the progress of the download, whereas others start searching
new files in the meanwhile or they organize the already downloaded files in their
music collection.

After downloading the files, many users transfer these files — often automati-
cally — in iTunes, where they organize their collection. Some users burn the songs
on a CD to listen to it in their car; others listen to it on their MP3 player/iPod or on
their computer. Some of the users, who utilize P2P networks to sample content, or
who fear copyright infringement buy some of the songs afterwards:

R 19: Now and then, I get this moral urge to compensate, and then I buy a whole bunch of
albums to ease my conscience. .. to legalize my music.

Interestingly, most of the Gnutella users share their downloaded music with their
friends via MSN, e-mail, by exchanging memory sticks or by burning it on a CD.
The primary reasons for exchanging these files are to do friends a favor, or because
they want to recommend certain music that they like. It is a bit paradoxical that most
users do not upload or share their downloaded content on P2P networks, whereas
they do share this content with their friends.
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5 Discussion and Conclusion

The purpose of the current study was to explore the usage of P2P file-sharing sys-
tems by means of qualitative, explorative, contextual research. To understand the
usage of these systems, thorough attention was paid to the relationship between
the objects/goals/motivations, behavior and the relevant context. We found that dif-
ferent types of systems are utilized in different ways. Therefore, a distinction was
made between the use of bittorrent (e.g. Azureus, KTorrent, BitComet, BitTorrent)
and Gnutella clients (e.g. Limewire, Soulseek). The findings of the present study
enhance our understanding of usage behavior on P2P networks.

The results of this study show that bittorrent clients are mainly used to download
large files such as video, games, software and entire albums. People probably turn
to bittorrent systems to download large files as this protocol has proven to be very
efficient to exchange large content because of the swarming technology with which
different parts of the same file can be retrieved from different peers. In the theoretical
framework, we argued that the object and desired results direct the actions of users.
For instance, college students that have their own apartment might download movies
(object) via P2P networks to kill the time during the evenings (desired outcome).
In addition, we found that the artifact motivations played an important role in the
reasons for participants to use bittorrent clients. The artifact motivations comprise
the characteristics of an artifact, service or content which explain to a large extent
why users adopt a certain artifact. The current study found the following artifact
motivations of bittorrent users: dissatisfaction with traditional TV, free of charge,
vast availability of content and control over files. These artifact motivations should
be considered as particular context aspects that often stem from users’ lifestyle, e.g.
college students with irregular schedules, that have their own apartment and that do
not have cable subscriptions. Other context factors that appeared to influence users’
actions related to the presence of malware, fake files and files with insufficient QoC.
The existence of such files caused many users to verify in advance whether a file
meets the expectations in terms of reliability and QoC by means of tools such as
ratings, comments and jpeg-previews. These preventive inspections are presumably
reinforced by the bandwidth caps in Belgium which makes that users want to avoid
that the bandwidth they paid for, would be wasted on worthless or even dangerous
files.

On the other hand, the study found that peers utilized Gnutella clients primar-
ily to download small, unique audio files. Users downloaded music (object) with
the aim of for instance making work more pleasant or passing time while commut-
ing (desired outcome). In addition, analysis revealed that the artifact motivations of
Gnutella systems correspond to a large extent with the artifact motivations if bittor-
rent clients. The Gnutella artifact motivations comprise among others: control over
files, free of charge, dissatisfaction with the medium CD, extensive availability of
files, possibility to sample and explore music. Furthermore, the omnipresence of
fake files and malware influences users’ behavior as these users want to make sure
that they are downloading the right files with satisfactory QoC. Users of Gnutella
clients have their own ways of assessing the QoC and reliability of files, e.g. by
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means of the file size, the number of uploaders, previews. Nevertheless, it should be
mentioned that the availability of tools to verify QoC and trustworthiness in Gnutella
clients are far more limited in comparison with the bittorrent clients.

Then why do music lovers adopt systems with which they only have limited
possibilities to check the QoC and reliability and why do they not turn to bittorrent
clients? This may be explained by a number of factors that are related to the technol-
ogy and the file type. First, the availability of single songs is rather low on bittorrent
probably because it would require a time-consuming procedure to make a torrent
file for each separate song. Second, it would demand too much time and effort to
verify the QoC and reliability of many small files in a thorough way as bittorrent
users do with e.g. video files. Indeed, Gnutella users download more and smaller
files during a download session in comparison with bittorrent users who retrieve
less but larger files. In other words, Gnutella users download more files in number,
whereas bittorrent users download more files in terms of volume. In our opinion,
these findings might partially explain the differences in the use between both types
of systems. Furthermore, we assume that the bandwidth caps play an important role
as well. For example, if one downloads a single song, and the QoC turns out to be
rather poor, then this person has only wasted approximately 3 MB. On the other
hand, if one retrieves a fake movie or a movie with insufficient QoC, then this per-
son has dissipated a lot of time and has lost easily 700 MB, which is a high price to
pay when you only have a monthly bandwidth capacity of for instance 25 GB that
you might have to share with other people.

The findings have important implications on several levels. To the research com-
munity, this study has demonstrated that user behavior should be studied as a com-
plex interaction between motifs/goals/objects and the specific meaningful context.
In this respect, activity theory provided an adequate framework to grasp the interre-
lations between the different variables. In addition, the results might be interesting
to policymakers and the media industry as these interested parties can learn how
and why people are using P2P file-sharing systems. For instance, the insertion of
corrupted files in P2P networks by the media industry has only minor effects on
experienced users as they adapted their search strategies in efficient ways which de-
creases the chances that users download fake files and malware. Another interesting
result for the media industry is the fact that these users want to have control over
their consumption themselves. P2P file-sharing users do not want to be restricted by
what the media imposes on them, but the content needs to be flexible so as to it fits
the lifestyle of the individual.

Finally, a number of important limitations need to be considered. First, the rela-
tively small sample size of the study, in which we examined the use of P2P networks
by youngsters, is a threat to the study’s validity. Accordingly, caution must be ap-
plied, as the findings might not be transferable to the entire P2P file-sharing commu-
nity. Second, the end users’ behavior is influenced in important ways by bandwidth
caps, whereas other users in many countries have “all-you-can-eat” subscriptions.
Therefore, a promising line of study would be to enlarge the sample with elder users
and with users that are not restricted by bandwidth caps.
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In conclusion, our theoretical framework, combined with the results of this study
indicate that P2P networks should be studied in its context of use as the usage of P2P
systems is not an object nor an outcome for users. Users only utilize P2P networks
as one of their mediating artifacts that bring them another step closer to their object
and desired outcomes.
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Unstructured Peer-to-Peer Network
Architectures

Xing Jin and S.-H. Gary Chan

Abstract With the rapid growth of the Internet, peer-to-peer (P2P) networks have
been widely studied and deployed. According to CacheLogic Research, P2P traf-
fic has dominated the Internet traffic in 2006, by accounting for over 72% Internet
traffic. In this chapter, we focus on unstructured P2P networks, one key type of P2P
networks. We first present several unstructured P2P networks for the file sharing
application, and then investigate some advanced issues in the network design. We
also study two other important applications, i.e., media streaming and voice over In-
ternet Protocol (VoIP). Finally, we discuss unstructured P2P networks over wireless
networks.

1 Introduction

In the recent years, P2P networks have seen enormous successes and rich develop-
ments over the Internet. When Napster first emerged in 1999 as a P2P file sharing
system, the Internet traffic was dominated by web and ftp (accounting for 65 and
10% total traffic, respectively, according to CacheLogic Research). But in 2006,
50-65% of downstream traffic and 75-90% of upstream traffic was already P2P
traffic (according to CacheLogic Research). In total, P2P traffic has accounted for
72% Internet traffic in the year, while that of web and ftp has decreased to 24 and
2%, respectively.
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In P2P systems, cooperative peers self-organize themselves into overlay net-
works and store or relay data for each other. The major challenge is how to achieve
efficient resource search in a large scale distributed-storage network. Currently pop-
ular P2P search systems can be classified as unstructured and structured, depend-
ing on the overlay structures. Unstructured systems do not impose any structure
on the overlay networks [1-3]. These systems are usually resilient to peer dynam-
ics, and support complex queries with meta information. But they are not effi-
cient for locating unpopular files. Structured systems impose particular structures
on the overlay networks, which are commonly referred to as distributed hash ta-
bles (DHTs) [38, 42]. In a structured system, any file can be located in a small
number of overlay hops, which significantly reduces the search cost as compared
to unstructured systems. However, DHT only supports single-keyword exact-match
lookups.

In this chapter, we focus on unstructured P2P networks. We first study the file
sharing application, which is the original and one of the most important applica-
tions for P2P networks. Depending on system decentralization level, we classify
unstructured P2P networks into centralized, distributed, hybrid and some other ap-
proaches. We select representative examples from each category and analyze their
search mechanisms. Then we discuss some advanced issues in system design, i.e.,
content replication and system security.

We also study other important applications for unstructured P2P networks, in-
cluding media streaming and VoIP. One of the pioneering P2P streaming softwares,
CoolStreaming, has reported to attract more than 25,000 concurrent peers for one
streaming channel [50]. Another streaming software PPLive reported more than
400,000 concurrent peers for its over 300 channels [25]. As for P2P VoIP, the lead-
ing software Skype has shown to attract over 8 million concurrent users in 2008
(from its client software interface), and has reported to accumulate 276 million user
accounts at the end of 2007. Clearly, these applications have evolved into influential
network applications over the Internet. We hence select CoolStreaming and Skype
as two typical examples. We study the challenges in these applications and their
corresponding approaches.

Finally, we study the implementation issue of unstructured P2P networks over
wireless networks. Wireless networks are going through quick development nowa-
days. As they share many similar features with P2P networks (such as decentraliza-
tion and dynamic topology), there has been an increasing interest in integrating them
together. We compare P2P networks and wireless networks, highlight the challenges
in integrating them, and discuss several state-of-the-art approaches.

The rest of the chapter is organized as follows. In Section 2, we present the gen-
eral design considerations in unstructured P2P networks. In Section 3, we discuss
representative examples of unstructured P2P networks for file sharing. In Section 4,
we explore some advanced issues in P2P file sharing. In Section 5, we discuss the
media streaming and VoIP applications for unstructured P2P networks. In Section 6,
we investigate how to implement unstructured P2P networks over wireless networks.
Finally, we conclude in Section 7.
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2 Design Considerations

When designing an unstructured P2P network, several issues need to be carefully
considered:

e Search efficiency and replication cost: In unstructured P2P networks, data are
distributedly stored at peers and each peer only holds limited information about
the system. Hence, it is important to design efficient search mechanisms. Usu-
ally, with more data replications in the network, a data file can be located more
quickly. It is hence a tradeoff between storage cost and search time.

* Scalability: A P2P system may consist of hundreds of thousands of peers. This
often requires a fully distributed system, where peers form a self-organized net-
work and each peer communicates with only a few other peers.

* Resilience to peer dynamics: In P2P systems, a peer may arbitrarily join, leave
or fail. A good P2P system should be resilient to such peer dynamics.

* Load balancing: Peers often have heterogeneous resource (e.g., bandwidth, com-
putational capability, storage space). A good system should be able to achieve
balanced loads among peers. This can avoid overloading hot peers, and hence
improve system scalability.

» Security: In the open environment of the Internet, some participating peers may
be selfish and unwilling to upload data to others, or some may launch attacks
to disrupt the service. A practical P2P system should be well protected to tar-
geted attacks or free-riders (i.e., peers only downloading data without uploading).
Other considerations include peers’ privacy and confidentiality.

3 Unstructured P2P Networks for File Sharing

In this chapter, we describe several unstructured P2P networks for the file shar-
ing application. We classified the approaches into four categories: centralized, dis-
tributed, hybrid and others. We select one representative example from each cate-
gory and discuss its system design.

3.1 A Centralized Approach: Napster

In 1999, Napster appeared as the first P2P file sharing system [4]. A Napster system
consists of a central directory server and a set of registered users (or peers). The
server maintains information of all files in the system, including an index with meta-
data (such as file name and size) of all files in the system, a list of all registered peers,
and a list showing the files that each peer holds and shares.

When a new peer joins the system, it contacts the server and reports a list of files
it maintains and shares. When a peer wants to search for a file, it sends a request
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to the server. The server will return a list of peers that hold the matching file. The
searching peer then contacts the returned peers to download the file.

Figure 1(a) shows the search process in Napster. When peer A wants to search
for some file, it contacts the central server. The server returns some peers that hold
the file, say, peer B. Peer A then starts to download the file from peer B.
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Fig. 1 Search process in unstructured P2P networks. (a) Napster. (b) Gnutella. (¢) Kazaa. (d)
BitTorrent.

The advantage of Napster is its ease of implementation and simplicity of deploy-
ment. The system administrator only needs to deploy and maintain a central server.
Furthermore, the system is highly adaptive to peer joining and leaving. The major
disadvantage is that such a centralized system is not scalable. The server needs to
have much resource (such as computational capability and bandwidth) to support a
large number of peers. In addition, the server forms a single point of failure. If the
server is down, the whole system is broken. It is hence vulnerable to targeted attacks
against the server (e.g., DDos).

3.2 A Distributed Approach: Gnutella

Gnutella is a fully distributed P2P system for file sharing [1]. It first appeared in
2000 and got quick development in a few years. According to Slyck news report, as
of June 2005, Gnutella’s population was 1.81 million computers. Gnutella’s source
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code is publicly available in the Internet. This enables the development of different
client softwares by different groups (e.g., LimeWire developed by the LimeWire
group, or Gnucleus developed by the Morpheus group).

In the basic Gnutella protocol, when a new peer joins the system, it first con-
nects to some public peers. For example, a list of public peers are available at
http://gnutellahosts.com. A new peer then sends a PING message to any peer it
is connected to. The message announces the existence of the new peer. Upon receiv-
ing a PING message, a Gnutella peer returns a PONG message and propagates the
PING message to its neighbors. A PONG message contains IP address and port of
the responding peer, and information of files being shared by the responding peer.
In a dynamic network with frequent peer joining and leaving, a peer periodically
sends PING messages its neighbors.

Search in Gnutella is based on flooding, which is broadcasting in the overlay. A
search query is propagated to all neighbors from the original requesting peer. The
query is replicated and forwarded by each intermediate peer to all its neighbors.
Each intermediate peer also examines its local contents and responds to the query
source on a match. The query responses are routed back along the opposite path
towards the original requesting peer. To reduce the amount of query messages in the
network, each query message contains a time-to-live (TTL) field. The TTL value
will be decremented by one at each peer. When it reaches zero, the message is
dropped.

Figure 1(b) shows the search process in Gnutella. Suppose peer A wants to search
for some file. It floods its search query to its neighbors, i.e., peers B and D in the
figure. When peer B receives the query, it checks whether itself holds the matching
file. If not, it forwards the query to its neighbors. As in the example, peer B forwards
the query to its neighbor C. Suppose C holds the file that A wants. C returns a
response to the peer that sends it the query, which is B in the figure. B then continues
forwarding the response to the query sender A. Finally, A contacts C to download
the file.

Different from Napster, Gnutella is a dynamic, self-organized network. Each peer
independently connects to and communicates with a few other peers in the system.
The system is hence able to contain an unlimited number of peers, if no constraint on
search efficiency. Meanwhile, the system is highly robust to peer dynamics. If a peer
leaves the system, its neighbors can connect to other peers through the exchange of
PING and PONG messages.

A limitation of Gnutella is its relatively low search efficiency. In flooding
search, the number of query messages exponentially increases with the number
of overlay hops. Then a query may generate many messages, especially for un-
popular files, where a query has to go through many overlay hops and many
peers before reaching a matching peer. Given the huge number of peers in the
system, the traffic load for queries could be significantly high. The use of TTL
can reduce the number of query messages. However, choosing an appropriate TTL
is not easy. If the TTL is too high, peers unnecessarily burden the network. If
the TTL is too low, a peer might not find the file even though a copy exists
somewhere.
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In addition, there are many duplicate messages in flooding search, particularly
in heavily connected networks. This is because multiple copies of a query may be
sent to a peer by its multiple neighbors. These duplicate queries consume extra
processing power at peers and network bandwidth. Hence, it is necessary to develop
some duplication detection mechanisms. However, even with duplicate suppression,
the number of duplicate messages in flooding can be excessive, and the problem gets
worse as the TTL increases.

Therefore, many new search methods have been proposed to improve or re-
place flooding search. Expanding ring is a method that addresses the TTL selection
problem in flooding [34]. That is, a peer starts flooding with a small TTL. If the
search does not succeed, the peer increases the TTL and starts another flooding.
The process repeats until the search succeeds. This method is efficient for locating
hot files. Hot files are widely replicated in the network, and a small TTL value is
enough to locate them. But this method leads to higher search time due to repeated
flooding.

Expanding ring does not address the message duplication problem. Another
method uses multiple parallel random walks to address this issue [34]. In standard
random walk, when receiving a search query, a peer randomly chooses one neighbor
and propagates the query to it. To reduce the search time, the method uses multiple
random walks. This method, together with proactive file replication (discussed in
Section 4.1), can significantly improve the search performance in terms of search
time, per-peer query load, and message traffic.

3.3 A Hybrid Approach: FastTrack/Kazaa

Given the limitations of purely centralized networks and purely distributed net-
works, there is a third approach which combines these two types of networks.
FastTrack is a typical example as a partially centralized P2P protocol. In FastTrack,
peers with the fastest Internet connections and the most powerful computers are
automatically designated as supernodes. A supernode maintains information about
some resource as well as connections with other supernodes. When a peer performs
a search, it first searches for the closest supernode, which returns immediate results
if any and refers the search to other supernodes if needed. Two practical softwares
based on FastTrack are Kazaa [2] and Grokster [5]. But the latter closed its service
in 2005 due to the copyright issue.

Figure 1(c) shows the search process in Kazaa. When peer A wants to search for
some file, it sends the search query to the closest supernode. The supernode either
returns some matching peers, or forwards the query to other supernodes. Finally, A
will obtain some matching peers from the supernode (say, peer B in the figure) and
download the file from these peers.

Therefore, an ordinary peer (e.g., peer A in the figure) communicates with a su-
pernode as if communicating with the server in Napster. Then, Gnutella like search
is performed in a highly pruned overlay network of supernodes.



Unstructured Peer-to-Peer Network Architectures 123

As compared with purely distributed networks like Gnutella, Kazaa achieves
much lower search time. Search among supernodes is much faster than search
among all peers, because the number of supernodes is much smaller than the to-
tal number of peers. As supernodes have high bandwidth and large storage space,
they can efficiently process a large amount of queries from ordinary peers. The sys-
tem hence makes good use of peer heterogeneity. In addition, unlike Napster, it does
not form a single point of failure. If some supernodes go down, the peers connecting
to them can connect to other supernodes.

In view of the success of Kazaa, Gnutella also considers adopting a hybrid struc-
ture. Chawathe et al. propose the Gia system to improve Gnutella [12]. It uses a
dynamic topology adaptation protocol to put most peers within a short distance of
a few supernodes. Supernodes will receive a large proportion of the queries. To-
gether with a few other improvements (e.g., active flow control and biased random
walk), Gia increases the system capacity by three to five orders of magnitude. Later,
Gnutella version 0.6 formally incorporates the idea of “ultrapeers”. In detail, peers
entering into the network are kept at the edge of the network as leaves, not respon-
sible for any routing. Peers which are capable of routing messages are promoted
to ultrapeers, which will accept leaf connections and route searches and network
maintenance messages. Normally, a leaf peer is connected to 3 ultrapeers, and each
ultrapeer is connected to more than 32 other ultrapeers. Within this network, the
maximum number of hops a query can travel is reduced to around 4. The search
efficiency and the whole system scalability are then greatly improved.

3.4 Other Approach: BitTorrent

BitTorrent is a P2P system that does not belong to any of the above categories [3]. As
an important P2P file sharing application, it is estimated by CacheLogic to represent
35% of all Internet traffic in 2004.

BitTorrent uses a central location to coordinate data upload and download among
peers. To share a file f, a peer first creates a small torrent file, which contains meta-
data about f, e.g., its length, name and hashing information. Usually, BitTorrent cuts
a file into pieces of fixed size, typically between 64 KB and 4 MB each. Each piece
has a checksum from the SHA1 hashing algorithm, which is also recorded in the
torrent file. Most importantly, the torrent file contains the URL of a tracker, which
keeps track of all the peers who have file f (either partially or completely) and the
lookup peers.

A peer that wants to download the file first obtains the corresponding torrent file,
and then connects to the specified tracker. The tracker responds with a random list
of peers which are downloading the same file. The requesting peer then connects to
these peers for downloading.

Figure 1(d) shows the search process in BitTorrent. When peer A wants to search
for some file, it first needs to obtain the corresponding torrent for the file. From the
torrent, A knows the address of the tracker and connects to the tracker. The tracker
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then returns a list of peers who are downloading or sharing the file. A then exchanges
data with these peers.

In BitTorrent systems, torrent files are often published on large websites, which
also serve as trackers. Clearly, the centralization of trackers brings some barriers
in the system. If a tracker is down, peers will not be able to start their sharing (by
uploading their torrents to the tracker), and new incoming peers cannot start their
downloading. In order to remove the need of central trackers, the latest BitTorrent
clients implement a decentralized tracking mechanism (e.g., uTorrent, BitComet,
KTorrent). In the mechanism, every peer acts as a mini-tracker. Peers first join a
DHT network, which is inherently implemented in the BitTorrent client. A torrent
is then stored at a certain peer according to the DHT storage method. All peers in
the DHT network can search for the torrent through DHT search. Therefore, this
mechanism eliminates central trackers from the system.

3.5 Comparison and Discussion

The main characteristic of unstructured P2P networks is that the storage of files
is completely unrelated to overlay topology. As a result, file search mechanism in
such networks essentially amounts to random search. As compared to structured
P2P networks, unstructured P2P networks have the following advantages:

* Resilient to peer dynamics: Because there is no specified requirement on the
overlay structure, unstructured P2P networks are often formed in a random way.
In case of peer joining and leaving, an unstructured P2P network can easily re-
construct the overlay. As a comparison, overlay reconstruction in DHT networks
is much more complex and expensive, especially in a highly dynamic network
with frequent peer joining and leaving.

e Supporting complex search: In unstructured P2P networks, peers eventually
check their local resource to answer a query. Hence, unstructured P2P networks
inherently support complex search based on file meta-data. On the contrary, in
DHT networks, each file has a single keyword. File storage and search are all
based on this keyword. DHT hence only supports single-keyword search.

Unstructured P2P networks have their own limitations. Its major problem is the
low search efficiency, especially for unpopular files. Unpopular files have few copies
in the system. Search for such a file may lead to large-scale flooding. Different from
it, DHT networks guarantee a certain number of overlay hops for any search, which
is very helpful for unpopular file search. In view of the advantages of structured
and unstructured networks, some researchers have taken effort to integrate them
together [11]. Clearly, there are many challenges in the integration due to their fun-
damental difference on network structures.

We now give a quick comparison of the above unstructured P2P networks. The
centralized approach requires a central server for file management and search, and
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the supernode-based approach relies on elected or pre-deployed supernodes. Dif-
ferent from them, the fully distributed approach relies on peers for file storage and
search, which does not require additional facilities. BitTorrent, a second generation
P2P system, requires central trackers to initiate the file sharing process.

According to the system architecture, the approaches have different search meth-
ods. In the centralized approach, a query is directly sent to the server. In the
supernode-based approach, a query is first sent to a supernode, which forwards
the query to other supernodes if needed. In the fully distributed approach, blind
or informed flooding is used to answer a query, which may consume much network
bandwidth. In BitTorrent, a peer can directly obtain a list of peers sharing the file
from the tracker. It hence eliminates the search process for matching peers as in
other systems. This is a fundamental difference between BitTorrent and other un-
structured P2P systems.

In practice, the supernode-based approach and BitTorrent are the most success-
ful applications. Both the centralized and fully distributed approaches have serious
limitations. The centralized approach has poor scalability. It cannot accommodate a
large number of peers. But the huge number of peers, and hence huge resource in
total, is exactly an attractive aspect of P2P systems. The fully distributed approach
does not need any central component, however, it is not highly scalable due to its
inefficiency and high bandwidth consumption in search.

As a comparison, the supernode-based approach has shown high scalability and
high search efficiency given enough supernodes. It makes practical use of peer het-
erogeneity. BitTorrent requires central trackers. But the responsibility of a tracker
is much lighter than the server in a centralized approach. A tracker only needs to
track the peers sharing and downloading the specific file. And torrent files could be
put at different trackers. Hence, the scalability of BitTorrent is not an issue in prac-
tice. In addition, the newly proposed decentralized tracking mechanism completely
eliminates central trackers from the system.

4 Advanced Issues in File Sharing
In this chapter, we discuss two advanced issues in unstructured P2P file sharing
systems, i.e,, content replication and system security.

4.1 Content Replication

Search in unstructured P2P networks is essentially random search. Content repli-
cation is hence a fundamental issue for search performance. Intuitively, with more
replications in the network, it is easier (or faster) to locate a file. On the other side
of the coin, more replications take up more storage space. We hence need to explore
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efficient replication mechanisms to achieve good tradeoff between search efficiency
and storage cost.

In the original Gnutella, peers requesting a file make copies of the file. Other
systems like FastTrack allow for more proactive replications of files, where a file
may be replicated at a peer even though the peer has not requested the file.

Cohen et al. have proposed a network model for proactive replication in unstruc-
tured P2P networks [13]. Suppose there are in total m files and n peers in an unstruc-
tured P2P network. Each file i (1 < i < m) is replicated at r; (1 < r; < n) random
distinct peers. Clearly, if there is not any limitation on storage space, a straight-
forward strategy would be to replicate everything everywhere, and search becomes
trivial. Hence, we assume that the total amount of storage space over all peers is
fixed. If we further assume that each file has a unit size, the total amount of storage
space can be computed as R =Y | r;.

Suppose that file i is requested with the query rate g;. Here ¢; is normalized so
that ¥ , g; = 1. We consider search of randomly probing peers until the specific
file is found. Then, the probability that file i is found on the k’th probe is given by

ri ri k—1
Pri(k :7(1_7) .
l( ) n n
Define search size of a query as the number of probes to locate the matching file
for the query. For a certain file i, its average search size A; is simply n/r;. Hence,
the average search size over all files is

Azzq,-A,-znZ@. (1)
i=1

Given the above network model, we can analyze the performance of several dif-
ferent replication mechanisms.

* Uniform replication: This replication mechanism equally replicates all files re-
gardless of their popularities. In other words, r; = R/m, Vi € [1,m]. Hence, the
average search size Ayy;form 18 given by

u m nm
uniform ni:§ ‘ qi R R

Clearly, Auyiform is independent of the query distribution.

* Proportional replication: This replication mechanism replicates more copies for
more popular files. In other words, r; = Rq;, Vi € [1,m]. Hence, the average
search size A ,oportional 18 given by

& qi onm

AProportianal = n; Rq: = R
i=1 t

Therefore, the proportional and uniform replication mechanisms yield the same
average search size, and that average search size is independent of the query
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distribution. On the other side, the distribution of average search size for a certain
file is different for these two mechanisms. In uniform replication, all files have
the same average search size (which is nm/R). In proportional replication, A; =
n/(Rq;). Hence, a popular file with a high query rate will have a small average
search size, since it has many replicated copies in the network.

* Square-root replication: Given the formula of A as in Equation (1), Cohen et al.
prove in [13] that A is minimized when

__Rvai
=1V

The resulting average search size is

i

2
n m

Aoptimal = E <z \/E) .
i=1

This result is later confirmed by Lv et al. through simulations [34].

Given the above replication mechanisms, an immediate question is how to
achieve them via a distributed protocol in a decentralized unstructured P2P network.
This is easy for uniform and proportional replications. For uniform replication, the
system creates a fixed number of copies when the file first enters the system. For
proportional replication, the system creates a fixed number of copies every time the
file is queried. But the case for square-root replication is much more difficult. The
major challenge is that no individual peer sees enough queries to estimate the query
rate for a certain file.

Cohen et al. study several ways to achieve square-root replication [13]. Generally,
when a query succeeds, the requesting peer creates some number of copies (denoted
the number as C) at randomly selected peers. There is also some deletion mechanism
to guarantee that in the steady state the creation rate equals the deletion rate. There
are various ways to determine C. The first one is called path replication, which
sets C to the search size (i.e., the number of peers probed). Another method further
improves path replication by requiring a peer to record the value C with each copy.
This is called replication with sibling-number memory. A third method is called
replication with probe memory. Each peer records the number and the combined
search size of probes it sees for each file. It then determines C by collecting this
information from a certain number of peers. Clearly, this method needs extra inter-
host communication. For more details of these methods and their comparison, please
refer to [13].

4.2 Security and Reputation System

Most P2P systems work on the assumption of truthful cooperation among peers.
However, in the open environment of the Internet, some participating peers may not
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cooperate as desired. They may be selfish and unwilling to upload data to others, or
they may have abnormal actions such as frequent rebooting which adversely affect
their neighbors. More seriously, some peers may launch attacks to disrupt the service
or distribute viruses in the overlay network. We call these uncooperative, abnormal
or attacking behavior malicious actions and the associated peers malicious peers.

To detect malicious peers or reward well-behaved ones, a reputation system is
often used. In a typical reputation system, each peer is assigned a reputation value
according to its history performance. Differentiated services are then provided to
peers according to their reputation. We now study two key issues in P2P reputation
systems, namely, reputation computing and storage.

4.2.1 Reputation Computing

There are mainly three reputation computing techniques in current P2P networks.
We elaborate them as follows.

* Social Networks In this approach, all feedbacks available in the network are

aggregated to compute peer reputation. It can be further classified into two
categories: separated reputation model and correlated reputation model. In a
separated reputation model, only the direct transaction partners (e.g., resource
provider/downloader or streaming neighbor) of a peer can express their opinion
on the reputation of the peer [14, 16, 21, 27, 28, 35, 41]. A practical exam-
ple is eBay reputation system (although eBay is not a P2P network) [6]. After
each transaction at eBay, the buyer and the seller rate each other with a positive,
negative and neutral feedback. The reputation is calculated at a central server
by assigning 1 point for each positive feedback, 0 point for each neutral feed-
back and —1 point for each negative feedback. The reputation of a participant is
computed as the sum of its points over a certain period. Considering that peers
may lie in their feedbacks, Mekouar et al. propose to monitor suspicious feed-
backs [35]. The more suspicious feedbacks a peer generates, the smaller weight
in reputation computing its feedback has. Xiong et al. develop a general reputa-
tion model, which considers, for example, feedbacks from other peers, credibility
factor for the feedback sources, and transaction context factor for discriminating
the importance of transactions [46]. In fact, almost all the separated reputation
models can be expressed by this generalized model.
In a correlated reputation model, the reputation of a peer is computed based
on the opinion of its direct transaction partners as well as some third-party
peers [29, 40]. In this model, a peer A who wishes to know the reputation of
another peer B, can ask some peers (e.g., its neighbors) to provide their opin-
ion on B (although some of the peers may not have conducted any transaction
with B). A then combines the opinion from the peers to calculate B’s reputation.
Clearly, this model is more like our real social networks, where third-party peers
besides transaction partners can express their opinion on a peer. But it takes more
cost to collect and aggregate third-party opinion.
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* Probabilistic Estimation This approach uses sampling of the globally available
feedbacks to compute peer reputation. It often has some assumptions on peer
behavior. For instance, it may assume that a peer is trustworthy with a certain, but
unknown probability. And when sharing its own experience with others, a peer
may lie with some, again unknown, probability [17]. It then uses well known
probabilistic estimation techniques to estimate all unknown parameters.

Many estimation methods may be used. Despotovic et al. use maximum likeli-
hood estimation [17]. However, it assumes that peers do not collude, which may
not be practical in real networks. Mui et al. use Bayesian estimation to assess
the future performance of peers based on their history performance, but it uses
only direct interaction among peers and does not use third-party opinion [36].
Buchegger et al. take into account third-party opinion, but the approach is empir-
ical rather than theoretically solid [10].

By using a small portion of the globally available feedbacks, the probabilistic
model spends a lower cost in feedback collection than the social network ap-
proach. On the other hand, the social network approach can use a complicated
reputation model, and is robust to a wide range of malicious actions. But the
probabilistic model can be applied to only simple reputation models (due to
the difficulties in probabilistic estimation) and is effective to only a few mali-
cious actions. The performance of the two models has been compared in [18].
It has been shown that the probabilistic model performs better for small mali-
cious population, while the social network approach is better when most peers are
malicious.

*  Game-Theoretic Model Different from the above two approaches, the game-
theoretic model assumes that peers have rational behavior and uses game theory
to build a reputation system. Rational behavior implies that there is an underly-
ing economic model in which utilities are associated with various choices of the
peers and that peers act so as to maximize their utilities. Li et al. present a game-
theoretic framework for analyzing reputation [30], and Fudenberg et al. offers
certain characterizations of the equilibria payoffs in the presence of reputation
effects [22].

4.3 Reputation Storage and Retrieval

A basic principle in reputation storage is that the reputation of a peer cannot be
locally stored at the peer. Because this has no protection against dishonest peers. A
dishonest peer may misreport its reputation value in order to gain rewards or avoid
punishments. We summarize several techniques for reputation storage and retrieval
in unstructured P2P networks as follows.

* Centralized This method uses a powerful server to keep the reputation of all
peers. For example, eBay uses a central server to collect and keep all users’ rep-
utation [6]. Feedbacks from users are sent to and stored at the server. A query of
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a user’s reputation is also sent to and replied by the server. Similar approaches
have been used in [21, 27, 28].

This approach is easy to implement and deploy. Security of a central server is
much easier to achieve than that of distributed components in a distributed ap-
proach. Furthermore, centralization makes reputation management independent
of peer joining and leaving, which greatly simplifies reputation retrieval. How-
ever, as discussed in Section 3.1, a centralized approach is not scalable to large
P2P networks. And the server forms a single point of failure, making the system
vulnerable.

* Supernode-Based Mekouar et al. propose a malicious detector algorithm to de-

tect malicious peers in Kazaa-like systems [35]. They assume that supernodes
are all trustworthy and maintain reputation information for ordinary peers. Each
peer is attached to a unique supernode. All the evaluation results about a peer are
maintained at its attached supernode. Supernodes can then enforce differentiated
services according to peers’ reputation. Note that supernodes in Kazaa are elected
according to peers’ computational power and edge bandwidth. A supernode may
not always be trustworthy. A possible improvement is to deploy some proxies
(e.g., a content distribution network) to replace unauthenticated supernodes.
The security and trustworthiness of pre-deployed proxies are much better than
self-elected supernodes.
The supernode-based approach is an extension of the centralized approach. In the
approach, a set of supernodes instead of a single server serve peers. However, to
serve a large P2P network, a large number of supernodes are needed, which leads
to high implementation and maintenance costs. In addition, the search and load
balancing mechanisms among supernodes need to carefully designed.

» Unstructured Overlay XREP uses a polling algorithm to help peers choose reli-
able resource in Gnutella-like networks [14, 16]. It consists of four operations:
resource searching, vote polling, vote evaluation and resource downloading (as
shown in Figure 2). The first operation is similar to searching in Gnutella. A
peer broadcasts to all its neighbors a Query message. If a peer receiving a Query
message has the matching file, it responds with a QueryHit message (as shown in
Figure 2(a)). In the next operation, upon receiving QueryH it messages, the origi-
nal searching peer selects the best matching resource among all possible choices.
It then polls other peers using an encrypted Poll message to enquire their opin-
ion on the resource or the resource provider. To achieve that, each XREP peer
maintains information for its own experience on resource and other peers. Upon
receiving a Poll message, each peer checks its experience data. If there is any
information about the resource or the provider indicated by the Poll message, the
peer sends its vote to the polling peer with an encrypted PollReply message (as
shown in Figure 2(b)).

In the third operation, the polling peer collects a set of votes and evaluates the
votes. It first decrypts the votes and discards corrupt ones. Then it analyzes vot-
ers’ IPs and detects cliques of dummy or controlled votes. After that, it randomly
selects a set of votes and directly contacts them with a TrustVote message. Each
contacted voter is required to send a VoteReply message for vote confirmation.
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Fig. 2 Operations in XREP. (a) Resource searching. (b) Vote polling. (¢) Vote evaluation. (d)
Resource downloading.

This forces potential attackers to pay the cost of using real IPs as false witness
(e.g., shilling attack). After this checking process, the polling peer can obtain
the reputation of the resource or the provider, and finally decides to download it
(as shown in Figure 2(d)). If the polling peer decides not to download from the
current provider, it can repeat the voting process on another resource.

More examples of using unstructured overlays include NICE reputation model [40]
and TrustMe [41]. All the approaches based on unstructured overlays have the
security concern. Messages may be intercepted or blocked during transmission,
and voting is vulnerable to collusion among peers. Therefore, no secure reputa-
tion computing or delivery can be guaranteed. Furthermore, searching or voting
on an unstructured overlay is based on flooding, which incurs heavy traffic in the
network. For example, in XREP, Poll messages are broadcast throughout the net-
work each time a peer needs to find out the reputation of a resource or a provider.
This in turn affects the scalability of the system because an increase in the num-
ber of peers can potentially lead to an exponential increase in the number of Poll
messages and responses.
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5 Other Applications of Unstructured P2P Networks

Besides file sharing, unstructured P2P networks have been widely used in other
network applications. In this chapter, we discuss two example applications based on
unstructured P2P networks: media streaming and VoIP.

5.1 Media Streaming: CoolStreaming

With the popularity of broadband Internet access and P2P technologies, media
streaming has gone through rapid growth. Typical services include on-demand video
streaming that allows users to choose and watch favorite movies anytime, Internet
Protocol television (IPTV) and live streaming that provide live TV service.

In a P2P streaming system, one or multiple supplying peers who have all or part
of the requested media can forward the data to the requesting peers. In turn, the re-
questing peers can become supplying peers for other requesting peers. Because each
peer contributes its own resource (storage and network bandwidth) to the system, the
whole system’s capacity is vastly amplified compared to the traditional client-server
architecture. The major challenges in P2P streaming include [47]:

*  Peer dynamics: In P2P networks, peers do not always stay online in the system.
Supplying peers might unexpectedly crash or leave. In this case, the requesting
peers need to find new supplying peers to replace the failed ones. Therefore, the
system should be highly robust to withstand such peer dynamics.

* Limited and dynamic peer bandwidth: Unlike powerful video servers, peers have
limited bandwidth capacities. Each supplying peer might only be able to support
a few requesting peers (or multiple supplying peers are required to support one
requesting peer). Also, the available bandwidth of supplying peers might fluctu-
ate. Hence, the system should be able to adaptively adjust each supplying peer’s
sending rate to keep the streaming quality at requesting peers unaffected.

CoolStreaming is one of the popular softwares that provide live streaming ser-
vice through P2P networks [32, 51]. As the first P2P-based streaming system that
attracts a remarkable amount of users, CoolStreaming has several notable features:
(1) Intelligent scheduling algorithm that copes well with the bandwidth heterogene-
ity of peers; (2) Swarm-style architecture that builds a gossip overlay to distribute
contents.

In CoolStreaming, a peer needs to search for some other peers called partners,
with which the peer collaborates to download streaming contents. To construct the
overlay network among partners, the system employs the Scalable Gossip Member-
ship protocol (SCAM) [23]. The SCAM protocol is fully distributed and scalable,
and can provide a uniform partial view of the whole system at each peer. Based on it,
CoolStreaming forms an unstructured overlay among partners, which achieves ex-
cellent resilience against random failure and enables decentralized operation. Such
an overlay is similar to the BitTorrent network [37].
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In detail, a newly joined peer first contacts the boot-strap server, which responds
with a randomized list of the currently active peers. The newly joined peer stores this
list in its cache and randomly selects a few peers from the cache to establish TCP
connections, i.e., partnership. Once the partnership is established between a pair
of peers, they exchange and update their cache contents. The maximum number of
peers in the cache is usually on the order of logN, where N is the total number of
peers in the system.

Content delivery in CoolStreaming is achieved as follows. The video stream is
divided into segments of uniform length, and the availability of the segments in a
peer’s buffer is represented by a buffer map (BM). Note that the aforementioned
cache is used to store system management data and the buffer here is used to store
media content. Each peer periodically exchanges its BM with its partners. Upon
receiving the BM from a peer x, a peer y chooses the data segments it does not
possess and sends a request indicating the demanded data segments to x. Then, x
delivers the requested data segments to y. Clearly, if a peer has multiple partners,
the peer has to select one partner for each of its missing segments. This selection
problem is called packet scheduling. Interested readers may refer to [48, 51] for
more details.

Figure 3 shows an example of the CoolStreaming network. The system consists
of a video source, a boot-strap server and four peers (labeled from A to D). The video
source provides the complete video content for the system. In the figure, it delivers
video content to peers B and D. The boot-strap server helps peers join the system.
The real lines with double-ended arrows show the partnership between peers. For
example, peer C has three partners A, B and D.

[21]22]23]-+]
g“'ﬂgpeerA |24|25|X |27|000|

video source

1\“ .-"l'

r-t ~ peerC
(22 x [ x| = [x]

—

boot-strap server

@j [23[24[25]26 [«

peer D

Fig. 3 An example of the CoolStreaming network
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The square table along a peer shows part of the peer’s BM. For example, peer B
possesses segments 24, 25 and 27 in its buffer. But it does not possess segment 26.
Missing of a segment is denoted as “x” in the BM. The subsequent segments after
the 27th are not shown in B’s BM, which is denoted as “...”. Note that peers have
different starting segments in their BMs. This is because they have different play
points (due to, for example, different end-to-end delay, or different downloading
bandwidth).

The figure also shows an example of packet scheduling at peer C. Suppose C
has known the BMs of its partners. It then uses the packet scheduling algorithm to
decide to fetch which missing segment from which partner. In the figure, it requests
segment 23 from peer A, segments 25 and 27 from peer B, and segments 24 and
26 from peer D, respectively. This scheduling imposes similar uploading load on its
partners.

In summary, the advantages of CoolStreaming include:

» Fully distributed and scalable: Each peer distributedly joins the system and se-
lects partners. During content delivery, a peer exchanges information with only
a few partners. The whole system is hence highly scalable. This allows Cool-
Streaming to accommodate a large number of peers. As reported in [31, 45], it
recorded over 80,000 concurrent users with an average bit rate of 400 Kbps.

* Highly resilient to peer dynamics: The use of multiple partners and the corre-
sponding multiple path delivery at peers provide high system resilience. If some
partners of a peer unexpectedly leave, the peer can still retrieve data from other
partners.

On the other side of the coin, CoolStreaming has some limitations due to its
design.

* High control overhead: CoolStreaming has high control overhead for the gossip
mesh maintenance and data distribution. A peer has to frequently communicate
with its current and potential partners to keep a highly refreshed overlay. Oth-
erwise, a peer cannot quickly find new partners in case of partner leaving. Fur-
thermore, a peer has to periodically exchange BM with its partners. This further
increases the control overhead.

* High end-to-end delay: Peers in CoolStreaming often encounter high end-to-end
delay. This is sometimes fatal to the quality of service, for example, for people
gambling during a live soccer play. The reason is two-fold. Firstly, the gossip
mesh is randomly formed without considering peer locality. The mesh often con-
tains long connections between faraway peers. Secondly, the procedure of BM
exchange increases the delay. Before a peer can download a segment, it has to
first obtain some valid BMs and then send a transmission request to the selected
partner.

There has been much effort to improve CoolStreaming and study new streaming
systems. For example, Ren et al. explore how to build a low-delay overlay mesh
among peers by considering peer locality [39]. Zhang et al. propose new data deliv-
ery mechanism to reduce delay due to BM exchange [49]. Meanwhile, many other
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P2P streaming systems are proposed and evaluated, for example, AnySee [33] and
GridMedia [43] for live streaming, P2VoD [20] and oStream [15] for video-on-
demand.

5.2 VoIP: Skype

VoIP service (also referred to as IP telephony, Internet telephony, or voice over
broadband) allows for the transmission of voice through the Internet. Traditional
telephone lines use the Public Switched Telephone Network (PSTN), which works
on circuit switching and connects callers to receivers through electrical circuits.
VoIP is based on packet switching, where data packets are carried across the Inter-
net, from one computer to either another computer or a PSTN telephone. There
have been many VoIP softwares in the market, for example, Skype [7], Google
talk and AOL Instant Messenger. VoIP operates in different forms. Here are a few
examples.

*  Computer to computer: This is the most frequently used way of VoIP. Each com-
puter should be equipped with a sound card, a headset consisting of earphones
and microphone, and some VoIP software. Most VoIP softwares provide free
service for one computer to connect to any other computer running the same
software.

» Computer to phone: Some VoIP softwares allow users to call regular telephone
landlines and mobile phones from a computer. This service is usually not free,
but its cost is often lower than traditional telephone charges.

* Phone to phone: There are two ways to make a phone-to-phone connection: (1)
Use a regular phone plugged into an Analog Terminal Adaptor (ATA), which in
turn connects to the Internet. (2) Use a VoIP phone that connects to the Internet.

Figure 4 shows the above three forms of VoIP systems. Current VoIP softwares
also provide many other features such as instant messaging, file transfer and video
conferencing.

We now study Skype as an example VoIP system. Skype launched its service in
2003 and experienced rapid growth after that. In October 2005, it was purchased
by eBay. According to eBay quarterly report, as of December 31, 2007, Skype had
accumulated 276 million user accounts.

Skype uses a proprietary and closed-source protocol. Numerous attempts have
been undertaken to study and reverse engineer the protocol [9, 24, 44]. It is believed
that Skype uses a Kazaa-like P2P network. Both companies were founded by the
same individuals and much of the technology in Skype was originally developed
for Kazaa. This is further confirmed by comparing Skype and Kazaa traffic on the
packet level [9].

The Skype system consists of three main entities: supernodes, ordinary peers
and login servers. Supernodes are elected from ordinary peers which have high
bandwidth, adequate processing power and no firewall. There are also a number of
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Fig. 4 Different forms of VoIP systems. (a) Computer-to-computer. (b) Computer-to-phone. (c)
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pre-deployed supernodes in the system, which keep staying online.Supernodes
maintain an overlay network among themselves.

When login, a peer first connects to the Skype network. This is achieved by
establishing a TCP connection and exchanging information with a supernode. To
do that, the new peer contacts a default supernode to obtain a list of supernodes.
The peer then caches the supernode list and regularly refreshes it. If the TCP
connection fails, the peer tries to connect to some bootstrap IP addresses hard-
coded in the client software (in version 1.2), or simply generates a login failure
report (in version 0.97) [9]. After connecting to the Skype network, the peer au-
thenticates the username and password with the Skype login server. An obfus-
cated list of servers has been hardcoded in the client software. Then the peer
advertises its presence to other peers, determines the type of network address
translator (NAT) and firewall it is behind and discovers peers that have public IP
addresses.

When a peer A wants to call another peer B, A first queries some supernodes for
B’s address. Through a search among supernodes, A can obtain B’s address. If both
A and B are publicly reachable, A sets up a connection to B and directly exchanges
voice traffic with B. If any participating peer is behind firewall or NAT, it sets up a
connection to a supernode. The transmission of voice traffic is then relayed by the
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supernode. Sometimes Skype also routes calls through ordinary peers to ease the
crossing of Symmetric NATs and firewalls.

The use of supernodes for communication has many advantages. Firstly, peers
behind NATs or firewalls are not publicly reachable. Through public supernodes,
such peers can be reached and called. Secondly, supernodes can manage multi-user
sessions such as conferencing. They can store messages from different users and
accordingly forward them. On the other hand, this network structure puts heavy
burden on supernodes, leading to unfair work loads among peers.

6 Mobile Unstructured P2P Networks

With the advance of mobile devices and technologies, data distribution among hand-
helds has become a reality. Wireless networks share many similar features with P2P
networks, e.g., distributed network structure and dynamic network topology. In this
chapter, we discuss how to implement unstructured P2P networks over wireless net-
works.

6.1 Characteristics of Mobile Wireless Networks

There are different types of wireless networks. We list a few as examples.

* Mobile ad-hoc networks (MANETs): MANETSs do not have any infrastructure
support (such as base stations, access points or remote servers). All network
functions are performed by the nodes forming the network, which often have
high mobility and low processing power. The resulting topology is then dynamic
and unstable. An example of MANET is a vehicular ad-hoc network, where wire-
less devices in vehicles interact with each other while moving at high speed.

*  Wireless sensor networks (WSNs): A WSN uses spatially distributed autonomous
sensors to monitor physical or environmental conditions (such as temperature,
pressure and pollutants). The sensors are low-profile devices with very limited
processing power, memory and battery. The primary concern of a sensor net-
work is its lifetime, therefore protocols for sensor nodes often focus on power
conservation.

* Wireless mesh networks (WMNs): A WMN consists of gateways, mesh points
and wireless end-users. Gateways provide access to the Internet. Mesh points
are small devices with limited processing power and memory, which are often
mounted on lamp posts or rooftops. Each mesh point is associated with a cer-
tain gateway, and forwards Internet-bound traffic from associated users to the
gateway. Mesh points hence extend the network coverage of gateways. While
end-users are mobile and may switch their associated mesh points at any time,
gateways and mesh points are generally stationary. A WMN is reliable and offers
redundancy. If some mesh points fail, the rest mesh points can self-form a new
mesh to continue communications.
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While these wireless networks have different forms and usage, they have some
common characteristics, which differentiate them from the wired Internet.

» Wireless transmission: Packet transmission on wireless channels is based on
broadcast. And the wireless communication medium is accessible to any entity
with the appropriate equipment and adequate resource. As a comparison, Internet
transmission is mainly based on unicast, and sometimes multicast. In addition,
wireless channels have limited bandwidth and each hop has a certain transmis-
sion range.

» Lack of routing infrastructure: In the wired network, routing is readily available.
But in wireless networks, routing is a non-trivial issue. Two important issues in
wireless routing are high maintenance overhead of routes and inefficient band-
width utility due to long routes.

* Low processing capability, memory capacity and energy power: Wireless devices
are often small handheld devices. They are normally low in processing capability
and limited in memory capacity and energy power.

6.2 Approaches for Mobile Unstructured P2P Networks

We select MANET as an example of wireless networks. A MANET is similar to a
P2P network in the following aspects.

* Both systems are distributed. In MANETS, nodes usually have low local resource
and cannot serve as servers. A scalable P2P network should also be fully dis-
tributed in order to accommodate a large number of peers.

» Their topologies frequently change because of peer on/off or mobility.

* Nodes or peers in the systems have similar functionalities. They cooperate to
route queries and rely messages. In both systems, flooding or broadcasting is
employed to some extent for data exchange or routing among peers/nodes.

There are also some differences between P2P and MANET. For example, P2P
works on the application layer in the protocol stack, while MANET focuses on the
network and lower layers. As mentioned above, peers in MANET are mobile and
constrained by limited energy, bandwidth and computational power, which is not a
big concern in P2P systems over the Internet. And MANET uses physical broadcast
but P2P uses physical unicast.

When deploying P2P networks over MANETS, the major problem is how to
quickly find the requested data in spite of the mobility and the scarcity of power
and bandwidth in the underlying MANET. Ding et al. propose several ways for such
purpose [19]. A straightforward approach is to simply implement the P2P flooding
mechanism over MANET on-demand routing protocols. That is, a query message is
flooded to every virtual neighboring peer in the P2P overlay. As two virtual neigh-
boring peers may be multiple hops away in the MANET, we need to obtain the
underlying route between them. Then the network routing request is also broadcast
at the network layer.
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We show an example in Figure 5(a). Circles in the figure represent mobile nodes
in a MANET. Two mobile nodes connected by a real line are within the transmis-
sion range of each other in the MANET. Shadowed rectangles (labeled as A, E
and F) represent peers in an unstructured P2P network. Two peers connected by
a dashed line are neighboring peers in the P2P network. From the figure, A and
E are neighboring peers in the P2P network. So are E and F. In this example,
if £ wants to search for some file, it floods its query to its neighboring peers in
the P2P network, i.e., A and F. Different from the wired Internet, the route from
E to A (or to F) is not readily available and needs to be discovered through the
MANET routing protocol. A broadcast for routing on the network layer is then
necessary.

Fig. 5 Two examples of unstructured P2P network over MANET. Circles represent mobile nodes
in a MANET. Two mobile nodes connected by a real line are within the transmission range of each
other in the MANET. Shadowed rectangles represent peers in an unstructured P2P network. Two
peers connected by a dashed line are neighboring peers in the P2P network

This approach is easy to implement. But it is not scalable due to the double-
layer broadcasts. Two neighboring peers in the P2P network might be physically far
away from each other. Hence, flooding in the P2P network might be expensive and
inefficient. Therefore, this approach is only applicable to small MANETS.

Another approach is to map the MANET network to a P2P overlay network.
Each MANET mobile node can be regarded as a peer in the P2P network. A pair of
neighboring nodes in MANETS (within the transmission range of each other) cor-
respond to a pair of neighboring peers in P2P. As wireless networks always employ
broadcast to transmit data, the MANET routing protocol and the P2P flooding pro-
tocol can be implemented by one-pass broadcast.

For example, in Figure 5(b), if E wants to search for some file, it broadcasts a
query to its neighboring mobile nodes B and G, which are also its neighboring peers



140 Xing Jin and S.-H. Gary Chan

in the P2P network. Upon receiving the query message, B and G check their local
file resource and continue broadcasting the message if needed.

Clearly, this method is more efficient than the first one. It directly finds the short-
est path between the file source and the original requester. But the whole network
is still flooded by query messages, which imposes heavy burden on communica-
tion bandwidth and power supply for mobile nodes. So it still cannot work for large
MANETs:.

There are many other approaches for building P2P networks over wireless net-
works. For example, Hora et al. study how to reduce energy consumption and delay
in mobile P2P networks [26]. Akon et al. propose a novel gossip protocol to build
and maintain a P2P network over a mobile wireless network [8]. Interested readers
can refer to these papers for more details.

7 Conclusion

We discuss in this chapter unstructured P2P networks, one type of widely used P2P
networks. In an unstructured P2P network, peers form an overlay (often in a random
way) to exchange or relay data. Different from structured P2P networks, unstruc-
tured P2P networks do not impose any structure on the overlays. As a result, data
storage is unrelated to the overlay, and file search essentially amounts to random
search.

We discuss several applications of unstructured P2P networks, including file
sharing, media streaming and VoIP. For the first one, we classify existing approaches
into four categories and explore representative examples from each category. We
also discuss two advanced issues in file sharing, i.e., content replication and reputa-
tion system. For the other two applications, we study their key challenges. We select
one state-of-the-art approach for each application and analyze its system design.

We also investigate how to implement unstructured P2P networks over wireless
networks. The characteristics of wireless networks (such as limited bandwidth and
transmission range) impose new challenges for building P2P networks. We study
the state-of-the-art approaches and discuss their advantages and limitations.
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Abstract Structure-wise, P2P networks can be divided into two major categories:
(1) structured and (2) unstructured. In this chapter, we survey a group of unstruc-
tured P2P networks. This group of networks employs a gossip or epidemic protocol
to maintain the members of the network and during a gossip, peers exchange a sub-
set of their neighbors with each other. It is reported that this kind of networks are
scalable, robust and resilient to severe network failure, at the same time very inex-
pensive to operate.

1 Introduction

In the Internet world, Peer-to-peer (P2P) computing is an emerging model for ser-
vice distribution. In contrast to the traditional client-server and push models, the P2P
model is characterized by decentralization, self-organization, cooperation among
peers and heterogeneity. In P2P model, participant peers work together to reach
a common goal. According to this model, an overlay networks is created among
peers, and peers bind each other in a logical neighbor relationship. Most often, such
an overlay network remains as a pure virtual entity over the physical network.
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Based on the nature of the binding or relationship among peers, P2P networks
is often distinguished into two categories: (1) structured and (2) unstructured. The
topology of the members in a structured network is ruled by explicit constraints.
Contents are distributed among the members using either some hints [4] or the
topology of the members [13, 15, 20, 22]. The unstructured networks do not have a
predetermined scheme to bind peers in neighbor relationship.

In this chapter, we explore a specific kind of unstructured P2P networks that
create the networks by interchanging a subset of neighbors. The heart of these net-
works is a gossip protocol where a peer talks to a neighboring peer about other
neighbors. The key idea is to introduce randomness in the system and eliminate all
sorts of global administration. This helps in sustaining dynamics of P2P networks,
i.e., constant join and leave of peers, and shows the capacity of self-healing in severe
network disasters.

We divide this chapter into several sections. We present four different P2P net-
works which are created and maintained using the concept of exchanging peers.
These networks are PROOFS, CYCLON, IPPS, and Gradient Topology Network,
and are elaborated in Sections 2, 3, 4 and 5, respectively. In Section 6, we end our
discussion with concluding remarks and future research discussions.

2 The PROOFS Network

Stavrou et al. propose P2P Randomized Overlays to Obviate Flash-crowd Symp-
toms or PROOFS [19] to manage Internet flash crowd. Internet flash crowd takes
place when an object reaches its peak popularity. During the pinnacle popularity
of an object, the number of requests may become so tremendous that a significant
number of the users are left out and thus the objects become unavailable to them.

2.1 Evolution

Previous solutions to the problem of flash crowd are either administration-wise im-
practical or expensive. Such solutions are provisioning accessibility based on peak
demand, creating dynamic hosts with dynamic domain names, etc. The traditional
solution of replicating servers increases availability but involves extensive amount
of communication efforts to exchange information and synchronize data with each
other, and thus is not scalable. In contrast, the PROOFS network provides a scalable
solution that can reliably deliver objects which are extremely popular to be handled
by standard delivery techniques.

There exist other structured P2P content distribution systems — such as CAN [13],
Chord [20], Past [6, 15], Tapestry [22], Pastry [15], SCRIBE [3, 16], etc. These sys-
tems facilitate easy and inexpensive object searches. However, objects or contents
with explosive popularity impose the same difficulties of traditional hosts. More-
over, such networks performs poorly in highly dynamic environments where partic-
ipants or peers join or leave at a very high rate. In contrary, PROOFS networks are
robust and possess self-healing property.
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2.2 Components

The design of the PROOFS network consists of two components: (1) client and (2)
bootstrap server. The clients! are participants of the P2P overlay and they interact
with each other to search and retrieve (popular) objects. A bootstrap server caches
a finite set of recently joined peers or clients and introduce them to a joining peer.
Thus a joining peer becomes familiar with the network.

2.3 Protocols

A PROOFS network is created and maintained with help of two protocols — (1)
ConstructOverlay and (2) LocateObject.

2.3.1 ConstructOverlay

The ConstructOverlay begins when a peer joins the PROOFS network and
obtains initial neighbors from a bootstrap server. During lifetime, a peer maintains
at most C number of neighbors. Here, if peer p includes g as its neighbor, p is
allowed to be the initiator of a communication involving g. Peer ¢ can communicate
with p by only responding to p, unless p is also a neighbor of g. Each peer, in the
network, performs a periodic operation called exchange.> The exchange operation
at peer p is described in Algorithm 1.

Algorithm 1: The exchange operation of PROOFS

1 p finds &), C .4, where each element of &), is selected randomly

2 pselects g € &), randomly

3 psends a request to ¢ with the set (&, U{p})\{q} to be a participant
4 if g agrees to the request then

¢ finds &; C 4, where each element of & is selected randomly
¢ sends a respond back to p with the set &,

p updates A}, «— (A\Ep) US,

q updates A, — (A\E) U &,

®X 9 N W

In the algorithm, .4/, is used to designate the neighbor set of peer p. As evident,
the sets of peers exchanged and the participant is chosen entirely randomly (line 1, 2,

I The term client does not refer to the clients in traditional client-server model. In P2P networks,
such components are designated as peers. Though the authors used the term client solely, we use
client and peer interchangeably to be in symphony with rest of the chapter.

2 The authors [19] used the term shuffle to designate this operation. We use the term exchange to
identify shuffle in PROOFS and other similar operations in other networks. The exchange operation
of PROOFS is used as the basis of other exchange operations discussed in this chapter.
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and 5). While updating the neighbor lists (lines 7 and 8) caution should be exercised
so that — (1) each neighbor does not exist more than once in a list, (2) a peers is not
included as its own neighbor, (3) the number of neighbors are always bounded by C
and if not, new members are added until the bound C is reached. Figure 1 shows an
example of an exchange operation in PROOFS network. In the figure p initiates the
operation with g.

62\ ° excggnge o @
o o {a,d.e}
(o) (@

Before exchange After exchange

Fig. 1 An example of exchange operation in PROOFS

Note that, a request to participate in an exchange may be denied or even ignored.
When the initiating peer does not receive a response back and times out, it assumes
that the target peer is no longer maintaining membership with the network, i.e., left
the network. A request is declined by an active peer, if and only if another exchange
operation is pending. In case of an unsuccessful exchange operation, the initiator
waits for a random time amount, picked from a uniform distribution and re-initiates
another exchange.

Like other communication networks, in PROOFS, the neighborhood relationship
is represented with a graph with directed edges. Peer ¢ being the neighbor of p is
indicated by the directed edge from p to g. An exchange operation introduces new
edge and may eliminate existing edges, and always reverses the direction of the edge
between participants.

2.3.2 LocateObject

When a peer wants to retrieve an object in a PROOFS network, it initiates a query
using the LocateObject protocol. A query includes four vital piece of informa-
tion — (1) identification of the requested object, (2) time to live (TTL), (3) a fanout
value (f), and (4) the address of the query initiator as the return address. A query is
allowed to traverse at most TTL number of overlay hops.

When a peer receives a LocateObject query, at first it checks the local ob-
ject repository for the requested object. If available locally, the object is sent to the
return address. Otherwise, the query is forwarded to f randomly selected neigh-
bors after the TTL value is decremented by one. Note that, in case the TTL value is
decremented to a negative value, instead of forwarding to the neighbors, the query
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is discarded. When the query initiating peer does not get a response back (due to
timeout), it may re-initiate the same query again, possibly with a higher TTL value.

2.4 Properties of the PROOFS Networks

In graph representation, a PROOFS network is depicted with a directed graph. That
is, if ¢ is the neighbor of p, p does not have to be the neighbor of g. The biggest
challenge of having an undirected graph appears when a peer leaves the network.
Each neighbor of the leaving peer has to find a new neighbor who is also willing to
accept an additional neighbor. The ease of not having a bi-directional neighborhood
relationship is counteracted by network partitioning.

Let Gy = (V,4,E,) be the proper directed graph representation of a PROOFS net-
work, where each vertex p € V,; represents a peer and each directed edge from vertex
p to vertex g, i.e., (p,q) € Ey indicates that ¢ is a neighbor of p. Let G, = (V,,E,)
be the undirected version of Gy, i.e., V, and V; are the same and for each (ITq)) c€E,;
there exists (p,q) € E, and (g, p) € E, or simply (p,q) € E,,.

Property 1: Given that, G, is the undirected representation of a PROOFS network
and is connected. If an exchange operation drives the graph representation to G,
from G,, G/, is also connected.? In other words, no exchange operation partitions a
connected PROOFS network.

Property 2: Let G, and G, be the directed and undirected graph representation
of a PROOFS network. Let there exists a path from peer p to g in G, but not in G,.
There exists a series of exchange operations that introduces a path from p to ¢ in
G,. To have the series of operations, consider a path, consisting of the sequence of
vertices < p, (p+1),(p+2),...,(g—2),(g—1),g >, from p to ¢ in G,,. Considering
the same sequence of vertices (and related edges) in the G, graph, there will be
some edges those point towards p and others towards ¢. Let (i, ) be an edge on that
sequence of edges pointing towards p. An exchange initiated by u with participant
v would make the edge pointing towards g. To have a path from p to g, the direction
of all those edges pointing towards p has to be reversed, and any combination of
related exchange operations serves the purpose.

2.5 Results

Some of the important results about PROOEFS are presented in this section.

3 For details proof, readers may refer to the original paper.
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2.5.1 Connectivity

The authors investigate the effect of dynamic join and leave on the connectivity of
the network. In simulations, for each peer p in the PROOFS network, the fraction
of other peers in the network reachable from p using the directed path is computed.
It was found that at least 95% of the time the average reachability is one, i.e., each
peer in the network can reach all other peers. The reported lowest reachability, con-
sidering all the peers, is 20%. However, such a poor connectivity occurs in extreme
situations such as when the expected time a peer remains in the network is 50 times
smaller than the expected time a peer exists the network. In practice, this kind of
extreme situation is hardly found.

2.5.2 Noncooperative Peers

The peers in PROOFS are simply applications running on user computers. As a
result, it is extremely difficult, if not impossible, to make all the peers fully co-
operative. Besides cooperative peers, there may exist peers with different levels of
cooperations — (1) a query-only peer simply forward queries irrespective of avail-
ability of the requested object in the local cache, (2) a tunneling peer is same as
a query-only peer but considers fanout to be 1, and (3) a mute peer drops all the
queries from any other peers in the network.

It has been found that if the number of query-only or tunneling peers grows up
to 80%, almost 100% queries turn out to be successful in finding the target objects.
The worst query success rate is observed with mute peers. When the population of
mute peer reaches as high as 80% the query success rate drops but stays above 80%.

3 The CYCLON Network

Spyros et al. propose the CYCLON network [21] as a gossip-based network mem-
bership management protocol in unstructured P2P networks. The goal of the re-
search is to design a management protocol that results in a network having low di-
ameter, low clustering, highly symmetric node degree and at the same time is highly
resilient to massive node failures.

3.1 An Enhanced Exchange Operation

To achieve the goal, the authors propose an enhanced peer exchange* operation. The
enhanced operation uses the similar working steps of the basic exchange operation

4 Spyros et al. use the term enhanced shuffle to designate their peer exchange mechanism.
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discussed in the previous section. The critical difference is that unlike the basic one,
in enhanced exchange, an initiating peer does not choose the participant randomly.

To facilitate the enhancement, the exchange operation is performed periodically
with an interval of A¢. Each peer not only maintains a list of its neighbors but also
age for each of the logical outgoing links (or edges to neighbors). The age of an edge
gives an approximate estimation of time, in Az unit, since the edge is created by the
peer the edge points to. Algorithm 2 shows the steps of the enhanced exchange
operation, initiated by peer p with participant g.

Algorithm 2: The enhanced exchange operation of CYCLON

p increases the age of all outgoing edges pointing to the neighbors
Let g € .4}, be a peer, such that ) 2 U5 where r € A, Aqg #r

1

2

3 Let &), C A4}, where each element of &), is selected randomly and |&),| =1 — 1

4 p sends a request to ¢ with the set &, U{p} to be a participant

5 if g agrees to the request then

6 q finds &, C A;, where each element of &, is selected randomly and |&;| =1
7 ¢ sends a respond back to p with the set &,

8 p updates A}, «— (A\Ep) U,

9 q updates A — (A\&) U &,

In the algorithm, p picks up the peer that is pointed by the oldest edge (line 2,
where 752 is the age of the edge (p,4))- The number of peers exchanged is called
exchange length and determined by the system parameter C > [ > 0. When g updates
its neighbor list, a new edge pointing towards p is to be created with an age of 0.
All other edges, including those, which are sent over during the exchange, continue
to maintain their respective previous ages. So, while exchanging peers, not only a
list of peers are sent out but also their respective ages. As the basic steps of both
basic and enhanced exchange operation are the same, the properties described in
Section 2.4 also hold for enhanced exchange operation.

3.2 Results

Spyros et al. reports some very interesting property of the CYCLON network. In
this section, we discuss some of their findings.

3.2.1 Average Path Length

To compute the average path length, the undirected version of the graph represen-
tation of a network is considered. The undirected graph conveys the idea of peers
being informed of the neighbors in the undirected sense, i.e., if g is a neighbor of p,
at some point in the future p will become a neighbor of gq. The concept is brought
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forward due to the second property of exchange networks described in Section 2.4.
It is observed that CYCLON network can converge to the average path length of a
random network within a hundred cycles, where a cycle is defined by the maximum
time duration allowing all peers to engage in a single exchange operation or Az. It is
also observed that the average path length increases logarithmically with the num-
ber of peers in the network. These observations indicate robustness of CYCLON in
applications where the entire network has to be reached out.

3.2.2 Average Clustering Coefficient

The clustering coefficient is defined as the ratio of the number of existing edges
between neighbors of a peer and the total number of possible edges between them.
An average over this coefficient for all peers gives an idea of how many peers are
neighbors of their own neighbors. The authors demonstrate that average clustering
coefficient of a CYCLON network converges to that’s of a random network® within
a few hundred cycles.

3.2.3 Degree Distribution

Degree of a peer is a very important performance metric in unstructured networks.
Degree of a peer is defined as the number of edges from the peer in the graph rep-
resentation. The degree related to the number of outgoing edges is defined as out-
degree and the number of in coming edges is in-degree. The out-degree of each peer
in the CYCLON network is fixed and is always C. In-degree is the factor we are
most interested in.

The distribution of in-degree reveals some very significant characteristics of the
network as described below:

» Existence of a peers with significantly low in-degree many result in partitioned
or disconnected network, in case the peers referring to the concerned peer die or
leave the network. Similarly, a peer with a very large in-degree also represents a
weak point, as failure of the peer may result in a disconnected network.

¢ The distribution of in-degree represents how search or other epidemic protocols
behave. For example, a massively connected peer may receive same query from
many other peers several times which not only waste resources but also give poor
performance for the protocols.

» The distribution of in-degree also bears the indication of how loads are distributed
among peers. For example, a massively connected peer has to provide responses
from many other peers where as a weakly connected peer may simply be idle.

Figure 2 shows an example distribution of in-degree in a basic exchange (such
as PROOFS) and enhanced exchange (such as CYCLON) network. As can be seen

2xC
N-1°

5 Average clustering coefficient of a random network is effectively defined as where N is the

total number of peers in the network.
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Basic exchange
Enhanced exchange ...

Number of peers

In—degree

Fig. 2 In-degree distribution

in the figure, most of peers have in-degrees which are very close to the out-degree
(i.e., C). This illustrates that the most of the peers have similar load. It also indicates
that the load per peer is fair. The amount of services, a peer is expected to deliver
is equivalent to the amount of service a peer is expected to receive. Figure 2 can
be explained by investigating the introduction, deletion and lifetime of an edge. As
shown in Fig. 1, at the end of the exchange, the edge from p to g is deleted and
a new edge from ¢ to p is created. The enhanced exchange mandates that the new
edge is assigned an age 0 and the deleted edge is the oldest edge towards a neighbor.

At each cycle, a node engages in one exchange operation, and thus creates a new
edge and abolishes an old one. Say, at cycle ¢, a new edge, with age 0, is created
towards peer p. At cycle (¢ + 1), another new edge towards p will be created and
the age of the last created edge will be incremented to 1. As a peer maintains C
number of neighbors and at each cycle the ages of the edges towards neighbors are
incremented by 1, a peer can host edges aged from 0 to (C — 1) only. So, a newly
created edge will be deleted within C cycles and a peer can have an edge as old as
C cycles pointing towards itself. In other words, a peer can have C edges pointing
towards itself at a single point of time.

In CYCLON, exchange operations between all the peers are periodic but are not
synchronized. Thus, the number of edges pointing towards each peer may vary a
little around C. Departure of peers and non-responding peers may allow an edge to
stay little longer or delete an edge prematurely. However, the system can recover
within C cycles. Unlike the enhanced version, basic exchange does not impose any
condition on the length of lifetime of an edge. As a result, at one extreme, an edge
may stay in the system for indefinite time and at the other extreme, an edge may be
deleted in the next cycle of its creation. That’s why, the basic exchange operation
results in a in-degree distribution with much higher variance as compared with that’s
of the enhanced version.

4 The IPPS Network

Inexpensive Peer-to-Peer Subsystem (IPPS) is an unstructured platform, proposed
for wireless mobile peer-to-peer networks by Akon et al. [1, 2]. The platform



152 Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh

addresses the constraints of expensive bandwidth of wireless medium, and lim-
ited memory and computing power of mobile devices. It uses a computationally-,
memory requirement- and communication- wise inexpensive protocol as the main
maintenance operation, and exploits location information of the wireless nodes to
minimize the number of link-level messages for communication between peers.

4.1 The Problem and the Goal

A wireless mobile network is a cooperative network where each node requires to
collaborate with each other to forward packets from a source to a destination. In
such a network, the entire available channel capacity may not be available to an
wireless application, and the actual throughput is also determined by the forward-
ing load generated by other wireless nodes. Besides, mobile devices are battery
operated. Unlike electronics, advances in battery technology still lag behind. Mini-
mizing the number of link-level wireless hops helps in increasing the capacity avail-
able to the applications. Reduced number of link-level hops also means less number
of transmission and less power consumption for a mobile node. Along with being
thrifty about bandwidth consumption, a suitable application for mobile devices is
required be computationally inexpensive to ensure prolonged battery life and mem-
ory requirement-wise economical to confirm accommodation in the small system
memory.

In spite of the limitations of wireless mobile networks, P2P over high capacity
cellular networks and wireless LANs can provide a wide range of services such
as sharing files [9]. In scenarios where accessing a commercial network is expen-
sive, members of a P2P network can share downloaded objects with each other or
even can collaborate to download a large popular object. This not only provides a
cheaper way of sharing resources, but also enables low latency access to remote
objects. Dissemination of rescue or strategic information in a disaster or war zone
can be accomplished using mobile wireless P2P network. Short message broadcast,
multimedia broadcast, text, audio and / or video based conference are some other
examples.

There are some proposals to use existing or modified structured networks in wire-
less and mobile networks. For example, XScribe [11] is modified from SCRIBE [3]
to suite in mobile networks. However, a structured P2P network faces a high net-
work maintenance cost and the ability of this type networks to work in extremely
unreliable environments has not yet been investigated. In contrary, an unstructured
P2P network is a low cost network which can sustain any extreme environment [19].
Although such a benefit is achieved at the expense of higher search cost, the network
assumptions and the overall gain have made this kind of P2P networks so attractive
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that several unstructured P2P networks have been deployed and are being used by a
huge user communities.

In a wired network, due to the abundance of resources, performance metrics of
many applications are abstract. However, P2P networks in wireless mobile envi-
ronment should be very economic about the resources of the wireless medium and
devices. The goal of IPPS is to provide an inexpensive and well performing P2P
platform on which different P2P applications can be developed. To achieve the goal,
an unstructured P2P network, exploiting location information, is examined. While
designing the platform, careful choices are made to make the platform flexible, ro-
bust and fault tolerant.

4.2 System Model

IPPS system model consists of a set of collaborative computing nodes, each equipped
with a wireless interface. Those nodes are assumed to have the capability to form a
network on-the-fly using an ad-hoc networking technology, such as GeRaf [23, 24],
an efficient location aware transmission (MAC) and forwarding (routing) scheme, to
manage the network. In this model, for each node, participation in the P2P network
is optional. However, irrespective of its membership in the P2P network, each node
participates in routing messages from one node to another as a low level service. The
network is equipped with low level (lower than application level) point-to-point uni-
cast primitives, and each of the mobile devices has access to some form of location
service [5, 12]. Through this location service, a node in the network can obtain the
physical location of itself or other nodes. The information from the location service
is used by the lower level network management (i.e., GeRaf) as well as by the P2P
modules (i.e., IPPS library). Figure 3 shows an example of the considered network.

To external
network (Internet)

@ A wireless host that is a member of the P2P network

O A wireless host that is not a member of the P2P netw

PN gateway to the external networks

Fig. 3 An IPPS network
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4.3 Topology Maintenance

In this section, we discuss some of the important components and properties of an
IPPS network.

4.3.1 The Exchange Operation

IPPS borrows the concept of exchanging neighbors® from PROOFS [19]. However,
the goals of the operation in these two networks are exclusive. In PROOFS network,
the operation provides randomness, where as, in IPPS, the operation makes attempts
to being neighboring peers closer to each other. The authors make the following
claim about their operation.

Claim: It is expected that exchange operations reduce link level hop count be-
tween neighboring peers.

Similar to CYCLON, each peer in IPPS performs exchanges at a regular inter-
val. During a exchange, / neighbors are interchanged between the initiator and the
participant. Peer p chooses the participating peer ¢ among its own neighbors with
the intention of reducing the total distance between the peers. Distance between
two peers convey the idea of physical distance between them. Considering the sys-
tem model and the underlying network infrastructure, the hop count between two
neighboring peers is proportional to the distance between them.

Legend:
@  Node participated in P2P network
O Node did not participate in P2P network

—— Link level shortest path

— P2P level shortest path
s

Fig. 4 Shortest path in P2P and link level network

Claim: Exchange reduces the bandwidth requirement to forward P2P messages.

A peer usually forwards P2P messages, such as query messages, to its P2P neigh-
bors only. As not all communication nodes participate in the P2P network, a P2P
level hop may consist of several link level hops. Figure 4 shows the idea pictorially.
There exists one non-P2P node between s and u (i.e., two hops), whereas there are
two non-P2P nodes between u and v (i.e., three hops). In a random P2P network, on
an average one P2P hop consists of average link level path length of the network.
In the worst case, where two neighboring peers are located at the extreme ends, a
single P2P hop has a link level hop count which is equivalent to the network diam-
eter. Having a neighbor located at a nearby location results in reduction in number

6 The authors designate their version of neighbor exchange protocol as reformation.
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of hops between the peers. This helps in reducing of number of link level messages
which helps in reducing the total bandwidth consumption to forward P2P messages.
Moreover, fewer hops mean reduced message latency. Note that both of these prop-
erties are very much desirable for wireless mobile applications, as reduced number
of link level messages slows down energy consumption and boosts battery life of
mobile devices.

(@) a (b) q

o, o,

13 P

Fig. 5 An exchange operation in IPPS

To have peers located at a close geographic area, the concept of distance gain
is introduced in IPPS. During an exchange between peers p and g, if the initiating
peer p forwards another P2P neighbor r to g, the distance gain is the reduction of
the distances between the pairs p and » and the second pair g and r. Figure 5 shows
a exchange where a directed edge from any peer x to another peer y means that y is
a neighbor of x. Now, the distance gain is formally given by:

d, = |dist(p,r)|  \dist(q, )| (1)

where dist(x,y) is the distance between x and y. When a peer p wants to engage
in an exchange, it finds the peer which results in the maximum distance gain. To
compute such a metric, for each g € .4}, p performs the following computations.

1. It computes a preliminary reform-set N %% such that |4 %} =1—1 and
N R}, C Np—{q}. The preliminary reform-set must satisfy the following con-
dition:

a7, > d, @
where u € A%} and v € N}, — N R% —{q}. In other words, /%% includes
[ — 1 number of the most distance gain contributing neighbors of p, during a
potential exchange with g;
2. it then computes the net gain for the preliminary reform-set as:

-3 d, ®

re,/V%;
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Finally, p chooses ¢ € .4, as the participator of the operation where d/ =
maxye 4, {df }. During the operation, p sends over a REFORM _REQUEST mes-
sage to t accompanied with the reform-set /" %’; U{p}. When peer 7 receives the
exchange request from p, it computes the reform-set for p and then sends the set
back to p as a REFORM_RESPONSE message. Unlike the reform-set from p, the
set, computed by 7, consists of a list of / peers from .4/ which maximizes the net
distance gain for p. After a successful exchange operation, both p and ¢ perform a
merge operation as discussed in next. Detailed control flows of an initiator and a
participator are given in Algorithm 3 and 4.

4.3.2 The Merge Operation

Peer p performs a merge operation after it gets back the reform-set from ¢. In con-
trary, ¢ performs the operation after it decides about the reform-set to send out.
Without lose of generality, let p be a peer performing a merge operation. .45, and
v be the reform-sets that are sent and received, respectively. During the merge
operation peer p updates its neighbor set %’ as follows:

%/ — (%\f/%end) U f/Vrecv 4)

where %’ is the new P2P neighbor set of p. Note that it is certainly possible that
(Ap\Asena) N Nreer # 0. In such cases, Mg | < |4}|. Measures should be taken to
carefully handle such cases. This issue is further elaborated next.

4.3.3 Number of P2P Neighbors

In IPPS platform, an upper and a lower bounds is set on the size of the P2P neighbor
set, a peer can have. Those bounds are defined as Ny, and Ny, respectively and
must satisfy the following condition.

Nmax 2 Nmin >1 (5)

There are some situations when the neighbor set size grows beyond the N,y
threshold (for example, when a joining peer gathers peers from several known peers
for its initial neighbor set). In those cases, the peer will keep N, number of the
nearest peers and discard the rest. Similarly, there are some scenarios where a neigh-
bor list shrinks below the N,,;, threshold (for example, when a neighboring peer fails
to respond to a P2P control message). Therefore, the peer requests for a neighbor list
either from one of the available neighbors or from some widely known repository,
following the same procedure of a joining peer.
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The upper bound N,,,, puts a limit on the worst case computational and space
complexity for a peer. The lower bound N,,;, provides robustness to IPPS. By tun-
ing those parameters, the connectivity of the network can be controlled. The gap
between Ny and Nyin, i.€., (Npax — Nipin ), allows the platform different levels of
fault tolerance. The larger the gap, the more a peer tolerates reduction of the size of
the neighbor set, i.e., failure of neighbors. PROOFS can be mapped into a special
scenario where Ny, and N, are equal. However, this makes PROOFS unfavorable
for wireless mobile networks which suffer from temporal disconnections or for P2P
networks which allow dynamic join and leave of participating peers. The reason
is that to maintain a specific number of neighbors, PROOFS suffers from a huge
number of initialization operation at detecting of each unavailable neighbor.

Algorithm 3: Control flow of an exchange initiating peer p

1 while true do

2 Compute the participating peer

3 Let, ¢ be the participating peer

4 Let, Aenq be the reform-set

5 Send a REFORM _REQUEST to ¢ with the reform-set . Ae,q
6 if t responds before timeout then

7

8

9

Let, Aenq be the received reform-set in REFORM_RESPONSE
J% — (L/K)\f/%end) U AMeer
if [} < Nipin then
10 ‘ call AddNeighbor ()
11 else
12 ‘ Shrink .4}, to size min(|A4}|, Njpax)
13 end
14 break
15 else
16 My Ny — {1}
17 if |4,| < Nyin then
18 | call AddNeighbor ()
19 end
20 end
21 end

Algorithm 4: Control flow of an exchange participating peer ¢

Let, A}ecy be the reform-set received from p
Compute the reform-set .45, to send to p
Send back a REFORM_RESPONSE to p with reform-set .A4,,4
</Vq — (/1{] - L/‘./and) U Aecy
if | A5] < Npin then
| call AddNeighbor ()
end

NN R W N -
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Procedure AddNeighbor

1 Let r be the executing peer

2 repeat

3 Send a SHARE_REQUEST to a known repository

4 Let, A}ecy be the set received in SHARE_RESPONSE
5 M= MU Ay

6 until | 47| < Nyin

7 Shrink .4} to size min(| 47|, Niax)

4.4 Results

An event driven simulation tool is developed to evaluate the performance of IPPS.
In the simulations, a rectangular area of size 175 x 175 square units, where 5000
mobile nodes are randomly distributed according to a Poisson process, is considered.
Different status from the network were collected at a fixed interval. The authors
compare IPPS with PROOFS wherever possible.

4.4.1 Computational and Memory Complexity

The computational complexity of exchange in IPPS is the complexity faced by the
initiating peer. This is due to the fact that the initiating peer incurs more compu-
tational complexity than the responding or participating peer. The following is an
analysis of the complexity with simple data structures and straight forward algo-
rithms:

1. The complexity to find the net distance gain for a specific neighbor is O (]| +
(=1)=0(AN|+1)=06(]);

2. For all neighbors, the complexity turns out to be ©(|.4|?);

3. By tracking properly during the previous computations, the neighbor with maxi-
mum net gain can be found in O (1) time.

Therefore, the total complexity becomes @ (|.#|>). The worst case scenario
arises when |.#"| = N;,4, and then the computational complexity becomes @ (N2,,.).
A peer faces the worst case memory requirement when the neighbor list grows be-
yond N, and this requirement can be formally expressed as O (N, + ). For a
given network, N, and [ are constants and small positive integers.

4.4.2 Number of Link Level Hops per P2P hop

Figure 6a, b show the average number of link level hops per one P2P hop using the
PROOFS and IPPS, respectively. The figures also show the theoretical upper bound
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on the average number of link level hops, considering that each node has global
view of the entire network and no existing node either leaves the P2P network nor
a new node join in. In case of PROOFS, due to the randomness of the network, the
theoretical upper bound is fairly followed. On the other hand, in case of IPPS, a
node does not have the global view and it may not choose the optimal neighbors
with the lowest distance between them. As can be seen in Fig. 6b, IPPS performs
slightly poorer than the optimal upper bound. As the percentage of mobile nodes
participated in the P2P network increases, the number of link level hops per one
P2P hop decreases. In fact, as the participation level increases, the chance to find
a P2P neighbor at a nearer location also increases. However, if a network uses the
PROOFS system (which is random in nature), this metric remains approximately the
same, irrespective of different levels of participation. In this case, as the neighbors
of a peer are uniformly distributed all over the network, the average link level hop
count is not affected at all by the participation level. Actually, the simulation results
presented in [21] show that only in an ideal situation (which is a perfect random
system with no network dynamics), PROOFS or similar systems can achieve the
best performance where the average length of a single P2P hop is equivalent to the
average path length of the whole network. Comparing Fig. 6a, b, link level hops per
P2P level hop is significantly lower in our proposed platform. This indicates that
IPPS reduces the bandwidth requirement and energy consumption to transmit P2P
messages.
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Fig. 6 Number of link level hops per P2P hop

4.4.3 Dual Cognizance

The exchange operation in IPPS establishes neighborhood relation among geo-
graphically close peers. At each exchange, a peer modifies the neighbor set with
the peers that are closer than those of the previous set and the neighbors of that peer
do the same. So, if p finds g to be at a closer location, it is likely that g also finds
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p the same and includes each other in their neighbor set. The property of a peer
being the neighbor of its own peer is defined as dual cognizance, by the authors.
Figure 7 shows the percentage of peers satisfying the dual cognizance property in
PROOFS and IPPS. Note that, in a perfect random PROOFS network, the best case
dual cognizance can be analytically defined as (%)2, where N is the total number
of peers. On the other hand, for an optimal IPPS (where each peer has a global view
of the entire network), this metric is 1.
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Fig. 7 Effects of join/leave interval on dual cognizance

4.4.4 Minimum Connectivity

An important property of an exchange network is — given a connected network, no
exchange operation can make the network disconnected (see Section 2). However,
it is possible that the P2P network becomes disconnected as peers join and leave the
P2P network. Mobility may further deteriorate the scenario, when the underlying
network becomes physically disconnected as mobile nodes are unreachable from
one another using radio links. During the simulation, authors compute the connec-
tivity of the P2P network. If p is a neighbor of ¢, ¢ is considered to know p and
vice versa, and are connected in both way. The simulation results fairly support the
previous claims [19] that for almost all the cases more than 95% of the peers remain
connected, given that they are also connected in their radio network. The worst case
scenario, i.e., the minimum connectivity in the P2P network, was also investigated.
Figure 8 shows the minimum connectivity of the network for different join/leave in-
tervals. The numbers of peers in the largest connected peer graphs are computed and
presented after normalizing in 1. As expected, the minimum connectivity decreases
with decrement of participation level as well as with the frequency of joining/leav-
ing the P2P network. It can be seen that the worst case connectivity is higher than
70% which provides an indication of robustness of IPPS platform.
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5 The Gradient Topology Network

In gradient topology, the highest priority entities are connected with each other.
These connected entities are called the core. Lower priority entities are arranged
gradually further away from the core. The position of an entity indicates its priority
in the system. In this section, we discuss a gradient topology network, proposed by
Jan et al., to facilitate ease of finding resourceful peers in a P2P network [17].

5.1 The Preliminaries

It is observed that distribution of peers in terms of resources is highly skewed [18]
and peers with poor resource conditions can result in inferior network perfor-
mance [14]. These observations lead to the concept of super peers. Compared to
average peers in the network, a super peer is highly resourceful. To improve per-
formance of the system, in many applications, critical and important services are
assigned to these high capacity super peers.

OceanStore [7] architecture exploits a primary tier of super peers with high ca-
pacity (in terms of high bandwidth and connectivity) to preserve replicas of objects
and employs them to manage updates. In Chord [20], multiple virtual servers are
assigned to high performance hosts, i.e., super peers. Such peers are utilized to en-
hance the routing performance in distributed hash tables (DHT) [10].

The proposal of gradient topology network addresses two issues. Firstly, election
of super peers — due to enormous size of P2P networks and their dynamics, it is
very difficult for a single entity to maintain a global view of the entire network. So,
a distributed solution is desirable. Secondly, finding super peers — it is important that
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super peers of interest are searchable so that other ordinary peers can easily obtain
important services from these super peers. The former problem is out of the scope
of this chapter and we concentrate on the later problem, which is solved using an
exchange network.

5.2 Exchange Operation

In the gradient topology network, each peer maintains two sets of neighbors. At
peer p, the first set, ., contains a set of peers with similar capacity (or priority)
and like PROOFS, the second set, .4, maintains a set of random peers. For each
neighbor ¢ in both ., and .4}, peer p also maintains the capacity (U). The ran-
dom neighbor set is used to discover unexplored peers in the network for similar
capacity. This way, the chance of having more than one cluster of similar capac-
ity peers is reduced. The random network also provides robustness and makes the
network resilient to network partitioning. Besides, the random neighbors facilitate
the distributed computation of capacity of peers and election of super peers. In this
network, peer p performs periodic exchange operation, as shown in Algorithm 6.

Algorithm 6: The exchange operation of Gradient Topology Network

1 Let g be a randomly selected peer from .7, U .4,

2 p sends a request to ¢ with the two sets .7, and .4}, to be a participant
3 if g agrees to the request then

4 ¢ sends a respond back to p with the two sets .7 and .4}

5 call GTNReplacePeer (p, .7, ) from p

6 call GTNReplacePeer (g, ), A}) from ¢

Procedure GTNReplacePeer
input: X, Lrecvs Nreey

Let p € Syeev such that |U(p) — U(x)| is the minimum
Choose r € .%; randomly
Update ., — (7 U{ph\{r}

Choose p € A}, randomly
Choose r € A5 randomly
Update A — (A U{p})\{r}

(= L7 B N W N -

In the GTNReplacePeer procedure, the calling peer replaces one entry in the
similarity-based set with another peer, received during the exchange operation. The
new peer is chosen such that the capacity is similar to the calling peer (lines 1-3).
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Later on, one entry in the random neighbor set is replaced with another entry from
received random neighbor set (lines 4-6).

5.3 Search

The organization of peers in a gradient topology enables an efficient heuristic search
technique to find the high capacity or super peers in the network. The search algo-
rithm uses the capacity information embedded in the topology to restrict the proce-
dure within a small number of peers. When a peer initiates a search, a desired ca-
pacity threshold is included within the query message. The threshold is determined
based on the resources requirement of the target operation. A peer p with capacity
lower than the threshold greedily forwards the query to the neighbor g with highest
capacity. Formally, ¢ € ./, U4, and U(q) > U(r), where r € ./, U N, A1 # q.
The forwarding process continues until a peer with required capacity is found or
time-to-live (TTL) value of the query expires. Note that, due to peer churn, a search
may result in looping in a local minima. To prevent such looping, all visited peers
are added the query message and a message is never forwarded to a peer that the
message has already visited.

5.4 Results

A P2P network, consisting of up to 100000 peers, is simulated to evaluate perfor-
mance of the proposed scheme. The capacity of the peers are assigned such that only
1% of them are considered to be super peers. The network is put under constant
churn. It is observed that the evolved gradient topology have very small diameter
and the average hops to find super peers is bounded by the diameter. In a network as
large as to include 100000 peers, the diameter is typically in the order of 5 or 6. As
a result, it takes significantly fewer steps to find super peers in the gradient topology
as compared to other techniques, such as random walk [8].

6 Concluding Remarks

In this chapter, we have investigated four unstructured P2P networks which are cre-
ated and maintained using the concept of exchanging peers. These networks demon-
strate that simple exchange operation can harness a handful extra ordinary features.
They also signify the variety of usages of the exchange operation. The PROOFS
network is a robust and scalable network to handle Internet flash crowd that tradi-
tional technologies fail to manage. The CYCLON network is introduced to enable
a P2P network to be load balanced. IPPS is an unstructured platform for wireless
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mobile P2P networks. The platform addresses the limitations of wireless medium
and mobile devices, such as, expensive bandwidth of wireless medium, and lim-
ited memory and computing power of mobile devices. IPPS is a computationally-,
memory requirement- and communication- wise inexpensive protocol that is excel-
lently suited for the target environment. Unstructured P2P networks are typically
considered to sacrifice search performance for inexpensive maintenance operations.
In contrast, the gradient topology network utilizes the exchanging peer mechanism
to facilitate a superior search technique.

Little research on efficient searching in unstructured P2P network has been done.
Working principles of networks like CYCLON and IPPS reveal interesting and fun-
damental properties which typical unstructured P2P network do not have. As a re-
sult, search techniques exploiting these features are yet to be explored.
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Peer-to-Peer Topology Formation Using
Random Walk

Kin-Wah Kwong and Danny H.K. Tsang

Abstract Peer-to-Peer (P2P) systems such as live video streaming and content shar-
ing are usually composed of a huge number of users with heterogeneous capacities.
As a result, designing a distributed algorithm to form such a giant-scale topology
in a heterogeneous environment is a challenging question because, on the one hand,
the algorithm should exploit the heterogeneity of users’ capacities to achieve load-
balancing and, on the other hand, the overhead of the algorithm should be kept as
low as possible. To meet such requirements, we introduce a very simple protocol for
building heterogeneous unstructured P2P networks. The basic idea behind our pro-
tocol is to exploit a simple, distributed nature of random walk sampling to assist the
peers in selecting their suitable neighbors in terms of capacity and connectivity to
achieve load-balancing. To gain more insights into our proposed protocol, we also
develop a detailed analysis to investigate our protocol under any heterogeneous P2P
environment. The analytical results are validated by the simulations. The ultimate
goal of this chapter is to stimulate further research to explore the fundamental issues
in heterogeneous P2P networks.

1 Introduction

P2P networks have become an essential part of the Internet and many successful P2P
applications have been developed and widely used such as live video streaming (e.g.,
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PPLive[1], CoolStreaming[41]) and content sharing (e.g., BitTorrent[2], Gnutella[3]
and KaZaA[4]). An important skeleton in the P2P applications is the formation of
overlay topology. In general, overlay topologies can be classified into two types,
namely unstructured topology and structured topology (a.k.a. DHT topology). Since
unstructured topologies are simpler to construct as well as more robust to network
dynamics (e.g., ungraceful peer departure) than structured topologies, as a result
many of the P2P applications such as PPLive, BitTorrent, KaZaA and Gnutella use
unstructured topologies to form their overlay networks. However, building a good
unstructured P2P topology is not a trivial task because there are two main issues
which are detailed as follows.

Network heterogeneity. P2P networks are very heterogeneous. For instance,
users’ access bandwidths are actually very diverse, ranged from 56Kbps connections
to several Mbps connections. Moreover, there are many other factors determining a
P2P system’s performance. Users’ local resources such as CPU power and available
cache memory are also an important consideration for a P2P system design. There-
fore, in this work, we define a generic term “node capacity distribution” to represent
the heterogeneity of the users. A natural question to ask is how to build a P2P net-
work based on the “capacity” of each user which is a critical step in load-balancing
and providing a stable service to the users.

Scalability. P2P applications usually involve several ten thousands of users and
are expected to grow for supporting millions of users. In such a large-scale P2P ap-
plication, using central servers to coordinate a topology formation process suffers
from scalability issues (e.g., server overloading, single point of failure). Further-
more, in bandwidth-demanding applications such as P2P live video streaming, the
nodes should connect to a suitable neighbor which has a sufficient bandwidth. In this
scenario, how to find such suitable neighbors in a large P2P network with low over-
head becomes a challenging problem. It is necessary to have a scalable, lightweight,
distributed topology formation algorithm for this purpose.

Therefore, our first objective in this chapter is to introduce a protocol for build-
ing a heterogeneous, unstructured P2P network and overcoming the difficulties as
outlined above. Our protocol exploits the nature of random walk sampling which is
completely decentralized and consumes a low overhead.

P2P networks are extremely complicated because of their unique characteristics
which are totally different from the traditional server-client architecture. For exam-
ple, P2P networks may involve millions of users simultaneously where they can
continuously join and leave the networks without a predictable pattern. Moreover,
the heterogeneity of the P2P network is changing from time to time. Due to the large
complexity, it is difficult to evaluate our protocol solely based on large-scale simu-
lations or Internet experiments which are time consuming and costly. Therefore, our
second objective in this chapter is to introduce a mathematical model to analyze our
proposed topology formation algorithm. The key point in the analysis is to model
the heterogeneity of the users. Hence, based on our analytical model, we can easily
examine a large-scale P2P topology structure built by our protocol under any het-
erogeneous environment. The results also help us to further engineer and optimize
P2P protocols running atop the topology.
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We structure this chapter as follows. Section 2 reviews literature on different
topology formation algorithms and some other applications based on random walk
sampling. Section 3 presents our protocol. We then provide a comprehensive anal-
ysis for the proposed protocol in Section 4. The simulation results are presented
in Section 5. Finally, Section 6 concludes this chapter and discusses some possible
extensions of this work.

2 Literature Review

Napster’s appearance in 1999 created immense interest in the research community.
Napster, based on centralized server architecture, suffers from a poor scaling prob-
lem because the file search process is carried out in a centralized server to which
peers are required to periodically upload their file indexes. This causes a single
point of failure problem and server overload. As a result, a distributed P2P archi-
tecture was advocated to replace a Napster-like centralized system. Distributed P2P
networks can be generally classified into two main categories, namely unstructured
networks and structured networks.

In the first category, unstructured P2P networks have been widely used such as
Gnutella, KaZaA and BitTorrent. The benefits of using unstructured networks are
in providing resiliency against peer’s dynamics (e.g., peers may ungracefully leave
the network anytime) and achieving a relatively low maintenance overhead for the
overlay topology. In Gnutella, the nodes join the P2P network by connecting to m
live nodes (a node is live if it is currently connected to the P2P network). m is typ-
ically 3~5. This method is very ad hoc without any mathematical support. KaZaA
and Gnutella2 [5] employ a super-peer topology which is a kind of adaptation tech-
nique. In this case, powerful users (such as high bandwidth users) form the backbone
of a P2P network and most of the query traffic is processed by them. Therefore, low
capacity users can be shielded from massive query traffic, making the unstructured
systems more scalable. The important question in constructing two-tier P2P net-
works is how to select “super”” nodes. There are many ad hoc approaches such as
selecting “super” nodes based on their lifetime, memory and bandwidth.

Recently, some algorithms have been proposed for building unstructured P2P
networks. In [32], the authors suggest a protocol to build low-diameter P2P net-
works by using a bootstrap server to coordinate the connections between peers. In
[33], an algorithm is proposed to produce a topology with O(logN / loglogN) di-
ameter where N is the number of peers in the network. Their idea is based on a
random graph theory to construct the topology with a certain number of edges. As
a result, the targeted diameter is achieved. Phenix [39] was recently proposed for
building resilient unstructured P2P networks. First, it utilizes the idea of scale-free
network to shorten the topology diameter. Second, it has a built-in mechanism to
counter intentional attacks. However, all these algorithms assume the P2P network
is homogeneous meaning that each node has the same capacity which is not true
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in reality. Therefore, it is necessary to develop protocols and analytical models for
heterogeneous P2P networks.

In [9], the authors proposed a scalable Gnutella-like system, called Gia, by em-
ploying different algorithms such as query caching, adaptive overlay formation and
traffic flow control. They carried out different simulations to investigate the system’s
performance. Since they focus on their specially-designed file-sharing system, it is
a prior not clear if their solution can be applied for other P2P applications such as
live video streaming and BitTorrent-like applications.

Our protocol, inspired by the Metropolis-Hastings algorithm [17, 31], is based
on random walk sampling to assist the peers in selecting their suitable neighbors
with high capacity per connectivity. Apart from this work, random walk sampling
has also been used in different P2P applications such as construction of a random
expander graph [24], realizing a distance-based random long-link connection [42]
and searching objects in P2P networks (e.g., [15, 21, 29]). A general mathematical
reference of random walk sampling may be found in [6, 26].

In the second category, structured P2P networks such as CAN [34] and Chord
[37] have also been proposed. These systems emphasize a highly-organized overlay
structure, based on Distributed Hash Tables (DHTs), to improve the search perfor-
mance on a P2P network and achieve a low network diameter. To achieve an efficient
search on a structured overlay network, each peer has to maintain a routing table for
forwarding queries. However, under a highly dynamic P2P environment, the mainte-
nance overhead for keeping the routing tables consistent is large, and unfortunately,
inconsistent routing tables in DHT networks can significantly degrade the search
performance and network diameter. Some hybrid approaches, e.g., [14, 25], suggest
for building P2P networks in order to exploit DHT features (e.g., efficient search)
while keeping the maintenance overhead small under a high network churn.

3 Our Proposed Protocol

In this section, we introduce a topology formation protocol based on random walk
sampling. Then we provide a mathematical model to analyze the structure of the
P2P network built by our protocol.

3.1 P2P Network Model

Heterogeneity among P2P users is the main concern in forming the topology. Many
factors affect user’s heterogeneity. First, each user has certain access link band-
width, ranged from dial-up modem to several Mbps connections. Second, user’s lo-
cal scarce resources such as CPU power and available memory are also a dominant
factor on a P2P system’s performance. Therefore, to characterize the heterogeneity
of the peers, we define the generic term “node capacity”, n; > 1, which is considered
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as a combination of the access link capacity and available scarce resources of node i.
We assume that 7; is chosen from a probability density function (p.d.f.) p (1) which
is called “node capacity distribution” in this chapter. This p.d.f. can be either con-
tinuous or discrete. Therefore the node capacity distribution characterizes the global
heterogeneity of the P2P network. Determining the value of node capacity depends
on applications. For example, in a P2P streaming application, a node capacity can
be mainly regarded as a node’s upload bandwidth because it plays an important role
on the performance of such system. For a network coding system like [16], the peers
are required to encode and decode information received from their neighbors. This
may be a CPU-consuming task. Therefore, in this case a node capacity should be
defined as a combination of CPU power and access link bandwidth.

In this work, we assume that the network bottleneck in a P2P system happens
only at the access links of the peers. In addition, we do not consider any correla-
tion between the P2P logical links (i.e., shared congested links) in the Internet cloud
since the physical routing path, congestion situation and traffic pattern are dynam-
ically changing over time, and all these make the analytical model highly compli-
cated and intractable. Unless a large-scale Internet experiment is being carried out,
the actual environment is very difficult to realistically model and simulate due to the
lack of publicly available information such as the Internet topology, routing informa-
tion, link bandwidth and traffic pattern. This simplified but well-accepted network
model has been previously employed by other researchers (e.g., [10, 16, 19, 30, 40]).

3.2 Joining Process

To describe our protocol, we use k; to represent the degree® of node i. Generally,
every node prefers to connect to a high capacity node in order to achieve a better
service from its neighbors. However, it is not enough to purely consider the neigh-
bor’s capacity as a connection criterion. At the same time, each node should not
connect to the neighbors with a high degree as well. This is because a high degree
node would receive a large workload. Therefore, our joining process considers two
important metrics, node’s capacity and degree, to make the connection decision.
Also, we would like to introduce some randomness for the joining process so that
each node can connect to other different nodes. Mathematically, we can formulate
our joining process as follows. The probability x; that node i is connected by a new
incoming node is proportional to its capacity and inversely proportional to its current
degree in a nonlinear manner controlled by o > 0 and 8 > 0, 1.,

="t i €L(t) (D

2 In this chapter, node degree means the number of P2P connections that a node has.
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where L(¢) denotes the set of all live nodes in the network at time ¢. By tuning
the values of o and 3, they are analogy to transform the underlying node capacity
distribution and control the growth of node degree respectively. As a result, our
topology formation protocol is flexible in terms of load-balancing or achieving other
special requirements (e.g., link-level homogeneity [27, 28]) for a spectrum of P2P
applications running on top of the topology. Roughly speaking, if ¢ is small and
B is large, the node degree would increase slowly. If o is large and f is small, the
node degree would increase fast. We discuss how to tune ¢ and 8 for “matching”
peer’s workload for different P2P applications in Section 4.4.

It is impractical to use bootstrap servers to maintain global network informa-
tion to achieve Eq. (1). Therefore, we employ the Metropolis-Hastings algorithm,
developed in [17, 31], to achieve Eq. (1) distributively as follows.

We model a P2P network as a connected graph ¢ = (¥,&) with node set
¥ ={l1,...,n} andedge set & C ¥ x ¥, with (i, j) € & < (j,i) € &. We assign a
transition probability p;; to each edge (i, j) € & as follows

1 . n;j Yk P ki+1

D = B
and create a self-loop at each node i with p;; = 1 —3; j)ce pij such that the total
transition probability is 1 (k; and k; do not count the self-loop). The edge’s transition
probability is used for random walk which is discussed in the following. By using
this algorithm, each node i has to broadcast its capacity 7; and current degree k;
values to its neighbors such that the neighbors can use this information to assign a
transition probability to their edges.

When a new node joins the network, it contacts m live nodes in the network.
These m live nodes can be retrieved from a bootstrap server or a cached node list
stored in the new node. Then, the new node issues m different walkers to these m
nodes. Each walker is assigned a time-to-live (TTL) value, 7. This TTL value is
equivalent to the number of iterations in the Metropolis-Hastings algorithm. The
walker is forwarded from the current node to a neighboring node based on the edge
transition probability defined by Eq. (2) and the walker’s TTL is decremented by
one after each forwarding. The new node connects to a node at which the walker
stops (i.e., the value of TTL becomes zero). If a walker stops at the node which is
already connected by that new node, then the walker moves additionally & steps.
In this chapter, we assume 6 = 1. This process repeats until the walker can find a
node for the new node to join. However, this situation is very rare to happen if the
network is large. In addition, each walker should send a keep-alive message to the
new node, e.g., in each forwarding or a certain period of time. If the new node does
not receive the keep-alive message for a period of time, it assumes that a walker is
lost and issues another new walker to compensate for the lost one.

We can easily verify that the Markov chain defined by Eq. (2) is (1) reversible,
ie., mp;j=mwipj forall i, j € ¥, (2) aperiodic and (3) irreducible. Therefore, the
sampled probability by the random walk converges to a steady-state distribution
that is exactly equal to Eq. (1) when T — co. According to our previous experience,
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a small TTL value (7 ~ 10) can obtain a good random mixing for some networks
with 50000 nodes [20].

3.3 Rebuilding Process

When a node leaves the network, all of its neighbors 7 lose a link. To prevent network
breakdown and node isolation, those nodes which lose a link rebuild r; new link(s)
to compensate for the lost one. This is called the rebuilding process. Note that, in
general, if r; < 1, it can also be interpreted as the probability of rebuilding a link.
For simplicity, we assume r; < 1 for the rest of the chapter.

‘When a node i tries to rebuild a link, it issues a walker with a TTL value, 7, to
one of its neighbors randomly.? Then the walker traverses the network, the same as
the node joining process. Finally, a new link is created by connecting node i and
the node at which the walker stops. In particular, we introduce the following two
rebuilding schemes (note that we use k; to denote the degree of node 7 just after
losing a link).

Probabilistic-rebuilding scheme: The nodes rebuild a link based on a probability
r. Mathematically,

o { -
T r k;

l

2
: 3

WVl

for every node i. The threshold on k;” = 2 means that each node has to maintain at
least three links to ensure network connectedness.

Adaptive-rebuilding scheme: The nodes should gradually not rebuild links when
their degrees are getting large in order to prevent overloading. At the same time, each
node should maintain at least m links such that an overlay service performance and
reachability are not degraded. Therefore, this rebuilding process allows the nodes to
make rebuilding decision adaptive by considering their current degrees. Mathemat-

ically,
m—1
=" 4
= “)
for each node i.
In this chapter, we focus on analyzing the probabilistic-rebuilding scheme. The

analysis of the adaptive-rebuilding scheme can also be done similarly.

4 Protocol Analysis

Network model can be classified into two main categories, namely static random
graph and evolving networks. As for static random graph, the number of nodes

3 The node can also send a walker to a random node in its cache node list.
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and links are kept constant. This model was first suggested by Erdés and Rényi in
1959 [12]. This model has been used in analyzing P2P networks. However, due to
its static behavior which is totally opposite to dynamic P2P networks, we believe
that this model is not suitable for analyzing P2P networks. Another graph model is
so-called evolving networks. The generation method, which is quite different from
static random graph, is that the new nodes and links are added to the network over
time. Thus the number of nodes in the network keeps increasing.

However, neither model can represent the actual properties of P2P networks. Ba-
sically, three phases happen in P2P networks — a growing phase, a stabilizing phase
and a decaying phase. In a growing phase, the number of nodes keeps increasing
(i.e., the node incoming rate is larger than the node leaving rate), which happens
during the transition from non-busy hours to busy hours because many users go
online. However, the size of the network cannot increase indefinitely. When the net-
work reaches a certain size, the node incoming rate would be roughly the same as
the node leaving rate. As a result, the number of nodes remaining in the network
would be roughly constant. This is called a stabilizing phase. After the peak hours,
the network enters a decaying phase in which the size decreases as many users go
offline (i.e., the node incoming rate is smaller than the node leaving rate) and finally
reaches another stabilizing phase. These three network evolution phases have been
observed in PPLive [1] which is the most popular IPTV system today [18]. The
measurement study in [18] shows that the duration of the stabilizing phase is clearly
dominant over the other two phases. Similar results are also observed in the Gnutella
network [38]. Therefore, it is worth studying and analyzing the P2P networks under
the stabilizing phase. We describe our stabilizing network model in the following
section.

4.1 Stabilizing Network Model

The model is inspired by the growing network model (e.g., [7, 11, 36]). However,
there are two key differences. First, our model assumes the network size to be con-
stant. We believe that our model is suitable to analyze the steady-state behavior of
a topology meaning that the P2P network size remains roughly constant over time.
This is a common observation in the P2P networks as discussed above. Second, our
load-balancing protocol for constructing the topology is orthogonal to the preferen-
tial attachment model (e.g., [7]). Our analysis focuses on a large population regime.

Let k (s,t,7m;) be the degree of node s at time ¢ and N5 € [Nmin, NTmax| be its ca-
pacity. Assume the initial network is connected with N nodes. At each time step
t =1,2,3,..., a new node is added into the network by connecting to m different
live nodes based on our protocol where m is a system design parameter. Each node s
is labeled by the time of its arrival s = 1,2,3,... < t. For example, node 1 arrives in
the P2P network earlier than node 2 and etc. Without loss of generality, we use step
time throughout the analysis. At the same time, a randomly chosen node is removed
from the network. It means that every node’s lifetime is exponentially distributed as
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shown in Lemma 1. Then each neighbor s of the departing node should rebuild r
new link(s) to compensate for the lost link. Thus, the node arrival rate is equal to the
node leaving rate, and hence the network size remains N nodes.

We can establish the following differential equation to describe the evolution of a
node degree k (s,7, 1)5) by using the ideas of a continuum approach (e.g., see [7, 11]):

(s kst | T
8,0, Ms _ kP (s,2,m5) _ 8,1, s kP (s,t,m5) .
Fraais e MG A Yican O

where Z is the normalization factor

-y ©
geL(z)k (g7t’n€)

The rationale behind Eq. (5) is explained as follows. At each time step, a new
incoming node connects to node s with probability 7 o< kB (1 e., Eq. (1)), the

rate of change in the degree of node s is taken into account by the first term. Addi-
tionally, since a randomly chosen node departs, node s loses a link with probability
k(s,t,ms)/N. After losing a link, node s triggers a rebuilding process to rebuild
link(s). This effect is modeled by the second term. Moreover, for each departure
event at time 7, a set A (r) of nodes lose a link. Since a randomly chosen node is re-
moved from the network, thus |A (¢)| = (k(t)) where (k(t)) is the average degree of
the P2P network at time 7.* Then the rebuilt links may connect to node s and hence
this event is taken into account by the third term. Remark that Eq. (5) is a generalized
formula for any rebuilding process, not only limited to the probabilistic-rebuilding
scheme.

4.2 Analysis of Mean Degree of P2P Network

In this section, we investigate the relationship between the probabilistic-rebuilding
scheme and the mean degree of the P2P network. Obviously, we cannot arbitrarily
set the value of r because an improper value would generate excess links in the
P2P network. Theorem 1 provides a foundation to choose the value of r for the
probabilistic-rebuilding scheme and develops a relationship among r, m and the
mean degree of the P2P network.

Theorem 1. In a stabilizing network, the following condition

m
<l-— 7
r<l-y (7
is required for the probabilistic-rebuilding process. The resulting asymptotic mean
degree of the P2P network is

4 We use the symbol {-) to denote expectation.
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(k) = ®)

Proof. Letl(t) be the number of links in the network at time 7. We treat [(¢) as a con-
tinuous variable. We can establish the differential equation of /(¢) for the stabilizing
network as follows:
dl(t
—():m—|A(t)|+ 2 ri 9
)

dt i€A(t

where A () is the set of nodes which lose a link in a departure event at time ¢ and
|A(¢)| denotes the number of nodes in set A (¢). On the right side of Eq. (9), the
first term represents the increasing rate of the number of links in the network due
to the new node arrival. The second and third terms denote the change of links in
the network because of the node departure and the rebuilding process respectively.
Since a random node is removed in each departure event, thus |A (¢)| = (k (7)), where

k(1)) = %(Z) is the mean network degree at time 7. Also r; = r,Vi € A (t). Therefore,
Eq. (9) can be expressed as

dl(t) 21(t)
T—m—T(l—r). (10)

Suppose 0 < r < 1, the steady state of /(¢) can be obtained by letting dld—(;) =0 and

hence

I(oo) = lim 1 (r) = —™ (11)

o0 2(1—r) "

Since the size of the P2P network is fixed, the number of overlay links must be less
than or equal to § (N2 — N) which represents a fully connected network. Therefore,

[(eo) =

<l—-—-. 13
=r N1 (13)

<= (N*-N) (12)

The asymptotic mean degree of the network is

ky="" = . (14)

O

Note that from Eq. (7) the upper bound value of r is very close to 1 because
m < N. Moreover, the mean degree of the topology can be flexibly tuned by varying
the values of r and m.
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4.3 Analysis of Node Degree Evolution

In order to analyze the topology structure and understand how the node degree
evolves over time under a heterogeneous environment, we have to solve the dif-
ferential equation of the node degree, i.e., Eq. (5). We use a mean-field approach to
seek the scaling form of the solutions to Eq. (5), i.e.,

K(E,n) =k(s,1,n) (15)

where { = (s—1)/N. For simplicity, we use 7 and 7 interchangeably in this sub-
section. Before proceeding, we need the following lemma.

Lemma 1. In a stabilizing network, let 0 (s,t) be the probability that node s is still
in the network at time t. Then,

0 (s,1) =en (1) (16)

Proof. We can establish the recurrent equation for 0 (s,¢) as follows:

mm+nze@no—;> (17)

Assume the incremental step from 7 to ¢ + 1 is very small, then 6 (s,7) can be repre-
sented by the differential form:
do (s,t1) 0 (s,1)

a N (18)

By solving this differential equation with the initial condition 0 (s,s) = 1 (because
node s connects to the network at r = s), the result follows. O

Now, the first step in solving Eq. (5) is to determine Z which is in terms of the
random variable 7. By applying the mean-field approach, we use the average value
of Z over p (n) to substitute Z. Thus,

_ o
(2) = (2 (0)) + <se%)kﬁ G m)> (19)

~ (o ) <20>

TNmax

_ )
= [ /ﬁd sdn @

where (Z, (¢)) denotes the normalization constant due to the original N nodes at
t = 0. The second term on the right side of Eq. (19) describes the effect due to the
arrival nodes after t = 0. As the stabilizing network evolves and t — o, (Z, (1)) — 0
because these original N nodes gradually leave the network, and hence (Z, (¢)) can
be ignored. From Egs. (19 to 20), we use integration to approximate the summation
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and set the lower limit of the integration to be O instead of 1 for easier calcula-
tion. Moreover, we multiply 0 (s,7) inside the integration of Eq. (20) in order to
take the effect of the node departure into account. Then by the change of variable
{ = (s—1)/N, (Z) can be further expressed as follows

<Z> ~ N Tmax o ( )/0 eg dCd (22)
- Mmin n p n % Kﬁ (C7n) n
[—00 Tmax 0 eC
= N « ———dgdn . 23
/T'minnp(n)LwKﬁ(C’n)Cn (23)

For convenience, we define G as

Gi= [ nop( )/0 ¢ d¢d (24)
T A T

and hence we replace Z by (Z) = NG in Eq. (5). To find the value of G, we have to

obtain k (s,7,7) and then put it back to Eq. (24) which becomes a self-consistency

equation and is solvable by means of numerical methods. & (s,7,7) is ready to solve

in the following.

To find k (s,,M;) for the probabilistic-rebuilding scheme, we assume ry =r; = r
and |A(t)| = (k) = 1 in Eq. (5). Note that in the above assumptions, we neglect
the rebuilding threshold in Eq. (3) and set |A (¢)| to {*,. These assumptions greatly
reduce the complexity of the solution but do not introduce a significant error as
shown in the simulations. Then the rate equation of the node degree can be solved
into the following solution

1
. 1 mT]Sa a+B)(1-r) (s—t) +B
k(s’t’ns)_{G(lr)(lr Ae N (25)

where A 1= % —G(1—r)m*B) and G is the non-zero positive constant satisfy-
ing the self-consistency equation in Eq. (24).

Equipped with Eq. (25), we can analyze how the node degree evolves over time.
In particular, the node degree converges to a bounded equilibrium which depends
on the node capacity. This result is summarized as follows.

Theorem 2. Suppose node s always stays in the network, then the degree k(s,t, 1)
of that node converges to the value k' (1) as t — c. Mathematically,

1
m So( 1+B
")21 34 (26)

k' (ny) = max
(n:) G(l—r

Proof. The result can be proved by letting (s — ) — —oo in Eq. (25). The lower limit
is due to the threshold of Eq. (3). a
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Remark that this theorem can also be easily proved by showing that the rate equation
of the node degree has the attracting equilibrium which is identical to Eq. (26).

From this theorem, we show that the equilibrium value of a node degree changes
accordingly as a node capacity changes. Thus our protocol can adapt to the fluctu-
ation of a node capacity and prevent the nodes from overloading. Furthermore, the
convergence speed of the node degree depends on the network size. The bigger the
network size, the slower the convergence speed. For example, if the network size
is large, the probability of a node being connected is small due to the sampling na-
ture of our algorithm. This property can allow the node degrees growing slowly and
prevent them from overloading. Note that the equilibrium degree of a node may be
smaller than the initial number of connections (i.e., m) if its capacity is too small.
This is because the rate of losing neighbors due to node departure is larger than
“gaining” neighbors since the node capacity is too small. This is another property
of our algorithm to prevent low-capacity nodes from overloading.

By using Eq. (25), we can also analyze the peer’s workload and the P2P network
diameter which are the focus of the next two sections.

4.4 Simple Analysis of Peer’s Workload

The peer’s workload mainly depends on two things, namely what kind of overlay
application is running on top of the topology, and how many connections (i.e., node
degree) does a peer establish. Suppose that a flooding search is deployed. When
a node with degree k receives a flooding query from its neighbor, the node may
require to duplicate the message and then forward it to k — 1 neighbors.> As a result,
if the node receives k different queries from its neighbors, then the total number of
messages forwarded is k(k — 1) and hence the workload of the node is O (k*). This
is analogy to a random walk search in which the workload of a peer with degree k
is O (k).

In this chapter, we particularly investigate the situation where the peer’s work-
load is in the polynomial form of its node degree. It is also easy to examine other
workload functions based on our model. Suppose peer s with degree k (s,7, 1) ex-
periences a workload of O ((k (s,z,n;))") for some overlay application where y > 0.

According to our protocol, each node s has a degree k (s,z,15) = O (m”ﬁ ) where

we ignore other constant terms for simplicity. Therefore, each node s has a workload
ye

of 0((k(s.1)7) =0 (7).

Then our question is how to set the parameters, o and 3, based on v so that every
peer prevents overloading. Intuitively, if yor/(1+ ) > 1, it means that thepeer has

3 If the node has seen the query before, it may drop the query to prevent looping in the network.
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to “work” more than its capacity and hence it is overloading. On the other hand, if
Yo / (14 B) < 1, it implies that the peer is under-loading because the peer’s work-
load is smaller than its capacity. Therefore, we can set o and 3 such that

14
Y=y

27

As a result, the workload of each peer s is O (1) meaning that the peer only re-
quires to do what it is “willing” to do. If a peer’s workload is in other forms such
as polylogarithmic and linearithmic functions, the peer’s workload analysis can be
done similarly.

As discussed above, flooding search and random walk search can be character-
ized by using ¥ =2 and y = 1 respectively. In general, for a given 7, there exists
more than one pair of o and 3 satisfying Eq. (27). Note that the values of & and 8
control the rate of degree growth (i.e., Eq. (5)) and affect the level of degree equi-
librium (because the value of G also depends on « and f3). Thus, how to further
select a pair of o and 3 from the candidates for constructing the topology depends
on the requirements of the overlay applications (e.g., required degree equilibrium,
the growth rate of node degree and network diameter). We plan to address this issue
in a future work.

Therefore, based on the property of an overlay application running on top of our
topology, we can adaptively tune o and 8 in order to control the workload of the
peers and prevent them from overloading.

4.5 Analysis of P2P Network Diameter

Average node-to-node distance® is an important parameter in P2P networks. This
information can be used to predict the network performance for the protocol design.
We can use the following formula, derived in [13], to calculate the diameter D of
the P2P network.

Do In ((k*) — (k)) —2(Ink) +InN — ¢ +l 28)

ln[<k2>} ’

where € ~ 0.5772 is the Euler’s constant. Based on our analytical result, for a given
node capacity distribution and network size, we can easily estimate a suitable value
of m (i.e., number of initial connections) such that the diameter is bounded by some
specified value or system requirement.

6 In this chapter, we use the terms, “network diameter” and “average node-to-node distance”,
interchangeably.
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Before using Eq. (28) to calculate the network diameter, we need to know (k),
(k*) and (Ink). The mean degree, (k), is already known. (k*) and (Ink) can also be
calculated easily. For example, (f (k)), where f(-) is some function, can be evalu-
ated by using the following lemma.

Lemma 2. The value of (f (k)) under a stabilizing network can be evaluated as
follows.

(f (k) == ]i,< )3 f(k(s,t,m))> (29)

seL(r)

~ [" o) [ E i magan a0
n

where K (&, n) is the form of Eq. (15).

Proof. 'We use the same technique as finding (Z) presented in Section 4.3 for prov-
ing the above result. We do not show the proof again for brevity. O

Note that we take the expectation with respect to the random variable 17 on the
summation sign in Eq. (29). In general, by using this lemma, we can easily calculate
any degree moment for any given node capacity distribution.

5 Simulation

This section presents the simulation results to validate our analysis. We simulate the
P2P networks as follows. Each node i is assigned a non-zero capacity 7; randomly
chosen from a p.d.f. p (1). The nodes join the network at a Poisson arrival rate A
nodes per unit time. The inter-arrival time of the node departure events is exponen-
tially distributed with mean 1 / U (u = 0 means no node departure). When a node
departure event happens, a node is randomly removed from the network to model the
node departure. Initially, the network grows from a small number of nodes Njpi; = 5
by using A = 1 and p = 0 until the network size reaches the value of N. Then we
set A = = 1 such that the network size maintains roughly at N nodes in the stabi-
lizing phase. During this phase, the simulation runs for 120000 node arrivals, unless
specified otherwise, to ensure the system reaches the steady state.

In all the simulations, when a new node joins the network, it contacts a bootstrap
server to randomly get m different nodes from the network. Then the new node is-
sues one walker to each of these m nodes. The walkers traverse the network, with
TTL 7, based on our proposed algorithm. We let m =5, T = 10. We run each simula-
tion 30 times and report the average results. We have also tried the biased bootstrap
server meaning that every new node randomly obtains m nodes from the last 100
incoming nodes only. The simulation results are roughly the same, so we do not
repeat them here.
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5.1 Node Capacity Distributions

In our simulations, we particularly explore two different node capacity distributions
as follows.
Power-law (PL) capacity: This distribution is defined as follows

p(n)=dn— (31)

for 1 < n < 1000, where d is the normalization constant. The node capacity is a
continuous random variable in this case.

Discrete Gia capacity: According to [35], the Internet access bandwidth of Nap-
ster’s users is very heterogeneous. Measurement information has been used in [9]
to model the heterogeneous P2P networks. The capacity distribution used in [9] can
be modeled as

p(n)=026(n—1)+0.456(n—10)+0.36 (n —100)
+0.0496 (1 — 1000) +0.0018 (17 — 10000) (32)

where 0 (+) is the delta function.

In the following two sections, the power law capacity distribution (i.e., Eq. (31))
and the discrete Gia capacity distribution (i.e., Eq. (32)) are labeled by “PL” and
“Discrete” respectively.

5.2 P2P Network Diameter

In this section, we validate our analysis by calculating the P2P network diameters.
It is well-known that the diameter of random graphs scales as O (log N) [8] where N
is the size of the graph. However, this result does not tell us how peer heterogeneity
affects the network diameter and how to optimize it under a heterogeneous envi-
ronment. Therefore, we are interested in how different node capacities influence the
network diameter precisely. We can employ Eq. (28) to calculate the diameter of the
P2P network.

In Fig. 1, we show that the analytical results for the diameters of the P2P net-
works, which are constructed by using @ = 1, § = 1 and r = 0.5 in the probabilistic-
rebuilding scheme, match very well with the simulation results. Our analytical
framework can be used to predict the network diameter under any given node capac-
ity distribution. In our examples, the network diameter under the discrete Gia capac-
ity distribution is much shorter than the one in the PL capacity distribution. The main
reason is that our protocol makes the highest capacity nodes (e.g., n = 10000) to
connect to more neighbors. As a result, these highest capacity nodes “self-organize”
into the “hubs” of the network, and hence the diameter can be greatly reduced
through those “hubs”. However, in the PL capacity, it is extremely rare to pro-
duce high capacity nodes (e.g., 1 > 500), because most of the nodes have capacity
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n < 10. It is noted that the variance of the measured diameters is very small, so we
do not show the confidence interval for simplicity.

5.5 T
— PL, analysis
Discrete, analysis
51 O PL, simulation
+ Discrete, simulation

Diameter

0 0.5 1 1.5 2
Network size N x 10%

Fig. 1 Comparison of the P2P network diameters between simulations and analytical results. The
probabilistic-rebuilding scheme with r = 0.5 isused. ¢« = 1 and § = 1

5.3 Node Degree Equilibrium

We have analytically shown that each node degree would eventually converge to
a steady-state value, which depends on its capacity. In order to analyze the node
evolution, we particularly monitor the 1000-th incoming node (we call it as node
A) which is assumed to always stay in the network. In this section, the PL node
capacity distribution is used for illustration. The initial capacity 14 of node A is
20. Afterwards, node A changes its capacity to 100, 20 and 50 for each period of
90000 node arrivals. This is used to model the capacity fluctuation of node A. In
Figs. 2 and 3, we show the degree of node A under the probabilistic-rebuilding
scheme with » = 0.5 and the analysis is predicted by Eq. (26) with (o =1, = 1)
and (o = 1,3 = 2) respectively. In these simulations, we let the value of N to be
15000.7 From the results, we show that our analysis matches very well with the
simulations. In the case of oo = 1 and § = 1, the node A’s degree is proportional
to /N4 which implies that the workload of the node is proportional to 14 under
aflooding search. We also show that the growth of the node A’s degree becomes more

7 In Figs. 2 and 3, there is a hump when the number of node arrivals equals 15000. This is because,
before the network size reaches 15000, the network still behaves as a growing phase and hence the
network behavior is totally different from a stabilizing phase when the network size reaches 15000.



184 Kin-Wah Kwong and Danny H.K. Tsang

“restrictive” as 3 increases to 2 as in Fig. 3. Therefore, the results match the idea of
our load-balancing protocol. Moreover, the equilibrium degree changes accordingly
as the node capacity varies. When node A’s capacity is higher than other neighboring
nodes, the random walkers have a larger chance to be “attracted” to node A. As a
result, more links would be connected to it. On the contrary, if node A’s capacity is
low, the random walkers have a smaller chance to traverse node A, and hence the
degree of node A is kept small. Therefore, from our analysis and simulations, we
prove that our algorithm can adapt to the fluctuation of node capacity. Moreover,
since a node can control its degree by changing the capacity, so the workload of a
node can be calibrated accordingly.
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Fig. 2 Node A’s degree evolution, N = 15000, r = 0.5, oo = 1 and = 1. 95% confidence intervals
are plotted in the figure as well

6 Conclusion

In this chapter, we first introduce a capacity-aware protocol to build the unstructured
P2P networks. Our protocol exploits the idea of random walk sampling which pro-
vides a simple, low-overhead and distributed way to form the topology with a load-
balancing feature in a heterogeneous environment. Moreover, no specially-designed
bootstrap server is required to support our protocol because every new incoming
node just needs some live nodes as a starting point of the random walk. Therefore,
the workload, complexity and dependence of a bootstrap server can be greatly re-
duced which is a critical step to make the P2P networks scalable and reliable.
Furthermore, we provide a comprehensive analysis to study the performance of
our proposed protocol such as network diameter and degree evolution under any
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heterogeneous environment. The analytical results are validated by the simulations.
Our analytical model is mathematically tractable and easy to be extended to analyze
other P2P topology formation algorithms.
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- - - Analysis, n=100
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Number of node arrivals x 10°

Fig. 3 Node A’s degree evolution, N = 15000, r = 0.5, oo = 1 and 8 = 2. 95% confidence intervals
are plotted in the figure as well

Starting from this work, there are still many interesting open problems to tackle

in which some of them are listed in the following.

1.

Based on our analytical model, it is possible to optimize the topology forma-
tion process with respect to a P2P application running on top of the overlay. For
example, some simple ideas have been discussed in Section 4.4 for the P2P ap-
plications with different workload’s behaviors. It would be a nice extension to
consider a joint optimization of a P2P application (e.g., video streaming) and the
topology formation process.

Since random walk sampling can incur delay in the joining and rebuilding pro-
cesses which can be harmful for delay-sensitive applications such as live video
streaming, it is necessary to develop methods to reduce such delay and minimize
the impacts on the P2P applications.

It is important to investigate the mixing time of our random walk algorithm on
a heterogeneous P2P environment which can provide insights on how to select a
right time-to-live (TTL) value. Also, it is interesting to characterize the relation-
ship between mixing time, network size and node capacity distribution.

Our analytical model assumes a simple peer arrival and departure process. A
possible extension is to develop a more sophisticated model in order to capture
different peer arrival and departure patterns.
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Abstract Knowledge sharing in a virtual organization requires a knowledge life
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peer-to-peer knowledge management in virtual organizations. Requirements for this
task include, e.g., full autonomy of peers as well as full control over own resources
and therefore preclude prominent resource location and query routing schemes such
as distributed hash tables. In order to tackle given requirements in this chap-
ter we introduce use a resource location and query routing approach called INGA
[23, 24, 31]. It exploits metaphors known from online social networks as well as
the semantic similarity between queries and meta data of annotated documents. To
adapt to the dynamics of the networks and to bound the local index we present an
index update policy combining temporal, semantic and community locality. To fur-
ther boost performance and enhance recall in a dynamic setting we introduce in
INGA recommender and bootstrapping overlays. We have built a network simulator
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1 Semantics and Communities in Peer-to-Peer Networks

Finding relevant information from a heterogeneous set of information resources is
a longstanding problem in computing. In everyday life we observe that there are
successful strategies for finding relevant information in a social network of people.
Milgram’s [25] and Kleinbergs [19] experiments illustrated that people with only
local knowledge of the network (i.e., their immediate acquaintances) were quite
successful at constructing acquaintance chains of short length, leading to “small
world” networks. Studies of social networks, such as Linkedin or XING show that
the challenge of finding relevant information may often be reduced to asking the
“right” people. e.g., People who either have the desired piece of information and can
directly provide the relevant content or the ones who can recommend “the right peo-
ple”. Another popular example are bootstrapping mechanisms of early distributed
and unstructured music file sharing networks: To envision how Gnutella originally
worked, imagine a large circle of users (called nodes), who each have Gnutella client
software. On initial startup, the client software must bootstrap and find at least one
other node. Before the concept of Gnutella Web Caches (GWC) where introduced
one popular method was to ask people from a list of own contacts at the internet rely
chat. Preferably those ones where contacted which had music files the would match
future queries.

This section transfers observations from real-world social networks to the design
of a peer-to-peer overlay structure. We start with identifying routing strategies in
social networks and abstracting them to peer-to-peer overlay networks. Later we
introduce strategies for knowledge sharing in virtual organizations for two applica-
tions in detail.

1.1 Query Routing Strategies in Social Networks

Real-world social networks are highly dynamic w.r.t. peer availability and people’s
expertise on topics. People querying the network still find the right information in
that they use their local knowledge enriched by means of semantic similarity mea-
sures in order to determine knowledgeable person. We observe that such mecha-
nisms in social networks work although

* people may not always be available to respond to requests,

e people may shift their interests and attention,

* people may not have exactly the “right” knowledge, but only knowledge which
is semantically close to the request.

By local knowledge we refer to locally available information in a structured and
unstructured form (e.g., meta tags of music files or extracted from documents) and
expertise information about the own knowledge and knowledge from other persons.
Inspired by these observations and focussed by the requirements of semantic search
in the setting of distributed autonomous information sources, we have conceived
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INGA [24] a novel peer-to-peer algorithm where each peer plays the role of a person
in a social network. In INGA knowledge facts are stored and managed locally on
each peer constituting the ‘topical knowledge’ of the peer. A peer responds to a
query by providing an answer matching the query or by forwarding the query to
what he deems to be the most appropriate peers. For the purpose of determining
the most appropriate peers, each peer maintains a personal semantic shortcut index.
The index is created and maintained in our highly dynamic setting in a lazy manner,
i.e., by analyzing the queries that are initiated by users of the peer-to-peer network
and that happen to pass through the peer.

The personal semantic shortcut index maintained at each peer reflects that a peer
may play the following four different roles for the other peers in the network (in
decreasing order of utility):

e The best peers to query are always those that have successfully answered the
same or a semantically similar query in the past. We call such peers content
providers.

» If no content providers are known, peers are queried that have issued semantically
similar queries in the past. The assumption is that this peer has been successful in
getting matching answers and now we can directly learn from him about suitable
content providers. We call such peers recommenders.

* If we do not know either of the above we query peers that have established a
good social network to other persons over a variety of general domains. Such
peers form a bootstrapping network.

» If we fail to discover any of the above we fall back to the default layer of neigh-
boring peers. To avoid overfitting to peers already known we occasionally select
random peers for a query. We call this the default network.

Seen from a local perspective, each peer maintains in its index information about
some peers, about what roles these peers play for which topic and how useful they
were in the past. Seen from a global perspective, each of the four roles results in a
network layer of peers that is independent from the other layers.

1.2 Knowledge Sharing Strategies in Virtual Organizations

We introduce two case studies, the IBIT case study in the area of tourism and the
SWAP Bibliography case study. Both studies have been investigated, implemented
and deployed in a large EU IST project called SWAP Semantic Web And Peer-to-
Peer).

The IBIT case study [30] is about sharing of databases and documents between
several autonomous, but cooperating tourism organizations on the Baleares, a group
of Spanish islands in the Mediterranean. Some of the features of the case study
include that the definition of a unique global schema or ontology is not possible, that
the topics they are interested in keep changing and that the knowledge management
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support to be provided by the peer-to-peer knowledge management system must
deal with this flexibility.

In the SWAP Bibliography case study, we have explored the sharing of Bibtex
information between peers of researchers. Bibtex is locally harvested from files and
stored on each peer in the SWAP local node repository. Each researcher may search
on the own peer as well as in the P2P network in order to retrieve the appropriate
bibliographic data. This scenario is particularly interesting for further investigation,
because (i) Bibtex data have a stable interesting core, but also greatly varying addi-
tional fields as each user may define his own bibtex entries; (ii) Bibtex data can never
be fully captured in a centralized repository, because one repository such as DBLP
can only reflect a small set of topics (e.g., databases and Al, but not organizational
issues of knowledge management).

2 System Architecture

In this section we start with surveying our application platform. Later we describe
peer selection strategies on top of a an unstructured peer-to-peer network imple-
menting social and semantic routing strategies. For evaluation purposes we use the
SWAP infrastructure [15]. We recall that it provides all standard peer-to-peer func-
tionality such as information sharing, searching and publishing of resources.

2.1 Building Blocks

Figure 1 shows the basic building blocks of our architecture. We assume that each
peer provides a unique peer identifer (PID). Similar to file sharing networks each
peer may publish all resources from its local content database, so other peers can
discover them by their requests (this also applies to resources downloaded from
other peers). All information is wrapped as RDF statements and stored in an RDF
repository.! Additionally to local data (Nick isExecutiveEditorOf JSAC2005) each
resource is assigned a topic (JSAC isTypeOf IEEEJournal) and hierarchical infor-
mation about the topics is stored (IEEEJournal subTopicOf Journal). The topics a
peer stores resources for are subsequently referred to as the peer’s own topics. Our
algorithm supports exact match queries and queries that use a similarity function.
For the last type we investigate in Section 6.2 two types of queries: single predicate
queries queries using a common topic hierarchy or conjunctive queries without a
shared topic hierarchy. For successful queries (own queries or those of other peers),
which returned at least one match, the shortcut management extracts information
about answering and forwarding peers to create, update or remove shortcuts in the
local shortcut index. Contrary to related approaches, such as DHTs, INGA peers

Thttp://www.openrdf .org/
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only index “egoistically”, i.e., shortcuts on topics they requested themselves. The
routing logic selects “most suitable” peers to forward a query to, for all own queries
or queries forwarded from remote peers. The selection depends on the knowledge a
peer has already acquired for the specific query and the similarity between the query
and locally stored shortcuts.

2.2 Query and Result Messages

We use a simple query message model which is similar to the structure of a Gnutella
query message. Each query message is a quadruple: QM (q,b,mp,qid) where ¢ is
a SERQL query.?). We support conjunctive SERQL queries, however for routing
purposes only the topic information is used. From a query for all IEEEJournal with
editor-in-chief Nick, only JSAC is utilized for routing. b is the bootstrapping ca-
pability of the querying peer to allow the creation of bootstrapping shortcuts, mp
the message path for each query message containing the unique PIDs of all peers,
which have already received the query, to avoid duplicated query messages, and gid
a unique query ID to ensure that a peer does not respond to a query it has already

2 SERQL is a SQL like query language for RDF.



194 Alexander Loser, Steffen Staab, and Christoph Tempich

answered. Unique query IDs in INGA are computed by using a random number gen-
erator that has sufficiently high probability of generating unique numbers. A result
message is a tuple: RM(r,mp, qid) where r represents the answer to the query. We
just consider results which exactly match the query. Besides the message path mp
is copied to the answer message to allow the creation of recommender and content
provider shortcuts.

2.3 Similarity Function

INGA directs queries via shortcuts that exactly match a query. If such shortcuts
do not exist, INGA selects shortcuts independently from the given query topic, e.g.,
shortcuts to peers that are well connected in the network. A similarity function helps
to identify shortcuts to peers that provide content or have issued questions similar to
the given query. Thus, shortcuts are selected based on the given query. Depending
on query type, we investigated the following types of shortcut similarity functions:

* Single predicate query using a common topic hierarchy. In case the peers
in the network share a common topic hierarchy our routing algorithm does not
only use exact index hits, but it also exploits the semantic similarity between a
query and an shortcut. In this case a query consists of a single predicate, which
represents a topic in a common topic hierarchy, We define the similarity function
sim : gt x sc — [0; 1] between the extracted topic gz from a SERQL query g and
the extracted topic st from a shortcut, which are both given by query topics in the
same topic hierarchy, as according to [20] as :

h —Bh .
706[_613 —e P 1fq7ésc

SiMTopic(qt,st) = {i P Ph "

otherwise

where [ is the length of the shortest path between g and st in the graph spanned
by the sub topic relation and % is the minimal level in the topic hierarchy of either
gt or st. o and B are parameters scaling the contribution of shortest path length
[ and depth A, respectively. Based on the benchmark data set given in [20], we
chose ¢ = 0.2 and 3 = 0.6 as optimal values.

* Conjunctive queries. Each query may include several predicates, e.g., Select
all resources that belong to the topic semantic web and to the topic p2p. In
the Semantic Web context we formalize this query using common topic hier-
archies, Find any resource with the topics /computer/web/semanticweb N\ /com-
puter/distributed/p2p . A default approach would route a query only to a peer
that matches all predicates of the query using a simple exact match paradigm.
Too specific query predicates under the exact match paradigm often lead to
empty result sets and do not appropriately consider negation. The notion of best
matches and relative importance of predicates can be a good alternative to sat-
isfy a user’s information needs independently of the individual peer instances.
In [31] we investigated metrics to determine the best peers to route a query
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using multi predicate queries in shortcut networks. We observed satisfying re-
sults using the selection function described in [10] which uses an equation sim-
ilar to equation (2) to combine query hits for distributed document retrieval. We
refer to this strategy as Multiply.

#t
Ry(q)=]]4’ 2)
i=1

We calculate the relevance R for a peer p for a query g using equation (2), where
#1 represents the number of topics in the query, qf represents the query hits per
topic i of each peer matching at least one of the topics of the query. We select the
peers with the highest relevance.

3 Overlay Construction, Index Creation and Maintenance

Each peer is connected to a set of other peers in the network via uni-directional
shortcuts. Following the social metaphors in Section 1, we introduce four different
types of shortcuts a peer can use to route queries and discuss how these shortcuts
are created.

3.1 Content Provider and Recommender Shortcuts

Content Provider Layer. The design of the content provider shortcut overlay departs
from existing work as published in [29, 32] and exploits the simple, yet powerful
principle of interest-based locality. When a peer joins the system, it may not have
any information about the interest of other peers. It first attempts to receive answers
for its queries by exploiting lower layers of the INGA peer network, e.g., by flood-
ing. The lookup returns a set of peers that store documents for the topic of the query.
These peers are potential candidates to be added to the content provider shortcut
list. Each time the querying peer receives an answer from a remote peer, content
provider shortcuts sc to new remote peers are added to the list in the form: sc(topic,
pid, query hits, “c”, update), where topic is the query topics taken from the query
message, pid is the unique identifier of the answering peer, query hits is the num-
ber of returned statements, “c” represents a type of shortcut, viz. content provider
shortcut and update is the time, when the shortcut was created or the last time, when
the shortcut was successfully used. Subsequent queries of the local peer or of a re-
mote peer are matched against the topic column of the content provider shortcut list.
If a peer cannot find suitable shortcuts in the list, it issues a lookup through lower
layers, and repeats the process for adding new shortcuts. For an example consider
Fig. 2. Peer 2 discovers shortcuts for the topic /Education/UML by flooding the de-
fault network with a maximum number of three hops (TTL) and creates two content
provider shortcuts to peer 3 and peer 5.
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Recommender Layer. To foster the learning process of recommender shortcuts,
especially for new peers in the network, we consider the incoming queries that
are routed through one’s peer, i.e., {OM(q,b,mp,qid)}. A recommender short-
cut sc(topic,pid,query hits, maxsim, “r”, update) is created, where fopic is the set
of query topics from the query ¢g. The pid for a respective shortcut is extracted
from the query message as the PID of the querying peer, i.e., gid. Since there
is no information about the number of results retrieved for the query, we set the
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€«

number of query hits to 1. Finally “r” indicates the type of the shortcut for passive
recommender shortcut and update is the time, when the shortcut was created or the
last time, when the shortcut was used successfully. For an example consider again
Fig. 3. Peer 2 issues the query /Top/Education/UML. Peer 8 creates a shortcut to
peer 2 since this query was routed through peer 8.

Content Provider and Recommender Index. The volatility of the peers in the net-
work and their interest shifts require to update the local indices. We assume that
each peer may only store a limited amount of shortcuts, hence only knows a lim-
ited set of topic specific neighbors it can route a query to. If the local index size
is reached a peer has to decide, which shortcut should be deleted from the index.
For each shortcut in the index we compute a rank based on the following types of
localities:

» Semantic locality. We measure the maximum semantic similarity maxsim be-
tween the topic of a shortcut and the topics represented by the local content of
a peer according to equation (1). Hence, we retain a shortcut about topic ¢ to a
remote peet, if t is close to our own interests.

* LRU locality. To adapt to changes in the content and interests we use a LRU
replacement policy [3]. Shortcuts that have been used recently receive a higher
rank. Each local shortcut is marked with a time stamp when it was created. The
time stamp will be updated, if the shortcut is used successfully by the local peer.
Thus, there is an “oldest” and a “most recent” shortcut. The value update € [0..1]
is normalized with difference between the shortcuts time stamp and the “oldest”
time stamp divided by the difference between the “most recent’” and the “oldest”.

*  Community locality. We measure how close a shortcut leads us to a document.
Content provider shortcuts, marked with a ¢, provide a one hop distance, we set
type = 1. Recommender shortcuts, marked with a r require at least two hops to
reach a peer with relevant documents, we set rype = 0.5.

Using a weighted moving average we weigh the different locality values and com-
pute the index relevance according to equation (3).
a-maxsim—+b-type+c-update

[ = 3
relevance atbhtc 3)

Shortcuts with the highest relevance are ranked at the top of the index, while peers
with a lower relevance are deleted from the index.

3.2 Bootstrapping Shortcuts

Bootstrapping shortcuts link to peers that have established many shortcuts for differ-
ent query topics to a lot of remote peers. We determine the bootstrapping capability
by analyzing the in-degree and out-degree of a peer. We use the out-degree as a
measure of how successful a peer discovers other peers by querying. To weigh the
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out-degree, we measure the amount of distinct sources a peer receives queries from.
We use the in-degree as a measure, that such a peer may share prestigious shortcuts
with a high availability. By routing a query along bootstrapping shortcuts, we foster
the probability to find a matching shortcut for a query and avoid the drawbacks of
having to select peers randomly, e.g., by flooding.

Each incoming query that is stored in our index includes the bootstrapping in-
formation of the querying peer. While a peer is online it continually updates its
content/recommender index based on incoming queries and stores additional boot-
strapping shortcuts in the form sc(pid, bo), where pid is the PID of the querying
peer and bo it’s bootstrapping capability. Once an initial set of bootstrapping nodes
is found, a peer may route its queries to the nodes with the highest bo value. One
calculates it’s bo value using equation (4)

Bo = (1+|outdegree|) x (1+ |indegree|) 4)

where out-degree is the number of distinct remote peers one’s knows. To compute
the in-degree we count the number of distinct peers that send a query via one’s peer.
To do this we scrutinize the pen-ultimate peers from the message path of indexed
recommender shortcuts. The number of distinct pen-ultimate peers denotes one’s in
degree. To avoid zero values we limited the minimum for both values to one.

3.3 Default Network Shortcuts

When a new peer enters the network, it has not yet stored any specific shortcuts
in its index. Default network shortcuts connect each peer p to a set of other peers
(p’s neighbors) chosen at random, as in typical Gnutella-like networks (e.g., using
rendezvous techniques).

4 Routing in Semantic Social Overlay Networks

The basic principle laying behind the shortcut mechanism consists of dynamically
adapting the topology of the P2P network so that the peers that share common in-
terests spontaneously form well-connected semantic communities. Reference [12]
shows that each user is only interested in a rather limited number of different topics.
Therefore being part of a community that shares common interests is likely to in-
crease search efficiency and success rate. To optimize the overall message traffic we
propose a dynamic shortcut selection strategy, where each peer selects only a certain
number k of most promising shortcuts for query forwarding. Then we evaluate our
approach against related approaches.



Semantic Social Overlay Networks 199

4.1 Overview

INGA consists of several steps executed locally and across the network when rec-
ommending peers for a query and retrieving or returning results. Consider a query
posed to the P2P network. Necessary steps are:

* Across the network: Recommending. Whenever a peer receives a query message,
it first extracts meta-information about the querying peer and updates its boot-
strapping and recommender index if needed. Then the INGA forwarding strat-
egy is invoked to select a set of k peers that appear most promising to answer
the query successfully. Finally the original query message is forwarded to these
k peers.

* Across the network: Answering Queries. When a peer receives a query, it will try
to answer the query with local content. We only return non-empty, exact results
and route them directly to the querying peer. If the maximum number of hops is
not yet reached, the query is forwarded to a set of peers selected as above.

e Locally: Receiving Results. On the arrival of result items a querying peer analyzes
the message path and the respective number of results to create or update local
content provider and recommender shortcuts.

4.2 Selecting Best Matching Shortcuts

The INGA shortcut selection algorithm determines the candidate peers that are most
promising to forward the given query to. The INGA strategy is based on the avail-
able local knowledge about the query topic as it is stored in the index of the peer:

* INGA only forwards a query via its k best matching shortcuts.

» INGA prefers content and recommender shortcuts over bootstrapping and default
network shortcuts for forwarding queries.

* The INGA strategy constitutes a greedy k best-search heuristics. As such it might
be led astray into a subnetwork of peers that appear to be the optimal choice from
a local point of view, but that do not yield all the appropriate answers. To let the
search escape such local optima, some queries are forwarded to a random set of
peers.
This randomness will later on show two major beneficial effects: First, it allows
the individual peer to have a larger overview of the whole network and, hence,
to establish the appropriate short distance and long distance shortcuts.> Second,
it facilitates accommodation to volatility (especially in the form of new joining
peers).

Algorithm 8 defines the basic peer selection procedure for choosing k peers: In step
1 it selects at most k peers from content or recommender shortcuts that match the

3 “short” and “long distance” as seen from the default underlying network.
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topic of the query with the highest similarity. To avoid forwarding queries along
shortcuts with only low topic similarity a minimum similarity threshold 7y ecqy 18
required to hold between the topic(s) of the query and the shortcut. If less then
k shortcuts have been found, the algorithm selects the top bootstrapping shortcuts
(step 3). Finally, remaining slots for query forwarding are filled by a random selec-
tion from the default network. The algorithm terminates if the query has reached
its maximum number of hops. Furthermore, the algorithm is constrained such that
a query is not forwarded to a peer if this peer has already occurred in the message
path of the query (step 6). We will now show all subroutines for shortcut selection

Algorithm 8: Dynamic

Require: Query g, MsgPath mp, int k, float #5,..qy, float f, Set topicDependentShortcuts, Set
bootstrappingShortcuts, Set defaultNetworkShortcuts
Ensure: TTL; < maxTTL
: Set s « TopGreedy(g,topicDependentShortcuts K.tGreedy)
: if (|s] < k) then
s < s U TopBoot(bootstrappingShortcuts, (k — |s|))
end if
s «— RandomFill(s,defaultNetworkShortcuts,fk)
: s < removeAlready VisitedPeers(s,mp)
: Return s.

in more details. Algorithm TopGreedy allows for selecting the top peers above a
similarity threshold. The algorithm browses trough the index of all topic dependent
shortcuts (step 3) and identifies the most similar shortcuts for a query (step 4) above
tereedy (Step 5). If two shortcuts have the same similarity, it selects the shortcut with
the higher value of query hits (not shown in the algorithm below). The algorithm
selects the top-k peers for a query while avoiding different shortcuts with overlap-
ping peers (step 7-8). The TopBoot Algorithm works similarly to the TopGreedy
Algorithm, but selects the peers with highest known bootstrapping capability (line
4). It also avoids overlapping peers within the set of selected shortcuts (line 6-7).
The task of algorithm RandomFill is twofold: if the other subroutines fail to dis-
cover k peers for a query, it fills up remaining peers until k is reached (step 12—14).
The second task of the algorithm is to contribute some randomly chosen peers to
the selected set of k peers to avoid overfitting of the selection process as known
from simulated annealing techniques. Depending on the probability f (step 5) the
algorithm exchanges already selected peers with randomly chosen ones. Finally the
algorithm fills up the remaining peers with randomly chosen peers (step 10-13).

5 Experimental Setup

To validate INGA and Remind’in, we have explored several possibilities for eval-
uation. Semantic routing has been implemented in the Bibster system, which was



Semantic Social Overlay Networks 201

evaluated in a real world case study [15]. However, during the case study a maxi-
mum of 50 researchers were simultaneously online. This number was too small to
evaluate the scalability of a peer-to-peer routing algorithm. Furthermore, though we
have collected information about the content and the queries the peers have shared
and submitted, this amount of available information was too small to test our algo-
rithm for a larger number of peers. Therefore, we have decided to evaluate INGA
by simulating a peer-to-peer network with more than 1.000 peers based on gen-
erated data sets with different ontologies and different statistical distributions of
content.

Before we discuss evaluation results in Section 6, we here elaborate the experi-
mental setup.

Algorithm 9: TopGreedy

Require: Query g, Set topicDependentShortcuts, int k, float t;,,.4y
1: Set topShortcuts —{}
2: Set s_tmp «— topicDependentShortcuts
3: Case (s_tmp is not empty) A (k > 0)

4: Next «— argmax pes_mp simTOpiC(q,p)

5: if simTopic(q,Nexl) > toreedy then

6: s_tmp «— s_tmp — {Next}

7 if (Next routes not to a peer in fopShortcuts) then

8: topShortcuts — topShortcuts U {Next}

9: k—k—1

10: end if

11: else

12: break

13:  endif

14: end Case

15: Return ropShortcuts

Algorithm 10: TopBoot

Require: Set bootstrappingShortcuts, int k
1: Set topShortcuts — {}
2: Set s_tmp < bootstrappingShortcuts
3: Case (s_tmp is not empty) A (k > 0)
4 Next «+— argmax e mp topBoot(p)
5 s_tmp «— s_tmp — {Next}
6 if (Next routes not to a peer in topShortcuts) then
7: topShortcuts < topShortcuts U {Next}
8.
9
0
1

k—k—1
end if
: end Case
: Return ropShortcuts

[ —
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Algorithm 11: RandomFill

Require: Set preSelected, Set defaultNetworkShortcuts, float f, int k
1: Set postSelected — {}
2: Case (preSelected is not empty)
3 Next «— next(preSelected)
4 preSelected «— preSelected — {Next}
5 if (rand(0,1) > f) then
6: postSelected — postSelected U {Next}
7
8
9

end if

: end Case

: k— k—|postSelected|
10: Case k>0
11:  postSelected < postSelected U next{(defaultNetworkShortcuts)}
12: k—k—1
13: end Case
14: Return postSelected

5.1 Content Distribution

We used three different ways of assigning data to peers in our simulation runs. The
assignment was done based on synthetic data sets and on real-world data sets. The
data sets exhibited different characteristics with regard to dimensions like size, re-
lational structure (i.e., being able to be used for simulation runs with conjunctive
queries) and “being natural” for the task at hand. All three data sets had a low level
of replication, i.e., few data items were assigned to multiple peers, and all data sets
exhibited a hyperbolic (Zipf-like) distribution of topics.

1. Open directory project. The first data set is based on the open directory
DMOZ.org. DMOZ.org constitutes a large data set of content distributed among
a substantial community of content editors. The data set was so large that for the
purpose of our simulations we have selected a subset consisting of the first three
levels of the DMOZ hierarchy.

Each editor is responsible for one or several content topics and maintains the
corresponding topic pages. At the first three levels we found 1657 topics. There is
a Zipf-like skew in the distribution of editors to topics: 991 editors only maintain
content about one topic, 295 about two, 128 about three, ... one editor about 20,
and one editor maintains content about 22 topics. Vice versa: 755 topics are dealt
with by 1 editor, 333 by 2,204 by 3,...,44 by 6, ..., 14 by 10, and 1 topic
has 32 editors. Thus, mapping an individual editor onto an individual peer and
the topic content of the editor onto the local node repository of the corresponding
peer appears to be a rather natural, realistic choice for a basic data set.

This data set does not contain relational structures, but only information about
instantiation of a topic, e.g., “UMLcompedium.pdf” is an instance of topic
topic “/education/UML/docs” . Hence, it is not possible to test conjunctive
queries on this data set.
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2. Synthetic data. The number of classes, the number of properties and the num-

ber of sub-class relationships together with their respective distributions deter-
mine the schema of the ontology. The number of instances and the number
of relations between instances determine the distribution of the instance data.
The distributions are modeled as a Zipf distribution with parameter settings ac-
cording to observations from real world data sets. The parameter settings for
the schema generation are based on [33] while the parameter settings for in-
stance generation are based on [9]. Data distribution on the peers follow the
model presented in [12]. For the schema we choose to generate an ontology
with 1.000 classes and each class was assigned a popularity based on a Zipf
distribution with skew factor 1. The popularity of a class influences its num-
ber of instances, its replication in the network and its connectivity with other
classes through properties. We selected the number of sub-classes and the num-
ber of properties of a class (Zipf with skew factor 1.1). This resulted in 357
properties.
200,000 instances were generated and assigned to one class based on the popular-
ity of the different classes. TotalNoPropertylnstances = 100 - TotalNo
Properties many properties between instances were generated. Likewise to
classes, a property schema(one could also call it a binary relation), had a popular-
ity based on a Zipf distribution with skew factor 1 that was considered when gen-
erating properties between instances (i.e., when populating the binary relations).
Assignment of data to peers is done based on the conjecture that users are
generally interested in a small subset of the entire content available in a peer-
to-peer network. We have modeled that the interests are more likely in only
a limited number of content classes and thus users would be more interested
in some classes while less in others. The maximum number of classes that
a peer is interested in and its content is computed by ClassesO fInterest =
In(NoOfClasses) 2. The actual number of classes is chosen randomly from
a uniform distribution. Observing the studies in [9] all peers do not share the
same amount of data and also do not exhibit the same ‘social behaviour’.
For instance, a large number of users are so-called free riders or freeload-
ers who do not contribute anything to the network but essentially behave like
clients. On the other hand, a small number of users (less than 5%) provide
more than two thirds of the totally available amount of data and thus behave
like servers. Considering the study in [2] the following storage capacity was
assigned to the peers in the network: 70% of the peers do not share any in-
stances (free riders); 20% share 100 instances or less; 7% share 101 up to
1000 instances and finally, only 3% of the peers share between 1001 and 2000
instances.

3. Bibster data set. This data set bases on real captured query data from the peer-
to-peer bibliography network “Bibster” [15]. There, we observed the behavioral
characteristics of different peers. In order to run a simulation at a larger scale
we re-used the observed characteristics, but on data from a large bibliography
database.
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In total 27.037 distinct instances represent the bibliographic entries in the net-
work in this data set. The different topics available from an ACM-index file.*

5.2 Query Distribution

For the different data sets and their assignments to peers, we generated queries in
the simulation runs as follows:

1. Open directory project. Queries were generated in the experiments by instantiat-
ing the blueprint query (x;rdf : type;topic) with topics arbitrarily chosen from
the set of topics that had at least one document. An example of a SeRQL query
is:
with topics arbitrarily chosen from the set of topics that had at least one docu-
ment. We generated 30000 queries, uniformly distributed over the 1657 different
topics. We choose a uniform query distribution instead of a ZIPF-distribution,
which is typically observed in file sharing networks [28]. This simulates the worst
case scenario, where we do not take advantage of often repeated queries for pop-
ular topics.

2. Synthetic data. The query set for the synthetic ontology is based on a special type
of queries that request instances satisfying a varying number of constraints. The
basic concept for the queries is built on the following schema: (instance;rdf :
type;class) N (instance;owl : hasProperty;instance2) N\

(instance2;rdf : type;class2) A (instance;owl : hasProperty;instance3) N
(instance3;rdf : type;class3). Informally, this concept requests all instances of a
certain class with the constraint that the instances have two particular properties
pointing to other instances.

The built query set only contains queries that can be answered by the network
and is distributed uniform.

3. Bibster data set. The extracted queryset for the Bibster-based ontology contains
several types of queries that request instances satisfying different constraints. It is
worth mentioning that the queryset was adopted the way it was originally created
and therefore, it also consists of non-conjunctive queries.

5.3 Peer-to-Peer Network Setup

Gnutella style network. The simulation is initialized with a network topology which
resembles the small world properties of file sharing networks.”We simulated 1024

4 The ACM-Index file is available online at:
http://www.aifb.uni-karlsruhe.de/WBS/pha/bib/acmtopics.rdf

5 We used the Colt library http://acs.1lbl.gov/~hoschek/colt/
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peers. In the simulation, peers were chosen randomly and they were given a ran-
domly selected query to question the remote peers in the network. The peers decide
on the basis of their local short cut which remote peers to send the query to. Each
peer uses INGA to select up to pmax = 2 peers to send the query to. Each query
was forwarded until the maximal number of hops hmax = 6 was reached — unless
the peer selection algorithm choose not to forward further also at an earlier point in
time.

Volatile network and interest shifts. The simulation incorporates dynamic net-
work model observed for Gnutella networks by [28] and models incorporating IP-
address aliases found by [8]. Hence only a small fraction of peers is available more
than half of the simulation time, while the majority of the peers is only online a
fraction of the simulation time. The real online and off-line times of peers are de-
termined randomly at simulation runtime so that their cumulative online times re-
semble the distribution found in [28]. Figure 4 visualizes the number of peers online
during the simulation run. A peer ensures before it forwards a query that it is con-
nected to at least five online remote peers on the network layer. If a remote peer
is off-line it is exchanged with an online peer. A peer discovers with rendezvous
techniques online peers on the network layer.

Volatile Network - Online Peers
B2() qeeerrme e e e oe et et
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Fig. 4 Volatile network: number of peers online

We also consider changing user interests. Users’ interests may change over time,
e.g., to account for different search goals. To simulate changing interests, after 15
queries, equal to ca. 15.000 queries over all peers, each peer queries a completely
different, previously unused set of topics.
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5.4 Simulator Setup and Simulation Statistics

We used a round based simulation framework. Figure 1 presents the main param-
eters of the simulation framework. In total we simulated 1024 peers. To determine
the standard error of our observations of 95% confidence interval (p<0.05) each
simulation was executed six times. We set the greedy search threshold for algorithm
to 0.15 and the amount of random contribution to 0.20

| Parameter | Value |
Queries 30.000
Queries per peer ca. 30
Query time to life 6
Selected peers per query (k) 2
Greedy search threshold (tGeeay) 15%
Random contribution (f) 20%

Index size (if no other size is mentioned)| 40

Open Directory data set

Topics 1646
Before interest shift 823

After interest shift 823

Simulated peers 1024
Bibster data set

Topics 1293
Queries 3319
Simulated Peers 520

Synthetic data set

Topics 1000
Queries before interest shift 1641
Queries after interest shift 1640
Simulated Peers 1024

Table 1 Simulation parameter setting

5.5 Evaluation Measures

We measure the search efficiency using the following metrics:

* Recall describes the proportion between all relevant documents in peer network
and the retrieved ones. Hereby, we defined “relevant” as “matches the query”. We
did not use any gold standard document set where relevance to a query would be
assigned by a user. Therefore, precision would have been meaningless in our
evaluation.
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* Messages represent the required search costs per query that can be used to indi-
rectly justify the system scalability.

* Message Gain is defined as the recall per message, hence we divide the recall of
a query with the proportion of messages to achieve the recall.

* Clustering coefficient represents the compactness of the network. It captures how
many of a node’s neighbors are connected to each other. We define the clustering
coefficient as

3 E(L)]
ky - (k,—1)

veV v

1
@ —

= — 5
Vi &)

where V denotes the set of peers in the network, &, denotes the maximum number
of shortcuts for a peer v, I, the direct neighbors of a peer and E(T;) represents a
function that counts the number of links in I;,.

» Average path length A short average path length denotes a highly directed in-
formation flow between two peers in the network. Given two arbitrary selected
peers vi,va € V and dyin(v1,v2) the minimum path length between vy and v,, we
define the average path length as

d=— z dmin(VI;VZ) (6)
|‘2/| VIFV2

6 Evaluation and Optimization

We conducted a large number of experiments regarding the performance of INGA
in contrast to state-of-the-art approaches, the optimal parameter setting and the ap-
plicability of our algorithm to different scenarios. Before we present the final eval-
uation results, we here summarize the major hypotheses we wanted to investigate:

1. Shortcut networks outperform the Default approach.

2. INGA outperforms state-of the art shortcut networks.

3. Semantic similarity supports the peer selection process. It helps to improve re-
call and to reduce the number of messages. However, shortcut networks perform
reasonably even without the support of a semantic similarity function.

4. Each layer contributes to improve routing efficiency. Depending on the scenario,

dynamic bootstrapping peers help to reduce the number of messages, while rec-

ommender peers increase the recall.

Shortcut networks show small world characteristics.

Our algorithms performs well with a limited index size.

7. Combining different index policies supports efficient routing much more than
relying on a simple LRU strategy.

8. Shortcut networks are capable to handle conjunctive queries efficiently.

9. Shortcut networks perform well in both, dynamic and static, networks.

AN
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Fig. 5 Messages: Related Approaches

6.1 Performance Against State-of-the-Art Approaches

As a baseline we compare INGA with an index size of 40 entries against the interest
based locality strategy (IBL) of [29] with an LRU strategy and an index size of 40
entries, the default algorithm of Gnutella (Default) and Remind’in [32].

Figure 6 shows the recall in contrast to the maximum possible recall in a dy-
namic network. After only 15 queries per peer, INGA nearly doubles the recall of
the default approach and drastically outperforms /BL. Since INGA and Remind’in
use similar strategies for creating shortcuts both achieve a similar recall. Figure 5
shows the number of messages. Due to bootstrapping peers, which focus queries to
a fraction of peers in the network, INGA outperforms and halves the messages in
contrast to a default approach. In contrast to Remind’in, INGA reduces the number
of messages from about 85 to 58 messages in average. While the maximum pos-
sible recall in our dynamic scenario is ca. 55% after 15 queries of each peer we
achieved a recall of ca. 25%. One reason for this decent recall is due to the very low
replication of topics in our data set. Furthermore to stress our algorithm further, we
introduce a hard topic shift after 15 queries. However another study [21] shows a
higher replication and a smoother interest shift, both factors would raise the recall
further.
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Fig. 6 Recall: related approaches

6.2 Layer and Semantic Similarity Function Contribution

Figure 7 shows the message gain of the different layers. Only using content provider
shortcuts (Content-40) performs poorly, a combination of content and recommender
shortcuts raise the message gain (Content Recommender-40) and finally the intro-
duction of bootstrapping peers (INGA-40) additionally boosts INGA performance.
The introduction of the recommender layer has the strongest influence on the perfor-
mance of INGA. One reason is the caching of frequent queries issued by the peers
in the network. If the network becomes clustered, especially neighboring nodes with
similar interests will benefit of cached queries. Furthermore query routing is based
on a similarity function, so queries are routed along shortcuts representing similar
queries. Especially for nodes that are not clustered so far, this similarity helps to
find adequate clusters and route queries to nodes that have similar interests. Thus,
including a similarity in the peer selection process speeds up the clustering process,
however shortcut networks will exploit small world characteristics even if an exact
match paradigm is used only. In this case shortcut networks profit in particular from
popular queries that are used to establish topic specific shortcut between remote
peers.
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Fig. 7 Message gain for each layer

6.3 Tradeoff Between Clustering and Recall

Small-world graphs are defined by comparison with random graphs with the same
number of nodes and edges: first, a small-world displays a small average path length,
similar to a random graph; second, a small-world has a significantly larger clustering
coefficient than a random graph of the same size [16]. To measure the small world
characteristics for different index settings we conducted experiments where we only
consider the similarity locality (a = 10, b = 0, ¢ = 0), only community locality (with
a=0,b =10, c=0), only LRU-locality (a =0, b =0, ¢ = 10) and the combination
(a=3,b=06, c=1), that produces in our dynamic setting optimal results in terms of
messages and recall.

We discover that the INGA data-sharing graph displays small-world properties.
Figure 8 shows, that all index settings reduce the average path length in contrast to
the default network. Due to the peer dynamics the default network selects the most
stable peers with a path length of four hops while all index settings reduce the path
length to 2 hops. However, INGA LRU-40 stabilizes less than the other approaches.

The clustering coefficient (cf. Fig. 9) increases for most of our index configu-
rations. Only INGA LRU-40 decreases after a slight increase the clustering coeffi-
cient. Hence a LRU strategy alone is not able to create a highly clustered network.
However, a high clustering coefficient does not correlate with a high recall: Fig-
ure 9 shows that the high clustering coefficient of INGA SIM-40 outperforms while
Fig. 10 shows that the highest recall is achieved through the optimal setting INGA
40. Since clustering in the network focusses queries to a small set of peers stor-
ing similar shortcuts it reduces the number of randomly discovered peers as well.
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However, such randomness is crucial in a highly dynamic setting to achieve a high
document recall. For applications that prefer a high document recall, we recommend

the setting of INGA 40.
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6.4 Setting Optimal Index Size

In this experiment observe the effect of different index sizes in the message gain
of INGA. We found out that limiting index size performs similar to an unlimited
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Fig. 11 Message gain for different index size
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index. We conducted experiments with an unlimited index size and a maximum
size of 100, 40, 20 shortcut entries. To message the tradeoff between messages and
recall we use the message gain again. Figure 11 shows that an index size of 100
entries performs as good as an unlimited index while an index of 40 entries still is a
reasonable tradeoff between size and routing efficiency.

6.5 Setting Optimal Index Weight

To determine an optimal weighting of the parameter (a,b,c) of the index policy, we
conducted experiments where we only consider the similarity locality (a = 10,b =
0,c=0), where we only consider the community locality (witha =0,b=10,c =0),
where we only consider the LRU-Locality (@ = 0,56 = 0,c = 10) and an “optimal”
combination (a = 3,b = 6,c = 1). Reference [29] proposes a LRU strategy to update
the index. We found out that there are better strategies. Figure 12 shows a similarity
and LRU strategy, both perform worse and are alone not capable to adopt to the
dynamics of the network and the changing interests of each peer. The community
locality raises the message gain, even after changing the interests of each peer, while
the combined strategy performs best.
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Fig. 12 Message gain for different index weights
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6.6 Performance for Conjunctive Queries

In Fig. 13 we have plotted the results comparing the recall for different selection
strategies. We refer to the ranking based on equation (2) as Multiply. After a warm
up phase of 2.000 queries, or approximately two queries per peer, we constantly
reach around 75% of the available content. Not all peers are always online, thus
we have plotted the maximum available content as Online Available in the graph.
We compare our selection strategy to the Default approach, which represents the
baseline for all algorithms likewise. In this approach we use only the default layer to
select peers as in Gnutella. From the known peers on the default layer, we randomly
select two remote peers to send and forward a query to.
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Fig. 13 Recall for conjunctive queries

In Fig. 14 we have plotted the number of messages produced to achieve this re-
call. The number of messages produced by the Default approach slightly increases
over time. Due to the high network churn the peers have to discover new remote
peers since the available ones assigned in the setup phase are off line. Thus, the
necessity to send a query to a remote peer which has not received the query yet
increases over time. In contrast to the observation made for the Default approaches
the number of messages produced based on the shortcut selection decreases signifi-
cantly. The number of messages decreases because of the small world properties of
the network queries are only forwarded to a focused set of peers. I decreases further,
since we do not forward queries to peers that have already received a query (see
Section 4 and algorithm 8).
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7 Related Work

Their exist a number of different approaches to routing in P2P networks. They can
be categorized according to the two dimensions centralization and structure. The
discussion of related routing algorithms follows this categorization. and was influ-
enced by the surveys [4, 13, 26, 34].

Routing Algorithms for Centralized Peer-to-Peer Networks. First approaches for
efficient indexing in P2P architectures were central indices, that have to transmit
either meta data about the available content to central indexing peers, like, e.g.,
GIOSS [14] or Napster.

Routing Algorithms for Structured Decentralized Peer-to-Peer Networks. One of
today’s main technique for indexing P2P systems are so-called distributed hash ta-
bles (DHTs), (e.g., [1] or see [5] for a survey) that without need of a central index
allows to route queries with certain keys to particular peers containing the desired
data. But to provide this functionality all new content in the network has to be pub-
lished at the node for the respective key, if new data on a peer arrives or a new peer
joins the network. And in case that a peer leaves the network the information about
its content has to be unpublished. Recent research in [22] shows that due to the pub-
lishing/unpublishing overhead, DHTs lack efficiency when highly replicated items
are requested and in practical settings perform even worse than flooding approaches
degrading further if network churn is introduced.

Routing Algorithms for Super-Peer-Based Peer-to-Peer Networks. The system
EDUTELLA uses a super-peer-based routing mechanism based [27]. Peers which
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have topics in common are arranged in a hypercube topology. This topology guaran-
tees that each node is queried exactly once for each query. It is thus a very efficient
approach to flood queries to all online peers. From the requirements perspective
this solution for query routing is not adequate in our use case as the peers have
to publish their expertise to the super-peers. Their are also technical problems in
highly volatile P2P environments, as the hypercube topology must be maintained.
Our algorithm is not based on an explicit topology, thus it does not generate any
overhead to establish it. Our simulations illustrate that we need much less messages
per query than the number of peers available in the network in order to reach the
most knowledgeable ones. INGA cannot ensure a complete answer, though.

A second routing algorithm for the EDUTELLA system uses content provider
shortcuts for document retrieval [6]. Only exact matches between content provider
shortcuts and queries are considered for peer selection. The peers publish their local
indices in a static super-peer network. The shortcut index policy considers temporal
locality, each index entry has a certain time to live after which the shortcut has to be
reestablished for the next query on that topic. In contrast to INGA they only consider
exact matches between shortcuts and queries, hence they do not investigate complex
ranking metrics for semantically similar shortcuts. They do not use the concept of
recommender peers.

Routing Algorithms for Unstructured Decentralized Peer-to-Peer Networks. While
the visualization of keys and objects in the same name space used in structured
overlays provides an elegant clean solution to routing within logarithmical bounds
it comes at the significant cost of destroying the locality of the content: Content at
a user’s desktop is co-located with other relevant items, structured overlays destroy
this locality meaning that enhanced opportunities for browsing and pre-fetching are
lost [17]. Unstructured networks, such as Gnutella, keep this locality, since a query
is forwarded to randomly picked neighbors. To bound the number of hops it can
travel, each query is tagged with a maximum number of hops (TTL). In addition
Gnutella employs a duplicate detection mechanism, so that peers do not forward
queries that they have already previously forwarded. To improve the efficiency of
Gnutella routing indices local index information are first introduced by [11]. This
indexing strategy locally stores information about specific queries and what peers
were successfully queried in the past.

In the work described here, we do not make any assumptions about this infras-
tructure or the overlay topology, and rather assume that the query routing decision
has all the information about other peers that it needs and chooses peers solely by
benefit/cost considerations. We will disregard the cost aspects for this paper and
focus on the much less explored benefit issues. Following the authors of [7] we
distinguish three broad families of strategies:

» Semantic query routing: The peers to which a query is forwarded are chosen
based on the content similarity between the query and the data held by the can-
didate target peers (or the corresponding peer synopses).

* Social query routing: The target peers are chosen based on social relationships
like the explicitly listed friends of the query initiator or peers that belong to the
same explicit groups.
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o Spiritual query routing: The target peers are chosen based on behavioral affinity
such as high overlap in tag usage, bookmarked pages, or commenting and rating
activity.

The authors in [29] first consider the semantics of the query to exploit interest-based
locality in a static network. They use shortcuts that are generated after each success-
ful query and are used to further requests, hence their strategy generates what we
call content provider shortcuts (cf. Section 3). However their search strategy differs
from ours, since they only follow a shortcut if it exactly matches a query, else they
use a flooding approach. To update the index they use a LRU strategy. Similar, [6]
uses a local routing index for content provider shortcuts for the specific scenario of
top k retrieval in P2P networks. Local indices are maintained in a static super-peer
network. Their index policy considers temporal locality, each index entry has a cer-
tain time to live after which the shortcut has to be reestablished for the next query on
that topic. REMINDIN [32] used a routing table storing content provider shortcuts
and a relaxation based routing strategy. The approach was only designed for a static
setting without any index size limitation, an assumptions that is not realistic. The
authors in [18] introduce the notion of peer communities that consist of active peers
involved in sharing, communicating, and promoting common interests. These com-
munities are self-organizing using distributed formation and discovery algorithms.
Finally, the authors of [7] combine semantic social and spritual query routing for
delivering high-quality results. Instead of a top-level ontology, they consider key-
word queries and use IR quality measures like precision and recall. In their work
the present hybrid strategies that combine elements from both semantic and social
or semantic and spiritual search.

8 Summary

The novel design principle of the INGA query routing strategy lies in the dynamic
adaptation of the network topology, driven by the history of successful or semanti-
cally similar queries. This is realized by using bounded local shortcut indexes stor-
ing semantically labeled shortcuts and a dynamic shortcut selection strategy, which
forwards queries to a community of peers that are most promising to best answer
a given query. Shortcuts connect peers that share similar interests and thus sponta-
neously form semantic communities that show typical small world characteristics,
e.g., a high clustering coefficient and a low average path length. The clustering of
peers within semantic communities drastically improves the overall performance of
our algorithm even in a highly volatile setting.

In extensive simulations with different index strategies we have shown a trade-off
between recall and clustering: Especially in volatile networks “over clustering” may
easily lead the query into a subnetwork of peers that constitutes a locally, but not
globally optimal choice of peers, thus reducing the recall for a given query. At the
same time INGA is non-intrusive as it is solely based on the observation of network
behavior keeping the load for administration messages at nil.
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Thus, INGA exhibits a characteristics of properties that sets it apart in intriguing
ways from structured DHT-style networks and it may provide a substantial benefit
to all unstructured peer-to-peer networks.
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Overview of Structured Peer-to-Peer Overlay
Algorithms

Krishna Dhara, Yang Guo, Mario Kolberg, and Xiaotao Wu

Abstract This chapter provides an overview of structured Peer-to-Peer overlay al-
gorithms. The chapter introduces basic concepts including geometries, routing algo-
rithms, routing table maintenance, node join/leave behaviour, and bootstrapping of
structured Peer-to-Peer overlay algorithms. Based on these key concepts, a number
of key overlay algorithms are classified into categories and a brief over-view of these
algorithms is presented. Finally, the chapter presents an “on-a-glance” comparison
of the presented algorithms and provides an outlook on open research issues.

1 Overview

Large scale peer-to-peer systems have been deployed for file, music, and other data
sharing applications over the internet. The core of these systems is a peer-to-peer
network overlay that could connect millions of users or systems and a network that
could dynamically discover data stored at any node. Early versions of such peer-
to-peer systems mainly consisted of unstructured overlays that organize nodes into
random data structures. These unstructured overlays use techniques such as walk-
ing or flooding the nodes in the system for lookup, and are often optimized for some
common lookup queries. But, in general, these unstructured overlays are quite un-
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predictable for finding rare items and for some real-time applications such as voice,
video sharing etc.

To overcome these issues, structured overlays are developed to provide deter-
ministic bounds on the data discovery. Structured overlays provide scalable network
overlays based on a distributed data structure that supports deterministic behaviour
for data lookup. Structured P2P overlays impose restrictions on node placement in
the overlay and hence, improve the efficiency of data lookup. In this chapter we take
a closer look at these structured peer-to-peer overlays. Earlier surveys of structured
overlays can be found in [1-4]. Here, we present different geometries and their ef-
fect on the performance of structured P2P systems. We categorize structured P2P
systems in terms of the bound on numbers of hops required for data lookup and
present issues such as node lookup, finger table maintenance, and join/leave prop-
erties of the overlays. First we define various terms used in structured P2P systems
and present the basic notions of a structured peer-to-peer system. We then introduce
various classes of structured overlays and discuss their relative merits in the last
section.

Some terms and notions are often used when describing P2P overlay algorithms.
The most common ones are described briefly below.

Structured P2P overlay: A network overlay that connects nodes using a partic-
ular data structure or protocol to ensure that node lookup or data discovery is
deterministic.

Distributed hash table (DHT): A decentralized or distributed hash table that stores
(key, value) pairs and is used for data lookups using a key.

Key-based routing: The principle by which a message is routed to the owner of a
key k from a node n following the principle that either the node n owns the key
or points to a node that is closer to a node that owns k in terms of some key space
defined by the DHT.

Routing table (Finger table): Data structure, usually a table, at nodes that main-
tain links to other nodes in the structure.

Churn: Rate of node joins and leaves in a peer-to-peer network.

2 Basic Features of Structured P2P Overlays/Networks

One way to understand structured P2P overlays/networks and to compare various
such systems is to study their defining aspects. These aspects include the geome-
tries or data structures used in overlays, the routing algorithms that are enabled by
these data structures, the affects of churn on various geometries, the maintenance
of the data structure, and the bootstrapping mechanism. These aspects collectively
describe the behaviour of structured P2P overlays. In this section, we present what
each of these aspects are and how they impact P2P performance in terms of lookup
speed, space consumption, and bandwidth requirement. Notations introduced herein
are used in later sections to describe various representative structured P2P overlays.
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2.1 Geometries

Structured P2P overlays use a number of different geometries to accommodate par-
ticipating nodes in P2P overlays. The term geometry is referred to as a structure to
organize nodes in a P2P overlay. The primary goal of these geometries is to enable
the deterministic lookup. The cost or performance of lookups in a structured P2P
overlay is directly related to how nodes are arranged and how the geometry is main-
tained when new nodes arrive and when old nodes leave. Further, these geometries
have a direct impact on the space requirements and on the churn performance of the
P2P overlay.

(a) (b)

(c)

Fig. 1 Examples of structured P2P overlay geometries

Figure 1 shows a few examples of P2P geometries. As depicted in the figure,
nodes can be organized in various ways. There are two ways of looking at these
structures. One is how the nodes are mapped. In other words how a search of this
space proceeds. Another way, though closely related but distinct, is to look at the
connectivity of these nodes. For example in Fig. 1a nodes are organized in a way
such that the lookups proceed clock-wise in powers of 2. Each node knows only
about a certain number of other nodes in the network. In Fig. 1b lookups proceed
in powers of 2 but in a geometric space. Figure 1c shows a node organisation with
a high connectivity among nodes. Here the lookups are relatively simple and often
only take a single overlay hop.

While structured peer-to-peer overlays offer a uniform distribution of nodes that
help in the lookup, the costs associated with the distribution and lookups need to
be balanced with the performance under churn, network latency, and space. The
scale of peer-to-peer overlays requires significant efforts in maintaining membership
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changes in overlays. This aspect is further enhanced by the churn of nodes. One
way to mitigate this problem is to maintain small tables that do not require high
maintenance. However, small routing tables increase the lookup latency, which is
often O(log N). If the size of routing tables is increased, then structured overlays can
reduce the lookup latency as fewer overlay hops are required to reach the destination
node. The latency cost can vary between O(log N) to O(1). There are some variations
to the O(1) latency overlay algorithms that minimize peer dynamics.

Logarithmic Overlays: Structured overlays use different approaches to route ob-
jects. A class of overlays reduce the lookup space by half in each step resulting
in a logarithmic number of hops (based on the number of nodes in the overlay).
Such overlays are referred to as logarithmic overlays and they guarantee on average
O(logN) hops for lookups. Examples of such logarithmic overlays are Chord, Pas-
try, Tapestry. While Chord uniformly distributes a node across the search space,
overlay algorithms like Pastry and Tapestry exploit inter-node proximity while
choosing the node’s routing table entries. While the average number of hops re-
mains in the same order of complexity with this approach, lower network latency
reduces the routing and maintenance costs.

O(1) Overlays and Constant Overlays: In cases where the peer churn is low, the
size of the overlay is relatively small, or network latencies for high bandwidth
nodes make the routing table maintenance less expensive, constant or O(1) over-
lays become practical. There are studies that shows that for overlays with millions
nodes or more the bandwidth requirements become large and the O(1) overlays
become expensive [5] and multi-hop approaches might be preferable. After initial
studies on O(log N) overlays, currently there is extensive research on minimizing
lookup latency and optimizing the table maintenance costs using constant overlays
[6, 7].

2.2 Routing Algorithm

Structured P2P overlays use routing algorithms to locate node(s) in an overlay and
retrieve data items from them. The routing algorithm defines how a target node is
located in the overlay network. This lookup is closely associated with the geometries
of the P2P overlay and the connectivity or information stored at each node.

DHT-based routing algorithms use the hash of a node ID to form a node ID space,
which typically is uniformly distributed (however some overlays purposefully break
this to achieve a closer relation between the underlying physical network and the
overlay). A commonly used hashing function is SHA-1.

The identifier for data items (file name etc) is created by applying the same hash-
ing function. Hence the node IDs and data IDs fall into the same ID space. Data
items are typically stored on the closest node with node ID greater than or equal
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to the data ID. Using this approach each node can find a particular data item using
its name. If the node with the closest node ID does not store the data item, it is not
available in the network. Using this approach any existing data item can be found
by any node in the overlay.

Based on these characteristics a number of different routing algorithms have been
defined by various overlays. Major approaches are logarithmic routing (e.g. used by
Chord [8]), One-hop routing (EpiChord [9]), XOR routing (e.g. used by Kademlia
[10]), and the Content Addressable Network (CAN) [11].

Logarithmic routing means that it takes O (log N) steps to route a message from
source to destination node. N is the maximum number of nodes in the overlay. Each
node will route a message closer to the destination node by selecting the entry in its
routing table whose node ID is closest but smaller or equal to the destination node
ID. Logarithmic routing guarantees that with high probability that it does not take
more than log N steps to reach a destination node. Overlays described in Section 3
belong to this category.

Clearly, the more accurate and the larger routing tables are, the fewer hops are
required to route a message from source to destination. Constant degree overlays
guarantee that routing from source to destination is achieved in a certain number of
hops, independent of the size of the overlay. Overlays discussed in Section 4 belong
to this category. This approach is pushed to the extreme in one-hop overlay networks
which have almost complete routing tables in each node and hence can transmit
messages in (almost) a single hop from source to destination. Overlay algorithms
described in Section 5 belong to this category.

2.3 Join/Leave Mechanisms

In the previous sections, we discussed the P2P overlay geometies and the routing
mechanisms. P2P systems are highly dynamic in nature. They need robust mech-
anisms for nodes to join or leave the system at any time with minimal impact to
the functioning of the P2P overlay. However, the need for a geometry that leads
to a deterministic routing behaviour and the need for autonomous nodes provide
a dichotomy for P2P systems. Structured P2P systems use specific join and leave
mechanisms for nodes to resolve this dichotomy. These mechanisms provide a bal-
ance between high dynamism of P2P systems and a predictable or deterministic P2P
overlay behavior.

Peers join an overlay network by connecting themselves to any of the existing
peers. But in structured P2P systems, a peer cannot randomly pick exiting peers
to join. Instead, it must connect itself to well-defined peers based on its logical
identifier and on the geometry of the P2P overlay. Because of this controlled manner,
the join and leave mechanisms can greatly affect the performance of structured P2P
systems.
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Peer Join: Typically, there are three steps for a node to join a structured P2P overlay.

1. The first step is to get a unique identifier for the node. As discussed above, the
hashing scheme is based on unique properties of the node. For example, MAC/IP
addresses could be used to obtain such an identifier.

2. The second step is to position itself into the overlay structure. This positioning is
based on the node’s id and the geometry of the P2P overlay. During this step, the
node needs to know the entry point or the identity of an existing node to insert
itself into the overlay. This process is called bootstrapping, which is discussed
later in this section.

3. Finally, in the third step, the new joining peer and all the affected peers update
their routing tables to stabilize the overall P2P overlay. By stability we mean the
predictable behaviour of the P2P overlay. This step is often referred to as routing
table maintenance.

Routing table maintenance is discussed in the following sections, so we focus on
the second step where a node, after finding an existing peer, inserts itself into an
overlay. The joining node contacts a peer in the overlay to find out its appropriate
position in the overlay. The existing peer uses techniques that are associated with
the overlay geometry to find out the new node’s neighbours. For example, in Chord,
the existing node will issue a lookup to find the successor of the new node based on
the new node’s identifier. The new peer will then connect to its successor and join
the overlay.

Once a new node joins a structured P2P system, the new node and affected peers
need to update their properties, usually routing tables, to keep the invariants of the
overall system. The number of peers being affected varies for different systems. For
example, a new node in Chord affects O(logN) nodes, where N is the number of
peers in the system. A new node in CAN affects O(d) nodes, where d is the dimen-
sion of the system. However, in O(1) systems, all other nodes in the overlay may
need notifications. Clearly, the complexity is dependent on the particular overlay
geometry.

Peer Leave: When a node leaves or becomes unreachable in a structured P2P over-
lay, nodes that point to that node are affected. Their routing table entries will be
stale and have to be updated. A timely update results in preserving the invariant of
the overlay and guarantees the deterministic lookup in the overlay.

A gracefully departing peer may notify its neighbours about its departure and
transfer necessary information to its neighbours for updating their routing tables.
Its neighbours then propagate the changes if needed until the invariants of the sys-
tem are preserved. For example, in Chord, after the update, each node’s successor
should be correctly maintained and for every key k, node successor (k) should be
responsible for k.

In some cases, a node may leave the system unexpectedly, e.g., due to net-
work failure or power outage. Under these circumstances, the node will not no-
tify its neighbours and cannot send necessary information for routing table updates.
Hence the system must have a failure detection and stabilization mechanism. Failure



Overview of Structured Peer-to-Peer Overlay Algorithms 229

detection is usually handled by heartbeat messages or periodic checking. For exam-
ple, CAN nodes send periodic update messages to their neighbours. The prolonged
absence of an update message from a neighbour signals its failure. Chord nodes
periodically do random checking on its finger tables to detect failures. Once the
failure of a node is detected, usually by its neighbours, the neighbours will start the
stabilization process to update routing tables.

2.4 Routing Table Maintenance

As discussed in the previous sections, in structured P2P overlays, each node main-
tains a routing table to find other peers in the network. Routing table sizes depend
heavily on the overlay geometry. In Multi-hop overlays (that is a lookup takes mul-
tiple overlay hops from source to destination) generally use smaller routing tables
than one-hop overlays. In one-hop overlays, ideally every node is aware of every
other node, hence routing tables need to include references to every other node in
the system. This requirement results in large routing tables and poses an additional
problem in maintaining the routing tables. Hence, the improved latency behaviour
of one-hop overlays comes at a cost of increased maintenance traffic.

Routing table entries need updating if new nodes join or existing nodes leave the
network. Usually a join and a graceful leave are propagated through the network by
a defined algorithm. However, ungraceful leave events are harder to detect. Gener-
ally, two main approaches have been defined for keeping routing tables up-to-date:
opportunistic maintenance and active maintenance.

With opportunistic maintenance, an overlay uses lookup messages and responses
to distribute routing table entries. For example, a node will attach entries from its
routing table to a response message. The receiver of this response can then augment
its routing table with these nodes. This is efficient in terms of number of dedicated
maintenance messages required, however, the accuracy of the routing tables is de-
pendent on the number of lookup messages sent. During periods of high churn there
is an increased demand for routing table updates. During such periods, opportunistic
maintenance may not be sufficient on its own and hence nodes may insert additional
lookup messages to receive more routing table updates. As an example, EpiChord
[9] discussed in Section 5.3 employs opportunistic routing table maintenance.

With active maintenance, there is a specific algorithm and dedicated messages
to propagate routing table entries between nodes. Typically these messages are dis-
tributed when a node-join or node-leave event is detected. Usually, neighbouring
nodes pick up these events and then distribute these events to all the other nodes
in the overlay. Alternatively, update requests are sent after a time interval has ex-
pired. Clearly, active maintenance requires a higher bandwidth for distributing node
join/leave events, but achieves better routing table accuracy than with opportunistic
maintenance schemes. DIHT [46] as discussed in Section 5.4 uses active routing
table maintenance.
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2.5 Bootstrapping

Bootstrapping is a key operation in structured peer-to-peer overlay network. Boot-
strapping operation is executed when a peer joins the P2P system for the first time. It
enables the initial discovery of other nodes/peers participating in the P2P network.
Nascent peers perform such an operation to join the P2P network. Bootstrapping
include the period from peer arrival to the point when the nascent peer becomes a
functioning peer of P2P overlay.

One common approach for bootstrapping is through a bootstrapping server. The
bootstrapping server maintains a list of participating peers. When contacted by a
nascent peer the bootstrapping server returns a partial list of existing peers. The
nascent peer connects to the peers in the returned list to join the P2P network. The
address of the bootstrap server is usually obtained out-of-band.

Another common approach for bootstrapping is to let nascent peers know in ad-
vance an entry point into the network. The entry point can be a list of known peers
of a P2P overlay, or a list of non-public bootstrapping servers.

Once a nascent peer gets in touch with some existing peers in the network, it
starts the joining process. Different P2P networks employ different strategies, and
typically, the joining process is closely related to P2P overlay’s routing strategy. The
bootstrap server can look at the requesting node’s hashed identity and can return the
list of existing peers so that the joining process could be optimized. The key issue
in designing a good bootstrapping strategy is how to support peers to connect into
the network quickly.

3 Logarithmic Degree Overlays

In this section as well as Sections 4 (Constant Degree Overlays) and 5 (O(1)-hop
overlays), we use the key mechanisms described in the previous section to describe
various structured overlays. That is, for each overlay we describe its address space
along with its geometry, its routing table and lookup algorithm, and its join and
leave mechanisms. In terms of bootstrapping, not all overlays specify a particular
approach, however, it appears that all overlays require that a new node knows about
at least one peer in the overlay. Common approaches to find an overlay node are IP
multicast, using a well-known bootstrap node or using the DNS. Here the overlay
service is associated with a DNS domain name. IP addresses of one or more overlay
bootstrap nodes are retrieved using the DNS lookup service.

3.1 Chord

Chord [8], developed by a group of researchers at MIT, is one of the first P2P overlay
system based on distributed hashing table (DHT).
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Addpress space: Chord uses the so-called consistent hashing to assign each node and
each key an m-bit identifier (Id), where m is a pre-defined system parameter. Ids fall
into the range from O to 2m — 1. Nodes are ordered on an identifier circle modulo
2m, as shown in Fig. 2. A key is cached at its successor node, defined to be the
next node in the identifier circle in the clockwise direction. The predecessor node
to a node or key is the next node in the identifier circle in the counter-clockwise
direction.

Routing table and key lookup: The routing table of Chord nodes consists of two
parts. The first part includes a finger table with m entries, and the predecessor of this
node. Assume the node Id is n. The i-th entry in the finger table, where , points to
the node whose Id is the closest to n+2i — 1 in the clock wise direction at identifier
circle. Notice that the first entry in the finger table is the successor node of the
current node. Predecessor node plus the finger table guarantees the correctness of
key lookup service, as described below.

The second part of the routing table is a successor list of size r. In addition
to the immediate successor node maintained in the finger table, other closest (r —
1) success nodes are also recorded. The successor list improves the robustness of
Chord protocol, and allow Chord to perform correctly in the face of peer churn, i.e.,
dynamic peer arrivals and departures.

A key lookup request is routed along the identifier. Upon receiving a lookup
request, the node first checks if the lookup key Id falls between this node’s Id and
its successor’s Id. If it does then it, returns the successor node as the destination
node and terminates the lookup service. On the other hand, if the lookup key Id
does not belong to the current node, the node relays the lookup request to the node
in its finger table with Id closest to, but preceding, the lookup key Id. The relaying
process proceeds recursively (or iteratively) until the destination node is found. A
key lookup example is depicted in Fig. 2. In the figure, the left-hand side shows the
finger table of Node 8 (N8). Node 16 (N16) appears in four entries in the finger table,
while Node 32 (N32) and Node 43 (N43) are also in the finger table. The right-hand
side figure depicts the stages for the lookup of key 53 starting from Node 8. It has
been shown that the number of routing steps is at the order of O(logN), where N is
the total number of Chord nodes. Refer to [8] for more detailed treatment on Chord
routing algorithm.

Node join and leave: The newly arrived node in Chord first uses consistent hashing
to generate its Id. It then contacts the bootstrapping node, the node already in the
Chord, to lookup the successor of its Id. This successor node becomes new node’s
successor node. The new node uses the stabilization protocol, which is described
below, to have a fully correct routing table.

Stabilization protocol is designed to maintain routing tables’ correctness in the
face of peer churns. It is executed periodically at the background of individual nodes.
The stabilization protocol includes following two major functions:

Stabilize( ):  allows nodes to learn about newly joined nodes and to update their
successor(s) and predecessor.
Fix_fingers( ):  ensures finger tables are current and correct.
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Fig. 2 Example scenario for key lookup in Chord

Node failure/departure creates another challenge to the Chord protocol. The de-
parture of a node leaves its predecessor node’s successor pointer invalid, which
could affect the routing correctness. To address this issue, Chord maintains a suc-
cessor list of size . The successor list can be stabilized using slightly changed stabi-
lization protocol. It’s proven that with size r = S(logN), where N is the total number
of nodes in Chord, the lookup can still succeed with high probability even if every
node fails with probability of 1/2. A study of Chord’s behavior under churn can be
found in [12].

3.2 Pastry

Pastry [13—17] is developed by researches from Microsoft Labs Research, Rice Uni-
versity, Purdue University, and University of Washington. There are several appli-
cations built on Pastry for different purposes, such as SCRIBE [18-21] for group
communication/event notification, PAST [22, 23] for archival storage, SQUIRREL
[24] for co-operative web caching, SplitStream [25, 26] for high-bandwidth con-
tent distribution, POST [27] for co-operative messaging, and Scrivener [28] for fair
sharing of resources. Two implementations of Pastry are available for download:
FreePastry [29] from Rice University and SimPastry and VisPastry [30] from Mi-
crosoft Research.

Address space: Each Pastry node has a unique, 128-bit nodeld. Node IDs are chosen
randomly and uniformly. One way of generating nodelds is by hashing nodes’ IP
addresses.

Routing table and key lookup: Pastry uses prefix matching to route messages. Each
Pastry node keeps a routing table with Dogiz7 N rows and 2% — 1 columns. The entries
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in row n share the first n digits with the present node. In addition to the routing table,
each node also maintains a leaf set that contains the IP addresses of nodes with /2
numerically closest larger nodelds, and 1/2 nodes with numerically closest smaller
nodelds, relative to the present node’s nodeld.

Given a message with its key, the node first checks its leaf set. If there is a node
whose nodeld is closest to the key, the message is forwarded directly to the node.
If the key is not covered by the leaf set, then the node checks the routing table and
the message is forwarded to a node that shares a common prefix with the key by
at least one more digit. This way, with [log2”N7 steps, the message can reach its
destination node.

Figure 3 shows an example lookup scenario. The left-hand side table shows the
routing table and the right-hand diagram shows the route. The node 859fdc looks
up a key d57b2d. From its routing table, it gets d13al4, which shares one digit
common prefix with the key. d13al4 then checks its routing table and get d52acd,
which shares two digit common prefix with the key. This step keeps on until the key
is covered by the node d57b0c.
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Fig. 3 Example lookup scenario in Pastry

Node join and leave: In order to join a Pastry network, a new node must know an
existing node. The new node can initialize its state by contacting the existing node
by sending a join message with its nodeld as the key. The message is routed to an-
other existing node with nodeld numerically closest to new node’s nodeld. Then all
nodes encountered on the routing path send their state tables to X. The new node X
then initializes its own state tables based on the new information. Finally, the new
node informs any nodes that need to be aware of its arrival. Routing table mainte-
nance is handled by periodically exchanging keep-alive messages among neighbor
nodes. Upon detecting node failure, all members of the failed node’s leaf set are
then notified and they update their leaf sets.
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3.3 Kademlia

The basic principle of Kademlia [10] is to successively find nodes that are half the
distance to the target node. Kademlia differs from Pasty and other such overlays in
mainly two different aspects. One difference is a new notion of node closeness based
on XOR of the node identities. The other difference is Kademlia nodes contain lists
of entries, referred to as buckets, which are used to send parallel requests.

Address Space: Kademlia system assigns 160-bit node IDs. The lookup algorithm
uses a XOR-based closeness to reduce the lookup space. The intuition behind the
XOR based closeness is that node IDs that are different at higher order bits matter
more than node IDs that are different in lower order bits and hence, the XOR dis-
tance would be higher. Using this XOR metric, Kademlia’s topology orders nodes
as a tree where subtree nodes are closer together than other subtrees.

Routing table and key lookup: Routing tables contain separate lists for each bit in
the node ID. Hence if a network uses 128 bits for node IDs each node will have
128 lists (called buckets in Kademlia). Each list corresponds to a particular distance
to nodes. Distance is measured in matching bits in the node IDs. Nodes in the nth
list have a differing nth bit from the current node’s ID whereas the first n — 1 bits
match those of the current node’s ID. To define distance between nodes, Kademlia
uses XOR metrics. Here the result of the XOR operation applied to two node IDs
(returning O for identical bits and 1 for differing bits) is the distance between two
nodes. Like Chord, Kademlia nodes know about more nodes near to them and fewer
nodes further away.

111..11 Address Space 000..00

k-buckets at node 000...00

Fig. 4 Kademlia routing table data source

Figure 4 shows a routing table for a node with ID 000..00. Note that there are
k-buckets, each of which covers an address space based on the XOR metric of node
IDs. Each of these buckets is a list that may contain multiple contacts for a given
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subtree. Maintenance of these buckets is straightforward though highly unbalanced
trees are handled separately. Maintenance of the nodes in the lists could be depen-
dent on the applications.

A Kademlia lookup node first finds the k-closest nodes to the given node ID.
Kademlia recursively picks a subset, /, of these k-closest nodes and sends a request
to all the / nodes. In the next recursive step, the Kademlia lookup node again picks
a subset of nodes from the nodes it learned about from the previous request. Intu-
itively, each of these recursive reduces the XOR metric distance by 1/2 and results
in the smaller size k-buckets. The concurrent lookup provides a trade off between
bandwidth and lookup latency.

Node join and leave: Node joins mirror node lookups. That is, a node, u, that wishes
to join adds a previously known contact, w, to its bucket and performs a node lookup.
It fills up its routing table based on the responses and inserts itself into the k-buckets
of the other nodes in the system. There is no specific mechanism for node departures
as other nodes may discover through the PING mechanism.

3.4 Tapestry

Tapestry [31] was developed by a team of researchers from University of California,
Berkeley, and MIT. Tapestry has close links with Pastry in that both offer a prefix-
based routing of messages. Tapestry aims at providing high-performance, scalable
and location-independent routing of messages to near-by endpoints. Tapestry ex-
ploits locality when routing messages, including object replicas. Especially, Tapestry
allows applications to place object replicas according to the application’s need.
Bayeux [32] as a Application Lay Multicast approach has been implemented on
Tapestry. Chimera [33] is a more recent and updated Java-based implementation
which uses Tapestry concepts.

Address Space: Tapestry nodes are assigned node IDs uniformly at random from a
large identifier space. Typically a 160 bit values are used together with a globally
defined radix. Usually the radix is defined as hexadecimal resulting in 40-digit iden-
tifiers. The SHA-1 hashing algorithm may be used to create node IDs. Data items
(or Application specific endpoints) are assigned unique identifiers from the same ID
space.

Routing table and key lookup: Each node maintains a routing table whose entries
consists of node IDs and the corresponding IP addresses. All nodes represented in a
routing table are called ‘neighbours’ of that node. Routing corresponds to forward-
ing messages across neighbour links to nodes which are closer, i.e. matching more
digits of the prefix, to the key of the endpoint. An example routing table is shown in
Fig. 1. This routing table belongs to node 3176 in an overlay which uses 4-digit oc-
tal IDs. Each routing tables has a number of levels corresponding to the number of
digits used in the IDs. For the example shown in Fig. 5 this corresponds to 4 levels.



236 Krishna Dhara et al.

Each level contains links to nodes matching a prefix up to a digit position in the
ID. Each level contains a number of entries equal to the radix used (in Figs. 5, 8 as
octal). Further, the primary ith entry in the jth level corresponds to the closest node
whose ID begins with the corresponding prefix. Using this ‘closest node’ approach
provides the locality properties of Tapestry.

OX XX JO XK 3102 3170
1XXA - 311K 3171
2HXR J2KX J12% 172
-- JI3HK J13% 173
4X KR 34 XX 314 % 3174
SXAX J5RA 315% 3175
B XA G XK 3164 --
FHHR J7 XX - 377

Fig. 5 Routing table example for Node ID 3176

Each hop in the routing of a message takes the message closer to its destination.
Specifically, the node for the nth hop shares a prefix of at least n digits with the
destination ID. This approach guarantees that any node in the system can be reached
in at most log -N overlay hops, where N is the size of the namespace and - is the radix
used.

Node Join and Leave: Inserting a new node N starts at the node that is responsible
for the ID of N in the overlay. This surrogate node S determines p, the number
of digits its ID shares with N’s ID. S then sends a multicast message to all nodes
which share the same prefix. These nodes will add N to their routing table and in
turn contact N, so N can add these nodes to its own routing table. N then carries
out an iterative nearest neighbour search starting at level p. N may trim the list to
the closest k£ nodes. N then requests these p nodes to send their backpointers at that
level. This results in a set of all nodes that point to any of the k nodes at the previous
routing level. Next N decrements p and repeats the process for all remaining levels.
If a node N decides to leave the network, it notifies all nodes in N’s backpointers
about it leaving. With each notification N provides a replacement node from its own
routing table. Any object references stored on N are rooted to their new hosts. Nodes
that left the network ungracefully are detected using periodic beacons. Such leaving
events trigger repair of the overlay and initiate redistribution of object references.

3.5 P-Grid

P-Grid [34-36] uses a virtual binary tree to form an overlay. The virtual tree is used
to distribute the data items to be stored in the overlay to one or more peers. P-grid
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achieves O(log n) performance for search operations where n is the number of data
items in the overlay.

Address Space: P-Grid is similar to Kademlia in that it also uses tree-based routing.
However, in P-Grid the node IDs are disentangled from the key IDs. In fact, there is
no requirement to hash node IDs in P-Grid. Due to the nature of the construction of
key IDs, P-Grid supports substring queries. This is probably one of the most distin-
guishing features of P-Grid when compared with other DHT based overlays. Like
some other DHTs Pastry, Tapestry), P-Grid uses a prefixed based search algorithm.

Routing table and key lookup: Each peer in P-Grid contains a routing table which
contains an entry for every bit in the binary tree. The example shown in Fig. 6 uses a
3-bit binary tree. Hence each routing table has 3 entries. Each entry corresponds to
a bit in the path towards that node and stores at least one peer that is responsible for
the other side of the binary tree at that level. As an example Node 6 is linked to 011
in the binary tree. Hence it has entries for the other side of the tree at the topmost
level, in this case 1 (Node 5), the second level, in this case 00 (Node 4), and the
bottom level of the tree, here 010 (Node 2).

The binary search tree can be constructed for any set of strings. To construct a
tree a sample search string database is used. Firstly, the length of the common prefix
of the strings in the database is calculated. This database is lexicographically sorted,
and the string at the middle position in the sorted database is selected. The prefix
of this string (length is the common prefix + 1) is determined and used to split the
database in two equally sized parts. The prefix is then stored at the root of the tree.
This splitting proceeds until the desired depth of the tree is achieved. The binary
key of a string is then calculated by comparing the string to the tree’s root value.
If the string is smaller than this then O is appended to the key and the left subtree
is considered next, and if it is greater then 1 is appended to the key and the right
subtree is considered next. This algorithm is carried out for every level in the tree.

In P-Grid a number of nodes might be responsible for the same part of the tree.
For instance in Fig. 6, Nodes 1 and 6 are responsible for data with the prefix 000,
Nodes 9 and 2 are responsible for data with the prefix 010, Nodes 13, 20, and 5 are
responsible for data with the prefix 101 and Nodes 11 and 15 are responsible for
data with the prefix 110. If a peer receives a query it cannot directly satisfy it will
forward the query to a node closer to the destination. For instance, in Fig. 6, if Node
4 receives a query for 101, it will forward the query to Node 3 as the query starts
with 1. Node 3 will forward the query to Node 5 which is responsible for this data
and will return it to the original requesting node.

Node Join and Leave: P-Grid construction is carried out by local interactions be-
tween peers only. It is assumed that by some mechanism peers will meet and in-
teract. Initially, all peers are responsible for the entire search space, i.e. all keys.
As two peers meet, they divide the search space into two halves, with each node
taking responsibility for one half. This approach is carried out whenever two peers
meet which have responsibility for the same address space. If peers meet, which
are responsible for data items whose keys have a common prefix, they can initiate
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Fig. 6 Example P-Grid with a 3-bit binary tree

additional meetings by forwarding each other to peers in their respective routing ta-
bles. If the meeting peers have a different path length the peer with the shorter path
can specialise by extending its path in the opposite direction from the other peer at
that level. This algorithm is uniform and self-stabilising.

4 Constant Degree Overlays

4.1 CAN

CAN, or Content Addressable Network [11], is one of the first DHTs (distributed
hashing table) proposed.

Address Space: CAN utilizes a virtual d-dimensional Cartesian coordinate space
to host both keys and nodes. Keys and nodes are mapped to corresponding points/-
coordinates in this d-dimensional space using a uniform hash function. Hence the
address of a node is its location within the logical coordinate system. As with all
DHT based algorithms, the location of a node is calculated using a hash function.
Then, the entire coordinate space is divided into “zones” where each node owns one
zone. Node that owns the zone is responsible for the keys sitting in the same zone.

Routing table and key lookup: A CAN node’s routing table contains coordinates
and IP addresses of each of its neighbours in the coordinate space. Neighboring
nodes are the nodes whose zones adjoin each other. In a d-dimensional space, two
zones adjoin if their coordinate spans overlap along d — 1 dimensions.

The key lookup starts with hashing the search key to a coordinate in d-dimensional
space. A CAN message is then formed carrying the destination coordinates. The
lookup message is forwarded toward the destination zone in a greedy fashion:
the node always forward the message to its neighbor node that is closer to the
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destination. A tie is broken arbitrarily. Figure 7 illustrates such an example in a
2-dimension CAN space.

For a d-dimensional CAN space with n nodes, the average routing path length
is (d/4)(n'/?) hops. The routing table size is 2d. Hence the routing table size is
independent of number of available CAN nodes, and the routing path length grows
in the order of O(n'/4).

P e

1%, ¥l

Fig. 7 A 2-dimension CAN space with 14 zones. Node 3 initiates a lookup for key (X,Y) using
greedy algorithm

The routing table in CAN is maintained through periodic update messages. As
long as the routing table contains the right neighbors, the lookup service will suc-
ceed. In case a node loses multiple entries in the routing table simultaneously, or the
rebuilding process has not fully recovered the routing table, a node may use state-
less, controlled flooding to locate a node closer to the destination. The closer node
then takes over the lookup and uses greedy forwarding thereafter.

Node join and leave: A newly arrived node knows at least one existing node in
CAN. It randomly generates its coordinate, P, in the virtual space. A JOIN request
with destination P is sent through the known CAN node. Once the destination CAN
node receives the JOIN request, it will split its zone into half and assign one half to
the new node.

The new node builds up its routing table through learning previous owner node’s
routing table. The routing table comprises of the subset of retrieved routing table
plus the occupant node as neighbor. The routing tables of neighboring nodes also
need to be updated. The new and previous occupant nodes send out update messages
to neighboring nodes. In fact, the zone information of a node is periodically sent to
a node’s neighbors, which ensures the correctness of routing table.

When a node leaves the system gracefully, its zone and associated (key, value)
database is handed over to one of it neighbors. The new zone owner merges the
handed over zone with its original zone.
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In case a node fails or departs unexpectedly, the periodical update message will
discover such departure/failure. The takeover mechanism is automatically trigged
at nodes that discover the failure. The takeover timer is started. When the takeover
timer expires, the node sends a TAKEOVER message with its own zone information
to all of the failed node’s neighbors. The receiving node either cancels its own timer
if the zone volume in the message is smaller than its own zone volume, or it replies
with its own TAKEOVER message. The goal is to have the neighbor node that has
the smallest zone to take over the orphan zone.

4.2 Ulysses

Ulysses [37] can achieve tries to achieve log, log, n end-to-end routing latency with
a routing table size of about log(n).

Addpress space: The structure of Ulysses is based on the butterfly topology [38], but
it improved the static butterfly topology by accommodating the dynamics of peer-
to-peer networks. In addition, it solves the problem of high edge stress of static
butterfly topology by adding shortcut links.

Figure 8 shows a Ulysses network with 2 levels and 11 nodes. In a Ulysses net-
work, a node is identified by a tuple (P,l), where [ is the level number and P is a
binary string uniquely identifying the node in the level. P can be mapped to a k-
dimensional row identifier (xo,xp,...,x;_1) in a static butterfly is as follows : The
bits at location i, i +k, i + 2k, ... in P represent x; in (xo,X1, -..,Xx_1). The length of
P in a Ulysses network with n nodes and k levels is expected to be log,(n/k). But
the length of P for individual nodes changes due to dynamic arrival and departure
of nodes.

Routing table and key lookup: In a Ulysses network with k levels, a query for
the key (a,i) originates at a random node. The query keeps getting forwarded to
next level. In each forwarding step, the forwarded node can match one additional
dimension of the key. After the k steps the query reaches a node (Q,!) such that
a lies within the zone Q in all the k dimensions. If the level [ is the same as the
level i of the key that is being searched, then Q must contain a, and the routing is
complete. Otherwise the node (Q,!) forwards the query on its shortcut link to node
(Q,1), which must be responsible for the key (a,i).

Node join and departure: A new node must know an existing node to join a Ulysses
network. It then generates a random key and sends a query for this key through the
existing node. This query will eventually reach the node O(Q, ) responsible for the
key. Node O then splits its zone of responsibility in two and assigns one half to the
new node. The identifiers of node O and the new node will then be Q0 and Q1,
respectively. Both nodes remain in level /. The node O informs the new node N
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Dimersion |

Level 0 Level 1 Level 0
Fig. 8 A Ulysses butterfly with 2 levels and 11 nodes

about its original neighbors. When a node with identifier (P,[) leaves the network,
it needs to hand over its keys to another node at the same level.

4.3 Cycloid

Cycloid [39] presents an overlay that combines hypercube routing with overlay rout-
ing that reduces the lookup path by key matching as in Pastry. Cycloid uses Cube-
Connected-Cycles graph as its geometry. The geometry and the routing algorithm
ensure that the lookup time is O(d), where ‘d’ is the network dimension.
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. »
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MNodes connected as a ring

Fig. 9 Various linkages of a full 3-dimensional cycloid

Address Space: A cycloid can be viewed as a d-dimensional cube where each ver-
tex is replaced by a cycle of d-nodes, with n = d.2¢, where n is the number of
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nodes in the network. The connectivity of each node is constant and the finger table
size (discussed later) is constant. Each node in a cycloid is represented as a tuple
(kyXg—1,%4—2,...,X0) with k as the cyclic index and x4_1,x4_2,..., X0 as the cubical
index. The cyclical index is an index between O to d — 1 and the cubical index is
binary number between 0 and 2,_;.

Figure 9 shows various linkages of a 3-dimensional cycloid. The cube shows
how cycles at different levels are connected. Each cycle connects nodes that have
the same cubical index but with different cyclical index. Finally, nodes with different
indices are connected as a large ring that enables nodes on cycle to reach nodes in
another cycle directly or indirectly.

To minimize the finger table size and maintenance, each node in a ring is
connected only to a primary node with highest cyclical index in its preceding
cycle and succeeding cycle. The predecessor and the successor of a node, say
(k,x4—1,X%4—2,---,%0), in such a ring are chosen such that the most significant differ-
ent bit (MSDB) with the current node is no larger than k — 1. The predecessor and
successor are chosen such that they are the first such largest and first such smallest
nodes. Note that this arrangement of nodes with different cubic indices as a ring
gives cycloid a lookup ability to select a cubical index that is closest to its destina-
tion from different cycles. Within each cycle, a node is connected to its predecessor
and successor nodes. Hence the finger table of a node has seven entries and has the
following entries.

| Node ID (K, Xg_1, Xg—2, -+ ., X0) |

| 1| Cubical Neighbor — (k — 1, x4_1, Xg—2. - - -, X» X, X, X, X) |

|2 | Cyclic Neighbor — node at k — 1 with max cyclical index less than x;_1, X4_2, ..., Xk, X, X, X, X |

|3 | Cyclic Neighbor — node at k — 1 with min cyclical index greater than x;_1, xg_2, ..., Xk, X, X, X, xl

|4 | Inside leaf set predecessor |

IS I Inside leaf set successor

|6 I Outside leaf set predecessor — primary node of preceding cycle I

|7 I Outside leaf set successor — primary node of succeeding cycle

Table 1 Routing table of a cycloid node

Cycloid key assignment consists of generating a pair of cyclic and cubic indices.
For a give key, the cyclic index is its hashed value modulated by d and the cubic
index is the hash value divided by d.

Routing table and key lookup: The routing algorithm of a cycloid DHT consists of
three steps. The first step uses the outside ring or the outside leaf sets of the finger
table to find out the closest cubical neighbour or the closest cyclical neighbour.
Then the inside leaf sets are used to find appropriate node. The following steps are
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performed by a source node (k,xy_1,%4-2,...,Xp) to route to a destination node
(1, Yd—1,Yd—2,---Y0). MSDB represents the most significant different bit between
the source and the destination nodes.

1. Ascending: If k <MSDB then it forwards request to a node in the outside leaf set
until kK >=MSDB. This step helps in either finding the closest cubical neighbour
or closest cyclical neighbour.

2. Descending: If k =MSDB, then request is forwarded to the inside cubical neigh-
bour else if kK >MSDB then the request is forwarded to the closest cyclical neigh-
bour.

3. Traverse Cycle: If the target ID is within the inner leaf set, then inside leaf set
entries from the finger table are used for lookup.

Node Join and Leave: A joining node X will route the joining message through a
bootstrapping node to a node ¥ whose ID is numerically closest to X. The finger
table of X forms its leaf sets based on the finger table of Y.

1. If X and Y are in the same inside leaf set then the outer leaf set values of X are
the same as Y. The inside leaf set values of X and Y are modified according to
the position of X with respect to Y and others in the inner leaf set.

2. If X is the first in its cycle, then it has to form the links to the outside leaf sets.
If Y’s cycle is the succeeding remote cycle of X, then Y’s left outside leaf node
and primary node are the left and right nodes in X’s outside leaf set. Otherwise
the right outside leaf and the primary node are used. Since X is the only node in
its cycle, its inside leaf sets point to itself.

Once a node joins, it propagates the join information to its entries which up-
date themselves. Inner leaf sets update themselves while the outer leaf sets update
themselves and propagate the join to their inner leaf sets.

When a node is leaving, it notifies inside leaf set nodes. If it is a primary node
then the leaving node has to update its outside leaf sets. Upon receiving such mes-
sage, the outside leaf set nodes update themselves and transfer the leave notification
to its inside leaf set. The cycloid DHT leaves the updating of cubical and cycli-
cal neighbours of leaving nodes and of failed nodes as the responsibility of system
stabilization.

5 O(1)-Hop Overlays
5.1 Kelips

Kelips [40] is based on a DHT overlay that uses increased memory and increased
background overhead for efficient O(1) lookup. Kelips overlay is simple and dif
fers from other structured P2P overlays in mainly two ways. One difference is that
it is loosely structured and the other is that the loose structure does not preserve
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any invariant. However, Kelips uses increased memory and sophisticated broadcast
mechanism to achieve a reliable O(1) lookup. Hence, though Kelips lookup, join,
and leave mechanisms are quite simple they rely on sophisticated broadcast mecha-
nisms among its members.

Address Space: Kelips consists of k virtual affinity groups that are formed by hash-
ing a node’s identifier. Each node’s finger table consists of a set of other nodes in its
affinity group, a set of nodes in all the foreign groups, and a set of file tuples that
give details of a file and the id of the node storing the file. Hence the total storage
requirements of Kelips could be of the order n/k+ cX (k— 1) + F /n, where n is the
number of nodes, k is the number of affinity groups, c is the contact size, and F is
the file size.

There is no geometry to the address space and each node knows about a larger
set of nodes. Kelips relies on a gossip-style epidemic [41, 42] protocol to ensure
that with high probability the finger table information is transmitted to all nodes. To
ensure this, nodes in Kelips overlay use a light weight protocol to transmit limited
information, such as keep alive packets and filetuple information, to nodes in their
affinity group and contacts group. These nodes in turn chose other nodes from their
finger tables to propagate such information. There are studies that show that such a
gossip protocol is quite robust against packet losses and node failures [43, 44].

Routing table and key lookup: A querying node maps a file name to appropriate
affinity group and sends a look up request to the topologically closest node in that
affinity group. The receiving node looks up its table and returns to the querying node
the filetuple with the address of the homenode storing the file. The querying node
then requests the homenode directly for the file.

Nodes that wish to insert a file follow the same procedure. They send the request
to the topologically closest node from the hashed affinity group. The receiving node
randomly picks one node from its affinity group and assigns the file to it and desig-
nates it as the homenode. The homenode then inserts the file, creates a new filetuple
and inserts that information into the gossip stream.

Node Join and Leave: A bootstrapping node allows the joining node to create a
soft finger table and allows it to join the gossip stream. Since there is no structure
or invariant that Kelips has to preserve, join is complete with the node participating
in the gossip stream. Node leaving or failures are updated through out the system
through the gossip mechanism. If other nodes notice the lack of updates from the
failed node, they update their entries accordingly.

5.2 OneHop

OneHop [45] was developed by a team at MIT. Some members were also involved
in the development of Chord and EpiChord. So in many aspects OneHop relates to
these two overlay algorithms.
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Address Space: OneHop nodes are assigned a 128-bit random node ID. These IDs
are ordered in a ring modulo 2'?8. Identifiers are uniformly distributed as can be
achieved by using hash functions such as SHA-1. Like in Chord, every node has
a predecessor and a successor in the identifier ring. Each node periodically sends
keep-alive messages to its predecessor and successor. Data items are assigned an ID
in the same ID space. The node which should store a data is the successor, i.e. the
first node in the ring clock-wise from the key.

Routing table and key lookup: In OneHop, every node maintains a full routing
table, that is a routing tabe contains references to all other nodes in the network.
This is to allow sending a lookup request from the source node to the destination
node in a single hop. The source node will look up the successor node of the data
key is requires, and send a lookup message to this node. Key to this scheme is
that the routing tables are up-to-date. Hence node leave and join events need to be
propagated to all nodes.

Node Join and Leave: Join and leave events need to be send to local nodes, but
also to all the other nodes in the overlay. Local updates include updates to successor
and predecessor nodes. Every node n runs a stabilisation routine periodically, which
involves sending keep-alive messages to its successor s and predecessor p nodes.
Node s checks if n is indeed its predecessor. If not, it informs # that there is another
node between them. Similarly, p checks if n is its successor, and if not it notifies
n. If either s or p do not respond, n will ping them repeatedly and after a timeout
interval conclude that the node is dead.

A joining node contacts any other node in the overlay and gets its routing table,
similarly to the approach in Chord. With this information the new node can establish
its successor and predecessor and inform them of its existence.

Both join and leave events also need to be forwarded to all the other node in
the system within a certain time. This is achieved by imposing a hierarchy on the
system, forming a tree. This hierarchy is introduced by dividing the 128-bit identi-
fier space into k equal contiguous intervals (slices). All slices will have roughly the
same number of nodes as nodes have uniformly distributed random identifiers. Each
slice has a slice leader which is the successor of the mid-point of the slice identifier
space. New nodes learn about their slice leader from one of its neighbours. Slices
are again divided into equal-sized intervals (units). Each unit has also a unit leader
which is the successor of the mid-point of the unit identifier space. As a node detects
a change in the membership of the overlay it informs its slice leader. The slice leader
aggregates notifications from its members for a certain interval before sending them
out to other slice leaders. The slice leaders again aggregate notification messages for
a certain interval before sending them on to the unit leaders within their slice. Unit
leaders piggy back these update information on keep-alive messages to their succes-
sor and predecessor nodes. Other nodes propagate this information also via keep-
alive messages — if they receive the information from their predecessor they forward
it on to their successor and vice versa, but not beyond unit boundaries preventing
duplicate messages. If a slice leader fails, this will be detected by its successor, and
this node will become the new slice leader.
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5.3 EpiChord

EpiChord [9] is a variation of Chord that intends to speed up the lookup process.
The speedup is achieved using parallel queries and by allowing nodes to cache more
routing entries than O(logN) entries in original Chord protocol. EpiChord is able
to achieve O(1)-hop lookup performance under lookup-intensive workloads, and
at least O(logN)-hop lookup performance under churn-intensive workloads in the
worst case.

Same as in Chord, the nodes and keys are mapped to m-bit identifiers using
consistent hashing. Nodes are ordered on an identifier circle modulo 2. A key
is cached at its successor node. The successor node to a node or key is the next
node in the identifier circle in the clockwise direction; while the predecessor node
to a node or key is the next node in the identifier circle in the counter-clockwise
direction.

Routing table and key lookup: To guarantee the routing correctness in the face
of peer churn, each EpiChord node maintains a list of k& successor nodes and &
predecessor nodes, respectively. Furthermore, EpiChord divides the address space
into two half circles, with each half circle being further divided into a set of ex-
ponentially smaller slices (see Fig. 10). It is required that at least j/1 — g en-
tries are maintained in the routing table for individual slices, where j is pre-
determined number of entries per slice, and ¢ is the probability that a entry is
out-of-date. Since EpiChord node maintains k successor nodes and k predeces-
sor nodes and both should fit in two smallest slices, the number of slices can
be estimated. Further, the parameters j and k satisfy the following relationship,
k=2j.

The key lookup process utilizes p parallel queries. For a given key k, the node
selects one node immediately succeeding k and p — 1 nodes preceding k from its
routing table. Upon receiving the search query, if the probed node owns the key, it
responds as the destination node and the searching process finishes. If the probed
node is not the destination node, it returns 1 best next hops from its routing table.
In addition, the probed node returns its immediate successor if it is a predecessor
of key k, or its immediate predecessor if it is a successor of key k. Both p and [
are configuration parameters. When these replies are received by the original node,
further queries are dispatched if returned nodes are closer to the key k& than the nodes
that have already responded. Notice that only original node issues queries and the
lookup proceeds in an iterative fashion.

In EpiChord, each entry in the routing table is associated with a lifetime. Rout-
ing entries are flushed whenever lifetime expires. In addition, the routing entry as-
sociated with a node is purged if the node does not respond to some number of
queries.

EpiChord nodes also monitor the number of entries available at each slice.
Should a slice be found not to have sufficient routing entries, a node makes a
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Fig. 10 Division of address space into exponentially smaller slices with respect to node x

lookup to the midpoint of that slice, and increases routing entries from the lookup
responses.

Node join and leave: A new node knows at least one node already in EpiChord.
It sends queries to this node. Since EpiChord nodes constantly update their routing
tables by observing lookup traffic, other nodes learn about this node eventually.
Besides, the new node obtains a full cache transfer from one of its two immediate
neighbors.

EpiChord employs stabilization strategy to resolve the routing table inconsis-
tency problem when multiple nodes join EpiChord at about the same location, or
nodes leave the system unexpectedly. The stabilization strategy comprise of weak
stabilization protocol and strong stabilization protocol.

Weak stabilization protocol: Weak stabilization protocol maintains weak stable
relationship among nodes, i.e., predecessor(successor(n))=n. To achieve this,
nodes periodically probe their immediate neighbors to check if they are alive.
It is individual node’s responsibility to maintain its successor and predecessor.
When a node with closer Id than a node’s successor or predecessor is discovered,
either through observing lookup traffic, or through active probing neighbors, the
node update its successor or predecessor, correspondingly.

Strong stabilization protocol: for a weak stable EpiChord ring, it is still possible
the ring is loopy. Strong stabilization protocol ensures that the loop will be de-
tected and fixed. The basic idea of loop detection is to let a query traverse the
entire ring. If a loop exists, the traversal allows EpiChord nodes to know nodes
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whose Ids are closer than its successor or predecessor, thus break the loop by
updating successor/predecessor nodes.

5.4 DIHT

DI1HT [46] was first introduced in 2005 by researchers from Federal University of
Rio de Janeiro, Brazil. The design goal of the overlay is to maximize performance
with reasonable maintenance traffic overhead even for huge and dynamic peer-to-
peer (P2P) systems. The philosophy of DIHT design is that the tradeoff between
latency and bandwidth usage should favor latency because speed and information
are critical while network bandwidth improves over time.

Address space: A D1HT system is composed of a set D of n peers and maps items
(or keys) to peers based on consistent hashing, where both peers and keys are hashed
to integer identifiers (IDs) in the same ID space [0..N],N >> n. Typically a key
ID is the cryptographic hash SHA-1 of the key value, a peer ID is based on the
SHA-1 hash of it’s IP address (or the SHA-1 hash of the user name), and N =
2160 _ 1. Asin Chord, DIHT uses a ring topology where ID 0 succeeds ID N, and the
successor and predecessor of an ID i are respectively the first living peers clockwise
and counterclockwise from i in the ring.

Routing table and key lookup: Each peer in a DIHT system maintains a routing
table with the IP addresses of all peers in the system, and so any lookup is trivially
solved with just one hop, provided that the local routing table is up to date. As
each peer in a D1HT system should know the IP address of every other peer, any
join/leave events should be acknowledged by all peers in the system in a timely
fashion in order to avoid stale entries in routing tables.

Node join and departure: A new node must know an existing DI1HT node to join a
DIHT system. The joining peer hashes its IP address (or some other unique value)
to get its ID p and asks the existing node to issue a lookup for its ID. The query will
return p’s successor. The joining peer then contacts its successor to join the network
and get the information about the keys it will be responsible for. The successor will
also send the IP addresses of a number of peers to the new node. The new node will
then ping those peers and choose the nearest ones to get the routing table. D1HT also
uses a Quarantine mechanism to handle highly dynamic nodes, where a joining peer
will not be granted to immediately take part of the D1HT overlay network, though
it will be allowed to perform lookups at any moment. When a node leaves, instead
of sending the leaving event to all the other peers, DIHT uses the EDRA (Event
Detection and Reporting Algorithm) algorithm to propagate the event. The details
of EDRA algorithm can be found at [46]. A study [47] found some shortcomings
with the EDRA algorithm and termed the updated version EDRA*.
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6 Comparison and Analysis
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In this section we compare and contrast different structured P2P overlay tech-
nologies from the geometries used, the routing algorithms, routing performance,
join/leave efficiency, routing table maintenance, and bootstrapping strategy. The re-

sults are summarized in the Tables below.

Table 2 Summary of Chord, Pastry and Kademlia overlays

Chord Pastry Kademlia
Geometry Circular Node-ID Plaxton-style mesh XOR metric for
space, logarithmic network, prefix distance between
degree mesh routing points in the key space
Routing Search query Matching Key and (XOR) Matching Key
algorithm forwarded to “closer” prefix of Node-ID and Node-ID based
node routing done parallely
Routing O(logN), where N is O(logBN), where Nis ~ O(log BN) + ¢, Where
performance the number of peers number of peers, and N is number of peers,
B = 2b, b is number B = 2b,b is number of
of bits of NodeIlD bits of Node-ID, and ¢
is a small constant
Join/leave (logN)? logg N logg N +c¢
performance
Routing Periodic stabilization Neighboring nodes Failure of peers will
table protocol at nodes to periodically exchange  not cause
maintenance learn about newly keep-alive messages. network-wide failure.
joined nodes, update The leaf sets of nodes ~ Replicate data across
successor and with adjacent Node-Id ~ multiple peers
predecessor, and fix overlap
finger tables
Bootstrapping A new node knows an A new node knows a A new node knows an

existing Chord node

nearby Pastry node

existing Kademlia
node
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Table 3 Summary of Tapestry, P-Grid and CAN overlays
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Tapestry P-Grid CAN
Geometry Uniformly at random Binary tree d-dimensional
from a large identifier Cartesian coordinate
space (typically space
160bit with a globally
defined radix)
Routing Matching Key and Binary tree search and  Forward the search
algorithm prefix in Node-ID prefix matching message to neighbour
node closer to the
destination
Routing logg N, where N isthe ~ O(logN), where N is (d/4)(NV4), N is
performance size of the identifier number of data items  number of nodes, and
space, and f3 is the in the overlay) d is dimension
radix used
Join/Leave O(logN) 2d
performance
Routing table Through periodic
maintenance update messages.
Controlled flooding is
used in case a node
loses multiple entries
simultaneously
Bootstrapping A new node knows a Know at least one Know at least one

nearby Tapestry node

node

node. May get this
node through DNS
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Table 4 Summary of Ulysses, Cycloid and Kelips overlays
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Ulysses Cycloid Kelips
Geometry Butterfly topology Cube-Connected- No geometry to the
with shortcut links Cycles address space, each
graph node knows about
other nodes
Routing For a Ulysses network ~ Uses the outside leaf Querying node maps
algorithm with k levels and n sets of the finger table  file name to affinity
nodes. to search akey  to find closest cubical ~ group and sends
a, in each step, the neighbour or the lookup request to
query gets locked in closest cyclical topologically closest
one additional neighbour. Inside leaf ~ node in affinity group
dimension, after the sets are used to find
first k steps the query appropriate node.
reaches a node (Q,/) Routing table includes
such that a lies within ~ nodes in the affinity
the zone Q in all the k. group, nodes in all the
dimensions foreign groups, and
filetuples
Routing log, log,, O(d), where d is net-  O(1)
performance work dimension, n is
number of nodes, n =
d.2d
Join/Leave Find corresponding o(d) No structure or invari-
performance node with a randomly ant. Join is complete
generated key, then with node participat-
split the zone. ing in gossip stream.
log2log2n Node leaving are up-
dated through the gos-
sip system
Routing Leaving nodes notify Kelips routing tables
table nodes inside leaf set. are maintained
maintenance If primary node then through a low
need also update bandwidth gossip
outside leaf sets. style mechanism
Stabilization process
detects failed nodes
Bootstrapping A joining node needs No specific Bootstrapping node
to know an existing bootstrapping allowing joining node

node in Ulysses
network

mechanism discussed

to join gossip stream
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Table 5 Summary of OneHop, EpiChord and D1HT overlays
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OneHop EpiChord DI1HT
Geometry 128-bit random node Circular node ID Hashing keys and
ID ordered in a ring space, logarithmic peers into an ID space
modulo 2128. degree mesh [O,N],N>>n
Routing Every node maintains Use multiple parallel Every node maintains
algorithm a full routing table queries to locate node  a full routing table
that owns the key
Routing o(1) O(1) under lookup o(1)
performance intensive workloads,
and O(logN) in the
worst case
Join/Leave [log,, |, where n is
performance number of nodes
Routing Nodes run Routing entries are Propagate join/leave
table stabilisation routine flushed whenever messages with TTL
maintenance sending keep-alive lifetime expires, or values. Use a
messages to successor  the corresponding Quarantine
and predecessor node does not respond  mechanism to handle
to queries. If slice highly dynamic nodes
entries are
insufficient, lookup to
midpoint of slice, add
routing entries from
the lookup response
Bootstrapping A new node knows an  Knows at least one The new node must

existing OneHop node

existing node

know an existing
D1HT peer already in
the system
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7 Conclusions

7.1 Open Research Issues

We see the future research of structured P2P overlays focussing on the following
three aspects, namely algorithms, frameworks, and applications.

1. Algorithms: As discussed in this chapter, many structured P2P algorithms ex-
ist. Each of these structured overlays carries its own advantages and disadvan-
tages. The following are key issues that needs to be properly addressed for
successful structured P2P algorithms:

a. Scalability and performance: In general, the structured P2P overlays can help
overcome the scalability and performance problems faced by unstructured
ones. However, for some real-time applications there are additional perfor-
mance requirements that need to be addressed, such as Voice over IP (VoIP)
and IPTV. Therefore, how to ensure guaranteed performance required by cer-
tain applications while keeping the overall system scalable and balanced is an
important issue for structured P2P algorithms.

b. Security, privacy, trust and reputation: Trust and reputation are important to
support secured and trustworthy P2P overlay communications among peers.
There are many research topics in this area for P2P overlays such as anonymity,
denial-of-service attacks, malicious node behavior, reputation and incentives.

c. Convergence of Peer-to-Peer systems and other established field of distributed
computing such as Grid computing.

2. Frameworks: Algorithms theoretically define P2P overlays. In practice, there
are many practical issues to be dealt with:

a. Protocols and interoperability: Peers need to talk to each other. In some sce-
narios, peers belonging to different P2P overlays may also need to talk to
each other. This requires well-defined protocols/interface, and careful study
of interoperability among P2P nodes.

b. Heterogeneity: In reality, many aspects can affect the performance of P2P
overlays, such as network availability/bandwidth, latency, peers’ computa-
tional power and storage space, etc. Therefore, supporting heterogeneity is
an important issue from a practical point of view.

c. Handle general Internet services: general Internet services, such as spam han-
dling and directory services, are also important to P2P overlays.

3. Applications: Many overlay algorithms and frameworks are developed are with
the intention to build novel and useful applications. P2P applications can be in
many fields. We just name a few below.

a. Content sharing/distribution: this category of P2P applications may be the
most popularly one so far. There is still plenty of ongoing research work in
this area, such as providing better performance, good scalability, fairness, or
strong security.
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b. Enterprise applications: P2P applications in enterprise environment typically

need to meet more stringent security and performance requirement. It also
faces other issues such deployment easiness and monitoring capability.

¢. Communication: For P2P communication applications, the real time con-

straint (both signaling and media transmission) requires special consideration
in P2P algorithm and framework design. In addition, issues such as lawful
interception, enabling communication features, and interop with the existing
communication networks also demand special attention.

d. P2P applications in mobile and ad-hoc wireless networks: application of P2P

overlay approaches would allow mobile peers to have optimized flow control,
load balancing mechanism, and proximity awareness.

e. The semantic grouping of information in peer-to-peer networks: This direc-

tion shares many commonalities with efforts in the semantic Web domain.

7.2 Summary

Existing products and research projects demonstrate that structured P2P network is
an important technology of practical value. It helps overcome the scalability and
performance problems faced by many unstructured P2P technologies. This chapter
provides an overview of several representative structured P2P overlays, and analyzes
and examines key aspects that affect a P2P overlay’s performance.

We believe that structured P2P overlay remains to be a viable solution to many
problems in distributed computing. There are still many open research questions in
this field, such as new algorithms, practical frameworks, and novel applications.
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Distributed Hash Tables: Design
and Applications

C.-F. Michael Chan and S.-H. Gary Chan

Abstract The tremendous growth of the Internet and large-scale applications such
as file sharing and multimedia streaming require the support of efficient search on
objects. Peer-to-peer approaches have been proposed to provide this search mech-
anism scalably. One such approach is the distributed hash table (DHT), a scalable,
efficient, robust and self-organizing routing overlay suitable for Internet-size de-
ployment. In this chapter, we discuss how scalable routing is achieved under node
dynamics in DHTs. We also present several applications which illustrate the power
of DHTs in enabling large-scale peer-to-peer applications. Since wireless networks
are becoming increasingly popular, we also discuss the issues of deploying DHT's
and various solutions in such networks.

1 Introduction

The Internet has grown to an enormous size, with nearly 600 million hosts as of
early 2008 [1]. Coupled with this intense growth in network size is the proliferation
of large-scale applications such as file sharing and multimedia streaming. These ap-
plications require the support of fast search on objects. Since traditional server-client
model is no longer scalable to large group of hosts, peer-to-peer approaches have
been proposed. One of such approaches is the distributed hash table (DHT), a scal-
able, efficient, robust and self-organizing overlay routing infrastructure for millions
of hosts. DHTs have the potential to enable large-scale peer-to-peer applications,
such as distributed file systems and on-demand video streaming. This chapter intro-
duces DHTs and discusses their design issues and applications.
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DHT provides a unified platform for managing application data. Due to the spe-
cific nature of application data, traditionally a protocol designed for one type of
application may not work well for other types of applications. DHT's break this bar-
rier by providing a flat identifier-based routing and location framework, and a very
simple API to applications.

DHT maps application data to keys, which are m-bit identifiers drawn from the
identifier space. Nodes participating in the DHT are distinguished by unique identi-
fiers drawn also from the same identifier space. Each node is responsible for a subset
of the space, i.e. stores a subset of keys. Typically, a value is associated with a key,
and is also stored at the node responsible for the key. Depending on the specific
application, the value could be the address of the node storing the data or the data
itself.

A DHT scheme defines how the overlay is structured, how node state is main-
tained and how routing is carried out. Regardless of the details, DHTs provide a
two-method interface for applications:

* insert(k, v): Insert a data item with key-value pair (k,v) into the DHT.
* lookup(k): Retrieve the value v associated with key k. Return null if k is not
found.

In contrast to IP routing, DHT routing is identifier-based. Each node stores about
O(logn) overlay neighbors and employs a deterministic algorithm to route queries
from requestor to the node storing the target key in O(logn) overlay hops. In Sec-
tion 3, we discuss various DHT schemes. In particular, we shall see how the overlay
is structured for efficient and scalable routing. We also outline techniques used to
improve a DHT’s query response time and robustness.

There are many applications making use of DHT. We present several examples
that demonstrate how DHTs enable large-scale peer-to-peer services.

Another interesting DHT topic is its deployment in wireless networks which are
becoming increasingly popular nowadays. Applications are being developed for mo-
bile ad-hoc networks (MANETS), wireless sensor networks (WSNs) and wireless
mesh networks (WMNs). It is desirable to have a DHT-like framework for wireless
networks to support object location. We describe some major challenges in deploy-
ing DHT in wireless networks, and outline some solutions.

This chapter is organized as follows. We present the performance characteris-
tics and design considerations of DHTs in Section 2. We discuss some examples
of DHTs and how DHT is used in large-scale applications in Sections 3 and 5 re-
spectively. In Section 6, we highlight the challenges of applying DHTs in wireless
networks and present some solutions. We conclude in Section 7.

2 Performance Characteristics and Design Considerations

In this section, we describe some common performance characteristics of DHTs,
and discuss some design issues (Section 2.1), followed by design considerations of
DHT (Section 2.2).
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2.1 Common Performance Characteristics

A DHT usually has the following desirable properties:

1.

Efficiency in routing: A DHT overlay is structured so that queries for keys may
be resolved quickly. Typical DHT schemes have a O(logn) bound on the length
of search path (in overlay hops). To reduce routing delay, in recent years, locality-
aware DHTs have been proposed so that routing hops are of short Internet length
by taking advantage of locality information.

Scalability: Node storage and maintenance overhead grows only logarithmically
with the number of nodes in DHT. This leads to its high scalability to large num-
ber of users.

Self-organization: A DHT protocol is fully distributed. Node joins, departures
and failures are handled automatically without the need of any central coordina-
tion.

Incremental deployability: A DHT overlay works for arbitrary number of nodes
and adapts itself as the number of nodes changes. It is functional even with one
node. This is a highly desirable feature as it enables deployment without inter-
rupting normal operations when new nodes join the overlay.

Robustness against node dynamics: Queries are resolved with high probability
even under node dynamics. Further optimizations may further increase system
robustness.

2.2 Design Considerations

In designing a DHT to achieve the above desirable properties, several issues need to
be considered:

1.

Node dynamics: Peers may join and leave at any rate. Since it is not possible for
a central server to record the status of each peer, a DHT must be able to dynamic
node departure or failure. In other words, the DHT structure must be maintained
to ensure correct and efficient routing in the presence of node dynamics.
Overlay path stretch: Compared with IP routing, overlay routing to a certain
node has in general higher latency, since overlapping traversals of some physical
links is inevitable. The path stretch is defined as the ratio of the overlay route’s
latency to the underlying IP route’s latency. In order to avoid large path stretch,
DHT routes need to be optimized for low response time and such optimization
techniques should be scalable to large groups.

Hotspots: Application data is generally skewed in terms of access probability.
For instance, in video streaming, some segment of a video may be more popular
than the other. A DHT scheme needs to consider the high lookups for a particular
key (i.e., popular segment) by load balancing request processing among many
nodes. The load balancing algorithm should be scalable.



260 C.-F. Michael Chan and S.-H. Gary Chan

3 DHT Schemes

We describe several DHT schemes in this section. Note that keys and node IDs are
drawn from the same m-bit identifier space and that keys are typically obtained by
hashing meta-data, while node IDs are hashes of IP addresses or public keys. For
a good hashing functions, nodes and keys are uniformly distributed in the overlay.
Consequently, each node stores a similar share of keys. In our discussion below, we
focus on operations including how keys are inserted, stored and looked up, and how
the overlay is constructed and maintained. We assume m-bit identifiers are used, i.e.
the identifier space is [0,2™ — 1]. We denote a node with ID i as N; and a key with
ID jasK;.!

3.1 Chord

The Chord DHT places nodes and keys in an identifier ring [23]. It is a simple DHT
with great flexibility, which allows optimizations such as load balancing to be read-
ily added as extensions to the basic scheme. We first describe the basic Chord, and
then briefly discuss some simple but important extensions. The basic components
and operations of Chord are as follows:

* Key placement: Akey K; is stored by the node N; immediately following j in the
identifier ring. In other words, N; is chosen such that there is no node Ny where
J <i < i. We also call N; the successor of j, denoted by successor(j). Note that
key and node IDs may coincide, in which case the key (K;) is stored at the node
with the same ID (;).

* Successor Links: Each node N; maintains a link to its successor, the node N;
immediately following it. Such definition of successors for keys is also applica-
ble to nodes. Denote N; as successor(i). As long as successor links are correct,
a lookup is guaranteed to reach the key’s successor, albeit via a long path going
around the identifier ring one node at a time. A node achieves this by periodically
running the following srabilize() procedure. It asks its successor Ny for N;’s pre-
decessor N;. If N; # N;, N; sets N; as its successor. This happens if N; is a newly
joined node. Suppose i < j < s and N; and Ny are existing nodes in the DHT.
When N; first joins the overlay, it looks up j and gets N,’s address. It then sets N
as its successor. Finally, Ny transfers keys in (i, j] to N ;. It is shown in [24] that
all successor links always converge correctly for any sequence of node joins and
stabilizations.

* Fingers: Anode N; also maintains a finger table, which contains m entries, where
m is the identifier length. The j-th finger stores the address of successor(i+2/=1).
An example of finger tables with 6-bit identifiers is shown in Fig. 1. Nodes pe-
riodically run a fix_fingers() procedure to refresh the finger table entries. The

! For simplicity, we also use i in place of N; and j in place of K 7 when there is no ambiguity.
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Fig. 2 Example of Chord routing with fingers. Each search hop is labeled with the finger table
entry used in forwarding the lookup message. succ means the key lies within the segment between
the current node and its successor

table is iterated in a round-robin fashion, where each call to the procedure re-
freshes the next finger. A refresh is achieved by looking up the finger’s successor.
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* Key lookup: The simple lookup algorithm forwards the request hop by hop us-
ing successor links until the key’s successor is reached. The search path’s length
is O(n) hops. Fingers drastically shorten the lookup path to O(logn) hops. In
general, to look up key k, node i does the following. First, it checks if k is in
(i, successor(i)]. If so, simply forward the request to the successor. Otherwise,
forward the request to the largest finger i +2/~! immediately preceding k. The
same procedure is carried out at each intermediate node. Figure 2 shows an exam-
ple of Chord routing with fingers. Notice that each hop (via a finger) reduces the
distance to the key’s successor by approximately half, thus giving the O(logn)
path length. A more formal proof is given in [23].

The basic Chord is extended for greater robustness and load balancing. Two main
ideas are key replication and employing virtual nodes. For key replication, instead
of storing key k at only successor(k), it is replicated on the r successors of k. This
way, even if j = successor(k) fails, the successor(j) is still available for answering
lookups for k. Setting r = O(logn) allows for robustness against very high degrees
of node dynamics [23]. A node may also run multiple virtual nodes depending on
its processing power and bandwidth. This way, heterogeneous peers may fully con-
tribute their spare and varied resources to enhance the DHT’s quality.

3.2 Pastry

In Pastry, an identifier is made of D digits. For example, a 128-bit identifier is broken
up into 32 4-bit digits. To simplify the exposition, we assume 2°P-bit identifiers,
where b is the number of bits per digit. The components of Pastry are as follows:

* Key placement: A key k is placed at the node whose ID i is numerically closest
to k.

» Leafset: Each node i keeps a list of L neighbors, where L is an even number. L/2
of those have IDs numerically closest to and smaller than i. The other L/2 have
IDs numerically closest to and larger than i. This is similar to Chord’s successor
links in that a node may employ correct leafset information to resolve lookups in
O(n) hops.

* Routing table: A Pastry routing table consists of D rows, one for each digit. A
row consists of 2” entries. The j-th entry of the i-th row stores the address of a
neighbor whose ID shares the same i significant digits with the current node’s
ID, but with the i + 1-th digit equal j. Note there may be no node matching the
requirements of some entries. In this case, the entry is left empty (Fig. 3).

* Key lookup: To look up a key k, a node i first checks its leafset. If a neighbor
is numerically closest to k, the request is forwarded to that neighbor, and the
lookup is complete. Otherwise, the routing table is checked for a node whose ID
shares one more digit with k than i. If there is no such node (i.e., the route entry
is empty), the message is forwarded to the node j matching as many digits with
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Routing table of node 3123

Level i i+1digit
0 1 2 3
0 0xxx 1XxXX 2XXX -
1 30xx - 32xx 33xx
2 310x | 311x - 313x
3 3120 | 3121 3122 -

Fig. 3 Pastry routing table of node 3123. 8-bit identifiers are divided into 4 2-bit digits. All num-
bers are in base 4. “xxx” is an arbitrary string of base-4 numbers

k as i does, but is numerically closer to k. As shown in [22], node j exists with
high probability given that L is reasonably large. A lookup fails, however, if L/2
nodes with consecutive IDs fail at the same time. Note that each hop effectively
brings the lookup one-digit closer to the target key, thus the O(logn) bound on
the search path length.

* Node dynamics: Node joins are handled similarly as in Chord. A new node looks
up its own ID i. Suppose node j is responsible for the key i. Node i asks node j
for its leafset and turns it into its own leafset by adding j and removing the node
farthest away in terms of ID distance. Up to L nodes in j’s leafset will need to
be contacted so that they could update their leafsets to include i. j also updates
its leafset to include i. The two adjacent neighbors in i’s leafset then transfer
keys to i.

Node i’s routing tables are populated by route entries from intermediate
nodes along the search path it initiated when it looked up its own identifier. For
each route entry, there may be multiple candidates. The entry with the lowest
distance is chosen. The distance metric reflects the end-to-end delay between i
and the neighbor. Once the route entries are filled, i asks for those neighbors for
their routing tables, and updates the route entries again by replacing route entries
with lower-distance entries. This way, locality-awareness is built-in during over-
lay construction. Reference [22] gives a formal proof that locality is preserved
by using routing entries from physically close nodes.

A node handles neighbor departures and failures lazily. Replacement of a
failed neighbor occurs when the node forwards a message in vain to the neighbor.
A failed leafset neighbor is replaced as follows. The node contacts the live leafset
neighbor P with the smallest ID or the largest ID depending on which side of the
node the failed neighbor resides in the leafset. P returns its leafset to the node,
which then updates its own leafset by removing the failed neighbor and adding
a new neighbor from P’s leafset. The j-th entry of the i-th row is handled as
follows. The node successively asks neighbors in the other i-th row entries for
their j-th route entry. This way, a number of candidates for this particular entry
is found for replacing the failed neighbor. The one closest in terms of the distance
metric is chosen.
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3.3 Kademlia

Kademlia is a widely implemented DHT [12, 16, 25]. It stands out among other
DHTs by using an uncommon metric — the XOR metric. The distance between two
nodes is defined as the bit-wise XOR of their identifiers. For instance, the distance
between nodes with IDs 1100 and 0010 is 1110.

The following description of the Kademlia protocol is facilitated by a binary-tree
view of the network. Each node is a leaf and the (labeled) path from the root to
the leaf is the unique prefix of the node’s ID. Figure 4 shows an example of this
binary-tree representation of a Kademlia network.

Fig. 4 Binary tree abstraction of a Kademlia network

* Node state: As in Chord and Pastry, Kademlia nodes keep track of peers in
certain ID ranges. Peers are put into k-buckets, where bucket i is for peers at a
distance between 2! and 2!, Each node must know of at least one node in each
bucket, if there is some node in that ID range. For example, node E in Fig. 4
needs information of at least one node from each circled group. The size of a
bucket is limited by the system parameter k. If a bucket is full, a new node will
not be added unless the least-recently-used node in the bucket fails to respond.
This modified LRU replacement scheme has the benefit of defending against
malicious attempts to flush node state with new (and bogus) information.

* Key placement: A key is placed at the k nodes whose IDs are closest to the key.

e Key lookup: A key x is looked up as follows. The querying node n first scans
stored information to locate the k nodes closest to x. It then sends the query to o
(< k) nodes from the set. Upon receiving replies, n chooses again the k closest
nodes to x, and then sends queries to & of them. The formal analysis of this
algorithm is involved, but the idea is like walking down the binary tree from the
root, where at each internal node, n queries some node it knows about in that
subtree, receives information about a node further down the subtree and closer
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to the destination, and repeats the process by moving down the correct edge. The
algorithm is also similar to that of Pastry’s prefix-based routing, where with each
step, n gets closer to peers storing x by “correcting” significant bits in the nodes
queried. The system parameter o governs the degree of parallelism in lookups.
By employing parallel look ups, Kademlia sacrifices some (constant) increase in
bandwidth for flexibility in selecting low-latency paths.

* Node dynamics: Unlike other DHTs, nodes in Kademlia learn about each other
through queries. When a node joins the network, it looks up its own ID, so that
peers along the query paths know about it. Similarly, there is no explicit mes-
saging when a node leaves. The departure is only discovered when other nodes
attempt to ascertain the node’s presence before evicting it from a bucket. There
is also the need for republishing keys to ensure that they are stored at the & clos-
est nodes. Periodically, a key is republished (by a lookup for the key and data
transfer to new holders). To reduce overhead, a node receiving this republication
will not republish the key in the next period. This way, as long as some node first
republishes the key, other nodes who were also obliged to do so would not need
to waste the bandwidth to perform the same operations.

In practice, further optimizations are employed to speed up the protocol. When a
bucket is full, new information for that bucket is cached. If some node in the bucket
fails afterwards, the cached information can be used to fill in the gap immediately.
Lookups are sped up by expanding the routing table so that multiple bits may be
matched in each step. This is similar to setting b > 1 in Pastry.

3.4 Other DHTs

Several DHTs based on other types of overlay structures. The Content Addressable
Network (CAN) constructs a d-dimensional hypercube [20]. Identifiers are divided
into d digits. Each node owns a subset of the coordinate space and maintains a set
of d — 1 neighbors. A neighbor shares the same range of values with the node in
d — 1 dimensions, but not in the remaining dimension. Lookups are resolved by
forwarding along the correct dimensions such that each hop matches one more digit
in the key. A lookup is thus resolved in O(d) hops. Note that by setting d = logn,
we get the O(logn) bound as in Chord and Pastry.

Tapestry is similar to Pastry in that it constructs a prefix-based routing table [29].
The main difference is that there is no leafset.

Viceroy maintains a butterfly structure [15]. Key management is similar to that
in Chord. Nodes are distributed on an identifier ring. The difference is in the overlay
neighbor selection. A node joins one of logn level rings. Each level ring is connected
by level-ring links between nodes with adjacent identifiers on the same level. A node
at level i maintains some pointers to neighbors at levels i — 1 and i+ 1 in a way that
lookups are resolved in O(logn) hops. Viceroy is most characteristic in its constant
node state.



266 C.-F. Michael Chan and S.-H. Gary Chan

4 Design Fundamentals

In this section, we discuss some fundamental design issues. With so many DHT
protocols, it is natural to ask how they fair against one another in various scenar-
ios. A detailed comparison between the various DHT schemes is presented in [9],
which studies the effect of the overlay’s structure on system performance in terms
of static resilience, path latency and local convergence. We also briefly discuss in-
teresting findings concerning tradeoffs between the network diameter of a DHT and
the amount of routing information a node stores [26].

4.1 Static Resilience

The robustness of a DHT depends on both its recovery mechanisms and structural
properties. The study of static resilience reveals how well a DHT’s structure copes
with node failures without any recovery operations, and sheds light on how such
mechanisms should be provisioned. For instance, if the structure is inherently re-
silient against node failures, then recovery mechanisms need not be frequently car-
ried out.

Intuitively, a DHT is more robust when there are more alternative routes a query
can take to the key holder. If some nodes fail, it is still possible to route around
the failures to the destination. Clearly, the DHT’s routing algorithm dictates how
flexible queries may be forwarded. The more flexible the DHT’s structure, the more
robust the system.

Take Chord and Pastry as examples. In the original Chord proposal, a query is
resolved by halving by the distance to the destination at each step. However, this
is really a restricted version of the more general algorithm in which the distances
covered by each step need not be in decreasing order. In other words, we may take
the steps in any order, as long as there is one step for each distance (2') to be covered.
The prefix-based phase of Pastry’s routing algorithm is vastly different. At each step,
we must fix the most significant unmatched bit. This means only one route entry can
be used. If the node in that entry has failed, the query has to be redirected to leafset
neighbors. Clearly, if not for the leaf sets, Pastry’s routing algorithm results in little
flexibility in routing, and hence lower static resilience.

4.2 Path Latency

The structure’s flexibility also affects the latency of query paths. Once the routing ta-
ble is fixed, there is limited choice in a query’s next hop. A flexible structure enables
selection of neighbors with better latency, and hence better choices in choosing next
hops. As a result, the overall path latency can be reduced.
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In Chord, a node n’s i-th finger is originally defined to be the successor of n+ 2.
However, this requirement can be relaxed to include nodes between [n+2/,n+2"1),
making neighbor selection very flexible. In Pastry, a route entry in the i-th row can
be chosen from a maximum of 2°(P—i~1) peers. A Kademlia node also has great
flexibility in filling its k-buckets. For the i-th bucket, there are up to 2’ choices.
On the other hand, CAN requires a neighbor to only differ by a single-bit, thereby
restricting the selection to one neighbor.

4.3 Local Convergence

Consider two queries from two nodes that are nearby in the physical network. A
DHT exhibits good local convergence properties if the queries converge at a com-
mon peer that is also close to the two nodes. The most significant advantage of a
high degree of local convergence is that caching can be made more effective. Fre-
quently, an application on top of DHT caches lookup results along the query path
in hopes that future queries would hit the cached entries early in their lookup paths.
The Cooperative File Storage (CFS) to be discussed in Section 5.1 is an example of
such an application.

It is discovered that a structure with flexible neighbor selection exhibits good lo-
cal convergence properties. Chord, Pastry and Kademlia with low-latency neighbor
preference are desirable designs in this regard.

4.4 Network Diameter and Node State Tradeoffs

Another interesting observation is that for most of the DHTs we have discussed, the
size of a node’s routing table is either O(logn) (Chord, Pastry, Kademlia, Tapestry)
or O(d) (e.g. CAN), with network diameters of O(logn) and O(n'/¢) respectively.
(The exception is Viceroy, which has constant node state with high probability and
O(logn) diameter). The question asked in [26] is whether these are actually lower
bounds on the network diameter, i.e. Q(logn) and Q(n'/%). The answer will give us
an idea of whether the tradeoff has been optimized by existing DHTs, and whether
there is room for improvement.

It is, in fact, possible to go beyond the Q(logn) lower bound. The idea is to
construct a (directed) logn-ary tree. Each node except the root has a edge pointing
back to the root. This way, all nodes are reachable from one another (thus satisfy-
ing routing correctness) and any path between two nodes is at most 2+ 1, where

h = 10gjpe, 11 = lolgoli'én is the height of the tree. Obviously the longest path (i.e.,
the network diameter) is O(; Og)f)'g’n ), which is asymptotically smaller than O(logn).

Also, each node only maintains O(logn) neighbors. Unfortunately, this structure
puts the root under heavy congestion, an unacceptable state of affairs in peer-to-
peer systems.
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Another discovery is that DHT routing algorithms can be classified into two ma-
jor categories — uniform and others. Uniform routing algorithms treat every query
without discrimination against the source of the query and the location of the pro-
cessing node. For instance, a Chord node would process a query by looking up its
finger table no matter where the query came from or where the node resides in the
identifier ring. In this case, where nodes have O(logn) state, Q2 (logn) is indeed the
lower bound on the network diameter. The reason is that the DHTs aim to provide a
uniform load across nodes (i.e., to avoid congestion), therefore they cannot achieve
the lower bound of the log n-ary tree for network diameter, but only the larger lower
bound of Q(logn).

It turns out that a butterfly network can be (deterministically) designed to achieve
ao( lolgol“f)';n) diameter with O(logn) node state and a non-uniform routing algorithm
such that no extra load is imposed on any node. However, this bound is known so far
to be possible with static nodes, and that some links would still have O(logn) extra
load. It remains unknown whether the bound can be achieved deterministically in
the presence of node dynamics.

5 Applications

In this section, we present several applications of DHTs. We first describe the appli-
cation briefly, and then discuss their properties with reference to those of DHTs.

5.1 Cooperative File Storage (CFS)

CFS is a large-scale distributed storage system supporting multiple file systems [7].
Files are divided into blocks, which are stored in CFS servers. Blocks are distin-
guished by unique IDs obtained by hashing block contents and public keys of block
publishers. Clients read a file by looking up and retrieving blocks that make up the
file. File publishers insert and periodically refresh files so that the blocks do not get
deleted by CFS servers after a fixed expiry time. Each file system is a tree rooted at
a root block, which is signed by the publisher with its private key. The root block’s
ID is the publisher’s public key. Clients then name a file system according to the
system publisher’s public key.

CFS consists of three layers. The (lowest) Chord layer is responsible for look-
ing up blocks given their IDs. A DHash layer is built on top of the Chord layer.
It manages block storage, replication and caching. The file system layer converts
blocks obtained from the DHash layer to files and provides users and applications a
file system interface. We focus on how the Chord and DHash layers collaboratively
gives CFS various desirable performance qualities:

* Highly scalable: CFS inherits scalability from the underlying Chord layer.
Node state and control overhead in searching and routing table maintenance
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grows logarithmically with the number of CFS servers. Since files are broken
into blocks, a large file will not exhaust a particular server’s storage, as will
be the case in file-based storage systems. Also, since block IDs are hashes of
block contents, and servers are distributed approximately uniformly around the
Chord ring, it is expected that each server stores around the average number of
blocks.

* Robust to massive server failures: With the original Chord protocol, a block
is stored at the successor of its ID. The DHash layer improves robustness by
replicating the block in the k successors of the ID. Since consecutive servers
on the overlay are likely to be distributed in the physical network, their fail-
ure rates are likely to be indepedent. If a server fails with probability p, then a
block is inaccessible (removed from CFS due to failure of servers storing it) with
probability approximately equal to p*, which could be made small with modest
values of k.

» Effective load balancing: A popular file may put excessive load on its server.
CFS proposes two approaches to balance the load for popular files. First, for large
popular files, CFS inherently balances the load by breaking them into blocks.
Furthermore, block replication allows lookups to be directed to a number of
servers instead of the immediate successor of the block ID. Second, for small
popular files (and blocks), caching is employed to reduce the load on the block
successors. In a nutshell, the queried blocks are cached at intermediate nodes
along the overlay search path. Since the Chord lookup algorithm halves the dis-
tance to the target node every hop, cached copies near the target node tend to
overlap, thereby boosting the cache hit rate.

* [Fast file access: The Chord searching algorithm is improved to provide server
selection in CFS. At every hop during lookup, a node may choose among the
set of successors and fingers to forward the query to. Two potentially conflict-
ing considerations are latency to the next hop and the ID space covered by this
forwarding. A hybrid metric balances the latency and overlay progress (see Sec-
tion 4.3 of [7] for details.) With server selection enabled, CFS retrieval rates are
comparable to and has lower variance than that of direct TCP-based transfers
such as FTP.

» Secure against data change and flooding attacks: Two major security concerns
of distributed file systems are unauthorized data modification and flooding at-
tacks. CFS servers mandates node ID to be the SHA-1 hash of the node’s IP ad-
dress, which is in turn authenticated via challenges with random nounces sent to
the claimed address. An attacker wishing to modify a specific data block would
have to control a large set of IP addresses to be able to store the target block.
However, entities owning many IP addresses are more easily identified (such as
big organizations) than individual attackers owning a small number of addresses.
This way, the system is quite secure against intentional deletion of data. CFS
also limits the amount of data publishers can put into the system to guard against
flooding attacks. Suppose the quota is f, a (small) fraction of the total storage
space in the CFS system, then an attack would have to employ 1/f hosts to ex-
haust the system’s storage.
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5.2 Scribe

Enabling large-scale multicast in the Internet is an important topic of research. Tra-
ditional (IP) multicast has been proposed long ago, but has seen limited deployment
on a large scale due to network management issues and other deployment concerns.
To support large-scale multicast, all networks involved must have multicast support
enabled, which is often not possible. There are also issues of assigning (unique)
multicast addresses to groups and authorization of operations such as group cre-
ation, sending messages to a group and receiving messages. The lack of multicast
support has stirred interest in application-layer multicast (ALM) where end-hosts
provide multicast by relaying messages at the application layer.

Scribe is an ALM scheme based on the Pastry DHT and solves several important
issues with IP multicast [5]. While ALM is in general less efficient in terms of packet
delivery time and link stress, Scribe provides scalable multicast with acceptable
delay penalty and link stress as compared to IP multicast. In Scribe, a group ID
(multicast addresses) is generated by hashing the creator address and group name.
The creator then sends a create message to the node responsible for the group ID via
Pastry routing. This node is the rendezvous point (RP) for node joins and message
sending for the group. A joining node sends a join message with the target group
ID to the RP. Intermediate nodes on the path become forwarders in the resultant
multicast tree. They store a children list so that future multicast messages may be
forwarded to the downstream. Senders forward packets to the root for dissemination
throughout the tree. We focus our discussion on Scribe’s scalability, efficiency in
propagating multicast messages and fault tolerance.

* Scalability in group size: An important hurdle in scaling multicast to large
groups is the node joining process. In particular, it is essential to enable nodes to
join with low control overhead. This is obviously not possible with a centralized
server storing a (sub)set of existing nodes in the group. Scribe enables efficient
node joins by exploiting Pastry’s properties. First, Pastry’s routing mechanism
allows the join overhead to be distributed evenly among nodes. Second, the RP
need not handle all joins, as join messages may hit an existing node (either a for-
warder or receiver) along the path and processed there locally. Third, the uniform
distribution of nodes in Pastry ensures a balanced multicast tree. Furthermore,
since Pastry employs prefix-based routing, the multicast structure is guaranteed
to be loop-free.

* Scalability in number of groups: Two problems that hinder scalability in sup-
porting many multicast groups are the assignment of group addresses and load
balancing control information of groups among participating nodes. The address
assignment problem is solved by employing DHT keys as group IDs, which are
obtained by hashing the group creator and group’s name. With a suitable hash
function, the probability of group ID collision is low. This way, group IDs can be
assigned in a totally distributed manner. Hashing also distributes the group roots
uniformly in the Pastry overlay. Since nodes are also distributed uniformly in the
overlay, the control information for all groups, i.e. parent and children pointers,
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is likely to be distributed uniformly among the nodes. Indeed, for fairly large
networks (100000 nodes and 1500 groups), Scribe nodes have on average less
than 10 children pointers. Additionally, nodes may offload children connections
by asking some of them to connect to their siblings instead. This so-called bot-
tleneck remover algorithm dynamically adapts node stress to network conditions,
and effectively reduces the maximum number of children connections under the
same network conditions.

*  Multicast efficiency: Scribe achieves low delay penalty compared to IP multicast
for two reasons. First, the paths from receivers to the RP are short — with DHT
routing, the path length is logarithmic in number of nodes in the network. Second,
since Pastry enforces locality in choosing overlay neighbors, each overlay hop
in the multicast tree is likely to be short in terms of latency. These two factors
contribute to an overall low delay in disseminating messages in the multicast
trees.

* Fault tolerance: Scribe exploits efficient DHT routing to localize repairs of the
multicast trees in case of node failures. If a node fails, its children can simply
route a join message to the group ID to discover a new parent. Failure of the
RP has a more detrimental effect on the multicast group since it stores, apart
from children points, other control information such as authorization credentials,
identity of the group creator and senders. Scribe replicates the state at the RP to
its k closest nodes in the Pastry overlay. If the RP fails, its children use Pastry
to find the new root, which is the closest overlay node of the failed RP. Since
this new root already possesses the group state, normal operation may resume
quickly.

5.3 VMesh

Multimedia streaming is one of the most popular services in the Internet. A partic-
ular type of multimedia streaming is video-on-demand (VoD), in which users may
request for any video at any time. An important feature of VoD is user interactivity,
i.e. users should be able to start viewing the video at any point, and may jump for-
ward and backwards as they wish. VMesh provides scalable and efficient VoD with
rich user interactivity based on DHT [27].

In VMesh, a video is divided into segments initially stored at the video server.
A peer downloads some segments from the server to its local storage and searches
for segments it does not own via a DHT and a video mesh. The stored segments are
not removed even if the peer is not viewing them. Instead, the peer streams these
segments to other peers.

A DHT is constructed to facilitate segment location. Each peer registers the seg-
ments they store by inserting keys into the DHT. A segment’s key comprises three
parts — the video ID, segment ID and segment owner’s network location, in decreas-
ing order of significance. The network location field encodes the node’s location
in the network via space filling curves, which provide a one-dimensional proximity
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metric for parent selection during segment location streaming. Since the video and
segment IDs occupy more significant bits, keys for the same segment from different
peers are stored in the same region in the overlay (e.g., in a (small) arc of the Chord
ring). With key replication, a node may answer segment queries with a list of parents
owning the segment. Once the requesting peer receives this list, it could ask nearby
parents to stream the segment.

Peers maintain in addition to the DHT a video mesh. In a nutshell, peers storing
segment i maintains pointers to peers storing the next (i 4 1-th), previous (i — 1-th)
and the same (i-th) segments. These pointers are obtained by locating the segments
using DHT and storing the addresses returned. Whenever a peer is about to exhaust
its current segment, it asks its parents for the addresses of the peers holding the next
segment and starts buffering it for better video continuity. When a peer wants to
jump to a new (far-away) segment, it queries the DHT for the segment’s owners. If
the segment ID is close to the current segment’s ID, the parent pointers are followed
instead.

VMesh also addresses non-uniform segment popularity. Typically, certain seg-
ments of a movie are more popular and thus accessed more frequently. It is desirable
to have more replica of popular segments for load balancing purposes. VMesh peers
employ a distributed averaging algorithm to estimate the popularity and number of
segment replica in the network, and adjust the segments they store accordingly [17].

The following are desirable properties of VMesh:

* Scalability: VMesh scales well to large number of peers. By having peers store
and stream segments to other peers, the video server’s workload is greatly re-
duced. The peer-to-peer segment location algorithm is locality-aware. This al-
lows peers to find physically nearby parents, thereby reducing streaming over-
head and latency. Popularity-aware adjustment in segment storage balances
streaming load among a suitable number of peers, thereby avoiding hotspots for
popular segments.

* Robustness to parent failure: Since a peer receives a list of parents as an answer
to a DHT query, it may stream the segment in parallel from multiple (nearby)
parents. If a parent fails, the other parents may share the failed parent’s load
while the peer searches for a new parent.

* Efficient bootstrap and jumping: VMesh provides low startup delay for newly
joined peers and low delay in jumping to arbitrary positions in the video. Since
segment location is performed as a DHT search, queries are resolved efficiently.
Also, a new peer is given a list of parents with their location in the network. Such
locality awareness allows the peer to choose nearby parents to reduce streaming
delay. The same principle applies for jumping peers.

5.4 Internet Indirection Infrastructure (i3)

Unicast routing has been the main service provided by the network layer in the
Internet. The need for large-scale multicast, anycast and host mobility services



Distributed Hash Tables: Design and Applications 273

has sparked much interest in the research community. The Internet Indirection In-
frastructure (i3) is an overlay framework supporting very general routing services.
While it does not require any particular structure in its implementation, a DHT is a
natural and desirable candidate.

Routing in i3 is entirely identified-based. Instead of an address, peers send mes-
sages to identifiers. Receivers interested in those messages place triggers in the
overlay. Basic triggers are the ordered pair < id,addr >, where id is the identi-
fier messages are sent to, and addr is the receiver’s IP address. Triggers with the
same id are stored in the same DHT node. Messages from the sender are routed to
the node storing the triggers with the given id, who then forwards it to each regis-
tered address. Such indirection allows for natural multicast, anycast, host mobility
and service composition.

*  Multicast: A multicast group is identified by a group id G. Nodes join the group
by inserting triggers < G,addr > into the DHT. Senders simply have to send
messages to the id G. A scalable multicast scheme which extends this basic idea
is presented in [13].

* Anycast: Servers insert triggers of the form < S,addr >. Nodes then locate a
server by sending a request to id S. The service id S is separated into a prefix and
the suffix. The latter is used for load balancing or locality-awareness in selecting
servers. For instance, location information may be enocded into the ID suffix and
the suffix of the requested /D to achieve locality-awareness. On the other hand,
servers could insert multiple triggers with random suffixes proportional to their
capacity to achieve load-balancing.

* Host mobility: When a node moves, it inserts a trigger < ID,;q, addrye, >,
where ID,;, is the ID of its previous address and addry,,, is its new address.
One may consider them as the home address and foreign address respectively in
IP mobility. Changes in the node’s address is reflected by inserting new triggers
with updated addry,,,. The reader is referred to [30] for details.

* Service composition: In certain applications, messages may need to be processed
in between the server and service requestor. i3 achieves this by making triggers
more flexible. In its more powerful form, triggers allows the addr field to be
an ordered list of identifiers (we may consider an address an identifier as well).
This list behaves like a stack, with the top of the stack on the left end of the list.
Suppose a packet from server S to requestor R needs to pass through a process-
ing node P. Figure 5 shows how data is redirected to the processing node before
reaching R. The advantage of this approach is that processing is receiver-driven.
The server need only send one format of the application data, while different re-
ceivers may process the data individually for compatibility. Numerous examples
of this redirection mechanism is given in [14].

From the above, we see the need to organize a large number of triggers and
route messages to triggers efficiently. Thus, DHTSs are a good choice for the overlay.
DHTs can also provide robustness through trigger replication and reduce latency
by locality-aware techniques. Given this scalable, efficient and robust overlay, the
above routing services can be provisioned in large scale with desirable performance.
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1. <id, data>

A

7 <id, <id,;addrg>>

) 2. <<id, ., addrg>, data>

1 <id, ,.,addrp>

3. <addry, data>

. 4. Processed data

Fig. 5 Example of service composition in i3. The receiver R inserts the trigger < id,<
idproc,addrg >> and the processing node P inserts the trigger < idpyoc,addrp >>. The server
S sends the data to id without knowing the data will be processed by P. The message is redirected

to the trigger < idproc, addrp > and then forwarded to P for processing. P obtains R’s address from
the message and finally sends the processed data to R

6 DHT's in Wireless Networks

Recent advances in mobile technology, such as mobile computing power and wire-

less communications capabilities, has sparked great interest in building scalable ap-
plications for large-scale wireless networks. In this section, we highlight the char-

acteristics of wireless networks, how such characteristics hinder the deployment of
DHTs and various approaches to adapt DHTs to such environments.

6.1 Characteristics of Wireless Networks

There are three major types of wireless networks:

* Mobile ad-hoc networks (MANETS) are characterized by high node mobility
and lack of infrastructure support. Nodes of low processing power and move in

random directions at random speeds, thereby making the topology unstable. An
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example of MANETS is the vehicular ad-hoc network, where wireless devices in
vehicles interact with each other while moving at high speeds.

In wireless sensor networks (WSNs), thousands of sensor nodes are scattered
onto a large geographical area. The sensors are very low-profile devices with very
limited processing power, memory and battery. The primary concern of a sensor
network is its lifetime, therefore protocols for sensor nodes focus on power con-
servation. The network serves as a repository of sensed data, such as temperature
and humidity. Queries are not directed towards a specific node. Instead, multiple
nodes cooperate to reply with aggregated data that is sensible to the application.
Wireless mesh networks provide an alternative way for network access in ar-
eas where infrastructure is difficult and/or costly to install. In its most general
form, a wireless mesh network consists of a number of gateways, mesh points
and end-hosts. The gatways provide access to the wired Internet. Mesh points
are typically small devices with limited processing power and memory mounted
on lamp posts or rooftops. They extend the network coverage of the gateway
wirelessly. By associating with a default gateway, they forward Internet-bound
traffic from associated users to the gateway. Routing is also conducted between
different mesh points. While users are mobile and may switch their associated
mesh points at any time, the gateway and mesh points are generally stationary.

While these wireless networks have different uses and greatly diversified node

capabilities, they share some characteristics which are of paramount importance in
considering the design of DHTs in such environments:

Limited shared bandwidth: The (broadcast) wireless channel is shared by all
nodes and has limited bandwidth. A DHT scheme has to be light-weight in terms
of bandwidth consumption.

Lack of routing infrastructure: Unlike the wired network, where routing is read-
ily available at low cost, routing in wireless networks is non-trivial. The two
problems associated with routing in this case are high maintenance overhead of
routes and inefficient bandwidth utility due to long routes.

Low processing power and memory capacity: Wireless devices are usually low
in processing power and limited in memory capacity. A desirable DHT scheme
should be light-weight in terms of node processing and storage.

In the following sections, we discuss two main issues with wired DHTSs in wire-

less networks and outline solutions proposed in the literature.

6.2 Challenges of Using DHTs in Wireless Networks

It is argued that DHTSs designed for the wired network are not directly applicable to
wireless networks. The two main issues are as follows.

1.

Overlay mismatch problem: In the DHT overlay, any pair of nodes is consid-
ered to be “one-hop” apart. While this abstraction is somewhat valid in the wired
network where routing is efficient and low-cost, it is definitely not the case in
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wireless networks. In particular, a single overlay hop may map to multiple phys-
ical links, resulting in inefficient bandwidth utility [19, 21, 28].

Figure 6 shows an example of the overlay mismatch problem. The overlay path
from node A to node D is 3 hops, as perceived by the application. However,
it actually spans 8 physical links, one of which is traversed twice. Notice that
the shortest path via nodes F and G cannot be obtained by the overlay lookup
algorithm since the algorithm is fixed with routing on identifiers only and with
no consideration of physical proximity of nodes.

A
G

(a) Overlay path node A to node D as seen by
the application.

(b) Actual path traversed in the physical network. This

path is much longer than the perceived length of the overlay
path and may traverse a link multiple times, e.g. the

link between nodes C and E.

Fig. 6 Illustration of the overlay mismatch problem. The overlay path from node A to node D
spans 8 links, whereas the shortest path is only 3 hops. It is impossible to tell by considering the
overlay alone that the shortest pathisA — F — G — D
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2. High maintenance overhead: DHT maintenance procedures ensure routing con-
vergence and efficient routing (in terms of number of overlay hops). While the
overhead incurred by such procedures is acceptable in the wired network, the
same procedures are demanding for bandwidth-limited wireless networks. For
example, in Chord, a node periodically run the stabilize(-) and fix_fingers(-) meth-
ods to ensure that its successor and finger table entries are up to date. Each of
these operations may require a route discovery. For reactive routing protocols,
this incurs up to O(n) overhead, where # is the number of nodes [10, 18]. Proac-
tive routing requires periodic flooding of topology control, which is particularly
costly in wireless sensor networks where power is of utmost importance [6]. It
is also difficult to achieve convergence in MANETS as the topology changes
quickly. Multiple route discoveries may be needed in the presence of mobility.
Furthermore, overlay mismatch exacerbates this issue, since much bandwidth is
spent obtaining routes that are unnecessarily long. The situation could be even
worse than simple flooding in resolving requests for data items [19, 28].

6.3 Search Approaches for Wireless Networks

The overlay mismatch problem and high maintenance overhead incurred by tradi-
tional DHT's must be resolved in order to make DHTs feasible for wireless networks.
In this section, we discuss optimizations and alternate approaches that aim to resolve
these two issues.

» Adding location awareness: The overlay mismatch problem is caused by blindly
layering the DHT layer directly on top of the routing protocol. An intuitive idea is
to let nodes choose overlay neighbors that are physically close. This is achieved
by cross-layering the two overlay routing and underlay routing. Several methods
have been proposed.

In Ekta, Pastry nodes collect DSR routes by overhearing control packets [19].
A node only maintains routes to physically close overlay neighbors as indicated
by hop counts in DSR routes. The correctness of overlay routing is maintained
because in prefix-based routing that Pastry employs, choosing any one of the
possible nodes for a given bit position would ensure route convergence. The key
idea here then is to choose the node that is closest in the underlay.

MADPastry employs clustering to enforce physical proximity of overlay neigh-
bors [28]. The identifier space is divided into m (equal) partitions, where m is
the number of clusters. Each cluster’s identifier space starts with a different pre-
fix. A landmark heads a cluster and floods beacons throughout the cluster so that
new nodes may join the appropriate cluster. A node identifiers is composed of its
cluster’s prefix and a suffix obtained via hashing its address or public key. The
Pastry routing table is stripped down to contain only m entries, one for each clus-
ter. When resolving a query, the first overlay hop is taken to the cluster housing
the target key. After that, leaf-set routing is used to reach the reference node. As
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long as clusters are relatively small, the search path is confined within a small
geographical region, thus solving the overlay mismatch problem.

If nodes know about their geographical locations, e.g. by means of GPS, it is
possible to structure their identifiers to match the underlay topology. A common
technique is to apply a specialized hash function to map node positions (in 2D)
to a 1D identifier space. For instance, the hash function employed by Georoy and
MeshChord maps node locations to identifiers on a unit ring in a way that nodes
in the same geographical region will also be in the nearby each other (in the same
segment) in the unit ring [3, 8]. An illustrative example is given in Eq. (3.1) and
Fig. 3 of [8]. The concept of cell-addressing in Cell Hash Routing is of similar
spirit to Georoy and MeshChord [2].

Another technique is to replace traditional DHT overlay routing with geographi-
cal routing. The Geographic Hash Table (GHT) and CHR use Greedy Perimeter
Stateless Routing (GPSR) to route queries to reference nodes [21]. GPSR greed-
ily forwards queries to the target location in the physical network [11]. There is
no need for overlay routing, thereby solving the mismatch problem.

* Reducing maintenance overhead: Various approaches have been proposed to

curb maintenance overhead. One method is to reduce the amount of overlay rout-
ing information. This may involve reducing the number of overlay neighbors
and/or lowering the frequency of refreshing overlay connections. Ekta tries to re-
duce route discoveries by overhearing DSR routes to overlay neighbors. MAD-
Pastry achieves low overhead by storing a degenerate Pastry routing table with
only as many entries as there are clusters. Virtual Ring Routing (VRR) takes this
approach one step further by only storing routes to successors and predecessors
in a Chord-like identifier ring [4].
Another method is to eliminate the need for overlay routing. For example, GHT
and CHR employ geographical routing (GPSR), which requires local exchange
of node locations only. No flooding for route discovery (as in reactive routing) or
of topology information (as in proactive routing) is needed.

7 Conclusions

We introduced in this chapter the distributed hash table (DHT), a scalable, efficient,
self-organizing and robust peer-to-peer routing infrastructure. Data is inserted into
the DHT in the form of key-value pairs, where the key is an identifier uniquely
distinguishing the data. DHT nodes store these key-value pairs and conduct effi-
cient data lookup using a fully distributed algorithm. Scalable routing is realized by
limiting lookups to O(logN) hops, where N is the number of nodes in the DHT.
Important extensions such as locality-aware neighbor selection and key replication
reduces response time, improves robustness against node dynamics and provides
load balancing.

Several applications based on DHTs are presented, such as distributed storage
systems (CFS), application-layer multicast (Scribe), peer-to-peer video-on-demand
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with rich user interactivity (VMesh) and a framework for general routing services
(i3). These applications exploit the benefits provided by the underlying DHT for
large-scale operation in the Internet.

DHT deployment in wireless networks is also discussed. The characteristics of
wireless networks, such as bandwidth scarcity and limited node processing capac-
ity, make it difficult to apply DHT schemes directly. Two main issues, namely the
overlay mismatch problem and excessive maintenance overhead, hinder DHT de-
ployment in such networks. Various approaches have been highlighted to address
theses issues.

The role of DHTs in future networks is an open issue. While we have focused
on DHT design on wired networks and wireless networks, the future of networking
is most probably a hybrid of both. With millions of mobile devices participating in
networked applications across the Internet, it is interesting to see how DHTs can
be employed to achieve the required scalability and communications latency, while
keeping up with high degrees of node dynamics.
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The Gamut of Bootstrapping Mechanisms
for Structured Overlay Networks

Anwitaman Datta

Abstract Structured overlays are an important primitive in building various peer-to-
peer (P2P) systems, and is used for various functions including address independent
end-to-end routing, managing multicast groups, indexing of content in a decentral-
ized environment and P2P storage, among others. While they operate in a decentral-
ized manner, and the self-stabilizing mechanisms to maintain the overlays are also
decentralized, bootstrapping structured overlays have traditionally assumed implicit
centralization and/or coordination. In this chapter, we provide a survey of different
flavors of structured overlay construction mechanisms — including quasi-sequential
mechanisms which are predominantly in use, followed by parallelized approaches,
and finally looking into how two isolated overlay can be merged, which is key to
decentralized bootstrapping.

1 Introduction

In recent years the concept of structured overlays! has attracted a lot of attention be-
cause of its potential to become a generic substrate for internet scale applications —
used for applications as diverse as locating resources in a wide area network in a
decentralized manner, address independent robust and flexible (group) communi-
cation — e.g., application layer multicast and internet indirection infrastructure and
content distribution network to name a few.

The basic function of the structured overlay is to act as a decentralized index. To
that end, for each resource, a globally unique identifier (called the key) is generated
using some function suitable to the applications that are supposed to use the index.

Anwitaman Datta
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1 A special class of structured overlays are the distributed hash tables (DHTSs), where the keys are
generated from the resources (name or content) using uniform hashing, e.g., SHA-1 (Secure Hash
Algorithm [17]).
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The codomain (loosely speaking, range) of this function is called the key-space.
For example, the key-space may be the unit interval [0, 1] or an unit circle [0, 1),
so that the keys can be any real number between 0 and 1. The key-value pair is
stored at peers responsible for the particular key. Efficient search of keys based on
decentralized routing helps the applications to access the resource itself in absence
of central coordination or global knowledge.

Definition 1. Structured overlay networks comprise of the following principal in-
gredients:

(1) Partitioning of the key-space (say an interval or circle representing the real num-
ber between the range [0,1]) among peers, so that each peer is responsible for a
specific key space partition. By being responsible, we mean that a peer responsible
for a particular key-space partition should have all the resources (or pointers) which
are mapped into keys which are in the respective key-space partition.>

(i1) A graph embedding/topology among these partitions (or peers) which ensures
full connectivity of the partitions, desirably even under churn (peer membership
dynamics), so that any partition can be reached from any partition to any other —
reliably and preferably, efficiently.

(iii) A routing algorithm which enables the traversal of messages (query forward-
ing), in order to complete specific search requests (for keys).

Definition 2. A structured overlay network thus needs to meet two goals to be func-
tionally correct:

(1) Correctness of routing: Starting from any peer, it should be possible to reach the
correct peer(s) which are responsible for a specific resource (key).

(ii) Correctness and completeness of keys-to-peers binding: Any and all peers re-
sponsible for a particular key-space partition should have all the corresponding
keys/values.

Various applications can use transparently the (dynamic) binding between peers
and their corresponding key-space partitions as provided by the overlay for resource
discovery and communication purposes in a wide area network.

One of the most important and distinguishing aspect of structured overlays is the
peers’ interconnection — the topology/geometry of the network.

How this topology is established in a dynamic setting, and whether it achieves
some other properties (like — proximity and low stretch exploiting information from
the underlying networking layer, load-balancing, security against various attacks,
etcetera.) and how the invariants of the topology maintained over time in presence
of membership dynamics and attacks are some of the most interesting questions that
have been investigated in the P2P research community in these last years.

2 It is also possible that keys are not strictly associated with a specific peer and instead have a looser
coupling. For example, in Freenet [9] and FuzzyNet[15], this association of keys to peers can be
thought to be in a best effort fashion, such that instead of choosing the peer which is globally the
closest to a key, the locally closest peer is delegated the responsibility of the key. Such systems are
also called semi-structured overlays.



Bootstrapping Structured Overlays 283

In this article, we focus on the issue of how these topologies can be established
(bootstrapped) in a dynamic setting while also meeting some other desirable prop-
erties like load-balancing. We will survey different kinds of bootstrapping mecha-
nisms, including traditional quasi-sequential approaches, as well as subsequent par-
allelized approaches, and also looking at how two isolated overlays can be merged
to build a larger network, paving way for decentralized boot strapping.

The existing literature presenting various bootstrapping mechanisms vary in rigor
and details. To keep the presentation uniform as well as accessible to the general
audience, we provide only a high level summary of the concepts.

2 A Taxonomy of Structured Overlay Topologies

The specific details of the topologies is crucial to the exposition of how these topolo-
gies can be achieved. We briefly look into some of the important structured overlay
topologies, particularly the ring and tree topologies. These are not necessarily op-
timal in the sense of achieving the smallest routing table size or smallest diameter,
however have proven to be practical because of their overall characteristics. They
have moderately small average routing table sizes which provide good resilience at
reasonable maintenance cost, small diameter, good degree-distribution (necessary
for congestion-free and load-balanced routing) and flexibility to deal with different
kind of workloads, and last but not the least, they are also relatively simple. The
complexity of the topology plays an important role in a peer-to-peer setting, where
the topology invariants need to be established and maintained without global knowl-
edge and coordination in presence of potentially large scale in terms of both peer
population as well as high membership dynamics.

2.1 Ring

The ring based topology was pioneered in the context of overlays in the Chord [27]
network. Chord uses SHA-1 based consistent hashing to generate an m-bit identifier
for each peer p, which is mapped onto a circular identifier space (key-space).

Irrespective of how the peers’ identifiers are generated in a ring based topology,
what is essential is that the peer identifiers are distinct. Similarly, unique keys are
generated corresponding to each resource. Each key on the key-space is mapped to
the peer with the least identifier greater or equal to the key, and this peer is called the
key’s successor. Thus to say, this peer is responsible for the corresponding resource.

What is relevant for our study is how keys from the key-space are associated
with some peer(s) and how the peers are interconnected (in a ring) and communicate
among themselves.

Definition 3. A ring network is (1) weakly stable if, for all nodes p, we have
predecessor(successor(p)) = p; (2.a) strongly stable if, in addition, there exists
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no peer s on the identifier space where p < s < g where successor(p) = ¢; and (2.b)
loopy if it is weakly but not strongly stable.

Condition (2.a) that there exists no peer s on the identifier space where p < s < g
if p and ¢ know each other as mutual successor and predecessor determines the
correctness of the ring structure. Figure 1a shows one such consistent ring structure
(peer’s position in the ring and its routing table). The order-1 successor known also
just as “successor” of each peer is the peer closest (clock-wise) on the key-space.

Routing table entries
k : order k-successor
(deterministic chord)

(a) A consistent ring (Chord) network

000 001 010 o11 100 101 o m

A B C D E F G H

(b) A tree based (P-Grid) network. The actual topology has no
hierarchy as shown in Figure 2.

Fig. 1 Some structured overlay topologies

If at any time such a s joins the system, the successor and predecessor informa-
tion needs to be corrected at each of p, ¢ and s. Maintaining the ring is basically to
maintain the correctness of successors for all peers — this in turn provides the func-
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tional correctness of the overlay routing — i.e., successor peer for any identifier key
can be reached from any other peer in the system (by traversing the ring). For redun-
dancy, f; consecutive successors of each peer are typically maintained, so that the
ring invariant is violated only when all f; consecutive peers of any peer depart the
system even before a ring maintenance mechanism like Chord’s self-stabilization
algorithm can react and repopulate with the correct successor entries.

In addition to the successor/predecessor information, each peer maintains routing
information to some other distant peers in order to reduce the communication cost
and latency.

It is the way these long ranges are chosen which differ in many ring topology
networks and has no critical impact on the functional correctness of the overlay.
Distance in such ring based topologies is generally measured in terms of the absolute
difference of the two concerned points on the key-space, but other metrics can as
well be used. For the real topology, devoid of the artificial distance metrics, the long
ranges are essentially to halve the number of peers (the “true” distance on a ring
traversed sequentially) between the current peer and the destination peer [14].

Explicitly or implicitly, most variants of the ring topology exploit this fact and
reduce the distance geometrically — either deterministically or probabilistically. The
original Chord proposal advocated the deterministic use of the successor of the iden-
tifier (p 4+ 2%~1) modulo 2™ as an order-k successor of peer p or a finger table en-
try. Many other variants for choosing the long range links exist — e.g., randomized
choice from the interval [p + 2%~1, p 4 2¥) or exploiting small-world [20] topology
or emulating skip graphs.

The maintenance of the ring (strong stability) is critical for functional correctness
of the routing process in ring based topologies. The self-stabilization mechanisms
proposed in the original Chord proposal [27] exhaustively deals with the mainte-
nance of the ring, and all other ring based topologies rely on similar mechanisms. It
has been shown that the ring topology has better static resilience than other topolo-
gies because of the greater flexibility to choose both routing table entries to instan-
tiate the overlay, as well as to choose from multiple routes to forward a query at run
time.

2.1.1 Ring Self-Stabilization Highlights

The ring invariant is typically violated when new peers join the network, or existing
ones leave it. If such events occur simultaneously at disjoint parts of the ring, the
ring invariant can easily be reestablished using local interactions among the affected
peers. Note that these events do not lead to a loopy state of the network.

Apart looking into the simple violations of the ring invariant which are relatively
easily solved, the original Chord proposal (technical report version) also provides
mechanisms to arrive at a strongly stable network starting from a loopy network
(whichsoever reason such a loopy state is reached). We summarize the results of
stabilizing a loopy network here.
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Any connected ring network with N peers becomes strongly stable within O(N?)
rounds of strong stabilization if no new membership changes occur in the system.
Starting from an arbitrary connected state with successor lists of length O(logN) if
the failures rate is such that at most N /2 nodes fail in £ (logN) steps then, whp, in
O(N?) rounds, the network is strongly stable.

2.2 Tree

Arguably the earliest approach to locate objects in a distributed environment — the
PRR scheme proposed by Plaxton et al. [25] used a tree structure where searches
were forwarded based on longest prefix matching. Tapestry [28], Pastry [26] (also
uses the ring as a fall-back mechanism) and P-Grid [1] shown in Fig. 1b among oth-
ers uses similar prefix resolution in order to forward search operations, and has the
tree topology. The leaf-nodes of the tree represent the key-space partitions (peers).
The (maximum) distance between these partitions when the query is resolved based
on prefix is then the height of the common subtree. Kademlia [22] resembles the tree
structure and peers have the same routing choices as other tree-based networks. De-
spite having the same topology, Kademlia routing uses the XOR distance between
the peer identifiers (essentially the binary string representing the node’s path in the
tree) instead of resolving common prefix.

Note that this also exemplifies the essential orthogonality of the topology itself
from the routing strategy — the same graph connectivity may be explored based on
different routing schemes, and thus defined as separate ingredients of a structured
overlay network in Definition 1.

2.2.1 The P-Grid Overlay

Some of the concepts in this article will be illustrated using examples of the P-Grid
network, thus we next provide a formal description of P-Grid. Figure 1b shows the
tree abstraction and Fig. 2 shows one possible instance of peers’ connections.

P-Grid divides the key-space in mutually exclusive partitions so that the parti-
tions may be represented as a prefix-free set IT C {0,1} . Stored data items are
identified by keys in J# C {0,1}. We assume that all keys have length that is at
least the maximal length of the elements in IT, i.e.,

min |k| > max 7| = 7,
keI}(| ‘_ne}[(' ‘ max

Each key belongs uniquely to one partition because of the fact that the partitions
are mutually exclusive, that is, different elements in I1 are not in a prefix relation-
ship, and thus define a radix-exchange trie.

i cel=n¢a A ¢n
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Fig. 2 The actual P-Grid connectivity graph does not have any hierarchy. The routes are randomly
chosen from complimentary sub-trees of Fig. 1b. The basic P-Grid graph is directional, however
since each link establishment and maintenance cost is the same, and from the symmetry of the
routing choices, the actual P-Grid uses bidirectional routes

where © C 7’ denotes the prefix relationship. These partitions also exhaust the key-
space, so to say, the key-space is completely covered by these partitions so that each
key belongs to one and only one (because of exclusivity) partition.

In P-Grid each peer p € P is associated with a leaf of the binary tree, and each
leaf has at-least one peer associated to itself. Each leaf corresponds to a binary string
7 € I1, also called the key-space partition. Thus each peer p is associated with a
path 7(p). For search, the peer stores for each prefix w(p,l) of m(p) of length I
a set of references p(p,l) to peers ¢ with property n(p,l) = m(q,l), where T is
the binary string 7 with the last bit inverted. This means that at each level of the
tree the peer has references to some other peers that do not pertain to the peer’s
subtree at that level which enables the implementation of prefix routing for efficient
search. The whole routing table at peer p is then represented as p(p) Moreover,
the actual instance of the P-Grid is determined by the randomized choices made at
each peer for each level out of a much larger combination of choices. The cost for
storing the references and the associated maintenance cost scale as they are bounded
by the depth of the underlying binary tree. This also bounds the search time and
communication cost.

Each peer stores a set of data items 8(p). For d € d(p) the binary key k(d) is
calculated using an order-preserving hash function. x(d) has 7(p) as prefix but it
is not excluded that temporarily also other data items are stored at a peer, that is,
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the set 6(p, mw(p)) of data items whose key matches 7(p) can be a proper subset
of 6(p). Moreover, for fault-tolerance, query load-balancing and hot-spot handling,
multiple peers are associated with the same key-space partition (structural repli-
cation). R(K) represents the set of peers replicating the object corresponding to
key k. Peers additionally also maintain references to peers with the same path, i.e.,
their replicas R(7(p)), and use epidemic algorithms to maintain replica consistency.
Routing in P-Grid is greedy, and based on matching the longest prefix, similar to the
PRR scheme [25].

There are many other topologies derived from interconnection networks that have
been adapted for P2P settings, but the rest of the chapter will focus on overlays based
on the prevalent ring and tree topologies.

3 Quasi-Sequential Construction of Overlays

The construction of overlays, from the early days have focussed not only in estab-
lishing a logically correct topology, but also on how to ensure that load distribution
across the peers is uniform.

leesscn’ 15 7___:—} QSMM
m— ~ — |
‘/—~(__ =
% \/t_ Success:r;:_é @
Predecessor is x
Ty, Th— —/_DC%:) /
Predecessorisx —_ 5 -
> = TR
'_““'c—_;"__ \ {adccessomj_‘}/—\—l
;: \_\_\_""—\——'-\-\_._L‘,_:J
e Qy =
@ O, ®
New node y wants to join the network After node y joins the network

Fig. 3 A new node joining a Chord network. Nodes x and z which are originally neighbors (pre-
decessor and successor of each other) need to update their local information to register that y is the
new neighbor

The original approach to construct most structured overlays assumed an incre-
mental approach, investigating how new nodes can continuously join an existing
network, or how the network manages continuous but gradual departures of existing
nodes — called churn in the network.

Churn in the network requires reallocation of the part of the key space that a peer
is responsible for, as well as rewiring of the connections, for instance in the ring
based networks, ensuring that the ring integrity is maintained is most important.
Ring integrity is ensured by making sure that nodes maintain the right successor
(and predecessor) lists despite churn. To ensure this, it is important to allow only
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one node to join between a node and its immediate successor at any given time.
Figure 3 depicts such a scenario. Such a scheme makes an implicit assumption that
nodes join in the same part of the key-space in a sequence. Of-course nodes can join
mutually disjoint parts of the key-space simultaneously. Essentially such a model
can thus support quasi-sequential join of peers in the network.

Ll 0 \\t "k I
¥ ()0 E sa% )]
New node y wants to join the network Nodes y and Z negohates to repartition the key-space

(alternatively, they could have decided to be replicas)

Fig. 4 A new node y joining a P-Grid network by redividing the responsibility with existing peer z.
They also need to update their routing tables, so that, for example, if z receives a query with prefix
--+00 it can forward it to y. Other peers, for example x do not need to update any information, and
can continue to forward all queries with prefix - - -0 still to z

In the case of an overlay like P-Grid abstracting the tree structure, the sequen-
tial overlay construction will require the newly joining peer to negotiate with an
existing peer to redivide key-space partition responsibility (as shown in Fig. 4) or
alternatively decide to become mutual replicas.?

3.1 Load-Balancing Considerations

In order to achieve load-balancing, randomized strategies are often used in such
a setting. Each new node joining the system picks a random point uniformly on
the key-space, and joins the network by splitting that part of the key-space with
whichever peer has been originally responsible for that part of the key-space. Uni-
formly choosing the part of the key-space to join the network was assumed to evenly
partition the key-space. While not highlighted as such, such a randomized strategy
coincidentally makes sure that different peers joining at the same time join different
parts of the network, doing so in an almost trivial way without any need for global
knowledge or coordination.

Uniform random choice of peer’s position in the key-space however leads to
a relatively high variation in the size of key-space partitions for which individual

3 Replication is necessary for both load-sharing and fault-tolerance, but has not been shown in this
specific example. Structurally replicated P-Grid networks will be shown later in Fig. 12.
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peers are responsible for. A lot of work has been done to reduce such variation, and
to make the load distribution among peers more uniform. Included among those ap-
proaches is a simple but very effective randomized strategy “power of two choices”,
where each node would choose two (or several) random points on the key-space,
and then join the network in the points with most load [12]. Such an approach is a
variation of the power of two choices originally proposed by Byers et al. [7] in the
context of peer-to-peer systems, where multiple hash values were used to generate
multiple keys for a resource, and then stored at the least loaded peer.

For various reasons, explained in the next section, it may be desirable or even
necessary to construct an overlay in a parallelized manner, a departure from the
original quasi-sequential approach.

4 Parallelized Construction of Overlays

Fast construction of structured overlays has been motivated by several reasons.
Building such a network rapidly from scratch enables fast recovery from catas-
trophic failures as well as easy deployment of such a network on demand, which
can be used to perform tasks required by more complex distributed systems, as
well as eliminate or at least complement complex and expensive overlay mainte-
nance algorithms, allowing for recreation of the whole network instead. From the
perspective of considering the structured overlay as a distributed index structure,
building an overlay from scratch can be considered to be analogous to (re-)indexing
content.

Further motivation: A data-management perspective

In standard database systems it is common practice to regularly (re-)index attributes
to meet changing requirements and optimize search performance. Structured peer-
to-peer overlay networks are increasingly used as an access structure for highly
distributed data-oriented applications, such as relational query processing, metadata
search or information retrieval [4, 24]. Structured overlays’ use was motivated by
the presence of certain features that are supported by their design such as scala-
bility, decentralized maintenance, and robustness under network churn. Compared
to unstructured overlay networks which are also being proposed for these applica-
tions [16, 21], structured overlay networks additionally exhibit much lower band-
width consumption for search as well as guarantee completeness” for search results.

The standard maintenance model for peer-to-peer overlay networks assumes a
dynamic group of peers forming a network where peers can join and leave, es-
sentially in a sequential manner, as elaborated in the previous section. In addition
proactive or reactive maintenance schemes are used to repair inconsistencies result-
ing from node and network failures or to re-balance load in order to react to data

4 In terms of information retrieval terminology, recall = 1.
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updates. These approaches to maintenance, that have been extensively studied in the
literature, correspond essentially to updating database index structures in reaction to
updates.

In data-oriented applications resources may be identified by dynamically chang-
ing predicates. Multiple overlay networks can be needed simultaneously, each of
them supporting a specific addressing need. One can illustrate these requirements
by a typical application case of peer-to-peer information retrieval.

The standard application of structured overlay networks in peer-to-peer informa-
tion retrieval is the implementation of a distributed inverted file structure for efficient
keyword based search. In this scenario, several situations occur, in which the overlay
network has to be constructed from scratch:

* A set of documents that is distributed among (a potentially very large
number) of peers is identified as holding information pertaining to a com-
mon topic. To support efficient retrieval for this specific document collection,
a dedicated overlay network implementing inverted file access may have to be
set up.

* A new indexing method, for example, a new text extraction function for iden-
tifying semantically relevant keywords or phrases, is being used to search a set
of semantically related documents distributed among a large set of peers. Since
the index keys change as a result of changing the indexing method a new overlay
network needs to be constructed to support efficient access.

* Due to updates to a distributed document collection an existing distributed in-
verted file has become obsolete. This may either result from not maintaining the
inverted file during document updates or due to changing characteristics of the
global vocabulary and thus changing the indexing strategy (e.g., term selection
based on inverse document frequency). Thus a complete reconstruction of the
overlay network is required.

* Due to catastrophic network failures the standard maintenance mechanisms no
longer can reconstruct a consistent overlay network. Thus the overlay networks
needs to be constructed from scratch. Of course, this scenario applies generally
in any application, but becomes more probable when multiple overlay networks
are deployed in parallel.

In principle a (re-)construction of an overlay network in any of these scenarios
can be achieved by the standard maintenance model of sequential node joins and
leaves. However, this approach encounters two serious problems:

e The peer community will have to decide on a serialization of the process, e.g.,
electing a peer to initiate the process. Thus the peer community has to solve a
leader election problem, which might turn out to be unsolvable for very large
peer populations without making strong assumptions on coordination or limiting
peer autonomy.

» Since the process is performed essentially in a serialized manner, it incurs a sub-
stantial latency. In particular it does not take any advantage of potential paral-
lelization, which would be a natural approach.
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These motivate a fundamentally different approach, that of parallelized overlay
construction. Several such mechanisms including [2, 5, 18] have been proposed in
the literature, which we summarize next.

4.1 Sorting Peer-IDs as a Mechanism to Build a Ring

To achieve a strongly stable ring (Definition 3) it is necessary that all nodes know the
correct immediate neighbors (successor and predecessor). This leads to a sorting of
the peers according to their identifiers or responsibility of the parts of the key-space.
Achieving this without the global knowledge of which all peers are in the network,
and without any central coordination of peers to choose the correct neighbors is
a crucial challenge in constructing an overlay. So the problem of constructing a
ring based structured overlay essentially boils down to the problem of decentralized
sorting of the peers according to their identifiers. Now we discuss one rigorous and
one heuristic mechanism to sort peer-IDs.

4.1.1 Pairing and Merging Virtual Trees

Angluin et al. [5] considers the problem of constructing a structured overlay as that
of creating a linked list of nodes sorted according to their identifiers, which can
then be used as the basis for constructing the essential ring of the system. Long
range links useful for optimization can be wired subsequently to make the network
routing efficient.

They assume that any node in the system can communicate with any other node,
once the nodes become aware of each other, which defines a “knowledge graph”.
Initially, this knowledge graph is assumed to be a weakly connected degree bounded
directed (random) graph. That is to say, each node knows a fixed number of random
nodes.

The first step in this approach is to pair nodes using a randomized mechanism.
Based on the original knowledge graph connectivity, every node probes all potential
successors. The recipient of such a probe either accepts (the first received probe)
or rejects to be paired. Ideally, after a round of such pairing is finished, the paired
nodes can behave as a virtual “supernode” to conduct further pairing. Note that such
a pairing of virtual supernodes which are composite of previously paired nodes,
require a merging mechanism. The virtual supernodes are maintained as Patricia
trees, which facilitates the use of tree merging algorithms, and finally provides a
single supernode comprising of all the nodes sorted also as a list.

Figure 5 shows a step of their mechanism as a toy example. Nodes 1 and 7 pair up,
and act as a virtual node, as do nodes 5 and 9. Subsequently these two virtual nodes
(comprising two nodes each), merge to form a single virtual node. The implicit
tree representation allows both efficient mergers, as well as provides readily a tree
structure, apart from sorting the peer identifiers.
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Fig. 5 Sorting based on iterations of pairing and merging [5]. Once the peer identifiers are sorted,
aring structure can readily be obtained. Essentially, what is necessary in a decentralized setting to
achieve such a sorted “linked list” is that all peers know the correct predecessors and successors
(multiple entries are useful for fault tolerance)

The main complexities of this approach in a real life scenario (asynchronous
setting) are in determining and phasing the pairing rounds and the merging process,
and avoiding live-locks. In its original form, the algorithm also could not tolerate
any node departure during the overlay construction.

4.1.2 Gossip Based Mechanism

Jelasity et al. [18, 19, 23] proposed a gossip based approach to bootstrap overlays.
They assume that each node can obtain a random subset of the participating peers.
This assumption is similar to the idea of knowledge graph assumed by Angluin
etal. [5].

Each node maintains a constant sized leaf-set, comprising of the nearest nodes
to itself in both direction — termed as predecessors and successors. Ideally, equal



294 Anwitaman Datta

noc< leaf-set
7: 4.5.9-10
9: 6,8,12,14

Node 7 gossips its leaf-set with nodes it knows
(including node 9), and each node refreshes their

leaf-sets.
after
gossip
T 5,689
9: 7,.8,10,12

Ny

recalculated leaf-set
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Fig. 6 Sorting based on iterations of gossips [18, 19, 23].

number of predecessors and successors are maintained, but if a node knows fewer
of one kind, then it fills the space with nodes of the other category. Such informa-
tion originally comes from the random subset of participating peers that each node
gets, and eventually is derived from the information that nodes gossip among each
other.

The essential idea is to gossip the leaf-set information, and refine it based on
the information obtained from other nodes. In the toy example shown in Fig. 6,
node 7 originally knows nodes {4,5,9,10}. Likewise 9 knows {6,8,12,14}. By
gossiping with all the nodes 7 knows, which includes 9, 7 gets to know about
6 and 8, its immediate neighbors in this example. In contrast to the rigorous ap-
proach of Angluin et al., the gossip based approach is more a heuristic, in that
while there is no formal proof of convergence, simulation based studies show it
performs pretty well, and nodes get to establish the ring information with few iter-
ations of the gossip mechanism. This mechanism can also be expected to be robust
against node departures and arrivals during the process, and hence may be more
practical.
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4.2 Recursive Proportional Partitioning

The approach to sort peer identifiers can be considered to be a bottom-up ap-
proach, where the peer identifiers are already chosen (often randomly) and thus
the way the key-space responsibility should be distributed is pre-determined. A log-
ically top-down approach introduced by Aberer et al. [2] proposes to autonomously
and recursively partition the key-space, but in a granularity adaptive to the load-
distribution on the key-space (which can be arbitrarily skewed for data-oriented
applications).

During the overlay construction process, two types of load balancing problems
are dealt with simultaneously — the balancing of storage load among peers under
skewed key distributions (i.e., number of keys per partition is balanced) and the
balancing of the number of replica peers across key space partitions. The first prob-
lem is important to balance workload among peers and is solved by adapting the
overlay network structure to the key distribution. The second one is important to
guarantee approximately uniform availability of keys in unreliable networks where
peers have potentially low availability. This is similar to a classical “balls into bins”
scenario, where the key-space partitions are the bins and the peers (replicas) the
balls. The extra twist, why existing solutions for balls into bins problems can’t
however be directly used is that the number of bins (key-space partitions) itself is
dynamic.

Similar to Angluin et al. [5] and Jelasity et al. [18, 19, 23], this approach also
assumes a (loosely) connected network, so that any node can communicate with any
other node, and particularly uses random walkers on this network to find random
peers with whom to interact. However in contrast to those approaches, where nodes
already have a particular identifier, which determines the part of the key-space parti-
tion that node is responsible for, and the task is to sort the nodes to establish a sorted
list, necessary to construct a ring, Aberer et al. [2] instead allows the nodes to ne-
gotiate among each other to refine the part of the key-space they will be responsible
for. It leads to construction of an overlay (P-Grid) which can support prefix based
routing.

The bilateral negotiations among the peers is illustrated in Fig. 7. Such interac-
tions can lead to three possible course of actions. Two peers may decide to reparti-
tion the part of the key-space they are responsible for, or decide to become mutual
replicas, or refer each other to other suitable peers to interact with. Notice that the
“repartition or replicate” actions are similar in spirit to the sequential approach de-
scribed earlier, but now these actions are happening in parallel for different peers,
and are iterated several times thanks to the “refer” actions.

The essential idea is that all peers are originally responsible for the whole key-
space. Then, they need to find a partner to decide and split responsibility — say,
for the prefixes 0 and 1 respectively. The peers also need to keep track to such a
peer which is responsible for the other half, so that in future a node responsible for
partition 1 can forward all queries for partition O to a relevant peer. Thus all peers
responsible for the partition O can repartition it for 00 and 01, and so on.
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Simple autonomous actions give an evoIving routing network
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Fig. 7 Network evolution based on pairwise peer interactions

There are several practical problems in realizing the scheme. This includes the
following.

What fraction of peers should choose a specific partition? Ideally this depends on
the load in the specific half of the key-space.

For example, for the example in Fig. 8, there is three times more load for the the
prefix O than the prefix 1, and twice the load for prefix 01 than for 00. So ideally,
the peers should evolve into a network, with the partitioning of the key-space and
its replication, as shown in the figure.

There are however two practical problems in realizing such an ideal partition-
ing. Its unrealistic to assume global knowledge like the load-skew. Even if this in-
formation were available, without global coordination, it is not possible to achieve
partitioning of the network among the peers according to the granularity of the load-
distribution.

Aberer et al. [2] provides some heuristics to address these problems. They pro-
pose random sampling of a subset of other peers to estimate the load-imbalance at
each level of repartitioning, and using this estimate to determine parameters of a ran-
domized algorithm to split the key-space which in expectation follows the desired
(estimated) load-skew. Experiments show, that while far from perfect, the heuristics



Bootstrapping Structured Overlays 297

@peer identifier
data keys

1 :2 routing table entry

Trie abstraction
1 for prefix routing

Replica sub-network

00*
1 :6
01:8
1 :2 1 :6
00 :7 00 :1
011: 3 010: 4
@ [0 |[@ [0
1 :6 1 :2
00 :1 00 :1
01L: 8 010: 5
o)
[v]
< > !
c
0 1] ¢
<
< > > @
o
2
> g
2.
—>—> a

Load distribution

Fig. 8 P-Grid structure: Key-space is partitioned in a granularity adaptive to load-skew. In this
example peers p; and p7 are structural replicas for the partition for prefix 00. Peer p; has reference
to peer p; for prefix 1, and to peer p3 for prefix Ol. Peer p; stores the same keys as peer p;
(replicas), however they can and do have different routing table entries. In practice, for each level,
each peer will also maintain multiple references primarily in order to have some fault-tolerance.
Thus peer p; would also refer to some of p3, ps or pg for the prefix 01

lead to a reasonably well load-balanced network construction. Other maintenance
mechanisms [3] are deployed to further improve the quality of the load-balancing,
but overall, this approach again achieves the primary objective, that of construct-
ing an overlay from scratch in a parallelized manner, more or less conforming to
load-skews to achieve moderate load-balance.
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5 The Need and Challenges of Merging Two Similar Structured
Overlays

All the parallelized construction approaches described above assumed (i) an origi-
nally connected network, and that (ii) there is one specific network to join.

Such assumptions implicitly introduces some degree of centralization. What hap-
pens if multiple isolated networks are originally constructed?

In the somewhat frantic rush to identify new cool topologies, or more practi-
cal problems like dealing with load-balancing and churn, the peer-to-peer research
community has until recently ignored a fundamental and realistic problem for struc-
tured overlays that any distributed system needs to deal with — that of making two
partitions of such a system merge to become one. One can speculate several reasons
for such omissions in early structured overlay network research. (i) Merger of iso-
lated overlays is trivially resolved in unstructured overlays, which is where most of
the empirical information of P2P research so far has been derived from. (ii) Until
recently, there has not been any real structured overlay implementations deployed
and hence the problem not identified. (iii) The recent deployments and experiments
have typically been under a controlled setting, where some central coordination like
the use of a common set of bootstrap nodes has been used with the intention and
sufficient coordination to construct only one overlay, making sure that independent
and distinct overlays are not created. Moreover, none of these experiments with real
implementations looked specifically for, or even accidentally, encounter network
partitioning problems.

Apart network partitioning which can lead to the creation of two disjoint overlay
networks there is a more likely scenario. It may so happen that disjoint overlay net-
works (using the same protocols) are formed over time by disjoint group of users.
One may imagine that an overlay P2P network caters to a specific interest group
from a particular geographic area who participate in an overlay network. At a later
time, upon discovering a hitherto unknown group of like-mind users from a differ-
ent part of the world, who use their own “private” network (using same protocols),
these two groups may want to merge their networks in order to benefit from their
mutual resources (like content or knowledge). In fact, such isolated overlay net-
works may result because of initial isolation of groups because of various reasons
including geographic, social or administrative — a large company or country, which
may originally restrict their users from interacting with outsiders in the overlay, and
changes the policy at a later time — or purely because of partitioning of the physical
infrastructure.

Structured overlays have often been touted as a generic substrate for other ap-
plications and services. Ideally, there will be one or few such universal overlays [8]
which will be used by a plethora of other P2P applications. Realizing such an uni-
versal service too will need the possibility to merge originally isolated networks.
Small overlays can be built independently, which may later be all merged together
incrementally into a single overlay network.



Bootstrapping Structured Overlays 299

One can thus imagine isolated islands of functional overlays catering to their
individual participants. Someday, some member from one of these overlays may
discover a member from another overlay. The natural thing to do then would be to
merge the two originally isolated overlays into a single overlay network. In simple
file-sharing networks, the motivation of doing so will be to make accessible content
from both the networks to all the users. Similar conclusions can be drawn for various
other conceivable applications of overlay networks.

In unstructured overlay networks (like Gnutella), merger of two originally iso-
lated overlays happens trivially. Whichever peers from two originally isolated net-
works come in contact with each other need to establish mutual neighborhood re-
lationship, and then onwards just need to forward/route messages to each other as
they do with all other neighbors (Fig. 9). That’s all! Likewise, hierarchical (super-
peer based) unstructured overlays also merge together trivially. This is because no
peer has any specific responsibility and can potentially be responsible for any and
all resources in the network.

One approach to deal with multiple structured overlay networks is to let them
continue to exist and operate autonomously, while allowing cross-network com-
munication. This is typically achieved in a hierarchical fashion, where the original

Network 1 formed over time
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Fig. 9 Merger of two unstructured overlay networks (like Gnutella) is trivial. As soon as some
peers from each of the two originally isolated networks establish connections to each other, a
merged network is formed
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networks act as “sub-networks” which are glued together to form one integrated
network. Two addressing components are used to uniquely determine a peer’s role
in the integrated network — one to determine which autonomous sub-network it be-
longs to, and the other to identify it within the sub-network. The sub-networks can
be distinguished based on a domain name space [13] or by simply allocating a pre-
determined part of the key space for each potential sub-network [6]. Figure 10 shows
example instances of such hierarchically integrated overlays. Such hierarchy allows
nodes to retain communication traffic within a particular domain, or look for keys
available within specific sub-networks instead of the whole integrated network. On
the downside, each peer needs to keep track of more information, including keeping
track of which sub-network it belongs to, at different levels of the hierarchy. For
example, in a hierarchical Chord using the Canon approach each peer also needs to
maintain a list of successors (and hence a ring) at every level of the hierarchy. Thus
the simplicity of a completely flat address space which was a design goal in many
original distributed hash tables is lost.

domain name based dynamic
creation of sub-networks 7N,

syIoMIaU-qns Tenuajod 1oy
suonnred pauruiayop-aid

00 01 10, 11
X.a.i.l
N o
subnetworks
The “Canon’approach where sub-networks are The “Cyclone’approach where inter sub-network
distinguished by domain names. A parent domain routing is based on XOR distance between
emulates a merged network of the children sub- subnetworkidentifiers, while intra-subnetwork
networks. Each individual subnetworkcan, in traffic uses proprietary routing mechanism of the
theory, use its own routing mechanism. subnetwork.

Fig. 10 Hierarchically integrated networks based on Canon [13] and Cyclone [6] approaches

An alternative to the hierarchical approaches discussed above is to device mech-
anisms to merge the originally isolated networks, so that a single resulting net-
work is formed. That way peers do not need to keep track of the hierarchy, and
the original overlay (DHT) design of completely flat identifier space is achieved.
Some of the challenges of merging similar structured overlays, which is essen-
tial for decentralized bootstrapping of overlays [11], has been studied by Datta
et al. [10], which we summarize next along with tentative solutions and short-
comings. The discussion below is also pertinent, at least in part, to hierarchi-
cal approach like Canon [13], where the authors overlook the key management
issues.
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5.1 Merger of Two Ring Based Networks

Consider two originally isolated Chord networks .41 and .45 with N and N, peers
respectively. An example of two such networks (superimposed) is shown in Fig. 11a.
Next we will explain how such isolated networks can merge into one, since such
an organic network growth is not only essential for decentralized bootstrapping,
but also such a merger is necessary to ensure that the overlays retain functionality.
When peers from the two different overlays meet each other (by whatsoever reason
— accidentally or deliberately), in a decentralized setting there is no way for them to
ascertain that they belong to two completely different systems. This is so because
overlay construction always relies on such peer meetings to start with. As a conse-
quence, if the peer pair that meets have identifiers such that they would replace their
respective successor and predecessor, then they will indeed do that.

k: incorrect routing entry
Incorrect successor is critical!

Fig. 11 When (peers from) two ring-based overlays meet

For our example from Fig. 11a lets say peer 1 from .4] meets peer 0 from .45.
Then peer 1 will treat O as its new predecessor, and 0 will treat 1 as its new suc-
cessor, instead of 12 and 3 respectively. However, if they only change their local
information, then the ring network will no more be strongly stable (may in-fact not
even be weakly stable). In-fact such a reconfiguration will need and lead to a cas-
cading effect, so that all members of both the original network try to discover the
appropriate immediate neighbors (successor/predecessor) — requiring coordination
among all the peers.

Estimation of the probability that a peer’s predecessor changes:

From the perspective of any peer in .41, the successor will change, if at least 1 out of
the N, peers have identifier within the next 1/Nj stretch of the key-space (for which
its present successor is responsible, on an average). Any particular peer from .4 has
an identifier for this stretch with probability 1/N;. The number of peers falling in
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this stretch is thus distributed as Binomial (N, 1 /Ny ), which approaches to a Poisson
distribution with expectation N, /N as N, — oe. Hence, a peer from .4 will have its
successor unchanged with probability e~ where A1 = N> /Nj. Thus each of the N;
peers will have their successor node changed with a probability 1 — e M iid. Peers
in 45 will be affected similarly with a parameter A, = Nj /N, (symmetry).

Estimate of the number of peer pairs which will have their immediate neighbors
(either successor and/or predecessor) changed:

The number of peers whose successor will change in .4/ is then distributed binomi-
ally Binomial(N;,1 —e~*) for i =1,2. Hence the expected number of nodes which
will need to correct their successor nodes (and predecessor nodes) is Ny (1 —e~*1) +
N2(1 — eikz).

The basic idea of how the ring can be reestablished is that when two peers from
different networks meet so that they replace each other’s successor and predeces-
sor (immediate neighbor), then this information needs to be communicated to the
original immediate neighbors, and the process continues.

There are several combinations of how the neighborhoods of the peers are af-
fected after their interaction, each of which needs to be accounted for the actual
network merger algorithm. Moreover, different combinations of faults (single or
multiple peers crashing or leaving) can happen during the ring merger, and these
too need to be dealt with. The specifics of such algorithms, and evaluation of the
actual ring network merger algorithm is currently underway.

Without proper and exhaustive evaluation of the exact algorithms for merging
two ring networks, it is difficult to see whether a strongly stable ring can be di-
rectly achieved, or whether a sequence of faults during the merger of two rings
can even lead to a loopy network, which would then require even more effort to
converge to a strongly stable state using Chord’s already existing self-stabilizing
mechanisms.

Thus the back of the envelope analysis above just provides the expected lower-
bound of the ring reestablishment process in terms of correction of successor/pre-
decessors. The latency of such a process started because of two peers from the two
networks will be O(N; + N,) even if there is no membership changes during the
whole merger process — this is the time required to percolate the information that
the ring neighborhood has changed and to discover the correct neighbor when peers
from both the original networks are considered together.

5.1.1 Ring Loses Bearing During the Merge Process

Above we provided a sketch of how to only reestablish the ring topology — which
only guarantees the functional correctness of the routing process — i.e., the query
will be routed to the peer which is supposed to be responsible for the key-space to
which the queried key belongs.
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Reestablishing the ring will be necessary in order to be able to query and locate
even the objects which were accessible in the original network of any individual net-
work. Hence, such a merger operation of ring topology based overlay will typically
cause a complete interruption of the overlay’s functioning.

5.1.2 Managing Keys on the Merged Ring

Establishing the ring in itself is however not sufficient in an overlay network based
index. In order to really find all keys (which originally existed in at least one of
the two networks) from any peer in the merged network, it will still be necessary
to transfer the corresponding key/value data to the “possibly” different peer which
has become responsible for the new overlay. To make things worse, in a ring based
network the queries will be routed to the new peer which is responsible for a key, so
that even after the reestablishment of the ring itself, some keys that could be found
in the original networks may also not be immediately accessible, and will need to
wait until the keys are moved to the new corresponding peer.

Lets consider that before the networks started merging, network .4; had key set
9; such that |2;| = D;. Furthermore, if we consider that o fraction of the keys in
the two networks is exclusive, that is |2 N 2| = |21 U 25|, then on an average,
if a .4 node’s successor changes, it will be necessary to transfer on an average o
fraction of the data from network .4;’s ﬁ stretch of the key-space. Thus, on an

average, the minimum® required transfer of unique data from members of original
networks .4} to 4 will be D}y " = Ny (1 —e™ )Ochlszz.

Apart from assigning the data corresponding to a key on the key-space to the peer
which is the successor for that key, ring based topologies provide fault-tolerance by
replicating the same data at f; consecutive peers on the ring.” Given the strict choice
of f; as neighborhood changes, the transferred data will in-fact have to be replicated
at the precise f; consecutive peers of the merged network, determining the actual
minimal bandwidth consumption. Similarly, some of the original f; replicas will

need to discard the originally replicated content.

3 Note that such a vulnerability may expose ring topologies to a new kind of “throwing rings into
the ring” distributed denial of service (DDoS) attack, though the implications of such an attack and
the amount of resources an adversary will require to make such a DDoS attack needs to be studied
in greater detail.

6 The actual implementation of such a data transfer will need to identify the distinct data in the two
networks and transfer only the non-intersecting one, in order to achieve this minimal effort. This is
an orthogonal but important practical issue that any implementation will need to look into.

7 The parameter f; is a predetermined global constant determined by the system designer.
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5.2 Merger of Two Structurally Replicated P-Grid Networks

In the P-Grid network, replication is achieved in a very different manner than in
a ring based overlay. Multiple peers are responsible for (by replicating) precisely
the same exclusive key-space partition. This is called structural replication, and is
in contrast to the ring based approach, where the replication is done along some-
thing like a sliding window, at the next f; peers on the ring. Effectively structural
replication can be thought of as multiple virtual instances of the same key-space
partitioned network superimposed with each other. For example, in Fig. 12a the net-
work 45 can be thought of composed itself of superimposition of two networks,
the first say comprising of nodes U, W and X, while the other nodes belonging to
the other virtual network. The routing reference maintained by the peers are inter-
twined, and does not need to discern the virtual networks, and is indeed desirable to
achieve greater interconnection of the routing network.

When peers from different overlays meet, similar to the situation in the ring net-
works, it will be desirable to achieve a merger of the two into a single intertwined
network. Figure 12 shows an example of such originally isolated overlays, and the
subsequent single merged overlay.

Notice that the originally isolated overlays .41 and .#; do not have identical
partitioning of the key-spaces, but the eventual merged overlay shown in Fig. 12b
should. Next we sketch how such a merger process will happen.

If peers from the two different networks meet, so that their paths are exactly
the same (for example peers A and U from networks 4] and .45 respectively in
Fig. 12a), then they will execute an anti-entropy algorithm to reconcile their content
and become mutual structural replicas. In fact, such an anti-entropy algorithm will
have to be run among all the other structural replicas of that part of the key-space
too, and eventually of the other parts as well. However, since the original members
of each network still retain the original routing links, routing functionality is not
affected — and whichever keys were originally accessible will continue to be acces-
sible. So to say, peer C will always be able to access all the keys/content available at
A before the merger process. The keys from the same key-space which were present
in the other network would however be available only after the background replica-
tion synchronization has completed. That is to say, a resource available originally
only in .4 at U and Z (but with the same prefix 00 as A) will be visible to C only
when A has synchronized its content with any one of U or Z.

Use of structural replication has an additional downside — by not limiting the
number of replicas nor having a proper structure among the replicas, it is difficult
to have knowledge of the full replica subnetwork at each peer, and hence updates
and replica synchronization is typically probabilistic. In contrast, once the ring is
reestablished, replica positions are deterministic and hence locating replica is trivial
in ring based topologies. Having discovered a replica, the anti-entropy algorithm
itself (is an orthogonal issue) and hence the cost of synchronization of a pair of
peers will be the same.

When two peers from .4 and .45 meet so that one’s path is strictly a prefix of
the other peer’ path, then the peer with shorter path can execute a normal network
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Fig. 12 When (peers from) two structurally replicated overlays meet

joining algorithm [2] — extending its path to replicate either the peer it met, or a peer
this peer refers it to. For example, ¥ may extend its path from 1 to 11. In order to
do so, Y will need to synchronize its content with one of the peers which originally
had the path 11, say G. Moreover Y will need to obtain routing reference to a peer
responsible for the path 10 (e.g., peer C) — information it can obtain from G itself.

Since new peers join as structural replica or existing peers, no other existing peer
need necessarily to update their routing table for routing functionality (unlike in a
ring based topology). Thus, peer Q referring to Y for prefix 1 continues to refer to it
as such, and any query 10 from Q is routed first to Y, which then forwards it to — say
C. Peers may however, over time add more routing entries, for instance, Q adding
a reference to D for redundancy in its routing table for the prefix 1. Such changes
however is a normal process in the P-Grid network and can be carried on in the
background, again without interrupting the functioning of the overlay (and in fact
instead making it more resilient to faults and churn).
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Consequently, neither joining peers, nor merger of two existing overlay network
disrupt the available functionality of the network members.®

If peers with different paths meet each other, they need to do nothing, though they
can refer each other to peers which are most likely to have the same path (similar
to ring based topologies which can forward the peers closer to their respective key-
spaces).

5.2.1 Managing Keys in the Merged Network

The amount of data that needs to be transferred from each system to the other is
essentially the non-intersecting data. However, there is no need to transfer data from
one peer to another merely because the key-space partition a peer is responsible for
changes — because with structural replication, new peer joins or network mergers do
not in itself automatically change the network’s structure.’

The important thing to reemphasize is that a peer always finds the keys it could
find before the merger process began, irrespective of the state of the merger process.
Hence the replica synchronization can be done as a slow back-ground process —
hence the performance and network usage is also graceful — that is, merger of two
overlays does not suddenly overburden the physical network’s resources nor disrupt
the functioning of the overlay networks. Such a graceful merger of existing net-
works also facilitates highly parallelized overlay construction [2] in contrast to the
traditional sequential overlay construction approaches.

6 Summary and Conclusion

Research and development in structured overlays now spanning almost a decade,
has focused on diverse issues. Adaptation of different topologies in a peer-to-peer
environment characterized by large scale, peer autonomy and membership dynam-
ics, maintenance of these topologies — both in terms of ensuring that the topology
invariants such as the ring invariant are continuously satisfied, as well as that other
performance related concerns like load-balancing are addressed. These activities ac-
count for the first five-six years o structured overlay research, bringing it from the
drawing board of theoretical results and simulation based validations starting around
2000-2001 to the actual prototyping and benchmark experiments in moderate scale
in a controlled environment and with adequate coordination around 2005-2006. The
final essential ingredient for a large scale deployment of structured overlays is to al-
low merger of smaller overlays to form a larger one organically. These smaller over-

8 Note that the above discussion is true only for write once and then onwards read-only data, since
for read/write, it will be necessary to maintain the replicas more pro-actively.

9 Local view of the structure however changes when a peer with shorter path meets a peer with
longer path, and extends its own path according to the network construction algorithm [2], as
explained above.
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lays can be bootstrapped using any of all the possible manners — quasi-sequential,
parallelized, or by merger of even smaller networks. This chapter provides a high
level summary and survey of the various kinds of bootstrapping mechanisms for
some of the predominant classes of structured overlays.

Acknowledgement

The work presented in this article is partially supported by A*Star SERC Grant No.
0721340055.

Disclaimer: This article summarizes different bootstrapping mechanisms for

structured overlay networks, including approaches designed by third parties as well
as myself along with various collaborators. The different approaches have accord-
ingly been cited so that each mechanism can be attributed to their original designers.

References

1.

2.

3.

10.

11.

12.
13.

14.

K. Aberer (Conference on Cooperative Information Systems (CoopIS 2001)) P-Grid: A self-
organizing access structure for P2P information systems.

K. Aberer, A. Datta, M. Hauswirth and R. Schmidt (VLDB 2005) Indexing data-oriented
overlay networks.

K. Aberer, A. Datta and M. Hauswirth (Self-* Properties in Complex Information Systems,
”Hot Topics” series, LNCS, 2005) Multifaceted Simultaneous Load Balancing in DHT-based
P2P systems: A new game with old balls and bins.

. S. Abiteboul and I. Manolescu and N. Preda (SWDB 2004) Constructing and Querying Peer-

to-Peer Warehouses of XML Resources.

. D. Angluin, J. Aspnes, J. Chen, Y. Wu and Y. Yin (SPAA 2005) Fast construction of overlay

networks.

. M.S. Artigas, P.G. Lopez, J.P. Ahullo and A.F. Gomez-Skarmeta Cyclone: A Novel Design

Schema for Hierarchical DHTs, (P2P 2005).

. J. Byers, J. Considine and M. Mitzenmacher (IPTPS 2003) Simple Load Balancing for Dis-

tributed Hash Tables.

. M. Castro and P. Druschel and A-M Kermarrec and A. Rowstron (ACM SIGOPS European

Workshop 2002) One ring to rule them all: service discovery and binding in structured peer-
to-peer overlay networks.

. L. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, B. Wiley (IEEE Internet Computing, vol.6

no.1, 2002) Protecting Free Expression Online with Freenet.

A. Datta and K. Aberer (IWSOS 2006) The challenges of merging two similar structured
overlays: A tale of two networks.

A. Datta (SASO 2007) Merging Intra-Planetary Index Structures: Decentralized Bootstrap-
ping of Overlays.

A. Datta EPFL Phd. Thesis 3615 (2006) SoS: Self-organizing Substrates.

P. Ganesan, K. Gummadi and H. Garcia-Molina (ICDCS 2004) Canon in G Major: Designing
DHTs with Hierarchical Structure.

S. Girdzijauskas, A. Datta and K. Aberer (International Workshop on Networking Meets
Databases, NetDB 2005) On Small-World Graphs in Non-uniformly Distributed Key Spaces.



308

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

217.

28.

Anwitaman Datta

S. Girdzijauskas, W. Galuba, V. Darlagiannis, A. Datta and K. Aberer (accepted for pub-
lication in Springer’s Peer-to-Peer Networking and Applications Journal) Fuzzynet: Zero-
maintenance Ringless Overlay.

A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu and I. Tatarinov (TKDE vol.16
no.7, 2004) The Piazza Peer Data Management System.

IETF-RFC:3174  (http://www.ietf.org/rfc/rfc3174.txt, 2001) Secure Hash Algorithm 1
(SHAI).

M. Jelasity and O. Babaoglu (ESOA 2005) T-Man: Gossip-based overlay topology manage-
ment.

M. Jelasity, A. Montresor and O. Babaoglu (IEEE International Conference on Distributed
Computing Systems Workshops, 2006) The Bootstrapping Service.

J. Kleinberg (STOC 2000) The Small-World Phenomenon: An Algorithmic Perspective.

G. Koloniari and E. Pitoura (EDBT 2004) Content-Based Routing of Path Queries in Peer-
to-Peer Systems.

P. Maymounkov and D. Mazieres (IPTPS 2002) Kademlia: A peer-to-peer information system
based on the XOR metric.

A. Montresor, M. Jelasity and O. Babaoglu (P2P 2005) Chord on Demand.

W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst and A. Loser
(Journal of Semantic Web, vol.1 no.2, 2004) Super-peer-based routing strategies for RDF-
based peer-to-peer networks.

C. G. Plaxton, R. Rajaraman and A. W. Richa (SPAA 1997) Accessing Nearby Copies of
Replicated Objects in a Distributed Environment.

A. Rowstron and P. Druschel (Middleware 2001) Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems.

I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan (SIGCOMM 2001) Chord:
A Scalable Peer-To-Peer Lookup Service for Internet Applications.

B.Y. Zhao, J.D. Kubiatowicz and A. D. Joseph (2001 UC Berkeley Technical Re-
port UCB/CSD-01-1141) Tapestry: An infrastructure for fault-tolerant wide-are location
and routing.



Network-Aware DHT-Based P2P Systems

Marguerite Faycal and Ahmed Serhrouchni

Abstract P2P networks lay over existing IP networks and infrastructure. This chap-
ter investigates the relation between both layers, details the motivations for net-
work awareness in P2P systems, and elucidates the requirements P2P systems have
to meet for efficient network awareness. Since new P2P systems are mostly based
on DHTs, we also present and analyse DHT-based architectures. And after a brief
presentation of different existing network-awareness solutions, the chapter goes on
effective cooperation between P2P traffic and network providers’ business agree-
ments, and introduces emerging DHT-based P2P systems that are network aware
through a semantic defined for resource sharing. These new systems ensure also a
certain context-awareness. So, they are analyzed and compared before an open end
on prospects of network awareness in P2P systems.

1 Motivations

Peer-to-peer (P2P) networks are an evolution of the Internet network, and lay over
it. However, the Internet network is composed of tens of thousands smaller indepen-
dent networks called Autonomous Systems (AS) and belonging to various adminis-
trative entities (e.g., network providers, universities, companies, etc.), each having
its own routing policies. Bilateral connections between ASs are governed by busi-
ness agreements negotiated between the entities they belong to [1]. And routing in-
formation between ASs is exchanged via an exterior gateway protocol such as BGP
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[2]. But in P2P networks, routing tasks are distributed across all system peers in an
autonomous and spontaneous way without taking the IP network structure or routing
into account, and consequent traffic often cross network boundaries multiple times
[3], causing redundant traffic and extra delay, and overloading links, increasing the
risk of their congestion.

Last years, many researches went on to investigate and understand the relation
between routing in the overlay and underlay IP network. Reference [4] shows how
current ISP traffic engineering techniques are inadequate to deal with emerging
overlay network services, as overlays do not follow ISP’s policies. It also illustrate
how an uncoordinated effort of the two layers to recover from failures may cause
performance degradation for both overlay and non-overlay traffic. The problem of
rerouting around failed links was also tackled in [5], which finds out that tuning
underlay routing parameters improves overlay performance. Using game theoretic
models, [6] studies the interaction between overlay routing and traffic engineering
within an AS, and shows that the selfish behavior of an overlay can cause huge
cost increases to the whole network. Also [7], which deals with voice over IP as
a successful application of P2P, shows that the quality of the relay paths could be
improved when the underlying network AS topology is considered.

Moreover, focusing on P2P platforms and applications, their overall performance
also depends on the performance of their background P2P routing protocol. So, new
systems are mostly based on distributed hash tables (DHT), which are algorithms
that provide efficient mechanisms for resource location. However, DHTs assume
the system is uniform in available resources and that every node participating in the
DHT is within the same transport domain.

Otherwise, despite various hurdles, as copyright issues, legality matters, and se-
curity concerns, P2P networks and systems still gain in popularity. The research
community continues also to develop interesting applications of P2P technology,
together with new platforms for application development. P2P is then used for in-
creasing scalability and decreasing the cost of management and deployment. The
consequently continually growth of the P2P traffic appears thus somehow daunting
for network providers. An effective cooperation between both parts is then challeng-
ing, so that according to the underlying network, peers can find the best instance of
the resource they target. But underlay awareness at the P2P level becomes therefore
necessary and unavoidable.

2 DHT-Based Architectures

Mathematically, a DHT is a distributed injective hash function that associates keys
with values, both in the same logical key space K. In DHT-based structured P2P sys-
tems, the ownership of this key space is split among the active peers of the network.
A global unique identifier is thus assigned to every node; it is known as the nodelD.
Similarly every object has a global unique objectID. An object can be any kind of
resource.
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DHT algorithms map then objectIDs to the node responsible for that object. They
implements lookup and retrieval functionalities providing two main functions: a
put(key, data) function that fills the table with couples of corresponding keys and
values, and a gef(key) function that permits to locate an object, taking the object’s
key (which is the objectID) and returning the nodelD of the peer responsible for that
object [8]. The responsible node then either supplies the object directly or indicates
where (or how) it can be acquired.

So, given a hash function / that should balance the distribution of keys through-
out the logical space K, and a resource identifier r that the peer p of address IP @IP
wants to share on the network, we have then:

h(r) =k € K ; where k is the ob jectID
and
h(@IP) =i € K; where i is the nodelD

Then, the resource r, or a link towards this resource, is stored on the peer p of
address @IP, so that dist (k, i) is minimal; dist (k, i) being the distance between
k and i, according to the distance definition in the logical space K. In other words,
each peer owns all the resources (or links towards the resources) whose key is, in the
logical key space, closest to the identifier of that peer. Thus, in the DHT, & is mapped
to i, and the peer p can retrieve r. Likewise, each peer identified by j can retrieve,
thanks to his DHT, any resource whose identifier m is closest to j. If j doesn’t have
m in its DHT, it has at least an n closest to m. Consequently, each key lookup is
resolved by iteration, in multiple steps, resulting in a multihop path to be taken in
the overlay [9]. DHTs can thus effectively route messages to the unique owner of
any given key, and they are typically designed to scale to large numbers of nodes.
Typically, the worst case cost to locate an object, in terms of number of messages
exchanged, is logarithmic with the number of peers.

The key feature of DHTs used to build P2P architectures is that they use con-
sistent hashing [10], which means that changes to the location where data items
are stored are minimal when new locations are added or old locations are removed.
In fact, as peers enter and leave the network, messages are exchanged between the
peers in the DHT to preserve the structure of the DHT and exchange stored entries.
DHTs provide thus data with high degree of availability across a set of peers with
dynamic membership. Various DHT implementations may visualize the hash space
as a line, a ring, a tree-like structure, a grid, etc. Reference [11] discusses basic ge-
ometry underlying DHT routing algorithms and how it impacts their performance
in two important areas: static resilience and proximity routing.

All DHT-based P2P architectures share the following four main properties [12]:

1. Low degree: each peer keeps only a small number of active connections to other
peers.

2. Low diameter: the maximal number of necessary hops to reach any peer of the

network is minimized.

Greedy routing: peers independently calculate a short path to the destination.

4. Robustness: even if links or peers fail, a path to the destination can be found.

et
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In DHT-based P2P systems, nodes organize themselves in accordance with the
DHT’s implementation to form a communication graph with an optimal diameter /
degree trade-off. Each peer maintains addresses of other peers participating in the
same DHT in a routing table, sorted according to specific criteria. And in order to
reduce path latency of distributed queries, DHT algorithms include round trip time
estimations among such criteria [13].

Nevertheless, DHTs suffer some limitations. First of all, the partitioning of the
key space in a DHT is directly related to the number of nodes residing in the system
at any given time. As such, whenever a new node joins the system or an existing
node leaves it or fails, the partitioning changes, and data must be moved so that
the system still works properly and live nodes still be able to determine through the
DHT substrate the current live node responsible for the key they look for. Second,
DHTs are not designed to answer interval queries, since they link only one object to
each key. Lastly, the problem we address in this chapter is the fact that DHTs leave
aside the structural aspect of the underlay IP network, assuming that every node
participating in the DHT is within the same transport domain. In fact, a single hop
in the DHT is likely to involve multiple routing hops in the Internet, and successive
hops may lead a message travel back and forth several times. Thus, the physical path
so travelled is often less than optimal. DHT's assume also that the system is uniform
in resources, since they leave also aside the available resources at each node, such
as network bandwidth, free processor, or storage capacity available at each active
peer.

More details on DHTSs’ evaluation can be found in the following. Reference [14]
addresses problems in DHT P2P applications. Reference [15] discusses churn. And
[16, 17] present performance studies of various DHT algorithms with and without
churn.

DHT-based P2P routing protocols are commonly called DHTs. They were first
introduced to the research community through four different architectures: Chord
[18], Pastry [19], CAN [20], Tapestry [21]. Since that time, a plethora of other DHT's
emerged. Some of the most well-known ones are Kademlia [22], Viceroy [23], Bam-
boo [15], D2B [24]. And the list still grows longer, although very few are publicly
released with robust implementations. However, Kademlia is already integrated in
two of the most popular P2P filesharing applications: BitTorrent [25], Emule [26].

3 Requirements

As a direct consequence of the total distribution of the Internet, and as DHT-based
networks lay over the Internet, it is quite likely that topology information would
be distributed at an ISP, a network provider, or an AS or domain level. Thus, be-
side scalability and robustness, network-aware P2P systems aim to satisfy both P2P
users and ISPs. The former are interested in an enhanced time of data retrieval,
with better performance; the latter are interested in avoiding congestion on critical
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links, and look forward to both the optimization of network resources usage, such
as bandwidth, and the reduction of operation costs.
Effectively using the underlay network information implies two essential parts:

* firstly, discovery techniques, generating and providing underlay network prox-
imity information,

» secondly, techniques exploiting such information in both query routing and data
retrieval processes.

Three techniques of generating proximity information may be identified [27]:

* Expanding ring search is a flooding technique for measuring the round-trip time
(RTT) between a node and all the others within a defined radius (in terms of
network hops).

* Heuristic based approaches consist in measuring the RTT between a node and
its close neighbours only.

* Landmark clustering measures RTTs to selected landmark nodes, and sorts the
landmarks in terms of increasing RTTs. Intuitively, nodes having similar dis-
tances to these landmarks are close to each other in terms of network latency.
This scheme is used in [28].

Vivaldi [29] assigns synthetic coordinates to Internet hosts, so that the Euclidean
distance between two hosts’ coordinates predicts the network latency between them,
with no need of landmark nodes.

Most works on estimating topology information focus on predicting network dis-
tance in terms of latency. But for many P2P applications, e.g., video-based ones,
throughput is often a more important quality metric. The iPlane service [30] aims
then to generate and maintain an “atlas” of the Internet using active measurements
that contains information about latency, bandwidth, capacity and loss rates between
arbitrary Internet hosts.

However, available bandwidth and lossrate estimation from end hosts may be
somewhat obscured by lastmile bottlenecks. The notion of network tomography
summarizes techniques of active network probing and passive traffic monitoring
to infer information about the network topology and link-level characteristics [31].

Lastly, the topology awareness of overlay networks can be modelled, involv-
ing a mathematical metric for the degree of topology matching between an overlay
network and its underlying physical network [32]. The model is based on an op-
timization problem, a NP hard problem but solvable in polynomial time for some
particular inputs [32].

4 State of the Art

First DHT-based P2P protocols were developed agnostic of the underlay topol-
ogy. However, Pastry [19] uses certain heuristics to exploit physical network prox-
imity in its overlay routing tables. But decisions are only made when there is
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a choice between nodes, and locality is not exploited for the underlying routing
strategy.

Existing techniques that permit to exploit the network proximity information
are subdivided into three categories [33]: proximity routing, geographic layout or
topology-based nodelD assignment, and proximity neighbour selection [34].

1. With Proximity routing, the overlay network is built independently of the physi-
cal topology. During the routing process, if a peer has the opportunity to choose
among k possible next hops, it chooses to route the message towards the closest
node in the underlay network, among this set of k nodes. An alternative is to
choose to route towards the node that represents the best compromise between
proximity and progress in the overlay key space. The overall performance of this
technique depends thus on k that is proportional to the size of the routing table.
Moreover, small hops may be thwarted by an increase of the number of hops.

2. Topology-based nodelD assignment aims to map the overlay key space onto the
underlay topology, and biases the nodelD assignment. Consequently, delays de-
crease certainly, but uniform distribution of nodelDs in the overlay key space is
violated, which leads to loadbalancing problems. Neighbouring nodes are also
likely to suffer correlated failures, and thus both robustness and security of the
system are likely to be weakened. However, this technique has been successfully
used to create a topologically sensitive CAN [28] but it cannot be applied in a
one-dimensional id space (e.g., Chord [18], Pastry [19]).

3. Proximity neighbor selection: Like the previous one, this technique builds a
topology-aware overlay. But instead of biasing the nodelD assignment, it chooses
the routing table entries to refer to the closest nodes at the underlay level among
all the ones that satisfy the algorithm. This technique is likely to have success
only when applied to an overlay protocol that allows certain freedom in con-
structing routing tables without affecting the diameter. Thus, it can be used with
Pastry [19] when constructing the neighbourhood set, but not with CAN [20] or
Chord [18], where each routing table entry refers to a very specific point in the
overlay key space. Consequently, proximity neighbour selection introduces only
low overhead when implemented, and facilitates the cache management since
overlay neighbours are likely to be also neighbours at the underlay layer. It can
also be viewed as a good compromise decreasing the network’s diameter and
preserving the load balance, but neighbours’ discovery is still tightly related to
the protocol.

These three techniques of using generated network proximity information have
their limits and are enormously linked in the overlay protocol. Thus, new structural
solutions emerged afterwards, and the list still continues to lengthen.

Hereafter, we give a brief presentation of different well-known DHT-based
topology-aware P2P systems, namely: Brocade [35], the expressway [36], Hieras
[37], Toplus [38] and Plethora [39].
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Brocade [35] adds a secondary overlay on top of a primary DHT-based P2P net-
work that exploits knowledge of the underlying network characteristics. The sec-
ondary layer consists of nodes having high network capacities (bandwidth, pro-
cessing power), and situated near the network access points such as gateways and
routers. These nodes are called supernodes and act as landmarks for each network
domain. Each supernode manages a set of local nodes to reduce the traffic in the net-
work, but has to keep information about all overlay nodes inside its domain. They
may thus become bottleneck points. To route a message each node first connects to
the nearby supernode, then uses the second layer as a shortcut to the destination,
reducing both network bandwidth usage and overall physical hops. But this layer
still uses a logical routing, which involves for each logical hop several ones at the
underlying IP level. Thus, to a certain extent, Brocade pushes the problem back to a
secondary network of smaller size.

The expressway [36] is an auxiliary network constructed on top of any primary
DHT-based P2P overlay, in order to take advantage of the inherent heterogeneity of
the underlay network (node connectivity, physical proximity, forwarding capacity,
node availability). Two generic approaches exist for such a construction. The first
approach uses the AS-level topology derived from BGP [2] reports. The second
approach uses a landmark numbering technique that enables proximity neighbour
selection and can deal with changing network conditions. The constructed auxiliary
network is called an expressway as it is intended to speed up routing. It is formed
by nodes with high network capacity, situated near gateways or routers, and called
expressway nodes. The first approach requires that every node knows all the nodes
in its AS. And to route a message, a node contacts first its local expressway node:
the one in its AS or its landmark cluster. In the second one, routing is similar to
Distance Vector Routing.

Hieras [37] is a multilayer hierarchical system intending to relieve the problem
of distributed overlay routing tasks without awareness of underlay network link la-
tency. At the highest level, peers are grouped in one big ring, and at the lower ones,
topologically adjacent peers are grouped into several disjointed rings. But each peer
belongs to all the levels simultaneously and manages thus more than one successor
list. Each ring is a subset of the overall P2P network and is created in such a strat-
egy that the average link latency between two peers in lower level rings is much
smaller than higher level rings. To estimate such proximity for each ring, Hieras
employs distributed binning [28], requiring thus the existence of well-defined land-
marks nodes. In Hieras, routing tasks are first executed in the smallest ring first.
If it fails, it moves up to higher level rings, until eventually reaching the highest
level. But a majority of routing hops previously executed in the global P2P ring is
so replaced by hops in lower level rings, reducing thus routing latencies.

Toplus [38] is a hierarchical lookup service for structured P2P networks. It orga-
nizes peers in groups according to their network IP prefixes, and groups into a new
higher order group, and so on following the Internet hierarchical topology it gets
from BGP tables [2]. Thus, an AS is subdivided into an IP hierarchy. The routing
mechanism of Toplus is based on a generalization of longest prefix matching of IP
addresses, using the XOR metric, like Kademlia [22]. Both structure and look up
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performance of Toplus follow those of the Internet network. However, Toplus suf-
fers a number of drawbacks. Obviously, it is sensitive to correlated node failures that
may bring down an entire set of related IP addresses. And another matter is the un-
balanced load among the nodes, since the population of the id space is not uniform,
because the number of active nodes in an inner group is not necessarily proportional
to the IP addresses it covers.

Plethora [39] is a two-layer wide area read-write repository, where peers are ex-
pected to have a partially persistent network state and good Internet connectivity
in terms of bandwidth. On the top of the global overlay that contains all the peers,
the Plethora routing core organizes peers into several local overlays according to
ASs and associated proximity. Local overlays serve as locality-aware caches for the
global overlay to improve access time to data items. Queries are thus routed first in
the local overlay. The size of the local overlay impacts the system’s performance
and is thus defined by two system parameters: a maximum and a minimum numbers
of peers. The size of each local overlay is controlled by the one of its peers with the
smallest identifier. Two distributed algorithms are also active in the system. One for
merging local overlays when necessary and another one for splitting them with a
high probability guarantee that nodes in the same AS stay in the same local overlay
after a split operation.

Many other systems still emerge to enhance P2P system’s performance by ex-
ploiting underlay topology information. And recently, new architectures emerged
for topology estimation through layer cooperation, allowing cooperation between
P2P traffic and network providers’ policies.

A simple scheme [40] can let P2P overlay interacts with underlying ISP infras-
tructure. It relies on a server, called the oracle, hosted by the ISP and that helps
P2P users choose optimal neighbours. More precisely, a P2P user sends the list of
potential neighbouring peers to the oracle, which ranks this list based on a number
of factors that each ISP can decide individually, like their proximity to the user or
higher bandwidth links, or according to its routing policies or its agreements signed
with other ISPs. The oracle acts then like an abstract routing underlay to the over-
lay network but as it is a service offered by the ISP. It has thus direct access to the
relevant information (e.g., the one concerning the topology) and does not have to
infer or measure it. Although the oracle can be deployed with DHTs, reference [40]
focuses mostly on unstructured P2P systems.

Provider Portal for P2P (P4P) [41] is a light-weight architecture enabling explicit
communication between P2P (independently of DHTs) and network providers, in
order to reduce backbone traffic and lower operation costs. The proposal leverages
the fact that the ISP is best-positioned to determine locality and to direct clients
not only to nearby peers but also to peers that are accessible over well-provisioned
and lightly loaded links. P4P framework consists of a data-plane component and a
control-plane component with an i7racker providing three kinds of information re-
garding the network provider: network status/topology, provider guidelines/policies,
and network capabilities. However, with the iTracker, the PAP framework seems to
be a kind of centralized architecture applying CDN (Content Delivery Network)
architecture to a filesharing P2P network.
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5 Semantics for Resource Sharing

Semantics in P2P systems is an active area research, but it focuses on the problem of
mapping or retrieving semantically close data shared by different peers. This para-
graph does not deal with the resources’ semantic, but tries to define semantics for
the identifiers in a DHT, based on the underlay topology in order to lead to a win—
win situation where both P2P users and network providers meet their requirements.
Hereafter we present two such systems, namely CAP (a Context-Aware P2P system)
[42] and NETPOPPS (a NETwork Provider Oriented P2P System) [43]. Both pro-
posals are multi-layer systems exploiting the injective cryptographic hash function
of the DHT, which is also used to build the different identifiers of the P2P system.
Following proposals are thus independent of the P2P algorithm implemented at the
primary global overlay.

5.1 A Context-Aware P2P System

CAP [42] aims to build context-aware nodelDs and objectIDs. Therefore it pro-
poses to compute the different identifiers of the system at the secondary levels
using HMAC (Hash based Message Authentication Codes) [44], a keyedhash-
ing function, originally aimed for message authentication, thanks to a secret key
it uses.

HMAC is a message authentication code that uses a cryptographic key in con-
junction with a hash function in order to guarantee integrity between a sender and a
receiver. It is computed as follows.

HMAC (h,k,m) = h(k& opad||h(k @ ipad||m))
Here are details of the equation.

e his a commonly used cryptographic hash function; in CAP it is the one used by
the DHT of the global P2P overlay.

e kisinitially defined as a secret key, but in CAP it is a configurable system param-
eter, called HKey, and which value is known to all the peers of one DHT. Thus,
a HKey labels each DHT, which is then known as VDHT (for Virtual DHT). A
detailed definition is given in the next paragraph.

* mrepresents the text to be hashed; it is thus either the object name or the address
IP of the peer.

* ipad and opad are the bytes 0x36 and 0x5C respectively, each repeated 64 times.

* @ denotes the bitwise XOR operation.

* || denotes the concatenation of two bit strings.

Coming back to the HKey, it could be a simple or compound one. A simple HKey
is based on one parameter or a single criterion: it could be a defined characteristic
(network metric or policy). A compound HKey is based on the combination of any
two or more characteristics (parameters or criteria) and is computed as the output of
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the cryptographic hash function used by HMAC and applied to the concatenation of
those characteristics; e.g., if we are interested in searching a resource according to
three metrics m1, m2 and m3, then HKey = h(m1||m2||m3).

A compound HKey could be derived in two or more, simple or compound HKeys:
these derived HKeys are then typically based on one or more different characteristics
from those the initial compound HKey is based on. But derived HKeys could also
be defined with simple HKeys; e.g., if a certain simple HKey could take four values
for the same peer (e.g., if the peer resides in four zones), derived HKeys could be
defined as a combination of two or more of those values.

The type of the HKey is defined in a global system profile. (The way the system
profile is loaded in the system does not affect node operations or routing mechanism;
e.g., it could be loaded on a kind of bootstrap node managed by the system operator
or service provider.) So, in case of a derived HKey, the profile defines which combi-
nation of two or more values or characteristics to take into account, and eventually
in which order. In fact, the profile defines a set of priority criteria and identifies the
parameters to consider in the routing protocol, defining thus the HKey structure.
These criteria and parameters are quantified as the peer arrives in the system, ac-
cording to an external procedure that doesn’t affect the routing mechanism and that
could be based on some database reports of the system (e.g., the BGP reports [2] for
the identifier of the AS the peer resides in).

Examples of what a simple HKey could be are: the AS identifier, the administra-
tive domain name or the group name or identifier of a specific group communication
or a specific secure group, a QoS parameter (e.g., minimum available bandwidth,
minimum battery power for mobile systems, minimum storage capacity, etc.), a lo-
cation parameter (e.g., network or real distance, GPS location, country, etc.), a type
of shared files (e.g., a specific movie or audio file type), a language or a topic of
shared files (based on metadata), a secret key, a keyword, etc. A compound HKey
could be based on two or more such simple HKeys. Derived HKeys could then be
defined depending on the routing policy of the system, defined by the above men-
tioned profile.

Consequently, a heterogeneous P2P network can be layered in a set of different
uniform overlays, each one called a zone and characterized by a specific HKey. In
order to have homogeneous identifiers in the whole system, each zone is identified
by h(HKey). The HKey will then also label both an overlay and the DHT in its
corresponding key space, above named VDHT.

Each node can participate in one, two or more of these overlays, depending on
its properties (available resources, locality, group membership, etc.) and according
to the semantics of the HKey that is taken into account, but resides in at least one
overlay, the global one, which could for example be at the lowest overlay level. The
other overlays are called local ones, and at one level there could be many zones. In
case the system profile does not define derived HKeys, there will be only a single
secondary overlay at the top of the global one; else, there will be L more local
overlays, where L will be equal to the maximum number of the different possible
defined derived HKeys per peer.
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The routing mechanism is the same at each level according to the P2P routing
protocol defined at the global overlay; the only difference is the HKey characterising
the level and thus the usage of the consequent different nodelDs, objectIDs, and
DHTs.

When a peer needs a data item, it first searches the local overlay it resides in. If
the query fails, the peer will then searches the global overlay where the identifiers
remain unchanged. When derived HKeys are defined, before searching the global
overlay, a peer searches each zone it resides in. To improve the data retrieval per-
formance in the system, a data item is automatically cached in the requester’s local
overlay if it is retrieved from the global overlay (and of course, its objectID will
be then computed using HMAC and based on the HKey corresponding to that local
overlay).

The joining and failure/departure operations are the same at each level according
to the routing protocol implemented in the system; but after a node joins the system
(at the global overlay) and before it joins any local overlay at any secondary level,
some operations must be taken in order to join the secondary overlay if it exists or
to build it if possible.

Otherwise, each existing zone is associated with a data table, called zone table,
having the same identifier, and stored on a rendezvous point of the global overlay.
The zone table contains up to four nodelDs in the global overlay of nodes already
participating in its corresponding local overlay. Thus, a new node in the global over-
lay has first to look up h(HKey) to be able to join a zone with its corresponding
nodeld.

If a new node is the first one asking to join its local overlay, then it creates a zone
table with the identifier of that local overlay and its own global nodelD, it stores the
created data table at the rendezvous node, and it starts the local overlay.

CAP guarantees that a data item will be retrieved from the zone where it has
been found. In fact, at each secondary layer, when an overlay is populated, all nodes
and objects have their identifiers based on the HKey characterising the overlay; so
if a query initiated by a node residing in the overlay does not fail, that means that
the response is present in this overlay. And even if the response is a pointer to the
requested object, the object is necessary in the overlay, since every data presented
or represented in a secondary overlay has its identifier necessarily computed based
on the HKey characterising that overlay.

Consequently, CAP ensures through a specific semantics that the result of a
context-oriented query is context-oriented.

5.2 A Network Provider Oriented P2P System

To enable tight cooperation between P2P traffic and network providers’ routing poli-
cies and business agreements, NETPOPPS [43] layers P2P overlays in a set of dif-
ferent uniform overlays, and applies the principle of key derivation to nodelDs. But
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an object keeps a unique identifier at all levels, namely its primary objectID, the
identifier it has at the global P2P layer. In fact, objects are managed by nodes.

The principle of key derivation is an efficient key management technique that was
proposed in [45] to satisfy the needs of private hierarchical group communication re-
quiring specific confidentiality upward and downward the hierarchy. It is illustrated
by Fig. 1, where h is a distributed injective hash function. Considering any node
of Level I identified by Id; = k, it will have at Level 2 an identifier Id, = h(Id,).
This computational relation applies for the identifiers of a same node between any
two successive layers, i.e., Id; = h(Id;_) = hi~!'(Id,) at any level i. So, any node
of level i can compute its identifier /d; at a level j, where j is greater than i, by
deriving Id;(j — i) times; in other words: Id; = h/~'(1d;).

M= hr(id) = hil)... Level 1@ oD Level 1. = ki "
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Fig. 1 Principle of key derivation for key management

Regarding the system architecture, as illustrated by Fig. 2, secondary overlays are
characterized by the width of their constituent entities in term of number of basic
entities (BE) merged together. A BE is any kind of routing domain managed by a
Network Provider (NP). NETPOPPS proposes that a P2P path connection emerging
from any peer of an entity remains entirely inside the same entity. It also proposes
that according to NP’s business agreements two BEs merge in an intermediate entity
(IE) to allow a P2P path connection emerging from one of them to end in the other
one. Two IEs can also merge in a new IE, and so on. Besides, secondary overlays
lay on the top of the primary P2P overlay in descending order of the width of their
entities, in terms of number of merged BEs. This makes the system looks like a
collection of several hierarchical subsystems composed of a BE on the top of as
many IEs and managed by NPs; each NP managing as many subsystems as BEs
it provides. The identifier of an entity is called a vector and labels both the virtual
overlay in the corresponding entity and the DHT in its corresponding key space. The
vector of an IE is in fact built in a vector format, by listing in an ascending order the
identifiers of all its constituent BEs.

The routing mechanism in each overlay is the same as in the global P2P network;
only the nodelDs and DHTs in use are different. When a peer needs a data item,
it first searches the local overlay (of the BE) it resides in. If the query fails, the
peer will then similarly searches for the data item in the overlay corresponding to
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Fig. 2 Overview of NETPOPPS

the first IE; and so on, the peer continues searching for the desired data item in
each intermediate overlay going down the hierarchical subsystem, until success. But
during a single routing process, only the originator of a query can switch from an
overlay to another. The node requester also automatically caches in its local overlay
a data item it retrieves from the global or an intermediate overlay.

The joining and failure/departure operations of nodes are the same at each level
according to the routing protocol implemented in the system. However, after joining
the global overlay and before it joins any other secondary overlay, a new node has
to identify the secondary overlays it has to join. NETPOPPS proposes thus that each
NP manages a single control node (CN) per BE. The CN does not participate in the
routing procedure. It holds a profile that memorizes the vectors of the different IEs
of the hierarchy going down from its BE. The NP can also decide on other features
to deploy on the CN and other data to save in the profile.

Like any new joining node, the CN joins first the global overlay. Then, as illus-
trated by Fig. 3, the CN computes its different identifiers according to the principle
of key derivation, except an additional derivation: the first derivation of its primary
nodelD gives its nodelD in the BE’s overlay. Consecutively, the CN initiates the dif-

[y [T —— A

Wy = ir(ld,)= (k)

My ® ki =h?
3= h(id)= kit () 0')3"

. ...u,,-m-'m?h

Fig. 3 Computation of the different identifiers of a new joining node
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Table 1 Structure of the reference table

| vector of the BE|primary ID of CN|vector of the 1st IE|...| vector of the Nth IE|

ferent overlays. Afterwards, it shares at the global overlay a Reference Table (RT),
represented by Table 1, and identified by h(vector of BE).

So, to correctly join the different secondary levels, a new node searches first for
the RT in the global overlay. It computes then its different identifiers as illustrated
by Fig. 3, and at each derivation, it matches its new identifier with the vector of the
next entity, according to what it has just learned from the RT.

NPs may also operate a control access or enable any other own mechanism (e.g.,
a bill service) to the nodes joining the different overlays they manage. In this case,
after retrieving the RT, new nodes have to send at the global level a join intention
request to the CN to know the CN’s different nodelDs from the CN itself.

Now, to share a resource identified by an objectID, the new node inserts this
objectID in each overlay it participates in (including the global P2P layer). The
system ensures thus that the result of a query found in an entity can be retrieved
through a path connection that does not pass by a node of another larger entity.

Consequently, NETPOPPS uses a key management technique to optimize data
retrieval according to NP’s criteria through a specific semantics.

6 Prospects

CAP [42] and NETPOPPS [43] are two different DHT-based topology aware P2P
systems guaranteeing that a data item will be retrieved from the zone or entity where
it has been found and the entire P2P path connexion will remain in that zone or
entity. Both promise also alleviated message latency and enhanced lookup time.
However, the former is more userfriendly and the latter is more network provider
compliant.

In fact, CAP is a configurable and extensible context-aware system, where zones
are independent from each others, and any node can create and initiate a zone ac-
cording to any desired performance metric. Guarantee for context-awareness is then
given by the semantic of the objectID through the HKey. The system can also be
adapted for semantic queries or serve as a core routing for any overlay application
aiming improved security issues or quality of service. CAP is thus service oriented,
and possible applications to implement over it are as numerous as values a HKey can
have. However each node or object manages multiple different independent identi-
fiers.

As for NETPOPPS, the key management is greatly simplified, as each object has
only one identifier in the whole system and the identifiers of each peer are in a sim-
ple relational computation between each other. However, the system is managed by
the network provider in a fixed well structured architecture where it is impossible for
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users to create deliberately their own entity or group of communication, especially if
they are clients of different network providers. But the control node opens wide the
door to any commercial service, access control, statistics, etc. Nevertheless, NET-
POPPS assume that each node knows its BE through an external procedure (it could
be based on some database reports like BGP tables [2]).

Consequently, and as shown by in the oracle service [40] and P4P [41], network
operators can play an important role in addressing P2P topology-awareness, traf-
fic and costs optimization, and application performance. But operators generally
consider topology of the networks they control to be confidential information [13].
Thus, in order to succeed and achieve wide adoption, any solution should provide
a method to help P2P applications in peer selection without explicitly disclosing
topology of the underlying network [13]. In this perspective, CAP [42], as a generic
flexible userfriendly system, is promising.

However, like in any applicative research field, wide adoption will probably never
happen without an agreement on a common solution based on open standards [13].

Logical routing, like the one in use in DHT-based P2P networks, will continue
to evolve in the coming years, and several various new applications based on it
will emerge. New claims will thus be required for corresponding architectures, e.g.,
security, clustering, quality of service, etc.

DHT-based structures with simple hash function are likely to be unable to afford
such requirements, and existing emerging solutions (e.g., P4P [41]) are designed for
dedicated infrastructures.

Our contributions aim resource lookup and retrieval within specific domains in
the spirit of DHTs and with specific semantics. Large-scale evaluation of these so-
lutions is currently in progress with the OverSim framework [46].

Future interesting research directions will then be explored to distinguish nodelIDs
and objectlDs, i.e., to create one single overlay for the nodes and several overlays
for the resources, each having its own semantics.

7 Conclusion

This chapter, dedicated to network-aware DHT-based P2P systems, began with elu-
cidation of the network-aware problem. It detailed DHTs, their strengths and weak-
ness and cleared up the incentives to focus on this specific class of P2P algorithms.
The general requirements for network-awareness followed with a quick overview on
available systems that explicitly provide underlay information or awareness evalua-
tion.

Then a few well-known DHT-based topology-aware systems were briefly pre-
sented, followed by two other systems for topology estimation through layer co-
operation. And as the latter allow cooperation between P2P traffic and network
providers’ policies, the chapter went less briefly on two more emerging architec-
tures to translate such cooperation in semantics within the different identifiers of a
DHT system. These two proposals were then compared, concluding with what could
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be the trend of network-aware P2P systems, followed by a brief discussion on future
research directions.
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On Adding Structure to Unstructured Overlay
Networks

Jodo Leitdao, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luis Rodrigues

Abstract Unstructured peer-to-peer overlay networks are very resilient to churn and
topology changes, while requiring little maintenance cost. Therefore, they are an in-
frastructure to build highly scalable large-scale services in dynamic networks. Typ-
ically, the overlay topology is defined by a peer sampling service that aims at main-
taining, in each process, a random partial view of peers in the system. The resulting
random unstructured topology is suboptimal when a specific performance metric
is considered. On the other hand, structured approaches (for instance, a spanning
tree) may optimize a given target performance metric but are highly fragile. In fact,
the cost for maintaining structures with strong constraints may easily become pro-
hibitive in highly dynamic networks. This chapter discusses different techniques that
aim at combining the advantages of unstructured and structured networks. Namely
we focus on two distinct approaches, one based on optimizing the overlay and an-
other based on optimizing the gossip mechanism itself.
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1 Introduction

Gossip, or epidemic, protocols have emerged as a highly scalable and resilient peer-
to-peer approach to implement several application level services such as reliable
multicast[1, 8, 12, 21, 25, 28, 34], data aggregation [17], publish-subscribe [7],
among others [22, 27, 36]. This chapter addresses peer-to-peer communication sup-
port for reliable and scalable information dissemination. A gossip-based broadcast
protocol usually operates as follows: to broadcast a message, a node selects # nodes
at random from the system ( is a configuration parameter called fanout) and sends
the message to them. Upon the reception of a message for the first time, each node
simply repeats this procedure.

The gossip approach to data dissemination has several advantages: (i) it is simple
to implement, (i) it shares the load evenly across all nodes in the system, making
gossip protocols highly scalable, in fact the load imposed by the process in each
node of the systems only has to grow logarithmically with the size of the system in
order to ensure atomic broadcast with a high probability [1, 6], and finally, (iii) its
inherent redundancy makes gossip protocols highly resilient to node and link fail-
ures (for instance, [25] proposes a gossip-based broadcast protocol that can maintain
high resilience even in scenarios where 80% of the nodes in the system fail simul-
taneously).

Gossip-based protocols were originally designed to operate with full membership
information [1, 5], by maintaining locally at each node a list with the identifiers of
every other node in the system (typically, an identifier is a tuple (ip, port) that allows
a node to be reached). However, such approach is not scalable, not only due to the
large size of the membership but also (and mainly) due to the cost of maintaining
such information up-to-date in dynamic systems. For scalability, nodes may rely on
a peer sampling service [11, 16, 25, 41], provided by a membership protocol that
operates with the goal of maintaining locally, at each node, a small random subset
(called a partial view) of the full membership list. In this case, nodes use their local
partial views to select peers for exchanging messages.

Partial views establish neighboring associations among nodes that define an over-
lay network which can be used for gossiping data. Ideally, the selection of peers
from local partial views should be equivalent to a random selection of peers across
the full membership. Therefore, the resulting overlay has a random (unstructured)
topology.

Although this randomness has some desirable features, it also raises two distinct
problems that may impair the efficiency of applications and protocols that operate
on top of these unstructured overlay networks. First, it prevents the underlying net-
work topology to be taken into consideration by the peer sampling service. This
problem is known as topology mismatch[29]: it usually leads to scenarios where
many overlay links are suboptimal with regard to a given network efficiency crite-
ria such as bandwidth or latency. Second, because the overlay structure is random,
it fails to exploit the natural heterogeneity [33] of large-scale peer-to-peer systems,
and does not take advantage of nodes and links that have a higher capacity.
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Node heterogeneity is easier to take into account in structured multicast proto-
cols, by explicitly building dissemination structures according to a predefined ef-
ficiency criteria [10, 35, 37, 43], and then use these structures (such as spanning
trees [3, 24]) to disseminate multiple messages. In a structured approach, nodes with
higher resource availability can offer a bigger contribution to the global dissemina-
tion effort by having larger degrees or by being placed closer to the root of the tree
(the reader should notice that nodes located at the leaves of the tree are not required
to contribute to the message dissemination effort).

The trade-off between gossip-based and structured approaches is clear: By avoid-
ing the need to build and maintain a spanning tree, epidemic multicast provides ex-
treme simplicity. Moreover the balanced load across all nodes in the system, is a key
factor to achieve resilience and scalability. On the other hand, structured multicast
provides better resource usage (and thus higher performance when the network is
stable) by optimizing the cost of the spanning tree according to efficiency criteria
such as network bandwidth and latency. However, structured approaches have to
deal with the complexity of rebuilding the structure when faults or network recon-
figuration occurs.

In this chapter, we address techniques that aim at combining the best of both
approaches, namely, the simplicity, scalability and resilience of unstructured over-
lay networks with the performance of structured approaches. In order to achieve
this, some degree of structure is added to low-cost unstructured overlay networks
to improve their performance without impairing the relevant properties of unstruc-
tured approaches. We start by presenting a survey of several existing works that
aim at improving the topology of unstructured overlay networks. This is followed
by a description of key properties of unstructured overlay networks that should
be preserved when introducing structure. Then we introduce two approaches that
can be used to introduce structure in unstructured overlay networks. The first ap-
proach bias the topology of an unstructured overlay according to some perfor-
mance metric without compromising the resilience of the overlay. The second is
based on an emergent behavior, approximating the operation of a structured over-
lay on top of an unstructured overlay. We present a performance evaluation of both
approaches.

2 Adding Structure to Unstructured Overlay Networks

In this section we survey several existing protocols that can be used to add struc-
ture to, or improve the locality properties of, unstructured overlay networks. Then
we list some key properties of unstructured overlay networks We also enumerate
some relevant metrics that can be used to evaluate the benefits of adding structure
to unstructured overlays. Finally we identify two distinct methodologies that allow
to add some degree of structure to such overlays.
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2.1 Existing Protocols

2.1.1 Narada

Narada [3] is a protocol designed to support application-level multicast. Narada aims
at minimizing the overhead introduced by implementing multicast at the application
layer (as opposed to IP multicast). Namely, Narada aims at minimizing both the
stress induced on physical links (due to duplicate packets that transverse the same
links) and the end-to-end latency of the multicast process. To address these issues,
Narada is based on an unstructured overlay network, whose topology is adapted for
improved performance. The goal of the protocol is to build an overlay that is: self-
organizing, efficient, self-improving, and adaptive to network dynamics. We now
briefly describe how the topology of the unstructured overlay is adapted.

Since Narada is targeted at small and medium sized systems, it is assumed that
each node has access to a full membership list containing node identifiers for all par-
ticipants in their algorithm. Using this information, Narada builds a limited degree
unstructured overlay network, named a richly connected mesh. The overlay network
topology is biased to obtain a majority of low cost links. On top of the resulting
unstructured overlay network, a distance vector routing algorithm is executed to
build, and maintain, a spanning tree routed at each sender for each multicast group.
Each node will therefore maintain a local routing table which is used to disseminate
multicast messages.

When a new element joins the system, it contacts a peer already present in the
network to obtain the current full membership list. The node then randomly selects
a few group members to whom it sends a join message, requesting to be added as
their neighbor in the overlay. Nodes rely in the resulting unstructured overlay net-
work to exchange periodic messages which are used to update global membership
information, and to detect failed nodes and partitions.

After the execution of the steps described above, nodes form a fully connected
unstructured overlay network. However, links in the network have a high prob-
ability to be suboptimal for a given set of target efficiency criteria. To improve
the overlay, nodes capture information about their execution environment. For in-
stance, in video conferencing applications, the overlay is biased to improve both
point-to-point latency and bandwidth. Passive monitoring techniques are used to
obtain available bandwidth values for peers in the system. Active monitoring tech-
niques based in the exchange of ping messages are used to extrapolate values for la-
tency. This information is then used in heuristics which bias the overlay topology as
follows:

Add links Periodically, each node n selects another random non-neighbor node
p and performs measurements to assess the efficiency of the communication with
p. Also, p sends back to n a copy of its local multicast routing table. Node n uses
both the received information and the expected efficiency of the link between n and
p to locally compute a utility function that evaluates the gain of adding such link to
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the overlay. If the expected gain is above a given threshold value, n will add the link
between himself and p to the overlay.

Remove links Periodically, each node selects, and removes, the (local) link with
the lowest utility value. The computation of these utility values is done in such a way
that the resulting value is an overestimate of the real utility of the link. Moreover, the
link is only removed if its utility falls bellow a given threshold value. This is done
to ensure some stability in the overlay. Notice that because the network is dynamic,
the utility of a link may also be dynamic. It would not be efficient to allow situations
where one is constantly removing and adding the same link to the overlay.

Using this methodology, the unstructured overlay topology can be biased, in-
creasing the efficiency of applications that operate above it.

2.1.2 Localiser

The Localiser algorithm [30] aims at solving the network mismatch problem while
ensuring that the overlay network remains connected despite failure of large per-
centage of nodes. It also ensures a fair degree distribution among every peer in the
system. The localiser algorithm is fully decentralized and only relies in local knowl-
edge. In [30] the authors show the impact of the algorithm on the operation of the
unstructured overlay network maintained by the Scamp protocol [11].

The goal of Localiser is to bias the topology of the overlay network such that
the majority of neighbors kept by each node are “close” peers (given a “network
distance” criterion). The protocol also aims at biasing the original overlay such that
every node has the same amount of neighbors, which also contributes to increase
the failure resilience of the overlay.

Localiser was designed based on a metropolis model [32]. This is an iterative
model in which an utility function f is minimized. In order to do this, on each itera-
tion, the utility of the current overlay configuration c is compared with the utility of
a possible alternative configuration ¢’. The algorithm is probabilistic given that the
acceptance of an adaptation of the overlay configuration from ¢ to ¢’ is determined
by a decreasing probability function in f(¢’) — f(c). The reader should notice that
this approach allows to perform adaptations to the overlay topology which increase
the value of the function f. This however is required by the algorithm to avoid local
minima configurations.

The specific algorithm is based on a periodic operation executed by every node
in the system. In each iteration, each node n executes the following steps:

1. Node n selects at random 2 overlay neighbors p; and p, and computes for each
one a local cost function.

2. Node n obtains the node degree of p; and p;,. Furthermore it also obtains from
p1 the cost of the link between p; and p.

3. Node n locally computes the global benefit of exchanging its link with p; for a
link between p; and p;.
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4. Finally, node n uses a probabilistic function, which takes into account the benefit,
the expected cost of the adaptation, and node degree, to make the decision of
applying, or not, the link exchange. If the exchange is accepted, n coordinates
with p; and p; the steps required to perform the adaptation.

The algorithm can be parameterized to give more weight, in the probability func-
tion, to the balance of node degrees or to the proximity of neighbors (notice that this
proximity notion is encoded in the link cost function). The probability function can
also be tuned to promote maintenance of low cost configurations or to increase the
probability of a faster convergence.

This scheme allows an unstructured overlay to self adapt to reach a configuration
where most neighbors are “local” (i.e., with a small link cost) while at the same
time, improving the degree distribution. This leads to more efficient overlay config-
urations with increased resilience to faults.

2.1.3 Araneola

Araneola [31] is a protocol for reliable and efficient multicast based on unstructured
overlay networks. The protocol is able to build, and maintain, a bounded degree
overlay. Moreover, Araneola, includes a mechanism for exploiting network proxim-
ity in the overlay.

This mechanism operates independently of the main task of the Araneola pro-
tocol. It operates by adding new links to the overlay to promote communication
between close peers. The proposed extension to the original protocol is based on
two distinct components, namely: a task to locate nearby peers, and another task
which establish connections with discovered nearby peers. These tasks operate as
follows:

Locating nearby nodes The task operates by capturing network performance
values from peers selected from a local partial view. The performance values are
used to sort nodes into a candidate list which is then used by the second task. Several
techniques can be employed to capture performance values (different metrics require
different techniques). For instance, the authors of [31] rely on a network-level hop-
count between peers which is extracted using the UNIX tracepath utility (aiming at
lowering point-to-point latency in the network).

Connecting to nearby nodes This task tries to maintain a number of nearby
neighbors equal to a target value NB (NB is a protocol parameter). Periodically, if
the number of nearby neighbors of a node falls bellow the target value, the node
issues a CONNECT_NEARBY request to the first peer in its candidate list (the
list generated by the previously described component). A node which receives a
CONNECT_NEARBY message will accept the connection, and add the issuing
node to its nearby neighbors set, if it has a number of nearby neighbors below NB.
If the node accepts the request it replies with a CONNECT_OK_NEARBY. Upon
the reception of a CONNECT_OK_NEARBY the receiving node adds the sender
to its nearby neighbors set, unless the number of its nearby neighbors has reached
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the target value of NB. In the later case, the node will send a LEAVE_NEARBY
message, which will result in the removal of the newly established connection.
This extension to the original Araneola protocol is able to correlate the topology
of the overlay and the topology of the underlying network. As a result, better links
are used in the overlay and the latency of the dissemination process is decreased.

2.1.4 GoCast

GoCast [39] is a protocol for reliable group communication that operates by building
a multicast tree on top of an unstructured overlay. This overlay network is biased to
promote low latency links and a constant degree for all nodes in the system. GoCast
operates by maintaining both near and random neighbors. The protocol also relies
in a peer sampling service which is used as a bootstrap overlay, and also as a source
for random peers for the protocol operation. The protocol tries to select a sample
of Crang and Cyeqr nodes such that the sum of these numbers converges to a given
value D (all these values are protocol parameters). TCP connections are maintained
for every neighbor of each node, and all communication made between such peers
is done by relying in these connections. UDP is used for communication for all
remaining nodes (for instance, to obtain latency measurements).

Periodically every node in the system performs two operations; the first to main-
tain random neighbors and the second to maintain a nearby neighbors. We now
describe these operations.

Mai