
Fuzzy methods in medical imaging

I. Bloch

Abstract Fuzzy sets theory is of great interest in medical image processing, for
dealing with imprecise information and knowledge. It provides a consistent mathe-
matical framework for knowledge representation, information modeling at different
levels, fusion of heterogeneous information, reasoning and decision making. In this
chapter, we provide an overview of the potential of this theory in medical imaging,
in particular for classification, segmentation and recognition of anatomical and
pathological structures.

1 Introduction

Imprecision is often inherent to images, and its causes can be found at several levels:
observed phenomenon (imprecise limits between structures or objects), acquisition
process (limited resolution, numerical reconstruction methods), image processing
steps (imprecision induced by a filtering for instance). Fuzzy sets have several
advantages for representing such imprecision. First, they are able to represent
several types of imprecision in images, as for instance imprecision in spatial location
of objects, or imprecision in membership of an object to a class. For instance,
partial volume effect, which occurs frequently in medical imaging, finds a consistent
representation in fuzzy sets (membership degrees of a voxel to tissues or classes
directly represent partial membership to the different tissues mixed up in this voxel,
leading to a consistent modeling with respect to reality). Second, image information
can be represented at different levels with fuzzy sets (local, regional, or global), as
well as under different forms (numerical, or symbolic). For instance, classification
based only on grey levels involves very local information (at the pixel level);
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introducing spatial coherence in the classification or relations between features
involves regional information; and introducing relations between objects or regions
for scene interpretation involves more global information and is related to the field
of spatial reasoning. Third, the fuzzy set framework allows for the representation
of very heterogeneous information, and is able to deal with information extracted
directly from the images, as well as with information derived from some external
knowledge, such as expert knowledge. This is exploited in particular in model-based
pattern recognition, where fuzzy information extracted from the images is compared
and matched to a model representing knowledge expressed in fuzzy terms.

Fuzzy set theory is of great interest to provide a consistent mathematical
framework for all these aspects. It allows representing imprecision of objects,
relations, knowledge and aims, at different levels of representation. It constitutes
an unified framework for representing and processing both numerical and symbolic
information, as well as structural information (constituted mainly by spatial rela-
tions in image processing). Therefore this theory can achieve tasks at several levels,
from low level (e.g. grey-level based classification) to high level (e.g. model based
structural recognition and scene interpretation). It provides a flexible framework for
information fusion as well as powerful tools for reasoning and decision making.

In this chapter, we provide an overview of the potential of this theory in medical
imaging, in particular for classification, segmentation and recognition of anatomical
and pathological structures. The chapter is organized according to the level of
information and processing. We assume that the basics of fuzzy sets theory are
known (details can be found e.g. in [30]).

2 Low-level processing

The use of fuzzy sets in medical imaging at low level concerns mainly classification,
often based on grey levels.

2.1 Representation

We denote by S the spatial domain (Rn in the continuous case or Zn in the discrete
case). Fuzzy sets can be considered from two points of view. In the first one, a
membership function is a function � from the space S on which the image is
defined into Œ0; 1�. The value �.x/ is the membership degree of x (x 2 S ) to
a spatial fuzzy object. In the second one, a membership function is defined as
a function �0 from a space of attributes A into Œ0; 1�. At numerical level, such
attributes are typically the grey levels. The value �0.g/ represents the degree to
which a grey level g supports the membership to an object or a class. There is an
obvious relation between � and �0 in grey level based processing: �.x/ D �0Œg.x/�,
where g.x/ denotes the grey level of x in the considered image.
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Fig. 1 MR image of the brain (left) (courtesy Prof. C. Adamsbaum, Saint-Vincent de Paul
Hospital, Paris), and estimation of the partial membership to the pathology (right) in the
pathological area (white means that there is only pathological tissue in the considering voxel,
black means no pathological tissue, and intermediate values represent the partial volume effect,
i.e. voxels that have also a non zero membership value to the white matter class)

Such models explicitly represent imprecision in the information provided by the
images, as well as possible ambiguity between classes. For instance the problem
of partial volume effect finds a consistent representation in this model. A pixel or
voxel suffering from partial volume effect is characterized by its partial belonging
to two (or more) different tissues or classes, i.e. by non zero membership values
to several classes. Figure 1 shows an example of an MR image of the brain of a
patient suffering from adrenoleukodystrophy, and where the slice thickness induces
a high partial volume effect. The grey levels on the right figure represent the
membership values to the pathology. The pathology is then considered as a fuzzy
object, represented by a membership function defined on the spatial domain.

More generally, a spatial fuzzy object may represent different types of impreci-
sion, either on the boundary of the objects (due for instance to partial volume effect,
or to the spatial resolution), or on the individual variability of these structures, etc.

There is no definite answer to the question of how defining the membership
functions. As mentioned above, they can be directly derived from the grey levels,
but other characteristics can be used as well. For instance the contours of an object
can be defined as a fuzzy set with a membership function depending on the gradient
intensity. Based on a detection operator of some specific objects, the membership
functions can be derived from the magnitude of the answer provided by this operator.
Imprecision can also be introduced from a first crisp estimation of the objects,
typically at their boundary as a function of the distance to the crisp object, to
account for imprecision in this estimation. Finally, several approaches rely on fuzzy
classification methods to derive membership functions.
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Fig. 2 Membership values in
a fuzzy C-means
classification as a function of
x in the case of 2 classes,
with centroids in positions
x D 1 and x D 2. In this
example m D 2

2.2 Fuzzy classification

Learning of membership functions is a difficult task that still does not have a definite
answer. Several methods have been proposed in the literature, often based on the
minimization of some criteria. Among these methods, the most used is the fuzzy
C-means algorithm (FCM) [5]. The idea is to define a membership function of a
point to each class (which is then a fuzzy set), instead of deriving crisp assignments.

The FCM algorithm iteratively modifies a fuzzy partition so as to minimize an
objective function defined as: Jm D PC

j D1

PN
i �m

ij jjxi �mj jj2, under the constraint

that 8i;
PC

j D1 �ij D 1, where C denotes the number of class, N the number
of points to be classified, �ij the membership function of point i to class j , and
m is a parameter belonging to �1; C1Œ called fuzzy factor, which controls the
amount of “fuzziness” of the classification. The membership function is deduced
from the cluster center position as: �ij D 1

PC
j D1Œ

jjxi �mi jj

jjxi �mj jj/
�

2
m�1

, and the cluster center

position is obtained by: mj D
P

i �m
ij xi

P
i �m

ij
. From an initialization of cluster centers,

the membership values and cluster centers are alternatively updated using these
two equations, until convergence. Convergence towards a local minimum of the
objective function has been proved. An example is provided in Fig. 2, in the case
of a 1-dimensional 2-class problem. It also illustrates one of the main drawbacks
of this approach: the membership functions are not decreasing with respect to the
distance to the cluster center. This is due to the normalization constraint, and this
phenomenon gets even worse with more classes.
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An alternative solution to fuzzy C-means classification, which avoids the
normalization drawbacks, is given by possibilistic C-means (PCM) [40]. The
objective functional is defined as: J D PC

j D1

PN
iD1 �m

ij :jjxi � mj jj2 C PC
j D1 �j

PN
iD1.1 � �ij /m:jjxi � mj jj2 and the obtained membership function is:

�ij D 1

1C jjxi �mj jj
2

�j

1
m�1

. Now the membership functions are decreasing with respect

to the distance to the class centers. However this algorithm is very sensitive to
initialization and sometimes coincident clusters may occur.

To address the problems of FCM and PCM a new fuzzy possibilistic C-mean
(FPCM) algorithm was proposed in [49] by combining these two algorithms. The
objective function involves both membership and typicality. FPCM solves the noise
sensitivity defect of FCM and overcomes the problem of coincident clusters of
PCM. Although FPCM is less prone to the problems of FCM and PCM, in the
case of a large data set this algorithm does not work properly since the typicality
values are very small in such cases, again due to a normalization constraint. This
constraint has been suppressed in possibilistic fuzzy c-mean (PFCM) [50]. Recently,
approaches have been proposed by modifying the objective function to increase the
robustness of FCM to noise [1,33,44,45,59,64]. They also try to incorporate spatial
information, by defining membership functions that depend on a local neighborhood
around each point.

Another class of methods relies on probability-possibility transformations [29,
31,39]. Other methods based on statistical information have been proposed, also by
minimizing some criteria (e.g. [23, 25]). However, most criteria provide a function
that depends on the shape of the histogram. Accounting for frequent situations
where a pixel may belong completely and without any ambiguity to a class while
having a grey-level with low occurrence frequency thus becomes difficult.

In [13] an original approach was proposed to obtain membership values from
grey-level histogram. Two types of criteria are used simultaneously. The first type is
based on a “resemblance” between the grey-level histogram and the membership
function in the form of a distance between the two distributions. This type is
very close to existing methods. The second type accounts for prior information
on the expected shape of the membership function, in order to deal with problems
mentioned above concerning low occurrence frequencies. This calls for a parametric
representation of the functions. The combination of these two types of criteria leads
to a simpler interpretation of the obtained functions that fits better the intuitive
notion of membership. Membership functions are chosen as simple trapezoidal
functions, whose parameters are estimated (simultaneously for all class membership
functions) using simulated annealing in order to optimize the two criteria. The
results obtained on a MR brain image are illustrated in Fig. 3. This method has
been applied successfully to several problems like multi-image classification or
segmentation of internal brain structures.

Finally, other types of classification methods, such as k-nearest neighbors, have
also been extended to the fuzzy case.
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Fig. 3 MR image of the brain, showing three main classes: brain, ventricles and pathology (the
white area on the left image), and result of the estimation of the three classes

Despite their drawbacks, these methods are quite widely used, mostly as an
initialization for further more sophisticated processing. For instance, an adaptive
C-means algorithm was used in [69] in order to take the partial volume effect into
account in a deformable model approach. An original fuzzy classification method
taking spatial context into account was also used as the initialization of a deformable
model in [38] for segmenting brain tumors of different types, shapes and locations
in 3D MRI. Some results are shown in Sect. 6.

2.3 Local operations for filtering or edge detection

In this section, we summarize the main techniques for local filtering in a broad sense,
aiming at enhancing the contrast of an image, at suppressing noise, at extracting
contours, etc. Note that these aims are different and often contradicting each other.
However, the principles of the techniques are similar, and they can be grouped into
two classes: techniques based on functional optimization on the one hand, and rule
based techniques on the other hand. These aspects have been largely developed in
the literature (see e.g. [2, 6, 42, 67]), and we provide here just the main lines.

Functional approaches consist in minimizing or maximizing a functional, which
can be interpreted as an analytical representation of some objective. For instance,
enhancing the contrast of an image according to this technique amounts to reduce
the fuzziness of the image. This can be performed by a simple modification of
membership functions (for instance using intensification operators), by minimizing
a fuzziness index such as entropy, or even by determining an optimal threshold value
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(for instance optimal in the sense of minimizing a fuzziness index) which provides
an extreme enhancement (until binarization) [51, 52].

Other methods consist in modifying classical filters (median filter for instance)
by incorporating fuzzy weighting functions [43].

Rule based techniques rely on ideal models (of filters, contours, etc.). These
ideal cases being rare, variations and differences with respect to these models are
permitted through fuzzy representations of the models, as fuzzy rules. For instance,
a smoothing operator can be expressed by [62, 63]:

IF a pixel is darker than its neighbors
THEN increase its grey level
ELSE IF the pixel is lighter than its neighbors
THEN decrease its grey level
OTHERWISE keep it unchanged

In this representation, the emphasized terms are defined by fuzzy sets or fuzzy oper-
ations. Typically, the grey level characteristics are defined by linguistic variables,
the semantics of which are provided by fuzzy sets on the grey level interval. Actions
are fuzzy functions applied on grey levels and on pixels. The implementation of
these fuzzy rules follows the general principles of fuzzy logic [30].

More complex rules can be found, for instance in [41, 56], where a contour
detector is expressed by a set of rules involving the gradient, the symmetry and
the stiffness of the contour. Fuzzy rule based systems have also been proposed for
contour linking, based on proximity and alignment criteria.

Note that rules are sometimes but a different representation of functional
approaches. Their main advantage is that they are easy to design (in particular for
adaptive operators) and to interpret, and they facilitate the communication with the
user.

3 Intermediate level

Several operations have been defined in the literature on fuzzy objects, in particular
spatial fuzzy objects, since the early works of Zadeh [71] on set operations, and of
Rosenfeld on geometrical operations [60].

Typical examples of geometrical operations are area and perimeter of a fuzzy
object. They can be defined as crisp numbers, where the computation involves each
point up to its degree of membership. But since objects are not well defined, it can
also be convenient to consider that measures performed on them are imprecise too.
This point of view leads to definitions as fuzzy numbers [30].

Such geometrical measures can typically be used in shape recognition, where
geometrical attributes of the objects are taken into account.

As an example, fuzzy measures have been used in [58] for detecting masses in
digital breast tomosynthesis. The measures are performed on detected fuzzy regions,
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Fig. 4 Fuzzy particle (black
lines represent the contours of
the ˛-cuts of the fuzzy object)
extracted from a digital
mammography. Computing
fuzzy attributes on this fuzzy
object leads to a decision
concerning this region.
(From [57])

that are considered as candidate particles (Fig. 4). A decision concerning their
recognition is performed by combining fuzzy attributes. Fuzzy decision trees can
be used to this aim [20, 53].

It has been shown in [65, 66] that using fuzzy representations of digital objects
allow deriving more robust measures than using crisp representations, and in
particular dealing properly with the imprecision induced by the digitization process.

Such measures can also be used as descriptors for indexation and data mining
applications.

Let us now consider topological features and the example of fuzzy connectivity.
The degree of connectivity between two points x and y in a fuzzy object � in a
finite discrete space is defined as [60]: c�.x; y/ D maxLxy minti 2Lxy �.ti /, where
Lxy is any path from x to y. This definition was exploited in fuzzy connectedness
notions [68], now widely used in medical image segmentation and incorporated in
freely available softwares such as ITK1.

Morphological operations have also been defined on fuzzy objects (see e.g. [17]).
We give here general definitions, for fuzzy erosion and dilation, from which several
other morphological operations can be derived:

8x 2 S ; E�.�/.x/ D inf
y2S T Œc.�.y � x//; �.y/�; (1)

8x 2 S ; D�.�/.x/ D sup
y2S

t Œ�.x � y/; �.y/�: (2)

In these equations, � denotes the fuzzy set to be dilated or eroded, � the fuzzy
structuring element, t a conorm (fuzzy intersection), T the t-conorm (fuzzy union)
associated to t with respect to the complementation c.

1http://www.itk.org/

http://www.itk.org/
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Fig. 5 Fuzzy median sets
between the 18 instances of
the IBSR database for four
internal brain structures
(thalamus and putamen in
both hemispheres)

Such fuzzy morphological operations have been used in medical imaging for
instance for taking into account the spatial imprecision on the location of vessel
walls for 3D reconstruction of blood vessels by fusing angiographic and ultrasonic
acquisitions [19]. They also constitute a good formal framework for defining fuzzy
spatial relations, as will be seen in Sect. 4. Another application of fuzzy morphology
is for defining median fuzzy sets and series of interpolating fuzzy sets [12], which
can typically be used for representing variability based on several instances of an
anatomical structures or for atlas construction. An example is illustrated in Fig. 5.

Some approaches using fuzzy rules can also be found at intermediate level. Let us
just mention two examples. The first one [28] deals with the segmentation of osseous
surface in ultrasound images. It uses fuzzy representations of image intensity and
gradient, as well as their fusion, in rules that mimic the reasoning process of a
medical expert and that include knowledge about the physics of ultrasound imaging.
This approach was successfully tested on a large image data set.

The second example is completely different and fuzzy rules are used in [24] to
tune the parameters of a deformable model for segmenting internal structures of
the brain. This approach elegantly solves the difficult problem of parameter tuning
in such segmentation methods, and proved to provide very good results on normal
cases.

4 Higher level

The main information contained in the images consists of properties of the objects
and of relations between objects, both being used for pattern recognition and
scene interpretation purposes. Relations between objects are particularly important
since they carry structural information about the scene, by specifying the spatial
arrangements between objects. These relations highly support structural recognition
based on models. This models can be of iconic type, as an anatomical atlas, or
of symbolic type, as linguistic descriptions or ontologies. Although the use of
iconic representations for normal structure recognition is well acknowledged, they
remain difficult to exploit in pathological cases. Anatomical knowledge is also
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available in textbooks or dedicated web sites, and is expressed mainly in linguistic
form. These models involve concepts that correspond to anatomical objects, their
characteristics, or the spatial relations between them. Human experts use intensively
such concepts and knowledge to recognize visually anatomical structures in images.
This motivates their use in computer aided image interpretation. Some attempts to
formalize this knowledge has been recently performed, in particular in the form of
ontologies (e.g. the Foundational Model of Anatomy [61]).

In our work, we concentrate mainly on spatial relations, which are strongly
involved in linguistic descriptions. They constitute a very important information
to guide the recognition of structures embedded in a complex environment, and
are more stable and less prone to variability (even in pathological cases) than
object characteristics such as shape or size. We proposed mathematical models
of several spatial relations (adjacency, distances, directional relations, symmetry,
between...) [8, 9, 10, 15, 18, 27], in the framework of fuzzy sets theory, which
proved useful to recognize thoracic and brain structures [14, 16, 26]. These fuzzy
representations can enrich anatomical ontologies and contribute to fill the semantic
gap between symbolic concepts, as expressed in the ontology, and visual percepts, as
extracted from the images. These ideas were used in particular in our segmentation
and recognition methods [3, 36]: a concept of the ontology is used for guiding the
recognition by expressing its semantics as a fuzzy set, for instance in the image
domain or in an attribute domain, which can therefore be directly linked to image
information.

The methods we develop in our group for segmentation and recognition of 3D
structures in medical images can be seen as spatial reasoning processes. Two main
components of this domain are spatial knowledge representation and reasoning. In
particular spatial relations constitute an important part of the knowledge we have
to handle, as explained before. Imprecision is often attached to spatial reasoning in
images, and can occur at different levels, from knowledge to the type of question we
want to answer. The reasoning component includes fusion of heterogeneous spatial
knowledge, decision making, inference, recognition. Two types of questions are
raised when dealing with spatial relations:

1. given two objects (possibly fuzzy), assess the degree to which a relation is
satisfied;

2. given one reference object, define the area of space in which a relation to this
reference is satisfied (to some degree).

In order to answer these questions and address both representation and reasoning
issues, we rely on three different frameworks and their combination: (i) mathemat-
ical morphology, which is an algebraic theory that has extensions to fuzzy sets and
to logical formulas, and can elegantly unify the representation of several types of
relations; (ii) fuzzy set theory, which has powerful features to represent imprecision
at different levels, to combine heterogeneous information and to make decisions;
(iii) formal logics and the attached reasoning and inference power. The association
of these three frameworks for spatial reasoning is an original contribution of our
work [11].
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Fig. 6 Fuzzy region between the lungs, segmentation of the lungs and the heart on an axial slice
and a coronal one

An example of using the second type of question was used for segmenting the
heart in low resolution CT images [46], relying on the anatomical knowledge “the
heart is between the lungs”. The translation of this knowledge uses an original
definition of the concept “between” [15], that defines a fuzzy region of interest in
which the heart can then be segmented using a deformable model integrating the
spatial relation contraints, as in [26]. An example is shown in Fig. 6.

Further examples in brain imaging will be illustrated in Sect. 6.

5 Fusion

As seen in the previous sections, a lot of approaches, whatever their level, involve
fusion steps.

Information fusion becomes increasingly important in medical imaging due to
the multiplication of imaging techniques. The information to be combined can be
issued from several images (like multi-echo MR images for instance), or from one
image only, using for instance combination of several relations between objects or
several features of the objects, or from images and a model, like an anatomical atlas,
or knowledge expressed in linguistic form or as ontologies.

The advantages of fuzzy sets and possibilities rely in the variety of combination
operators, offering a lot of flexibility in their choice, and which may deal with
heterogeneous information [32, 70]. We proposed a classification of these operators
with respect to their behavior (in terms of conjunctive, disjunctive, compromise
[32]), the possible control of this behavior, their properties and their decisiveness,
which proved to be useful for several applications in image processing [7]. It is
of particular interest to note that, unlike other data fusion theories (like Bayesian or
Dempster-Shafer combination), fuzzy sets provide a great flexibility in the choice of
the operator, that can be adapted to any situation at hand. Indeed, image fusion has
often to deal with situations where an image is reliable only for some classes, or does
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Fig. 7 Dual echo MR image of the brain, showing three main classes: brain, ventricles and
pathology (the white area on the middle image). Right: final decision after fuzzy combination
(note that the decision is taken at each pixel individually, without spatial regularization)

not provide any information about some class, or is not able to discriminate between
two classes while another does. In this context, some operators are particularly
powerful, like operators that behave differently depending on whether the values
to be combined are of the same order of magnitude or not, whether they are small or
high, and operators that depend on some global knowledge about source reliability
about classes, or conflict between images (global or related to one particular class).
The combination process can be done at several levels of information representation,
from pixel level to higher level. A noticeable advantage of this approach is that it is
able to combine heterogeneous information, like it is usually the case in multi-image
fusion.

At a numerical level, the typical application is multi-source classification. We
show an example of image fusion problem in brain imaging, where we combine
dual-echo brain MR images in order to provide a classification of the brain into
three classes: brain, ventricles and CSF, and pathology. These images are shown
in Fig. 7. The membership functions for these classes have been estimated in a
completely unsupervised way on both images, as described before. We then use
these membership functions in a fuzzy fusion scheme [13]. Since both images
provide similar information about the ventricles, we use a mean operator to
combine the membership functions obtained in both images for this class. Brain
and pathology cannot be distinguished in the first echo and we obtain only one class
for this image, denoted by �1

c . In the second image, we obtain two classes denoted
by �2

c and �2
path respectively. We combine �1

c and �2
c using an arithmetical mean

again. As for the pathology, we combine �1
c and �2

path using a symmetrical sum

defined as: ab
1�a�bC2ab

. This guarantees that no pathology is detected in the areas
where �2

path D 0, and this reinforces the membership to that class otherwise, in
order to include the partial volume effect areas in the pathology (this corresponds to
what radiologists do). After the combination, the decision is made according to the
maximum of membership values. The result is shown in Fig. 7 (right).
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At a structural level, the operations defined on fuzzy objects as well as the
relations between fuzzy objects can serve as a basis for structural recognition. An
example will be provided in the next section.

A noticeable advantage of fuzzy fusion is that it is able to combine heterogeneous
information, like is the case when dealing with higher level approaches, where
several types of knowledge and information with different semantics have to be
combined, and to avoid to define a more or less arbitrary and questionable metric
between pieces of information.

Let us give a few examples. If we have different constraints about an object (for
instance concerning the relations it should have with respect to another object)
which have all to be satisfied, these constraints can be combined using a t-norm
(a conjunction). If one object has to satisfy one relation or another one then a
disjunction represented by a t-conorm has to be used. This occurs for instance
when two symmetrical structures with respect to the reference object can be
found (this situation often occurs in medical imaging). Mean operators can be
used to combine several estimations and try to find a compromise between them.
Associative symmetrical sums can be used for reinforcing the dynamics between
high and low membership degrees. Importance of a constraint or reliabilities can be
easily introduced in adaptive operators, and so on.

6 An application to the recognition of brain structures based
on anatomical knowledge representation

Let us now illustrate how fuzzy spatial relations can be used for recognizing struc-
tures in a scene based on a model. The chosen example concerns the recognition of
internal brain structures (ventricular system and grey nuclei) in 3D MRI. Two types
of approaches have been developed, that correspond to the two types of questions
raised in Sect. 4.

6.1 Global approach

In the first approach, which relies on the first type of question, spatial relations
evaluated between spatial entities (typically objects or regions) are considered as
attributes in a graph. The model is a graph derived from an anatomical atlas.
Each node represents an anatomical structure, and edges represent spatial relations
between these structures. A data graph is constructed from the MRI image where
recognition has to be performed. Each node represents a region obtained from a
segmentation method. Since it is difficult to segment directly the objects, usually
the graph is based on an over-segmentation of the image, for instance based on
watersheds. Attributes are computed as for the model. The use of fuzzy relations is
particularly useful in order to be less sensitive to the segmentation step.
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Fig. 8 Two regions of a 3D
MR image, selected from an
over-segmentation of the
image as the ones having the
best matching degree to the
caudate nucleus in the atlas
(only one slice is shown)

One important problem to be solved then is graph matching. Because of the
schematic aspect of the model and the difficulty to segment the image into mean-
ingful entities, no isomorphism can be expected between both graphs. In particular,
several regions of the image can be assigned to the same node of the model graph.
Such problems call for inexact graph matching. In general, it consists in finding a
morphism, which furthermore optimizes an objective function based on similarities
between attributes. Here the fusion applies not directly on the relations but on the
similarities between them (see Sect. 5). A weighted mean operator allows us to
give more importance to the edges, which show less variability between subjects
and therefore constitute stronger anchors for guiding recognition. The morphism
aims at preserving the graph structure, while the objective function privileges
the association between nodes, respectively between edges, with similar attribute
values. This approach can benefit from the huge literature on fuzzy comparison
tools (see e.g. [21]) and from recent developments on fuzzy morphisms [54]. The
optimization is not an easy task since the problem is NP-hard. Genetic algorithms,
estimation of distribution algorithms and tree search methods have been developed
towards this aim [4, 22, 55]. An example of recognition of the caudate nucleus is
shown in Fig. 8.

Another approach consists in representing all knowledge on spatial relations
between structures in a graph and expressing the joint segmentation and recognition
problem as a constraint satisfaction problem [47, 48]. Propagators are defined for
each spatial relation, and applied sequentially in order to progressively reduce the
domain of each anatomical structure.

6.2 Sequential approach

In the second type of approach, relying on the second type of question, we use
spatial representations of spatial knowledge [16, 26]. It consists in first recognizing
simple structures (typically brain and lateral ventricles), and then progressively
more and more difficult structures, based on relations between these structures and
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previously recognized ones. The order in which structures can be recognized can be
provided by the user, or estimated as suggested in [34,35]. Each relation describing
the structure to be recognized is translated into a spatial fuzzy set representing
the area satisfying this relation, to some degree. The fuzzy sets representing all
relations involved in the recognition process are combined using a numerical fusion
operator. While we first used an atlas in [16], this constraint has been relaxed in our
recent work [26,35]. This presents two main advantages: the high computation time
associated with the computation of a deformation field between the atlas and the
image is left aside and the procedure is potentially more robust because it uses only
knowledge expressed in symbolic form, which is generic instead of being built from
a single individual as in the iconic atlas.

Finally, a refinement stage is introduced using a deformable model. This stage
uses an initial classification (using a low level approach based on grey levels) as a
starting point and has the potential to correct possible imperfections of the previous
stage together with regularizing the contours of structures. This deformable model
makes use of a fusion of heterogeneous knowledge: edge information derived from
the image, regularization constraints and spatial relations contained in the linguistic
description. All pieces of information are combined in the energy of a parametric
deformable model. For instance the caudate nucleus can be recognized based on
its grey level (roughly known depending on the type of acquisition), and, more
importantly, on its relations to the lateral ventricles (exterior and close to them).
Here, the primary role of spatial relations is to prevent the deformable model from
progressing beyond the limit of structures with weak boundaries.

Figure 9 shows 3D views of some cerebral objects recognized in an MR image
with our method. In particular, the importance of spatial relations is illustrated in
the case of the caudate nucleus. The lower part of this structure has a very weakly
defined boundary and the use of a spatial relation is essential to achieve a good
segmentation.

One of the advantages of this approach is that it can be extended to pathological
cases, since spatial relations remain quite stable in the presence of pathologies,
unlike shapes and absolute locations. Moreover, it is possible to learn the parameters
of the relations, and their stability according to the type of pathology [3, 37]. Two
examples of segmentation and recognition results in pathological cases are shown in
Fig. 10, based on a segmentation of the tumor (based on fuzzy classification) [38].

7 Conclusion

In this chapter, several examples illustrating the potential of fuzzy methods for
medical imaging have been described. While low level methods are still the most
widely used, recently several higher level approaches were developed, based on
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Fig. 9 Segmentation and
recognition results obtained
for the lateral ventricles, third
ventricle, caudate nuclei and
thalami by integrating spatial
relations in 3D deformable
models. Illustration of the
importance of spatial
relations in the deformable
model: in the case of caudate
nucleus, the force derived
from spatial relations
prevents the model to grow
below the lower limit of the
structure (left: result obtained
without this force, right: with
this force)

caudate nucleus (3)

tumor (1)

lateral ventricles (2)

putamen (3)

tumor (1)

thalamus (2)

Fig. 10 Examples of segmentation and recognition in pathological cases

a rigorous and powerful mathematical basis. The association of a mathematical
framework for modeling imprecision at different levels and of artificial intelligence
methods for representing concepts and knowledge and for reasoning on them seems
to be a very interesting current trend, where promising results are expected in a near
future.
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